
Decentralized Link

Analysis in Peer-to-Peer

Web Search Networks

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Josiane Xavier Parreira

Max-Planck-Institut für Informatik

Saarbrücken

2009

III

Dekan der Naturwissenschaftlich-Technischen

Fakultät I

Prof. Dr. Joachim Weickert

Vorsitzender der Prüfungskommission Prof. Dr. Jens Dittrich

Berichterstatter Prof. Dr.-Ing. Gerhard Weikum

Berichterstatter Prof. Dr. Peter Triantafillou

Berichterstatter Priv.-Doz. Dr.-Ing. Hannah Bast

Beisitzer Dr. Martin Theobald

Tag des Promotionskolloquiums 22.07.2009

IV

Acknowledgment
First and foremost, I would like to thank my advisor Prof. Dr.-Ing. Gerhard

Weikum for his great guidance and the many interesting and helpful discussions.

I would also like the thank the entire “Database and Information Retrieval”

group at the Max-Planck Institute for Informatics, for creating such a great

work environment. To my family and friends in Vitória, Brazil, that supported

me even through the distance, I am very thankful. Many thanks go to my

friend, co-author and academic sibling Sebastian. It was great to work with

him in so many interesting problems. Thanks to Rali, Hans, Esteban and Dana

for being such good friends and a special thanks to Cris, for always being there

for me. I would also like to acknowledge the fellowships that I received from the

International Max-Planck Research School and from the Dynamically Evolving

Large-scale Information Systems European Project during my PhD studies.

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte

sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder

ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades

vorgelegt.

Saarbrücken, den 22.07.2009

(Unterschrift)

Kurzfassung

Die Berechnung von Autoritäts- oder Reputationswerten für Knoten eines Gra-

phen, welcher verschiedene Entitäten verknüpft, ist von großem Interesse in

Web-Anwendungen, z.B. in der Analyse von Hyperlinkgraphen, Web 2.0 Por-

talen, sozialen Netzen und anderen Anwendungen. Die Lösung des Problems

besteht oftmals im Kern aus der Berechnung des dominanten Eigenvektors ei-

ner Matrix, die vom zugrunde liegenden Graphen abgeleitet wird. Obwohl diese

Analysen in einer zentralisierten Art und Weise berechnet werden können, gibt

es gute Gründe, diese Berechnungen auf mehrere Knoten eines Netzwerkes zu

verteilen, insbesondere bezüglich Skalierbarkeit, Datenschutz und Zensur. In der

Literatur finden sich einige Methoden, welche die Berechnung beschleunigen,

indem der zugrunde liegende Graph in nicht überlappende Teilgraphen zerlegt

wird. Diese Annahme ist in Peer-to-Peer-System allerdings nicht realistisch, da

die einzelnen Peers ihre Graphen in einer nicht synchronisierten Weise erzeugen,

was inhärent zu starken oder weniger starken Überlappungen der Graphen führt.

Darüber hinaus sind Peer-to-Peer-Systeme per Definition ein lose gekoppelter

Zusammenschluss verschiedener Benutzer (Peers), verteilt im ganzen Internet,

so dass Netzwerkcharakteristika, Netzwerkdynamik und mögliche Attacken kri-

mineller Benutzer unbedingt berücksichtigt werden müssen.

In dieser Arbeit liefern wir die folgenden grundlegenden Beiträge. Wir prä-

sentieren JXP, einen verteilten Algorithmus für die Berechnung von Autoritäts-

maßen über Entitäten in einem Peer-to-Peer Netzwerk. Wir präsentieren Trust-

JXP, eine Erweiterung von JXP, ausgestattet mit einem Modell zur Berechnung

von Reputationswerten, die benutzt werden, um bösartig agierende Benutzer zu

identifizieren. Wir betrachten, wie JXP robust gegen Veränderungen des Netz-

werkes gemacht werden kann und wie die Anzahl der verschiedenen Entitäten

im Netzwerk effizient geschätzt werden kann.

Darüber hinaus beschreiben wir in dieser Arbeit neuartige Ansätze, JXP in

bestehende Peer-to-Peer-Netzwerke einzubinden. Wir präsentieren eine Metho-

de, mit deren Hilfe Peers entscheiden können, welche Verbindungen zu anderen

Peers von Nutzen sind und welche Verbindungen vermieden werden sollen. Die-

se Methode basiert auf verschiedenen Qualitätsindikatoren, und wir zeigen, wie

Peer-to-Peer-Anwendungen, zum Beispiel JXP, von diesen zusätzlichen Relatio-

nen profitieren können.

IX

Abstract

Analyzing the authority or reputation of entities that are connected by a graph

structure and ranking these entities is an important issue that arises in the Web,

in Web 2.0 communities, and in other applications. The problem is typically

addressed by computing the dominant eigenvector of a matrix that is suitably

derived from the underlying graph, or by performing a full spectral decomposi-

tion of the matrix. Although such analyses could be performed by a centralized

server, there are good reasons that suggest running theses computations in a de-

centralized manner across many peers, like scalability, privacy, censorship, etc.

There exist a number of approaches for speeding up the analysis by partitioning

the graph into disjoint fragments. However, such methods are not suitable for a

peer-to-peer network, where overlap among the fragments might occur. In addi-

tion, peer-to-peer approaches need to consider network characteristics, such as

peers unaware of other peers’ contents, susceptibility to malicious attacks, and

network dynamics (so-called churn).

In this thesis we make the following major contributions. We present JXP, a

decentralized algorithm for computing authority scores of entities distributed in

a peer-to-peer (P2P) network that allows peers to have overlapping content and

requires no a priori knowledge of other peers’ content. We also show the benefits

of JXP in the Minerva distributed Web search engine. We present an extension

of JXP, coined TrustJXP, that contains a reputation model in order to deal

with misbehaving peers. We present another extension of JXP, that handles

dynamics on peer-to-peer networks, as well as an algorithm for estimating the

current number of entities in the network.

This thesis also presents novel methods for embedding JXP in peer-to-peer

networks and applications. We present an approach for creating links among

peers, forming semantic overlay networks, where peers are free to decide which

connections they create and which they want to avoid based on various useful-

ness estimators. We show how peer-to-peer applications, like the JXP algorithm,

can greatly benefit from these additional semantic relations.

XI

Zusammenfassung

Das Ordnen von Suchergebnissen (z.B. Webseiten, Benutzer oder Fotos) an-

hand verschiedener Qualitätsmerkmale ist ein wichtiger Bestandteil in Informa-

tionssystemen, wie sie zum Beispiel im Internet oder Web-2.0-Gemeinschaften

auftreten. Eine besonders in den letzten Jahren stark beachtete Familie die-

ser Qualitätsmaße sind die so genannten Autoritäts- oder Reputationsmaße,

deren Berechnung auf der Analyse des dominanten Eigenvektors des zugrun-

de liegenden Graphen beruht. Dieser Graph ist z.B. durch die Adjazenzmatrix

von Webseiten oder durch Freundschaften in sozialen (Web-) Gemeinschaften

definiert.

Obwohl diese Analysen von einem einzigen Server berechnet werden können,

gibt es gute Gründe, sie auf mehrere Knoten (Peers) eines Netzwerks zu ver-

teilen. Zum einen ist die Berechnung der Matrixzerlegung rechentechnisch sehr

teuer und die Speicheranforderungen sind sehr hoch, da die Matrizen extrem

groß sein können (obwohl oft sehr dünn besetzt). Zum anderen haben Benutzer

oftmals Bedenken bezüglich Datenschutz und Anonymität, was eine Herausgabe

der Daten zu einem zentralen Anbieter erschwert oder. unmöglich macht. Durch

die speziellen Eigenschaften von Peer-to-Peer-Systemen können beide Punkte

adressiert werden. Verteilte Berechnungen unter Ausnutzung der Ressourcen

der beteiligten Peers (im Internet oder einem Data-Center) ermöglichen eine

effiziente und skalierende Lösung. Zudem bleiben die Daten ausschließlich im

lokalen System des Besitzers; nur ein kleiner Teil, der zur verteilten Berechnung

benötigten Informationen wird bei Bedarf von Peer zu Peer übertragen, was

nicht nur effizient ist, sonder auch bzgl. Datenschutz und Anonymität große

Vorteile besitzt.

In der Literatur finden sich einige Methoden, welche die Berechnung be-

schleunigen, indem der zugrunde liegende Graph in nicht überlappende Teilgra-

phen zerlegt wird. Diese Annahme ist in Peer-to-Peer-System allerdings nicht

realistisch, da die einzelnen Peers ihre Graphen in einer nicht synchronisierten

Weise erzeugen, was inhärent zu starken oder weniger starken Überlappungen

der Graphen führt. Darüber hinaus sind Peer-to-Peer-Systeme per Definition ein

lose gekoppelter Zusammenschluss verschiedener Benutzer (Peers), verteilt im

ganzen Internet, so dass Netzwerkcharakteristika, Netzwerkdynamik und mög-

lichen Attacken krimineller Benutzer unbedingt berücksichtigt werden müssen.

In dieser Arbeit stellen wir JXP vor, einen Algorithmus zum Berechnen

von Autoritätsmaßen über Entitäten, die in einem Peer-to-Peer-System verteilt

XIII

sind. Der Algorithmus macht keine Annahmen über die Verteilung der Daten

oder über die Überlappung der Daten einzelner Peers. JXP kombiniert lokale

Berechnungen mit Treffen zwischen Peers, bei denen bestimmte Zwischener-

gebnisse und Informationen über die Graphstruktur ausgetauscht werden. Diese

Informationen, die ein Peer durch Treffen mit anderen Peers erhält, werden kom-

primiert gespeichert und beeinflussen nicht die Größe des lokalen Teilgraphen.

Dies ermöglicht eine geringe Speicherbelegung sowie eine effiziente Berechnung

zur Laufzeit der lokalen Algorithmen. Der bei den Treffen der Peers anfallende

Datenverkehr ist ebenfalls vergleichsweise gering, da nur Teile der Graphstruk-

tur und nicht die eigentlichen Daten ausgetauscht werden.

Theoretische und experimentelle Analysen zeigen, dass die durch JXP be-

rechneten Autoritätswerte gegen die wahren Autoritätswerte (bei zentralisier-

ter Berechnung auf allen Daten) konvergieren. Des Weiteren verdeutlichen die

Analysen, dass bereits eine kleine Anzahl von Treffen zwischen Peers ausreicht,

um eine gute Annäherung an die korrekten Autoritätswerte zu erreichen. Um

den praktischen Nutzen von JXP zu verdeutlichen, haben wir JXP in Minerva

integriert, einer auf dem Konzept der Peer-to-Peer-Netzwerke basierende ver-

teilte Suchmaschine. Die von JXP berechneten Werte können in Minerva nicht

nur zum üblichen Ordnen von Suchergebnissen benutzt werden, sondern dar-

über hinaus zum Selektieren von Peers, welche sich besonders für eine gegebene

Anfrage anbieten. Neben dem eigentlichen JXP-Algorithmus präsentieren wir

Erweiterungen, die die speziellen Eigenschaften von Peer-to-Peer-Netzwerken

adressieren: Peers können unehrlich handeln und falsche Informationen austau-

schen; zudem kann das gesamte Netzwerk instabil sein, was dazu führt, dass

Peers kommen und gehen oder ihre Inhalte ändern. Um das Problem der unehr-

lichen Peers zu lösen, haben wir TrustJXP entwickelt, eine Erweiterung von JXP

mittels eines Modells zur Reputationsberechnung. Mit Hilfe von TrustJXP kann

der Einfluss der unehrlichen Peers im System reduziert werden. Wir betrach-

ten, wie JXP robust gegen Veränderungen des Netzwerkes gemacht werden kann

und wie die Anzahl der verschiedenen Entitäten im Netzwerk effizient geschätzt

werden kann.

Zusätzlich zu JXP haben wir uns im Rahmen dieser Arbeit mit der Konstruk-

tion effizienter semantischer Netzwerke beschäftigt. Hier besteht das Problem

darin, die im System vorhanden Peers bezüglich ihrer Inhalte zu gruppieren, um

eine effiziente Anfrageverarbeitung zu ermöglichen. Das semantische Netzwerk

besteht aus Verweisen zwischen Peers, die genutzt werden, um Anfragen entlang

dieser Verweise an Peers weiter zu leiten, die sich am besten für eine gegebene

Anfrage eignen, also gute Suchergebnisse liefern können. Solch eine Anordnung

der Peers ist auch für JXP interessant, da durch die semantischen Verweise Peers

mit ähnlichen Inhalten schneller gefunden werden können, was die Konvergenz-

geschwindigkeit von JXP erhöhen kann. Wir präsentieren p2pDating, einen An-

satz zum Erzeugen dieser semantischen Netzwerke. p2pDating arbeitet wie JXP

ebenfalls mit Treffen zwischen Peers, bei denen Informationen über den Inhalt

der Datenkollektionen ausgetauscht werden. Diese Informationen bestehen z.B.

aus Angaben zur Größe der Datenkollektion, aus der Verteilung (Verwendung)

des Vokabulars (zur Bestimmung der thematischen Ähnlichkeit) oder aus statis-

tischen Beschreibungen der Dokumente, was zur Bestimmung der Überlappung

benutzt werden kann.

Summary

Ranking entities (e.g., pages, users, photos, etc.) in social networks, Web graphs,

and other relational structures is important in many applications such as Web

search or Web 2.0 communities. A widely used family of measures to analyze

authority, trust, or reputation consists of computing the principal eigenvector of

a matrix derived from the underlying graph (e.g., a weighted adjacency matrix

for Web pages or a weighted friendship/acquaintance matrix for the users of a

social network).

Although such analyses could be performed by a centralized server, there

are good reasons that suggest running theses computations in a decentralized

manner across many peers. First, eigenvector computations are computationally

expensive and require a large amount of memory, as the underlying matrices can

be huge (despite their sparseness). Thus, harnessing the resources of a peer-to-

peer network, on the Internet or within a data center, may offer a cost-efficient

scalable solution. Second, users may care about privacy and autonomy and

thus prefer a solution where they keep their parts of the data on their own

computers, rather than completely delegating all data and analyses to central

server. This consideration also leads to a decentralized peer-to-peer setting

with data and computation spread across peers. While there exist a number of

approaches for speeding up the analysis by partitioning the graph into disjoint

fragments, these methods are not suitable for a peer-to-peer network, where

overlap among the fragments might occur. In addition, peer-to-peer approaches

need to consider network characteristics, such as peers unaware of other peers’

contents, susceptibility to malicious attacks and peer dynamics.

We present JXP, an algorithm for computing authority scores of entities

distributed in a peer-to-peer network. The algorithm assumes no predefined

partitioning of the entities among peers, and overlaps among different peers’

collections are allowed. Moreover, no a priori knowledge of other peers’ content

is required. JXP combines local computations with meetings among peers for

exchanging knowledge about the link structure. This external knowledge is

stored locally in a compressed way, which does not alter the size of the local

subgraph. Therefore, storage costs remain low and local computations are fast

throughout the execution of the algorithm. Costs of message exchange are

also low, given that only the link structure, and not the content of entities, is

needed. Theoretical and experimental analyses show that scores computed by

JXP converge to the true authority scores that one would obtain by a centralized

XVII

computation, and that after an acceptable number of meetings the JXP scores

are a good approximation of the correct values. We also show the benefits of

JXP in the Minerva distributed Web search engine, where the JXP scores can

be used for addressing the problems of query routing and ranking.

Besides the basic algorithm, we present extensions that address important

properties inherent to peer-to-peer systems: peers may be dishonest and re-

port false information, and the network is very dynamic, with peers constantly

joining, leaving, and changing their contents. The former issue is addressed by

TrustJXP, where JXP is combined with a reputation model in order to detect

and amortize the influence of cheating peers on the scores computed. For coping

with dynamics on peer-to-peer networks, we show that small modifications on

what is locally stored enable peers to detect and react to changes in the network.

We also present an algorithm for estimating the current number of entities in

the network based on hash sketches and sliding windows.

In addition to the JXP framework, we also consider the problem of creating

and maintaining semantic overlay networks, i.e., network organizations where

peers are grouped according to their contents and/or interests. Semantic overlay

networks are very useful for many typical peer-to-peer applications, for instance,

query routing, where queries should be ideally sent only to peers that are able

to provide meaningful results. They are also beneficial for our JXP algorithm,

where ideally peers meet only those peers that are able to provide relevant

information. We present an approach for creating semantic overlay networks,

coined p2pDating, which also works via peer meetings, where each peer is free

to decide which connections it creates and which it wants to avoid based on

various usefulness estimators.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 JXP — Decentralized Computation of Authority Scores . 3

1.2.2 TrustJXP — JXP Extension to Untrustful Networks . . . 3

1.2.3 JXP under P2P Dynamics 4

1.2.4 p2pDating — Creation/Maintenance of SONs 4

1.3 Publications . 5

1.4 Outline of this Thesis . 5

2 Background 7

2.1 Markov Chains . 7

2.1.1 Probability Distributions 8

2.1.2 Steady-State Distributions of Ergodic Markov Chains . . 9

2.1.3 Power Iteration Method 10

2.1.4 Stochastic Complementation 10

2.1.5 Iterative Aggregation/Disaggregation Methods 12

2.2 Peer-to-peer Networks . 13

2.2.1 Overview . 13

2.2.2 Distributed Information Retrieval 15

2.2.3 Semantic Overlay Networks 16

2.2.4 Trust . 17

2.2.5 Dynamics . 18

2.3 Social Networks . 18

2.3.1 Overview . 18

2.3.2 Scoring Models and Query Processing 19

3 State of the Art in Link Analysis 21

3.1 Link Analysis . 21

3.2 The Web and Other Types of Graph 21

3.3 The InDegree Algorithm . 23

3.4 HITS . 23

3.5 PageRank . 24

3.6 Incremental, Online, and Distributed Link Analysis 25

XIX

3.6.1 Graph Partitioning . 26

3.6.2 Incremental Updates . 27

3.6.3 P2P-oriented Approaches 28

4 The JXP Algorithm 31

4.1 The Algorithm . 31

4.1.1 Extended Local Graph . 32

4.1.2 Peer Meetings . 33

4.1.3 JXP Scores . 35

4.2 Mathematical Analysis and Convergence

Guarantee . 37

4.2.1 Initialization Procedure 39

4.2.2 The Meeting Step . 39

4.2.3 Scores Bounds . 41

4.2.4 Proof of Convergence . 42

4.3 Storage and Network Bandwidth Costs 43

4.4 Robustness Against Wrong Estimates of Graph Size 45

4.5 Experimental Evaluation . 46

4.5.1 Data Sets . 46

4.5.2 Setup . 48

4.5.3 Performance Metrics . 49

4.5.4 Results . 50

4.6 Applications of JXP Scores . 53

4.6.1 Minerva . 54

4.6.2 Improving Results Quality 56

4.6.3 Query Routing Strategy Using JXP Scores 58

4.7 Discussion . 61

5 TrustJXP: JXP in Untrustful Networks 63

5.1 The TrustJXP algorithm . 64

5.1.1 Adversarial Behaviors . 64

5.1.2 Assigning Trust Scores to Peers 67

5.1.3 TrustJXP Authority Scores Computation 68

5.2 Experimental Evaluation . 68

5.2.1 Setup . 68

5.2.2 Cheating Behaviors . 69

5.2.3 Performance Metrics . 69

5.2.4 Results . 69

5.3 Discussion . 74

6 JXP under P2P Dynamics 77

6.1 Estimating the Global Number of Pages 77

6.1.1 Hash Sketches . 78

6.1.2 Estimating Global Counts Using Hash Sketches 79

6.2 Adapting JXP for Dynamics . 81

6.2.1 The New World Node . 81

6.2.2 JXP Meetings Adapted 82

6.2.3 Storage and Network Bandwidth Costs 83

6.3 Experimental Evaluation . 84

6.3.1 Setup . 84

6.3.2 Performance Metrics . 85

6.3.3 Results . 85

6.4 Discussion . 86

7 p2pDating — Creation and Maintenance of SONs 89

7.1 The p2pDating Algorithm . 90

7.1.1 The Semantic Routing Table 90

7.1.2 Finding New Friends . 92

7.1.3 p2pDating Algorithm . 92

7.2 Defining Good Friends . 93

7.2.1 Quality/Usefulness Measures 95

7.3 SONs for the JXP Authority Scores Computation 100

7.3.1 Experiments . 101

7.4 SONs for Query Routing . 103

7.4.1 Experiments . 103

7.5 Discussion . 106

8 Conclusion and Outlook 107

List of Figures 110

List of Algorithms 111

List of Tables 112

References 113

Chapter 1

Introduction

1.1 Motivation

Link analysis has been developed over the past 20 years in various fields in-

cluding discrete mathematics (graph theory), social sciences (social network

analysis) and computer science (graph as a data structure). Recently this area

has attracted a wider attention for its applicability in Web search and Web

2.0 communities, where analyzing the authority or reputation of entities that

are connected by a graph structure and ranking these entities is an important

issue. Usually this issue is addressed by computing the dominant eigenvector

of a matrix that is suitably derived from the underlying graph, or by perform-

ing a full spectral decomposition of the matrix. In the context of Web graphs,

authority scoring, based on the Eigenspace analysis of a suitably defined graph

of Web links, endorsements, or interactions, is an established tool for ranking

information units (Web pages, sites, peers, social groups, etc.) by their relative

importance [Cha02, BRRT05, LM06a]. As Google 1 has impressively demon-

strated with its PageRank algorithm, such authority information can be ex-

ploited for improving the rank of search results. Social communities is another

concept that has lately been explored to improve the search experience (e.g.,

del.icio.us, flickr.com). With billions of people from different parts of the world

contributing with their input, the task of identifying the “hot spots” of a com-

munity becomes crucial. The community users interact in a way that results in

community graphs that allow authority analyses similar to the PageRank-style

analyses on Web graphs. Such community graphs naturally arise in various ap-

plications, by different means of user interaction, with respect to a wide variety

of entities, and with varying notions of authority (e.g., product ratings, opinions

on other people’ blogs or photos, bibliographic references, etc.). Although such

analyses could be performed by a centralized server, they are computationally

expensive and require a large amount of memory, as the underlying matrices can

be huge (despite their sparseness), which suggests running theses computations

in a decentralized manner across many sites.

1http://www.google.com

1

2 CHAPTER 1. INTRODUCTION

Peer-to-peer (P2P) technology has emerged as a compelling paradigm for

large-scale file sharing, publish-subscribe, and collaborative work, as it provides

great scalability and robustness to failures [SW05]. Thus, harnessing the re-

sources of a peer-to-peer network, on the Internet or within a data center, may

offer a cost-efficient scalable solution. Moreover, a lot of research has been ded-

icated to P2P Web search applications; spreading the functionality and data of

a search engine across thousands or millions of peers. Such an architecture is

being pursued in a number of research projects (e.g., [SMW+03, CAPMN03,

BMT+05b, KNOT06, BMPC07, PRL+07]) and could offer various advantages:

i) lighter load and smaller data volume per peer, and thus more computational

resources per query and data unit, enabling more powerful linguistic or statisti-

cal learning methods; ii) with each peer being close to the human user and the

user trusting its local software and controlling the degree of sharing personal

information and collaboration with other peers, there is a great opportunity

for leveraging user behavior such as explicit or implicit feedback in the form

of query logs, click streams, or bookmarks; iii) a decentralized approach could

provide better immunity to search result distortion by the bias of big providers,

commercial interests, or even censorship. So this consideration also leads to

a decentralized peer-to-peer setting with data and computation spread across

peers.

While there exist a number of approaches for speeding up link analysis

by distributing the link graph among multiple sites [KHMG03, WD04, AW03,

BLMP06], these methods work only when the overall Web graph is partitioned

into disjoint fragments, which is the case when partitions are formed by the sites

that own the pages, and therefore are not suitable in the context of a peer-to-

peer Web search engine. In addition, peer-to-peer approaches also need also to

consider network characteristics, such as peers unaware of other peers’ contents,

susceptibility to malicious attacks, and network dynamics — so-called churn.

Another challenge in P2P Web search applications is query routing, i.e.,

how to efficiently select promising peers for a particular information need, given

that the total number of relevant peers in a network is not known a priori and

peer relevance also varies from peer to peer. In this context, Semantic Overlay

Networks (SONs) [ACMHP04, BMR03, CGM04, TXKN03] appear as a net-

work organization that improves query performance while maintaining a high

degree of peer autonomy. Peers with semantically similar content are connected

through an overlay network, and a peer can belong to multiple overlay networks

(e.g., if its contents is diverse). Queries are routed only to the appropriate over-

lay networks, according to its semantics, increasing the chances that matching

information (e.g. files, documents) will be found quickly, and reducing the load

on peers having unrelated content. Determining which SONs a peer should join

is a challenge itself. In most of early approaches, an algorithm that classifies

the peers’ contents into one or more predefined classes was used. Each of these

classes define a SON. This leads to a fixed configuration of the SONs, so that the

performance is highly dependable on a good choice of the classification algorithm

and the classes, and it also requires that all peers use these same algorithm and

1.2. CONTRIBUTIONS 3

classes, which is undesirable.

1.2 Contributions

1.2.1 JXP — Decentralized Computation of Authority

Scores

We address the problem of computing authority scores in a general P2P system

with potentially overlapping graph fragments distributed across peers of a large

network. We consider the architecture of a P2P search engine where each peer

is autonomous, crawls Web fragments and indexes them locally according to the

user’s interest profile, and collaborates with other peers for query routing and

execution. Queries would often be executed locally on the user’s personalized

“power search engine”, and occasionally forwarded to other peers for better

results. In such a setting, PageRank-style scores are still crucial for the ranking

of search results, but the local Web fragment of a peer may be too small or

incomplete for a meaningful link analysis.

JXP (Juxtaposed Approximate PageRank) is an algorithm for coping with

the above situation: dynamically computing, in a decentralized P2P manner,

global authority scores when the Web graph is spread across many autonomous

peers with arbitrarily overlapping graph fragments and the peers are a priori

unaware of other peers’ fragments. In the JXP algorithm, each peer computes

the authority scores of the pages that it has in its local index, by locally running

the standard PageRank algorithm. A peer gradually increases its knowledge

about the rest of the network by meeting with other, randomly chosen, peers

and exchanging information, and then recomputing the PageRank scores of local

interest. Theoretical and experimental analyses show that scores computed

by JXP converge to the true PageRank scores that one would obtain by a

centralized computation, and that after an acceptable number of meetings the

JXP scores are a good approximation of the correct values. We also show the

benefits of having the JXP scores in the Minerva distributed Web search engine,

where the JXP scores can be used for addressing the problems of query routing

and ranking.

1.2.2 TrustJXP — JXP Extension to Untrustful Networks

Since high authority scores can bring benefits for peers, it is expected that

malicious peers would try to distort the results of the algorithm, by providing

different (usually higher) scores for some of their local pages. P2P networks are

generally vulnerable to malicious agents that can cheat in order to get more

benefits. [MGM06] points out that P2P architectures for information sharing,

search, and ranking must integrate a complete reputation system. Reputation

systems operate by collecting information on the behavior of the peers, scoring

each peer based on good vs. bad behavior, and allowing the system to take

countermeasures against suspicious peers.

4 CHAPTER 1. INTRODUCTION

We present a trust model that integrates decentralized authority scoring

with an equally decentralized reputation system. Our approach is based on

anomaly detection techniques that allow us to detect a suspicious peer based

on the deviation of its behavior from some common features that constitute

the usual peer profile. Our method combines an analysis of the authority score

distribution and a comparison of score rankings for a small set of pages. The

JXP algorithm is then enhanced to avoid the impact of malicious peers. We call

this enhanced version TrustJXP.

1.2.3 JXP under P2P Dynamics

In a P2P network peers are constantly joining and leaving the network, so that

the full content is not always available. Moreover, peers might change what

they store: for instance, a peer might become interested in a different topic and

start to store information about this new topic. This has a big impact on the

computation of authority scores, since links might as well change. We propose

methods to adapt the JXP algorithm to work under dynamics. We also present a

method for estimating the number of entities currently available in the network.

The estimator combines multiple hash sketches [FM85] in a sliding window

manner, allowing the estimator to deal with entities being removed from the

network which is not directly supported by hash sketches.

1.2.4 p2pDating — Creation/Maintenance of SONs

To overcome the restriction that all peers have to use the same classification

algorithm and predefined classes, we propose a new method for creating dy-

namically evolving Semantic Overlay Networks that gives more autonomy to

the peers when deciding which SONs they should join. The method, coined

p2pDating, works by rearranging the links on the overlay networks, according

to the peers’ criteria of a “good” neighbor or “friend”, and using caching to re-

member the peers that were defined as friends. Possible measures for deciding

if a peer should be considered a friend or not could be, for instance, the level of

overlap between documents from the peer and documents from the candidate for

being a friend, the similarity between their documents, the prior query history

of the peers, level of trust, etc. A peer also has the option to delete an already

established link with a friend, if it has either changed its selection criteria or

found more interesting peers.

We show how peers acting autonomously can form context-rich SONs, and

how the proposed SONs can be utilized during query routing in P2P web search

engines, and also by our own JXP algorithm for devising a strategy for choosing

peers for a meeting.

1.3. PUBLICATIONS 5

1.3 Publications

Various aspects of this thesis have been published as journal, workshop, and con-

ference articles. The JXP algorithm was initially introduced in [PW05] and later

improvements and extensions were published in [PDMW06, PCD+08]. In addi-

tion, a demonstration of the algorithm is presented in [PMB+07]. The TrustJXP

algorithm is the topic of [PDCW07], whereas the JXP under dynamics was con-

sidered in [PMW08]. In the SONs context, the p2pDating algorithm is the topic

of [PMW07]. Works that i have published in the context of social networks in-

clude [BCK+07, BCK+08, SCK+08a, CKM+08a, CKM+08b, SCK+08b].

1.4 Outline of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives gen-

eral background on matrix theory, peer-to-peer networks, and social networks.

Chapter 3 presents an overview of existing work in the area of link analysis.

Chapter 4 presents the JXP algorithm, its theoretical analysis, extensive ex-

perimental evaluation, and applications. Extensions of the JXP framework are

presented in the subsequents chapters: TrustJXP is introduced in Chapter 5,

and the methods for handling P2P dynamics are presented in Chapter 6. The

p2pDating algorithm for creating and maintaining dynamically evolving Seman-

tic Overlay Networks is presented in Chapter 7. Finally, Chapter 8 concludes

this thesis and points out future research directions.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Markov Chains

A Markov chain is a stochastic process where, given the present state, future

states are independent of the past states. In other words, the description of

the present state fully captures all the information that could influence the

future evolution of the process. This characteristic is known as the Markov

property. A Markov chain can be described as follows. We have a finite set of

states, S = {s1,s2, . . . ,sr} 1. The process starts in one of these states and moves

successively from one state to another. Each move is called a step. Given the

values of random variables, X0,X1, . . . ,Xn, . . . , denoting the states at time steps

0,1, . . . ,n, . . . , respectively, a Markov chain satisfies the following property for all

natural numbers n and states in S

Prob{Xn+1 = sn+1∣X0 = s0,X1 = s1, . . . ,Xn = sn}= Prob{Xn+1 = sn+1∣Xn = sn}.

If the chain is currently in state si, then it moves to state s j at the next step

with a probability denoted by pi j, and this probability does not depend upon

which states the chain was in before the current state.

The probabilities pi j are called transition probabilities. The process can

remain in the state it is in, and this occurs with probability pii. An initial

probability distribution, defined on S, specifies the starting state. This may

be done by specifying a particular state as the starting state or by assuming a

uniform probability distribution for the starting state.

Applications of Markov chains can be found extensively throughout biolog-

ical, physical, and social sciences, as well as business and engineering. For

instance, consider the canonical example of a Markov chain: the weather in

the Land of Oz [KST74]. The Land of Oz has many nice things, but not good

weather. They never have two nice days in a row. If they have a nice day, they

are just as likely to have snow as rain the next day. If they have snow or rain,

1The state space may be discrete or continuous (real-valued). In this work we consider

only the case where the state space is discrete and finite.

7

8 CHAPTER 2. BACKGROUND

they have an even chance of having the same the next day. If there is change

from snow or rain, only half of the time is this a change to a nice day. With this

information we form a Markov chain as follows. We take as states the kinds of

weather R, N, and S. From the above information we determine the transition

probabilities, that can be represented in matrix form as

P =

⎛⎝
R N S

R 1/2 1/4 1/4
N 1/2 0 1/2
S 1/4 1/4 1/2

⎞⎠ .

The matrix P of the example above, is called the transition matrix or stochas-

tic matrix. The single-step transition matrix can be generalized to an n-step

transition matrix whose elements are p(n)
i j = Prob{Xm+n = j∣Xm = i}. These ele-

ments can be obtained from the single-step transition probabilities by the fol-

lowing recursive formula:

p(n)
i j = ∑

k
p(l)

ik p(n−l)
k j , for 0 < l < n.

This is called the Chapman-Kolmogorov equation. The proof can be found

in [Ste94]. In matrix notation, the equations are written as

P(n) = P(l)P(n−l).

Note that

P(n) = PP(n−1) = Pn,

i.e., the matrix Pn gives the probability that the Markov chain, starting in

state si, will be in state s j after n steps.

2.1.1 Probability Distributions

In Markov chain analysis we are often interested in determining the probability

that the chain is in a given state at a particular time step. The probability that

the chain is state i at step n is denoted by πi(n), i.e.,

π
(n)
i = Prob{Xn = i}.

A row vector containing the probability distribution on the set of states is

called a probability vector. Given the initial state distribution and the transition

matrix, the state probabilities at any step can be obtained by

π
(n)
i = ∑

k
p(n)

ki π
(0)
k ,

which in matrix notation becomes

π
(n) = π

(0)Pn,

2.1. MARKOV CHAINS 9

where π(0) is the initial state probability vector.

If for some probability vector the following holds

v = vP,

then we say that v is a stationary distribution. Given the initial state prob-

ability π(0), if the limit

lim
n→∞

π
(n)

exists, then this limit is called limiting distribution, and we write

π = lim
n→∞

π
(n).

2.1.2 Steady-State Distributions of Ergodic Markov Chains

Ergodic Markov chains are defined as chains where all states are positive-

recurrent and aperiodic. Positive-recurrent means that the average number of

steps needed to return to a state for the the first time after leaving it is a finite

number; aperiodic means that if we count all possible number of steps for which

returning to the same state is possible, the greatest common divisor of these

numbers is one.

For ergodic Markov chains the limiting distribution is guaranteed to exist

and it is independent of the initial probability distribution. The limiting prob-

abilities of an ergodic chain are often referred to as equilibrium or steady-state

probabilities, in the sense that the initial state distribution π(0) has disappeared.

The equilibrium probabilities can be uniquely obtained by solving the matrix

equation

π = πP, with π > 0 and ∣∣π∣∣1 = 1.

The transition matrix of an ergodic chain also has an interesting property:

as n→ ∞, the powers Pn approach a limiting matrix W with all rows being the

same vector equal to the steady-state probability vector π.

Considering again the Land of Oz example, it can be shown that successive

powers of the transition matrix P is

P∞ =

⎛⎝
R N S

R .4 .2 .4
N .4 .2 .4
S .4 .2 .4

⎞⎠ ,

and we have π = (.4, .2, .4). In matrix theory, the equilibrium distribution

corresponds to the left eigenvector associated with the dominant eigenvalue of

matrix P, which, in turn, is always equal to one.

10 CHAPTER 2. BACKGROUND

2.1.3 Power Iteration Method

The limiting probabilities can be computed by different methods. One of the

most well-known methods is the power iteration method, an iterative algorithm

designed to compute the dominant eigenpair (λ1,x) of a matrix. Given the

matrix P the power iteration algorithm starts with a random vector v0, and

consecutively computes the following iteration

vk+1 =
vkP
∣∣vkP∣∣1

.

It can be proved that the vector vk converges to the eigenvector associated

with the dominant eigenvalue, and that µk, defined as

µk =
vkPvT

k

vkvT
k
,

converges to the dominant eigenvalue. Recall that in case of transition ma-

trices associated with ergodic Markov chains, the dominant eigenvalue is always

one and since the probabilities are normalized, the computation can be simpli-

fied, leading to

πk+1 = πkP.

In practice, the iteration is repeated until we do not observe major differences

between the vectors. One advantage of the power iteration method is that it

does not perform a matrix decomposition, and hence it can be used when P is

a very large sparse matrix.

2.1.4 Stochastic Complementation

Despite having methods to compute the stationary distribution without per-

forming a matrix decomposition, there are cases where the computation is still

very expensive, for instance when the number of states in the chain is too large.

For ergodic chains with a large number of states, one approach is to de-

compose the chain into several smaller sub-chains. Each smaller chain would

have its own stationary distribution that would ideally be independent of the

states of the other sub-chains; therefore, computing these distributions should

be faster, since each sub-chain has fewer states, and can be performed in par-

allel. Then the stationary distribution of the original chain could be obtained

by coupling back together the smaller distributions. This can be achieved un-

der certain conditions by applying the concept of stochastic complementation

[Mey89, Ste94].

Given an ergodic Markov chain, the state space is first partitioned into k
subsets. The transition matrix P associated with this chain can be represented

as

2.1. MARKOV CHAINS 11

PN×N =

⎛⎜⎜⎜⎝
P11 P12 . . . P1k

P21 P22 . . . P2k
...

...
. . .

...

Pk1 Pk2 . . . Pkk

⎞⎟⎟⎟⎠ ,

where all diagonal blocks are square. Now, for a given index i, we define Pi

as the principal block sub-matrix of P obtained by deleting the ith row and ith

column of blocks from P, and Pi∗ and P∗i as follows

Pi∗ =
(

Pi1 . . . Pi,i−1 Pi,i+1 . . . Pik
)
,

and

P∗i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1i
...

Pi−1,i

Pi+1,i
...

Pki

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i.e., Pi∗ is the ith row of blocks with Pii removed, and P∗i is the ith column of

blocks with Pii removed. The stochastic complement of Pii in P is then defined

as the matrix

Sii = Pii + Pi∗(I−Pi)
−1P∗i,

where I is the identity matrix. It can be proved (see [Mey89]) that all

stochastic complements are stochastic matrices, therefore, for every Sii, there is

a vector si such that

si = siSii,

in other words, si is the stationary distribution vector of Sii.

Coming back to the transition matrix P, let π be the stationary distribution

vector, also partitioned according to the same k subsets,

π = (π
(1)

π
(2) . . . π

(k)).

For each π(i) the following holds:

si =
π(i)

π(i)e
(e is a column of ones).

So far we have shown how the stationary distribution vector is related to

the stochastic complements, but we are still not able to compute it, given the

stationary distributions from the stochastic complements. For that we need to

introduce another matrix, called the coupling matrix. The coupling matrix C is

a k× k ergodic matrix whose entries are defined by

12 CHAPTER 2. BACKGROUND

ci j ≡ siPi je.

Given the stationary distribution vector of C, ξ ,

ξ = (ξ1 ξ2 . . . ξk),

its elements ξi are known as coupling factors, since they can be combined

with the stationary distributions of the stochastic complements to produce π in

the following way

π = (ξ1s1 ξ2s2 . . . ξksk).

2.1.5 Iterative Aggregation/Disaggregation Methods

Computing the stochastic complements of an ergodic matrix is still considerable

expensive, so people have considered alternatives that provide approximations

for the stationary distribution, rather than the exact values, but at a much

lower cost. One well-known family of such algorithms is the Iterative Aggre-

gation/Disaggregation Methods [Ste94], which usually starts with an initial ap-

proximation and tries to refine it by performing a light-weight computation. If

the refinement is still unsatisfactory, a new iteration is performed.

One of these methods is particularly useful for the following case: given a

Markov chain represented by its transition matrix P, its stationary distribution,

and an updated chain, represented by P′, how to compute that stationary dis-

tribution, or an approximation of it, of P′ while keeping computation costs low.

For this task we can explore the lumpability property of Markov chains: given a

Markov chain, we can create a new process, called reduced chain, where a subset

of the states is masked out, i.e., we observe the original chain only when it is

in a state that does not belong to this subset. The lumpability property tells

you that this reduced chain is also a Markov chain [KS63]. Let φ and π be

the stationary distribution vectors of P and P′, respectively. The vector φ can

be combined with P′ to build an aggregated Markov chain having a transition

probability matrix A that is smaller in size than P′. The stationary distribution

a of A is then used to generate an estimate of the true distribution π.

First, the state space S, S = S1,S2 . . .SN , of the Markov chain is partitioned

into S = G∪G, with G = S1,S2, . . . ,sn and G = Sn+1,Sn+2, . . . ,SN .. The states in G
are those “near” the updates, i.e., states that are likely to have been affected by

the updates. The other subset Ḡ consists of all other states, i.e., states whose

stationary probabilities are unlikely to have been affected (or have been affected

in a negligible way). The transition matrix and its stationary distribution can

then be represented as

P′N×N =

(
P′11 P′12

P′21 P′22

)

π = (π1 . . . πn πn+1 . . . πN),

2.2. PEER-TO-PEER NETWORKS 13

where the states were also partitioned according to G and G, and n is the

cardinality of G. The stationary probabilities from the previous distribution φ

that correspond to the states in G are placed in a row vector φ , and the states in

G are lumped into one superstate to create a smaller aggregated Markov chain

whose transition matrix A is the (n + 1)× (n + 1) matrix given by

A =

(
P′11 P′12e
s̃P′21 1− s̃P′22e

)
,

where

s̃ =
φ

φe
.

The stationary distribution of A is given by a, where

a = (a1, a2, . . . , an, an+1).

The stationary distribution of the updated chain, π, can be estimated by

combining the stationary distribution of A with the previous stationary proba-

bilities of the states in G. The estimate, represented by π̃ is given by

π̃ = (a1, a2, . . . , an ∣ φ).

It can be demonstrated [Mey89] that when there is absolutely no change in

the stationary probabilities that correspond to states in G, then

ai =

{
πi for 1≤ i≤ n
πe for i = n + 1

i.e., the stationary distribution for the states in G obtained with the aggre-

gated matrix A are equal to the stationary distribution of the same states in the

updated transition matrix P′.

2.2 Peer-to-peer Networks

2.2.1 Overview

In recent years, peer-to-peer (P2P) technology has become a compelling paradigm

for large-scale file sharing, publish-subscribe, and collaborative work. While

becoming popular mainly in the context of file sharing applications such as

Napster, Gnutella, or BitTorrent, the P2P paradigm can be used to access any

kind of distributed data and is rapidly making its way into distributed data

management and offering possibilities for previously unseen Internet applica-

tions. P2P computing has enormous potential benefits regarding scalability,

reliability, efficiency, flexibility, and resilience to failures and dynamics [SW05].

With the storage now distributed among many sites, an issue that arises is

the lookup problem: where to store, and how to find a certain data item in a

distributed system without any centralized control or coordination [BKK+03].

14 CHAPTER 2. BACKGROUND

In contrast to traditional client-server systems, where the data is provided by

dedicated physical entities that are explicitly referenced (e.g., by means of a

Uniform Resource Locator (URL)), P2P systems store data in multiple, distant,

transient, and potentially unreliable locations within the network. One of the

predominant challenges of a P2P system, thus, is to efficiently locate data that is

stored in the network. Its ability to do so even in the case of node failures and the

resulting resilience in the presence of network dynamics constitute the potential

benefits of a P2P system. P2P architectures can be classified according to how

they address the lookup problem. The two main approaches are unstructured

and structured architectures [SW05].

Unstructured P2P architectures do not rely on any central entity or any

other form of explicit knowledge about the location of data within the network,

when searching for a particular information. Instead, each node recursively

forwards requests to all other peers that it is aware of (neighbors or a judiciously

chosen subset), in an attempt to locate all relevant data in the network. In

order to reach all appropriate peers, a node broadcasts each message it receives

to other peers, regardless of whether they store relevant data or not. This

approach is known as message flooding and effectively leads to a breadth-first

search strategy. Each message is assigned a Time-to-live (TTL) value, which

a peer decreases by one when forwarding a message, to avoid infinite loops

and to control the number of messages being generated by one query being

issued. An advantage of this approach is the fact that it is not necessary to

pro-actively maintain the network, e.g., upon node joins and leaves. Also, there

is no enforcement of the storage location for data items, as they can be located

anywhere in the network. In other words, the data stored on a node is unrelated

to the node’s position in the network. However, message flooding has a high

bandwidth consumption cost, and there is no guarantee that all the relevant

data will be found. Popular implementations of this paradigm include Freenet

[CMH+02] and early version of the Gnutella protocol [SW05]. Other examples

of unstructured P2P networks are based on epidemic (or gossiping) protocols

[VvS03], where information is randomly disseminated across the peers in order

to keep the network connected.

Structured P2P architectures superimpose certain overlay structures to map

nodes and data items into a common address space, enabling a unique mapping

from data items to nodes given the current state of the network. For this

purpose, each node manages a small number of pointers to carefully selected

other peers (typically O(logN), where N is the number of nodes in the network);

routing along these paths eventually leads to the globally agreed-on peer that

is currently responsible for a given data item, commonly with O(logN) message

hops. Distributing the responsibilities as uniformly as possible over the nodes

in the network provides balanced storage and retrieval loads among all nodes.

On top of this routing functionality, it is straightforward to implement what

is known as Distributed Hash Tables (DHTs): a hash-table-like data structure

that allows the insertion and retrieval of (key, value)-pairs. For insertion or

retrieval of a (key, value)-pair, turn to the peer currently responsible for the

2.2. PEER-TO-PEER NETWORKS 15

key in the network as defined by the structured P2P network. This peer stores

and maintains all (key, value)-pairs for the same key. Note that, in contrast to

unstructured P2P architectures, the placement of data is no longer arbitrary,

but determined by the overlay network. Examples are Chord [SMK+01], Pastry

[RD01], and CAN [RFH+01].

2.2.2 Distributed Information Retrieval

An application that is gaining momentum is P2P Web search, where the

functionality and data of a search engine is spread across peers [SMW+03,

CAPMN03, BMT+05b, KNOT06, BMPC07, PRL+07]. It is important to point

out that Web search is not simply keyword filtering, but involves relevance

assessment and ranking search results. In this architecture each peer has a

full-fledged search engine, with a focused crawler, an index manager, and a

top-k query processor. Each peer can compile its data at its discretion, ac-

cording to the user’s personal interests. Queries can be executed locally on the

small-to-medium-sized personalized corpus, but they can also be forwarded to

other, appropriately selected, peers for additional or better search results. For

this application, the P2P paradigm has a number of potential advantages over

centralized search engines with very large server farms:

∙ The load per peer is much lower than the load per computer in a server

farm, so that the P2P-based global computer could afford much richer data

representations, e.g., utilizing natural-language processing, and statistical

learning models, e.g., named entity recognition and relation learning.

∙ The local search engine of each peer is a natural way of personalizing search

results, by learning from the user’s explicit or implicit feedback given in

the form of query logs, click streams, bookmarks, etc. In contrast, person-

alization in a centralized search engine would face the inherent problem of

privacy by aggregating enormous amounts of sensitive personal data.

∙ The P2P network is the natural habitat for collaborative search, lever-

aging the behavior and recommendations of entire user communities in a

social network. A key point is that each user has full and direct control

over which aspects of her behavior are shared with others, which ones are

anonymized, and which ones are kept private.

Query Routing

One of the key issues to make P2P Web search feasible is query routing: judi-

ciously selecting a small subset of remote peers that are expected to be good

sources of information for a specific query from an a-priori unlimited number

of peers. A key goal from a performance viewpoint is to minimize the number

of individual collections that have to be gathered in order to achieve good re-

sult quality (usually measured in terms of recall in this distributed setting). As

such, research in P2P search enjoys a large overlap with research on distributed

16 CHAPTER 2. BACKGROUND

information retrieval and can highly benefit from existing work. However, the

peculiarities of a P2P architecture require a different view on some key aspects.

For example, the absence of a centralized indexing facility together with the

difficulties to calculate global metrics in this large and highly dynamic network

hamper the use of traditional methods for collection selection. An number of

projects have been tackling this problems with different approaches. Examples

are CORI [CLC95], GlOSS [GGMT99], and Minerva [BMT+05a, MBTW06].

Result Merging

The second key issue is result merging: when the peers that have been selected

during query routing return their top-ranked local results, these results have to

be combined into a single, comprehensively ranked result list, which is eventually

displayed to the user. As we are dealing with the local query execution results

of a large number of autonomous peers, each peer individually has the freedom

to deploy its favorite document scoring model, rendering scores mutually in-

compatible and incomparable. Even if they had agreed on a common document

scoring model, most of them rely on (global) statistical knowledge that is not

readily available for a large-scale distributed system. The obvious solution, the

usage of local statistics, again leads to scores that are inherently incomparable

across peer boundaries. There are many different approaches to address this

problem: some work with having all peers agree in a common scoring function

that can be computed locally [CCH92], while others opt for recomputing the

scores of documents once the all peers have return their results. Another ap-

proach tries to overcome the problem of lack of global knowledge by having the

peers collaborate to compute estimates of those global values, like global docu-

ment frequency [BMTW06]. Each peer would then be able to produce document

scores that are comparable to other peers scores.

2.2.3 Semantic Overlay Networks

Semantic Overlay Networks (SONs) [ACMHP04, BMR03, CGM04, TXKN03]

are a network organization that improves query performance while maintaining

a high degree of peer autonomy. Peers with semantically similar content are con-

nected through an overlay network, and a peer can belong to multiple overlay

networks (e.g., if its contents is diverse). Queries are routed only to the ap-

propriate semantic overlay networks, according to its semantics, increasing the

chances that matching information (e.g. files, documents) will be found quickly,

and reducing the load on peers having unrelated content. There are many chal-

lenges when building SONs, regarding how peers are assigned to SONs and to

which SONs a query should be sent. According to the initial idea, peers should

be evenly distributed among SONs, so that we can answer queries fast, as we

have to ask fewer peers; and each peer should belong to a small number of SONs,

so that each peer has to handle only a small number of connections. However,

in the real world, the distribution of peers over topics is expected to be very

skewed and dynamic as many peers will have contents belonging to some very

2.2. PEER-TO-PEER NETWORKS 17

popular topics that are constantly changing, whereas the number of peers which

topics are less common will be low. Moreover, in most of early approaches, an

algorithm that classifies the peers’ contents into one or more predefined classes

was used. Each of these classes defines a SON. This leads to a fixed configu-

ration of the SONs, so that the performance is highly dependable on a good

choice of the classification algorithm and the classes, and it also requires that

all peers use these same algorithm and classes, which is undesirable.

2.2.4 Trust

In general P2P networks are vulnerable to malicious agents that can cheat in

order to get more benefits. Attacks by anonymous malicious peers have been

observed on today’s popular peer-to-peer networks, the most common being

inauthentic file attacks, wherein malicious peers respond to virtually any query

providing “fake files” that are tampered with or do not work. The complete

lack of accountability of the resources that peers share on the network offers an

almost ideal environment for malicious peers and mandates the introduction of

reputation systems that help to assess the quality and trustworthiness of peers.

There are many issues related to the design of a decentralized reputation system,

and a good overview can be found in [MGM06]. According to [KSGM03], there

are five issues that are important to address in any P2P reputation system:

∙ The system should be self-policing, that is, the shared ethics are defined

and enforced by the peers themselves and not by some central authority.

∙ The system should maintain anonymity of peers, i.e., a peer’s reputation

should be associated with an opaque identifier (such as nickname) rather

than with an externally associated identity (such as a peer’s IP address).

∙ The system should not assign any profit to newcomers as that would en-

courage malicious peers with poor reputations to continuously change their

opaque identifiers to obtain newcomers status.

∙ The system should have minimal overhead in terms of computation, in-

frastructure, storage, and message complexity.

∙ The system should be robust to malicious collectives of peers who know

one another and attempt to collectively subvert the system.

Examples of reputation methods are the ones that work by peers collab-

orating to assign trust scores to other peers based on past interactions (e.g.

EigentTrust [KSGM03] and the other presented in [XL04a]), and those that

analyze peer activity on the network in order to identify peers whose behavior

deviates from the typical peer-traffic profile (e.g. SeAl [NT04] and other work

in [SBWS05]).

18 CHAPTER 2. BACKGROUND

2.2.5 Dynamics

P2P networks have a dynamic nature: peers are autonomous and free to de-

cide when to join and when to leave the network [SW05]. The effect of these

independents arrivals and departures is known as churn. Moreover, peers might

change what they store; for instance, a peer can become interested in a different

topic and start to store information about this new topic instead. Dynamics

plays a big role in any P2P application, since the content that is available in the

networks varies over time. The impact can be smoothed by applying techniques

for replicating data [PNT06, DR01], where multiple copies of the same item are

stored at different peers, therefore increasing the changes that this item is avail-

able at some particular time. But with or without replication, peers still need to

know how to locate data; so the references to other peers need to be constantly

updated. In structured P2P networks there are protocols for peers joining or

leaving the network, which include notifying other peers and reconstructing the

peer connections [RGRK04]. However peers might unexpectedly leave the net-

work, for example, due to a failure, and inconsistencies in the network might

appear. Therefore, some systems also periodically check the availably of peers,

which can be done efficiently by piggybacking messages into the already existing

communication. In P2P web search applications that rely on documents statis-

tics, there is the additional effort of keeping these statics updated, so the scores

can be correctly computed.

2.3 Social Networks

2.3.1 Overview

The advent of online social community platforms (e.g., Flickr, del.icio.us, MyS-

pace, Facebook, or YouTube) has changed the way users interact with the In-

ternet. While previously most users were mere information consumers, those

platforms are offering an easy and hassle-free way for typical users to also pub-

lish their own content, making the users also information producers. On these

social platforms, users are encouraged to share photos, videos, opinions, to rate

content, but also to explore the online community and to find people with sim-

ilar interest profiles. In this sense, online social community platforms not only

change the way people interact with the Internet, but also the way users in-

teract with each other. While differing in the type of content that they focus

on (e.g., blog entries, photos, videos, bookmarks), almost all online social com-

munity platforms work similarly. Initially, users must register in order to join

the community. Once registered, they start to produce information, ideally by

publishing their own documents and by adding tags (or ratings, comments, etc)

to other content already available in the community. The platforms also offer

a way to maintain a list of friends and means to keep friends informed about

your latest content items. The size of your friend network is often considered

as your reputation in the network; making new “friends” often seems at least as

important as publishing new content. While initially many users populate the

2.3. SOCIAL NETWORKS 19

list of friends with people they already know from the offline world (e.g., family

members and school mates) or other online communities, as time goes by they

typically identify previously unknown users that they share common interests

with and also add those users to the friends list. One particularly interesting

feature of these communities is the widely-used opportunity to attach manually

generated annotations, so-called tags, to content items [HJSS06, BMCMA09].

In this context, tags can be considered precise descriptions of content items,

flavored with the respective personal interest of the user who generated the

tag. Most online communities offer comfortable and intuitive ways to explore

new content items based on these tags, e.g., via tag clouds [DKM+06, HRS07].

Thus, tagging has emerged as an important asset to explore the fast growing

communities in order to identify interesting content and users.

2.3.2 Scoring Models and Query Processing

The typically high quality of user-generated tags suggests to leverage this “wis-

dom of the crowds” for effective methods to identify and rank high-quality and

high-authority content in the communities, but at the same time, the fast-

growing amount of data calls for particularly efficient (i.e., fast and scalable)

methods to fulfill this task. The existing, traditional algorithms for searching

on the Web fall short of being effective in social networks, as they disregard the

social component and focus on the content quality only. This makes a strong

case for novel methods that exploit the additional features of social networks,

i.e., the presence of different entities (users, documents, tags) and their mutual

relationships.

Recently, a lot of research has been devoted to developing various forms of

community-aware ranking methods that includes identifying important entities

inside communities [HJSS06, ZAA07, BXW+07], measuring similarity among

tags [XBCY07], and integrating user-user relationships into the scoring function

[SCK+08a]. Aspects of user communities have also been considered for peer-

to-peer search, most notably, for establishing “social ties” between peers and

routing queries based on corresponding similarity measures, (e.g., similarities of

queries issued by different peers) [BCK+07, PGW+08, MGD06, DNP05].

20 CHAPTER 2. BACKGROUND

Chapter 3

State of the Art in Link

Analysis

3.1 Link Analysis

Links can be found everywhere, connecting all sorts of entities. For instance,

people are connected to those they know, scientific papers are connected through

citations among them, cities are connected through transportation routes, etc.

In most of the cases we can identify graph structures, where the entities are the

nodes in the graph and the links are the graph edges. The analysis of such link

structures has been proven very useful, for instance, to predict where new links

will be formed [BA99]. Recently this area has attracted a wider attention for

its applicability in Web search and Web 2.0 communities, where analyzing the

authority or reputation of entities that are connected by a graph structure and

ranking these entities is an important issue. We proceed by giving examples of

the types of graphs that appear in the context of Web and Web 2.0. Then we

talk about two well known methods for link analysis and some of their variations

in both centralized and decentralized settings.

3.2 The Web and Other Types of Graph

The Web is a system of interlinked documents accessed via the Internet. Web

pages may contain text, images, videos, and other multimedia items and are

connected to other Web pages through hyperlinks. As an example, consider

the excerpt of the Web document depicted in Figure 3.1. We can see that

the document makes references to other Web documents by placing hyperlinks

to those documents in its text. The Web documents and the hyperlinks can

be modeled as a graph, where the documents corresponds to the nodes in the

graph and the hyperlinks to the edges, as we can also see in Figure 3.1.

With the advent of Web 2.0, the process of creating and sharing documents

over the Internet became a lot easier. In social communities, the content shared

21

22 CHAPTER 3. STATE OF THE ART IN LINK ANALYSIS

Figure 3.1: Web documents and hyperlinks modeled as a graph.

is not restricted to Web pages, and it might as well be a pictures, videos, refer-

ences to book, etc. These online communities also allow more interaction among

users and the entities shared, through the concepts of online friendships, i.e.,

connecting to other users who share common interests, and tagging, i.e., an-

notating a resource with keywords that describe its content. The relationship

among users, tags and documents can also be modeled as a graphs. A example

of a social graph is shown in Figure 3.2. Other forms of social graph are also

found in literature (e.g., the social content graph suggested in [AYBB07]).

Figure 3.2: Interactions in social communities modeled as graph.

In both scenarios, there is a strong need to identify important entities for

a particular need. For instance, given a query, we want to identify, out of

the (usually) thousands of documents that match the query terms, the small

set of the most “authoritative” ones, or in a network of users, find the most

influential users. The former is a key element in search result ranking, the

latter is important for marketing strategies, in order to reach as many people

as possible by contacting only a few. Link-based authority ranking is based on

treating links as endorsements. An entity p, by placing a link to entity q, is in

some way conferring authority to q. Link-based authority ranking has received

great attention in the literature. It has started with the seminal works of Brin

and Page [BP98] and Kleinberg [Kle98], and after these, many other models

3.3. THE INDEGREE ALGORITHM 23

and techniques have followed. Good surveys of the many improvements and

variations are given in [Cha02, LM03, BRRT05, Ber05].

3.3 The InDegree Algorithm

The first and the simplest of all link analysis algorithms uses page popularity

(also known as page visibility [Mar97]) as a ranking factor. The popularity of

a page is measured by the number of pages that link to this page. We refer to

this algorithm as the InDegree algorithm, since it ranks pages according to their

indegree in the graph. This heuristic is also used in the field of bibliometric anal-

ysis [Gar79], where the importance of a publication is measured by the number

of citations it has received. The InDegree was applied by several search engines

in the early days of Web search [Mar97]. However, later approaches have shown

that the algorithm is not sophisticated enough to capture the authoritativeness

of a node, and that the origins of the incoming links play an important role.

3.4 HITS

Hypertext-Induced Topic Search (or HITS), proposed by Kleinberg [Kle98], con-

siders that pages can be authorities, if they contain good resources, or hubs, if

they contain links to good authoritative pages. 1 Endorsement is conferred on

authorities through hubs. In this framework, every page can be thought of as

having two roles. The hub role captures the quality of the page as a pointer

to useful resources, and the authority role captures the quality of the page as a

resource itself. If we make two copies of each page, we can visualize the graph

as a bipartite graph where hubs point to authorities (see Figure 3.3).

Figure 3.3: Hubs and authorities [Kle98].

1A page can be at the same time a good authority and a good hub.

24 CHAPTER 3. STATE OF THE ART IN LINK ANALYSIS

There is a mutual reinforcing relationship between the hubs and authorities.

A good hub is a page that points to good authorities, while a good authority is a

page pointed to by good hubs. In order to quantify the quality of a page as a hub

and an authority, it associates with every page a hub and an authority weight.

Following the mutual reinforcing relationship between hubs and authorities, the

hub weight is defined as the sum of the authority weights of the nodes that are

pointed to by the hub, and the authority weight as the sum of the hub weights

that point to this authority. Let a and h denote the vectors of the authority and

hub weights, respectively, where ai and hi , are the authority and hub weight of

node i. We have that

ai ∼ ∑
j∈Pred(i)

h j and hi ∼ ∑
j∈Suc(i)

a j,

where Pred(i) and Suc(i) are the sets of predecessors and successors of page

i, respectively. In matrix notation we have,

a = αAT h and h = βAa,

where A is the graph’s adjacency matrix, and α and β are constants that

appear due to normalization of the hub and authority vectors.

Given a user query, the algorithm first constructs a query specific graph as

follows: a start set of pages matching the query, called the root set, is obtained

from a search engine. The root set is then expanded by following the links that

enter and leave it, up to a certain number, forming the so-called base set. The

pages in the base set and the link among them form the query specific graph.

The authority and hub scores are then computed in the query specific graph.

Since the scores are computed in a graph that is formed according to the query,

we say that they are query dependent scores. One of the drawbacks of the HITS

algorithm is that its performance is highly dependent on the choice of the base

set, and it is often the case where the base set contains pages not relevant to

the query topic, which might lead to topic drift problem, i.e., the most highly

ranked authorities and hubs might not be about the original topic.

3.5 PageRank

PageRank [BP98, PBMW98] is probably the most well-known algorithm for

computing authority scores, since part of the success of Google’s search engine

is credited to it. Differently from HITS, PageRank does not distinguish between

hubs and authorities: if page p has a link to page q then the author of p is

implicitly endorsing q, i.e., giving some importance to page q. How much p

contributes to the importance of q is proportional to the importance of p itself.

A simplified example is given by Figure 3.4.

This recursive definition of importance is captured by the stationary distri-

bution of a Markov chain that describes a random walk over the graph, where

we start at an arbitrary page and in each step we choose a random outgoing

3.6. INCREMENTAL, ONLINE, AND DISTRIBUTED LINK ANALYSIS 25

Figure 3.4: Simplified PageRank Calculation [PBMW98].

edge from the current page. To ensure the ergodicity of this Markov chain (i.e.,

the existence of stationary page-visit probabilities), additional random jumps

to uniformly chosen target pages are allowed with small probability (1− ε).

Formally, the PageRank of a page q is defined as

PR(q) = ε× ∑
p∣p→q

PR(p)

out(p)
+(1− ε)× 1

N
.

where N is the total number of pages in the link graph, PR(p) is the PageRank

score of the page p, out(p) is the outdegree of p, the sum ranges over all link

predecessors of q, and (1− ε) is the random jump probability, with 0 < ε < 1
and usually set to a value like 0.85.

PageRank values are usually computed by initializing a PageRank vector

with uniform values 1/N, and then applying a power iteration method (see

Section 2.1.3), with the previous iteration’s values substituted in the right-hand

side of the above equation for evaluating the left-hand side. This iteration step is

repeated until sufficient convergence, i.e., until the PageRank scores of the high-

authority pages of interest exhibit only minor changes. Note that by dividing

the PageRank score of a page by its outdegree it means that the scores are

normalized and convergence is guaranteed.

This computation considers the complete graph, regardless of the query,

therefore we say that PageRank scores are query independent.

3.6 Incremental, Online, and Distributed Link

Analysis

With increasing scale of the Web and its constant changes, (re-)computing

PageRank scores has become a very expensive task. Lately a lot of research has

26 CHAPTER 3. STATE OF THE ART IN LINK ANALYSIS

been dedicated to distributed alternatives to PageRank computing (including

our own work). With the advent of P2P networks [Abe01, SMK+01, RFH+01,

RD01] approaches that aim at distributing the computation over peers in such

networks have also appeared. Roughly the methods proposed can be classified

into three groups: the ones where the computation is sped up by partitioning

the graph into smaller subgraphs, the ones that focus on incremental updates of

the scores when only small parts of the graph have changed, and the approaches

that focus on P2P systems.

3.6.1 Graph Partitioning

For speeding up the PageRank computation, Kamvar et al. [KHMG03] exploit

the topology of the Web graph. In their work, they observed that the Web

graph has a nested block structure, where the number of links among pages in

the same host is much larger than the number of links among pages at different

hosts, with the same reasoning applying to the domain level. They present the

BlockRank algorithm for computing PageRank by taking into account the block

structure of the Web graph. The BlockRank algorithm works by executing the

following steps:

1. Split the graph into blocks according to the domain.

2. Compute the Local PageRank for each block;

3. Estimate the relative importance of each block (“BlockRank”).

4. For each page, combine its Local PageRank score with the BlockRank

score of the block it belongs to.

5. Use the combined scores from the previous step as the starting vector for

the standard PageRank algorithm.

The Local PageRank scores are obtained by running the standard PageRank

algorithm inside the block, where only links among pages inside the block are

considered. The BlockRank is computed by running the standard PageRank al-

gorithm in the so-called block graph, where each vertex in the graph corresponds

to a block in the Web graph, and an edge between two pages in the Web is rep-

resented as an edge between the corresponding blocks, with proper weighting

(see [KHMG03] for details). The scores for the starting vector of the Global

PageRank are computed by multiplying, for each page, the Local PageRank

score by the BlockRank score of the block the page belongs to. Local PageRank

scores of each block, as well as BlockRank scores, are normalized, therefore the

sum of the scores of the starting vector is also 1. Experiments have shown that

the BlockRank algorithm can speed up the PageRank computation by a factor

of 2.

Other works that also works by partitioning the graph opt for computing an

approximation of the PageRank scores, instead of the exact values. Since most

of the applications are only interested in the correct ranking order, regardless of

3.6. INCREMENTAL, ONLINE, AND DISTRIBUTED LINK ANALYSIS 27

the absolute score values, approximated PageRank values are a much cheaper

solution to the problem. The algorithm presented by Wang et al. [WD04] resem-

bles the BlockRank algorithm, in the sense that there is also a Local PageRank

computation at server level where only intra-server links are considered, com-

bined with a ServerRank score for every server, which measures the importance

of each server based on the inter-server links. Both algorithms, however, have

different goals: while the BlockRank algorithm uses the Local PageRank scores

together with the BlockRank scores as a starting point for the global PageRank

computation, the algorithm from [WD04] combines Local PageRank scores and

ServerRank scores to provide an approximation of the global PageRank score,

without the need of the performing the standard PageRank algorithm on the

complete graph. Moreover, the computation of the ServerRank scores is also

done in a distributed manner, with servers exchanging messages among them,

which makes the algorithm completely decentralized.

A similar approached is pursued in the work by Wu et al. [WA05], where a

Layered Markov Model is used to distinguish transitions among Web sites and

Web pages. A DocRank score is assigned to each page but considering only the

links within the Web site the pages belongs to. Each Web site also receives a

score, called SiteRank, according to the inter-site links. Scores at page and site

level are combined to produce the final ranking.

Another work closely related to the aforementioned approaches is the one by

Broder et al. [BLMP06], which presents a graph aggregation method in which

pages are partitioned into hosts and the stationary distribution is computed in a

two-step approach, combining the stationary distributions inside each host and

the stationary distribution of a coarse-grained inter-host graph.

Following a different approach, but also without requiring the Web matrix to

be stored in one place, Abiteboul et al. [APC03] propose the OPIC algorithm.

OPIC stands for online page importance computation, and as the name says

the authority of the pages are computed on the fly. It works by randomly

(or otherwise fairly) visiting Web pages in a long-running crawl process and

performing a small step of the PageRank power iteration method for the page

and its successors upon each such visit. Two values, called cash and history are

kept for each page. Initially every page gets some initial cash value. When a

page is visited, its current cash is added to the history and distributed equally

to all outgoing neighbors of the page. The cash value is then set to zero. The

value store in the history, i.e., the sum of the cash obtained by the page since

the start of the algorithm reflects the importance of the page. For dealing with

changes in the graph, the authors propose a variant of the OPIC algorithm,

called Adaptive OPIC, where the history keeps only the cash received during a

particular time window.

3.6.2 Incremental Updates

Web and social graphs are constantly changing, mostly by the insertion of new

nodes and links. Since a full recomputation would be very expensive, some

28 CHAPTER 3. STATE OF THE ART IN LINK ANALYSIS

methods opt for performing an approximate incremental computation of the

scores. The works by Chien et al. [CDK+03] and Langville et al. [LM06b] are

based on the aggregation/disaggregation methods from Markov chains theory

(see Section 2.1.5). Given a set of link changes in the Web Graph, they identify

a small portion of the Web graph in the vicinity of the changes, and model

the rest of the Web as a single node in this small graph, using the knowledge

of the scores distributions from a previous computation. The PageRank scores

computed on this small graph are then used to approximate the PageRank

scores on the original graph. There is no exact way of determining the number

of pages that should be left unaggregated; the higher the number of pages in

the small graph, the better the approximation but the computation becomes

more expensive. Both works suggest an heuristic that considers pages that are

more likely to be affected by the changes in the Web graph, by observing how

the PageRank masses from nodes directly affected by the changes dissipate over

through the graph.

Instead of trying to approximate the scores of all pages in the graph, the work

by Chen et al. [CGS04] focus on approximate only the PageRank scores of a

subset of interest. It also starts by constructing a small graph around the target

pages, but instead of aggregating the pages that doesn’t belong to this small

graph, their approach is to use a heuristic to estimate the PageRank of each

boundary page of the small graph and run the standard PageRank algorithm on

the subgraph, in each step putting the estimated values into the boundary pages,

adding the random jump value to the internal pages, and removing any flow

leaving the subgraph. Since this algorithm does not require the state aggregation

step, its computation is faster than the previous approaches. However, it does

not provide scores for all pages. Here again, the choice of the size of the small

graph affects the accuracy of the estimation.

3.6.3 P2P-oriented Approaches

In P2P networks, the Web graph is not nicely partitioned according to the server

or host levels, so the graph partitioning approaches can not be applied in a P2P

scenario. Among the approaches that do not assume a particular data partition-

ing there is the work by Kempe et al. [KM04], which performs a decentralized

spectral decomposition of the graph. They propose an algorithm for computing

the top k eigenvectors of a symmetric matrix (i.e., a square matrix that is equal

to its transpose), and singular vectors of arbitrary matrices. Computing PageR-

ank scores is a special case of the algorithm, since the PageRank scores vector

corresponds to the singular vector associated with the singular value equals to

one. The algorithm is based on a decentralized implementation of Orthogonal

Iteration, a simple method for computing eigenvectors. In this decentralized

version, each peer is assumed to know all the incoming links for their pages and

is able to communicate the computed values through the pages’ outgoing links.

Starting with a random initial approximation for the values, each peer improves

the previous scores, using the information received from incoming links, and

3.6. INCREMENTAL, ONLINE, AND DISTRIBUTED LINK ANALYSIS 29

propagates the updated scores through the outgoing links. This procedure is re-

peated until the values converge. Convergence is guaranteed and the number of

rounds needed for convergence depends on the number of pages and the mixing

time of a random walk on the graph. One of the main drawbacks however, is

that the algorithm requires the computation to be synchronized, i.e., all peers

need to perform one round of the computation and propagate the results before

the next round can start.

The work by Canright et al. [CEMJ05] also presents a fully distributed

method, inspired by the power method, for the calculation of the principal

eigenvector of generic matrices. It also works by recomputing local scores, upon

receiving updated scores from incoming neighbors, and propagating the newly

computed scores to the outgoing neighbors. Synchronization is also required,

but authors relax this constrain by introducing a parameter, called δ , that deter-

mines the duration of each round, avoiding the need of a global synchronization

mechanism.

Although these two previous approaches eliminate the need of a particular

data partitioning, they still require the partitions to be disjoint, which makes

them suitable for certain classes of distributed systems and also for acceler-

ating link analysis on a cluster of computers, but less attractive for a P2P

environment. In a P2P network, disjoint partitioning might be a strong con-

straint, given that in most P2P networks peers are completely autonomous and

crawl and index Web data at their discretion, resulting in arbitrarily overlap-

ping graph fragments. Another drawback of these approaches is the need of

some sort of synchronization mechanism (either central or distributed). The al-

gorithm proposed by Sankaralingam et al. [SSB03] for distributed computation

of PageRank, on the other hand, is totally asynchronous; every time a message

with update scores is received from incoming links, peers compute updated val-

ues for the PageRank scores of their local pages and propagating them to the

outgoing neighbors. If a page is replicated at different peers, only one of these

peers will be responsible for computing the score for the page, and pointers to

all other copies of the page need to be maintained, so that all copies of the page

can contain the correct computed Pagerank. Even though this is a step towards

dealing with overlap, finding all copies and maintaining pointers to them might

become very expensive. Shi et al. [SYYW03] present a similar approach, but

the communication among peers is reduced by distributing the pages among the

peers according to some load-sharing function. However, even after applying

load balancing the message cost might still be too high; therefore other ap-

proaches, including our own JXP algorithm, opt for pair-wise communications

among peers, upon requests for updated scores.

Another example of decentralized PageRank computation for P2P networks

is the work by Sozio et al. [SPCW08], where peers exchange information through

peer meetings. The algorithm works as follow: each peer asynchronously and

independent of other peers, chooses another peer in the network and exchange

information, that is then used for refining the local scores. The updated scores

will be sent to another peer only when a new meeting occurs, instead being

30 CHAPTER 3. STATE OF THE ART IN LINK ANALYSIS

broadcasted to the peer’s neighbors. This last algorithm also addresses the

problem of peers acting maliciously, by replicating the pages across the network

in a way that a majority of the copies are placed in honest peers, with high

probability.

Chapter 4

The JXP Algorithm

The goal of the JXP algorithm (Juxtaposed Approximate PageRank) is to ap-

proximate global authority scores by performing local computations only, with

low storage costs, and a moderate number of interactions among peers. It runs

on every peer in the network, where each peer stores only its own local fragment

of the global graph. The algorithm does not assume any particular assignment

of entities (e.g., pages) to peers, and overlaps among the link-graph fragments

of the peers are allowed.

4.1 The Algorithm

The idea of the algorithm is simple, yet it is quite powerful. Starting with the

local graph G of a peer, i.e., the local collection of connected pages, it first

extends G by adding one special node, the world node. The algorithm then

consists of two components:

1. Computation of authority scores performed by each peer on its extended

local graph,

2. Interaction with other peers, chosen at random.

Through the interaction with other peers, peers obtained updated informa-

tion about other peers’ contents, which is locally stored in a way that does not

hurt scalability and is used in a subsequent local authority computation for re-

fining the scores. After a modest number of interactions, the scores obtained,

called JXP scores, already provide a good approximation of the true PageRank

scores given by a centralized computation on the union of the local graphs. An

analysis of the algorithm shows that, with a sufficient number of peer meetings,

scores are guaranteed to converge to the true PageRank values. The following

sections explain the JXP algorithm in detail.

31

32 CHAPTER 4. THE JXP ALGORITHM

4.1.1 Extended Local Graph

The local graph of each peer is extended by adding a special node, coined world

node. The purpose of the world node is to represent the part of the global

graph that is not stored in the peer. Condensing information in one node is

very important, otherwise if we add all pages learned in the peer meetings

we may end up having each peer storing the complete web graph. Figure 4.1

illustrates how the global Web graph is represented at a peer; the graph on

the left represents the global Web graph. In this example we have three peers,

Peers A, B and C, that have crawled parts of the Web. Note that there is

overlap among the peers’ collections. On the right we see how the Web graph is

represented at Peer A: the yellow circles are the local pages, i.e., pages that are

stored at the peer, and they appear on the extended local graph like they are

in the original Web graph. All other pages (in the example, the red and green

circles) are external pages, i.e., pages that are store in other peers, and in the

extended local graph they are replaced by the world node.

Figure 4.1: How the global Web graph is modeled by the extended local graph.

Yellow circles represent local pages, whereas external pages are shown in red

and green.

The world node has special features, regarding its own score and how it is

connected to the local graph. As it represents all the pages that are not stored in

the peer, we take all the links from local pages to external pages and make them

point to the world node. In the same way, as the peer learns from external links

that point to one of the local pages, we assign these links to the world node. For

a better approximation of the amount of authority that is received from external

pages, we weigh every link that comes from the world node based on how much

of the authority score is received from the original page that owns the link. For

this purpose, each peer keeps at its world node the following information:

∙ a list of external pages that have links to a local page;

∙ the current known scores for the pages in this list;

4.1. THE ALGORITHM 33

∙ the outdegree of the pages in this list.

For example, if there is an external page j with a link to a local page i, we

will represent this link as a link from the world node w to page i, and its weight

will be given by

weight(j) =
α j

out(j)
1

αw
,

where α j and αw are the current JXP scores of page j and the world node,

respectively, and out(j) is the outdegree of page j. The total weight of the

link from the world node to a local page i will be the sum over the weight

contributions of all external pages represented at the world node that points to

i. More details in Section 4.2.

Another special feature of the world node is that it contains a self-loop link,

that represents links from external pages pointing to other external pages. The

score of the world node is equivalent to the sum of the JXP scores of the pages it

represents. The scores computation is always done at the extended graph after

a peer meeting.

4.1.2 Peer Meetings

Since local information is not sufficient to estimate global authority scores, peers

improve their knowledge by meeting other peers in the network and exchanging,

through messages, the information they currently have that is relevant for link

authority computation. The content of a message can be described a list of

tuples of the form

< sourceid , targetid ,out(sourceid),αsourceid >,

where sourceid are the identifiers of pages from the local graph or stored in

the world node, and targetid are the pages pointed by sourceid .

The information exchanged is then combined by both of the two meeting

peers, asynchronously and independently of each other. This works as follows:

upon receiving the other peer’s message, the peer checks for pages that have

links pointing to some of the local pages. This is done by checking for every

tuple if the targetid is one of the local pages. If sourceid page is also part of the

local graph, the tuple is discarded, otherwise one page would be represented

more than once). All tuples that satisfy this constraints are then added to the

world node, by updating the links from the world node to the local pages as

follows (for simplicity sourceid and targetid are replaced by j and i, respectively):

pt
wi = pt−1

wi + weight(j),

where pt
wi and pt−1

wi are the weights of the link from the world node to page i
at the current meeting and at the previous meeting, respectively. If pt−1

wi is equal

to zero, it means that there was no link from the world node to the page prior to

the meeting, therefore a new link will be added. A non-zero value of pt−1
wi means

34 CHAPTER 4. THE JXP ALGORITHM

that there is already a link, and its weight will be simply updated. More details

in Section 4.2. Note that the size of the extended graph never increases, and it

is just a small fraction of the global graph. This guarantees the scalability of

JXP scores computation. An example of a meeting step is given in Figure 4.2,

which shows two peers before and after they have exchanged information. The

list of external pages that have links to a local page is shown next to each world

node, and the information added or updated is highlighted in red.

W node:

G → C

J → E

A

B

D

E

W
C

W node:

K → E

L → G

F

G

W
E

A → F

E → G

G → C

F → A

E → B

Peer X Peer Y

W node:

G → C

J → E

F → A

F → E

K → E

A

B

D

E

W
C

W node:

K → E

L → G

A → F

C → E

J → E

F

G

W
E

A → F

E → G

G → C

E → B

Peer X Peer Y

F → A

Figure 4.2: Illustration of a peer meeting, where information added or updated

is highlighted in red.

Meetings are asynchronous, and multiple meetings with the same peer are

needed to get the most updated scores. In addition, data fragments are ob-

tained by each peer independently, so overlaps among local graphs can occur.

Therefore, when updating the world node by adding new pages, it can be the

case that the page is already there, and its score might be different for the score

currently reported by the meeting peer. In these cases, we need to decide which

score to keep. Considering the authority mass transfer, it is intuitive that, from

meeting to meeting, more and more authority mass is given to local pages as the

peer learns about more incoming links; so the score of the world node should

always reduce until the point it is equal to the sum of the true PageRank scores

of the external pages (we will address this property in Section 4.2, where we

4.1. THE ALGORITHM 35

prove that this is indeed the case). Based on this consideration, when faced

with two different scores for a particular page, we always take the bigger one of

the two scores,i.e.,

α
t
j = max(α

t−1
j ,αmsg

j),

where α t
j and α

t−1
j are the scores of page j (stored in the world node) at the

current meeting and at the previous meeting, respectively, and α
msg
j is the score

of j in the message received during the meeting. The equation also applies if

page j is not yet stored at the world node. In this case the value α
t−1
j is set to

zero.

The rationale of always taking the biggest score is justified by the fact that

the world node’s score is monotonically non-increasing in the sequence of peer

meetings. Finally, it is important to emphasize that information from local

pages given by other peers are not considered, since the peer itself is able to

compute the scores for those pages.

4.1.3 JXP Scores

Given the extended local graph G′ (local pages plus world node), and the meeting

procedure we can now explain how the JXP scores are computed. JXP scores

corresponds to the PageRank scores on the extended local graph, where the

random jump probabilities to each local page is inversely proportional to the

size of the global graph (N), and the probability of a random jump to the world

node is proportional to the number of pages it represents. More formally,

αi = ε× ∑
j∣ j→i
j∈G′

α j

out(j)
+(1− ε)×RJ(i) (4.1)

where

RJ(i) =

{
N−n

N , if i is the world node
1
N , otherwise

and n is the size of the local graph, and a link from page j to page i is

represented by j→ i.
Before the execution of the PageRank algorithm, an initialization procedure,

described in Algorithm 4.1, is performed. This procedure creates the world

node and attach it to the local graph, sets the initial JXP scores and runs the

PageRank algorithm on the extended graph, to improve the initial scores.

Since the world node represents all external pages, in the extended local

graph G′, any link from a local page to an external page is represented as a link

from the local page to the world node. The link weight from a page i to w is

defined as

piw = ∑
i∣i→ j
j/∈G

1
out(i)

.

36 CHAPTER 4. THE JXP ALGORITHM

Algorithm 4.1 Initialization Step

1: input: Local graph G and size (number of pages) of global graph N
2: n← size(G)

3: G′← G∪w
4: for each i ∈ G do

5: set piw

6: end

7: pww = 1
8: set initial scores α init

9: α0 = PageRank(G′,α init ,n,N)

The world node also has a self-loop link, representing all transition proba-

bilities among external pages. Since we know that transition probabilities are

normalized and initially there is no other link leaving the world node the initial

pww value is one.

The vector α init contains the initial JXP scores, and for every page i in G′,
the initial score is given by

α
init
i =

{
N−n

N , if i is the world node
1
N , otherwise

The function PageRank() takes as input the extended local graph, the ini-

tial score vector, the local and global graph sizes and performs the equation

described in Equation 4.1, outputting a vector that contains the updated JXP

scores.

JXP assumes that the total number of pages in the global graph is known or

can be estimated with decent accuracy and consistently among all peers. This is

not a critical assumption; there are efficient techniques for distributed counting

with duplicate elimination [JMB05, KDG03, BMTW06], and we show later that

a wrong estimate of the number global graph size only causes a rescaling on the

JXP scores, while the ranking order of the pages is preserved.

After the initialization step, peers are ready to start meetings and exchange

information. JXP scores are then refined at every new meeting, after the world

node is updated, by re-running the PageRank algorithm on the updated ex-

tended local graph. Pseudocode for JXP algorithm is shown in Algorithm 4.2.

The function selectPeer() chooses a peer in the network for message exchang-

ing. It can either choose a random peer or use a more sophisticated heuristic,

as we will show later. The list of tuples with the local information is created

with a createMsg() method. Upon receiving the response from the chosen peer,

the information contained in the message received is added to the world node.

As we explained earlier, the content of the message is first filtered by keeping

only tuples that represent links from external pages to local pages. The relevant

tuples are then added to the world node, and the weight of the links from the

world node are updated as follows: the transition probabilities to local pages

are given by

4.2. MATHEMATICAL ANALYSIS AND CONVERGENCE
GUARANTEE 37

Algorithm 4.2 JXP Algorithm

1: input: extended local graph G′, JXP score vector αt−1, n and N
2: do forever

3: P← selectPeer()

4: msg← createMsg(G′,αt−1)

5: send(P,msg)

6: msgP← receiveMsg(P)

7: relSet← relevantSet(msgP)

8: for each j ∈ relSet do

9: αt
j = max(α

t−1
j ,α

msgP
j)

10: end

11: update transition probabilites from w
12: αt = PageRank(G′,αt−1,n,N)

13: end

pt
wi = pt−1

wi + ∑
j∣ j→i

j∈relSet

weight(j)

pww = 1−∑
i∈G

pwi,

where relSet is the set of pages in the message received that are relevant for

the peer, i.e., external pages that have links to local pages. After updating the

weights of links from the world node to local pages, the weight of the self-loop

link is updated in a way that that sum of link weights leaving the world node is

one. After the link weights are updated the PageRank() function is called again,

and new updated scores are computed.

Note that since pages stored at the world node are not explicitly represented

at the extended local graph their scores are not affected during the PageRank

computation and are only updated when another peer reports a higher score

for them. By doing so, every peer is only responsible for computing the scores

of pages it stores. Next, we proceed with a more theoretical analysis of the

algorithm.

4.2 Mathematical Analysis and Convergence

Guarantee

The theoretical analysis of the algorithm provide important properties of the

JXP scores, as well as a proof for the correctness of the JXP method. We show

that JXP scores converge to the correct values, the global PageRank scores of

the individual pages, or equivalently, the stationary visiting probabilities of the

underlying global Markov chain.

Our analysis builds on the theory of state aggregation in Markov chains

[Cou77, Ste94, Mey00, KS63]. However, applying this theory to our setting

38 CHAPTER 4. THE JXP ALGORITHM

is not straightforward at all, and we use it only for particular aspects. State-

aggregation techniques assume complete knowledge of the Markov chain and are

typically used to speed up the convergence of computations (see, e.g., [LM06b,

CDK+03]). In contrast, our P2P setting poses the difficulty that each peer

has only limited knowledge of the Web graph and the resulting Markov Model.

Moreover, this restricted view differs from peer to peer.

For the proof we assume that there are no changes in the network, so there

exists a global Web graph with N pages, a global transition matrix CN×N and a

global stationary distribution vector π. The element ci j of C is equal to 1/out(i)
if there is a link from page i to page j, and zero otherwise. After adding the

random jump probabilities we have a transition matrix C′

C′ = ε C +(1− ε)
1
N

1N×N .

Every peer has a local graph G, subgraph of the global web graph, that

corresponds to the set of pages it has crawled. Pages that are not in G are

considered to be on the set G. The local graph is extended by adding the world

node. The set of external pages that are represented in the world node w is given

by W , and for every page r in W we store the information about its outdegree,

out(r), and current JXP score α(r), both learned from a previous meeting. The

number of local pages is given by n. Associated with each extended local graph

we have a local transition matrix P that has the following format

P(n+1)×(n+1) =

⎛⎜⎜⎜⎜⎝
p11 . . . p1n p1w
... . . .

...
...

pn1 . . . pnn pnw

pw1 . . . pwn pww

⎞⎟⎟⎟⎟⎠ ,

where

pi j =

⎧⎨⎩
1

out(i) if ∃ i→ j & out(i) ∕= 0,
1
N if out(i) = 0
0 otherwise

, and

piw = ∑
i∣i→r
r/∈G

1
out(i)

,

for every i, j, 1≤ i, j ≤ n. Note that if a page has no outlinks we replace the

respective zero row of P by eT

N , where e is a column of ones, i.e., we make the

dangling page point to every page in the graph.

The transition probabilities from the world node, pwi and pww, change during

the computation, so they are defining according to the current meeting t,

pt
wi = ∑

r∣r→i
r∈W t

α(r)t

out(r)
⋅ 1

α
t−1
w

, and

4.2. MATHEMATICAL ANALYSIS AND CONVERGENCE
GUARANTEE 39

pt
ww = 1−

n

∑
i=1

pt
wi.

For the JXP computation, random jumps are also added, with the particu-

larity that the random jumps to the world node are made proportional to the

number of pages it represents. This gives us the following transition matrix

P′ = ε P +(1− ε)
1
N

1(n+1)×1
(

1 . . . 1 (N−n)
)
, (4.2)

which has a stationary distribution vector α

α =
(

α1 . . . αn αw
)

that corresponds to the JXP scores.

4.2.1 Initialization Procedure

We start with a local transition matrix, P0, with all pwi elements equal to zero

since the peers start with no knowledge about external pages. The element pww

is consequently set to 1,

P0
w∗ =

(
0 . . . 0 1

)
.

The local JXP scores vector is initially set to

α
init =

(1
N . . . 1

N
N−n

N

)
.

The PageRank computation is then performed using the transition matrix

P′0 and an updated value for the local authority scores vector α0 (t = 0) is

obtained.

4.2.2 The Meeting Step

As described earlier, the meeting process consists of adding new links, or updat-

ing existing links from the world node to the local pages, and performing the

PageRank algorithm using the updated transition matrix.

Consider the follow local transition matrix and its local JXP scores vector

at meeting (t−1) (t ≥ 1)

Pt−1
(n+1)×(n+1) =

⎛⎜⎜⎜⎜⎝
p11 . . . p1n p1w
... . . .

...
...

pn1 . . . pnn pnw

pt−1
w1 . . . pt−1

wn pt−1
ww

⎞⎟⎟⎟⎟⎠ ,

α
t−1 =

(
α

t−1
1 . . . α t−1

n α t−1
w

)
.

For the sake of simplicity, we split the meeting step, by considering only one

link addition/update at a time. Assuming that during meeting t a link to page

i has been added or updated, we can express pwi at time t as

40 CHAPTER 4. THE JXP ALGORITHM

pt
wi = pt−1

wi + δ .

Since the authority scores of external pages on the meeting step can only

increase or remain unchanged we can assure that the value of δ is always non-

negative.

As the transition probability from the world node to itself is always adjusted

to compensate for changes of the other transition probabilities we can also write

pt
ww = pt−1

ww −δ .

The transition matrix at meeting t can then be written as

Pt = Pt−1 + E,

where

E =

⎛⎜⎜⎜⎜⎝
0 . . . 0 0
... . . .

...
...

0 . . . 0 0
0 . . . 0 δ 0 . . . 0 −δ

⎞⎟⎟⎟⎟⎠ ,

which leads to an updated JXP scores vector

α
t =
(

α t
1 . . . α t

n α t
w
)
.

The following two theorems describes important properties about the JXP

scores.

Theorem 4.2.1 The JXP score of the world node, at every peer in the network,

is monotonically non-increasing.

Proof The proof is based on the study of the sensitivity of Markov Chains

made by Cho and Meyer [CM00]. From there we can state that by increasing

pwi by δ and decreasing pww by the same amount, the following holds

α t−1
w −α t

w

α
t−1
w

= α
t
w δ miw,

where miw is the mean first passage time from page i to the world node (i.e.,

the expected number of steps for reaching w when starting in i, in the underlying

Markov chain). Rearranging the terms on the equation we have

α
t
w−α

t−1
w =−α

t−1
w α

t
w δ miw.

Since all the values on the right side of the equation are non-negative we can

assure that

α
t
w−α

t−1
w ≤ 0.

4.2. MATHEMATICAL ANALYSIS AND CONVERGENCE
GUARANTEE 41

Theorem 4.2.2 The sum of scores over all pages in a local graph, at every peer

in the network, is monotonically non-decreasing.

Proof The proof follows from Theorem 4.2.1 and the fact that the following

equality holds

∑
i∈G

αi + αw = 1.

4.2.3 Scores Bounds

We now proceed by showing how the JXP scores and the global PageRank scores

are related. The next theorem shows that the global PageRank values are an

upper bound for the JXP scores.

Theorem 4.2.3 Consider the true stationary probabilities (PageRank scores)

of pages i ∈ G (the local graph) and the world node w, πi and πw, and their

JXP scores after t meetings α t
i and α t

w. The following holds throughout all JXP

meetings:

0 < α t
i ≤ πi for i ∈ G and πw ≤ α t

w < 1.

Proof We know that for every page i ∈ G:

πi =
1− ε

N
+ ε ∑

j∣ j→i
j∈G

π j

out(j)
+ ε ∑

j∣ j→i
j∈G

π j

out(j)
,

and

α
t
i =

1− ε

N
+ ε ∑

j∣ j→i
j∈G

α t
j

out(j)
+ ε ∑

j∣ j→i
j∈W t

α t
j

out(j)
α t

w

α
t−1
w

.

where W t is the set of external pages that are represent in the world node at

meeting t.
We prove the claim about the α t

i values by induction on t; the proof for the

claim on the world node follows directly from the fact that the score vector is

normalized. The claims that αi > 0 and α t
w < 1 are trivial to show.

For t = 0 we consider the situation that a given peer with graph G knows only

its local graph and has no information about the world node other than the total

number of pages, N. Thus the peer assumes that the only transfer of score mass

from w to any node in G is by random jumps, which is the minimum transfer that

is possible. Since G includes outgoing links to w, a local PageRank computation

based on this setting cannot overestimate and will typically underestimate the

scores of pages in G.

Now assume that the claim holds for all meetings up to and including t, and

consider the t + 1st meeting.

First we observe that because of α t
w ≤ α t−1

w (by Theorem 4.2.1), W t ⊆G, and

the induction assumption α t
j ≤ π j, the following upper bound holds for the third

summand (abbreviated as βi):

42 CHAPTER 4. THE JXP ALGORITHM

ε ∑
j∣ j→i
j∈W t

α t
j

out(j)
α t

w

α
t−1
w
≤ ε ∑

j∣ j→i
j∈G

π j

out(j)
:= βi.

Now consider the following upper bound for α
t+1
i :

α
t+1
i ≤ 1− ε

N
+ ε ∑

j∣ j→i
j∈G

α
t+1
j

out(j)
+ βi.

In the t + 1st meeting page i could increase its αi value in three ways: a)

by learning about an additional page x ∈W t+1 with x /∈W t that points to i, b)

by learning that a previously known page x ∈W t that points to i has a higher

value α t+1(x) than the last time that a peer with x in its local graph was met

(i.e., at some previous iteration t ′ < t +1), or c) the value α
t+1
j of some incoming

neighbor j from the peer’s own local graph G (j ∈G) has a higher value than in

previous iterations. No other cases are possible.

The last case is impossible unless one of the cases a) or b) occurs, simply

because all outdegrees are fixed and, without any external changes, the local

PageRank computation on G will reproduce the scores computed in earlier iter-

ations. But by the induction assumption we have α t
i ≤ πi for all previous t. In

the first and second case we can conservatively assume the upper bound βi for

whatever increased score the pages in W t+1 may transfer to i or any other pages

in G. Thus we have

α
t+1
i ≤ 1− ε

N
+ ε ∑

j∣ j→i
j∈G

α
t+1
j

out(j)
+ βi

≤ 1− ε

N
+ ε ∑

j∣ j→i
j∈G

π j

out(j)
+ βi = πi.

Theorem 4.2.3 does not explicitly reflect the fact that pages from two local

graphs can overlap. We assumed that in these cases the pages are treated as

local pages, and we take their α j values from the peer’s local bookkeeping.

However, because all peers, by Theorem 4.2.3, invariantly underestimate the

true stationary probability of these pages, we can safely use the maximum of

the α j values from the two peers in a meeting: the maximum is still guaranteed

to be upper-bounded by the true PageRank score π j.

4.2.4 Proof of Convergence

Theorem 4.2.3 is a safety property in that it shows that we never overestimate

the correct global PageRank scores. What remains to be done is to show liveness

in the sense that JXP makes effective progress towards the true PageRank scores.

The argument for this part is based on the notion of fairness from concurrent

4.3. STORAGE AND NETWORK BANDWIDTH COSTS 43

programming theory (see, e.g., [Lam02]): a sequence of events is fair with respect

to event e if every infinite sequence has an infinite number of e occurrences. In

our setting, this requires that in an infinite number of P2P meetings, every

pair of peers meet infinitely often. Truly randomized meetings with uniform

distribution have this property, but there are other ways as well. A similar

argument has been used in [APC03] for online page importance.

Theorem 4.2.4 In a fair series of JXP meetings, the JXP scores of all pages

converge to the true global PageRank scores.

Proof The fairness property ensures that at some point, say after the tth meet-

ing, every peer knows all its incoming neighbors, the complete sets { j∣ j→ i, j ∈
G} for all i ∈ G. At this point, the only reason why a peer’s local JXP score

α t
i for some page i may still underestimate the global PageRank score πi is that

the JXP scores of the incoming neighbors from outside of G may also be un-

derestimated, i.e., α t
j < π j for some j ∈W . We show that this situation cannot

hold indefinitely, once all the incoming links from external pages are completely

known.

There are two cases to consider. The first case is when the world node’s

JXP score α t̂
w has converged at some point t̂ ≥ t so that α t̂

w = πw holds (strictly

speaking, the difference between the α and the π value is below some ξ that

can be made arbitrarily small; we simplify the argument for simpler notation).

At this point, we can infer that ∑i∈G α t̂
i = ∑i∈G πi. So if some α t̂

i is still strictly

below its PageRank score πi, some other page j ∈ G must have an α t̂
j value

strictly higher than its PageRank score π j. But this is impossible because of

Theorem 4.2.3.

The second case is that α t̂
w < πw holds and stays invariant in all subsequent

meetings. But then we have α t̂+1
w = α t̂

w which implies:

α
t̂+1
i =

1− ε

N
+ ε ∑

j∣ j→i
j∈G

α
t̂+1
j

out(j)
+ ε ∑

j∣ j→i
j∈G

α
t̂+1
j

out(j)

=
1− ε

N
+ ε ∑

j∣ j→i

α
t̂+1
j

out(j)
.

This is the very same fixed point equation that we have for the true PageRank

scores, the πi values. We know that this fixed point equation has a unique

solution [BP98, KS63, Ste94]; thus the above equation must have the same

solution as the equation for the πi values, and so the JXP scores eventually

equal the PageRank score. (Again, strictly speaking, the difference drops below

some ξ that can be chosen arbitrarily small.)

4.3 Storage and Network Bandwidth Costs

For a P2P application to scale, it is fundamental that each peer’s storage and

network bandwidth costs remain under a certain limit. The cost analysis that

44 CHAPTER 4. THE JXP ALGORITHM

follows shows that the JXP algorithm meet these constraints.

At each peer, the size of the extended graph is fixed and equal to (n + 1)

pages (local pages + world node). For each local page the storage requirement

is fixed and corresponds to its unique identifier (ID), the list of outgoing links,

and current JXP score. The increase on the storage occurs only at the world

node, where the lists of external pages with incoming links to local pages are

kept. For each of these pages we need only to store its ID, outdegree, current

JXP score, and the IDs of the local pages to which it points to. With that we

can approximate the authority mass transfer from this page to the local pages.

Denoting by SCP the storage cost at peer P we can write:

SCP = SCG + SCw

SCG = ∑
i∈G

(SCID + SCscore + out(i) ⋅SCID)

SCw = ∑
i∈G

∑
j∣ j∈W

j→i

(SCID + SCscore + SCout)

The peer’s local graph and world node are denoted by G and w, W is the set

of pages represented at w, out(i) is the outdegree of entity i, and SCID, SCscore,

SCout are the costs of storing the identity, scores and outdegree of an page,

respectively.

The local storage cost is linear in the number of incoming and outgoing

links of local pages. An extensive study of the Web structure [BKM+00] has

shown that the indegree and outdegree distributions follow a power law (Pareto

distribution) and on average each page has only a handful of in-links and out-

links. Therefore storage cost is O(n), where n is the size of the local graph.

Exchanging information among peers has also a low cost. This is mainly

due to the fact that the analysis is carried out on the link structured of the

graph only, without the need of the actual contents of the pages in the graph.

Moreover, since meetings are asynchronous, peers can decide when is the best

time to send a message to another peer, and the message itself can addition-

ally be broken into smaller sub-messages and be piggybacked onto the existing

communication among peers.

When sending a message, the peer do not know a priori what is stored in

the other peer, so all the information about the extended local graph is sent.

Therefore communication costs are similar to storage cost, i.e., O(n).

An experimental evaluation on the communication costs was made and is

presented later in this chapter. Moreover, we will later introduce techniques

that can further reduce communication costs, where compact representation of

the links of a peer can be used to find potential peers for a meeting, and avoid

the exchange of information with peers that do not significantly contribute for

the local computation.

4.4. ROBUSTNESS AGAINST WRONG ESTIMATES OF GRAPH SIZE 45

4.4 Robustness Against Wrong Estimates of Graph

Size

The JXP algorithm assumes knowledge of the total number of distinct pages

in the P2P network in order to compute the random jumps probabilities and

correctly converge to the global PageRank values. Although there are efficient

techniques for distributed counting with duplicate elimination [JMB05, KDG03,

BMTW06], the need for knowing this global quantity could be a problem.

Our studies have found that the true value of the number of pages in the

network is only needed when we are interested in the correct absolute values for

the stationary probabilities of the pages. For cases where the absolute values are

not needed, as long as the ranking is correct, any choice for the random jump

probability is sufficient, as long as the value for the global number of pages is

the same across all peers and greater than the largest local collection.

To formalize this result about different values for computing the random

jump probabilities we redefine the transition matrix from Equation 4.2 as follows

P′(X) = ε P +(1− ε)
1
X

1(n+1)×1
(

1 . . . 1 (X−n)
)
,

where X is the value used to replace the global number of pages N. When N
is known, we have X = N and the results are the same as given on the previous

sections.

The convergence of the JXP algorithm for different choices of X is guaranteed

by the following theorem.

Theorem 4.4.1 The JXP local transition matrices, at every peer, are always

stochastic, for any choice of X > n.

Proof By inspection of the matrix P′(X) we can see that it satisfies all three

conditions for being stochastic [Ste94]

1. p′i j ≥ 0 for all i, j,

2. ∑ j p′i j = 1 for all i,

3. At least one element in each column differs from zero.

The first and third conditions require that X > n.

Theorem 4.4.1 guarantees that there exists a stationary distribution vector

α(X)

α(X) =
(

α1(X) . . . αn(X) αw(X)
)

(4.3)

associated with each local matrix.

Although this result does not mathematically relate the αi(X) values with the

πi values, our experiments indicate that αi(X) values, with X ∕= N are related

to αi(N) by a scaling factor, which results in the ranking orders to remain

unchanged.

46 CHAPTER 4. THE JXP ALGORITHM

4.5 Experimental Evaluation

An extensive experimental evaluation was conducted to assess the practical be-

havior of the JXP algorithm. The results presented in this section test algo-

rithm’s performance and accuracy.

4.5.1 Data Sets

We evaluated the performance of the JXP algorithm on a collection of pages

from the Amazon.com website and on a partial crawl of the Web graph. The

Amazon data contains information about products (mostly books) offered by

Amazon.com.1 The data was obtained in February 2005, and the graphs were

created by considering the products as nodes in the graph. For each product,

pointers to similar recommended products are available in the collection (see

Figure 4.3). These pointers define the edges in our graphs. Products are also

classified into one or more categories.

Figure 4.3: Example of an Amazon product page.

We have thematically grouped together some of the original categories, so

in the end we had a total of 10 categories, as shown in Table 4.1. In total there

are 120,564 pages and 541,551 links in the Amazon data.

The Web Crawl collection was obtained in January 2005, using the Bingo!

focused crawler [STS+03]. We first trained the crawler with a manually selected

set of pages; then, new pages were fetched and automatically classified into one

of 10 predefined categories described at Table 4.2. In total there are 250,760

pages and 3,123,841 links in the Web Crawl data.

1http://www.amazon.com.

4.5. EXPERIMENTAL EVALUATION 47

Category Description

1
“Cooking, Food & Wine”, “Gay & Lesbian”, “Health, Mind & Body”

“Home & Garden”, “Parenting & Families”

2
“Arts & Photography”, “Comics & Graphic Novels”, “Entertainment”

“Outdoors & Nature”, “Sports”, “Teens”, “Travel”

3
“Children’s Books”, “Horror”, “Literature & Fiction”

“Mystery & Thrillers”, “Romance”

4 “Nonfiction”

5 “Business & Investing”, “Computers & Internet”, “Engineering”

6 “Science”, “Science Fiction & Fantasy”

7 “Professional & Technical”

8 “Religion & Spirituality”

9 “Biographies & Memoirs”, “Reference”

10 “History”, “Law”, “Medicine”

Table 4.1: Amazon dataset categories.

Category Description

1 Arts

2 Finance

3 Health

4 Movies

5 Music

6 Natural Sciences

7 Nature

8 Politics

9 Sports

10 Travel

Table 4.2: Web Crawl dataset categories.

48 CHAPTER 4. THE JXP ALGORITHM

We checked the degree of connectivity to assure that the PageRank compu-

tation was meaningful in these datasets. Figures 4.4 and 4.5 show the indegree

and outdegree distributions, on a log-log scale for the two collections.

Figure 4.4: Indegree and outdegree distributions for the Amazon dataset.

Figure 4.5: Indegree and outdegree distributions for the Web Crawl dataset.

Except for the outdegree distribution of the Amazon dataset, we can ob-

serve the power-law distribution, which is also the standard assumption for the

complete Web graph. We thus expect that our experiments are fairly indicative

for the behavior at Internet scale. The reason why the Amazon collection does

not follow this pattern is that related products shown to users are bounded by

a small number (in our case the highest outdegree observed was 5), given that

showing too many related products is not useful to users.

4.5.2 Setup

JXP peers are implemented in Java 5.0. Local graphs are obtained by having

the peers performing independent crawls on the datasets, starting with a set

of random seeds pages and following the links and fetching pages in a breadth-

first approach, up to a certain predefined depth. Note that due to the crawling

strategy there is no guarantee that peers will select and download all available

pages in the collection, hence the collection stored at the entirety of peers is a

subset of the original one. For a meeting, a peer contacts a randomly chosen

4.5. EXPERIMENTAL EVALUATION 49

peer in the network, and asks for its current local knowledge. We assume that

there is an underlying mechanism which may be invoked by any peer, in order

to contact another peer to exchange information with.

4.5.3 Performance Metrics

For evaluating the performance we compare the authority scores given by the

JXP algorithm against the true PageRank scores of pages in the complete collec-

tion. Since, in the JXP approach, the pages are distributed among the peers and

for the true PageRank computation the complete graph is needed, in order to

compare the two approaches we construct a total ranking from the distributed

scores by essentially merging the score lists from all peers. Note that this is

done for the experimental evaluation, it would neither be needed nor desired in

the real P2P network. We do this periodically after a fixed number of meetings

in the network. Since overlaps are allowed and no synchronization is required,

it can be the case that a page has different scores at different peers. In this case,

the score of the page on the total ranking is considered to be the average over

its different scores.

The total top-k ranking given by the JXP algorithm and the top-k rank-

ing given by traditional, centralized PageRank are compared using Spearman’s

footrule distance [FKS03, DKNS01], defined as

F(σ1,σ2) = ∑
i∈D
∣σ1(i)−σ2(i)∣,

where D is the set of pages that belongs to at least one of the two top-k

rankings, σ1(i) and σ2(i) are the positions of the page i in the first and second

top-k ranking. In case a page is present in one of the top-k rankings and does

not appear in the other, its position in the latter is considered to be k + 1. We

normalize the Spearman’s footrule distance to obtain values between 0 and 1,

with 0 meaning that the rankings are identical, and 1 meaning that the rankings

have no pages in common. We also use the Linear score error measure, which

is defined as the average of the absolute difference between the JXP score and

the global PageRank score over the top-k pages in the centralized PageRank

ranking, i.e.,

LinearScoreError(score1,score2) =
∑i∈Z ∣score1(i)− score2(i)∣

k
,

where Z is the set of pages belonging to the top-k ranking in the centralized

setting.

In addition, we have computed the cosine between the two full ranking vec-

tors, i.e., the vectors containing all pages in the network, and the L1-norm of

the vector containing the JXP scores of all pages (since scores are normalized,

the L1 norm for the global PageRank vector is 1).

50 CHAPTER 4. THE JXP ALGORITHM

4.5.4 Results

Accuracy and Convergence

First of all, we studied the general behavior of the JXP method, to test whether

it serves its purpose as a P2P approximation of global PageRank. Figures 4.6

and 4.7 show results for the Amazon collection and the Web Crawl collection,

respectively. In both cases we have a P2P network with 100 peers, and the

scores of the top-1000 highest ranked pages were used. The charts show the

measures as functions of the total number of peer meetings in the network.

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.6: JXP Performance at Amazon Dataset

We see that the error drops quickly as the peers meet other peers. Already

at 1500 meetings the footrule distance drops below 0.4 for the Amazon data

and below 0.2 for the Web Crawl. At this point, each of the 100 peers, on

average, has met and exchanged its graph with 15 other peers. The linear score

error shows that the JXP scores converge to the global PageRank values. The

other measures also confirm the convergence behavior, since both L1-norm and

cosine measures converge to one. These observations demonstrate the practical

viability of the JXP method. Moreover, the L1-norm also shows that initially the

scores are underestimated, since the only transfer of scores mass from the world

node to the local pages is by random jumps. As the meetings are performed,

4.5. EXPERIMENTAL EVALUATION 51

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.7: JXP Performance at Web Crawl Dataset

more and more authority mass is transfered from the world nodes to the local

graphs, and hence the sum of JXP scores increases.

Message Costs

Even though a good approximation of the true PageRank scores can be obtained

with a few iterations, convergence requires a considerable number of meetings.

However, the size of the transmitted messages is small, since for the JXP compu-

tation, no page content is required. We measured, for the same setup presented

before, the message size of a peer at each meeting. Figure 4.8 shows the me-

dian, the first quartile and the third quartile (in KBytes) for the values at all

peers, after each meeting they have performed, for both Amazon and Web Crawl

collections.

The results show that JXP consumes rather little network bandwidth, as

the message sizes are small. The rapid growth in the first meetings is due to

the phase where more pages are added to the world node (and consequently

added to the messages transmitted). However as soon as all peers have learned

about all their incoming links, message sizes should remain constant. Also recall

that meetings are asynchronous, and the time interval between two successive

meetings can be adapted to the available bandwidth.

52 CHAPTER 4. THE JXP ALGORITHM

(a) Amazon Dataset (b) Web Crawl Dataset

Figure 4.8: Message size (in kB) for the Amazon and Web Crawl datasets.

Effects of Misestimating the Global Number of Pages

As said before, JXP assumes that the total number of pages in the global graph

(N) is known or can be estimated with decent accuracy, which is not a critical

assumption, given that there are efficient techniques for distributed counting

with duplicate elimination. However, in cases where neither the exact value nor

a good approximation are available, any other value for the total number of

pages only causes a rescaling on the JXP scores, while the ranking order of the

pages is preserved. The experiments in this section confirm this statement. We

have replaced N by the variable X , as shown in Equation 4.3, in our experiments

and we have experimented with different values for X . Figures 4.9 and 4.10 show

the results for values of X equal to N, 10N, 5N, and 0.5N.

We can see that Spearman’s footrule distance and the cosine measure are

not affected by the different choices of X , which is an indication that the JXP

scores are affected only by a rescaling factor, ad that the ranking order is not

altered. The other two plots show the rescaling factor: for X > N, the L1-norm

shows that the JXP scores will converge to values that are smaller than the

true PageRank scores. As a consequence, the linear error score, which compares

the JXP scores against the global PageRank scores, remains high throughout

the computation. When X < N, the scores achieve values that are higher than

the true PageRank scores, and their sum converges to a value that is higher

than one. The behavior of the linear score error curve can be explained as

follows. The scores are initially smaller than the true PageRank scores, and as

the scores increase during the execution of the algorithm their values approach

the PageRank scores, so there is an initial drop in the curve. However, scores

are no longer bounded by the global PageRank values, so as the scores keep

increasing beyond the PageRank values, the error curve increases.

4.6. APPLICATIONS OF JXP SCORES 53

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.9: Experimental results for X equal to N, 0.5N, 5N and 10N for the

Amazon dataset.

Scalability

The size of a P2P network, i.e. the number of peers, typically grows and P2P

applications have to scale to adapt to changes in the system. We have studied

the scalability of the JXP algorithm, by varying the number of peers in the

network. We have tested networks with 100, 200, and 500 peers. Results are

shown in Figures 4.11 and 4.12. For better comparison of the results, the x-axis

shows the average number of meetings per peer, i.e., total number of meetings

divided by the number of peers in the network.

The results show that, as the number of peers in the network increases, even

though the total number of meetings increases, the average number of meetings

a peer has to perform for the same approximation quality does not vary that

much, so the computation gracefully scales with the size of the network.

4.6 Applications of JXP Scores

Authority scores have proved to be useful in many centralized applications, in

particular in search result ranking. Decentralized authority scores computation

allows distributed applications to also benefit from authority scores in a simi-

54 CHAPTER 4. THE JXP ALGORITHM

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.10: Experimental results for X equal to N, 0.5N, 5N and 10N for the

Web Crawl dataset.

lar way that centralized ones do, and also in applications that are specific for

distributed scenarios. We have applied our JXP algorithm in the area of P2P

information retrieval and we have chosen the Minerva [BMT+05b, BMWZ05,

BMPC07] system as our testbed P2P application.

4.6.1 Minerva

The experiments were performed using Minerva2, a fully operational distributed

search engine [BMT+05b, BMWZ05, BMPC07]. It assumes a P2P collaboration

in which every peer is autonomous and has a local index that can be built from

the peer’s own crawls or imported from external sources and tailored to the

user’s thematic interest profile. The index contains inverted lists with URLs for

Web pages that contain specific keywords.

A conceptually global but physically distributed directory, which is layered

on top of a Distributed Hash Table (DHT) (such as CHORD [SMK+01] or

Pastry [RD01]), holds compact, aggregated information about the peers’ local

indexes and only to the extent that the individual peers are willing to disclose.

2Project homepage available at http://www.mpi-inf.mpg.de/departments/d5/software/minerva/

4.6. APPLICATIONS OF JXP SCORES 55

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.11: Performance with different numbers of peers for the Amazon

dataset.

Minerva only uses the most basic DHT functionality, lookup(key), that returns

the peer currently responsible for key. Doing so, the term space is partitioned,

such that every peer is responsible for a randomized subset of terms within the

global directory. For failure resilience and availability, the entry for a term may

be replicated across multiple peers.

Directory maintenance, query routing, and query processing work as fol-

lows (see Figure 4.13). In a preliminary step (step 0), every peer publishes a

summary (Post) about every term in its local index to the directory. A hash

function is applied to the term in order to determine the peer currently re-

sponsible for this term. This peer maintains a PeerList of all postings for this

term from peers across the network. Posts contain contact information about

the peer who posted this summary together with statistics to calculate IR-style

measures for a term (e.g., the size of the inverted list for the term, the maximum

average score among the term’s inverted list entries, or some other statistical

measure). These statistics are used to support the query routing process. The

query routing step yields a number of promising peers for the complete query.

Subsequently, the query is forwarded to these peers and executed based on their

local indexes (query execution; step 2). Note that this communication is done

56 CHAPTER 4. THE JXP ALGORITHM

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 4.12: Performance with different numbers of peers for the Web Crawl

dataset.

in a pairwise point-to-point manner between the peers, allowing efficient com-

munication and limiting the load on the global directory. Finally, the results

from the various peers are combined at the querying peer into a single result

list. Due to efficiency reasons, the query initiating peer does not have to re-

trieve the complete PeerLists. Instead, it can run a distributed top-k algorithm

to efficiently figure out the k most promising peers.

4.6.2 Improving Results Quality

Here we tested whether the JXP scores can help improve search results quality,

as PageRank scores do in centralized approaches. We have performed a simple

experiment: we again used the Web Crawl dataset from Section 4.5.1, which

contain pages from 10 different topics. We have created 40 peers out of the

10 topics by splitting each topic into 4 fragments. Each of the 40 peers hosts

3 out of 4 fragments from the same topic, thus forming high overlap among

same-topic peers. Then we ran 15 queries that are typical for popular Web

search requests [BRRT05], using the query routing mechanism of Minerva. The

merged results were ranked in two ways: 1) by a standard IR model based on

4.6. APPLICATIONS OF JXP SCORES 57

Distributed Index
Term List of Peers

P1

P5

P6 P4

P2

P3

Step 0:
Post per-term

summaries of local indexes

Distributed Index
Term List of Peers

P1

P5

P6

P2

P3

Step 1:
Retrieve list of peers
for each query term

P4 P4

Step 2:
Retrieve and combine local

query results from peers

P5

P1

P2

P3

P6

Figure 4.13: Minerva System Architecture.

term frequency (t f) and inverse document frequency (id f) [BYRN99], and 2)

by a weighted sum of the t f ∗ id f score and the JXP score (with weight 0.6 of

the first component and weight 0.4 of the second component). The queries were

taken from [BRRT05] and have been intensively used in prior literature on link

analysis. We manually assessed the relevance of the top-10 results under the two

different rankings. Given the small size of the collection, we considered pages

with links to relevant pages not reached by the crawler also as relevant pages.

The results for precision at top-10 are given in Table 4.3. The best results

are shown in boldface. On average, the standard t f ∗ id f ranking achieved

a precision of 40%, whereas the combined t f ∗ id f /JXP ranking was able to

increase precision to 57%.

Table 4.3: Precision at top-10 for the Web Crawl Dataset
Query t f ∗ id f (0.6 t f ∗ id f + 0.4 JXP)

affirmative action 40% 40%

amusement parks 60% 60%

armstrong 20% 80%

basketball 20% 60%

blues 20% 20%

censorship 30% 20%

cheese 40% 60%

iraq war 50% 30%

jordan 40% 40%

moon landing 90% 70%

movies 30% 100%

roswell 30% 70%

search engines 20% 60%

shakespeare 60% 80%

table tennis 50% 70%

Average 40% 57%

58 CHAPTER 4. THE JXP ALGORITHM

4.6.3 Query Routing Strategy Using JXP Scores

The query routing in P2P networks is a well studied problem [CLC95, GGMT99,

BMT+05a]. Popular techniques for query routing, such as CORI [CLC95,

Cal00], tend to prefer larger peers (i.e., peers containing more pages) over smaller

peers, as larger peers are expected to have a higher probability of containing

high-quality query results. In the section we present a different approach that,

instead of looking the the collections’ sizes, looks at the authority scores of pages

in the collections. Each peer can be seen as one large page, i.e., an union of

all its local pages, similar to what query routing strategies based on statistical

language models [SJCO02] do, the query routing process is then equivalent of

finding the the top-k “large pages” in the network. Since authority scores are

known to greatly improve this process, it seems a natural idea do explore them

for query routing as well.

Our idea for improving the query routing process is to prefer peers that have

high authority mass, where the authority scores are computed using our JXP

algorithm. We have identified two ways of exploring authority scores for query

routing purposes: by using the total JXP mass or by a term-specific JXP mass

approach.

Total JXP Mass

The total JXP score mass of a peer corresponds to the sum over all JXP scores

of local pages. Given a local JXP computation continuously running on a local

peer P, the total JXP mass of a collection sP is calculated as follows:

sP = ∑
i∈GP

αi,

where αi is the JXP score of page i, and GP is the local collection of peer P.

The total JXP mass however might not be a good indicator of a peer’s au-

thority for a particular query; instead, the set of peers with high total JXP mass

would always be chosen regardless of the actual query. For example, consider the

Web page of a researcher that has crawled the publications of leading university

departments. While his local Web graph might have a high total JXP mass,

the peer is ill-suited to evaluate queries about travel, movies, or music. So the

total JXP mass of a collection is not an appropriate measure for the judging the

result quality for a particular query. We need a way of using authority scores

that is query-dependent.

Term-specific JXP Mass

We can aggregate the JXP scores in a term-based manner, by considering only

the scores of pages that contain the term, i.e.,

st
P = ∑

i∈GP
t∈i

αi.

4.6. APPLICATIONS OF JXP SCORES 59

Query routing based on such term-specific JXP score masses is straightfor-

ward: we sum up the term-specific JXP mass for every term in the query,

sQ
P = ∑

t∈Q
st

P,

where Q is the list of query terms. Note that term-specific JXP mass does

not require a separate JXP computation for every query term, but simply sums

up the the regular JXP values for the pages that contain the term at query

time. The JXP score of a page will be accounted as many times as the number

of query terms the page has.

While the existence of query-specific quality estimators allows for a better

query routing approach by summing up only potentially relevant portions of the

JXP mass, it assumes term independence, as high score masses regarding terms

a and b alone do not guarantee a single high authority page for the combined

query (a,b).

Query routing approaches driven by authority scores could also be combined

with existing techniques, in the hope to achieve an even better performance. We

have chosen CORI, one of the most popular query routing strategies, to devise

a hybrid approach.

CORI

CORI is a peer selection strategy proposed by Callan et al. [CLC95, Cal00].

It computes the collection score sP of the peer P with regard to a query Q =

{t1, t2, ..., tn} as

CORIP = ∑
t∈Q

CORIP, t

∣Q∣
,

where

CORIP, t = γ +(1− γ) ⋅TP, t ⋅ IP, t .

The computations of TP, t and IP, t use the number of peers in the system,

denoted np, and the document frequency (cd f) of term t in collection GP for any

term t in collection GP:

TP, t =
cd fGP, t

cd fGP, t + 50 + 150 ⋅ ∣VP∣
∣V avg∣

IP, t =
log(np+0.5

c ft
)

log(np + 1)

where the collection frequency c ft is the number of peers that contain the

term t. The value γ is chosen as γ = 0.4 [CLC95].

CORI considers the size ∣VP∣ of the term space of a peer (i.e., the total number

of distinct terms that the peer holds in its local collection) and the average term

space size ∣V avg∣ over all peers that contain term t. Note that, in the absence of

60 CHAPTER 4. THE JXP ALGORITHM

global knowledge, ∣V agv∣ is replaced by the average term space size over all peers

that contain term t (see [Cal00]).

Hybrid Approach

CORI mainly focuses on the document frequency of the query terms to select the

most promising peers for a query, but it does not take into account the quality

of these documents. To overcome this problem, we present a hybrid approach

to combine CORI-style quality measure with PageRank-style authority scores

for query routing.

We focus on query-specific JXP authority score masses. We suggest the

following linear combination to compute shyb
P , the hybrid collection score of the

peer P:

shyb
P = ∑

t∈Q
β ∗CORIP, t +(1−β)∗ st

P

where CORIP, t and st
P are the CORI score and the term-specific JXP mass

of peer P for term t, respectively.

As extreme cases, β = 1 results in standard CORI-based query routing, while

β = 0 results in query routing based on term-specific JXP score masses only.

In order to account for the different absolute score values yielded by CORI

and JXP, we previously apply the following normalization to all values of CORIP,t

and st
P, generalized to score:

score−mint(score)

maxt(score)−mint(score)

where mint(score) and maxtscore refer to all applicable score values regarding

term t in the network.

Experiments

We tested our query routing strategies also in the Web Crawl dataset. Given a

query, identifying peers belonging to the query topic is a relative easy task, so

we focused on a more challenging task, which is to find the best order within

the peers of the query’s topic. For this purpose, we have restricted ourselves to

exactly one topic, namely “movies”, and distributed only the documents related

to movies over a total of 10 peers. With a number of queries related to movies,

we proceed with the evaluation of the different strategies regarding the task

to discriminate peers that share the same topic. The queries were taken from

Google’s Zeitgeist archive3 that match the topic movies, at the time of and

slightly prior to acquisition of the dataset. Table 4.4 shows those queries.

For the different number of peers selected, we measure the relative recall :

given the global ranking formed by the union of all peers’ local collections, we

3http://www.google.com/press/zeitgeist.html

4.7. DISCUSSION 61

superbowl commercials earthquake

harry potter christopher reeve

julia roberts angelina jolie

desperate housewives golden globes

jennifer aniston academy awards

blockbuster

Table 4.4: Queries

compute the portion of pages from the top-k positions that were retrieved. More

formally,

RelativeRecaltopk =
∣Retrievedtopk∣
∣Globaltopk∣

, (4.4)

where Retrievedtopk is the set of pages from the top-k ranking that were

retrieved, and Globaltopk is the set containing the top-k pages from the global

ranking. In the experiments k was set to 20. The selected peers locally deploy

the same document scoring model that was used on the reference collection,

based on standard t f ∗ id f document scores.

We compare the following instances of our hybrid framework:

∙ β = 1: standard CORI

∙ β = 0.5, β = 0.1: hybrid strategies

∙ β = 0: term-specific JXP masses only

Figure 4.14 plots the relative recall for an increasing number of peers se-

lected by the different query routing strategies. The optimal curve shows a

theoretical result where, for each query, we precomputed the relevant pages in

each collection and query routing was based on an ascending order of relevant

pages. Both the hybrid strategy and our strategy based on term-specific JXP

score masses outperform the baseline, CORI, in terms of relative recall, in par-

ticular for a small number of peers. This is crucial, because the ultimate goal of

query routing is to achieve good recall with a very small number of peers. The

fact that quality-unaware query routing based on PageRank authority scores

only performs as good as our hybrid strategy is an artifact of our small-scale

experimental setup. Even though this is a small-scale experiment, this gives

first evidence of proof for our hypothesis that authority score masses can be a

helpful ingredient in discriminating peers for query routing.

4.7 Discussion

JXP is an algorithm that computes an approximation of PageRank scores of

pages distributed in a P2P network in an efficient and scalable manner, while

preserving the autonomy of peers. It runs at every peer, and works by combin-

ing locally computed PageRank scores with meetings among the peers in the

62 CHAPTER 4. THE JXP ALGORITHM

JXP

Figure 4.14: Relative Recall Performance

network. Meeting are asynchronous and the local data collections can overlap.

Through experiments as well as theoretical arguments we showed that the JXP

scores converge to the true PageRank scores that one would obtain by a cen-

tralized computation. The algorithm is versatile and could be easily adapted to

compute other kinds of authority and trust measures that are based on principal

Eigenvectors in some form of social network.

A salient property of JXP is its scalability: regardless of how large the net-

work becomes, the storage and computational costs per peer are limited by the

(order of the) resource commitments that the peer has made for hosting its local

data collection and graph fragment anyway. Also, the messaging costs for peer

meetings are very small. Experimental results, with two different datasets and

systematic variation of setups, have confirmed the anticipated properties of JXP:

convergence to global PageRank values and low computational costs. In addi-

tion, we have shown the benefits of the JXP scores in the Minerva distributed

Web search engine, in the tasks of query routing and results ranking.

Other aspects of P2P networks, like dynamics and susceptibility to malicious

behavior will be addressed in subsequent chapters.

Chapter 5

TrustJXP: JXP in

Untrustful Networks

The open and anonymous nature of P2P networks, which is one of the main

advantages over client-server approaches, is also one of the main issues faced

when designing P2P applications since it opens the door to abuses of these

networks by malicious peers.

According to [MGM06], the two primary types of adversaries in P2P net-

works are selfish peers and malicious peers. These two behaviors differ mainly

by their goal in the system. Selfish peers want to use the network services

without contributing resources (or only minimal contribution). A well-known

example of selfish peers is the so-called “free-riders” in file sharing networks

[AH00], like Kazaa and Gnutella, that refuse to host files to reduce their cost in

bandwidth and CPU utilization.

Malicious peers, on the other hand, aim at causing harm to some network

members or to the whole network, and are willing to spend time and resources

to achieve their goal. An example of malicious behavior is the distribution of

corrupted or virus-infected files to discourage piracy or to gain notoriety in the

network. In the context of page authority computation, malicious peers would

try to distort the correctness of the computation, by providing different (usually

higher) scores for their local pages. Having pages with high authority scores can

bring many benefits for the peer: with its pages appearing at the top positions

in the ranking for answering queries posted to the network, the probability that

a user clicks on one of them is higher, which may translate, for instance, in

revenue for that peer.

In general, P2P networks are vulnerable to selfish/malicious behaviors and

need reputation systems [MGM06] in place to be able to operate properly. Since

peers can behave badly in many different ways, the usual approach when de-

signing reputation systems is to consider each type of adversary at a time.

63

64 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

5.1 The TrustJXP algorithm

TrustJXP integrates the JXP algorithm for decentralized authority scoring with

an equally decentralized reputation system, for computing more reliable author-

ity scores. The approach is based on anomaly detection techniques, that allow

the detection of a suspicious peer based on the deviation of its behavior from

some common features that constitute the usual peer profile. It combines an

analysis of the authority score distribution and a comparison of rankings for a

small set of pages.

The algorithm is completely decentralized, does not require storing any ad-

ditional information about other peers, can operate anonymously, and involves

only local computations. Also, TrustJXP does not require any form of coopera-

tion among peers, and the system works as long as the fraction of well behaving

peers is significantly larger than the fraction of cheating peers.

Next we describe in detail what types of adversarial behaviors are considered

and how they are addressed, and also how the TrustJXP scores are computed.

5.1.1 Adversarial Behaviors

There are many possible forms of attacks or manipulations in a P2P network.

In this work we focus on the group of attacks where peers want to distort the

authority scores being computed by JXP, by reporting false scores for a set of

pages at the meeting phase. We have modeled two general types of attack:

1. A cheating peer can report a higher score for a subset of its local pages, in

an attempt to get its pages into high positions in the global ranking that

JXP peers may perceive. In this form of manipulation, the peer would

boost pages at the “expense” of reducing the total weight of its world node

(giving lower score mass to all non-local pages).

2. A cheating peer can manipulate the scores of its local pages by modify-

ing the scores, not necessarily increasing them. This way, some pages are

boosted while others are downgraded. The score mass of the world node

would stay unchanged. If the cheating peer wants to maintain the statis-

tical distribution of the scores among local pages, it can just permute the

scores of its local pages.

How to detect and eliminate or compensate the effects of these two forms

of attack, or even from combined attacks that use both techniques, is explained

next.

Malicious Increase of Scores

To combat this kind of manipulation we use the scores distribution of the pages

in a peer’s local graph. After a few iterations, the local distribution should

resemble the global distribution. The justification for this hypothesis stems

from the way the local graph fragments are built. In our P2P model, each peer

5.1. THE TRUSTJXP ALGORITHM 65

gathers its data by performing Web crawls, starting from particular seeds and

possibly using a thematically focused crawler in order to harvest pages that fit

with the interest profile of the corresponding user (or user group). Given that

the Web graph is self-similar [DKM+02, BCDF06], the properties of the small

graph fragment that a peer eventually compiles should be statistically indistin-

guishable from the properties of the full Web graph as seen by a centralized

crawler. [DKM+02] observed these properties also across different partitions of

the Web graph, including the case where pages were separated by their content,

which corresponds to using a focused crawler.

Storing the Typical Profile

A representation of the distribution of the scores in the network is kept

in histograms. Pages are assigned to histogram buckets according to their JXP

scores. Since scores are expected to follow a power-law distribution, we make the

boundaries of the buckets also exponential, similar to what is used in [BCSU05].

More precisely, the bucket number i will have the boundaries

bucket(i) = [a ⋅bi−1,a ⋅bi).

The precise values for a and b will depend on the distribution of PageRank

values in the observed sample, which in turn depends basically on the number

of pages in the entire network and the dampening factor for PageRank. The

dampening factor for the computation is shared among all the nodes. The

number of pages (at least its order of magnitude) can be initialized with an

estimation that can be improved after a few meetings. The choice of the buckets

is not relevant, as long as not all the pages fall in the same bucket. It is not

necessary that all peers use the same buckets, and in the worst case, a peer

can re-initialize its histograms with new parameters at any time (at the cost of

slowing down its convergence).

We create, at each peer, a histogram which is initially filled with the initial

JXP scores of local pages. After each meeting, the distribution of the local

scores of the other peers is added to the histogram. We introduce a novelty

factor to account for the dynamics of the scores across the meetings. Given the

histogram at meeting t, Ht , and the score distribution from the other peer D,

the histogram at meeting (t + 1) is updated as follows:

H(t+1) = (1−ρ)Ht + ρD,

where the parameter ρ represents how much importance we give to the new

values, and the precise choice only affects how fast the peer learns the global

distribution of scores, which in turn changes the convergence speed for the scores

in that particular peer.

Since we rely on the assumption that the number of honest peers is signifi-

cantly bigger than the number of dishonest ones, we expect that the histogram

always reflects the true distribution of the honest peers. If dishonest peers are

66 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

reporting higher scores for some of their local pages, the distribution of their

local scores would no longer resemble the distribution expected over all peers.

Therefore, a comparison against the accumulated local histogram should give

an indication of this deviation from normal behavior.

Comparing Histograms

Given the accumulated histogram of a peer i, Hi, and the histogram con-

taining the scores distribution of another peer j, D j, we want to compute how

much D j deviates from Hi. Since the distributions are expected to be similar

[DKM+02], we believe that the distributions of honest peers should be very close

to each other, and if D j differs from Hi by a large margin, it is an indication that

the peer is cheating about its local scores. For comparing the two distributions

we have chosen the Hellinger Distance, which is defined as [Cam86]:

HDi, j =
1√
2

[∑
k

(
√

Hi(k)−
√

D j(k))2]
1
2 ,

where k is the total number of buckets, and Hi(k) and D j(k) are the number

of elements at bucket k at the two distributions, both normalized by the total

number of elements at each distribution. The factor 1/
√

2 is introduced to

normalize the range of possible values.

As an alternative to the Hellinger Distance, we could also use the χ2

goodness-of-fit test or information-theoretic measures such as Kullback-Leibler

divergence. Our choice for the Hellinger Distance was mainly due to the fact

that, since it is a metric, the Hellinger Distance has nice properties, besides the

fact that values can be normalized, which makes it easier to be combined with

other measures.

Malicious Permutation of Scores

The histograms comparison is inherently unable to detect a cheating peer that

reports a permutation of the current scores of its local pages, since both dis-

tributions would be statistically indistinguishable. For detecting this type of

attack we use a different technique. In our experimental studies of the JXP

algorithm, we have observed that, after a few meetings, although the local JXP

scores do not correspond yet to the global authority scores, the relative rank

orderings of their local pages are already very close to the final ordering. This

is also exploited in [XL04b] for a different task (testing if a feedback given by a

peer makes sense).

We compare the rankings given by the two peers in a meeting for those pages

that fall into the overlap of both local graphs, and we measure what we refer

to as the Tolerant Kendall’s Tau Distance between those rankings. We use a

relaxation of Kendall’s Tau since we need to tolerate small fluctuations in the

scores of pages with almost identical global authority. To this end, we discount

page pairs that have different relative orders in the two rankings if their score

5.1. THE TRUSTJXP ALGORITHM 67

differences are below a tunable threshold ∆. In this case, we consider the page

pair as incomparable and their rank order as arbitrary.

Our Tolerant Kendall’s Tau Distance is therefore defined as:

K′i, j =∣(a,b) : (a < b)∧ (∣scorei(a)− scorei(b)∣ ≥ ∆∨∣score j(a)− score j(b)∣ ≥ ∆)

∧ ((τi(a) < τi(b)∧ τ j(a) > τ j(b))∨ (τi(a) > τi(b)∧ τ j(a) < τ j(b)))∣,

where scorei(a) and scorei(b) are the scores of pages a and b at peer i, a < b
refers to the lexicographical order of page URLs (to avoid double-counting),

τi and τ j are the rankings of pages in the overlapping set at peers i and j,
and ∆ is our tolerance threshold. A good choice of ∆ can be derived from the

dampening factor of the underlying PageRank model as follows. We consider as

our threshold the minimum amount of authority mass one page can have, which

is the score mass earned from the random jumps. Therefore, at each peer, ∆ is

set to

∆ =
(1− ε)

N
,

where ε is usually set to 0.85 and N is the total number of pages in the

network.

This approach assumes that whenever two peers meet, there is a sufficient

overlap between their locally known pages to make this comparison statistically

meaningful. In an application where such overlaps cannot be guaranteed with

high probability, we would have to add artificial overlaps as “honesty witnesses”.

One way of designing such an additional set of witness pages would be to ran-

domly draw a set of sample URLs and disseminate them in the network by an

epidemic protocol or using the overlay network of the P2P system. This set

of witnesses should be changed periodically to counter adaptation strategies of

malicious peers.

5.1.2 Assigning Trust Scores to Peers

We now use our reputation system to assign trust scores to peers. The method

is totally decentralized: each peer is responsible for assigning (its perception of)

trust scores to other peers, based on interactions with them. During a meeting,

peers exchange the scores of their local pages. These scores are used for com-

puting both histograms divergence and the rank divergence for the overlapping

pages. These two measures determine the level of trust that should be given to

the peer. A new trust score is assigned to a peer at every meeting, as scores are

changing.

For combining histograms divergence and rank divergence into one single

trust score, we take a conservative choice: we always take the lower level of

trust among the two measures. Thus, we define the trust score that a peer i
gives to a peer j as

θi, j = min(1−HDi, j,1−K′i, j).

68 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

This is the trust score that will be used in the TrustJXP algorithm for

computing more reliable authority scores.

5.1.3 TrustJXP Authority Scores Computation

The idea of TrustJXP is to incorporate the trust measure θ into the JXP al-

gorithm for computing more reliable and robust authority scores by using the

trust measure at peer meetings when adding the information in the world node.

When updating the world node, in the original JXP algorithm, if a page is al-

ready represented, its score will be set to the maximum between the current

score and the score received by the other peer (see Section 4.1.2). As state

earlier

α
t
j = max(α

t−1
j ,αmsg

j),

where α t
j and α

t−1
j are the scores of page j (stored in the world node) at the

current meeting and at the previous meeting, respectively, and α
msg
j is the score

of j in the message received during the meeting. α
t−1
j is zero if the world node

does not contain the page.

For the TrustJXP algorithm, the contribution of the scores from the other

peer are weighted based on how much that peer is considered to be trustworthy.

The score of a page j in the world node is now defined as

α
t
j = max(α

t−1
j ,θ ∗α

msg
j).

After updating the world node, the TrustJXP algorithm proceeds as in the

JXP algorithm: the transition probabilities from the world node are updated,

and a PageRank computation is performed, leading to new authority scores.

5.2 Experimental Evaluation

5.2.1 Setup

The experiments were conducted on the same Web Crawl collection used in

Chapter 4. We created a set of 100 peers that used the same crawling strategy

described in the previous chapter. In our setup, these 100 peers will correspond

to the trustful peers and each one will hold its full graph fragment that was

assigned to it. Thus, in the absence of malicious peers, our authority scores can

converge to the global PageRank scores of the complete graph.

The different fractions of malicious peers were introduced into the system.

Their sets of local pages are subsets of the collections held by honest peers.

Malicious peers perform meetings and local PageRank computations like any

normal peer. The difference is that, when asked by another peers for a scores

vector, a malicious peers will lie about the scores of its local pages, according

to one of the possible cheating behaviors.

The boundaries of the histograms’ buckets were defined as

5.2. EXPERIMENTAL EVALUATION 69

bucket(i) = [0.005 ⋅0.3i−1,0.005 ⋅0.3i),

and when updating histograms the novelty factor (ρ) was set to 0.6.

5.2.2 Cheating Behaviors

Each of the malicious peers picks one of the following attacks:

∙ Report local authority scores that are higher than the true values for all

of their local pages. The exact value is set at each experiment.

∙ Report these falsely boosted scores for only half of their local pages (drawn

randomly but used consistently throughout all meetings).

∙ Report a permuted scores list (with a consistent permutation, otherwise

it could be easily detected by two successive meetings).

In the experiments, peers do not change their behavior during the TrustJXP

computation; for example, if a peer chooses to permute its scores for the first

meeting, it will do so for all subsequent meetings and it will apply always the

same permutation.

5.2.3 Performance Metrics

We have used the same four metrics defined in Chapter 4: Spearman’s footrule

distance and Linear score error over the top-1000 pages, plus L1 norm for the

TrustJXP ranking vector and the cosine similarity between the vectors with

TrustJXP and global PageRank scores. In addition, for some experiments, we

also report the values for the Hellinger Distance and the Tolerant Kendall’s Tau.

5.2.4 Results

Effect of malicious peers in JXP

We have first analyzed the impact of cheating peers in the JXP algorithm.

Starting with the 100 honest peers, we first introduced 10 cheating peers. Each

of these 10 peers uses one of the possible attacks by uniformly random choice

(i.e., with each one of the three types of adversarial behavior having probability

1/3 to be chosen by a dishonest peer). The values of the increased scores are

twice as high as the true values. Keeping this setup of mixing behavior, we then

increased the number of dishonest peers form 10 to 50. The results of are shown

in Figure 5.1.

We clearly see that, with the introduction of malicious peers and without

any defense mechanism, the JXP scores do no longer converge to the true global

PageRank values. The mathematical analysis of the JXP algorithm given in 4.2

proved that the JXP scores are upper-bounded by the true PageRank scores.

With malicious peers reporting scores that are higher than the true ones, there

is no bound for the scores. This effect can escalate: it distorts the world node

70 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 5.1: Impact of malicious peers in JXP.

score and the transition probabilities from the world node to the local pages, and

can even lead to a negative transition probability for the word node’s self loop.

At this point, scores start becoming undefined. At this point, the linear score

error, cosine, and L1-norm curves start behaving oddly, until they eventually

became undefined.

Effect of malicious peers in TrustJXP

We proceeded by testing our trust model, measuring both histograms divergence

and rank divergence for the overlapping pages. We again introduced 50 cheating

peers, but now all peers performed the same type of attack. Figure 5.2 shows the

Hellinger Distance and the Tolerant Kendall’s Tau for the case where cheating

peers report scores five times higher than the true ones, and for the case where

peers permute their scores, respectively.

The results confirm our hypothesis that comparing histograms can be an

effective indicator of cheating behavior with increased scores. We can also see

that, when scores are permuted, the histogram approach does no longer work,

and the rank divergence provides a better indication of such malicious behavior.

We then repeated the experiment with 50 malicious peers and the random

choice of attack types (again, peers report five times higher values than the true

5.2. EXPERIMENTAL EVALUATION 71

0 1000 2000 3000 4000 5000
0

0.5

1
Histograms Divergence

Number of Meetings in the Network

(a)

0 1000 2000 3000 4000 5000
0

0.5

1
Rank Divergence

Number of Meetings in the Network

(b)

0 1000 2000 3000 4000 5000
0

0.5

1
Histograms Divergence

Number of Meetings in the Network

(c)

0 1000 2000 3000 4000 5000
0

0.5

1
Rank Divergence

Number of Meetings in the Network

(d)

Figure 5.2: Increased-scores attack: (a) histogram divergence (b) rank diver-

gence. Permuted-scores attack: (c) histogram divergence (d) rank divergence.

A circle (∘) represents a meeting between two honest peers, and a cross (×)

a meeting between an honest and a dishonest peers. Meetings between two

dishonest peers are not shown for clarity.

ones for the increased scores attack), and used our new TrustJXP method for

computing local scores. The histograms and rank divergence, as well as the final

TrustJXP scores are shown in Figure 5.3.

We can see that the histogram divergence is already able to detect many

dishonest peers (the ones with higher values), but there are still some peers

whose malicious behavior can not be detected. The same happens with the

ranking divergence. However, both measures combined leads to a much better

malicious behavior detection, as the majority of peers with high trust scores are

indeed trustful.

For comparison on how effective a trust model could be, we also simulated a

best case, with an oracle-based defense mechanism that knows the class of each

peer (honest vs. cheating) beforehand. The results for TrustJXP versus JXP

and the oracle-based system are shown in Figure 5.4.

For most of the metrics, our TrustJXP method is fairly close to the ideal case

72 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

0 1000 2000 3000 4000 5000
0

0.5

1
Histograms Divergence

Number of Meetings in the Network

(a)

0 1000 2000 3000 4000 5000
0

0.5

1
Rank Divergence

Number of Meetings in the Network

(b)

0 1000 2000 3000 4000 5000
0

0.5

1
Trust Scores

Number of Meetings in the Network

(c)

Figure 5.3: Random choice of forms of attack: (a) histograms divergence (b)

rank divergence (c) trust scores.

in terms of detecting and compensating malicious peers. In the figure we can

also see that the original JXP algorithm cannot counter the effect of malicious

peers and it quickly degrades.

In addition, for the trust scores shown in Figure 5.3 (d), we measured, for

a given threshold θ , the percentage of honest and dishonest peers that have

received a trust scores higher and equal to θ , i.e., if there are 100 honest peers

and 90 of them received a trust score of at least 0.5, then the percentage of

honest peers for θ = 0.5 is 90%. Analogously, if there are 20 malicious peers

and 5 of them have a trust score higher or equal to 0.5, then the percentage of

dishonest peers for θ = 0.5 is 25%.

In Table 5.1, we show the percentage of honest and dishonest peers for three

different values of θ .

These values could be used in a (hypothetical) system in which the trust score

is measured and a meeting is rejected whenever the other peer’s trust value is

below the threshold. We can see that for θ = 0.8, the percentage of honest

and dishonest peers are 86.9% and 12.1%, respectively. This means that, by

using this threshold, it would be possible to recognize and and discard 87.9% of

5.2. EXPERIMENTAL EVALUATION 73

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 5.4: Impact of malicious peers with TrustJXP.

θ % of honest % of dishonest

0.9 37.4% 4.7%

0.8 86.9% 12.1%

0.6 98.0% 54.5%

Table 5.1: Percentage of honest and dishonest peers for different values of θ .

malicious peers, while loosing the information from only 13.1% of honest peers.

Even though we have shown that TrustJXP is a good contribution for the

problem of detecting malicious behavior, it is by no means sufficient in this task,

since the contributions from malicious peers are still accounted for, although

with lower weight. Figure 5.5 shows the algorithm’s performance for different

numbers of bad peers in the network. The number of good peers is fixed and

equals 100. We can see that, as the number of bad peers increases, TrustJXP

becomes less effective in detecting all malicious behaviors. However, even with

a high number of malicious peers, the algorithm is able to slow down the effects

of the attacks.

74 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 5.5: Impact of malicious peers with TrustJXP.

5.3 Discussion

Having pages with high authority scores can bring many benefits for a peer: with

its pages appearing at the first positions in the ranking for answering queries

posted on the network, the probability that a user clicks on one of them is

higher, which may translate, for instance, in revenue for that peer. Therefore

some peers might try to manipulate the scores computation, in order to get

higher scores to their local pages.

The TrustJXP algorithm is an attempt to reduce the impact of malicious

peers in our JXP algorithm for decentralized authority computation. It inte-

grates the JXP algorithm with a reputation systems designed specifically for

detecting such types of adversarial behavior. The reputation system combines

an analysis of the authority score distribution and a comparison of rankings

from a small set of pages. It relies on the assumptions that score distributions

at all honest peers should look similar, given that the Web graph is self-similar,

and that there is sufficient overlap among peers’ local graphs. In cases where

these assumptions do not hold, honest peers might be punished, slowing down

the scores convergence but staying conservative.

Experiments have demonstrated the viability and robustness of our method.

5.3. DISCUSSION 75

For example, we showed the normal JXP system can withstand a population of

10% of malicious peers using the described attack models, but not a population

of 33%. We have seen that TrustJXP can work with such a high number of

malicious peers. For bigger populations, we showed that the algorithm becomes

less effective, but it is still able to slow down malicious effects.

76 CHAPTER 5. TRUSTJXP: JXP IN UNTRUSTFUL NETWORKS

Chapter 6

JXP under P2P Dynamics

One of the main characteristics of P2P networks is their dynamic nature. Peers

are constantly joining and leaving the network, meaning that the fully content is

not always available. Moreover, peers might change what they store, for instance

a user can become interested in a different topic and start to store information

about this new topic instead. We can distinguish dynamics into two types:

network dynamics and content dynamics. Network dynamics refers to changes

on the peer population since peers are continuously joining and leaving the

system. Content dynamics refers to changes on what is stored by the peers.

In previous chapters we have presented the JXP algorithm for decentralized

computation of global PageRank scores in a P2P network. JXP has potential

limitations, namely, it assumes that (i) the global size of the graph is known, and

(ii) peers and their contents are static throughout the entire computation. In

Chapter 4 we have addressed (i), showing that a wrong estimation of global size

causes only a rescaling of the JXP scores, while the ranking order is preserved.

For convergence to the true PageRank scores however, the correct graph size is

needed.

In case of peer dynamics only, i.e., the Web graph is fixed and peers are

constantly leaving and eventually joining the network again, the convergence

guarantees given in Chapter 4 still hold, with the difference that the conver-

gence is slowed down, given that some peers are not accessible for a certain

period. Dealing with content dynamics, i.e., pages being added to the network

or becoming unavailable, gives a more realistic model, and is discussed in this

chapter.

We present an approach on how to estimate the total number of distinct

pages in the network. Then we proceed on explaining how JXP can be adapted

to handle dynamics.

6.1 Estimating the Global Number of Pages

As mentioned earlier, convergence to the true PageRank values requires the

knowledge of the total number of pages in the network. In this section we

77

78 CHAPTER 6. JXP UNDER P2P DYNAMICS

propose a method for computing this value in a dynamic P2P network.

Our approach works as follows: instead of a single value, peers initialize a

hash sketch [FM85] that represents the set of local pages. During a meeting,

peers exchange the hash sketches and the local copy is updated by taking the

union of both sketches (local and from the peer met). What we aim at is to

have the hash sketches at all peers to be the same and equal to the sketch that

represents the union of all local sets. The size of the global graph, can then be

estimated at each peer, with error bounds given by the hash sketch construction.

This gossiping algorithm can be adapted to content dynamics using a sliding

window approach.

6.1.1 Hash Sketches

Hash sketches were first proposed by Flajolet and Martin in [FM85] to proba-

bilistically estimate the cardinality of a multiset S. Hash sketches rely on the

existence of a pseudo-uniform hash function h() : S→ [0,1, . . . ,2L). Durand and

Flajolet presented a similar algorithm in [DF03] (super-LogLog counting) which

reduced the space complexity and relaxed the required statistical properties of

the hash function.

Hash sketches work as follows: let ρ(y) : [0,2L)→ [0,L) be the position of the

least significant (leftmost) 1-bit in the binary representation of y, that is,

ρ(y) = {min
k≥0

bit(y,k) ∕= 0}, y > 0,

and ρ(0) = L. bit(y,k) denotes the k-th bit in the binary representation of

y (bit-position 0 corresponds to the least significant bit). In order to estimate

the number N of distinct elements in a multiset S we apply ρ(h(s)) to all s ∈ S
and record the least-significant 1-bit in a bitmap vector B[0 . . .L−1]. Since h()

distributes values uniformly over [0,2L), it follows that

P(ρ(h(s)) = k) = 2−k−1.

Thus, when counting elements in an N-item multi set, B[0] will be set to 1
approximately N

2 times, B[1] approximately N
4 times, etc. Then, the quantity

R(S) = maxs∈Sρ(h(s))

provides an estimation of the value of log2 N. An example showing how

to compute the bitmap vector B and how to use B to estimate the number of

elements is shown in Figure 6.1.

The estimator above has an additive bias of 1.33 and a standard deviation

of 1.87. To improve it the authors in [FM85, DF03] present techniques that

use multiple bitmap vectors (B), instead of only one. In more detail, they use

a set of m = 2c bitmap vectors. Then for each element in the set S, the first c
bits of h(s) are used to select each vector the element will be inserted into, and

the remaining bits if h(s) are used to update the selected vector. The set of

6.1. ESTIMATING THE GLOBAL NUMBER OF PAGES 79

0 0 1 1

1 0 1 1

0 1 1 0

1 0 1 0

h(s1)

h(s2)

h(s3)

h(s)

ρ(h(s1)) = 2

ρ(h(s2)) = 0

ρ(h(s3)) = 1

ρ(h(s)) = 0

lsb msb

1 0 1 0h(s4) ρ(h(s4)) = 0

1 1 1 0

B[0] … B[3]

B

Estimation for N: log2(N) ≈ 2 → N ≈ 22 = 4

2))((max =
∈

sh
Ss

ρ

Figure 6.1: Example of a Hash Sketch.

bitmap vectors is used in different ways by the authors in [FM85, DF03]. We

have chosen the estimator by [FM85], which is given by

E(N) =
1

0.77351
β2

1
β

∑
(β−1)
0 Mi

,

where Mi is the position of the leftmost 0-bits in the ith bitmap. The bias

and standard error of this estimator are closely approximated by 1+0.31/β and

0.78/
√

β , respectively [FM85].

One of the main advantages of using hash sketches is that they offer duplicate

elimination “for free”, or in other words, they allow counting distinct elements

in multi sets. Estimating the number of distinct elements (e.g., pages) of the

union of an arbitrary number of multi sets (e.g., distributed and autonomous

collections) — each represented by a hash sketch synopsis — is easy by design:

a simple bit-wise OR-operation over all synopses yields a hash sketch for the

combined collection that instantly allows us to estimate the number of distinct

elements of the combined collection.

6.1.2 Estimating Global Counts Using Hash Sketches

In the task of estimating global counts using hash sketches, peers can benefit

from the counts of all the other peers, due to the duplicate aware counting. To

make the analysis tractable, lets assume for now that all peers perform their

meetings in a synchronized way, i.e., after some amount of time, all peers have

performed the same number of meetings. Consider one particular peer that is

about to perform its mth meeting. Therefore, it has already performed m− 1
meetings in the past, and the peer it will meet is also in its mth meeting. By

80 CHAPTER 6. JXP UNDER P2P DYNAMICS

transitive effects (the met peer having met other peers earlier), both peers now

double the amount of meetings they are aware of (recorded in hash sketches).

We denote by C(m) the number of meetings a peer is aware of after the mth

meeting. In the synchronized case we can also write C(m) = 2(m−1), i.e., the

number of meetings a peer is aware of grows exponentially with the number

of meetings the peer has performed. From a single peer’s point of view, after

having performed m meetings the situation is identical with having had C(m)

meetings where peers do not share information about their previous meetings.

Charikar et al. [CCMN00] consider the problem of estimating the number of

distinct values in a column of a table. The difference to our scenario is that in

a database table, the number of tuples is known, whereas in a truly distributed

large scale system, the total number of peers is unknown. In addition, we know

only how many peers or pages we have seen so far, and not the frequency of

observation. In practice, all we have is an estimate of distinct values given

the sampling using meetings and the exchanged hash sketches, thus we cannot

directly apply the estimators from [CCMN00]. However, the estimation of the

number of distinct items in a multi set is a well studied problem (cf., e.g.,

[LP56]). In [LP56] the authors show that, for a set that contains N distinct

elements, if a sample of size x is taken from the set, the expected number of

distinct elements k, k ≤ N, observed in the sample is given by

E[k]∼= N(1− e−x/N).

In our scenario, the sample size is the number of pages seen after m meetings,

C(m), therefore we can write

C(m)

N
= ln(

N
N−E[k]

),

which can be used to get an estimator
∧
N of the total number of distinct

elements N. The variance of the estimator can be obtained from the fact that

the probability of seeing exactly k distinct elements in the sample is a likelihood

function ([LP56]), and it is given by

σ
2
∧
N

=
N

eC(m)/N− (1 + C(m)
N)

.

Hence, to reach negligible error even for big values of N, we need only few

rounds of peer meeting since C(m) grows exponentially.

In practice we do not know the value of C(m) since peers meet asynchronously

and the online time of peers largely varies. In addition, we are not aware of N, the

total distinct number of pages in the system. We have only an estimate given by

the hash sketch based sampling. The reasoning presented above shows, however,

that few iterations are needed to get to a meaningful hash sketch. That does

not include any reasoning about the quality of hash sketches which is given in

the original work by Flajolet et al. [FM85] and is thus orthogonal to our goals.

The approach for estimating the number of pages needs to be adapted for

dealing with dynamics in the system, with pages being inserted or removed from

6.2. ADAPTING JXP FOR DYNAMICS 81

the network. The former case is handled by the estimator introduced above. The

latter case requires some further improvements. Since one can easily add items

to a hash sketch but one cannot remove items from such a sketch, we employ

the usage of a time sliding window over multiple hash sketches. We let each

peer keep an array of k hash sketches, ordered by time, the kth hash sketch is

considered to be the“oldest”one. After τ time steps we remove the oldest sketch

and insert an empty one at array position 1. Newly observed pages will always

be inserted into the sketch at position 1. At any time, the current estimate of

distinct pages is the estimate derived from the hash sketch created by forming

the union of all k sketches.

6.2 Adapting JXP for Dynamics

Recalling the previous JXP meeting procedure, a peer selects another peer for

a meeting and contacts this peer. The contacted peer then returns the infor-

mation that is relevant to the peer initiator. Due to possible overlaps and the

asynchronous nature of the algorithm, different peers might provide different

score values for the same page. In these cases, the highest score is kept, since

the correctness proof of the algorithm shows that scores are, at any time during

the computation, upper-bounded by the true PageRank scores, i.e., the scores

to which the JXP scores converge to. Therefore, keeping the highest values

provides a speedup in convergence. In addition, local pages with links to pages

outside the local graph do not need to know the exact location of those, since

links to non-local pages are represented as links to the world node. With content

dynamics, however, three new events come into play, and the algorithm needs

to detect them: pages can be added, modified, or deleted.

6.2.1 The New World Node

So far we actually did not consider the problem of invalid information kept in

the world node in case of peers leaving the system (taking their pages with

them). One idea would be to keep for each page in the world node that points

to a local page a list of peers that had reported a score for that particular

page. The number of data to keep track of (bookkeeping) should be constant

or growing sublinearly. Keeping track of all peers that store a particular page

is infeasible, since it would require massive amounts of storage caused by overly

popular pages, i.e., pages likely to be stored at many peers, like for instance,

google.com or cnn.com.

Instead of remembering all peers that have reported scores for a particular

page, we opt for storing the last χ peers that reported a score, i.e., we store for

each page a list of pairs (peerId, score) for the last χ scores seen for the page,

along with the corresponding peer. The parameter χ can depend on the storage

capacity of each peer, but we envision χ to be in order of O(log N), where N
is the number of peers in the network. This limitation to a certain length is

reasonable, since the probability that the list for a page becomes empty, while

82 CHAPTER 6. JXP UNDER P2P DYNAMICS

there is still some peer in the network that hosts the page, is small. Even if

it happens, the page will be rediscovered, due to the basic JXP performance.

Hence, the actual choice of χ is not crucial for the performance of JXP.

In addition to remembering external pages with links to the local graph, the

world node now also needs to keep track of external pages that are pointed to by

local pages. This way we can correctly reconstruct both links from and to the

world node. Here we also apply the approach of keeping a list of limited size

containing the last χ peers met that contained the page, but no score is needed,

since they do not directly influence the local scores.

6.2.2 JXP Meetings Adapted

In the JXP algorithm, the meetings are of fundamental importance for the ef-

fectiveness and correctness of the algorithm. With dynamics, their role becomes

even more crucial: it is through the meetings that peers will be able to detect

the changes in the network. As stated before, a change can be of one of the

three types: pages can be added, modified, or deleted.

Page addition is a trivial problem, since the algorithm is already designed to

discover non-local pages. Recall that, in the algorithm, a peer sends information

about both local pages and pages currently in its world node. With the world

node now storing scores lists instead of single scores, a decision has to be made

about what to send for those pages in the world node. For keeping message cost

small, our solution is to send a single (peerId, score) pair per page, where the

score is computed by averaging all scores currently known for the page. With

the limit on the size of the lists, and a fair amount of meetings performed, old

scores will gradually be replaced by updated, better scores, and the average is

then expected to converge to the correct score of the page. For the peerId, we

can simply choose the most recent peer met for that page, since chances are

higher that this peer will remain for a longer period in the network.

Page deletion might occur when peers that reported information for the page

have left the network or have changed their contents. Whenever one of the two

happens, the reference for that peer is removed from the world node. If the list

of peers for a page becomes empty, it is assumed that the page no longer exists,

and therefore must be removed from the world node.

It could also happen that a page had its contents modified, so it could still

be reached but the new information given for that page contradicts previous

information. Since the content of a page itself is not needed for the JXP com-

putation, the only two possible changes in a page are changes in the score and

changes in the outgoing links. Changes on the score are not considered, since

peers are constantly updating this information, so for detecting that a page has

been modified we check whether the outgoing edges have been modified. If so,

the page is initially removed from the world node and re-added with the new

information. Remember that the world node keeps the information about the

outgoing links for every page it stores, so a simple comparison of the current

link information stored at the world node with the one being sent by the other

6.2. ADAPTING JXP FOR DYNAMICS 83

peer can determine if a page has been modified or not.

What is left to describe is how to detect when a peer has left the system.

In P2P networks, it is very common that peers temporally leave the network

and return to it a short later. In such situations, we would rather leave the

world node unchanged and wait until the peer returns. Therefore, a single

failed attempt to contact a peer sometimes might not be a good indication

that the peer has left the network indefinitely. Instead, we keep a counter of

consecutive failed attempts made to contact a peer, and only if this number is

above a certain threshold, that can be tuned according to the network behavior,

we assume that the peer is no longer alive, and its references should be removed.

Upon a successful attempt this counter is reset.

6.2.3 Storage and Network Bandwidth Costs

For the JXP algorithm to work under peer and content dynamics a few modifi-

cations had to be done that have affected the storage and network bandwidth

costs of the algorithm. However, we show that even though the requirements

have slightly increased, the costs are still within an acceptable limit.

Again, the storage cost can be divided into the cost of storing the local graph

and the cost of storing the world node, i.e.,

SCP = SCG + SCw

where SCP is the storage cost at peer P, SCG and SCw, are the local graph

and world node costs, respectively.

For every local page in the local graph, besides storing the ID of the page,

the list of the outgoing links, and current JXP score, we now need to add, for

each outgoing link, a list of size χ containing the identifier of the last χ peers

met that store the page to which the link points to. So the new cost become

SCG = ∑
i∈G

(SCID + SCscore + out(i) ⋅ (SCID + χ ⋅SCIDP))

where G is the local graph, out(i) is the outdegree of page i, and SCID, SCscore,

SCout are the costs of storing the identity of a page, the score of a page and the

identify of a peer, respectively.

A similar list with peers’ ID is kept for every page stored at the world node,

besides the ID of the page, its score and outdegree. In addition, we have to

remember peers which were failed to contact. So the total cost of storing the

new world node is given by

SCw = ∑
i∈G

∑
j∣ j∈W

j→i

(SCID + SCscore + SCout + χ ⋅SCIDP)

+ ∑
p∈ f ailed

SCIDP + SCcount

84 CHAPTER 6. JXP UNDER P2P DYNAMICS

W is the set of pages represented at the world node, and f ailed is the set of

peers that were failed to be contacted. SCicount is the cost of storing a counter

for the number of failed attempts. When there is a successful attempt to contact

a peer, that peer is removed from the f ailed set (in case it is in the set).

The storage cost of the local graph is still linear in the number of incoming

and outgoing links of local pages, and on average each page has only a handful

of in-links and out-links. Therefore storage cost is O(n), where n is the size of

the local graph. The first part of the world node storage cost is also O(n), but

the number of peers in the f ailed does not depend on the number of local pages.

In the worst case, the f ailed set could contain every other peer in the network,

but in practice we expected a much smaller number.

When sending a message to another peer, neither the lists with peers’ id,

nor the set of failed to connect peers are needed. Therefore, network bandwidth

costs remains O(n).

6.3 Experimental Evaluation

6.3.1 Setup

For the experiments we used a slightly larger dataset than the ones from previous

chapters. The new dataset was obtained in 2005 by crawling parts of the .eu

domain, and contains 862,664 pages with 19,235,140 links. It is available under

http://law.dsi.unimi.it/, and accessible using the WebGraph framework

[BV04], available under http://webgraph.dsi.unimi.it/. For a meeting, a

peer contacts a randomly chosen peer in the network, and asks for its current

local knowledge.

Dynamic Model

To model peer behavior, we use previous works [LNBK02, PRU01] that have

derived mathematical models that closely represent the dynamics observed in

P2P networks. More specifically, peer joins are expected to follow a Poisson

distribution, i.e., the probability that n peers join the network on the next time

interval can be written as

Pλ (n) =
λ n

n!
e−λ ,

where λ is the average number of peers joining the network per time interval.

Peer leaves, in turn, follow an exponential distribution: given the average num-

ber of drop outs in one time interval (µ), the probability that a peer leaves the

network after x time intervals is F(x) = 1− e−µx. Note that both distributions

are equivalent, since the interval between two consecutive events of the Poisson

distribution follows the exponential distribution. In the following experiments,

we used these models to generate peer dynamics. For the content dynamics,

we randomly choose a percentage of the peers and replace their local graphs by

performing new crawls.

6.3. EXPERIMENTAL EVALUATION 85

6.3.2 Performance Metrics

Like in the previous chapters, we construct a total ranking from the distributed

scores and we compare this JXP ranking against the true global PageRank

ranking. But since we are trying to evaluate the performance of JXP under

network churn, the evaluation becomes more complicated, once the baseline,

i.e., the PageRank scores of all pages currently available in the system, is not

static anymore. Hence, for every change in the network, we consider the union

of all pages currently in the system, and compute the baseline scores. Then, for

some points in time the JXP scores are compared to the baseline at that time

point.

For comparing the ranking given by the JXP algorithm and the ranking

given by traditional, centralized PageRank we again use the Spearman’s footrule

distance and the linear score error for the top-k pages (see Chapter 4), as well

as the cosine similarity between the two vectors and the L1-norm of the vector

containing the JXP scores.

6.3.3 Results

The experimental evaluation consists of two parts. First we report on the per-

formance of the estimator presented in Section 6.1. Then, we present results on

the performance of JXP under network and content dynamics.

Figure 6.2 (left) shows the quality of the estimator compared to the exact

values, i.e., the number of pages currently in the system. For this experiment,

we simulated random peer meetings within a system of 50 peers. Each peer ran-

domly draws from a pool of 150,000 pages between 250 and 1000 distinct pages.

Peers are either active or inactive, according to the exponential distributions

that models the peer behavior. Each peer maintains only 4 hash sketches with

210 bitmaps each, resulting in a negligible storage consumption of 32KBytes.
After 2 meetings, each peer shifts the sliding window over the hash sketches by

one position, i.e., each hash sketch is valid only for 2 meetings. As shown in

Figure 6.2 (left), the estimation accurately follows the exact values, with major

drastic fluctuations being smoothed out. To get a deeper insight about the us-

ability of our estimator inside JXP, we also report on the distribution of count

estimates, as presented in Figure 6.2 (right). The variation between the first

and the third quartile is remarkably small, indicating that peers nearly agree

on one particular value, which is important for the performance of JXP. Note

that both figures shows one particular, representative run, and that it is not

smoothed over multiple runs or multiple parameter choices.

For the experiments with the adapted JXP we increased the size of the net-

work to 1000 peers. Overlaps among local graphs are allowed, and the collection

of all peers holds in total around 100,000 documents. Peer and content dynam-

ics are introduced in the system always after a certain number of meetings has

occurred in the network. We considered both successful and unsuccessful meet-

ings for the counter. We then varied the parameters of the peer churn and

content dynamics models, to simulate different degrees of dynamics.

86 CHAPTER 6. JXP UNDER P2P DYNAMICS

(a) (b)

Figure 6.2: Hash sketch based estimation of the number of documents under

network churn.

We present results for two scenarios: Moderate Churn, with join and leave

rates of 100/0.1, and a change of the contents of 1% of peers; and Heavy Churn,

with join and leave rates of 200/0.1, and a change of the contents of 5% of peers.

For a better understanding of the impact of dynamics the following results were

obtained without the use of our distinct page count estimator, and peers were

artificially told about the correct size of the global graph. Figure 6.3 shows the

results obtained, where the baseline simulates the case without dynamics. Note

that the actual values of the linear score error are in general not meaningful:

since scores correspond to stationary probabilities, they are expected to sum up

to one, so if there is an increase of the number of pages in the network, the scores

drop, which explain the behavior of the curve. However, the key insight obtained

here is that the error decreases even under dynamics. The other three accuracy

measures show very good performance of JXP under churn, in particular the

L1-norm nicely follows the baseline, even though the underlying global graph is

not stable.

6.4 Discussion

One of the main characteristics of a P2P network is its dynamic nature, with

peers constantly joining and leaving the systems. We have adapted our JXP

algorithms to enable the distributed computation of authority scores in the

presence of network churn. We have identified potential shortcomings of our

JXP method, and presented means to extend the algorithm to cope with network

dynamics, while keeping storage requirements and message costs low. We have

also presented an estimator based on hash sketches and sliding windows to count

the number of distinct pages in a dynamic network, which is one of the basic

input parameters of JXP. Our experiments have shown that our estimator is

effective when computing an approximation for the total number of pages in the

network, and that the modified version of the JXP algorithm is able to adapt

to the changes in the network.

6.4. DISCUSSION 87

(a) Spearmans’s footrule Distance (b) Linear score error

(c) L1-norm (d) Cosine

Figure 6.3: Performance of JXP under P2P Dynamics.

88 CHAPTER 6. JXP UNDER P2P DYNAMICS

Chapter 7

p2pDating — Creation and

Maintenance of SONs

Semantic Overlay Networks (SONs) [ACMHP04, BMR03, CGM04, TXKN03]

are a network organization that improves query performance while maintain-

ing a high degree of peer autonomy. Peers with semantically similar content

are connected through an overlay network, and a peer can belong to multiple

overlay networks (e.g., if its contents is diverse). Queries are routed only to the

appropriate semantic overlay networks, increasing the chances that matching

information (e.g. files, documents) will be found quickly, and reducing the load

on peers having unrelated content.

In this chapter we introduce an algorithm, coined p2pDating, that allows

autonomous peers to form context-rich SONs, and we show how these SONs

can be utilized during query routing in P2P web search engines and also for

improving the performance of our JXP algorithm.

There are many challenges when building SONs, regarding how peers are

assigned to SONs and to which SONs a query should be sent. According to the

initial idea, peers should be evenly distributed among SONs, so queries can be

answered fast, as fewer peers have to be asked; and each peer should belong to

a small number of SONs, so that each peer has to handle only a few number of

connections. However, in the real world, the distribution of peers over semantic

classes is expected to be very skewed and dynamic as many peers will belong to

some very popular topics that are constantly changing, whereas some uncom-

mon classes will be less populated. Moreover, in most of early approaches, an

algorithm that classifies the peers’ contents into one or more predefined classes

was used. Each of these classes defines a SON. This leads to a fixed config-

uration of the SONs, so that the performance is highly dependable on a good

choice of the classification algorithm and the classes, and it also requires that all

peers use these same algorithm and classes, which is undesirable. To overcome

the restriction that the peers are classified into these strict topic schemes, our

proposed p2pDating algorithm gives more autonomy to the peers when deciding

which SONs they should join. It works by rearranging the connections between

89

90
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

peers, according to the peers’ criteria of a “good” neighbor (i.e., a “friend”),

and using caching to remember the peers that were defined as friends. Possible

measures for deciding if a peer should be considered a friend or not could be,

for instance, the overlap between pages held by the peer and pages held by the

candidate for being a friend, the similarity between their pages, history of the

peer, level of trust, etc. A peer also has the option to delete an already estab-

lished link with a friend, if it has either changed its selection criteria or found

more interesting peers.

We proceed by explaining in detail the p2pDating algorithm and also exam-

ples of different criteria for finding friends in the network. The usefulness of the

algorithm is tested in experiments that show how p2pDating can improve the

performance of the JXP algorithm, and how it can be used to efficiently and

effectively find promising peers during query routing.

7.1 The p2pDating Algorithm

The idea of p2pDating is to create SONs in a P2P environment, where a peer has

autonomy when deciding which SONs it wants to join. The approach works by

having peers meet other peers that they still do not know (like “blind dates”).

If a peer “likes” another peer, i.e, if this other peer has information that is

interesting for the peer, it might want to remember this peer, and insert it into

the friend list. On the other hand, if the peer decided that the other peer is not

interesting, it is most likely that it might not want to remember this peer, so no

link is created or if there is already a link between them, it might be dropped.

We advocate that caching (i.e. remembering) of high quality peers is the natural

way to create SONs.

The process starts with a randomly connected network and runs infinitely

since peers are constantly joining and leaving the network. SONs will dynami-

cally evolve from this process, as semantic links are more and more refined. In

a dynamic P2P network, we expect that the SONs are continuously changing to

adapt to the changes in the network, i.e., changes in the peers’ behavior, peers’

contents, etc. The semantic links are represented by entries in the friends lists. It

is important to emphasize that no physical links are created. Semantic links can

be seen as abstract links. When a peer joins the network its friends list is empty

and will be filled over time. Figure 7.1 illustrates three dynamically evolving

SONs, each one represented by a different color, where we can see that besides

the semantic links there are also additional random links. The random links are

physical links needed to keep the whole network together and are dictated by

the underlying P2P network protocol. For instance, in the Chord protocol the

random links correspond to the entries in the finger tables [SMK+01].

7.1.1 The Semantic Routing Table

The friends are annotated with statistics to form a semantic routing table (SRT)

in which the peers are ordered according to their usefulness. Table 7.1 shows

7.1. THE P2PDATING ALGORITHM 91

Randomly Connected Iteration N Iteration N+1

Figure 7.1: Dynamically Evolving Semantic Overlay Networks. Links inside

a SON are represented by thicker lines. The thinner lines correspond to the

random links. Peers with the same color belong to the same SON.

IP Overlap Similarity Credits Last Usage

Used Frequency

Peer A 192.168.1.3 4% 70% 434 two days 34

Peer B 192.168.1.5 1% 30% 344 yesterday 12

Peer C 192.168.1.2 7% 50% 121 today 4

Table 7.1: Example of a semantic routing table containing statistics about

known friends.

an example of the semantic routing table held by some peer, which shows five

possible measures for assessing the usefulness of a peer: percentage of overlap

between the peers collection, similarity between the collections, credit points

(for instance for good cooperation in the past), last time the peer was used for

a particular task (e.g., query routing), and the usage frequency.

There are many ways to define a friend, as it will be discussed later in

this chapter. The measures and values displayed in the example are just an

illustration.

When a new friend is found, an entry containing information about this peer

is added to the table. Friends lists have a fixed length, which means that current

friends might need to be dropped (according to some criteria) from the table,

so that new friends can be added. Dropping a friend corresponds to remove an

abstract link in the network. Each peer creates its friends list independently

of other peers. In particular, “friendship” is not generally symmetric. If peer A
adds peer B into its friend list, A is not automatically inserted into B’s list. It is

up to B to decide whether to add A or not. This means that the links created

by p2pDating form a directed graph.

92
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

7.1.2 Finding New Friends

Friends lists, besides defining the links in the SONs, can also be used to find

new friends in an intuitive manner, by looking at the SRTs of other peers: if

peer A finds peer B interesting, it is very likely that the friends of B will be

interesting to A as well. Therefore, besides adding B into A’s friend list, we

also add B’s friends into a so-called candidate list. Then, for the next meeting,

a peer can choose to meet a friend of one of its friends, instead of picking a

peer at random since being a friend of a friend is a stronger recommendation.

Alternatively, a criterion other than the one used to define a friend can be

used to decide whether to add new candidates to the list or not. In this case,

candidates are not necessarily friends of one of the peer’s friends. Candidates

lists, like friends lists, also have fixed length, which means that if the maximum

number is reached, candidates have to be dropped.

7.1.3 p2pDating Algorithm

Algorithm 7.1 shows the procedure of picking a peer for the next meeting. It

draws a random number between zero and one, and according to some predefined

probabilities, it chooses a peer from the candidate list or a peer from the friend

list, or a random peer in the network.

Algorithm 7.1 The choosePeerToMeet() procedure

1: r← random(0,1)

2: if (r ≤ α) then

3: P← a peer from the candidate list

4: elsif (r ≤ (α + β)) then

5: P← a peer from the friend list

6: else

7: P← randomPeer()

8: end

9: return P

We can think of scores for peers in the candidate list, based on the scores of

the peers where they were defined as friends. Thus, we can select the peer with

the highest score when choosing a peer from the candidate list. It is important

that peers have an updated view of the network, as peers can change their

contents or eventually leave the network. Therefore, peers have to revisit their

friends from time to time. For search engine applications, friends will be visited

during query execution, so these updates can be integrated into the standard

querying process. Another possibility is to assign a time to live (TTL) to every

friend so that peers are automatically dropped, or revisited to re-assess their

usefulness. In addition, the probability of picking a peer at random should not

equal zero, to assure that every peer in the network can be reached.

Algorithm 7.2 shows the pseudo-code for the p2pDating algorithm. A peer

chooses another peer for the next meeting and contacts it. Then it decides

7.2. DEFINING GOOD FRIENDS 93

whether the peer is a friend or not, based on the peer’s content. If so, the

peer is added to the friend list. It then decides if the friends of the peer are

good candidates, adding them to the candidates list in case of a positive answer.

As said before, we can simply choose to follow the chain of friends, by making

hasGoodFriends(P) return true whenever P is a friend, or we can use any other

criterion to implement this function. The process of adding peers to the friends

or candidate list checks if the maximum number of the peers on the list has

been reached, and removes peers, if necessary.

Algorithm 7.2 p2pDating Algorithm

1: repeat

2: P← choosePeerToMeet()
3: contact P
4: if isFriend(P) then

5: add(P, friend list)

6: end if

7: if hasGoodFriends(P) then

8: C← friends of P
9: add(C, candidate list)

10: end if

Figure 7.2 illustrates a meeting between two peers, showing their friends and

candidates lists before and after the meeting. We can see two possible cases:

1) when a peer decides that the other peer is a friend and has good friends,

the friend and candidate lists are updated, and 2) when a peer decides that the

other peer is not a friend and also does not have good friends, the lists remain

the same. The other two possible cases are when a peer decides to update only

its friends or its candidates list.

Choosing a peer from the friends list means revisiting an already known peer.

In a highly dynamic P2P network this is very important in order to have an

updated view of the network, as peers can change their contents or eventually

leave the network.

To avoid that the friends/candidates lists grow forever, we need a replace-

ment strategy that keeps track about peers that are no longer interesting and

thus replaced by other peers or just dropped from the cache, e.g., if it turns out

that these peers have left the network. As we limited the size of a friend list,

we use a ranking of friends so that if the size of the list reaches its maximum,

the lowest-ranked friend is dropped. The friends list’s order can be defined by

a combination of measures that will be presented in the next section.

7.2 Defining Good Friends

As explained earlier, when peer A meets peer B in the network, it accesses

B’s content, i.e., the information that peer B has made visible for the others,

and decides whether to establish a link to B or not, based on a measure of the

94
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

FRIENDS
Peer B
Peer F

Peer A
CANDIDATES

Peer I

FRIENDS
Peer C
Peer H

Peer D
CANDIDATES

Peer E

A.isFriend(D) = true

A.hasGoodFriends(D) = true

D.isFriend(A) = false

D.hasGoodFriends(A) = false

FRIENDS
Peer B
Peer F
Peer D Peer A

CANDIDATES
Peer I
Peer C
Peer H

FRIENDS
Peer C
Peer H

Peer D
CANDIDATES

Peer E

Figure 7.2: Example of friends and candidates lists after a peer meeting.

quality/usefulness of peer B. It also decides, based on the same or, alternatively,

another measure, if B’s friends should be also visited. There are many different

measures that can be used, depending on the purpose of the SON that is being

formed, like good behavior in the past, collection similarity, overlap between the

collection, authority scores, etc.

Figure 7.1 shows some measures that can be used to find the most promising

peer for a particular need (for instance, query routing). We can see that some-

times a single measure might not give enough information to decide which peer

to choose. For instance, peer A is the best choice if we consider the number of

credit points, whereas peer B seems to be most promising if we take a look at

the overlap. So, obviously, there is great need for an aggregation function that

combines the single measures in a meaningful way, since selecting a peer based

only on a particular measure can be misleading. For instance, it might be the

case where a high quality peer has many pages that we already know, and a

peer that offers a lot of new information has a lower quality measure.

Aggregation functions can be of any kind, but usually they are expected to

be simple, for instance, a linear combination of two or more quality measures,

since the definition of a good friend and/or candidate is most of the times very

intuitive.

As a peer’s content can be very broad and diverse, applying quality measures

to its complete collection can be inaccurate. In such cases, a peer might consider

to split its page set into topic-specific subsets. Each peer would then maintain

more than one semantic routing table, more precisely, one for each topic it

7.2. DEFINING GOOD FRIENDS 95

is interested in, and usefulness assessment would be made for each particular

topic. Although this creates additional cost, it might increase the accuracy of the

quality assessments, since comparing the semantic similarity of two collections

might be misleading in the case where collections are related to more than one

topic. It is important to note that it is up to the peers to decide how they

classify their content, and a globally given classifier is not required.

In addition, peers can organize the different topics in a hierarchy (see Figure

7.3 for an example) with edge weights corresponding to topic-subtopic similar-

ities. The edge weights can be interpreted as some kind of confidence measure

that gives weight to the semantic query routing. Thus, peers can leverage the

semantic routing table even in the case where the query does not correspond

directly to a topic, by considering SRTs from related topics. Moreover, when the

query fits to a specific topic, SRTs from sub-topics or from more general topics

can be incorporated into query routing using a weighted quality assessment.

Figure 7.3: Example of a hierarchical semantic classification scheme.

We now proceed by describing some of the possible measures that can be

used to identify good friends in the network.

7.2.1 Quality/Usefulness Measures

In the p2pDating algorithm, each peer is free to decide which criteria to use

when choosing a peer to its friends list. There are many ways to access the

quality/usefulness of a peer. Below we present some of the measures that could

be used, and how they could be used.

History

In any application that requires collaboration among peers, the presence of

malicious peers can pose a problem. Creating a SON is not an exception. By

sending false content, a peer’s quality is measured wrongly, and peers might be

induced to choose peers which in reality have poor content, instead of real good

ones.

96
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

As recently proposed by [TSW04], remembering excellent behavior in the

past is a natural way to find friends. We can, for instance, give credit points to

peers for good cooperation. The history of a peer is very useful when combined

with other measures. We could for instance, weigh other measures, based on

the past cooperation of a peer. This would decrease the impact of malicious

peers and can be seen as an incentive mechanism as it can be used to prioritize

incoming queries from friends.

What a peer stores and how it behaves can vary over time. For instance, it

can find and store new pages about its topics of interest or change its preferences

and start storing pages about a different topic. Furthermore, non-collaborative

peers might become more collaborative in order to have access to network re-

sources. The number of credit points should reflect these changes. One solution

is to reset the credit points counter, at regular intervals. The time period be-

tween two resets can be tuned by observing the frequency at which peers change.

Another alternative is to specify a time window, such that credit-points are given

based only on the observations made inside this time window. The size of a time

window can be defined also based on the peers’ dynamics. Keeping track over

the behavior in the past can be seen as a utility to predict the usefulness of a

peer in the future.

Overlap

Avoiding the retrieval of duplicate pages is a crucial issue in large scale dis-

tributed information system. Recall that we consider peers to be autonomous

and have their own local collection, generated, for instance, by focused Web

crawls. The problem inherently associated with this scenario is that collections

can have a high mutual overlap; thus, it is likely that the query initiating peer

will retrieve pages that it already knows from its local collection. High qual-

ity pages are useless if they are already known: there is no need in querying a

peer when it is known before-hand that this peer has an extremely high over-

lap with regard to the own collection. The mutual overlap between peers has

to be taken into account while selecting promising peers for a particular query.

Overlap-aware techniques [BMT+05b, MBTW06] avoid retrieving redundant in-

formation so that a certain level of recall can be reached by querying fewer peers,

compared to the non-overlap-aware approach. For instance, if the most promis-

ing peers have exactly (or nearly) the same collections only the first peer can

deliver valuable results whereas the following peers will not contribute with any

new pages.

In the task of measuring overlaps of collections stored at different sites the

main issue that arises is that sending the whole collections across the different

peers is prohibitive, since it would incur in a large bandwidth consumption.

Instead, techniques that are based on statistical synopses are largely used.

Statistical Synopses

7.2. DEFINING GOOD FRIENDS 97

Fundamentals of statistical synopses of sets and multisets have a rich liter-

ature, including work on Bloom filters [Blo70, FCAB00], hash sketches [FM85],

and min-wise permutations [BCFM98, BCFM00]. Hash sketches were already

introduced in Section 6.1.1.

A Bloom filter (BF) [Blo70] is a simple data structure that represents a set

as a bit vector in order to efficiently (in time and space) support membership

queries. With bit vectors being a very compact representation of a set, Bloom

filters are an ideal representation in an environment where storage and band-

width consumption are an issue. For a particular set, a Bloom filter is a bit map

of length m and is created by applying k hash functions on each member ele-

ment, each yielding a bit location in the vector. Exactly these element positions

of the Bloom filter will be set to 1. To check if a given element is in the set, the

element is hashed using the same hash function and the corresponding k bits of

the Bloom filter are examined. If there is at least one of these bits that is not

set to 1, the element is definitely not in the set; otherwise it is conjectured that

it is in the set. There is a non-zero probability that the examined k bit positions

were set by other documents, thus, creating a false positive. The probability of

a false positive can be calculated by

p f p≈ (1− e−kn/m)k,

where n is the number of items in the original set [FCAB00].

Min-Wise Independent Permutations, or MIPs for short, have been intro-

duced in [BCFM98, BCFM00]. This technique assumes that the set elements

can be ordered and computes N random permutations of the elements. Each

permutation uses a linear hash function of the form

hi(x) := ai ∗ x + bi mod U,

where U is a big prime number and ai, bi are fixed random numbers. By

ordering the resulting hash values, we obtain a random permutation. For each

of the N permutations, the MIPs technique determines the minimum hash value,

and stores it in an N-dimensional vector, thus capturing the minimum set el-

ement under each of these random permutations. The technique is illustrated

with an example in Figure 7.4. Its fundamental rationale is that each element

has the same probability of becoming the minimum element under a random

permutation. By using sufficiently many different permutations, we can approx-

imate the set cardinality.

An unbiased estimate of the resemblance between two sets, SA and SB, i.e.,

Resemblance(SA,SB) =
∣SA∩SB∣
∣SA∪SB∣

,

is obtained by counting the number of positions in which the two vectors have

the same number and dividing this by the number of permutations N [BCMR04].

In the example of Figure 7.4 the two MIPs vectors have two matching positions,

out of the six permutations. Essentially, this holds as the matched numbers are

guaranteed to belong to the intersection of the sets.

98
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

20 48 24 36 18 820 48 24 36 18 8

docID set

h1 = (7x + 3) mod 51

h2 = (5x + 6) mod 51

hN = (3x + 9) mod 51

17 21 3 12 24 817 21 3 12 24 8

9 21 18 45 30 339 21 18 45 30 33

40 9 21 15 24 4640 9 21 15 24 46

Apply Permutations to all docID‘s

8

9

9

N

Create MIP Vector
from Minima of
Permutations

8

9

8

24

33

24

36

9

45

24

48

13

Estimate Resemblance by
Comparison

Estimated
Resemblance

=

6
2

Figure 7.4: Example of min-wise independent permutations estimation of re-

semblance.

The overlap between the two sets SA and SB, i.e.,

Overlap(SA,SB) = ∣SA∩SB∣,

can be derived from the resemblance measure given that

∣SA∪SB∣= ∣SA∣+ ∣SB∣− ∣SA∩SB∣.

By diving both sides of the equation above by ∣SA∪SB∣, and rearranging the

terms we have

Resemblance(SA,SB)+ 1 =
(∣SA∣+ ∣SB∣)
∣SA∪SB∣

=
(∣SA∣+ ∣SB∣)
∣SA∪SB∣

∣SA∩SB∣
∣SA∩SB∣

=
Resemblance(SA,SB) ⋅ (∣SA∣+ ∣SB∣)

∣SA∩SB∣
.

Therefore we can write

Overlap(SA,SB) =
Resemblance(SA,SB) ⋅ (∣SA∣+ ∣SB∣)

Resemblance(SA,SB)+ 1
.

Another measure to predict collection overlap is to compare the bookmark

collections. If the local page collections have been generated by web crawls we

can treat bookmarks as crawl seeds. Thus, assuming roughly the same crawling

strategy, comparing two sets of bookmarks can provide a good approximation of

the collections’ content overlap. As an alternative to overlap and resemblance,

we can also consider the notion of Containment an appropriate measure of

mutual set correlation [Bro97].

7.2. DEFINING GOOD FRIENDS 99

Containment(SA,SB) =
∣SA∩SB∣
∣SB∣

=
Resemblance(SA,SB) ⋅ (∣SA∣+ ∣SB∣)

(Resemblance(SA,SB)+ 1)∣SB∣
.

Semantic Similarity

We can measure the semantic similarity between two peers by comparing their

bookmarks or their complete collections. More specifically, we can compare

the peers in three aspects: i) regarding their URL sets, ii) regarding the term

frequency distributions in the pages referenced by the bookmark lists, or iii)

regarding the term frequency distributions in their complete collections.

As for term distributions, we could use the relative entropy, also called the

Kullback-Leibler distance [Kul59], as a measure of information inequality. It is

defined by

KL(f ,g) := ∑
x

f (x)log
f (x)

g(x)
,

where f and g are discrete probability distributions. The relative entropy has

important mathematical properties; for example, it is non negative and equals

zero if and only if f = g. If a peer wants to find semantically related peers, the

benefit of each candidate peer can be seen as inversely proportional to KL(f ,g).

f and g denote the term frequency distributions in all pages in a collection or

only the pages referenced by the bookmark lists.

Link Distribution inside Semantic Communities

[FLGC02] shows that the Web is self-organizing in the sense that Web commu-

nities are formed automatically. These communities can be easily identified by

considering the link distribution within these pages. It is shown that Web pages

have more links to other pages inside their community than to pages that are

outside their community, so the analysis of the link structure can also be used

to find semantically related peers.

To give an example, we used the Web Crawl dataset described in Section

4.5.1, and analyzed the topic distribution of outgoing links from pages under

the category “sports”. The result is shown in Figure 7.5. As we can see, sports

pages mainly point to other sports pages, an observation that one can support

by personal experiences when surfing through the Web.

In the following two sections we describe two applications that can benefit

from the SONs created using the p2pDating algorithm.

100
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

Outgoing links from Sports Web pages

Sports

FinanceFinance
Travel

Politics

Arts
OtherOther

Figure 7.5: Outgoing links from sports pages mainly point to other sports pages.

7.3 SONs for the JXP Authority Scores Com-

putation

It is clear that, in the JXP algorithm, peers do not contribute to each other

in an uniform way. How much a peer A will benefit from peer B for improving

its local authority scores heavily depends on the degree of connectivity between

their two local graphs and the level of overlap between them. Peers will not gain

much from meetings when there are only a few links between the local graphs

or if the local graphs are almost identical.

The performance of the algorithm could be improved in the presence of an

overlay network where peers are clustered together according to their degree of

connectivity (which is an indicator of semantic similarity as well). For creating

the semantic overlay network we first need to compute at each peer two sets:

one containing its local pages’ IDs and another containing the IDs of all the

successors targets (outgoing links) of all local pages. The network bandwidth

consumption is kept small by using MIPs vectors for representing these two sets.

This makes the messages for transmitting this information small, such that they

can be piggybacked onto established communication. For a given peer A we call

these vectors local(A) and successors(A).

Assuming that peer A has received information from peer B, the p2pDating

algorithm decides whether peer B should be considered a friend by computing

Containment(successors(B), local(A)), i.e., the fraction of local pages in peer A
that have incoming links from local pages in peer B. If the value is above some

pre-defined threshold, peer A adds peer B to its friend list.

For finding potential candidates for being a friend, the algorithm computes

the overlap between the local page sets of A and B, i.e. Overlap(local(B), local(A)).

The idea here is that, given three peers, A, B and C, if peer C has many links to

peer B, and the overlap between A and B is relatively high, it is very likely that

C will have many links pointing to A as well. If the overlap is relatively high,

friends of B will be inserted into A’s candidate list.

7.3. SONS FOR THE JXP AUTHORITY SCORES COMPUTATION 101

With the semantic overlay network, the JXP algorithm can identify the best

peers to exchange information, instead of choosing peers at random, which leads

to fewer meetings to reach a good approximation of the global authority scores.

7.3.1 Experiments

To show the benefits of having SONs for guiding the choice of peers to meet,

we have implemented the p2pDating algorithm to use the criteria just described

when adding peers to the friends and candidates lists. More specifically, the

functions isFriend() and hasGoodFriends() from Algorithm 7.2 were defined as

follows

PA.isFriend(PB) =

{
true, if Containment(successors(B), local(A))≥ γF

false, otherwise

PA.hasGoodFriends(PB) =

{
true, if Overlap(local(B), local(A))≥ γC

false, otherwise

where γF and γC are pre-defined thresholds for the containment and overlap

measures. The JXP and p2pDating algorithms were then integrated as follows.

Running at peer A, the JXP algorithm chooses peer B to meet according to the

algorithm described in Algorithm 7.1. peer B then sends, besides the standard

JXP message described in Chapter 4, the two MIPs vectors containing the

successors and local sets, and the friends list. The JXP meeting is carried out as

usual, with the relevant information from peer B being added to the world node

of peer A, and updated JXP scores of pages in A being computed. In parallel,

the p2pDating algorithm, also running at peer A, checks if peer B qualifies as

a friend, and if this is the case, it adds peer B to peer A’s friends list. It then

proceeds by checking if peer B has potentially good friends. If this is also the

case, the peers in the friends list of peer B are added to peer A’s candidates list,

but initially with no score, since we can not assess their quality from the current

meeting. This is done in subsequent small p2pDating meetings, where peer A
asks these peers for their MIP vector containing the successors set, which only

adds little cost to the bandwidth consumption.

For the experiments we have used the same datasets and settings described

in Chapter 4. We compare the performance of the original JXP algorithm

without the p2pDating algorithm (where peers are chosen randomly) against

the extended JXP with the SON created by p2pDating. Figure 7.6 shows the

Spearman’s footrule distance for the top-1000 pages for the Amazon and Web

Crawl datasets.

We can see that during the first meetings both approaches perform similarly

but, as the semantic overlay networks are being formed, the JXP algorithm is

able to find the most promising peers, reducing the number of meetings needed

for a good approximation to the global PageRank scores. For instance, in the

102
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

(a) Amazon Dataset (b) Web Crawl Dataset

Figure 7.6: Results showing the benefit of the p2pDating algorithm for the

Amazon and Web Crawl datasets.

Amazon dataset, to make the footrule distance drop below 0.1 we needed a

total of 16190 meetings without the SON. With the SON this number was

reduced to 7340. For the Web crawl dataset, for a footrule distance of 0.05,

5730 meetings are enough with the SON, whereas without the SON not even

after 10000 meetings this threshold was reached.

We also measured the additional bandwidth consumption due to the p2pDating

meetings. We compare the message sizes of the standard JXP algorithm shown

in Figure 4.8, with the message costs of the JXP and p2pDating algorithms

combined. Results are shown in Figures 7.7 and 7.8, which shows that there is

only a slightly increase in the costs per meeting, which actually pays off in the

overall execution, since less meetings are needed.

(a) JXP (b) JXP + p2pDating

Figure 7.7: Message size (in kB) for the JXP algorithm alone and combined

with the p2pDating algorithm for the Amazon dataset.

The advantage of having a SON to improve the convergence speed of the

JXP algorithm is clear. By finding the most promising peers, many meetings

7.4. SONS FOR QUERY ROUTING 103

(a) JXP (b) JXP + p2pDating

Figure 7.8: Message size (in kB) for the JXP algorithm alone and combined

with the p2pDating algorithm for the Web Crawl dataset.

with peers that would contribute only little useful information are avoided.

7.4 SONs for Query Routing

The main advantage of SONs is that peers are grouped together in a way that

allows for efficient query execution (routing) with solely local knowledge. In

contrast, many other approaches make use of some kind of global index that

helps with the query routing decision. The CORI scoring approach is one ex-

ample. As described in Section 4.6.3 CORI ranks peers based on per-term and

per-collection information published for instance in a Minerva style index (di-

rectory) [BMT+05b, BMWZ05, BMPC07] (see Section 4.6.1). Compared to

SONs, such a distributed directory creates a higher network load at query time

as meta information have to be retrieved to select the most promising peers.

The scoring used in CORI is solely focused on predicting high quality peers,

disregarding potential overlap among peers. Bender et al. [BMT+05b] have

enriched the Minerva directory with synopses to estimate overlap among peers,

and integrated the overlap information in the scoring of CORI.

In the experiments that follow we have built different overlay networks, ac-

cording to different criteria, and measure their performance both in terms of

results quality and bandwidth consumption.

7.4.1 Experiments

For the experiments we have used the same dataset and setup described in

Section 4.6.2. We have used 30 popular Google queries taken from Zeitgeist1 in

2005; they are shown in Table 7.2.

1www.google.com/press/zeitgeist.html

104
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

Query Topic Query Topic

andy roddick sports star wars movie

american music awards music iraq politics

oscars movie sports illustrated sports

thailand travel hurricane charley politics

music music klingerman virus natural science

mel gibson movie diane lane movie

nfl sports gregory hines movie

berlin marathon sports salt lake city travel

columbus day politics fathers day politics

chicago marathon sports fifa 2003 sports

marilyn monroe movie matrix reloaded movie

emmy awards music baseball music

haiti travel lebron james sports

solar eclipse natural science real madrid sports

world series of poker sports carmen electra movie

Table 7.2: Queries

To assess the query routing performances using SONs, we have built different

SONs where the quality of peers is assessed in different ways: an overlay mea-

sure, a similarity measure, and hybrid measures. We compared the following

approaches:

∙ CORI: This is the collection selection strategy as proposed in [CLC95,

Cal00], implemented on top of Minerva.

∙ Overlap-aware CORI: This strategy uses the technique presented in

[BMT+05b]. We use a combination of a quality based query routing strat-

egy with an overlap prediction method to form a selection strategy that

reflects the relative usefulness of a peer with respect to the query initiat-

ing peer. The strategy that we employ here is based on (i) the collection

selection strategy CORI, and (ii) an overlap estimator based on min-wise

independent permutations (MIPs).

∙ Overlap Only: Here we consider only the overlap between peers.

Use f ulness(A,B) = 1−∣A∩B∣
∣B∣

,

where A is the query originator.

∙ Similarity Only: Here we consider only the similarity between peers.

This measure uses the Kullback-Leibler distance [Kul59] to assess the se-

mantic similarity, based on the term occurrence distributions.

7.4. SONS FOR QUERY ROUTING 105

Use f ulness(A,B) =
1

1 + KL(A,B)
,

where A is the query originator.

∙ Overlap * Similarity: This is a combination of overlap and similarity.

Use f ulness(A,B) =
1

1 + KL(A,B)
∗ (1−∣A∩B∣

∣B∣
),

where A is the query originator.

∙ Weighted Sum: This is a weighted sum of the overlap and the similarity

measure.

Use f ulness(A,B) = (α)
1

1 + KL(A,B)
+(1−α)(1−∣A∩B∣

∣B∣
),

where A is the query originator.

Experimental Results

Figure 7.9 shows the relative recall (see Equation 4.4) considering the top-20
pages from the global ranking, for the above mentioned routing strategies. We

also present a baseline, where queries are forwarded to randomly chosen peers.

We can see that although CORI and CORI overlap-aware provide the best

results, the SONs that have been created using a similarity measure provide

very good result quality. We can also see that the overlap-only approach is not

enough to deliver good results. We have also conducted experiments for different

values of the coefficient α in the weighted sum of similarity and overlap; these

showed comparable behavior and are thus omitted.

The good performance of CORI and overlap-aware CORI comes with a high

bandwidth costs. Table 7.3 shows the total number of messages, and transferred

bytes at query routing time for the complete benchmark of 30 Zeitgeist queries.

We consider the average URL length to be 70 bytes. The number of messages

consists of the messages to retrieve the data statistics (if needed), and the mes-

sages to actually execute the query by sending it to the selected peers. As the

SON based routing does not use any statistics, there are only 150 messages re-

quired, as we consider the top-5 peers for 30 queries, whereas the CORI and

overlap-aware CORI strategies involve 57 additional messages to retrieve the

published per-term peer lists. Network traffic consists of the number of bytes

for sending the query (on average 2 terms each of length 10 bytes), and retriev-

ing the top-20 result URLs plus scores (floating point numbers) from the queried

peers. This is the communication cost for the query execution. In addition, the

directory peers cause network traffic when retrieving the statistics about peers’

collections. Whereas CORI uses only the standard statistical information along

with peer information (IP address and port), the overlap-aware CORI strategy

106
CHAPTER 7. P2PDATING — CREATION AND MAINTENANCE OF

SONS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

Number of Queried Peers

R
el

at
iv

e
R

ec
al

l

random
sim
overlap
0.7 sim + 0.3 overlap
sim*overlap
CORI
CORI overlap aware

Figure 7.9: Relative Recall

Strategy Number of Messages Traffic (in Bytes)

p2pDating strategies 150 225 000

CORI 207 1 205 400

Overlap-Aware CORI 207 1 789 080

Table 7.3: Total Bandwidth Savings

additionally requires the MIP vectors to assess the overlap. In the experiments

we use 64 permutations which already a reasonably good approximation of the

desired overlap measures.

In summary, we have observed that query routing based on SONs offers a

good compromise between result quality and communication overhead.

7.5 Discussion

We have presented an approach to create and maintain semantic overlay net-

works based on the notion of p2pDating, where peers maintain information

about their friends to form a semantic network. Friends are chosen based on a

variety of usefulness estimators, like overlap and semantic similarity. We have

shown how we can leverage these friends networks in two different applications:

in JXP, friends can be used to guide the selections of peers for the next meet-

ing, by preferring peers with higher chances of providing useful information, over

randomly chosen peers, therefore reducing the number of meetings in the net-

work. In query routing, we show that, in comparison to state-of-art approaches,

the p2pDating algorithm offers a good compromise between result quality and

communication overhead.

Chapter 8

Conclusion and Outlook

We have presented the JXP algorithm for dynamically computing, in a decen-

tralized P2P manner, authority scores when the graph is spread across many

autonomous peers with arbitrarily overlapping graph fragments and the peers

are a priori unaware of other peers’ fragments. The algorithm works by combin-

ing local PageRank computations at each peer’s local collection, with meetings

among peers to exchange information. Throughout the meetings, each peer in-

creases its knowledge about the rest of the network, which is then used in the

subsequent PageRank computations, to improve the scores. We have shown

through theoretical and experimental analyses that scores computed by JXP

converge to the true PageRank scores that one would obtain by a centralized

computation, and that after an acceptable number of meetings the JXP scores

are a good approximation of the correct values. In addition, we have demon-

strated how the JXP scores can be used by different P2P applications in the

tasks of query routing and results ranking.

Having local pages with high authority scores can bring benefits (e.g., rev-

enue) for a peer. Therefore, it is expected that malicious peers would try to

distort the results of the JXP algorithm, by providing different (usually higher)

scores for some of their local pages. To overcome such dishonest behavior we

have proposed an extension of the JXP algorithm, coined TrustJXP, that inte-

grates a decentralized reputation system into the JXP algorithm. Our reputa-

tion system is based on anomaly detection techniques that allow us to identify

a suspicious peer based on the deviation of its behavior from some common

features that constitute the usual peer profile.

We have also addressed the dynamic characteristic of P2P networks, also

known as P2P churn, where peers are not static, but are rather joining and

leaving the network. P2P churn has a big impact on the authority computation,

since the content available in the network varies over time. We have proposed

methods to adapt the JXP algorithm to work under dynamics, and a method for

estimating the number of pages currently available in the network that combines

multiple hash sketches in a sliding window manner.

In addition, we have also considered the problem of building Semantic Over-

107

108 CHAPTER 8. CONCLUSION AND OUTLOOK

lay Networks (SONs), a way of organizing networks where peers with seman-

tically similar content are connected through an overlay network. We have

proposed a new method, named p2pDating, for creating dynamically evolving

SONs that gives more autonomy to the peers when deciding which SONs they

should join. The method works by rearranging the links on the overlay net-

works, according to the peers’ criteria of a “good” neighbor or “friend”), and

using caching to remember the peers that were defined as friends. We have

shown how the SONs created by our algorithm can be used in the query routing

task and also by the JXP algorithm for choosing peers for a meeting.

Authority analysis can also be explored in the context of social communi-

ties. Users in a community interact in a way that results in different social

graphs, and authority computation appears as a natural choice for analyzing

these emerging graphs, given its success in Web graph analysis. The nature of

social networks suggests a decentralized P2P setting; for example, tagged photo

collections would ideally reside on the owner’s computer and shared with the

community by a P2P-style network, and the same holds for lists of friends and

private interactions. P2P implementations of social network applications are

not only well conceivable, but would actually have advantages in terms of lower

vulnerability to performance bottlenecks, privacy breaches, and other forms of

attacks, censorship, or manipulation. A decentralized authority computation in

social networks could be easily carried out with our JXP algorithm, and it is

left for future work.

List of Figures

3.1 Web documents and hyperlinks modeled as a graph. 22

3.2 Interactions in social communities modeled as graph. 22

3.3 Hubs and authorities [Kle98]. 23

3.4 Simplified PageRank Calculation [PBMW98]. 25

4.1 How the global Web graph is modeled by the extended local

graph. Yellow circles represent local pages, whereas external

pages are shown in red and green. 32

4.2 Illustration of a peer meeting, where information added or up-

dated is highlighted in red. 34

4.3 Example of an Amazon product page. 46

4.4 Indegree and outdegree distributions for the Amazon dataset. . . 48

4.5 Indegree and outdegree distributions for the Web Crawl dataset. 48

4.6 JXP Performance at Amazon Dataset 50

4.7 JXP Performance at Web Crawl Dataset 51

4.8 Message size (in kB) for the Amazon and Web Crawl datasets. . 52

4.9 Experimental results for X equal to N, 0.5N, 5N and 10N for the

Amazon dataset. 53

4.10 Experimental results for X equal to N, 0.5N, 5N and 10N for the

Web Crawl dataset. 54

4.11 Performance with different numbers of peers for the Amazon

dataset. 55

4.12 Performance with different numbers of peers for the Web Crawl

dataset. 56

4.13 Minerva System Architecture. 57

4.14 Relative Recall Performance . 62

5.1 Impact of malicious peers in JXP. 70

109

110 LIST OF FIGURES

5.2 Increased-scores attack: (a) histogram divergence (b) rank di-

vergence. Permuted-scores attack: (c) histogram divergence (d)

rank divergence. A circle (∘) represents a meeting between two

honest peers, and a cross (×) a meeting between an honest and

a dishonest peers. Meetings between two dishonest peers are not

shown for clarity. 71

5.3 Random choice of forms of attack: (a) histograms divergence (b)

rank divergence (c) trust scores. 72

5.4 Impact of malicious peers with TrustJXP. 73

5.5 Impact of malicious peers with TrustJXP. 74

6.1 Example of a Hash Sketch. 79

6.2 Hash sketch based estimation of the number of documents under

network churn. 86

6.3 Performance of JXP under P2P Dynamics. 87

7.1 Dynamically Evolving Semantic Overlay Networks. Links inside

a SON are represented by thicker lines. The thinner lines corre-

spond to the random links. Peers with the same color belong to

the same SON. 91

7.2 Example of friends and candidates lists after a peer meeting. . . 94

7.3 Example of a hierarchical semantic classification scheme. 95

7.4 Example of min-wise independent permutations estimation of re-

semblance. 98

7.5 Outgoing links from sports pages mainly point to other sports

pages. 100

7.6 Results showing the benefit of the p2pDating algorithm for the

Amazon and Web Crawl datasets. 102

7.7 Message size (in kB) for the JXP algorithm alone and combined

with the p2pDating algorithm for the Amazon dataset. 102

7.8 Message size (in kB) for the JXP algorithm alone and combined

with the p2pDating algorithm for the Web Crawl dataset. 103

7.9 Relative Recall . 106

List of Algorithms

4.1 Initialization Step . 36

4.2 JXP Algorithm . 37

7.1 The choosePeerToMeet() procedure 92

7.2 p2pDating Algorithm . 93

111

List of Tables

4.1 Amazon dataset categories. 47

4.2 Web Crawl dataset categories. 47

4.3 Precision at top-10 for the Web Crawl Dataset 57

4.4 Queries . 61

5.1 Percentage of honest and dishonest peers for different values of θ . 73

7.1 Example of a semantic routing table containing statistics about

known friends. 91

7.2 Queries . 104

7.3 Total Bandwidth Savings . 106

112

Bibliography

[Abe01] Karl Aberer. P-Grid: A self-organizing access structure for P2P

information systems. In Carlo Batini, Fausto Giunchiglia, Paolo

Giorgini, and Massimo Mecella, editors, Cooperative Informa-

tion Systems, 9th International Conference, CoopIS 2001, Trento,

Italy, September 5-7, 2001, Proceedings, volume 2172 of Lecture

Notes in Computer Science, pages 179–194. Springer, 2001.

[ACMHP04] Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and

Tim Van Pelt. GridVine: Building internet-scale semantic over-

lay networks. In Sheila A. McIlraith, Dimitris Plexousakis, and

Frank van Harmelen, editors, The Semantic Web - ISWC 2004:

Third International Semantic Web Conference,Hiroshima, Japan,

November 7-11, 2004. Proceedings, volume 3298 of Lecture Notes

in Computer Science, pages 107–121. Springer, 2004.

[AH00] Eytan Adar and Bernardo A. Huberman. Free riding on Gnutella.

First Monday, 5(10), 2000.

[APC03] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-

line page importance computation. In Proceedings of the 12th in-

ternational conference on World Wide Web, pages 280–290. ACM

Press, 2003.

[AW03] Karl Aberer and Jie Wu. A framework for decentralized ranking in

web information retrieval. In Xiaofang Zhou, Yanchun Zhang, and

Maria E. Orlowska, editors, Web Technologies and Applications,

5th Asian-Pacific Web Conference, APWeb 2003, Xian, China,

April 23-25, 2002, Proceedings, volume 2642 of Lecture Notes in

Computer Science, pages 213–226. Springer, 2003.

[AYBB07] Sihem Amer-Yahia, Michael Benedikt, and Philip Bohannon.

Challenges in searching online communities. IEEE Data Engi-

neering Bulletin, 30(2):23–31, 2007.

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in

random networks. Science, 286:509–512, October 1999.

113

114 BIBLIOGRAPHY

[BCDF06] Luca Becchetti, Carlos Castillo, Debora Donato, and Adriano Faz-

zone. A comparison of sampling techniques for Web characteri-

zation. In Workshop on Link Analysis: Dynamics and Static of

Large Networks (LinkKDD), Philadelphia, USA, August 2006.

[BCFM98] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael

Mitzenmacher. Min-Wise independent permutations (extended

abstract). In Symposium on Theory of Computing (STOC), pages

327–336, 1998.

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael

Mitzenmacher. Min-Wise independent permutations. Journal of

Computer and System Sciences, 60(3):630–659, 2000.

[BCK+07] Matthias Bender, Tom Crecelius, Mouna Kacimi, Sebastian

Michel, Josiane Xavier Parreira, and Gerhard Weikum. Peer-to-

peer information search: Semantic, social, or spiritual? IEEE

Data Engineering Bulletin, 30(2):51–60, 2007.

[BCK+08] Matthias Bender, Tom Crecelius, Mouna Kacimi, Sebastian

Michel, Thomas Neumann, Josiane Xavier Parreira, Ralf

Schenkel, and Gerhard Weikum. Exploiting social relations for

query expansion and result ranking. In Proceedings of the 24th

International Conference on Data Engineering Workshops, ICDE

2008, April 7-12, 2008, Cancún, México, pages 501–506. IEEE

Computer Society, 2008.

[BCMR04] John W. Byers, Jeffrey Considine, Michael Mitzenmacher, and

Stanislav Rost. Informed content delivery across adaptive overlay

networks. IEEE/ACM Transactions on Networking, 12(5):767–

780, 2004.

[BCSU05] András A. Benczúr, Károly Csalogány, Tamás Sarlós, and Máté

Uher. SpamRank – Fully automatic link spam detection. In AIR-

Web 2005, First International Workshop on Adversarial Informa-

tion Retrieval on the Web, co-located with the WWW conference,

Chiba, Japan, May 2005, pages 25–38, 2005.

[Ber05] Pavel Berkhin. Survey: A survey on PageRank computing. Inter-

net Mathematics, 2(1), 2005.

[BKK+03] Hari Balakrishnan, M. Frans Kaashoek, David R. Karger, Robert

Morris, and Ion Stoica. Looking up data in P2P systems. Com-

munications of the ACM (CACM), 46(2):43–48, 2003.

[BKM+00] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar

Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins,

and Janet L. Wiener. Graph structure in the web. Computer Net-

works, 33(1-6):309–320, 2000.

BIBLIOGRAPHY 115

[BLMP06] Andrei Z. Broder, Ronny Lempel, Farzin Maghoul, and Jan O.

Pedersen. Efficient PageRank approximation via graph aggrega-

tion. Information Retrieval, 9(2):123–138, 2006.

[Blo70] Burton H. Bloom. Space/Time trade-offs in hash coding with

allowable errors. Communications ACM, 13(7):422–426, 1970.

[BMCMA09] Adriana Budura, Sebastian Michel, Philippe Cudré-Mauroux, and

Karl Aberer. Neighborhood-based tag prediction. In Proceedings

of the 6th Annual European Semantic Web Conference, ESWC

2009, Heraklion, Greece, 31 May - 4 June, 2009, 2009.

[BMPC07] Matthias Bender, Sebastian Michel, Josiane Xavier Parreira, and

Tom Crecelius. P2P web search: Make it light, make it fly (demo).

In CIDR 2007, Third Biennial Conference on Innovative Data

Systems Research, Asilomar, CA, USA, January 7-10, 2007, On-

line Proceedings, pages 164–168. www.crdrdb.org, 2007.

[BMR03] Mayank Bawa, Gurmeet Singh Manku, and Prabhakar Raghavan.

SETS: Search enhanced by topic segmentation. In SIGIR 2003:

Proceedings of the 26th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval,

July 28 - August 1, 2003, Toronto, Canada, pages 306–313. ACM,

2003.

[BMT+05a] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard

Weikum, and Christian Zimmer. Improving collection selection

with overlap awareness in P2P search engines. In Ricardo A.

Baeza-Yates, Nivio Ziviani, Gary Marchionini, Alistair Moffat,

and John Tait, editors, SIGIR 2005: Proceedings of the 28th An-

nual International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, Salvador, Brazil, August 15-

19, 2005, pages 67–74. ACM, 2005.

[BMT+05b] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard

Weikum, and Christian Zimmer. MINERVA: Collaborative P2P

search. In Klemens Böhm, Christian S. Jensen, Laura M. Haas,

Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi, editors,

Proceedings of the 31st International Conference on Very Large

Data Bases, Trondheim, Norway, August 30 - September 2, 2005,

pages 1263–1266. ACM, 2005.

[BMTW06] Matthias Bender, Sebastian Michel, Peter Triantafillou, and Ger-

hard Weikum. Global document frequency estimation in peer-to-

peer web search. In Ninth International Workshop on the Web

and Databases, WebDB 2006, Chicago, Illinois, USA, June 30,

2006, 2006.

116 BIBLIOGRAPHY

[BMWZ05] Matthias Bender, Sebastian Michel, Gerhard Weikum, and Chris-

tian Zimmer. The MINERVA project: Database selection in the

context of P2P search. In Gottfried Vossen, Frank Leymann, Pe-

ter C. Lockemann, and Wolffried Stucky, editors, Datenbanksys-

teme in Business, Technologie und Web, 11. Fachtagung des GI-

Fachbereichs ”Datenbanken und Informationssysteme” (DBIS),

Karlsruhe, 2.-4. März 2005, volume 65 of LNI, pages 125–144.

GI, 2005.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale

hypertextual web search engine. Computer Networks, 30(1-7):107–

117, 1998.

[Bro97] Andrei Z. Broder. On the resemblance and containment of doc-

uments. In SEQUENCES: Proceedings of the Compression and

Complexity of Sequences, page 21, Washington, DC, USA, 1997.

IEEE Computer Society.

[BRRT05] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and

Panayiotis Tsaparas. Link analysis ranking: Algorithms, the-

ory, and experiments. ACM Transactions on Internet Technology

(TOIT), 5(1):231–297, 2005.

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework i:

Compression techniques. In Feldman et al. [FUNW04], pages 595–

602.

[BXW+07] Shenghua Bao, Gui-Rong Xue, Xiaoyuan Wu, Yong Yu, Ben Fei,

and Zhong Su. Optimizing Web search using social annotations.

In Williamson et al. [WZPSS07], pages 501–510.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-

mation Retrieval. Addison Wesley, Boston, MA, May 1999.

[Cal00] James P. Callan. Distributed information retrieval. In Advances

in Information Retrieval, pages 127–150. Kluwer Academic Pub-

lishers, 2000.

[Cam86] Lucien M Le Cam. Asymptotic methods in statistical theory.

Springer-Verlag New York, Inc., New York, NY, USA, 1986.

[CAPMN03] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P.

Martin, and Thu D. Nguyen. PlanetP: Using gossiping to build

content addressable peer-to-peer information sharing communi-

ties. In 12th International Symposium on High-Performance Dis-

tributed Computing (HPDC-12 2003), 22-24 June 2003, Seattle,

WA, USA [DBL03], pages 236–249.

BIBLIOGRAPHY 117

[CCH92] James P. Callan, W. Bruce Croft, and Stephen M. Harding. The

INQUERY retrieval system. In A. Min Tjoa and Isidro Ramos,

editors, Database and Expert Systems Applications, Proceedings

of the International Conference in Valencia, Spain, 1992, pages

78–83. Springer, 1992.

[CCMN00] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and

Vivek R. Narasayya. Towards estimation error guarantees for

distinct values. In Proceedings of the Nineteenth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems,

May 15-17, 2000, Dallas, Texas, USA, pages 268–279. ACM,

2000.

[CDK+03] Steve Chien, Cynthia Dwork, Ravi Kumar, Daniel R. Simon, and

D. Sivakumar. Link evolution: Analysis and algorithms. Internet

Mathematics, 1(3), 2003.

[CEMJ05] Geoffrey Canright, Kenth Engo-Monsen, and Márk Jelasity. Effi-

cient and robust fully distributed power method with an applica-

tion to link analysis. Technical Report UBLCS-2005-17, Univer-

sity of Bologna, Department of Computer Science, Bologna, Italy,

2005.

[CGM04] Arturo Crespo and Hector Garcia-Molina. Semantic overlay net-

works for P2P systems. In Gianluca Moro, Sonia Bergamaschi,

and Karl Aberer, editors, Agents and Peer-to-Peer Computing,

Third International Workshop, AP2PC 2004, New York, NY,

USA, July 19, 2004, Revised and Invited Papers, volume 3601 of

Lecture Notes in Computer Science, pages 1–13. Springer, 2004.

[CGS04] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods

for estimating PageRank values. In David A. Grossman, Luis Gra-

vano, ChengXiang Zhai, Otthein Herzog, and David A. Evans, ed-

itors, Proceedings of the 2004 ACM CIKM International Confer-

ence on Information and Knowledge Management, Washington,

DC, USA, November 8-13, 2004, pages 381–389. ACM, 2004.

[Cha02] Soumen Chakrabarti. Mining the Web: Discovering Knowledge

from Hypertext Data. Morgan-Kauffman, 2002.

[CKM+08a] Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neu-

mann, Josiane Xavier Parreira, Ralf Schenkel, and Gerhard

Weikum. Making SENSE: Socially enhanced search and explo-

ration. PVLDB, 1(2):1480–1483, 2008.

[CKM+08b] Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neu-

mann, Josiane Xavier Parreira, Ralf Schenkel, and Gerhard

Weikum. Social recommendations at work. In Myaeng et al.

[MOS+08], page 884.

118 BIBLIOGRAPHY

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching dis-

tributed collections with inference networks. In Edward A. Fox,

Peter Ingwersen, and Raya Fidel, editors, SIGIR’95, Proceedings

of the 18th Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval. Seattle, Wash-

ington, USA, July 9-13, 1995 (Special Issue of the SIGIR Forum),

pages 21–28. ACM Press, 1995.

[CM00] Grace E. Cho and Carl D. Meyer. Markov chain sensitivity mea-

sured by mean first passage times. Linear Algebra and its Appli-

cations, 316(1–3):21–28, 2000.

[CMH+02] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sand-

berg, and Brandon Wiley. Protecting free expression online with

Freenet. IEEE Internet Computing, 6(1):40–49, 2002.

[Cou77] P. J. Courtois. Decomposability: Queueing and Computer System

Applications. Academic Press, N.Y., USA, 1977.

[DBL03] 12th International Symposium on High-Performance Distributed

Computing (HPDC-12 2003), 22-24 June 2003, Seattle, WA,

USA. IEEE Computer Society, 2003.

[DF03] Marianne Durand and Philippe Flajolet. Loglog counting of large

cardinalities (extended abstract). In Giuseppe Di Battista and

Uri Zwick, editors, Algorithms - ESA 2003, 11th Annual European

Symposium, Budapest, Hungary, September 16-19, 2003, Proceed-

ings, volume 2832 of Lecture Notes in Computer Science, pages

605–617. Springer, 2003.

[DKM+02] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Ra-

jagopalan, D. Sivakumar, and Andrew Tomkins. Self-similarity

in the web. ACM Transactions on Internet Technology (TOIT),

2(3):205–223, 2002.

[DKM+06] Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak,

Prabhakar Raghavan, and Andrew Tomkins. Visualizing tags over

time. In Les Carr, David De Roure, Arun Iyengar, Carole A.

Goble, and Michael Dahlin, editors, Proceedings of the 15th in-

ternational conference on World Wide Web, WWW 2006, Ed-

inburgh, Scotland, UK, May 23-26, 2006, pages 193–202. ACM,

2006.

[DKNS01] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar.

Rank aggregation methods for the Web. In Proceedings of the

Tenth International World Wide Web Conference, WWW 10,

Hong Kong, China, May 1-5, 2001, pages 613–622, 2001.

BIBLIOGRAPHY 119

[DNP05] Andrei Damian, Wolfgang Nejdl, and Raluca Paiu. Peer-sensitive

ObjectRank - Valuing contextual information in social networks.

In Anne H. H. Ngu, Masaru Kitsuregawa, Erich J. Neuhold,

Jen-Yao Chung, and Quan Z. Sheng, editors, Web Information

Systems Engineering - WISE 2005, 6th International Conference

on Web Information Systems Engineering, New York, NY, USA,

November 20-22, 2005, Proceedings, volume 3806 of Lecture Notes

in Computer Science, pages 512–519. Springer, 2005.

[DR01] Peter Druschel and Antony I. T. Rowstron. PAST: A large-scale,

persistent peer-to-peer storage utility. In Proceedings of HotOS-

VIII: 8th Workshop on Hot Topics in Operating Systems, May

20-23, 2001, Elmau/Oberbayern, Germany, pages 75–80. IEEE

Computer Society, 2001.

[FCAB00] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Sum-

mary cache: A scalable wide-area web cache sharing protocol.

IEEE/ACM Transactions on Networking, 8(3):281–293, 2000.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing

top k lists. SIAM Journal on Discrete Mathematics (SIDMA),

17(1):134–160, 2003.

[FLGC02] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans

Coetzee. Self-organization and identification of Web communities.

IEEE Computer, 35(3):66–71, 2002.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting

algorithms for data base applications. Journal of Computer and

System Sciences, 31(2):182–209, 1985.

[FUNW04] Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E.

Wills, editors. Proceedings of the 13th international conference

on World Wide Web, WWW 2004, New York, NY, USA, May

17-20, 2004. ACM, 2004.

[Gar79] Eugene Garfield. Citation Indexing — Its Theory and Application

in Science, Technology, and Humanities. ISI Press, Philadelphia,

USA, 1979.

[GGMT99] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic.

GlOSS: Text-source discovery over the internet. ACM Transac-

tions on Database Systems (TODS), 24(2):229–264, 1999.

[HJSS06] Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd

Stumme. Information retrieval in Folksonomies: Search and rank-

ing. In York Sure and John Domingue, editors, The Semantic

Web: Research and Applications, 3rd European Semantic Web

Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006,

120 BIBLIOGRAPHY

Proceedings, volume 4011 of Lecture Notes in Computer Science,

pages 411–426. Springer, 2006.

[HRS07] Harry Halpin, Valentin Robu, and Hana Shepherd. The com-

plex dynamics of collaborative tagging. In Williamson et al.

[WZPSS07], pages 211–220.

[ISS+06] Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Flo-

rian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons Kem-

per, Torsten Grust, and Christian Böhm, editors. Advances in

Database Technology - EDBT 2006, 10th International Conference

on Extending Database Technology, Munich, Germany, March 26-

31, 2006, Proceedings, volume 3896 of Lecture Notes in Computer

Science. Springer, 2006.

[JMB05] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu. Gossip-

based aggregation in large dynamic networks. ACM Transactions

on Computer Systems (TOCS), 23(3):219–252, 2005.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based

computation of aggregate information. In 44th Symposium on

Foundations of Computer Science (FOCS 2003), 11-14 October

2003, Cambridge, MA, USA, Proceedings, pages 482–491. IEEE

Computer Society, 2003.

[KHMG03] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Man-

ning, and Gene H. Golub. Exploiting the block structure of the

web for computing PageRank. Technical report, Stanford Digital

Library Technologies Project, 2003.

[Kle98] Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-

ment. In Proceedings of 9th ACM-SIAM Symposium on Discrete

Algorithms, pages 668–677, 1998.

[KM04] David Kempe and Frank McSherry. A decentralized algorithm for

spectral analysis. In László Babai, editor, Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, Chicago, IL,

USA, June 13-16, 2004, pages 561–568. ACM, 2004.

[KNOT06] Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, and Kian-Lee Tan.

Answering similarity queries in peer-to-peer networks. Informa-

tion Systems, 31(1):57–72, 2006.

[KS63] John George Kemeny and James Laurie Snell. Finite Markov

Chains. Princeton, NJ: Van Nostrand, Toronto - New York, 1963.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-

Molina. The Eigentrust algorithm for reputation management in

P2P networks. In Proceedings of the 12th international conference

BIBLIOGRAPHY 121

on World Wide Web, WWW 2003, Budapest, Hungary, May 20-

24, 2003, pages 640–651, 2003.

[KST74] John George Kemeny, James Laurie Snell, and Gerald L. Thomp-

son. Introduction to Finite Mathematics. Prentice-Hall, Engle-

wood Cliffs, NJ, 1974.

[Kul59] Solomon Kullback. Information theory and statistics. John Wiley

and Sons., New York, 1959.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and

Tools for Hardware and Software Engineers. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[LM03] Amy Nicole Langville and Carl Dean Meyer. Survey: Deeper

inside pagerank. Internet Mathematics, 1(3), 2003.

[LM06a] Amy N. Langville and Carl D. Meyer. Google’s PageRank and

Beyond: The Science of Search Engine Rankings. Princeton Uni-

versity Press, Princeton, NJ, USA, 2006.

[LM06b] Amy N. Langville and Carl D. Meyer. Updating markov chains

with an eye on Google’s PageRank. SIAM Journal on Matrix

Analysis and Applications, 27(4):968–987, 2006.

[LNBK02] David Liben-Nowell, Hari Balakrishnan, and David R. Karger.

Analysis of the evolution of peer-to-peer systems. In 21st ACM

Symposium on Principles of Distributed Computing (PODC),

pages 233–242, Monterey, CA, July 2002.

[LP56] Richard C. Lewontin and T. Prout. Estimation of the number of

different classes in a population. Biometrics, 12(2):211–233, 1956.

[Mar97] Massimo Marchiori. The quest for correct information on the web:

Hyper search engines. Computer Networks, 29(8-13):1225–1236,

1997.

[MBTW06] Sebastian Michel, Matthias Bender, Peter Triantafillou, and Ger-

hard Weikum. IQN routing: Integrating quality and novelty in

P2P querying and ranking. In Ioannidis et al. [ISS+06], pages

149–166.

[Mey89] Carl D. Meyer. Stochastic complementation, uncoupling markov

chains, and the theory of nearly reducible systems. Society for

Industrial and Applied Mathematics (SIAM) Review, 31(2):240–

272, 1989.

[Mey00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. So-

ciety for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2000.

122 BIBLIOGRAPHY

[MGD06] Alan Mislove, Krishna P. Gummadi, and Peter Druschel. Exploit-

ing social networks for internet search. In Proceedings of the 5th

Workshop on Hot Topics in Networks (HotNets’06), November

2006.

[MGM06] Sergio Marti and Hector Garcia-Molina. Taxonomy of trust: Cate-

gorizing P2P reputation systems. Computer Networks, 50(4):472–

484, 2006.

[MOS+08] Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-

Seng Chua, and Mun-Kew Leong, editors. Proceedings of the 31st

Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR 2008, Singapore,

July 20-24, 2008. ACM, 2008.

[NT04] Nikos Ntarmos and Peter Triantafillou. SeAl: Managing accesses

and data in peer-to-peer sharing networks. In Germano Caronni,

Nathalie Weiler, and Nahid Shahmehri, editors, 4th International

Conference on Peer-to-Peer Computing (P2P 2004), 15-17 Au-

gust 2004, Zurich, Switzerland, pages 116–123. IEEE Computer

Society, 2004.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-

grad. The PageRank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies Project,

1998.

[PCD+08] Josiane Xavier Parreira, Carlos Castillo, Debora Donato, Sebas-

tian Michel, and Gerhard Weikum. The juxtaposed approximate

PageRank method for robust PageRank approximation in a peer-

to-peer web search network. VLDB Journal, 17(2):291–313, 2008.

[PDCW07] Josiane Xavier Parreira, Debora Donato, Carlos Castillo, and Ger-

hard Weikum. Computing trusted authority scores in peer-to-peer

web search networks. In AIRWeb 2007, Third International Work-

shop on Adversarial Information Retrieval on the Web, co-located

with the WWW conference, Banff, Canada, May 2007, volume

215 of ACM International Conference Proceeding Series, 2007.

[PDMW06] Josiane Xavier Parreira, Debora Donato, Sebastian Michel, and

Gerhard Weikum. Efficient and decentralized PageRank approxi-

mation in a peer-to-peer web search network. In Umeshwar Dayal,

Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M.

Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk

Kim, editors, Proceedings of the 32nd International Conference

on Very Large Data Bases, Seoul, Korea, September 12-15, 2006,

pages 415–426. ACM, 2006.

BIBLIOGRAPHY 123

[PGW+08] Johan A. Pouwelse, Pawel Garbacki, Jun Wang, A. Bakker,

J. Yang, Alexandru Iosup, Dick H. J. Epema, Marcel J. T. Rein-

ders, M. R. van Steen, and Henk J. Sips. TRIBLER: A social-

based peer-to-peer system. Concurrency and Computation: Prac-

tice and Experience, 20(2):127–138, 2008.

[PMB+07] Josiane Xavier Parreira, Sebastian Michel, Matthias Bender, Tom

Crecelius, and Gerhard Weikum. P2P authority analysis for so-

cial communities. In Christoph Koch, Johannes Gehrke, Mi-

nos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand Desh-

pande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-

Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,

Proceedings of the 33rd International Conference on Very Large

Data Bases, University of Vienna, Austria, September 23-27,

2007, pages 1398–1401. ACM, 2007.

[PMW07] Josiane Xavier Parreira, Sebastian Michel, and Gerhard Weikum.

p2pDating: Real life inspired semantic overlay networks for web

search. Information Processing and Management, 43(3):643–664,

2007.

[PMW08] Josiane Xavier Parreira, Sebastian Michel, and Gerhard Weikum.

Efficiently handling dynamics in distributed link based author-

ity analysis. In James Bailey, David Maier, Klaus-Dieter Schewe,

Bernhard Thalheim, and Xiaoyang Sean Wang, editors, Web In-

formation Systems Engineering - WISE 2008, 9th International

Conference, Auckland, New Zealand, September 1-3, 2008. Pro-

ceedings, volume 5175 of Lecture Notes in Computer Science,

pages 36–49. Springer, 2008.

[PNT06] Theoni Pitoura, Nikos Ntarmos, and Peter Triantafillou. Replica-

tion, load balancing and efficient range query processing in DHTs.

In Ioannidis et al. [ISS+06], pages 131–148.

[PRL+07] Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm, and

Karl Aberer. Scalable peer-to-peer web retrieval with highly dis-

criminative keys. In Proceedings of the 23rd International Con-

ference on Data Engineering, ICDE 2007, April 15-20, 2007, The

Marmara Hotel, Istanbul, Turkey, pages 1096–1105. IEEE, 2007.

[PRU01] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Build-

ing low-diameter P2P networks. In Proceedings of the 42nd An-

nual IEEE Symposium on the Foundations of Computer Science

(FOCS), pages 492–499, 2001.

[PW05] Josiane Xavier Parreira and Gerhard Weikum. JXP: Global au-

thority scores in a P2P network. In AnHai Doan, Frank Neven,

Robert McCann, and Geert Jan Bex, editors, Proceedings of the

124 BIBLIOGRAPHY

Eight International Workshop on the Web & Databases (WebDB

2005), Baltimore, Maryland, USA, Collocated mith ACM SIG-

MOD/PODS 2005, June 16-17, 2005, pages 31–36, 2005.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scal-

able, decentralized object location, and routing for large-scale

peer-to-peer systems. In Rachid Guerraoui, editor, Middleware

2001, IFIP/ACM International Conference on Distributed Sys-

tems Platforms Heidelberg, Germany, November 12-16, 2001,

Proceedings, volume 2218 of Lecture Notes in Computer Science,

pages 329–350. Springer, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp,

and Scott Shenker. A scalable content-addressable network. In

Proceedings of the ACM SIGCOMM Conference on Applications,

Technologies, Architectures, and Protocols for Computer Commu-

nication, pages 161–172, San Diego, USA, August 27-31 2001.

[RGRK04] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubia-

towicz. Handling churn in a DHT. In Proceedings of the General

Track: 2004 USENIX Annual Technical Conference, June 27 -

July 2, 2004, Boston Marriott Copley Place, Boston, MA, USA,

pages 127–140. USENIX, 2004.

[SBWS05] Natalia Stakhanova, Samik Basu, Johnny Wong, and Oleg

Stakhanov. Trust framework for P2P networks using peer-profile

based anomaly technique. In 25th International Conference on

Distributed Computing Systems Workshops (ICDCS 2005 Work-

shops), 6-10 June 2005, Columbus, OH, USA, pages 203–209.

IEEE Computer Society, 2005.

[SCK+08a] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastian Michel,

Thomas Neumann, Josiane Xavier Parreira, and Gerhard

Weikum. Efficient top-k querying over social-tagging networks.

In Myaeng et al. [MOS+08], pages 523–530.

[SCK+08b] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Thomas Neumann,

Josiane Xavier Parreira, Marc Spaniol, and Gerhard Weikum. So-

cial wisdom for search and recommendation. IEEE Data Engi-

neering Bulletin, 31(2):40–49, 2008.

[SJCO02] Luo Si, Rong Jin, James P. Callan, and Paul Ogilvie. A language

modeling framework for resource selection and results merging.

In Proceedings of the 2002 ACM CIKM International Conference

on Information and Knowledge Management, McLean, VA, USA,

November 4-9, 2002, pages 391–397. ACM, 2002.

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,

and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup

BIBLIOGRAPHY 125

service for internet applications. In Proceedings of the ACM SIG-

COMM Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, pages 149–160, San

Diego, USA, August 27-31 2001.

[SMW+03] Torsten Suel, Chandan Mathur, Jo-Wen Wu, Jiangong Zhang,

Alex Delis, Mehdi Kharrazi, Xiaohui Long, and Kulesh Shanmu-

gasundaram. ODISSEA: A peer-to-peer architecture for scalable

web search and information retrieval. In Vassilis Christophides

and Juliana Freire, editors, International Workshop on Web and

Databases, San Diego, California, June 12-13, 2003, pages 67–72,

2003.

[SPCW08] Mauro Sozio, Josiane Xavier Parreira, Tom Crecelius, and Ger-

hard Weikum. Good Guys vs. Bad Guys: Countering cheating

in peer-to-peer authority computations over social networks. In

11th International Workshop on the Web and Databases, WebDB

2008, Vancouver, BC, Canada, June 13, 2008, 2008.

[SSB03] Karthikeyan Sankaralingam, Simha Sethumadhavan, and

James C. Browne. Distributed PageRank for P2P systems. In

12th International Symposium on High-Performance Distributed

Computing (HPDC-12 2003), 22-24 June 2003, Seattle, WA,

USA [DBL03], pages 58–69.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of

Markov Chains. Princeton University Press, Princeton, NJ, 1994.

[STS+03] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, Gerhard

Weikum, Jens Graupmann, Michael Biwer, and Patrick Zimmer.

The BINGO! system for information portal generation and expert

web search. In CIDR 2003, First Biennial Conference on Inno-

vative Data Systems Research, Asilomar, CA, USA, January 5-8,

2003, Online Proceedings, 2003.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems

and Applications, volume 3485 of Lecture Notes in Computer Sci-

ence. Springer, 2005.

[SYYW03] Shuming Shi, Jin Yu, Guangwen Yang, and Dingxing Wang. Dis-

tributed page ranking in structured P2P networks. In 32nd In-

ternational Conference on Parallel Processing (ICPP 2003), 6-9

October 2003, Kaohsiung, Taiwan, pages 179–186. IEEE Com-

puter Society, 2003.

[TSW04] Christoph Tempich, Steffen Staab, and Adrian Wranik. Re-

mindin’: Semantic query routing in peer-to-peer networks based

on social metaphors. In Feldman et al. [FUNW04], pages 640–649.

126 BIBLIOGRAPHY

[TXKN03] Peter Triantafillou, Chryssani Xiruhaki, Manolis Koubarakis, and

Nikos Ntarmos. Towards high performance peer-to-peer content

and resource sharing systems. In First Biennial Conference on

Innovative Data Systems Research (CIDR), Asilomar, USA, Jan-

uary 5-8 2003.

[VvS03] Spyros Voulgaris and Maarten van Steen. An epidemic protocol

for managing routing tables in very large peer-to-peer networks.

In Marcus Brunner and Alexander Keller, editors, Self-Managing

Distributed Systems, 14th IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management, DSOM 2003,

Heidelberg, Germany, October 20-22, 2003, Proceedings, volume

2867 of Lecture Notes in Computer Science, pages 41–54. Springer,

2003.

[WA05] Jie Wu and Karl Aberer. Using a layered markov model for dis-

tributed web ranking computation. In 25th International Con-

ference on Distributed Computing Systems (ICDCS 2005), 6-10

June 2005, Columbus, OH, USA, pages 533–542. IEEE Computer

Society, 2005.

[WD04] Yuan Wang and David J. DeWitt. Computing PageRank in a dis-

tributed internet search engine system. In Mario A. Nascimento,

M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A.

Blakeley, and K. Bernhard Schiefer, editors, (e)Proceedings of

the Thirtieth International Conference on Very Large Data Bases,

Toronto, Canada, August 31 - September 3 2004, pages 420–431.

Morgan Kaufmann, 2004.

[WZPSS07] Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider,

and Prashant J. Shenoy, editors. Proceedings of the 16th Inter-

national Conference on World Wide Web, WWW 2007, Banff,

Alberta, Canada, May 8-12, 2007. ACM, 2007.

[XBCY07] Shengliang Xu, Shenghua Bao, Yunbo Cao, and Yong Yu. Us-

ing social annotations to improve language model for informa-

tion retrieval. In Mário J. Silva, Alberto H. F. Laender, Ri-

cardo A. Baeza-Yates, Deborah L. McGuinness, Bjørn Olstad,

Øystein Haug Olsen, and André O. Falcão, editors, Proceedings

of the Sixteenth ACM Conference on Information and Knowl-

edge Management, CIKM 2007, Lisbon, Portugal, November 6-10,

2007, pages 1003–1006. ACM, 2007.

[XL04a] Li Xiong and Ling Liu. PeerTrust: Supporting reputation-based

trust for peer-to-peer electronic communities. IEEE Transactions

on Knowledge and Data Engineering, 16(7):843–857, 2004.

BIBLIOGRAPHY 127

[XL04b] Li Xiong and Ling Liu. PeerTrust: Supporting reputation-based

trust for peer-to-peer electronic communities. IEEE Transactions

on Knowledge and Data Engineering, 16(7):843–857, 2004.

[ZAA07] Jun Zhang, Mark S. Ackerman, and Lada A. Adamic. Expertise

networks in online communities: Structure and algorithms. In

Williamson et al. [WZPSS07], pages 221–230.

	Introduction
	Motivation
	Contributions
	JXP — Decentralized Computation of Authority Scores
	TrustJXP — JXP Extension to Untrustful Networks
	JXP under P2P Dynamics
	p2pDating — Creation/Maintenance of SONs

	Publications
	Outline of this Thesis

	Background
	Markov Chains
	Probability Distributions
	Steady-State Distributions of Ergodic Markov Chains
	Power Iteration Method
	Stochastic Complementation
	Iterative Aggregation/Disaggregation Methods

	Peer-to-peer Networks
	Overview
	Distributed Information Retrieval
	Semantic Overlay Networks
	Trust
	Dynamics

	Social Networks
	Overview
	Scoring Models and Query Processing

	State of the Art in Link Analysis
	Link Analysis
	The Web and Other Types of Graph
	The InDegree Algorithm
	HITS
	PageRank
	Incremental, Online, and Distributed Link Analysis
	Graph Partitioning
	Incremental Updates
	P2P-oriented Approaches

	The JXP Algorithm
	The Algorithm
	Extended Local Graph
	Peer Meetings
	JXP Scores

	Mathematical Analysis and Convergence Guarantee
	Initialization Procedure
	The Meeting Step
	Scores Bounds
	Proof of Convergence

	Storage and Network Bandwidth Costs
	Robustness Against Wrong Estimates of Graph Size
	Experimental Evaluation
	Data Sets
	Setup
	Performance Metrics
	Results

	Applications of JXP Scores
	Minerva
	Improving Results Quality
	Query Routing Strategy Using JXP Scores

	Discussion

	TrustJXP: JXP in Untrustful Networks
	The TrustJXP algorithm
	Adversarial Behaviors
	Assigning Trust Scores to Peers
	TrustJXP Authority Scores Computation

	Experimental Evaluation
	Setup
	Cheating Behaviors
	Performance Metrics
	Results

	Discussion

	JXP under P2P Dynamics
	Estimating the Global Number of Pages
	Hash Sketches
	Estimating Global Counts Using Hash Sketches

	Adapting JXP for Dynamics
	The New World Node
	JXP Meetings Adapted
	Storage and Network Bandwidth Costs

	Experimental Evaluation
	Setup
	Performance Metrics
	Results

	Discussion

	p2pDating — Creation and Maintenance of SONs
	The p2pDating Algorithm
	The Semantic Routing Table
	Finding New Friends
	p2pDating Algorithm

	Defining Good Friends
	Quality/Usefulness Measures

	SONs for the JXP Authority Scores Computation
	Experiments

	SONs for Query Routing
	Experiments

	Discussion

	Conclusion and Outlook
	List of Figures
	List of Algorithms
	List of Tables
	References

