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Abstract

The creation of high quality animations of real-world hunaators has long been
a challenging problem in computer graphics. It involvestiueleling of the shape
of the virtual actors, creating their motion, and the repicitbn of very fine dy-
namic details. In order to render the actor under arbitrigtytihg, it is required
that reflectance properties are modeled for each point osuttiece. These steps,
that are usually performed manually by professional madebae time consum-
ing and cumbersome.

In this thesis, we show that algorithmic solutions for sorh¢he problems that
arise in the creation of high quality animation of real-vdopleople are possible
using multi-view video data. First, we present a novel spamporal approach
to create a personalized avatar from multi-view video d&ta moving person.
Thereafter, we propose two enhancements to a method thateajpuman shape,
motion and reflectance properties of a moving human usirg eiglti-view video
streams. Afterwards we extend this work, and in order to aayg fine dynamic
details to the geometric models, such as wrinkles and foidke clothing, we
make use of the multi-view video recordings and presenttesttal method that
can passively capture the fine-grain details of time-vayygoene geometry. Fi-
nally, in order to reconstruct structured shape and ananaif the subject from
video, we present a dense 3D correspondence finding metabdrtables spatio-
temporally coherent reconstruction of surface animatibrestly from multi-view
video data.

These algorithmic solutions can be combined to constitutenaplete animation
pipeline for acquisition, reconstruction and renderingigh quality virtual actors
from multi-view video data. They can also be used individued a system that
require the solution of a specific algorithmic sub-problefhe results demon-
strate that using multi-view video data it is possible to find model description
that enables realistic appearance of animated virtuatsataler different lighting
conditions and exhibits high quality dynamic details in ¢fe@metry.
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Kurzfassung

Die Entwicklung hochqualitativer Animationen von menscién Schauspielern
ist seit langem ein schwieriges Problem in der Computergraflbeinhaltet das
Modellieren einer dreidimensionaler Abbildung des Ak&sseiner Bewegung
und die Wiedergabe sehr feinen dynamischen Details. Um deauSpieler unter
einer beliebigen Beleuchtung zu renderritgsen auch die Reflektionseigenschaf-
ten jedes einzelnen Punktes modelliert werden. Diese tBghdie gevdhnlich
manuell von Berufsmodellierern durchgeft werden, sind zeitaufwendig und
beschwerlich.

In dieser These schlagen wir algorithmischésungen ir einige der Proble-
me vor, die in der Entwicklung solch hochqualitativen Antraaen entstehen.
Erstens piisentieren wir einen neuartige@umlich-zeitlichen Ansatz um einen
Avatar von Mehransicht-Videodaten einer bewegenden Rerscschaffen. Da-
nach beschreiben wir einen videobasierten Modelierursggarmit Hilfe einer
animierten Schablone eines menschlicheirgérs. Unter Zuhilfenahme einer
handvoll synchronisierten Videoaufnahmen berechnen igiddeidimensionale
Abbildung, seine Bewegung und Reflektionseigenschaften terf@che. Um
sehr feine dynamische Details, wie Runzeln und Falten in deidng zu den
geometrischen Modellen hinzuzigfen, zeigen wir eine statistische Methode, die
feinen Details der zeitlich varilerenden Szenegeometssp erfassen kann. Und
schlie3lich zeigen wir eine Methode, die dichte 3D Korresfenzen findet, um
die strukturierte Abbildung und die zug@iige Bewegung aus einem Video zu
extrahieren. Dies eraglicht eine Aumlich-zeitlich zusammeidngende Rekon-
struktion von Oberfichenanimationen direkt aus Mehransicht-Videodaten.

Diese algorithmischen dsungen &nnen kombiniert eingesetzt werden, um ei-
ne Animationspipelineifr die Erfassung, die Rekonstruktion und das Rendering
von Animationen hoher Quadit aus Mehransicht-Videodaten zu égtichen. Sie
kdnnen auch einzeln in einem System verwendet werden, daseivaer Losung
eines spezifischen algorithmischen Teilproblems verlaDgs Ergebnis ist ei-
ne Modelbeschreibung, das realistisches Erscheinen vionieaten virtuellen
Schauspielern mit dynamischen Details von hoher Catalibter verschiedenen
Lichtverhaltnissen erraglicht.
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Summary

Creating high quality animations of virtual human actors loag been a focus
of research in computer graphics. In the past decade, ayafienethods have
been proposed that could estimate the motion of a perfornteaaimate a model
accordingly. Nevertheless, it is still very taxing to esdien the surface mate-
rial properties so that the virtual actor can be rendereceuadbitrary lighting
conditions. It is also very difficult to obtain a spatio-teonglly coherent sur-
face representation of an animated model directly fromirvigiv video. Finally,
transferring dynamic geometry detail from a real world atboa virtual avatar is
a very challenging problem in itself.

Previous methods for material and surface detail recoctsbru were primarily

geared towards reconstruction of static scene geometrl/th&lmethods start
with the acquisition of images of the object using still caase In contrast to
still cameras, resolution of video cameras is still extrgnh@wv, which hampers
the development of algorithmic solutions for dynamic ssenkloreover, algo-
rithms for video need to consider the additional temporahdim, which makes
the development of the solutions even more challengingh Wi advent of high
resolution video cameras, solving the above mentioned@mubin the video do-
main has not only become feasible, but it also has openedogsility to solve

the reconstruction problems in a spatio-temporally catiteray.

In this thesis, we demonstrate that using multi-view vidatadve can extract all
necessary information that is required for the reconstvaadf high quality 3D
human animation from video.

We start with a novel spatio-temporal approach to creatersopalized avatar
from multi-view video data of a moving person. The avatagemetry is gen-

erated by shape adapting a template human body model. fecsuexture is

assembled from multi-view video frames showing arbitrafiecent body poses.

The generated static texture can be used to render the denfyigman animation
with just a single texture. This model description, an aneddemplate geometry
and a surface texture, is ideal to use in multi-user virtaglrenments where real-
world people interact via digital avatars. The resultingtavs of humans exhibit
true shape and photo-realistic appearance.

Free-viewpoint or 3D video allows the photo-realistic rendg of the virtual
human from novel viewpoints. Recently the concept is extdriderelightable
free-viewpoint video that can also be rendered under arlitighting. The re-
lightable free-viewpoint videos are reconstructed usimchronized multi-view
video streams that are recorded under calibrated lightingitions. We make use
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of the earlier work in this area, and using the same multivwigleo data, present
two methods that result in higher quality of relightablestr@ewpoint video. First,

we propose a solution for improving spatio-temporal textrggistration, which
is necessary for the accurate measurement of the surfaeetagite properties.
Additionally, a method to reduce the bias in the estimatathsa reflectance is
proposed to get as good as possible realistic renditionsrusdbitrary lighting

conditions. The resulting model description enables uaitbfully reproduce the
appearance of animated virtual actors under different Isited lighting condi-

tions.

Models used in the reconstructed human animations, eitheraded templates or
reconstructed directly from the video, do not depict highldgy dynamic details

that are visible in the clothing of the actor. Adding theseaiyic details manually
is a very complex process. Full body laser scanners canreaptuy fine quality

details of the model, but unfortunately they are also statid look baked on
the surface when those models are used for animation. Wegeop statistical
method that can capture highly-detailed dynamic surfacengéry of humans
from multi-view video streams under calibrated lightingeevn the presence of
measurement uncertainties. The output is a complete movaug! of the human
actor that features subtle dynamic geometry detail, suetriakles and folds in

clothing.

Using an animated template model has its own benefits andodicks. It guar-
antees spatio-temporal coherence, but as the model hasdefdrened for each
frame to match the shape and size of the actor in the inpubvidene, the ac-
curacy of the model with respect to the original actor is caonpsed. A better
option would be to reconstruct the model directly from thdea data, thus op-
timizing the consistency between the model and the actois pbssible to re-
construct a mesh from each frame of the video. The obvioulsl@mo with this
solution is that the reconstruction from each frame resnltaeshes with differ-
ent connectivity. ldeally, one would like to create a spatimporally coherent
animation from the individual reconstructions. To bridgestgap, we present a
spatio-temporal dense 3D correspondence finding methoa fnalti-view video
data that enables the reconstruction of spatio-tempocaherent dynamic 3D
geometry from a sequence of unrelated meshes.

Each of the algorithmic solutions can be used independesdlyer the require-
ment of some specific system. Moreover, they can also be agethier and com-
bined in a single system resulting in an animation pipelhm tan reconstruct
and render very high quality animation of virtual actorsnfronulti-view video
data.



Zusammenfassung

Die Erzeugung hochqualitativer Animationen von virtuell@enschlichen Dar-
stellern ist seit langem ein Schwerpunkt in der Forschundareich Compu-
tergrafik. Im vergangenen Jahrzehnt wurde eine VielzahlMethoden vorge-
stellt, welche die Bewegung eines Akteurs aldgdzén und ein Modell entspre-
chend animierendnnen. Gleichwohl ist es immer noch anspruchsvoll die Mater
aleigenschaften der Obeéxfihe einzuscitzen, sodass ein virtueller Charakter un-
ter beliebigen Beleuchtungveitinissen dargestellt werden kann. Es ist ebenfalls
sehr schwierig von einem Multi-View-Video ein@umlich und zeitlich zusam-
menltangende Darstellung eines animierten Modells zu erhehemiel3lich, stellt
die Ubertragung der Details dynamischer Geometrie von einérnteaSchauspie-
ler auf einen virtuellen Avatar selbst eine grof3e Herausiamg dar.

Bisherige Vorgehensweisen im Bereich der Rekonstruktion vatehtl und
Oberfhchendetails zielten haupthlich auf statische Geometrie ab. Normaler-
weise, beginnen alle Methoden mit dem Erfassen eines Bildeibjekts, mit-
hilfe einer Fotokamera. Im Gegensatz zu Fotokameras istAdiédsung von
Videokameras immer noch extrem niedrig, was die Entwiaklahgorithmi-
scher losungen iir dynamische Szenen erschwert. @@rhinaus rmassen Vi-
deoalgorithmen die z@szlichen zeitlichen Komponente lieksichtigen, was
das Erarbeiten vondsungen noch komplizierter macht. Das Autkommen hoch-
auflosender Videokameras hat nicht nur eirissing der oben genanten Probleme
fur Videos erndglicht sondern hat auch da®sen der Rekonstruktionsprobleme
auf raumlich und zeitlich zusammeahgende Art raglich gemacht.

In dieser Arbeit werden algorithmischedtungen iir vier spezielle Probleme
prasentiert:

Wir beginnen mit einem neuartigedumlich-zeitlichen Ansatz um einen indivi-
duellen Avatar auf der Basis von Multiview Videodaten einieh 9ewegenden
Person zu erzeugen. Die Gestalt des Avatars wird durch diagsung der Form
einer Vorlage fir menschliche Krper erhalten. Seine Obexthentextur wird zu-
sammengesetzt aus mehreren Multi-View-Video-Framesalieltige verschiede-
ne Posen beinhalten. Die so erhaltene statische Texturdannbenutzt werden
die gesamte Animation mit einer einzigen Textur darzustelDiese Modelbe-
schreibung gemeinsam mit einer animierten Geometriegerland einer Ober-
flachentextur sind ideal um in einer virtuellen Multi-Usemebung in der echte
Menschen durch digitale Avatare miteinander interagieiegesetzt zu werden.
Die Resultateiir menschliche Avatars zeichnen sich durch eine wahrletresge
Form und einen fotorealistischen Gesamteindruck aus, wah dlie Rekonstruk-
tion von Fotos einzelner Posen nichbglich gewesen are.



3D videos erlauben die fotorealistische Darstellung desellen Menschen aus
neuen Blickwinkeln. Um ihn korrekt unter verschiedenen Befitungen darstel-
len zu KNnen, niissen auch die Reflexionseigenschaften seiner @bk&lbe-
kannt sein. Wir beschreiben einen Ansatz um diese @bseh zu bnnen. Die-
ser benutzt eine animierte Vorlagér fmenschliche Krper die gleichzeitig Ge-
stalt, Bewegung und sictaumlich veéndernde Reflexionseigenschaften durch
wenige synchronisierte Multi-View-Videoaufnahmen estadVir stellen auch ei-
ne Losung vor um die Registrierungumlich und zeitlich véinderlicher Texturen
zu verbessern. Das ist notwendig um eine genaue Messung flexi®eseigen-
schaften der Obe#dthe zu ge@hrleisten. Ddiberhinaus, zeigen wir eine Me-
thode, die den systematischen Fehler in deraBaing der Oberflechenreflexion
reduziert um mglichst relaistische Darstellung unter beliebigen Behtuicgs-
verhaltnissen zu erzielen. Die daraus resultierende Modeibedring ermglicht
die originalgetreue Erscheinung virtueller Akteure uerschiedenen simulier-
ten Beleuchtungen.

Modelle die zur Rekonstruktion menschlicher Bewegungergnses animierte
Vorlagen oder solche direkt von Videos, beschreiben nighthdchqualitativen
dynamischen Details der Kleidung des Darstellers. Diesenyschen Details
von Hand hinzuzufgen ist ein sehr komplexer Vorgang. Gadgler Laserscan-
ner sind in der Lage sehr feine Details des Modells zu enfasdser diese sind
leider auch statisch und wirkerikstlich auf der Oberdiche wenn solche Modelle
fur Animationen genutzt werden. wir stellen eine statisigsklethode vor die de-
tailreiche dynamischer menschliche Ob#cflengeometrie von mehreren Video-
aufnahmen unter kalibrierten Beleuchtungen erfassen lsogar bei eventuell
vorhandenen Messungenauigkeiten. Das Ergebnis ist eiplietinbewegliches
Modell eines Menschlichen Schauspielers das selbst kéethygiamische Details
der Geometrie, wie zum Beispiel Falten auf der Kleidung, &gt

Eine animierte Vorlage zu benutzen hat seine Vor- und N#ehtes garantiert
raumliche und zeitliche Stimmigkeit aber da das Mod&lljéden Frame verformt
werden muss um sich an die Gestallt un@@e des Darstellers im Eingabevideo-
Frame anzupassen, wird die Genauigkeit des Models in BeZudaauOriginal
beeintachtigt. Es vaare besser das Modell direkt von den Videodaten zu rekon-
struieren um didJbereinstimmung zwischen Modell und Akteur zu optimieren.
Es ist noglich ein Gitternetz aus jedem Videoframe zu erzeugen. Bablem
hierbei ist offensichtlich, dass deren Konnek#visich von Frame zu Frame un-
terscheidet. Im Idealfall ichte man einaumlich und zeitlich ko&arente Animati-

on individueller Gitternetze erzeugen. Um dieseke zuilberwinden, stellen wir
eine Methode vor digaumlich und zeitlich nahe dreidimensionale Korresponden-
zen finden kann, und es somit erlaudimlich und zeitlich ko&rente dynamische
Geometrie von einer Sequenz unahbiger Gitternetze zu erzeugen.
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Jede dieser algorithmischerd$éungen kann unabhgig benutzt werden, um die
jeweiligen Anforderungen eines speziellen Systems zullerf. Datiberhinaus
kdnnen sie auch gemeinsam und kombiniert in einem einzigste®ybenutzt
werden, was in einer Animations-Pipeline endet die ausiMdteo-Daten hoch-
gualitative Animationen virtueller Akteure erzeugen urdstellen kann.
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Chapter 1

Introduction

High quality reconstruction of 3D human animation from re@irld data has been
an active focus of research in both computer graphics angatanvision. Tradi-
tionally, an animator would need to manually create the hdlden hand-craft the
animation and high quality details. Furthermore, if thenzetion is to be rendered
under different lighting, which is a typical scenario foethnimated models used
in computer games, the surface material properties have todited manually
which can be a painstakingly complicated process. Thisallyi takes hundreds
of work hours for a single model and consequently the costisesfe productions
are very high.

In both computer graphics and computer vision, the autamationstruction of
the animation from multi-view video data has recently gdingre attention. It
involves the reconstruction of motion, shape, and appearahhumans. Opti-
cal motion capture using markers has been used to captuteuthan motion.
Recently, the focus has been shifted from the marker-basedht&er-less ap-
proaches. A pioneering work in the marker-less optical amotiapture used an
animated template human model and multi-view video datapduce the motion
and photo-realistically render the virtual humans [Care®32. As an alternative
to using an animated template model, the dynamic 3D geongatmbe directly
reconstructed from the video, thus resulting in high quaénditions [Starck07b].
Some of the methods do not use any 3D geometry, but createtet views by
interpolating the image data [Matusik04].

There are both benefits and drawbacks of the above mentioedtbds. Nev-
ertheless, for a true high quality reconstruction of humamputer animations,
there are still some very difficult problems that remain toolvercome. In this



Chapter 1: Introduction

thesis we will show that many difficult problems that are emtered in the au-
tomatic reconstruction of human computer animation canobed by means of
algorithmic solutions using multi-view video data. Peojiteract in the virtual
environments by means of avatars which they choose basdwmrpteferences.
Many people prefer to use an avatar as close to their appmasapossible. Most
of these virtual environments, be it the online chat roommassively multiplayer
online games allow their users to create and customizeheial appearance in
many ways. However, it is very difficult to truly capture th@iect appearance let
alone the shape of the person using these rather simple Tmtgeate truly per-
sonalized human avatars, in Chapter 4, we propose a videutlzgproach that
makes use of multi-view video data of the moving person amekigees the life-
like avatar of the person true to his/her shape and appeardhe method makes
use of an animated template model to capture the motion @adieca static texture
that can be used to texture the geometry for the photo-tieadigpearance.

The model description used for rendering the avatar is gaodgh as long as the
lighting of the virtual environment is similar to the recorg environment. In or-
der to display him in a virtual world, which is different frotime recording environ-
ment, his appearance must be adapted to the new illuminatioditions. For this
adaptation, the knowledge of surface reflectance propesfithe human subject
is necessary. Recently, Theobalt et al. [TheobaltO5a]gusmanimated template
human geometry, proposed a method to reconstruct thesetaeibe properties
of moving actors using multi-view video data. We extend thisthod in Chap-
ters 5 and 6, and propose two enhancements that can resudthier lquality of
relightable free-viewpoint video. Using the same mulgwivideo data we later
extended this work even further and in Chapters 7 and 8, preseew passive
approach to capture true time-varying scene geometry ratreconstruct even
slightest of the dynamic details. Our method can reprodyoamic surface de-
tails at millimeter-scale accuracy.

Instead of using a prior template, video data can be diretfd to reconstruct
the dynamic geometry. Most methods that utilize the videta da reconstruct
geometric models for the purpose of animations provide eeryincing shape
and appearance for each frame. Unfortunately, they faltslfigroviding spatio-

temporally coherent models, which is an extremely desérabbperty in the cap-
tured animations. Spatio-temporal coherence greatlyititeis or is even in-
evitable for many tasks such as editing, compression orsspahporal post pro-
cessing. On the other hand, the methods that use an aninesgdiate model

provide spatio-temporal coherence, but the tracking nu=ttenployed for ani-
mating and deforming the template model remain short of teeiracy provided
by the reconstruction methods. In Chapters 9 and 10, we tivergiropose a
new 3D spatio-temporal dense correspondence finding meitlabenables us to
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reconstruct coherent scene geometry. Thus a template nsodet needed and
we obtain an accurate spatio-temporally coherent scenmefep directly from
multi-view video data.

1.1 Main Contributions and Organization of
the Thesis

This thesis is divided into 5 parts and contains 11 chaptagart from part I,
which deals with the necessary theoretical and technicgtdraund and covers
the preliminaries, each subsequent part presents algocitbolutions based on
multi-view video data that solve some of the problems thatercountered in
automatic reconstruction of high quality 3D human anintaioThe algorithmic
solutions described in part I, 111, IV and V have been puibdid before in a variety
of peer-reviewed conference and journal articles. The roamtributions of the
thesis along with the references to the published work aedlypsummarized in
the following sections:

1.1.1 Part | - Background and Basic Definitions

This part covers the theoretical preliminaries requiredtie understanding of the
rest of the thesis. In Chapter 2, we begin with the review otdraera model that
is employed in computer graphics and computer vision. Tdfeee we discuss
how to model the shape, appearance and kinematics of a humamoamputer.

We also review the techniques that are employed for charaotmation.

In Chapter 3 we describe our acquisition setup, which is aiigtv video stu-
dio that captures synchronized multi-view video streambe fecorded multi-
view video data is used in all of the algorithmic solutionegented in this thesis.
The details of obtaining multi-view video streams and thmst-processing is
described in this chapter.

1.1.2 Part Il - Automatic Generation of Personalized Hu-
man Avatars

In multi-user virtual environments real-world people natet via digital avatars.
In order to make the step from the real world onto the virtdagje convincing,
the digital equivalent of the user has to be personalizeghduld be possible
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to reflect the shape and proportions, the kinematic pragserés well as the tex-
tural appearance of its real-world equivalent. In Chaptend present a novel
fully-automatic method to build a customized digital hunfimm easy-to-capture
input data [AhmedO05]. The inputs to our method are multiglechronized video

streams that show only a handful of frames of a human perfgmaibitrary body

motion. The avatar's geometry is generated by shape adepti@mplate human
body model. Its surface texture is assembled from multivwigleo frames show-
ing arbitrary different body poses.

1.1.3 Part lll - High Quality Relightable Free-Viewpoint
Video

Free-View point video allows the user to view a dynamic sciam an arbi-

trary viewpoint. Theobalt et al. [Theobalt05a] presentedethod for joint shape,
motion and reflectance capture using multi-view video dadd allows the recon-
struction of relightable free-viewpoint video which canwewed under arbitrary
lighting. We improve their work and in Chapter 5 and Chapter é,imtroduce

two methods that result in higher quality of relightablesfr@ewpoint video.

First, we present a novel spatio-temporal registrationhogktthat detects and
compensates for the shifting of cloth across the body’saserfof the ac-
tor [Ahmed07a]. Our second contribution was a spatio-terpeflectance shar-
ing method that reduces the bias in the estimated dynamiectafice. This
method assures that the estimated reflectance propertiewabiased towards
the recording environment [AhmedO07b].

1.1.4 Part IV - Highly Detailed Dynamic Geometry via Si-
multaneous Reflectance and Normal Capture

Models used for rendering the reconstructed animatioris hegh quality time-

varying surface details that are normally visible in the mgwapparel of a human
actor, such as folds or wrinkles. Adding these dynamic etain dramatically
increase the level of realism of the human animations. In @naf we start
with the introduction of our passive method that can capsulgle time-varying

surface details, e.g. folds and wrinkles, on a moving motleé starting point of
the method is the enhancement of the solutions presentearinlP Thereafter,

we review the closely related work in the area of dynamicazgfreconstruction,
normal field integration, photometric stereo and reflectagstimation.
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In Chapter 8, we present the crux of our statistical passivhodethat can add
high quality dynamic details to the models [Ahmed08a]. f-&s enhanced sur-
face reflectance and normal estimation approach is desowb&h employs ro-
bust statistics to handle sensor noise more faithfully.tNeexew spatio-temporal
deformation framework is presented that enables us toftransthe moving
geometry and the time-varying normal field into true spétimporally varying
scene geometry that reproduces geometric surface dekaglaaccuracy.

1.1.5 Part V - Spatio-Temporally Coherent Dynamic
Scene Reconstruction Without A Prior Shape
Model

A fast and versatile alternative template based methoddyieamic scene recon-
struction is to reconstruct the geometric model from eaamé of the video, e.qg.
by means of shape-from-silhouette methods. This recartgiruworks fine for
simpler animations but due to the lack of spatio-temporakcence the usability
of this data is very limited. In Chapter 9, we introduce andivad¢ our 3D dense
correspondence finding method between a sequence of wirelapes that al-
lows the reconstruction of a spatio-temporally cohererglms®quence. The chap-
ter ends with a review of the most important related work i déinea of surface
reconstruction, correspondence finding and mesh animation

In Chapter 10, we present the main algorithmic solution fergpatio-temporally
coherent reconstruction of a mesh sequence from unrelaggesrom-silhouette
volumes [Ahmed08b]. This is achieved by employing a 3D deasespondence
finding method between two subsequent meshes, which is gatexh over the
whole sequence, resulting in a coherent animation.

Our work demonstrates that we can solve a variety of probl&aisare encoun-
tered in automatic reconstruction of 3D animation from widesing multi-view
video data. Our presented methods only require a small nuelgt) of multi-
view video streams, solve a wide range of problems, and caiséx as the build-
ing blocks for high quality 3D animation reconstructionrfrevideo.
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Chapter 2

Preliminary Techniques

In this chapter, some general theoretical background ivjgted and
some of the fundamental techniques which projects in thgem-
ploy are described.

All of the projects in this thesis rely on the synchronizedtiviiew video streams
as input. These are captured by a multi-view camera systenriacquisition stu-
dio. In order to correctly use multi-view video streamssiessential to simulate
the real-world camera by means of a mathematical cameralmddes mathe-
matical camera model is presented in Sect. 2.1. We alsogtigbe process of
camera calibration, and review the geometry from two-views

In this thesis we focus on the reconstruction of human coerpahimations.
Therefore we need a description of the human actor that carsée in the dig-
ital domain. In Sect. 2.2 we discuss how we model the shagsampnce and
kinematics of the real-world human in a computer. We latasicdbe a model for
the kinematics and discuss how the model can be animated tigrkinematic
skeleton. We also discuss the animation of the model usif@mation. Either
of the two animation techniques has been used in all of theq@oin this thesis.

2.1 The Camera Model

The camera captures a 2D image which is a projection of a 3DBesoa a 2D
plane. Function of the camera is very similar to the functtéthe human eye,
where the 3D scene is the world around us and the 2D plane i=tina of the



Chapter 2: Preliminary Techniques

i E— o

> Z

rincipal axis D EE—
camera P P

center

< image plane

Figure 2.1: Pinhole camera geometry.

eye. Thus the role of the camera in computer graphics and a@mpision is
analogous to that of an eye in biological systems. Simildinéceye lens, the lens
in the camera collects the incident illumination. The ldrentconverges the light
rays towards a focal point, and the converged rays createage of the observed
scene over the image plane. In the following section, wedticribe the pinhole
camera model, which defines a mathematical relationshvpdeet the coordinates
of a 3D point and its projection onto a 2D image plane. In latstions, we will
describe the process of camera calibration and brieflywethe concept of two-
view geometry.

2.1.1 The Pinhole Camera Model

The pinhole camera is the simplest, and the ideal, modelmkca function. It
describes central projection of points in a space onto aefldartley00]. Let a
point in space with coordinatd® = (P,, P,, P,), the center of projection as the
origin of the Euclidean coordinate system and the imageeplan f. The center
of projection is also called the optical center or the cancergter. The line from
the camera center perpendicular to the image plane is ddléegrincipal axis,
and it meets the image plane at the point called principaitpoi

The pinhole camera model mapson the image plane where a line joining the
point P to the center of projection meets the image plane, as showigir2.1. It
can be shown using the theory of similar triangles that thatd® is mapped to
the point(fP./P., f P,/ P., f)* on the image plane. Thus the 2D projection

(P, P,, P.)" — (fP,/P., fP,/P.)" (2.1)

describes the central projection mapping from wdkftto image coordinateR?.



2.1 The Camera Model

11

2.1.2 Camera Calibration

To infer three-dimensional geometric information from arage, one must find
the parameters that relate a point in the three-dimensispate to its two-
dimensional position in the image. The parameters areitbsas theinternal
andexternalparameters of the camera. There are four internal parasneteo
for the position of the origin of the image coordinate framed two for the scale
factors of the axes of this frame. As for the six external peaters: three are
for the position of the center of projection, and three ardtie orientation of the
image plane coordinate frame.

In addition, the physical properties of a real world camewasl|differ from the
properties of the ideal pinhole camera model. Due to theferelinces, the image
formation process geometrically deviates from the pinlcal@era. These devia-
tions are typically caused by radial or tangential distortartifacts. Radial dis-
tortion occurs, because unlike the ideal pinhole cameraetnodthe real lenses,
the world point, image point and optical center are not nebir. Thus the world
lines are not projected as lines. Radial distortion beconm@® mrominent as the
focal length decreases. As a camera lens in itself is conapafsmany individual
lenses, the misalignment of individual lenses with respet¢he overall optical
axis results in the tangential distortion [Weng90]. Mostl igorld camera models
take radial and tangential distortions into account, actiige the parameters that
compensate for the artefacts caused by them.

Majority of geometric camera calibration techniques [88alain95, Heikkila96]
derive all of the above described parameters. Normally iregion object with
known physical dimensions is used to estimate the paramefar optimization
method is employed that modifies the model parameters inaiptedicted ap-
pearance of the calibration object optimally aligns wita gdaptured images.

Color calibration refers to the correct reproduction of ¢slm the captured im-
age under a given illumination condition. A simple colorilsedtion technique
is called white balancing, which involves the estimatiorpafameters that scale
each color component with respect to a pure white or greyobbf®r our projects,
we also perform color calibration that ensures color caesty across the cam-
eras.

2.1.3 Two-View Geometry

Epipolar geometry refers to the geometry of stereo visiors the intrinsic pro-
jective geometry between two views, independent of scemetste, and only
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(b)

Figure 2.2: (a) Epipolar geometry: The pointp in camera a corresponds to
the point p’ in camera b that lies on the epipolar linee,. (b) Triangulation:
the 3D position of a pointP is calculated by the intersection of the two rays,
r, and ry,, through the respective cameras’ centers of projectiong, and ¢,
and the respective projected image plane positiong and p'.

depends upon the camera’s internal parameters and refetsee [Hartley00]. It
can be used to derive 3D structural information about th@escéAssuming a
point P in 3-space is visible in both cameras, projectegbas the first camera,
and asp’ in the second camera. The epipolar geometry relates the rvyegted
points by the so-called epipolar constraint, which desihat for the givep, its
correspondencp’ should lie on the epipolar line,, Fig. 2.2a. Under the epipo-
lar geometry the search for the correspondence for a given {gosimpler as it
only involves traversing a single line in the correspondmgge plane instead of
searching the complete two-dimensional image. The intriegipolar geometry
is encapsulated in the fundamental matfix It is a 3x3 matrix of rank2, and
for the two projected points satisfies the relatigh /'p = 0. The fundamental
matrix can be inferred from 8 point correspondences betvieruncalibrated
cameras, and it is directly available for fully-calibratsimera pairs [Hartley0O0].

If both cameras are fully calibrated, with known correspamzbegp andp’ in their
image planes, then the 3D position of pdihtan be calculated via Triangulation,
Fig. 2.2b. The positiod® is estimated by computing the intersection point of two
rays,r, andr,. The rayr, originates in the center of projection of camera,,,
and passes the image plane in the positiolThe same construction is valid for
ray r, from camerab, where the ray passes the image plane in the posjtion
However, due to measurement noise, the rays will not intéeseactly at a single
point. In this case, a pseudo-intersection point that migesthe sum of squared
distance to each pointing ray is computed.
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2.2 Modeling and Animating Humans

The human body is the entire physical structure of a humaanisg. It is a
very complex system, in which an interplay of many physia@agcomponents
result in its appearance, as well as physical and kinemptmserties. General
appearance of a human body is dependent on its skin, hairmantbst of the
cases when it comes to representing real-world human$iedotAppearance of
the skin is dependent upon many underlying components, fhenstructure of
the pigmentation to the deformation of the muscles. Giverfaiet that there are
many different types of materials used in the clothes, timeptexity of modeling
the appearance increases even more. Physical propertiestafman body model
are influenced by its kinematics. The kinematic propertresdetermined from
the body’s skeleton. The skeleton is composed of bones vanehonnected with
joints. In order to accurately capture a true human bodyarctimputer, the model
should represent the appearance, kinematics and physigaities as accurately
as possible. In the following subsections we will reviewstheepresentations.

Since the focus of this thesis is the reconstruction of huaramations, accurate
representation of the motion along with the appearancgeshad kinematics is
equally important. We need to make sure that the model falldve motion of
the human actor as accurately as possible, and for that wetaekniques that
can animate the model accordingly. In Sect. 2.2.3 we rewewadf the animation
techniques that are employed in this thesis.

2.2.1 Modeling the Appearance

The realistic appearance of the virtual human model depepds its geometry
and its surface texture. The surface geometry of the vittuahan is typically

modelled by means of a triangle mesh. The triangle mesh ipdeead of a set of
triangles that are connected by their common edges. Thegtega are also called
the faces of the mesh, with each face made up of three vedimshree edges.
The edge, which is formed by two vertices, is one side of the.fd he vertex is
the basic entity, and is typically shared between multipegles and edges.

There can be different ways to obtain the geometry for the dwrbhody
model. It is possible to reconstruct the geometry from thpuinvideo
data. Various methods are proposed to obtain geometry frahi-wiew im-

ages [Matusik00] [Kutulakos00] [Starck07b]. Fig. 2.3awk@ video frame from
one of the camera, while the reconstructed visual hull casdas in Fig. 2.3b.
Another possibility is to use a generic template human bodgehas shown in
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Figure 2.3: (a) Input video frame from one of the camera. (b) Rconstructed
coarse geometry rendered from the same camera. (c) Templagingle skin
human body model with superimposed kinematic skeleton. (df full-body
laser scan of a human.

Fig. 2.3c, or make use of a full-body laser scanner and olitaitemplate geom-
etry by measuring a real subject, Fig. 2.3d.

The second component for the realistic appearance of theaVlmuman model is
its surface texture. A consistent surface texture for thelehocan be employed
for photo-realistic renderings [Ahmed05]. Unfortunatalytatic texture cannot
capture the true time-varying details, such as wrinklesfatds in the clothing,
that evolve with the body pose.

If the model follows the poses of the human actor in the vidben it can be
dynamically textured with multi-view video data, to repune the time-varying
details [Carranza03]. This approach is feasible only whenvintual actor is
reproduced under the illumination conditions that are &myilar to the recording
environment. Thus the illumination conditions should renfxed during display
of an animation.

If the model is to be rendered under arbitrary novel illuntimra conditions then
however its surface reflectance properties must also berknbar the animated
model, it requires the estimation of dynamic reflectancemigtson (Chapter 5).
The visual appearance of the surface is determined by thengaent light in-
teracts with it and is sent back to the eye of the observerhdénntost general
case when light interacts with matter, there is one photokirsg the surface at
one particular point and one photon leaving the surface.rderato describe the
general interaction case, a 12D function is necessary [Rieswcz00].

This model can be significantly simplified if phosphoreseeand fluorescence
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are ignored, wavelength changes are not considered, thelevaths are dis-
cretized into bands, and the effects of subsurface saajtenie not taken into
account [Lensch04].

This results in a six-dimensional function, known as theiafig-varying bidirec-
tional reflectance distribution functigBRDF) f,. This representation is usually
sufficient for realistic renditions of most of the materidtgs defined at all surface
pointsZ as the ratio of outgoing radianégn hemispherical directionh = (w,, 6,)

to incoming irradiance.; cos 0; dw; arriving from direction/ = (wi, 0;):

A dly(Z, )

(0,7,1) = - 2.2

In general BRDF can describe any surface reflectance chasticeand can be
represented in many ways. Tabulated BRDFs store BRDF valuesknulp ta-
bles and make use of the interpolation to represent novehiimy and outgoing
directions. It provides good quality, but the storage ceosery high. Typically, in
computer graphics, parametric models are used to evalefi¢getance for some
specific illumination condition. The parameters differ &ach material, and their
variations result in a wide range of representable refleetaharacteristics using
the same mathematical expression. Most of the model arastmisa diffuse
albedo component along with an analytic expression foruatadg the specu-
lar/glossy reflection. In our project on relightable freewpoint video (Chapter
6), we make use of two parametric BRDF models, the Phong modtenid7 5]
and the Lafortune model [Lafortune97b].

The Phong model is an empirical isotropic reflectance mdaldonsists of dif-
fuse object color and a specular lobe

R frab
frovl 0,2, p) = kPP + =2 (7(1) - 0)e (2.3)

n-l

Light source positionﬁ and viewing positiorﬁ7 determine the light vectar =

L — &, viewing vector isv = V — #, and given the surface norma) reflection
direction isi’({) = [ — 2(I- 7)7. For evaluating both diffuse and specular color, we
have to consider the red, green, and blue color channelaepharSeven model
parametertékzggb, krt k) then describe diffuse object color, specular color, and
the Phong exponent which controls the size of the specubar. o

A more advanced model based on the Phong model has beentpoebgiafor-
tune et al. [Lafortune97b]. It can additionally incorpaaff-axis specular peaks,
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backscattering and even anisotropy:

~

[1000,2,0) = k" (2.4)
+ Y [CH(Lvs) + CyF (Lyvy) + CT% (L. )|

)

Besides diffuse colork’?’, the model includes several specular lobes
whose individual direction, specular albedo and direatsdnare defined by
(19, v, % k.,;). The vectord = (I,.1,,1.) and@ = (v,,v,,v.) are the
normalized vectors corresponding to the hemisphericabd'cmsi ando. For a
more detailed discussion on reflectance models, we woutdtdikefer the inter-

ested reader to [Lensch04].

2.2.2 Modeling the Kinematics

The computational model for the human skeleton is a kinenségleton. A Kine-
matic skeleton is a mathematical model which representsuh®an skeleton as a
hierarchal arrangement of joints and interconnecting bombe result in an artic-
ulated figure consisting of a set of rigid segments connewtddjoints. The set
of rigid body segments form a kinematic chain, which is eBaiyan hierarchal
assembly of rigid bodies. The relative orientation betweea segment and the
following rigid body segments in a kinematic sub-chain istcolled via a rigid
body transformation. This rigid body transformation déses a joint rotational
and translational transformation between two the locatdioate frames of two
subsequent rigid bodies. As the kinematic skeleton is atgbal structure, the
transformation on the top level influences all the connedtgd bodies. Conse-
guently, the transformation on the lowest level rigid bodiyaffects that specific
body.

Fig. 2.3c shows a kinematic skeleton superimposed on a hbodnmodel. The
skeleton models most important joints and segments thahecessary for the
correct representation of the human. It consists of 16 satgrend 17 joints,
unlike the real human body skeleton which consists of 20@b@nd more than
200 joints. The bone lengths in the skeleton implicitly esedhe translational
component of the transformation. Thus the joints of the rhodby represent the
rotational component. Since the bone lengths are constaninly need rotation
information for each joint to define the pose of the skele¥@rying angles of the
joints yields an infinite number of configurations. A glohalrslation for the root
of the skeleton can be employed as the only required tramsédtcomponent.
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2.2.3 Animating a Human

The geometry that we obtain from any of the method descriheSeict. 2.2.1,
should be somehow animated to reconstruct the motion ofuheah actor in the
video. In this thesis we make use of two techniques, usingititematic skeleton
or deformation.

We make use of the animation based on the kinematic skelettheirelightable
free-viewpoint video project, Chapters 5 and 6. In this pjérst a kinematic
skeleton is implanted into the geometry of the single skingiate human model,
Fig. 2.3c. Thereafter, the skeleton is attached to the seirfy assigning the
weights to each vertex of the geometry in accordance witheittive position
to each bone. A bone would exert more influence on its nearltyjces. This
influence is represented by the weights, which control tierdetion of the mesh
as the joints are rotated. Each vertex can be influenced bypheubones and the
weights from each bone are blended. The technique of asgighe weights
in this way is commonly called linear blend skinning [BarahOFinally, the
motion description in terms of joint parameters is autoozdly estimated using a
silhouette based analysis-through-synthesis method. (&&¢.

Another approach for animating the model would be to use rdestrmation
methods [Botsch07]. These methods are employed to great affperformance
capture of humans [de AguiarO7a] [de Aguiar08]. In our wdrka&rametrization-
free animation reconstruction using dense 3D correspaademe make use of a
mesh deformation approach to animate the reconstructecivimill, Chapters
9 and 10. Our solution is independent of any specific defaomatpproach,
therefore we refer the reader to a recent survey in the areartdce deforma-
tion [BotschQ7].
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Chapter 3
Multi-view Video Studio

This chapter describes our recording studio. First, thedgiuoom,

the camera system and the lighting setup are described. eafter,
the acquisition pipeline is presented, with all necessagpstto
generate the input data for the projects described in thesih

All of the projects presented in this thesis require highligguanulti-view video
data as input. This data is recorded in our multi-view videai®, where we
simultaneously capture video streams from eight syncheashvideo cameras.

In this chapter we will present our multi-view video studiodetail. The stu-
dio is an extension of [Theobalt03], which was a simpler muéw acquisition

setup. We present our new acquisition studio, which previdgh quality data
that are recorded not only using the calibrated cameradsmtiader completely
calibrated illumination conditions. These data are thenmmaguirement of our
work on relightable free-viewpoint video (Chapters 5 andaid subsequently
high quality reconstruction of time-varying geometry (Cteap 7 and 8). The ac-
quisition setup of the studio is enhanced with the additibhigh frame rate and
high resolution cameras along with the better lighting getuhich facilitate us

greatly in the reconstruction of high quality surface maedéligh frame rate and
high resolution data were also invaluable for our work onglemetrization-free
animation reconstruction using dense 3D correspondeiesgpfers 9 and 10).

We will start this chapter with a review of related multi-wieacquisition sys-
tems. Thereafter, we will describe the recording studial @iscuss our camera
and lighting system that is installed in the studio. Finallye will present the



20

Chapter 3: Multi-view Video Studio

acquisition process, which is comprised of camera, coldrigihting calibration,
background subtraction and finally the actual recordingnefrtuman actor.

3.1 Related Multi-view Acquisition Facilities

Multi-view data is used in variety of research areas. Vagisetups for their ac-

quisition exist, based on the specific needs of the reseditahproject presented
in this thesis are versatile in the sense that they encommpasg research areas
that require these data. Therefore, our multi-view videdistis designed in such

a way that the specific requirements for data are not comgeni

Image based reflectance estimation requires very hightguaiage data. For
estimating the surface reflectance models of real-worl@aibja series of im-
ages obtained from different viewing directions and takadau different inci-
dent illumination conditions are required. For static ®nacquisition setup
using high quality photo cameras and a set of light sources lh@en pro-
posed [Ward92, Goesele00]. [Debevec00] presented a lighedo capture the
reflectance field of animatable face model. [EinarssonO&reded it further by
using a large light stage, a tread-mill where the person syak that they can
acquire simple motion and reflectance field of humans. Uaf@ately, their setup
can only process simple periodic motions, such as walkimgohtrast our multi-
view video studio allows the extension of the photo camesebdaeflectance es-
timation method into video based dynamic reflectometryhatit any restriction
on the type of motion.

Multi-view video streams are readily used in the area of @ilased motion cap-
ture. In our work we focus on marker-less motion capture abse it allows

recording of the human actor without any optical markeracied on the body.
Video acquisition in a 3D room that allows recording with wp48 cameras is
presented by [Kanade98]. Systems for motion acquisitionguseconstructed
volumes are presented in [Cheung00, Borovikov00, Luck02,tBw®4]. Com-

mercial solutions for marker-less motion capture are n@w alailable [Motion].

For an extensive review of video-based motion acquisitystesns, we would like
to refer the interested reader to [Poppe07].

Another research area that makes use of multi-view videasts is 3D video. In
addition to capturing the motion, multi-view video streacas be used to recon-
struct the dynamic shape and appearance models of the huoanTeis enables
the user to change the viewpoint of the scene during the remgde[Narayanan98]
made use of 50 cameras and reconstructed 3D models of dysaemnes using
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€Y (b)

Figure 3.1: Our recording studio includes (a) the recordingarea and (b) the
control room.

dense stereo. [WWmlin03] presented a method to record and edit 3D videas, an
further extended it in [Waschilsch05]. [Matusik04] presented a complete sys-
tem for real-time acquisition, transmission and rendedh8D Video. Recently
[Starck07b] presented a 3D video system that captures egppEs shape and mo-
tion from multi-view video data.

3.2 Recording Studio

Our multi-view video studio is designed to be flexible andsagite such that it
fulfils the requirements of all the research projects. Itugtdrom off-the-shelf
hardware. It is designed to acquire high quality video fgetaf humans that
can be used in surface reflectance measurement, dynamaceueconstruction,
motion capture, dynamic shape deformation, and appeamadeling.

The studio is located in a room of approximatek.8 meters in size. The ceiling
has a height of approximatelym. An area of2.5x4.8 meters is separated, which
serves as a control room of the studio. The remaining arelaeo$tudio, which
can be optionally enclosed with black curtains and carpetsinimize the effects
of indirect illumination, is the recording area. The redogdarea and the control
room of the studio are shown in Fig. 3.1.
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3.2.1 Camera System

The camera system in our studio is comprised of eight ImeldDC1004 single
chip CCD cameras, Fig. 3.2a. The imaging sensor of the camagsaa hesolu-
tion of 1004x1004 pixels with 12 bits per pixel color depthheTsensor uses a
Bayer mosaic to record the red, green and blue color infoomafihe CCD sen-
sor is connected to two controller chips. It provides a sosthframe rate of 48
fps at full resolution when both controller chips are adteh In this mode, the
photometric responses of the sensors is out of synch andrarfiame color ad-
justment step is necessary. With only one chip activatedCiD sensor provides
a sustained frame rate of 25 fps at full resolution and tren®ineed for the color
adjustment.

The cameras are linked to a control PC equipped with 8 higiedframe grabber
boards. Each frame grabber is connected to a camera thra@ameara LinkM in-
terface. For maximal data rate, each capture card is eqiiygd an on board
SCSl interface enabling direct streaming of image data to eEDRAdstem. Eight
RAID systems are employed in parallel to enable real-timeag® of the video
streams. The cameras are synchronized via a trigger pusésthroadcasted to
each capture card.

The cameras can be installed at any location in the studiggeheral cameras
are placed in an circular arrangement around the centereof¢bne. For the
relightable free-viewpoint video project, we placed oneneea on the top. A
typical arrangement allows us to capture a volume of apprately 3.5x3.5x3
meters with all cameras.

3.2.2 Lighting Equipment

Along with the camera system, the lighting equipment in thalie is crucial

for the image quality of multi-view video streams. In orderfulfill the need of

appropriate illumination conditions for different apg@tons, it is important to
provide a flexible lighting system. For our research, it ipariant to have both
an ambient scene lighting, as well as more specific spot kigiak of set up.

For general lighting, we employ 8 NesyFlex 440 ™Icompact softlights [Nesys]
that are optimized for universal use in TV and video studtog, 3.2b. Each light
component contains 8 fluorescent day light tubes that aékan light at a wide
angle. They illuminate objects in the center of the scenenftbe top of the
recording area and spread the light homogeneously dowswaitte system can
be controlled as a single unit using the DMX controls. Additionally, each light
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(b)

Figure 3.2: (a) Imperx™ MDC1004 camera, (b) NesyFlex 440 DIM softlight
and (c) K5600™ Jokerbug spotlight.

can be rotated to fulfil specific requirements. By this end, litjieting system
prevents direct illumination of the camera lenses, avgidjiares, and produces a
very uniform lighting in the scene, avoiding sharp shadond anwanted high-
lights on the recorded subjects.

For our project on relightable free-viewpoint video, we dogp two
K5600™ Jokerbug 800 spot lights to illuminate our scenes, Fig..3Thwey are
placed in opposite corners of our studio, and they are aiktdwards the center
of the recording area. The spot lights emit light with a dgiylispectrum, and
different lenses can be used to modify the shape of the beaordicg to our
needs.

We have fully controllable lighting system in our studio. Mgterior light can
enter the recording area, and the influence of indirect ithation from the walls
can be minimized by covering up all the walls by opaque blaoketon. Option-
ally, the indirect illumination reflected off the floor ancethisual appearance of
cast shadows can be minimized by rolling out a black carpet.

3.3 Acquisition

With our multi-view video studio, we can efficiently acqucamera and lighting
attributes along with multi-view video data that is usedlimar research projects.
Before commencing the actual recording of the human actoageire all the

necessary information that is needed for camera, color ightirig calibration.

We also record the information required for the backgrourairaction. Finally,

the actual recording of the human actor takes place.
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(b)

Figure 3.3: (a) smaller checkerboard pattern used for detemining intrinsic
camera parameters, (b) large checkerboard pattern used foextrinsic camera
parameters estimation and (c) color calibration pattern.

3.3.1 Camera Calibration

For our projects, we need to determine, both the internakeatelnal parameters
for each of the 8 cameras. For the camera calibration, weddem calibra-
tion objects of known dimension to be used by our calibratr@thods. For in-
trinsic calibration a small calibration pattern positidne front of the cameras is
recorded, Fig. 3.3a. A larger checkerboard visible frontrelcameras is recorded
to facilitate the extrinsic calibration, Fig. 3.3b.

For determining intrinsic camera parameters we employ kilek
method [Heikkila96]. The estimated parameters are usedntlistort the
calibration images and multi-view video streams. Extdnsamera parameters
are estimated by means of the Tsai algorithm [Tsai86]. Olilbredion software
automatically detects the corners of the checkerboardh kvibwn world space
positions. An optimization procedure estimates the esiticamera parameters
by minimizing the reprojection error between the measurebiasedicted position
of the checkerboard pattern.

3.3.2 Color Calibration

Accurate color reproduction among different cameras ig iaportant not only
for the correct renditions but also for the surface reflemtameasurement. In
the first step, to ensure the correct color reproductiorthallcameras are white
balanced before the recording session. However, due toisanse, and slight
physical differences in built-in camera components, tloane be still discrepan-
cies in the color response of each camera. To resolve thésediscrepancies,
we record a color calibration pattern which consists of aayaof 237 uniformly
colored squares with purely lambertian reflectance, FRg.3.
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Using the recorded color calibration pattern, we perforiatinge photometric cal-
ibration. We define one camera as the reference and for eachiniag camera,
a color transformation is computed such that the color whfethe pattern in
the reference camera are reproduced. A trilinear transftom of the RGB color
values is used for the color transformation. The determaaar transformation
for each camera is applied on each frame of the respectie®atteam to ensure
the faithful color consistency.

3.3.3 Lighting Calibration

In order to measure the reflectance properties of an obfectight source should
be carefully calibrated, i.e. their position, luminanceeirsity and color should
be known. In order to find the photometric properties, we aseapproach pro-
posed in [Debevec97], to generate a High Dynamic Range (HDRyénfrom a
set of images of a mirrored ball taken at different exposumed in the studio,
Fig. 3.4a. Using the camera Olympus Camedia C595first its response curve
is calculated and then 13 different images are taken, wipogxre times varying
from 1/1000s to4s. These images and the response curve are used to generate
the HDR mirrored ball image, which is converted to a cubiciemment map
representation, Fig. 3.4b. Using the HDR cube map, the iéttgordescribed in
[Agarwal03] finds the light position in the image domain. Thminance inten-
sity and color of all light sources is found by integrating tiespective values of
all the pixels belonging to the light source. Both spot liglwts approximated as
point light sources.

In order to find the 3D position of the light sources, the follog method is used:
In addition to capturing HDR mirrored ball images, imagethefmirrored ball are
obtained from two calibrated cameras in the studio, Figc.3d both images the
center of the mirrored ball in the image plafig is identified. Using extrinsic and
intrinsic parameters of the cameras, the 3D position of #reer of the mirrored
ball C.,, is found by shooting the rays from both cameras towards thspective

C;» and calculating their intersection.

In order to find the correct orientation of the cube map wigpeet to the camera
system in the studio, two calibrated cameras are markeddistinct colors. An
image of the cube map is generated from the HDR cube map, Batthe reflec-
tions of both marked cameras are visible, and it is projeoted a sphere. Four
vectors are constructed; andv; from the marked studio cameras @j,,, and
my andmy from the corresponding marked cameras in the cube map,joThe
correct orientation is found by rotating the sphere such tiaand i, overlap
v7 anduv; respectively. Two rotations are enough to assure the daresntation.



26

Chapter 3: Multi-view Video Studio

Figure 3.4: (a) captured light probe, (b) transformed cube nap and (c) light
probe captured from one of the multi-view video camera.

This correct orientation is used to find the accurate dioactif the light sources
using the cube map.

We apply the above calibration procedure for two mirroretishglaced in dif-

ferent positions in the room. This was done to find the aceypasition of the
light sources. For the luminance and intensity, the infdromefrom only one light

probe is sufficient. From each mirrored ball we get a directiector for each of
the spot light. Therefore, for each spot light we have twedion vectors from
the center of spheres towards each spot lights. The positieach light source is
then computed trivially by intersecting the rays along ¢éhésection vectors.

3.3.4 Background Subtraction

All the projects in this thesis require the data in which tbenlan actor is separated
from the background. The lighting in our studio is complgtntrolled, and the
effects of external light on the scene and cast shadows aienmed. This simpli-
fies the process of background subtraction. For backgrauinidesction we simply
record the studio without the human actor from all camerass background im-
age is used by the background subtraction algorithm to agp&reground from
the background. This algorithm computes mean color andlatdrdeviation for
each background pixel. Foreground pixels are identified arge deviation of
their color from the background statistics. For detailshid procedure, we would
like to refer the reader to [TheobaltO5a].
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3.3.5 Recording

After all the necessary data required for camera calibmatemlor calibration,
lighting calibration and background subtraction are rdedy the actual record-
ing session commences. The human actor can perform any mwtthin the
recording area. The performance is recorded by our eighthsgnized video
cameras. Every research project has a different set ofreagants for the input
data. The acquisition setup and the specific recording rexangints are also briefly
discussed in each of the projects separately later in tisgsthe
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Chapter 4

Automatic Generation of
Personalized Human Avatars

This part presents a method for generating personalizedamum
avatars from multi-view video data. First, the related workthis
area is reviewed, then a spatio-temporal method to adapt hiapes
and skeletal dimensions of the human model is presentedllyia
method for reconstructing a consistent surface texturelHermodel
using multi-view video frames from different camera viewd differ-
ent body poses is described.

In recent years, virtual environments in which real-workbple can interact
through controllable digital characters, so-called agtaave become accessible
even to the user at home. In order to make their appearandeeorirtual stage
convincing, many users want to give their digital equivakepersonal touch. Un-
fortunately, in most online games or 3D chat rooms, the degyaevhich a user
can personalize his avatar is very limited. At best, he canually modify a body
shape taken from a database of template geometries, aneteixe face of the
virtual puppet with a digital photograph. It is obvious thatorder to make the
personal touch fully convincing, the animatable human rhelleuld reflect the
complete shape and textural appearance of the real-waméhthat it represents.

In order to serve this purpose, we have developed a novgtdwitomatic method
to build a customized digital human from easy-to-captupaiirdata [Ahmed05].
The inputs to our method are multiple synchronized videgestrs that show only
a handful of frames of a human performing arbitrary body oratiOur approach
is based on a template human body model consisting of a teiangsh surface
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representation and an underlying kinematic skeleton. bbdy representation is
automatically deformed until it matches both the shape hadkeletal structure
of its real-world counterpart captured in the video footage

The main contribution of this work is the reconstruction aansistent surface
texture from multi-view video streams. This consistentface texture is em-
ployed for the realistic rendition of the digital human. Bynsiltaneously em-
ploying images from multiple camera views and multiple tisbeps of video, it is

made sure that even temporarily invisible parts of the bagfase are faithfully

captured in the texture. With our novel method we quicklyayaie photo-realistic
digital actors from real-world people using acquisitiooiteology that may, in the
near future, be available even to the user at home.

4.1 Related Work

Acquisition of visually realistic models of humans from iges has been a long
standing problem in computer graphics and virtual realityorder to generate a
realistic human avatar, the kinematics, shape and app=ahave to be captured
simultaneously.

Full-body range scanning systems exist that can quicklyiaedhe full surface
geometry of a human body. However, they are highly experasidedon’t straight
forwardly enable to estimate a skeleton of the human [PéeR@lt Alternatively,

image- or video-based methods can be used to reconstrugtnhodels. In one
line of research, it is the primary goal to derive the kindmatructure and a
simple surface geometry from image data [Kakadiaris959Bude Aguiar04]. A
surface texture, however, is not reconstructed.

In 3D video, novel views of a real person are rendered frontiplelinput video
streams [Moezzi97, Kanade97, Matusik00]. Unfortunatilgse approaches do
not reconstruct models that could be animated with arlyitnavel motion data.

We propose a novel model-based approach that creates afuityatable avatar
comprising a customized geometry, a realistic surfacautextand an appropri-
ately rescaled skeleton. Our work is similar to the methadpgsed by Hilton et

al. [Hilton99] and Lee et al. [Lee00], where a human temptatelel is deformed

until it aligns with multiple silhouette images. Surfacattees are created by
mapping photographs back onto the body representation.

In contrast, we present a novel approach that employs reutiipe steps of multi-
view video footage to capture shape and texture at higheracg. To achieve this



4.2 Overview 33

(b)

Figure 4.1: (a) Adaptable generic human body model; (b) iniial model after
skeleton rescaling and pose estimation; (c) model after spa-temporal free-
form deformation scheme.

goal, we build upon and extend the silhouette-based mamkermotion capture

method detailed in [Carranza03]. As opposed to many pre\appsoaches, our
method is fully-automatic and even enables the extractiomutiple face textures

depicting different facial expressions. This way, the @vpace of the avatar can
be changed on-the-fly such that it reflects its current mood.

4.2 Overview

Multi-view video (MVV) sequences used as input to our systemrecorded in
our multi-view studio (Chapter 3). In each MVV sequence tlavass as input
to our avatar creation algorithm, the person first strikesrétialization pose

(Fig. 4.1b) for a short moment, and thereafter is free to mematrarily. In a

post-processing step, the silhouette of the person in gaahefis extracted via
color-based background subtraction (Sect. 3.3.4). TYlgicaven short motion
sequences of only 3-7 seconds are sufficient for our method.

We employ a template human body model whose shape and pmyodan be

customized in order to optimally reproduce the appearahaeperson in the real
world, Fig. 4.1a. The kinematics of the model are represebiemeans of a

skeleton comprising 16 segments and 17 joints that provBdeo3e parameters in
total. The surface geometry of each segment is represergealolosed triangle
mesh.

We employ the method presented in [Carranza03] to captuigitlted shape of the
model and derive the correct body pose at each time step @idke, Fig. 4.1b.
Additionally, we use the approach by de Aguiar et. al. [de iAgb] for spatio-
temporal free-form deformation, in order to increase thaliguof the captured
shape of the model, Fig. 4.1c.
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4.3 Reconstructing a Personalized Surface
Texture

Once we have a shape adapted 3D model in the correct posenahedmpo-
nent contributing to a realistic look of our avatar is a phaalistic surface tex-
ture. Previous approaches to avatar creation reconstracséatic surface texture
from multiple photographs showing the person in a singlepédéthough the so-
created virtual actors look authentic if they strike the egase as the person in
the images, very disturbing appearance artifacts may ottheir bodies are an-
imated. One reason for such artifacts is texture undersaggue to insufficient
visibility of certain body areas in a single pose. Also pesbéhtic are those parts
of the body geometry that are temporally occluded by otheylsgments (e.g.
in the shoulder or leg area) but which become suddenly esiblsoon as the pose
of the skeleton changes (Fig. 4.8c).

A third problem is that photographic textures “freeze” thedl appearance of dy-
namic surface details as well as local illumination effedige address all theses
issues in conjunction by means of a spatio-temporal texag@nstruction scheme
that samples from multiple time steps of the MVV sequencestimates color in-
formation also for temporally invisible areas of the bodytHe following, we first
describe our texture parameterization. Thereafter, waildbe spatio-temporal
texture reconstruction algorithm.

Figure 4.2: Input video frame and corresponding MVV texture for a male
actor.

4.3.1 Texture Parameterization

Each body segment is parameterized separately over a pegtangular domain
using patches of minimal distortion [Ziegler]. The sixtgaanar patch layouts
are finally assembled into one texture atlas for the compteidel. This way,
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we obtain a pose-independent bijective 3D-to-2D mappingéen a surface el-
ement and a texel in the texture domain. Throughout our @xgets, we use
1024x1024-texel texture maps. The graphics hardware @ tesgansform each
video camera image into the texture domain. All data reltdesirface elements
(view vectors, visibility etc.) can now be convenientlyrstt as textures. For each
video time step, eight so-called multi-view video textufld/V textures) are cre-
ated (Fig. 4.2) by transforming the individual video franm@s texture space.

4.3.2 Spatio-temporal Texture Reconstruction

Since we know the exact body pose of the model in each timeo$teqlti-view
video we can incorporate image data of multiple body pos&sane consistent
surface texture. This, in turn, enables us to fill-in coldormmation for surface
areas that are invisible in one body pose from images of théeima another
body pose. There are two main reasons for why a surface paynnat be visible
from any input camera view.

e Mutual occlusion of directly adjacent body segments: Soreasof a seg-
ment can be occluded by the directly adjacent segment, eds pf the
upper arm segment that are inside the torso.

e Camera placement: For any possible arrangement of imaginmspsesome
parts of the model may be invisible, even though they are aduded by
any neighboring body segment.

In order to differentiate which of the two cases applies tpectic invisible sur-
face point, we have developed the following two-step spetioporal texture re-
construction procedure which implicitly handles both case

Before texture reconstruction commencéstime steps of the input MVV se-
guence from which the color information for the final textiseassembled are
automatically selected. In step 1, thiagle-time-step texture assembhe create
U individual consistent surface texturegex;, withi € {1,...,U}. Eachstex;
is only reconstructed from multi-view video images of tintepsi. The color
of a texel is computed by weightedly blending the colors sapitojected loca-
tions in each of the camera views. The blending weights amgpated in such a
way that a camera which sees a surface point more head-osigned a higher
blending weight. To this end, we employ the view-indepemeaerghting scheme
described in [Carranza03].

In order to compute the visibility of each surface point ihcdithe camera views,
we have developed a scheme which looks at each of the 16 bgdyeses sep-
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Figure 4.3: Trimming procedure for the pelvis segment: Verices in the torso
and the upper legs that lie inside the pelvis’ bounding box a& discarded. The
white parts of the torso are also visible for camera 2 in the utrimmed model.
All other colors indicate the adjacent body segments that, por to trimming,
occlude these vertices.

Occlusion
Boundary

Figure 4.4: Texture information for surface segments that a occluded by
adjacent triangle meshes is only taken from those parts of th occluding ge-
ometry that are close to the occlusion boundaries.

arately. Using the pelvis as an example, the scheme worksllas/$: First, a
slightly enlarged bounding box of the pelvis is generatelditriangle vertices on
directly adjacent segments (i.e. torso and upper legs)afeainside that bound-
ing box are trimmed. For each input camera view, the visibiif each vertex
in the pelvis is determined from the trimmed version of thedelo In Fig. 4.3
the trimming procedure for the pelvis segment is visualiz€de white regions
on the pelvis illustrate those parts of the geometry thaehmeen visible in input
camera 2 even in the untrimmed model. All pelvis areas withttzar color were
occluded by one of the directly adjacent segments. By thisnsjeae implicitly
create texture information for parts of the surface geoyrtbtrt are invisible due
to mutual occlusion between neighboring triangle meshes.v3ibility compu-
tation scheme makes sure that occluded texture parts agkifillfrom those parts
of the occluding geometry that are spatially close to thdusten boundary on
the 3D surface (Fig. 4.4). Texture parts of the occluder d@natfar from from the
occlusion boundary do not contribute to the occluded textwea.
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Figure 4.5: (a) Color-coded rendition showing from what time steps of multi-
view video each texel in the final texture of the left upper legwvas recon-
structed. Consistent segment texture with (b) and without¢) mean filtering
of areas that do not stem from the reference texture. Smootlteareas are
encircled in red.

In step 2, thetexture combinatiorstep, we merge all single-time-step textures,
stex;, into one final texture (Fig. 4.6a). The texture generatedhfthe model

in the initialization posestex, is considered as the reference texture. For every
texel in stex; whose color is not known we make a look-up, in ascending prder
into all remaining single-time-step texturgsx;,i € {2,...,U}. The color of the
texel is copied from the first texture in which it is visibleégF4.5a illustrates from
what time steps of the multi-view video sequence the colotke final texture of
the left upper leg were taken. Color discontinuities in thalftexture that may
arise in those areas that have not been reconstructed feoreféirence time step
are smoothed by locally applying a mean filter (Fig. 4.5b,c).

(b)

Figure 4.6: An example of a complete body texture (a) and a p&ed face
texture (b) for a male avatar.

In many virtual environments it is a nice feature to be ablexoress the mood of
the avatar with a texture that shows a particular facial esgion. One can store
a complete body texture for each facial expression. Makisg af our texture
parameterization which maps each body segment to a 2d pathk texture do-



38

Chapter 4: Automatic Generation of Personalized Human Aatars

main, we can optimize this storage. As an optional step, ppraach thus allows
the user to manually select a set of time steps from the irgmuence that show
interesting facial expressions. For each of these timesstep create a separate
texture of the face segment only. All face textures are effity stored in a packed
format (Fig. 4.6b). The packed face texture can be loadeetheg with the full
body texture and, depending on the actor's mood, the fag@ession can be
changed on-the-fly (Fig. 4.7).

4.4 Results

We have several multi-view video test sequences of a maleadethale actor
wearing different types of apparel at our disposition. Eafctine input sequences
is between 3 and 7 seconds long. We employed different nuofidieames for
texture reconstruction. A comparison revealed that 5 feaane sufficient to create
a complete texture without artifacts. On a PC featuring aiten™ 4 CPU and
an Nvidia GeForce 6800 GPU one iteration of the skeletorategrmethod on
average takes around 1 minute. We employ 5 times steps féiogpenporal
free-form deformation, which takes around 15 minutes to fipdmal scaling
parameters. The spatio-temporal texture reconstructethoa takes, on average,
around 40 seconds if 5 time steps of the MVV sequence aredenesl. On the
whole our method requires 17 minutes for processing a seguen

Figs. 4.8a,b show a comparison between the actor as he appeame of the
video frames, and the rendered avatar in a novel body poseagipuoach faith-
fully captures the shape and the textural appearance ottbeia different types
of apparel. Even in body poses that are significantly diffef@m any of the cap-
tured ones, appearance artifacts due to texture undersanapé hardly visible.

Fig. 4.8c demonstrates that, if the surface texture is oatpmstructed from a
single time step, severe rendering artifacts may appeagguhent boundaries.
In contrast, our spatio-temporal texture reconstructicieme generates a very
consistent surface texture (Fig. 4.8d).

In addition, our approach enables to capture various fadares and store them
in a compact format. Two renditions of the avatar with ddigrfacial expressions
are illustrated in Fig. 4.7. The reconstructed realistitual humans can be used
to realistically populate artificial virtual environmer{isg. 4.8e).

Our results show that the employment of image data of melbpldy poses during
texture reconstruction enables us to reconstruct humaaravhat exhibit a very
high visual quality. Although we employ specialized muwiigw video hardware
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Figure 4.7: Different moods of the avatar can be expressed i different
facial expressions.

for acquisition, images of a human in different body posaswere captured with
several digital photo cameras could also be employed.

Despite the high achievable visual quality our approachuigext to a few lim-
itations. If a surface point is never seen by any of the camenad if this non-
visibility is not due to self-occlusion of adjacent body{sano texture information
can be reconstructed for that area. However, in practiseatmost never happens.
It is also not a principal limitation of our method but a preinl that can not sat-
isfactorily be solved by any image-based approach. Furtber, the segmented
geometry of our model may lead to discontinuities in the azefappearance if
the model’s stance is greatly different from the referermsep This is a limitation
of the segmented body model, and in the next chapters, we ridgrate that a
single-skin model results in much higher quality of reratis.

Despite these limitations, we have demonstrated that weatarstly reconstruct
highly realistic virtual humans based on simple-to-par&miee model from only
a handful of images.

4.5 Conclusion

In this chapter we presented a fully-automatic approaclet®rate a personalized
avatar from multi-view video data of a moving person. Ourmoetis based on
a generic human body model whose pose and geometry can b&eddwi opti-
mizing only a handful of parameters. By employing dynamictiniéw image
data for shape customization and texture reconstructionbiggn convincing vir-
tual humans that exhibit a visual quality that would not hbeen achievable by
reconstructing from single-pose photographs.

Some of the limitations in our approach arise from the usehefgegmented
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model. In our work on relightable free-viewpoint video (B#), we show that the
use of single skin human body model can greatly enhance toas&uction qual-
ity and results in even more realistic renditions. Simylanhlike the static texture
used to capture the appearance of the avatar, the laterepmsbh this thesis fo-
cus on capturing dynamic surface details both in the gegraati surface texture.
The work on relightable free-viewpoint video demonstraites high quality time-
varying details can not only be authentically reconstrdictet can also be stored
in a very compact manner in the form of time-varying surfaoetures. In Part IV
of this thesis, we demonstrate that time-varying detaitslzadirectly captured in
the geometry which results in a very high quality of recanstied animations.
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Figure 4.8: (a),(b) Comparisons between real and the virtuahumans: In
each triplet, the image on the left shows one of the multi-vie video frames
used to reconstruct an avatar. The two images to the right showenditions of
the virtual human in novel body poses that have not been seerytany cam-
era. (c) If the texture is only reconstructed from one time sép of video black
seams may appear at segment boundaries on the rendered modd€t) Our
spatio-temporal texture reconstruction method eliminates these artifacts. (e)
An avatar can be used to insert a real-world person into arbitary virtual
environments.
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High Quality Relightable
Free-Viewpoint Video






Chapter 5

Problem Statement

This part reviews two methods that enhance the reconstruction
relightable free-viewpoint videos from multi-view videdadaFirst,
the related work in this area is reviewed, then a method for awvioig
spatio-temporal texture registration is presented. Hyah method
for reducing bias in the reflectance estimation approachesadibed.

In the previous chapter we presented a method for autoneatomstruction of per-
sonalized human avatars. The method captured the true shdppehuman actor
and reconstructed a static surface texture for the reatistiditions of the avatar.
This technology is suitable for a wider audience as a partgdreeral setup but
not very suitable for a specific application that requireghbr quality renditions.
A static surface texture for rendering 3D videos would resulery unlifelike
animations. Additionally, recent advances in graphicsiiare and rendering
algorithms enable the creation of images of unprecedem@dm in real-time.
In order to capitalize on these novel rendering possiedithowever, ever more
detailed and accurate scene descriptions must be createtprice to pay can
be measured in working hours spent to create detailed gepmetshes, com-
plex textures, convincing shaders, and authentic animsitid\pparently, scene
modeling is becoming a limiting factor in realistic rencheyi

In order to avoid excessive modeling times, we can again &alapturing suit-
able models directly from the real world objects. Image- aitttto-based ren-
dering (IBR/VBR) approaches pursue this notion, aiming at aatmally gener-
ating visually authentic computer models from real woedarded objects and
events [Kanade97]. Many of these techniques show how toaictigely ren-
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der photo-realistic views from real world-captured, dymamscenes (see also
Sect. 5.1). While the ability to realistically display dynianevents from novel
viewpoints has by itself already a number of intriguing &adions, the next step
is to use objects that have been captured in the real worldugmenting virtual
scenes. To import a real-world object into surroundinge kit from the record-
ing environment, however, its appearance must be adaptkd tew illumination
situation. To do so, the bi-directional reflectance disttitn function (BRDF)
must be known for all object surface points. Data-drivenj®ec00, Matusik03]
as well as model-based [Marschner98, Lensch03] methods leen proposed
to recover and represent the BRDF of real-world materials.otiuhately, these
methods cannot be directly applied to dynamic objects éhgotime-varying
surface geometry and constantly changing local illumonrati

Theobalt et al. [TheobaltO5b] [TheobaltO5a] presented @praach that jointly
captures shape, motion and time-varying surface refleetahpeople. In their
work, they used a silhouette based analysis through syisthexthod to capture
the shape and motion of the human actor [Carranza03]. Theypa¢sented an
image-based warping method to enhance the multi-view ptatsistency in the
presence of inexact body geometry. Finally, they also prtesemethods to esti-
mate surface reflectance properties and time-varying ridield of the moving

actor.

In this part of the thesis, we present some methodical imgmants to their orig-
inal pipeline. We slightly modified acquisition setup, amalsnonly employ a
single lighting configuration using two spot lights (Chap8r Moreover, we
discard the segmented human body model and employ a singleeskplate
model [Theobalt07]. Extending their work on enhancing phoansistency, us-
ing the same framework, we introduce a spatio-temporastegion method that
compensates shifting of the apparel over the body [Ahmedpitseobalt07].
Their original reflectance estimation considered eachtpirface individually.
Without modifying individual component of their work flow geline, we intro-
duce a new sampling method for the surface reflectance d¢gimthat only mod-
ifies the reflectance samples for each surface point. Ourl ispeatio-temporal
reflectance sharing method ensures that the surface refteg@operties are not
biased towards the recording environment [Ahmed07b].

Contributions of this part are:
e An algorithm to detect and compensate lateral shifting xtiltss,

e a spatio-temporal reflectance sharing method that reduassrbthe esti-
mated BRDF parameters.
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5.1 Related Work

We capitalize on previous research in many areas, but pitynpéck up ideas from
the fields of free-viewpoint video and image-based reflexdastimation.

Research in free-viewpoint video aims at developing mettmdghoto-realistic,
real-time rendering of previously captured real-worldrese The goal is to give
the user the freedom to interactively navigate his or hevp@nt freely through
the rendered scene. Early research that paved the way ®wige/point video
was presented in the field of image-based rendering (IBR).&fram-silhouette
methods reconstruct geometry models of a scene from meltr-gilhouette im-
ages or video streams. Examples are image-based [MatyudMdinlin02] or
polyhedral visual hull methods [Matsuyama02], as well gsrapches perform-
ing point-based reconstruction [Gross03]. The combimatiostereo reconstruc-
tion with visual hull rendering leads to a more faithful restruction of surface
concavities [LiI02]. Stereo methods have also been appteddonstruct and
render dynamic scenes [Zitnick04, Kanade97], some of thexplaying active
illumination [WaschlaischO5]. Alternatively, a complete parameterized geome-
try model can be used to pursue a model-based approach wireedviewpoint
video [Carranza03]. On the other hand, light field renderiogvpy96] is em-
ployed in the 3D TV system [Matusik04] to enable simultareescene acquisition
and rendering in real-time.

IBR methods can visualize a recorded scene only for the sdnmeimlation con-
ditions that it was captured in. For correct relighting,sitnecessary to recover
complete surface reflectance characteristics.

The estimation of reflection properties from still images Ih@en addressed in
many different ways. Typically, a single point light sourseused to illumi-
nate an object of known 3D geometry consisting of only oneenmt One
common approach is to take HDR images of a curved objectliyigla differ-
ent incident and outgoing directions per pixel and thuswapg a vast number
of reflectance samples in parallel. Often, the parameteendnalytic BRDF
model are fit to the measured data [Sato97, Lensch03] or addiatn model
is used [Matusik03]. Reflectance measurements of scenesnath complex
incident illumination can be derived by either a full-blovimverse global il-
lumination approach [Yu99, Gibson01, Boivin0O1] or by remmting the inci-
dent light field as an environment map and solving for theatifkumination
component only [Yu98, RamamoorthiO1, NishinoO1]. Reflectwoperties to-
gether with measured photometric data can also be used e dprometric
information of the original object [Zhang99]. Rushmeier étestimate dif-
fuse albedo and normal map from photographs with variedderdi light di-
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rections [Rushmeier97, BernardiniO1l]. A linear light sourseemployed by
Gardner et al. [Gardner03] to estimate BRDF properties anthemormal.
In [Georghiades03, Goldman04], reflectance and shape t¢ stzenes are si-
multaneously refined using a single light source in eachqgraph.

Instead of explicitly reconstructing a mathematical relace model, it has also
been tried to take an image-based approach to relighting[H&wkins04] a
method to generate animatable and relightable face mod@is images taken
with a special light stage is described. Wenger et al. [Weigjeextend the light
stage device such that it enables capturing of dynamic tafiee fields. Their
results are impressive, however it is not possible to chainge/iewpoint in the
scene. Einarsson et al. [Einarsson06] extend it furthersionygLa large light stage,
a treadmill where the person walks on, and light field remdgefor display. Hu-
man performances can be rendered from novel perspectida®bin

Our work on spatio-temporal reflectance sharing has begir@us by the re-
flectance sharing method of Zickler et al. to reconstructeapgnce of static
scenes [Zickler05]. By regarding reflectance estimation ssadtered interpo-
lation problem, they can exploit spatial coherence to olnt@ore reliable surface
estimate. Our algorithm exploits both spatial and tempooakerence to reliably
estimate dynamic reflectance. However, since a full-bloeattered data inter-
polation would be illusive with our huge sets of samples, weppse a faster
heuristic approach to reflectance sharing.



Chapter 6

Reflectance Sharing and
Spatio-Temporal Registration for
Improved 3D Video Relighting

This chapter describes two extensions to the earlier work on
reconstructing relightable 3D videos. First a method forpnov-
ing spatio-temporal registration of the dynamic texturelescribed,
which detects and compensates shifting of cloth over the fuadigce.
Finally, a reflectance sharing approach for reducing spatmporal
bias in the estimated surface reflectance properties isgmiesl.

6.1 Overview

Fig. 6.1 illustrates the workflow between the componentsefjoint shape, mo-
tion and reflectance capture approach presented by Thesitalt[ Theobalt05a]
after our two enhancements. Our proposed methods (Fig.h@hlighted by

magenta rectangles), sit in between the pipeline and do odifynthe original

surface reflectance and normal field estimation procedures.

Although the details of Theobalt et al. [TheobaltO5a] oraiframework, as a
whole, are not the subject of this thesis, for better undedihg we briefly elab-
orate on the acquisition setup in Sect. 6.2 and employed hitezded marker-less
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Figure 6.1: Algorithmic workflow of the original pipeline wi th our two en-
hancements (highlighted by magenta rectangles).

motion capture algorithm in Sect. 6.3. Their image-basegbing method for the
texture registration will be discussed in Sect. 6.4.

Our enhancement to the texture registration method, widdnesses the issue of
detecting and compensating the shifting of the apparel theebody surface by
means of an automatic cloth shift detection procedure isgmted in Sect. 6.5.

In order to motivate for our spatio-temporal reflectancerigigamethod we will
describe the basic principals of dynamic reflectometry ihased in the original
pipeline in Sect. 6.6.

The fixed arrangement of the camera and light sources in tipgisitton system
can lead to biased sampling of the reflectance space. ToeeHiscbias a novel
spatio-temporal reflectance sharing method that combigaandic reflectance
samples from different surface points of similar materiatindg BRDF estima-
tion of each surface element in texture space (texel) issptesd in Sect. 6.7.

6.2 Acquisition

Inputs to Theobalt et al. [Theobalt0O5a] method are syndheshmulti-view video
sequences captured with eight calibrated cameras thatrée2004x1004 pixel
image sensors and record at 25 fps. The cameras are place@ppeoximately
circular arrangement around the center of the scene whitlansinated by two
calibrated spot lights. Since the BRDF estimation from theregion of the dy-
namic normal maps is conceptually separated, two types tf-mew video se-
guence for each person and each type of apparel are recoirdde first type
of sequence, the so-called reflectance estimation seq(RES), the person per-
forms a simple rotation if front of the acquisition setup. €ORES is recorded
for each actor and each type of apparel, and it is later usedcanstruct the
per-texel BRDF models. In the second type of sequence, thalkmadynamic
scene sequence (DSS), the actor performs arbitrary mowsneeveral DSS are
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@) (b)

Figure 6.2: (a) Input frame, (b) body model in same pose, andc] silhouette
matching.

recorded, and from each of them, one relightable free-vogmtpvideo clip is re-
constructed. Also the second component of their dynamieatfhce model, the
dynamic normal maps, are reconstructed from each DSS.

6.3 Reconstructing Dynamic Human Shape
and Motion

An analysis-through-synthesis approach is employed ttucagoth shape and
motion of the actor from multi-view video footage withoutvitag to resort to
optical markers in the scene. It employs a template humary boadel con-
sisting of a kinematic skeleton and a single-skin triangkesimsurface geome-
try [Carranza03, TheobaltO4]. In an initialization stepe #hape and proportions
of the template are matched to the recorded silhouetteseddtor. After shape
initialization, the model is made to follow the motion of thetor over time by in-
ferring optimal pose parameters at each time step of vidiegy tise same silhou-
ette matching principle, Fig. 6.2. This dynamic shape retroction framework
is applied to every time step of each captured sequenceyate. RES and DSS.
This way for each time step of video the orientation of eacfase point with re-
spect to the acquisition setup is known, which is a precardfor the subsequent
dynamic reflectometry procedure.

Given the moving geometry, all input video frames and alregponding data
required for reflectance estimation (e.g. image samplesyals, visibility infor-
mation, light vectors) are transformed into sequencesxtidites. Throughout the
work, 1024x1024-texel texture maps are used, where théisexsurface element
in the texture space. The model’'s surface is parameternedao2D square. For
the BRDF and time-varying normal estimation a parametednatiith minimal
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Parameterization B

Parameterization A

Figure 6.3: Human body model and the corresponding texture prameteri-
zations (colors=normals encoded in RGB).

surface distortion is required. To achieve this, a paranzettgon (Parameteriza-
tion A) that leaves the mesh boundary free and results ity faiiform distribu-
tion of samples [Zayer05b] is employed, Fig. 6.3. For theppae of cloth shift
detection, on the other hand, a parameterization (Paraizegten B) with a fixed
square boundary is preferred, Fig. 6.3.

6.4 Warp Correction

Although the body model initialization procedure yieldsaltiful representation
of the person’s true geometry, small inaccuracies betweemneal human and its
digital counterpart are inevitable. Due to these geometrgauracies, pixels from
different input views may get mapped to the same texel ositi different MVV
textures, even though they do not correspond to the samacsuetement of the
true body geometry.

One common strategy to enhance model-to-texture consisisrto deform the
geometry until an overall photo-consistency measure igmmagd. For instance,
[de Aguiar05, Kick04] deform model geometry from input images by jointly op
timizing multi-view silhouette- and photo-consistency.d similar line of think-
ing, [Herrandez04] jointly employs silhouette and stereo conssaimtdeform
scene geometry from images. Geometry deformation-basthiaation, how-
ever, tends to give unstable results, in particular due tdimear optimizations
that are normally required.
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Figure 6.4: Cloth shift between two subsequent combined tédrest and ¢+ 1

(in parameterization B) is found via optical flow. In the middle, detected
shifted areas are shown in red. Finally, the shift is encodeth the warped

texture-coordinates.

Theobalt et al. [Theobalt05a] presented an optical flow thasage-warping ap-
proach that instead of moving surface elements to theirecbtocations in 3D,
move the image pixels within the 2D input image planes uhglytall become
photo-consistent given the available geometry. To esllger-pixel correspon-
dences, the warping operation itself is based on the opitmal [Lucas81] be-
tween the reference image and the target image. A regulan2iyte mesh is su-
perimposed on the reprojected model image, per-vertexagisments are derived
from the optical flow values, and the mesh is deformed acnghgivia thin-plate
spline interpolation [Farin99]. Finally, the warped rejeided image is created on
the GPU.

In the next section we will present our cloth shift detectaord compensation
approach making use of this image warping technique.

6.5 Cloth Shift Detection and Compensation

BRDF estimation procedure presented in [TheobaltO5a] asstima¢ a static set
of material parameters can be assigned to each point on ttielssurface. Inre-
ality, however, this assumption does not hold since theragbpéthe person shifts
across the body while she is moving. Prior to surface refheetawe thus esti-
mate the motion of the apparel over time and register albsertextures against
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a reference texture. Please note that we can still repradtiedeue shifting of the
apparel during rendering by making the cloth motion infatioraaccessible to
the renderer. During display, the renderer warps the estoinstatic BRDF tex-
tures back into their true position. We employ the followmgthod to detect the
shifting of cloth in the texture domain, Fig. 6.4:

Our reference time step is the last frame of the RES becausethit frame
the actor goes on performing for the DSS. MVV textures fos tiname and all
the frames of the DSS are resampled into a weightedly blesdegle texture
in parameterization B. Cloth shift is detected by computinggtical flow field
between subsequent blended textures. This flow field descii each texel how
it shifts across the body surface. This texel motion infdrormais made accessible
to the reflectance estimation process as well as the rendeher form of warped
texture coordinates.

Please remember that we use texture parameterization Aafoplég, but tex-
ture parameterization B for cloth shift computation. We maise of this pa-
rameterization because it has well defined boundaries inetttare space, un-
like the free boundary representation in parameterizagiovhere the there is no
well defined correspondence between the boundary pixelsabf € de of the cut.
Therefore, we project the parameterization A texture coatds of the reference
frame into parameterization B to obtain the texture co@inmage c,orq45(0).
Given the accumulated displacements from the pairwise fleidgiwe can deform
Icooraan(0) such that it matches the texture at each time of input videmube
method from Sect. 6.4. Note that it is essential to compugeckbth motion rela-
tive to the previous frame and accumulate the displacemasttome. Only this
way, appearance differences due to lighting changes canbostlty handled.

The sequence of deformed texture coordinates enables uscéaira for cloth
shifting during estimation and rendering, although onlyais set of BRDF pa-
rameters are estimated.

6.6 Dynamic Reflectometry

Dynamic reflectance model presented in presented in [TH&lad consists
of two components, a static parametric isotropic BRDF for eaahface
point [Phong75, Lafortune97a], as well as a descriptiorheftime-varying di-
rection of the normal at each surface location. The first camept of the re-
flectance model is reconstructed from the video frames ofdfiectance estima-
tion sequence, the second component is reconstructed fomdynamic scene
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Figure 6.5: Steps to estimate per-texel BRDFs.

sequence. BRDF reconstruction is formulated as an energymniagion prob-
lem in the BRDF parameters [TheobaltO5a]. This minimizatioybfem has to be
solved for each surface point separately.

In the first step the reflectance samples are clustered tondetewhat material

a surface element, i.e., each texel in the texture mapsngeloThe number of
materials is preset a priori. A straightforward color bas@dtering approach
that considers raw color values is employed. The clustesteg is important
because unlike the diffuse BRDF which is measured for each separately,

the specular component of the BRDF is estimated for each clustee energy

functional measures the error between the recorded refleetsamples of the
point under consideration and the predicted surface appearaccording to the
current BRDF parameters. Estimates of the BRDF parameters edeaisefine

the surface geometry by keeping the reflectance parametedsand minimizing

the same functional in the normal direction, Fig 6.5. On@BRDF parameters
have been recovered from the RES, a similar minimizationgaore is used to
reconstruct the time-varying normal field from each DSS.

In the original pipeline, as it was summarized above, BRDFrpatars were esti-
mated for each surface point by taking only reflectance sasng this particular
point itself into account. In the following, we present a ebsgpatio-temporal
sampling scheme that reduces the risks of a bias in the BRDiRass by also
taking into account dynamic reflectance samples from othdase points with
similar material properties.

6.7 Spatio-Temporal Reflectance Sharing

Although Theobalt et al. [Theobalt05a] showed that it issfeke to reconstruct
dynamic surface reflectance properties using only eightecasnand a static set
of light sources, this type of sensor arrangement leads tas&t sampling of the
reflectance space. By looking at its appearance from eachraanesv over time,
we can generate for each surface point, or equivalentlgdoh texel’ a set of v
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Figure 6.6: Weighted selection of samples. Samples from tlsgmilar patches
are added to the samples from the original texel. Additionalsamples are
selected according to a weighting criteria that is based onheir maximum

angular difference from the samples of original texel.

appearance samples
Dyx(&) = {S; | S; = (I, I;,;),i € {1,...,N}} (6.1)

Each samplé; stores a tuple of data comprising of the captured image sitien
I, (from one of the cameras), the direction to the light souycand the viewing
directionv;. Please note that only if a point has been illuminated by thxace
light source, a sample is generated. If a point is totallyhadow, illuminated
by two light sources, or not seen from the camera, no sampieceted. Our
acquisition setup comprising of only 8 cameras and 2 lightees is comparably
simple and inexpensive. However, the fixed relative arrarege of cameras and
light sources may induce a bias in OyX. There are two primary reasons for this:

e Due to the fixed relative arrangement of cameras and lightcesu each
surface point is only seen under a fixed number of half vecit@ctions
h=1+0.

e Even if the person performs a very expressive motion in the, R&®ples
lie on “slices” of the hemispherical space of possible inowright and
outgoing viewing directions.

Both of these factors possibly lead to BRDF estimates that mageweralize
well to lighting conditions that are very different to thegadsition setup.
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Figure 6.7: Texture-space layout of surface patches. Patels of same material
are clustered according to the average normal direction. Fothis illustration,
patches of the same material are colored in the same overalbhe (e.g. blue
for the shirt) but different intensities.

By means of a novel spatio-temporal sampling strategy,dajpatio-temporal re-
flectance sharing, we can reduce the bias, Fig. 6.6. Therguidea behind this
novel scheme is to use more than the sampleg Bythat have been measured for
the point? itself while the BRDF parameters for the poihare estimated. The ad-
ditional samples, combined in a set Ry, (%), stem from other locations on the
surface that are made of similar material. These additisaalples have poten-
tially been seen under different lighting and viewing direas than the samples
from Dyx(Z) and can thus expand the sampling range. It is the main clgailen
incorporate these samples into the reflectance estimatignnea way that aug-
ments the generality of the measured BRDFs but does not congedne ability
to capture spatial variation in surface appearance.

By explaining each step that is taken to draw samples for &péat surface point
Z, we illustrate how we attack this challenge:

In a first step, the surface is clustered into patches of amaWverage normal di-
rections and same material, Fig. 6.7. Materials are cledtby means of a simple
k-means clustering using average diffuse colors. The niadirectionr of ¥ de-
fines the reference normal direction, Fig. 6.6a. Now, allisf patches consisting
of the same material ag is generated.L is sorted according to increasing an-
gular deviation of average patch normal direction and ezfee normal direction,
Fig. 6.6b. Now;z, many patche$y, ..., P, are drawn fromL by choosing every
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Ith list element. From each patch, atexel is selected at rapdsulting in a set of
texels,T” = 7p,, ..., fpnp. The set of texel§™ has been selected in a way that max-
imizes the number of different surface orientations. Frbenreflectance samples
associated with texels ifi, we now select a subset Dyx,,(7) that maximizes
the coverage of the 4D hemispherical space of light and viesctions. In order

to decide which samples froffi are potential candidates for this set, we employ
the following selection mechanism.

A weighting functiond(S;, S») is applied that measures the difference of two
samplesS; = (I1,01) andSy = (I3, 09) in the 4D sample space as follows:

8(S1,52) = A(ly, Iy) + Ay, 0y) (6.2)

whereA denotes the angular difference between two vectors. Weamyib se-
lect for each samplg.. in 7' its closest sampl8;iosesiin DyX(%), i.€. the sample for
whichwgs, = 0(.S;, Scioses) IS Minimal, Fig. 6.6d. Each samptg is now weighted

by ws,. Only the[aN'| samples fron¥" with the highest weights eventually find
their way into DyX,m(7), Fig. 6.6e. In Sect. 6.8, we show that at around 34% we
get maximum improvement from additional samples, theesfoe set the value of

a = 0.66. The BRDF parameters faf are estimated by taking all of the samples
from Dyx(Z) U DyXqompi( %) iNto account, Fig. 6.6f. For estimation, we make use
of the original dynamic reflectometry method detailed intSe®.

6.8 Results and Validation

In the previous sections, we presented two enhancemerits twiginal work on
joint motion and reflectance estimation scheme of Theobalt ¢Theobalt05a].
We presented a spatio-temporal registration techniqua adel spatio-temporal
reflectance sharing method for enhancing the quality ajingdible free-viewpoint
videos.

We have validated our approach by visual inspection and tqatve evalua-
tion. We have processed 2 different input sequences usiagg”and Lafortune
BRDFs. They cover 2 different human subjects,2 different $ygleapparel, and
comprise 150 to 350 frames each. For numerical verificatioesrestrict our-
selves to Phong sequences.

For texture registration, we assess the multi-view wargjaglity by comparing
the image differences between reference views and repedjecodel views be-
fore and after the warp. The local registration improvers@msingle image pairs
lead to a global improvement in multi-view texture-to-mbdensistency. With



6.8 Results and Validation 59

(a) Without Cloth Shift (b) With Cloth Shift
Compensation Compensation

Figure 6.8: Screen-shots of relightable 3D videos renderednder captured
real-world illumination. (a) Without cloth-shift detecti on, the seam of the t-
shirt is rendered incorrectly. (b) With cloth shift detection, it is reproduced
accurately.

respect to one input stream not used for reconstruction we dlatained a peak-
signal-to-noise-ration improvement of 0.2 dB using cldiiitcompensation. On

a Pentium IV 3.0 GHz, cloth shift compensation takes arowslf8r each time

step of the video. Although these quantitative improvemendy appear small,
their influence on the overall visual is quality is well-poumced. Fig. 6.8 shows
how it corrects the movement of seams of the shirt over thiacewr

Although cloth shift compensation and warp correction leadisual improve-

ments in the majority of cases, isolated local deteriorat@re still possible. Cloth
shift detection, for example, sometimes erroneously iflassevolving wrinkles

as shifting of apparel. Also, in case of strongly incorredypgeometry, warp cor-
rection may induce noticeable discontinuities on the serfa.g. due to changing
reference cameras or visibility boundaries. Luckily, fbe ttypes of scene we
intend to handle, body shape is already so close to the tromegey that these
discontinuities play no significant role. We nonethelessdethe decision if ei-
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Figure 6.9: Comparison of renditions under captured real-world illumi-

nation such as the St Peter’'s Basilica environment map (a),jband the
Grace Cathedral environment (c),(d) courtesy of Paul Debexc. One
can see that compared to renditions obtained without spatidemporal re-
flectance sharing ((a) (c)), subtle surface details are muchetter repro-
duced in the renditions obtained with spatio-temporal refletance sharing
((b) (d)). A high quality video comparison can be seen in httg/www.mpi-
inf.mpg.de/"nahmed/Mirage07.avi.

ther of the two methods are used to the user.

We verified our spatio-temporal reflectance sharing methatti bisually and
guantitatively, and show that the novel reflectance samgptirethod leads to
BRDF estimation that generalizes better to lighting condgidifferent from the
acquisition setup. Fig. 6.9 shows a side-by-side compaisiween the results
obtained with and without spatio-temporal reflectanceisamBoth human sub-
jects are rendered under real world illumination using HDRi®nment maps.
One can see that with the exploitation of spatial coheremoee surface detail is
preserved under those lighting conditions which are styoti¢ferent from acqui-
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Figure 6.10: PSNR values with respect to ground truth for diferent numbers
of additional samplesDyXqqm(7)-

sition setup. The difference is more pronounced in the apemying video which
can be downloaded from http://www.mpi-inf.mpg.de/"nakdfivirage07.avi.

In addition to visual comparison, we also validated the méthy comparing the
average peak-signal-to-noise-ratio with respect to infu€o stream obtained un-
der two calibrated lighting conditions as described abdMe. reconstructed the
BRDF of the test subject under lighting setup LC B with and withour new
reflectance sampling. Subsequently, we calculated the P8iRthe ground
truth images of the person illuminated under setup LC A. Ysiar novel sam-
pling method, we have estimated surface reflectance usffeyetit percentages
of additional samples. For each case, we computed the PStiRespect to the
ground truth. Fig. 6.10 shows the results that we obtainexde that the graph of
the original method (green line) is constant over the irgreanumber of sam-
ples just for the illustration purpose because it only cers the samples from a
single texel. With spatio-temporal reflectance sharing (ree) both results are
exactly the same in the beginning as no additional samp&esarsidered, but it
can be seen that the PSNR improves as additional sampleskareihto account.
We get a peak at around 30%-40% of additional samples. Wghnitlusion of
more samples the PSNR gradually decreases as the eversingeamber of
additional samples compromises the estimation of the taflee’s spatial vari-
ance. At maximum, we obtain a PSNR improvement of 0.75 dB.cAith we
have performed the PSNR evaluation only for one sequencareveonfident that
for others it will exhibit similar results. This assumptiefurther supported by
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the more compelling visual appearance obtained for all therdest data that we
have used.

6.9 Conclusion

In this chapter we presented two improvements to the origwoak of Theobalt
et al. [Theobalt05a] on joint shape, motion and reflectaapture. We presented
an image-based spatio-temporal registration technigaecbmpensates for the
shifting of cloth across the body’s surface enables higalityureconstruction of
model-based relightable 3D videos. Quality improvementthe real-time ren-
derings were shown both quantitatively and visually.

Our spatio-temporal reflectance sharing method reducebitisein BRDF esti-

mation for dynamic scenes. Our algorithm exploits spatdlecence by pooling
samples of different surface location to robustify reflactaestimation. In ad-
dition, it exploits temporal coherence by taking into colesation samples from
different steps of video. Despite the spatial-temporamgsing, our algorithm is

capable of reliably capturing spatially-varying reflectarproperties. By means
of spatio-temporal reflectance sharing, we obtain conag8D video renditions

in real-time even under lighting conditions which differastgly from the acqui-

sition setup.

Our methods are independent of this specific framework andbeaemployed

independently. In the overall pipeline of the earlier wdnky do not change the
estimation procedure in dynamic reflectometry. In the next pf this thesis we
will continue with the improvements and make use of estichatgnamic nor-

mal field in the original method and transfer it into highlytaiéed time-varying

geometry deformations.
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Chapter 7

Problem Statement

This part proposes a new data fusion framework for adding high
quality details to dynamic geometry. The animated tempia¢sh
used in relightable free-viewpoint video does not exhibibtigu
dynamic surface details, e.g. wrinkles in clothing. Thesanges
were captured in the time-varying normal field. Using thereated
reflectance field and the dynamic normal field, high qualityet
varying details are added to the template geometry. Firstrdlated
work in this area is discussed and later the solution to getigtailed
dynamic geometry is proposed.

In the previous part of this thesis we presented two impram@mto the work
of Theobalt et al. [Theobalt05a] for reconstructing higtaligy relightable free-
viewpoint video. In their work they first performed markes$ motion capture on
the input data in order to make a coarse kinematic templata\ys in Fig. 7.1b)
follow the motion of the actor and also captured the true slwdthe actor. Sub-
sequently, a reflectance model for each point on the surfaseraconstructed,
and was exploited to measure a dynamic surface normal fietohyeerized over
the smooth template mesh. The dynamic normal field was applea bump
map over the smooth template geometry. While the animateglééenalong
with the BRDF parameters and dynamic normal field was suffidemtender-
ing relightable free-viewpoint video, one of the limitatiof the original template
geometry that it did not incorporate true time-varying getny) remained. For
realistic renderings of 3D videos from novel viewpointsyihg the true detailed
geometry would result in the accurate appearance as opposedy using the
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bump maps. Hand-crafting detailed moving scene geome#rgisnbersome pro-
cess, as it requires tedious manual work or computatioeaibhensive numerical
simulations (e.g. for clothing). The development of scagrdevices that deliver
fine-grained shape models of at least static scenes hasoiteegeeatly facilitated

animation production. Unfortunately, capturing high-ifyetime-varying shape

of dynamic scenes at the same level of fidelity is still a bigliemge. First ap-

proaches to reach this goal were based on active video-basasurement, such
as structured light, or employed a combination of visual &wmdl stereo. While the
former approaches are merely usable for small-scale s¢ergedaces) and inter-
ference makes multi-view recording difficult, stereo apattes often fall short in
delivering the high level of accuracy that computer anioratequires (Sect. 7.1).

In this part of the thesis, we propose a new method to pagsbagiture highly-
detailed dynamic surface geometry of humans from multipdeee recordings
under calibrated lighting [Ahmed08a]. We make use of the&ipres work on re-
lightable free-viewpoint video ([Theobalt0O5a] and Chageand present a solu-
tion of the difficult problem of converting a potentially ise-contaminated normal
field parametrized over an arbitrarily shaped smooth sariiaio highly-detailed
time-varying scene geometry. The first contribution of thisthod is an improve-
ment over our original surface reflectance and normal estmapproach which
now employs robust statistics to handle sensor noise mafeuily, Sect. 8.3.
The second and most important contribution is a new spatigporal deforma-
tion framework that enables us to transform the moving tatepjeometry and
the time-varying normal field into true spatio-temporalgrying scene geometry
that reproduces geometric surface detail at millimetatesaccuracy, Sect. 8.4.
Standard normal field integration schemes are not feasiblaeis setting as they
often perform poorly in the presence of noise and as they tleasily generalize
to the case of arbitrarily oriented base surfaces in 3D. htragt, we formulate the
problem as a spatio-temporal Markov Random field such thatameg@construct
fine-grained geometry that is spatially accurate, as weteagporally smooth,
even if the input was affected by noise.

We demonstrate and validate the accuracy of our method lmasedveral real-
world sequences, Sect. 8.5.

7.1 Related Work

Most systems that can capture dynamic scene geometry ameidlr scale ac-
curacy are restricted to confined spatial volumes, e.g.ctstred light systems
for facial performance capture [Zhang04]. Mainly due teeifegrence and spa-
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(b) (c)

Figure 7.1: Input video frame (a), smooth 3D template modeln same pose
(b), our detailed 3D surface model with true geometric detdisuch as wrinkles
on the shirt (c).

tial resolution issues, it is hard to apply these methodscépturing humans
from multiple views. While a combination of shape-from-siliette and stereo
is one way to approach the latter scenario, the inherentulif§i and lack of

robustness in stereo make it hard to achieve very high acgwad resolution

[Hernandez04, Starck06].

An alternative to multi-view stereo reconstruction thegmiial to capture fine-
grained surface detail is photometric stereo, which is @&amarf shape-from-
shading. In photometric stereo one makes assumptions abdate reflectance
properties to recover normal orientation from images takeder varying light-
ing [Woodham89, Zhang99]. It has also been tried to simelasly estimate
reflectance (e.g. BRDF information) and normal data from aetanf 2D images
which were taken under calibrated lighting [Georghiadesiddman04]. In this
single 2D view case, normal field integration schemes camppheal to transform
orientation data into true highly-detailed height valuEsahkot88, Agrawal06].
Chang et al [Chang07] used level set methods to integrate-meilti normal
fields.

While it is feasible to estimate BRDF and normal orientatioro disr more
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general static 3D objects that were photographed underiatyanf viewpoints

and light directions [Lensch03], the deformation of geamétased on normals
parametrized over a general 3D shape is non-trivial. Standeegration schemes
(assuming orthographic projection and height fields thatp@rametrized over a
plane) are not applicable anymore since absolute 3D podits to be recovered
and coherence of the displacements over non-planar gepnestds to be assured.

One way to attack this problem is to measure 3D position aqpmately, e.g. by
stereo or structured light scanning, and use normal infoomabtained via shape
from shading to improve the initial position estimates almel degree of surface
detail [Herrandez07]. While early work in this direction produced conajpdy
coarse 3D geometry [Fua94, Lange99], the work by Nehab dgtNehab05] pro-
duces detailed models of static objects by refining scanBgabiht positions until
photometrically measured normals are well approximateded et al. [Jones06]
applied the latter technique to improve captured dynange eeometry, but they
did not formulate it as a spatio-temporal problem nor does setup scale easily
to larger scenes. Hernandez et al. [Hardez07] use structured light scanning to
produce very high quality dynamic geometry, whereas in amspn we propose
a spatio-temporal coherent passive method.

We capitalize on this idea as well but develop a more advaneeohstruction

approach suitable for large-scale dynamic scenes. Inasinip previous work,

our approach generates geometry that is accurate andedeetdieach time step,
andthat is coherently deforming over time. We also incorpordtaracteristics

of measurement noise into the reconstruction process bggosr problem as a
spatio-temporal Markov Random Field (MRF).

The starting point is the work by Theobalt et al. [Theobadfo&n the relightable
free-viewpoint video, and our improvement to their worktthere presented in
the previous part of this thesis. In that work they captureapg, motion, re-
flectance and time-varying normals of human actors from ergit of synchro-
nized video recordings under calibrated lighting. The radtharametrizes shape,
motion, and reflectance based on a smooth template body rtiatdhcks any
geometric detail. In this work, we improve the previous &@#@ce and normal
field estimation approach by using robust statistics. Wa gitepose a new spatio-
temporal MRF framework which transforms smooth geometry rmovhals into
highly detailed dynamic scene geometry even in the presainoatable measure-
ment noise. As we can process normal fields over arbitrangyped time-varying
base surfaces in 3D, we can capture time-varying geometigtai levels compa-
rably higher by other related approach, such as purelystessed reconstruction
methods mentioned earlier.



Chapter 8

Reconstructing High Quality
Time-Varying Geometry

This chapter describes a passive approach to capture tnone-ti
varying scene geometry in large acquisition volumes frorttimiew
video. First, an improved method for estimating surfacesctfince
properties and a time-varying normal field using a coarsepiate
shape is described. Later, a statistical method to tramefdhe
captured normal field into true 3D displacements is presgnte
Output is a spatio-temporally coherent geometry that modsien
the slightest dynamic shape detail as true 3D geometryaligphents.

8.1 Overview

Our goal is to passively reconstruct accurate and highlgilget dynamic surface
geometry of humans from only eight synchronized video rdiogs, Sec. 8.2 and
Fig. 8.1. Starting point for the our methods is the earlierkvoy Theobalt et
al. [Theobalt05a], which gives us the tracked motion of tbmin input video
recordings. They also parametrizes dynamic scene geoimethe form of an
adaptable kinematic body template with smooth surface gégnthat lacks fine
surface details. Using the video sequences recorded umdlbrated lighting,
they also estimated surface reflectance properties, iresyseace-point BRDfs,
as well as dynamic normal maps. We extended their work in teeiqus part of
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this thesis, and we pick up and extend those ideas, such theamwuse the same
acquisition setup, starting with the coarse template maae add deformations
to the smooth geometry to acquire highly detailed dynamongetry. We demon-
strate our method on a variety of real world sequences.

To achieve our goal, we first modify the original BRDF estimatmpeline by in-
cluding robust statistics into the reconstruction framev&ect. 8.3. This allows
us to model the non-Gaussian measurement noise more fgitfifhereafter, we
estimate dynamic normal (bump maps) from the input videaseces that are de-
fined over the smooth template geometry. Finally, we devalgpatio-temporal
Markov-Random-Field-based surface refinement procedurehws one of the
first to enable integration of normal fields on arbitrarilyaplkd time-varying tem-
plate geometry. Our new spatio-temporal framework captateghe same time
spatially accurate and temporally smooth geometry andlbarsgnsor noise ro-
bustly, Sect. 8.4.

8.2 Data Acquisition and Template Motion
Estimation

The acquisition procedure, the employed template modettatharker-less mo-
tion estimation approach have been described in detail ihe¢balt05a] and
Chapter 6. For details we would like to refer the reader to Glret

8.3 Enhanced BRDF Estimation

After performing marker-less motion capture for each frarheulti-view video,
the position and orientation of eaah; with respect to the calibrated acquisition
apparatus is known. In other words, due to the scene motlmecibmes possible
to collect for each point on the surface a variety of reflectesamples, each repre-
senting the appearance of the point from known outgoing ivig\and incoming
lighting directions. The original method described in thievious part exploits
this fact in order to estimate for each); a static parametric BRDF model from
the RES. An energy minimization framework was used to compatameters
of an isotropic Lafortune BRDF, at each surface point such that the measured
data are best approximated [Lafortune97b]. For solvingdyramic geometry
reconstruction problem addressed here, we replace thimarigast-squares ap-
proach by a regression framework based on robust HubestgtatjHuber04] as
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Figure 8.1: Overview: The tracked smooth template model (l€j, along with
per-texel refined normal field (top) and per-texel BRDF paraméers (bottom)
are used to estimate detailed time-varying surface geomati(right).

this enables us to obtain more faithful estimates in thegmes of non-Gaussian
measurement noise. For each surface poinbon the template, we minimize the
following energy functional to find an isotropic BRDF that reguces the data in
the RES:

: ]e<no(ui,j=t> ) l(”i,j7t)))]) : (81)

FEgror is evaluated separately in the red, green and blue colometha$. (u; ;,t)
denotes the color of; ; measured from camera and /. denotes the intensity
of light sourcee. The viewing directions/.(u; ;,t) and light source directions

l.(u; ;,t) are expressed in; ;'s local coordinate frame based on the (template)

surface normah,(u; j,t). k.(u;;,t) andA.(u; j,t) encode the visibility of point
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w; ; With respect to cameras and light sources, respectivelyopf®sed to the

original least-squares minimization framework which asss Gaussian noise in
reflectance samples and thus may over-weight outliers, weogmobust Huber

statisticsH as penalizer. The Huber functigd is defined as

1R? if |R| <k
H(R) =< 2 ' - 8.2
(&) {kz|R| — %kQ JIf|R| > k 82)

wherek is the clip threshold [Huber04]% Is continuous and often referred to

in the literature as the clip functiori{ preserves the advantageous convergence

properties of arl, function for inliers, but resorts to aby, norm for samples that
are likely to be outliers. By this means we implicitly modek owise character-
istics more faithfully as a heavy-tail Gaussian. In ordefind the clip threshold
k for H we analyze the variance in captured reflectance samples enes of

consecutive video frames in which the person remains intec gfase relative to
the cameras. For each color channel and each material weuterth@ average
variance and use the squared values as material- and p&oifis clip thresholds.

In practice BRDF parameters are estimated in a multi-stepepiire. First, ma-
terials on the surface are clustered based on averageeaddlsr and a specular
BRDF component is estimated for each material separatelyre@fter, a per-
texel diffuse model is fit to each surface point after sultingcthe previously
estimated specular component from each sample. As oursaguaisetup is the
same as described in Sect. 6.2, comprised of eight camedatsvarspot lights.
Please note that we only use samples seen by exactly onesbghte for esti-
mation, which, due to the positioning of lamps in the stuthageality is true for
over 90% of samples. For numerical minimization, we empluy t-BFGS-B
minimizer [Byrd95].

Given estimates of the BRDF parameters, we can also refine oulé&dge about
surface geometry by keeping the reflectance parametersdnecinimizing the
same functional in the normal direction. Once the BRDF pararadtave been
recovered from the RES, a similar minimization procedureseduto reconstruct
the time-varying normal field from each DSS.

8.4 Adding Spatio-Temporally Coherent
Geometric Surface Detall

Dynamic normal fields encode information on high-frequescyface detail
without physically deforming the smooth template surfageravhich they are
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parametrized. This information is sufficient to rendergietable 3D videos of hu-
mans from many angles apart from grazing ones. However3ugme-varying
geometric detail is essential in many production qualityreation settings where
realistic renditions from novel viewpoints and under agbl illumination are ex-
pected. Only true deformed surface geometry will enableecbrappearance of
the shape under the final lighting simulation.

In the following, we therefore present a new data fusion &aork that trans-
forms the original setup for relightable 3D video captur® ia system for high-
quality capture of detailed dynamic surface geometry. Oethaod is grounded
on the assumption that our smooth template, essentiallyieag low frequency
geometry, is already well-aligned with the input.

Our algorithm estimates for each surface painton the smooth template at each
time stept a 3D displacement vectel(v; ;,¢) that yields the true 3D position of
the pointu att asx,(u; j,t) = x(u; ;,t) +d(u, ,t). Since the true displacements
are expected to be small, it is safe to assume that the despka direction is
always along the direction of template normals.

As our measurements are potentially contaminated by nesemploy a statisti-
cal framework to robustly find the most likely field of surfaisplacements given
the data. To achieve this purpose we model the joint postdistribution of the
field of displacements at each time step as a Markov Random (HRF) which
takes the form

p(d(uigt,) [ (uig,t), M(t) =
1 (e 18v0) 100 +o20)
7 ,
whereZ is a normalization constan®,(¢#) models our measurement process, and
U(t), Q(t) and=(t) are prior potentialsa, 5, v andé are weighting factors sum-
ming to 1. Empirically we found that values ef = 0.6, 5 = 0.1, v = 0.2 and
0 = 0.1 produce most decent results (see also Sect. 8.5 for a disosusg he
spatio-temporal neighborhood structure of our MRF conneath surface loca-
tion to the four immediate spatially adjacent ones at theesame step (easily
found from our surface parametrization), as well as to gsantiations at the two
previous time steps.

(8.3)

As we are interested in the most likely solution given theeuntrdata only and not
in the full posterior, we find the most likely surface as thexmmaum a posteriori
(MAP) hypothesis by minimizing the negative log-likelirtbof (8.3) as

d(u;;,t) = argmina®(t) + SU(t) + yQ(t) + 6Z(t) . (8.4)
d(ui,;jt)
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In the following subsections, we first describe and motivates assumptions
about noise characteristics are encoded in measurementiadg, Sect. 8.4.1, and
illustrate what prior potentials are appropriate to propeondition our solution
space, Sect. 8.4.2. Finally, we describe how to practicallye for a maximum a
posteriori (MAP) surface even in our large scenes with omay& 350,000 surface
points, Sect. 8.4.3.

8.4.1 Measurement Potential

The information that captures the true shape of the finaigdasurface details is
encoded in our measured surface normal field«,¢). Our measurement po-
tential therefore aims at minimizing the angular differedqgn,,, (u;, t), n,(u;, t))
between the measured normals and the normals of the dispackce.

To properly constrain our problem, we don’t formulate theoein normal field
approximation based on individual locatioms; (i.e. individual texels in the tex-
ture domain), but rather based on triangles obtained byladguriangulating all
texels in the parametrization. Normals for the obtaineahygles are computed by
simply averaging the normals at their three respectivecesii.e. texels). Again,
we capitalize on the Huber functiol to obtain more reliable estimates in the
presence of noise. Our measurement potential thus takésrthe

®(t) = > H(AMmu(D,t),n,(D, 1)), (8.5)

D=(uq,up,uc)€ED

whereD = (u,,up, u.) is a triangle formed by adjacent texels (surface points)
uq, up, andu,, andD is the set of all such triangles,.(D, t) is the normal field
according to the current deformed surface evaluate®,aandn,,(D,t) is the
corresponding measured normal field. The clip threskolés chosen conserva-
tively in such that deviations of new and measured normaisiose thard0° are
considered outliers.

8.4.2 Prior Potentials

We make the general assumption that dynamic surfaces inetdeworld are
smooth in both space and time. In other words, spatiallycatjasurface loca-
tions should exhibit similar displacements and the changksiplacement for the
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same surface location over time should be in reasonabledsasmwell. The spa-
tial smoothness constraint penalizes local deviation feamoriented plane in a
4-neighborhood around each point and is encoded in the foaten

U(t) = Z ZH(Xd(Uz’A,jJ) — 2xg(u; 5, 1)+

Xa(Uiy1,5, 1))+
H(xaq(wi—1j,t) — 2xq(w; j, )+
Xd(Uis1,4,t))

(8.6)

wherex,(u;—1,t), Xa(wit1,5,t), Xa(u; j—1,t), andx,(u, j+1,t) are displaced 3D
positions of surface locations adjacenttg. The clip threshold: of H in this
case is chosen such that differences in local surface nariadtation of more
than30° are considered outliers.

Temporal smoothness is enforced by the potential

(t) = Z Z(d(ui,j7 t) - 2d<ui,j7t - 1)_ (87)

d(uiyj,t — 2))2 .

(1]

This term favors a smooth rate of change of displacementstiove, or putting it
differently, favors small "acceleration” in displacemehiange over time.

Lastly, we make the a priori assumption that displaced sarfacations should
remain close to the original smooth template shape. Therledinstraint is essen-
tial as it prevents our surface from drifting arbitrarilyr fawvay from the original

template. Our second prior therefore takes the form

Q(t) :ZZd(um,t)Q (8.8)

8.4.3 Practical Implementation

The test sequences employed by us feature parametrizatidhe smooth tem-
plate of sizel024 x 1024 pixels. On average this corresponds3t®, 000 sur-

face locations for which a displacement needs to be foundhel éime step.
Please note that we compute displacements at a much higie¢olegranular-
ity than the vertex density of the original template whickyggically only 40,000.
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(a) (b) (c) (d)

Figure 8.2: Patch-based optimization. A single patch, its bundary area,
and its (blue) internal area (a). While the deformed surfaceis computed,
the overlapping patches are processed in a sequence as shawiib), (c) and
(d) respectively. Only the interior patch area is preservedafter displacement
computation for one patch.

Parametrizations were obtained by manually cutting thetata open and unfold-
ing it over a 2D square by means of the conformal mapping igaerndescribed
in [Zayer05b].

As we are only interested in a MAP solution to the final surfage can conve-
niently resort to a standard off-the-shelf L-BFGS-B techiei¢Byrd95] to mini-
mize Eq. 8.4.

To keep optimization tractable in the light of our very desadgace sampling, we
also subdivide the overall surface reconstruction probl@ma series of smaller
ones. In practice, we subsequently compute displacementsdividual surface
patches and successively merge information from diffepanthes to create the
final result.

Each patch on our model corresponds to a square region @fcsuldcations in
our parametrization domain. Furthermore, each such sgagien is composed
of an interior region and an exterior boundary area, Fig. &2ve would sim-
ply deform individual adjacent patches we would with venghilikelihood obtain
discontinuities at patch boundaries since the mutual MRFeégncies across
the rim are not properly considered. To prevent this soufa@sror, we arrange
subsequent patches in an interleaving, half-overlappaitem, see Fig. 8.2b,c,d
for the temporal sequence in which the patches are proceBaétiermore, after
the displacements for one complete patch were estimatednlyepreserve the
displacement at the center of the patch. The boundary regimnthus only em-
ployed to initialize the optimization of any subsequentpathose center region
overlaps with the boundary. All patches are considered led¢jmas the choice
of the starting patch for our optimization is arbitrary. @alg this interleaved
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optimization pattern produces a high quality surface estiénthat preserves de-
tail while preventing erroneous discontinuities alongmdaries, see Sect. 8.5 for
further discussion.

8.5 Results and Validation

To demonstrate the results of our method, we have used twareajreal-world
motion sequences. The data for each sequence compriseswbdting low-detail
template, all input image data (also in texture format alyg@afull calibration data
(cameras and lights), parametrization and warp-corrdetddre coordinates. The
latter is a set of data which encodes information on clotftisljiover the body’s
surface which was detected by the method detailed in Chapter 6

The first sequence shows a scene in which the actor wearsymddiike clothing

and walks back and forth in front of the cameras, Fig 8.5alt® RES (used for
BRDF estimation) is 30 frames long and the DSS (used for gegncapture)

comprises 184 frames. In the second sequence, the testisulgjars a diffuse
t-shirt and slightly specular trousers, and performs addasthi motion, Fig. 7.1
and 8.5c. While the RES contains again 30 frames, the actuamatthe DSS
is 110 frames long.

As can be seen in Fig. 8.5 and Fig. 7.1, and also in the acconmgarideo
[CO8a], our reconstructed actor model faithfully capturesnesubtle detail, in
particular wrinkles in clothing and folds, &sie geometry. Fig. 8.4 zooms in on
certain areas of the body model to illustrate that our MRFetldssion method
allows for reconstruction of subtle folds whose width ishe tange of a few mil-
limeters. This is a major improvement in shape quality oberdriginal smooth
template which was lacking any such detail, Fig. 7.1b and &i¢a,e. We would
also like to point out that our final result is not only very aitd and almost free
of artifacts at individual time steps, but due to the spé&timporal MRF frame-
work also faithful and smooth over time, see video [C08a]. THtter shows the
unprecedented ability of our method to generate spatigdeaily smooth and
detailed results even in the presence of measurement noise.

Although our visual results show qualitatively that we caeasure highly-

accurate scene geometry at sub-triangulation resolutieralso want to provide a
more elaborate validation. Unfortunately, there exist®tier scanning technol-
ogy that would provide us with ground truth dynamic geomatrthe same level
of detalil.

We therefore resort to data that was employed by Theobadt EEheobalt07] for
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(d) (e)

Figure 8.3: In this test an RES was recorded with a person stanidg in a
static pose on a rotating turntable (a). Also, a scan was pesfmed with a
structured light laser scanner in order to obtain an as good a possible ground
truth shape (b). (c) shows the normal field of the scan, whereg(obal) normal
direction is encoded in RGB color. (d) and (e) show the resuthat is obtained
if we start from the smooth template fitted to the pose of the tst subject,
perform photometric stereo and run our MRF-based method to olain the
final detailed geometry. As one can see, our result capturedme of the very
fine wrinkles on the body much more faithfully than even the laser scanner.
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the validation of the original surface reflectance estiorathethod. This data set
contains an RES in which the actor strikes a static pose oratngtturntable. In
addition to the recording of the RES, a laser scan of the paxsartaken during
preprocessing. Since we were also given the pose of the a¢engl each frame,
we were able to reconstruct the BRDF and normal map based on etod)
and could use our MRF framework to generate detailed surfaapes Since
the scan and template possess different triangulatioestdiertex comparison is
infeasible. However, visual comparison of our result Fige8and the scanned
ground truth Fig. 8.3b shows that all detail present in thgioal scan is also
present in the deformed template, and that the resolutiarneth geometry was
recovered is even higher in our result.

Typically, we reconstruct as many as 350,000 displacemanes over the tem-
plate surface. Even at this detail level and when using algpa&th size ofl6
pixels, it takes moderate to 6 minutes per time step of video to find the final
detailed surface. This time is in addition to the timings odasition, BRDF and
normal estimation. Optimal values for the parameters, v andd were found
experimentally. To this end, we used a sequence of 3 of thenstwcted de-
tailed meshes of the sequenicas a ground truth and used their normal fields as
measured normal fields. reconstruction errors could now éasored for a rea-
sonable sample of combinations of the coefficients. Optiesults are obtained
fora=0.6,3 =0.1,7 = 0.2andd = 0.1 which were used in all our experiments.

Our method is subject to a couple of limitations. An impottagsumption en-

abling us to properly localize our final geometric solutiarspace is the one that
the template is close to the true geometry. Unfortunatblg, assumption is not
entirely true for the head of the template as there may be goine differences
to true hair style and face geometry. Simple free-form dafdron performed for

the shape capture cannot compensate for this. Thereforexehede the head

from our reconstructions and note that this is a problenbated to the provided

input data.

Secondly, the currently employed template limits the typiescenes that we can
handle to people wearing not too wide apparel. However,ithi®ot a general

limitation of our own contribution as we can easily apply ouethod to coarse
geometry reconstructed with any other approach as welgragds the geometry
(triangulation) is coherent over time.

The original taichi input sequence also shows some jittérerpose of the smooth
template (slightly noticeable in the video result [CO8apsgibly due to tracking
inaccuracies. We did not take any measures to compensdtedor

Finally, in any frame where a surface point is in shadow frdwa light source,
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no normal direction can be reconstructed and the templateaias used instead.
In the video [C08a], this effect is sometimes noticeable wtihenarm casts a
shadow on the torso. However, our method handles this gitugtacefully and
produces the best possible result given this hard-to-pteaxasional lack of data
in general moving scenes.

Despite these limitations we have presented one of the pbaches to recon-
struct high-quality and high detail geometry of large dyi@astenes in a purely
passive way.

8.6 Conclusion

In this chapter we presented one of the first passive metloodsconstruct ge-
ometry of large dynamic scenes showing moving actors at kigly detail and
accuracy from video only. One of the strength of our work &t tive only need
multi-view video data recorded under calibrated camerddighting. This allows
not only the highly detailed reconstruction but also theseidiata can be directly
used for video-based rendering or relighting. In contrastive methods solely
concentrate on the reconstruction, and normally projectteep over the scene,
which renders the video data useless for most of the otheovihsed modeling
tasks.

In this work, as a first step we built on our earlier work th&mak for capturing of

coarse geometry, surface reflectance and dynamic normal. iaégthen applied
a new MRF-based spatio-temporal surface deformation apprtiaat converts
the geometric details encoded in the normals into true 3plaliements over the
smooth template. Our method faithfully handles typicalMyeiil measurement
noise, and is one of the first to allow for spatially accurate g&emporally consis-
tent height reconstruction over curved dynamic base gagmet

Our work is not limited to any particular representation lo¢ tmodel. In the

next part of this thesis, we will present a passive methoctomstruct spatio-
temporally coherent arbitrary scene geometry from muéisvvideo data. The
reconstructed spatio-temporal mesh animation of any subgn be used for sur-
face reflectance, dynamic normal field estimation, and splesgly for recon-

structing high quality time-varying details.
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(9) (h)

Figure 8.4: Our method can capture even subtle folds and wrikles whose
size is in the range of a few millimeters only. Zoom-in on leg: & smooth
template, (b) template with texture, (c) color-coded norméfield, (d) our final
result rendered in OpenGL using Gouraud shading. (e)-(h) sbw a similar
zoom onto the torso of the subject in the walking sequence. 8 here, surface
details were faithfully recovered in geometry.
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Figure 8.5: Each pair of images shows, side-by-side, one oigl input video
frame and the full 3D surface model with all geometric detailrendered in
OpenGL from the same perspective. Sample input video framesf the mo-
tion sequences along with the corresponding detailed geoitng The direct
comparison shows that our method captures even subtle dynamgeometric
details in the actor’s clothing very accurately.
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Chapter 9

Problem Statement

This part proposes a solution to the problem of reconstnggti
a structured mesh sequence from synchronized multi-vielgovi
streams. After reviewing the related work, a method for eisthinlg
dense correspondences between unrelated meshes is pd; semiteh
is used to obtain a spatio-temporal coherent mesh sequence.

In the previous chapters of this thesis, we focused on réearimg realistic hu-

man animations from multi-view video data. All of the pretshmethods relied
on a template human body model that was deformed and anirttategbture the
true shape and motion of the human actor. Although we havedstrated that
our animation reconstruction methods result in high gualitimations, they were
nevertheless limited by the model description of the temeplti can only handle
the specific scene for which the template model is availabtecan not handle
any arbitrary scene. Ideally, instead of using a templatdehamne would like

to reconstruct the time-varying shape and appearance @arbieary real-world

scene performers from multi-view video data directly withdéaving to craft a
scene model beforehand. To some extent there are alreatdyagtéew methods
that can achieve this goal, Sect. 9.1.

Most of these methods provide convincing shape and appaafan each time
step of an input animation individually. However, they fatlort of reconstructing
spatio-temporally coherent scene geometry for arbitrabjexts since the chal-
lenging 3D correspondence problem is not addressed. Sjeatiporal coherence
is an important and highly-desirable property in captungdhations, as it greatly
facilitates or even is inevitable for many tasks such asreglitompression or
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spatio-temporal postprocessing.

We therefore propose a new spatio-temporal dense 3D comdspce finding
method that enables us to capture coherent dynamic scengeggaising stan-
dard shape-from-silhouette methods [Ahmed08b]. Our &lyuris tailored to the
characteristics of video-based reconstruction methodshaften capture high
spatial detail in the input video frames, but provide rekly sparsely sampled
3D geometry with a much lower level of shape detail and withoasaerable
level of noise.

In a first step, shape-from-silhouette surfaces are reagarst for each time step
of video yielding a sequence of shapes made of triangle rsesfthb varying
connectivity. Thereafter, sparse 3D correspondencesgeeisubsequent pairs of
surfaces are computed by matching 3D positions of optictlfes that can be
accurately extracted from high-resolution input videarfess, Sect. 10.3. These
sparse correspondences represent control points for angteppropriate bivari-
ate scalar functions on each reconstructed surface mest,18e4. The choice of
these functions enables us to establish dense correspmnegsentially by match-
ing function values. The dense correspondences can beasgdightforwardly
align one mesh to all other reconstructions by performingcuence of pairwise
registrations, Sect. 10.6. The output of our approach isticspemporally coher-
ent animation, i.e. a sequence of meshes with constant gtaptture and low
tangential distortion. Main contributions, advantaged aavelties of our algo-
rithm are the following

e As an object space method it does not suffer from paramétizanduced
limitations.

e It establishes dense correspondence fields independdritiye devel and
structure of surface discretization which makes surfagmadent straight-
forward.

¢ It explicitly addresses the characteristics of shape-fsilimouette-based an-
imation reconstruction. By combining both accurate imageuee and
function matching, we are able to robustly match even cbanmszon-
structed surface geometry lacking coherent and densecsuttdails.

e In practice, robustness to topology changes.

In the following section we will review the related work inm@ins of surface re-
construction, mesh animation and correspondence estimagiiween the meshes.
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(b) (©) (d)

(e) (f)

Figure 9.1: Input video frames (a), (c) and corresponding satio-temporally
coherent meshes rendered back into same camera view (b), (@he checker-
board texture shows the consistently small tangential sudce distortion in
our reconstruction even between temporally far apart frames (e), (f).

9.1 Related Work

Technological progress in recent years has made it feasibleconstruct shape
and appearance of dynamic scenes using video [Matsuyama@#jeo plus ac-
tive sensing [Wasclhisch07]. Multi-view video methods based on the shape-
from-silhouette [MatusikO1] or stereo principle [Zitniek] bear the intriguing
advantage that they enable reconstruction of arbitraryimgosubjects. Unfor-
tunately, none of these methods is designed to reconsttaoesgeometry with
coherent connectivity over time since the 3D corresponelgmoblem is not ad-
dressed. Model-based approaches employ shape priors [darBgb, Cheung03,
Herrandez07] which limits them to certain types of scenes. Therdahm pro-
posed in this part enables coherent dynamic shape recotstrwhile maintain-
ing the flexibility of shape-from-silhouette methods.

In geometry processing, the 3D correspondence problem dessked in
parametrization and its application in (compatible) rehmes see, e.g., the sur-
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veys [HormannOQ7, Alliez07] where the goal is to match thensmivity of one

single shape model to the connectivity of another one. Generdiby,réquired

robust parametrization techniques are limited to fixed lmppand are computa-
tionally involved, especially in the presence of additioc@nstraints from given
correspondences.

The key to spatio-temporally coherent reconstruction abaist solution to the 3D
correspondence problem. Conceptually similar to this gmobhllbeit in a reduced
problem domain, is the shape matching problem [Rusinkie®stzOne way to
solve this problem is to localize and match salient geomé#atures between
two shapes [Gal06]. By combining feature matching with pe@aadformation,
two shapes can be aligned [Huber03]. Some probabilisgnaient methods reg-
ister laser scans by finding the most probable embedding ®fsbape into the
other [Anguelov04]. Iterative closest point (ICP) proceshiuse a much sim-
pler correspondence criterion that iteratively pairs tmees closest to each other
[Hahnel03]. ICP methods may easily get stuck in local minimaitiecent ini-
tial registration is provided. None of the aforementionégbathms explicitly
addresses the problem of multi-frame animation recontsmnic

Only few methods so far explicitly address the problem obrestructing coherent
animated surfaces from real-time scanner data, such atimeaktructured light
scanners [Wand07, Stoll06]. Unfortunately, in a videodubsetting like ours, the
applicability of these methods is either limited by high gartational complexity,

or by the requirement of high spatial and temporal sampliegsdy which is

typically not fulfilled.

Similar to our approach is the algorithm proposed by Shirtyal.e[Shinya04]

who deform a 3D model into sequences of visual hull meshesibymizing a

deformation energy. In contrast to our algorithm, accuagtical feature infor-
mation is not exploited, and the ICP-like correspondenderton is vulnerable to
erroneous local convergence.

Matsuyama et al. [Matsuyama04] suggest a method to deforrash fased on
multi-view silhouettes and multi-view photo-consisteexi By optical means
only, the required dense matches are difficult to find, andetbee the strongly
constrained non-linear minimization takes several msgt@mputation time per
frame. In contrast, our algorithm is computationally moffcent and creates
dense correspondences despite only sparse optical matches

Starck et al. [Starck05] also aim at establishing coheré@msequences of shape-
from-silhouette meshes. Their method establishes caneigmces in a spher-
ical parametrization domain which may fail in extreme poaad may intro-
duce distortion-dependent matching inaccuracies closengular points. In a
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recent follow-up, Starck et al. [StarckO7a] apply a Markamadom field to match
isometry-invariant surface descriptors based on locakmpatrization. This en-
ables establishing correspondence over wide time-framieish is in fact a dif-
ferent problem. For both, [Starck05, StarckO7a], numémpcablems are more
involved and computational costs are orders of magnitudédrithan for our
method.
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Chapter 10

Spatio-Temporally Coherent
Dynamic Surface

Reconstruction Using Dense
Correspondence

This chapter describes a dense correspondence finding chetho
that enables spatio-temporally coherent reconstructidnsarface
animations from multi-view video. First, a method to essbl
sparse correspondences between the two surfaces is preseisiad
sparse correspondences as the anchor points, dense condspce
Is established between the surfaces. This dense correspomnde
propagated from the start to the end of the sequence, in aer
obtain a spatio-temporally coherent sequence.

10.1 Overview

The input to our method is a sequence of calibrated synckednrideo streams
that were recorded from multiple viewpoints around the scand that show a
subject performing in the scene’s foreground. Our testigdgqn system features
eight synchronized video cameras arranged in a circulapsetd delivering 25fps
at 1004x1004 pixel frame resolution (Chapter 3).



Chapter 10: Spatio-Temporally Coherent Dynamic Surface Reonstruction Using
92 Dense Correspondence

Background subtraction yields a foreground silhouette &heof the/N captured
video frames. In a pre-processing step a polyhedral viauhiiethod [Franco03]
is applied to each time-step of video. In order to cure trlamiggeneracies in the
input data and to produce a more uniform surface discraizathe visual hull
surfaces are resampled and the resulting point cloudsérnettea Poisson surface
reconstruction approach [Kazhdan06] (we use their impieaimn). This way,
a sequence of triangle meshes with varying vertex conngcis/produced that
captures the shape of the subject at each time step.

10.2 Spatio-Temporal Correspondence
Finding

In the following we describe a triangle mesh/as= (V, 7, p), where) denotes
vertices and’ their triangulation orconnectivity Hence,(i, j, k) € 7 denotes
a triangle, and with each vertéxe )} we associate positions, € R? defining
the surface’s embedding in 3D. We considértime-frames and thus write a se-
quence of meshes asgl(t) = (V(t), 7 (t),p(t)),t =0,...,N — 1, whereM(t)
approximates the (ideal) surfasét).

Our algorithm propagates the connectivity of megt{0) by iteratively matching
it against reconstructed visual hull meshes. In the folhmyiwe write M (t)
for meshes with connectivit)y, 7o) := (V(0),7(0)) of M(0), i.e., My(t) =
(7(0),V(0),p(t)) and in particulatM (0) = M,(0). Then given a subsequent
pair of meshes\,(¢) and M(t + 1), whereM,(t) is M(0) aligned with M ()
during a previous iteration, our algorithm proceeds a®vad!

In a first step, initial coarse correspondences are obtadyechatching robust

optical features between image-frames and mapping them4oa3itions on the

surfaces, Sect. 10.3. We use SIFT [Lowe99] for this purppisdding a sparse

covering of the surfaces with feature points. In contraddformation transfer

methods [Sumner04, ZayerO5a], we can’t choose ideal festule. our sparse
features alone generally don’t carry enough informatiordfect correspondence
or deformation-based alignment, see also Sect. 10.8.

Therefore, we estimate dense correspondences in a seepnaviich constitutes
the core of our approach: with each feature point we assoaiatalar, monotonic
function with certain interpolation properties. Requirensefor such functions
will be discussed in detail in Sect. 10.4. Dense correspuocete are found by
pairing surface locations with similar function values.



10.3 Coarse Correspondences

93

By W mi\\‘.*'lﬁ"w

,«mx« /4}\ A“’.
, —
/ A

Lﬁn»!ﬁ‘\
/ " ml
N m\st
(d) (e)

Figure 10.1: Detected SIFT features in two consecutive fraes (a) and (b).
Matched features are shown in (c). Obvious outliers, such asatches outside
the silhouette, are filtered out during preprocessing. Intesecting iso-contours
of harmonic functions centered on sparse correspondenceshown as colored
lines) can be used to localize surface points. For clarity,e} zooms in on a
subregion of (d).

This way we can provide surface correspondences which argetieand faith-

fully distributed over the surface. We use these matchings@ace points as
constraints for deforming one mesh over time without resgito involved defor-

mation algorithms (see, e.g., [Botsch07]) that were necgsseorrespondences
were sparse. The result is an animation sequence with cdrestanectivity.

We remark that the approach is tailored to the particulanation setting: the ac-
quisition and shape-from-silhouette reconstruction tes only moderately ac-
curate and medium resolution geometry data, possibly ountted with noise,
but at the same time high-resolution texture informationipege frame. The
individual matching steps are detailed in the following sediions.

10.3 Coarse Correspondences

In order to establish coarse correspondences we find roptisabfeatures be-
tween adjacent frames by localizing them in the input videonkes and infer-
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ring their 3D positions by means of the available reconstdienodel geometry.
For localizing features we apply SIFT descriptors [Lowe&8}his technique has
a number of advantageous properties for our video settidgntified features
are largely invariant under rotation, scale and moderaa@gh in viewpoint, and
the rich descriptors also enable wide-baseline matchingpatticular the latter
property pays off in our setting as rapid scene motion mayyelsad to large
image disparities between subsequent frames. In such arszealternative im-
age matching approaches, such as KLT or general optical flethads are more
likely to fail [Barron92]. Also, as opposed to geometric fgatmatching [Gal06]
we can maintain precision even if the reconstructions dextiibit salient shape
details.

We compute 2D SIFT feature locations for each input frdpig at all time steps

t and all camera viewsin a preprocessing step. On a typical sequence we obtain
between 300 and 500 features per time step (with multiplarmences of the same
feature across cameras discarded.

When aligning two subsequent meshe)(t) and M(¢ + 1), we compute 3D
feature positions at either time step by back-projectiomfimages onto the 3D
shapes. To preserve the highest possible feature logahzatcuracy indepen-
dently of triangulation (from Marching Cubes after Poisseoanstruction), 3D
positions of features are computed from linear interpotatiather than nearest
vertex positions. To this end, we exploit the graphics hamdvwand assign to each
feature an interpolated 3D position obtained via rastegizhe 3D shape’s coor-
dinates into the same camera view.

To facilitate later computation of dense correspondeneesintermediately en-
force association of features with vertices by locallytsply each original trian-
gle containing a feature into three triangles. This is aadeby inserting a new
vertex at the interpolation point. By performing 3D locatipa and subdivision
for all camera views at a each time stepndt + 1, we create a set of possibly
subdivided versions of the original reconstruction meshégt) and M’ (¢t + 1).
Each of these meshes possesses an associated set of featexandicesF (¢)
andF(t + 1). Note that these meshes only serve as temporary helpetusgsic
to gain accuracy. Local splits will be rolled back later, aard neither used in
the final output of our method nor induce any other side effeste Sect. 10.6.
Therefore, and to keep notation simple, we will continueetier to M, and M.

We find correspondences between SIFT feature verticesloer @itesh by looking
for pairs with similar descriptors. To this end, we comptie Euclidean distance
D.(i,j) between the descriptors of all elements F(t) andj € F(¢t +1). A
correspondence, j) is considered plausible and hence establishddl.it, j) is
below a certain threshold. This way, possible outliers ircatrespondence sets
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Figure 10.2: (a) Vertex k (corresponding to uy) and the iso-contours inter-
secting at it. For better visibility only K = 3 contours are shown. At time
t + 1, the same iso-contours don’t intersect in a single point. Edccandidate
triangle (shown in red) is intersected by two of the iso-cordurs. (b) A vertex
k' from the candidate triangle set onM(t + 1) that is closest tok accord-
ing to Dy, criterion is selected. (c) Finding the surface pointug within the
best-matching triangle (¢, ¥', k') (according to D;) that is adjacent to £'.

are filtered out by discarding matches with implausible 38atces. Erroneous
matches outside the silhouette area are trivially dischrBey. 10.1(a-c) illustrates
SIFT features.

10.4 Finding Dense Correspondences

The basic idea for establishing dense correspondence rgdpadditional val-
ues from the given sparse features and the surface, andri@&hefully analyze
and compare these values over time. For this purpose we debWimeate scalar
functionsh; on the surfaces, each function is associated with a paati¢eture

fi € F,i=0,...,m. In an ideal setting we could think of these as distance
or coordinate functions: given three (feature) points c in the plane, any point

in the plane can be characterized by its distance to eaehbof or in terms of

its barycentric coordinates w.r.t. the triandle b, c). Our choice of functions

h; resembles barycentric coordinates as we requotexpolationf;(u;) = 1 and
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h;(u;) = 0 for all ¢ # j, andmonotonicityof /; with extrema at the interpolation
points, wherea; € R? denotes a surface point associated vjth

In order to be meaningful when evaluated for differenter the time-dependent
surfaceS(t), we additionally require thak, is taken from a class of functions
which change their values only slightly under moderatessi@tieformations. For
this reason we chose harmonic functions which satisfy

Asw hi =0 (10.1)

where As(;) denotes the Laplace-Beltrami operator. This is justified gy t
isometry-invariance of the operator, i.e., for isometéatmations ofS into &’
we haveAs = Ag. We assume moderate deformationsSgt) to be largely
isometric. This property has previously been exploitedaimpute signatures for
shape matching and retrieval, see, e.qg., [Elad03, Reuter06]

So far we assumed continuous functions. In practicare piecewise linear func-
tions w.r.t. M(t¢), and an appropriate discretization of the differential rajer
As ) is required. In particular, we require independence of tiaagulation, i.e.
for different meshes approximating the same shape, theetigssolutions of (10.1)
should yield the same or very similar results. We use the-esthblished cotan-
gent discretization which provides this linear-precigmaperty and is symmetric
(see [Wardetzky07] for a comparison of alternative diszadions).

With functionsh; computed we proceed in several steps to find dense correspon-
dence. Given a surface poiag € S(t) that corresponds to a vertéxof M(t),
the goal is to find a matching poinf, € S(¢ + 1) usingh; defined on the mesh
M, (t) andh) defined onM (¢ + 1). Evaluation of the harmonic functions yields
“coordinates”h(u) := [ho(u),..., h,(u)] andh’(u) = [hy(u),. .., Al (u)] for
both surfaces. As contributions of are localized we restrict ourselves to the
K coordinate values of largest magnitudewt i.e., we considehy(uy) =
[Riys - higs i1, .. ik € K, wherehy(ug) > hy(ug) for all ¢ € K, 7 ¢ K.

In our implementation we us& = 10. We can visualize the local influence of
the h; geometrically by the analog of a planar Voronoi diagramkimg of 1 — h;

as distance function. Then for each element in a “Vorondi,oge expect signif-
icant or meaningful contribution only from functions assted with the cell and
its immediate neighbor cells. We therefore chéSeonservatively, as on average
one will find 6 immediate neighbors. In an ideal settingu) = h'(u), and re-
trieving u’ can be imagined as intersecting iso-contoi(s) = h;(uy), i € K.
Fig. 10.1(d),(e) illustrates this concept by visualizimyeral iso-contours on the
surface of a visual hull mesh intersecting in a single vertexthe presence of
moderate deformations and given discrete meshes, thetyqeierally does not
hold. Therefore, instead of exact intersections, we as¥a@sted in a set dfian-
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gles€ C 7 (t+1), which are intersected by at least one of the iso-contolgsipa
throughu,. These are triangles in whialf, potentially resides. To put this idea
into practice, we add té& all those triangles that are intersected by the highest
number of contours with iso-valug (u,). This yields a (potentially) 1-to-many
match fromu, to a set of candidate triangles, see Fig. 10.2(a). To hardisilple
localization inaccuracies, in practice we bufidconservatively and also include
all candidate triangles for the vertices in a 1-ring arougdvhich are identified

by the same procedure.

To determine the final position af;, on M(¢ + 1), we first identify the vertex
k' € Vi1 that is closest tay,. We extract this vertex’ from the set® by com-
puting a distance measure betwdenu,) andhy (u;) for all vertices/ out of
&, see Fig. 10.2(b) for illustration on a simplified settinflofe that the sekK is
determined w.r.th on M,.)

Through experiments we found the following measure to weny satisfactorily.
Letdk := hx(uy) — hi(u}). We define the distancB, (uo, u;) as

Dy(ug,u}) = dg (I— diaghl (u)))® dg

Let &, contain all vertices shared by trianglesinWe select that vertek’ € &),
with minimal distance, i.eDy,(ug, u},) < Dp(ug, u)) forall £ # k', ¢ € &,.

The final step in findingy;, is to localize its position at sub-discretization accuracy
since, in generaly;, is an arbitrary surface point and won'’t coincide with a verte
location. To achieve this purpose, we first identify thertgie (', ', k') in the
1-ring of k&’ for which the average oDy (uy, w) (with w € {u,,uy,ux}) is
minimal. The best-matching surface point is expresseaflg@su; = A\, u, +

Ay Uy + Ay ugr. We determineay, within (o, V', k) as

arg min||d; ||,
Ayt Ay Agr

whered; := hy(ug) — hj(ug) andJ C K contains the indices of the three largest
coordinate values ai,. Intuitively, we thereby placey, as close as possible to
either of the three highest-value iso-contours within tteaaf(a’, v, k'), ideally

at their intersection point. Fig. 10.2(c) illustrates tlaist step.
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10.5 Remarks on Practical Implementation

10.5.1 Computation of Coordinate Functions

Numerically, h; can be computed for every1(t) very efficiently by factoring a
sparse matrix and then applying+ 1 back-substitutions. As a result we obtain
m+ 1 linear functions, , i.e., for every vertey € V we haveh;(u;). In practice,
we compress this data efficiently by storing only thielargest values together
with associated feature indicés= {iy,...,ix} C F. Hence, for every vertex

j we storehy(u;), ¢ € 1;, whereh,(u;) > hy(u;), ¢ ¢ 1;. Consequently, we
implicitly assumeh;(u;) = 0, which is reasonable and induces only small error
as the values of; fall off quickly and significant contribution is localizedhis
way, we never require more storage than(fer+ 1) x #) values and indices for
the cost of#£V K-element sorts after each solution of the Laplace equation.

10.5.2 Intersection with Iso-contours

The intersections of triangles with an iso-contayfu) = ¢ can be implemented
by a local search without additional data structures: B@ftom the vertex asso-
ciated with the featurg;, i.e. whereh;(u;) = 1, we apply a gradient descerit; (
is monotone) on an arbitrary triangle attached to this xeM¢e keep descending
neighboring triangles until we hit a triangle that is ineated by the iso-contour.
We then iteratively traverse all neighboring trianglesathare also intersected.

10.5.3 Prefiltering of SIFT Features and Adaptive Refine-
ment

Coarse correspondences identified in Sect. 10.3 may bebdistd unevenly on
the surface and can therefore be redundant if concentrateeriain areas. We
can exploit this redundancy and reduce computation timeréfjlfering keeping
only a well-distributed subset. To identify the active teatsubset, we partition
the surface into patches with similar geodesic radius omggioc complexity. For
each resulting surface cell, we maintain only one coarseifegcolored regions
in Fig. 10.3(a)). In local sub-regions this reduction of rsgacorrespondences
may lead to too few adjacent “cells” to yield meaningful atioates. There we
raise the number of coarse correspondences, thereby\algjrticrease the patch
density and then proceed iteratively as described aboge 1B6i3(b) shows that —
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(b)

Figure 10.3: Feature prefiltering and refinement. (a) zoom# onto hand re-
gion of the model at two subsequent time steps. Colored areaspresent sur-
face regions. Due to sparse distribution of coarse featureshe correspon-
dences (colored dots) are not correct. (b) Adaptively incrasing the number
of coarse features leads to accurate correspondences.

on this particular data set — the latter greatly improveschiag robustness in the
hand region of the reconstructed human.

10.6 Alignment by Deformation

One intriguing advantage of our approach is that in the ideaé the dense cor-
respondence field specifies the complete alignmetitgft) and M (¢t + 1). To
register the two meshes, we can therefore trivially movéexdocations without
having to resort to involved deformation schemes. In pcactive find it advan-
tageous to apply a fast and simple Laplacian deformatiorraetrather than to
perform vertex displacements only. This setting allowstfimral enforcement of
surface smoothness during alignment hence smoothing & and mismatches.
We refer to the recent survey [Botsch07] and the referena@sithfor informa-
tion on the method and its many variants. Laplacian defaondtelps us to cure
local reconstruction inaccuracies which may occur in sigrfeegions for which
feature localization was non-trivial, e.g. due to textungarmity. Also, we take
care that no loss of volume is introduced by the latter de&tion approach: in
rare cases where this becomes necessary, we force vertidels () back onto
M(t + 1) along the shortest distance. This way we effectively defdrfy(t) to
time-stept + 1, and as we iterate the whole matching process over time,agk tr
a single consistent mesh over the whole sequence, see Fan@®Fig. 10.6
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10.7 Results

To demonstrate the performance of our reconstruction @gprowe recorded
two real-world motion sequences in our multi-camera systéne first sequence
comprising of 105 frames shows a walking subject, Fig. 9-lda and the sec-
ond sequence comprising of 100 frames shows a human pernfgransimple
capoeira move, Fig. 10.6. As shown in these images as wetleaadcompany-
ing video [C08b], our method enables faithful reconstruttbspatio-temporally
coherent animations from this footage. A side-by-side canspn of the original
input sequence and the reconstructed mesh sequence slawsitimethod de-
livers coherent scene geometry with low tangential digiortWhen texturing our
result with a fixed checkerboard, coherence and low distogiroperties become
very obvious, see Fig. 9.1(e),(f). We chose this visuabreas texturing with the
input video images would hide any geometric distortions.

Our algorithm is computationally more efficient than mododeation-based reg-
istration methods (see Sect. 9.1). Even if very detailedneesomprising of
roughly 10,000 vertices are reconstructed (Fig. 10.6§®)gnd almost 600 coarse
features are used, correspondences between pairs of fcamdse computed in
approximately 2 minutes on a Pentium IV 3.0 GHz. Prefilteramgl adaptive
refinement down to 120 coarse matches reduces alignmentditheninute per
frame. In the more likely and practical case that mesh coxitgles around 400
vertices, two frames can be aligned in as fast as 2 seconds\gtreut prefilter-

ing.

Even if surface triangulations are very coarse, our methtodyres high-quality
coherent mesh animations and the advantages of the coneeshtrepresentation
become even more evident. In the non-coherent version taagegyulation dif-
ferences between adjacent frames, Fig. 10.6(g),(h), keattang temporal noise
which is practically eliminated in the coherent reconginrs, Fig. 10.6(e),(f).

10.8 Validation

In order to measure the accuracy of our algorithm we createsyrahetic
ground truth video sequence by texturing a virtual humamadtar model (skele-
ton+surface mesh) with a constant noise texture, animatiegnodel with cap-
tured motion data, and rendering it back into 16 virtual caangews. By this
means, we obtain for each time step a ground truth 3D modél eaihstant tri-
angulation, as well as respective image data. To compargesults against
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Figure 10.4: (a) Average vertex distance (ifR*) over time. (b) Recall accuracy
(geodesic) for all vertices in complete sequence. Errors gim w.r.t. ground
truth sequence in % of bounding box size {% error ~ 1.8 cm)

ground truth, we reconstruct visual hull meshes for all ®anof the synthetic
input and align the ground truth 3D model of the first framehvétl subsequent
ones. Fig. 10.4(a) shows that the average vertex distatae®e the ground truth
and the coherent reconstruction remains at a very low lé\E}wof the bounding
box dimension over time. The plot also shows no significardgredrift which
underlines the robustness of our algorithm. Fig. 10.4(lowshrecall accuracy:
for more tharD0% of the vertices (all time-steps) we are withitt bounding box
diagonal & 2cm) error radius.

By comparing the overlap between the coherent animationsheenichput silhou-
ette images, we can assess the reconstruction quality Ifegaences. On aver-
age, around 2.4% of the input silhouette pixels do not opentdh the reprojec-
tion which corresponds to an almost perfect match betweaaut imnd our result,
see Fig. 10.5(b). This comparison also clearly shows thaseleorrespondences
are indeed needed to achieve this quality level as a defmmbased on coarse
features alone leads to a high residual alignment error,1Big(a).

Our visual and quantitative results confirm effectivenesd efficiency of our
method. In the following we discuss some properties andtditions inherent
to the approach.

As we reconstruct shape from silhouette in every frame, tladity of results de-
pends on the quality of the input video data and may suffenfadifacts attributed
to the visual hull method itself. Some of the apparent phantolumes in the re-
sults are solely due to the inability of shape-from-silhteienethod to reconstruct
concavities, and they are not introduced by our correspwalmethod. The fo-
cus of this method is not improving per-time step shape+#rstraction itself, and
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(@) (b)

Figure 10.5: Overlap of silhouettes of input and reprojecte reconstructions
in one camera view (red: non-overlapping pixels of input sihouette; green:
non-overlapping pixels of reconstruction). (a) Coarse caespondences alone
don’t lead to a satisfactory alignment. (b) Dense correspatences, however,
lead to an almost perfect alignment.

our method could be used in just the same way with more addaecenstruction
methods that also enforce photo-consistency, such as spagag.

Comparing to related work by Starck et al. [Starck05], ourapph is more flexi-

ble (handles surfaces of arbitrary genus) and more effidétatrck] as it does not
rely on spherical parametrization, which is a non-triviedigem in its own. For

their recent follow-up paper [Starck07a], we first remaik their goal is different

in that wide time-frames are taken into account to solve bajlproblem. Hence,
it is natural that our local approach is much more efficient.th® same time is
accurate (they report typical errors of 5—-10cm in theinsgjtand provides a map
for anysurface point.

Also, some video sequences show a fair amount of motion &hd,hence some
reconstruction errors appear which could be easily oveecwith faster cam-
eras. Despite these unfaithful reconstructions our téste she robustness of our
method.

Our approach does not require surface parametrization. eMenyit shares one
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limitation with most practical parametrization methodsjmely the absence of
guarantees to obtain a valid one-to-one mapping: this meaatfold-overs may
occur when triangles are mapped between surfaces [Horriianmd practice,
the alignment by means of Laplacian deformation smoothésueh local mis-
matches. This fact and experiments back the assumptionaolyrisometric de-
formations.

From a theoretical point of view our method is not proven tadia changes of
the surface topology over time: “coordinate” functions htige locally unrelated
in this situation, hence there is no guarantee that restidtmaaningful in the af-
fected surface regions. Note that similar arguments aesfémanymethod relying
on local isometry which is not given under topology chandgegractice however,
our method performs robustly towards typically observgmbtogy changes (such
as arms and legs merging in the visual hulls) similarly t@af&07a]. To illustrate
this robust handling, the video contains two syntheticgiyerated example se-
guences (similar to the sequence used for accuracy measuoieim which arms
and legs merge with the rest of the body. Generally, our gospatio-temporally
coherent reconstruction, hence, topology changes sheutydided or corrected
during the initial reconstruction step.

We gave intuitive motivation for selecting suitable “com@te” functions and ap-
plying appropriate matching of surface points. We shouldaxk that several as-
pects of our approach are based on heuristics which ar&gdsbinly empirically,
in particular the choice of distance measliirg. An alternative approach might
be based on learning techniques which compute perfectnpetrized distance
functions for training sets.

Despite these limitations we have presented a robust aruieeffidense corre-
spondence finding method that enables spatio-tempordtgreat animation re-
construction from multi-view video footage.

10.9 Conclusion

We presented a method to establish dense surface correspmscbetween origi-
nally unrelated shape-from-silhouette volumes that haanlyeconstructed from
multi-view video. Our approach relies on sparse robustcaptieatures from
which dense correspondence is inferred in a discretizatidependent way and
without the use of parametrization techniques. Dense sporadences serve as
mapping between surfaces to align a mesh with constant ctwiteto all per-
time-step reconstructions. Our experiments confirm effgreand robustness of
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(e) (f) (9 (h)

Figure 10.6: (a)-(d) Sample frames from a spatio-temporajl coherent recon-
struction of a capoeira move. Note that the actor’'s shape isfthfully recon-
structed and triangle distortions are low. Remaining geomgy artifacts are
solely due to limitations of shape-from-silhouette methos. — The advantage
of our reconstruction becomes very apparent in case of coagdriangulations
(~ 750 triangles). (e), (f) show subsequent frames from our recomsiction,
and (g),(h) the same frames from the non-coherent input. Thertangulation
in the former models remains very consistent while in the laer case the tri-
angulation dramatically changes even from one time step tdie next.

our approach, even in the presence of topology changes. sidtseve recon-
struct animations from video as a deforming mesh with conist@ucture and low
tangential distortion. This kind of input is required by seljuent higher-level
processing tasks, such as analysis, compression, reaciistrimprovement, etc.

Our method allows us to reconstruct spatio-temporally oeftegeometry of ar-
bitrary scenes directly from multi-view video data. Eariie this thesis, we pre-
sented solutions to different problems that made use ofdheplate mesh for
capturing the shape and motion of the human actor. In ordethfise methods
to work correctly with different subject, e.g. animals, thailability of the cor-
rect template geometry was necessary. We can completdpcesfhe template
geometry along with shape and motion capture with our metiwbech provides
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spatio-temporally coherent dynamic geometry of arbitsamgnes. This allows us
to apply variety of video-based rendering, relighting ord@king algorithms over
a wide range of multi-view video sequences, even if no tetaptaavailable. It
should be noted that a template model would not suffer byithiggdtions induced
by the geometry reconstruction methods, e.g. concaviteslevel of detail etc.
On the other hand, our method allows a higher degree of fléyily comparison
to using a template model at the cost of the lower overall myu
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Chapter 11

Conclusions and Future Work

In this thesis we presented algorithmic solutions for a neindd problems that
arise in the reconstruction of high quality animation of taun®s from multi-view

video data. Although the solution to each problem has besatdd individually,

they could also be combined to constitute a complete anomaipeline for acqui-
sition, reconstruction and rendering of high quality vaitactors from multi-view

video data. Even though the focus of the methods is recanstguanimation of

real-world human actors, their fundamental principals lsarapplied to a larger
class of real-world scenes.

In part | of this thesis, we described the fundamental coraptmthat are com-
monly used in all the algorithmic solutions described intthesis. We described
how to model the shape, appearance and kinematics of a huWWaralso de-
scribed methods to animate the digitized human body modedj ith the kine-
matic skeleton and deformation. Either of the two animatiechniques has
been used throughout the solutions. In Chapter 3 we descobedulti-view
video studio, which is used to acquire high quality syncized multi-view video
streams under calibrated cameras and lighting. The achuoidti-view video
streams are used in all of the presented algorithmic saisitio

In part 1l of this thesis we presented an automatic modeddhapproach to gen-
erate a personalized avatar from multi-view video stredmg/gg a moving per-
son. This solution is tailored for a specific scenario whiaezdomplexity of the
model is limited by the available resources. We create higgility personal-
ized human avatars with simplest of model descriptions. afatar's geometry
is generated by shape adapting a template human body mddedurface tex-
ture is assembled from multi-view video frames showingteaby different body



108

Chapter 11: Conclusions and Future Work

poses. The generated static texture can be used to rendeortimete human
animation with just a single texture. Personalized humaataas allow for the
photo-realistic rendition of real-world humans with a mmnail model description.
We demonstrated that they can be easily incorporated inalienvironments.

In part Il of this thesis, we described methods that allowtaiseconstruct high
quality relightable free-viewpoint video from multi-viewideo data. We extended
the earlier work in the area of dynamic surface reflectantienason. First, we
first described a method to improve spatio-temporal reaisin of the dynamic
texture. The new method detects and compensates the ghuftihe apparel over
the body’s surface of the actor. Exact texture registraisoone of the main re-
quirement for the accurate estimation of surface refleeta®ur second contribu-
tion was a spatio-temporal reflectance sharing method d¢dlaices the bias in the
estimated dynamic reflectance. This method assures thestineated reflectance
properties are not biased towards the recording envirohméfe validated our
methods both visually and quantitatively.

In part IV of this thesis, we presented one of the first passie¢hods to recon-
struct geometry of large dynamic scenes showing movingsetainprecedented
detail and accuracy from video only. Methods presentedeganl the thesis, used
models that did not have embedded high resolution dynamaieestietails. For re-
lightable free-viewpoint video, we measured dynamic sagfaormal field param-
eterized over the smooth template. This was sufficient fodeeing relightable
free-viewpoint video from many angles apart from grazingggnvhich require the
details in the geometry. Also, the conversion of potentialbise-contaminated
normal field parameterized over an arbitrarily shaped simsotface into highly-
detailed time-varying scene geometry, is a difficult prabla itself. We make use
of the previous work in relightable free-viewpoint videmdaimprove the origi-
nal reflectance estimation and normal estimation approgamiploying robust
statistics to handle sensor noise faithfully. Later, weligppa new MRF-based
spatio-temporal surface deformation approach that ctsee geometric details
encoded in the normals into true dynamic 3D displacements.

Adding time-varying details to the geometry results in veigh quality anima-

tions. Moreover, our method is completely passive and doesequire any addi-
tional information other than multi-view video streamsaorted under calibrated
light sources. Our method can reconstruct subtle dynanomeéy details, such
as wrinkles and folds in clothing. Our spatio-temporal restauction method
outputs displaced geometry that is accurate at each tinpeo$tthe video and

temporally smooth, even if the input data are affected bgaoi

In part V of this thesis, we described a method to establistselsurface corre-
spondences between originally unrelated shape-fronotggtie volumes that have
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been reconstructed from multi-view video. The method upasse robust features
that are used as the anchor points from which the dense porrdence is estab-
lished. Dense correspondences are not only discretizatapendent but also
do not use any parameterization technique. This assureththmethod does not
suffer from any parameterization induced limitations, egints at singularities.

The method establishes dense correspondence between ltwmoegothat are re-

constructed from adjacent frames of the video. Dense quuretences allow triv-

ial deformation of one volume to the other. Starting fromfih& two frames, the

dense correspondences are propagated over the whole segueiith the start-

ing volume being deformed at each time steps. This resuéispatio-temporally

coherent animation as a deforming mesh with low tangenigabdion.

Spatio-temporally coherent scene geometry is an impoaadthighly required
property in captured animations. The output from our metbaxa be directly
used in the solutions presented earlier in this thesis. h&lgarlier method used
a template model for capturing the shape and tracking théomof the human
actor. Thus the availability of the template and its accynaas one of the limi-
tations in all of the methods. Spatio-temporally coheresdrgetry of arbitrary
scenes removes the template induced limitations and altbvest application
of the video-based algorithms over multi-view video dataldi&vonally, spatio-
temporal coherence is an explicit requirement for somestasich as surface
reflectance estimation, compression, motion analysisingdreconstruction im-
provements, etc. Our proposed method is not only very effidat is also very
robust even in the presence of topology changes. Even theadtave only used
the recordings of human actors for our experiments, the adetan be applied on
any subject as long as the high spatial details in the inplgosare present.

The methods presented in the thesis demonstrate that itngnossible to pas-

sively reconstruct high quality 3D animation from multew video data. We

would like to note that the arrival of high quality and highcacacy acquisition

equipments have also played a part in the development oé tirethods. We

can envision that in the future, with even higher resolutimil accuracy video
acquisition, the reconstructions quality or at least thalfrenditions should be
even better. The methods presented in this thesis represeetearly steps in the
direction of high quality 3D animation reconstruction fraidleo. They confirm

that this goal is not only achievable but can already be gatpractice with their

use.
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