
Decision Algorithms
for Probabilistic Simulations

Dissertation zur Erlangung des Grades des Doktors der

Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Lijun Zhang

Saarbrücken, 2009

Tag des Kolloquiums 05.12.2008
Dekan Prof. Dr. Joachim Weickert

Prüfungsausschuss

Vorsitzender Prof. Dr. Bernd Finkbeiner

Berichterstatter Prof. Dr. Holger Hermanns
Prof. Dr. Rance Cleaveland
Prof. Dr. Friedrich Eisenbrand
Prof. Dr. Roberto Segala

Akademischer Mitarbeiter Dr. Philipp Lucas

Abstract

Probabilistic phenomena arise in embedded, distributed, networked, biological and secu-

rity systems, and are accounted for by various probabilistic modeling formalisms based

on labelled transition systems. Among the most popular ones are homogeneous discrete-

time and continuous-time Markov chains (DTMCs and CTMCs) and their extensions

with nondeterminism, which we will consider in this thesis. Simulation relations admit

comparing the behavior of two models and provide the principal ingredients to per-

form abstractions of the models while preserving interesting properties. Intuitively, one

model simulates another model if it can imitate all of its moves. Simulation preorders

are compositional, thus allowing hierarchical verification and decomposition of difficult

verification tasks into several subproblems. Recently, variants of simulation relations,

such as simulatability and polynomially accurate probabilistic simulations, have been

introduced to prove soundness of security protocols. The focus of this thesis lies in

decision algorithms for various simulation preorders of probabilistic systems. We pro-

pose efficient decision algorithms and provide also experimental comparisons of these

algorithms.

i

Zusammenfassung

In einem breiten Spektrum von Systemen, etwa bei eingebetteten, verteilten, netzwerk-

basierten und biologischen System sowie im Bereich Security, treten Phänomene auf,

die sich sehr gut durch Probabilismus beschreiben lassen. Als Modellierungsformalis-

mus dienen dabei verschiedene probabilistische Erweiterungen von Transitionssystemen.

Zu den wohl populärsten Formalismen dieser Art zählen hier homogene Markovketten

(Markov chains) mit diskreter Zeit und Markovketten mit kontinuierlicher Zeit, bzw.

deren Erweiterungen mit Nichtdeterminismus. Genau diese Klasse von Modellen be-

trachten wir in dieser Dissertation. Simulationsrelationen erlauben es, das Verhalten

zweier Modelle in Beziehung zu setzen und liefern den grundlegenden Baustein, um

Abstraktionen so zu betreiben, daß interessante Eigenschaften erhalten bleiben. In-

tuitiv gesprochen simuliert ein Modell ein anderes, wenn es alle Zustandsübergänge

des anderen imitieren kann. Derartige Simulationsordnungen sind kompositional, da-

her erlauben sie hierarchische Verifikation und Zerlegung von Verifikationsaufgaben in

kleinere Unterprobleme. Kürzlich wurden Simulationsrelationen eingeführt, wie etwa

Simulatability und Polynomiell Akkurate Probabilstische Simulationen, um Korrektheit

von Sicherheitsprotokollen zu zeigen. Der Schwerpunkt dieser Dissertation liegt auf

Entscheidungsalgorithmen für verschiedene Simulationsordnungen auf probabilistischen

Systemen. Wir stellen neue, effiziente Entscheidungsalgorithmen vor und vergleichen

diese in Experimenten mit existierenden Algorithmen.

Erweiterte Zusammenfassung

In einem breiten Spektrum von Systemen, etwa bei eingebetteten, verteilten, netzwerk-

basierten und biologischen System sowie im Bereich Security, treten Phänomene auf,

die Markovsystemen als unterliegende semantische Modelle haben. Simulationsrela-

tionen erlauben es, das Verhalten zweier solcher Modelle in Beziehung zu setzen und

liefern den grundlegenden Baustein, um Abstraktionen so zu betreiben, daß interessante

Eigenschaften erhalten bleiben. Derartige Simulationsordnungen sind kompositional,

daher erlauben sie hierarchische Verifikation und Zerlegung von Verifikationsaufgaben

in kleinere Unterprobleme. Simulationsrelationen können auch direkt angewendet in

der Modellprüfung. Kürzlich wurden Simulationsrelationen eingeführt, wie etwa Simu-

latability und Polynomiell Akkurate Probabilstische Simulationen, um Korrektheit von

Sicherheitsprotokollen zu zeigen.

In dieser Dissertation stellen wir Entscheidungsalgorithmen für verschiedene Simu-

lationsordnungen auf Markovsystemen vor. Die Modellklasse die wir betrachten sind

homogene Markovketten (Markov chains) mit diskreter Zeit und Markovketten mit kon-

tinuierlicher Zeit, bzw. deren Erweiterungen mit Nichtdeterminismus: Markov Entschei-

dungsprozesse mit diskreter Zeit und kontinuierlicher Zeit.

Intuitiv gesprochen simuliert ein Zustand s′ einen anderen Zustand s (s - s′), wenn s′

alle Zustandsübergänge von s imitieren kann. Für Transitionssysteme ohne Wahrschein-

lichkeit bedeutet dies, dass wenn s einen Nachfolgezustand t hat, dann muss s′ auch

einen Nachfolgezustand t′ haben, so dass t′ den Zustand t simuliert. Für Markovmod-

elle ist dies komplizierter, da nach einem Zustand immer eine Verteilung folgt. Diese

entsprechende Bedingungen läßt sich durch eine gewichtete Funktion ausdrücken.

Der Standard-Entscheidungsalgorithmus für Simulationsrelationen funktioniert wie

folgt: Wir fangen mit einer Relation R, die gröber als die Simulationsrelation - ist.

Dann versuchen wir die Paare von R zu entfernen, die die Bedingungen von Simula-

tionrelationen bezüglich der Relation R verletzen. Dieser Prozess läuft bis keine Paare

mehr entfernt werden können. Als Fixpunkt ergibt sich so die Simulationsrelation -. Im

schlimmsten Fall wird pro Iteration nur ein Paar entfernt. Die Anzahl von Iterationen

iii

ist beschänkt durch n2, wobei n die Anzahl der Zustände ist.

In einem Transitionssystem ohne Wahrscheinlichkeit verletzt ein Paar (s, s′) die Be-

dingung bezüglich R, wenn s einen Nachfolgezustand t hat, aber s′ keinen Nachfolgezus-

tand t′ hat, so dass (t, t′) auch in R liegt. Für Markovmodelle muss diese Bedingung, die

durch eine gewichtete Funktion beschrieben wird, überprüft werden. Diese Bedingung

kann mit Hilfe von Algorithmen für maximalen Fluss überprüft werden, was aber eine

Zeitkomplizität von O(n3) ergibt. Dies führt zu einem Algorithmus mit Zeitkomplexität

O(n7). Inspiriert von Algorithmen für parametrischen maximalen Fluss überprüfen wir

die Bedingungen bezüglich gewichteter Funktionen inkrementell, d.h. nachdem wir ein-

mal das Algorithmus für maximalen Fluss aufgerufen haben, speichern wir das Netzwerk,

den Fluss und andere wichtige Informationen. In der nächsten Iteration, nutzen wir die

gespeichert Informationen aus, um den Fluss effizient zu bekommen, anstatt den Algo-

rithmus neu aufzurufen. Auf diese Art und Weise erhalten wir einen Algorithmus mit

Zeitkomplexität O(m2n), wobei m die Anzahl von Transitionen ist. Als Speicherkom-

plexität haben wir aber O(m2) anstatt O(n2) wegen des zusätzlichen Speicherbedarfs.

Desweiteren betrachten wir Entscheidungsalgorithmen für schwache Simulationen

für Markovketten und probabilistische Simulationen für Markoventscheidungsprozesse.

Sowohl schwache Simulationen als auch probabilistische Simulationen sind gröber als

Simulationen. Sie erlauben daher noch stärkere Abstraktion. Für schwache Simu-

lation präsentieren wir einen effizienten Algorithmus basierend auf dem Breakpoint-

Algorithmus. Bis jetzt gibt noch keinen Entscheidungsalgorithmus für probabilistische

Simulationen. Wir reduzieren das Problem auf Lineare Programmierung, welche poly-

nomielle Laufzeit hat.

Um den Speicherbedarf zu reduzieren, betrachten wir Algorithmen, welche auf Par-

titionsverfeinerung basieren, so erhalten wir platzeffizientere Entscheidungsalgorithmen.

In Experimenten zeig sich, dass in manchen Fällen so auch die Laufzeit verbessert werden

kann.

Acknowledgments

I would first thank my supervisor Holger Hermanns, who also guided my master the-

sis. He is always ready for discussions, and provided me valuable ideas and various

directions. He taught me how to write papers, read my drafts, gave a lot suggestions

for improvement, and corrected my English mistakes. Without his endless support this

thesis would not have been completed. His deep passion for research, and his broad view

of the research area will always influent me in the future.

I am grateful to David N. Jansen for his advising of my master thesis. The research

collaborations with him, which appear in this thesis, have been very fruitful. His ability

to find problems and to suggest elegant solutions helped me greatly, especially if I got

stuck. His very careful reading of our papers has improved this thesis a lot. I am also

grateful to Friedrich Eisenbrand for several insightful discussions about maximum flow

problems, especially about the parametric maximum flow problems, which play a very

important role in this thesis.

Björn Wachter deserves a special thank for his multiple roles: he was my excellent

study partner during our computer science study in Saarbrücken; he is a very good friend

of mine who has been helping me a lot during my stay in Germany; and he is a very great

coauthor of several papers with me. We have been having so many wonderful discussions,

which lead to wonderful ideas and nice papers. I am also thankful to Jonathan Bogdoll,

Pepijn Crouzen and E. Moritz Hahn for our great scientific collaborations. It was a

pleasure to work with you. A special thank to Jonathan Bogdoll for helping me with

the implementation of the algorithms in this thesis.

I thank all my group colleges Sven Johr, Christian Eisentraut, Reza Pulungan, and

again Pepijn Crouzen and E. Moritz Hahn. I enjoyed very much in our amazing dis-

cussions. Thanks also to our group secretary Christa Schäfer, who helped me to fill out

thousand of formulas.

I am grateful for the support received from the NWO-DFG bilateral project VOSS,

the DFG as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS,

and the European Community’s Seventh Framework Programme under grant agreement

v

no 214755.

I thank my parent Guiping Liu, Hualin Zhang for their endless love. Without their

support from the very beginning I would not be able to finish the school and study in

Germany. I also thank my parents-in-law, Huiling Zhang and Junda Wen, for their great

support in taking care of my son.

Last but not least, a special thank goes to my wife Chao Wen and my son Tianqi:

This thesis is dedicated to them.

Contents

Acknowledgments v

1 Introduction 1

1.1 Model Checking . 1

1.2 Simulation Relations . 3

1.3 Decision Algorithms . 5

1.3.1 Contributions . 5

1.4 Organisation of the Thesis . 8

2 Markov Models 9

2.1 Fully Probabilistic Systems . 10

2.2 Discrete-time Markov Chains . 12

2.3 Continuous-time Markov Chains . 12

2.4 Probabilistic Automata . 13

2.5 Continuous-time Probabilistic Automata 14

2.6 Bibliographic Notes . 15

3 Computing Maximum Flows 17

3.1 Maximum Flow Problems . 17

3.2 Augmenting Path Algorithm . 18

3.3 The Preflow Algorithm . 19

3.4 Feasible Flow Problem . 21

3.5 Minimum Cut . 22

4 Simulation Relations 23

4.1 Standard Definitions . 24

4.1.1 Weight Functions . 25

vii

4.1.2 Strong Simulation . 27

4.1.3 Strong Probabilistic Simulations 32

4.2 Alternative Simulation Definitions . 35

4.2.1 Characterising Weight Functions 36

4.2.2 Strong (Probabilistic) Simulations 39

4.3 Weak Simulations . 42

4.3.1 Weak Simulation for DTMCs . 42

4.3.2 Weak Simulation for CTMCs . 46

4.3.3 Weak Simulation for FPSs . 47

4.4 Bibliographic Notes . 51

4.5 Summary . 52

5 Algorithms for Strong Simulations 53

5.1 Strong Simulation up to R . 54

5.2 Strong Simulation . 55

5.2.1 Basic Algorithm to Decide Strong Simulation 55

5.2.2 An Improved Algorithm for FPSs 56

5.2.3 Algorithms for PAs and CPAs . 63

5.3 Strong Probabilistic Simulations . 68

5.3.1 An Algorithm for PAs . 68

5.3.2 An Algorithm for CPAs . 70

5.4 Experimental Results . 72

5.4.1 Optimisation Options . 72

5.4.2 Case studies . 74

5.5 Bibliographic Notes . 83

5.6 Summary . 84

6 Algorithms for Weak Simulations 85

6.1 Weak Simulation up to R . 86

6.2 An Algorithm for DTMCs . 88

6.2.1 The Parametric Network N (γ) 88

6.2.2 Breakpoints . 91

6.2.3 The Algorithm . 94

6.2.4 An Improvement . 99

6.3 An Algorithm for CTMCs . 102

6.4 Experimental Results . 103

6.5 Bibliographic Notes . 104

6.6 Summary . 104

7 Simulation Based Minimisation 105

7.1 The Quotient Automata . 106

7.1.1 The Minimal Quotient Automaton 109

7.1.2 Safety and Liveness Properties . 112

7.2 Simulation Characterised by Partition Pairs 113

7.3 Solving the GCPP . 118

7.3.1 Refinement of the Partition . 119

7.3.2 Refinement of the Partition Relations 122

7.3.3 Correctness . 124

7.3.4 On Acyclicity . 125

7.3.5 Complexity . 126

7.4 Simulation Quotient for CPAs . 128

7.4.1 Safety Properties . 128

7.4.2 The Minimal Quotient Automaton for CPAs 130

7.4.3 Algorithm for CPAs . 131

7.5 Experimental Results . 131

7.6 Bibliographic Notes . 135

7.7 Summary . 135

8 Conclusion and Future Works 137

8.1 Conclusion . 137

8.2 Future works . 138

Bibliography 139

Chapter 1

Introduction

With the ubiquity of computing systems in our world, the need arises to assess the
correctness of those systems. The past has shown that undiscovered errors in safety-
critical systems may result in enormous economic costs (The Explosion of the Ariane 5)
or even physical harm to humans (Therac-25 Accidents).

1.1 Model Checking

Model Checking. Many verification methods have been introduced to prove the cor-
rectness of systems exploiting rigorous mathematical foundations. As one of the au-
tomatic verification techniques, model checking [16] has successfully been applied to
automatically find errors in complex systems. Recently, Edmund M. Clarke, E. Allen
Emerson, and Joseph Sifakis received the 2007 A.M. Turing Award for their original and
leading research. Model checking answers the question whether the system satisfies a
property. The system is usually given as a labelled transition system (Kripke structure),
and the property can be specified in terms of a temporal logical formula.

Models. Most of the systems such as embedded, distributed, networked, random-
ized, and biological systems, exhibit probabilistic phenomena. Based on labelled tran-
sition systems, various probabilistic models have been proposed in the literature. We
consider homogeneous discrete-time and continuous-time Markov chains (DTMCs and
CTMCs) [77, 106] and their extensions with nondeterminism. Associated with each
DTMC or CTMC is a set of system states. We assume that the system we are modelling
occupies exactly one state at any moment. To model the evolution of the system, a
transition matrix is used to represent transitions from one state to another. In DTMCs,
the transition matrix assigns each state a probability distribution, which provides the
probability of going to state s′ from state s at discrete time point t. Since we are consid-
ering homogeneous Markov chains, the probability of going to s′ from s is independent
of the time point t. In CTMCs, the corresponding transition probability is exponentially
distributed over time with rates given by the rate matrix. If we denote the sum of the
outgoing rates of a state s as its exit rate, the probability that starting from s within
time t any transition is taken is exponentially distributed with the exit rate of s. A

1

2 CHAPTER 1. INTRODUCTION

CTMC induces a time-abstract DTMC, also called the embedded DTMC: the transition
probability from state s to s′ is obtained by taking the fraction of the rate of this transi-
tion over the exit rate of s. Then, in a CTMC, starting from s, a particular transition to
s′ is triggered within time t is given by the product of the probability of this transition
in its embedded DTMC, and the probability that any transition will be triggered within
time t. The fundamental property of Markov chains is the Markov property (or called
the memoryless property), which states that the future depends only on the current
state, not on the history.

Probabilistic automata (PAs) [98] extend transition systems with probabilistic se-
lection, or, viewed differently, extend DTMCs with nondeterminism. They constitute a
natural model of concurrent computation involving random phenomena. We consider
probabilistic automata in the style of Segala and Lynch [101]. In a nutshell, a labelled
transition in some PA leads to a probability distribution over the set of states, rather
than a single state. Informally, starting from state s, a distribution is associated with an
action α, which is also called the α-successor distribution. The resulting model exhibits
nondeterministic choice (as in labelled transition systems) and afterwards probabilis-
tic choice (as in DTMCs). Once such nondeterminism is resolved by choosing some
α-successor distribution deterministically (called deterministic schedulers in the litera-
ture), the PA behaves then just like a DTMC. In PAs there may exist nondeterminism
between equally-labelled transitions (also called internal nondeterminism), i.e., more
than one α-distributions from the same state. Markov decision processes (MDPs) [46]
are an important subclass of PAs, which do not allow internal nondeterminism.

Continuous-time probabilistic automata (CPAs) [79, 93, 20, 120] are obtained by ex-
tending CTMCs with nondeterminism, just as PAs extend DTMCs. In CPAs, for state
s, a rate function, which assigns each state a rate, is associated with an action alphabet.
There may exist more than one rate function for state s associated with the same ac-
tion. Similar to PAs, once the nondeterminism is resolved by choosing some transition
deterministically, the CPA behaves then as a CTMC. Continuous-time Markov decision
processes (CTMDPs) are special CPAs where no internal nondeterminism exists. CPAs
are a natural semantic model for various performance and dependability modelling for-
malisms including stochastic activity networks [95], generalised stochastic Petri nets [84]
and interactive Markov chains [65].

Properties. Temporal logic (or tense logic) has been introduced by Arthur Prior about
fifty years ago to describe system of rules. In model checking, it is widely used to reason
about transition systems in terms of temporal operators. Various temporal logics have
been introduced, including linear temporal logic (LTL) [83] and (CTL) [35]. These logics
have also been extended to capture probabilistic properties: A discrete probabilistic
variant of CTL, called PCTL [62] (probabilistic CTL), is interpreted over discrete-time
models. For the continuous-time case, we consider continuous stochastic logic (CSL) [5],
which is the continuous stochastic extension of PCTL tailored to CTMCs or CPAs. As
an example, a safety property such as “the probability within k steps (t time units) that
the system reach a set of unsafe sates is bounded by ǫ” can be expressed as a PCTL
(CSL) formula.

1.2. SIMULATION RELATIONS 3

1.2 Simulation Relations

Simulations for LTSs. The power of model checking is limited by the infamous state
space explosion problem. Notably, minimizing the system to the bisimulation [86, 89]
quotient is a favorable approach. As a more aggressive attack to the problem, simulation
relations [85] have been proposed for these models. In particular, they provide the
principal ingredients to perform abstractions of the models, while preserving safe CTL
properties (formulas with positive universal path-quantifiers only) [36].

While bisimulation relations are equivalence relations on the state space, simulation
relations (-) are preorders such that if s - s′ (“s′ simulates s”) state s′ can mimic all
stepwise behaviour of s; the converse, i. e., s′ - s is not guaranteed, so state s′ may
perform steps that cannot be matched by s. Thus, if s - s′ then every successor of s has
a corresponding related successor of s′, but the reverse implication does not necessarily
hold. Simulation relations are often used for verification purposes to show that one
system correctly implements another, more abstract system. One of the interesting
aspects of simulation relations is that they allow a verification by “local” reasoning. In
the context of model checking, simulation relations can be used to combat the well-known
state explosion problem, owed to the preservation of certain classes of temporal formulas.
For instance, if s - s′ then for all safe CTL formulas Φ it follows that s′ |= Φ implies
s |= Φ [36]. Simulation can be lifted to the level of transition systems by considering
their corresponding initial states: system Q simulates system P , denoted by P - Q if
the initial state of P can be simulated by the initial state of Q. Simulation can then be
used for verification purposes [1, 71, 64]: Assume that the implementation is represented
by the system P and the specification is represented by the system Q. Q simulates P
would mean that P correctly implements Q.

Simulations for Probabilistic Systems. Bisimulation and simulation relations have
been extended to DTMCs [72, 80]. In correspondence to the non-probabilistic setting, a
simulation preorder provides the principal ingredients to perform abstraction of DTMCs,
while preserving safe fragments of the safe PCTL formulas. For DTMCs, s - s′ requires
that the distribution of s′ can match the distribution of s. Correspondence of distrib-
utions is naturally defined with the concept of weight functions [72]. Bisimulation and
simulation relations [101] have been further extended to compare the stepwise behaviour
of states in PAs: For s - s′, it is required that every successor distribution of s via ac-
tion α (called α-successor distribution) has a corresponding α-successor distribution at
s′. As for DTMCs, in the context of model checking, simulation relations preserve safe
PCTL formulas [101]. Probabilistic simulation [101] is a relaxation of simulation in the
sense that it enables convex combinations of multiple distributions belonging to equally
labelled transitions. More concretely, it may happen that a state s has no α-successor
distribution which can be related to an α-successor distribution of s′, yet there exists
a so-called α-combined transition, a convex combination of several α-successor distrib-
utions. Probabilistic simulation accounts for this and is thus coarser than simulation,
but still preserves the same class of PCTL-properties as simulation does.

Weak simulation for DTMCs is proposed in [18]. In weak simulation, the successor
states are split into visible and invisible parts, and the weight function conditions are

4 CHAPTER 1. INTRODUCTION

only imposed on the transitions leading to the visible parts of the successor states.
Weak simulation is strictly coarser than the afore-mentioned simulation (will be called
strong simulation) for Markov chains, thus allows further reduction of the state space.
It preserves the safe PCTL-properties without the next state formulas [18].

In [18], simulation and weak simulation relations are also introduced for CTMCs. If
s - s′, the following two conditions must hold. The first condition requires that s - s′

holds in the embedded DTMC of the CTMC. The other part, called the rate condition,
requires that state s′ is “faster” than s which manifests itself by a higher exit rate. While
simulation preserves the safety fragment of CSL formulas, weak simulation preserves the
safe CSL-properties without the next state formulas. Simulation for CPAs [122] combines
the simulation for the induced PAs and an additional rate condition. In [122], the notion
of probabilistic simulation relations is also introduced for CPAs, which preserve the safe
CSL formulas.

Verifying Systems with Simulation Relations. In many applications, a system
can be specified concisely by means of a probabilistic model rather than in terms of
the logics PCTL or CSL. Examples of this kind include various recent wireless network
protocols, such as ZigBee [59], Firewire Zeroconf [25], or the novel IEEE 802.11e, where
the central mechanism is selecting among different-sided dice, readily expressible as
a probabilistic automaton [82]. For such cases, a decision algorithm for simulation
preorder serves as specification checker: The model satisfies the specification if the
automaton for the specification simulates the automaton for the model. Given the
emergence of ever more wireless standards of that sort, there is an obvious motivation
to study the principal technological basis: decision algorithms for simulation preorders.
Just as standard simulation for LTSs, the main advantage of simulation methods for
probabilistic models is that it is compositional [101]. This allows hierarchical verification
which decomposes difficult verification tasks into several intermediate refinements.

Probabilistic automata have been considered as formal model for security proto-
cols [90, 91] which involve probabilistic choices. The notion of simulatability is intro-
duced which allows to prove soundness of implementation relations, i.e., an ideal system
in the Dolev-Yao [50] style can be implemented by a real system. Proof techniques
based on simulatability allow “error sets”, i.e., a subset of states of the real system
which cannot be proved to be simulated by the ideal system; however the probability of
such is negligible. Based on probabilistic simulation, Segala and Turrini [104] proposed
the notion of polynomially accurate probabilistic simulations which incorporate the error
sets into the definition.

Simulation and probabilistic simulation relations can also be directly used in model
checking: The kernel of the relation, i. e., the corresponding simulation equivalence
- ∩ %, can be constructed to build a quotient automaton. Then, model checking can
be performed on the quotient automaton which might be significantly smaller than the
original one. The quotient construction preserves both safety and liveness fragments
of PCTL and CSL for discrete-time and continuous-time models respectively. This
means that, as long as one is interested in safety or liveness properties, it is favorable to
perform model checking on the simulation equivalence quotient. To obtain the quotient,
an algorithm for deciding simulation preorder is needed.

1.3. DECISION ALGORITHMS 5

1.3 Decision Algorithms

The core of the thesis are decision algorithms for simulation preorders for probabilistic
systems. We briefly review the existing algorithms. We give complexity results in terms
of the number of states n and the number of transitions m of probabilistic systems under
analysis.

In the non-probabilistic setting, efficient algorithms for deciding simulation preorders
have been proposed in [22, 64]. The complexity is O(mn) where n and m denotes the
number of states and transitions of the transition system respectively. For probabilistic
automata, Baier et al. [9] introduced a polynomial decision algorithm with time complex-
ity O((mn6 + m2n3)/ log n) and space complexity O(m2), by exploiting a network flow
algorithm. For DTMCs or MDPs, their algorithm has complexity O(n7/ log n) in time
and O(n2) in space. For Markov chains, it is proved that probabilistic weak simulation
is decidable in polynomial time [13] by reductions to LP problems.

1.3.1 Contributions

This thesis investigates effective algorithms for probabilistic simulations. The common
scheme of decision algorithms for simulations is as follows. The algorithm starts with
the relation R which is guaranteed to be coarser than the simulation preorder -. Then,
the relation R will be refined. In each iteration of the refinement loop, pairs (s, s′) are
eliminated from the relation R if the corresponding simulation conditions are violated
with respect to the current relation. In the context of labelled transitions systems, this
means that s has a successor state t, but we cannot find a successor state t′ of s′ such that
(t, t′) is also in the current relation R. For DTMCs, this correspondence is formulated by
the existence of a weight function for distributions (P(s, ·),P(s′, ·)) with respect to the
current relation R. Checking this weight function condition reduces to checking whether
there is a maximum flow over the network constructed out of (P(s, ·),P(s′, ·)) and the
current relation R. The complexity for one such check is however rather expensive, it has
time complexity O(n3/ log n). If the iterative algorithm reaches a fix-point, the strong
simulation preorder is obtained. The number of iterations of the refinement loop is in
worst case O(n2), and the overall complexity [9] amounts to O(n7/ log n) in time and
O(n2) in space.

Fixing a pair (s, s′), we observe that the networks for this pair across iterations of the
refinement loop are very similar: They differ from iteration to iteration only by deletion
of some edges induced by the successive clean up of R. We exploit this by adapting
a parametric maximum flow algorithm [53] to solve the maximum flow problems for
the arising sequences of similar networks, hence arriving at efficient simulation decision
algorithms. The basic idea is that all computations concerning the pair (s, s′) can be
performed in an incremental way: after each iteration we save the current network
together with maximum flow information. Then, in the next iteration, we update the
network, and derive the maximum flow while using the previous maximum flow function.
The maximum flow problems for the arising sequences of similar networks with respect to
the pair (s, s′) can be computed in time O(|V |3) where |V | is the number of nodes of the
network. This leads to an overall time complexity O(m2n) for deciding the simulation

6 CHAPTER 1. INTRODUCTION

preorder. Because of the storage of the networks, the space complexity is increased
to O(m2). Especially in the very common case where the state fanout of a model is
bounded by a constant g (and hence m ≤ gn), our strong simulation algorithm has time
and space complexity O(n2).

The above algorithm can be extended easily to handle CTMCs. Recall in a CTMC
s - s′ holds if it holds in the embedded DTMC of the CTMC, and s′ is faster than
s, which is called the rate condition. We can ensure that additional rate condition by
incorporating it into the initial relation R. In the refinement steps afterwards, only
the weight function conditions needs to be checked in the embedded DTMC. Thus, we
achieve an algorithm for CTMCs with same time and space complexity.

For weak simulation on Markov chains, the parametric maximum flow technique
cannot be applied directly. Nevertheless, we manage to incorporate the parametric
maximum flow idea into a decision algorithm with time complexity O(m2n3) and space
complexity O(n2). An earlier algorithm [13] uses LP problems [74, 96] as subroutines.
The maximum flow problem is a special instance of an LP problem but can be solved
much more efficiently [2].

The above joint work is with Holger Hermanns, Friedrich Eisenbrand and David N.
Jansen, and has been published in [123, 124].

We extend the algorithm to compute the strong simulation preorder to also work on
PAs. It takes the skeleton of the algorithm for Markov chains: It starts with a relation
R which is coarser than -, and then refines R until - is achieved. In the refinement
loop, a pair (s, s′) is thrown out of the pair if the corresponding simulation conditions
are violated with respect to the current relation. For PAs, this means that there exists
an α-successor distribution µ of s, such that for all α-successor distributions µ′ of s′, we
cannot find a weight function for (µ, µ′) with respect to the current relation R. Again,
as for Markov chains, the existence of such weight functions can be reduced to maximum
flow problems. Combining with the parametric maximum flow algorithm [53], we arrive
at the same time complexity O(m2n) and space complexity O(m2) as for Markov chains.

The above maximum flow based procedure cannot be applied to deal with strong
probabilistic simulation for PAs. The reason is that α-combined transition of state s is a
convex combination of several α-successor distributions of s, thus results in uncountable
many such possible combined transitions. The computational complexity of deciding
strong probabilistic simulation has not been investigated before. We show that it can
be reduced to solving LP problems. The idea is that we introduce for each α-successor
distribution a variable, and then reformulate the requirements concerning the combined
transitions by linear constraints over these variables. This allows us to construct a set
of LP problem such that whether a pair (s, s′) should be thrown out of the current pair
R is equivalent to whether each of the LP problem has a solution.

The algorithms for PAs are then extended to handle their continuous-time analogue,
CPAs. In the algorithm, for each pair (s, s′) in the refinement loop, the additional rate
condition is ensured by an additional check via comparing the appropriate rates of s and
s′. The resulting algorithm has the same time and space complexity.

The above joint work is with Holger Hermanns, Friedrich Eisenbrand and David N.
Jansen, and has been published in [122, 124].

1.3. DECISION ALGORITHMS 7

In addition to developing efficient algorithms, and establishing their worst-case com-
plexities, we present an experimental evaluation of these algorithms, together with var-
ious optimisations. The evaluation is carried out on both standard example cases as
well as randomly generated models. Experimental results show that for sparse models,
the parametric maximum flow based algorithm is only slightly more efficient, but uses
more memory instead. The strength of the new algorithms are dense models, which
seems seldom in models commonly used for case studies. The gap between theoretical
and practical efficiency is not caused by ”the constant factors” but by the fact that the
corner cases that blow up the worst case complexity are rare in practice.

We also consider a few simple optimisations for the algorithm by exploiting the
structure of networks. To our surprise, such simple optimisations produce promising
results in general in our practical studies, in comparison to the theoretically better
algorithm.

The above joint work is with Jonathan Bogdoll and Holger Hermanns, and has been
published in [24].

Sometimes, the space complexity becomes the bottleneck of the decision algorithm.
Inspired by the work of [54], we study space efficient algorithms for deciding the sim-
ulation preorder for PAs and CPAs. We incorporate partition refinement techniques
into the computation. In the algorithm, along a partition of the state space, we main-
tain also a relation between the blocks in the partition. Then, we check the weight
function conditions in the quotient automaton induced by this partition, instead on the
original automaton. This reduces the space complexity to O(n2

⋄ + n log n⋄) where n⋄

denotes the number of simulation equivalence classes. The time complexity, however,
is rather heavy: O(mn⋄ + m2

⋄n
4
⋄ + m2

∼n2
⋄) where m⋄ and m∼ denote the number of

transitions in the simulation equivalent quotient and the strong bisimulation quotient
respectively. We exploit the parametric maximum flow technique to get a better time
bound O(mn⋄ + m2

∼n2
⋄), but with space penalty O(m2

⋄ + n log n⋄). Experimental results
show that the partition refinement based method is very effective in time and memory:
not only the space-efficiency is improved drastically, often orders of magnitude less time
are required.

This work has been published in [121].

As a side result, we propose a new equivalent definition of strong (probabilistic) sim-
ulations. In our new definition, instead of using weight functions to relate distributions,
we compare the distributions by considering an arbitrary subset of states. Informally,
for states s, s′ in a DTMC, s - s′ implies the probability of going to a set of states A
from s is smaller than or equal to the probability of going to a related set (with respect
to the strong simulation relation) of states from s′. This alternative characterisation
makes the simulation relations for Markov chains more understandable for those who
are familiar with labelled transition systems. An alternative definition of strong simula-
tion is also provided for CTMCs, PAs and CPAs. Using the same idea, we also provide
an equivalent definition of strong probabilistic simulation for PAs and CPAs.

8 CHAPTER 1. INTRODUCTION

1.4 Organisation of the Thesis

Chapter 2 In this chapter we recall the definition of discrete-time and continuous-time Markov
chains, as well as discrete-time and continuous-time probabilistic automata.

Chapter 3 We recall the maximum flow problem, and algorithms for solving the problem. We
also recall some basic results needed in subsequent chapters.

Chapter 4 This chapter first repeats the standard definition of strong and strong probabilistic
simulations. As we mentioned in the introduction, the definition uses the notion of
weight functions to relate the distributions. In the second part of this chapter, we
propose a new equivalent definition of strong simulation which provides a rather
intuitive view. We also recall the definition of weak simulation for Markov chains.
We show that for fully probabilistic systems (FPSs) there are some intricacies in
the original definition of weak simulation.

Chapter 5 In this chapter we introduce our parametric maximum flow based decision algo-
rithm for strong and strong probabilistic simulations. For both Markov chains and
probabilistic automata, we arrive at an algorithm with overall time complexity
O(m2n) and space complexity O(m2). In this chapter we also report on experi-
mental comparisons, with various useful optimisations.

Chapter 6 In this chapter, we propose a decision algorithm for weak simulation for Markov
chains. We incorporate the parametric maximum flow algorithm into a decision
algorithm with time complexity O(m2n3) and space complexity O(n2).

Chapter 7 In this chapter, we incorporate the partition refinement technique into the com-
putation of the simulation preorder for PAs and CPAs. The resulting algorithm
has space complexity O(n2

⋄ + n log n⋄) where n⋄ denotes the number of simula-
tion equivalence classes. We provide also experimental results showing that this
method is very effective in time and memory.

Chapter 8 This chapter concludes the thesis.

Chapter 2

Markov Models

This chapter introduces the models considered in this thesis. We consider homogeneous
discrete-time and continuous-time Markov chains (DTMCs and CTMCs) and their ex-
tensions with nondeterminism. Associated with each DTMC or CTMC is a set of system
states. We assume that the system we are modelling occupies exactly one state at any
moment. To model the evolution of the system, a transition matrix is used to represent
the transitions from one state to another. In DTMCs, the transition matrix is proba-
bilistic, which provides the probability of going to state s′ from s at discrete time point
t. For homogeneous Markov chains, the probability of going to s′ from s is independent
of the time point t. In CTMCs, the corresponding transition probability is exponentially
distributed with rates given by the rate matrix. The fundamental property of Markov
chains is the Markov property (also called the memoryless property), which states that
the future depends only on the current state, not on the history.

For each state s in a DTMC, the sum of probabilities from s is either 0 (s is called
absorbing) or 1 (s is called stochastic). In this chapter, we consider another type of
states in which the sum of probabilities from s is between 0 and 1 (s is then called
substochastic). In this case, the transitions out of s are under-specified. As indicated
in [47], under-specification can be used to model behaviour which is unknown or of no
interest. The resulting model is called fully probabilistic systems (FPSs). DTMCs are
special FPSs in which states are either stochastic or absorbing.

Probabilistic automata (PAs) extend labelled transition systems with probabilistic
selection, or extend FPSs with nondeterminism. As for FPSs, we also allow substochastic
behaviour to model under-specification. A labelled transition in some PA leads to a
probability distribution over the set of states, rather than a single state. The resulting
model thus exhibits both nondeterministic choice and probabilistic choice. We also
consider the Continuous-time probabilistic automata (CPAs), which extend CTMCs
with nondeterminism.

Organisation of this Chapter. We recall the definition of fully probabilistic sys-
tems in Section 2.1. Discrete- and continuous-time Markov chains will be presented
in Sections 2.2 and 2.3 respectively. In Sections 2.4 and 2.5, we repeat the definitions
of nondeterministic extensions of the discrete-time and continuous-time models respec-
tively. In Section 2.6, we discuss other probabilistic models from the literature.

9

10 CHAPTER 2. MARKOV MODELS

2.1 Fully Probabilistic Systems

Notations. Let X, Y be finite sets. For a two-argument function f : X × Y → R,
let f(A, y) =

∑

x∈A f(x, y) for all A ⊆ X and y ∈ Y . Analogously, let f(x, B) =
∑

y∈B f(x, y) for all x ∈ X and B ⊆ Y . The extension to functions with one or three
arguments is obvious. Let AP be a fixed, finite set of atomic propositions.

Distributions. For a finite set S, a distribution µ over S is a function µ : S → [0, 1]
satisfying the condition µ(S) ≤ 1. The support of a distribution µ is the set of states
on which µ assumes a non-zero value, i.e. Supp(µ) = {s ∈ S | µ(s) > 0}. The size
of µ is defined by |µ| = |Supp(µ)|. The distribution µ is called stochastic if µ(S) = 1,
absorbing if µ(S) = 0. Otherwise, i.e. µ(S) ≤ 1, we say µ is substochastic. We
sometimes use an auxiliary state (not a real state) ⊥ 6∈ S and set µ(⊥) = 1− µ(S). If
µ is not stochastic we have µ(⊥) > 0. Further, let S⊥ denote the set S ∪ {⊥}, and let
Supp⊥(µ) = Supp(µ) ∪ {⊥} if µ(⊥) > 0 and Supp⊥(µ) = Supp(µ) otherwise. We let
Dist(S) denote the set of distributions over the set S.

Definition 2.1.1. A labelled fully probabilistic system (FPS) is a tuple M = (S,P, L)
where:

• S is a finite set of states,

• P : S×S → [0, 1] is a probability matrix such that for all s ∈ S, P(s, ·) ∈ Dist(S),

• L : S → 2AP is a labelling function.

A state s ∈ S is called stochastic, absorbing, and substochastic if the distribution
P(s, ·) is stochastic, absorbing, and substochastic respectively. Intuitively, P(s, s′) de-
notes the probability of moving from s to s′ in a single step. For s ∈ S, let post(s) =
Supp(P(s, ·)), i. e., the set of successor states of s. Let post⊥(s) = Supp⊥(P(s, ·)), i. e.,
post(s) plus the auxiliary state ⊥ in case that P(s,⊥) > 0.

A state s′ is reachable from s if it holds that: there exists a sequence of states
s1, . . . , sn with n ≥ 1, s1 = s, sn = s′, and for each i = 1, . . . , n− 1, P(si, si+1) > 0.

Example 2.1.1. As an example consider the FPS in Figure 2.1. The states are rep-
resented by circles, and transitions by edges equipped with transition probabilities.
Labelling of states is indicated by colours in the circles. For state s1, we have that
post(s1) = {s1, p1, p2} and post⊥(s1) = {s1, p1, p2,⊥}.

If s is not stochastic, it holds that P(s, S) < 1. In this case, the transitions out
of s are under-specified. As indicated in [47], under-specification can be used to model
behaviour which is unknown or of no interest. We have introduced the auxiliary state ⊥
to represent this under-specification. ⊥ is not a real state, it simply represents unknown
behaviour. We could think that from state s, with probability P(s,⊥) = 1−P(s, S) > 0,
the behaviour is under-specified. The following example gives an intuition why this is
useful.

2.1. FULLY PROBABILISTIC SYSTEMS 11

s1

p1 p2

1
6

1
6

1
6

Figure 2.1: A simple FPS.

Example 2.1.2. Assume that a fair die is thrown and two players are observing the
outcome of the experiment:

• Player 1 wins if the outcome is 1, loses if the outcome is 2,

• Player 2 wins if the outcome is 2, loses if the outcome is 1,

• The behaviour is unspecified if the outcomes are 3, 4, 5 or 6, i.e., neither of the
players wins or loses.

Consider the FPS depicted on the left part of Figure 2.2. Assume that in state s1 the die
is thrown. Assume that the set of atomic propositions is AP = {win1, win2}, where wini

holds if player i wins for i = 1, 2. The labelling function is: L(s1) = ∅, L(p1) = {win1}
and L(p2) = {win2}. The outcomes 3, 4, 5, 6 are of no interest for both player 1 and
player 2, thus can be under-specified. Starting from s1, the probability that win1 holds
in the next state is 1

6
. This probability corresponds to the transition to state p1, which

is the only successor state satisfying win1. Similarly, the probability that win2 holds in
the next state is 1

6
. Thus, we conclude that the probability that either win1 or win2

holds is 1
3
, which corresponds the probability that either player 1 or player 2 wins.

s1

p1

1
6

p2

1
6

s′1

p′1

1
6

p′2

1
6

px

2
3

Figure 2.2: A model showing why underspecification is useful in FPSs1.

Now consider the negation of the atomic propositions ¬win1 and ¬win2. Starting
from s1, the probability that in the next state ¬win1 holds is also 1

6
, since only p2

satisfies ¬win1. Similarly, the probability that ¬win2 holds in the next state is also 1
6
.

Observe the probability that in the next state wini or ¬wini holds is P(s1, S) = 1
3

for
both i = 1, 2.

1Although this graph is not connected, it shows a single FPS. Similarly, if not stated explicitly, later
figures will show a single DTMC, CTMC etc.

12 CHAPTER 2. MARKOV MODELS

Consider the FPS on the right part of Figure 2.2. We added another state px to
model the outcomes 3, 4, 5, 6. Now the question is how should we assign L(px)? We
consider the atomic proposition win1. Assume first that we have win1 ∈ L(px). In
this case the probability that player 1 wins is 5

6
, which is undesired. It remains to set

win1 6∈ L(px), which implies, however, that the probability that win1 or ¬win1 holds
would be 1, which contradicts our analysis above (this probability should be 1

3
). Hence,

it makes sense to use substochastic distribution to model the outcomes for this situation.

2.2 Discrete-time Markov Chains

If we allow only stochastic or absorbing states in an FPS, we arrive at the notion of
discrete-time Markov chains:

Definition 2.2.1. A labelled discrete-time Markov chain (DTMC) is an FPS M =
(S,P, L) where s is either absorbing or stochastic for all s ∈ S.

FPSs and DTMCs are time-abstract, since the duration between triggering transitions
is disregarded. We observe the state of it only at a discrete set of time points 0, 1, 2,
Consider again the FPS in Figure 2.2. Observe that the submodel reachable from state
s′1 is a DTMC.

2.3 Continuous-time Markov Chains

Definition 2.3.1. A labelled continuous-time Markov chain (CTMC) is a tuple M =
(S,R, L) with S and L as before, and R : S × S → R≥0 is a rate matrix.

For CTMC M, let post(s) = {s′ ∈ S | R(s, s′) > 0} for all s ∈ S. CTMCs are time-
aware: The rates give the average delay of the corresponding transitions. Starting from
state s, the probability that within time t any successor state is chosen is 1− e−R(s,S)t,
which is exponentially distributed with rate R(s, S) =

∑

s′∈S R(s, s′). The rate R(s, S)
is also called the exit rate of state s. If R(s, s′) > 0 for more than one state s′, the
outcome of a choice of the successor state is governed by a race condition. The probability
that the transition from s to s′ wins the race, i.e., s move to s′ within time t before other
successor states of s, is given by:

R(s, s′)

R(s, S)
· (1− e−R(s,S)t).

Embedded DTMCs. A CTMC induces an embedded DTMC, which captures the
time-abstract behaviour of it:

Definition 2.3.2. Let M = (S,R, L) be a CTMC. We define the embedded DTMC of

M by: emb(M) = (S,P, L) where P(s, s′) = R(s,s′)
R(s,S)

if R(s, S) > 0 and 0 otherwise.

2.4. PROBABILISTIC AUTOMATA 13

The transition probability P(s, s′) can be considered as the probability of choosing s′

as a successor state from s within infinite time. We will also use P for a CTMC directly,
without referring to the probabilistic matrix P in its embedded DTMC explicitly. A
state s′ is reachable from s if it is reachable from s in the embedded DTMC. If one is
interested in time-abstract properties (e. g., the probability to reach a set of states) of a
CTMC, it is sufficient to analyse the embedded DTMC.

s1

p1

1
6

p2

1
6

s′1

p′1

1
2

p′2

1
2

Figure 2.3: A CTMC and its induced DTMC.

Example 2.3.1. In the Figure 2.3 consider the model reachable from state s1 as a CTMC
M. Then, the probability of reaching state p1 within time 9 is given by 0.5 ∗ (1− e−3).
The model reachable from s′1 represents the embedded DTMC emb(M). The probability

of reaching p′1 is 0.5, which corresponds to the limit limt→∞ 0.5 ∗ (1− e−
1

3
t).

Size of Markov Chains. To measure the complexity of algorithms, we define the
size of the models. For a given FPS, DTMC or CTMC, its fanout is defined by
maxs∈S |post(s)|. The number of states is defined by n = |S|, and the number of transi-
tions is defined by m =

∑

s∈S |post(s)|.

2.4 Probabilistic Automata

Markov chains are purely probabilistic. In this subsection, we consider an extension of
Markov chains with nondeterminism. The nondeterminism can be used, for example,
to abstract certain behaviour of randomised distributed systems. As for the Markov
chains, we consider both discrete-time and continuous-time extensions. We first recall the
definition of discrete-time probabilistic automata. Just as FPSs, we allow substochastic
distributions in our definition. This model can be considered as the simple probabilistic
automata with transitions allowing deadlocks in [98].

Definition 2.4.1. A probabilistic automaton (PA) is a tuple M = (S, Act,P, L) where
S and L are defined as before, Act is a finite set of actions, and P ⊆ S×Act×Dist(S)
is a finite set, called the probabilistic transition matrix.

For (s, α, µ) ∈ P, we use s
α
−→ µ as a shorthand notation, and call µ an α-successor

distribution of s. Let Act(s) = {α | ∃µ : s
α
−→ µ} denote the set of actions enabled at

s. For s ∈ S and α ∈ Act(s), let Stepsα(s) = {µ ∈ Dist(S) | s
α
−→ µ} denote the set of

α-successor distributions of s. Let Steps(s) denote the set
⋃

α∈Act(s) Stepsα(s). A state
s′ is reachable from s if there exists a sequence s1, α1, µ1, . . . , sn−1, αn−1, µn−1, sn with
n ≥ 1, s1 = s, sn = s′ and si

αi−→ µi and µi(si+1) > 0 for i = 0, . . . , n− 1.

14 CHAPTER 2. MARKOV MODELS

We introduce the notion of fanout forM. The fanout of a state s is defined by

fan(s) =
∑

α∈Act(s)

∑

µ∈Stepsα(s)

(|µ|+ 1).

Intuitively, fan(s) denotes the total sum of the sizes of outgoing distributions of state s
and their labelling. The fanout ofM is defined by maxs∈S fan(s). Summing up over all
states, we define the size of the transitions of P by m =

∑

s∈S fan(s).

Markov Decision Processes. A Markov decision process (MDP) [46, 93] arises from
a PA M if for s ∈ S and α ∈ Act, there is at most one α-successor distribution µ of
s which must be stochastic. Formally, an MDP is a PA M = (S, Act,P, L) where the
probabilistic transition matrix satisfies: s

α
−→ µ and s

α
−→ µ′ implies that µ = µ′ and that

µ is stochastic.

s2

u1 v1 u2 v2

.4

α

.6 .5 .5

γ

s2

u3 v3 u4 v4

.4

α

.4 .5 .5

α

Figure 2.4: A simple PA.

Example 2.4.1. Consider the PA depicted in Figure 2.4. The sub-model reachable
from state s1 is an MDP, whereas reachable from state s2 is not.

2.5 Continuous-time Probabilistic Automata

We consider a continuous-time counterpart of PAs where the transitions are described
by rates instead of probabilities. A rate function is simply a function r : S → R≥0.
Let |r| = |{s | r(s) > 0}| denote the size of r. Let Rate(S) denote the set of all rate
functions.

Definition 2.5.1. A continuous-time PA (CPA) is a tuple (S, Act,R, L) where S, Act,
L are as defined for PAs, and the rate matrix R ⊆ S ×Act× Rate(S) a finite set.

We write s
α
−→ r if (s, α, r) ∈ R, and call r an α-successor rate function of s. For

transition s
α
−→ r, the sum r(S) is also called the exit rate of it. Let Act(s) = {α |

∃r : s
α
−→ r} denote the set of actions enabled at s. For s ∈ S and α ∈ Act(s), let

Stepsα(s) = {r ∈ Rate(S) | s
α
−→ r} denote the set of α-successor rate functions of s. Let

Steps(s) denote the set
⋃

α∈Act(s) Stepsα(s). The fanout of a state s is defined by

fan(s) =
∑

α∈Act(s)

∑

r∈Stepsα(s)

(|r|+ 1).

2.6. BIBLIOGRAPHIC NOTES 15

The fanout ofM is defined by maxs∈S fan(s). The size of P is m =
∑

s∈S fan(s).

Given that the transition s
α
−→ r is chosen from state s, the probability that any

successor state is chosen within time t is given by 1− e−r(S)t. A specific successor state
s′ is chosen within time t is given by (1− e−r(S)t) · r(s′)

r(S)
.

Continuous-Time Markov Decision Process. Continuous-time Markov decision
processes (CTMDPs) [79, 93, 20, 14] can be considered as special CPAs where for s ∈ S
and α ∈ Act, there exists at most one rate function r ∈ Rate(S) such that s

α
−→ r. For-

mally, a continuous-time Markov decision process (CTMDP) is a PAM = (S, Act,P, L)
where the probabilistic transition matrix satisfies: s

α
−→ r and s

α
−→ r′ implies that r = r′.

The model CTMDPs considered in paper [120] essentially agree with our CPAs.

Embedded PAs. Let M = (S, Act,R, L) be a CPA. Similar to CTMCs, M induces
an embedded PA, which captures the time-abstract behaviour of it. For this purpose we
introduce first the induced distribution of a rate function.

Definition 2.5.2. Let r be a rate function. The induced distribution, denoted by µ(r),

is defined as follows. For the case r(S) > 0, µ(r)(s) equals r(s)
r(S)

for s ∈ S. If r(S) = 0,

µ(r) = 0.

Definition 2.5.3. LetM = (S, Act,R, L) be a CPA. The embedded PA ofM is defined
by emb(M) = (S, Act,P, L) with P = {(s, α, µ(r)) | (s, α, r) ∈ R}.

We will also use P for a CPA directly, without referring to its embedded PA explicitly.
A state s′ is reachable from s if it is reachable from s in the embedded PA. If one is
interested in time-abstract properties (e. g., the probability to reach a set of states) of a
CPA, it is sufficient to analyse the embedded PA.

2.6 Bibliographic Notes

We briefly recall other probabilistic models considered in the literature. Reactive, gen-
erative and stratified probabilistic models are considered in [113, 112]. Reactive models
coincide with MDPs, while generative models are DTMCs with actions labels over the
probabilistic branchings instead of state labels (with atomic propositions). Stratified
models add more information to generative models such that one can have level-wise
probabilistic branching. An action- and state-labelled version of CTMCs is considered
in [7, 8], where the rate matrix of a CTMC is decorated with an additional set of actions.

In the context of the probabilistic automata considered in [98] a more general no-
tion of transition is considered where both the target states and the action chosen are
determined by a probabilistic measure. Moreover, as in this thesis, it is also possible
for a transition to deadlock with some probability (corresponding the auxiliary state
⊥). The PAs in this thesis can be considered as the simple probabilistic automata [98]
with transitions allowing deadlocks. In [114, 61], probabilistic systems are considered
where states are partitioned into probabilistic states and nondeterministic states, thus

16 CHAPTER 2. MARKOV MODELS

called alternating models. From a probabilistic state, a successor distribution is associ-
ated, while from a nondeterministic state ordinary transitions may occur, as in labelled
transition systems. We refer to [100] for a nice overview of these discrete-time models.

CTMDPs [79, 93, 20] are extensions of CTMCs with nondeterminism. Recently,
CTMDPs have drawn a lot of attentions, especially in model checking problem and
logical characterisation of bisimulations [11, 14, 23, 66, 87]. The model CPA generalises
CTMDP with internal nondeterminism, i.e., nondeterminism between equally-labelled
transitions. The model CTMDPs considered in paper [120] essentially agree with our
CPAs. A related continuous-time model is interactive Markov chains (IMCs) [65], which
have been recently extended with input and output [27, 26]. In IMCs, each state has at
most one successor rate function, but can possess more ordinary transitions.

In [105] and [52], interval-valued discrete-time Markov chains (IDTMCs) are intro-
duced, which are DTMCs in which the transition is specified with an interval. These
Markov chains are constructed through statistical experiments. Thus, IDTMCs can be
used to model these statistical variations. In [52], IDTMCs are called abstract Markov
chains (AMCs), since it is considered as an abstraction of traditional DTMCs. In more
detail, given a DTMC and a partition of the state space for the purpose of abstraction,
an AMC can be constructed. In the non-probabilistic world, abstraction of transition
systems [28] to modal transition systems has been proposed in which there are may
and must transitions: may transitions over-approximate and must transitions under-
approximate the behavior of the concrete model. While may abstraction preserves safe
CTL properties [36] (formulas with positive universal path-quantifiers only), the must
abstraction preserves universal liveness CTL properties (formulas with positive existen-
tial path-quantifiers only). Similarly, for Markov chains [68, 69, 52], the lower bound
corresponds to the may transitions while the upper bound corresponds to the must tran-
sitions. Thus, in AMC, both a lower and upper bound of the reachability probability can
be obtained. Properties expressed in probabilistic computational tree logic [62] (PCTL)
can be analysed in the AMC, in which a 3-valued PCTL semantics is given over AMCs.
Then, if the property is satisfied or refuted in the AMC, it is also the case in the original
system. However, if we do not know whether the property holds in the AMC, refinement
steps are needed in which abstract states are split. Recently [75, 76], the approach was
also successfully extended to abstract CTMCs.

Chapter 3

Computing Maximum Flows

The algorithmic workhorse of the simulation algorithms we are going to establish is based
on maximum flow computations over bipartite networks. The networks are constructed
out of the distributions of a pair of states (s1, s2). In this chapter, we first recall the
maximum flow problem. Then we recall the augmenting path algorithm, which is one
of the simplest and most intuitive algorithms for solving the maximum flow problem.
Afterwards we recall the preflow algorithm [56]. The reason is that preflow algorithm
can be extended to solve a sequence of related maximum flow problems [53], which is
crucial for our improved algorithm: we can re-formulate the checks for a certain pair
(s1, s2) over all iterations via such sequence of maximum flow problems, thus enable
us to get a much better complexity. We also recall the feasible flow problem and the
minimum cut which will be used in later chapters.

3.1 Maximum Flow Problems

Let N = (V, E, c) be a network where V is a finite set of vertices, E ⊆ V × V is a set
of edges, and c : E → R>0 ∪ {∞} is the capacity function. V contains a distinguished
source vertex 1 and a distinguished sink vertex %. The capacity function c is extended
to all vertex pairs by: c(v, w) = 0 if (v, w) 6∈ E.

We call N a bipartite network if V can be partitioned into two subsets V1, V2 with
% ∈ V1 and 1 ∈ V2 such that all edges have one endpoint in V1 and another in V2.
Without loss of generality, we assume that |V1| ≤ |V2|. In this section, we use n = |V |,
n1 = |V1|, n2 = |V2| and m = |E|.

A flow [2] f on N is a function f : V × V → R that satisfies:

1. f(v, w) ≤ c(v, w) for all (v, w) ∈ V × V capacity constraints

2. f(v, w) = −f(w, v) for all (v, w) ∈ V × V antisymmetry constraint

3. f(V, v) = 0 at vertices v ∈ V \ {1, %} conservation rule

The domain of the flow function f is V ×V . Since for c(v, w) = 0 for (v, w) 6∈ E, by the
capacity constraint, the flow value f(v, w) is bounded by 0. Precisely, for (v, w) 6∈ E,
we have that −c ≤ f(v, w) ≤ 0. The capacity constraint indicates that the amount of

17

18 CHAPTER 3. COMPUTING MAXIMUM FLOWS

flow we could send along the edge (v, w) is bounded by the capacity c(v, w). Negative
flow along an edge (v, w) can be thought as the same amount of positive flow along the
reversed edge (w, v). Thus, the antisymmetry constraint 2 states that, given f(v, w) ≥ 0,
the positive flow along the edge (v, w) equals the negative flow along the reversed edge
(w, v). The conservation rule can be interpreted as follows: for vertices v which is not
the source 1 and the sink %, the total flow into v is the same as the total flow out of v.

The value of a flow function f is given by f(1, V), i. e., the total flow out of the
source 1. A trivial flow function f with f(v, w) = 0 for all v, w ∈ V has value 0. A
maximum flow is a flow of maximum value.

Example 3.1.1. As an example we consider the bipartite network depicted on the left
side of Figure 3.1. The set of vertices V are represented by circles and E by edges
between circles. The capacities are depicted as labelling of the edges. The capacity for
(u, v) is infinity if no edge label on (u, v) is given. A possible maximum flow is given on
the right side of the figure. Obviously the maximum flow function for this network is
not unique: the amount of flow out of ⊥ can also be sent along ⊥̄.

q2

q3

q1

⊥ ⊥

1 %

1
8

1
8

3
4

1
4

3
4

q2

q3

q1

⊥ ⊥

1 %

1
8

1
8

1
8

1
4

1
8

Figure 3.1: A bipartite network and a possible maximum flow for the network.

In the above definition a flow is a function on edges. As an equivalent formulation a
flow can be considered as a function on paths from 1 to %. For example, in Example 3.1.1,
the maximum flow sends 1

8
amount of flow along the path 1,⊥, q1, %, 1

8
amount of flow

along the path 1, q2, q1, %. By the flow decomposition theorem [2], each flow function
(also called arc flow) can be decomposed into path flow which is not unique, and each
path flow can be transformed to a unique arc flow. In this thesis, we use mainly arc
flows. In most of the examples, however, we use path flows to describe the uniquely
represented arc flow.

3.2 Augmenting Path Algorithm

We recall the augmenting path algorithm [2], which is one of the simplest and most
intuitive algorithms for solving maximum flow problems.

Let N = (V, E, c) be a network and f a flow function over N . A pair (v, w) is a
residual edge of f if f(v, w) < c(v, w). The set of residual edges with respect to f is
denoted by Ef . The residual capacity cf(v, w) of the residual edge (v, w) is defined by
c(v, w)− f(v, w). Let Nf = (V, Ef , cf) denote the residual network.

3.3. THE PREFLOW ALGORITHM 19

Algorithm 1 Computing Maximum Flows: the preflow algorithm.

Preflow(N = (V, E, c), f, d)

1.1: repeat
1.2: if exists active node v ∈ V and ∃(v, w) ∈ Ef . d(v) = d(w) + 1 then
1.3: δ ← min{e(v), cf(v, w)}
1.4: f(v, w)← f(v, w) + δ; f(w, v)← f(w, v)− δ
1.5: e(v)← e(v)− δ; e(w)← e(w) + δ
1.6: if exists active node v ∈ V and ∀(v, w) ∈ Ef . d(v) ≤ d(w) then
1.7: d(v)← min{d(w) + 1 | (v, w) ∈ Ef}
1.8: until all nodes in V are not active

A directed path from the source to the sink in the residual network is called an
augmenting path. In the augmenting path algorithm, we start with a zero flow function,
and continue finding augmenting paths in the current residual network and sending as
much flow as possible through this path. If no augmenting paths exist, we have obtained
a maximum flow.

Consider again the Example 3.1.1. Assume that the first augmenting path we have
found is 1,⊥, q1, %, and we send 1

8
amount of flow along this path. In the residual

network, we can send 1
8

amount of flow along the augmenting path 1, q2, q1,⊥,⊥, %.
Then no augmenting paths exist and we have a maximum flow with value 1

4
. This

maximum flow function is the same as the one depicted on the right part of Figure 3.1.

3.3 The Preflow Algorithm

Let N = (V, E, c) be a bipartite network. A preflow function is a generalisation of a
flow function. While a flow function satisfies the capacity constraints, antisymmetry
constraint and the flow conservation rule, a preflow function is a function f : V ×
V → R satisfying the capacity constraints, antisymmetry constraint, and a relaxed flow
conservation rule:

(3′) f(V, v) ≥ 0 for all v ∈ V \ {1}.

Intuitively, for vertex v ∈ V \ {1}, the total amount of flow into v must be larger than
or equal to the total amount of flow out of v.

The excess e(v) of a vertex v is defined by f(V, v). A vertex v 6∈ {1, %} is called active
if e(v) > 0. Observe that if in a preflow function no vertex v is active for v ∈ V \ {1, %},
it is then also a flow function. If (v, w) is not a residual edge, it is called saturated. A
valid distance function (called valid labelling in [56]) d for the bipartite network N is
a function V → N ∪ {∞} satisfying: d(1) = 2n1, d(%) = 0 and d(v) ≤ d(w) + 1 for
every residual edge (v, w). A residual edge (v, w) is admissible if d(v) = d(w)+1. Recall
n1 = |V1| and |V1| ≤ |V2|.

The preflow algorithm [56] is presented in Algorithm 1. As parameters, the algorithm
gets the network N = (V, E, c), a valid preflow function f , and a valid distance function

20 CHAPTER 3. COMPUTING MAXIMUM FLOWS

d. For bipartite networks, a possible initialisation for the preflow function f could be:
f(v, w) = c(v, w) if v = 1 and 0 otherwise. And a possible initialisation for the distance
function d could be: d(v) = 2n1 if v = 1 and 0 otherwise. Note, however, arbitrary valid
preflow and distance functions can be used.

The preflow algorithm maintains the valid preflow f and the valid distance function
d. There are two basic operations in the algorithm: the push operation between lines
1.2–1.5, and the relabel operation between lines 1.6–1.7. If there is an active vertex v such
that (v, w) is admissible, one may push δ := min{e(v), cf(v, w)} amount of flow from v
toward the sink along the admissible edge (v, w) by increasing f(v, w) (and decreasing
f(w, v)) by δ. The excesses of v and w are then modified accordingly by: e(v) = e(v)−δ
and e(w) = e(w) + δ. The push is saturating if cf (v, w) = 0 after the push and non-
saturating otherwise. If v is active but there are no admissible edges leaving it, one
may relabel v by letting d(v) := min{d(w) + 1 | (v, w) ∈ Ef}. Pushing and relabelling
are repeated until there are no active vertices left. The algorithm terminates if no such
operations apply. The resulting final preflow f is a maximum flow.

Lemma 3.3.1 ([56]). If f is a valid preflow function and d is a valid distance function,
the algorithm Preflow correctly computes the maximum.

We begin by stating a few lemmas from [56, 3].

Lemma 3.3.2 ([56]). For any vertex v ∈ V , the distance function d(v) never decreases.
An application of a relabelling operation to v strictly increases d(v).

For bipartite networks, the distance of the source 1 is 2n1. For arbitrary node v, the
distance is bounded by 4n1:

Lemma 3.3.3 ([3]). For each active vertex v, d(v) ≤ 4n1.

We first recall the data structures [56, 60] used to get the complexity result. Each
node v ∈ V keeps a list I(v) ⊆ V in arbitrary but fixed order. The set I(v) contains
node w such that either (v, w) ∈ E or (w, v) ∈ E. Intuitively, it represents edges which
could be admissible leaving v. At any point of the algorithm, there is a pointer p(v)
into the set I(v), which is initialised to the top of I(v). The main loop of the algorithm
consists of repeating the push and relabel operations until there are no active nodes.
For an active node v, the algorithm pushes flow along the residual edge (v, p(v)) if a
push operation is applicable, otherwise, advances p(v) each time a new element I(v) is
considered. If the bottom element of I(v) is reached, it performs the relabel operation
and p(v) is set to the top of I(v). The overall complexity is split into saturating pushes,
relabels and non-saturating pushes.

Lemma 3.3.4 ([3]). The number of relabels is bounded by O(n1n). The time spent
performing relabels is O(n1m). Further, the time spent in saturating pushes is also
O(n1m).

Proof. By Lemma 3.3.2, the relabel operation to v strictly increases the distance d(v).
By Lemma 3.3.3, for arbitrary node v we have d(v) ≤ 4n1, which implies that the number
of relabel steps for v is bounded by 4n1. Summing over all nodes, the number of relabels

3.4. FEASIBLE FLOW PROBLEM 21

altogether is bounded by O(n1n). The time for relabel operations with respect to node
v is (4n1)|I(v)|. Altogether, this gives

∑

v∈V ((4n1)|I(v)|) ∈ O(n1m).

Between two consecutive saturating pushes on (v, w), the distances d(v) and d(w)
must increase by 2. By Lemmas 3.3.2 and 3.3.3, the number of saturating pushes on
edge (v, w) is bounded by 4n1. Summing over all edges, the work for saturating pushes
is bounded by O(mn1). �

To get a good bound for the number of non-saturating pushes, the order of selecting
the active nodes is crucial. We recall the Max-d version [60, 3] of the algorithm in which
always the active node with the highest label is selected. Moreover, once an active node
v is selected, all of the excess e(v) is pushed until e(v) = 0. We recall the analysis in [60]
for bipartite networks:

Lemma 3.3.5 ([60]). The Max-d version of the preflow algorithm spent O(n1n
2) time

in non-saturating pushes.

Proof. Once an active node is selected, the excess of the node is pushed until it becomes
0. This implies that, between any two relabel operations, there are at most n active
nodes processed (otherwise the algorithm terminates and we get the maximum flow).
Also observe that at each time an active node is selected, at most one non-saturating
push can occur, which implies that there are at most n non-saturating pushes between
node label increases. Since the number of relabel operations is bounded by O(n1n)
(Lemma 3.3.4),there can be at most O(n1n

2) non-saturating pushes. �

Lemma 3.3.6 ([3]). The preflow algorithm for bipartite networks runs in time O(n1m+
n1n

2).

3.4 Feasible Flow Problem

Let A ⊆ E be a subset of edges of the network N = (V, E, c), and define the lower bound
function l : A→ R>0 which satisfies l(e) ≤ c(e) for all e ∈ A. We address the problem of
finding a flow function f satisfying the condition: f(e) ≥ l(e) for all e ∈ A. We briefly
show that this problem can be reduced to the maximum flow problem [2, p. 169–170].

We can replace a minimum flow requirement on edge v → w by turning v into a
demanding vertex (i. e., a vertex that consumes part of its inflow) and turning w into
a supplying vertex (i. e., a vertex that creates some outflow ex nihilo). The capacity of
edge v → w is then reduced accordingly.

Now, we are going to look for a flow-like function for the updated network. The
function should satisfy the capacity constraints, and the difference between outflow and
inflow in each vertex corresponds to its supply or demand, except for 1 and %. To
remove that last exception, we add an edge from % to 1 with capacity ∞.

We then apply another transformation to the updated network so that we can apply
the maximum flow algorithm. We add new source and target vertices 1′ and %′. For
each supplying vertex s, we add an edge 1′ → s with the same capacity as the supply of
the vertex. For each demanding vertex d, we add an edge d→ %′ with the same capacity

22 CHAPTER 3. COMPUTING MAXIMUM FLOWS

as the demand of the vertex. In [2] it is shown that the original network has a feasible
flow if and only if the transformed network has a flow h that saturates all edges from 1′

and all edges to %′. The flow h necessarily is a maximum flow, and if there is an h, each
maximum flow satisfies the requirement; therefore it can be found by the maximum flow
algorithm. An example will be given in Example 6.2.3 in Chapter 6.

3.5 Minimum Cut

Related to maximum flows are minimum cuts. A cut of a network N = (V, E, c) is a
partition of V into two disjoint sets (X, X ′) such that 1 ∈ X and % ∈ X ′. The capacity
of (X, X ′) is the sum of all capacities of edges from X to X ′, i. e.,

∑

v∈X,w∈X′ c(v, w).
A minimum cut is a cut with minimal capacity. The Maximum Flow Minimum Cut
Theorem [2, Theorem 6.3] states that the capacity of a minimum cut is equal to the
value of a maximum flow.

Chapter 4

Simulation Relations

This chapter recapitulates the notions of strong simulation, strong probabilistic simula-
tion, and weak simulation relations. For comparison, we consider also the definition of
bisimulations.

While bisimulation relations are equivalence relations on the state space, simulation
relations (-) are preorders. For labelled transition systems, if s - s′ (“s′ strongly
simulates s”) state s′ can mimic all stepwise behaviour of s; the converse, i. e., s′ - s
is not guaranteed, so state s′ may perform steps that cannot be matched by s. Thus,
if s - s′ then every successor of s has a corresponding related successor of s′, but the
reverse implication does not necessarily hold. In the context of model checking, strong
simulation relations can be used to combat the well-known state explosion problem,
owed to the preservation of safe CTL formulas [36].

In correspondence to the non-probabilistic setting, a simulation preorder provides
the principal ingredients to perform abstraction of DTMCs [80, 72], while preserving
safety fragments of the safe PCTL formulas. For DTMCs, s - s′ requires that the
distribution of s′ can match the distribution of s. Correspondence of distributions is
naturally defined with the concept of weight functions [72]. In [18], strong simulation
relations are also introduced for CTMCs. If s - s′, the following two conditions must
hold. The first condition requires that s - s′ holds in the embedded DTMC of the
CTMC. The other condition, called the rate condition, requires that state s′ is “faster”
than s which manifests itself by a higher exit rate. For CTMCs, strong simulation
preserves the safety fragment of CSL formulas.

Simulation relations have been further extended to compare the stepwise behaviour
of states in PAs [101]: For s - s′, it is required that every successor distribution of s via
action α (called α-successor distribution) has a corresponding α-successor distribution
of s′. As for DTMCs, in the context of model checking, strong simulation relations
preserve safe PCTL formulas [101]. For PAs, strong probabilistic simulation [101] is
also introduced which is a relaxation of strong simulation in the sense that it enables
convex combinations of multiple distributions belonging to equally labelled transitions.
More concretely, it may happen that a state s has an α-successor distribution, which
cannot be related by any α-successor distribution of s′, yet there exists a so-called α-
combined transition, a convex combination of several α-successor distributions of s′.
Strong probabilistic simulation accounts for this and is thus coarser than simulation,

23

24 CHAPTER 4. SIMULATION RELATIONS

but still preserves the same class of PCTL-properties as strong simulation does. Strong
simulation for CPAs [122] has been introduced which combines the simulation for the
embedded PAs and an additional rate condition. The notion of probabilistic simulation
relations is also introduced for CPAs. Both strong simulation and strong probabilistic
simulation preserve the safe CSL formulas.

As a side contribution, we propose a new equivalent definition of strong (probabilistic)
simulation. Our definition is inspired by the definition of strong simulation for labelled
Markov processes in [49]. In our new definition, instead of using weight function to
relate distributions, we compare the distributions by considering an arbitrary subset of
states. Informally, for states s, s′ in an FPS, s - s′ implies the probability of going to a
set of states A from s is smaller than or equal to the probability of going to a related (by
the strong simulation relation) set of states from s′. This alternative characterisation
makes the simulation relations for Markov chains more understandable for those who are
familiar with labelled transition systems. An alternative definition of strong simulation
is also provided for CTMCs, PAs and CPAs. Using the same idea, we also provide
an equivalent definition of strong probabilistic simulation for PAs and CPAs. Most
interestingly, with our new definition, we are able to develop simple proofs of several
lemmas involving weight functions.

We also consider weak simulation for Markov chains. As in labelled transition sys-
tems, a coarser relation called weak simulation is proposed for Markov chains in which
stutter steps (or invisible steps) are allowed. In Markov chains only states are labelled.
Only those successor states of s′ which can also simulate s can be considered as invis-
ible, thus a transition to that state can be considered as a stutter step. Similarly, also
successor states of s which can be simulated by s′ can be considered as invisible. The
visible part of the successor distributions of s and s′ are required to be related by a
weight function for the conditional distributions. Weak simulation is strictly coarser
than strong simulation for Markov chains, thus allowing further reduction of the state
space.

Organisation of this Chapter. We start with the standard definition of simulation
in Section 4.1. An alternative, equivalent definition of simulation is given in Section 4.2
which provides another view on simulation. In Section 4.3, we recall the definition of
weak simulation for Markov chains. Section 4.4 discusses related work, and Section 4.5
concludes this chapter.

4.1 Standard Definitions

This section gives the standard notion of strong simulations and strong probabilistic
simulations. We begin with the definition of weight functions in Subsection 4.1.1. In
Subsection 4.1.2 we recall the notion of strong simulation. Strong probabilistic simula-
tion is defined in Subsection 4.1.3.

4.1. STANDARD DEFINITIONS 25

4.1.1 Weight Functions

Strong simulation requires that each successor distribution of one state have a corre-
sponding successor distribution of the other state. The correspondence of distributions
is naturally defined with the concept of weight functions [72]. In this subsection, we
recall the definition of weight function, and also recall some related lemmas which shall
be used later.

Notations. For s ∈ S, let R(s) denote the set {s′ ∈ S | (s, s′) ∈ R}. Similarly, for
s′ ∈ S, let R−1(s′) denote the set {s ∈ S | (s, s′) ∈ R}. If (s, s′) ∈ R, we write also
s R s′. For a relation R ⊆ S × S, let R⊥ = R ∪ {(⊥, s) | s ∈ S⊥}.

Definition 4.1.1. Let µ, µ′ ∈ Dist(S) and R ⊆ S × S. A weight function for (µ, µ′)
with respect to R is a function ∆ : S⊥ × S⊥ → [0, 1] such that

1. ∆(s, s′) > 0 implies s R⊥ s′,

2. µ(s) = ∆(s, S⊥) for s ∈ S⊥ and

3. µ′(s′) = ∆(S⊥, s′) for s′ ∈ S⊥.

We write µ ⊑R µ′ if there exists a weight function for (µ, µ′) with respect to R.

The first condition requires that only pairs (s, s′) in the relation R⊥ have a positive
weight. In other words, for s, s′ ∈ S with s′ 6∈ R⊥(s), it holds that ∆(s, s′) = 0. Thus,
the second and the third conditions can be simplified as follows:

1. µ(s) = ∆(s, R⊥(s)) for s ∈ S⊥,

2. µ′(s′) = ∆(R−1
⊥ (s′), s′) for s′ ∈ S⊥.

Consider condition 3. In case that s′ = ⊥, we have

µ′(⊥) = ∆(R−1
⊥ (⊥),⊥) = ∆(⊥,⊥) (4.1)

which implies that the weight for the pair (⊥,⊥) is always µ′(⊥). Using Equation 4.1,
we show that if µ ⊑R µ′, then µ′(S) is larger than or equal to µ(S):

Lemma 4.1.1. Let R ⊆ S × S. Then, µ ⊑R µ′ implies that µ(S) ≤ µ′(S).

Proof. Let ∆ be the associated weight function for (µ, µ′) with respect to R. Then:

µ(S) =
∑

s∈S

∑

s′∈S⊥

∆(s, s′)
(∗)
=

∑

s∈S

∑

s′∈S

∆(s, s′) ≤
∑

s∈S⊥

∑

s′∈S

∆(s, s′) = µ′(S)

where the equality (∗) follows from that ∆(s,⊥) = 0 for all s ∈ S. �

26 CHAPTER 4. SIMULATION RELATIONS

s1

u1

1
4

v1

1
2

s2

u2

1
3

v2

1
4

v3

1
4

Figure 4.1: An FPS for illustrating the weight functions.

Example 4.1.1. Consider the FPS in Figure 4.1. Assume that R = {(u1, u2), (u2, u1),
(v1, v2), (v1, v3)}. A weight function for (P(s1, ·),P(s2, ·)) with respect to R can be
defined by, for example: ∆(u1, u2) = ∆(v1, v2) = ∆(v1, v3) = 1

4
, ∆(⊥, u2) = 1

12
,

∆(⊥,⊥) = 1
6
.

For sets R1, R2 ⊆ S × S, define R1 ◦R2 := {(s1, s2) | ∃s ∈ S. (s1, s) ∈ R1 ∧ (s, s2) ∈
R2}. Below we give some properties of the weight functions.

Lemma 4.1.2 ([6]). 1. Let µ1, µ2 ∈ Dist(S) and R1, R2 ⊆ S × S with R1 ⊆ R2.
Then, µ1 ⊑R1

µ2 implies that µ1 ⊑R2
µ2.

2. Let µ1, µ2, µ3 ∈ Dist(S) and R1, R2 ⊆ S × S. Assume that µ1 ⊑R1
µ2 and µ2 ⊑R2

µ3, then, µ1 ⊑R µ3 where R = R1 ◦R2.

Proof. 1. Let ∆ denote the weight function for (µ1, µ2) with respect to R1, then, ∆
is also a weight function for (µ1, µ2) with respect to R2.

2. Let ∆1 denote the weight function for (µ1, µ2) with respect to R1, and let ∆2

denote the weight function for (µ2, µ3) with respect to R2. Define ∆ by:

∆(s1, s2) =
∑

s∈Supp⊥(µ2)

∆1(s1, s)∆2(s, s2)

µ2(s)

It is easy to verify that ∆ is a weight function for (µ1, µ3) with respect to R.

�

For an equivalence relation R ⊆ S × S, the relation ≡R on Dist(S) is defined by:
µ ≡R µ′ iff µ(C) = µ′(C) ∀C ∈ S/R. With Lemma 4.1.2, it is easy to show the following
lemma:

Lemma 4.1.3 ([18, 72, 6, 47]). Let R ⊆ S × S:

1. ⊑R is reflexive, transitive if R is reflexive, transitive respectively.

2. If R is symmetric and µ, µ′ ∈ Dist(S) with µ(S) = µ′(S), then µ ⊑R µ′ iff µ′ ⊑R µ.

Proof. 1. Assume R is reflexive. For µ ∈ Dist(S), define: ∆(s, s) = µ(s). Thus, ∆ is
a weight function for (µ, µ) with respect to R. Assume that R is transitive, and
let µ1 ⊑R µ2 and µ2 ⊑R µ3. By Lemma 4.1.2 it holds that µ1 ⊑R◦R µ3. Since R is
transitive, we have that R◦R ⊆ R. Again by Lemma 4.1.2, it holds that µ1 ⊑R µ3.

4.1. STANDARD DEFINITIONS 27

2. Assume that µ ⊑R µ′ and let ∆ denote the corresponding weight function. Define
∆′ by: ∆′(s, s′) = ∆(s′, s). Since R is is symmetric, it is easy to show that ∆′ is a
weight function for (µ′, µ) with respect to R.

�

The proofs of the lemmas below, especially of Lemma 4.1.5, are complicated. Most
interestingly, with our new definition, we are able to develop simple proofs of several
lemmas involving weight functions. The new proofs of the following two lemmas will be
given in Subsection 4.2.1.

Lemma 4.1.4 ([18, 72, 6, 47]). Let R ⊆ S × S be an equivalence relation. Let µ, µ′ ∈
Dist(S).

1. µ ≡R µ′ implies that µ ⊑R µ′ and µ(S) = µ′(S).

2. If µ(S) = µ′(S) holds additionally, then µ ≡R µ′ iff µ ⊑R µ′.

We now recall the Lemma 5.3.5 in [6] which will be used later.

Lemma 4.1.5. Let R be a preorder on a set S and µ, µ′ ∈ Dist(S). If µ ⊑R µ′ and
µ′ ⊑R µ then µ(A) = µ′(A) for all equivalence classes A with respect to the kernel
R ∩ R−1 of R.

4.1.2 Strong Simulation

In this subsection, we recall the definitions of strong bisimulations and strong simulations
for various models we consider, i. e., FPSs, DTMCs, CTMCs, PAs and CPAs. While
strong bisimulation is an equivalence relation over the set of states, strong simulation
is a preorder. We will first introduce the definition of strong bisimulations, then strong
simulations will be introduced. Alternatively, strong bisimulation can be obtained by
restricting the corresponding simulation relation with additional conditions.

FPSs and DTMCs

Definition 4.1.2. Let M = (S,P, L) be an FPS. An equivalence relation R ⊆ S × S is
a strong bisimulation onM iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, ·) ≡R

P(s2, ·). We say that the states s1 and s2 are strongly bisimilar on M, denoted by
s1 ∼M s2, iff there exists a strong bisimulation R on M such that s1 R s2.

A relation R ⊆ S × S is a strong simulation on M iff for all s1, s2 with s1 R s2:
L(s1) = L(s2) and P(s1, ·) ⊑R P(s2, ·). We say that s2 strongly simulates s1 in M,
denoted by s1 -M s2, iff there exists a strong simulation R on M such that s1 R s2.

By definition, it is easy to show that -M is reflexive and transitive, thus a preorder.
Moreover, ∼M and -M are the coarsest strong bisimulation and simulation relation for
M respectively. If M is clear from the context, we write ∼ and - instead of ∼M and
-M respectively.

28 CHAPTER 4. SIMULATION RELATIONS

s1

u1

1
2

v1

1
4

q1

1
8

s2

u2

1
2

v2

1
2

q2

1
8

q3

3
4

s3

u3

2
3

v3

1
3

q4

1
8

q5

7
8

Figure 4.2: An FPS for illustrating the simulation relations.

Observe that if s is absorbing, it holds that P(s, ·) ⊑R P(s′, ·) for all (s, s′) ∈ R:
it is sufficient to set ∆(⊥, t) = P(s′, t) for t ∈ S⊥. Thus, absorbing state s can be
strongly simulated by any state s′ if they have the same labelling L(s) = L(s′). If R is a
strong bisimulation and (s1, s2) ∈ R, by definition for each equivalence class C ∈ S/R,
we have that P(s1, C) = P(s2, C), i. e., s1 and s2 has the same probability of going to
an equivalence class. Let R be a strong simulation relation, and let (s1, s2) ∈ R. By
Equation 4.1 we have that ∆(⊥,⊥) = P(s2,⊥). Moreover, by Lemma 4.1.1, we have
that P(s1, S) ≤ P(s2, S) if s2 strongly simulates s1. From the definition and the analysis
above we observe that:

• Absorbing states with the same labelling are strongly bisimilar. Any absorbing
state and a non-absorbing state are not strongly bisimilar. Moreover, absorbing
state can be strongly simulated by any other states with the same labelling.

• From Lemma 4.1.4, we have that s1 ∼ s2 implies both s1 - s2 and s2 - s1.

• If s1 and s2 are strongly bisimilar, it holds that P(s1, S) = P(s2, S). Or equiv-
alently, if P(s1, S) 6= P(s2, S), we can conclude that s1 and s2 are not strongly
bisimilar.

Example 4.1.2. Consider the FPS depicted in Figure 4.2. Recall that labelling is
indicated by colours in the states. Since the yellow (grey) states are absorbing, they
strongly simulate each other. The same holds for the green (dark grey) states. We show
now that s1 - s2 but s2 6- s3.

First, consider the pair (s1, s2). Let R = {(s1, s2), (u1, u2), (v1, v2), (q1, q2)}. We
show that R is a strong simulation relation. First observe that L(s) = L(s′) for all
(s, s′) ∈ R. Since states u1, q1 are absorbing, the conditions for the pairs (u1, u2) and
(q1, q2) hold trivially. To show the conditions for (v1, v2), we consider the function ∆1

defined by: ∆1(q1, q2) = 1
8
, ∆1(⊥, q3) = 3

4
, ∆1(⊥,⊥) = 1

8
and ∆1(·) = 0 otherwise. It

is easy to check that ∆1 is a weight function for (P(v1, ·),P(v2, ·)) with respect to R.
Now consider (s1, s2). The weight function ∆2 for (P(s1, ·),P(s2, ·)) with respect to R is
given by ∆2(u1, u2) = 1

2
and ∆2(v1, v2) = ∆2(⊥, v2) = 1

4
and ∆2(·) = 0 otherwise. Thus

R is a strong simulation which implies that s1 - s2.

Consider the pair (s2, s3). Since P(s2, v2) = 1
2
, to establish the Condition 2 of

Definition 4.1.1, we should have 1
2

= ∆(v2, S⊥). Observe that v3 is the only successor

4.1. STANDARD DEFINITIONS 29

state of s3 which can strongly simulate v2, thus ∆(v2, S⊥) = ∆(v2, v3). However, for state
v3 we have P(s3, v3) < ∆(v2, v3), which violates the Condition 3 of Definition 4.1.1, thus
we cannot find such a weight function. Hence, s2 6- s3.

Let ≃M (or ≃ if M is clear from the context) denote the kernel of -M, i. e., strong
simulation equivalence ≃ = -∩%. Given the FPSM, ≃M is also called the simulation
equivalence relation on M. For both FPSs and DTMCs, the simulation equivalence is
the same as the bisimulation equivalence.

Lemma 4.1.6 ([15, 18]). Let M = (S,P, L) be an FPS. It holds that ∼M = ≃M.

Proof. Let s1 and s2 be two simulation equivalent states. s1 - s2 implies that P(s1, S) ≤
P(s2, S). Symmetrically, we have P(s2, S) ≤ P(s1, S). Thus P(s1, S) = P(s2, S).
Applying Lemma 4.1.4 we have that P(s1, ·) ≡≃ P(s2, ·), thus s1 ∼ s2. The other
direction is trivial. �

Continuous-Time Markov Chains

For CTMCs, states s1 and s2 are strongly bisimilar, if they move to other equivalence
class with the same probability. We say that s2 strongly simulates s1 if, in addition to
the simulation conditions for DTMCs, s2 can move stochastically faster than s1 [15, 18],
which manifests itself by a higher rate. Recall for a CTMCM = (S,R, L), we use P to
denote the probability matrix of the embedded DTMC emb(M).

Definition 4.1.3. Let M = (S,R, L) be a CTMC. An equivalence relation R ⊆ S × S
is a strong bisimulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2), P(s1, ·) ≡R

P(s2, ·) and R(s1, S) = R(s2, S). We say that the states s1 and s2 are strongly bisimilar
on M, denoted by s1 ∼M s2, iff there exists a strong bisimulation R on M such that
s1 R s2.

A relation R ⊆ S × S is a strong simulation on M iff for all s1, s2 with s1 R s2:
L(s1) = L(s2), P(s1, ·) ⊑R P(s2, ·) and R(s1, S) ≤ R(s2, S). We say that s2 strongly
simulates s1 in M, denoted by s1 -M s2, iff there exists a strong simulation R on M
such that s1 R s2.

By definition, ∼M and -M are the coarsest strong bisimulation and simulation rela-
tion forM respectively. Again, if the modelM is clear from the context, the subscript
M may be omitted. Since P(s, C) = R(s,C)

R(s,S)
for state s and C ⊆ S, for strongly bisimilar

states s1, s2, the condition can be reformulated by: an equivalence relation R is a strong
bisimulation onM iff for all s1, s2 with s1 R s2: L(s1) = L(s2), R(s1, C) = R(s2, C) for
all equivalence class C ∈ S/R. It is easy to verify that the two definitions are the same.
Observe also s -M s′ holds if s -emb(M) s′ and s′ is faster than s. Similar to FPSs, we
list several properties of (bi-)simulations on a CTMC M:

• Absorbing states with the same labelling are strongly bisimilar. Any absorbing
state and a non-absorbing state are not strongly bisimilar. Moreover, absorbing
state can be strongly simulated by any other states with the same labelling.

• s1 ∼ s2 implies both s1 - s2 and s2 - s1.

30 CHAPTER 4. SIMULATION RELATIONS

• If R(s1, S) 6= R(s2, S), we can conclude that s1 and s2 are not strongly bisimilar.

The first and second properties concerning absorbing states hold for all bisimulation and
simulation relations we shall introduce later for PAs and CPAs, also for weak simulations
for Markov chains.

s1

u1 v1

2 2

s2

u2 u3 v2

1 1 2

s3

u4 v3

3 3

Figure 4.3: A CTMC for illustrating the simulation relations.

Example 4.1.3. In the CTMC depicted in Figure 4.3, the ui-states are absorbing and
have the same labelling, thus strongly bisimilar. Also the green (dark grey) v-states.
States s1 and s2 are strongly bisimilar: they both go to the u-states with rates 2 and the
green (dark grey) states with rates 2. States s1 (or s2) are s3 are not strongly bisimilar,
since R(s1, S) 6= R(s3, S). However, it holds that s1 - s3 and s2 - s3.

For CTMCM = (S,R, L), let ≃M (or ≃ ifM is clear from the context) denote the
kernel of -M, i. e., strong simulation equivalence ≃ = - ∩ %. Similar to Lemma 4.1.6
for FPSs, the simulation equivalence is the same as the bisimulation equivalence for
CTMCs.

Lemma 4.1.7 ([15, 18]). Let M = (S,R, L) be a CTMC. It holds that ∼M = ≃M.

Proof. Let s1 and s2 be two simulation equivalent states, i.e., s1 ≃ s2. s1 - s2 implies
that P(s1, S) ≤ P(s2, S). Symmetrically, we have P(s2, S) ≤ P(s1, S). Thus P(s1, S) =
P(s2, S). Applying Lemma 4.1.4 we have that P(s1, ·) ≡≃ P(s2, ·), thus s1 ∼ s2. The
other direction is trivial. �

PAs and CPAs

Now we consider the strong (bi-)simulations for PAs. Strong bisimulation R requires
that R is an equivalence relation and for (s1, s2) ∈ R, every α-successor distribution µ1

of s1 is related to an α-successor distribution µ2 of s2 such that µ1(S) ≡R µ2(S). Strong
simulation R requires that if (s1, s2) ∈ R, every α-successor distribution µ1 of s1 is related
to an α-successor distribution µ2 of s2 via a weight function [101, 72] (µ1 ⊑R µ2).

Definition 4.1.4. LetM = (S, Act,P, L) be a PA. An equivalence relation R ⊆ S×S is
a strong bisimulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1

α
−→ µ1

then there exists a transition s2
α
−→ µ2 with µ1 ≡R µ2. We say that states s1 and s2 are

strong bisimilar inM, denoted s1 ∼M s2, iff there exists a strong bisimulation R onM
such that s1 R s2.

4.1. STANDARD DEFINITIONS 31

s1

s2 s3

s4 s5 s6 s7 s8

α α

.5

β

.4 .6

β
.6 .4

β

u1

u3

u5 u6 u7 u8

α

.4 .6

β
.6 .4

β

Figure 4.4: An PA for illustrating the simulation relations.

A relation R ⊆ S × S is a strong simulation on M iff for all s1, s2 with s1 R s2:
L(s1) = L(s2) and if s1

α
−→ µ1 then there exists a transition s2

α
−→ µ2 with µ1 ⊑R µ2.

We say that s2 strongly simulates s1 in M, denoted s1 -M s2, iff there exists a strong
simulation R on M such that s1 R s2.

By definition, ∼M and -M are the coarsest strong bisimulation and simulation re-
lation for M respectively. If M is clear from the context, we write ∼ and - instead
of ∼M and -M respectively. Observe that by Lemma 4.1.4, µ1 ≡R µ2 implies that
µ1 ⊑R µ2 and that µ1(S) = µ2(S). For a PA M, let ≃M (or ≃ if M is clear from the
context) denote the kernel of -M, i. e., strong simulation equivalence ≃ = - ∩ %. We
say that states s, s′ are strongly similar, if s ≃ s′. Now we give some properties of strong
(bi-)simulations for PAs:

• s1 ∼ s2 implies that s1 ≃ s2, which implies both s1 - s2 and s2 - s1. Moreover,
≃ is strictly coarser than ∼.

• If s1 and s2 are strongly bisimilar, it holds that for each transition s1
α
−→ µ1 there

must exist a transition s2
α
−→ µ2 such that µ1(S) = µ2(S). Or equivalently, if no

such transition from s2 exists, we can conclude that s1 and s2 are not strongly
bisimilar.

We consider the following example illustrating that strong simulation equivalences are
strictly coarser than strong bisimulation equivalences:

Example 4.1.4. Consider the PA depicted in Figure 4.4. States s1 and u1 are not
strongly bisimilar: the state u3 is not bisimilar with state s2. However, we show that it
holds that s1 - u1, u1 - s1. Firstly, it holds that s3 ∼ u3, which implies that s3 - u3

and s3 - u3. Thus it holds that u1 - s1. Furthermore, s2 - u3, which implies that
s1 - u1. Hence, s1 ≃ u1.

Now we consider CPAs. Based on the definition of bisimulation and simulation
relation for PAs, we introduce the corresponding relation for CPAs [87, 122]:

Definition 4.1.5. LetM = (S, Act,R, L) be a CPA. An equivalence relation R ⊆ S×S
is a strong bisimulation onM iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1

α
−→ r1

32 CHAPTER 4. SIMULATION RELATIONS

then there exists a transition s2
α
−→ r2 with µ(r1) ≡R µ(r2) and r1(S) = r2(S). We write

s1 ∼M s2 iff there exists a strong bisimulation R on M such that s1 R s2.

A relation R ⊆ S × S is a strong simulation on M iff for all s1, s2 with s1 R s2:
L(s1) = L(s2) and if s1

α
−→ r1 then there exists a transition s2

α
−→ r2 with µ(r1) ⊑R µ(r2)

and that r1(S) ≤ r2(S). We say that s2 strongly simulates s1 in M, denoted s1 -M s2,
iff there exists a strong simulation R on M such that s1 R s2.

Again, by definition, ∼M and -M are the coarsest strong bisimulation and simulation
relation for M respectively. Similar to CTMCs, the additional rate condition r1(S) ≤
r2(S) for strong simulation indicates that the transition s2

α
−→ r2 is faster than s1

α
−→ r1.

As a shorthand notation, we use r1 ⊑R r2 for the condition µ(r1) ⊑R µ(r2) and r1(S) ≤
r2(S).

For a CPA M, let ≃M = -M ∩ %M denote the kernel of -M. We say that states
s, s′ are strongly similar, if s ≃M s′. If the model M is clear from the context, the
subscript M may be omitted. As for PAs, strong simulation equivalences are strictly
coarser than strong bisimulations. Moreover, s1 ∼ s2 implies that s1 ≃ s2, which implies
both s1 - s2 and s2 - s1.

s1

u1 v1

5
α

5

s2

u2 v2 u3 v3

4

α

4 5 5

α

Figure 4.5: An PA for illustrating the simulation relations.

Example 4.1.5. In the CPA depicted in Figure 4.5, states s1 and s2 are strongly similar,
but not strong bisimilar. However, observe that s1 and s2 are strongly bisimilar in the
induced PA.

4.1.3 Strong Probabilistic Simulations

For PAs and CPAs, a coarser relation than strong bisimulation and strong simulation
can be established. We recall the definition of strong probabilistic bisimulation and
simulation, which is coarser than strong bisimulation and simulation respectively, but
still preserves the same class of PCTL-properties. The definition is based on the concept
of combined transitions [101] which are convex combinations of several equally labelled
transitions:

Definition 4.1.6. Let M = (S, Act,P, L) be a PA. Let s ∈ S, α ∈ Act(s) and k =
|Stepsα(s)|. Assume that Stepsα(s) = {µ1, . . . , µk}. The tuple (s, α, µ) is a combined
transition, denoted by s

α
; µ, iff there exist constants c1, . . . , ck ∈ [0, 1]

∑k
i=1 ci = 1 such

that µ =
∑k

i=1 ciµi.

The key difference to Definition 4.1.4 is the use of
α
; instead of

α
−→:

4.1. STANDARD DEFINITIONS 33

Definition 4.1.7. Let M = (S, Act,P, L) be a PA. An equivalence relation R ⊆ S × S
is a strong probabilistic bisimulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2)
and if s1

α
−→ µ1 then there exists a combined transition s2

α
; µ2 with µ1 ≡R µ2. We write

s1 ∼
p
M s2 iff there exists a strong probabilistic bisimulation relation R on M such that

s1 R s2.

A relation R ⊆ S × S is a strong probabilistic simulation on M iff for all s1, s2 with
s1 R s2: L(s1) = L(s2) and if s1

α
−→ µ1 then there exists a combined transition s2

α
; µ2

with µ1 ⊑R µ2. We write s1 -p
M s2 iff there exists a strong probabilistic simulation R

on M such that s1 R s2.

Strong probabilistic bisimulation and simulation are insensitive to combined transi-
tions1, thus, they are relaxations of strong simulation. Similar to strong bisimulations
and strong simulations, ∼p

M and -p
M are the coarsest strong probabilistic bisimulation

and simulation for M respectively. As usual, the kernel of strong probabilistic simula-
tion is denoted by ≃p

M. Subscripts are omitted if the model is clear from the context.
Since MDPs can be considered as special PAs, we obtain the notions of strong simulation
and strong probabilistic simulation for MDPs. Moreover, strong simulation and strong
probabilistic simulation trivially coincide for MDPs as, by definition, for each state there
is at most one successor distribution per action.

s1

u1 v1 u2 v2

.3

α

.7 .7 .3

α

s2

u3 v3 u4 v4 u5 v5

.3

α

.7 .4 .4

α

.7 .3

α

Figure 4.6: For PAs: strong probabilistic simulation is strictly coarser than strong sim-
ulation.

Example 4.1.6. We consider the PA in Figure 4.6. State s2 strong simulates s1, how-
ever, s1 and s2 are not strongly similar, as the middle α-successor distribution of s2

(denoted by µ) cannot be related by any α-successor distribution of s1. This distribu-
tion µ can be related by the combined transition of the two α-successor distributions of
s1 (denoted by µ1 and µ2): 0.5µ1 +0.5µ2. Hence, we have s2 -p s1. Observe that in this
example it holds also: s1 ≃p s2 but s1 6≃ s2, and s1 6∼p s2.

The above example shows that strong probabilistic bisimulation is strictly coarser
than strong bisimulation, and strong probabilistic simulation is strictly coarser than
strong simulation.

1The combined transition defined in [98] is more general in two dimensions: First, successor distri-

butions are allowed to combine different actions. Second,
∑k

i=1
ci ≤ 1 is possible. The induced strong

probabilistic bisimulations equivalence and strong probabilistic simulation preorder are, however, the
same.

34 CHAPTER 4. SIMULATION RELATIONS

We extend the notion of strong probabilistic simulation for PAs to CPAs. First, we
introduce the notion of combined transitions for CPAs. In CPAs the probability that a
transition occurs is exponentially distributed. The combined transition should also be
exponentially distributed. The following example shows that a straightforward extension
of Definition 4.1.6 does not work.

s1

u1 v1 u2 v2

2

α

8 12 6

α

s2

u3 v3 u4 v4

2

α

12 12 2

α

Figure 4.7: Combined transitions for CPAs.

Example 4.1.7. We consider the CPA in Figure 4.7. Let r1 and r2 denote left and
the right α-successor rate functions out of state s1. Obviously, they have different exit
rates: r1(S) = 10, r2(S) = 18. Taking each with probability 0.5, we would get the
combined transition r = 0.5r1 + 0.5r2: r({u1, u2}) = 7 and r({v1, v2}) = 7. However, r
is hyper-exponentially distributed: the probability of reaching yellow (grey) states (u1

or u2) within time t under r is given by:

0.5 ·
2

10
· (1− e−10t) + 0.5 ·

12

18
· (1− e−18t)

Similarly, the probability of reaching green (dark grey) states within time t is given by:
0.5 · 8

10
· (1− e−10t) + 0.5 · 6

18
· (1− e−18t).

From state s2, the two α-successor rate functions have the same exit rate 14. Let r′1
and r′2 denote left and the right α-successor rate functions out of state s2. In this case
the combined transition r′ = 0.5r′1 +0.5r′2 is also exponentially distributed with rate 14:
the probability to reach yellow (grey) states (u3 and u4) within time t is 7

14
· (1− e−14t),

which is the same as the probability of reaching green (dark grey) states (v3 and v4)
within time t.

Based on the above example, it is easy to see that to get a combined transition
which is still exponentially distributed, we must consider rate functions with the same
exit rate:

Definition 4.1.8. Let M = (S, Act,R, L) be a CPA. Let s ∈ S, α ∈ Act(s) and let
{r1, . . . , rk} ⊆ Stepsα(s) where ri(S) = rj(S) for i, j ∈ {1, . . . , k}. The tuple (s, α, r) is

a combined transition, denoted by s
α
; r, iff there exist constants c1, . . . , ck ∈ [0, 1] with

∑k
i=1 ci = 1 such that r =

∑k
i=1 ciri.

In the above definition, unlike for the PA case, only α-successor rate functions with
same exit rate are combined together. Similar to PAs, strong probabilistic bisimula-
tion [101] and simulation [122] is insensitive to combined transitions, which is thus a
relaxation of strong simulation:

4.2. ALTERNATIVE SIMULATION DEFINITIONS 35

Definition 4.1.9. LetM = (S, Act,R, L) be a CPA. An equivalence relation R ⊆ S×S
is a strong probabilistic bisimulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2)
and if s1

α
−→ r1 then there exists a combined transition s2

α
; r2 with µ(r1) ≡R µ(r2) and

r1(S) = r2(S). We write s1 ∼
p
M s2 iff there exists a strong bisimulation R on M such

that s1 R s2.

A relation R ⊆ S × S is a strong probabilistic simulation on M iff for all s1, s2 with
s1 R s2: L(s1) = L(s2) and if s1

α
−→ r1 then there exists a combined transition s2

α
; r2

with r1 ⊑R r2. We write s1 -
p
M s2 iff there exists a strong simulation R onM such that

s1 R s2.

Recall r1 ⊑R r2 is a shorthand notation for µ(r1) ⊑R µ(r2) and r1(S) ≤ r2(S).

s0

u0 v0

5
α

5

s1

u1 v1 u2 v2

2

α

8 12 6

α

s2

u3 v3 u4 v4

2

α

12 12 2

α

Figure 4.8: A CPA for illustrating strong simulation and strong probabilistic simulation
relations.

Example 4.1.8. Consider the CPA in Figure 4.8. As discussed in Example 4.1.7,
the two α-successor rate functions of s1 can not combined together, thus the relation
s0 -p s1 cannot be established. However, s0 -p s2 holds: denoting the left rate function
of s2 as r1 and the right rate function as r2, as the combined rate function we choose
r = 0.5r1 + 0.5r2. Obviously, the conditions in Definition 4.1.9 are satisfied.

4.2 Alternative Simulation Definitions

In [49], strong simulation for labelled Markov processes (MDPs with continuous state
space) is introduced without using weight functions. Their definition gives another
view on strong simulation in the probabilistic setting. For DTMCs, a binary relation
R ⊆ S × S is a strong simulation if R is reflexive and transitive (a preorder), and for
(s, s′) ∈ R it holds that: the probability µ(A) is smaller than or equal to the probability
µ′(A) where A is any closed set under the preorder R.

The requirement that R must be a preorder is, however, not necessary. In this section,
we extend their definition to give an alternative definition for strong simulations. We
do not impose the condition that R must be a preorder. The new definition of strong
simulation is much closer to the definition of strong simulation for labelled transition
systems: R is a strong simulation relation if for (s, s′) ∈ R and for each α-successor t of
s, s′ has also an α-successor t′ such that (t, t′) ∈ R. Thus the alternative characterisation
of strong simulation relations for Markov chains is more understandable, especially for
those who are familiar with labelled transition systems.

36 CHAPTER 4. SIMULATION RELATIONS

This section is organised as follows. In Subsection 4.2.1 we recall an equivalent
condition for weight functions. Then, we give the new definition for strong and strong
probabilistic simulations in Subsection 4.2.2.

Notations. For a relation R ⊆ S × S and a subset A ⊆ S, we let R(A) denote the
union ∪s∈AR(s), let R−1(A) denote the union ∪s∈AR−1(s). We use Dom(R) = {u |
∃v. (u, v) ∈ R} to denote the domain of R, and use Ran(R) = {v | ∃u. (u, v) ∈ R} to
denote the range of R.

4.2.1 Characterising Weight Functions

In [9], weight functions are characterised equivalently using a maximum flow problem.
We recall this equivalent characterisation. Furthermore, we propose a new equivalent
formulation which is the basis of our alternative definition for strong simulations.

The Network for (µ, µ′) with respect to R. Let R ⊆ S×S, and let µ, µ′ ∈ Dist(S)
be distributions. The network N (µ, µ′, R) := (V, E, c) is constructed out of µ1, µ2 and
R. We consider two copies t ∈ S⊥ and t ∈ S⊥ of each state where S⊥ = {t | t ∈ S⊥}.
Moreover, let 1 (the source) and % (the sink) be two additional vertices not contained
in S⊥ ∪ S⊥. The set of vertices is defined by:

V = {1, %} ∪ Supp⊥(µ) ∪ Supp⊥(µ′)

and the set of edges E is defined by

E = {(s, t) | (s, t) ∈ R⊥} ∪ {(1, s)} ∪ {(t, %)} .

where s ∈ Supp⊥(µ) and t ∈ Supp⊥(µ′). Recall the relation R⊥ is defined by R ∪
{(⊥, s) | s ∈ S⊥}. The capacity function c is defined as follows: c(1, s) = µ(s) for
all s ∈ Supp⊥(µ), c(t, %) = µ′(t) for all t ∈ Supp⊥(µ′), and c(s, t) = ∞ for all other
(s, t) ∈ E. Later, we will use a variant of this network: For γ ∈ R>0, we let N (µ, γµ′, R)
denote the network obtained from N (µ, µ′, R) be setting the capacities to the sink % by:
c(t, %) = γµ′(t). This network is bipartite, since the vertices can be partitioned into two
subsets V1 := Supp⊥(µ) ∪ {%} and V2 := Supp⊥(µ′) ∪ {1} such that all edges have one
endpoint in V1 and another in V2.

Now we give another equivalent characterisation of weight functions.

Lemma 4.2.1. Let R ⊆ S × S be a relation on S, and let µ1, µ2 ∈ Dist(S). The
following statements are equivalent:

1. There exists a weight function for (µ1, µ2) with respect to R.

2. The maximum flow of the network N (µ, µ′, R) is 1.

3. µ1(A) ≤ µ2(R(A)) for all A ⊆ S.

4. µ1(A) ≤ µ2(R(A)) for all A ⊆ Supp(µ1).

4.2. ALTERNATIVE SIMULATION DEFINITIONS 37

Proof. The equivalence between 1 and 2 is a direct extension of Lemma 5.1 in [9] now
accounting for substochasticity.

(1 =⇒ 3): Let ∆ denote the corresponding weight function for (µ1, µ2) with respect
to R. Now we want to prove that for every A ⊆ S: µ1(A) ≤ µ2(R(A)). From the second
condition of weight function (Definition 4.1.1) it holds that µ1(A) =

∑

u∈A ∆(u, R⊥(u)).
Since u 6= ⊥, ∆(u,⊥) = 0 for u ∈ A, thus µ1(A) =

∑

u∈A ∆(u, R(u)). We observe for
u 6∈ Dom(R), it holds that R(u) = ∅, thus µ1(A) =

∑

u∈A∩Dom(R) ∆(u, R(v)). Moreover,

for u ∈ A∩Dom(R) and v ∈ S⊥\R(A∩Dom(R)) we have that (u, v) 6∈ R, which implies
that ∆(u, v) = 0 from the first condition of weight function. We get:

µ1(A) =
∑

u∈A∩Dom(R)

∑

v∈R(A∩Dom(R))

∆(u, v)
(∗)
=

∑

u∈A∩Dom(R)

∑

v∈R(A)

∆(u, v) (4.2)

Observe that it holds always that R(A ∩ Dom(R)) = R(A), thus (*) holds. Similarly,
from the first and the third conditions of weight function, we have that

µ2(R(A)) =
∑

u∈R−1

⊥
(R(A))

∑

v∈R(A)

∆(u, v) (4.3)

Comparing Equations 4.2 and 4.3, it is sufficient to show the following inclusion:

A ∩Dom(R) ⊆ R−1
⊥ (R(A))

Let u ∈ A ∩ Dom(R). Since u ∈ Dom(R), there exists v ∈ Ran(R) with (u, v) ∈ R.
Thus v ∈ R(A ∩ Dom(R)) = R(A). Again, (u, v) ∈ R implies that u ∈ R−1(R(A)).
Hence, A ∩ Dom(R) ⊆ R−1(R(A)) ⊆ R−1

⊥ (R(A)).

(3 =⇒ 4): trivial.

(4 =⇒ 2): Assume that the fourth clause is true. We show that2 the maximum flow
of the network N (µ1, µ2, R) has value 1. To construct such a maximum flow, we borrow
the proof idea of Theorem 7.3.4 from Desharnais [47]. According to the Maximum Flow
Minimum Cut Theorem [2] (cf. Chapter 3.5), the maximum flow equals the capacity of
a minimal cut. Therefore, it suffices to show that there exists a minimal cut of capacity
1. Cut {1} has capacity 1, but we still have to show that it is minimal. Let C be some
minimal cut (not necessarily {1}). We let B = C ∩ S⊥. The capacity of C is the sum:

c(C) =
∑

{c(i, j) | i ∈ C, j /∈ C}.

Recall we use R⊥ to denote the set R∪{(⊥, s) | s ∈ S⊥}. Cut C has to fulfill s ∈ B =⇒
R⊥(s) ⊆ C because otherwise it would have infinite capacity. Hence the capacity of C
is:

c(C) = µ1(S⊥ \B) + µ2(R⊥(B)).

First assume that ⊥ ∈ B. In this case we have that R⊥(B) ⊇ R⊥(⊥) = S⊥. Thus,
c(C) ≥ µ2(R⊥(B)) ≥ µ2(S⊥) = 1. We consider now the case ⊥ 6∈ B. In this case we
have R⊥(B) = R(B). Thus, µ2(R⊥(B)) = µ2(R(B)). By construction of the network

2This part is developed with Björn Wachter together.

38 CHAPTER 4. SIMULATION RELATIONS

N , it holds that B ⊆ Supp(µ1). Since µ1(B) ≤ µ2(R(B)), we have:

c(C) ≥ µ1(S⊥ \B) + µ1(B) = µ1(S⊥) = 1

Hence, the value of the cut C is greater than or equal than 1, implying that the minimum
cut has value 1. �

The second clause will be used later in an efficient decision procedure for checking
whether a weight function as the first clause exists. Observe that in the third clause,
the set A does not contain the auxiliary state ⊥. The reason is that ⊥ represents under-
specified behaviour, which do not need to be simulated. The fourth clause allows us to
restrict to subsets of the support of µ1.

With the above lemma, we provide simple proofs for Lemma 4.1.4 and Lemma 4.1.5
from Subsection 4.1.1.

Lemma 4.2.2 (The same as Lemma 4.1.4). Let R ⊆ S×S be an equivalence relation.
Let µ, µ′ ∈ Dist(S).

1. µ ≡R µ′ implies that µ ⊑R µ′ and µ(S) = µ′(S).

2. If µ(S) = µ′(S) holds additionally, then µ ≡R µ′ iff µ ⊑R µ′.

Proof. 1. By definition, µ ≡R µ′ implies that µ(S) = µ′(S). Let A ⊆ S. Since R
is an equivalence relation, it holds that A ⊆ R(A), and that R(A) is a union of
several equivalence classes. Thus it holds that µ(R(A)) = µ′(R(A)), which implies
that µ(A) ≤ µ(R(A)) = µ′(R(A)). Applying Lemma 4.2.1, we get that µ ⊑R µ′.

2. Because of the previous part, it remains to show that µ ⊑R µ′ implies that µ ≡R µ′.
Let A be an equivalence relation of R. Then, it holds that R(A) = A. Applying
Lemma 4.2.1, we have that µ(A) ≤ µ′(R(A)) = µ′(A). Since R is symmetric, by
Lemma 4.1.3, it holds that µ′ ⊑R µ, which again implies that µ′(A) ≤ µ(R(A)) =
µ(A). Thus µ(A) = µ′(A).

�

Lemma 4.2.3 (The same as Lemma 4.1.5). Let R be a preorder on a set S and
µ, µ′ ∈ Dist(S). If µ ⊑R µ′ and µ′ ⊑R µ then µ(A) = µ′(A) for all equivalence classes A
with respect to the kernel R ∩R−1 of R.

Proof. Let A1, . . . , An be an enumeration of the equivalence classes of the kernel R∩R−1.
Without of loss of generality, assume that A1, . . . , An are an arbitrary reverse topological
sort with respect to R. Then, for all (s, s′) ∈ R with s ∈ Ai, s′ ∈ Aj , it holds that i ≤ j.
We define a sequence of sets Q1, . . . , Qn as follows: Qi = ∪i

j=1Aj . By construction, it
holds that R(Qi) = Qi for all i, thus:

1. µ ⊑R µ′ implies that µ(Qi) ≤ µ′(R(Qi)) = µ′(Qi),

2. µ′ ⊑R µ implies that µ′(Qi) ≤ µ(R(Qi)) = µ(Qi),

4.2. ALTERNATIVE SIMULATION DEFINITIONS 39

implying that µ(Qi) = µ′(Qi) for all i = 1, . . . , n. Or equivalently, it holds that µ(A1) +
. . . + µ(Ai) = µ′(A1) + . . . + µ′(Ai) for all i = 1, . . . , n. It is then easy to see that
µ(Ai) = µ′(Ai) for all i = 1, . . . , n. �

Since the notion of simulation relations for models we consider involves weight func-
tions, we can give equivalent definition of the various definitions using either condition
2 or 3 instead of weight functions. In the subsequent subsections, we give a detailed
discussion of using the third condition, which provides another view of the simulation
relations.

4.2.2 Strong (Probabilistic) Simulations

Let M = (S,P, L) be an FPS. Our new definition provides, a rather intuitive, view of
strong simulation. Assume that state s2 strongly simulates s1. By definition of strong
simulation, P(s1, ·) ⊑R P(s2, ·) where R is a strong simulation relation. From the first
and the third clause of Lemma 4.2.1, we have that P(s1, ·) ⊑R P(s2, ·) is equivalent to
P(s1, A) ≤ P(s2, R(A)) for all A ⊆ S. This allows us to give an equivalent definition for
strong simulations:

Lemma 4.2.4. Let M = (S,P, L) be an FPS. The relation R ⊆ S × S is a strong sim-
ulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, A) ≤ P(s2, R(A))
for all A ⊆ S.

Proof. Assume that R is a strong simulation and let s1 R s2. By definition of strong
simulation, it holds that L(s1) = L(s2). Moreover, P(s1, ·) ⊑R P(s2, ·). By Lemma 4.2.1
it holds that P(s1, A) ≤ P(s2, R(A)) for all A ⊆ S. Now let R ⊆ S × S such that for
all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, A) ≤ P(s2, R(A)) for all A ⊆ S. Again
Lemma 4.2.1 implies that P(s1, ·) ⊑R P(s2, ·), thus R is a strong simulation. �

By the forth clause of Lemma 4.2.1, we can restrict to those A with A ⊆ post(s1):

Lemma 4.2.5. Let M = (S,P, L) be an FPS. The relation R ⊆ S × S is a strong sim-
ulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, A) ≤ P(s2, R(A))
for all A ⊆ post(s1).

Let R be a strong simulation, and let s1 R s2. Taking A = S, we have that P(s1, S) ≤
P(s2, R(S)) ≤ P(s2, S). Assume that state s1 is absorbing and L(s1) = L(s2). It is easy
to show that s1 - s2: taking the relation R = {(s1, s2)}. The set A must be the empty
set, which implies that R(A) is also an empty set. Thus P(s1, A) = 0 = P(s2, R(A)).
Hence R is a strong simulation implying that s1 - s2.

Example 4.2.1. We show that in the FPS in Figure 4.9, which is the same as the
one in Figure 4.2 in Example 4.1.2. As in that example, we show that it holds that
s1 - s2 but s2 6- s3. First, consider the pair (s1, s2). Let R = {(s1, s2), (u1, u2), (v1, v2),
(q1, q2)}. For all pairs (s, s′) ∈ R it holds that L(s) = L(s′). Since states u1, q1 are
absorbing, the condition in Definition 4.2.5 is satisfied with respect to pairs (u1, u2) and
(q1, q2) immediately. For pair (v1, v2) it is also easy to verify: for the only meaningful

40 CHAPTER 4. SIMULATION RELATIONS

s1

u1

1
2

v1

1
2

q1

1
8

s2

u2

1
2

v2

1
2

q2

1
8

q3

3
4

s3

u3

2
3

v3

1
3

q4

1
8

q5

7
8

Figure 4.9: An FPS.

subset A = {q1} it holds that P(v1, A) = 1
8

= P(v2, R(A)) = P(v2, {q2}). Consider
the pair (s1, s2). The candidate sets A of interest could be: {u1}, {v1} or {u1, v1}. For
each of them, it is easy to verify that P(s1, A) ≤ P(s2, R(A)). Now we consider the pair
(s2, s3). Assume that we have a strong simulation R with (s2, s3) ∈ R. Taking A = {v2},
we get that P(s1, A) = 1

2
. However, the only successor state of s3 which can simulate

s2 is v3 which implies that R(A) ⊆ {v3}. However, we have P(s2, A) > P(s3, v3) ≥
P(s3, R(A)) = 1

3
. Thus, s2 6- s3.

Since DTMCs are special FPSs, Lemma 4.2.4 and 4.2.5 apply also for DTMCs.
Moreover, since all states in DTMCs are either stochastic or absorbing, we show another
property of strong simulation:

Lemma 4.2.6. LetM = (S,P, L) be a DTMC, and let R ⊆ S×S be a strong simulation
on M. Then, for all s1, s2 with s1 R s2: P(s1, A) = P(s2, R(A)) for all A ⊆ S with
A = R−1(R(A)).

Proof. Let R be the strong simulation as specified, and let s1 R s2. In case that s1 is
absorbing, A must be the empty set, which implies that R(A) is also an empty set. Thus
P(s1, A) = 0 = P(s2, R(A)). If s1 is not absorbing, let A ⊆ S with A = R−1(R(A)).
Since s1 R s2, from Lemma 4.2.4 we have that P(s1, A) ≤ P(s2, R(A)). Assume that
P(s1, A) < P(s2, R(A)) for the sake of contradiction. Let B = post(s1) \ A and B′ =
post(s2) \ R(A). Since s1 and s2 are stochastic, we have that P(s1, B) = 1 − P(s1, A)
and P(s2, B

′) = 1−P(s2, R(A)). Then, P(s1, A) < P(s2, R(A)) implies that P(s1, B) >
P(s2, B

′). On the other hand, s1 R s2 implies that P(s1, B) ≤ P(s2, R(B)), which
implies that P(s2, B

′) < P(s2, R(B)). As a contradiction we show that R(B) ⊆ B′. Let
s ∈ R(B). By definition, we have that there exists a state t ∈ B with t R s. t 6∈ A
implies that t 6∈ R−1(R(A)). Thus, s 6∈ R(A) which implies that s ∈ B′, which is the
contradiction. �

The following example shows that the converse does not hold.

Example 4.2.2. Consider the DTMC depicted in Figure 4.10. Obviously, it holds that
u1 - u3, u2 - u3, u2 - u4 and u1 6- u4. Now consider the states s1, s2 and the
relation R = {(s1, s2), (u1, u3), (u2, u3), (u2, u4)}. We show that for all A ⊆ S with A =
R−1(R(A)) it holds that P(s1, A) = P(s2, R(A)). If the candidate set A does not contain

4.2. ALTERNATIVE SIMULATION DEFINITIONS 41

either u1 or u2, we have P(s1, A) = 0 = P(s2, R(A)). The set A = {u1} or A = {u2} does
not satisfy the property A = R−1(R(A)). The set A = {u1, u2} satisfies this property,
but the condition holds trivially. However, s1 6- s2 since P(s1, u1) = 0.5, and the only
successor state which can simulate u1 is u3, thus P(s2, R(u1)) ≤ P(s2, {u3}) = 0.1.

s1

u1 u2

q1

.5 .5

1

s2

u3 u4

q2

.1 .9

1

Figure 4.10: A DTMC.

Now we consider CTMCs. Similar to FPSs, by applying Lemma 4.2.1, we give an
equivalent definition for strong simulation for CTMCs. The proof is similar to the proof
of Lemma 4.2.4.

Lemma 4.2.7. LetM = (S,R, L) be a CTMC. The relation R ⊆ S×S is a strong sim-
ulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, A) ≤ P(s2, R(A))
for all A ⊆ S, and R(s1, S) ≤ R(s2, S).

s1

u1 v1

1 1

s2

u2 u3 v2

1 1 2

Figure 4.11: A CTMC.

Example 4.2.3. Consider the CTMC in Figure 4.11. In the embedded DTMC, for all
A ⊆ S it holds that P(s1, A) ≤ P(s2, R(A)). Moreover, R(s1, S) = 2 < R(s2, S) = 4
which implies that s1 - s2.

Lemma 4.2.8. LetM = (S,R, L) be a CTMC, and let R ⊆ S×S be a strong simulation

on M. Then, for all s1, s2 with s1 R s2: L(s1) = L(s2) and R(s1,A)
R(s2,R(A))

= R(s1,S)
R(s2,S)

for all

A ⊆ S with A = R−1(R(A)).

42 CHAPTER 4. SIMULATION RELATIONS

Proof. Assume that R is a strong simulation and s1 R s2. By Lemma 4.2.6, in the embed-
ded DTMC it holds that P(s1, A) = P(s2, R(A)) for all A ⊆ S with A = R−1(R(A)).

It holds that P(s1, A) = R(s1,A)
R(s1,S)

. Similarly, P(s2, R(A)) = R(s2,R(A))
R(s2,S)

. Thus R(s1,A)
R(s1,S)

=
R(s2,R(A))

R(s2,S)
which proves the lemma. �

For PAs and CPAs, strong and strong probabilistic simulation relations also involve
weight function conditions. In the following two lemmas, we give equivalent definition
of strong and strong probabilistic simulation:

Lemma 4.2.9. Let M = (S, Act,P, L) be a PA. The relation R ⊆ S × S is a strong
(strong probabilistic) simulation on M iff for all s1, s2 ∈ S with s1 R s2, L(s1) = L(s2)
and for all s1

α
−→ µ1, there exists a transition s2

α
−→ µ2 (a combined transition s2

α
; µ2)

such that µ1(A) ≤ µ2(R(A)) for all A ⊆ post(s1).

Lemma 4.2.10. LetM = (S, Act,R, L) be a CPA. The relation R ⊆ S × S is a strong
(strong probabilistic) simulation on M iff for all s1, s2 ∈ S with s1 R s2, L(s1) = L(s2)
and for all s1

α
−→ r1, there exists a transition s2

α
−→ r2 (a combined transition s2

α
; r2)

such that r1(S) ≤ r2(S) and µ(r1)(A) ≤ µ(r2)(R(A)) for all A ⊆ post(s1).

4.3 Weak Simulations

This section is organised as follows. Weak simulation for DTMCs will be repeated in
Subsection 4.3.1. The definition is extended to CTMCs in Subsection 4.3.2. For FPSs
there are some intricacies in the definition of weak simulation, which will be discussed
in Subsection 4.3.3.

4.3.1 Weak Simulation for DTMCs

A state s2 weakly simulates another state s1 if they have the same labelling, and if
their successor states can be grouped into sets Ui and Vi for i = 1, 2, satisfying certain
conditions. Consider Figure 4.12. We can view steps to Vi as stutter steps while to Ui

are visible steps. With respect to the visible steps, it is then required that there exists a
weight function for the conditional distributions: P(s1,·)

K1
and P(s2,·)

K2
where Ki intuitively

is the probability to perform a visible step from si. The stutter steps must respect the
weak simulation relations: thus states in V2 should weakly simulate s1, and state s2

should weakly simulate states in V1. This is depicted by dashed arrows in the figure.
For reasons we will explain later in Example 4.3.6, the definition needs to account for
states which partially belong to Ui and partially to Vi. Technically, this is achieved by
functions δi that distribute si over Ui and Vi in the definition below. For a given pair
(s1, s2) and functions δi : S → [0, 1], let Uδi

, Vδi
⊆ S (for i = 1, 2) denote the sets

Uδi
= {u ∈ post(si) | δi(u) > 0}, Vδi

= {v ∈ post(si) | δi(v) < 1} (4.4)

If (s1, s2) and δi are clear from the context, we write Ui, Vi instead.

4.3. WEAK SIMULATIONS 43

Figure 4.12: Illustrating the splitting of successor states in weak simulations for FPSs.

Definition 4.3.1 ([18]). Let M = (S,P, L) be a DTMC and R ⊆ S × S. The relation
R is a weak simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and there
exist functions δi : S → [0, 1] such that:

1. (a) v1 R s2 for all v1 ∈ V1, and (b) s1 R v2 for all v2 ∈ V2

2. there exists a function ∆ : S × S → [0, 1] such that:

(a) ∆(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and u1 R u2,

(b) if K1 > 0 and K2 > 0 then for all states w ∈ S:

K1 ·∆(w, U2) = P(s1, w)δ1(w), K2 ·∆(U1, w) = P(s2, w)δ2(w)

where Ki =
∑

ui∈Ui
δi(ui) ·P(si, ui) for i = 1, 2.

3. for u1 ∈ U1 there exists a path fragment s2, w1, . . . , wn, u2 with positive probability
such that n ≥ 0, s1 R wj for 0 < j ≤ n, and u1 R u2.

We say that s2 weakly simulates s1 in M, denoted s1 wM s2, iff there exists a weak
simulation R on M such that s1 R s2.

Note that the sets Ui, Vi in the above definition are defined according to Equation 4.4
with respect to the pair (s1, s2) and the functions δi. Condition 3 will in the sequel be
called the reachability condition. If K1 > 0 and K2 = 0, which implies that U2 = ∅ and
U1 6= ∅, the reachability condition guarantees that for any visible step s1 → u1 with
u1 ∈ U1, s2 can reach a state u2 which simulates u1 while passing only through states
simulating s1.

Example 4.3.1. Consider the DTMC in Figure 4.13. We first show that si w tj for
i, j ∈ {1, 2, 3}. For each of these pair we can select U1 = ∅ (i.e. δ1(s) = 0 for all s ∈ S)
and V2 = ∅ (i.e. δ2(s) = 1 for all s ∈ S). Since K1 = 0, only the Condition 1 need to
checked. Since all successor states of si are either itself or empty, the condition holds
trivially. Similarly, it holds also v1 w v2.

Since v2 has a transition to s3 which cannot be simulated by v1, we have that v2 6w v1.
Similarly, it holds that t1 w t3 but t3 6w t1.

We show that t1 w t2: to establish this relation we let U1 = {v1}, V1 = ∅, U2 = ∅ and
V2 = {t3}. Thus K1 = 1 and K2 = 0. Condition 1 of Definition 4.3.1 holds since t1 w t3.

44 CHAPTER 4. SIMULATION RELATIONS

s1 s2

1

t1

v1

1

t2

t3

1

v2

1

s3

1

Figure 4.13: A simple DTMC for illustrating the weak simulation relations.

The second condition holds trivially with ∆(s, s′) = 0 for all s, s′ ∈ S. To show the
reachability condition, observe that t2 can reach a state v2 which can weakly simulate
v1.

Dropping Condition 3 would mean, however, that ti w sj for i, j ∈ {1, 2, 3} by taking
simply V1 = ∅ and U2 = ∅.

The functions δi can be considered as a generalisation of the characteristic function of
Ui in the sense that we may split the membership of a state to Ui and Vi into fragments
which sum up to 1. Assume that s1 w s2. By definition, if the successor state s′1 of s1

cannot be weakly simulated by s2, it holds that δ1(s
′
1) = 1. Similarly, if the successor

state s′2 cannot weakly simulates s1, it holds that δ2(s
′
2) = 1. If δ1(s) = 1

3
, we say that 1

3

fragment of the state s belongs to U1, and 2
3

fragment of s belongs to V1. Hence, Ui and
Vi are not necessarily disjoint. Observe that Ui = ∅ implies that δi(s) = 0 for all s ∈ S.
Similarly, Vi = ∅ implies that δi(s) = 1 for all s ∈ S. We show that the use of fragments
of states is necessary to establish weak simulation relations.

Example 4.3.2. Consider the DTMC depicted in Figure 4.14. For states u1, u2, v1, v2,
obviously the following pairs (u1, u2), (u1, v2), (v1, v2) are in the weak simulation relation.
The state u2 cannot weakly simulate v1. Since v2 weakly simulates v1, it holds that
s2 w s5. Similarly, from u1 w v1 we can easily show that s1 w s4. We observe also that
s2 6w s3: K1 > 0 and K2 > 0 since both s2 and s3 have yellow (grey) successor states,
but the required function ∆ cannot be established since u2 cannot weakly simulate any
successor state of s2 (which is v1). Thus s2 6w s3.

Without considering fragments of states, we show that a weak simulation between
s1 and s3 cannot be established. Since s2 6w s3, we must have U1 = {u1, v1, s2} and
V1 = ∅. The function δ1 is thus defined by δ1(u1) = δ1(v1) = δ(s2) = 1 which implies
that K1 = 1. Now consider the successor states of s3. Obviously δ2(u2) = δ2(v2) = 1,
which implies that u2, v2 ∈ U2. We consider the following two cases:

• The case δ2(s4) = 1. In this case we have that K2 = 1. A function ∆ must be
defined satisfying Condition 2b in Definition 4.3.1. Taking w = s4, the following
must hold: K2 · ∆(U1, s4) = P(s3, s4)δ2(s4). As K2 = 1,P(s3, s4) = 0.75 and

4.3. WEAK SIMULATIONS 45

u1 v1

q1

1

u2

q2

1

v2

q3

1

q4

1

s1

u1

.3

v1

.2

s2

.5

v1

1

s3

u2

.15

v2

.1

s4

.75

v1

.5

s5

.5

v2

1

Figure 4.14: A DTMC where the splitting of states is necessary to establish the weak
simulation. In the model some states are drawn more than once.

δ2(s4) = 1, it follows that ∆(U1, s4) = 0.75. The state s2 is the only successor of
s1 that can be weakly simulated by s4, so ∆(s2, s4) = 0.75 must hold. However,
the equation K1 · ∆(s2, U2) = P(s1, s2)δ1(s2) does not hold any more, as on the
left side we have 0.75 but on the right side we have 0.5 instead.

• The case δ2(s4) = 0. In this case we have still K2 > 0. Similar to the previous
case it is easy to see that the required function ∆ cannot be defined: the equation
K1 ·∆(s2, U2) = P(s1, s2)δ1(s2) does not hold since the left side is 0 (no states in
U2 can weakly simulate s2) but the right side equals 0.5.

Thus without splitting, s3 does not weakly simulate s1. We show it holds that s1 w s3.
It is sufficient to show that the relation R = {(s1, s3), (u1, u2), (v1, v2), (q1, q3), (s1, s4),
(u1, v1), (v1, v1), (q1, q1), (s2, s5), (s2, s4)} is a weak simulation relation. By the discus-
sions above, it is easy to verify that every pair except (s1, s3) satisfies the conditions
in Definition 4.3.1. We show now that the conditions hold also for the pair (s1, s3).
The function δ1 with δ1(u1) = δ1(v1) = δ1(s2) = 1 is defined as above, also the sets
U1 = {u1, v1, s2}, V1 = ∅. The function δ2 is defined by: δ2(u2) = δ2(v2) = 1 and
δ2(s4) = 1

3
, which implies that U2 = {u2, v2, s4} and V2 = {s4}. Thus, we have K1 = 1

and K2 = 0.5. Since s1 w s4, Condition 1 holds trivially as (s1, s4) ∈ R. The reach-
ability condition also holds trivially. To show that Condition 2 holds, we define the
function ∆ as follows: ∆(u1, u2) = 0.3, ∆(v1, v2) = 0.2 and ∆(s2, s4) = 0.5. We show
that K2 · ∆(U1, w) = P(s3, w)δ2(w) holds for all w ∈ S. It holds that K2 = 0.5.
First observe that for w 6∈ U2 both sides of the equation equal 0. Let first w = u2

for which we have that P(s3, u2)δ2(u2) = 0.15. Since ∆(U1, u2) = 0.3, also the left

46 CHAPTER 4. SIMULATION RELATIONS

side equals 0.15. The case w = v2 can be shown in a similar way. Now consider
w = s4. Observe that ∆(U1, s4) = 0.5 thus the left side equals 0.25. The right
side equals P(s3, s4)δ2(s4) = 0.75 · 1

3
= 0.25 thus the equation holds. The equation

K1 ·∆(w, U2) = P(s1, w)δ1(w) can be shown in a similar way. Thus ∆ satisfies all the
conditions which implies that s1 w s3.

4.3.2 Weak Simulation for CTMCs

The idea of using fragments of states to establish weak simulation for DTMCs can be
extended to CTMCs:

Definition 4.3.2 ([18, 17]). Let M = (S,R, L) be a CTMC and R ⊆ S × S. The
relation R is a weak simulation on M iff for s1 R s2: L(s1) = L(s2) and there exist
functions δi : S → [0, 1] (for i = 1, 2) satisfying Equation 4.4 and Conditions 1 and 2 of
Definition 4.3.1 and the rate condition:

(3′) K1 ·R(s1, S) ≤ K2 ·R(s2, S)

We say that s2 weakly simulates s1 in M, denoted s1 wM s2, iff there exists a weak
simulation R on M such that s1 R s2.

In this definition, the rate condition (3′) strengthens the reachability condition of the
preceding definition. If U1 6= ∅, we have that K1 > 0; the rate condition then requires
that K2 > 0, which implies U2 6= ∅.

s1 s2

1

t1

v1

1

t2

t3

λ

v2

λ

Figure 4.15: A simple CTMC for illustrating the weak simulation relations.

Example 4.3.3. Consider the CTMC in Figure 4.15 (cf. the DTMC in Figure 4.13 in
Example 4.3.1). Assume that λ > 1. By similar arguments as Example 4.3.1, we have
that si w tj for i = 1, 2 and j = 1, 2, 3.

It holds obviously t1 w t3: we take U1 = {v1},V1 = ∅, U2 = {v2} and V2 = ∅ to fulfill
the conditions in Definition 4.3.2. Because of the rate condition, t3 6w t1: K1R(t3, v2) = λ
which is greater than K2R(t1, v1) = 1.

Observe also, because of the rate condition, t1 6w t2: K1 > 0 implies K2 > 0 which
again implies that t3 ∈ U2. However, t3 cannot weakly simulates v1.

As for DTMCs, we show that the use of fragments of states is necessary to es-
tablish weak simulation relations. Firstly, if we interpret the DTMC in Figure 4.14

4.3. WEAK SIMULATIONS 47

as a CTMC, the relation s1 w s3 cannot be established (cf. Example 4.3.2): with
R(s1, S) = R(s2, S) = 1, K1 = 1 and K2 = 0.5 the rate condition is violated .

Example 4.3.4. Consider the CTMC depicted in Figure 4.16. The embedded DTMC
of it is exactly the DTMC in Figure 4.14. Obviously, the rate conditions holds in the
CTMC for all weak simulation relations we discussed in Example 4.3.2. Thus, we can
(only with splitting) establish that s1 w s3.

u1 v1

q1

1

u2

v2

1

v2

q3

1

q4

1

s1

u1

.3

v1

.2

s2

.5

v1

1

s3

u2

.3

v2

.2

s4

1.5

v1

1

s5

1

v2

1

Figure 4.16: A CTMC where the splitting of states is necessary to establish the weak
simulation.

4.3.3 Weak Simulation for FPSs

In [18], the notion of weak simulation is also proposed for FPSs. However, we show in
this section that the definition contains a subtle flaw, and cannot be fixed in an obvious
way. First we repeat the proposed definition. In this section, for a given pair (s1, s2)
and functions functions δi : S⊥ → [0, 1], let Uδi

, Vδi
⊆ S⊥ (for i = 1, 2) denote the sets

Uδi
= {u ∈ post⊥(si) | δi(u) > 0}, Vδi

= {v ∈ post⊥(si) | δi(v) < 1} (4.5)

If (s1, s2) and δi are clear from the context, we write Ui, Vi instead.

Definition 4.3.3. Let M = (S,P, L) be an FPS and R ⊆ S × S. The relation R is
a weak simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and there exist
functions δi : S⊥ → [0, 1] such that:

1. (a) v1 R s2 for all v1 ∈ V1\{⊥}, and (b) s1 R v2 for all v2 ∈ V2\{⊥}

48 CHAPTER 4. SIMULATION RELATIONS

2. there exists a function ∆ : S⊥ × S⊥ → [0, 1] such that:

(a) ∆(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and u1 R⊥ u2,

(b) if K1 > 0 and K2 > 0 then for all states w ∈ S⊥:

K1 ·∆(w, U2) = P(s1, w)δ1(w), K2 ·∆(U1, w) = P(s2, w)δ2(w)

where Ki =
∑

ui∈Ui
δi(ui) ·P(si, ui) for i = 1, 2.

3. for u1 ∈ U1\{⊥} there exists a path fragment s2, w1, . . . , wn, u2 with positive prob-
ability such that n ≥ 0, s1 R wj for 0 < j ≤ n, and u1 R u2.

We say that s2 weakly simulates s1 in M, denoted s1 wM s2, iff there exists a weak
simulation R on M such that s1 R s2.

The sets Ui, Vi in the above definition are defined according to Equation 4.5 with
respect to the pair (s1, s2) and the functions δi. Below we first provide an example in
which we can establish s1 w s2 via the weak simulation for FPSs, but which violates the
logical preservation results.

s1

u1

1

s2

u2

0.1

Figure 4.17: A simple FPS.

Example 4.3.5. Consider the simple FPS depicted in Figure 4.17. We first show that
by definition of weak simulation it holds that s1 w s2. We show that the relation R =
{(s1, s2), (u1, u2)} is a weak simulation relation. The condition for the pair (u1, u2) holds
trivially. For (s1, s2) consider the functions δi defined by: δ1(u1) = δ2(u2) = 1. Then,
the sets Ui and Vi are given by: U1 = {u1}, V1 = ∅, U2 = {u2}, V2 = {⊥}. The constants
Ki can be easily computed: K1 = 1, K2 = 0.1. The required function ∆ is defined as
follows: ∆(s, s′) equals 1 if s = u1, s′ = u2, and equals 0 otherwise. Condition 1 and the
reachability condition 3 of Definition 4.3.3 hold trivially. Consider Condition 2. Only
the pair (u1, u2) has positive weight, thus Condition 2a holds. Consider Condition 2b: it
holds that K2∆(U1, u2) = P(s2, u2)δ2(u2) = 0.1, and K1∆(u1, U2) = P(s1, u1)δ2(u1) = 1.
For other state s ∈ S⊥, the equation holds trivially: both sides of it equal 0.

In the above example, we have shown that according to Definition 4.3.3, we have that
s1 w s2. However, this violates the logical preservation results. Observe that state s2

reaches yellow (or grey) states with probability 0.1, which is smaller than the probability
of reaching yellow (or grey) states from s1. This contradicts Theorem 63 of paper [18].
To understand this theorem, we shall recall briefly the liveness PCTL\X formulas and
their semantics. Details can be found in [18]. The liveness PCTL\X formulas are defined
by:

Φ = a | ¬a | Φ ∧ Φ | Φ ∨ Φ | PDp(Φ U Φ)

4.3. WEAK SIMULATIONS 49

where a ∈ AP , and D∈ {>,≥}. The semantics for the atomic proposition a, boolean
operators negation, conjunction, disjunction is as defined for CTLs. A state s satisfies the
probabilistic formula P>p(Φ1 U Φ2) (or P≥p(Φ1 U Φ2)) if starting from s the probability
of the set of paths (a path is a sequence of states), which is denoted by Ps(Φ1 U Φ2), is
greater than (or greater than or equal to) p. We write true for the formula a ∨ ¬a for
some a ∈ AP . If a state s satisfies a PCTL\X formula, we write s |= Φ.

We define a relation wlive by: (s, s′) ∈ wlive if for all PCTL\X liveness formula Φ it
holds that s |= Φ implies that s′ |= Φ. In Theorem 63 of paper [18] it is shown that
w ⊆ wlive, i.e., s1 w s2 implies that for all liveness PCTL\X formulas Φ, s1 |= Φ implies
that s2 |= Φ.

Now we go back to our example (consider the FPS in Figure 4.17). Consider the
PCTL\X liveness formula: Φ := P>0.5(true U yellow) which states that the probability
of reaching yellow (or grey) states is greater than 0.5. Obviously, the probability of
reaching yellow (or grey) states from s1 is 1, and from s2 is 0.1, thus s1 |= Φ but s2 6|= Φ.
This contradicts the afore-cited theorem.

s1

u1

1
2

w1

1
2

q1

1
8

s3

u3

2
3

w3

1
3

q4

1
8

Figure 4.18: An example.

Example 4.3.6. Consider the FPS depicted in Figure 4.18. We show that s1 w s3. For
this we first show that w1 w s3 and s1 w w3.

For w1 w s3, consider the relation R1 = {(w1, s3), (q1, u3), (w1, w3), (q1, q4)}. For the
pair (w1, s3), we define δ1(q1) = 1 and 0 otherwise, δ2(u3) = 1 and 0 otherwise. The
function ∆ is defined by ∆(q1, u3) = 1 and 0 otherwise. Since w1 w w3, all conditions
of Definition 4.3.3 are satisfied for (w1, s3). It is routine to verify that all conditions of
Definition 4.3.3 are satisfied for other pairs. Thus R1 is a weak simulation.

Similarly, we can show s1 w w3 by showing that the relation R2 = {(s1, w3),
(u1, q4), (w1, w3), (q1, q4)} is a weak simulation. Consider the pair (s1, w3) (other pairs
are simple to treat). The functions δi for (s1, s3) is defined by: δ1(u1) = 1 and 0 oth-
erwise, δ2(q4) = 1 and 0 otherwise. The function ∆ is defined by ∆(u1, q4) = 1 and 0
otherwise. It is routine to verify that all conditions of Definition 4.3.3 are satisfied.

Now to show s1 w s3, we define R = {(s1, s3)} ∪R1 ∪R2. To show that R is a weak
simulation, we need only to consider (s1, s3). We define δ1(u1) = 1 and 0 otherwise,
δ2(u3) = 1 and 0 otherwise. The function ∆ is defined by ∆(u1, u3) = 1 and 0 otherwise.
Again, it is routine to show that all conditions of Definition 4.3.3 are satisfied.

Again, s1 w w3 violates the afore-cited theorem, as the probability of reaching yellow
(or grey) states from s1 is higher than the corresponding probability from s3. The above

50 CHAPTER 4. SIMULATION RELATIONS

example is the same as [18, Example 36]. However, in [18] their analysis flawed: they
show that without splitting of states one cannot establish s1 w s3. The core problem of
their analysis is that they assumed that s1 6w w3 holds which is wrong with respect to
Definition 4.3.3.

The analysis above shows that the definition of weak simulation for FPSs contains
a subtle flaw. It seems that the problem would be that there is no condition on the
probability of the under-specified behaviour of s2: We are allowed to put ⊥ completely
into set V2 (i.e. δ2(⊥) = 0), while the condition 1 does not require anything from ⊥.
Thus, as an ad-hoc fix we could change Condition 1b to: s1 R v2 for all v2 ∈ V2. Since
s 6w ⊥ for all s ∈ S, this implies then δ2(⊥) = 1, i.e., ⊥ will be completely in the set
U2. Now we consider again Example 4.3.5. With this definition, it is easy to see that
s1 6w s2.

s1

u1

0.1

s2

s3

0.5

u2

0.5

Figure 4.19: An FPS showing that our ad-hoc fix does not work.

Unfortunately, the above suggestion is also counterintuitive. Consider the FPS in
Figure 4.19. Obviously, it holds that s1 w s3. Now consider the state s2. With the
unmodified version of weak simulations, it is easy to see that s1 w s2. In the above
modified definition, however, we show that s1 6w s2. As P(s2,⊥) > 0, we must put ⊥
completely into U2, i.e. δ2(⊥) = 1. This implies that K2 > 0, which means there must
exists a function ∆ satisfying Condition 2. However, since no successor state of s2 can
weakly simulate u1, the condition K1∆(u1, U2) = P(s1, u1)δ1(u1) cannot be established,
implying s1 6w s2.

On the other hand, by exploiting structural induction, we can show that s2 satisfies
all PCTL\X liveness formulas satisfied by s1. Assume that Φ is a PCTL\X liveness
formula such that s1 |= Φ. We give the brief proof for s2 |= Φ by structural induction:

• In case that Φ = a, we have that a ∈ L(s1). Since s1 and s2 have the same labelling
(as depicted in Figure 4.19), it holds also that s2 |= a.

• The negation Φ = ¬a is shown as follows: s1 |= Φ implies that a 6∈ L(s1) = L(s2).
Thus s2 |= Φ.

• Assume that Φ = Φ1∧Φ2. Then, s1 |= Φ implies that s1 |= Φ1 and s1 |= Φ2. Since
Φ1 and Φ2 are also liveness formulas, by structural induction it holds that s2 |= Φ1

and s2 |= Φ2 which implies that s2 |= Φ.

• The proof for disjunction follows similarly as for conjunction.

4.4. BIBLIOGRAPHIC NOTES 51

• Assume that Φ = P>p(Φ1 U Φ2). State s1 satisfies Φ implies that the formula
Φ2 must be satisfied by s1 or u1 (otherwise the probability of Ps(Φ1 U Φ2) is 0).
Then, we have that the probability Ps(Φ1 U Φ2) is either 0.1 (in case that s1 does
not satisfy Φ2) or 1 (in case that s1 does satisfy Φ2). In both case we have a higher
probability from s2: 0.25 in the former case and 1 in the later case. Thus s2 also
satisfies Φ. The case Φ = P≥p(Φ1 U Φ2) can be treated similarly.

However, this indicates that wlive 6⊆ w which is counterintuitive: it is usually desired
that the relation induced by the liveness formulas coincides with the weak simulation
relation.

4.4 Bibliographic Notes

Strong bisimulation has been introduced by Larsen and Skou [80] for reactive systems,
i.e., MDPs. Intuitively, two states s and t are bisimilar if they have the same transition
probability of going to an arbitrary equivalence class, with respect to the same action.
Since PAs allow internal nondeterminism, another relaxed version of the relation, called
strong probabilistic bisimulation, is introduced by Segala and Lynch [102]. The basic
idea is the use of combined successor distributions, which is a relaxation of successor
distributions. Strong bisimulation is then introduced for continuous-time models [65,
15, 18, 87]. In a nutshell, two states s and t are strong bisimilar if they have the same
transition rate of going to an arbitrary equivalence class, with respect to the same action
in case of nondeterminism. For most of these models, the notion of weak (probabilistic)
bisimulation relations [103, 92, 12, 65] has also been considered which abstract from
internal computations. We refer the reader to [103] for an extensive comparative study
for discrete-time models [112, 92, 19, 4], especially PAs, MDPs and alternating models.
For models without nondeterminism, i.e., FPSs, DTMCs and CTMCs, we refer to [18].

As for non-probabilistic systems, simulation can be considered as an uni-directional
bisimulation: if t simulates s, then arbitrary successor state of s must be imitated by
some successor state of t. Segala and Lynch [102] have studied strong, strong probabilis-
tic, and weak probabilistic simulation in the context of PAs, in which the correspondence
between successor distributions is established with the concept of weight functions. As
we have already mentioned, weak simulation for Markov chains [18] is introduced in
which states are split into visible and invisible parts, and only visible parts need to be
matched.

Also very closely related is the work by Desharnais et al. [47, 48, 49], in which bisim-
ulation and simulation relations are introduced for labelled Markov processes (LMPs),
which can be considered as MDPs but with continuous state space. Notably, their de-
finition for simulations, provides another (rather intuitive) view of simulations, which
are much closer to the simulation for FPSs. The new definition of strong simulation we
have introduced in this chapter can be considered as an extension of their definition by
dropping some conditions. Please refer to Section 4.5 for an example.

Apart from these relations, most of the other preorders and equivalence relations
defined for non-probabilistic models have been proposed for probabilistic systems in

52 CHAPTER 4. SIMULATION RELATIONS

the literature: such as trace distribution equivalence in [97, 119], testing preorders and
equivalences [80, 34, 99, 38, 118, 81, 33].

4.5 Summary

In this chapter we have recalled strong and weak (bi-)simulation relations for Markov
chains and their nondeterministic extensions. In the definition of strong simulations, the
notion of weight function is used to match the distributions. Inspired by the definition
of strong simulation for LMPs [49], we introduced another equivalence definition for
strong simulations, which provides another (rather intuitive) view of simulations. Our
definition can be considered as a relaxation of their definition: In their definition a
simulation relation R must be a preorder while in our definition this condition is not
imposed. As an example we consider the FPS depicted in Figure 4.9. Example 4.2.1,
we have shown that R = {(s1, s2), (u1, u2), (v1, v2), (q1, q2)} is a strong simulation, which
implies that s1 - s2. This relation is the minimal simulation relation (in respect to the
number of pairs in it) containing (s1, s2). However, following the definition of simulations
as in [49], a preorder is needed which contains more pairs than R, for example all of the
identity relation over S.

Our alternative characterisation makes the simulation relations for Markov chains
more understandable for those who are familiar with labelled transition systems: Our
definition is a natural extension of the simulation relation for LTSs in which also no such
restriction is imposed.

Chapter 5

Algorithms for Strong Simulations

We now come to one of the core contributions of this thesis: algorithms for deciding
strong, strong probabilistic simulations and their experimental evaluation. Our algo-
rithms reduce the theoretical complexity bounds drastically. We also report on experi-
mental comparisons of these algorithms, together with various interesting optimisations
and heuristics to accelerate the algorithm. The evaluation is carried out on both stan-
dard examples as well as randomly generated models.

The common scheme of decision algorithm for simulations is as follows. The algo-
rithm starts with the relation {(s, s′) ∈ S × S | L(s) = L(s′)} which is guaranteed to
be coarser than the simulation preorder -. Then, the relation R will be refined. In
each iteration of the refinement loop, it throws pairs (s, s′) out of the relation if the
corresponding simulation conditions are violated with respect to the current relation. In
the context of labelled transitions systems, this means that s has a successor state t, but
we cannot find a successor state t′ of s′ such that (t, t′) is also in the current relation
R. For DTMCs, this correspondence is formulated by weight functions for distribu-
tions (P(s, ·),P(s′, ·)) with respect to the current relation R. In more detail, assuming
that R is coarser than -, for (s, s′) ∈ R, if there does not exist a weight function for
(P(s, ·),P(s′, ·)) with respect to R, we can conclude that s′ can not strongly simulate s.
If the algorithm reached a fix-point, the strong simulation preorder is obtained.

According to Lemma 4.2.1, checking the weight function reduces to checking whether
the maximum flow over the network (constructed out of (P(s, ·),P(s′, ·)) and the current
relation) has value 1. For a fixed pair (s, s′), we observe that the networks for it across
iterations of the refinement loop are very similar: They differ from iteration to iteration
only by deletion of some edges induced by the successive clean up of R. We exploit this
by adapting the parametric maximum flow algorithm [53] to compute the maximum
flows for the arising sequences of similar networks achieving drastic improvements in
complexity. The algorithm is then extended to deal strong simulation for other models.

The maximum flow approach cannot be applied directly to strong probabilistic sim-
ulations. The reason is that the combined transition involves the quantification of the
constants ranging over reals. We show that the strong probabilistic simulation for PAs
and CPAs can be computed by solving LP problems which are decidable in polynomial
time.

While the new parametric maximum flow based algorithm for deciding strong sim-

53

54 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

ulations has a tremendous drop in theoretical complexity, we are surprised to find that
its practical implementation comes with an overhead that makes it considerably weaker
than expected. The gap between theoretical and practical efficiency is not caused by
”the constant factors” but by the fact that the corner cases that blow up the worst case
complexity are rare in practice.

Organisation of this Chapter. In Section 5.1 we first introduce the notion of strong
simulation up to relation R. In Section 5.2 we present algorithms for deciding the strong
simulation preorder. In Section 5.3 we introduce algorithms for deciding strong prob-
abilistic simulations. Section 5.4 provides experimental results for strong simulations,
and Section 5.5 discusses related works. We conclude this chapter with a summary in
Section 5.6.

5.1 Strong Simulation up to R

Strong simulation up to R is the key component of the decision algorithm: In each
refinement loop of the simulation algorithm, it is checked for each pair (s, s′) ∈ R
whether s′ can simulates s up to the current relation R. It can be considered as a
relaxation of the simulation condition:

Definition 5.1.1. Let M = (S,P, L) be an FPS. For an arbitrary relation R ⊆ S × S
with s1 R s2, we say that s2 simulates s1 strongly up to R, denoted s1 -R s2, if L(s1) =
L(s2) and P(s1, ·) ⊑R P(s2, ·).

Obviously s1 -R s2 does not imply s1 -M s2 unless R is a strong simulation, since
only the first step is considered for -R. By definition, the following lemma is obvious:

Lemma 5.1.1. Let R ⊆ S × S. Then, R is a strong simulation if and only if for all
s1Rs2 it holds that s1 -R s2.

Example 5.1.1. Consider the FPS in Figure 5.1. Let R = {(s1, s2), (w1, w2)}. Since
L(q1) 6= L(q2) we have that w1 6- w2. Thus, R is not a strong simulation. However,
s1 -R s2, as the weight function is given by ∆(w1, w2) = 1. Let R′ = {(s1, s2)}, then,
s1 6-R′ s2.

s1 w1
1

q1
1

s2 w2
1

q2
1

Figure 5.1: A simple FPS for illustrating the simulation up to R.

These conventions extend to strong simulation up to R for DTMCs, CTMCs, PAs
and CPAs in an obvious way. For PAs and CPAs, strong probabilistic simulation up to
R, denoted by -p

R, is also defined analogously.

5.2. STRONG SIMULATION 55

Algorithm 2 Basic algorithm to decide strong simulation.

SimRels(M)

2.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2)} and i← 0
2.2: repeat
2.3: i← i + 1
2.4: Ri+1 ← ∅
2.5: for all (s1, s2) ∈ Ri do
2.6: if s1 -Ri

s2 then
2.7: Ri+1 ← Ri+1 ∪ {(s1, s2)}
2.8: until Ri+1 = Ri

2.9: return Ri

5.2 Strong Simulation

We first recall the basic algorithm to decide strong simulation preorder (i. e., the relation
-) in Subsection 5.2.1. Then, we refine this algorithm to deal with strong simulations
on FPSs, DTMCs and CTMCs in Subsection 5.2.2. In Subsection 5.2.3, we consider PAs
and CPAs.

5.2.1 Basic Algorithm to Decide Strong Simulation

The algorithm in [9], copied as SimRels in Algorithm 2, takes as a parameter a model,
which, for now, is an FPS M. The subscript ‘s’ stands for strong simulation; a very
similar algorithm, namely SimRelw, will be used for weak simulation later. To calculate
the strong simulation relation forM, the algorithm starts with the initial relation R1 =
{(s1, s2) ∈ S × S | L(s1) = L(s2)} which is coarser than -M. In iteration i, it generates
Ri+1 from Ri by deleting each pair (s1, s2) from Ri if s2 cannot strongly simulate s1 up
to Ri, i. e., s1 6-Ri

s2. This proceeds until there is no such pair left, i. e., Ri+1 = Ri.
Invariantly throughout the loop it holds that Ri is coarser than -M (i. e., -M is a sub-
relation of Ri). We obtain the strong simulation preorder -M = Ri, once the algorithm
terminates.

The decisive part of the algorithm is the check in line 2.6, i. e., whether s1 -Ri

s2. From the first and second clauses of Lemma 4.2.1, it is equivalent to compute the
maximum flow of the network N (P(s1, ·), P(s2, ·), Ri) and check whether it has value 1.
Recall this network is constructed (see Section 4.2) out of P(s1, ·), P(s2, ·) and Ri. For
two states s1, s2 of an FPS or a CTMC and a relation R ⊆ S × S, we let N (s1, s2, R)
denote the network N (P(s1, ·),P(s2, ·), R) as defined in Subsection 4.2.1. We recall the
correctness and complexity of SimRels which will also be used later.

Theorem 5.2.1 ([9]). Let M = (S,P, L) be an FPS and let n denote the number
of states. If SimRels(M) terminates, the returned relation equals -M. Moreover,
SimRels(M) runs in time O(n7/ log n) and in space O(n2).

Proof. First we show that after the last iteration (say iteration k), it holds that - is
coarser than Rk: It holds that Rk+1 = Rk, thus for all (s1, s2) ∈ Rk, we have that

56 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

s1 -Rk
s2. As for all (s1, s2) ∈ Rk ⊆ R1, we have L(s1) = L(s2), Rk is a strong

simulation relation by Definition 4.1.2, thus - is coarser than Rk.

Now we show by induction that the loop of the algorithm invariantly ensures that
Ri is coarser than -. Assume i = 1. By definition of strong simulation, s1 - s2 implies
L(s1) = L(s2). Thus, the initial relation R1 is coarser than the simulation relation -.
Now assume that Ri is coarser than - for some 1 ≤ i < k; we will show that also Ri+1

is coarser than -. Pick a pair (s1, s2) ∈ - arbitrarily. By Definition 4.1.2, P(s1, ·) ⊑-

P(s2, ·), so there exists a weight function for (P(s1, ·),P(s2, ·)) with respect to -. As
Ri is coarser than - by induction hypothesis, we conclude that P(s1, ·) ⊑Ri

P(s2, ·)
according to Lemma 4.1.2. By Lemma 5.1.1, s1 -Ri

s2. This implies that (s1, s2) ∈ Ri+1

by line 2.6 for all s1 - s2. Therefore, Ri+1 is coarser than - for all i = 1 . . . , k.

Now we show the complexity. For one network N (s1, s2, Ri) = (V, E, c), the sizes
of the vertices |V | and edges |E| are bounded by 2n + 4 and (n + 1)2 + 2n, respec-
tively. The number of edges meets the worst case bound O(n2). To the best of our
knowledge, the best complexity of the maximum flow computation for the network G is
O(|V |3 / log |V |) = O(n3/ log n) [31, 55].

In the algorithm SimRels, only one pair, in the worst case, is removed from Ri in
iteration i, which indicates that the test whether s1 -Ri

s2 is called |R1| times, |R1| − 1

times and so on. Altogether it is bounded by
∑|R1|

i=1 i ≤
∑n2

i=1 i ∈ O(n4). Hence, the
overall time complexity is O(n7/ log n). The space complexity is O(n2) because of the
representation of the transitions in N (s1, s2, Ri). �

5.2.2 An Improved Algorithm for FPSs

We first analyse the behaviour of SimRels in more detail. For this, we consider an
arbitrary pair (s1, s2), and assume that (s1, s2) stays in relation R1, . . . , Rk throughout
the iterations i = 1, . . . , k, until the pair is either found not to satisfy s1 -Rk

s2 or
the algorithm terminates with a fix-point after iteration k. Then altogether the maxi-
mum flow algorithms are run k-times for this pair. However, the networks N (s1, s2, Ri)
constructed in successive iterations are very similar, and may often be identical across
iterations: They differ from iteration to iteration only by deletion of some edges induced
by the successive cleanup of Ri. For our particular pair (s1, s2) the network might not
change at all in some iterations, because the deletions from Ri do not affect their direct
successors. We are going to exploit this observation by an algorithm that reuses the al-
ready computed maximum flow, in a way that whatever happens is good: If no changes
occur from N (s1, s2, Ri−1) to N (s1, s2, Ri), then the maximum flow is the same as the
one in the previous iteration. If changes do occur, the preflow algorithm can be applied
to get the new maximum flow very fast, using the maximum flow and distance function
constructed in the previous iteration as a starting point.

To understand the algorithm, we look at the network N (s1, s2, R1). Let D1, . . . , Dk

be pairwise disjoint subsets of R1, which correspond to the pairs deleted from R1 in
iteration i, so Ri+1 = Ri \ Di for 1 ≤ i ≤ k. Let f

(s1,s2)
i denote the maximum flow of

the network N (s1, s2, Ri) for 1 ≤ i ≤ k. We sometimes omit the superscript (s1, s2) in
the parameters if the pair (s1, s2) is clear from the context. We address the problem
of checking |fi| = 1 for all i = 1, . . . , k. Our algorithm sequence of maximum flows

5.2. STRONG SIMULATION 57

Algorithm 3 Algorithm for a sequence of maximum flows.

Smf(i,N (s1, s2, Ri−1), fi−1, di−1, Di−1)

3.1: N (s1, s2, Ri)← N (s1, s2, Ri−1 \Di−1) and fi ← fi−1 and di ← di−1

3.2: for all (u1, u2) ∈ Di−1 do
3.3: fi(u2, %)← fi(u2, %)− fi(u1, u2)
3.4: fi(u1, u2)← 0
3.5: Apply the preflow algorithm to calculate the maximum flow for the network
N (s1, s2, Ri), but initialise the preflow to fi and the distance function to di.

3.6: return (|fi| = 1,N (s1, s2, Ri), fi, di)

Smfinit(i, s1, s2, Ri)

3.11: Initialise the network N (s1, s2, Ri).
3.12: Apply the preflow algorithm to calculate the maximum flow for the network

N (s1, s2, Ri).
3.13: return (|fi| = 1,N (s1, s2, Ri), fi, di)

Smf(i,N (s1, s2, Ri−1), fi−1, di−1, Di−1) is shown as Algorithm 3. It executes iteration i
of a parametric flow algorithm, where N (s1, s2, Ri−1) is the network for (s1, s2) and fi−1

and di−1 are the flow and the distance function resulting from the previous iteration
i − 1; and Di−1 is a set of edges that have to be deleted from N (s1, s2, Ri−1) to get
the current network. The algorithm returns a tuple, in which the first component is a
boolean that tells whether |fi| = 1; it also returns the new network N (s1, s2, Ri), flow
fi and distance function di to be reused in the next iteration. Smf is inspired by the
parametric maximum algorithm in [53, p. 34]. A variant of Smf is used in the first
iteration, shown in lines 3.11–3.13.

This algorithm for sequence of maximum flow problems is called in an improved
version of SimRels shown as Algorithm 4. Lines 4.2–4.7 contain the first iteration, very
similar to the first iteration of Algorithm 2 (lines 2.4–2.7). At line 4.4 we prepare for
later iterations the set

Listener(s1,s2) = {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)} ,

where pre(s) = {t ∈ S | P(t, s) > 0}. This set contains all pairs (u1, u2) such that
the network N (u1, u2, R1) contains the edge (s1, s2). Iteration i (for i > 1) of the loop
(lines 4.10–4.18) calculates Ri+1 from Ri. In lines 4.11–4.14, we collect edges that should

be removed from N (u1, u2, Ri−1) in the sets D
(u1,u2)
i−1 . At line 4.16, the algorithm Smf

constructs the maximum flow for parameters using information from iteration i− 1. It
uses the set D

(s1,s2)
i−1 to update the network N (s1, s2, Ri−1), flow fi−1, a distance function

di−1; then it constructs the maximum flow fi for the network N (s1, s2, Ri). If Smf

returns true, (s1, s2) is inserted into Ri+1 and survives this iteration (line 4.18).

Consider the algorithm Smf and assume that i > 1. At lines 3.1–3.4, we remove the
edges Di−1 from the network N (s1, s2, Ri−1) and generate the preflow fi based on the

58 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

Algorithm 4 Improved algorithm for deciding strong simulation for FPSs.

SimRelFPS
s (M)

4.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2)} and i← 1
4.2: R2 ← ∅
4.3: for all (s1, s2) ∈ R1 do
4.4: Listener(s1,s2)

← {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}

4.5: (match,N (s1, s2, R1), f
(s1,s2)
1 , d

(s1,s2)
1)← Smfinit(1, s1, s2, R1)

4.6: if match then
4.7: R2 ← R2 ∪ {(s1, s2)}
4.8: while Ri+1 6= Ri do
4.9: i← i + 1

4.10: Ri+1 ← ∅ and Di−1 ← Ri−1 \Ri

4.11: for all (s1, s2) ∈ Ri do

4.12: D
(s1,s2)
i−1 ← ∅

4.13: for all (s1, s2) ∈ Di−1, (u1, u2) ∈ Listener(s1,s2) ∩Ri−1 do

4.14: D
(u1,u2)
i−1 ← D

(u1,u2)
i−1 ∪ {(s1, s2)}

4.15: for all (s1, s2) ∈ Ri do

4.16: (match,N (s1, s2, Ri), f
(s1,s2)
i , d

(s1,s2)
i)

← Smf(i,N (s1, s2, Ri−1), f
(s1,s2)
i−1 , d

(s1,s2)
i−1 , D

(s1,s2)
i−1)

4.17: if match then
4.18: Ri+1 ← Ri+1 ∪ {(s1, s2)}
4.19: return Ri

5.2. STRONG SIMULATION 59

flow fi−1, which is the maximum flow of the network N (s1, s2, Ri−1), by

• setting fi(u1, u2) = 0 for all deleted edges (u1, u2) ∈ Di−1, and

• reducing fi(u2, %) such that the preflow fi becomes consistent with the (relaxed)
flow conservation rule.

The excess e(v) is increased if there exists (v, w) ∈ Di−1 such that fi−1(v, w) > 0,
and unchanged otherwise. Hence, fi after line 3.4 is a preflow. The distance function
di−1 = di is still valid for this preflow, since removing the set of edges Di−1 does not
introduce new residual edges. This guarantees that, at line 3.5, the preflow algorithm
finds a maximum flow over the network N (s1, s2, Ri). In line 3.6, Smf returns whether
the flow has value 1 together with information to be reused in the next iteration. (If
|fk| < 1 at some iteration k, then |fj | < 1 for all iterations j ≥ k because deleting edges
does not increase the maximum flow. In that case, it would be sufficient to return false.)
We prove the correctness and complexity of the algorithm Smf:

Lemma 5.2.2 (Correctness of Smf). Let (s1, s2) ∈ R1. Then, Smfinit returns true iff
s1 -R1

s2.

For some i > 1, let N (s1, s2, Ri−1), fi−1, and di−1 be as returned by some earlier call
to Smf or Smfinit . Let Di−1 = (Ri−1 \Ri)∩ (post(s1)×post(s2)) be the set of edges that
will be removed from the network N (s1, s2, Ri−1) during the (i−1)th call of Smf. Then,
the (i− 1)th call of Smf returns true iff s1 -Ri

s2.

Proof. By Lemma 4.2.1, Smfinit returns true iff |f1| = 1, which is equivalent to s1 -R1
s2.

Let i > 1. As discussed, at the beginning of line 3.5, the function fi−1 is a flow (thus
a preflow) with value 1, and the distance function di−1 is a valid distance function. It
follows directly from the correctness of the preflow algorithm [3] (cf. Lemma 3.3.1 in
Chapter 3) that after line 3.5, fi is a maximum flow for N (s1, s2, Ri). Thus, Smf returns
true (i.e. |fi| = 1) which is equivalent to s1 -Ri

s2. �

Lemma 5.2.3 (Complexity of Smf). Consider the pair of states (s1, s2) and assume that
|post(s1)| ≤ |post(s2)|. All calls to Smf(i,N (s1, s2, ·), · · ·) related to (s1, s2) together run
in time O(|post(s1)| |post(s2)|

2).

Proof. In the bipartite network N (s1, s2, R1), V is partitioned into subsets V1 with
% ∈ V1 and V2 with 1 ∈ V2 as defined in Subsection 4.2.1. The number of edges of the
network is at most |E| ≤ |V1||V2| − 1. Assume that |Vi| = |post(si)|+ 1 for i = 1, 2, thus
|V1| ≤ |V2|. In our sequence of maximum flow problems, the number of calls, denoted
by k, is bounded by the number of edges, i.e., k ≤ |V1||V2| − 1. We split the work being
done by all calls to Smf(i,N (s1, s2, ·), . . .) into time spend for edge deletions, relabels,
non-saturating pushes, saturating pushes.

All edge deletions take time proportional to
∑k

i=1 |Di|, which is less than the number
of edges in the network. Therefore, edge deletions take time O(|V1||V2|). For all v ∈ V ,
it holds that di+1(v) = di(v), i.e., the labelling function at the beginning of iteration i+1
is the same as the labelling function at the end of iteration i. Since di(v) is bounded by
4|V1| for all iterations i, using exact the same argument as for a single maximum flow

60 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

calculation (cf. the proof of Lemma 3.3.4), we see that the time spent for relabels and
saturating pushes is bounded by O(|V1||E|).

We briefly recall the analysis of the number of non-saturating pushes, which is very
similar to the proof of Theorem 2.2 in [60] where Max-d version is used (cf. Section 3.3).
As in [60], assume that in iteration l ≤ k of Smf, the last relabelling action occurs.
By Lemma 3.3.4, the number of relabels is bounded by O(|V1||V |). Between any two
relabelling actions, at most |V | non-saturating pushes can occur for the same reason as
for a single preflow algorithm (cf. Lemma 3.3.5). Thus, the number of non-saturating
pushes before the iteration l is bounded by O(|V1||V |2). Since the distance function does
not change after iteration l any more, inside any of the iterations l′ ≥ l, there are again
at most n − 1 non-saturating pushes. Hence, the number of non-saturating pushes is
bounded by |V1||V |2+(k+1−l)(|V |−1) ∈ O(|V1||V |2+k|V |). Since k ≤ |V1||V2|−1, and
|V | ≤ 2|V2|, thus, the overall time complexity is O(|V1||V2|2) = O(|post(s1)| |post(s2)|

2)
as required. �

Now we give the correctness and complexity of the algorithm SimRel for FPSs:

Theorem 5.2.4 (Correctness for FPSs). If SimRelFPS
s (M) terminates, the returned

relation equals -M.

Proof. By Lemma 5.2.2, Smfinit(i, s1, s2, R1) returns true in iteration i = 1 iff s1 -R1
s2;

and Smf(i,N (s1, s2, Ri−1), . . .) returns true in iteration i > 1 iff s1 -Ri
s2. The rest of

the correctness proof is the same as the proof of Theorem 5.2.1. �

Theorem 5.2.5 (Complexity for FPSs). The algorithm SimRelFPS
s (M) runs in time

O(m2n) and in space O(m2). If the fanout is bounded by a constant, it has complexity
O(n2), both in time and space.

Proof. We first show the space complexity. In most cases, it is enough to store infor-
mation from the previous iteration until the corresponding structure for the current
iteration is calculated. Obviously, the size of the set Listener(s1,s2) is bounded by
|pre(s1)| |pre(s2)| where pre(s) = {t ∈ S | P(t, s) > 0}. Summing over all (s1, s2), we
get

∑

s1∈S

∑

s2∈S

|pre(s1)| |pre(s2)| =
∑

s1∈S

|pre(s1)|
∑

s2∈S

|pre(s2)| = m2

Assume we run iteration i. For every pair (s1, s2), we generate the set D
(s1,s2)
i−1 and

the network N (s1, s2, Ri) together with fi and di. The size of D
(s1,s2)
i−1 is bounded

by |post(s1)| |post(s2)|. Summing over all (s1, s2), we get the bound O(m2). The
number of edges of the initial network N (s1, s2, R1) (together with fi and di) is in
O(|post(s1)| |post(s2)|). Summing over all (s1, s2) yields a memory consumption in
O(m2) again. Hence, the overall space complexity is O(m2).

Now we show the time complexity. We observe that a pair (s1, s2) belongs to Di

in at most one iteration. Therefore, the time needed in lines 4.11–4.14 in all iterations
together is bounded by the size of all sets Listener(s1,s2), which is O(m2). We analyse
the time needed for all calls to the algorithm Smf. Recall that the fanout g equals

5.2. STRONG SIMULATION 61

s1

u1

1
2

v1

1
2

q1

1
8

s2

u2

1
2

v2

1
2

q2

1
8

q3

3
4

s3

u3

2
3

v3

1
3

q4

1
8

q5

7
8

Figure 5.2: A simple FPS.

maxs∈S |post(s)|, and therefore |post(si)| ≤ g for i = 1, 2. By Lemma 5.2.3, the com-
plexity attributed to the pair (s1, s2) is bounded by O(g |post(s1)| |post(s2)|). Taking
the sum over all possible pairs, we get

∑

s1∈S

∑

s2∈S

g |post(s1)| |post(s2)| = g
∑

s1∈S

|post(s1)|
∑

s2∈S

|post(s2)| = gm2

Hence, the overall time complexity is gm2 ∈ O(m2n). If g is bounded by a constant, we
have m ≤ gn, and the time complexity is gm2 ≤ g3n2 ∈ O(n2). In this case the space
complexity is also O(n2). �

Example 5.2.1. Consider the FPS in Figure 5.2. Initially, R1 contains 76 pairs. Since
the absorbing states simulate each other trivially, the interesting part is the pairs con-
sisting of si, vj for i, j ∈ {1, 2, 3}.

Firstly, we discuss which pairs will be removed from R1 in the first iteration. We
consider three groups. The first group is the pairs (v2, v1) and (v3, v1). The network for
(v2, v1) is depicted on the left side of Figure 5.3. Obviously, the maximum flow has value
1
4
, since we cannot send any flow through q3 which cannot be simulated by any successor

state of v1. Thus, this pair will be moved in the first iteration. Very similar the pair
(v3, v1) will also be moved in the first iteration. The second group is the pairs (s1, s3),
(s3, s1), (s2, s3), (s3, s2). The networks for pairs (s1, s3) and (s2, s3) are the same except
the nodes labelling, and for (s3, s1) and (s3, s2) are the same. For each of these four
networks, it is easy to see that the maximum flow has value 1

2
+ 1

3
= 5

6
, thus they can be

removed from the relation in the first iteration. Consider the last group: pairs (si, vj)
with i, j ∈ {1, 2, 3}, and pairs (vj, si) with j ∈ {2, 3} and i ∈ {1, 2, 3}. The network for
each of these pair can be constructed, and the maximum flow of it has always smaller
value than one because of similar reason as for the first group: there exists a vertex on
the left side where we cannot send any flow through it.

As a successful check we consider the pair (s2, s1). The network is depicted on the
right side of Figure 5.3. Obviously, the maximum flow has value 1: 1

2
amount of flow

along the upper path and 1
2

amount of flow along the lower path. Thus, s2 -R1
s1.

The checks for the pairs (s2, s1), (v1, v2), (v2, v3) and (v1, si) with i ∈ {1, 2, 3} are also
successful.

62 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

q2

q3

q1

⊥ ⊥

1 %

1
8

1
8

3
4

1
8

7
8

u2 u1

v2 v1

1 %

1
2

1
2

1
2

1
2

Figure 5.3: The networks for the pair (v2, v1) on the left, and for the pair (s2, s1).

s1

u1

1

u2

1

q1

2

s2

u3

2

q2

3

u4

2

q3

2

x1

3

Figure 5.4: A CTMC example.

Let R2 denote the remaining pairs, and we consider the second iteration. For all pairs
in R2, only the network for the pair (s2, s1) is changed: since (s2, s1) ∈ Listener(v2,v1),
the network N (s2, s1, R2) is obtained by removing the edge (v2, v1). After removing the
edge, the node v2 has excess 1

2
. However, there is no way to push the excess further.

Thus, the maximum flow is smaller than 1, and we have that s2 6-R2
s1.

In the third iteration no pairs will be removed from it, thus we get the simulation
preorder for this FPS.

Algorithms for DTMCs and CTMCs

We now consider how to handle DTMCs and CTMCs. Since each DTMC is a special
case of an FPS the algorithm SimRelFPS

s applies directly.

Let M = (S,R, L) be a CTMC. Recall that s -M s′ holds if s -emb(M) s′ in the
embedded DTMC, and s′ is faster than s. We can ensure the additional rate condition
by incorporating it into the initial relation R. More precisely, initially R contains only
those pair (s, s′) such that L(s) = L(s′), and that the state s′ is faster than s, i. e., we
replace line 4.1 of the algorithm by

R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧R(s1, S) ≤ R(s2, S)}

to ensure the additional rate condition of Definition 4.1.3. In the refinement steps
afterwards, only the weight function conditions need to be checked with respect to the
current relation in the embedded DTMC. Thus, we arrive at an algorithm for CTMCs
with the same time and space complexity as for FPSs.

Example 5.2.2. Consider the CTMC in Figure 5.4. Consider the pair (s1, s2) ∈ R1.

5.2. STRONG SIMULATION 63

u1

u2

u3

u4

1 %

1
2

1
2

1
2

1
2

Figure 5.5: The network N (s1, s2, R1).

The network N (s1, s2, R1) is depicted in Figure 5.5. Assume that we get the maximum
flow f1 which sends 1

2
amount of flow along the path 1, u2, u4, % and 1

2
amount of flow

along 1, u1, u3, %. Hence, the check for (s1, s2) is successful in the first iteration. The
checks for the pairs (u1, u3), (u1, u4) and (u2, u3) are also successful in the first iteration.
However, the check for the pair (u2, u4) fails, as the probability to go from u4 to q3 in
the embedded DTMC is 2

5
, while the probability to go from u2 to q1 in the embedded

DTMC is 1.

In the second iteration, N (s1, s2, R2) is obtained from N (s1, s2, R1) by deleting the
edge (u2, u4). In N (s1, s2, R2), the flows on (u2, u4) and on (u4, %) are set to 0, and the
vertex u2 has a positive excess 1

2
. Applying the preflow algorithm, we push the excess

from u2, along u3, u1, u4 to %. We get a maximum flow f2 for N (s1, s2, R2) which sends
1
2

amount of flow along the path 1, u2, u3, % and 1
2

amount of flow along 1, u1, u4, %.
Hence, the check for (s1, s2) is also successful in the second iteration. Once the fix-point
is reached, R still contains (s1, s2).

Discussions

In this section we have introduced parametric maximum flow based algorithm for de-
ciding strong simulation for FPSs which is then extended for DTMCs and CTMCs.
Lemmas 4.1.6 and 4.1.7 show that, for these Markov models, the simulation equivalence
is the same as the bisimulation relation. Thus, we can first compute the bisimulation
equivalence relation, build the quotient1 automaton, then compute the simulation pre-
order in the quotient automaton. This has time complexity O(m log n+m2

∼n∼) where n∼

and m∼ are the number of states and transitions in the bisimulation quotient automaton
respectively. This can accelerate the algorithm a lot if the bisimulation quotient is much
smaller than the original one. However, in the worst case the complexity remains the
same O(m2n).

5.2.3 Algorithms for PAs and CPAs

In this subsection we present algorithms for deciding strong simulations for PAs and
CPAs. It takes the skeleton of the algorithm for FPSs: it starts with a relation R which
is coarser than -, and then refines R until - is achieved. In the refinement loop, a

1The definition of quotient automata for PAs shall be defined in Chapter 7. Then, the notion of
quotient automata for FPSs can be considered as a special case of it.

64 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

pair (s, s′) is thrown out of the pair if the corresponding strong simulation conditions
are violated with respect to the current relation. For PAs, this means that there exists
an α-successor distribution µ of s, such that for all α-successor distribution µ′ of s′, we
cannot find a weight function for (µ, µ′) with respect to the current relation R.

Let M = (S, Act,P, L) be a PA. We aim to extend Algorithm 4 to determine the
strong simulation on PAs. For a pair (s1, s2), assume that L(s1) = L(s2) and that
Act(s1) ⊆ Act(s2), which is guaranteed by the initialisation. We consider line 4.17,
which checks the condition P(s1, ·) ⊑Ri

P(s2, ·) using Smf. By Definition 4.1.4 of strong
simulation for PAs, we should instead check the condition

∀α ∈ Act . ∀s1
α
−→ µ1. ∃s2

α
−→ µ2 with µ1 ⊑Ri

µ2 . (5.1)

Recall the condition µ1 ⊑Ri
µ2 holds iff the maximum flow of N (µ1, µ2, Ri) has value

one. Sometimes, we write N (s1, α, µ1, s2, µ2, Ri) to denote the network N (µ1, µ2, Ri)
associated with the pair (s1, s2) with respect to action α.

Our first goal is to extend Smf to check Condition 5.1 for a fixed action α and
α-successor distribution µ1 of s1. To this end, we introduce a list Sim(s1,α,µ1,s2) that
contains all potential candidates of α-successor distributions of s2 which could be used
to establish the condition µ1 ⊑R µ2 for the relation R considered. The set Sim(s1,α,µ1,s2)

is represented as a list. This and some subsequent notations are similar to those used
by Baier et al. in [9]. We use the function head(·) to read the first element of a list;
tail(·) to read all but the first element of a list; and empty(·) to check whether a list is
empty. As long as the network for a fixed candidate µ2 = head(Sim(s1,α,µ1,s2)) allows a
flow of value 1 over the iterations, we stick to it, and we can reuse the flow and distance
function from previous iterations. If by deleting some edges from N (µ1, µ2, R), its flow
value falls below 1, we delete µ2 from Sim(s1,α,µ1,s2) and pick the next candidate.

The algorithm ActSmf, shown as Algorithm 5, implements this. It has to be called
for each pair (s1, s2) and each successor distribution s1

α
−→ µ1 of s1. It takes as input the

list of remaining candidates Sim
(s1,α,µ1,s2)
i−1 , the information from the previous iteration

(the network N (µ1, µ2, Ri−1), flow fi−1, and distance function di−1), and the set of edges
that have to be deleted from the old network Di−1.

Lemma 5.2.6. Let (s1, s2) ∈ R1, α ∈ Act(s1), and µ1 such that s1
α
−→ µ1. Let Sim1 =

Stepsα(s2). Then ActSmfinit returns true iff ∃µ2 with s2
α
−→ µ2 ∧ µ1 ⊑R1

µ2.

For some i > 1, let Simi−1, N (µ1, µ2, Ri−1), fi−1 and di−1 be as returned by some
earlier call to ActSmf or ActSmfinit . Let Di−1 = (Ri−1 \Ri)∩ (Supp(µ1)×Supp(µ2))
be the set of edges that will be removed from the network during the (i − 1)th call of
ActSmf. Then, the (i−1)th call of algorithm ActSmf returns true iff: ∃µ2 with s2

α
−→

µ2 ∧ µ1 ⊑Ri
µ2.

Proof. Once Smf returns false because the maximum flow for the current candidate µ2

has value < 1, it will never become a candidate again, as edge deletions cannot lead to
increased flow. The correctness proof is then the same as the proof of Lemma 5.2.2. �

The algorithm SimRelPA
s for deciding strong simulation for PAs is presented as

Algorithm 6. During the initialisation (lines 6.1–6.6, intermixed with iteration 1 in

5.2. STRONG SIMULATION 65

Algorithm 5 Subroutine to calculate whether s1 -Ri
s2, as far as s1

α
−→ µ1 is concerned.

The parameter Sim denotes the subsets of α-successor distributions of s2 serving as
candidates for possible µ2.

ActSmf(i, Simi−1,N (µ1, µ2, Ri−1), fi−1, di−1, Di−1)

5.1: Simi ← Simi−1

5.2: (match,N (µ1, µ2, Ri), fi, di)← Smf(i,N (µ1, µ2, Ri−1), fi−1, di−1, Di−1)
5.3: if match then
5.4: return (true, Simi,N (µ1, µ2, Ri), fi, di)
5.5: Simi ← tail(Simi)
5.6: while ¬empty(Simi) do
5.7: µ2 ← head(Simi)
5.8: (match,N (µ1, µ2, Ri), fi, di)← Smfinit(i, µ1, µ2, Ri)
5.9: if match then

5.10: return (true, Simi,N (µ1, µ2, Ri), fi, di)
5.11: Simi ← tail(Simi)
5.12: return (false, ∅,NIL,NIL,NIL)

ActSmfinit(i, µ1, Simi, Ri)

goto line 5.6

lines 6.7–6.9), for (s1, s2) ∈ R1 and s1
α
−→ µ1, the list Sim

(s1,α,µ1,s2)
1 is initialised to

Stepsα(s2) (line 6.6), as no α-successor distribution can be excluded as a candidate a
priori. As in SimRelFPS

s , the set Listener(s1,s2) for (s1, s2) is introduced which contains
tuples (u1, α, µ1, u2, µ2) such that the network N (u1, α, µ1, u2, µ2, R1) contains the edge
(s1, s2).

The main iteration of the algorithm starts with generating D
(u1,α,µ1,u2,µ2)
i−1 in lines 6.13–

6.17 in a similar way as SimRelFPS
s . Lines 6.19–6.22 check Condition 5.1 by calling

ActSmf for each action α and each α-successor distribution µ1 of s1. The condition is
true if and only if matchα,µ1

is true for all α ∈ Act(s1) and µ1 ∈ Stepsα(s1). In this case
we insert the pair (s1, s2) into Ri+1 (line 6.22). We give the correctness of the algorithm:

Theorem 5.2.7 (Correctness for PAs). When SimRelPA
s (M) terminates, the returned

relation equals -M.

Proof. The proof follows the same lines as the proof of the correctness of the algorithm
SimRelFPS

s in Theorem 5.2.4. The only new element is that we now have to quantify over
the actions and successor distributions as prescribed by Definition 4.1.4. This translates
to a conjunction in lines 6.8 and 6.21 of the algorithm. Exploiting Lemma 5.2.6 we get
the correctness. �

Now we give the complexity of the algorithm:

66 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

Algorithm 6 Algorithm for deciding strong simulation for PAs, where arc denotes the
associated parameter (s1, α, µ1, s2, µ2).

SimRelPA
s (M)

6.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 1
6.2: R2 ← ∅
6.3: for all (s1, s2) ∈ R1 do
6.4: Listener(s1,s2) ← {(u1, α, µ1, u2, µ2) | L(u1) = L(u2) ∧ u1

α
−→ µ1 ∧ u2

α
−→ µ2 ∧

µ1(s1) > 0 ∧ µ2(s2) > 0}
6.5: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do

6.6: Sim
(s1,α,µ1,s2)
1 ← Stepsα(s2)

6.7: (matchα,µ1
, Sim

(s1,α,µ1,s2)
1 ,N (s1, α, µ1, s2, µ2, R1), f

arc
1 , darc

1)

← ActSmfinit(1, µ1, Sim
(s1,α,µ1,s2)
1 , R1)

6.8: if
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1) matchα,µ1
then

6.9: R2 ← R2 ∪ {(s1, s2)}
6.10: while Ri+1 6= Ri do
6.11: i← i + 1
6.12: Ri+1 ← ∅ and Di−1 ← Ri−1 \Ri

6.13: for all (s1, s2) ∈ R, α ∈ Act(s1), µ1 ∈ Stepsα(s1), µ2 ∈ Stepsα(s2) do

6.14: D
(s1,α,µ1,s2,µ2)
i−1 ← ∅

6.15: for all (s1, s2) ∈ Di−1, (u1, α, µ1, u2, µ2) ∈ Listener(s1,s2) do
6.16: if (u1, u2) ∈ Ri−1 then

6.17: D
(u1,α,µ1,u2,µ2)
i−1 ← D

(u1,α,µ1,u2,µ2)
i−1 ∪ {(s1, s2)}

6.18: for all (s1, s2) ∈ R do
6.19: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do

6.20: (matchα,µ1
, Sim

(s1,α,µ1,s2)
i ,N (s1, α, µ1, s2, µ2, Ri), f

arc
i , darc

i)

← ActSmf(i, Sim
(s1,α,µ1,s2)
i−1 ,N (s1, α, µ1, s2, µ2, Ri−1),

farc
i−1, d

arc
i−1, D

arc
i−1)

6.21: if
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1)
matchα,µ1

then

6.22: Ri+1 ← Ri+1 ∪ {(s1, s2)}
6.23: return Ri

5.2. STRONG SIMULATION 67

Theorem 5.2.8 (Complexity for PAs). The algorithm SimRelPA
s (M) runs in time

O(m2n) and in space O(m2). If the fanout of M is bounded by a constant, it has
complexity O(n2), both in time and space.

Proof. We first consider the space complexity. In the algorithm, we save the sets
D

(s1,α,µ1,s2,µ2)
i , the networks N (s1, α, µ1, s2, µ2, Ri) which are updated in every iteration,

the sets Listener(s1,s2) and the sets Sim
(s1,α,µ1,s2)
i . The size of the set D

(s1,α,µ1,s2,µ2)
i is in

O(|µ1| |µ2|), which is the maximal number of edges of N (s1, α, µ1, s2, µ2, Ri). Summing
over all (s1, α, µ1, s2, µ2), we get

∑

s1∈S

∑

α∈Act(s1)

∑

µ1∈Stepsα(s1)

∑

s2∈S

∑

µ2∈Stepsα(s2)

|µ1| |µ2|

≤
∑

α∈Act





∑

s1∈S

∑

µ1∈Stepsα(s1)

|µ1|









∑

s2∈S

∑

µ2∈Stepsα(s2)

|µ2|



 ≤ m2 (5.2)

Similarly, the memory needed for saving the networks has the same bound O(m2). Now
we consider the set Listener(s1,s2) for the pair (s1, s2) ∈ R1. Recall that Listener(s1,s2)

equals:

{(u1, α, µ1, u2, µ2) | L(u1) = L(u2) ∧ u1
α
−→ µ1 ∧ u2

α
−→ µ2

∧ µ1(s1) > 0 ∧ µ2(s2) > 0}

Let (u1, α, µ1, u2, µ2) ∈ Listener(s1,s2). Then, it holds that s1 ∈ Supp(µ1) and s2 ∈
Supp(µ2). Hence, the tuple (u1, α, µ1, u2, µ2) can be an element of Listener(s1,s2) of some
arbitrary pair (s1, s2) at most |µ1| |µ2| times, which corresponds to the maximal number
of edges between the set of nodes Supp(µ1) and Supp(µ2) in N (s1, α, µ1, s2, µ2, R1).
Summing over all (s1, α, µ1, s2, µ2), we get that memory needed for the set Listener

is also bounded by O(m2). For each pair (s1, s2) and s1
α
−→ µ1, the set Sim

(s1,α,µ1,s2)
1

has size |Stepsα(s2)|. Summing up, this is smaller than or equal to m2 according to
Inequality 5.2. Hence, the overall space complexity is O(m2).

Now we consider the time complexity. All initialisations (lines 6.1–6.6 of SimRelPA
s

and the initialisations in ActSmfinit , which calls Smfinit) take O(m2) time. We ob-
serve that a pair (s1, s2) belongs to Di during at most one iteration. Because of the
Inequality 5.2, the time needed in lines 6.13–6.17 is in O(m2). The rest of the algo-
rithm is dominated by the time needed for calling Smf in line 5.2 of ActSmf. By
Lemma 5.2.3, the time complexity for successful and unsuccessful checks concerning the
tuple (s1, α, µ1, s2, µ2) is bounded by O(g |µ1| |µ2|). Taking the sum over all possible
tuples (s1, α, µ1, s2, µ2) we get the bound gm2 according to Inequality 5.2. Hence, the
complexity is O(m2n). If the fanout g is bounded by a constant, we have m ≤ gn. Thus,
the time complexity is in the order of O(n2). In this case the space complexity is also
O(n2). �

Remark. For a PA M = (S, Act,P, L), let |P| =
∑

s∈S

∑

α∈Act(s) |Stepsα(s)|, called

the number of transitions in [9], denote the number of all distributions in M. The
algorithm for deciding strong simulation introduced by Baier et al. has time complexity

68 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

O((|P|n6 + |P|2 n3)/ log n), and space complexity O(|P|2). The number of distributions
|P| and the size of the transitions m are related by |P| ≤ m ≤ n |P|. The left equality is
established if |µ| = 1 for all distributions, and the right equality is established if |µ| = n
for all distributions.

A decision algorithm for strong simulation for CPAs can be adapted from SimRelPA
s

in Algorithm 6 easily: Notations are extended with respect to rate functions instead of
distributions in an obvious way. To guarantee the additional rate condition, we rule out
successor rate functions of s2 that violate it by replacing line 6.6 by:

Sim
(s1,α,r1,s2)
1 ← {r2 ∈ Stepsα(s2) | r1(S) ≤ r2(S)}.

For each pair (s1, s2), and successor rate functions ri ∈ Stepsα(si) (i = 1, 2), the subrou-
tine for checking whether r1 ⊑Ri

r2 is then performed in the network N (µ(r1), µ(r2), Ri).
Obviously, the so obtained algorithm for CPAs has the same complexity O(m2n).

5.3 Strong Probabilistic Simulations

The problem of deciding strong probabilistic simulation for PAs has not been tackled
yet. We show that it can be computed by solving LP problems which are decidable
in polynomial time [74]. In Subsection 5.3.1, we first present an algorithm for PAs.
Thereafter, in Subsection 5.3.2, we extend the algorithm to deal with CPAs.

5.3.1 An Algorithm for PAs

Recall that strong probabilistic simulation is a relaxation of strong simulation in the
sense that it allows combined transitions, which are convex combinations of multiple
distributions belonging to equally labelled transitions. Again, the most important part
is to check whether s1 -p

R s2 where R is the current relation. By Definition 4.1.7, it
suffices to check L(s1) = L(s2) and the condition:

∀α ∈ Act . ∀s1
α
−→ µ1. ∃s2

α
; µ2 with µ1 ⊑R µ2 (5.3)

However, since the combined transition involves the quantification of the constants
ci ∈ [0, 1], there are possibly infinitely many such µ2. Thus, one cannot check µ1 ⊑R µ2

for each possible candidate µ2. The following lemma shows that this condition can be
checked by solving LP problems which are decidable in polynomial time [74, 96]. The
idea is that we introduce for each α-successor distribution of s2 a variable, and then
reformulates the requirements concerning the combined transitions by linear constraints
over these variables. This allows us to construct an LP problem such that the transition
s1

α
−→ µ can be mimicked by an α-combined successor distribution µ′ is equivalent to

whether the LP problem has a solution.

Lemma 5.3.1. LetM = (S, Act,P, L) be a given PA, and let R ⊆ S×S. Let (s1, s2) ∈
R with L(s1) = L(s2) and Act(s1) ⊆ Act(s2). Then, s1 -p

R s2 iff for each transition

5.3. STRONG PROBABILISTIC SIMULATIONS 69

s1
α
−→ µ, the following LP has a feasible solution:

k
∑

i=1

ci = 1 (5.4)

0 ≤ ci ≤ 1 ∀ i = 1, . . . , k (5.5)

0 ≤ f(s,t) ≤ 1 ∀(s, t) ∈ R⊥ (5.6)

µ(s) =
∑

t∈R⊥(s)

f(s,t) ∀s ∈ S⊥ (5.7)

∑

s∈R−1

⊥
(t)

f(s,t) =
k

∑

i=1

ciµi(t) ∀t ∈ S⊥ (5.8)

where k = |Stepsα(s2)| > 0 and Stepsα(s2) = {µ1, . . . , µk}.

Proof. First assume that s1 -p
R s2. Let s1

α
−→ µ. By the definition of simulation up

to R for strong probabilistic simulation, there exists a combined transition s2
α
; µc

with µ ⊑R µc. Let Stepsα(s2) = {µ1, . . . , µk} where k = |Stepsα(s2)|. It holds that
k > 0 as Act(s1) ⊆ Act(s2). By definition of combined transition (Definition 4.1.6),
there exist constants c1, . . . , ck ∈ [0, 1] with

∑k
i=1 ci = 1 such that µc =

∑k
i=1 ciµi.

Thus Constraints 5.4 and 5.5 hold. Since µ ⊑R µc, there exists a weight function
∆ : S⊥ × S⊥ → [0, 1] for (µ, µc) with respect to R. For every pair (s, t) ∈ R⊥, let
f(s,t) := ∆(s, t). Thus, Constraint 5.6 holds trivially. By Definition 4.1.1 of weight
functions, it holds that

(i) ∆(s, t) > 0 implies that (s, t) ∈ R⊥,

(ii) µ(s) =
∑

t∈S⊥
∆(s, t) for s ∈ S⊥, and

(iii) µc(t) =
∑

s∈S⊥
∆(s, t) for all t ∈ S⊥.

Observe that (i) implies that for all (s, t) 6∈ R⊥, we have that ∆(s, t) = 0. Thus, (ii) and
(iii) imply Equations 5.7 and 5.8 respectively.

Now we show the other direction. Let k = |Stepsα(s2)| and Stepsα(s2) = {µ1, . . . , µk}.
By assumption, for each s1

α
−→ µ, we have a feasible solution c1, . . . , ck and f(s,t) for all

(s, t) ∈ R⊥ which satisfies all of the constraints. We define µc =
∑k

i=1 ciµi. By Defini-

tion 4.1.6, µc is a combined transition, thus s2
α
; µc. It remains to show that µ ⊑R µc.

We define a function ∆ as follows: ∆(s, t) equals f(s,t) if (s, t) ∈ R⊥ and 0 otherwise.
With the help of Constraints 5.6, 5.7 and 5.8 we have that ∆ is a weight function for
(µ, µc) with respect to R, thus µ ⊑R µc. �

Now we are able to check Condition 5.3 by solving LP problems. For a PA M =
(S, Act,P, L), and a relation R ⊆ S × S, let (s1, s2) ∈ R with L(s1) = L(s2) and
Act(s1) ⊆ Act(s2). For s1

α
−→ µ1, we introduce a predicate LP (s1, α, µ, s2) which is true

iff the LP problem described as in Lemma 5.3.1 has a solution. Then, s1 -p
R s2 iff the

conjunction
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1)

LP (s1, α, µ1, s2)

70 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

Algorithm 7 Algorithm for deciding strong probabilistic simulation for PAs.

SimRelPA,p
s (M)

7.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 0
7.2: repeat
7.3: i← i + 1
7.4: Ri+1 ← ∅
7.5: for all (s1, s2) ∈ Ri do
7.6: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do
7.7: matchα,µ1

← LP (s1, α, µ1, s2)
7.8: if

∧

α∈Act(s1)

∧

µ1∈Stepsα(s1) matchα,µ1
then

7.9: Ri+1 ← Ri+1 ∪ {(s1, s2)}
7.10: until Ri+1 = Ri

7.11: return Ri

is true. The algorithm, denoted by SimRelPA,p
s (M), is depicted in Algorithm 7. It takes

the skeleton of SimRels(M). The key difference is that we incorporate the predicate
LP (s1, α, µ1, s2) in line 7.7. The correctness of the algorithm SimRelPA,p

s (M) can be
obtained from the one of SimRels(M) together with Lemma 5.3.1. We discuss briefly
the complexity. The number of variables in the LP problem in Lemma 5.3.1 is k +
|R|, and the number of constraints is 1 + k + |R| + 2 |S| ∈ O(|R|). In iteration i
of SimRelPA,p

s (M), for (s1, s2) ∈ Ri and s1
α
−→ µ1, the corresponding LP problem is

queried once. The number of iterations is in O(n2). Therefore, in the worst case, one
has to solve n2

∑

s∈S

∑

α∈Act(s)

∑

µ∈Stepsα(s) 1 ∈ O(n2m) many such LP problems and

each of them has at most O(n2) constraints.

5.3.2 An Algorithm for CPAs

Now we discuss how to extend the algorithm to handle CPAs. Let M = (S, Act,R, L)
be a CPA. Similar to PAs, the most important part is to check the condition s1 -

p
R s2

for some relation R ⊆ S × S. By Definition 4.1.9, it suffices to check L(s1) = L(s2) and
the condition:

∀α ∈ Act . ∀s1
α
−→ r1. ∃s2

α
; r2 with µ(r1) ⊑R µ(r2) ∧ r1(S) ≤ r2(S) (5.9)

Recall that for CPAs only successor rate functions with the same exit rate can be
combined together. For state s ∈ S, we let E(s) := {r(S) | s

α
−→ r} denote the set of all

possible exit rates of α-successor rate functions of s. For E ∈ E(s) and α ∈ Act(s), we
let StepsE

α (s) = {r ∈ Stepsα(s) | r(S) = E} denote the set of α-successor rate functions
of s with the same exit rate E. As for PAs, to check the condition s1 -

p
R s2 we resort

to a reduction to LP problems.

Lemma 5.3.2. Let M = (S, Act,R, L) be a given CPA, and let R ⊆ S × S. Let
(s1, s2) ∈ R with L(s1) = L(s2) and that Act(s1) ⊆ Act(s2). Then, s1 -p

R s2 iff for each

transition s1
α
−→ r either r(S) = 0, or there exists E ∈ E(s2) with E ≥ r(S) such that

5.3. STRONG PROBABILISTIC SIMULATIONS 71

Algorithm 8 Algorithm for deciding strong probabilistic simulation for CPAs.

SimRelCPA,p
s (M)

8.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 0
8.2: repeat
8.3: i← i + 1
8.4: Ri+1 ← ∅
8.5: for all (s1, s2) ∈ Ri do
8.6: for all α ∈ Act(s1), r1 ∈ Stepsα(s1), E ∈ E(s2) do
8.7: matchα,r1,E ← LP ′(s1, α, r1, s2, E)
8.8: if

∧

α∈Act(s1)

∧

r1∈Stepsα(s1)

∧

E∈E(s2)
matchα,r1,E then

8.9: Ri+1 ← Ri+1 ∪ {(s1, s2)}
8.10: until Ri+1 = Ri

8.11: return Ri

the following LP has a feasible solution, which consists of Constraints 5.4, 5.5, 5.6 of
Lemma 5.3.1, and additionally:

r(s) = r(S)
∑

t∈R⊥(s)

f(s,t) ∀s ∈ S⊥ (5.10)

E
∑

s∈R−1

⊥
(t)

f(s,t) =

k
∑

i=1

ciri(t) ∀t ∈ S⊥ (5.11)

where k =
∣

∣StepsE
α (s)

∣

∣ with StepsE
α (s) = {r1, . . . , rk}.

Proof. The proof follows the same strategy as the proof of Lemma 5.3.1, in which the
induced distribution of the corresponding rate function should be used. �

Now we are able to check Condition 5.9 by solving LP problems. For a CPA
M = (S, Act,R, L), and a relation R ⊆ S × S, let (s1, s2) ∈ R with L(s1) = L(s2)
and Act(s1) ⊆ Act(s2). For s1

α
−→ r1, and E ∈ E(s2), we introduce the predicate

LP ′(s1, α, r1, s2, E) which is true iff E ≥ r1(S) and the corresponding LP problem has
a solution. Then, s1 -p

R s2 iff the conjunction

∧

α∈Act(s1)

∧

r1∈Stepsα(s2)

∧

E∈E(s2)

LP ′(s1, α, r1, s2, E)

is true. The decision algorithm is given in Algorithm 8. As complexity we have to solve
O(n2m) LP problems and each of them has at most O(n2) constraints.

72 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

5.4 Experimental Results

In this section, we provide systematic experimental results of the space and time require-
ments of the algorithms for Markov chains2, also comparing several optimisations and
heuristics to accelerate the algorithm. As a base algorithm we consider the algorithm
without any optimisations (cf. Section 5.2.1). The parametric maximum flow based
algorithm (PMF) is treated as one particular optimisation. We also consider the effect
of several other optimisations which can be applied selectively. We apply our approach
to several case studies taken from Prism [67]. In order to avoid a bias in the selection
of models, we also evaluate the algorithms on randomly generated Markov models. This
is inspired by [108] where the authors experimentally evaluated algorithms for classical
automata constructions on randomly generated automata. Our experimental approach
follows the same strategy. On randomly generated Markov chains, we have two inter-
esting parameters to adjust in our studies: the density of transitions and the density of
labels. We study the performance curve for various density combinations.

We first discuss various optimisation strategies in Subsection 5.4.1. In Subsection
5.4.2 different combinations of the optimisations are compared on regular models, uni-
form random models and non-uniform random models.

5.4.1 Optimisation Options

Beside the PMF optimisation, our implementation of the principal algorithm uses the
following optimisations and heuristics to eliminate redundant or trivial computations.
All of the optimisations and heuristics presented apply to FPSs and CTMCs directly.
Throughout this section, we fix an FPSM and a pair of states s1, s2. Let n denote the
number of states and m denote the number of transitions ofM. Let N (s1, s2, R) denote
the network as defined earlier. Furthermore, let V denote the set of the vertices, and E
denote the set of the edges of N (s1, s2, R).

Compact Maximum Flow. The algorithm used to compute the maximum flow is
based on the existing push-relabel preflow algorithm [56] and tailored specially to the
needs of the decision algorithm in order to save memory and to omit computations
for cases that never arise in the scenario considered. In a complete maximum flow
implementation, the value of the flow is computed. However, for the purpose at hand,
it is sufficient to determine whether or not the maximum flow has value 1. To decide
the simulation preorder, we consider bipartite networks in which source and sink and
all arcs connected with them are not relevant to the computation and can be omitted.
Furthermore, the fact that all remaining (not connected to source or sink) arcs have
infinite capacity allows us to ignore the concept of arc capacity altogether.

The use of this tailored algorithm greatly reduces the memory usage (by a factor of
approximately 4 to 6) in comparison to a more generic implementation while its runtime
stays almost unchanged in most cases. It should be noted that this implementation does

2Experimental results for PAs will be discussed in Chapter 7, in which a memory-efficient algorithm
is presented for PAs.

5.4. EXPERIMENTAL RESULTS 73

not use certain known optimisations for the push-relabel based method and is inferior
in speed to implementations which use these optimisations.

State Partitioning. In many large models, many states are structurally identical.
This can be exploited by grouping states with identical probabilistic structure together
into an equivalence class. This forms a partition of the state space. The equivalence
classes are also referred to as blocks. Given two blocks B1 and B2 of the partition,
simulation algorithm will yield the same result for any pair (s1, s2) with s1 ∈ B1 and
s2 ∈ B2. Thus, it suffices to decide simulation once for an arbitrary pair of states picked
from B1 and B2.

Two states s1 and s2 have an identical probabilistic structure if their successors
have pairwise the same labelling and the same respective transition probabilities. It
is important to note that state partitioning is only correct in the first iteration of the
simulation algorithm when the initial relation is defined solely on the basis the labelling,
thus is an equivalence relation. As soon as the relation is not an equivalence relation
any more, state partitioning can no longer be applied.

State partitioning adds an overhead ofO(n log n) for sorting states and successor sets.
This is necessary for being able to compute the partition and to be able to test whether
two states should belong to the same block in linear time with respect to the number of
transitions in the model. State partitioning uses an extra O(n + h2) space, where h is
the number of blocks in the partition. In order to store which block a state belongs to
we need O(n), and in order to store the result of whether one block simulates another
block we need O(h2). Consider Figure 5.6. The white states can then be partitioned
into two blocks: B = {s1, s2} and B′ = {t1, t2}. Obviously, the networks N (si, tj , R) are
initially the same for i, j ∈ {1, 2}.

s1

u1

1

u2

1

s2

u3

1

u4

1

t1

q1

2

t2

q2

2

Figure 5.6: A network showing the case in which state partitioning applies.

P-Invariant Checking. The maximum flow of a network N (s1, s2, R) can only have
value 1 if the following two constraints are met:

1. µ(s) ≤ µ′(R⊥(s)) for all s ∈ S⊥,

2. µ′(s′) ≤ µ(R−1
⊥ (s′)) for all s′ ∈ S⊥.

The complexity of verifying these constraints is in the order of O(|E|) per network and
O(m2) overall. This operation needs an additional O(|V |) space while performing the
checks. As an example we consider the network depicted in Figure 5.7. Obviously the P-
Invariant condition is violated: for state q3 µ(q3) = 3

4
whereas µ′(R⊥(q3)) = 0. Observe

74 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

further that the state q1 violates the second condition: µ′(q1) = 7
8

which is greater than
µ(R−1

⊥ (q1)) = µ({⊥, q2}) = 1
4
. Thus without running the maximum flow algorithm, we

can report no and delete the network.

q2

q3

q1

⊥ ⊥

1 %

1
8

1
8

3
4

7
8

1
8

Figure 5.7: A network showing the case in which P-Invariant checking applies.

Significant Arc Detection. The P-Invariant constraints are only checked when a net-
work is created. However, it would be desirable to check whether or not the constraints
are still fulfilled after a certain arc has been deleted as a result of its corresponding pair
having been removed from the relation. This can be done as follows: For a network
which satisfies the P-Invariant constraints, an arc is called significant iff its removal
would cause the network to violate the constraints. The detection of these arcs takes
O(|V |2) time in addition to that of P-Invariant checking and O(|E|) space per network
for storing the flag for every arc. Removing an arc takes constant time if the arc is
significant, otherwise O(|E|) time to recompute the significance of the remaining arcs.

Significant arc detection is an extension of PMF. It requires that networks be stored
rather than recomputed from scratch, otherwise it is equivalent to P-Invariant checking.
In the network depicted in Figure 5.8, the arcs (q3, q1) and (q2, q1) are significant. The
arc (⊥,⊥) is also significant, however, it will be never removed by definition.

q2

q3

q1

⊥ ⊥

1 %

1
8

1
8

3
4

7
8

1
8

Figure 5.8: A network showing the case in which significant arc detection applies.

5.4.2 Case studies

In the case studies, we refer to the different configurations of optimisations considered
in this chapter by binary numbers constituting combinations of the following strategies:
State Partitioning (0001), P-Invariant Checking (0010), Significant Arcs (0100), PMF
(1000). Reported run-times measure the amount of CPU time (user mode only) spent

5.4. EXPERIMENTAL RESULTS 75

Table 5.1: Time used for Leader Election models under various optimisations.
States 439 1031 2007 3463
Trans. 654 1542 3006 5190

Unit Time (sec) Time (min)
0000 6.62001 196.25106 47.409 421.233
0001 0.22081 2.07773 0.234 1.181
0010 0.14801 0.69684 0.049 0.209
0011 0.09101 0.39202 0.026 0.113
1000 6.59761 196.70669 47.632 422.430
1001 0.19201 2.04513 0.235 1.180
1110 0.10681 0.59084 0.043 0.170
1111 0.06600 0.32102 0.022 0.084

computing the simulation. Time used on parsing the model prior to simulation and
cleaning up memory after simulation is not accounted for. By omitting time spent in
system mode, the result is not affected by virtual memory operations. The code was
compiled with compiler optimisations turned off to demonstrate the advantage achieved
by the heuristics alone. With compiler optimisations turned on, an additional speed-up
of up to three times is achieved in some cases. The lowest amount of time/memory is
marked in italic print in the tables. All experiments were run on a Linux machine with
an AMD Athlon(tm) XP 2600+ processor at 2 GHz equipped with 2GB of RAM.

Leader Election Models. The leader election family of models have a very simple
structure, namely that of one state in each model with a large number (denoted by k)
of successors while the remaining states have only one successor. As such, these models
are a prime example for a successful application of partitioning. Due to the structural
similarity of the models, the number of blocks of the state partition is 4 for all leader
election models and the number of times that the maximum flow algorithm is actually
invoked is drastically decreased. For the simulation of three leaders and k = 8 (1031
states, 1542 transitions) with uniform distribution of three different labels, the maximum
flow algorithm is invoked 369859 times without any optimisation, and 228109 times with
state partitioning.

The time advantage achieved by this becomes apparent in Table 5.1 (0000 vs. 0001).
Due to the simplistic structure of the models, PMF yields only a small advantage on
the leader election models as recomputing from scratch is not very complex. In general,
using the PMF by itself is not desirable for sparse models because the advantage is
negligible in comparison to the time and memory overhead. Table 5.1 and Table 5.2
illustrates the additional amount of time and memory required for PMF (1000) versus
the approach without any optimisations (0000).

Additionally, maximum flow usage statistic shows that the maximum flow algorithm
is invoked more often (although by a relatively small margin) with PMF enabled than
not. This is due to the fact that certain trivial networks are discarded during construc-
tion without ever computing their maximum flow. However if a network was not initially
trivial but becomes trivial after an arc is deleted, this is only detected upon reconstruc-

76 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

Table 5.2: Memory (in kB) used for Leader Election models under various optimisations.
They represent peak values throughout the process of deciding simulation preorder,
excluding memory used by the relation map which is present in all configurations (Map
size).

States 439 1031 2007 3463
Trans. 654 1542 3006 5190

Map size 47.158 259.763 983.900 2928.669
0000 754.500 4156.195 15742.382 46858.687
0001 754.515 4156.210 15742.398 46858.703
0010 754.500 4156.195 15742.382 46858.687
0011 754.516 4156.211 15742.398 46858.703
1000 3910.007 20711.601 81310.734 266355.210
1001 2589.883 13113.180 53140.984 182841.039
1110 4015.472 21263.984 83497.390 273674.011
1111 2651.290 13412.281 54388.648 187375.586

tion of the same network, but not upon updating and recomputing the network if it was
saved. Significant arc detection works against this by effectively performing P-Invariant
checking every time an arc is removed from a network.

P-Invariant checking and significant arc detection have little effect in reducing the
number of times that the maximum flow algorithm is used on models similar to leader
election when used alone. This is due to the fact that almost all states (all except for
the first) have exactly one successor and consequently almost all networks have either
one arc or none at all. Those with no edges at all are filtered out in advance and those
with one edge have

∑

s′∈S P (s, s′) = 1 for both s1 and s2 so that P-Invariant checking
cannot achieve any additional filtering. The small reduction in maximum flow usage is
due to the first state which has more than one successor but is unfortunately negligible.

Time advantage achieved by P-Invariant checking and significant arc detection is ex-
ceptionally large compared to the reduction in maximum flow usage. This is because a
small number of networks which appear in the leader election models and are filtered out
by these optimisations, are inefficient to compute under the maximum flow implemen-
tation used in this study. Therefore, the time spent computing maximum flow decreases
significantly even though the algorithm is still used almost as much.

Overall, it is notable that the minimum time for leader election is consistently
achieved by the configuration 1111. It can be said that in general, the combination
of all presented optimisations is beneficial for extremely sparse models such as leader
election. If memory usage is a concern, 0011 should be preferred over 1111 as it works
without ever storing more than one network in memory at a time (cf. Table 5.2) while
only slightly inferior to 1111 in speed.

Molecular Reactions. For CTMCs we consider the Molecular Reactions as a case
study. In particular, we focus on the reaction

Mg + 2Cl ←→ Mg+2 + 2Cl−.

5.4. EXPERIMENTAL RESULTS 77

Table 5.3: Time (in seconds) used for Molecular Reaction models under various optimi-
sations.

States 676 1482 2601 4032 5776
Trans. 2550 5700 10100 15750 22650

0000 0.226 1.159 3.622 9.261 19.840
0001 0.235 1.169 3.751 9.487 20.650
0010 0.204 0.976 3.059 7.660 16.960
0011 0.212 1.039 3.375 8.321 18.552
1000 0.227 1.139 3.610 9.039 19.458
1001 0.233 1.182 3.788 9.571 20.386
1110 0.195 0.954 3.027 7.761 16.754
1111 0.215 1.078 3.349 8.744 19.107

Table 5.4: Memory (in MB) used for Molecular Reaction models under various opti-
misations. They represent peak values throughout the process of deciding simulation
preorder, excluding memory used by the relation map which is present in all configura-
tions (Map size).

States 676 1482 2601 4032 5776
Trans. 2550 5700 10100 15750 22650

Map size 0.11 0.52 1.61 3.88 7.95
0000 0.88 4.28 13.19 31.72 65.12
0001 1.33 6.42 19.79 47.60 97.70
0010 0.88 4.28 13.19 31.72 65.12
0011 1.33 6.42 19.79 47.60 97.70
1000 1.09 5.50 17.16 40.99 85.49
1001 1.52 7.44 23.08 55.73 114.53
1110 0.90 4.37 13.53 32.54 66.88
1111 1.46 7.21 22.29 53.92 110.80

Models for other reactions found on the Prism web-site are very similar in structure
and do not offer any additional insight.

While the structure of this family of models is relatively simple, few optimisations
show any notable effect. All states have between 1 and 4 successors with the average
being around 3.8 for all models, but the transition rates are different between almost all
states. As a consequence, state partitioning fails entirely. With a few minor exceptions,
all blocks of the partition contain exactly one state, which means that no speed-up can
be achieved at all. In particular, the reduction in maximum flow usage is always below
1%.

Although the optimisations are not very effective, in comparison to the leader election
models, the algorithm terminates very quickly on this family of models (See also Table 5.1
and Table 5.3): 7 hours for Leader Election with 3463 States and 5190 Transitions
(cf. 0000), 9 seconds for Molecular Reaction with 4032 States and 15750 Transitions
(cf. 0000). This is because the simulation relation is empty except for the identity
relation for all these models which is known after just two iterations of the algorithm.

78 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

Table 5.5: Comparison of all optimisations on uniform random models 400, 1, B with
varying numbers of B. Values are in milliseconds.

B 10 20 30 40 50 60 70 80
0000 7.93 36.60 83.81 140.34 224.68 372.66 650.67 718.48
0001 3.13 28.04 66.64 117.97 185.61 303.72 521.30 573.94
0010 6.90 34.37 81.47 151.68 229.28 395.62 649.67 671.28
0011 2.77 26.43 60.64 97.14 196.08 276.15 473.63 520.97
1000 8.00 34.80 78.97 126.47 195.01 319.29 543.03 612.57
1001 3.17 27.37 64.54 109.37 166.64 272.08 449.16 510.20
1010 7.10 34.54 80.57 138.21 211.98 349.39 573.07 637.74
1011 2.77 26.50 61.24 96.44 183.28 268.75 455.56 493.56
1100 9.47 40.30 89.01 137.24 214.05 356.22 601.07 685.98
1101 3.90 31.04 72.24 117.64 181.38 296.05 490.80 555.77
1110 7.37 36.87 84.64 132.37 207.65 344.99 583.04 660.61
1111 2.90 27.47 63.24 99.57 174.71 278.78 469.56 509.00

The leader election family on the other hand needs four iterations and does not have a
trivial simulation relation, which makes the process of deciding simulation preorder more
complex. (Additionally, the leader election family also has some networks for which the
maximum flow is hard to compute.) This is also why the memory values are all relatively
close to each other (see Table 5.4), specifically the configurations which use PMF (1***).
Intuitively this is true because almost every pair is immediately discarded and does not
have to be saved for later iterations. This implies that PMF does not hold any benefit
for this type of model.

The only optimisation which shows some promise for this type of model is P-Invariant
checking (0010). Only surpassed slightly by configuration 1110 in some cases, it has the
greatest performance boost of all, although it is relatively small when compared to the
approach without any optimisations (0000). While P-Invariant checking consistently
reduces maximum flow computation by about 99.2%, the largest part of the run-time is
taken up by the remaining set of pairs which are not discarded until the second iteration.
Significant arc detection, which builds upon P-Invariant checking and PMF, does not
hold any benefit for this model due to the failure of PMF. While faster than pure P-
Invariant checking in some cases as a result of the left-over pairs not discarded in the
first iteration, the speed-up is not consistent and only in the range of about 1.5% to
5.25%.

Uniform Random Models. In addition to regular case studies, we consider randomly
generated DTMCs with uniform distributions, that is, all transitions from a state s have
equal probabilities. If not stated explicitly, we also use three different labels which
are uniform distributed. Furthermore, these random models can be described by three
parameters n, a and b such that |S| = n and a ≤ |post(s)| ≤ b ∀s ∈ S. We will
reference random uniform model by the parameters n, a, b. Table 5.5 illustrates required
time, memory and number of invocations of the maximum flow algorithm with respect
to different model sizes for random uniform models.

5.4. EXPERIMENTAL RESULTS 79

This study is particularly remarkable because it demonstrates the strength of PMF.
In comparison to other cases studied above, leading configurations in the study at hand
use PMF. This is due to the density of the model, i.e. the larger number of successors
per state in comparison to the other case studies in this chapter. It is also remarkable
that, in contrast to other case studies above, all optimisations hold some (even though
limited) benefit.

State partitioning performs well on the lower end of the range, yielding a speed-up of
about 80% at best and about 20% at worst. While a larger speed-up may be desirable,
this is a very good result since it means that state partitioning will never slow down the
process on this kind of model.

P-Invariant checking is beneficial in most cases, particularly towards the upper end
of the range, but in a few cases (40 ≤ B ≤ 65) it is actually slower than approach
0000 and it is also slower than state partitioning in general. Consequentially, P-Invariant
checking should not be applied on its own. Coupled with state partitioning however (see
configuration 0011), P-Invariant checking performs better and is in fact one of the best
configurations in the study at hand.

While faster in a few cases, significant arc detection does not yield a consistent
performance boost in any configuration. Significant arc detection is most powerful in
gradual simulation decision processes where few arcs are deleted in one iteration. The
simulation relations in this study however are decided in only three to four iterations,
indicating that most pairs of states are deleted from the relation in the first iteration
already, but significant arc detection can only speed up the decision on pairs which are
not deleted immediately. It stands to reason that significant arc detection would perform
better in models with a larger minimum number of successors per state.

PMF shows good results in this study. Clocking in at speeds faster than P-Invariant
checking in many cases, this is the kind of model for which PMF is beneficial. At its
worst, PMF is about 4% slower than approach 0000. At its best, it is faster by 18%.

The best configuration for this model is a tie between 1001 and 1011. While 1111
sometimes achieves times better than 1001 or 1011, it also requires more memory and
has about the same average performance as either 1001 or 1011.

Consider also Figure 5.9 which compares the performances of all configurations3 on
uniform random models with different numbers of labels. All optimisations except state
partitioning (0001) and configurations making use of it have monotone falling curves
because more labels means that the initial relation will be smaller. Configurations using
state partitioning however are affected in a different manner, displaying a very low value
at one label, a maximum at two labels and a monotone curve after that. The reason for
this behavior is that having only one label works in favor of the partitioning algorithm,
enabling it to partition the state space into fewer blocks.

Non-Uniform Random Models. In addition to random uniform models, we also
briefly consider randomly generated DTMCs with varying degrees of structure. For this
purpose, we define several structural features called biases which loosely represent the
probability that a certain feature is present or not. We define the following biases:

3To get a readable picture, we plot only the representative configurations, i.e., configurations showing
extreme performances. This holds also for Figure 5.10.

80 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

Figure 5.9: Comparison of configurations on random uniform models 200, 1, 25 (left)and
200, 1, 50 (right) with respect to varying numbers of labels. Values are averaged over 4
independently generated models of the same class.

• Probability Bias, pb ∈ [0; 1], defines whether or not the transition probabilities are
distributed uniformly (pb = 0) or randomly (pb = 1)

• Fanout Bias, fb ∈ [−1; 1], defines if a state is more likely to have the minimum
(fb < 0) or maximum (fb > 0) number of successors

It must be noted that, in case of pb > 0, the generated probabilities are not random
values. Rather, the partition of the successor set into subsets of successors, each of which
have different transition probabilities, is random. This means that the distribution
for state s is equal to the distribution for state s′ w.r.t. transition probabilities iff
|post(s)| = |post(s′)| and the successor sets are partitioned into subsets of equal sizes. As
a consequence, the state partitioning optimisation is still likely to find useful partitions,
even though the same optimisation would be useless for models with truly randomized
transition probabilities.

Consider Figure 5.10 (first row) which plots the time needed for 200, 10, 20 models
with different values of probability bias. On the left, we have all configurations which
use state partitioning (***1). On the right, we have all remaining configurations. We
observe that state partitioning (left) performs best with uniform distributions and gets
progressively slower for higher values of the bias. Intuitively this is because the parti-
tioning algorithm is able to create fewer blocks when more distributions are uniform. All
other configurations are only insignificantly affected by the bias (right). In these cases,
only the complexity of computing the maximum flow depends on the distributions, which
accounts for a comparatively small portion of the run-time in models with a low number
of successors per state. In both subsets, the configurations using P-Invariant checking
(**1*) perform better compared to the remaining configurations for higher values of
the bias, because nonuniform distributions are more likely to violate the P-Invariant
constraints.

In Figure 5.10 we also compare the impact of different fanout biases on the set of
representative configurations. We observe, as one might expect, that a higher fanout bias
increases the run-time of the algorithm. An exception to this are configurations which
use state partitioning (***1), which are only insignificantly affected by the bias, except
for the special case of fb = 1. For this value, all states are in the same block and thus

5.4. EXPERIMENTAL RESULTS 81

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 with State Partitioning (***1)

0001

0011

1011

1101

 500

 550

 600

 650

 700

 750

 800

 850

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 without State Partitioning (***0)

0000

0010

1010

1100

 0

 1

 2

 3

 4

 5

 6

-1 -0.5 0 0.5 1

T
im

e
(s

)

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-1 -0.5 0 0.5 1

N
um

be
r

of
 M

ax
im

um
 F

lo
w

 In
vo

ca
tio

ns

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

Figure 5.10: Comparison on random nonuniform models with probability bias and fanout
bias.

state partitioning cannot improve the run-time. The right plot shows that the increase
in run-time is not directly linked to the number of times the maximum flow algorithm is
invoked. In particular, the maximum (disregarding corners) for configurations which use
state partitioning (***1) is at fb = 0, the value which represents the highest entropy and
the highest number of blocks. For other configurations (***0), the maximum is reached
by fb > 0, in which case only a statistically insignificant number of maximum flow
computations is trivial. However, the run-time of the algorithm still rises because the
complexity of the individual maximum flow computations increases. We conclude that
this result depends to a high degree on the complexity of maximum flow computation
more than the number of such computations, which means that it will vary greatly for
different ranges of numbers of successors.

An Extreme Example. For the examples considered until now, the number of refine-
ment iterations is always very small. The PMF based algorithm reduces the theoretical
complexity drastically as the maximum flow computed from last iteration will be reused
in the current iteration. Due to the low number of iterations, however, the optimisation
PMF does not perform well in practice. We construct now an example in which the
number of iterations is in the order of the number of states.

Consider the DTMC depicted in Figure 5.11. The set of states is S = {0, 1, . . . , 2k}
where k ≥ 2. The transition probabilities are as depicted in the figure. We compute the
strong simulation - for the case p = q = 0.5. Let R = I ∪ {(2i − 1, 2i) | i = 1, . . . , k}
where I = I(S) ∪ {(0, i) | i = 3, 4, . . . , 2k}. First for (s, t) ∈ R it holds L(s) = l(t).
It is easy to verify that R is a simulation relation: the defined R is reflexive implying

82 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

...
...

p

0

p

p

2k

8

6

4

q

q

q

2

0.1

0.1

0.1

0.1

2k-1

7

5

3

1

0.1

0.1

0.1

0.1

0.1

p

q

Figure 5.11: A DTMC where the transition probability between 2k − 1 and 2k − 2 is
0.9− p for all k = 2, 3, The transition probability between 2k and 2k − 3 is 0.9− q
for all k = 2, 3,

that A ⊆ R(A). It is routine to verify that for all (s, s′) ∈ R it holds that P(s, A) ≤
P(s′, R(A)) for all A ⊆ post(s). Then, by exploiting Lemma 4.2.5 we conclude that R
is a strong simulation relation which implies that R ⊆ -.

The relation R is indeed the simulation relation, which is returned by our algorithm.
In this example the number of iterations of the algorithm is in the order of O(k). More
precisely, the number of iteration needed is k + 1. Table 5.12 shows the running time
for a few configurations. We have following observations:

• In case studies considered until now, the state partitioning approach produces
promising results. However in this example, it is almost the same as the con-
figuration 0000. The reason is that state partitioning is only applied in the first
iteration, and in this example the number of iterations is k+1, thus the time saved
comprises only a small fraction.

• The optimisation P-Invariant is even slower in this example. This is due to the
fact initially no pairs can be thrown out using this optimisation.

• PMF performs the best in this example. This matches the theoretical analysis.
We consider for example the pair (2k, 2k− 1). This pair will be thrown out of the
relation R at the iteration k. Between iterations 1 and k−1, the networks for this
pair are always the same, thus the PMF saves time from re-computing maximum
flows.

• Similar as the P-Invariant optimisation, the significant arc detection combined
with PMF is slower than simply using PMF.

5.5. BIBLIOGRAPHIC NOTES 83

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

k

0000

0001

0010

1000

1100

Figure 5.12: The running time for the DTMC in Figure 5.11. For all configurations the
number of iterations needed is k + 1.

5.5 Bibliographic Notes

The algorithmic problem to minimise a labelled transition system with respect to strong
bisimulation is well studied. The most efficient decision algorithm for bisimulation
for non-probabilistic models is based on a partition refinement technique, proposed by
Kanellakis and Smolka [73], and further improved by Paige and Tarjan [88]. Based on
this work, Huynh and Tian [70] presented an O(m log n) algorithm for computing strong
bisimulation for reactive systems. Derisavi et. al. [45] presented anO(m log n) algorithm
for strong bisimulations for CTMCs, which can be extended easily to handle FPSs or
DTMCs. The partition refinement strategy has also been applied to decide bisimulations
for MDPs and PAs. In [9], an algorithm with time complexity4 O(mn log m) and space
complexity O(mn) has been proposed for MDPs. Cattani and Segala have presented de-
cision algorithms [30] for strong (probabilistic) bisimulation for PAs. They have shown
that the strong probabilistic bisimulation can be obtained by solving O(n) LP problems.

Orzan and Blom have devised an efficient distributed algorithm for bisimulation min-
imisation, based on the notion of signatures [21]. Wimmer et. al. [116] have taken up this
idea to arrive at a fully symbolic implementation of the signature-refinement approach,
to effectively bridge to BDD-based representations of state spaces. Efficient symbolic
implementation is further studied in [44, 43, 117]. In [51], an algorithm with O(m) com-
plexity has been proposed for deciding strong bisimulation on directed acyclic graphs.
This is then extended to compute strong bisimulation on acyclic IMCs in [42], with the
same complexity O(m).

Cleaveland, Parrow and Steffen [39] proposed the initial algorithm for computing
simulation preorder for non-probabilistic systems. The best algorithm for deciding strong
simulation over non-probabilistic systems has been proposed in [64] with time complexity
O(mn). To compute the strong simulation for PAs, Baier et al. [9] have presented an

4Again, the m used in this paper is slightly different from the m as we use it. A detailed comparison
is provided in Remark 5.2.3 of Section 5.2.3.

84 CHAPTER 5. ALGORITHMS FOR STRONG SIMULATIONS

algorithm which reduces the query whether a state strongly simulates another to a
maximum flow problem. Their algorithm has complexity O((mn6 + m2n3)/ log n) for
PAs. For Markov chains, their algorithm has time complexity O(n7/ log n) and space
complexity O(n2). The heavy complexity overhead is due to the complexity of the
underlying maximum flow algorithm.

Another related work is the bisimulation algorithm proposed by Cleaveland [37]: In
their algorithm, if two state s, t are reported not bisimilar, a Hennessy-Milner [63] styled
formula is generated which differentiates between s and t. This idea is extended to
finite MDPs in [48] for bisimulations and in [47] for simulations: These algorithms find
a formula that witnesses non-bisimilarity or non-similarity of states respectively. Their
algorithm has, however, exponential complexity, for both bisimulation and simulation
relations.

5.6 Summary

In this chapter, we presented drastically improved algorithms for strong simulation pre-
order. The core observation is that the networks on which the maximum flows are
calculated are very similar across iterations of the refinement loop. We exploit this by
adapting the parametric maximum flow algorithm [53] to solve the maximum flows for
the arising sequences of similar networks, arriving at an overall time complexity O(m2n).

We have investigated experimental approaches to our strong simulation algorithms
for Markov models. We experimented with different models to determine ways of further
improving upon this algorithm. At the end of this empirical process we have several
promising concepts, implemented as optimisations to the fundamental algorithm. Using
a collection of well-chosen case studies as well as randomly generated models we studied
the practical performance of the concepts.

One of the most interesting observations of our experimental studies is the not un-
common imbalance between theoretical complexity and runtime in practice. While the
parametric maximum flow based method offered a tremendous drop in theoretical com-
plexity, its practical implementation comes with an overhead that makes it consider-
ably weaker in many practical applications than more straightforward approaches. Its
strength are large, dense models which require more number of iterations. These cases
seem seldom in models commonly used for case studies. The gap between theoretical
and practical efficiency is not caused by ”the constant factors” but by the fact that the
corner cases that blow up the worst case complexity are rare in practice.

Surprisingly, more intuitive approaches like state partitioning and P-Invariant check-
ing actually produced promising results in general in our practical studies, in comparison
to our theoretically proven algorithm. In particular, state partitioning works very well
on models with low to medium transition densities and near-uniform or uniform prob-
ability distributions. On the other hand, P-Invariant checking performs well on models
with non-uniform probability distributions.

The implementation of the algorithms for deciding strong probabilistic simulations
remains as future work.

Chapter 6

Algorithms for Weak Simulations

In this chapter we turn our attention to algorithms to decide weak simulation preorders
for Markov chains. As for strong simulations, the algorithm starts with the relation
{(s, s′) ∈ S × S ′ | L(s) = L(s′)} which is coarser than the weak simulation preorder w.
Then, the relation R will be refined such that in each iteration pairs (s, s′) are removed
out of the relation if s′ cannot weakly simulates s up to the current relation R. Similar
to strong simulation up to a particular relation R, s′ weakly simulates s up to R is a
relaxation of the weak simulation: it imposes the conditions of weak simulations only
on the pair (s, s′).

From the definition of weak simulations, s′ weakly simulates s up to R implies that
the successor states of s and s′ are partitioned into Ui and Vi parts for i = 1, 2. Recall
the intersections Ui ∩ Vi are in general not empty for i = 1, 2, and these sets are defined
via the functions δi. For state u, the δi(u) fragment of u belongs to Ui while the 1−δi(u)
fragment of u belongs to Vi. Steps to Vi can be viewed as stutter steps which must respect
the weak simulation relation: all states in V2 should weakly simulate s1 with respect to
R, and, analogously, state s2 should weakly simulate all states in V1 with respect to R.
Steps to Ui are visible steps. For these visible steps, it is required that there exists a
weight function for the conditional distributions (P(s1,·)

K1
, P(s2,·)

K2
) with respect to R, where

Ki intuitively correspond to the probability of performing a visible step from si. If the
functions δi is known, Ki can be computed directly.

As the above analysis, for fixed characteristic functions δi (i = 1, 2), we could again
apply maximum flow algorithm to check whether the acquired weight function exists
for the conditional distributions with respect to the current relation. Unfortunately,
δi-functions are not known a priori. We consider a parametric network constructed out
of P(s1, ·),P(s2, ·) and R, and then computed a sequence of finite key values, called
breakpoints, using the parametric maximum flow algorithm. Only these breakpoints
need to be considered: For each of the breakpoints, the corresponding weight function
for the conditional distributions can be checked, as for strong simulations, via maximum
flow algorithms.

Organisation of this Chapter. We first introduce the notion of weak simulation up
to R in Section 6.1. We present dedicated algorithms for DTMCs in Section 6.2 and
CTMCs in Section 6.3 respectively. In Section 6.4 we provide experimental results, and

85

86 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

Section 6.5 discusses related works. We conclude this chapter in Section 6.6.

6.1 Weak Simulation up to R

The basic algorithm SimRels(M) (in Algorithm 2) for strong simulation can be reused
for weak simulations: we replace line 2.6 by:

if s1 wR s2

which shall be defined below. We say that s2 simulates s1 weakly up to R, denoted by
s1 wR s2, if, only for this pair, there are functions δi, ∆ as required by Definition 4.3.1:

Definition 6.1.1. Let M = (S,P, L) be a DTMC. Let R ⊆ S × S be a relation over S
and let (s1, s2) ∈ R. We say that s2 weakly simulates s1 up to R, written as s1 wR s2 if:
L(s1) = L(s2) and there exist functions δi : S → [0, 1] such that

1. (a) v1 R s2 for all v1 ∈ V1, and (b) s1 R v2 for all v2 ∈ V2

2. there exists a function ∆ : S × S → [0, 1] such that:

(a) ∆(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and either u1 R u2,

(b) if K1 > 0 and K2 > 0 then for all states w ∈ S:

K1 ·∆(w, U2) = P(s1, w)δ1(w), K2 ·∆(U1, w) = P(s2, w)δ2(w)

where Ki =
∑

ui∈Ui
δi(ui) ·P(si, ui) for i = 1, 2.

3. for u1 ∈ U1 there exists a path fragment s2, w1, . . . , wn, u2 with positive probability
such that n ≥ 0, s1 R wj for 0 < j ≤ n, and u1 R u2.

Recall that the sets Ui, Vi in the above definition are defined according to Equation 4.4
with respect to the pair (s1, s2) and the functions δi. If for the pair (s1, s2) ∈ R the
conditions in the previous definition do not hold, we write s1 6wR s2. Similar to strong
simulation up to R, s1 wR s2 does not imply s1 w s2, since no conditions are imposed
on pairs in R different from (s1, s2).

Weak simulation up to R for CTMCs, also denoted by wR, is defined similarly.

Example 6.1.1. Consider the DTMC in Figure 6.1, and assume that the relation R
is given by R = {(s1, s3), (u1, u2), (v1, v2), (s2, s4), (s1, s4)} (cf. Example 4.14). Now we
want to check whether s1 wR s3. This relation can be established with:

• δ1(u1) = δ1(v1) = δ1(s2) = 1 which implies that U1 = {u1, v1, s2}, K1 = 1, and
V1 = ∅,

• δ2(u2) = δ2(v2) = 1, δ2(s4) = 1
3

which implies that U2 = {u2, v2, s4}, K2 = 0.5, and
V2 = {s4},

• s1Rs4 holds,

6.1. WEAK SIMULATION UP TO R 87

s1

u1

.3

v1

.2

s2

.5

v1

1

s3

u2

.15

v2

.1

s4

.75

v1

.5

s5

.5

v2

1

Figure 6.1: A DTMC illustrating the weak simulation up to R.

• the function ∆ is defined by: ∆(u1, u2) = 0.3, ∆(v1, v2) = 0.2 and ∆(s2, s4) =
0.5. Similar as Example 4.14, we can show that ∆ satisfies the condition 2b of
Definition 6.1.1.

Observe that for this relation R only one possible such δi exists. The reason is that s4

is the only state which can be split into visible and stutter parts. Observe that state s1

goes to {u1, v1} with probability 0.5, and s3 goes to {u2, v2} with probability 0.25. Thus
we have to choose δ2(s4) such that the conditional probability of reaching {u2, v2} must
match 0.5 which implies that δ2(s4) = 1

3
. Thus, s1 wR s3. Observe also s1 6wR s4 and

s2 6wR s4. Another observation is that for any set Q ⊂ R we have that s1 6wQ s3.

In the above example the δi functions are unique. We show that this is in general
not the case:

Example 6.1.2. Consider again the DTMC in Figure 6.1, and assume that R′ =
{(s1, s3), (u1, u2), (v1, v2), (s2, s4), (s1, s4), (s2, s3)}. Let R denote the relation as in the
previous example. Since R ⊆ R′, s1 wR′ s3 can be established with the same defined
functions δi and ∆. For this relation, however, the δi functions are not unique any more:

• δ1(u1) = δ1(v1) = 1 and δ(s2) = 0 which implies that U1 = {u1, v1} and V1 = {s2},

• δ2(u2) = δ(v2) = 1 and δ(s4) = 0 which implies that U2 = {u2, v2} and V2 = {s4},

• it holds that (s1, s4) ∈ R′ and (s2, s3) ∈ R′,

• the function ∆ is defined by: ∆(u1, u2) = 0.6 and ∆(v1, v2) = 0.4 and 0 other-
wise. It is a routine to show that ∆ satisfies the condition the condition 2b of
Definition 6.1.1.

An interesting observation with respect to R′ is that we could split state s2 arbitrarily.
Assume that δ1(s2) = x where x ∈ (0, 1). In this case the conditional probability

µ := P(s1,·)
K1

is: µ(u1) = 3
5+10x

, µ(v1) = 2
5+10x

and µ(s2) = 10x
5+10x

. We let δ2(s4) = x
2
, which

implies that the condition probability µ′ := P(s3,·)
K2

is the same as µ. Thus the weight

function ∆ can be defined by: ∆(u1, u2) = 3
5+10x

, ∆(v1, v2) = 2
5+10x

, ∆(s2, s4) = 10x
5+10x

,
and 0 otherwise.

88 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

As indicated, s1 wR s2 does not imply s1 wM s2, since no conditions are imposed on
pairs in R different from (s1, s2). However, by definition, the following lemma holds, for
both DTMCs and CTMCs:

Lemma 6.1.1. Let R ⊆ S × S. Then, R is a weak simulation if and only if for all
s1Rs2 it holds that s1 wR s2.

6.2 An Algorithm for DTMCs

Let M = (S,P, L) be a DTMC. Let R ⊆ S × S be a relation and s1 R s2. Whether s2

weakly simulates s1 up to R is equivalent to whether there exist functions δi : S → [0, 1]
such that the conditions in Definition 4.3.1 are satisfied. Assume that we are given the
Ui-characterising functions δi. In this case, s1 wR s2 can be checked as follows:

• Concerning Condition 1a we check whether for all v ∈ S with δ1(v) < 1 it holds
that v R s2. Similarly, for Condition 1b, we check whether for all v ∈ S with
δ2(v) < 1 it holds that s1 R v.

• The reachability condition can be checked by using standard graph algorithms. In
more detail, for each u with δ1(u) > 0, the condition holds if a state in R(u) is
reachable from s2 via R(s1) states.

• Finally consider Condition 2. From the given δi functions we can compute Ki. In
case of that K1 > 0 and K2 > 0, we need to check whether there exists a weight
function for the conditional distributions: P(s1,·)

K1
and P(s2,·)

K2
with respect to the

current relation R. From Lemma 4.2.1, this is equivalent to check whether the
maximum flow for the network constructed from (P(s1,·)

K1
, P(s2,·)

K2
) and R has value 1.

To check s1 wR s2, we want to check whether such δi functions exist. The difficulty
is that there exist uncountably many possible δi functions. In this section, we first show
that whether such δi exists can be characterised by analysing a parametric network in
Subsection 6.2.1. Then, in Subsection 6.2.2, we recall the notion of breakpoints, and
show that the breakpoints play a central role in the parametric networks considered: only
these points need to be considered. Based on this, we present the algorithm for DTMCs
in Subsection 6.2.3. An improvement of the algorithm for certain cases is reported in
Subsection 6.2.4.

6.2.1 The Parametric Network N (γ)

For γ ∈ R≥0, consider the network N (P(s1, ·), γP(s2, ·), R), which is obtained from
N (P(s1, ·),P(s2, ·), R) be setting the capacities to the sink % by: c(t, %) = γP(s2, t). If
the states s1, s2 and the relation R are clear from the context, we use N (γ) to denote
the network N (P(s1, ·), γP(s2, ·), R) for arbitrary γ ∈ R≥0.

We introduce some notations. We focus on a particular pair (s1, s2) ∈ R, where R is
the current relation. We partition the set post(si) into MUi (for: must be in Ui) and PVi

(for: potentially in Vi). The set PV1 consists of those successors of s1 which can be either

6.2. AN ALGORITHM FOR DTMCS 89

s1

u1

1
4

o1

1
2

v1

1
4

s1

u2

1
8

o2

1
8

o3

1
16

v2

11
16

Figure 6.2: A simple DTMC.

put into U1 or V1 or both: PV1 = post(s1)∩R−1(s2). The set MU1 equals post(s1)\PV1,
which consists of the successor states which can only be placed in U1. The sets PV2

and MU2 are defined similarly by: PV2 = post(s2) ∩ R(s1) and MU2 = post(s2)\PV2.
Obviously, δi(u) = 1 for u ∈MUi for i = 1, 2.

Example 6.2.1. Consider the DTMC depicted in Figure 6.2, together with the relation
R = {(s1, s2), (s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. By defi-
nition, we have PV1 = {v1} and PV2 = {v2}. Thus, MU1 = {u1, o1}, MU2 = {u2, o2, o3}.

We say a flow function f of N (γ) is valid for N (γ) iff f saturates all edges (1, u1)
with u1 ∈ MU1 and all edges (u2, %) with u2 ∈ MU2. If there exists a valid flow f for
N (γ), we say that γ is valid for N (γ). The following lemma considers the case in which
both s1 and s2 have visible steps:

Lemma 6.2.1. Let s1 R s2. Assume that there exists a state s′1 ∈ post(s1) such that
s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Then, s1 wR s2 iff there exists a
valid γ for N (γ).

Proof. By assumption, we have that s′i ∈ MUi for i = 1, 2, thus MUi 6= ∅, and it holds
that δi(s

′
i) = 1 for i = 1, 2.

We first show the only if direction. Assume s1 wR s2, and let δi, Ui, Vi, Ki, ∆ (for
i = 1, 2) as described in Definition 4.3.1. Since MUi 6= ∅ for i = 1, 2, both K1 and
K2 are greater than 0. We let γ = K1

K2
. For s, s′ ∈ S, we define the function f for the

network N (γ) = N (P(s1, ·), γP(s2, ·), R):

f(1, s) = P(s1, s)δ1(s), f(s, t) = K1∆(s, t), f(s, %) = γP(s2, s)δ2(s)

Since δi(s) ≤ 1 (i = 1, 2) for s ∈ S, f(1, s) ≤ P(s1, s) and f(s, %) ≤ γP(s2, s).
Therefore, f satisfies the capacity constraints. f also satisfies the conservation rule:

f(s, S) = K1∆(s, S) = P(s1, s)δ1(s) = f(1, s)

f(S, s) = K1∆(S, s) = γK2∆(S, s) = γP(s2, s)δ2(s) = f(s, %)

Hence, f is a flow function for N (γ). For u1 ∈ MU1, we have δ1(u1) = 1, therefore,
f(1, u1) = P(s1, u1). Analogously, f(u2, %) = γP(s2, u2) for u2 ∈ MU2. Hence, f is
valid for N (γ), implying that γ is valid for N (γ).

Now we show the if direction. Assume that there exists γ > 0 and a valid flow f for
N (γ). The function δ1 is defined by: δ1(s) equals f(1,s)

P(s1,s)
if s ∈ post(s1) and 0 otherwise.

90 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

o1 o2

1
o3

%

v1 v2

u1 u2

1
2

1
4

1
4

11
8

1
4

1
8

1
4

Figure 6.3: The network N (2) of the DTMC in Figure 6.2.

The function δ2 is defined similarly: δ2(s) equals f(s,%)
γP(s2,s)

if s ∈ post(s2) and 0 otherwise.
Let the sets Ui and Vi be defined as required by Definition 4.3.1. It follows that

K1 =
∑

s∈U1

δ1(s)P(s1, s) =
∑

s∈U1

f(1, s) = f(1, U1)

K2 =
∑

s∈U2

δ2(s)P(s2, s) =
∑

s∈U2

f(s, %)

γ
=

f(U2, %)

γ

Since the amount of flow out of 1 is the same as the amount of flow into %, we have
K1

K2
= γ. Since ∅ 6= MUi ⊆ Ui for i = 1, 2, both of K1 and K2 are greater than 0. We

show that the Conditions 1a and 1b of Definition 4.3.1 are satisfied. For v1 ∈ V1, we
have that δ1(v1) < 1 which implies that f(1, v1) < P(s1, v1). Since f is valid for N (γ),
and since the edge (1, v1) is not saturated by f , it must hold that v1 ∈ PV1. Therefore,
v1 R s2. Similarly, we can prove that s1 R v2 for v2 ∈ V2.

We define ∆(w, w′) = f(w,w′)
K1

for w, w′ ∈ S. Assume that ∆(w, w′) > 0. Then,

f(w, w′) > 0, which implies that (w, w′) is an edge of N (γ), therefore, (w, w′) ∈ R. By
the flow conservation rule, f(1, w) ≥ f(w, w′) > 0, implying that δ1(w) > 0. By the
definition of U1, we obtain that w ∈ U1. Similarly, we can show that w′ ∈ U2. Hence,
the Condition 2a is satisfied. To prove Condition 2b:

∆(w, U2) =
∑

u2∈U2

f(w, u2)

K1

=
f(w, U2)

K1

(∗)
=

f(1, w)

K1

=
δ1(w)P(s1, w)

K1

where equality (∗) follows from the flow conservation rule. Therefore, for w ∈ S we
have that K1∆(w, U2) = P(s1, w)δ1(w). Similarly, we can show that K2∆(U1, w) =
P(s2, w)δ2(w) holds. Condition 2b is also satisfied. As K1 > 0 and K2 > 0, the
reachability condition holds trivially, hence, s1 wR s2. �

Example 6.2.2. Consider the DTMC in Example 6.2.1, together with the relation R =
{(s1, s2), (s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. The network
N (2) is depicted in Figure 6.3. Edges without numbers have capacity ∞. It is easy to
see that 2 is valid for N (2): the corresponding flow sends 1

4
amount of flow along the

path 1, u1, u2, %, 1
4

amount of flow along the path 1, o1, o2, %, 1
4

amount of flow along the
path 1, o1, v2, %, and 1

8
amount of flow along the path 1, v1, o3, %.

6.2. AN ALGORITHM FOR DTMCS 91

o1 o2

1′

o3

%′
v1 v2

1%

u1 u2

1
4

3
4

1
4

1
4

11
8

1
4

1
8

5
8

1
2

Figure 6.4: The transformed network Nt(2) for N (2) in Figure 6.3.

For a fixed γ ∈ R>0, we now address the problem of checking whether there exists a
valid flow f for N (γ). This is a feasible flow problem (f has to saturate edges to MU1

and from MU2). As we have discussed in Section 3.4, it can be solved by applying a
simple transformation to the graph (in time O(|MU1|+ |MU2|)), solving the maximum
flow problem for the transformed graph, and checking whether the flow saturates all
edges from the new source.

Example 6.2.3. Consider the network N (2) in Figure 6.3. Applying the transformation
for the feasible flow problem described in Section 3.4, we get the transformed network
Nt(2) depicted in Figure 6.4. It is easy to see that the maximum flow h for Nt(2) has
value 11

8
. Namely: It sends 1

4
amount of flow along the path 1′, u1, u2, %

′, 1
4

amount of
flow along the path 1′, o1, o2, %

′, 1
4

amount of flow along 1′, o1, v2, %, 1, %′, 1
8

amount of
flow along 1′, %, 1, v1, o3, %

′, and 1
2

amount of flow along 1′, %, 1, %′. Thus, it uses all
capacities of edges from 1′. This implies that 2 is valid for the network N (2).

6.2.2 Breakpoints

Consider the pair (s1, s2) ∈ R. Assume that the conditions of Lemma 6.2.1 are satisfied,
thus, to check whether s1 wR s2 it is equivalent to check whether a valid γ for N (γ)
exits. We show that only a finite possible γ, called breakpoints, need to be considered.
The breakpoints can be computed using a variant of the parametric maximum flow
algorithm. Then, s1 wR s2 if and only if for some breakpoint it holds that the maximum
flow for the corresponding transformed network Nt(γ) has a large enough value.

Let |V | denote the number of vertices of N (γ). Let κ(γ) denote the minimum cut
capacity function of the parameter γ, which is the capacity of a minimum cut ofN (γ) as a
function of γ. The capacity of a minimum cut equals the value of a maximum flow. If the
edge capacities in the network are linear functions of γ, κ(γ) is a piecewise-linear concave
function with at most |V | − 2 breakpoints [53], i. e., points where the slope dκ

dγ
changes.

The |V | − 1 or fewer line segments forming the graph of κ(γ) correspond to |V | − 1 or
fewer distinct minimal cuts. The minimum cut can be chosen as the same on a single
linear piece of κ(γ), and at breakpoints certain edges become saturated or unsaturated.
The capacity of a minimum cut for some γ∗ gives an equation that contributes a line
segment to the function κ(γ) at γ = γ∗. Moreover, this line segment connects the two

92 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

o1 o2

1

o3

%

v1 v2

u1 u2

1
2

1
4

1
4

11
16

γ

γ
8

γ
16

γ
8

Figure 6.5: The network N (γ) of the DTMC in Figure 6.2 in Example 6.2.1.

points (γ1, κ(γ1)) and (γ2, κ(γ2)), where γ1, γ2 are the nearest breakpoints to the left and
right, respectively.

Example 6.2.4. Consider the DTMC in Figure 6.2, together with the relation R =
{(s1, s2), (s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. The network
N (γ) for the pair (s1, s2) is depicted in Figure 6.5.

There are two breakpoints, namely 6
7

and 2. For γ ≤ 6
7
, all edges leading to the sink

can be saturated. This can be established by the following flow function f : sending γ
8

amount of flow along the path 1, u1, u2, %, γ
8

amount of flow along the path 1, o1, o2, %,
11γ
24

amount of flow along the path 1, o1, v2, %, γ
16

amount of flow over 1, v1, o3, %, 11γ
48

amount of flow along the path 1, v1, v2, %. The amount of flow out of node o1, denoted
by f(o1, S), is 7γ

12
. Given that γ ≤ 6

7
, we have that f(o1, S) ≤ 1

2
. Similarly, consider the

amount of flow out of node v1, which is denoted by f(v1, S), is 7γ
24

which implies that

f(v1, S) ≤ 1
4
. The maximum flow thus has value |f | = γ

8
+ γ

8
+ 11γ

24
+ γ

16
+ 11γ

48
= γ. Thus

the value of the maximum flow, or equivalently the value of the minimum cut, for γ ≤ 6
7

is κ(γ) = γ.

Observe that for γ = 6
7
, the edges to v1 and o1 are saturated, i.e., we have used full

capacities of the edge (1, v1) and (1, o1). Thus, by a greater value of γ, although the
capacities c({v2, o2, o3}, %) increase (become greater than 3

4
), no additional flow can be

sent through {v1, o1}. For the other breakpoint 2, we observe that for a value of γ ≤ 2,
we can still send γ

8
through the path 1, u1, u2, %, but for γ > 2, the edge to u1 keeps

saturated, thus the amount of flow sent through this path does not increase any more.
Thus, for γ ∈ [6

7
, 2], the maximum value, or the value of the minimum cut, is 3

4
+ γ

8
. The

first term 3
4

corresponds to the amount of flow through v1 and o1. The breakpoint 6
7

is
not valid since the edge to u1 can not be saturated. As discussed in Example 6.2.3, the
breakpoint 2 is valid. The curve for κ(γ) is depicted in Figure 6.6.

In the following lemma we show that if there is any valid γ, then at least one break-
point is valid.

Lemma 6.2.2. Assume γ∗ ∈ (γ1, γ2) where γ1, γ2 are two subsequent breakpoints of
κ(γ), or γ1 = 0 and γ2 is the first breakpoint, or γ1 is the last breakpoint and γ2 = ∞.
Assume γ∗ is valid for N (γ∗), then, γ is valid for N (γ) for all γ ∈ [γ1, γ2].

6.2. AN ALGORITHM FOR DTMCS 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

T
he

 m
ax

im
um

 fl
ow

Gamma value

breakpoints

Figure 6.6: The value of the maximum flow, or equivalently the value of the minimum
cut, as a function of γ for the network in Figure 6.5.

Proof. Consider the network N (γ∗). Assume that the maximum flow fγ∗ is a valid
maximum flow for N (γ∗).

Assume first γ′ ∈ (γ∗, γ2]. We use the augmenting path algorithm [2] to obtain a
maximum flow f ∗ in the residual network Nfγ∗

(γ′), requiring that the augmenting path
contains no cycles, which is a harmless restriction. Then, fγ′ := fγ∗ + f ∗ is a maximum
flow in N (γ′). Since fγ∗ saturates edges from 1 to MU1, fγ′ saturates edges from 1 to
MU1 as well , as flow along an augmenting path without cycles does not un-saturate
edges to MU1. We choose the minimum cut (X, X ′) for N (γ∗) with respect to fγ∗ such
that MU2 ∩X ′ = ∅, or equivalently MU2 ⊆ X. This is possible since fγ∗ saturates all
edges (u2, %) with u2 ∈ MU2. The minimum cut for fγ′ , then, can also be chosen as
(X, X ′), as (γ′, κ(γ′)) lies on the same line segment as (γ∗, κ(γ∗)). Hence, fγ′ saturates
the edges from MU2 to %, which indicates that fγ′ is valid for N (γ′). Therefore, γ′ is
valid for N (γ′) for γ′ ∈ (γ∗, γ2].

Now let γ′ ∈ [γ1, γ
∗). For the valid maximum flow fγ∗ we select the minimal cut

(X, X ′) for N (γ∗) such that MU1 ∩ X = ∅. Let d denote a valid distance function
corresponding to fγ∗ . We replace fγ∗(v, %) by min{fγ∗(v, %), cγ′(v, %)} where cγ′ is the
capacity function of N (γ′). The modified flow is a preflow for the network N (γ′).
Moreover, d stays a valid distance function as no new residual edges are introduced.
Then, we apply the preflow algorithm to get a maximum flow fγ′ for the network N (γ′).
Since no flow is pushed back from the sink, edges from MU2 to % are kept saturated.
Since (γ∗, κ(γ∗)) and (γ′, κ(γ′)) are on the same line segment, the minimal cut for fγ′

can also be chosen as (X, X ′), which indicates that fγ′ saturates all edges to MU1. This
implies that γ′ is valid for N (γ′) for γ′ ∈ [γ1, γ

∗). �

In Example 6.2.4, only one breakpoint is valid. In the following example we show
that it is in general possible that more than one breakpoint is valid.

Example 6.2.5. Consider the network depicted in Figure 6.7. By a similar analysis as
Example 6.2.4, we can compute that there are three breakpoints 1

2
, 1 and 2. Assuming

94 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

u3 u4

1 u5 u6 %

o1 o2

v1 v2

u1 u2

1
4

1
4

1
8

1
8

1
4

γ
4

γ
4

γ
8

γ
8

γ
4

Figure 6.7: A network in which more than one breakpoint is valid.

that MU1 = {o1} and MU2 = {o2}, we show that all γ ∈ [1
2
, 1] are valid. We send

γ
4

amount of flow along the path 1, o1, o2, %, and 1
4
− γ

4
amount of flow along the path

1, o1, v2, %. If γ ∈ [1
2
, 1], then 0 ≤ 1

4
− γ

4
≤ γ

4
implying that the flow on edge (v2, %)

satisfies the capacity constraints. Obviously this flow is feasible, and all γ ∈ [1
2
, 1] are

valid for N (γ).

As we would expect now, it is sufficient to consider only the breakpoints of N (γ):

Lemma 6.2.3. There exists a valid γ for N (γ) iff one of the breakpoints of N (γ) is
valid.

Proof. If there exists a valid γ for N (γ), Lemma 6.2.2 guarantees that one of the break-
points of κ(γ) is valid. The other direction is trivial. �

For a given breakpoint, we need to solve one feasible flow problem to check whether it
is valid. In the networkN (γ) the capacities of the edges leading to the sink are increasing
functions of a real-valued parameter γ. If we reverse N (γ), we get a parametric network
that satisfies the conditions in [53]: The capacities emanating from 1 are non-decreasing
functions of γ. So we can apply the breakpoint algorithm [53, p. 40] to obtain all of the
breakpoints of N (γ).

6.2.3 The Algorithm

LetM be a DTMC and let SimRelw(M) denote the weak simulation algorithm, which
is obtained by replacing line 2.6 of SimRels(M) in Algorithm 2 by: if s1 wR s2. The
condition s1 wR s2 is checked in Ws(M, s1, s2, R), shown as Algorithm 9.

The first part of the algorithm is the preprocessing part. Line 9.1 tests for the case
that s1 could perform only stutter steps with respect to the current relation R. If line 9.5
is reached, s1 has at least one visible step, and all successors of s2 can simulate s1 up
to the current relation R. In this case we need to check the reachability Condition 3
of Definition 4.3.1, which is performed in line 9.5. Recall that reach(s) denotes the set
of states that are reachable from s with positive probability. If the algorithm does not

6.2. AN ALGORITHM FOR DTMCS 95

Algorithm 9 Algorithm to check whether s1 wR s2.

Ws(M, s1, s2, R)

9.1: if post(s1) ⊆ R−1(s2) then
9.2: return true
9.3: if post(s2) ⊆ R(s1) then
9.4: U1 ← {s′1 ∈ post(s1) | s′1 6∈ R−1(s2)}
9.5: return (∀u1 ∈ U1. ∃s ∈ post(reach(s2) ∩R(s1)). s ∈ R(u1))
9.6: Compute all of the breakpoints b1 < b2 < . . . < bj of N (γ)
9.7: return (∃i ∈ {1, . . . , j}. bi is valid for N (bi))

terminate in the preprocessing part, the breakpoints of the network N (γ) are computed.
Then, corresponding to Lemma 6.2.3, we check whether one of the breakpoints is valid.
We show the correctness of the algorithm Ws:

Lemma 6.2.4 (Correctness of Ws). The algorithm Ws(M, s1, s2, R) returns true iff
s1 wR s2.

Proof. We first show the only if direction. Assume that Ws(M, s1, s2, R) returns true.
We consider three possible cases:

• The algorithm returns true at line 9.2. It holds that post(s1) ⊆ R−1(s2). We
choose U1 = ∅, V1 = post(s1), U2 = post(s2) and V2 = ∅ to fulfill the conditions in
Definition 4.3.1. Hence, s1 wR s2.

• The algorithm returns true at line 9.5. If the algorithm reaches line 9.5, the
following conditions hold: there exists a state s′1 ∈ post(s1) such that s′1 6∈ R−1(s2)
(line 9.1), and post(s2) ⊆ R(s1) (line 9.3). Let U1 = {s′1 ∈ post(s1) | s′1 6∈
R−1(s2)}, and define δi by: δ1(s) = 1 if s ∈ U1, and 0 otherwise, δ2(s) = 0 for all
s ∈ S. By construction, to show s1 wR s2 we only need to show the reachability
condition. Since the algorithm returns true at line 9.5, it holds that for each
u1 ∈ U1, there exists s ∈ post(reach(s2) ∩ R(s1)) such that s ∈ R(u1). This
is exactly the reachability condition required by weak simulation up to R, thus
s1 wR s2.

• The algorithm returns true at line 9.7. Thus, there exists breakpoint bi which is
valid for N (bi). Then, there exists a state s′1 ∈ post(s1) such that s′1 6∈ R−1(s2),
and s′2 ∈ post(s2) such that s′2 6∈ R(s1). By Lemma 6.2.1, we have that s1 wR s2.

Now we show the if direction. Assume that Ws returns false. It is sufficient to show
that s1 6wR s2. We consider two cases:

• The algorithm returns false at line 9.5. This implies that there exists a state
s′1 ∈ post(s1) such that s′1 6∈ R−1(s2) (line 9.1), and post(s2) ⊆ R(s1) (line 9.3).
All states s′1 ∈ post(s1) with s′1 6∈ R−1(s2) must be put into U1. However, since the
algorithm returns false at line 9.5, it holds that there exists a state u1 ∈ U1, such
that there does not exist s ∈ post(reach(s2) ∩ R(s1)) with s ∈ R(u1). Thus the
reachability condition of Definition 4.3.1 is violated which implies that s1 6wR s2.

96 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

s1

u1

1
2

v1

1
2

s1

u2

1
2

v2

1
2

u1 u2

1 %

v1 v2

1
2

1
2

γ
2

γ
2

Figure 6.8: A simple DTMC for illustrating that not all maximum flows are valid.

• The algorithm returns false at line 9.7. Then, there exists a state s′1 ∈ post(s1)
such that s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Moreover, for all
breakpoints b of N (γ), b is not valid for N (b). By Lemma 6.2.3, there does not
exist a valid γ for N (γ). By Lemma 6.2.1, we have that s1 6wR s2. �

Now we state the correctness of the algorithm SimRelw for DTMCs:

Theorem 6.2.5 (Correctness of Simrelw). If SimRelw(M) terminates, the returned
relation R equals wM.

Proof. The proof follows exactly the lines of the proof of Theorem 5.2.1. Let iteration k
be the last iteration of Ws. Then, by Lemma 6.2.4, for each pair (s1, s2) ∈ Rk, it holds
that s2 weakly simulates s1 up to Rk, so Rk is a weak simulation. On the other hand,
one can prove by induction that each Ri is coarser than w. �

Complexity For (s1, s2) ∈ R, we have shown that to check whether s1 wR s2 we could
first compute the breakpoints ofN (γ), then solve O(|V |) many maximum flow problems.
To achieve a better bound, we first prove that applying a binary search method over the
breakpoints, we only need to consider O(log |V |) breakpoints, and thus solve O(log |V |)
maximum flow problems.

Assume that the sets MUi and PVi for i = 1, 2 are constructed as before for N (γ).
Recall that a flow function f of N (γ) is valid for N (γ) iff f saturates all edges (1, u1)
with u1 ∈ MU1 and all edges (u2, %) with u2 ∈ MU2. If f is also a maximum flow, we
say that f is a valid maximum flow of N (γ). We first reformulate Lemma 6.2.1 using
maximum flow.

Lemma 6.2.6. There exists a valid flow f for N (γ) iff there exists a valid maximum
flow fm for N (γ).

Proof. Assume there exists a valid flow f for N (γ). We let Nf(γ) denote the residual
network. We use the augmenting path algorithm to get a maximum flow f ′ in the
residual network Nf(γ). Assume that the augmenting path contains no cycles, which is
a harmless restriction. Let fm = f + f ′. Obviously, fm is a maximum flow for N (γ),
and it saturates all of the edges saturated by f . Hence, fm is valid for N (γ). The other
direction is simple, since a valid maximum flow is also a valid flow for N (γ). �

We first discuss how to get a valid maximum flow provided that γ is valid. Observe
that even if γ is valid for N (γ), not all maximum flows for N (γ) are necessarily valid.
Consider the DTMC on the left part of Figure 6.8. Assume that the relation R is given

6.2. AN ALGORITHM FOR DTMCS 97

by {(s1, s2), (s1, v2), (v1, s2), (u1, u2), (u1, v2)} and consider the pair (s1, s2). Thus, we
have that PV1 = {v1}, MU1 = {u1}, PV2 = {v2}, MU2 = {u2}. The network N (γ) is
depicted on the right part of Figure 6.8. The maximum flow f for N (1) has value 0.5.
If f contains positive sub-flow along the path 1, u1, v2, %, it does not saturate the edge
(u2, %). On the contrary, the flow along the single path 1, u1, u2, % with value 0.5 would
be a valid maximum flow.

This example gives us the intuition to use the augmenting path through edges be-
tween MU1 and MU2 as much as possible. For this purpose we define a cost function
cost from edges in N (γ) to real numbers as follows: cost(u1, u2) = 2 for u1 ∈ MU1

and u2 ∈ MU2, cost(u1, v2) = 1 for u1 ∈ MU1 and v2 ∈ PV2, cost(v1, u2) = 1 for
v1 ∈ PV1 and u2 ∈ MU2, cost(s, s′) = 0 otherwise. The costs of edges starting from
source, or ending at sink, or in PV1 × PV2 are 0. The cost of a flow f is defined by
cost(f) =

∑

e∈E f(e)cost(e). By definition of the cost function, we have the property

cost(f) = f(1, MU1) + f(MU2, %), i.e., the cost equals the sum of the amount of flow
from 1 into MU1 and from MU2 into %.

Lemma 6.2.7. Assume that γ > 0 is valid for N (γ). Let fγ denote a maximum flow
over N (γ) with maximum cost. Then, fγ is valid for N (γ).

Proof. By Lemma 6.2.6, provided γ is valid for N (γ), there exists a valid maximum
flow function g for N (γ). Since g saturates edges to MU1 and from MU2, obviously,
cost(g) = P(s1, MU1)+ γP(s2, MU2). Assume that fγ is not valid, which indicates that
fγ does not saturate an edge (1, u1) with u1 ∈ MU1 or an edge (u2, %) with u2 ∈ MU2.
Then, cost(fγ) = f(1, MU1)+ f(MU2, %) < P(s1, MU1)+γP(s2, MU2) = cost(g). This
contradicts the assumption that fγ has maximum cost. �

Let NU(γ) denote the subnetwork of N (γ) where the set of vertices is restricted to
MU1, MU2 and {1, %}. The following lemma discusses how to construct a maximum
flow with maximum cost.

Lemma 6.2.8. Assume that f ∗ is an arbitrary maximum flow of NU(γ) and f̃ is an
arbitrary maximum flow in the residual network Nf∗(γ) with the residual edges from MU1

back to 1 removed, as well as the residual edges from % back to MU2. Then fγ = f ∗ + f̃
is a maximum flow over N (γ) with maximum cost.

Proof. Recall that the cost of fγ is equal to cost(fγ) = fγ(1, MU1)+fγ(MU2, %). Assume
that cost(fγ) is not maximal for the sake of contradiction. Let f be a maximum flow
such that cost(fγ) < cost(f). Without loss of generality, we assume that fγ(1, MU1) <
f(1, MU1). It holds that fγ = f ∗ + f̃ where f ∗ is a maximum flow of NU(γ), and f̃ is a
maximum flow in the residual network Nf∗(γ) with the residual edges from MU1 back
to 1 removed, as well as the residual edges from % back to MU2. On the one hand,
f ∗ sends as much flow as possible along MU1 in NU(γ). Since in the residual network
Nf∗(γ) edges from MU1 back to 1 are removed, this guarantees that no flow can be sent
back to 1 from MU1. On the other hand, f̃ sends as much flow as possible from MU1 to
PV2 (and also from PV1 to MU2) in Nf∗(γ). Thus, fγ(1, MU1) must be maximal which
contradicts the assumption fγ(1, MU1) < f(1, MU1). �

98 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

Assume that γ∗ is not valid. The following lemma determines, provided a valid γ
exists, whether it is greater or smaller than γ∗:

Lemma 6.2.9. Let γ∗ ∈ [0,∞), and let f be a maximum flow function with maximum
cost for N (γ∗), as described in Lemma 6.2.8. Then,

1. If f saturates all edges (1, u1) with u1 ∈ MU1 and (u2, %) with u2 ∈ MU2, γ∗ is
valid for N (γ∗).

2. Assume that ∃u1 ∈ MU1 such that (1, u1) is not saturated by f , and all edges
(u2, %) with u2 ∈ MU2 are saturated by f . Then, γ∗ is not valid. If there exists a
valid γ, γ > γ∗.

3. Assume that all edges (1, u1) with u1 ∈ MU1 are saturated by f , and ∃u2 ∈ MU2

such that (u2, %) is not saturated by f . Then, γ∗ is not valid. If there exists a valid
γ, γ < γ∗.

4. Assume that ∃u1 ∈ MU1 and ∃u2 ∈ MU2 such that (1, u1) and (u2, %) are not
saturated by f . Then, there does not exist a valid γ.

Proof. 1 : Follows directly from the definition. 2 : In this case, f(1, u1) < P(s1, u1) for
some u1 ∈MU1. To saturate (1, u1), without un-saturating other edges from 1 to MU1,
we have to increase the capacities of edges leading to %, thus increase γ∗. 3 : Similar to
the previous case. 4 : Combining 2 and 3. �

According to the above lemma, we can use the binary search method over the break-
points to check whether there exists a valid breakpoint for N (γ). Since there are at
most O(|V |) breakpoints, we invoke the maximum flow algorithm at most O(log |V |)
times where |V | is the number of vertices of N (γ).

Theorem 6.2.10 (Complexity of SimRelw). The algorithm SimRelw(M) runs in time
O(m2n3) and in space O(n2). If the fanout g is bounded by a constant, the time com-
plexity is O(n5).

Proof. First, we consider a pair (s1, s2) out of the current relation Ri. Look at a single
call of Ws(M, s1, s2, Ri). By saving the current relation sets R and R−1 in a two
dimensional array, the conditions s ∈ R(s′) or s ∈ R−1(s′) can be checked in constant
time. Hence, line 9.1 takes time |post(s1)|. To construct the set reach(s) for a state s,
BFS can be used, which has complexity O(m). The size of the set reach(s) is bounded
by n. Therefore, we need O(|post(s1)|n) time at lines 9.3–9.5.

The algorithm computes all breakpoints of N (γ) (with respect to s1, s2 and R) using
the breakpoint algorithm [53, p. 37–42]. Assume the set of vertices ofN (γ) is partitioned
into subsets V1 and V2 similar to the network described in Section 5.2.1. The number
of edges of the network is at most |E| := |V1| |V2| − 1. Let |V | := |V1| + |V2|, and,
without loss of generality, we assume that |V1| ≤ |V2|. For our bipartite networks, the

time complexity [53, p. 42] for computing the breakpoints is O(|V1| |E| log(|V1|
2

|E|
+ 2))

which can be simplified to O(|V1|
2 |V2|). Then, the binary search can be applied over

6.2. AN ALGORITHM FOR DTMCS 99

all of the breakpoints to check whether at least one breakpoint is valid, for which we
need to solve at most O(log |V |) many maximum flow problems. For our network N (γ),
the best known complexity1 of the maximum flow problem is O(|V |3 / log |V |) [31]. As
indicated by Lemma 3.3.3, the distance function is bounded by 4 |V1| for our bipartite
network. Applying this fact in the complexity analysis in [31], we get the corresponding
complexity for computing maximum flow for bipartite networks O(|V1| |V |

2 / log |V |).
Hence, the complexity for the O(log |V |)-invocations of the maximum flow algorithm is
bounded by O(|V1| |V |

2). As |V | ≤ 2 |V2|, the complexity is equal to O(|V1| |V2|
2). Recall

|V1| equals post(s1), up to a constant of 2. Summing over all (s1, s2) over all Ri, we get
the overall complexity of SimRelw(M):

k
∑

i=1

∑

(s1,s2)∈Ri

(|post(s1)|+ m + |post(s1)|n + |V1| |V2|
2) ≤ 4knm2 (6.1)

Recall that in the algorithm SimRelw(M), the number of iterations k is at most n2.
Hence, the time complexity is O(m2n3). The space complexity is O(n2) because of the
representation of R. If the fanout is bounded by a constant g, we have m ≤ gn, and get
the complexity O(n5). �

6.2.4 An Improvement

The algorithm Ws(M, s1, s2, R) is dominated by the part in which all breakpoints (O(n)
many) must be computed, and a binary search is applied to the breakpoints, with
O(log n) many feasible flow problems. In this section we discuss how to achieve an
improved algorithm if the network N (γ) can be partitioned into sub-networks.

Let H denote the sub-relation R ∩ [(post(s1) ∪ {s1}) × (post(s2) ∪ {s2})], which is
the local fragment of the relation R. Now let A1, A2, . . . Ah enumerate the classes of the
equivalence relation (H ∪H−1)∗ generated by H , where h denotes the number of classes.
W. l. o. g., we assume in the following that Ah is the equivalence class containing s1 and
s2, i. e., s1, s2 ∈ Ah . The following lemma gives some properties of the sets Ai provided
that s1 wR s2:

Lemma 6.2.11. For (s1, s2) ∈ R, assume that there exists a state s′1 ∈ post(s1) such
that s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Let A1, . . . , Ah be the sets
constructed for (s1, s2) as above. If s1 wR s2, the following hold:

1. P(s1, Ai) > 0 and P(s2, Ai) > 0 for all i < h,

2. γi = K1

K2
for all i < h where γi = P(s1,Ai)

P(s2,Ai)

Proof. Since s1 wR s2, we let δi, Ui, Vi, ∆ (for I = 1, 2) as described in Definition 4.3.1.
Because of states s′1 and s′2, we have K1 > 0, K2 > 0. Let post i(sj) = Ai ∩ post(sj) for
i = 1, . . . , h and j = 1, 2. We prove the first part. For i < h, the set Ai does not contain

1For a network G = (V, E) with small |E|, there are more efficient algorithms in [32] with complexity

O(|V |2
√

|E|), and in [78] with complexity O(|E| |V |+ |V |2+ǫ) where ǫ is an arbitrary constant. In our

bipartite networks, however, |E| is in the order of |V |2. Hence, these complexities become O(|V |3).

100 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

Algorithm 10 Algorithm to check whether s1 wR s2 tailored to DTMCs.

WsImproved(M, s1, s2, R)

10.1: Construct the partition A1, . . . , Ah (* Assume that h > 1 *)
10.2: for all i← 1, 2, . . .h − 1 do
10.3: if P(s1, Ai) = P(s2, Ai) = 0 then
10.4: raise error
10.5: else if P(s1, Ai) = 0 or P(s2, Ai) = 0 then
10.6: return false
10.7: else
10.8: γi ←

P(s1,Ai)
P(s2,Ai)

10.9: if γi 6= γj for some i, j < h then
10.10: return false
10.11: return (γ1 is valid for N (γ1))

s1 nor s2, but only (some of) their successors, so it is impossible that both P(s1, Ai) = 0
and P(s2, Ai) = 0. W. l. o. g., assume that P(s1, Ai) > 0. There exists t ∈ post i(s1) such
that P(s1, t) > 0. Obviously δ1(t) = 1, thus:

0 < P(s1, t) =
K1∆(t, U2)

δ1(t)
= K1∆(t, U2)

which implies that ∃u2 ∈ Ai with ∆(t, u2) > 0. Again by the property of the weight
function ∆, it holds: P(s2, u2) = K2∆(U1, u2) ≥ K2∆(t, u2) > 0. Now we prove the
second part. It holds that:

P(s1, Ai) =
∑

ai∈Ai

P(s1, ai) =
∑

ai∈post i(s1)

P(s1, ai)

(∗)
=

∑

ai∈post i(s1)

K1∆(ai, U2)

δ1(ai)

(!)
= K1 ·

∑

ai∈post i(s1)

∆(ai, U2)

(†)
= K1 ·

∑

ai∈post i(s1)

∆(ai, Ai) = K1 ·
∑

ai∈Ai

∆(ai, Ai)

where (∗) follows from Condition 2b of Definition 4.3.1, (!) follows from the equation
δ1(ai) = 1 for all ai ∈ post i(a1) with i < n, and (†) follows from the fact that if
a ∈ post i(s1), then ∆(a, b) = 0 for b ∈ U2\post i(s2). In the same way, we get P(s2, Ai) =
K2 ·

∑

ai∈Ai
∆(Ai, ai). Therefore, γi = K1

K2
for 1 ≤ i < h. �

For the case h > 1, the above lemma allows to check whether s1 wR s2 efficiently.
For this case we replace lines 9.6–9.7 of Ws by the sub-algorithm WsImproved in
Algorithm 10. The partition A1, . . . , Ah is constructed in line 10.1. Lines 10.2–10.10
follow directly from Lemma 6.2.11: if γi 6= γj for some i, j < h, we conclude from
Lemma 6.2.11 that s1 6wR s2. Line 10.11 follows from the following lemma, which is the
counterpart of Lemma 6.2.1:

6.2. AN ALGORITHM FOR DTMCS 101

Lemma 6.2.12. For (s1, s2) ∈ R, assume that there exists a state s′1 ∈ post(s1) such
that s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Assume that h > 1, and
assume WsImproved(M, s1, s2, R) reaches line 10.11. Then, s1 wR s2 iff γ1 is valid
for N (γ1).

Proof. Assume first that s1 wR s2. According to Lemma 6.2.1, there exists a valid γ∗

for N (γ∗). As in the proof of Lemma 6.2.1, γ∗ = K1

K2
is valid for N (γ∗). If Ws reaches

line 10.11, by Lemma 6.2.11, we have γ1 = K1

K2
, hence, γ1 is valid for N (γ1). The other

direction follows directly from Lemma 6.2.1. �

Example 6.2.6. Consider again the DTMC in Figure 6.2, together with the relation
R = {(s1, s2), (s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. By defi-
nition, we have H = R\{(o2, o1)}, A1 = {u1, u2}, and A2 = {s1, s2, v1, v2, o1, o2, o3}. In
this case we have h = 2. Recall that MU1 = {u1, o1}, MU2 = {u2, o2, o3}, PV1 = {v1},

PV2 = {v2}. We have P(s1, A1) = 1
4

and P(s2, A1) = 1
8
. Hence, γ1 = P(s1,A1)

P(s2,A1)
= 2. As

we have shown in Example 6.2.3, 2 is valid for the network N (2). Hence, s1 wR s2.

Assume that (s1, s2) ∈ R1 such that h > 1 in the first iteration of SimRelw. We

consider the set A1 and let γ1 = P(s1,A1)
P(s2,A1)

. If A1 is not split in the next iteration, γ1

would not change, and hence, we can reuse the network constructed in the last iteration.
Assume that in the next iteration A1 is split into two sets Aa

1 and Ab
1. There are two

possible cases:

• either
P(s1,Aa

1
)

P(s2,Ab
1
)

=
P(s1,Aa

1
)

P(s2,Ab
1
)
. This implies that both of them are equal to γ1. If all Ai

are split like A1, we just check whether γ1 is valid for N (γ1).

• or
P(s1,Aa

1
)

P(s2,Ab
1
)
6=

P(s1,Aa
1
)

P(s2,Ab
1
)
. This case is simple, we conclude s1 6wR s2 because of

Lemma 6.2.11.

This indicates that once in the first iteration γ1 is determined for (s1, s2), either it does
not change throughout the iterations, or we conclude that s1 6wR s2 directly. The above
analysis can be generalised to the case in which A1 is split into more than two sets.
As the network N (γ1) is fixed, we can apply an algorithm similar to Smf, which solves
the maximum flow problems during all subsequent iterations using only one parametric
maximum flow, as for strong simulation.

The above analysis implies that if h > 1 for all (s1, s2) in the initial R1, we could even
establish the time bound O(m2n), the same as for strong simulation. Since in the worst
case it could be the case that h = 1 for all (s1, s2) ∈ R, the algorithm WsImproved

does not improve the worst case complexity.

Since the case that the network cannot be partitioned (h = 1) is the one that requires
most of our attention, we suggest a heuristic approach that can reduce the number of
occurrences of this case. We may choose to run some iterations incompletely (as long as
the last iteration is run completely). If iteration i is incomplete, we first check for each
pair (s1, s2) ∈ Ri whether the corresponding hi is greater than 1. If not, we skip the
test and just add (s1, s2) to Ri+1. The intuition is that in the next complete iteration
i′ > i, for each such pair (s1, s2) we hope to get hi′ > 1 because some other elements of
Ri have been thrown out. We only perform the expensive computation if in iteration i
for every pair (s1, s2) ∈ Ri it holds that h = 1.

102 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

6.3 An Algorithm for CTMCs

LetM = (S,R, L) be a CTMC. We now discuss how to handle CTMCs. Recall that in
Definition 4.3.2, we have the rate condition 3′: K1R(s1, S) ≤ K2R(s2, S). To determine
wM, we simplify the algorithm for DTMCs. If K1 > 0 and K2 = 0, s1 6wR s2 because
of the rate condition. Hence, we do not need to check the reachability condition, and
lines 9.3–9.5 of the algorithm Ws(M, s1, s2, R) can be skipped. For states s1, s2 and
relation R, we useN (γ) to denote the network defined in the embedded DTMC emb(M).
To check the additional rate condition we use the following lemma:

Lemma 6.3.1. Let s1 R s2. Assume that there exists s′1 ∈ post(s1) such that s′1 6∈
R−1(s2). Then, s1 wR s2 in M iff there exists γ ≤ R(s2, S)/R(s1, S) such that γ is
valid for N (γ).

Proof. (=⇒): Assume first s1 wR s2 inM. Let δi, Ui, Vi, Ki, ∆ (for i = 1, 2) as described
in Definition 4.3.2. Obviously, s′1 must be in U1, implying that K1 > 0. Because of the
rate condition it holds that K1R(s1, S) ≤ K2R(s2, S), which implies that K2 > 0. It
is sufficient to show that γ := K1/K2 is valid for N (γ). Exactly as in the proof of
Lemma 6.2.1 (the only if direction), we can construct a valid flow f for N (γ). Thus, γ
is valid for N (γ) and γ ≤ R(s2, S)/R(s1, S).

(⇐=): By assumption, γ is valid for N (γ). We may assume that there exists a valid
flow function f for N (γ). We define δi, Vi, Ui, Ki, ∆ (for i = 1, 2) as in the proof (the
if direction) of Lemma 6.2.1. Recall that s′1 must be in U1, implying that f(1, s′1) > 0.
Thus, there must be a node s in N (γ) with f(s, %) > 0, which implies that s ∈ U2.
Thus we have K2 > 0. Using the proof (the if direction) of Lemma 6.2.1, it holds that
s1 wR s2 in emb(M), moreover, it holds that γ = K1/K2. By assumption it holds that
γ ≤ R(s2, S)/R(s1, S) which is exactly the rate condition. �

To check the rate condition for the case h > 1, we replace line 10.11 of the algorithm
WsImproved by:

return (γ1 ≤ γ∗ ∧ γ1 is valid for N (γ1))

where γ∗ = R(s2, S)/R(s1, S) can be computed directly. In case h = 1, we replace
line 9.7 of Ws by:

return (∃i ∈ {1, . . . , j}. bi ≤ γ∗ ∧ bi is valid for N (bi))

to check the rate condition. Or, equivalently, we can check whether the minimal valid
breakpoint γm is smaller than or equal to γ∗. The binary search algorithm introduced
for DTMCs can also be modified slightly to find the minimal valid breakpoint. The idea
is that, if we find a valid breakpoint, we first save it, and then continue the binary search
on the left side. If another breakpoint is valid, we save the smaller one. As the check for
the reachability condition disappears for CTMCs, we get even a better bound for sparse
CTMCs:

Theorem 6.3.2. If the fanout g of M is bounded by a constant, the time complexity
for CTMC is O(n4).

6.4. EXPERIMENTAL RESULTS 103

Proof. In the proof of Theorem 6.2.10 we have shown that the algorithm Ws has com-
plexity O(|V1| |V2|

2). As we do not check the reachability condition for CTMCs, the over-
all complexity of SimRelw(M) reduces to:

∑

s1∈S

∑

s2∈S

∑l
i=1

(

|post(s1)|+ |V1| |V2|
2)

(see Inequality 6.1), which is bounded by 2kgm2. Since k is bounded by n2, the time
complexity is bounded by 4gm2n2. If g is a constant, we have m ≤ gn, hence, the time
complexity is 4g3n4 ∈ O(n4). �

6.4 Experimental Results

Consider the DTMC in Figure 5.11. For this DTMC, our algorithm provides the weak
simulation relation R =- ∪ {(2i−1, 2i+2) | i = 2, . . . , k−1}∪{(i, 2j) | j = 2, . . . , k−1∧
i > 2j}. We first discuss that R is indeed a weak simulation. Recall the strong simulation
is - = I ∪ {(2i− 1, 2i) | i = 1, . . . , k} where I = I(S) ∪ {(0, i) | i = 3, 4, . . . , 2k}. Since
strong simulation is finer than then weak simulation, it holds that - ⊆ w. Thus, for all
pair (s1, s2) with s1 - s2 the conditions with respect to weak simulation up to R (cf.
6.1.1) are satisfied. The other pairs in R also satisfy condition of Definition 6.1.1:

• Consider the pair (2i − 1, 2i + 2) with i = 2, . . . , k − 1. We define the functions
δi as follows: δ1(0) = δ1(2i − 3) = δ1(2i − 2) = 1, and δ2(2i + 2) = δ2(2i − 3) =
δ2(2i − 2) = 0. Thus, V1 = U2 = ∅. Obviously, it holds that (2i − 1, v) ∈ R for
v ∈ V2. The reachability condition can be checked directly.

• Now consider the pair (i, 2j) where j = 2, . . . , k − 1 and i > 2j. For this pair, we
define δi such that U1 = V2 = ∅. It is easy to check that for each s ∈ V1, it holds
that (s, 2j) ∈ R.

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

k

Figure 6.9: The running time for the DTMC in Figure 5.11.

Figure 5.11 plots the time needed to compute the weak simulation for several k. Re-
call for strong simulations the number of iterations needed is k+1. For weak simulation,
the iterations needed are 2k + 1. As we observe from the figure, even for small number
of k = 10, more than two minutes are needed, whereas for strong simulation only 0.01
second is needed. Indeed, the performance is too high for it to be of practical value.

104 CHAPTER 6. ALGORITHMS FOR WEAK SIMULATIONS

6.5 Bibliographic Notes

In the non-probabilistic models, the computation of weak and branching bisimulation is
theoretically dominated by the need to compute the transitive closure of internal transi-
tions. This alone has complexity O(n3) (disregarding some very specialized algorithms
for transitive closure such as [40]). Based on the transitive closure, a partition refine-
ment based approach [88] can then be used to achieve an algorithm with complexity
O(n3 +m∗ log n), where m∗ denotes the size of the transitive closure of the model. Since
m∗ is bounded by n2, the above complexity is in O(n3).

In an action-labelled variant of DTMCs, weak bisimulation [12] is introduced to ab-
stract internal behaviour. Because of the probabilistic branching, the induced weak
transition relation is in general infinite, implying the closure based method can not
be applied. Baier and Hermanns [12] exploited the fact that weak bisimulation and
branching bisimulation coincide for this model, and devised a modification of the par-
tition refinement technique to arrived at an O(n3) algorithm for deciding such weak
bisimulations. Weak simulation is decidable in polynomial time [13] by reducing it to
a linear programming problems. In the context of PAs, decision algorithms with expo-
nential complexity have been proposed for weak bisimulations in [30]. For alternating
models (which is a subclass of PAs), polynomial algorithms have been studied in [92].
Polynomial algorithms have also been proposed for delay bisimulation and simulation
relations [19, 107] (which are coarser than strong bisimulation and simulation relations
respectively, and finer than weak bisimulation and simulation relations respectively).

Also closely related is the decision algorithm for weak bisimulation for interac-
tive Markov chains (IMCs) [65]. As for non-probabilistic models, the complexity is
O(m∗ log n + n3) where the transitive closure is bounded by m∗ ≤ n2. A dedicated
algorithm for weak bisimulation for acyclic IMCs is studied in [42]. Even though the
worst case complexity is still cubic in the number of states, as noted in [58], the tran-
sitive closure computation does not dominate in practical applications (then the above
complexity becomes O(m∗ log n)).

6.6 Summary

In this chapter we have developed algorithms for deciding weak simulation for DTMCs
and CTMCs respectively. Since the membership of a state can be split arbitrarily into
visible and invisible parts, maximum flow based method is not directly applicable. We
considered a parametric network, and then computed a sequence of finite key values,
called breakpoints, using the parametric maximum flow algorithm. Only these break-
points need to be considered: For each of the breakpoints, the corresponding weight
function for the conditional distributions can be checked, as for strong simulations, via
maximum flow algorithms. We arrived at an algorithm with time complexity O(m2n3)
and space complexity O(n2).

Chapter 7

Simulation Based Minimisation

If a simulation preorder - is computed, the corresponding simulation equivalence -∩%

can be obtained. Then, the simulation quotient automaton can be constructed from
it. For strong simulation, the quotient automaton can be constructed with complexity
O(m2n) for all models considered. For DTMCs and CTMCs, it is shown [18] that strong
simulation equivalence and strong bisimulation coincide. Thus, the quotient automaton
induced by strong simulation equivalence is the same as the one induced by strong
bisimulation, which can be determined with complexity [45] O(m log n). For PAs and
CPAs, strong simulation equivalence is strictly coarser than the strong bisimulation
equivalence. Since it is coarser, the induced quotient automaton is potentially smaller
than strong bisimulation quotient automaton. This is not surprising, as PAs subsume
labelled transition systems, in which strong simulation equivalence is strictly coarser
than strong bisimulation. In this chapter, we propose an efficient partition refinement
based algorithm for computing simulation quotient automata for PAs and CPAs.

We first discuss the smallest quotient automaton induced by strong simulation pre-
order for probabilistic automaton. Then, we discuss how to incorporate the partition
refinement scheme into the algorithm for deciding strong simulation preorder for PAs.
As in the non-probabilistic setting, we first show that strong simulation relations can
also be characterised by partition pairs, thus the problem can be reduced to generalised
coarsest partition problems (GCPPs). Since in PAs, states have in general non-trivial
distributions instead of a single state as successors, a new proof technique is needed for
the partition refinement scheme: In the non-probabilistic setting, edges have no labels
and predecessor-based method can be used to refine the partition. This cannot be ex-
tended to the probabilistic setting in an obvious way, since, in PAs, states have successor
distributions equipped with action labels. We propose a graph-based analysis to refine
the partition for PAs. As in [54], the relation over the partition is refined according to
stability conditions. We arrive at an algorithm with space complexity O(n2

∼ + n log n⋄)
where n∼ and n⋄ denote the number of states in the quotient automaton with respect to
the strong bisimulation and simulation preorder respectively. The O(n2

∼) part is needed
to refine the partition. For saving the partition relation, n2

⋄ ∈ O(n2
∼) is needed. The

O(n log n⋄) part is needed to save to which simulation equivalence class a state belongs
to. The time complexity is rather excessive O(mn⋄ + m2

⋄n
4
⋄ + m2

∼n2
⋄) where m∼ and m⋄

denote the number of transitions in the strong bisimulation, and simulation quotient
respectively. Similar to algorithms for deciding simulation preorder for PAs (cf. Chap-

105

106 CHAPTER 7. SIMULATION BASED MINIMISATION

ter 5), one can use the parametric maximum flow idea to improve the time complexity.
However, more memory is then needed due to the storage of the networks and the flow
values of the corresponding networks across iterations. We show combined with the para-
metric maximum flow technique, our algorithm has time complexity O(mn⋄ + m2

∼n2
⋄)

and space complexity O(m2
⋄ + n2

∼ + n log n⋄).

We have implemented both the space-efficient and time-efficient variants of the par-
tition refinement based algorithm. Experimental results show that the space-efficient
algorithm is very effective: not only the space-efficiency is improved drastically, often
orders of magnitude less time is required. As for strong simulations, both regular and
random experiments show that the parametric maximum flow based implementation
does not perform better in general.

Organisation of this Chapter. In Section 7.1 we introduce the notion of quotient
automata and show that every probabilistic automaton has a quotient automaton which
is the smallest in size, and this quotient automaton can be obtained by the strong
simulation preorder. In Section 7.2, we show that strong simulation relations can also
be characterised by partition pairs. Using this, we develop a partition refinement based
algorithm for computing the strong simulation preorder in Section 7.3. Finally, we report
experimental results in Section 7.5 and discuss related works in Section 7.6. We conclude
this chapter in Section 7.7.

In this chapter we do not consider weak simulations. If no confusion arises, we use
“simulation” to refer to “strong simulation”.

7.1 The Quotient Automata

The strong simulation we have considered until now relates states within one PA. It can
be lifted to the automaton level. Intuitively, a PA M is simulated by M′ if the initial
state ofM is simulated by the initial state ofM′. Simulation between PAs relates their
initial states. Thus, in this section, we equip each single PA with an additional initial
state: a PA is then a tupleM = (S, s0, Act,P, L) where s0 is the initial state. It is then
a notational convenience to define the direct sum of two PAs:

Definition 7.1.1 (Direct Sum). Consider the two PAs Let M1 = (S1, s1, Act1,P1, L1)
and M2 = (S2, s2, Act2,P2, L2) with disjoint set of states. The direct sum of M1 and
M2, denoted byM1⊕M2, is a PA (S, s1, Act,P, L) with S = S1∪S2 as its set of states,
the transitions are defined by P = P1 ∪ P2, and the labelling function L : S → 2AP is
defined by: L(s) = L1(s) if s ∈ S1, and L(s) = L2(s) if s ∈ S2.

The choice of the initial state is arbitrary: The direct sum is only used to define a
relation on the common state space, thus the initial state is of no interest. Now we give
the definition of simulation for PAs:

Definition 7.1.2 (Simulation for PAs). Let M1 = (S1, s1, Act1,P1, L1) and M2 =
(S2, s2, Act2,P2, L2) be two PAs, and let M1 ⊕M2 = (S, s1, Act,P, L) be their direct
sum. Then, we say that M2 simulates M1, denoted by M1 -⊕ M2, if there exists a
simulation R ⊆ S × S over M1 ⊕M2 such that s1 R s2.

7.1. THE QUOTIENT AUTOMATA 107

If M1 -⊕ M2 and M2 -⊕ M1, we say that they are simulation equivalent, and
writeM1 ≃⊕M2.

Computing the simulation preorder for a given PA does not depend on the initial
state, thus, in the previous chapters, we have omitted the initial state. However, the
definition of simulation relation between PAs requires that the initial states of the PAs
are related. Thus, in the discussion of this section, we assume that there is an initial
state for a PA.

s1

s2 s3

s4 s5 s6 s7 s8

α α

.5

β

.4 .6

β
.6 .4

β

u1

u3

u5 u6 u7 u8

α

.4 .6
β

.6 .4

β

Figure 7.1: Two PAs for illustrating the simulation relations.

Example 7.1.1. LetM1 denote the PA on the left side of Figure 7.1, and letM2 denote
the PA on the right side. Assume that the initial state ofM1 is s1, and the initial state
of M2 is u1. The direct sum M1 ⊕M2 is exactly the PA considered in Example 4.1.4.
Since in M1 ⊕M2 it holds that s1 ≃ u1, we have that M1 -⊕ M2, M2 -⊕ M1 and
thatM1 ≃⊕M2.

Partitions. A partition of S is a set Σ which consists of pairwise disjoint subsets of
S such that S = ∪B∈ΣB. The elements of a partition are also referred to as blocks. A
partition Σ is finer than Σ′ if for each block Q ∈ Σ there exists a unique block Q′ ∈ Σ′

such that Q ⊆ Q′. If Σ is finer than Σ′, the parent block of B ∈ Σ with respect to
Σ′, denoted by ParΣ′(B), is defined as the unique block B′ ∈ Σ′ with B ⊆ B′. For
s ∈ S, let [s]Σ denote the unique block in Σ containing state s. If Σ is clear from the
context, we write simply [s]. For a distribution µ ∈ Dist(S) and a partition Σ over
S, we define liftΣ(µ) ∈ Dist(Σ), the induced lifted distribution with respect to Σ, by:
liftΣ(µ)(B) =

∑

s∈B µ(s) for B ∈ Σ. In case that the distribution µ ∈ Dist(S) is sub-
stochastic, liftΣ(µ)(B) is also sub-stochastic. For technical reasons, we let {⊥} denote
the unique block containing ⊥, and let Σ⊥ denote the set Σ∪ {{⊥}}, and we write that
liftΣ(µ)({⊥}) := 1− µ(S).

For a given PAM = (S, s0, Act,P, L), a partition Σ over S is called consistent with
respect to the labelling function L, if for all B ∈ Σ and for all s, s′ ∈ B it holds that
L(s) = L(s′). Intuitively, if Σ is consistent with respect to L, states in the same block
have the same labelling. Recall s - s′ implies that L(s) = L(s′). In this chapter we
consider only partitions which are consistent with respect to L. For consistent partition
Σ and B ∈ Σ, we write L(B) to denote the labelling of B.

The partition Σ over S induces an equivalence relation ≡Σ defined by: s ≡Σ s′ iff
[s] = [s′]. If R is an equivalence relation, we let S/R denote the set of equivalence

108 CHAPTER 7. SIMULATION BASED MINIMISATION

classes, which can also be considered a partition of S. Let I(S) = {(s, s) | s ∈ S}
denotes the identity relation. For an arbitrary relation R with I(S) ⊆ R, let R∗ denote
the transitive closure of it, which is a preorder. It induces an equivalence relation ≡R∗

defined by: s ≡R∗ s′ if sR∗s′ and s′R∗s. As a shorthand notation, we let S/R∗ denote
the corresponding set of equivalence classes S/≡R∗ .

The Quotient Automata. LetM = (S, s0, Act,P, L) be a PA, and consider the par-
tition Σ over S. For notational convenience, we use µ ∈ Dist(S) to denote a distribution
over S, and πΣ ∈ Dist(Σ) to denote a lifted distribution over the partition Σ. If the
partition Σ is clear from the context, we use π instead of πΣ. For a set B ⊆ S, we write

• B
α
→ πΣ if there exists s ∈ B and s

α
−→ µ with πΣ = liftΣ(µ),

• B
α
֌ πΣ if for all s ∈ B there exists s

α
−→ µ with πΣ = liftΣ(µ).

The transition B
α
→ πΣ is also called an ∃-transition of B with respect to Σ, and

B
α
֌ πΣ is also called a ∀-transition of B with respect to Σ.

Definition 7.1.3 (∃-Quotient Automaton). Let M = (S, s0, Act,P, L) be a PA, and Σ
be a partition over S. The ∃-quotient automaton ∃M/Σ is the tuple (Σ, B0, Act,P∃, L

′)
where B0 is the unique block containing s0, and the transition matrix is defined by: P∃ =
{(B, α, πΣ) | B ∈ Σ ∧ B

α
→ πΣ}, and the labelling function is defined by L′(B) = L(B).

Intuitively, in the ∃-quotient automaton, the set of transitions are the ∃-transitions
with respect to Σ. For block B, L′(B) is well defined because we have assumed that the
partition Σ is consistent with respect to L. If no confusion arises, we use B both as a
state in the ∃-quotient automaton, and as a set of states inM.

Some notations for ∃M/Σ are in order. For s ∈ Σ and α ∈ Act(s), let

StepsΣ,α(s) = {π ∈ Dist(Σ) | s
α
−→ µ ∧ π = liftΣ(µ)}

denote the set of lifted distributions with respect to Σ for all α-successor distributions
of s. For B ∈ Σ let StepsΣ,α(B) = ∪s∈BStepsΣ,α(s).

Similarly, we define the ∀-quotient automaton:

Definition 7.1.4 (∀-Quotient Automaton). Let M = (S, s0, Act,P, L) be a PA, and
Σ be a partition over S. The ∀-quotient automaton ∀M/Σ is defined as the tuple
(Σ, B0, Act,P∀, L

′) where the transition matrix is defined by: P∀ = {(B, α, πΣ) | B ∈

Σ ∧B
α
֌ πΣ}, and the labelling function is defined by L′(B) = L(B).

The labelling function L′ is defined the same as for the ∃-quotient automaton. The
following lemma is a direct consequence of Definition 7.1.3 and 7.1.4.

Lemma 7.1.1. LetM = (S, s0, Act,P, L) be a PA, and Σ be a partition over S. Then,
the ∀-quotient automaton ∀M/Σ can be obtained from the ∃-quotient automaton ∃M/Σ

by eliminating the little brothers in ∃M/Σ:

7.1. THE QUOTIENT AUTOMATA 109

s1

s2 s3

s4 s5 s6 s7 s8

α α

.5

β

.4 .6

β
.6 .4

β

s′1

s′2 s′3

s′4 s′5 s′6 s′7 s′8

α

.5

β

.4 .6
β

.6 .4

β

Figure 7.2: A PAM (on the left side) and the PAM′ obtained by eliminating the little
brothers (on the right side).

Example 7.1.2. Consider the direct sum M1 ⊕M2 in Example 7.1.1, and let Σ =
∪5

i=1Bi be a partition over S1 ∪ S2 where Bi is defined by: Bi = {si, ui} if i = 1, 3,
B2 = {s2}, B4 = {s4, s6, s8, u6, u8} and B5 = {s5, s7, u5, u7}. The ∃-quotient automaton
∃M/Σ is the PA on the left side (reachable from state s1) in Figure 7.1 (with the
appropriate relabelling of states), and the ∀-quotient automaton ∀M/Σ is the PA on the
right side (reachable from state u1).

7.1.1 The Minimal Quotient Automaton

LetM = (S, s0, Act,P, L) be a PA. In this section we show that there exists a PA which
is simulation equivalent withM, and is the smallest in size.

In the non-probabilistic setting [29], the notion of little brothers is introduced which
states that state s1 is a little brother of s2 if they have a common predecessor s3, and s2

simulates s1 but not the other way around. Recall - denotes the simulation preorder of
M. We lift the notion of little brothers to PAs:

Definition 7.1.5. Let s ∈ S be a state, and let α ∈ Act(s) be an enabled action out
of s. For two distributions µ, µ′ ∈ Stepsα(s), we say that µ is a little brother of µ′ if it
holds that µ ⊑- µ′ and µ′ 6⊑- µ.

Intuitively, µ is a little brother of µ′ if there exists a state s and an action α, such
that they both are α-successor distributions of s, and that there exists a weight function
for (µ, µ′) with respect to - but not the other way around.

Example 7.1.3. Consider the PA depicted on the left part of Figure 7.2. Assume that
s1 is the initial state. Let µ1 and µ2 denote the left and right α-successor distributions
of s1 respectively. By Definition 7.1.5, µ1 is a little brother of µ2.

In the following we show that by eliminating the little brothers from each state s ∈ S
in a PA we get a simulation equivalent PA. We let the set S ′ denote a copy s′ ∈ S ′ of
each state s ∈ S where S ′ = {s′ | s ∈ S}. For µ ∈ Dist(S), let µ′ denote the distribution
in Dist(S ′) such that µ′(s′) = µ(s) for all s ∈ S. The PA M′ = (S ′, s′0, Act,P′, L′),
obtained from M by eliminating little brothers, is defined by: P′ ⊆ P such that if
(s, α, µ) ∈ P and µ is not a little brother implies that (s′, α, µ′) ∈ P′. The labelling
function is defined by L′(s′) = L(s) for all s ∈ S.

110 CHAPTER 7. SIMULATION BASED MINIMISATION

Lemma 7.1.2. Let M be a PA. We considerM′ which is the PA obtained from M by
eliminating all little brothers. Then, M≃⊕M′.

Proof. LetM = (S, s0, Act,P, L), and letM′ = (S ′, s′0, Act,P′, L′) denote the obtained
PA by eliminating little brothers ofM. Let ≃ and - denote the simulation equivalence
and simulation preorder respectively, in the direct sumM⊕M′. It is sufficient to show
that s0 ≃ s′0.

We first show that R = {(s1, s
′
2) ∈ S × S ′ | s1 -M s2} is a simulation relation over

M⊕M′. Let (s1, s
′
2) ∈ R. Thus s1 -M s2 implying that L(s1) = L(s2) = L(s′2). Let

α ∈ Act(s1) and let s1
α
−→ µ1. We consider two cases. In the first case, assume that there

is µ2 such that s1
α
−→ µ2, and µ1 is a little brother of µ2. Without loss of generality,

assume that µ2 is not a little brother of any other α-distribution of s1. Thus, we have
that s′

α
−→ µ′

2 where µ′
2(s

′) = µ2(s) for all s ∈ S. Obviously, it holds that µ2 ⊑R µ′
2: the

weight function can be defined by ∆(s, s′) = µ2(s) for all s ∈ S⊥. Since µ1 is a little
brother of µ2, it holds that µ1 ⊑-M

µ2. By definition of R it holds that -M ◦ R ⊆ R.
Lemma 4.1.2 implies that µ1 ⊑-M◦R µ′

2, and moreover µ1 ⊑R µ′
2. The other case, namely

if µ1 is not a little brother of any other distributions, can be shown similarly. Thus R is
a simulation relation overM⊕M′. Since s0 -M s0, we have that (s0, s

′
0) ∈ R, implying

that s0 - s′0.

We show the other direction. By assumption M′ is obtained by eliminating little
brothers from M. We consider the relation R = {(s′, s) ∈ S ′ × S | s ∈ S}. Since for
each s′

α
−→ µ′, there exists s

α
−→ µ with µ(s) = µ′(s′) for all s ∈ S. µ′ ⊑R µ holds with

the weight function ∆ defined by: ∆(s′, s) = µ(s) for all s ∈ S⊥, implying that R is a
simulation relation overM⊕M′. Since (s′0, s0) ∈ R, we conclude that s′0 - s0. �

Recall that the preorder - on S induces an equivalence relation ≃. The following
lemma states that M and its ∀-quotient automaton with respect to ≃ are simulation
equivalent.

Lemma 7.1.3. Given a PAM, the equivalence relation ≃M overM induces a partition
of S defined by: Σ = {{s′ | s′ ∈ S ∧ s ≃M s′} | s ∈ S}. Then, ∀M/Σ and M are
simulation equivalent: ∀M/Σ ≃⊕M.

Proof. LetM = (S, s0, Act,P, L) be the given PA. Recall that the ∀-quotient automaton
∀M/Σ is a five tuple: (Σ, B0, Act,P∀, L) in which B0 is the unique block containing the
initial state s0. Let ≃ and - denote the simulation equivalence and simulation preorder
respectively, in the direct sum M⊕ ∀M/Σ. It is sufficient to show s0 ≃ B0. We show
only s0 - B0 (the other direction is simpler and can be shown in a similar way).

Let the relation R ⊆ S × Σ defined as follows: R = {(s, B) | s ∈ S ∧ B ∈ Σ ∧ s ∈
B}. We first show that R is a simulation relation over M⊕ ∀M/Σ. Let (s, B) ∈ R,
and assume that s

α
−→ µ. By definition of strong simulation (cf. Definition 4.1.4) and

definition of ∀-quotient automaton (cf. Definition 7.1.4), it is sufficient to show that

there exists B
α
֌ πΣ such that µ ⊑R πΣ. Let B = {b1, . . . , bk}, then, it holds that

b1 ≃M b2 . . . ≃M bk and that s = bi for some i ∈ {1, . . . , k}. Thus, by definition of
simulation relations, there exists an infinite sequence µ1, µ2, µ3, . . . such that

1. bi
α
−→ µj provided that j mod k = i, and

7.1. THE QUOTIENT AUTOMATA 111

2. µ ⊑≃M
µ1 and µi ⊑≃M

µi+1 for all i ≥ 1.

Since we have only finite many distributions, there must exists a l such that µi = µj for

all i, j ≥ l. Let πΣ = liftΣ(µl), then, we have that B
α
֌ πΣ. Because of the transitivity

of ≃M, we have that µ ⊑≃M
µl. Now it remains to show that µ ⊑R πΣ. We define the

function ∆ : S⊥ × Σ⊥ → [0, 1] as follows: ∆(s, B) = µ(s) if s ∈ B, and 0 otherwise. We
show that the defined function is a weight function for (µ, πΣ) with respect to R:

1. By definition of the weight function, ∆(s, B) > 0 implies that either (s, B) ∈ R or
s = ⊥.

2. We show the Condition 2 of Definition 4.1.1. For s ∈ S⊥, we want to show that
µ(s) =

∑

B∈Σ⊥
∆(s, B). By definition of ∆, we have µ(s) = ∆(s, B′) where B′

is the unique block in Σ containing s. For B 6= B′ it holds that ∆(s, B) = 0,
implying that µ(s) =

∑

B∈Σ⊥
∆(s, B).

3. Now let B ∈ Σ⊥. By definition, we have πΣ(B) =
∑

s∈B µl(s). Since for s 6∈ B we
have ∆(s, B) = 0, which implies that πΣ(B) =

∑

s∈S⊥
∆(s, B).

Thus, R is a simulation relation. By definition of R it holds that (s0, B0) ∈ R, thus
s0 - B0. �

By Lemma 7.1.1, the ∀-quotient automaton can be obtained from the ∃-quotient
automaton by eliminating little brothers in it. Combining Lemma 7.1.2 and the above
lemma, we have that M, its ∀-quotient automaton, and its ∃-quotient automaton are
pairwise simulation equivalent. Recall that for M, n = |S| denotes the number of the
states, and m =

∑

s∈S

∑

α∈Act(s)

∑

µ∈Stepsα(s) |µ| denotes the size of the transitions. The
following lemma states that the ∀-quotient automaton ofM is the smallest one among
those PAs which are simulation equivalent toM.

Lemma 7.1.4. Let M = (S, s0, Act,P, L) be a PA in which all states are reachable
from s0. Let M′ = (S ′, s′0, Act,P′, L′) be any other PA which is simulation equivalent
with M. Let Σ denote the partition of S induced by ≃M. Moreover, let mΣ, nΣ be the
size of transitions and states of ∀M/Σ, m′, n′ be the size of transitions and states ofM′

respectively. Then, it holds that nΣ ≤ n′ and mΣ ≤ m′.

Proof. Let Σ denote the partition of S induced by ≃M. Let ≃ and - denote the
simulation equivalence and simulation preorder respectively, in the direct sum ∀M/Σ⊕
M′.

Let [s]Σ be an arbitrary state in ∀M/Σ. We show that there exists a state s′ ∈ S ′

with [s]Σ ≃ s′. By assumption [s]Σ is reachable from [s0]Σ, i.e., there exists a se-

quence ([s0]Σ, α0, π0), . . . , ([sk−1]Σ, αk−1, πk−1), [sk]Σ with sk = s, and [si]Σ
αi−→ πi and

πi([si+1]Σ) > 0 for i = 0, . . . , k−1. It is sufficient to show, by induction on i, there exists
s′i for i = 1, . . . , k such that [si]Σ ≃ s′i.

• By assumption it holds that ∀M/Σ ≃⊕ M′, which implies that [s0]Σ ≃ s′0. Thus
the base case i = 0 holds.

112 CHAPTER 7. SIMULATION BASED MINIMISATION

• For the induction step: assume that [si]Σ ≃ s′i for i ≤ k − 1. This implies that

[si]Σ - s′i and s′i - [si]Σ. Since [si]Σ
αi−→ πi, there exists s′i

αi−→ π′
i such that πi ⊑- π′

i.

Then, s′i - [si]Σ implies also that there must exists [si]Σ
αi−→ π′′

i such that π′
i ⊑- π′′

i .
Since - is transitive, by Lemma 4.1.3, we have that πi ⊑- π′′

i . Observe that the
∀-quotient automata there are no little brothers, thus it must holds that πi = π′′

i .
Since - is a preorder, applying Lemma 5.3.5 of [6] (cf. Lemma 4.1.5), it holds that
πi(A) = π′

i(A) for all simulation equivalence class A of ≃. Let A = [si+1]≃, thus
it holds that [si+1]Σ ⊆ [si+1]≃. Then, πi([si+1]Σ) > 0 implies that π′

i([si+1]≃) > 0,
thus there must exist s′ ∈ [si+1]≃ with s′ ∈ S ′ and [si+1]Σ ≃ s′.

Assume that nΣ > n′ for the sake of contradiction. Since nΣ > n′, there must be
at least two states [s1]Σ, [s2]Σ in ∀M/Σ such that there is one state s′ in M′ such that
[s1]Σ ≃ s′ and [s2]Σ ≃ s′. By the transitivity of ≃ we have that [s1]Σ ≃ [s2]Σ which is a
contradiction because by construction of ∀M/Σ no two states are simulation equivalent.
Thus it must holds that nΣ ≤ n′.

Now we show that mΣ ≤ m′. Assume that [s]Σ is an arbitrary state of ∀M/Σ, and
assume that α ∈ Act([s]Σ) and that π is an arbitrary α-successor distribution of [s]Σ.
Then, using similar argument above, there must be a distinguished state s′ ∈ S ′ with
[s]Σ ≃ s′. Moreover, there must exist an α-successor distribution π′ of s′ with π ⊑- π′

and π′ ⊑- π. It holds also that π(A) = π′(A) for all simulation equivalence class of ≃.
Observe that each such equivalence class A contains at most a single state in ∀M/Σ,
thus |π| ≤ |π′|. It is then also easy to see that for two α-successor distributions π1 and
π2 of [s]Σ, there must exist two distinguished α-successor distributions π′

1 and π′
2 with

πi ⊑- π′
i and π′

i ⊑- πi for i = 1, 2, proving that mΣ ≤ m′. �

In the above lemma, we require that all states in the PA are reachable from the initial
state. This is not a real restriction. As in the non-probabilistic setting [29], by pruning
the unreachable states of M we get a PA which is simulation equivalent to M. This
can be performed by a single search algorithm. Thus, to construct the minimal quotient
automaton forM, the central problem is to decide the simulation preorder.

7.1.2 Safety and Liveness Properties

For PAs, strong (probabilistic) simulation equivalence is strictly coarser than strong
(probabilistic) bisimulation. We briefly discuss which classes of properties are preserved
by strong (probabilistic) simulation quotient automata. Strong (probabilistic) simulation
is known to preserve the safe fragment of PCTL [101]: IfM1 -M2, then ifM2 satisfies
a safety formula Φ, then M1 satisfies Φ as well. There is a duality between safety and
liveness fragments of PCTL formulas, thus the above statement is equivalent to: If
M1 -M2, then ifM1 satisfies a liveness formula Φ, thenM2 satisfies Φ as well. Given
a PA M, by Lemma 7.1.3, the ∀-quotient automaton ∀M/- are simulation equivalent
toM. Thus, both safe and liveness fragments of PCTL properties are preserved by the
minimal quotient automaton.

7.2. SIMULATION CHARACTERISED BY PARTITION PAIRS 113

7.2 Simulation Characterised by Partition Pairs

In the non-probabilistic setting, the simulation preorder for unlabelled graph is charac-
terised by partition pairs [29, 54] which consist of a partition of the state space and a
binary relation over the partition. Then, a partition refinement approach is introduced
based on partition pairs. In this section, we adapt the notion of partition pairs to PAs,
and then we show that we can characterise simulation relations for PAs by partition
pairs. This is the basis for the partition refinement approach which will be introduced
in the next section. In the remainder of this section, we fix a PA M = (S, Act,P, L):
The initial state does not play a role in the computation of the simulation preorder, it
is again omitted in this and subsequent sections.

We say that the pair (B, B′) ∈ Σ × Σ respects the labelling function L if L(B) =
L(B′). Now we give the definition of partition pairs.

Definition 7.2.1 (Partition Pair). A partition pair over S is a pair 〈Σ, Γ〉 where Σ is
a partition of S, and Γ ⊆ Σ × Σ is a reflexive relation over Σ satisfying the condition:
all pair (B, B′) ∈ Γ respects the labelling function L.

We also call Γ the partition relation. Let Υ denote the set of all partition pairs over
S. For 〈Σ, Γ〉 ∈ Υ and B, B′ ∈ Σ, we also write also BΓB′ if (B, B′) ∈ Γ. A partition
pair induces a binary relation on S as follows:

Definition 7.2.2 (Induced Relation). The partition pair 〈Σ, Γ〉 ∈ Υ induces the binary
relation on S by: -〈Σ,Γ〉= {(s, s

′) | [s]Γ[s′]}.

Let 〈Σ, Γ〉, 〈Σ′, Γ′〉 ∈ Υ. If Σ if finer than Σ′, and -〈Σ ,Γ〉⊆-〈Σ′,Γ′〉 holds, we say that
Γ is finer than Γ′. Now we introduce a partial order on Υ:

Definition 7.2.3 (Partial Order). We define an order ⋉ ⊆ Υ×Υ as follows: 〈Σ, Γ〉⋉
〈Σ′, Γ′〉 if Σ is finer than Σ′ and Γ is finer than Γ′.

If 〈Σ, Γ〉⋉ 〈Σ′, Γ′〉 we say 〈Σ, Γ〉 is finer than 〈Σ′, Γ′〉. Obviously the defined relation
is a partial order: ⋉ satisfies the reflexivity, antisymmetry and transitivity conditions.
Now we introduce the stability of partition pairs.

Definition 7.2.4 (Stable Partition Pairs). A partition pair 〈Σ, Γ〉 ∈ Υ is stable if for

each BΓB′ and B
α
→ πΣ, there exists B′

α
֌ π′

Σ such that πΣ ⊑Γ π′
Σ.

The stable condition in the above definition is illustrated in Figure 7.3, where an
∃-transition starts from some state inside the block B and is labelled with ∃, and a ∀-
transition starts from the block B and is labelled with ∀. Now we consider an example.

Example 7.2.1. Consider the direct sum M1 ⊕M2 in Example 7.1.1, and consider
the partition pair 〈Σ1, Γ1〉 defined by: Σ1 = {B1, B4, B5} with B1 = {s1, u1, s2, s3, u3},
B4 = {s4, s6, s8, u6, u8} and B5 = {s5, s7, u5, u7}, Γ1 is I(Σ), i.e., the identical relation
over Σ. This partition pair is not stable: consider the partition relation (B1, B1), and
the transition B1

α
−→ µ with µ(s2) = 1 and 0 otherwise. Since states s2, s3, u3 have no

α-successor distributions, there does not exist the required ∀-transition out of B1, thus
the condition in Definition 7.2.4 is violated.

114 CHAPTER 7. SIMULATION BASED MINIMISATION

⊑Γπ

∀∃

B B′

π′

Figure 7.3: A figure for illustrating the stable condition for partition pairs. An ∃-
transition starts from some state inside the block B and is labelled with ∃. Similarly, a
∀-transition starts from the block B and is labelled with ∀.

Consider another partition pair 〈Σ2, Γ2〉 with Σ2 = ∪5
i=1Bi be a partition over S1∪S2

where Bi is defined by: B2 = {s2}, Bi = {si, ui} if i = 1, 3, B4, B5 defined as above.
The partition relation Γ2 is the identical relation with an additional pair (B2, B3). It is
easy to check that this partition pair is stable.

Let Υsta denote the set of all stable partition pairs. We show that a stable partition
pair induces a simulation relation.

Theorem 7.2.1 (Induced Simulation Relation). Let 〈Σ, Γ〉 ∈ Υsta be a stable partition
pair. Then, the induced relation -〈Σ,Γ〉 is a simulation relation.

Proof. Let R = -〈Σ,Γ〉. For (s, s′) ∈ R, by definition of -〈Σ,Γ〉, we have that ([s]Σ, [s′]Σ) ∈

Γ. Thus we have that L([s]Σ) = L([s′]Σ) which implies that L(s) = L(s′). Let s
α
−→ µ

with µ ∈ Dist(S). We show that there exists s′
α
−→ µ′ and µ ⊑R µ′. We observe that

s
α
−→ µ implies that [s]Σ

α
→ πΣ with πΣ = liftΣ(µ). Since 〈Σ, Γ〉 is a stable partition

pair, there exists a distribution π′
Σ ∈ Dist(Σ) such that [s′]Σ

α
֌ π′

Σ and πΣ ⊑Γ π′
Σ. Let

s′
α
−→ µ′ with π′

Σ = liftΣ(µ′), and let ∆Γ denote the corresponding weight function for
(πΣ, π′

Σ) with respect to Γ.

In the following we construct a weight function ∆ for (µ, µ′) with respect to R. For
this purpose we first introduce some variables. For each s ∈ S⊥, we introduce two
variables xs and x′

s which are initialised by: xs = µ(s) and x′
s = µ′(s). For (B, B′) ∈ Γ,

we introduce a variable xB,B′ which is initialised to ∆Γ(B, B′). By definition, it holds that
liftΣ(µ)(B) =

∑

s∈B xs and that liftΣ(µ′)(B) =
∑

s′∈B x′
s′ . Since liftΣ(µ) ⊑R liftΣ(µ′),

after initialisation, it holds that:

∑

B∈Σ⊥

∑

s∈B

xs =
∑

B∈Σ⊥

∑

B′∈Σ⊥

xB,B′ =
∑

B′∈Σ⊥

∑

B∈Σ⊥

xB,B′ =
∑

B′∈Σ⊥

∑

s′∈B

x′
s′ (7.1)

The function ∆ : S⊥ × S⊥ → [0, 1] is defined as follows. If there exists xB,B′ > 0, we
perform the operation discharge:

1. let s ∈ B such that xs > 0, let s′ ∈ B′ such that x′
s′ > 0,

7.2. SIMULATION CHARACTERISED BY PARTITION PAIRS 115

2. define ∆(s, s′) = min{xs, xB,B′ , x′
s′},

3. update the variables by: xs = xs − ∆(s, s′), xB,B′ = xB,B′ − ∆(s, s′) and x′
s′ =

x′
s′ −∆(s, s′).

Observe that the above operation preserves Equation 7.1: since at step 3 each of the term
is decreased by the value ∆(s, s′). After one discharge operation at least one variable
becomes 0, thus the operation can be applied at most 2|S| + |S|2 times after which all
of the variables are 0, and we obtain the function ∆. Now we show that the constructed
∆ is the desired weight function. By construction, ∆(s, s′) > 0 implies that xB,B′ > 0
with s ∈ B and s′ ∈ Σ. This implies that (B, B′) ∈ Γ. By definition of the relation
R we have that (s, s′) ∈ R, thus the first condition of weight function conditions holds.
Let s ∈ S⊥. If µ(s) = 0, the variable xs is initialised to 0. And in discharge operation
only weights are assigned to pair (s, s′) with xs > 0, thus we have ∆(s, S) = 0. Now
assume that µ(s) > 0. In this case we show that the following invariant holds during
the discharge operations:

µ(s) =
∑

s′∈S⊥

∆(s, s′) + xs

Before any discharge operations, both side of the equation is µ(s). Assume that at
some discharge operation the variable xs is decreased (otherwise the right side of the
equation does not change) by the amount of ∆(s, s′) for some s′ ∈ S⊥. Observe that
before this discharge operation it holds that ∆(s, s′) = 0 (otherwise one of the variables
xs, xB,B′ , x′

s′ must be 0 which is not possible). Moreover, the decreased amount ∆(s, s′)
is exactly the new weight assigned to the pair (s, s′). Thus the right side of the equation
does not change. At the end if no discharge operations are available anymore, we have
that xs = 0, in which case we have µ(s) =

∑

s′∈S⊥
∆(s, s′). Thus the second condition of

the weight function definition holds at the end. The third condition of weight function
conditions is symmetric to the second one, and can be shown similarly. �

The induced simulation relation of the stable partition pair 〈Σ2, Γ2〉 in Example 7.2.1
is a simulation relation -. In the following we give the definition that a set of states is
stable with respect to a partition pair:

Definition 7.2.5. Let 〈Σ, Γ〉 be a partition pair and let B ∈ Σ. Assume that Q ⊆ B.

We say that Q is stable with respect to 〈Σ, Γ〉 if Q
α
→ πΣ implies that there exists Q

α
֌ π′

Σ

such that πΣ ⊑Γ π′
Σ.

Figure 7.4 illustrates the stable condition for a set of states in the previous definition.
Assume that Σ′ is a refinement of Σ. Then, we say that Σ′ is stable with respect to
〈Σ, Γ〉 if each B ∈ Σ′ is stable with respect to 〈Σ, Γ〉.

Simulations & Stable Partition Pairs. We define a function which establishes
connections between simulation1 relations and stable partition pairs. Recall that I(S) =
{(s, s) | s ∈ S} denotes the identity relation over S. We consider the set Ξ := {R ⊆
S × S | I(S) ⊆ R} of relations containing the identity relation. We define the function
H : Ξ→ Υ by:

1Recall we use simulation to refer to strong simulation in this chapter.

116 CHAPTER 7. SIMULATION BASED MINIMISATION

∀

π π′⊑Γ

B
Q

∃

Figure 7.4: A figure for illustrating the stable condition for a subset of states of B. An
∃-transition starts from some state inside the set Q and is labelled with ∃. Similarly, a
∀-transition starts from the set Q and is labelled with ∀.

• H(R) = (S/R∗ , ΓR) where ΓR is defined by: BΓRB′ if sR∗s′ for all s ∈ B and
s′ ∈ B′.

For R ∈ Ξ, H(R) is a pair (S/R∗ , ΓR) where the partition is induced by the equiva-
lence relation ≡R∗ . Intuitively, BΓRB′ if states in B′ are reachable from states in B in
the transitive closure R∗. If R is a simulation relation, sR∗s′ implies that L(s) = L(s′)
which implies that ΓR respects the labelling function. Let Υ⋄

sta ⊆ Υsta be the set of
stable partition pairs in which the partition relation is a preorder. The following lemma
states that if R is a preorder and a simulation relation, the image of it is an element of
Υ⋄

sta :

Lemma 7.2.2. Assume R ∈ Ξ is a preorder and a simulation relation. Then, H(R) ∈
Υ⋄

sta .

Proof. Since R is a preorder, it holds that R∗ = R. We first show that H(R) =
(S/R, ΓR) ∈ Υsta . Let (B, B′) ∈ ΓR and let B

α
→ π with π ∈ Dist(S/R), thus there exists

s ∈ B with s
α
−→ µ. It is sufficient to show that there exists B′

α
֌ π′ with π′ ∈ Dist(S/R)

satisfying π ⊑ΓR
π′. Without loss of generality, assume that B′ = {s1, . . . , sn}, thus,

these states are pairwise simulation equivalent. Since (B, B′) ∈ ΓR, we have that s - si

for all i ∈ {1, . . . , n}. We consider the infinite sequence of states s, (s1, . . . , sn)
ω where

the every state is simulated by the following state. By definition of simulation, for the
transition s

α
−→ µ, there exists an infinite distributions µ1, µ2, . . . such that si

α
−→ µj

where j mod n = i and µi ⊑R µi+1 for i ≥ 1. Now we use a similar argument as
in non-probabilistic systems [54]: Since the set of distributions reachable from B′ is
finite, there must exists k such that s1

α
−→ µk and s1

α
−→ µk+n = µk. Since R is a

preorder, thus transitive, which implies that µi ⊑R µj for all i, j ∈ {k, . . . , k + n}.
Since R is a preorder, applying Lemma 5.3.5 of [6] (cf. Lemma 4.1.5), it holds that
µi(A) = µj(A) for all i, j ∈ {k, . . . , k + n} and for all A ∈ S/R. Hence, the lifted
distributions are the same: liftS/R

(µk) = . . . = liftS/R
(µk+n). Let π′ denote this lifted

distribution. Let ∆ denote the weight function for (µ, µk) with respect to R. We de-
fine ∆′ by ∆′(B, B′) =

∑

s∈B,s′∈B′ ∆(s, s′). It is routine to verify that ∆′ is a weight

7.2. SIMULATION CHARACTERISED BY PARTITION PAIRS 117

function for (π, π′) with respect to ΓR, which implies that π ⊑ΓR
π′. Thus, we have

(S/R, ΓR) ∈ Υsta . The fact that R is a preorder implies that ΓR is also a preorder, thus,
we have that (S/R, ΓR) ∈ Υ⋄

sta . �

Let Ξ- ⊆ Ξ be the set consisting of R ∈ Ξ which is a preorder and a simulation
relation. We show that the function obtained from H with restricted domain Ξ- and
co-domain Υ⋄

sta , is bijective.

Lemma 7.2.3. Let the function h : Ξ- → Υ⋄
sta defined by: h(R) = H(R) if R ∈ Ξ-.

Then, h is bijective.

Proof. We first show that h is injective. Assume that R1, R2 ∈ Ξ- with R1 6= R2.
Without loss of generality, assume (s, s′) ∈ R1 and (s, s′) 6∈ R2. Since R1 and R2 are
preorders and simulation relations, (s, s′) ∈ R1 implies that s and s′ are in the same
class of S/R∗

1
, and (s, s′) 6∈ R2 implies that s, s′ are in different classes of S/R∗

2
. Hence,

h(R1) 6= h(R2).

Now we show that h is surjective. Let 〈Σ, Γ〉 ∈ Υ⋄
sta . To show h is surjective, it is

sufficient to show that h(-〈Σ,Γ〉) = 〈Σ, Γ〉 and -〈Σ,Γ〉 ∈ Ξ-. The former is obvious by the
construction of the relation -〈Σ,Γ〉, thus it remains to show that -〈Σ,Γ〉 is a preorder and a
simulation relation. By Lemma 7.2.1, it is a simulation relation. The partition relation
Γ is reflexive. By the construction of -〈Σ ,Γ〉, it is reflexive as well. The transitivity
follows by exploiting the fact that Γ is transitive, thus, -〈Σ,Γ〉 is a preorder. �

Recall that - is a preorder, and is the largest simulation relation in M. We use
〈Σ⋄, Γ⋄〉 to denote the partition pair h(-). Thus, - can be obtained via computing
〈Σ⋄, Γ⋄〉. In the following lemma we show that 〈Σ⋄, Γ⋄〉 is the unique, maximal element
of Υ⋄

sta :

Theorem 7.2.4 (Unique, Maximal Element). The partition pair 〈Σ⋄, Γ⋄〉 is the unique,
maximal element of Υ⋄

sta .

Proof. We first show that H is monotone: R1 ⊆ R2 implies that H(R1) ⋉ H(R2).
Observe that R1 ⊆ R2 implies that R∗

1 ⊆ R∗
2. Thus, S/R∗

1
is finer than S/R∗

2
. It remains

to show that -H(R1)⊆-H(R2). Let (s, s′) ∈ -H(R1). By definition s can reach s′ in the
transitive closure R∗

1. Since R∗
1 ⊆ R∗

2, s can also reach s′ in the transitive closure R∗
2,

thus (s, s′) ∈ -H(R2) which implies that -H(R1)⊆-H(R2).

Now we prove the lemma. By Lemma 7.2.2, 〈Σ⋄, Γ⋄〉 = h(-) ∈ Υ⋄
sta . Let 〈Σ, Γ〉

be an arbitrary element of Υ⋄
sta . To prove that it is maximal, it is sufficient to prove

〈Σ, Γ〉⋉ 〈Σ⋄, Γ⋄〉. By Lemma 7.2.1, -〈Σ,Γ〉 is a simulation relation, thus we have -〈Σ,Γ〉

⊆ - = -〈Σ⋄,Γ⋄〉. Exploiting the monotonicity of the function h we have that h(-〈Σ,Γ〉

) ⋉ h(-〈Σ⋄,Γ⋄〉). By Lemma 7.2.3, we have that h(-〈Σ,Γ〉) = h(h−1〈Σ, Γ〉) = 〈Σ, Γ〉 and
that h(-〈Σ⋄,Γ⋄〉) = h(h−1〈Σ⋄, Γ⋄〉) = 〈Σ⋄, Γ⋄〉, thus 〈Σ, Γ〉 ⋉ 〈Σ⋄, Γ⋄〉. Now it remains
to prove that it is unique. Let 〈Σ∗, Γ∗〉 be another maximal element of Υ⋄

sta . Thus we
have that 〈Σ∗, Γ∗〉⋉ 〈Σ⋄, Γ⋄〉 and 〈Σ⋄, Γ⋄〉⋉ 〈Σ∗, Γ∗〉. Hence, 〈Σ∗, Γ∗〉 = 〈Σ⋄, Γ⋄〉 as the
relation ⋉ is antisymmetric. �

Thus, to determine the simulation preorder -, it is sufficient to compute the partition
pair 〈Σ⋄, Γ⋄〉. As in [54] we refer to it as the generalised coarsest partition problem
(GCPP).

118 CHAPTER 7. SIMULATION BASED MINIMISATION

7.3 Solving the GCPP

As before, we fix a PA2 M = (S, Act,P, L). In this section we propose an algorithm
for solving the GCPP, i.e., computing the partition pair 〈Σ⋄, Γ⋄〉 based on the partition
refinement strategy. The idea is that we start with the partition pair 〈Σ0, Γ0〉 which
is coarser than 〈Σ⋄, Γ⋄〉, and refine it with respect to the stability conditions. The
Algorithm SimQuo is presented in Algorithm 11. As an initial partition pair we take

Σ0 = {{s′ ∈ S | L(s) = L(s′) ∧Act(s) = Act(s′)} | s ∈ S}.

Intuitively, states with the same labelling and enabled actions are put in the the same
initial block. By construction Σ0 is consistent with respect to L. The initial partition
relation is defined by:

Γ0 = {(B, B′) ∈ Σ0 × Σ0 | L(B) = L(B′) ∧ Act(B) ⊆ Act(B′)}.

Obviously, Γ0 respects the labelling function L. It is easy to see that for partition pair
〈Σi, Γi〉 which is finer than 〈Σ0, Γ0〉, Σi is consistent with respect to L, and Γi respects
L as well.

In lines 11.5–11.15 of the algorithm, a finite sequence of partition pairs 〈Σi, Γi〉 with
i = 0, 1, . . . , l is generated. We will show that it satisfies the following properties:

• Γi is acyclic for i = 0, 1, . . . , l,

• 〈Σi, Γi〉 is coarser than 〈Σ⋄, Γ⋄〉 for i = 0, 1, . . . , l,

• 〈Σi+1, Γi+1〉 is finer than 〈Σi, Γi〉 for i = 0, 1, . . . , l − 1,

• 〈Σl, Γl〉 = 〈Σ⋄, Γ⋄〉.

The core task consists of how to refine the partition pair 〈Σi, Γi〉 satisfying the above
conditions.

In the non-probabilistic setting, a space-efficient algorithm [54] is proposed for a
directed graph G = (V, E). A refinement operator3 was used to generate the partition
pair 〈Σi+1, Γi+1〉 from 〈Σi, Γi〉 satisfying all of the properties mentioned above. The
refinement of blocks works as follows. For each block B ∈ Σi let

E−1(B) = {s ∈ V | ∃s′ ∈ B.(s, s′) ∈ E}

denote the set of predecessors of states in B. Then, using B′ as a splitter, B is split
into two part: B1 = B ∩ E−1(B′) and B2 = B \ B1. The predecessor based method
for splitting blocks, however, cannot be applied to the probabilistic setting. The reason
is that in PAs states have successor distributions instead of a single successor state.

2Solving the GCPP does not depend on the initial state of the automaton. Thus, the initial state is
also irrelevant for the discussion in this section.

3The refinement operator must guarantee that the refined partition relation Γi+1 must be acyclic.
Recently, van Glabbeek and Ploeger [111] have shown that the operator in [54] was flawed, and provided
a non-trivial fix for the operator.

7.3. SOLVING THE GCPP 119

Algorithm 11 Quotient algorithm to decide 〈Σ⋄, Γ⋄〉 over M.

SimQuo(M)

11.1: i← 0
11.2: Σ0 = {{s′ ∈ S | L(s) = L(s′) ∧Act(s) = Act(s′)} | s ∈ S}
11.3: Γ0 ← {(B, B′) ∈ Σ0 × Σ0 | L(B) = L(B′) ∧ Act(B) ⊆ Act(B′)}
11.4: repeat
11.5: Σi+1 ← ∅, Γi+1 ← ∅
11.6: for all B ∈ Σi do
11.7: Σi+1 ← Σi+1 ∪ Split(B, Σi)
11.8: Γi+1 ← {(Q, Q′) ∈ Σi+1 × Σi+1 | ParΣi

(Q) 6= ParΣi
(Q′) ∧ (ParΣi

(Q),
ParΣi

(Q′)) ∈ Γi or ParΣi
(Q) = ParΣi

(Q′) ∧ Reach(Q, Q′)}
11.9: Construct the ∃-quotient automaton ∃M/Σi+1

11.10: repeat
11.11: for all (Q, Q′) ∈ Γi+1 do

11.12: if not (∀Q
α
֌ πΣi+1

⇒ ∃Q′ α
→ π′

Σi+1
∧ πΣi+1

⊑Γi+1
π′

Σi+1
) then

11.13: Γi+1 ← Γi+1 \ {(Q, Q′)}
11.14: until Γi+1 does not change
11.15: i + +
11.16: until 〈Σi, Γi〉 = 〈Σi−1, Γi−1〉

Moreover, the checking of the correspondence between distributions used for simulation
involves weight functions which require additional attention. We propose a graph based
analysis to refine the partition (lines 11.5–11.7) in Subsection 7.3.1. Then, we discuss
how to refine the partition relation (lines 11.8–11.15) in Subsection 7.3.2.

7.3.1 Refinement of the Partition

Consider the partition pair 〈Σi, Γi〉 ∈ Υ with 〈Σ⋄, Γ⋄〉⋉〈Σi, Γi〉. The refinement operator
Split consists of finding a finer partition Σi+1 which is stable with respect to 〈Σi, Γ

∗
i 〉.

For B ∈ Σi, Split(B, Σi) = {Q1, . . . , Qk} is a partition over B such that for all Qi it

should hold: if Qi
α
→ πΣi

, there exists Qi

α
֌ π′

Σi
such that πΣi

⊑Γ∗
i

π′
Σi

(cf. Defini-
tion 7.2.5). To construct this partition, we first construct the exists-quotient automaton
∃M/Σi

, and then start with the following partition of B:

VB = {{s′ ∈ S | ∀α ∈ Act(s). StepsΣi,α
(s) = StepsΣi,α

(s′)} | s ∈ S} (7.2)

By the construction of the set VB, the ∀-transitions and ∃-transitions of Q ∈ VB with

respect to the partition Σi coincide, i.e., Q
α
֌ πΣi

if and only if Q
α
−→ πΣi

. The partition
VB is finer than the partition for B we are searching for. We construct now a graph
GB = (VB, EB) for the block B, in which for Q, Q′ ∈ VB, we add the edge (Q, Q′) ∈ EB

if the following condition holds:

∀πΣi
∈ StepsΣi,α

(Q). ∃π′
Σi
∈ StepsΣi,α

(Q′). πΣi
⊑Γi

π′
Σi

(7.3)

120 CHAPTER 7. SIMULATION BASED MINIMISATION

The above condition is checked in the ∃-quotient automaton with respect to the par-
tition Σi. The condition πΣi

⊑Γi
π′

Σi
can be checked via maximum flow computations [9].

We obtain the partition Split(B, Σi) by constructing the maximal strongly connected
components (SCCs) of GB. Let Split(B, Σi) denote the partition for B obtained by
contracting the SCCs of GB:

Split(B, Σi) = {∪X∈CX | C is an SCC of GB} (7.4)

Moreover, as in Algorithm SimQuo, let Σi+1 = ∪B∈Σi
Split(B, Σi). We first prove

that the initial partition relation is coarser than Γ⋄.

Lemma 7.3.1. Let Σ0 and Γ0 as defined above. It holds that 〈Σ⋄, Γ⋄〉⋉ 〈Σ0, Γ0〉.

Proof. First we show that Σ⋄ is finer than Σ0. Let B ∈ Σ⋄. For all s, s′ ∈ B, by definition
of Σ⋄ we have that s ≃ s′, which implies that L(s) = L(s′) and Act(s) = Act(s′). Thus
they belong to the same block in Σ0 by construction of Σ0, which implies that Σ⋄ is
finer than Σ0. It remains to prove that Γ⋄ is finer than Γ0, i.e., -〈Σ⋄,Γ⋄〉 ⊆ -〈Σ0,Γ0〉. Let
(s, s′) ∈ -〈Σ⋄,Γ⋄〉, which implies that s - s′. By definition, we have L(s) = L(s′) and
Act(s) ⊆ Act(s′). Thus, by the construction of Γ0, (s, s′) ∈ -〈Σ0,Γ0〉. �

Lemma 7.3.2. Let 〈Σ, Γ〉 ∈ Υ with 〈Σ⋄, Γ⋄〉 ⋉ 〈Σ, Γ〉. Then, µ ⊑- µ′ implies that
liftΣ(µ) ⊑Γ liftΣ(µ′).

Proof. Assume that µ ⊑- µ′ and let ∆ denote the corresponding weight function. We
define ∆Σ : Σ⊥ × Σ⊥ → [0, 1] by:

∆Σ(B, B′) =
∑

s∈B

∑

s′∈B′

∆(s, s′).

Assume that ∆Σ(B, B′) > 0 and assume that B 6= ⊥. There must exist s ∈ B, s′ ∈ B′

with ∆(s, s′) > 0 which implies that s - s′. It holds that - = -〈Σ⋄,Γ⋄〉 ⊆ -〈Σ,Γ〉.
By the definition of -〈Σ⋄,Γ⋄〉 and -〈Σ,Γ〉, it holds that BΓB′. Thus the first condition
of weight function holds. To show the second condition let B ∈ Σ⊥. Then we have
liftΣ(µ)(B) = µ(B) =

∑

s∈B ∆(s, S). Thus, it holds that

liftΣ(µ)(B) =
∑

s∈B

∆(s, S) =
∑

s∈B

∑

B′∈Σ⊥

∑

s′∈B′

∆(s, s′) =
∑

B′∈Σ⊥

∆Σ(B, B′)

The third condition for weight function can be shown in a similar way. Thus ∆Σ is a
weight function for (liftΣ(µ), liftΣ(µ′)) with respect to Γ. �

The following lemma shows that the obtained partition Σi+1 is coarser than Σ⋄.

Lemma 7.3.3. For all i ≥ 0, it holds that: Σi+1 is finer than Σi. Moreover, Σ⋄ is finer
than Σi.

Proof. Since Σi+1 is obtained from Σi by refining blocks in Σi, it is finer than Σi for
all i ≥ 0. Now we show that Σ⋄ is finer than Σi by induction on i. The basis follows
directly from Lemma 7.3.1. For the induction step assume that the statement holds for

7.3. SOLVING THE GCPP 121

i. By induction hypothesis, there exists B ∈ Σi with s, s′ ∈ B. It is sufficient to show
that for all s, s′ ∈ S with s ≃ s′ there exists Q ∈ Σi+1 with s, s′ ∈ Q.

If it holds that StepsΣi,α
(s) = StepsΣi,α

(s′) for all α ∈ Act(s), they must belong
to a sub-block of B by construction of the graph GB. Assume the other case that
StepsΣi,α(s) 6= StepsΣi,α(s′) for some α ∈ Act(s). In this case, there exists Q, Q′ ∈ VB

with Q 6= Q′ and s ∈ Q, s′ ∈ Q′. Assume that πΣi
∈ StepsΣi,α

(Q). By the definition

of VB, we have that s
α
−→ πΣi

. Let s
α
−→ µ with πΣi

= liftΣ(µ). Since s - s′, there exist
s′

α
−→ µ′ with µ ⊑- µ′. Let π′

Σi
= liftΣi

(µ′). By Lemma 7.3.2, we have that πΣi
⊑Γi

π′
Σi

.
Condition 7.3 is satisfied, thus (Q, Q′) ∈ EB. Similarly, we have also that (Q′, Q) ∈ E.
Thus Q, Q′ belong to the same SCC which implies that s, s′ are in the same sub-block
of Σi+1 because of Equation 7.4. �

We show that for acyclic relation R, the relation ⊑R is anti-symmetric:

Lemma 7.3.4. Assume that R ⊂ S×S is acyclic and let µ, µ′ ∈ Dist(S) with µ(S) > 0.
If µ ⊑R µ′ and µ′ ⊑R µ, then µ = µ′.

Proof. Consider the infinite chain µ ⊑R µ′ ⊑R µ ⊑R µ′ Let ∆1, ∆2, ∆3, . . . be the
corresponding weight functions. We construct an infinite sequence of states as follows.
Let s1 be an arbitrary state in Supp(µ). Hence, it holds that 0 < µ(s1) = ∆(s1, S). Let
s2 ∈ Supp(µ′) such that ∆1(s1, s2) > 0. Repeating this procedure we get the infinite
sequence s1, s2, s3, . . . satisfying the property: ∆i(si, si+1) > 0 for all i = 1, 2, By
definition of weight function, we have that (si, si+1) ∈ R for all i = 1, 2, For odd
index i it holds that si ∈ Supp(µ), and for even index i it holds that si ∈ Supp(µ′).
Without loss of generality, we assume that |Supp(µ)| ≤ |Supp(µ′)|. Let k = 2|Supp(µ)|.
The acyclicity of R guarantees that sk = sk+1 = This holds for all such infinite
sequences, which implies that for j ≥ k, ∆j(s, s

′) = 0 if s 6= s′. This implies that we
must have that ∆j(s, s) = µ(s) = µ(s′) because of the definition of weight function, thus
µ = µ′. �

The following lemma shows that, for acyclic Γi, the partition Σi+1 is stable with
respect to 〈Σi, Γ

∗
i 〉:

Lemma 7.3.5. Assume that Γi is a acyclic. For all i ≥ 0, Σi+1 is stable with respect to
〈Σi, Γ

∗
i 〉.

Proof. Let B ∈ Σi, and let Split(B, Σi) be the partition of B as defined above. It
is sufficient to show that all Q ∈ Split(B, Σi) is stable with respect to 〈Σi, Γ

∗
i 〉. Let

GB = (VB, EB) the graph constructed for the block B, and let Q ∈ Split(B, Σi). By
construction Q is an SCC in GB. Thus, we may assume there is a loop (Q1 . . . , Qn)ω

with (Qi, Qi+1) ∈ EB for i = 1, . . . , n − 1 and (Qn, Q1) ∈ EB and Q = ∪n
i=1Qi. Let

Q
α
→ π1 with π1 ∈ StepsΣi,α

(Q), it suffices to show that there exists π ∈ StepsΣi,α
(Q)

with Q
α
֌ π such that π1 ⊑Γ∗

i
π. Without loss of generality, let Q1

α
→ π. By construction

of the edges of the graph there must exists an infinite sequence of distributions π2, π3, . . .
with πk ∈ StepsΣi,α

(Qj) provided that k mod n = j such that it holds: πj ⊑Γi
πj+1 for

122 CHAPTER 7. SIMULATION BASED MINIMISATION

all j ≥ 1. Since the set of α-successor distributions of Q1 is finite, there exists a number
l with l mod n = 1 such that πl = πl+n and that

πl ⊑Γi
πl+1 . . . ⊑Γi

πl+n = πl.

By Lemma 4.1.3, Γ∗
i is transitive implies that ⊑Γ∗

i
is also transitive. Thus πj ⊑Γ∗

i
πj′ for

all j, j′ ∈ {l, . . . , l + n}. Recall that Γi is by assumption acyclic. This implies that Γ∗
i is

also acyclic. By applying Lemma 7.3.4 we have that πj = πj′ for all j, j′ ∈ {l, . . . , l +n}.
Hence we have found the desired distribution π = πl. �

7.3.2 Refinement of the Partition Relations

Similar to the refinement of partitions, at the end of iteration i, we aim to get the
partition relation Γi+1 which is finer than Γi, but still coarser than Γ⋄. At line 11.8, Γi+1

is initialised such that it contains (Q, Q′) if

• either Q, Q′ have different parent blocks B 6= B′ with B = ParΣi
(Q) and B′ =

ParΣi
(Q′) such that (B, B′) ∈ Γi holds,

• or they have same parent block B and the SCC for Q′ can be reached by the SCC
for Q in the graph GB. This constraint is abbreviated by Reach(Q, Q′) (line 11.8).

To get a coarser partition relation, we want to remove from Γi+1 those pairs (B, B′)
satisfying the condition: no state in B can be simulated by any state in B′. Conversely,
we want to keep those pairs (B, B′) satisfying the condition that there exists at least
a state in B which can be simulated by at least another state in B′. This condition,
however, depends on the concrete transitions of state s ∈ B. To be able to work
completely on the quotient automaton ∃M/Σi+1

, we consider the weakness of the above
condition:

∀B
α
֌ πΣi+1

⇒ ∃B′ α
→ π′

Σi+1
∧ πΣi+1

⊑Γi+1
π′

Σi+1
(7.5)

Intuitively, if there is a ∀-transition out of B, we require that this transition must be
simulated by at least an ∃-transition out of B′. Note the similarity to Condition 7.3: we

consider only transitions of the form B
α
֌ πΣi+1

from B (line 11.12 in SimQuo). Again,
the condition πΣi+1

⊑Γi+1
π′

Σi+1
could be checked via maximum flow computations [9].

Lemma 7.3.6. For all i ≥ 0, the partition relation Γi+1 is finer than Γi. Moreover, Γ⋄

is finer than Γi.

Proof. By Lemma 7.3.3, Σi+1 is finer than Σi. Initially Γi+1 is finer than Γi. During
the algorithm only pairs are removed from Γi+1, it remains finer than Γi. We prove now
that Γ⋄ is finer than the partition relation Γi by induction on i. The basic case i = 0
follows from Lemma 7.3.1. Assume that the statement holds for i: Γ⋄ is finer than Γi.
We show that Γ⋄ is finer than Γi+1 in two steps: (i) after the initialisation at line 11.8,
Γ⋄ is finer than Γi+1, and (ii) at the end of the inside repeat-loop (lines 11.10–11.14), Γ⋄

is finer than Γi+1.

We first show (i). Let (Q, Q′) ∈ Γ⋄, by induction hypothesis, there must exists
(Bi, B

′
i) ∈ Γi with Q ⊆ Bi and Q′ ⊆ B′

i. By Lemma 7.3.3, there exists Bi+1, B
′
i+1 ∈ Σi+1

7.3. SOLVING THE GCPP 123

such that Q ⊆ Bi+1 ⊆ Bi and Q′ ⊆ B′
i+1 ⊆ B′

i. It is sufficient to show that (Bi+1, B
′
i+1) ∈

Γi+1 at line 11.15. Depending on whether the parent blocks Bi and B′
i are the same, we

have two cases. The case Bi 6= B′
i is simple, as it holds that Bi = ParΣi

(Bi+1), B
′
i =

ParΣi
(B′

i+1) and (Bi, B
′
i) ∈ Γi, which implies that (Bi+1, B

′
i+1) ∈ Γi+1. Now we consider

the case Bi = B′
i. We show that the SCC representing B′

i+1 can be reached by the
SCC representing Bi+1 in the graph GBi

= (VBi
, EBi

). There must exists X ∈ VBi
with

X ⊆ Bi+1 such that X ∩ Q 6= ∅. Assume that πΣi
∈ StepsΣi,α(X). By the definition

of VBi
, for s ∈ X ∩ Q we have that s

α
−→ µ with µ ∈ Stepsα(s) and πΣi

= liftΣi
(µ).

Let µ ∈ Stepsα(s) with πΣi
= liftΣi

(µ). Let s′ be an arbitrary state in Q′. Since

(Q, Q′) ∈ Γ⋄, it holds that s - s′, which implies that there exists s′
α
−→ µ′ with µ ⊑- µ′.

Let π′
Σi

= liftΣi
(µ′). By induction hypothesis, Γ⋄ is finer than Γi. Applying Lemma 7.3.2,

we get πΣi
⊑Γi

π′
Σi

. Let X ′ be the unique element of VΣi
containing s′. Thus, X ′ ⊆ B′

i+1

and π′
Σi
∈ StepsΣi,α

(X ′), which implies that (X, X ′) ∈ EBi
. Thus, X ′ is reachable from

X. Hence Reach(Bi+1, B
′
i+1) holds.

Now we show the part (ii). Because of (i), we may assume that Γ⋄ is finer than
Γi+1 at the beginning of the inside repeat-loop. We show that the invariant holds for
this loop: Γ⋄ is finer than Γi+1. Let (Q, Q′) be an arbitrary element in Γ⋄, and let
(Bi+1, B

′
i+1) ∈ Γi+1 with Q ⊆ Bi+1 and Q′ ⊆ B′

i+1. Similar to (i), it is sufficient to
show that (Bi+1, B

′
i+1) will still be in Γi+1 line 11.15. We show that (Bi+1, B

′
i+1) satisfies

Condition 7.5. Assume that Bi+1

α
֌ πΣi+1

. Then, for s ∈ Q, we have that s
α
−→ πΣi+1

,
and let µ ∈ Stepsα(s) with πΣi+1

= liftΣi+1
(µ). Let s′ be an arbitrary state in Q′. Since

s - s′, there exists s′
α
−→ µ′ with µ ⊑- µ′. Let π′

Σi+1
= liftΣi+1

(µ′). Since Γ⋄ is finer than
Γi+1, applying Lemma 7.3.2, we get πΣi+1

⊑Γi+1
π′

Σi+1
, thus Condition 7.5 holds. �

s1

s2 s3

s4 s5 s6 s7 s8

α α

.5

β

.4 .6

β
.6 .4

β

u1

u3

u5 u6 u7 u8

α

.4 .6

β
.6 .4

β

Figure 7.5: A PA for illustration of the algorithm.

Example 7.3.1. As our running example we consider the PA depicted in Figure 7.5
(cf. Example 7.2.1). Initially, we have the partition pair 〈Σ0, Γ0〉 with the partition
Σ0 = {B1, B2, B4, B5} where B1 = {s1, u1}, B2 = {s2, s3, u3}, B4 = {s4, s6, s8, u6, u8}
and B5 = {s5, s7, u5, u7}, and the partition relation Γ0 = I(Σ0) which is the identical
relation over Σ0. At the beginning of the first iteration, the refined partition B1 will be
constructed. Blocks B4 and B5 contain only absorbing states, thus can not be refined
in the first iteration. The block B1 remains also the same as each state s ∈ B1 has
an α-successor distribution leading to block B2 with probability 1. The block B2 will

124 CHAPTER 7. SIMULATION BASED MINIMISATION

then be refined into two sub-blocks Q1 = {s2}, and Q2 = {s3, s4}, which leads to
the partition Σ1 = {B1, Q1, Q2, B4, B5}. The corresponding partition relation Γ1 after
line 11.8 is I(Σ1) ∪ {(Q1, Q2}). This partition relation can be shown to be stable (cf.
Example 7.2.1), thus 〈Σ1, Γ1〉 = 〈Σ⋄, Γ⋄〉.

7.3.3 Correctness

In this section we show the correctness of the algorithm SimQuo. By Lemmata 7.3.3
and 7.3.6, we see that the partition pair 〈Σi+1, Γi+1〉 obtained in the algorithm is finer
than 〈Σi, Γi〉, and coarser than 〈Σ⋄, Γ⋄〉. The following lemma shows that the partition
relation Γi is acyclic:

Lemma 7.3.7 (Acyclicity). For all i ≥ 0, the partition relation Γi is acyclic.

Proof. We prove by induction on i. In the first iteration the statement holds: since the
inclusion relation ⊆ is transitive, no cycles except self loop exist in Γ0. Now consider it-
eration i. By induction hypothesis assume that the partition relation Γi at the beginning
of iteration i is acyclic. We shall show that Γi+1 is acyclic until the end of i-te iteration.
Consider the initial value of Γi+1 at line 11.8 at iteration i. At this position we may still
assume that Γi is acyclic by induction hypothesis. This implies that during the initiali-
sation of Γi+1 only sub-blocks from some same parent block B ∈ Σi can form cycles of
length n > 1. Assume such a cycle is formed from B: Q1Γi+1Q2Γi+1 . . . , QnΓi+1Q1 . . .
with n > 1. Since Q1Γi+1Q2 implies that Reach(Q1, Q2) and the reachability is transitive,
we get that Q1, . . . , Qn must belong to the same SCC in GB which is a contradiction.
Thus, Γi+1 is acyclic after initialisation. Since afterwards pairs will only be removed
from Γi+1, it remains acyclic. �

Theorem 7.3.8 (Correctness). Assume that SimQuo terminates at iteration l, then,
〈Σ⋄, Γ⋄〉 = 〈Σl, Γl〉.

Proof. By termination we have that 〈Σl, Γl〉 = 〈Σl+1, Γl+1〉. By Lemma 7.3.7 the par-
tition relation Γl+1 is acyclic. Applying Lemma 7.3.5 we have that Σl+1 is stable with
respect to 〈Σl, Γ

∗
l 〉 which implies that Σl is stable with respect to 〈Σl, Γ

∗
l 〉. We first

prove that the partition pair 〈Σl, Γ
∗
l 〉 is stable. Let (B, B′) ∈ Γ∗

l , and B
α
→ π1 with

π1 ∈ Dist(Σl). Since Σl is stable with respect to 〈Σl, Γ
∗
l 〉, there must exist π′

1 ∈ Dist(Σl)

with B
α
֌ π′

1 such that π1 ⊑Γ∗
l

π′
1. Since (B, B′) ∈ Γ∗

l , there is a sequence B1, . . . , Bn

such that B1ΓlB2Γl . . . Bn with B1 = B and Bn = B′ and n ≥ 2. Σl is stable with
respect to 〈Σl, Γ

∗
l 〉 implies that the block Bi is stable with respect to 〈Σl, Γ

∗
l 〉 for all

i = 1, . . . , n. Moreover, pairs in Γl satisfy Condition 7.5. Thus there exists distributions

πi, π
′
i ∈ Dist(Σl) for i = 1, . . . , n and such that it holds Bi

α
→ πi, Bi

α
֌ π′

i, and:

π1 ⊑Γ∗
l

π′
1 ⊑Γl

π2 ⊑Γ∗
l

π′
2 ⊑Γl

. . . πn ⊑Γ∗
l

π′
n

By Lemma 4.1.3, Γ∗
l is transitive implies that ⊑Γ∗

l
is also transitive. Thus we have that

π1 ⊑Γ∗
l

π′
n which implies that the partition pair 〈Σl, Γ

∗
l 〉 is stable. By Lemma 7.2.4 we

have that 〈Σl, Γ
∗
l 〉⋉〈Σ

⋄, Γ⋄〉. By Lemmata 7.3.3 and 7.3.6 we have that 〈Σ⋄, Γ⋄〉⋉〈Σl, Γl〉.
Hence, 〈Σ⋄, Γ⋄〉 = 〈Σl, Γl〉. �

7.3. SOLVING THE GCPP 125

7.3.4 On Acyclicity

In the proof of the correctness of the algorithm, we used Lemma 7.3.7 which states that
the partition relation Γi is acyclic for all i. In [54], a partition refinement based space
efficient algorithm is introduced for computing simulation for labelled transition systems
(the labels are coded as initial partition of states). The author claim that the partition
relation of their algorithm is acyclic. However, van Glabbeek and Ploeger [111] have
shown that the analysis in [54] is flawed, and provided a nontrivial fix. In this section
we apply our algorithm to some examples presented in [111]. Recall that PAs subsume
labelled transition systems, thus our algorithm can be applied for labelled transition
systems directly.

a1 a2

b c d

Figure 7.6: A transition system.

Counterexample 1 in [111]. Consider a part of the transition system depicted in Fig-
ure 7.6. Assume that every transition is labelled with the same action which is omitted
in the figure. Assume that at the beginning of some iteration we have the partition pair
〈Σ, Γ〉 with Σ = {α, β, γ, δ} with α = {a1, a2}, β = {b}, γ = {c} and δ = {d}. The
partition relation is given by: Γ = I(Σ) ∪ {(β, δ), (δ, γ)}. As shown in [111], the refined
partition pair 〈Σ′, Γ′〉 according to [54] is: Σ′ = {α1, α2, β, γ, δ} with α1 = {a1} and
α2 = {a2}, and a cyclic partition relation Γ′ = I(Σ′) ∪ {(α1, α2), (α2, α1), (β, δ), (δ, γ)}.

Now we apply our algorithm to this example. The block α is the only block which can
be refined. We construct the graph Gα for the block α: observe that Steps(a1) = {β, γ}
and Steps(a2) = {γ, δ}. Thus, Vα = {{a1}, {a2}}. The constraint 7.3 holds for both
the pair (α1, α2} and (α2, α1), thus we have the set of edges Eα = {(α1, α2), (α2, α1)}.
Thus the two nodes in Vα form an SCC, and will be contracted together. Thus in this
iteration step, the block α will not be split.

The partition relation Γ is not transitive: (β, δ) is not in the partition relation, but is
in the closure Γ∗. Since the partition relation Γ⋄ in the partition pair 〈Σ⋄, Γ⋄〉 transitive,
and the partition pair 〈Σ, Γ〉 is coarser than 〈Σ⋄, Γ⋄〉 (cf. Lemmata 7.3.3 and 7.3.6), in
some later iteration either (β, δ) or (δ, γ) will be thrown out of the partition relation.
After that, the block α will be split into two blocks α1 and α2. Unfortunately, we could
not use the knowledge, that one of the pair in Γ will be thrown out of it in a later
iteration, to split the block α in the current iteration: since we would then get a cyclic
partition relation.

In the above example, we have assumed that in some iteration we get an partition
relation Γ which is not transitive. Again, we take an example from [111] to illustrate
that this is possible.

126 CHAPTER 7. SIMULATION BASED MINIMISATION

a0 a1 a2 a3

b c

Figure 7.7: A transition system for illustrating that the partition relation can be non-
transitive.

Example 3 in [111]. Consider the transition system depicted in Figure 7.7. The initial
partition pair is 〈Σ0, Γ0〉 where Σ0 = {α, β, γ} with α = {a0, a1, a2, a3}, β = {b},
γ = {c}. The initial partition relation is the identical relation I(Σ0) over Σ0. Since
Steps(a0) = Steps(a1) = {α, β}, Steps(a2) = {α, β, γ} and Steps(a3) = {α}, the set
Vα = {α1, α2, α3} with α1 = {a0, a1}, α2 = {a2}, α3 = {a3}. The set of edges is given
by Eα = {(α1, α2), (α3, α1), (α3, α2)}. No nodes of the graph can be contracted, thus
we get the partition Σ1 = {α1, α2, α3, β, γ}. The partition relation is Γ1 = I(Σ1) ∪
{(α1, α2), (α3, α1), (α3, α2)}. Then, in the inside repeat loop, the pair (α3, α2) is thrown
out of the partition relation: since α3 has an ∃-transition to α2, but α2 does not have
a successor block which can simulate α2 with respect to Γ1. Let Γ′

1 = Γ1 \ {(α3, α2)}
denote the partition relation at the end of the first loop. Thus, at the starting of the
second loop, we start with a partition relation which is not transitive.

7.3.5 Complexity

The following lemma shows that the number of iterations of the algorithm SimQuo is
linear in |Σ⋄|:

Lemma 7.3.9. Assume that SimQuo terminates at iteration l, then, l ∈ O(|Σ⋄|).

Proof. By Lemma 7.3.3 we have that Σi+1 is finer than Σi. It is sufficient to show that
for4 1 ≤ i ≤ l − 1, Σi+1 is strictly finer than Σi. For the sake of contradiction, assume
that Σi = Σi+1. In this case, we have that at line 11.8 the initial value of Γi+1 is equal
to Γi. Between lines 11.10–11.14, since Σi+1 = Σi and Γi+1 = Γi, the algorithm would
terminate at iteration i, implying that i = l which is a contradiction. �

For the complexity analysis, we introduce some notations. As before, we let n, m
denote the number of states and transitions of M respectively. We let Σ∼ denote the
partition induced by the bisimulation relation ∼, and let n∼ and m∼ denote the number
of states and transitions of the ∃-quotient5 automaton ∃M/Σ∼

. Let n⋄ and m⋄ denote
the number of states and transitions of the quotient automaton ∃M/Σ⋄ .

4As shown in Example 7.3.1, in the first iteration it could be the case that Σ1 = Σ0 but Γ1 6= Γ0.
5In fact, the ∃-quotient automaton and the ∀-quotient automaton with respect to the bisimulation

relation ∼ coincide.

7.3. SOLVING THE GCPP 127

Theorem 7.3.10. The algorithm SimQuo has time complexity O(mn⋄+m2
⋄n

4
⋄+m2

∼n2
⋄),

and space complexity O(n2
∼ + n log n⋄).

Proof. Let 〈Σi, Γi〉 denote the partition pair at the beginning of iteration i, and let ni

and mi denote the number of states and transitions of the ∃-quotient automaton ∃M/Σi
.

In this iteration this partition pair is refined to 〈Σi+1, Γi+1〉.

We first consider the time and space needed for refining the partition Σi in itera-
tion i. For B ∈ Σi, the graph GB = (VB, EB) is constructed where the set of vertices
VB and the set of edges EB is constructed according to Equations 7.2 and 7.3 respec-
tively. For Q, Q′ ∈ VB, an edge between Q and Q′ is added if it holds that for all
π ∈ StepsΣi,α

(Q) there exists π′ ∈ StepsΣi,α
(Q′) such that π ⊑Γi

π′. For this a bi-
partite network N (π, π′, Γi) from (π, π′) with respect to Γi is constructed. Then, by
Lemma 4.2.1, the condition holds iff the maximum flow of the network has value 1. In
N (π, π′, Γi) the vertices can be partitioned into two subsets V1 and V2 such that all
edges have one endpoint in V1 and another in V2. The complexity of this operation [3] is
O(|V1||V2|2). Recall that |V1| is linear in the order of |π|, and |V2| is linear in the order
of |π′|. Moreover, both |π| and |π′| are in the order of O(ni). Consider the partition
Σ∗ := ∪B∈Σi

VB of S and the quotient automaton M/Σ∗. By the definition of strong
bisimulation, it is easy to show inductively that Σ∗ is coarser than Σ∼. Thus, all of the
checks corresponding to the construction of the sets EB for all B ∈ Σi (cf. Condition 7.3)
take time:

∑

B∈Σi

∑

Q∈VB

∑

Q′∈VB

∑

α∈Act(Q)

∑

π∈StepsΣi,α(Q)

∑

π′∈StepsΣi,α(Q′)

|π| |π′|
2
≤ m2

∼ni

The time needed for constructing the SCCs for all GB is in the order of O(m∼) [110].
The space needed for this phase is O(n2

∼ + n log ni+1): the first part is due to the size
of the edges EB for all B ∈ Σi, and the second part is needed to save to which block in
Σi+1 a state belongs to.

Now we consider the time and space needed for refining the partition relation Γi+1. In
line 11.8 Γi+1 is initialised which takes time O(n2

i+1mi+1), and in line 11.9, the quotient
automaton ∃M/Σi+1

is constructed which takes time O(m). The dominating part is the
inside repeat-loop between lines 11.10–11.14. Similar to the above analysis for refining
the blocks, in each iteration inside the repeat-loop, the time complexity is O(m2

i+1ni+1).
At each iteration at least one pair from Γi+1 is removed, which implies that the number of
iterations is bounded by |Γi+1| ≤ n2

i+1. Thus, the complexity for this part isO(m2
i+1n

3
i+1).

The space is in the order of O(n2
i+1) for maintaining the partition relation Γi+1.

Since mi ≤ m⋄ ≤ m∼ and ni ≤ n⋄ ≤ n∼ for all i, the time complexity for iteration
i is bounded by O(m + m2

⋄n
3
⋄ + m2

∼n⋄). By Lemma 7.3.9, the number of iterations of
SimQuo is in O(n⋄). Thus, the overall time complexity is O(mn⋄ +m2

⋄n
4
⋄ +m2

∼n2
⋄). The

space complexity is O(n2
∼ + n log n⋄). �

The above time complexity is rather excessive. Similar to algorithms for deciding
simulation preorder for PAs (cf. the algorithm ActSmf in Chapter 5), one can use
the parametric maximum flow (PMF) idea to amortize computations which results in
time-efficient algorithm. The penalty is that more memory is needed due to the need to
store the networks across iterations.

128 CHAPTER 7. SIMULATION BASED MINIMISATION

Theorem 7.3.11. Using PMF, the algorithm SimQuo has time complexity O(mn⋄ +
m2

∼n2
⋄), and space complexity O(m2

⋄ + n2
∼ + n log n⋄).

Proof. We first analyse the time complexity. PMF is used inside repeat-loop (lines 11.10–
11.14) to achieve better time complexity: instead of taking time O(m2

i+1n
3
i+1) in each

iteration in the inside repeat-loop, the whole time spent in the inside loop can be achieved
with complexity O(m2

i+1ni+1) using PMF (cf. Theorem 5.2.8). Since m⋄ ≤ m∼, com-
bining the proof of Theorem 7.3.10, we get the time complexity O(mn⋄ + m2

∼n2
⋄).

Now we analyse the space complexity. PMF saves networks and flows on it such that
it can be reused in the next iteration. The corresponding space complexity is O(m2

i+1).
Thus, the algorithm with PMF has space complexity O(m2

⋄ + n2
∼ + n log n⋄). �

7.4 Simulation Quotient for CPAs

In this section we consider CPAs. We first show that simulation preserves safety prop-
erties. Then, we discuss how our partition refinement based algorithm can be extended
to CPAs.

7.4.1 Safety Properties

We discuss also which classes of properties are preserved by strong (probabilistic) sim-
ulation equivalence. We first recall briefly safety and liveness properties expressed by
CSL [18], and the semantics of CSL-safety formulas over CPAs.

The CSL state formulas (Φ) and path formulas (φ) are defined by:

Φ := a | ¬a | Φ ∧ Φ | Φ ∨ Φ | PEp(φ)

φ :=X≤t Φ | Φ U≤t Φ

If E ∈ {<,≤}, we have the set of safety CSL formulas. If E ∈ {>,≥} instead, we
have the set of liveness formulas. Let M = (S, Act,R, L) be a CPA. The semantics of
the Boolean operators and the path formulas is the same as for CTMCs [10].

Let the set of (time-abstract) finite paths, denoted by Path , denote the set of finite

sequence σ = (s0, α0, r0), (s1, α1, r1), . . . , sn satisfying si
αi−→ ri and that ri(si+1) > 0 for

i = 1, . . . , n − 1. For notational convenience, the path σ is also written by s0
α0,r0

−−−→
s1

α1,r1−−−→, . . . , sn. The length of the path σ is defined by len(σ) = n, and the last state
sn of the path is denoted by last(σ).

A (time-abstract) scheduler is a function A : Path → Dist(Act × Rate(S)) such
that A(σ)(α, r) > 0 implies that (last(σ), α, r) ∈ R. A scheduler A is deterministic if
it is a function Path → Act × Rate(S), i. e., schedulers that only assign probabilities
0 or 1 to actions. A deterministic scheduler A induces a CTMC MA = (SA,RA, LA)
where SA = Path , LA(σ) = L(last(σ)) and the transition rate matrix RA is defined by:

RA(σ, σ
α,r
−→ s) = r(s) if A(σ) = (α, r), and 0 otherwise. Let ProbMA

s denote the unique
probability measure starting from state s under the scheduler A. If M is clear from

7.4. SIMULATION QUOTIENT FOR CPAS 129

the context, we write ProbA
s . The semantics of the probabilistic formula is defined by:

s |= PEp(φ) iff supA ProbMA
s (φ) E p where E ∈ {<,≤} and ProbMA

s (φ) is a shorthand
notation for the probability of set of timed and infinite paths satisfying φ [14]. The
following lemma shows that simulation preserves safe fragments of CSL formulas6:

Lemma 7.4.1. For CPAs, strong (probabilistic) simulation preserves all safe fragments
of CSL formulas.

Proof. Let M be a CPA and s, s′ ∈ S. Assume that s -M s′. We want to show that
for safety CSL formula Φ it holds: s′ |= Φ implies s |= Φ. We prove this by structural
induction on Φ. We consider only the probabilistic formula P≤p(φ), as other formulas
can be handled in an obvious way. By the semantics of the probabilistic formula, it then
is sufficient to prove that for any scheduler A (that describes the behaviour starting from
s), there is a scheduler A′ such that:

ProbA(s, φ) ≤ ProbA′

(s′, φ) (7.6)

Without loss of generality, we may assume that A is a deterministic scheduler7.
Obviously, A induces an (in general, infinite-state) CTMC. Since strong simulation on
CTMCs preserves all safety CSL formulas [18], it remains to be shown that given A,
there is a scheduler A′ such that state s′ in MA′ strongly simulates s in MA in their
direct sum. We observe that only states reachable from s (and s′) in MA (and MA′)
are of interest.

Let MA(n) denote the CTMC obtained by unfolding M respecting the scheduler
A, starting from s, n steps. The states are paths of M with length at most n. Hence,
only the first n-truncation of the scheduler A is used to construct MA(n). We prove
by induction on n that we can construct the n-truncation of the scheduler A′ such that
s′ in MA′(n) strongly simulates s in MA(n) in their direct sum. This will imply the
required inequality 7.6.

We consider the case n = 0. MA(0) consists of only one state s, and MA′(0)
consists of only one state s′. Hence, the relation R0 = {(s, s′)} is a strong simulation
relation. Now assume that the statement is true for all i ≤ n. Let Rn denote the
corresponding strong simulation relation. We prove that it holds also for n+1. MA(n+1)
is constructed from MA(n) by an additional unfolding. Consider an arbitrary state

σ′ = s′0
α0,r′

0−−−→ s′1
α1,r′

1−−−→ . . . s′n in MA′(n) (where s′ = s′0). By construction of A′, we

6We show the lemma with respect to time-abstract schedulers, as introduced in [14]. Our result can
be easily proved, as some nice properties of time-abstract schedulers in [14] can be exploited. For timed
reachability, a more general class of schedulers, namely timed schedulers, has been considered [120, 87].
Unfortunately, our result can not be extended in an obvious way for the timed schedulers. Recently,
Neuhäußer and Katoen [87] have given semantics of CSL over CTMDP and they have considered the
timed schedulers. They have shown that bisimulation preserves all CSL properties. An extension of the
proof strategy of [87] might be possible.

7In [14], it is shown that deterministic schedulers suffice for maximum probabilities to reach a set
of goal states within time t for CTMDPs. Since reachability probabilities do not reason about the
transition labels, their result can be adapted in an obvious way to CPAs. Let M = (S, Act,R, L) be a
CPA, s ∈ S and let Φ be a safe CSL formula. By structural induction on Φ, it is easy to verify that to
check whether s |= Φ, it is sufficient to consider only deterministic schedulers.

130 CHAPTER 7. SIMULATION BASED MINIMISATION

can always find a corresponding state σ = s0
α0,r0

−−−→ s1
α1,r1

−−−→ . . . sn in MA(n) such that
si -M s′i and µ(ri) ⊑-M

µ(r′i) and ri(S) ≤ r′i(S) for all i = 0, 1, . . . , n− 1, and s = s0.

Assume that A(σ)(αn, rn) = 1. Since sn -M s′n, there exists a transition s′n
αn−→ r′n

such that µ(rn) ⊑-M
µ(r′n) and rn(S) ≤ r′n(S). We choose A′(σ′)(α, r′n) = 1. We let

Rn+1 = Rn∪{(σ, σ′) | len(σ) = len(σ′) = n+1∧ last(σ) -M last(σ′)}. By construction,
Rn+1 is a strong simulation, and thus, s′ in MA′(n) strongly simulates s in MA(n) in
their direct sum.

Since the combined transitions for CPAs induce exponential distributions, the proof
can be adapted for strong probabilistic simulations by using s

α
; r′ instead of s

α
−→ r. �

For CTMDPs, strong simulation and strong probabilistic simulation also trivially
coincide, as for MDPs. Another result is that the strong simulation quotient and the
strong bisimulation for CTMDPs also coincide. A corresponding result for MDPs has
been shown in [6, Theorem 3.4.15].

Lemma 7.4.2. For CTMDP M = (S, Act,R, L), it holds: ∼ = - ∩%.

Proof. Let R := - ∩ %. The direction ∼ ⊆ R is trivial. We show that R is a strong
bisimulation. Obviously, it is an equivalence relation. Let s, s′ ∈ S with s R s′ and
s

α
−→ r. Since s - s′ holds, there exists s′

α
−→ r′ with µ(r) ⊑- µ(r′) and r(S) ≤ r′(S).

Similarly, as s′ - s holds, there exists s
α
−→ r′′ with µ(r′) ⊑- r(µ′′) and r′(S) ≤ r′′(S).

Since M is a CTMDP, we have that r = r′′. Thus, we have that r(S) = r′(S). Now
applying [6, Lemma 5.3.5], we have that µ(r)(C) = µ(r′)(C) for all equivalence relation
C of R. Hence, R is a strong bisimulation. �

7.4.2 The Minimal Quotient Automaton for CPAs

Along the same line as for PAs, we briefly give the definition of minimal quotient au-
tomaton for CPAs.

For a CPAM and a rate function r ∈ Dist(S) with r(S) > 0 and a partition Σ over
S, we define liftΣ(r) ∈ Rate(Σ), the induced lifted rate function with respect to Σ, by:
liftΣ(r)(B) =

∑

s∈B r(s) for B ∈ Σ. Similar as for PAs, for a set B ⊆ S, we write

• B
α
→ r′ if there exists s ∈ B and s

α
−→ r with r′ = liftΣ(r),

• B
α
֌ r′ if for all s ∈ B there exists s

α
−→ r with r′ = liftΣ(r).

The notion of ∃−Quotient and ∀-quotient automata, little brothers for CPAs can
be defined as Definition 7.1.3, Definition 7.1.4 and Definition 7.1.5, by replacing the
distribution π by rate function r appropriately.

Lemma 7.4.3. Let M be a CPA, and let Σ be the partition induced by ≃M of M.
Let M′ be the CPA obtained by M by eliminating little brothers, ∀-quotient automaton
∀M/Σ and ∃-quotient automaton ∃M/Σ. Then, all of these automata are pairwise
simulation equivalent.

The proof for the lemma is similar as the proofs for Lemmata 7.1.2 and 7.1.3 for
PAs. Lemma 7.4.1 shows that simulation preserves safety CSL formulas. Analogously,
for CPAM, since the exists and for all quotient automata are simulation equivalent to
M, the quotient automaton thus preserves both safe and live fragments of CSL formulas.

7.5. EXPERIMENTAL RESULTS 131

7.4.3 Algorithm for CPAs

We discuss briefly how the partition refinement based algorithm can be extended to
compute the simulation preorder for CPAs. Firstly, the notion of partition pair can be
extended to CPAs, again by replacing the distributions by rate function appropriately.
In the decision algorithm QuoSim we must take care of the rate condition. All we must
change is to replace every occurrence of π by r, and the weight function condition of
the form µ1 ⊑R µ2 by r1 ⊑R r2 accordingly. Recall r1 ⊑R r2 is a shorthand notation
for µ(r1) ⊑R µ(r2) and r1(S) ≤ r2(S) which could be checked via solving a maximum
flow problem. Other notations are extended with respect to rate functions in an obvious
way. It is routine to extend the correctness and complexity proofs for PAs to CPAs.

7.5 Experimental Results

In this section, we evaluate our new partition refinement based algorithm for deciding
simulation preorder for PAs. Depending whether PMF is used in the algorithm, we
have implemented both the space-efficient and time-efficient variants of the partition
refinement based algorithm.

Dining Cryptographers. Consider the dining cryptographer models taken from the
PRISM web-site. We take the most space efficient configuration (corresponds the con-
figuration 0000 in Section 5.4) and refer to it as the Original algorithm in the sequel.
Other configurations use more memory, and are at most faster by a factor of two, thus
are not considered here. We compare it to our new partition refinement based algorithm:
the configuration QuoPMF for the algorithm using PMF and the configuration Quotient
for the algorithm without using PMF.

In Table 7.1 experiments are shown: in the upper part of both tables only one state
label is considered, in the middle part uniform distribution of two different labels is
considered, in the lower part we have uniform distribution of three different labels. For
6 cryptographers and one or two labels, the configuration Original runs out of memory;
this is denoted by –. The number of the simulation equivalence classes is given in row
#blocks, and the number of iterations of the refinement loops for the configurations
Quotient and QuoPMF is given in row #refinement.

As expected, in the configuration Original the memory is indeed the bottleneck, while
the partition refinement based algorithm uses significant less memory. More surprisingly
is that partition refinement based algorithm often requires orders of magnitude less time,
especially for small number of labels. The reason is that for this case study the simulation
quotient automaton has much less states than the original automaton. Moreover, in
the quotient automaton, most of the transitions fall into the same lifted distributions,
thus making the maximum flow computation cheaper. Another observation is that the
number of different labels affect the performance of all of the configurations, but in
a different way. For the configuration Original more labels indicate that the initial
relation is smaller thus always less time and memory are needed. For both Quotient and
QuoPMF more labels give a finer initial partition, which means also a large quotient

132 CHAPTER 7. SIMULATION BASED MINIMISATION

Table 7.1: Time and memory used for Dining Cryptographers.
Cryptographers 3 4 5 6

States 381 2166 11851 63064
Transitions 780 5725 38778 246827

Time (s)
Original 0.52 20.36 987.40 –
Quotient 0.03 0.76 19.52 533.40
QuoPMF 0.03 0.73 18.93 528.00
#blocks 10 24 54 116

#refinement 3 3 3 3

Original 0.13 4.67 266.04 –
Quotient 0.05 0.93 18.53 394.80
QuoPMF 0.05 0.96 19.46 420.60
#blocks 63 247 955 3377

#refinement 4 4 4 4

Original 0.07 2.42 150.74 13649.30
Quotient 0.06 2.31 60.01 1185.16
QuoPMF 0.07 3.04 81.14 1536.78
#blocks 96 554 2597 8766

#refinement 3 4 4 5

Memory (MB)
Original 0.95 27.41 763.09 –
Quotient 0.02 0.11 0.71 4.35
QuoPMF 0.02 0.14 0.89 5.25

Original 0.21 4.68 104.46 –
Quotient 0.02 0.12 0.93 7.07
QuoPMF 0.02 0.21 2.42 26.02

Original 0.14 2.69 58.92 1414.57
Quotient 0.02 0.18 2.32 22.67
QuoPMF 0.03 0.41 10.75 124.53

automaton during the refinement loops. For this example the running time for one or
two labels are almost the same, whereas with three labels more time is needed.

It is notable that QuoPMF does not perform well at all, even though it has better
theoretical complexity in time. This observation is the same as the experimental results
in Section 5.4: the corner cases (number of iterations in the inside repeat-loop is bounded
by n2

⋄) which blow up the worst case complexity are rare in practice.

Self Stabilising Algorithm We now consider the self stabilising algorithm due to
Israeli and Jalfon, also taken from the PRISM web-site. As the previous case study, in
the upper, middle and lower part of the table we have one, two and three different uni-
formly distributed labels respectively. For 13 processes and one label, the configuration
QuoPMF runs out of memory which is denoted by –. For this case study, we observe

7.5. EXPERIMENTAL RESULTS 133

Table 7.2: Time and memory used for the self stabilising algorithm.
Processes 10 11 12 13

States 1023 2047 4095 8191
Transitions 8960 19712 43008 93184

Time (s)
Original 11.35 53.66 259.18 1095.96
Quotient 20.25 138.60 470.84 2440.83
QuoPMF 28.17 177.54 655.09 –
#blocks 974 1987 4024 8107

#refinement 6 6 7 7

Original 1.73 8.68 37.63 199.31
Quotient 10.60 52.60 234.96 1248.30
QuoPMF 14.57 73.06 325.82 1704.87
#blocks 1019 2042 4090 8185

#refinement 5 6 6 7

Original 0.61 2.47 13.56 66.62
Quotient 10.36 39.02 260.09 900.99
QuoPMF 14.29 54.34 360.63 1235.27
#blocks 1015 2042 4085 8185

#refinement 6 5 8 6

Memory (MB)
Original 5.88 20.10 91.26 362.11
Quotient 0.36 1.24 4.50 17.04
QuoPMF 93.40 375.47 1747.35 –

Original 0.92 3.34 12.42 47.25
Quotient 0.38 1.29 4.63 17.35
QuoPMF 17.93 80.14 338.45 1379.45

Original 0.47 1.42 5.28 18.38
Quotient 0.38 1.29 4.62 17.35
QuoPMF 2.24 11.97 28.93 142.68

that the simulation quotient automaton has almost the same number of states as the
original one. Thus, Original is the fastest configuration. Another observation is that
the configuration Quotient needs almost the same amount of memory for three different
number of labels. Recall that the space complexity of the configuration Quotient is
O(n2

⋄ + n log n⋄). Note the number of blocks differs only slightly for different number of
labels, thus almost the same amount of memory is needed for this configuration.

Random Models. Most of the real models have a sparse structure: the number of
successor distributions and the size of each distribution are small. Now we consider
randomly generated PAs in which we can also observe how the algorithms behave for
dense models. We consider random model with 200 states, in which there are two actions
|Act| = 2, the size of each α-successor distribution in the model is uniform distributed

134 CHAPTER 7. SIMULATION BASED MINIMISATION

Table 7.3: Random models with various maximal distribution size D.
D 5 7 9 11 13 15 17

Transitions 1927 2717 3121 3818 4040 4711 5704
Time (s)

Original 0.50 1.10 1.80 3.19 3.76 6.04 10.26
Quotient 0.58 0.56 0.56 0.60 0.63 0.64 0.72
QuoPMF 0.54 0.54 0.52 0.59 0.60 0.60 0.70

#refinement 4 3 3 3 3 3 3
Memory (kB)

Original 138.23 137.58 108.18 132.85 115.10 131.88 145.19
Quotient 37.89 47.69 52.91 61.44 64.68 72.58 84.99
QuoPMF 263.77 179.51 128.60 144.11 107.94 83.46 110.10

Table 7.4: Random models with various maximal number of successor distributions MS .
MS 10 15 20 25 30 35

Transitions 3732 5283 7432 9250 11217 12659
Time (s)

Original 2.62 6.40 25.49 26.18 29.92 18.63
Quotient 1.15 2.97 6.82 4.88 4.44 2.83
QuoPMF 1.26 3.56 7.68 4.98 4.51 2.82
#blocks 200 200 200 13 22 9

#refinement 4 5 9 6 4 3
Memory (kB)

Original 348.79 437.73 501.16 567.91 575.46 628.32
Quotient 61.07 81.00 108.54 121.71 147.15 165.33
QuoPMF 1063.00 1663.16 2831.99 149.80 184.65 171.88

between {2, . . . , D}, and the number of successor distributions for each state is uniform
distributed between {1, . . . ,MS}. Only one state label is considered.

In Table 7.3 we set MS = 5 and consider various values of D. Because of the large
distribution size, in all of these random models the simulation quotient automaton is
the same as the corresponding original automaton, thus there is no reduction at all.
Even in this extreme case, the partition refinement based methods reduce the memory
by approximately 30%. Because of the large size of distributions, the corresponding
maximum flow computations become more expensive for the configuration Original. In
the partition refinement based approach the maximum flow computations are carried
in the quotient automaton in each iteration, which saves considerable time. Thus the
partition refinement based methods are faster, and scale much better than the configu-
ration Original. Comparing with the configuration Quotient, the parametric maximum
flow based method (configuration QuoPMF) uses more memory, and has only negligible
time advantages.

In Table 7.4 we fix the maximal size of distribution to D = 5, and consider various
values of MS . With the increase of MS , it is more probable that states are simulation
equivalent, which means also that the number of blocks tends to be smaller for large MS .

7.6. BIBLIOGRAPHIC NOTES 135

Also for this kind of dense models, we observe that significant time and space advantages
are achieved. Again, the PMF-based method does not perform better in time, and uses
more memory.

7.6 Bibliographic Notes

In the non-probabilistic setting, a decision algorithm for simulation preorder has been
proposed in [64] with complexity O(mn), where, as usual, n denotes the number of
states and m denotes the number of transitions of labelled graphs. The space com-
plexity is O(n2) due to the need of saving the simulation relations. Since space could
become the bottleneck in many applications [41], a space efficient algorithm has been
introduced by Bustan and Grumberg [29]. With n⋄ denoting the number of simulation
equivalence classes, the resulting space complexity is O(n2

⋄ + n log n⋄), which can be
considered optimal: the first part is needed to save the simulation preorder over the
simulation equivalence classes, and the second part is needed to save to which simula-
tion equivalence class a state belongs to. The corresponding time complexity obtained is
rather excessive: O(n2n2

⋄(n
2
⋄ + m)). Tan and Cleaveland [109] combined the techniques

in [64] with the bisimulation minimisation algorithm [88], and achieved a better time
complexity O(m log n+mn∼), where n∼ denotes the number of bisimulation equivalence
classes. The corresponding space complexity O(m + n2

∼).

Gentilini et. al. [54] incorporated the efficient algorithm of [64] into the partition
refinement scheme and achieved a better time complexity O(mn2

⋄) while keeping the
optimal space complexity O(n2

⋄ + n log n⋄). This is achieved by characterising a simula-
tion relation by a partition pair, which consists of a partition of the set of states and a
relation over the partition. Then, the simulation problem can be reduced to a GCPP,
which consists of determining the coarsest stable partition pair. The algorithm starts
with the coarsest partition pair and refines both the partition and the relation over the
partition according to stability conditions. In [94], an algorithm has been proposed with
time complexity O(mn⋄) and space complexity O(nn⋄). Recently, van Glabbeek and
Ploeger [111] have shown that the proofs in [54] were flawed, but have provided a fix for
the main result. The algorithm we introduced in this chapter is based on the above parti-
tion refinement strategy. However, our space complexity is increased to O(n2

∼+n log n⋄).
As discussed in Section 7.3, the predecessor based method for refining the partition does
not work for PAs. For refining the partition, we have proposed a graph-based method,
which has worst case space complexity O(n2

∼ + n log n⋄).

7.7 Summary

In this chapter we proposed a partition refinement based space efficient algorithm for
deciding simulation preorders. We discussed how to reduce the time complexity further
by exploiting parametric maximum flow algorithm. Our implementation of the space-
efficient and time-efficient variants of the algorithm has given experimental evidence, that
compared to the original algorithm, not only the space-efficiency is improved drastically.
Often the computation time is decreased by orders of magnitude.

136 CHAPTER 7. SIMULATION BASED MINIMISATION

Chapter 8

Conclusion and Future Works

8.1 Conclusion

In this thesis we have presented novel decision algorithms for various simulation relations
for finite probabilistic systems. We first considered strong simulation. The straight-
forward algorithm starts with the largest relation, and refines it with respect to the
conditions for strong simulations. Checking whether the conditions can be reduced to
maximum flow problems. In the worst case, the algorithm terminates after n2 iterations
where n is the number of states, which is inefficient (with complexity O(n7/ log n)). We
proposed drastic improvements by observing that the networks on which the maximum
flows are calculated are very similar across iterations of the refinement loop. Adapting
the parametric maximum flow algorithm to solve the maximum flows for the arising
sequences of similar networks leads to an overall time complexity O(m2n) and space
complexity O(m2). For sparse models (state fanout is bounded by a constant k) our
strong simulation algorithm has time and space complexity O(n2). For weak simula-
tion for Markov chains, the parametric maximum flow idea cannot be applied directly.
Nevertheless, we manage to incorporate the parametric maximum flow algorithm into a
decision algorithm with complexity O(m2n3).

For probabilistic automata in discrete and continuous time, we considered also strong
probabilistic simulation which is strictly coarser than strong simulation. We have shown
that strong probabilistic simulation can be decided via solving LP problems, thus has
polynomial complexity.

Since space complexity becomes the bottleneck of the algorithm in many applications,
we discussed how to incorporate the partition refinement idea into the computation of
the simulation preorder for PAs. The resulting algorithm has space complexity O(n2

∼ +
n log n⋄). However, we get a rather excessive time complexity. Experimental results
show, however, that this method is very effective in time and memory: not only the
space-efficiency is improved drastically, often orders of magnitude less time is required.

137

138 CHAPTER 8. CONCLUSION AND FUTURE WORKS

8.2 Future works

Compositional Aggregation. Systems are usually very large and complex as they
are generated stepwise out of smaller building components via parallel compositions.
For bisimulations, compositional aggregation based techniques have been successfully
exploited for minimisation [26]: during generation of its state-space representation, com-
position and minimisation steps are intertwined along the structure of the compositional
specification. As bisimulation, the simulation equivalence ≃ is preserved by the parallel
operator for PAs [98]. Thus, we can apply the compositional aggregation technique to
our simulation setting: Instead of working on the final model, we could intertwine the
computation of quotient automaton with respect to simulation and the parallel compo-
sition.

Acyclic Models. In [42], efficient algorithms have been developed for computing
strong and weak bisimulations for acyclic interactive Markov chains [65]. For strong
bisimulation the complexity is linear in the size of the transition relation, and for weak
bisimulation, the complexity is linear in the size of the weak transition relation. The
key element of the algorithm is to start from the bottom level of the acyclic model, and
traverse the transitions backwards to refine the partitions on the higher level according
to the bisimulation definition. This observation could also be used in deciding simulation
quotient for acyclic models, which remains as our future work.

Infinite Systems. We have considered finite probabilistic systems in this thesis. With
our algorithm, we are able to check whether the specification S simulates the implemen-
tation I provided both S and I are finite. While the specification is usually finite,
however, the implementation is often infinite e.g. due to unbounded arithmetic vari-
ables or queues. Now we discuss how to check whether I - S holds, provided that the
specification S is finite and the implementation I is infinite.

The goal is to find an intermediate finite model I ′, such that I - I ′ - S, then, by
the transitivity of simulations, I - S also holds. For a finite partition of the state space
of I, assume that the corresponding finite quotient automaton I ′ can be constructed
with the property I - I ′ by the correctness of the construction1. Exploiting algorithm
presented in this thesis, we can check whether I ′ - S holds. If it holds, we report I - S
because of the transitivity of the simulation relation. The method is, however, inclusive
if I ′ 6- S: it could be either I 6- S, or I - S. For the former case, counterexamples
shall be identified to witness the fact that I 6- S. The latter case is possible since the
abstraction I ′ might be chosen too coarser and there are more behaviour introduced
which cannot be simulated by S. In this case we shall refine I ′, i.e., choose a finer
partition and repeat the above steps.

1If I is represented by the guarded command language [67], such constructions are possible using
predicate abstraction [57, 115].

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings. In Third Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 165–175, 1988.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: theory, algorithms,
and applications. Prentice Hall, 1993.

[3] R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved algorithms for
bipartite network flow. SIAM J. Comput., 23(5):906–933, 1994.

[4] S. Andova and T. A. C. Willemse. Branching bisimulation for probabilistic sys-
tems: Characteristics and decidability. Theor. Comput. Sci., 356(3):325–355, 2006.

[5] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T. A. Henzinger, editors, Computer aided verification
(CAV), volume 1102 of LNCS, pages 269–276. Springer, 1996.

[6] C. Baier. On Algorithmic Verification Methods for Probabilistic Systems, 1998.
Habilitations- schrift zur Erlangung der venia legendi der Fakultät für Mathematik
and Informatik, Universität Mannheim.

[7] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model checking
action- and state-labelled Markov chains. In Dependable Systems and Networks
(DSN), pages 701–710. IEEE Computer Society, 2004.

[8] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model check-
ing Markov chains with actions and state labels. IEEE Trans. Software Eng.,
33(4):209–224, 2007.

[9] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231, 2000.

[10] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng., 29(6):524–
541, 2003.

[11] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. In K. Jensen and A. Podelski, editors, Tools and algorithms for
the construction and analysis of systems (TACAS), volume 2988 of LNCS, pages
61–76. Springer, 2004.

139

140 BIBLIOGRAPHY

[12] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In
O. Grumberg, editor, Computer Aided Verification (CAV), volume 1254 of LNCS,
pages 119–130. Springer, 1997.

[13] C. Baier, H. Hermanns, and J.-P. Katoen. Probabilistic weak simulation is decid-
able in polynomial time. Information processing letters, 89(3):123–130, 2004.

[14] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Efficient computa-
tion of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theor. Comput. Sci., 345(1):2–26, 2005.

[15] C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. Comparative branching-time
semantics. In R. M. Amadio and D. Lugiez, editors, CONCUR, volume 2761 of
LNCS, pages 482–497. Springer, 2003.

[16] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[17] C. Baier, J.-P. Katoen, H. Hermanns, and B. Haverkort. Simulation for continuous-
time Markov chains. In L. Brim, P. Jančar, M. Křet́ınský, and A. Kučera, editors,
CONCUR, volume 2421 of LNCS, pages 338–354. Springer, 2002.

[18] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time
semantics for Markov chains. Information and computation, 200(2):149–214, 2005.

[19] C. Baier and M. Stoelinga. Norm functions for probabilistic bisimulations with
delays. In J. Tiuryn, editor, FoSSaCS, volume 1784 of LNCS, pages 1–16. Springer,
2000.

[20] D. P. Bertsekas. dynamic programming and optimal control. Athena Scientific,
1995.

[21] S. Blom and S. Orzan. Distributed branching bisimulation reduction of state
spaces. Electr. Notes Theor. Comput. Sci., 89(1), 2003.

[22] B. Bloom and R. Paige. Transformational design and implementation of a new effi-
cient solution to the ready simulation problem. Sci. Comput. Program., 24(3):189–
220, 1995.

[23] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan,
R. Wimmer, and B. Becker. Compositional performability evaluation for statem-
ate. In Quantitative Evaluaiton of Systems (QEST), pages 167–178. IEEE Com-
puter Society, 2006.

[24] J. Bogdoll, H. Hermanns, and L. Zhang. An experimental evaluation of proba-
bilistic simulation. In Formal Techniques for Networked and Distributed Systems
(FORTE), volume 5048 of LNCS, pages 37–52. Springer, 2008.

[25] H. C. Bohnenkamp, P. van der Stok, H. Hermanns, and F. W. Vaandrager. Cost-
optimization of the ipv4 zeroconf protocol. In Dependable Systems and Networks
(DSN), pages 531–540. IEEE Computer Society, 2003.

BIBLIOGRAPHY 141

[26] H. Boudali, P. Crouzen, and M. Stoelinga. A compositional semantics for dynamic
fault trees in terms of interactive markov chains. In K. S. Namjoshi, T. Yoneda,
T. Higashino, and Y. Okamura, editors, Automated Technology for Verification
and Analysis (ATVA), volume 4762 of LNCS, pages 441–456, 2007.

[27] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault tree analysis using
input/output interactive markov chains. In Dependable Systems and Networks
(DSN), pages 708–717. IEEE Computer Society, 2007.

[28] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In CAV, pages 274–287, 1999.

[29] D. Bustan and O. Grumberg. Simulation based minimization. In A. Voronkov,
editor, CADE, volume 2392 of LNCS, pages 255–270. Springer, 2000.

[30] S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In
L. Brim, P. Jancar, M. Kret́ınský, and A. Kucera, editors, CONCUR, volume 2421
of LNCS, pages 371–385. Springer, 2002.

[31] J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum flow be computed in
o(nm) time? In M. S. Paterson, editor, Automata, languages and programming,
volume 443 of LNCS, pages 235–248. Springer, 1990.

[32] J. Cheriyan and K. Mehlhorn. An analysis of the highest-level selection rule in the
preflow-push max-flow. Inf. Process. Lett., 69(5):239–242, 1999.

[33] L. Cheung, M. Stoelinga, and F. W. Vaandrager. A testing scenario for proba-
bilistic processes. J. ACM, 54(6), 2007.

[34] I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In J. C. M. Baeten and J. W. Klop, editors, CONCUR, volume 458
of LNCS, pages 126–140. Springer, 1990.

[35] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In D. Kozen, editor, Logic of Programs,
volume 131 of LNCS, pages 52–71. Springer, 1981.

[36] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
1994.

[37] R. Cleaveland. On automatically explaining bisimulation inequivalence. In E. M.
Clarke and R. P. Kurshan, editors, Computer Aided Verification (CAV), volume
531 of LNCS, pages 364–372. Springer, 1990.

[38] R. Cleaveland, Z. Dayar, S. A. Smolka, and S. Yuen. Testing preorders for proba-
bilistic processes. Inf. Comput., 154(2):93–148, 1999.

[39] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Trans. Pro-
gram. Lang. Syst., 15(1):36–72, 1993.

142 BIBLIOGRAPHY

[40] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. In ACM Symposium on Theory of Computing, 1987.

[41] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. In E. M. Clarke and R. P.
Kurshan, editors, Computer Aided Verification (CAV), volume 531 of LNCS, pages
233–242. Springer, 1990.

[42] P. Crouzen, H. Hermanns, and L. Zhang. On the minimisation of acyclic models.
In F. van Breugel and M. Chechik, editors, CONCUR, volume 5201 of LNCS,
pages 295–309. Springer, 2008.

[43] S. Derisavi. A signature-based algorithm for optimal Markov chain lumping. In
Quantitative Evaluation of SysTems (QEST), pages 141–150. IEEE Computer So-
ciety, 2007.

[44] S. Derisavi. A symbolic algorithm for optimal Markov chain lumping. In O. Grum-
berg and M. Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 4424 of LNCS, pages 139–154. Springer, 2007.

[45] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal State-Space Lumping in
Markov Chains. Inf. Process. Lett., 87(6):309–315, 2003.

[46] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.

[47] J. Desharnais. Labelled Markov processes. PhD thesis, McGill University, 1999.

[48] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. Information and Computation, 179(2):163–193, 2002.

[49] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
labelled Markov processes. Inf. Comput., 184(1):160–200, 2003.

[50] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–207, 1983.

[51] A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In CAV,
pages 79–90, 2001.

[52] H. Fecher, M. Leucker, and V. Wolf. Don’t Know in probabilistic systems. In
A. Valmari, editor, SPIN, volume 3925 of LNCS, pages 71–88. Springer, 2006.

[53] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. Comput., 18(1):30–55, 1989.

[54] R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation: Coarsest
partition problems. J. Autom. Reasoning, 31(1):73–103, 2003.

[55] A. V. Goldberg. Recent developments in maximum flow algorithms (invited lec-
ture). In S. Arnborg and L. Ivansson, editors, 6th Scandinavian Workshop on
Algorithm Theory (SWAT), volume 1432 of LNCS, pages 1–10. Springer, 1998.

BIBLIOGRAPHY 143

[56] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988.

[57] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In O. Grum-
berg, editor, Computer aided verification (CAV), volume 1254 of LNCS, pages
72–83. Springer, 1997.

[58] J. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In ICALP, 1990.

[59] C. Groß, H. Hermanns, and R. Pulungan. Does clock precision influence zigbee’s
energy consumptions? In E. Tovar, P. Tsigas, and H. Fouchal, editors, Principles
of Distributed Systems (OPODIS), volume 4878 of LNCS, pages 174–188. Springer,
2007.

[60] D. Gusfield and É. Tardos. A faster parametric minimum-cut algorithm. Algorith-
mica, 11(3):278–290, 1994.

[61] H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabitilies. In IEEE Real-Time Systems Symposium, pages 278–287, 1990.

[62] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[63] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. ACM, 32(1):137–161, 1985.

[64] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on
finite and infinite graphs. In 36th Annual Symposium on Foundations of Computer
Science (FOCS), pages 453–462. IEEE Computer Society, 1995.

[65] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality,
volume 2428 of LNCS. Springer, 2002.

[66] H. Hermanns and S. Johr. Uniformity by construction in the analysis of nondeter-
ministic stochastic systems. In Dependable Systems and Networks (DSN), pages
718–728. IEEE Computer Society, 2007.

[67] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for auto-
matic verification of probabilistic systems. In H. Hermanns and J. Palsberg, edi-
tors, Tools and algorithms for the construction and analysis of systems (TACAS),
volume 3920 of LNCS, pages 441–444. Springer, 2006.

[68] M. Huth. An abstraction framework for mixed non-deterministic and probabilistic
systems. In C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle,
editors, Validation of Stochastic Systems, volume 2925 of LNCS, pages 419–444.
Springer, 2004.

[69] M. Huth. On finite-state approximants for probabilistic computation tree logic.
Theor. Comput. Sci., 346(1):113–134, 2005.

144 BIBLIOGRAPHY

[70] D. T. Huynh and L. Tian. On some equivalence relations for probabilistic processes.
Fundam. Inform., 17(3):211–234, 1992.

[71] B. Jonsson. Simulations between specifications of distributed systems. In J. C. M.
Baeten and J. F. Groote, editors, CONCUR, volume 527 of LNCS, pages 346–360.
Springer, 1991.

[72] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic
processes. In Sixth Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 266–277. IEEE Computer Society, 1991.

[73] P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite state processes, and
three problems of equivalence. Inf. Comput., 86(1):43–68, 1990.

[74] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373–396, 1984.

[75] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for
continuous-time Markov chains. In W. Damm and H. Hermanns, editors, Computer
Aided Verification (CAV), volume 4590 of LNCS, pages 311–324. Springer, 2007.

[76] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Abstraction for stochastic
systems by erlang’s method of stages. In F. van Breugel and M. Chechik, editors,
CONCUR, volume 5201 of LNCS. Springer, 2008.

[77] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand, 1960.

[78] V. King, S. Rao, and R. E. Tarjan. A faster deterministic maximum flow algorithm.
J. Algorithms, 17(3):447–474, 1994.

[79] R. Knast. Continuous-time probabilistic automata. Information and Control,
15(4):335–352, 1969.

[80] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

[81] N. A. Lynch, R. Segala, and F. W. Vaandrager. Observing branching structure
through probabilistic contexts. SIAM J. Comput., 37(4):977–1013, 2007.

[82] S. Mangold, Z. Zhong, G. R. Hiertz, and B. Walke. IEEE 802.11e/802.11k wireless
LAN: spectrum awareness for distributed resource sharing. Wireless Communica-
tions and Mobile Computing, 4(8):881–902, 2004.

[83] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
specification. Springer, 1992.

[84] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with generalized stochastic petri nets. SIGMETRICS Performance Evaluation
Review, 26(2):2, 1998.

BIBLIOGRAPHY 145

[85] R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

[86] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

[87] M. R. Neuhäußer and J.-P. Katoen. Bisimulation and logical preservation for
continuous-time Markov decision processes. In L. Caires and V. T. Vasconcelos,
editors, CONCUR, volume 4703 of LNCS, pages 412–427. Springer, 2007.

[88] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM J.
Comput., 16(6):973–989, 1987.

[89] D. Park. Concurrency and automata on infinite sequences. In Theoretical Com-
puter Science, pages 167–183, 1981.

[90] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In ACM Conference on Computer and Communications Security,
pages 245–254, 2000.

[91] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and
its application to secure message transmission. In IEEE Symposium on Security
and Privacy, pages 184–200, 2001.

[92] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic sys-
tems. In C. Palamidessi, editor, CONCUR, volume 1877 of LNCS, pages 334–349.
Springer, 2000.

[93] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York, 1994.

[94] F. Ranzato and F. Tapparo. A new efficient simulation equivalence algorithm. In
Symposium on Logic in Computer Science (LICS), pages 171–180. IEEE Computer
Society, 2007.

[95] W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications,
9(1):25–36, 1991.

[96] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[97] R. Segala. A compositional trace-based semantics for probabilistic automata. In
I. Lee and S. A. Smolka, editors, CONCUR, volume 962 of LNCS, pages 234–248.
Springer, 1995.

[98] R. Segala. Modeling and Verification of Randomized Distributed Realtime Systems.
PhD thesis, MIT, 1995.

[99] R. Segala. Testing probabilistic automata. In U. Montanari and V. Sassone,
editors, CONCUR, volume 1119 of LMCS, pages 299–314. Springer, 1996.

146 BIBLIOGRAPHY

[100] R. Segala. Probability and nondeterminism in operational models of concurrency.
In C. Baier and H. Hermanns, editors, CONCUR, volume 4137 of LNCS, pages
64–78. Springer, 2006.

[101] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

[102] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, CONCUR, volume 836 of LNCS, pages 481–496.
Springer, 1994.

[103] R. Segala and A. Turrini. Comparative analysis of bisimulation relations on al-
ternating and non-alternating probabilistic models. In Quantitative Evaluaiton of
Systems (QEST), pages 44–53. IEEE Computer Society, 2005.

[104] R. Segala and A. Turrini. Approximated computationally bounded simulation
relations for probabilistic automata. In CSF, pages 140–156. IEEE Computer
Society, 2007.

[105] K. Sen, M. Viswanathan, and G. Agha. Model-checking Markov chains in the
presence of uncertainties. In H. Hermanns and J. Palsberg, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 3920
of LNCS, pages 394–410. Springer, 2006.

[106] W. J. Steward. Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, 1994.

[107] M. Stoelinga. Alea jacta est: Verification of Probabilistic, Real-Time and Para-
metric Systems. PhD thesis, University of Nijmegen, 2002.

[108] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-
structions. In G. Sutcliffe and A. Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR), volume 3835 of LNCS, pages 396–411.
Springer, 2005.

[109] L. Tan and R. Cleaveland. Simulation revisited. In T. Margaria and W. Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2031 of LNCS, pages 480–495. Springer, 2001.

[110] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[111] R. J. van Glabbeek and B. Ploeger. Correcting a space-efficient simulation algo-
rithm. In A. Gupta and S. Malik, editors, Computer Aided Verification (CAV),
volume 5123 of LNCS, pages 517–529. Springer, 2008.

[112] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative and strat-
ified models of probabilistic processes. Inf. Comput., 121(1):59–80, 1995.

BIBLIOGRAPHY 147

[113] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reactive,
generative, and stratified models of probabilistic processes. In IEEE Symposium
on Logic in Computer Science, pages 130–141, 1990.

[114] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 327–338. IEEE, 1985.

[115] B. Wachter, L. Zhang, and H. Hermanns. Probabilistic model checking modulo
theories. In Quantitative Evaluation of SysTems (QEST), pages 129–138, 2007.

[116] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref-
a symbolic bisimulation tool box. In S. Graf and W. Zhang, editors, Automated
Technology for Verification and Analysis (ATVA), volume 4218 of LNCS, pages
477–492. Springer, 2006.

[117] R. Wimmer, H. Hermanns, and S. Derisavi. Symbolic partition refinement with
dynamic balancing of time and space. In Quantitative Evaluation of SysTems
(QEST). IEEE Computer Society, 2008.

[118] V. Wolf, C. Baier, and M. E. Majster-Cederbaum. Trace machines for observing
continuous-time markov chains. Electr. Notes Theor. Comput. Sci., 153(2):259–
277, 2006.

[119] V. Wolf, C. Baier, and M. E. Majster-Cederbaum. Trace semantics for stochastic
systems with nondeterminism. Electr. Notes Theor. Comput. Sci., 164(3):187–204,
2006.

[120] N. Wolovick and S. Johr. A characterization of meaningful schedulers for
continuous-time Markov decision processes. In E. Asarin and P. Bouyer, edi-
tors, Formal modeling and analysis of times systems (FORMATS), volume 4202
of LNCS, pages 352–367. Springer, 2006.

[121] L. Zhang. A space-efficient probabilistic simulation algorithm. In F. van Breugel
and M. Chechik, editors, CONCUR, volume 5201 of LNCS, pages 248–263.
Springer, 2008.

[122] L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In
K. S. Namjoshi, T. Yoneda, T. Higashino, and Y. Okamura, editors, Automated
Technology for Verification and Analysis (ATVA), volume 4762 of LNCS, pages
207–222. Springer, 2007.

[123] L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen. Flow faster: Efficient de-
cision algorithms for probabilistic simulations. In O. Grumberg and M. Huth, edi-
tors, Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 4424 of LNCS, pages 155–169. Springer, 2007.

[124] L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen. Flow faster: Efficient
decision algorithms for probabilistic simulations. Special Issue on TACAS 2007,
Logical Method in Computer Science (LMCS), 2008.

