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Summary

The baker's yeastSaccharomyces cerevisjas a simple eukaryotic organism with
approximately 6000 genesSaccharomyces cerevisiae an ideal model organism for
large-scale functional studies and provides a system in which genes catebeasgally
inactivated by way of gene-knockout methods. A substantial fractitimeadd000 genes
in Saccharomyces cerevisiaacode proteins for which currently we do not know any
confirmed or putative function. Prediction of the functional role osehproteins is a
challenging problem in systems biology, especially as matlyese genes have no overt
phenotypes. In our study, we aim at a better understanding of thdyurgléunctional
relationships between genes working across diverse metabolic gyathwsing
intracellular metabolite profiling studies. We applied bioinforngatimethods and
statistical analysis techniques in combination with metabolidlimgpto understand the
function and the regulatory mechanisms of specific genes involvedniracearbon
metabolism and amino acid biosynthesis. The experimental workavasd out by the
group of Prof. Elmar Heinzle (Biochemical Engineering, ekl University), our
collaboration partner:3C stable isotope substrates can be used as tracers to generat
detailed metabolic profiles of gene knockouts. Detailed and quantitafeniation on
the physiological cellular states is measured®8y-metabolic profiling of cultures grown
on novel high throughput oxygen sensor microtiter plates. In this @dgeartwe worked
towards developing systematic approaches for stud®aotharomyces cerevisigenes

of unknown function based on the metabolic profiles of knockout mutants unasat var
environmental conditions. In the first step, we have developed a seftaal called
CalSpec for automation of Gas Chromatography Mass Spectrodat&ryacquisition and
analysis routine, as this is a bottleneck in the metabolic proSlumgjes. In the next step,
we worked on large scale statistical analysis of metalpobdiling data. We applied
various algorithms for finding closely related mutants which showilasi metabolic
profiles. According to our hypothesis, similarity in the metabpiwfiles can be used to
find functionally linked genesSaccharomyces cerevisiae known to be robust to
majority of genetic perturbations. In these cases where thentsusdow no overt



phenotypes, we developed a sensitive outlier detection method to tetsubsets of
metabolic profile features which are most differentiating (exg) for all mutants. The
second part of this dissertation involves developing computational toolaéitabolic
pathway analysis on the basis of genome scale metabolic models, as nteldjegion of
various newly emerging experimental techniques. In recent ,yepgmsome scale
metabolic models have been and are continuing to be assembled for various organisms. |
the year 2003, first comprehensive genome scale metabolic modgédst became
publicly available. With the emergence of system biology area sd#areh, diverse
computational approaches have been developed. In this work, we developed a new
webserver called MetaModel, for analysis of genome scalebolatanetworks of

eukaryotic organisms.
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Chapter 1

1. Saccharomyces cerevisidgeology

1.1. S.cerevisiadiochemistry

Yeast is a collective term for unicellular basidiomycetous aodraycetous fungi. These
two types of fungi differ only in the way they produce spores.

Basidiomycetous fungi bears sexually produced spores on a “basidibitii is like a
club-shaped structure whereas the ascomycetous fungi bear the BEde a sac-like
structure known as “ascus”.

S. cerevisiaés commonly known as Baker’s yeaSt.cerevisiaés an organism of choice
in large-scale functional analysis. Th®. cerevisiae genome encompasses 16
chromosomes and is 12-megabases (Mb) in size. With an averaggeoné per 2kb of
genomic sequence, yeast genome roughly encodes 6,200 genes [Goffeadt@fbgr
important characteristic, in contrast to higher eukaryotes, tsotilg 263S. cerevisiae
genes possess intronic regions [Costanzo2000]. This makes computatainatsnfor
gene identification in yeast very simpl8. cerevisiads known to be stable in both
haploid and diploid states. The stability of the mutants makes yegsiattractive for
mutational studies and gene function prediction methods. Large scale comsitaties
of yeast and human genes have emerged as a powerful approach forgeam&mction
prediction. This is due to the fact that nearly 50% of human genes riédpdosgenetic

diseases have yeast homologues.

1.1.1. S.cerevisiaeA model organism

In the last few years, genetically modified organisms haee ke&tensively employed as
a functional genomics tool for predicting the role of genes and pinetein products
[Kumar2001]. Nevertheless, few models express the expected phenobyottto be
associated with the gene or protein. There is thus a need tor fiefiree the phenotype
resultant from a genetic modification in order to understand how thsctrptional or
proteomic network may accomplish altering the metabolism and bgnfyrth the
expected phenotyp&accharomyces cerevisigethe most widely studied type of yeast
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and is an extensively used eukaryotic organism for experimentatidmoiagical
researchS. cerevisia@lso has the distinction of being the first eukaryotic organisim wi

a completely sequenced genome. In fact, its genome sequence wastedrm 1996
[Dujon1996 and Goffeaul996]. An important characteristic ofdrganism is that it is
amenable to genetic modification, and it is therefore possible tnemtghemetabolism

and thereby exploit the organism as a host, for example in indysw@ction of many
different chemicals. Yeast has been increasingly used iard@of metabolomics. As
currently defined, “metabolome” approaches stand for the approachel wsée the
complete pool of cellular metabolites. This includes the whole rahgeolecules and
intermediates which are subjected to biochemical conversions throwgabatic
pathways, for generation of chemical blocks and energy for growthoamdaintenance

of cellular functions. “Metabolic profiling” of cellular concentoats of metabolites
provides the detailed snapshot of the cell’'s phenotype. Metabolic pgofiks been
extensively applied to yeast and other organisms [Raamsdonk2001, Adams2003,
Trethewey1999, Fiehn2002, Watkins 2002, and Castrillo2003]. These large-scale
metabolic profiling studies also lead to development of sensitarge-scale high-
throughput methods for “metabolite screening” [Oliver2002]. Another approakéd
“metabolite footprinting” uses metabolite profiling methods for arialy specific
metabolites which are released into the medium. Kell etusdd this footprinting
approach for the classification of yeast knockout mutants [Kell2060jecent years,

new and powerful methods have been developed for yeast knockout analysisg Am
these are metabolic control analysis, strategies for thedatian of the function of new
genes and metabolic pathways as well as the role of amino @utl®ther specific
metabolites in controlling gene expression, metabolome analysisbahetarofiling
approaches for biomarker discovery, and drug target screeningsifik&998,
Raamsdonk2001, Trethewey2001, Fuente2002, Weckwerth2002, Fafournoux2000,
Hansen2000, S02000, Griffin2001, and Watkins2002].

1.1.2. Physiology: diauxic growth

The effect of glucose on a variety of cellular processesbeen extensively studied in

Saccharomyceserevisiae Some of these include glucose repression of genes used in

13



growth on alternative carbon sources and the induction of gereted for glucose
transport and protein synthesis [Carlson1999, Gancedo1998, Johnston1999, Warner1999,
and Newcomb2003]. Glucose is known to have a profound effect on the transaiption
yeast genes. It is known that switch from anaerobic growth to aeredypiration upon
depletion of glucose is correlated with widespread changes inxgiression of genes
involved in fundamental cellular processes such as carbon metahmictein synthesis,

and carbohydrate storage [Johnston199Zhis shift from anaerobic fermentation of
glucose to aerobic respiration of ethanol is called the "diauxitt.shine “Diauxic shift”

is known to involve major changes in gene expression [DeRisi1997§ khawn that

genes encodinglycolytic enzymes are down-regulated as glucose gets extauste

whereas the expression levels of genes involved in oxidative metabuliease.

1.2. Carbohydrate metabolism

Yeast cells have evolved to undergo a variety of metabolic elsamg response to
fluctuating nutrient levels in the environment, many of which are coatell by proteins
such as TOR, Sch9, and PKA [Kaeberlein2007]. TOR proteins are known tgHbe hi
conserved from yeast to humans and regulate multiple cellularsgescén response to
nutrients, including cell size, autophagy, ribosome biogenesis and ti@mslsiress
response, actin organization, carbohydrate and amino acid metabatisme]3le2000].
Sch9 and Protein kinase A (PKA) are nutrient-responsive protein kitlagemodulate
replicative aging in yeast [Lin2000, Fabrizio2004]. It is well knotwet tyeast responds
to decreasing glucose levels by shifting growth behavior from tha¢ favors

fermentation to one that favors respiration [see section 1.2.1].

1.2.1. Central carbon metabolism

The salient feature of eukaryotic central carbon metabolisi® déssection into cytosolic

and mitochondrial subpathways, connected by intercompartmental transport
metabolites [Michall998, Ro0sel1989, Strathern1982, and Zimmermannl997].
Tricarboxylic acid (TCA) cycle operates in the mitochondria, &eddgiycolysis and the
pentose phosphate pathway (Pen are located in the cytosol [Fraenkell982,
Gancedo1989, and Pronk1996]. It is known that oxaloacetate (OxAc), py(Bvateand

14



acetyl-CoA (AcCoA) are present in both mitochondria and cytosadtition, systems

for their transport across the mitochondrial membrane have beerfiéde[fRronk1996,
Kispall993, Roermund1999 Palmieril999]. Hence, these three intermediatégya
metabolites to distinguish cytosolic (cyt) and mitochondrial (mt) pools.

In yeast, OxAc is produced both in TCA cycle, and in cytosol byathien of pyruvate
carboxylase [Fraenkel1982, Gancedo1989, Rohde1991, van Urk1989]. Cytosolic OxAc is
actively transported by the proton motive force at the inner mitocladntembrane.
Cytosolic Prv is produced in the cytosol by glycolysis and aifraadf it is transported
into the mitochondria yielding mitochondrial Prv [Gancedol1989, Pronk1996]. In
addition, mitochondrial Prv is also synthesized from malate bycneaizyme. The
transport is actively driven by the mitochondrial proton motive feuggesting a largely
unidirectional transport from the cytosol into the mitochondria. MitochahdtCoA

and cytosolic AcCoA can be derived from mitochondrial Prv and cytodoic
respectively, either by the pyruvate dehydrogenase comptée imitochondria, or via a
cytosolic 'by-pass pathway' [Haarasiltal977]. AcCoA can crositiee mitochondrial
membrane via the ‘carnitine shuttle’. This shuttle consists of ctraitine O-
acetyltransferase serves to balance the cytosolic and mitocHoAdGaA pools by
facilitated diffusion.

1.2.2. Alternative carbon sources: glucose, fructose and galactose

Saccharomyces cerevisi@an grow with a variety of carbon sources, but glucose and
fructose are thereferred carbon sources. Presence of glucose and fructose lead to the
down-regulation of the synthesis of those enzymes which are rédairéhe catabolism

of other alternative carbon sources [Gancedo1998]. This is also kreoWatabolite
repression”.S.cerevisiaeencodes for GAL genes which are required for the galactose
catabolism. The galactose metabolism is subject to dual contre@lyaia the induction

of the GAL genes by galactose and via the repression of theg8Aés by the presence

of glucose [Johnston1992]. While translational control by glucose is rare, gluigggers
inactivation and/or proteolysis of a number of proteins. Glucose askalswn to be
involved in another phenomenon known as “catabolite inactivation” in which glucose

triggers inactivation and/or proteolysis of a variety of proteinal4et1976]. Glucose is
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known to cause rapid phosphorylation of Fructose 1, 6-bisphosphate and proteolytic
degradation of this enzyme [Funayamal980, Muller1981].

1.3. S. cerevisiagene knockout library

In the present work, we used yeast haploid knockout strains for sjudiie
physiological growth profiles associated with individual gene knockowtstio® 1.3.1
and 1.3.2 describes the reference strain and the detailed descriptioa khockout

strains used in the study, respectively.

1.3.1. Referencestrain

Saccharomyces cerevisiaedeletion mutants with a parental genotype of
BY4742MATa with his, leu, lys and ura auxotrophy were obtained from Open
Biosystems (Heidelberg, Germany). This mutant library was usedthe entire
experimental work by our collaboration partners, the group of Dr.aElhkeinzle
(Technical biochemistry, Saarland University, Germany). The aboventatiso possess
antibiotic Geneticin resistance, which is used as a marker. En@mcollection, the
parental strain, which was used as the reference strain, agidod deletion mutants,
where genes are known to be involved in central carbon metabolism, asttdews with

unknown function were chosen for further analysis.

1.3.2. Description of selected knockout mutants

The Saccharomyces Genome Database (SGD) and the Gene Of@qgpyrovide rich

and up-to-date resources for annotation concerning the unique and nfutiigtiens of

the S. cerevisiaegenes [Cherry1998, sgd, Harris2004, go, go2000, Dwight2002,
Hong2007]. GO provides a rich, precise and structured controlled vocalfolary
describing the cellular role of genes and gene products in a giganiem. SGD collects
and organizes biological information about the chromosomal features maggelucts

of the budding yeasbaccharomyces cerevisiadn the scenario of ever increasing and
changing biological knowledge of cellular roles of gene products, &&DGO provide
media for organizing and querying biological annotations for indivigeakes and gene

products at various stages of completion and for deciphering probabledwted links
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between cellular roles of two or more genes in the same erefiff organisms. This is
made possible by inclusion of evidence coming from high-throughputieqrgs and
computational predictions, in the absence of published experimental data [Hong2007].
The preliminary set of genes which are known or putative regslatfocentral carbon
metabolism in yeast, were selected using two basic critgéjidhe deletion must be
viable, 2) the deletion must be active in more than three cellular processesdibpitite
GO classification [Figure 1]. The hypothesis is that if an GRkvolved in multiple

cellular processes, it might result in a more explicit phenotype in knockout egpé&sim
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Figure 1 Gene Ontology function terms associated with hescription factor RGT1

1.4. GO annotationsfor selected knockout mutants
Table 1 lists the molecular function, biological processes and doc&0O terms associated

with the entire mutant set under study.
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ORF Accession Mutant Biological process Molecular function Cellular
Id component
ABZ1 YNRO33W 53 para-aminobenzoic acid metabolism -anino-4-deoxychorismate synthasdJnknown
activity
ABZ1 YNRO33W 62 para-aminobenzoic acid metabolism -ansino-4-deoxychorismate synthasdJnknown
activity
ACE2 YLR131C 17 G1-specific transcription in mitoY transcriptional activator activity Nucleus
cell cycle
ADR1 YDR216W 25 Transcription transcription facamtivity nucleus
CAT8 YMR280C 6 regulation of transcription fromIPp specific RNA polll transcription| Nucleus
Il promoter factor activity
CYB2 YMLO54C 1 electron transport L-lactate dehygkpase Mitochondrial
intermembrane
space
DLD2 YDL174C 46 aerobic respiration D-lactate defogknasel Mitochondrial
(cytochrome) activity inner
membrane
FBP1 YLR377C 61 Gluconeogenesis fructose-bisphdaphaactivity Cytosol
FBP26 YJL155C 22 Gluconeogenesis fructose-2,6-bispiate 2-| Cytosol
phosphatase activity
FOX2 YKRO009C 34 fatty acid beta-oxidation 3-hydraryl-CoA dehydrogenasge Peroxisomal
activity matrix
FUM1 YPL262W 10 tricarboxylic acid cycle fumaratednatase activity Cytosol
GAD1 YMR250W | 5 response to oxidative stress glutandecarboxylase activity Cytoplasm
GAL10 YBR019C 50 galactose metabolism unknown Unkmo
GAL11 YOLO51W 9 transcription from Pol Il promoter | RNA polymerase |l transcription mediator
mediator activity complex
GAL4 YPL248C 11 regulation of transcription DNA-d=plent transcriptional Nucleus
activator activity
GAL7 YBR018C 49 galactose metabolism UTP-hexosdxdsphate Cytoplasm
uridylyltransferase activity
GAL80 YMLO51W 2 regulation of transcription DNA-depdent transcription Nucleus
GCR2 YNL199C 33 regulation of transcription froml Hotranscriptional activator activity Nucleus
Il promoter
GLK1 YCLO40W 16 carbohydrate metabolism glucokmastivity cytosol
GLO1 YMLO04C 3 glutathione metabolism lactoylglutimine lyase activity Unknown
HXK2 YGL253W 27 fructose metabolism hexokinase\atti Nucleus
IMP2 YIL154C 64 DNA repair transcription co-actieaactivity Unknown
KGD1 YIL125W 55 tricarboxylic acid cycle oxoglutdea dehydrogenase Mitochondrial
(lipoamide) activity matrix
KGD2 YDR148C 23 tricarboxylic acid cycle unknown tetthondrial
matrix
LAT1 YNLO71W 57 pyruvate metabolism dihydrolipoamidS-acetyltransferase Mitochondrion
activity
LEU4 YNL104C 58 leucine biosynthesis 2-isopropylaialsynthase activity Cytoplasm
MAE1 YKLO29C 18 pyruvate metabolism malate dehyémase (oxaloacetate Mitochondrion
decarboxylating) activity
MAL33 YBR297W 42 regulation of transcription DNA+dendent* transcription factor Nucleus
activity
MIG1 YGL035C 31 regulation of transcription fromIPp RNA pol |l transcription factor] Nucleus
Il promoter activity
MIG2 YGL209W 26 regulation of transcription from IPp RNA pol |l transcription factor| Nucleus
Il promoter activity
MSN4 YKLO62W 20 response to stress transcriptiantdiaactivity Nucleus
NGG1 YDR176W 24 histone acetylation transcriptiofactor activity SAGA
complex
NRG1 YDR043C 41 regulation of transcription froml RoDNA binding activity Nucleus
Il promoter
NRG2 YBR0O66C 51 invasive growth transcriptionalressor activity Nucleus
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ORF Accession Mutant Biological process Molecular function cellular cooment
Id
PCK1 YKRO97W 39 gluconeogenesis phosphoenolpyruvate cytosol
carboxykinase (ATP) activity
PFK1 YGR240C 30 glycolysis 6-phosphofructokinasévig Cytoplasm
PFK2 YMR205C 4 glycolysis 6-phosphofructokinase\etgt Cytoplasm
PFK26 YIL107C 54 fructose 2,6-bisphosphat&-phosphofructo-2-kinase activityy ~ Cytoplasm
metabolism
PFK27 YOL136C 36 fructose 2,6-bisphosphaté-phosphofructo-2-kinase activity| Cytoplasm
metabolism
PGU1 yjris53w 40 pseudohyphal growth polygalactusenactivity Extracellular
RBK1 YCRO0O36W 43 ribose metabolism ATP binding atjiv Unknown
RGT1 YKLO38W 19 glucose metabolism DNA binding =ity nucleus
RPE1 YJL121C 38 pentose-phosphate shunt ribulosspitate  3-epimerase Cytosol
activity
RTG3 YBL103C a7 transcription initiation from Pal | specific RNA pol Il transcription Nucleus
promoter factor activity
SFAl YDL168W 45 formaldehyde assimilation formalged dehydrogenasge Unknown
(glutathione) activity
SIN4 YNL236W 63 transcription  from  Pol Il RNA pol Il transcription mediator mediator complex
promoter activity
SIP3 YNL257C 7 transcription initiation from polll transcription cofactor activity nucleus
promotor
SNF11 YDRO73W 14 chromatin modeling RNA pol Il tsaniption factor| Nucleosome
activity remodeling
complex
SNF2 YOR290C 65 chromatin modeling RNA pol Il tramgtion factor| Nucleosome
activity remodeling
complex
SNF5 YBR289W 59 chromatin modeling RNA pol Il traription factor| Nucleosome
activity remodeling
complex
SNF6 YHLO25W 37 chromatin modeling RNA polymeragdetranscription| Nucleosome
factor activity remodeling
complex
SRB8 YCRO81W 44 negative regulation pfRNA polll transcription mediator transcription factor
transcription  from  Pol II| activity complex
promoter
SSN2 YDR443C 60 negative regulation oRNA pol Il transcription factor| transcription factor
transcription  from  Pol II| activity complex
promoter
SSN3 YPLO42C 29 protein amino acjdRNA pol Il transcription factor| transcription factor
phosphorylation activity complex
SSN8 YNLO25C 52 meiosis RNA pol Il transcriptionctfar | transcription factor
activity complex
suc2 yil162w 56 sucrose catabolism beta-fructofastaase activity Cytoplasm
SWI3 YJL176C 21 chromatin modeling general RNA (hokranscription | Nucleosome
factor activity remodeling
complex
TAF14 YPL129W 12 transcription initiation from Pl | general RNA pol |l transcription Nucleosome
promoter factor activity remodeling
complex
TYE7 YOR344C 8 transcription transcription factatieity nucleus
UGA1 YGRO19W 28 nitrogen utilization 4-aminobutygaaminotransferase Intracellular
activity
UGA2 YBROO6W 48 response to oxidative stress sateisemialdehyde Unknown
dehydrogenase (NAD(P)+
activity
XKS1 YGR194C 15 xylulose catabolism xylulokinaséaty Unknown
YBR184W | YBR184W 13 unknown unknown Unknown
YDR248C | YDR248C 35 unknown unknown Unknown
ZWF1 YNL241C 32 pentose-phosphate shunt glucosbephate 14 Cytoplasm

dehydrogenase activity

Table 1 GO terms associated with the selected mutants.
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Chapter 2

2. Quantitative high-throughput techniques

In the last twenty five years, the desire to combine high-througbaplihology, provided
by high-performance liquid chromatography (HPLC) and, in padicudy capillary gas
chromatography (GC), with the exquisite accuracy and sensifjwiyided by mass
spectrometry (MS) has led to the development of the most etficmalytical
technologies presently available, i.e., LC-MS and GC-MS andtmargaof them, e.g.,
LC-tandem MS and GC-tandem MS [Dimitrios2001]. Initially, MS &@ and, later,
liquid chromatography (LC) have developed independently. LC-MS is tasadalyze
polar, thermally labile and high-molecular-mass compounds, such as pepide
proteins. On the other hand, GC-MS is a method of choice for analgmignolecular-
mass compounds. As a rule, these compounds are mostly polar in naturlegiand t
analysis by GC-MS requires chemical conversion, i.e., deriviatizat the compounds
into non-polar, volatile and thermally stable derivatives amenalBCt@analysis. In the
present work, we use GC-MS technique for physiological profiling.

2.1. Gas chromatography-mass spectrometry

2.1.1. Technique

Since metabolites are chemical compounds, these are amenabl@yisatechniques
like molecular spectroscopy and MS. The selectivity, sensitaniy resolution of these
spectroscopy techniques are enhanced by GC or liquid chromatodtaphgrocesses.
The method of choice depends on the type of the metabolite sample twlpeed
[Goodacre2004]. The basic requirements for a substance to be analympdsGsMS
instrumentation technique are 1) thermal stability and 2) vojatiitence, GC-MS
techniques are best suited for relatively low molecular weightpounds. Additionally,
the analyte is subjected to chemical modification using variougatigimg compounds,
like TBDMS, to overcome various absorption effects that mighdl lea inaccurate

guantification.
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2.1.2. Estimation of intracellular amino acid pool labeling

The introduction of isotope labeling provided the basis for deterramafi intracellular
amino acid pools and pathway activity (flux) in a metabolic netwdl&ar¢nha2000,
Park1997]. In labeling experiments, cells are fed with a labeledratéd&n our studies-
13C labeled substrate), and the labeling patterns of certain ilttacenetabolites are
measured. Any given metabolite can exhibit numerous labeling pattepesding on its
chemical compositions and the number of reactions it participatdSach individual
labeling pattern of a given metabolite/intermediate can bededas a “labeling state”
of that metabolite/intermediate. Since the measurements ofinigbghtterns of the
intracellular metabolites are usually difficult to perform daoetheir small pool sizes,
analysis of the amino acids has been a widely used approachdmtatihg the labeling
states of intermediates in the central metabolism. Additionalgse labeling
measurement data provide independent constraints on the intraciliwés and thus
enable the determination of the fluxes that are unobservable bgottventional flux
analysis using only metabolite balances. Nuclear magnetic reson@igkR)
spectroscopy is extensively used for labeling pattern measntg®auer1999, Dieuaide-
Noubhani1l995, and Zupke1995].

In recent years, two-dimension#l—C NMR spectroscopy has been used for analyzing
the labeling states of proteinogenic amino acids [Szyperskil995. t€bhnique has
been used to estimate the flux distribution Escherichia coli [Schmidt1999 a],
Aspergillus nigef{Schmidt1999 b] an@acillus subtilis[Sauer1997]. In last few years,
the gas chromatography—mass spectrometry method (GC-MS) has beemasus@
alternative to NMR [Dauner2000, Donato1993]. GC-MS analysis is much ersgige

than the NMR method and can thus provide labeling measurements with higher precision.

2.2. CalSpec

In the past, intensive research has been carried out concerninguémtitative
investigation of metabolic networks as the basis for understanditagpotie functioning
and regulation machinery of specific metabolic systems [BESI@y, Bailey1998,
Cameron D.C.1997]. A powerful approach to quantifying metabolic fluxésased on

tracer studies with™*C-labeled substrates combined with mass spectrometry (MS)

21



measurement ofC labeling patterns of biomass constituents [Christensen1999,
Wittmann1999, Wittmann2002]. In these tracer studies, the measured lapatiem
reflects the metabolic state of the cell and is used to esdcuhtracellular flux
parameters. We developed CalSpec software tool for automatiespiog of labeling

data from MS spectra.

2.2.1. Mass | sotopomer Distribution

The °C isotope labeling studies basically target a set of metabolitéch can be
guantitatively measured in a given experimental setup. The urdragth metabolite
fraction is called the parent fraction. The metabolite fragmémas arise from the
fragmentation of the parent fractions are called partiatinas. A fraction x, without
any label ¥3C), and, having a molecular weigtt is denoted as, When any/all of the
carbon atoms of the fractian has®>C label incorporated, then this is denotedxas,
wherei is the number of’C labeled carbon atoms present in the respective fragment.
Mass isotopomer distributions (MID) are vectors of abundances of vanmass
isotopomers of the parent and partial fraction of any metabol#kSp@c calculates the

MIDs according to equation 1.

M |

Wi

Equation 1

2.2.2. Automation of calculation of Mass | sotopomer Distribution

Metabolic flux analysis is useful when applied in comparative sudieus experimental
and computational tools for efficient metabolic flux analysis onocaditevel are highly
desired. Efficient flux analysis on a broad level, however, regarestraightforward

approach that can be parallelized and automated for all steps involtiate-8onsuming
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and error prone step in the whole procedure of metabolic flux am@ybie extraction of
labeling patterns from mass spectra, which is has been done masoafyr. Manual
processing of these MS data sets is highly time-consuming wbjdcs to error. The
CalSpec software tool addresses this problem by automatic piruged MS spectra. It
has been tested and applied to gas chromatography/mass spegt(@@ellS) analysis
of t-butyldimethylsiloxy (TBDMS)-derivatized amino acids. Amingids have been
shown to provide valuable labeling information for flux calculations'®C tracer
experiments [Wittmann1999, Daumer2000]. CalSpec is especially usefubutinely
analyzing samples derived from protein hydrolysates or cutiivasupernatants, for
example. It should be noted that care has to be taken regardipagicsinterference of
the target analytes with other compounds, which might occur in hogimhplex mixtures
such as cell extracts, for example. CalSpec could not deteictt¢inkerence of the target
analytes with other compound, unless they exhibit low abundances compane total
fragment abundance which can be detected as a bad peak signal.

2.2.3. Implementation

CalSpec automatically performs identification of specifiedydes in the MS spectrum
and the subsequent quantification of labeling patterns. An overview orefiseiistolved
in the data processing by CalSpec is given in Figure 2.

CALSPEC
GC-MS unit

.C3v file generation
Certvative peak identification
Mass isotopomer distribution calculation

List of identified derivatives
Mass isotopomer distribution
Total abundance

Peak guality

Figure 2 CalSpec data processing schema.

The software module is flexible and can be easily adapted t@ant@riof MS

measurements. The module was developed and tested for GC/MS san&ly8DMS-
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derivatized amino acids using a GC with HP-5MS capillary colunt§o (
phenylmethylsiloxane diphenylpolysiloxane, 30 m x 250, electron impact ionisation
at 70 V and a quadrupole detector; Agilent Technologies, Waldbronn,a@gyras de-
scribed previously [Wittmann2002]. The instrument was equipped with MSD
Productivity ChemStation software (G1701C, Rev. Code 00.01; Agilent Tegmes)lo
generating specific data files (*.ms files). These d#ta fre first converted into comma-
separated value (*.csv) files using a macro that was suppliesyilgnt Technologies
and further modified by us. Corresponding macros must be developedtte ygegram
with non-Agilent systems.

The tool has an initial step for conversion of the *.ms file fororaginating from the
GC-MS system into a *.csv file. In this step, a widely used @iaifindependent file
format is generated that can be further processed.

In the next step, identification of the amino acid TBDMS-derivdtizagments present
in the sample is carried out using the presence of typical-toatsrge (m/z) signals
observed in the spectra. In this way, the sample can be checkéuke fpresence of
specified analytes and thus, the preceding experimental protocol caraelbated. For
identification, the user should modify (i) the elution timg) @f an analyte in the GC run,
and (ii) the m/z values of corresponding specific ion clusterbet observed, in the
param.txt parameter file according to the format. Table 2 lists taedard parameters
used for individual amino acid fragments, in CalSpec. If the uagrahdifferent set of
parameters, then it should be defined in the param.txt before runninGallSpec
program. Parameters are defined in comma separated .txt fite Wieefirst element in a
row is amino acid derivative elution time and the subsequent eleméhts row are the
molecular weight of individual fragments coming from that aminod,a@fter
fragmentation steps (see table 2). These parameters dreougeeck for the presence of
an analyte. Identification of peaks is currently performed in a windowef@25) to (E

+ 0.25) min for all analytes. In each time window, the spectruraasned at the speci-
fied m/z values, whereby the user can define a threshold forstgical that has to be
exceeded to indicate presence of the corresponding analyte. Wwathisignals with low
abundance can be excluded that are subjected to interference wignoloacknoise and
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therefore should not be considered for flux estimation [Daumer2000].

CH, CH,
. b a
0" 0 S <C+CH,
CH, CH, C
al b FC CH, CH, ©

CH,~ C < 5Si —N—CH
' H
CH, CH, R
Figure 3 Fragmentationof TBDMS-derivatized amino acid§.he amino acid with its specific side chain
(R) is in gray. Fragmenting at the denoted pos#titeads to the following fragments: M = Molecular
weight of parent fragment (a) methyl group disstieig (b) tert-butyl group dissociation; (c) C(O)O-
TBDMS ion dissociation; (d) the double silylatedhidment and the side chain (sc)+, consisting of ® an

possibly further TBDMS groups dissociation; (e) ©@Othe amino acid and a tert-butyl group (grouped
within the dashed line) dissociation.(Nanchen 2006)

To ensure the presence of an analyte, the specific m/z valueslatog to typical
fragments such as [MO0], [M1], or [M2] for TBDMS-derivatizeghiao acids in the time

window should exceed the threshold set.

! Elution time, MO, M1, M2, M3,
12.18,158,232,260
12.83,218,246
15.40,186,260,288
16.55,200,274,302
17.37,200,274,302
18.20,184,258,286
23.20,218,292,320
23.91,288,362,390
24.59,302,376,404,159
26.09,234,308,336,302
27.71,316,390,418,302
30.24,330,432
31.00,302,315,417
32.45,329,431,488
34.77,414,442
36.95,196,338,440
37.20,517,545
37.57,364,438,466,302

*

Table 2 Parameter file “ param.txt”. The first element afrow is the elution time for a particular amino
acid fragment in gc-ms equipment and the rest®ftbments of the row stands for m/z ratios of ek
fragments for a given amino acid (like [MO]+0, [M€], or [M0]+0)
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[MO], [M1], [M2] etc are the typical fragments obtained aftéeavage of the parent
fragment by dissociation of side chains of varying molecular m®iljke 57 D(tert-butyl
group), 159 D(C(O)O-TBDMS), 302 D(double silyl fragment) etcg{ffe 3]. Table 3

lists the amino acid fragments and all of their labeled subfragments idiéntifie

Amino acid| Fragments | Amino acid| Fragments
fragment Mol.| identified fragment identified
Wi.

Ala 158 M[0]+[0,1,2] Asp 316 M[0]+[O0,..,3]
Ala 232 M[1]+[0,1,2] | Asp 390 M[1]+[0...,3]
Ala 260 M[2]+[0...,.3] | Asp 418 M[2]+[0...,4]
Gly 218 M[0]+[0,1] Asp 302 M[3]+[0,1,2]
Gly 246 M[1]+[0,1,2] | Glu 330 M[O]+[0...,4]
Val 186 M[0]+[0.,..,.4] | Glu 432 M[1]+[0...,5]
Val 260 M[1]+[0,..,4] | Asn 302 M[0]+[0,1,2]
Val 288 M[2]+[0.,..,5] | Asn 315 M[1]+[0...,3]
Leu 200 M[0]+[0,..,.5] | Asn 417 M[2]+[0...,4]
Leu 274 M[1]+[0,..,5] | Lys 329 M[0]+[O...,5]
Leu 302 M[2]+[0,..,6] | Lys 431 M[1]+[O.,..,6]
lle 200 M[0]+[0,..,.5] | Lys 488 M[2]+[0...,6]
lle 274 M[1]+[0,...5] | Arg 414 M[0]+[O...,5]
lle 302 M[2]+[0,...6] | Arg 442 M[1]+[0.,..,6]
Pro 184 M[0]+[0,..,4] His 196 M[0]+[0,..,4]
Pro 258 M[1]+[0,..,4] | His 338 M[1]+[0...,5]
Pro 286 M[2]+[0,..,.5] | His 440 M[2]+[0...,6]
Met 218 M[0]+[0,..,4] | GIn517 M[0]+[0...,4]
Met 292 M[1]+[0,..,4] | GIn545 M[1]+[0...,5]
Met 320 M[2]+[0,..,.5] | Tyr 364 M[0]+[0...,8]
Ser 288 M[0]+[0,1,2] | Tyr 438 M[1]+[0...,8]
Ser 362 M[1]+[0,1,2] | Tyr 466 M[2]+[0...,9]
Ser 390 M[2]+[0...,3] | Tyr 306 M[3]+[0,1,2]
Thr 302 M[0]+[0,1,2] | Phe 234 M[O]+[O...,8]
Thr 376 M[1]+[0...,3] | Phe 308 M[1]+[0...,8]
Thr 404 M[2]+[0....4] | Phe 336 M[2]+[0...,9]
Thr 159 M[3]+[0,1,2] | Phe 302 M[3]+[0,1,2]

Table 3 Amino acid fragments identified by CalSpec
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For example, for the amino acid fragment ala_158 (alanine with mdl58), CalSpec
searches for the unlabeled (i.e. ((MO+0)/([M1]+0)/([M2]+0) )gimzent, 1 carbon labeled
(IMO]+1) and 2 carbons labeled ([M0]+2) [Figure 3].This is denotediml@breviated
manner in table 3, as M[0]+[0,1,2]. First, abundance levels of diffenaest fractions of
the analytes are calculated. It is known that the high resolutiGCdaeparation can lead
to isotope fractionation, i.e. gradients for the relative abundancdifferent mass
isotopomers over a peak [Daumer2000]. To correctly extract labeliagnation from a
peak, all mass scans performed by the MS detector during tlenedfithe peak have to
be taken into account. CalSpec therefore integrates the differemtsignals, by
calculating mean abundances for all mass isotopomer fractiendhe entire peak. The
automated specification of the time window ensures that the sgnadssare considered
in every measurement. By contrast, manual integration is emoe @nd tedious. The
output file is generated, which contains a list of the specifiatyms, information about
their presence, and the abundance of mass isotopomer fractionsleTtes *.xIs format

and therefore can be easily imported into any text editing application.

2.2.4. Results
The developed software tool, CalSpec, is useful for efficient psirg of*C labeling

data from MS measurementsi¢ flux analysis [Talwar2003].

CalSpec result file

Input spectra file: sample_input.CSV
Elements in row:

Element 1: amino acid derivative type, Elemenim2ss/charge, Element 3:Molecular weight of
the fragment, Element 4: abundance[mx]/abundande[Ei@ment 5: specific ion abundance
Element 6: total fragment abundance, Element 7 geality warning

Element 8: detector limit warning abundance>10"8

met 320 M[2]+0 1.000000 2877.111111
met 321 M[2]+1 1.914343 5507.777778
met 322 M[2]+2 1.326794 3817.333333
met 323 M[2]+3 0.478605 1377.000000
met 324  M[2]+4 0.759816 2186.074074
met 325 M[2]+5 0.235885 678.666667 16442398  *Bad
Peak*

Table 4 Typical result file generated after a CalSpec run.
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These MS data sets are generated in huge numbers due toi¢gteepieasurements of
one sample to assess the confidence in the measured values aatiogstimerror; (ii)
replicate measurements of one experiment to check for isotopidysseate; or (iii)
different measurements of one sample with different protocols tainoladditional
labeling information via alternative fragments. Data procedsinGalSpec takes only a
few seconds per spectrum, whereas the same task requires umito @more if done
manually. Table 4 is an example of a part of one such output hkeragied after CalSpec

execution.
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Part I1: Statistical Analysisof the Data
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Chapter 3

3. Introduction to the statistical analysis of data

Metabolic profiles can be mined using a range of pattern ngomg techniques,
including hierarchical cluster analysis, principal components asalymrtial least
squares and neural networks. Furthermore, the metabolic perturbatieratgd due to
gene knockouts can be used to classify strains by grouping mutaciissiers if they
arose from deletions, which are involved in identical or relatedlaelfunctions. This
suggests that a process of defining a phenotype through the globgeshaduced in
metabolism could be used to predict the function of genes deleted irera gyistem
[Griffin2004]. Raamsdonk et.al. found that yeast mutants involving theateleft one of
two genes encoding the same enzyme, 6-phosphofructo-2-kinase, producechlidenti
metabolic phenotype, and deletions involving oxidative phosphorylation alserelist
together. Thus, such a process of defining a phenotype through the dghaimajes
induced in metabolism may be used to predict the function of genegdieetup
regulated in a given system through comparative metabolomicsmiifaak2001,
Gareth2004]. In the present study, we have applied various statistbaiques for the
analysis of metabolic profiles and for understanding the effeaerté knockouts on the
metabolic network functionality of wild type yeast.

3.1. Description of the data
Sections 3.1.1-3.1.3 describes the data used in the statistical anAgdmve used the
physiological profiles, amino acid labeling profiles and the tr@pisco-response data for

elucidating the interrelationships in various gene knockouts under study.

3.1.1. Physiological Growth (PG) profiles

The physiological growthRG) profile of a mutant refers to the vector of physiological
features like yield coefficients, which characterize the dgnoithaviour of a gene-
knockout mutant. In the present study, we used a data set | comgtsisiggle gene
knockout mutants. Out of these 59 mutants, 37 are grown under conditionsim Ighi

labeled glucose is the sole carbon source, 41 mutants are grown undéiorendi

30



which **C-labeled fructose is the sole carbon source and, analogously, 24 srar@nt
grown with **C-labeled galactose as the sole provider of carbon atoms. Thesat muta
subsets were selected for further computational analysis psdth@ot exhibit severe
growth defects under the supply of the specific carbon source anédGhprofiles are
available from our collaboration partners.

The physiological profil®G, for mutanti consists of the growth rate, the biomass
yieldYxs, the ethanol yieldrp, the rate of biomass producti@nand the rate of ethanol
productiorQp, . A dissimilarity matrix is generated using tf&G for all three growth

conditions, using the Euclidean distance as a dissimilarity measure.

3.1.2. GC-MSamino acid fragment fractional labeling (FL) profiles

The GC-MS amino acid fragment fractional labeling profifd (profile) for a mutant is

a vector of fractional labelings of selected TBDMS [Tert-luityethylsilyl] amino acid
derivatives and the respective mass fractions of these aminodeniwhtives. For
example alanine has two fractions namely ala 260 and ala _232. @tteo acid
fractions which are quantified using the GC-MS spectra are2dly, val_288, val_260,
val_186, ile_200, pro_286, ser_390, ser 362, ser_288, thr_404, thr_376, phe_ 336,
asp_418, glu_432, arg_442, arg_414 and tyr_466. For an amino acid fraction eth thr
carbon atoms, the fractional labeling is calculated as follows:

FL, =[0* (m+0)+1* (m+1)+2* (m+2)+3* (m+3))/3 Equation 2
Wherei denotes the index number of the fractiom,stands for the molecular weight of
the i"fraction (like [M-57], [M-85], [M-159] etc.) andm+0) denotes the intensity of
the gc-ms peak (i.e. count associated with theatigknown as abundance henceforth)

of the unlabeled™ amino acid fraction. Similarljm+1) is the abundance of the amino

acid fraction where exactly one carbon is labeté@)(

3.1.3. Transcript co-response data
An important advance in the area of reconstruatiolunction relationships among genes
is the elucidation of transcriptional units whiale @haracterized by correlated changes in

the mRNA expression levels. Transcript co-respqmeéles are the basis for the attempt
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to deduce functional relationships between ger@s frorrelations in the corresponding
MRNA expression levels. CSB.DB is a publicly asgge systems biology database for
the analysis of large-scale transcript co-respomsga [Steinhauser2004al. We
downloaded from the CSB.DB database the correlati@ificient (o) for all-against-all

pair combinations of the genes in the mutant setdier study. The implicit assumption
here is that common transcriptional control of gemne reflected in corresponding,

synchronous changes in transcript levels [Steirdr@094].

3.2. Analysis of metabolic profiling data using clustering algorithms

Once quantitative datasets are obtained usingthiglughput techniques, there is a wide
spectrum of data-analysis strategies that can hbsued with metabolite profiles
[Roessner2001, Roessner-Tunali2003, Sauterl988, en2003, Brindle2002,
Huhman2002]. The fundamental approach is to singaynpare the abundance of a
metabolite between an experimental and a contropkg and to use standard statistics to
assess the significance of differences. These appes can then be extended by one
dimension in order to look at correlations in abameke of individual metabolites across
different samples [Kose2001]. In recent past, adbtinterest has been focused on
grouping approaches for whole metabolite profileRodssner2001, Fiehn2000,
Huhman2002, and Kose2001].

3.2.1. Methods

In general, clustering algorithms aggregate obsemns into groups, henceforth called
clusters, such that the pairwise dissimilaritiesMeen observations in the same cluster
are lower than those of observations assignedffereint clusters [Jain1999]. Generally,
various clustering methods fall under either par&l or hierarchical clustering
technique [Figure 4]. A partitional clustering algiom obtains a single partition of the
data instead of a clustering structure, such asl¢éimelrogram produced by a hierarchical
technique.

There are three types of clustering algorithms doatbrial, mixture modelling and
mode seeking. Combinatorial algorithms do not assamy probability model in the

reference data whereas mixture modelling algorittm@at each data point as a sample
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from some population described by a probability sitgnfunction [Hastie2001]. Mode
seeking algorithms are nonparametric in nature direttly estimate distinct modes of
the probability density function. The squared etsxhnique belongs to the partitional
algorithms category, and minimizes the squared éoroa clusteringm of a observation

setl (containingk clusters) is

2
K N )
e’(l,m) = Zzuxi“) -, H Equation 3
=1 i=1

wherex! is thei" observation belonging to thg" cluster andc; is the centroid of the

j" cluster [Jain99].

clustering Algorithms

Partitional Hierarchical
Square araph Modsa Mixture single Complete
ErTor Theoretic Seeking REesolving Linkage Linkage

Rvarage
Linkage
k-maans Expactaticn

Maximizaticn

Figure 4 Clustering algorithms [Jain99]

The k-means clustering algorithm is the simplest and momy used algorithm
employing a squared error criterion [McQueen 19@&7$tarts by partitioning the input
points into k initial sets (either randomly, or using some hs&tig), followed by the
calculation of mean point (centroid) of each séte &lgorithm follows the following two
steps iteratively. In the first step, it calculatesw partitions by associating each input

point to the closest centroid. In the second dtepcluster centers are recalculated using
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the new partitions. This is iterated until converge, e.g. until there is no reassignment
of any pattern from one cluster to another, orluhg squared error ceases to decrease

significantly after some number of iterations.

3.2.1.1. Supervised and unsupervised learning algorithms

Learning algorithms can be generally divided inteo tclasses namely supervised
learning algorithms and unsupervised learning dlgmis. Supervised learning
algorithms use the response variable to guideghming process whereas unsupervised
learning algorithms look as how the original data&lustered with out any knowledge of
response variables.

Supervised methods are powerful methods that caappked if one has some previous
information about which genes are expected to etustgether. In these cases by
selecting an initial number of clustek ), one could perfornk —way classification. The
Support Vector Machine (SVM) method is one suchutepexample of supervised
learning methods [Brown2000, Quackenbush2001]. SviMg the input vectox into
high- dimensional feature spa@through some nonlinear mapping, chosepriori. In
this space, an optimal separating hyperplane istogeted for data classification.

Unsupervised learning methods work with the obsekrpatterny,. Each pattern is

usually regarded as an independent sample commy fhe underlying unknown

probability density functioR(Y). For example, density estimation methods like

Bayesian networks, and feature selection techniqueso directly identify statistical

regularities/irregularities in the input data [Gaederl1976, Barlow1989, and
Nowlan1990]. In the present thesis, we have apphedPartitioning Around Medoids
(PAM) algorithm (sec. 3.2.1.2) and the hierarchiabtering algorithm (3.2.1.3), both of

which belong to unsupervised clustering techniques.

3.2.1.2. Partitioning Around Medoids algorithm

Partitioning around medoids (PAM) was originallytroduced by Kaufman and
Rousseeuw [Kaufman1990]. The general idea of th&1 Régorithm is based on the
search fork representative objects or medoids among the oatens of the dataset.

These observations should represent the structuhe alata. After identification of a set
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of k medoids,k clusters are constructed by assigning each ohsenvto the nearest
medoid. The objective is to fink representative objects which minimize the surthef
dissimilarities of the observations to their cldsepresentative object. We use #wM
function as defined in the statistical programmangironment R [R2005].

For an arbitrary dissimilarity matriAM aims at minimizing the sum over all objects of
the distances to the closestloprototypes [Kaufman1990]. This objective functiaas
locally optimized in two steps. In the BUILD phasdtial prototypes are chosen. In the
SWAP phase, potential single replacements of pypest with other data points are
considered iteratively. Out of all pairs of objeadrs which one is a prototype and the
other is not, the swap (if any) that decreasesotijective function most, is made. The
algorithm is well suited for metabolic profiling @aets since it combines the flexibility
of hierarchical clustering regarding arbitrary darmty matrices with the optimization

approach ok-means.

3.2.1.3. Hierarchical clustering algorithm

In hierarchical agglomerative clustering, each muta initially assigned to a separate
singleton cluster [Jain1999]. Then, iterativelye ttwo closest clusters in terms of the
distance are joined, forming a new node of thetehirgy tree. The similarity matrix is
updated with this new node replacing the two joickdsters. This process is repeated
until only a single cluster remains. In each remap, the updated similarity matrix is
calculated using the mutant dissimilarity betwebe mutants from the two joined
clusters. The average linkage uses the averagendestsingle linkage the smallest and
the complete linkage the largest distance. Hiefeatlclustering is the most popular
clustering algorithm in diverse areas like DNA mmmray analysis due to the easy
visualization of the cluster through a dendrogrdfigyre 6]. In such a plot, a line
connects clusters when they are joined. The heighthis line denotes the distance
between the clusters. The cluster with the smateration is plotted on the left-hand
side. Another advantage is that this procedureigesva hierarchy of clusterings with the
number of clusters ranging from one to the numibebgects [Rahnenfuehrer2006].
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3.2.1.4. Silhouette width
We used the silhouette width as the measure oftyuwdliclustering.
The silhouette width is a quantitative measurehef quality of a clustering. Equation 4

displays the formula for the silhouette widtfi) , for a data pointtin clusterx.

y(i) = x(i)

s(i) = m Equation 4

where mutant belongs to cluster; x(i) is the average dissimilarity of objeictto all
members in its clustex and y(i) is the average dissimilarity of objeictto all
members of the nearest neighbouring clustérre. the cluster which has the minimum

dissimilarity for the data points in cluster). The "average silhouette width" for a cluster

is calculated by calculating the mean of gfl) values for that cluster. The average

silhoutte width over the entire mutant set is deddiys. It is calculated as an average of

the “average silhouette width” for all the clusters

3.2.2. Resultsof clustering methods

Unsupervised learning methods have been extensigpplied in studies on high

throughput DNA microarray data but have not beestesyatically applied to PG and FL
profiles. Here, we present the results from an stigation of metabolite profiling data
with PAM and HC clustering algorithms [Hastie200TJhe objective is to partition

metabolic profiles corresponding to different mutaets into groups with higher
similarities among mutants within a group than ke mutants from different groups.
This approach provides a means of estimating therichinatory power of physiological

mutant data including growth rate, biomass productrate of ethanol production and
rate of product formation. In the present analysasework, we performed a stepwise

analysis on four subsets of mutants derived fromasdd I, namely: Mutant se¥l

total

refers to the set of 59 mutants which is used &bewation of FL profiles from GC-MS

spectra; mutant seM , is the set of 37 mutants which are grown under agac

conditions; mutant seM . is the set of 41 mutants which are grown undertfise

fru
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conditions, and mutant sét , is the set of 24 mutants which are grown undeagjate

conditions.

We first start with performing large scale analysfisheFL profiles alone.

3.2.2.1.FL profileanalysis

We apply following steps, namely step 1 to 3 to Mg, mutant dataset. Thereafter, we

also present the results that we obtained for iddal analysis steps [1-3] in the current

section.

Stepl: Hierarchical clustering of mutant bt , using FL profiles. In this step we study whether the

overlap in the biosynthetic pathways of amino acidaild result in the overlap in the labeling pattef

fragments originating from these biosyntheticallpgkéd amino acids. Also, we study whether this

association betweef-L profiles of biosynthetically linked amino acidsub® be used in clustering o
related mutants.

Step 2: Analysis of biosynthetically linked aminciehfragments using corresponding
FL profiles. In this step, we analyze whether theramicid fragments which are linked by precursgr-

product relationship, also show similkil. profiles or not.

Step 3: Estimation of the optimal number of cluster mutant setdvl M. and M using PAM

glu fru gal !
and HC; In this step, we apply PAM and HC algorishom the mutants grown with diverse carbon sourges.
The basic idea is to identify whether the mutantsctv cluster together, also have some functional

relationship, or whether we can make certain hyggithabout the possible functional relationships.

Analysis of step 1 results: Hierarchical clustering of the mutant set Mo, USiNg FL
profiles.
FL profiles show low variance among functionally @lysrelated mutants. We analyzed

the completeFL profile for each mutant for the mutant 9dt_, (Table 1). We found

that the completé-L profile does not show statistically significanffeiences among the
profiles obtained for the reference strain andtha functionally closely related mutant

setM This observation is plausible because all theamtstin this set are knock-outs

total *
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of known or putative regulators of central carboetabolism inS. cerevisiae Figure 5
represents the box plot dfL profiles for entire mutant set of 59 mutants. Tisisn
agreement with the results presented in a relatebligation by Gombert et.al.
[Gombert2001].
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Figure5 FL Vvariance plot for 57 mutants grown under aerobiaditions The x-axis denotes a fractional
labeling percentage labeling of individual fragnsaaﬂzli_:b*(m-l-q +1*(rrH-]) +2*(rrH-3 +. .+n*(rrH-rﬂ]/ N,
where Nis the number of°C in a given fragmentN is the total number of carbon atoms in a fragment,
(m+n) refers to the intensity of GC-MS peak of the malac weight= m+n. The y-axis denotes the

amino acid fraction with the corresponding moleculgight (using the notation introduced in Section
2.2.3)

Analysis of step 2 results: Analysis of biosynthetically linked amino acid fragments
using corresponding FL profiles.

Amino-acid fragments which are in a precursor—pobdelationship also show close
correlation in theFL profiles. We found that amino-acid fragments whare linked
biosynthetically also are clustered into close prity when the FL profile for the

mutant spectra is used for hierarchical clustefffigure 6].
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Figure 6 Dendrogram of FL profiles of amino acid precurspreduct network components

Hierarchical clustering plot using amino adil profiles for 57 mutants. The y-axis
denotes the separation among the clusters; thésxdarotes the respective clusters from
the smallest variation (left) to largest variatioight). Five sets of biosynthetically

linked amino acids fragment denoted in the plot diee first set (colored in blue)
consists of Alanine fragment with molecular weid@b8 D, represented as Ala_158, and
Pro_286 , Ser_288. The other four sets are: llofedl in green): Glu_432, Ser_390; I
(colored in yellow): Phe_336, Phe 234, Ala_260, G8; IV (colored in red): Thr_376,
Asp_ 302, V: Ala_232, Ser_362 (colored in pink).

This provides evidence for tight metabolic coupliafyamino acids which are in a
precursor-product relationship. For example, vakne alanine fragments are used for
deciphering the compartmentation of pyruvate anety&CoA by one such precursor-
product relationship [Falco1985The quantitative information on the enzyme adgwit
could also be estimated by studying the labelingfiless of corresponding amino acid
fragments. It is already established that the #gtiof malic enzyme (Maelp) can be
estimated by quantitative analysis of thé&L profiles of pyruvate and

phosphoenolpyruvate [Boles1998].

Analysis of step 3 results: Estimation of the optimal number of clusters using PAM
and HC.
In this step, we compute the optimal number of tessin our datasets, using the

clustering algorithms PAM and HC. Initially, we calate a dissimilarity matriD using
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FL profiles for each mutant. Then, we calculate if®gette widths [see 3.2.1.4]. By
construction,s lies in the interval [1, -1]. In our setting, cless with high silhouette
values have the property that the dissimilarity aghmutants within the cluster is much
lower than the dissimilarity between mutants beioggto different clusters. High
silhouette widths (generally silhouette width ie ttange of 0.7-1) give us confidence in
the assignment and elucidation of functional asdmei, if any, among mutants
calculated using solely thEL profiles.

Here we present the results for the cluster arglyStL profiling data for three sets of
M

mutants, nameliy and M, . There is overlap among the mutant sets

glu ? fru
whenever a mutant shows considerable growth betainoseveral different conditions.

M. is the smallest mutant set mainly because the riajof the mutants were slow

growers under galactose conditions.

M, leads tos values of 0.31 and 0.36 under PAM and HC, respelgti Hence the
guality of this classification is rather weak amdulting clusterings contain many small
clusters (9 with PAM and 10 with HC) and singletgure 7].

Figure 7 presents the results of clustering of mistagrown with glucose as the sole
carbon source. The graphs on the top show the geveasithouette widths in dependence
of the number of clusters. The histogram on theobotshows the silhouette widths of

knockouts in the best clusterindyl : denotes the number of mutants, @ndthe optimal

number of clusters.
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Figure 7 FL profiles based differentiation of mutant d¢t, .

The s values of 0.36 and 0.31 for PAM and HC Kby, point towards a weak clustering

among the mutants and lead to the conclusion FAhdata is not sufficiently

discriminative and gives the same results as ®igthcose conditions [Figure 7].

Figure 8 presents the results of clustering of mistgrown with fructose as the sole

carbon source. The graphs on the top show the geresithouette-widths in dependence

of the number of clusters. The histogram on theéobotshows the silhouette widths of

knockouts in optimal clusterindN : number of mutantsC, : optimal number of clusters.
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Figure 8 FL profiles based differentiation of mutant bét, , .

Figure 9 presents the results of clustering of mistgrown with galactose as the sole
carbon source. The graphs on the top show the gevesithouette widths in dependence
to number of clusters. The histogram on the bot&irows the silhoutte widths of

knockouts in optimal clustering\ : number of mutantsC; : optimal number of clusters.

In the case of growth with galactose too, we fothmels to be 0.33 and 0.42 for PAM
and HC clustering respectively. The clustering itssare indicative of the weak grouping
as the silhouette width is in the order of @.&units. Thes value equal to or less than 0.5
indicates bad clustering. All three mutant setswgrounder glucose, fructose and
galactose show similaFL profiles. The above result points to a need féegmting
complementary sources of data which strengthen ciefidence in the predicted

functional association among the mutants.
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Figure 9 FL profiles based differentiation of mutant dék

3.22.2. PG profiles

In this preliminary study, we apply the PAM and Hld{gorithms to thePG profiles of a
dataset of 109 mutants [refer appendix 3]. Theosidtte width with PAM and HC
algorithm was found to be 0.45 and 0.44 respegtividie PG profiles under glucose and
fructose conditions show higher similarity thantwihe PG profiles under galactose
conditions [Figure 9].PG profiles provide global features which must be ptemented
with other heterogeneous data types, for mutafreitiation. PG profiles alone were
not sufficient for mutant differentiation. Hencey the next step, we performed an
integrated analysis oPG profiles and transcript co-response profiles unglecose,

fructose and galactose conditions.
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Figure 10 PG profile based differentiation of mutant d¢k

3.2.2.3. Pairwise correlation analysis of PGprofiles and transcript co-response
correlation analysis

Here we investigated whether the similarity at k»eel of PG profiles for a set of
mutant is also reflected in transcript co-respooseelation between gene expression
profiles of these mutants?

First we downloaded the transcript co-response fitata CSB.DB for our mutant set.
Next, we looked for only those ORF pairs where tloeresponse profile correlation
values exceed 0.7. The mutants which show co-regpprofiles with correlation below
0.7 were not considered to be significant paire Félue 0.7 was taken to be the cutoff to
eliminate any weaker corresponding ORF pairs. doapt co-response profiles on their
own provide a preliminary indication of functionaksociation among mutants. The
transcript co-response profiles correlation is walied using experimental data under
culture conditions and hence there is a need taifsgdly test the accuracy of

assignments.
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We found that 33% of the highly correlated co-res@oprofile mutant pairs also belong
to the same cluster as given B> profile analysis using the PAM and HC algorithrhs.

is important to see that we are able to find assiri, though weakly so, based on global
features like fractional labeling and heterogenedasa like transcript co-response
profiles. Out of 630 total pairs, 185 mutant pan®w correlation of at least 0.5 on the
co-response profile level. Out of these, 91 pdaiewsa co-response profile correlation
greater than or equal to 0.6 and there exist 2%miypairs which show co-response
profile correlation of at least 0.7. These 29 mutpairs were further studied as to

whether there exists a strong correlation at thellef PG profiles, as well [Figure 11].
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Figure 11 Correlation of PG profile distances and transcript co-response pesfi

Figure 11 represents scatter plots of B@ profile vs. transcript co-response correlation
under glucose, fructose and galactose conditioespectively. The x-axis denotes
pairwise distances for the respective mutant seté)g the PG profile; the y-axis
denotes the transcript co-response profiles fomaitant pairs. Out of these 29 mutant
pairs, 7 mutant pairs were also assigned to theesauoster using thePG profile
analysis. We also corrected for multiple testingtloe co-response profile data and the
adjusted p-value was less than or equal to 4.387asthg the Bonferroni method. This
signifies that these p-values relate to the hymishthat there is a positive correlation
between the co-response profile correlation vahigsutant pairs.

We performed a Fisher test for the significancéhefhypothesis that mutant pairs which
show low values of Euclidean distance inB& profile space show higher correlation in
the co-response profile space. We specificallyetegor the null hypothesis tha&G
profile correlation lower than meaP(G correlation) and co-response profile correlation

higher than mean (co-response profile correlatawa)independent.

45



We found statistically significant p values for #tree setM . ,M and M, [Fig

glu ? fru ?
10], confirming the dependence betwele® profiles and co-response profiles.. The p-
values are p=0.0455 for glucose, p=0.0017 for &set and p=0.0404 for galactose.
Table 5 enlists all the 9 pairs of mutant ORF sdigh showed high correlation in co-

response profiles and close correlatiorPi@ profiles.

ORF Set Confirmed Suggested No hypothesis
biological biological on biological
relationship (+) | relationship (*) | relationship (-)

YIL107C, YIL154C *
YOL136C, YIL107C +
YIL162W, YIL154C -
YKLO62W, YML0O54C -
YKRO97W, YBR018C +
YBR184W, YKLO62W -
YDRO043C, YIL107C *
YDRO73W, YGLO35C *
YGR194C, YKRO97W -

Table 5 ORF pairs showing high correlation in co-responsefites and PG profiles

YIL107C [SGD: S000001369] and YIL154C [SGD: S00@0®]

YIL107C is a knockout of the gene coding for PFK3@iss-Prot: P40433] andYIL154C
is a knockout of the gene coding for IMP2 [SwisstPP46972].

IMP2 is a known transcriptional coactivator. Ikisown that IMP2 [Swiss-Prot: P46972]
is involved in glucose depression as well as inla&gn of GAL genes.

The role of IMP2 in the galactose metabolism idmted to be partially dependent on
MIG1p along with NRG1p. However, disruption of MI@hnd NRG1p only partially

relieves glucose repression of GAL genes, sugggstite existence of additional
functional partners of IMP2. PFK26 is not neededntaintain adequate glycolytic
activity but, rather, is concerned with maintainitige homeostasis of metabolite
concentrations. It is probable that PFK26 activéyegulated by IMP2 for maintaining
metabolite homeostasis.
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YOL136C [SGD: S000005496] and YIL107C [SGD: S003601

Another pair which shows high correlation betweesresponse profile and PG profile is
YIL107C and YOL136C. This pair is involved in catsik of the same metabolic reaction
namely the phosphorylation of fructose-6-phosphatuctose-2, 6-bisphosphate using
ATP. YOL136C encodes for PFK27 which has far lesgsymatic activity than PFK26,
but nevertheless, the same cellular role. This positive indication that the present
methodology can detect meaningful and close funatlp associated ORFs.

YIL162W [SGD: S000001424] and YIL154C [SGD: S00a06]

Also we found a close link among YIL162W coding BUC2, and YIL154C. These
might have a functional association but we do reotehany experimental evidence yet
confirming the finding.

YKLO62W [SGD: S000001545] and YML054C [SGD: S00b08p

YKLO62W is a transcriptional activator related tosh2p and is activated in stress
conditions. YMLO54C codes for a membrane proteirtivac in mitochondrial
intermembrane space. There is no known evidenaetiity of YML0O54C in the MAPK
signaling pathway. YKLO62W is a poorly charactedizgene and the gene product is
involved in MAPk signaling pathway.

YKR097W [SGD: S000001805] and YBR018C [SGD: SO®RRX)0

YKRO97W is a key enzyme in gluconeogenesis andr@sscription is repressed by
glucose. YBRO18C encodes Galactose-1-phosphateyl utidnsferase, synthesizes
glucose-1-phosphate and UDP-galactose from UDPubDege and alpha-Dgalactose-1-
phosphate in the second step of galactose catabolis

YBR184W [SGD: S000000388] and YKL062W [SGD: SOGH]1

YBR184W encodes a putative protein of unknown fiomct YKLO62W is a
transcriptional activator related to Msn2p. YBR184hows physical interaction with
Rad3p, Cnm67p and Jsnlp which show growth defectsrmentable carbon sources.
YDRO043C [SGD: S000002450] and YIL107C [SGD: S008609]L

YDRO043C mediates glucose repression and negatregylates a variety of processes
including filamentous growth and alkaline pH resprand is a known regulator of
glucose-repressed genes.YIL107C plays a key raleamscriptional regulation involving

protein kinase A.
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YDRO73W [SGD: S000002480] and YGLO035C [SGD: SO0DOE)3

The YGLO35C knockout mutant leads to partial regpiees of glucose-regulated
transcripts. YDRO73W encodes for a subunit of thM&I/SNF chromatin remodeling
complex involved in transcriptional regulation. YDRBW is known to have a functional
interaction with the components SNF2p, SNF11p, 8N#F12p of the SNF chromatin
remodelling complex involved in transcriptional uésgfion. YGLO35C gene product is
regulated by SNF1p protein kinase by phosphoryiabioMIG1 repressor. We propose a
probable functional association among YGL035C aBbiR¥73W via SNF1p.

The last mutant pair found were YGR194C [S000003428 YKR097W [S000001805]
and there is no conclusive evidence or probabletiomal relationship between these two
mutants.

Out of 9 ORF sets, we were able to find positiveficoned biological relationship. For 3
ORF sets, we were able to suggest a probable tunattrelationship. For the rest 4 ORF
sets, we were not able to find any biological refahip.

3.2.3. Discussion of clustering algorithmsresults

Using integrated analysis of co-response profiied PG profiles, we found that high
co-response profiles correlation tends to come \ather distance of the mutarRG
profiles, for the present study. In the future géar amounts of data could be used to
further corroborate the finding. The mutant pairsicl have high co-response profile
correlation but are assigned to different clusterese not studied further since our
method is directed towards mutant differentiatiosing combined analysis oPG
profiles and transcript co-response profiles datiditionally, we found that~L profiles
were not sufficient to derive any functional asations among the mutant set under
study. For the present set of mutant set, we caowdd study the FL profile and
PG profiles together as the mutant dataset under studifferent in these two cases.
High-throughput metabolic profiling studies are d&®ing increasingly useful for
systematic analysis of cellular systems and proaigtaluable means for quantification of
cellular pathway activity. The present work prodde robust method for such studies.
The present method comprises a procedure deveiogeulse for automation of GC-MS

spectra analysis, quantification of summed fraetidabeling of proteogenic amino-acid
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fragments in order to estimate metabolite concéatrs which are vital indicators of
state and extent of activity of certain subpathwaysl branch points in metabolic
networks ofS. cerevisiagestimation of the extent of mutant associatiosedaon the

global features growth ratebiomass yieldY,,, ethanol yieldY, rate of biomass

production Q, and rate of ethanol productia@,, followed by integration of transcript

co-response profiles for mutant differentiation.this framework, we have introduced a
scheme for estimation of cluster quality in anaysf metabolic profiling data. This
measure assesses whether the clustering is useiilaomere weak assembly of distant
mutant ORFs. We confirmed that the fractional ladge{ FL) is a useful procedure for
obtaining insights into the activity of a numbersafb-pathways. In particular, we could
uncover similarities among thEL profiles of those fragments which have biosyntheti
linkages, such as precursor-product relationstys.show that by integrating transcript
co-response profiles witRPG profiles one can identify functionally related OR&ts and
could use this to generate plausible hypothesesitathe functional roles of genes
involved in metabolism and regulation &accharomyces cerevisiagntral carbon
metabolism. We proved that by analysis of set otamis involved in regulating the
central carbon metabolism.
This framework can be extended by includinggsilico flux estimates, in order to obtain
greater insights into functional association amgeges in eukaryotic organisms, using
metabolic profiling data.
As described in the previous sections, we appliesupervised learning techniques to
identify characteristic features of a gene knockmder varied carbon sources. However,
it was found that the unsupervised learning methprdduced clustering with silhouette
widths below 0.5, which indicates the absence st clusters [see section 3.2]. To
overcome this limitation, we developed a novel apph, based on adaptive reweighted
estimation of mean and covariance (ARW method)ctvtuould answer the following
gueries for a given large-scale gene knockout noditalprofiling datasets, even when
these mutants show can only be clustered weakly:

1) Given a large-scale data set, which genes knockeuwes most distinct

(unlike/outliers) from the majority of the dataset?
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2) For every gene knockout, what are the significaatdres which are characteristic
of that knockout mutant?

These questions are routinely asked in large-su#éysis of data originating from high-
throughput techniques like GC-MS, growth profilingetabolomics etc. The following
paragraph describes some of these large scalestad their applications.
In the last few years, several large-scale prafitudies using yeast have been carried
out. Many of these studies are done with the gofafsredicting the modes of action of
external metabolites and for characterizing gerfeen@nown function [Luesch2006].
The availability of genome-wide heterozygous/hongmys diploid and haploid gene
deletion strains fuelled large-scale profiling séisd Fitness profiling on a genomic scale
with numerous nutrients has resulted in the vexifon of target pathways such as those
for lovastatin HMG), hydroxyurea (small subunit of ribonucleotide uethse) and
methotrexate IFR1) [Lum2004, Giaever2004]Another approach called drug-induced
haplo-insufficiency (lowering the gene dosage c& tiene encoding the drug target
increases the susceptibility to the drug), is aised to study the deletion mutant fitness.
Drug-induced haplo-insufficiency occurs when lowgrthe dosage of a single gene from
two copies to one copy in diploid cells resultsaitneterozygote thalisplays increased
drug sensitivity compared with wild-tyjgérains [Baetz2004].
The basic idea is to determine the abundance df daletion strain in the co-culture
using a PCR to amplify the barcodes (“used for koat identification”) associated with
each mutant. Giaever et al found the drug targaumicamycin using drug-induced
haplo-insufficiency [Giaever1999]. Another approasha kind of fingerprinting/pattern
matching strategy in which gene expression profiedrug treated cells are compared
with large scale expression profiles derived froetetion mutants [Hughes2000]. This
basic assumption is that the “fingerprint” of arige compound on gene expression will
show resemblance to the profile of mutant straiispldying defects in the targeted
pathway or in which the target-encoding gene iscked out.
In section 3.3, we study the outlier detection mdthand their application to metabolic
profiling data analysis. We developed an approaateth on the adaptive reweighted
estimation for mean and covariance (ARW) method amdte a routine in the R
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programming environment which assigns p-valued|tteature combinations in order to

select the combination that is the most informafeagure set for a given gene knockout.

3.3. Analysis of metabolic profiling data using an outlier detection method

Outliers are regarded as those observations whiglfoaind to come from a different
underlying distribution than the distribution whiehcompasses rest of the data points in
the dataset. Outliers are different from extremkias This is because even when the
extreme values are far away from the centre théiybstong to the same distribution as
rest of the dataset. The outliers can be eithemofariate or multivariate in nature. The
univariate outliers are usually a result of an expental error and for their identification
univariate approaches can be used. The multivasiatieers have a more complex nature
and cannot be detected by univariate approachésRBusseeuw 1987]. Identification of
multivariate outliers requires multivariate techueg for example projection techniques.
In a simple case, by projecting objects on onénefaxes the outlier tends to be located
far from the majority of the data, and thus, it ceneasily detected. In figure 1Bjs
regarded as a multivariate outlier since none efgiojections are sufficient to uncover

the outlier because of its presence in the dataddbaszykowski2007]
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Figure 12 Example of univariate and multivariate outlierg @ univariate outlier (*) varies in terms of a
single variable (b) a multivariate outlier (*) isweoutlier which involves more than one variable.
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For a single variable its meany, is the sum of all elements divided by their numbe

in Equation 5

However, in the presence of outliers in the ddtta,mean is not a reliable estimate of the
data location, and therefore it is said to be a-mdyust estimator. Location estimators
can be divided into two categories, robust and modnust. The robust estimators aim to
describe well the location of the majority of thatal regardless of data contamination.
The robustness of an estimator can be describedsbgreakdown point; a concept
introduced by Hempel et al. [Hempel1986]. For atdisample, the breakdown point of
an estimator is the maximal fraction of outlyingeats in the data, even in the presence
of which the estimator yields acceptable estimatgher than in case of random
estimator. For instance, the breakdown point ofrtfean estimator equals 0%, since a
single outlier can bring the mean to an arbitraalug. There are different types of robust
estimators. Parametric estimators assume a celasandistribution, for instance a normal
distribution and thus such estimators simply eledén outliers. Non-parametric
estimators are robust in their nature because dbegot require knowledge of the data
distribution at hand.The lack of robustness ofrtiean estimator can be attributed to its
least-squares nature. The mean of a random vaigke point minimizing the average

Euclidean distance to all data objects. This caolits expressed as:

X :ﬂminzm:”)g - ,u(x)|| Equation 6
i=1

where |[|...|| is the L2-Euclidean norm.

The median of the data is a robust alternativeht rhean location estimator with a
breakdown point of 50%, meaning that it takes ammating 50% of the dataset to
change the median value. The median of a variabkhe middle element for an odd
number of sorted elements. The median of a varialitle an even number of sorted
elements is the average of the two elements atldsest positions to the half-length of

the variable.

52



In our study, where the data are multidimensional,the mutant profiles are described
by several physico-chemical properties (variabléds), data means and medians can be
computed in a univariate manner, considering eaaa dariable individually. This
computation yields column means and column medanthe data (coordinate wise
means and coordinate wise medians), respectivel. &lso possible to consider the
multidimensional nature of the data and the mee@iaran estimate of a center of the
multidimensional data cloud. The L1-median is ehhigobust estimator of multivariate
data location with a 50% breakdown point [Roussedi®87]. The L1l-median is a
generalization of the univariate median. Althougk t1-median seems to be the best-
known multidimensional median, some other existe/@é. Robust estimates of location
as well as other robust estimates can be also etkrapplying the fuzzy set theory
[Sarbu2001, Rajkd1994]. When outliers are preserthé data, they can influence the

data mean to a different degree depending on dirtaince from the data majority.

3.3.1. Methods

In the section 3.3.1.1., we describe the theorynoftivariate outlier detection methods.
Section 3.3.1.2 gives the theory behind the adep&weighted estimator of mean and
covariance (ARW) method for outlier detection.

3.3.1.1. Multivariate outlier detection methods

Multivariate outlier detection methods can be gemipnto two classes. One class
comprises statistical methods that are based onasd distribution parameters.

The second class comprises data mining methodsauthaypically parameter-free.

» Statistical methods based on estimated distribution parameters

Multivariate robust measures

The Mahalanobis distance is a widely used distaicelepends on the estimated

parameters of the multivariate distribution. Givenobservations from a p-dimensional

datasetx, is the mean of the sample, a6 denotes the covariance mafrix

C, :ilz(xi _;(n)(xi _)_(n)T Equation 7
n-1%3
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The Mahalanobisdistance M ) for each multivariate data point = 1,..., n, is denoted

by M. and given by
n B _ 1/2

M, :(Z(Xi —Xn)" CH(X _Xn)j Equation 8
i=1

The data points that have a large Mahalanobisrtistare regarded as outliers. There are
two effects namely masking and swamping effects ¢ha affect the adequacy of the
Mahalanobis distance in outlier detection.

Masking effect:

One outlier masks a second outlier, if the secanttlen can be considered as an outlier
only by itself, but not in the presence of thetfiositlier. Thus, after the deletion of the
first outlier the second instance emerges as drenu¥lasking occurs when a cluster of
outlying observations skews the mean and the caveei estimates toward it, and the
resulting distance of the outlying point from theamn is small.

Swamping effect:

One outlier swamps a second observation, if thergkobservation can be considered as
an outlier only under the presence of the first en@ther words, after the deletion of the
first outlier the second observation becomes a oudlying observation. Swamping
occurs when a group of outlying instances skewgrtean and the covariance estimates
toward it and away from other non-outlying instasjcand the resulting distance from
these instances to the mean is large, making tbeknlike outliers. Hadi et al. proposed
a method to replace the mean vector by a vectgawéble medians and to compute the
covariance matrix for the subset of those obseymatiwith the smallest Mahalanobis
distance [Hadil992]. A modified version of Hadi'sogedure is presented in
[Penny2001]. Caussinus et al. proposed a robushaist for the covariance matrix,
which is based on weighted observations accordin¢heir distance from the center
[Caussinus1990]. Other robust estimators of theation (centroid) and the shape
(covariance matrix) include the minimum covariandeterminant (MCD) and the
minimum volume ellipsoid (MVE) [Rousseeuw1985, Reresuw1987 and Acuna2004].

» Data-Mining Methodsfor Outlier Detection
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Data-mining methods are often non-parametric. Talpicthey do not assume an
underlying generating model for the data. Thesehod= can be classified into the
following types: clustering methods, distance-basethods and spatial methods.

In clustering based methods, clusters of small @m#uding size 1) are regarded as the
clustered outliers. PAM [section 3.2.1.2] and Glusig Large Applications (CLARA)
fall under the category of clustering based metlkdsifman1990].

CLARA essentially draws multiple samples from aadat, applies PAM on each dataset
and presents the best clustering as the output ffikaun1999]. CLARA has the
advantage of being scalable to large datasetsthiieasame time it has disadvantages
e.g. the efficiency of the algorithm depends ondample size and also a good clustering
using a sample will not be a good clustering fa émtire dataset in case the sample is
biased. Distance-based methods regard an obssmedi a distance-based outlier if at
least a fractiorf of the observations in the dataset are further thaom it [Knorr1997,
Knorr1998]. These methods have drawbacks incluthegdependence on a parameter
and the lack of a ranking of the outliers. The mdthusually have time complexity of
the order of Ofgr?), wherep is the number of features ands the sample size.

In spatial outlier methods, an outlier is defined aaspatially referenced object whose
non-spatial attribute values are significantly eliéint from the values of its neighborhood
[Haining1993]. In other words, where an individwtribute value is not necessarily
extreme in the distributional sense but is extrameéerms of the attribute values in

adjacent areas.

3.3.1.2. Adaptive reweighted estimator for multivariate location and scatter: ARW
algorithm

Multivariate outlier detection methods largely rely the distance of the outlier from the
centroid of the data as well as the shape of thesda The size and shape of multivariate
data are quantified by the covariance matrix. le thajority of the methods, the

Mahalanobisdistance M ) is used as a distance measure.

For the normal distribution, the values bf?are approximately chi-square distributed

with mdegrees of freedomy(). By setting theM? to certain quantiles of?, it is

possible to define ellipsoids that define sets oings having the same Mahalanobis
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distance [Gnanadesikan1977]. Thus all the pointsaagiven ellipsoid have the same

Mahalanobis distance to the centroid.

The presence of single extreme observations wheldifferent from the main data cloud

has a severe effect on Mahalanobis distance becdubke sensitivity of the covariance

matrix to outliers [Hampel1986, Maronnal998]. Teemome this problem, Rousseeuw

and coworkers developed a method called minimumarance determinantMCD)

estimator which is a robust estimator of the carame matrixC and the mean where

both C andt are resistant to the presence of outliers [RossE@89, Rousseeuw1985].

Feature Feature
Index short
descriptor
1 mue
2 Qs
3 Qp
4 Q02
5 ala_260
6 ala_232
7 gly 246
8 val_288
9 val_260
10 val_186
11 ile_200
12 pro_286
13 ser_390
14 ser_362
15 ser_288
16 thr_404
17 thr_376
18 phe_336
19 asp_418
20 glu_432
21 arg_442
22 arg_414
23 tyr_466

Feature long descriptor

Growth rate

Rate of biomass production
Rate of ethanol production
Rate of biomass production on oxyd
Alanine AAF M.W.=260
Alanine AAF M.W.=232
Glycine AAF M.W.=246

Valine AAF M.W.=288

Valine AAF M.W.=260

Valine AAF M.W.=186
Isoleucine AAF M.W.=200
Proline AAF M.W.=286

Serine AAF M.W.=390

Serine AAF M.W.=362

Serine AAF M.W.=288
Threonine AAF M.W.=404
Threonine AAF M.W.=376
Phenylalanine AAF M.W.=336
Aspartic acid AAF M.W.=418
Glutamic acid AAF M.W.=432
Arginine AAF M.W.=442
Arginine AAF M.W.=414
Tyrosine AAF M.W.=466

en
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Table 6 Feature index and long descriptors. AbbreviatiokFAstands for “Amino acid fragment”; M.W.
stands for “Molecular weight”

MCD essentially looks for a subset bf observations out of the total observations
such that the covariance matrix defined by the eubsis the smallest determinant.
Generally methods have a breakdown valuenfin+1)where nis the number of the
observations andn are the number of dimensions [Donoho1982]. MCLCk&otor the
ellipsoid with smallest volume that covehs data points wheme/2< h<n., and has a
breakdown value ¢h—h)/n.

ARW is a powerful new method for multivariate oetldetection based on MCD which
can distinguish between extreme values of a nodisaifibution and values originating
from a different distribution (outliers) [Filzmo2&04]. It was originally applied for the
analysis of geochemical data. The ARW method usesACD estimator with = 0.75n.
The location estimator is calculated as the avedgieseh points. The breakdown
value with h= 0.75n is approximately 25%. When the fraction of ousliexceeds 25%

of the total observations, one would get complebehsed estimates [Hampel1986],

is calculated using the robust estimates of lopatiod scatter and henceforth referred to
asRD.

3.3.1.3. Implementation of the ARW algorithm in the R programming environment

INPUT:
« Physiological growth data and fractional labelirrgedfor all mutants (Table 17 in
appendix 1).

+ Feature index refers feat: 1, 2, 3....... , 23(see Table 6).

« Maximum number of features to be used for all pgations of the parent datasef
nfeatsel

OUTPUT:
« Most outlying feature set for each individual mutan
* P-values for all feature combinations from i=1, 2...8..,

PROCEDURE:
« Drawing different combination of features from 1rifeatsel, from the parent

dataset consisting eoffeatselfeatures using R functioncombinations”
*  Applying function, “my.arw”, to calculate the true theoretical chi squaréritiation
followed by its comparison to the distrilmuticoming from the permuted dataset.
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e Calculation of the p-values for all feature comttimas.
+ Measurement of the feature combinatid)(which gives the maximum of the
distance from the rest of the dataset, &mhemutant.

3.3.2. Results of outlier detection method (ARW)

In the present analysis, we were able to find lyigihgnificant feature combinations for
each individual mutant present in the original dataThis method proves to be a method
for fast characterization for the metabolic profji datasets for large scale knockout
analysis.

We show that in the absence of strong phenotypietions, for example in our case
where the metabolic profiles prove not be suffitienfinding any underlying functional
associations among majority of the mutant se¢, ARW method can be used for a more
granular analysis of each individual knockout mutdrable 7 lists the most significant

k - features for each individual mutant.

M utant Min-pval m Significant Feature Combination
i
F
ACE2_gal 2.58387E-10 8| Mue, Qs, gly 246, ser_390, thr_404, phe_336, arg), 4§t 466
ADR1_gal 4,24879E-11 8| gly_246, val_288, val_186, ser_390, ser_288, 4, thr_376, glu_432
CAT8_gal 0 2 | QO2, ser_362
CYB2_gal 1.43743E-05 8| ala_260,val_288, ser_288, thr_404, phe_336, asp il 8432 arg_442
DLD2_fru 1.12875E-11 4| QO2, val_260, val_186, phe_336
DLD2_gal 6.16483E-10 | 3| ser_390, ser_288, phe_336
FBP1_gal 1.89384E-11 g Mue, Qs, QO2, ile_200, phe_336
FBP26_gal 0.002912756| 3 gly_246, ser_390, thr_404
GAD1_gal 9.16376E-08 6| QO2, gly_246, val_288, val_260, pro_286, thr_404
GAL10 fru 1.68532E-13 8| Qs, Qp, ala_260, gly_246, val_260, phe_336, asp_a8414
GAL10_glc | 0.000804473| 3| gly_246, ile_200, pro_286
GAL7_fru 4.32127E-11 3| QO2, phe_336, arg_414
GALS80_glc 1.42109E-14 1| tyr_466
GLK1_gal 6.64289E-07 8| ala_260, val_260, pro_286, ser_288, thr_404, ash atty_414, tyr_466
HXK2_gal 0.000829674 8| val_288, ile_200, ser_362, thr_404, thr_376, ph6, 88p_418, glu_432
IMP2_fru 4.56749E-06 5| Qs, Qp, ile_200, ser_288, arg_442
IMP2_gal 7.11391E-08 4 QO2, ile_200, thr_404, phe_336
LEU4 fru 1.64293E-05 7| Mue, Qp, ala_260, val_260, thr_404, thr_376, ar@_44
LEU4_gal 2.38705E-10 5| ala_260, val_288, ser_390, thr_404, arg_442

58



MAE1_gal 0.001224323 5| ala_260, ala_232, val_260, ser_362, thr_376

MAL33_fru 8.52123E-07 7| Qs, ala_232, val_288, ser_362, thr_404, thr_37%6, 43

MAL33_glc | 0.01301821 4| Mue, Qp, gly_246, pro_286

MSN4_gal 3.33067E-16 8 Qp, ala_260, ala_232, gly 246, val_186, ile_200,380, arg_442
PCK1_fru 1.18469E-07 8| QO2, val_288, val_260, ser_390, thr_376, phe_3§6,418, arg_414
PCK1_gal 4.87388E-14 g Mue, val_260, val_186, ser_390, ser_288, glu_48p 442, arg_414
PFK26_fru 1.76617E-05 g8 ala_260, val_288, ser_362, ser_288, thr_376, pté 8§ _442, arg_414
PFK26_gal 1.04222E-05 g gly_246, val_186, pro_286, ser_362, arg_414

PFK27_gal 8.18322E-07 5 QO2, gly 246, ser_390, ser_362, ser_288

PGU1_fru 0 3| val_260, ile_200, arg_414

SFA1 fru 0.004536613 5 ala_260, ala_232, ser_390, glu_432, arg_414

SFAl_gal 0.002945495| 3 QO2, ala_232, val_186

SFALl_glc 0.002293606( 3 gly_246, ile_200, pro_286

SIP3_gal 9.08784E-12 8 Mue, ala_232, gly_246, val_288, val_260, pro_286, 362, arg_414
SNF11_gal 0 6| val_186, ile_200, ser_362, ser_288, thr_376, ar§_41

SNF2_fru 3.18552E-10 g ala_260, ala_232, val_288, val_186, pro_286, sé&, 18 376, asp_418
SNF2_glc 0.002467652 4 ile_200, arg_442

SUC2_fru 1.02178E-06 @ ala_232, val_260, val_186, ser_390, ser_362, tt&r_37

SUC2_glc 0 1| tyr_466

TYE7_gal 1.89204E-08 8| Mue, ala_232, val_288, val_260, val_186, ile_2@®, 390, phe_336
UGA1_gal 0.003362803| 3 ala_232, ser_288, thr_376

UGA2_fru 4.14022E-08 8| ala_232, val_288, val_260, val_186, ser_390, s&, té6 376, phe_336
UGA2_gal 0.000194988 | 3 val_288, ser_288, thr_404

YBR184W_ | 8.85803E-12 8| QO2, ala_232, val_260, pro_286, ser_362, ser_288482, arg_414
gal

YDR248C_f | 1.24612E-07 8| QO2, gly_246, val_186, ser_390, thr_404, thr_37&, 336, asp_418
ru

Table 7 List of most significank - features for each mutant in the mutant setn-pvalis the minimum of
the pvalues obtained using the feature combinatierl,?2,....8. minF is the feature combination which

showmin-pval Significant feature combinatias the feature combination which are most signifiganin-
pval) for a given mutant.

We calculate minimum of the pvalue@nin-pva) for the feature combinations,

i =12,..8. Themin-pvalis that lowesip-valueobtained for any given mutant using any
feature combinations nameiy= 1,2,..8. Heremin-pval denotes the feature combination

which is the strongest outlier for a given mutakigure 13 denotes a plot of lggmnin-
pval) for mutants which are grown in three differenpesiments (MutFRU, MutGAL

and MutGLC) namely differing in the type of carbsource used. It can be clearly seen

59



from this plot that in general the MutGLC (Mutarstst grown with glucose as carbon
source) is less discriminatory than the other mstgnown in the other two conditions

i.e. fructose and galactose.

log10(min_pval) Plot
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Figure 13 Comparison of the lag(min-pvalues) for the most significaktfeatures combination for each
mutant in the entire mutant set.

3.3.3. Discussion of outlier detection method (ARW) results

The ARW method is an efficient method for identifyithe most significant features for
large scale metabolic profiling datasets as welfloascomparison of knockout mutants
under varying experimental conditions. In our as@lywe found that the knockout
mutant of malic enzyme is a much more significamiier when yeast is grown under
glucose than when grown under galactose, thusipgitdwards a differentiation of the
metabolic phenotype. In the figure 14, it is evidérat the metabolic profile of the malic
enzyme when grown with glucose (Figure 14a, pvalué6) shows the most
differentiating outlier feature combination withf@atures whereas for the malic enzyme
when grown with galactose show strong outlying beha with 3-5 features (Figure
14b, pvalue ~0.002). Preliminary investigatiortlod k- significant features for the malic
enzyme knock-out in GLC and GAL conditions doesesa different subset of amino

acid fragments which are most discriminatory fa ifdividual malic enzyme mutant.
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Figure 14 Malic enzyme (MAE1)plot of min-p values for the malic enzyme growrthaglucose (a) and
malic enzyme grown with galactose as carbon so(bkecic?2,.....cs refers to the mutants set with 1,
2,....., 8 feature combinations, respectively.

It was also shown by Boles et al. that there isalternate pathway for pyruvate
metabolism.

Feature Combinations Vs Max distance d

12 4

10

// -

—e—MAE1_gal
6 / // —=— MAE1_glc
) « // _
1T

3 4

Max distance d

[iN
E
N
&1

Feature combinations 61




Figure 15 Analysis of Malic enzyme knockoMAE_glc (grown with glucose) and MAE1_gal (grown
with galactose)

They also reported that the malic enzyme shows noledrer phenotype with galactose
compared to when grown with glucose (Figure 15)I¢Bb998]. This is a novel method
for in-depth and comparative analysis of largees&albckout datasets and is fairly fast in
terms of computation time. For a set of 5 featwmlginations, it takes about 5 hours on
a single processor pentium P4 machine for calaratf the significant features of all

knockouts and determination of the most outlyingd«out.
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Part I11: Web server for metabolic network analysis

63



Chapter 4

4. Introduction to metabolic network analysis

4.1. Introduction

In living cells, the study of chemical transfornoais of substances is of central
importance. On an organism level, these chemieaistormations form the metabolic
network specific for that organism. The term “meif&m” comprises of the large
number of chemical reactions which convert one orareducts into one or more than
one product,in the cellular environment. The area of metabaktwork and pathway
analysis has been vigorously researched in theléastde. With the emergence of system
biology, diverse computational approaches have hki®reloped. In this work, we
developed a new webserver called MetaModel, for #malysis of genome-scale
metabolic networks of eukaryotic organisms. Secdloh1-4.1.3 describes the general
topological measures applied for network analysis the KEGG pathway maps. Section
4.2 summarizes various mathematical approachesedppl pathway analysis. Sections
4.3-4.5 describe the theoretical basis and data byeMetaModel. In the current
implementation, the server facilitates analysithefSaccharomyces cerevisiaeetabolic
models iFF708 and iND750, and of user-defined custmdels.

4.1.1. Types of biochemical networks

A graph (or network) representation can be usedefme a system of genes and gene
products that interact or regulate each other. &gaph models can be directed or
undirected, and can represent various biochematalionships existing among the node
members. For example, biochemical networks thatucea mutual interactions like
protein-protein binding can be best representedirarected graph models, whereas
directed graph models are suitable for represetioghemical reactions that transform a
set of substrates into a set of products. Thegghgrean be augmented by labeling nodes
and edges with additional information. Current mpavated information can be roughly
classified into five categories namely 1) genomidoiimation 2) transcriptomic

information 3) proteomic information 4) metaboloniidormation and 5) interactomic
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information. Transcriptomic and metabolomic infation can be used for indirect
inference of molecular interactions. Except for theeractome, all other omics data

generally provide information for labelling the resdof a network.

4.1.2. Topological network parameters

In the literature, many graph theoretic topologitedasures have been used for studying
biochemical networks. These measures can providanimgful insights into functions
and structural organization of biochemical netwd®kristensen2007]. In the following
we list the most widely used graph theoretic messur

a) Degree and degree distribution

The degree of a node is defined as the numbergdsenhcident to that node. In directed
graphs, total degree of a node can be dividedantout-degreg(# out-going edges) and
an in-degree(# in-coming edges). In a graph in which edgesehawmerical weights,
another measure callede strengtltan be defined. The strengiha node is the sum of
the weights of the edges adjacent to that noddoBaf measure of network topology is

called degree distributionP(k). P(k) is defined as the probability of a randomly
selected node to have degkeeP(k) is a simple measure that is calculated but cogntin
the number of nodes witk=1,2,....edges, and then dividing these numbers &ydtal

number of nodes in the network. Recent studies Baoen that the majority of cellular
networks have a scale-free degree distribution ¢ARD02, Lee2002]. The degree

distribution of scale-free networks follows a powaw:P(k) = Ak where A is a
normalisation constant andis a degree exponent. For example, the degregbdisbn
of metabolic networks and protein interaction neksaypically obey power laws with
2(y(3[Jeong2000, Guelzim2002]. The important distinctadra network being a scale-

free network is that these generally show sevdrghly connected” nodes, the so called
Hubs.

b) Connectivity, path length, efficiency and paths

A path in a metabolic network represents a sequehckemical reactions that transform
the compound represented by the source node giatineinto that represented by the sink

node of the path. Thdistancebetween two nodes in networks is the minimum numbe
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(or sum of the weights in edge-weighted graphs)hef edges in any path connecting
these nodes. Two nodes amnnectedf a sequence of adjacent nodes, a path, linksethe

two nodes [Bolloba’s1979]. Treverage distancel; is the average number of edges in
the shortest path between any two nodemnd;j, in the given network [Dijkstral959].
The global graph efficiencyis defined agl/d;) [Latora2001, Latora2003]. Directed

graphs in which every pair of nodes is connected lojyrected path are called strongly
connected graphs. We know that cellular networksnat strongly connected, in general,
but it is advantageous to identify the maximal sapgs inside these networks which are
strongly connected, the so-called strong componente strong components of a graph
are connected with each other in an acyclic fashidre analysis of the connectivity
structure of a metabolic network can give usefultito its functional organization
[Ma’ayan2004].

c) Clustering coefficient

The clustering coefficiel,, is a measure of the extent to which a node’st firs

neighbourhood is connected [Watts1998].
2E,

Here k is the degree of nodeand E is the number of edges connecting the immediate
neighbours of node. The average clustering coefficient of a netwarélculated by
averaging the clustering coefficients of all ofntsdes, is a useful measure of the strength
of connectivity inside a network. A large averagestering coefficient suggests a high
level of cohesiveness and redundancy [Wagner20&la$z2002].

d) Betweenness centrality

A node is termed aourceif it has only outgoing edges, andsenk when it had only
incoming edges. ThBetweenness centrality; (x) of a nodex which is neither sink nor
source is defined as the number of shortest patins fiodei to nodg passing through
nodex, divided by the total number of shortést paths, for a graph witliX nodes and

E edges(Equation 9). TH&etweenness centraliof a
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g. (X
L Equation 9

Ce(®= >

Zex 9
node indicates the importance of that node foptiopagation of flow within the network
[Anthonisse1971, Freeman1977]. Holmteal. have shown that ubiquitous substrates in
the biochemical networks may not have the highegtaeks in the network, but they often

have the highest betweenness centralities [Holn&200

4.1.3. KEGG pathway maps

KEGG refers to the “Kyoto Encyclopedia of Genes @ehomes” [Kanehisal997a].
KEGG is a knowledge base for systematic analysigesfe functions in terms of the
networks of genes and molecules [Ogatal999]. Itprm®as three databases namely
PATHWAY (repository of knowledge of molecular patllys and complexes), GENES
(repository of gene catalogs of completely sequemmnomes and partial genomes) and
LIGAND (repository of chemical compounds and chahi@actions) [Goto1998]. The
PATHWAY database uses a graph-theoretic form faa depresentation. In this graph
representation, aodeis a gene product or complex and edgeis a protein-protein
interaction. This protein-protein interaction coubg direct physical interaction, iso-
enzyme relation or gene expression relation amoignggene products. GENES
database has a collection of genes for all thenisges in KEGG. A typical entry in
GENES database contains following information: arga name, gene name, functional
description, functional hierarchy, chromosomal posj codon usage, nucleotide
sequence and amino acid sequence. The LIGAND dsgat@ntains information about
chemical compounds, enzyme molecules, enzymatic @matenzymatic reactions.
PATHWAY contains protein-protein interaction netwsrfor various cellular processes.
In the KEGG pathway maps, DNA and chemical compswaré not considered as nodes
but rather form the edges in the network. A pref@iotein interaction can be 1) a direct
physical interaction such as protein modificatiprgtein binding, or protein cleavage; 2)
an indirect interaction representing associationtwbd enzymes that catalyze two
successive reaction steps; 3) an indirect inteyadtvolving gene expression, namely,
the relation between the genes encoding a trarnigrifactor and a target gene product.
The KEGG databases and computational tools are insacsemi-automated fashion to
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find cores (i.e. basic wiring diagram of molecules imlbgical systemspf known
pathways using the knowledge present in KEGG raterepathways. The organism-
specific KEGG pathways are generated by extensioth@se cores by integrating
additional partners that are associated at thergenevel (for example genes in the same
operon), the transcriptome level (for example cpregsed genes), and the proteome
level (for example binding partners). Figure 16 idespthe KEGG pathway map for
lysine biosynthesis in th®accharomyces cerevisidgoth boxes and circles are clickable
objects for retrieving detailed molecular infornoati A circle represents a metabolic
compound. Each box represents an enzyme with titespmnding EC number inside it.
The shading of the box indicates whether that gamoeluct is present in the genome
under study or not [Ogatal999]. The boxes (enzymég)se genes are present in the

genome under study are colored green.
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Figure 16 KEGG pathway map of lysine biosynthesis in Sachgces cerevisiae.
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4.2. Mathematical approachesfor pathway analysis

The idea of these mathematical approaches has tbeexploit as much system level
information as available, for pathway analysis.Bsthools of thought namely the one
following bottom-up construction and the one follog/top-down construction have paid
increased attention to the development of rigomashematics approaches for pathway
analysis.

Mathematical approaches for pathway analysis haen dundamental in the area of
systems biology and metabolic engineering. Thesproaghes have found direct
application in modelling, simulation and optimizati of metabolic pathways. These
approaches can be divided into (i) Structural apghes, (i) Stoichiometric approaches,
(iif) Carbon flux approaches, (iv) Stationary anghrstationary mechanistic approaches
and (v) Approaches based on gene regulation mag@iiechert2002]. (i) Structural
model building starts with assimilation of the knmownowledge on the mechanisms and
components of reactions, published work and publita repositories like KEGG
[Kanehisal999], (ii) Stoichiometric models are @psahead of structural models as they
incorporate quantitative data on the cellular cobegion of various reaction
components. The stoichiometric modelling concemsugarious abstraction levels like
pooling of intracellular metabolites and lumpinge tlintermittent steps in various
subpathways, for which no quantitative data areilava. Stoichiometric modeling
approaches use a guasi-steady state assumptiomofbgling pathways, (iii) The carbon
flux approaches are similar in essence to the lstmetric approaches except that they
use additional quantitative data to further dissead balance the degree of freedom of
stoichiometric balances. These quantitative data ganerated from various labeling
experiments in which a tracer liR&C is used as a label. This label is used for toevtr
experiments. The distribution of the label as pArtvarious cellular intermediates, at
steady state is used as additional informationissedt various metabolite conversion
steps in pathway models, (iv) Mechanistic modelapproaches incrementally model
individual reactions steps for the underlying pagjwnodel. These individual steps are
then subjected to the theory coming from standarzyme kinetics. (v) Modeling

approaches involving gene regulation are still heirt infancy. The basic idea of the
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modeling with gene regulation is to use the com#sacoming from gene regulatory
mechanisms, for modeling reaction steps in thevgagrmodel.

Formal models of metabolic networks along with “aietlite snapshots” methods (the
comprehensive measurement of metabolite concesrisgtiare powerful approaches for
understanding the perturbation in cellular metaoldue to genomic perturbations, for
example knocking out genes, in mutants. Metabsthigpshot comparison amounts to the
comparison of metabolite concentrations of mutahdgeted for genes of unknown
function, with metabolite concentrations of mutaskdeted for genes of known function.
It is not a new strategy but has existed in tha afegpopulation genetics for decades. The
fitness defect can be thought of as the globalcefd the all phenotypic changes that
occur as a result of a genetic perturbation nank@gcking out single or multiple genes.
These studies compare the knockout mutant straimetavild type strain. Any change in
the knockout mutant is hypothesized to be the reswerifiable/non-verifiable effects of
the absence of particular genes. For yeast and otiganisms, it was generally found
that these knockout mutations usually show littteno fithess defect compared to the
wild type strain [Drake1998, Keightley1999, and thit999].

4.3. Stoichiometric analysis of metabolic networks

Metabolic networks have been extensively used foletstanding principles of metabolic
organization. The phenotype of a strain could bgamded as the experimentally
observable behaviour of the underlying metabolitwneks and the interactions of
several components of these networks. These iti@naacould not be intuitively studied
which led to an ever expanding area of researdaccatathematical modeling of cellular
networks. Stoichiometric analysis is one brancimathematical modeling and analysis.
Stoichiometric analysis exploits the structuralunatof metabolic networks. It is a useful
method to identify the constraints on existing palfetween two components and the
biochemical capabilities of a metabolic network ([wWal994, Schuster2000,
Edwards2000, Stelling 2002, Famili2003 and Pric&200
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4.3.1. S. cerevisiagenome-scale metabolic models and their construction
Genome-scale metabolic models of micro-organisnes i@portant tools for model-
driven data analysis and can be used for calcgl&kperimentally verifiable phenotypic
predictions. Genome-scale metabolic model constmudnvolves the assimilation of
published biochemical, physiological and genomiorimation for a given organism. In
addition to the information available in the boaksd journal publications, public data
repositories like MIPS, SGD, Yeast Proteome Daap&EGG Database, EXPASy
Biochemical Pathways, ExXPASy Enzyme Database, ERG® Swiss-Prot provide a
basis for metabolic model reconstruction. In 2088ice et al. proposed a naming
convention of thesen silico genome-scale metabolic models in the following nesn
For example genome-scale model iAA#ORF is an alsditien in which “” stands for an
in silico model, AA are the initials of the first scientishavreconstructed that model, and
#ORF is the total number of genes accounted fahenmodel. iFF708 and iIND750 are
two major genome-scale metabolic modelsSaiccharomyces cerevisigBrice2003,
Forster2003, Famili2003].

4.3.2. Stoichiometric matrix

A stoichiometric matrix provides a detailed destioip of a biochemical network and is a
useful mathematical formalism for representing ¢hemical interactions in a metabolic
network. A stoichiometric reconstruction is perf@anby careful integration of data on
the chemical transformations in a system with aefiboundaries and in accordance with
the principle of conservation of mass. The ressilaimatrix representation of data on
network components and the interactions betweesethetwork components. The rows
of the matrix correspond to the network componarid the columns represent the
chemical transformations (reactions) between thmpoments. The elements of the
matrix correspond to the stoichiometric coefficeenof the associated chemical
transformations. These elements are assigned a dgyrally, a negative sign signifies
that the node represented b the row of the malement is an “input (reactant)” and a

positive sign represent an “output (product)”.
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4.3.3. Sparsity of the stoichiometric matrix
Any set of biochemical transformations can be desedr by system of ordinary
differential equations as follows [equation 10]:

dX/dt = Nv(X) Equation 10
Where N v and X denote the stoichiometric matrix, the vector afaten rates and the

vector of concentrations of “internal (metabolite#th the variable concentrations)”
metabolites respectively. Similarly those metaleslitvhich are buffered are named as
“external” metabolites. At stationary state, thetsyn can be represented as in equation
11:

Nv=0 Equation 11
Equation 11 is in essence defines the energy, arassedox potential contraints in the

metabolic network. This in turn defines the coristsaas well as capabilities of a given
metabolic genotype.

Also flux vector of the irreversible reactions,, must follow equation 12.

v, =20 Equation 12

To decide whether a given enzyme set is actuallfurectionally coherent set in
metabolism, it must be determined whether the spoeding flux vectors can fulfill
equations 11 and 12 [Nuno 1997, Pfeiffer1999]. Tégion encompassed by these flux
vectors is known as region of admissible (attai@pblx vectors (i.e the metabolic flux
distributions that did not violate the energy, mamss redox balance constraints)
[Rockafellar1970 and Nozickal974].

The stoichiometric matrix provides concise infotima about the metabolic network that
it represents. Stoichiometric matrices are genesghrse, i.e. they contain few nonzero
elements, because only few metabolites are corthdzyea chemical reactions and
reactions involve few metabolites (no more thamg@nerally). The complete set of
vectorsv satisfying the equation 11 defines a region catlked“null space” oN . The
stoichometric matrix represents a set of linearadqus representing components of
metabolic machinery of the organism [Lay1997]. ke fpast, a large number of linear
algebra techniques have been applied to studyinglaimental system properties
[Clarke1988, Reder1988]. The “null space” defindistlae possible and impossible
capabilities of a given metabolic genotype [Scahgli999]. The null spack,, can be
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mathematically represented as a matrix whose cauana linearly independent vectors
spanning this subspace.
NK =0 Equation 13

The “null space” can be used to identify metabgtiteduction capabilities for a given
metabolic network, ease of conversion of carbohgdranto other biomolecules for a
given network, as well as to find the critical lgfkottlenecks) in the metabolic network
[Edwards1998, Varmal994].

4.3.4. Related work

Various computational approaches use the concegtbiwhiometric analysis as the basis
for the further method development. One such ampros calledFlux Balance Analysis
(FBA) [Varmal994,Schilling1999, and Palsson2000]. The general idemes from
concept of reduction of admissible flux space [seetion 4.3.3]. As described in the
previous section, stoichiometric matrices are spargl the linear systems resulting from
them are underdetermined. The feasible flux digtidms (distribution which satisfies
equation 11) of a network having reactions are restricted to the null-space of the
stoichiometric matrix, and can be described bydhlyr - rank (stoichiometric matrix)
free parameters instead of fulunknown reaction rates [Heinrich199damt2002]. The
work by [Palsson2002, Papin2003, Holzhutter2004,epstnopoulos2004 and
Covert2001] present some of the applications of FBpproach [Bonarius1997,
Edwards2002, Kauffman2003]. The FBA approach is seful technique for
guantification of metabolic capabilities (~prodoct) of cellular systems. The system is
assumed to be optimised with respect to functiarsh sas maximisation of biomass
production or minimisation of nutrient utilisationhis is followed by solving the system
to obtain a steady-state flux distribution. Thigxfldistribution is then used to interpret
the metabolic capabilities of the system.

dx
—=8v
dt Equation 14

V:{Vlvz....vn blbz-"bnexf}T
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The dynamic mass balance of the metabolic systetegsribed using the stoichiometric
matrix, relating the flux rates of enzymatic reans, v, x 1 to time derivatives of

metabolite concentrationsy, x 1 as equation 14. Here represents the internal fluxes (i.e
system of fluxes that affect a particular intragelf metabolite), b represents the

exchange fluxes (i.e. fluxes which bring the meliéd® into and out of the system
boundries) in the system amtex is the number of external metabolites in the syste
External metabolites are the sources and sinkfi@inetwork. Also concentrations of
external metabolites are assumed to be bufferadrnial metabolites (intermediates)
have to be balanced with respect to production @sumption at steady state. Also
sincem<n, the system is under-determined and could be dolgng optimisation
criterion [Raman2005]

Similar in essence to FBA is another approach knasviklementary Flux Modes (EFM)
[Schuster2000]. A mode of a system is a relatiu& flistribution that fulfils the steady
state condition for the intermediates and the signstraints for irreversible reactions.
EFM is based on the exhaustive enumeration ofeakible flux vectors\() for the
equation 11. An EFM describes the minimal numbereaictions capable of working
together in a steady state and thereby indicatargous modes of behaviour of a given
system. EFM actually acts as a generating basislfgrossible flux distributions and,
thus, are minimal (constructive) description of gwution space. The algorithms for
computing EFMs are generally from computational getsy; more specifically the
algorithms for enumeration of extreme rays of pettal cones which and are
combinatorially complex.

Stoichiometric analysis of metabolic networks haerbincreasingly successful in terms
of its predictive power compared to the topologiaepbroaches which are based on
simple graph-theoretic methods. Another advantagstachiometric analysis is its
scalability and feasibility even in the absencéhaf knowledge about kinetic parameters

and rate equations, as compared to kinetic modalpgoaches [Steuer2007].

4.3.5. Data
Section 4.3.5.1 and 4.3.5.2 describes the datangpritom the yeast genome-scale

models.
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4.3.5.1. iFF708 genome-scale metabolic model of yeast
Foerster et al. build the first genome scale mét@abaodel of yeast. This model is called
iIFF708 [Forster2003]. iIFF708 stands fan ‘silico” yeast model proposed by “Foerster
and Famili”, accounting for 708 genes. This recarcted metabolic model was the first
comprehensive network for a eukaryotic organisne iffitial model accounted for a total
of 708 open reading frames (ORFs) correspondingl®35 metabolic reactions
[Foerster2003]. In this model, all metabolic reacti are assigned to three cellular
localizations namely mitochondria, cytosol and asétlular space. Alin vivo reactions
belonging to other compartments as well as thetire; for which no cellular
localization information is available, are assumedbe cytosolic. iIFF708 also provides
information on whether a given reaction is revdesdr irreversible. A reaction for which
there is no directionality information availableaissumed to be reversible. Two-thirds of
the reactions in the iFF708 are assumed to beerséue.
iIFF708 reaction for mat
Each comment in the reaction text file has to bekathby a leading # mark (hash-mark).
A reaction line consists of one or more ORF naneatigipating in the reaction and a
reaction equation. The list of ORF(s) and the ieactquation have to be separated by a
tab. If more than one ORFs influence a reactiony, Have to be separated by a slash (/).
The reaction equation is denoted in the common a@motation for reactions. The
names of the reactants have to be abbreviated/as mi the metabolite text file [5.2.3.1].
There has to be a blank between coefficients, naphes,signs and the reaction arrow.
Possible reaction arrows are:

. > for a irreversible reaction and

o <> for a reversible reaction

The following example contains all relevant cases.

‘ ORE(s) | Separator ‘ Reaction equation
YKL192C/YERO61C/YOR221C/YKLOS5C tab ACACPm + 4 MALACPm + 8 NADPHm > 8
NADPm + C100ACPm + 4 CO2m +4 ACPm

Table 8 Example reaction for iFF708odingstyle
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iIFF708 M etabolite for mat
A metabolite line consists of the following columssparated by tabs: a) Abbreviation

and b) Metabolite name. Both the columns are mangatBoth the columns are
mandatory. The following examples represents mditalformat for few cases in iFF708
format.

Abbreviation Name

HIS L-Histidine
ATP ATP

ASP L-Aspartate

Table 9 Examples for Metabolites in iFF708 coding style

4.3.5.2. IND750 genome scale metabolic model of yeast

In the year 2004, Duarte et al. proposed a fulljngartmentalized genome-scale model
of Saccharomyces cerevisiaehe IND750 stands foiirf silico” yeast model proposed by
“Natalie C. Duarte”, accounting for 750 genes. TN®750 metabolic model is much
more elaborate than the earlier iFF708 model. ™MB760 summarizes the currently
available information on ORFs, transcripts and girst of yeast. Essentially the iIND750
model differs from the iFF708 model in the follogimmanner: (a) Localization: five
additional compartments were included namely psmxe, nucleus, golgi apparatus,
vacuole and endoplasmic reticulum, (b) Revisiotiuoictional assignments of the gene
products based on newly published results and igéiscr of the model in terms of
elementally(mass conservation)and charge balanegctions(charge conservation). (c)
cell-wide proton balance. The IND750 file formatm®sre detailed in terms of encoding
reactions occurring in the metabolismSfcerevisiaeWhile keeping the information on
the reaction and the corresponding ORFs, it alslu@®s information, like corresponding
EC numbers, protein names as well as the biologicatesses to which it belongs and
gives every reaction a unique reaction abbreviatiurthermore it comprises higher
number of compartments than the earlier iFF708 inode

iND750 reaction for mat

A reaction line consists of the following columreparated by tabs:
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* Abbreviation of the reaction
* Name of the reaction
» Reaction equation

* EC Number
» Biological Process
* ORF(s)

* Protein(s) encoded by the corresponding ORF(s)

The reaction equation is denoted in the common ata@motation for reactions. If the
reaction takes place in only one compartment, theton itself is preceded by a short
tag representing the compartment. This tag is sggdifrom the equation itself by a “:”

mark. Encoded compartments and their tags are:

Compartment Tag
Extracellular [e]
Peroxisome [X]
Cytosol [c]
Mitochondrion [m]
Vacuole V]
Endoplasmic reticulum| [r]
Golgi apparatus [0]
Nucleus [n]

Table 10 Table of the compartments used in the iIND750 maxeltheir corresponding tags

In case of reactions connecting multiple compartsiethe compartment tag at the
beginning of the equation is omitted and the tagesponding to its location is appended
to every metabolite name.

The names of the reactants have to be abbreviagoren in the metabolite file.
All coefficients other than 1 (default when no cardint is given explicitly) have to be
given in brackets, see Table 12 for an example.reflimas to be a blank between
coefficients, names, plus signs and the reacti@warfPossible reaction arrows are:

« > for a irreversible reaction
e <==> for areversible reaction.
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Columns not used in a reaction (e.g. if the EC nemi® unknown) are to be left blank.

However the tabs separating the columns must notrbied.

The following examples contain all relevant cases.

Abbreviation | Name Equation EC-Number Process ORF(s) Protein(s)
ASNS1 Asparagine | [c] : asp-| EC-6.3.5.4 Alanine and aspartate (YGR124Wr | (Asn2) or
syn L + atp (Asnl) or
+ gin-L
+ h2o
thase --> amp metabolism YPR145W of (Asn3)
(glutamine | + asn-L
+glu-L
+h+
hydrolysing) | ppi YMLO96W)
TREH alpha, alphg [c] : h2o | EC-3.2.1.28 Alternate Carbon (YDR0O01C | or | (Nthl) or
-trehalase +  tre-- Metabolism YBROO1C) (Nth2)
>(2)glc-
D
O2ter 02 02[c] Transport,
endoplasmic| <==> Endoplasmic
reticulum 02[r] Reticular
transport

Table 11 Reaction examples for IND750 coding style

iIND750 M etabolite for mat

A metabolite line consists of the following colunseparated by tabs:

* Abbreviation of the metabolite

* Name
 Compartment
* Formula

* Charge

Of these items, the abbreviation and the comparttraesn mandatory. The name and

formula can be left empty as we do not use thesenfpping the metabolites to their

participating reactions. For the compartment thié iames as stated in the reaction

section above have to be used. The following exaspbntain all relevant cases of

metabolites notation of IND750 format:

Abbreviation

Name

Compartment

Formula

Charge

his-L

L-Histidine

cytosol

C6HIN302
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atp ATP cytosol C10H12N5013P3 -4

atp ATP mitochondrion C10H12N5013P3 -4

Table 12 Examples for Metabolites in iND750 coding style

4.4. | sotopomer analysis

Abelson and Hoering et al. discovered the relamachment of C-13 in the carboxyl
group of amino acids in nature [Abelson1961]. Thvas the first indication of the
existence of isotope distributions in biologicahgmunds. Galimov et al. proposed that
both in chemically equilibrated and non-equilibchteeaction systems, a microscopic
reversibility of the enzymatic reactions is the smuwf thermodynamically ordered
isotope distributions [Galimov1985]. Schmidt et ptoposed that the kinetic isotope
effects on the enzymatic reactions are the primmange of isotope discriminations. In the
last decade, various NMR and MS techniques have deeeloped to capture the stable
isotope distributions (labeling pattern) of metates! (see section 2.1.2).

Isotopomer is an abbreviation for “Isotope Isom&ihce a given carbon atom can either
be labeled (C-13) or non-labeled (C-12) and alse wurule of numbering the carbon
atom positions in a molecule, it is possible toetabeling patterns of metabolites as a
sequence of ones and zeros. Similar to the canstruof the stoichiometric matrix, the
nonzero elements of an isotopomer correspond toigshwpe paths from source
isotopomers to target (product) isotopomers. Ismtogr distributions provide the
maximum amount of information which can be derifiemn the C-13 tracer studies. In
this section, we will give the definitions and d#se the theory of computational
approaches for studying isotopomer distributionsh[8idt1997]. A molecule which has
n C atoms can have a theoretic maximum Ofisbtopomers. The vector of all
isotopomers of a given metabolite is call€aV (Isotopomer Distribution Vector)IDV

is the vector containing mole fractions of metatieolnolecules that are labeled in a
specific pattern. The labeling of the metabolites be represented as 0 (C-12) or 1(C-
13). These sequences of zeros and ones can theteh@eted as binary numbers, the
conversion of which to decimal numbers providesnajue way of ordering labeling
patterns and thereby indexing them as elementbeof@Vs. For example, in glucose

IDV there are 2= 64 elements [Equation 15]. The first element of tréstor is indexed

79



as 0 and is depicted dg, (0). The element at indek contains the mole fractions of the

glucose molecules labeled by the binary nunfi@9001,, i.e. a single labeled carbon at
the sixth position. The mole fraction of the gluedabeled at first carbon position will
likewise be the element at inde32 because this fraction will be represented as

10000Q,i,. The complete labeling state of glucose is given b
14(0) ) (14:(00000Q;,)

l glc (1) l glc (OOOOO:Lm)
IDV,, =| .. = ...
I glc (63 I glc (11111:Imn)
63
Wherez lge () =1 Equation 15
i-0

4.4.1. | sotopomer mapping matrices

Generally, individual reactions in the metaboli¢wmk have one or more reactants and
one and more product molecules. Additionally, thera large number of isotopomers in
each metabolite pool; hence it becomes cumbersomgite a single equation for each
individual isotopomer. To solve this issue, anotbencept calledsotopomer Mapping
Matrices (IMMs) was introduced in the literaturéMMs are constructed to sum up all
pairs of reactant isotopomers, which produce tlspeaetive product isotopomer in all
positions of the produtbV [Schmidt1997]. For a single biochemical carbonhexge
reaction, there will be singl®M defined for each pair of reactant and product
molecules. The number of columns ofl&iM equal the number of vector elements of
the reactanDV . The number of rows ofMM equals the number of vector elements in

the productDV . See equation below for the complidtiv of conversion of

pyr>oaa

pyruvate pyr) to oxaloacetatenga)
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IMM =

pyr>oaa

Equation 16

oo o0oo0oo0oohkRr P OO0 O o o o o o
OO0 o0 ok, P OO0 OO0 OO o Oo o
OO kR, kP OO0 OO0 O0OO0OO0OO0OOoOOoOOoOo
R b O OO OO OO OO0 OoOOoOOo o o

O OO0 00O 0O 00O OO0 OO kR P
O 0O 000000000 O kR KFr OO
O 0O 00000000 kR, kP, OOOoOOo
OO0 o0Oo0o0OO0OO0OOoO kR, P OO0 OO OoOOo

4.4.2. Atom mapping matrices

Atom mapping matrice AMM ) describe the conversion of atoms of a substrate
metabolite to the atoms of the product by a giveaction. ThéAMM elements are
constants and are definedpriori for every reaction [Zupkel995]. In the web server
(MetaModel), the AMM format is simple. The first line is the descriptitbme and the
following several lines store the actdVIM . Different AMMs have to be separated by
a blank line. Every description line begins witl aign, followed by the reaction which

is described by thAMM in the form:Substrate Name- Product Namefollowed by the

number of carbons of the two compounds taking parthe reaction is given as:

Ns=Xx;Np=y
#PYR -> Ac-CoANs=3:Np=2 #Cit -> Ac-CoNs=6;Np=2
010 1 000O0O
01 010000
Table 13 Example for twdAMMS
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EveryAMM line consists of the coefficients of one row o #MM separated by

spaces. No leading spaces in front of the firstffaent and after the last one are

allowed.

#G6P -> Ru5P;Ns=6;Np=5

01000O00O0
001100
000100
00O0O010
000O0O01

#Cit -> a-KG;Ns=6;Np=5
000010

000100
001000
01000O00O
100000

#RU5P -> F6P;Ns=5;Np=6

oo oo o
o o okr r o
o or O OO
omRr OO O O
» O 0o oo

#G6P -> CO2;Ns=6;Np=1
100000

#a-KG -> CO2;Ns=5;Np=1
10000

#Mal -> CO2;Ns=4;Np=1
0001

#F1,6biP -> DHAP;Ns=6;Np=3

100000
01000O00O0
001000

#F1,6biP -> GAP;Ns=6;Np=3

000100
000010
000OO01

#Mal -> Pyr;Ns=4;Np=3

1000
0100
0010

#DHAP -> GAP;Ns=3;Np=3
0 01
010
100

#RuU5P -> GAP;Ns=5;Np=3
00100

00010
00O0O0O1

#Pyr -> OAA;Ns=3;Np=4
10

o r © O

0
0
0

o o B

#Ac-CoA -> Cit;Ns=2;Np=6
10

O O O O
O O O

00

#OAA -> Cit;Ns=4;Np=6
0

P o oo oo
© o o r o

© or ©O oo
O R O O o o

#CO2 -> OAA;Ns=1;Np=4

P o oo

#PYR -> Ac-CoA;Ns=3;Np=2
010
001

#Cit -> Ac-CoA;Ns=6;Np=2
100000
010000

#Cit -> CO2;Ns=6;Np=1
000001

#a-KG -> OAA;Ns=5;Np=4;f17
0

P o o o
O o o
O O r o
O O O B

0
0
0

#a-KG -> OAA;Ns=5;Np=4;f18
01000
10
01
00

o O o B+

0 0
0 0
0 1

#Cit -> OAA;Ns=6;Np=4

00 0

oo r o
o kr © o
o o o r

00 0
0o 0
00 1

#PYR -> CO2;Ns=3;Np=1
100

Table14 AMM for metamodel
4.4.3.Bottlenecks

In various studies, determination of a large nundieasotopomer mapping matrices is a

complex task. In our webserver, we have automdtedcbnversion of atom mapping
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matrices into IMM. The estimation of the initial AW set is an unsolved problem and
there is no general method or repository available.

4.4.4. Data

The primary input for isotopomer analysis compriges atom mapping matrices which
present a comprehensive view of the atom flow s@taof metabolite pool. Basically, all
chemical reactions need to be represented in teofBMM among individual
metabolites involved in these reactioriBable 14 comprises thEVIMs that we used for
isotopomer analysis.

AMM list: Here each box represents a AMM conversidietavhich captures a given
cellular reaction. The first line the actually rean, for example “#G6P ->Ru5P; Ns=6;
Np=5" represents a reaction in which G6P gets cdasido Ru5P, also Ns is the number
of carbons in the substrate(G6P) and Np is the mumbcarbons in the product(Ru5P)

4.5. Synthetic accessibility of metabolites

4.5.1. Synthetic accessibility: Definition
The synthetic accessibilitg of a metabolitei is the minimal number of metabolic

reactions needed to producérom the network inputs [Wunderlich2006]. Thetal
synthetic accessibilitpf biomassS is the summation of the synthetic accessibilitgrov
all components of the biomass.

5= Zi S Equation 17
The algorithm for computing the synthetic accedisjbis based on an iterative breadth-
first search. The algorithm initially examines #ile reactions that require a specific
metabolite as a reactant. It then labels the m@astifor which all the reactants are
available, as “accessible” and subsequently allotitput metabolites of these reactions
as “accessible”. The algorithm iteratively examia#ighe reactions which require one of
the newly “accessible” labeled metabolites as atesd, determines whether all reactions
are accessible or not based on the “accessibdityhe reactants until no new metabolite

is found to be “accessible”.
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4.5.2. Measures of production capability

In the past, many topological measures of netwaddyction capability have been
reported. These include enzyme usage, node dagaga) diameter. Node degree refers
to the number of incoming/outgoing edges linkedtoode. The nodes with the higher
degrees tend to be more important for the netwonktionality as they generally act as
hubs and critical members for a large number ofrebal transformations [Jeong2001,
Albert2000]. Enzyme usage is another measure wisclsomewhat similar to the
synthetic accessibility measure. It is defined las humber of times the reactions
catalyzed by each enzyme are used to produce ¢ineass components in the wild type
strain [Newman2001]. Also, increase in the grapanditer compared to the graph

diameter of the wild type, can be a rough measurentiability of a knockout.

4.5.3. The scope of a metabolite

The concept ofcopeof a metabolite for studying network expansion Wias introduced
by Handorf et al. [Handorf2005]. The concept of mewf a metabolite exploits the
inherent hierarchical ordering of the metabolicctEms in metabolic pathways and
networks. Scopes are defined as sets of metabdlias can be synthesised by a
metabolic network when it is provided with giveneds (Sets of initial metabolic
compounds). Thus, scopes represent synthesiziraritis of the seeds in the network
[Handorf2006].

4.5.4. Growth medium

With reference to the synthetic accessibility measthegrowth mediuncomprises all
initial input metabolites. The input metaboliteg @hosen to cover the real composition
of a minimal medium as much as possible. For exanas our wild type strain is amino
acid auxotrophic in nature, meaning thereby it nexpucertain metabolites namely the
amino acids histidine, leucine, and uracil for nalgrowth. Hence these metabolites are
included as the input metabolite in order to conspén for amino-acid auxotrophy.
Other metabolites like oxidized form of thioredoxhil (in the endoplasmic reticulum),
NADPH (in the endoplasmic reticulum), and dolickbbuld also be included as inputs.
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This is due to the fact that in the absence ofeloesnponents, the wild type strain would
also be rendered “inviable” (see section 4.5.6.1).

4.5.5. Standard biomass components
Similar to the concept of growth medium, the syhthaccessibility algorithm has a basic
assumption that all standard biomass componentddhe synthesizable, hence should

be part of the “accessible” output metabolites ation 4.5.6.2).
45.6. Data
The following subsections list the input and outmatabolites that are used to mimic

growth under minimal media for yeast.

4.5.6.1. Input medium components

Amino Acids

L-Alanine L-Arginine L-Asparagine
L-Aspartate L-Cysteine L-Glutamine
L-Glutamate Glycine L-Histidine
L-Isoleucine L-Leucine L-Lysine
L-Methionine L-Phenylalanine L-Proline
L-Serine L-Threonine L-Tryptophan
L-Tyrosine L-Valine

Nucleotides

Adenine Cytosine Guanine
Thymine

Other Metabolites

0O, K+ Na+

SO, Thioredoxin ox. Trehalose
Uracil H,O Ammonium
CG, H Inorganic phosphate
Dolichol

Carbon Source

Glucose

Table 15 Standard medium composition assumed by the Syntheatessibility method
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Table 15 depicts the standard input medium compomssumed in the synthetic

accessibility method in MetaModel.

4.5.6.2. Output biomass components

Table 16 depicts the standard input biomass compoassumed in the synthetic

accessibility method in MetaModel.

1,3-beta-D-Glucan L-Leucine

AMP L-Lysine

L-Arginine Mannan

L-Asparagine L-Methionine

L-Aspartate Phosphatidate, yeast-specific
ATP Phosphatidylcholine, yeast-specific
CMP Phosphatidylethanolamine, yeast-specific
L-Cysteine L-Phenylalanine

dAMP L-Proline

dCMP Phosphatidylserine, yeast-specific
dGMP Phosphatidyl-1D-myo-inositol, yeast-specif
dTMP L-Serine

Ergosterol Sulfate

L-Glutamine L-Threonine

L-Glutamate Trehalose

Glycine Triglyceride, yeast-specific
Glycogen L-Tryptophan

GMP L-Tyrosine

H20 UMP

L-Histidine L-Valine

L-Isoleucine Zymosterol

Table 16 Standard biomass composition assumed by the Sin#festessibility method

ic
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Chapter 5

5. Implementation of the Web server for metabolic network analysis
In this chapter, we describe the implementatiomcfionality and design of various
analysis modules of our webserver, MetaModel.

5.1. Introduction

In the current implementation, MetaModel facilimttie analysis of th8accharomyces
cerevisiaemetabolic models iFF708 and iIND750, and of usemeeficustom models.
The web server has three modules nanf&gichiometry Isotopomer Path Tracingand

Optimization.

5.2. Implementation
Metamodel has been entirely coded in the Pythoguage. It is currently available at

http://mpiat3502.ag3.mpi-sb.mpg.de/metamodel/inugx.
For further details, refer to the programmer’s guidappendix 2.

5.2.1. Schematic view

[ Module 1 ]

Stoichiometric analysis and KEGG
pathways annotation

[ Module 3 ] [ Module 2 ]
Optimization Isotopomer path tracing

Figure 17 Metamodel webservebasic modules

Figure 17 represents the basic modules coded imarvtedel webserver. Module 1 deals
with construction of stoichiometric matrices faehature defined or user defined genome
scale model of yeast and other organisms. It afswigles a functionality to edit the

literature models and encodes search functionsniabolite-reactions and vice versa
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associations. Module 1 also has a script for figdwt the KO pathway annotation for
already annotated or unannotated ORF present iggheme scale model understudy.
Module 2 deals with the calculation of isotopomeapping matrices (IMM) from atom
mapping matrices (AMM) for a given reaction set. ke 3 works on finding out the
node type for all the metabolites present in theogee scale model understudy, as well
as calculation of synthetic accessibility score $angle and multiple gene knockout

mutants. Sections 5.2.2-5.2.4 presents these thoeeles in further details.
5.2.2. Modulel: Stoichiometry
5.2.2.1. Design and I mplementation

This module performs stoichiometric analysis onieery metabolic network. Figure 18
depicts the user interface of the module | Stoictatry

Staichiometry Isotapomer Path Tracing Optimization
Model Selection: Help:
Use Standard Models: Modify Standard Models: Model specification:
 iFF708 © Modify iFF708 Model IFE?08 - Model specification
& ND750 © Madify iND750 Mads! IND750 - Modsl specificatian
" Create Own Model: Creating own Models:
Reactions: Metabolites:

Feactions must be encodead according to the IND750-
Model. For help see specification above.

Upload reactionfile Upload metabolitefile:
Metabolites must also be coded IND750-ste.
Browse Browse.
Or paste reactions: Or paste metabolites
Abbreviation  Neawe Ecuation =l Anbreviation  Nawme Compartwent =
EC-HNurwber Process ORF (s) Formula Charge

Protein(s)
E |
Oruse standard metabalites:

™ Use standard metabulites

Offer Stoichiometric Matriz as: Textfile: Fast computation, smialler downloadsize, less
readable
& Tedile C Himifile Htmlfile: Langer computation, [arger downloadsize, higher
readability
Go

Figure 18 Stoichiometry module’s user interface

e Uploading a Metabolic Model
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There are three ways to input a metabolic modMetaModel:

* Use Standard Models:
There are two models to choose from: iIFF708 and7/B{D For a detailed description of
model format and the differences between the twdetsoplease use the online help on
the web-server.

* Modify Standard Models:
When using this option you will see a text areataming the selected model’s reactions
in raw format. You can modify the reaction sethas stage. This includes the possibility
of deleting reactions, adding new reactions andifyiod reactions. After pressing the
Save Modifications button, you will be forwardedhe result page.

* Create Own Model:
You can input custom-defined models by uploadingrdaetions and metabolites of the
network, in IND750 like format (see section 4.3.h.Xou can input the reactions and
metabolites in the following ways: a) Uploading le,fb) Paste the text in the textbox,
offered by the user interface. Alternatively thesugan select to use the standard
metabolites if not specified explicitly.
Finally the user can specify the output formattfo stoichiometric matrix. The text file
is a tab-separated presentation of the matrix vetsettee html file presents the data in the
form of an html table. If the user selects oneha above models as well as the output
format and clicks on the “Gobutton, the next page will be showing the reactions

comprising the selected model and the user getsfded to the result page.

5.2.2.2. Functionality

The Stoichiometry module calculates the stoichisimehatrix as well as statistics about
the defined network and offers functions for searghior reactions and/or pathways
containing given metabolites (Figure 22). The fegW2 depicts the two metabolite
centric search functions encoded in the Stoichiopmabdule namely i) searching all the
reactions in which a given metabolites participated ii) searching all the processes in
which a given metabolite participates. At this staige user can go directly to module 2
“Isotopomer Path Tracing” or proceed to the KO-lbesenotation method (Figure 23).
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BE e R e a | Press "Go to Isofgpomer Path Tracing™ to use this model's data for [sotopomer

Path Tracing.
Figure 19 Link for module 2
= Stoichiometric matrix:
Stoichiometric Matrix
Vi s toichinmistrc it Right-click an the link to the left and select Save link as...(Mozifla) or Save target

as...(IntemetExplorer) to download the stoichiometric matrix.

Figure 20 Link for stoichiometric matrix download

The stoichiometric matrix can be downloaded inuber-defined format.

= Statistics:

Statistics About The Stoichiometric Matrix

Reaction lines given: 1150

Reactions parsed: 1150

Reactions containing invalid metabolites: 0

Metabolites: 1081

Size of the matrix: 1150 x 1061

Rank of the matrix: 972

Number of zero elements: 1214866 out of 1220150 total elements; equals 99.58 %
Number of ORFs given: 750

Figure 21 Statistics on the stoichiometry of the metaboliciet

Statistics include the following information namelthe number of reactions and

metabolites which can be extracted from the inpdist of invalid reactions, the size of

the matrix, the rank of the matrix, the sparseiésise matrix and the number of ORFs.

Sear ch functions:

Search Functions

Search reactions in which given metabolite participates

(-)-Ureideglycolate eytosol A
(1,4-alpha-D-Glucosyl)n cytosol

(R)-2,3-Dihydrexy-3-methylbutanoate mitechondrion
(R)-2,3-Dihydrexy-2-methylpentanoate mitochondrion -|  search I

Search processes/pathways in which given metabolite participates

(-)-Ureidoglycolate cytosol =
(1,4-alpha-D-Glucosyl)n cytosol

(R}-2.3-Dihydroxy-3-methylbutanoate mitochondrion
(R)-2,3-Dihydroxy-3-methylpentanoate mitochondrion «  Search |

Figure 22 Search function interface
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Depending on the format for encoding the reactioriich has been selected by the

user, following search functions are offered:
* iIND750 format:

* list the reactions which include a given metabolite
» list the pathways/processes which include a givetabolite.

* |FF708 format:

» Search reactions in which a given metabolites @peties

= KO-based Annotation:

KO-based Annotation

Qoo4s
Qo080
Qo085
Q0105
Q0130 Select ORFs out of the given list ar check the box Use all OFFs and click Annotate
Q0230 | to start the KO-based annotation.

Q0275 |=| " Use all ORFs

Annotate I

Figure 23 Input interface for KO based annotation

The KO-based annotation uses scripts from the KOBB@ry. This library annotates
given ORF identifiers with the corresponding KEGGthOlogy (KO) terms and
identifies pathways which are statistically enrigiveith these genes. KO was developed
for integration of pathway and genomic informationKEGG. KO is an extension of
ortholog identifiers and is composed of a DAG hielng of four flat levels. The top level
consists of the following five categories: metabmlj genetic information processing,
environmental information processing, cellular gsses and human diseases. The
second level divides the five functional categoiie® finer sub-categories. The third
level corresponds directly to the KEGG pathwaysl e fourth level consists of the leaf
nodes, which are the functional terms [Goto2000].

As input, the user can either select the relevaRE©Ofrom the selection box or simply
annotate all ORFs by checking the box "Select &8FS’. Another way of specifying the
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ORFs which one wants to annotate is by enteringhth@nually, separated by commas,
in the text box supplied by the user interface. dbgput includes already annotated KO
terms and a list of enriched pathways with the lakheir corresponding KEGG-map.
We used the KOBAS package to carry out the KO-basadtation [Wu2006].

5.2.2.3.Validation
Exploration of YBR019C (Gall10) gene knockout

GAL10(YBRO019C) encodes a bifunctional enzyme withtanotase and UDP galactose
4-epimerase activities. Both of these functions keg in the process of galactose
catabolism; mutarotase converts beta-D-galactogeiis alpha form and galactose 4-
epimerase catalyzes the reversible conversion leetw®P-galactose and UDP-glucose
(Majumdar2004, Fukasawal980, DE1958, Cherry19983slof GallOp activity renders
cells unable to grow when galactose is the solbaraisource (Douglas1964). In this
work, we selected the “YBRO0O19C” orf in thKO-based annotatiorscript of the

“Stoichiometry” module. Each annotation is accomednby the p-values calculated

using KO terms.

KO-based Annotation - Results

Annotation Results

ORF identifier you selactad KO entry found to be similar to your It's rank_m Blast st e h et e Sequence identity in
uery compatison %

Query ORF KO ld Rank Evalue Score Identity
K01784 il 0.0 14250 1000 %

YBRO19C_s cerevisiae
K01785 1 0.0 14250  100.0 %

Pathway Annotation

Link ta sce-specific Pathweay contains ¥ of  Pathway contains x of sce

Pathway narme Linkto KO map
map the queties BnZyMes

Pathways P value

Pathway Map KO Map Sce Sample Count Background Count P value
MNucleotide sugars Reference  Saccharomyces q 15 000828371672109
metabolism map map
Galactoss metabaliem  DoiSlence  Saceharomyces 3 0.017669795693

map map
Glycolysis f Reference  Saccharomvces q 48 0 0265045035205
Gluconeogenesis mag mag

Figure 24 Pathway annotation for the YBR019C

We found that the KO-based annotation also assign¥ BR019C to “Nucleotide sugars
metabolism” (p-value 0.008), “Galactose metabolisn{p-value 0.018) and
“Glycolysis/Gluconeogenesis” (p-value 0.026) (Fg4). All these annotations agree

with the literature knowledge for YBR0O19&O-based annotationis a straight forward
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tool which can be applied to gene annotation. lditaah to the functional annotation of
the ORF specified, MetaModel provides a platform fiaterfacing with the KEGG
pathway annotation for the ORF understudy, on theHigure 26 depicts the KEGG
map, "Nucleotide Sugars Metabolism”, with the cepending enzyme classification

number of the ORF under study.

Computational Biological Process
Annotation(s) Evidence Reference(s) Assigned By
carbohydrate IEA: Inferred from Electronic DDB, et al. (2001) Gene Ontology annotation through association of UniProt
metabolic process Annotation InterPro records with GO terms
with EBLIPRO11013, EBLIPRO08183, | soorsper [Tl
EBILIPRO14718
Last updated 2008-02-14
IEA: Inferred from Electronic GOA curators (2000) Gene Ontology annotation based on Swiss-Prot UniProt
Annotation keyword mapping
with EBIKW-0119 sacPaper
Last updated 2008-02-14 —
cellular metabolic IEA: Inferred from Electronic DDB, et al. (2001) Gene Ontology annotation through association of UniProt
process Annotation InterPro records with GO terms.
with EBIIPR001509 P A recess
Last updated 2008-02-13
galaciose metabolic | [EA. Inferred from Electronic DDB, et al. (2001) Gene Oniology annofation through association of UniProt
process Annotation InterPro records with GO terms.
with EBIIPRO05885 saopaper
Last updated 2008-02-14 =
IEA: Inferred from Electronic GOA curators (2000) Gene Ontology annotation based on Swiss-Prot UniProt
Annotation keyword mapping
with EBLKW-0299 soopaper
Last updated 2008-02-14 -
metabolic process IEA: Inferred from Electronic DDB, et al. (2001) Gene Ontology annotation through association of UniProt
Annotation InterPro records with GO terms
with EBIIPRO16040 Er o s
Last updated 2008-02-13

== Computational GO Annotations are predictions. These annotations are NOT reviewed by a curator. Currently, all computational GO annotations for S. cerewisiae are
assigned by an external source (for example. the Gene Ontology Annotation (GOA) project of the European Bicinformatics Institute (EBI)).

Figure 25 Computational annotations for YBR019C from Sacchgies Genome Database (SGD)

Also, in case of uncharacterized ORFs, MetaModeVipes most probable functional

annotations along with the reference organism ba&1cerevisia&kEGG map.
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Figure 26 KEGG pathway map of YBR019C (from MetaMod&g.number 5.1.3.2 is the EC number of
YBRO19C.
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Analysis of a set of genes

In this work, we worked on analyzing a set of geawbih have known or putative
association with a specific biological processng#O-based annotatiom
“Stoichiometry” module. We searched SGD to findsh@RFs which are associated to

the term “glucose metabolic process”.

Found genes matching the input for 1 of the 1 given identifiers.

Mutants

Enzyme # Of Qutputs Sum S Of Reachable

Deficiency ORF Synonymig) Reached FHeoth Outputs abiliny
WWT 43 4749 479 +
YERO19C GAL1O 43 479 479 +

Found genes matching the input for 1 of the 1 given identifiers.
Mutants
Enzyme # Of Outputs Sum S Of Reachable .. . ..

Deficiency ORF Syneiymi) Reached 0000 Outputs paanllicy
W 43 471 471 +
YERO19C GALTD 43 471 471 +

Table 17 Synthetic accessibility score of YBR019C calculatgdg “Optimization” module of MetaModel.

There are 22 ORFs which are associated with time tglucose metabolic process”. Out
of these 22 ORFs, 12 ORFs are manually annotaked (, set; method used: ISS
(Inferred from Sequence or Structural similarit@hl (Inferred from Genetic

Interactions)\IMP(Inferred from Mutant Phenotyped8(Traceable Author Statement))
to the above term and the rest 10 ORFs are connuadly inferredKc,,puaioa SEY;

method used: IEA i.e. Inferred from Electronic Ateteon) to be associated with the
above term. Table 18 lists the ORF set associattdthae gene term “glucose metabolic
process”. We start with entering these two seSRFs individually in the input text-box
in KO-based annotationFor the first ORF set,,...... We find that out of 12 ORFs we

could annotate 4 ORFs with the pathways which a pf more general “glucose

metabolic process” term. In addition, we find certpathways like “Type Il diabetes
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mellitus” and “Insulin signalling pathways” whichieaclose in terms of association to

“glucose metabolic process” (Table 19).

Manual annotated mutant set Computationally annotated mutant
( KManual ) set( KComputaticmal)
YCLO40W YIL042C

YKL048C YOR125C
YER129W YNL241C
YGL179C YGR192C
YHR044C YKL127W
YJL155C YMR278W
YKLO38W YJLO52W
YHR043C YMR105C
YFRO53C YJR009C
YORO047C YJR090C
YDRO043C

YGL253W

Table 18 List of manually and computationally annotated gewhich are associated with the term
“glucose metabolic process”

KO-based Annotation - Results

Annotation Results
ORF identifieryou selected KO entryfound to be similarto your quens  1#s rank in Blast comparisan  Blast: E walue Blast Score Sequence identity in %

Query ORF KO Id Rank E value Score Identity
YCLOAOWY s cerevisiae  KOOBAS 1 oo 997.0 100.0 %
YORO43C
YER120W
YFROS3C s cerevisiae  KOOB44 1 0o 9340 96.08 %
Y¥GL17EC
Y¥GL2E3W_s cerevisiae:  KOOB44 1 0.0 956.0 97 .32 %
YHRO43C
YHRO44C
YAL1S5C s cerevisiae k01103 1 oo 851.0 94.02 %
YRLO38YY
YRLO4EC
Y ORO4TC

Pathway Annotation

Pathway containsx of  Pathway containg » of sce

Pathuway name Linkto KD map Links soespecifie map =703, 72 i Fathuays Pvalue
Pathway Map KO Map Sce Sample Count  Background Count P value

Streptomycin biosynthesis L Ui a B 8.08471738445e-08
map map

Fructosg and mannose Referance Sacchatomyces 3 25 1 4RIIRTRI0 7 a-05

metabalisim map mag

Galsctose metaholiom ~ Dobleice.  Secohaomyses 4 < 1953368134575
rriap map

Glycolysis / Beference  Saccharormyces 3 a5 6 BEORRONARDT a5

Gluconeogenesis map mag

Starch gnd sSUCrose Referance Sacchatomyces 3 49 7 31452953005

metabolism tmap tragp

A ORI SR 15 0.00043478345257 1
rriap map

Maturity onset diabetes of  Reference  Saccharomyces i 1 00053087 2448162

the yaung map map

e dibRias el LR T e 5 0.0110070540781
miap map

il sianalng ety Lol i 13 0. 04134B6I3745
rriap fmap

Table19 K., Mutant set's pathway annotation using MetaModel.
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KO-based Annotation - Results

Annotation Results
ORF identifiar you selectad KO entry found to be similar to wour querny Itz rank in Blast comparizon  Blast: E value Blast: Score Sequence identity in %

Query ORF KO Id Rank E value Score ldentity
YGRI92C s cersvisiae  KOD134 1 0.0 B57.0 100.0 %
YILD42C
YILOB2WY s cerevisiae  KOO134 1 0.a B57.0 100.0 %
YJRODDC s cerevisiae  KOD134 1 0.0 B55.0 100.0 %
YJROSOC
YRLIZTW s cerevisiae  KO1835 1 0.a 1087.0 5438 %
YMR10EC s cerevisiae  KO1835 1 0.a 11050 59535 %
Y IRZTEW
YHLZAC s cersvisiae  KOOO36 1 0.0 1020.0 1000 %
YOR125C

Pathway Annotation

Fathway name Link to KO map Link to sce-specific map ;?:u:z;:i::ntains il ::;:ur:?; geiitainsmateos Fathways P value
Pathway Map KO Map Sce Sample Count Background Count P value

Glycolysis / Reference Saccharamyces : 44 & 23760126085 0-08

Gluconeogenesis map map :

Pentose phosphate Reference Saccharomyces 3 27 5 744316391950-05

pathway map mag :

Shopiomic bsyiheee s S el B {0001 364745268509
map, frap

Galactose metabolisr  Doerence  Sacchaomyces 2 0.00434231974485
map, map

Starch and sucrose Reference Saccharomyces :

i R s 2 49 0.0100383252537

Glutathione metablisy  Dolerence  Saccharomyces 1 0.0359439121291
map map

Table20 Koouaioar Mutant set's pathway annotation using MetaModel.

For the second ORF s, . .ina- W€ find that out of 10 ORFs we could annotate 6

ORFs with the pathways like “glycolysis”, “pentgskeosphate pathway”, “streptomycin
biosynthesis”, “galactose metabolism”, “starch androse metabolism” and “glutathione

metabolism” with pvalues less than 0.036(Table 20).
5.2.3. Modulell: Isotopomer Path Tracing

5.2.3.1. Design and implementation

Module Il consists of two different methods namely,

* Node discrimination
* IMM generation and isotopomer path tracing

= Node discrimination

* The “Node discrimination” script calculates the égpof metabolites in a
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given metabolic network. The type of a metabokt@ssigned according to
in-degree and out-degree of its corresponding fieddes2001].

Stoichiometry Isotopomer Path Tracing Optimization
Methods: Help:

Node Discrimination Node Discrimination

Calculate node-types for the metabolites of: Caleulate node types for the standard models

or create a new model using the tab
& iND750 standard model Staichiometry and you'll be offered the

possibility to select your own model.
(" iFF708 standard model

Caleulate

IMM Generation And Isotopomer Source Tracing IMM Generation

Upload an AMW-list in the format specified to the right

Browse..,

Or paste the AMM-list here:

Specitication of the AMM-list format

o |

Figure 27 Module 2: Input Interface

= |nput

Node Discrimination Node Discrimination

Calculate node-types for the metabolites of Select etheryour own modal

calculated under the tab Sheobomsi.
& custarm madel or one of the standard models to
calculate it's node types.
CiND750 standard model

" iFF708 standard model

Calculate |

Figure 28 Input for the Node Discrimination method

In this case the input is only the metabolic modeletaModel performs node

discrimination for three different metabolic models

« IND750 model
* (FF708 model
e custom model
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For being able to select your own model, you fi@te to generate it using Module 1. On
the result page of the stoichiometry model, youl fnbutton labeled “Go to Isotopomer
Path Tracing”. After clicking on this button youllMbe redirected to the “Isotopomer

Path Tracing module.”

= IMM Generation & Isotopomer Path Tracing

“IMM Generation and Isotopomer Path Tracing” is #eeond method offered by Module
Il. For more information about the principles urgieg these conversions please refer to
the paper by Forbes et al. [Forbes2001, sectiai}4.4

= Input
IMM Generation And Isotopomer Path Tracing IMM Generation
Upload an AMbHistin the format specified ta the right Specification of the Abdbd-list format
| Browse... I
Or paste the Ahbd-list here:
=
=

o

Figure 29 User interface for the Isotopomer Path Tracing moet

The input consists of a list of Atom Mapping Ma#isc The user can either upload a file
containing this list or just paste the list in ttextbox. For specification of the AMM

format see either our specification page on the Metkel online help, or section 4.4.2.

= Results

On the result page, the user can view the IMMs laotbpomer Tracing results in html

format and download these as tab-delimited text.file
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IMM-list

View [MA-list
— Right-click on the link Download tab-delimited textfile and select Save link

Devit o b e red tesita as...(Mozilla) or Save tamget as..(InfemetExplorer) to download the [MM-list

Source Isotopomer Tracing

Right-click on the link Download tab-delimited textfile and select Save link
as...(Mozilla) or Save target as...(InfemetExplorer] to download the list of
Download tab-delimited textfile jsotoparmer sources

View |sotopomer Sources

Figure 30 Result page of for the Isotopomer Path Tracinghoet

5.2.3.2.Functionality

The user has the option of a) finding the numbemaxfes representing the four different
node-types and all metabolites sorted by their niyges, in a tabular formangde
discriminatior) and b) calculation of the source isotopomers framy traceable
individual product isotopomerisptopomer path tracing [Figure 27-30]. Thenode
discriminationfunction assigns all the model components undetysinto four types of

nodes:

* Merge Node having more than one incoming edge and ast nooe
outgoing edge
» Split: Node having more than one outgoing edge and at or@ incoming
edge
» Both: Node having more than one incoming and more tha outgoing
edge
* None: Node having maximum one incoming and one outgeuige
The isotopomer path tracing function calculate®taod Isotopomer Mapping Matrices
(IMM) out of given Atom Mapping Matrices (AMM) anldased on these calculates a set
of possible input isotopomers for a given prodsctopomer in a given model [section
4.4.1]. The experimental isotopomer distributiomssially compared with the theoretical
labeling patterns expected according to the patewdayected in any given genome. Our
isotopomer path tracing helps in deciphering tbevfof labeling pattern'{C) between a

set of metabolites.
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5.2.3.3.Validation

In the present section, we validated whether what aguld decipher in terms of
isotopomer links between various atoms of aminasaon Desulfovibrio vulgaris (D.
vulgaris) D. vulgarisis a sulfate reducing bacterium. Tbe vulagris genome is fully
annotated and that is the precise reason why itbkas used as a model organism for
studying the sulfate reducing physiology and iniox#s functional genomics studies
[Chhabra2006, He2006, and Mukhopadhyay200€otopomer analysis is a powerful
technique for understanding central metabolic pagsrand fluxes under steady state in
various organisms. The AMM set used in this stwhs obtained from Tang et.al.
(Tang2006, Appendix 4). Table 21 enlists atom flaggociations between a subset of
metabolites, by finding the “Source Isotopomers”r fthe respective“Product
Isotopomers”, using Isotopomer tracing method indile 2 of MetaModel. Also the
user can download an individual Isotopomer Mappitatrices (IMM) for any given
AMM set (Appendix 4). Table 21 is a subset of thetopomer mapping result obtained
for the AMM under study.

We can clearly see that the similarity in isotoporpatterns in some amino acids is a
result of an underlying association in terms ofnthbeing produced from the same
precursor metabolites (shared biosynthetic pathvidigitzel2007, Jennings2008]. For
further study, one could follow the biosyntheti¢ipgays and validate the flow of labeled
carbons from source isotopomers to respective peob@r due to inherent biochemical
associations. For example, we calculate that tyeoand phenylalanine are derived from
(i.e. source isotopomers) phosphoenolpyruvate ayitirese-4-phosphate. Furthermore,
the actual IMMs and the source isotopomer resualtsbe downloaded as simple text file

which can be imported and used in further analysisg R or Matlab.
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Product Isotopomer Source Isotopomer(s)

PHE[000010000] E4P[0 00 0] REP1]
PHE[000010001] E4P[0 00 1] RER1]
PHE[000010010] E4P[0 01 0] RER1]
PHE[000010011] E4P[0011] RE®1]
PHE[000010100] E4P[0100] RER1]
PHE[000010101] E4P[0101] RE®1]
PHE[000010110] E4P[0110] RE®1]
PHE[000010111] E4P[0111] RE®1]
PHE[000011000] E4P[1000] RE®1]
PHE[000011001] E4P[1001] REP1]
PHE[000011010] E4P[101 0] REP1]
PHE[000011011] E4P[1011] RE®1]
PHE[000011100] E4P[1100] RE®1]
PHE[000011101] E4P[1101] RE®1]
PHE[000011110] E4P[1110] RE®1]
TYR[000001000] E4P[1000] R&B 0]
TYR[000001001] E4P[1001] R&B 0]
TYR[000001010] E4P[1010] R&B 0]
TYR[000001011] E4P[101 1] R&B 0]
TYR[000001100] E4P[1100] R&B 0]
TYR[000001101] E4P[1101] R&B 0]
TYR[000001110] E4P[1110] R&B 0]
TYR[000001111] E4P[1111] R&B 0]
TYR[000010000] E4P[0000] R&B 1]
TYR[000010001] E4P[0001] RE&EB 1]
TYR[000010010] E4P[0010] RE&B 1]
TYR[000010011] E4P[001 1] R&P 1]
TYR[000010100] E4P[0100] RE&B 1]
TYR[000010101] E4P[0101] R&P 1]
TYR[000010110] E4P[0110] R&B 1]
TYR[000010111] E4P[0111] R&B 1]

Table 21 Subset of source isotopomer tracing results

5.2.4. Modulelll: Optimization

5.2.4.1. Design and implementation

The third module is called “Optimization”. The aptzation module currently encodes
the notion of “Synthetic Accessibility”. The syntle accessibility script has been
motivated by the method introduced by WunderliciM&ny [Wunderlich2006]. In the
present implementation we consider those substth@sare consumed in the given
genome scale metabolic network, as input substrdes example sugars, oxygen,
nitrogen etc are regarded as part of the inputtsates. The output substrates like amino

acids, nucleotides and other components are regjamdethe biomass. We calculate
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synthetic accessibility5, of an outputj as the minimal number of metabolite reactions
needed to producg from the network inputsS; equal to infinity, means that the

metabolite ] cannot be synthesized by the available input safest Total synthetic

accessibility S is the simple summation of the synthetic accelgsilmf all components

of the biomass [section 4.5.1]. For a more detadlescription of how the method works
and what are the underlying assumptions please tefthat paper. Here we will only
state the required inputs and explain the respltsd{ction of viability/growth speed of
the yeast strains) generated by our webserver. @ethod can perform viability

calculations in the following two settings:

» comparison of single mutant vs. wild type (multiglene knockouts)

» comparison of multiple mutant vs. wild type (singkene knockouts)

Comparison of single mutant vs. wild type:

In this case, multiple mutants with given enzymécikncies are compared to the wild
type, one at a time. To specify the mutant’s ddfities, the user should select the
appropriate ORF identifiers given in the selectiax.bFurthermore, the user needs to
select the medium composition on which the compartaghould be based (for standard
medium composition see section 4.5.6.1). The user gerform the procedure on
multiple carbon sources. The remaining medium idigres are displayed in a textbox
and the user can modify the medium by commentimgntithere. Next, the user can
specify the biomass components (for the standaothdss composition, see section
4.5.6.2). The biomass represents the metaboligesrtianism should be able to produce,
in order to be viable. The user can either inpwnthmanually or select a set of
metabolites considered important for viability I trespective authors of the underlying
metabolism models (by checking the Bose Standard Metabolites’

102



= Input

Stoichiometry lsotopomer Path Tracing Optimization
Synthetic Accessibility Help:
# Mutant vs. WT: € Multiple Mutant Comparison: Mutant vs. WT:
Select one ar more knockout(s) Paste ORF identifiers for comparison of single-knockout mutants Camparison of one single-knockout or mulfiple-knockout mutant to
(separated by commas) the wildtype.
Result page contains viability, S-Score and additional information
Multiple Mutant Comparison:
Cornparisan of & number of single-knockout mutants, Only viabilit:,
S-Score and nurnber of reached output metabolites are displayed
Select Reference Model:
& iND750
O iFF708
Select Carbon Source(s): The At A Comparsamethod can only be used with Carbon Source(s):
glucose as carbon source and standard medium (as presented in
¥ Glucase I” Fructose I” Ethanal the boxto the [2f) right now. Check the Carbon Sourca(s) you want ta be used
I” Sucrase I” Galactose I Lactose
D Rizanase Medium Compaosition:

The box to the leftrepresents the assumed medium compaosition.
Ifwouwantto use standard medium just leave the box unchanged

- - Othenwise you can uncomment (by putiing & #-cign atthe start of the
faning scids :‘j ling) amy ingrecient.

ala-L extracellular

arg-L extracellular

asn-L extracellular

asp-L extracellular

cys-L extracellular

Maodify Medium Composition

gln-L extracellular =l
Enter Biomass Components: The Autife Saant Campansapmethad can only be used with Biomass Reaction:
standard biomass right now,
(Separated by commas) Input Format
Itwou want o specify your own Biomass, inputthe desired
| components in iIND750 or iFF708 coding (depending on which
model you're using) separated by commas
/|

Standard Companents

Ityou select {/5e Stanabry Somassthe compounds listed below
will be used

Standard Biomass Components

Or Use Standard Biomass

¥ Use Standard Biomass

Calculate

Figure 31 User interface for the synthetic accessibility noeth

Comparison of multiple mutantsvs. wild type: Using this version the user can generate
a comparison table for multiple mutants (with sengene knockouts). The user can paste
a list of ORF identifiers or gene names separatecbbymas in the textbox. This method
assumes standard medium and biomass compositiois antl affected by changes to the
medium or the biomass via the respective input diatl the ‘Single mutant Vs WT”
method.

Additionally for both of the methods, the user hiasselect the model to be used for

calculations. The current models are IND750 and (-
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5.2.4.2. Functionality
The result page differs between the two alternatig€ the “Synthetic Accessibility”

method implementation:

= Single mutant vs. wild type comparison: First tmvocation parameters, namely

selected deficiencies and medium composition atedsta

Medium Composition

alarL extracellular; arg-L extracellular asrl extracellular asp-L extracellular cys-L extracellular giv-L extracellular glu-L extracellular ghy extracellular; his-L extracellular ile-L extracellular; leuw-L extracellular lys-L
extracellular metL exdracellular: phe-L extracellular: pro-L exdtracellular: ser-L extracellular thi-L extracellular trp-L extracellular: tyr- extracellular: val-L exdracellular: ade extracellular: csn exdracellular: gua exdracellular: thym
extracellular, o2 extracellular; k extracellular: nal extracellular; sod extracellular: frdox cytosol; tre extracellular; ura extracellular, h2o extracellular, nhd extracellular co? extracellular. h extracellular. pi extracellular; daolichol
cytosal gleD extracellular

Mutant's Deficiencies
YBRI153wy. YBRIGEC YER176W. YBR184vy. YER196C. YER198W. YBR206YY. YBR20SC. YERZ18C

Computation Results

Reference Strain Mutant Strain

Viability Viability
Viable Inviable

8-score §-score
§=471 S =inf

S-scores of output metabolites

S-scores of output metabolites

Metabolite S-score Metabolite S-score
gy cytosol il gly cytogol 1
pro-L eyfosal 1 pro-L cytosol 1
tre eytosol 1 ire cytngol 1
lys-L eytosal 1 Ive-L cvtozol 1
mannan cytosol 12 mannan gytosal 12
ump cytasol 5 utp cyinsal 5
pe_5Ccytosal 43 pe_SCoyviosal int
climp cytosol 8 dimp cytosal 8
ergst cytosol 56 ergst cytnsol inf

Figure 32 Typical result page for the single mutant vs. wyijde method

Next, the total synthetic accessibility sco&, of the wildtype and the mutant as well as

the S scores of the different output metabolites (biosr@@mponents) are calculated.

» Multiple mutants vs. wild type comparison:

Additionally, if the calculation was based on thbi750 model a tabular representation
of the usage percentages of the different pathvedythe wildtype and the mutant is
given. The output in this case consists of a lisgsrooneous ORF names, if any, followed
by a comparative table for the different mutantghwespect to viability and overall S

Scores.
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Found genes matching the input for 3 of the 10 given identifiers

Unknown Identifiers

test

Mutants
Enzyme Deficiency ORF Synonym(s) # Of Outputs Reached S-Scare Sum S Of Reachable Outputs Viability

WT 4 an 47
YERDYZC PHO3 43 an 471
YBRIT5C Lys? 43 a7 47
YERI17C TRL2 4 a7 471
VBRIZIC GRS 43 a7 47
YERI132C AGF2 3 a7 471
YBRI96C 2l el 479 473
YERI99W KTFd 3 a7 471
TERZISW KTR3 el 47 47
YERI7EW ECM31 35 inf 104

Figure 33 Typical result page for multiple mutants vs. wilfge comparison method

5.2.4.3.Validation

In this work, we compared the performance of outinmgation module with the
literature dataset (Duarte2004, Giaever2002). Tikesature dataset comprises of 562
single gene knockouts of yeast. For the wild tyjairs, the total synthetic accessibility
score, S, was equal to 471 and the number of reachableutsitvas equal to
43[Appendix 5] The IND750 model by Palsson etts®s been earlier studied and
validated by the use of Flux Balance Analysis (@&2002, Steinmetz2002) technique.

In all these studies, a wide variety of growth dtinds are considered.

Experimental # ORF
Viable 486
Non Viable 76

M etaM odel

Viable 535
Non Viable 27
True Positive(TP) 462
True Negative(TN) 3

Table 22 Comparison of MetaModel result and the FBA regwoitf Palsson2004 Total number of ORF
used= 562. Growth condition used for calculatio D (glucose).

105



In our MetaModel server, we can replicate thesalitimms namely growth under defined
carbon source like glucose(YPD), galactose(YPGHYcerol(YPG), ethanol(YPE) and

lactate(YPL) etc. For comparison, we run the “ofetion” module on YPD data and

compared with the literature (“experimental”) resdtom Duarte2004 and Giaever2002.
The growth condition is YPD using glucose as a@arfource. For the ORF list and the
detailed result, refer appendix 5.We calculatedstesitivity as (TPx100)/(TP+ FP))

(%) and specificity as(TNx100 /(TN + FN)) (%) values using the result in Table 22.

The sensitivity equals 86.5 % and specificity equall1.1% for the dataset understudy.
The high overall sensitivity and low specificity ncdoe attributed to the underlying
assumption that since most genes are non essantialir method we assign all those
metabolic genes which are not included in the n@talonodel, as viable (Duarte2004).
Hence, the synthetic accessibility method workgelpah prediction of viable mutants
than non-viable mutants. The performace of meth®dimited by the incomplete
information on the underlying metabolic model. Farrther discussion on the
performance of the method, refer the work by Mietgl. [Mirny2006].
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Conclusions

We have presented various computational technitpresietabolic network analysis
based on metabolomics data. We have approachecha area of development of
web server for metabolic network analysis for geaostale metabolic models.
Following are the problems that we attempted tuesol the present work:
Automation of GC-M S spectrometric data analysis. The developed software tool,
CalSpec, is useful for efficient processing 3 labeling data from MS measure-
ments in**C flux analysis. These MS data sets are generatadge numbers due to
(i) replicate measurements of one sample to agkessonfidence in the measured
values and estimation of error; (ii) replicate meaments of one experiment to check
for isotopic steady-state; or (iii) different meemments of one sample with different
protocols to obtain additional labeling informatiera alternative fragments. Our
software tool, CalSpec, can process these largeldt&ets in fast (running time few
seconds) and automated fashion.

Mutant classification based on metabolomics data: We also explored various
statistical techniques for the analysis of metabptofiles and for understanding the
effects of gene knockouts on the metabolic netwonictionality of wild type yeast.
The methods is coded in R-language and uses theuse developed methods for
automation of GC-MS spectra analysis, quantificattb summed fractional labeling
of proteogenic amino-acid fragments, estimationhef extent of mutant association

based on the global features growth gafeiomass yieldY

Xxs?

ethanol yieldY, rate of
biomass productio, and rate of ethanol productidp,, followed by integration of

transcript co-response profiles for mutant diffeéieron. In this framework, we have
introduced a scheme for estimation of cluster dgaln analysis of metabolic
profiling data.

Method for mutant differentiation in the case of high similarity in metabolomics
data: In the general case of when the genotypic pertimhst(knockouts) are not
sufficient for discrimination of mutant knockout tabolic profiles, we were able to
find highly significant feature combinations forceaindividual mutant present in the
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original dataset. This method is coded in R —|lagguand is a useful method for fast
characterization for the metabolic profiling datader large scale knockout analysis.
We show that in the absence of strong phenotypiwimations , for example in our
case where the metabolic profiles prove not beigefit in finding any underlying
functional associations among majority of the mutset, outlier detection method
can be used for a more granular analysis of eatitidual knockout mutant.

Web server for pathway analysis using genome scale metabolic models: In the
recent years of computational systems biology rekea large number of theoretical
methods have been developed for studying chemraatfiormations of substances.
Also, in the last 5 years, several genome scalealmoét models have been
reconstructed. We have approached the problemalysis of various experimental
data in the background of these genome scale madei®ll as prediction of viability
of in-silico gene knockout mutants. In the same directiondexeeloped a new web
server called MetaModel, for the analysis of gen@tee metabolic networks of

eukaryotic organisms.
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Appendix 1

Table 23 List of mutants studied by Outlier detection methmosiection 3.3.1.3

Source of Gene ontology data: Amigo 29 May200p(Hamigo.geneontology.org)

Mutant_ORF| Glu | Fru | Gal | Molecular function Biological process Cellular
component
ACE2 N transcriptional  activatof G1-specific transcription i Cytosol,
activity mitotic cell cycle nucleus
ADR1 N trnscription factor activity| transcription, regutt of | Nucleus
carbohydrate metaboli¢
process , peroxisomge
organization and biogenesis,
negative regulation o)
transcription from RNA
polymerase |l promoter b
glucose
CATS8 N N specific RNA polymerasg positive regulation off Nucleus
Il transcription factor| gluconeogenesis , positie
activity regulation of transcription
from RNA polymerase |
promoter
CYB2 \ \ L-lactate dehydrogenasge electron transport mitochondrial
(cytochrome) activity intermembrane
space,
mitochondrion
DLD2 N ~ N lactate metabolic process,lactate metabolic process mitochondrig
actin binding matrix,
mitochondrion
FBP1 N N N fructose-bisphosphatase | gluconeogenesis Cytosol
activity
FBP26 N N fructose-2,6-bisphosphat¢ glucose metabolic process Cytosol
2-phosphatase activity, g-
phosphofructo-2-kinase
activity
GAD1 \/ \/ glutamate decarboxylaseresponse to oxidative stresscytoplasm
activity glutamate catabolic process
GAL10 \ N UDP-glucose 4-epimerasge galactose catabolic process soluble
activity, aldose 14 fraction
epimerase activity
GAL4 \/ transcriptional activator & positive regulation ofl nucleus

factor activity

transcription by galactosd,

galactose metabolic process
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GAL7 UTP:galactose-1- galactose catabolic process cytoplasm
phosphate
uridylyltransferase
activity
GALSO specific  transcriptional galactose metabolic procegdsnucleus,
repressor activity positive regulation off cytoplasm
transcription by galactose
GLK1 glucokinase activity glucose  import, glucose| cytosol
metabolic processglycolysis,
mannose metabolic process
GLO1 lactoylglutathione  lyasg methylglyoxal catabolig nucleus,
activity process to D-lactatg, cytoplasm
glutathione metabolic process|
HXK2 hexokinase activity fructose  import, fructose | cytosol,
metabolic process, glucose| mitochondrion,
import, glucose metaboliq nucleus
process, glycolysis, mannose
metabolic processyregulation
of cell size, regulation of
transcription by  glucose],
replicative cell aging
IMP2 peptidase activity| carbohydrate metaboli¢ mitochondrial
mitochondrial inner| process, mitochondrial proteipinner
membrane peptidase processingDNA repair membrane
activity, transcription peptidase
coactivator activity complex,
cytoplasm
LAT1 dihydrolipoyllysine- pyruvate metabolic process mitochondri
residue acetyltransferade mitochondrial
activity pyruvate
dehydrogenasq
complex
LEU4 2-isopropylmalate leucine biosynthetic process mitochondri
synthase activity, cytoplasm
MAE1 malic enzyme activity pyruvate metabolic processnitochondrion
amino acid metabolic process
MAL33 transcription factor| carbohydrate metaboli¢ nucleus
activity process , regulation df
transcription, DNA-dependent|
MIG1 specific  transcriptional negative regulation of nucleus,
repressor activity| transcription ~ from  RNA| nuclear
sequence-specific  DNA polymerase |l promoter by envelope
binding glucose lumen
MIG2 specific  transcriptional negative regulation of nucleus
repressor activity| transcription  from RNA

sequence-specific  DNA

polymerase |l promoter b

=}

>
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binding

glucose

MSNA4 transcription factor| cellular response to glucodenucleus,
activity starvation, heat acclimation, cytoplasm
regulation of transcription
from RNA polymerase |
promoter in response to stregs,
replicative cell agingresponse
to freezing, hydrostatig
pressure,response to osmoti¢
stress, oxidative stress and
stress
NRG1 transcriptional repressdr response to pHregulation of| nucleus
activity, DNA binding transcription  from RNA
polymerase Il promoter
pseudohyphal growthinvasive
growth (sensuyl
Saccharomyces), glucose
metabolic  process, biofilm
formation
NRG2 transcriptional repressdr pseudohyphal growthinvasive | nucleus
activity growth (sensu|
Saccharomyces), biofilm
formation,
PCK1 phosphoenolpyruvate gluconeogenesis cytosol
carboxykinase (ATP
activity
PFK26 6-phosphofructo-2-kinasq regulation  of  glycolysis,| cytoplasm
activity fructose 2,6-bisphosphate
metabolic process
PFK27 6-phosphofructo-2-kinasq regulation  of  glycolysis,| cytoplasm
activity fructose 2,6-bisphosphate
metabolic process
PGU1 polygalacturonase activity  pseudohyphal growjbectin | extracellular
catabolic process region
RBK1 ribokinase activity, ATP | D-ribose metabolic process nucleus,
binding, cytoplasm
RGT1 transcriptional repressdr regulation of glucose imporf, nucleus
activity, transcriptional| negative regulation o)
activator activity, | transcription, glucose
transcription corepressdr metabolic process,
activity, RNA polymerase
Il transcription factor
activity, DNA binding
SFAl formaldehyde formaldehyde cataboli¢ mitochondrion,
dehydrogenase process cytoplasm

(glutathione) activity,
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pn

alcohol  dehydrogenasg
activity
SIP3 transcription cofactol transcription initiation from| nucleus
activity RNA polymerase |l promoter
SNF11 general RNA polymeras¢ chromatin remodeling SWI/SNF
Il transcription factor complex,
activity, chromatin
remodeling
complex
SNF2 general RNA polymeras¢ double-strand break repaif, SWI/SNF
Il transcription factor| chromatin remodeling complex,
activity, DNA-dependent chromatin
ATPase activity, remodeling
complex
SUC2 beta-fructofuranosidase | sucrose catabolic process, mitochondri
activity,
TYE7 transcription factor| transcription, positive] nucleus
activity regulation of glycolysisG1/S-
specific transcription in mitotid
cell cycle
UGAl 4-aminobutyrate nitrogen utilization intracellular
transaminase activity
UGA2 succinate-semialdehyde | response to oxidative stresscytoplasm
dehydrogenase glutamate decarboxylation tp
[NAD(P)+] activity succinate, gamma-
aminobutyric acid cataboli
process
XKS1 xylulokinase activity xylulose catabolic process topyasm
YBR184W Unknown Unknown Unknown
YDR248C Unknown Unknown Unknown
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Appendix 2

MetaModel web server scripts
a) Module 1: Stoichiometry
Python (CGl)-scripts

« decision.cgi:
o Calls:sce.phpor stoi.cgi
o Is called by:sce.php
o Function:
decision.cgiis used to handle the processing of parametelsasitile
format, output format and wether the user has gargnreaction or
metabolite files. It either calkee.php which gives the user the possibility
to change the standard model or catbscgito calculate a new model
using the user-supplied reaction file.
« kegg_annot.cgi:
o Calls:stoi.php
o Is called bystoi.php

o Function:
kegg_annot.cguses the KOBAS scriplast2ko.pyto create a KO based

annotation of a user-selected set of ORtesphpis used for displaying
OREF list from which the user can select the ORHsetannotated and for
displaying the KOBAS output as well.

o Annotation: Isn't fully implemented yet, becauseuniblems with the
KOBAS-package.

« searchl.cgi:
o Calls:stoi.php
o Is called bystoi.php

o Function:
searchl.cgimplements the search for reactions in which a-askected

metabolite takes part. As in the caséaajg_annot.cgistoi.phpgives the user
the possibility to select an input for the seanstl afterwards displays the
results.
« search2.cgi:
o Calls:stoi.php
o Is called bystoi.php

o Function:
searchl.cgimplements the search for processes in which asedected

metabolite takes part. As in the caséaajg_annot.cgistoi.phpgives the user
the possibility to select an input for the seanstl afterwards displays the
results.

.+ stoi.cgi
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(0]
(0]
(0]

Calls: stoi.php

Is called bydecision.cgior sce.php

Function:

stoi.cgi represents the actual calculation of tbeekiometric matrix. The
parameters given either by sce.php or decisiorgphpsed as the input
for the calculation. After the model and severatistics have been
calculated, the results are displayed by the sst@tphp.

b) Module 2: I sotopomer path tracing

« ammparse.cgi:

(0]
(0]

(o]

Calls: mutantmap.php

Is called by: sce.php

Functionammparse.cgi parses the AMMs supplied either bgagihg a
file or pasted in the textbox, handles the AMMMM conversion, uses
the created IMMs for Isotopomer Source Tracing ene@tes the output,
which will be shown on the page mutantmap.php.

« nodediscrimination.cgi:

(0]
(0]
(0]

Calls:

Is called by sce.php

Function:nodediscrimination.cgi calculates the node typesHe
metabolites supplied in the selected model. Itldispthe results in tabular
format.

c) Module 3: Optimization

+ Syn acc.cgi:

(0]
(0]

o

Calls: mopt.php

Is called bysce.php

Function:Syn_acc.cgi calculates the synthetic accessbdiyes of mutants
and either displays them directly (in case of iratan of 'Mutant vs WT’
functionality), or formats them for output in mqgtp (if the 'Mutant
Comparison’ functionality is used).
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Mutant name
CYB2_glc
GALS80_glc
GLO1_glc
GAD1_glc
CAT8_glc
SIP3_glc
TYE7_glc
GAL4_glc
YBR184W_glc
SNF11_glc
XKS1_glc
GLK1_glc
MAEZ1_glc
RGT1_glc
MSN4_glc
FBP26_glc
MIG2_glc
MIG1_glc
PFK27_glc
PCK1_glc
PGU1_glc
NRG1_glc
MAL33_glc
RBK1_glc
SFA1_glc
DLD2_glc
UGA2_glc
GAL7_glc
GAL10_glc
NRG2_glc
PFK26_glc
SUC2_glc
LATL glc
LEU4 glc
FBP1_glc
IMP2_glc
SNF2_glc
Reference_glc
CYB2_fru
GALS8O_fru
PFK2_fru
GAD1_fru
CATS8_fru
SIP3_fru
TYE7_fru
GAL4_fru
YBR184W_fru
SNF11_fru
XKS1_fru
GLK1_fru
ACE2_fru
MAEZ1_fru
RGT1_fru
MSN4_fru

mue

0.279
0.307
0.342
0.312
0.35
0.329
0.333
0.28
0.292
0.4
0.396
0.32
0.282
0.294
0.294
0.288
0.288
0.289
0.286
0.338
0.311
0.232
0.306
0.341
0.351
0.303
0.24
0.306
0.338
0.237
0.243
0.287
0.293
0.314
0.225
0.296
0.236
0.32
0.401
0.373
0.331
0.317
0.406
0.4
0.293
0.369
0.436
0.273
0.336
0.297
0.244
0.418
0.416
0.412

Qs

15.6
19.8
21.3
20.8
23.4
19.2
21.8
16.9
16
22.9
22.6
21.3
16
23.3
16
15.8
13.5
21
19.3
22.9
20.4
13.1
20.6
24.9
21.6
18.1
14

20
22.1
15.1
15.8
23.7
16.6
15.8
12.4
16.4
16.2
13.9
22.22
19.523
16.05
18.517
24.973
23.628
16.219
22.935
24.465
13.465
18.281
18.364
14.018
26.156
25.151
23.461

Qp

Appendix 3

24.4
19.6
26.7
26.1
27.9
30.1
30.4
27.1
27.9
39.2
33.6
23
27.9
29.5
23.9
26.2
22.2
32

27
29.9
30.7
15.2
34.1
36.5
28.1
30.5
17
19.6
35.7
17.5
22.2
22.1
28
22.3
20.9
19.6
20.1
18.2
19.653
16.576
19.913
20.548
23.52
38.489
13.932
18.489
10.041
11.529
16.383
15.186
9.677
10.853
40.493
32.52

Q02

Mutant name

1.3 FBP26_fru
1.3|ADR1_fru
2.2|MIG2_fru
1.4|HXK2_fru
1.8/ UGAL_fru

1.6 YDR248C_fru

1.3 PCK1_fru
2.2 PGUL_fru
1 NRGZ1_fru
2.5|MAL33_fru
1.8/ RBK1_fru
1.2|SFA1_fru
1 DLD2_fru
1.3 UGA2_fru
0.9/ GAL7_fru
1.1|GAL10_fru
0.9 NRG2_fru
0.6 PFK26_fru
0.9 SUC2_fru
2.1|LATL fru
1.1|LEU4_fru
0.8 FBP1_fru
1.2|IMP2_fru
1.5|SNF2_fru

3.3 Reference_fru

1 CYB2_gal
0.6/GLO1_gal
1.1 PFK2_gal
2.9|GAD1_gal
0.7 CAT8_gal
0.8/SIP3_gal
3.2 TYE7_gal

1.3 YBR184W_gal

1.3|SNF11_gal
0.7 XKS1_gal
0.9 GLK1_gal
1.8 ACE2_gal
2.3 MAE1_gal
2.49 MSN4_gal
2.49 FBP26_gal
1.34/ADR1_gal
1.46 MIG2_gal
2.39|HXK2_gal
2.98|UGAL gal
2.13 PFK27_gal
1.28 PCK1_gal
2.48/MAL33_gal
2.08/SFA1_gal
2.28|DLD2_gal
0.93 UGA2_gal
1.09 PFK26_gal
3.53|LEU4_gal
1.65 FBP1_gal
1.84 IMP2_gal

Reference_gal

mue

0.348
0.412
0.354
0.273
0.332
0.364
0.412
0.379
0.403
0.332
0.4
0.394
0.341
0.377
0.326
0.317
0.401
0.392
0.371
0.381
0.378
0.354
0.385
0.287
0.236
0.307
0.316
0.27
0.316
0.276
0.272
0.216
0.259
0.207
0.297
0.243
0.225
0.26
0.261
0.236
0.17
0.34
0.212
0.277
0.268
0.181
0.196
0.253
0.199
0.221
0.234
0.22
0.335
0.293
0.223

Qs

21.002
26.639
22.524
12.842
19.089
22.972
26.499
24.752
26.853
17.906
28.782
24.535
23.02
22.747
21.54
18.275
25.382
24.208
20.016
27.467
20.132
20.852
24.558
16.8
17.977
14.341
13.387
7.413
10.606
10.368
11.313
8.849
12.075
7.469
19.623
11.033
19.288
7.98
11.755
9.914
4.312
13.462
6.469
13.755
10.3
6.376
5.938
9.58
5.835
7.885
5.53
5.108
8.684
9.931
6.504

Qp

9.778
31.017
20.949
16.739
25.604
19.654
19.856
25.996
22.487

17.49
31.606

24.1
13.341
21.087
17.252
22.355
20.771
26.092
18.986

21.51

9.045
26.611
40.216

19.93
22.749
11.711
12.434

9.806
16.682
15.432
14.527

9.898
12.985
11.879
17.299
10.171

17.69
11.461
16.381

9.742

4.506
19.267

9.65
12.522
6.366
3.261
3.7
15.344

4.259

4.409

6.757

5.874

6.306

8.201

8.262

Q02
0.73
1.98

1.4

0.92
2.47

2.53

1.98

1.97

1.75

1.18

1.6

1.64

1.21

1.76
0.78
1.08
0.98

1.7

0.31

0.6

1.58

0.7

0.71
0.71
0.31
5.61038
4.166667
3.835227
5.642857
0.345
4.473684
3.970588
2.475153
0.294034
5.557635
4.963235
4.210329
5.762411
4.338431
3.782051
3.964552
2.361111
4.416667
3.170788
1.495536
3.269509
3.223684
6.588542
4.783654
5.525
5.668605
5.926724
9.264381
8.102876
5.402132
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Appendix 4

AMM list for used in section 5.2.3.3.

# Pyr -> PEP;Ns=3;Np=3
100
010
001

#PEP -> PGA;Ns=3;Np=3
100
010
001

#PGA -> T3P;Ns=3;Np=3
100
010
001

#COA -> Acetate;Ns=2;Np=2
10
01

#C1 -> GLY;Ns=1;Np=2
0
1

#ICT -> CO2;Ns= 6;Np=1
000001

#ACOA -> MAL;Ns= 2;Np=4

#0OXO -> CO2;Ns= 5;Np=1
10000

#0OXO -> GLU;Ns=5;Np=5
10000
01000
00100
00010
00001

#0OXO -> SUCC;Ns=5;Np=4
01000
00100
00010
00001

#ASP -> MET;Ns=4;Np=5
1000
0100
0010
0001
0000

#PYR -> MAL;Ns=3;Np=4
100
010
001
001

#ACOA -> LEU;Ns=2;Np=6

#PYR -> LEU;Ns= 3;Np=6
000
000
010
010
001
001

#C1 -> MET;Ns=1;Np=5

P OOOO

#C1 -> HIS;Ns=1;Np=6

POOOOO

#E4AP -> TYR;Ns= 4;Np=9
0000
0000
0000
0000
0000
1000
0100
0010
0001

#E4P -> F6P;Ns=4;Np=6
0000
0000
1000
0100
0010
0001

#E4P -> PHE;Ns=4;Np=9
0000
0000
0000
0000
0000
1000
0100
0010
0001

#CO2 -> OAA;Ns= 1;Np=4

R OOOo

# F6P -> E4P;Ns=6;Np=4
001000
000100
000010
000001

#F6P -> G6P;Ns=6;Np=6
100000
010000
001000
000100
000010
000001

#F6P -> S7P;Ns=6;Np=7
100000
010000
001000
000000
000000
000000
000000

#T3P -> F6P;Ns=3;Np=6
001
010
100
100
010
001

#F6P -> C5P;Ns=6;Np=5
100000
010000
000000
000000
000000

#ICT -> OXO;Ns=6;Np=5
100000
010000
001000
000100
000010

#MAL -> OAA;Ns=4;Np=4
1000
0100
0010
0001

#SER -> C1;Ns=3;Np=1
001
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#F6P -> G6P;Ns=6;Np=6
100000
010000
001000
000100
000010
000001

#G6P -> C5P;Ns= 6;Np=5
010000
001000
000100
000010
000001

#GLX -> MAL;Ns=2;Np=4

#GLY -> C1;Ns=2;Np=1
01

#GLY -> CO2;Ns=2;Np=1
10

#GLY -> SER;Ns=2;Np=3

#PYR -> CO2;Ns=3;Np=1
100

#PYR -> CoA;Ns=3;Np=2
010
001

#C1 -> SER;Ns=1;Np=3
0
0
1

#CO2 -> MAL;Ns=1;Np=4

R OOOo

#PYR -> OAA;Ns=3;Np=4
100
010
001
000

#ICT -> GLX;Ns=6;Np=2
100000
010000

#ICT -> SUC;Ns=6;Np=4
000010
000100
001000
000001

#MAL_OAA -> CO2;Ns=4;Np=1
0001

#AcoA_DvH -> ICT;Ns=2;Np=6

#OAA_DVH -> ICT;Ns=4:Np= 6
0000
0000
0100
0010
0001
1000

#OAA -> ICT_Ecoli;Ns=4;Np=6
0001
0010
0100
0000
0000
1000

#PYR -> ALA;Ns=3;Np=3
100
010
001

#OAA -> ASP;Ns=4;Np=4
1000
0100
0010
0001

#PYR -> VAL;Ns=3;Np=5
100
010
010
001
001

#PYR -> LYS;Ns=3;Np=6
000
000
000
000
010
001

#ACOA -> C1;Ns=2;Np=1
01

#PYR -> LEU;Ns=3;Np=6
000
000
010
010
001
001

#OAA -> CO2;Ns=4;Np=1
0001

#PEP -> OAA;Ns=3;Np=4
100
010
001
000

#OAA -> PEP;Ns=4;Np=3
1000
0100
0010

#PEP -> PYR;Ns=3;Np=3
100
010
001

#C5P -> F6P;Ns=5;Np=6
10000
01000
00000
00000
00000
00000

#C5P -> S7P;Ns=5;Np=7
10000
01000
10000
01000
00100
00010
00001

#G6P -> CO2;Ns=6;Np=1
100000

#PEP -> TYR;Ns=3;Np=9
100
010
001
010
001
000
000
000
000

#PEP -> PHE;Ns=3;Np=9
100
010
001
010
001
000
000
000
000

#T3P -> C5P;Ns=3;Np=5
000
000
100
010
001
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#C5P -> HIS;Ns=5;Np=6
10000
01000
00100
00010
00001
00000

#C5P -> S7P;Ns=5;Np=7
10000
01000
10000
01000
00100
00010
00001

#C5P -> T3P;Ns=5;Np=3
00100
00010
00001

#PGA -> SER;Ns=3;Np=3
100
010
001

#ACOA -> CO2;Ns=2;Np=1
10

#SUC -> MAL;Ns=4;Np=4
1000
0100
0010
0001

#T3P -> E4P;Ns=3;Np=4
000
100
010
001

#STP -> E4AP;Ns=7;Np=4
0001000
0000100
0000010
0000001

#ST7P -> C5P;Ns=7;Np=5
1010000
0101000
0000100
0000010
0000001

#STP -> F6P;Ns=7;Np=6
1000000
0100000
0010000
0000000
0000000
0000000

#SER -> GLY;Ns=3;Np=2
100
010

#E4P -> S7P;Ns=4;Np=7
0000
0000
0000
1000
0100
0010
0001

#E4P -> T3P;Ns=4;Np=3
0100
0010
0001
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Appendix 5

Synthetic accessibility results from section 52.4.

MetaModel Experimental MetaModel Experimental
applied to MetaModel (+ (Viable); applied to MetaModel (+ (Viable);
Palsson2004 Prediction - (NonViable) Palsson2004 Prediction - (NonViable)
ORF Gene product ORF Gene product

WT(Number of reachable output=43, S score=471) WT(Number of reachable output=43, S score=471)
YMRO56C AAC1 + + YBR205W KTR3 + +
YNL141W AAH1 + + YBR199W KTR4 + +
YKL106W AAT1 + + YPLO53C KTR6 + +
YLR027C AAT2 + + YNLO71W LAT1 + +
YNRO33W ABZ1 - + YJIL134W LCB3 + +
YGRO037C ACB1 - + YOR171C LCB4 + +
YBLO15W ACH1 + + YLR260W LCB5 + -
YLR304C ACO1 + - YGL009C LEUL + +
YAL054C ACS1 + + YNL104C LEU4 + +
YARO15W ADE1 + + YOR108W LEU9 + +
YLR028C ADE16 + + YFLO18C LPD1 + -
YMR120C ADE17 + + YDR503C LPP1 + +
YGR204W ADE3 + + YOR142W LsC1 + +
YMR300C ADE4 + + YGR244C Lsc2 + +
YGL234W ADES7 + + YNL268W LYP1 + +
YGRO061C ADE6 + + YIR034C LYS1 + +
YDR408C ADES + + YIL094C LYS12 + +
YOL086C ADH1 + - YDL182W LYS20 + +
YMR303C ADH2 + + YDL131W LYS21 + +
YMRO83W ADH3 + + YDR234W LYS4 + +
YGL256W ADH4 + + YGL154C LYS5 + +
YBR145W ADH5 + + YNRO50C LYS9 + +
YDR226W ADK1 + - YKL029C MAE1 + +
YER170W ADK2 + + YGR289C MAL11 + +
YJR105W ADO1 + - YGR292W MAL12 + +
YCL025C AGP1 + + YBR298C MAL31 + +
YFLO55W AGP3 + + YBR299W MAL32 + +
YMR170C ALD2 + + YOR221C MCT1 + -
YMR169C ALD3 + + YKLO85W MDH1 + +
YOR374W ALD4 + + YOL126C MDH2 + +
YERO73W ALD5 + + YDLO78C MDH3 + +
YPLO61W ALD6 - - YGR121C MEP1 + +
YNL270C ALP1 + + YNL142W MEP2 + +
YMLO35C AMD1 + + YPR138C MEP3 + +
YDR242W AMD2 + + YKRO69W MET1 + +
YPR128C ANT1 + + YFRO30W MET10 + +
YCLO50C APAL + + YPL023C MET12 + +
YDR530C APA2 + + YGL125W MET13 + +
YMLO22W APT1 + + YKL001C MET14 + +
YDR441C APT2 + + YPR167C MET16 + +
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YBR149W
YOLO58W
YJLO7IW
YJLO8BW
YHR018C
YERO69W
YDR127W
YDR380W
YGL148W
YDRO35W
YBR249C
YPRO60C
YGL202W
YHR137W
YDL100C
YPR145W
YGR124W
YDR321W
YPRO26W
YBLO99W
YLR295C
YPL271W
YDR377W
YMLO81C-A
YJR121W
YPRO20W
YPLO78C
YDR298C
YKLO16C
YORO11W
YBRO68C
YDR046C
YJR148W
YGR282C
YGR286C
YNRO58W
YNRO57C
YNRO56C
YJR025C
YJRO78W
YBLO98W
YLR231C
YFRO47C
YCRO032W
YEL063C
YPL111W
YLR438W
YMLO42W
YLR307W
YLR308W

ARA1
ARG1
ARG2
ARG3
ARG4
ARG5,6
ARO1
ARO10
ARO2
ARO3
ARO4
ARO7
ARO8
ARO9
GET3, ARR4
ASN1
ASN2
ASP1
ATH1
ATP1
ATP14
ATP15
ATP17
ATP18
ATP2
ATP20
ATP4
ATP5
ATP7
AUS1
BAP2
BAP3
BAT2
BGL2
BIO2
BIO3
BIO4
BIO5
BNA1
BNA2
BNA4
BNA5
BNAG6
BPH1
CAN1
CAR1
CAR2
CAT2
CDAL
CDA2

+ 4+ 4+ 4+ o+ o+

+

+ 4+ 4+ 4+ 4+ + + + + + + + + + + + + + o+ o+ 4+ o+ o+

+ 4+ 4+ 4+ + + + + + + o+ o+ o+ o+ o+ o+ o+

+ 4+ + + + + + + + + + + + o+ + 4+ 4+ 4+ o+ o+

+ 4+ 4+ + + + + + + + + + + + + 4+ 4+ + o+ o+ o+

YLR303W
YOLO064C
YJRO10W
YERO091C
YOR241W
YLLO62C
YJRO77C
YBRO84W
YNL117W
YLLO61IW
YPL104W
YOLO33W
YPRO47W
YNLO73W
YGR171C
YHRO091C
YDR268W
YPLO97W
YKRO80OW
YGRO55W
YHLO36W
YGROO7W
YLR382C
YDLO40C
YGR147C
YMR145C
YDLO85W
YML120C
YLR138W
YJL126W
YLR351C
YLR328W
YGRO10W
YOR209C
YGLO67W
YDRO001C
YBROO1C
YKL120W
YKLO55C
YPL134C
YOR222W
YJRO73C
YOR130C
YJRO51W
YDR538W
YIL145C
YKRO97W
YGR202C
YER178W
YBR221C

MET17
MET22
MET3
MET6
MET7
MHT1
MIR1
MIS1
MLS1
MMP1
MSD1
MSE1
MSF1
MSK1
MSM1
MSR1
MSW1
MSY1
MTD1
MUP1
MUP3
MUQ1
NAM2
NAT1
NAT2
NDE1
NDE2
NDI1
NHAL
NIT2
NIT3
NMA1
NMA2
NPT1
NPY1
NTH1
NTH2
OAC1
OAR1
obc1
obc2
OPI3
ORT1
osMm1
PAD1
PANG
PCK1
PCT1
PDA1
PDB1

+ 4+ 4+ + + + + + + + + + + + + 4+ 4+ 4+ + 0+ o+ o+ + o+ o+ o+ o+ o+ o+ + o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

+

+ + 4+

+

+ 4+ + + o+

+ + + o+

+ 4+ 4+ 4+ 4+ + 4+ + + o+ + o+ + o+ o+

+ 4+ 4+ + + + + + + + o+
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YERO061C
YCLO64C
YGR157W
YBR023C
YNROO1C
YCRO005C
YPROO1W
YLR133W
YBROO3W
YNRO41C
YOL096C
YML110C
YGR255C
YBL045C
YPL172C
YLRO38C
YNLO52W
YIL111IW
YHRO51W
YMR256C
YLR395C
YDLO67C
YOR303W
YJR109C
YNL130C
YOR100C
YDL142C
YBRO036C
YDR256C
YBR291C
YGRO88W
YELO27W
YMLO54C
YALO12W
YGR155W
YORO065W
YMLO70W
YFLO53W
YIR027C
YIR029W
YIR032C
YIR028W
YJR152W
YIR031C
YFLOOIW
YHRO11W
YLR348C
YPL265W
YDL174C
YLR172C

CEM1
CHAL
CHO2
CHS3
cIm1
cIT2
cIT3
CKI1
coQ1
coQ2
coQ3
coQs
coQs
COR1
COX10
COX12
COX5A
COX5B
COX6
COX7
coxs
Cox9
CPAL
CPA2
CPT1
CRC1
CRD1
csG2
CTAL
CTP1
CTT1
cupPs
CYB2
cys3
cysa
cYT1
DAK1
DAK2
DAL1
DAL2
DAL3
DAL4
DAL5
DAL7
DEG1
DIA4
DIC1
DIP5
DLD1

DPH5

+

+ 4+ 4+ 4+ + + + + + + + + + + + 4+ 4+ + 4+ + + + + + o+ + o+ 4+ 4+ 4+ o+ 4+ + o+ + o+ o+ o+ o+ o+ + o+ o+

+ 4+ 4+ + + + + o+ o+

+

+ 4+ 4+ 4+ 4+ + + o+ o+

+ + + + + + + + + + + o+

+ + + 4+

YLRO44C
YLR134W
YGRO087C
YGL248W
YOR360C
YBRO35C
YBL0O30C
YGR240C
YMR205C
YIL107C
YOL136C
YKL127W
YMR105C
YNL316C
YBR092C
YDR481C
YML123C
YCRO37C
YBR296C
YJL198W
YNRO13C
YPL268W
YPLO36W
YCR024C-A
YELO17C-A
YDLO95W
YALO23C
YOR321W
YDLO93W
YGR199W
YGLO037C
YLR209C
YPL188W
YIL160C
YGL205W
YHRO026W
YMR267W
YPL148C
YDR300C
YOR323C
YERO23W
YHLO11C
YBLOG68W
YOL061W
YGR170W
YPL212C
YGLO63W
YNL292W
YLR142W

YHRO37W

PDC1
PDC5
PDC6
PDE1
PDE2
PDX3
PET9
PFK1
PFK2
PFK26
PFK27
PGM1
PGM2
PHA2
PHO3
PHO8
PHO84
PHO87
PHO89
PHO90
PHO91
PLC1
PMA2
PMP1
PMP2
PMT1
PMT2
PMT3
PMT5
PMT6
PNC1
PNP1
POS5
POT1
POX1
PPA1
PPA2
PPT2
PRO1
PRO2
PRO3
PRS3
PRS4
PRS5
PSD2
PUS1
PUS2
PUS4
PUT1
PUT2

+ 4+ 4+ 4+ 4+ o+ o+

+ 4+ 4+ 4+ 4+ + + + + o+ + + + + + + + + o+ o+ o+ o+

+ 4+ 4+ + + + + + + + + + + + + o+ o+ o+

+ + o+ o+ o+

+ 4+

+ + 4+ + + 4+ + + + + o+ 0+ + o+ + 4+ o+ o+ o+ o+ + o+ o+

+

+ 4+ 4+ + + + o+ o+
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YDR294C
YDR284C
YBR208C
YHLO16C
YJR137C
YBR176W
YLR299W
YMRO062C
YDR147W
YGR254W
YHR123W
YML126C
YMR202W
YNL280C
YLRO56W
YGLO12W
YMRO015C
YMLO08C
YLR300W
YDR261C
YOR317W
YILOO9W
YMR246W
YFRO19W
YBRO41W
YER183C
YLR377C
YJL155C
YPRO62W
YERO056C
YERO60W
YEROG60W-A
YCRO34W
YCR028C
YLR342W
YMR306W
YIL134W
YBLO13W
YKRO09C
YLLO43W
YBL042C
YPL262W
YMR250W
YBRO20W
YBR019C
YLRO81W
YBR018C
YKRO39W
YDR019C
YMR189W

DPL1
DPP1
DUR1,2
DUR3
ECM17
ECM31
ECM38
ECMA40
EKI1
ENO1
EPT1
ERG13
ERG2
ERG24
ERG3
ERG4
ERG5
ERG6
EXG1
EXG2
FAAL
FAA3
FAA4
FAB1
FAT1
FAU1
FBP1
FBP26
FCY1
FCY2
FCY21
FCY22
FEN1
FEN2
FKS1
FKS3
FLX1
FMT1
FOX2
FPS1
FUIl
FUM1
GAD1
GAL1
GAL10
GAL2
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