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Summary 

 

The baker’s yeast, Saccharomyces cerevisiae, is a simple eukaryotic organism with 

approximately 6000 genes.  Saccharomyces cerevisiae is an ideal model organism for 

large-scale functional studies and provides a system in which genes can be systematically 

inactivated by way of gene-knockout methods.  A substantial fraction of the 6000 genes 

in Saccharomyces cerevisiae encode proteins for which currently we do not know any 

confirmed or putative function. Prediction of the functional role of these proteins is a 

challenging problem in systems biology, especially as many of these genes have no overt 

phenotypes. In our study, we aim at a better understanding of the underlying functional 

relationships between genes working across diverse metabolic pathways using 

intracellular metabolite profiling studies. We applied bioinformatics methods and 

statistical analysis techniques in combination with metabolic profiling to understand the 

function and the regulatory mechanisms of specific genes involved in central carbon 

metabolism and amino acid biosynthesis. The experimental work was carried out by the 

group of Prof. Elmar Heinzle (Biochemical Engineering, Saarland University), our 

collaboration partner. 13C stable isotope substrates can be used as tracers to generate 

detailed metabolic profiles of gene knockouts. Detailed and quantitative information on 

the physiological cellular states is measured by 13C -metabolic profiling of cultures grown 

on novel high throughput oxygen sensor microtiter plates. In this dissertation, we worked 

towards developing systematic approaches for study of Saccharomyces cerevisiae genes 

of unknown function based on the metabolic profiles of knockout mutants under varied 

environmental conditions. In the first step, we have developed a software tool called 

CalSpec for automation of Gas Chromatography Mass Spectrometry data acquisition and 

analysis routine, as this is a bottleneck in the metabolic profiling studies. In the next step, 

we worked on large scale statistical analysis of metabolic profiling data. We applied 

various algorithms for finding closely related mutants which show similar metabolic 

profiles. According to our hypothesis, similarity in the metabolic profiles can be used to 

find functionally linked genes. Saccharomyces cerevisiae is known to be robust to 

majority of genetic perturbations. In these cases where the mutants show no overt 
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phenotypes, we developed a sensitive outlier detection method to detect those subsets of 

metabolic profile features which are most differentiating (outliers) for all mutants. The 

second part of this dissertation involves developing computational tools for metabolic 

pathway analysis on the basis of genome scale metabolic models, as well as integration of 

various newly emerging experimental techniques. In recent years, genome scale 

metabolic models have been and are continuing to be assembled for various organisms. In 

the year 2003, first comprehensive genome scale metabolic model for yeast became 

publicly available. With the emergence of system biology area of research, diverse 

computational approaches have been developed. In this work, we developed a new 

webserver called MetaModel, for analysis of genome scale metabolic networks of 

eukaryotic organisms. 
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Chapter 1 

 

1. Saccharomyces cerevisiae biology 

 

1.1. S.cerevisiae biochemistry 

Yeast is a collective term for unicellular basidiomycetous and ascomycetous fungi. These 

two types of fungi differ only in the way they produce spores.  

Basidiomycetous fungi bears sexually produced spores on a “basidium” which is like a 

club-shaped structure whereas the ascomycetous fungi bear the spores inside a sac-like 

structure known as “ascus”.   

S. cerevisiae is commonly known as Baker’s yeast. S. cerevisiae is an organism of choice 

in large-scale functional analysis. The S. cerevisiae genome encompasses 16 

chromosomes and is 12-megabases (Mb) in size.  With an average of 1 gene per 2kb of 

genomic sequence, yeast genome roughly encodes 6,200 genes [Goffeau1996].  Another 

important characteristic, in contrast to higher eukaryotes, is that only 263 S. cerevisiae 

genes possess intronic regions [Costanzo2000]. This makes computational methods for 

gene identification in yeast very simple. S. cerevisiae is known to be stable in both 

haploid and diploid states. The stability of the mutants makes yeast very attractive for 

mutational studies and gene function prediction methods. Large scale comparative studies 

of yeast and human genes have emerged as a powerful approach for human gene function 

prediction. This is due to the fact that nearly 50% of human genes responsible for genetic 

diseases have yeast homologues.  

 

1.1.1. S.cerevisiae: A model organism  

In the last few years, genetically modified organisms have been extensively employed as 

a functional genomics tool for predicting the role of genes and their protein products 

[Kumar2001]. Nevertheless, few models express the expected phenotype thought to be 

associated with the gene or protein. There is thus a need to further define the phenotype 

resultant from a genetic modification in order to understand how the transcriptional or 

proteomic network may accomplish altering the metabolism and bringing forth the 

expected phenotype. Saccharomyces cerevisiae is the most widely studied type of yeast 
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and is an extensively used eukaryotic organism for experimentation in biological 

research. S. cerevisiae also has the distinction of being the first eukaryotic organism with 

a completely sequenced genome. In fact, its genome sequence was completed in 1996 

[Dujon1996 and Goffeau1996]. An important characteristic of this organism is that it is 

amenable to genetic modification, and it is therefore possible to engineer the metabolism 

and thereby exploit the organism as a host, for example in industrial production of many 

different chemicals.  Yeast has been increasingly used in the area of metabolomics. As 

currently defined, “metabolome” approaches stand for the approaches which use the 

complete pool of cellular metabolites. This includes the whole range of molecules and 

intermediates which are subjected to biochemical conversions through metabolic 

pathways, for generation of chemical blocks and energy for growth and for maintenance 

of cellular functions.  “Metabolic profiling” of cellular concentrations of metabolites 

provides the detailed snapshot of the cell’s phenotype. Metabolic profiling has been 

extensively applied to yeast and other organisms [Raamsdonk2001, Adams2003, 

Trethewey1999, Fiehn2002, Watkins 2002, and Castrillo2003]. These large-scale 

metabolic profiling studies also lead to development of sensitive, large-scale high-

throughput methods for “metabolite screening” [Oliver2002]. Another approach called 

“metabolite footprinting” uses metabolite profiling methods for analyzing specific 

metabolites which are released into the medium.  Kell et al. used this footprinting 

approach for the classification of yeast knockout mutants [Kell2000]. In recent years, 

new and powerful methods have been developed for yeast knockout analysis. Among 

these are metabolic control analysis, strategies for the elucidation of the function of new 

genes and metabolic pathways as well as the role of amino acids and other specific 

metabolites in controlling gene expression, metabolome analysis, metabolic profiling 

approaches for biomarker discovery, and drug target screening [Teusink1998, 

Raamsdonk2001, Trethewey2001, Fuente2002, Weckwerth2002, Fafournoux2000, 

Hansen2000, So2000, Griffin2001, and Watkins2002]. 

 

1.1.2. Physiology: diauxic growth  

The effect of glucose on a variety of cellular processes has been extensively studied in 

Saccharomyces cerevisiae. Some of these include glucose repression of genes used in 
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growth on alternative carbon sources and the induction of genes needed for glucose 

transport and protein synthesis [Carlson1999, Gancedo1998, Johnston1999, Warner1999, 

and Newcomb2003]. Glucose is known to have a profound effect on the transcription of 

yeast genes. It is known that switch from anaerobic growth to aerobic respiration upon 

depletion of glucose is correlated with widespread changes in the expression of genes 

involved in fundamental cellular processes such as carbon metabolism, protein synthesis, 

and carbohydrate storage [Johnston1992]. This shift from anaerobic fermentation of 

glucose to aerobic respiration of ethanol is called the "diauxic shift". The “Diauxic shift” 

is known to involve major changes in gene expression [DeRisi1997].  It is known that 

genes encoding glycolytic enzymes are down-regulated as glucose gets exhausted, 

whereas the expression levels of genes involved in oxidative metabolism increase. 

  

1.2. Carbohydrate metabolism  

Yeast cells have evolved to undergo a variety of metabolic changes in response to 

fluctuating nutrient levels in the environment, many of which are coordinated by proteins 

such as TOR, Sch9, and PKA [Kaeberlein2007]. TOR proteins are known to be highly 

conserved from yeast to humans and regulate multiple cellular processes in response to 

nutrients, including cell size, autophagy, ribosome biogenesis and translation, stress 

response, actin organization, carbohydrate and amino acid metabolism [Schmelzle2000]. 

Sch9 and Protein kinase A (PKA) are nutrient-responsive protein kinases that modulate 

replicative aging in yeast [Lin2000, Fabrizio2004].  It is well known that yeast responds 

to decreasing glucose levels by shifting growth behavior from one that favors 

fermentation to one that favors respiration [see section 1.2.1].  

 

1.2.1. Central carbon metabolism  

The salient feature of eukaryotic central carbon metabolism is its dissection into cytosolic 

and mitochondrial subpathways, connected by intercompartmental transport of 

metabolites [Michal1998, Rose1989, Strathern1982, and Zimmermann1997]. 

Tricarboxylic acid (TCA) cycle operates in the mitochondria, and the glycolysis and the 

pentose phosphate pathway (PenPp) are located in the cytosol [Fraenkel1982, 

Gancedo1989, and Pronk1996]. It is known that oxaloacetate (OxAc), pyruvate (Prv) and 
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acetyl-CoA (AcCoA) are present in both mitochondria and cytosol. In addition, systems 

for their transport across the mitochondrial membrane have been identified [Pronk1996, 

Kispal1993, Roermund1999 Palmieri1999]. Hence, these three intermediates are key 

metabolites to distinguish cytosolic (cyt) and mitochondrial (mt) pools. 

In yeast, OxAc is produced both in TCA cycle, and in cytosol by the action of pyruvate 

carboxylase [Fraenkel1982, Gancedo1989, Rohde1991, van Urk1989]. Cytosolic OxAc is 

actively transported by the proton motive force at the inner mitochondrial membrane. 

Cytosolic Prv is produced in the cytosol by glycolysis and a fraction of it is transported 

into the mitochondria yielding mitochondrial Prv [Gancedo1989, Pronk1996]. In 

addition, mitochondrial Prv is also synthesized from malate by malic enzyme. The 

transport is actively driven by the mitochondrial proton motive force suggesting a largely 

unidirectional transport from the cytosol into the mitochondria. Mitochondrial AcCoA 

and cytosolic AcCoA can be derived from mitochondrial Prv and cytosolic Prv, 

respectively, either by the pyruvate dehydrogenase complex in the mitochondria, or via a 

cytosolic 'by-pass pathway' [Haarasilta1977]. AcCoA can cross the inner mitochondrial 

membrane via the 'carnitine shuttle'. This shuttle consists of the carnitine O-

acetyltransferase serves to balance the cytosolic and mitochondrial AcCoA pools by 

facilitated diffusion. 

 

1.2.2. Alternative carbon sources: glucose, fructose and galactose 

Saccharomyces cerevisiae can grow with a variety of carbon sources, but glucose and 

fructose are the preferred carbon sources. Presence of glucose and fructose lead to the 

down-regulation of the synthesis of those enzymes which are required for the catabolism 

of other alternative carbon sources [Gancedo1998].  This is also known as “catabolite 

repression”. S.cerevisiae encodes for GAL genes which are required for the galactose 

catabolism. The galactose metabolism is subject to dual control namely via the induction 

of the GAL genes by galactose and via the repression of the GAL genes by the presence 

of glucose [Johnston1992]. While translational control by glucose is rare, glucose triggers 

inactivation and/or proteolysis of a number of proteins. Glucose is also known to be 

involved in another phenomenon known as “catabolite inactivation” in which glucose 

triggers inactivation and/or proteolysis of a variety of proteins [Holzer1976]. Glucose is 
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known to cause rapid phosphorylation of Fructose 1, 6-bisphosphate and proteolytic 

degradation of this enzyme [Funayama1980, Müller1981].  

 

1.3.  S. cerevisiae gene knockout library 

In the present work, we used yeast haploid knockout strains for studying the 

physiological growth profiles associated with individual gene knockouts.. Section 1.3.1 

and 1.3.2 describes the reference strain and the detailed description of the knockout 

strains used in the study, respectively. 

 

1.3.1. Reference strain  

Saccharomyces cerevisiae deletion mutants with a parental genotype of 

BY4742 αMAT with his, leu, lys and ura auxotrophy were obtained from Open 

Biosystems (Heidelberg, Germany). This mutant library was used for the entire 

experimental work by our collaboration partners, the group of Dr. Elmar Heinzle 

(Technical biochemistry, Saarland University, Germany). The above mutants also possess 

antibiotic Geneticin resistance, which is used as a marker. From this collection, the 

parental strain, which was used as the reference strain, and a set of deletion mutants, 

where genes are known to be involved in central carbon metabolism, and few strains with 

unknown function were chosen for further analysis.  

 

1.3.2. Description of selected knockout mutants  

The Saccharomyces Genome Database (SGD) and the Gene Ontology (GO) provide rich 

and up-to-date resources for annotation concerning the unique and multiple functions of 

the S. cerevisiae genes [Cherry1998, sgd, Harris2004, go, go2000, Dwight2002, 

Hong2007]. GO provides a rich, precise and structured controlled vocabulary for 

describing the cellular role of genes and gene products in a given organism. SGD collects 

and organizes biological information about the chromosomal features and gene products 

of the budding yeast Saccharomyces cerevisiae. In the scenario of ever increasing and 

changing biological knowledge of cellular roles of gene products, SGD and GO provide 

media for organizing and querying biological annotations for individual genes and gene 

products at various stages of completion and for deciphering probable or predicted links 



  

 17

between cellular roles of two or more genes in the same or different organisms. This is 

made possible by inclusion of evidence coming from high-throughput experiments and 

computational predictions, in the absence of published experimental data [Hong2007].  

The preliminary set of genes which are known or putative regulators of central carbon 

metabolism in yeast, were selected using two basic criteria: 1) the deletion must be 

viable, 2) the deletion must be active in more than three cellular processes depicted by the 

GO classification [Figure 1]. The hypothesis is that if an ORF is involved in multiple 

cellular processes, it might result in a more explicit phenotype in knockout experiments.   

 
Figure 1 Gene Ontology function terms associated with the transcription factor RGT1 
 

 

1.4. GO annotations for selected knockout mutants  

Table 1 lists the molecular function, biological processes and location GO terms associated 

with the entire mutant set under study.  
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ORF Accession Mutant 
Id 

Biological process Molecular function Cellular 
component 

ABZ1 YNR033W 53 para-aminobenzoic acid metabolism 4-amino-4-deoxychorismate synthase 
activity 

Unknown 

ABZ1 YNR033W 62 para-aminobenzoic acid metabolism 4-amino-4-deoxychorismate synthase 
activity 

Unknown 

ACE2 YLR131C 17 G1-specific transcription in mitotic 
cell cycle 

transcriptional activator activity Nucleus 

ADR1 YDR216W 25 Transcription transcription factor activity nucleus  

CAT8 YMR280C 6  regulation of transcription from Pol 
II promoter 

specific RNA polII transcription 
factor activity 

Nucleus 

CYB2 YML054C 1 electron transport L-lactate dehydrogenase Mitochondrial 
intermembrane 
space 

DLD2 YDL174C 46 aerobic respiration D-lactate dehydrogenase 
(cytochrome) activity 

Mitochondrial 
inner 
membrane 

FBP1 YLR377C 61 Gluconeogenesis fructose-bisphosphatase activity Cytosol 

FBP26 YJL155C 22 Gluconeogenesis fructose-2,6-bisphosphate 2-
phosphatase activity 

Cytosol 

FOX2 YKR009C 34 fatty acid beta-oxidation 3-hydroxyacyl-CoA dehydrogenase 
activity 

Peroxisomal 
matrix 

FUM1 YPL262W 10 tricarboxylic acid cycle fumarate hydratase activity Cytosol 

GAD1 YMR250W 5 response to oxidative stress glutamate decarboxylase activity Cytoplasm 

GAL10 YBR019C 50 galactose metabolism unknown Unknown 

GAL11 YOL051W 9 transcription from Pol II promoter RNA polymerase II transcription 
mediator activity 

mediator 
complex 

GAL4 YPL248C 11 regulation of transcription DNA-dependent transcriptional 
activator activity 

Nucleus 

GAL7 YBR018C 49 galactose metabolism UTP-hexose-1-phosphate 
uridylyltransferase activity 

Cytoplasm 

GAL80 YML051W 2 regulation of transcription DNA-dependent transcription  Nucleus 

GCR2 YNL199C 33 regulation of transcription from Pol 
II promoter 

transcriptional activator activity Nucleus 

GLK1 YCL040W 16 carbohydrate metabolism  glucokinase activity cytosol  

GLO1 YML004C 3 glutathione metabolism lactoylglutathione lyase activity Unknown 

HXK2 YGL253W 27 fructose metabolism hexokinase activity Nucleus 

IMP2 YIL154C 64 DNA repair transcription co-activator activity Unknown 

KGD1 YIL125W 55 tricarboxylic acid cycle oxoglutarate dehydrogenase 
(lipoamide) activity 

Mitochondrial 
matrix 

KGD2 YDR148C 23 tricarboxylic acid cycle unknown Mitochondrial 
matrix 

LAT1 YNL071W 57 pyruvate metabolism dihydrolipoamide S-acetyltransferase 
activity 

Mitochondrion 

LEU4 YNL104C 58 leucine biosynthesis 2-isopropylmalate synthase activity Cytoplasm 

MAE1 YKL029C 18 pyruvate metabolism malate dehydrogenase (oxaloacetate 
decarboxylating) activity 

Mitochondrion 

MAL33 YBR297W 42 regulation of transcription DNA-dependent*  transcription factor 
activity 

Nucleus 

MIG1 YGL035C 31 regulation of transcription from Pol 
II promoter 

RNA pol II transcription factor 
activity 

Nucleus 

MIG2 YGL209W 26 regulation of transcription from Pol 
II promoter 

RNA pol II transcription factor 
activity 

Nucleus 

MSN4 YKL062W 20 response to stress transcription factor activity Nucleus 

NGG1 YDR176W 24 histone acetylation transcription cofactor activity  SAGA 
complex 

NRG1 YDR043C 41 regulation of transcription from Pol 
II promoter 

DNA binding activity Nucleus 

NRG2 YBR066C 51 invasive growth transcriptional repressor activity Nucleus  
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ORF Accession Mutant 
Id 

Biological process Molecular function cellular component 

PCK1 YKR097W 39 gluconeogenesis phosphoenolpyruvate 
carboxykinase (ATP) activity 

cytosol  

PFK1 YGR240C 30 glycolysis 6-phosphofructokinase activity Cytoplasm 

PFK2 YMR205C 4 glycolysis 6-phosphofructokinase activity Cytoplasm 

PFK26 YIL107C 54 fructose 2,6-bisphosphate 
metabolism 

6-phosphofructo-2-kinase activity Cytoplasm 

PFK27 YOL136C 36 fructose 2,6-bisphosphate 
metabolism 

6-phosphofructo-2-kinase activity Cytoplasm 

PGU1 yjr153w 40 pseudohyphal growth polygalacturonase activity Extracellular 

RBK1 YCR036W 43 ribose metabolism ATP binding activity Unknown 

RGT1 YKL038W 19 glucose metabolism DNA binding activity nucleus  

RPE1 YJL121C 38 pentose-phosphate shunt ribulose-phosphate 3-epimerase 
activity 

Cytosol 

RTG3 YBL103C 47 transcription initiation from Pol II 
promoter 

specific RNA pol II transcription 
factor activity 

Nucleus 

SFA1 YDL168W 45 formaldehyde assimilation formaldehyde dehydrogenase 
(glutathione) activity 

Unknown 

SIN4 YNL236W 63 transcription from Pol II 
promoter 

RNA pol II transcription mediator 
activity 

mediator complex 

SIP3 YNL257C 7 transcription initiation from polII 
promotor 

transcription cofactor activity nucleus  

SNF11 YDR073W 14 chromatin modeling RNA pol II transcription factor 
activity 

Nucleosome 
remodeling 
complex 

SNF2 YOR290C 65 chromatin modeling RNA pol II transcription factor 
activity 

Nucleosome 
remodeling 
complex 

SNF5 YBR289W 59 chromatin modeling RNA pol II transcription factor 
activity 

Nucleosome 
remodeling 
complex 

SNF6 YHL025W 37 chromatin modeling RNA polymerase II transcription 
factor activity 

Nucleosome 
remodeling 
complex 

SRB8 YCR081W 44 negative regulation of 
transcription from Pol II 
promoter 

RNA polII transcription mediator 
activity 

transcription factor 
complex 

SSN2 YDR443C 60 negative regulation of 
transcription from Pol II 
promoter 

RNA pol II transcription factor 
activity 

transcription factor 
complex 

SSN3 YPL042C 29 protein amino acid 
phosphorylation 

RNA pol II transcription factor 
activity 

transcription factor 
complex 

SSN8 YNL025C 52 meiosis RNA pol II transcription factor 
activity 

transcription factor 
complex 

SUC2 yil162w 56 sucrose catabolism beta-fructofuranosidase activity Cytoplasm 

SWI3 YJL176C 21 chromatin modeling general RNA pol II transcription 
factor activity 

Nucleosome 
remodeling 
complex 

TAF14 YPL129W 12 transcription initiation from Pol II 
promoter 

general RNA pol II transcription 
factor activity 

Nucleosome 
remodeling 
complex 

TYE7 YOR344C 8 transcription transcription factor activity nucleus  

UGA1 YGR019W 28 nitrogen utilization 4-aminobutyrate aminotransferase 
activity 

Intracellular 

UGA2 YBR006W 48 response to oxidative stress succinate-semialdehyde 
dehydrogenase (NAD(P)+) 
activity 

Unknown 

XKS1 YGR194C 15 xylulose catabolism xylulokinase activity Unknown 

YBR184W YBR184W 13 unknown unknown Unknown 

YDR248C YDR248C 35 unknown unknown Unknown 

ZWF1 YNL241C 32 pentose-phosphate shunt glucose-6-phosphate 1-
dehydrogenase activity 

Cytoplasm 

Table 1 GO terms associated with the selected mutants. 
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Chapter 2 

 

2. Quantitative high-throughput techniques  

In the last twenty five years, the desire to combine high-throughput technology, provided 

by high-performance liquid chromatography (HPLC) and, in particular, by capillary gas 

chromatography (GC), with the exquisite accuracy and sensitivity provided by mass 

spectrometry (MS) has led to the development of the most efficient analytical 

technologies presently available, i.e., LC-MS and GC-MS and variations of them, e.g., 

LC-tandem MS and GC-tandem MS [Dimitrios2001]. Initially, MS and GC and, later, 

liquid chromatography (LC) have developed independently. LC-MS is used to analyze 

polar, thermally labile and high-molecular-mass compounds, such as peptides and 

proteins. On the other hand, GC-MS is a method of choice for analyzing low-molecular-

mass compounds. As a rule, these compounds are mostly polar in nature, and their 

analysis by GC-MS requires chemical conversion, i.e., derivatization of the compounds 

into non-polar, volatile and thermally stable derivatives amenable to GC analysis. In the 

present work, we use GC-MS technique for physiological profiling. 

 

2.1. Gas chromatography-mass spectrometry 

 

2.1.1. Technique  

Since metabolites are chemical compounds, these are amenable to analysis techniques 

like molecular spectroscopy and MS. The selectivity, sensitivity and resolution of these 

spectroscopy techniques are enhanced by GC or liquid chromatography (LC) processes. 

The method of choice depends on the type of the metabolite sample to be analyzed 

[Goodacre2004]. The basic requirements for a substance to be analyzed using GC-MS 

instrumentation technique are 1) thermal stability and 2) volatility. Hence, GC-MS 

techniques are best suited for relatively low molecular weight compounds. Additionally, 

the analyte is subjected to chemical modification using various derivatizing compounds, 

like TBDMS, to overcome various absorption effects that might lead to inaccurate 

quantification. 
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2.1.2. Estimation of intracellular amino acid pool labeling 

The introduction of isotope labeling provided the basis for determination of intracellular 

amino acid pools and pathway activity (flux) in a metabolic network [Noronha2000, 

Park1997]. In labeling experiments, cells are fed with a labeled substrate (in our studies- 
13C labeled substrate), and the labeling patterns of certain intracellular metabolites are 

measured. Any given metabolite can exhibit numerous labeling patterns depending on its 

chemical compositions and the number of reactions it participates in. Each individual 

labeling pattern of a given metabolite/intermediate can be regarded as a “labeling state” 

of that metabolite/intermediate. Since the measurements of labeling patterns of the 

intracellular metabolites are usually difficult to perform due to their small pool sizes, 

analysis of the amino acids has been a widely used approach for elucidating the labeling 

states of intermediates in the central metabolism. Additionally, these labeling 

measurement data provide independent constraints on the intracellular fluxes and thus 

enable the determination of the fluxes that are unobservable by the conventional flux 

analysis using only metabolite balances. Nuclear magnetic resonance (NMR) 

spectroscopy is extensively used for labeling pattern measurement [Sauer1999, Dieuaide-

Noubhani1995, and Zupke1995]. 

In recent years, two-dimensional 1H–13C NMR spectroscopy has been used for analyzing 

the labeling states of proteinogenic amino acids [Szyperski1995]. This technique has 

been used to estimate the flux distribution in Escherichia coli [Schmidt1999_a], 

Aspergillus niger [Schmidt1999_b] and Bacillus subtilis [Sauer1997]. In last few years, 

the gas chromatography–mass spectrometry method (GC-MS) has been used as an 

alternative to NMR [Dauner2000, Donato1993]. GC–MS analysis is much more sensitive 

than the NMR method and can thus provide labeling measurements with higher precision. 

 

2.2. CalSpec 

In the past, intensive research has been carried out concerning the quantitative 

investigation of metabolic networks as the basis for understanding metabolic functioning 

and regulation machinery of specific metabolic systems [Bailey1991, Bailey1998, 

Cameron D.C.1997]. A powerful approach to quantifying metabolic fluxes is based on 

tracer studies with 13C-labeled substrates combined with mass spectrometry (MS) 
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measurement of 13C labeling patterns of biomass constituents [Christensen1999, 

Wittmann1999, Wittmann2002]. In these tracer studies, the measured labeling pattern 

reflects the metabolic state of the cell and is used to calculate intracellular flux 

parameters. We developed CalSpec software tool for automatic processing of labeling 

data from MS spectra. 

 

2.2.1. Mass Isotopomer Distribution 

The 13C isotope labeling studies basically target a set of metabolites which can be 

quantitatively measured in a given experimental setup. The unfragmented metabolite 

fraction is called the parent fraction. The metabolite fragments that arise from the 

fragmentation of the parent fractions are called partial fractions.  A fraction, x, without 

any label (13C), and, having a molecular weight m, is denoted as xm. When any/all of the 

carbon atoms of the fraction x, has 13C label incorporated, then this is denoted as xm+i, 

where i is the number of 13C labeled carbon atoms present in the respective fragment.   

Mass isotopomer distributions (MID) are vectors of abundances of various mass 

isotopomers of the parent and partial fraction of any metabolite. CalSpec calculates the 

MIDs according to equation 1.  

 

 

                                                                               Equation 1 
 

2.2.2. Automation of calculation of Mass Isotopomer Distribution 

Metabolic flux analysis is useful when applied in comparative studies. Thus experimental 

and computational tools for efficient metabolic flux analysis on a broad level are highly 

desired. Efficient flux analysis on a broad level, however, requires a straightforward 

approach that can be parallelized and automated for all steps involved. A time-consuming 
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and error prone step in the whole procedure of metabolic flux analysis is the extraction of 

labeling patterns from mass spectra, which is has been done manually, so far. Manual 

processing of these MS data sets is highly time-consuming and subject to error. The 

CalSpec software tool addresses this problem by automatic processing of MS spectra. It 

has been tested and applied to gas chromatography/mass spectrometry (GC-MS) analysis 

of t-butyldimethylsiloxy (TBDMS)-derivatized amino acids. Amino acids have been 

shown to provide valuable labeling information for flux calculations in 13C tracer 

experiments [Wittmann1999, Daumer2000]. CalSpec is especially useful for routinely 

analyzing samples derived from protein hydrolysates or cultivation supernatants, for 

example. It should be noted that care has to be taken regarding isobaric interference of 

the target analytes with other compounds, which might occur in highly complex mixtures 

such as cell extracts, for example. CalSpec could not detect the interference of the target 

analytes with other compound, unless they exhibit low abundances compared to the total 

fragment abundance which can be detected as a bad peak signal.  

 

2.2.3.  Implementation  

CalSpec automatically performs identification of specified analytes in the MS spectrum 

and the subsequent quantification of labeling patterns. An overview on the steps involved 

in the data processing by CalSpec is given in Figure 2. 

 

 

Figure 2 CalSpec data processing schema. 
 

The software module is flexible and can be easily adapted to variants of MS 

measurements. The module was developed and tested for GC/MS analysis of TBDMS-
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derivatized amino acids using a GC with HP-5MS capillary column (5% 

phenylmethylsiloxane diphenylpolysiloxane, 30 m × 250 µm, electron impact ionisation 

at 70 V and a quadrupole detector; Agilent Technologies, Waldbronn, Germany) as de-

scribed previously [Wittmann2002]. The instrument was equipped with MSD 

Productivity ChemStation software (G1701C, Rev. Code 00.01; Agilent Technologies) 

generating specific data files (*.ms files). These data files are first converted into comma-

separated value (*.csv) files using a macro that was supplied by Agilent Technologies 

and further modified by us. Corresponding macros must be developed to use the program 

with non-Agilent systems. 

The tool has an initial step for conversion of the *.ms file format originating from the 

GC-MS system into a *.csv file. In this step, a widely used platform independent file 

format is generated that can be further processed.  

In the next step, identification of the amino acid TBDMS-derivatized fragments present 

in the sample is carried out using the presence of typical mass-to-charge (m/z) signals 

observed in the spectra. In this way, the sample can be checked for the presence of 

specified analytes and thus, the preceding experimental protocol can be evaluated. For 

identification, the user should modify (i) the elution time (Te) of an analyte in the GC run, 

and (ii) the m/z values of corresponding specific ion clusters to be observed, in the 

param.txt parameter file according to the format. Table 2 lists the standard parameters 

used for individual amino acid fragments, in CalSpec. If the user has a different set of 

parameters, then it should be defined in the param.txt before running the CalSpec 

program. Parameters are defined in comma separated .txt file where the first element in a 

row is amino acid derivative elution time and the subsequent elements in the row are the 

molecular weight of individual fragments coming from that amino acid, after 

fragmentation steps (see table 2). These parameters are used to check for the presence of 

an analyte. Identification of peaks is currently performed in a window of (Te - 0.25) to (Te 

+ 0.25) min for all analytes. In each time window, the spectrum is scanned at the speci-

fied m/z values, whereby the user can define a threshold for each signal that has to be 

exceeded to indicate presence of the corresponding analyte. In this way, signals with low 

abundance can be excluded that are subjected to interference with background noise and 
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therefore should not be considered for flux estimation [Daumer2000]. 

 
Figure 3 Fragmentation of TBDMS-derivatized amino acids.  The amino acid with its specific side chain 
(R) is in gray. Fragmenting at the denoted positions leads to the following fragments: M = Molecular 
weight of parent fragment (a) methyl group dissociation; (b) tert-butyl group dissociation; (c) C(O)O-
TBDMS ion dissociation; (d) the double silylated fragment and the side chain (sc)+, consisting of R and 
possibly further TBDMS groups dissociation; (e) CO of the amino acid and a tert-butyl group (grouped 
within the dashed line) dissociation.(Nanchen 2006) 
 
To ensure the presence of an analyte, the specific m/z values, correlating to typical 

fragments such as [M0], [M1], or [M2] for TBDMS-derivatized amino acids in the time 

window should exceed the threshold set.  

! Elution time, M0, M1, M2, M3, 

12.18,158,232,260 

12.83,218,246 

15.40,186,260,288 

16.55,200,274,302 

17.37,200,274,302 

18.20,184,258,286 

23.20,218,292,320 

23.91,288,362,390 

24.59,302,376,404,159 

26.09,234,308,336,302 

27.71,316,390,418,302 

30.24,330,432 

31.00,302,315,417 

32.45,329,431,488 

34.77,414,442 

36.95,196,338,440 

37.20,517,545 

37.57,364,438,466,302 

*  

Table 2 Parameter file “ param.txt”. The first element of a row is the elution time for a particular amino 
acid fragment in gc-ms equipment and the rest of the elements of the row stands for m/z ratios of unlabeled 
fragments for a given amino acid (like [M0]+0, [M0]+0, or [M0]+0) 
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[M0], [M1], [M2] etc are the typical fragments obtained after cleavage of the parent 

fragment by dissociation of side chains of varying molecular weights like 57 D(tert-butyl 

group), 159 D(C(O)O-TBDMS), 302 D(double silyl fragment) etc. [Figure 3]. Table 3 

lists the amino acid fragments and all of their labeled subfragments identified. 

Amino acid 

fragment Mol. 

Wt.             

Fragments 

identified 

Amino acid 

fragment 

Fragments 

identified 

Ala  158 M[0]+[0,1,2] Asp 316 M[0]+[0,..,3] 

Ala  232 M[1]+[0,1,2] Asp 390 M[1]+[0,..,3] 

Ala 260 M[2]+[0,..,3] Asp 418 M[2]+[0,..,4] 

Gly 218 M[0]+[0,1] Asp 302 M[3]+[0,1,2] 

Gly 246 M[1]+[0,1,2] Glu 330 M[0]+[0,..,4] 

Val 186 M[0]+[0,..,4] Glu 432 M[1]+[0,..,5] 

Val 260 M[1]+[0,..,4] Asn 302 M[0]+[0,1,2] 

Val 288 M[2]+[0,..,5] Asn 315 M[1]+[0,..,3] 

Leu 200 M[0]+[0,..,5] Asn 417 M[2]+[0,..,4] 

Leu 274 M[1]+[0,..,5] Lys 329 M[0]+[0,..,5] 

Leu 302 M[2]+[0,..,6] Lys 431 M[1]+[0,..,6] 

Ile 200 M[0]+[0,..,5] Lys 488 M[2]+[0,..,6] 

Ile 274 M[1]+[0,..,5] Arg 414 M[0]+[0,..,5] 

Ile 302 M[2]+[0,..,6] Arg 442 M[1]+[0,..,6] 

Pro 184 M[0]+[0,..,4] His 196 M[0]+[0,..,4] 

Pro 258 M[1]+[0,..,4] His 338 M[1]+[0,..,5] 

Pro 286 M[2]+[0,..,5] His 440 M[2]+[0,..,6] 

Met 218 M[0]+[0,..,4] Gln 517 M[0]+[0,..,4] 

Met 292 M[1]+[0,..,4] Gln 545 M[1]+[0,..,5] 

Met 320 M[2]+[0,..,5] Tyr 364 M[0]+[0,..,8] 

Ser 288 M[0]+[0,1,2] Tyr 438 M[1]+[0,..,8] 

Ser 362 M[1]+[0,1,2] Tyr 466 M[2]+[0,..,9] 

Ser 390 M[2]+[0,..,3] Tyr 306 M[3]+[0,1,2] 

Thr 302 M[0]+[0,1,2] Phe 234 M[0]+[0,..,8] 

Thr 376 M[1]+[0,..,3] Phe 308 M[1]+[0,..,8] 

Thr 404 M[2]+[0,..,4] Phe 336 M[2]+[0,..,9] 

Thr 159 M[3]+[0,1,2] Phe 302 M[3]+[0,1,2] 

Table 3 Amino acid fragments identified by CalSpec. 
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For example, for the amino acid fragment ala_158 (alanine with mol.wt. 158), CalSpec 

searches for the unlabeled (i.e. ([M0+0)/([M1]+0)/([M2]+0) ) fragment, 1 carbon labeled 

([M0]+1)  and 2 carbons labeled ([M0]+2) [Figure 3].This is denoted in an abbreviated 

manner in table 3, as M[0]+[0,1,2]. First, abundance levels of different mass fractions of 

the analytes are calculated. It is known that the high resolution of GC separation can lead 

to isotope fractionation, i.e. gradients for the relative abundance of different mass 

isotopomers over a peak [Daumer2000]. To correctly extract labeling information from a 

peak, all mass scans performed by the MS detector during the elution of the peak have to 

be taken into account. CalSpec therefore integrates the different m/z signals, by 

calculating mean abundances for all mass isotopomer fractions over the entire peak. The 

automated specification of the time window ensures that the same signals are considered 

in every measurement. By contrast, manual integration is error prone and tedious. The 

output file is generated, which contains a list of the specified analytes, information about 

their presence, and the abundance of mass isotopomer fractions. This file has *.xls format 

and therefore can be easily imported into any text editing application. 

 

2.2.4.  Results  

The developed software tool, CalSpec, is useful for efficient processing of 13C labeling 

data from MS measurements in 13C flux analysis [Talwar2003].  

CalSpec result file          

Input spectra file: sample_input.CSV 

Elements in row: 

Element 1:  amino acid derivative type, Element 2: mass/charge, Element 3:Molecular weight of 

the fragment, Element 4: abundance[mx]/abundance[m0], Element 5: specific ion abundance 

Element 6: total fragment abundance, Element 7: peak quality warning 

Element 8: detector limit warning abundance>10^8 

  met   320   M[2]+0  1.000000  2877.111111 

 met   321   M[2]+1  1.914343  5507.777778 

 met   322   M[2]+2  1.326794  3817.333333 

 met   323   M[2]+3  0.478605  1377.000000 

 met   324   M[2]+4  0.759816  2186.074074 

 met   325   M[2]+5  0.235885  678.666667  16443.962891   *Bad 

Peak* 

Table 4 Typical result file generated after a CalSpec run.  
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These MS data sets are generated in huge numbers due to (i) replicate measurements of 

one sample to assess the confidence in the measured values and estimation of error; (ii) 

replicate measurements of one experiment to check for isotopic steady-state; or (iii) 

different measurements of one sample with different protocols to obtain additional 

labeling information via alternative fragments. Data processing by CalSpec takes only a 

few seconds per spectrum, whereas the same task requires up to 30 min or more if done 

manually. Table 4 is an example of a part of one such output file generated after CalSpec 

execution. 
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Part II:  Statistical Analysis of the Data 
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Chapter 3 

 

3. Introduction to the statistical analysis of data  

Metabolic profiles can be mined using a range of pattern recognition techniques, 

including hierarchical cluster analysis, principal components analysis, partial least 

squares and neural networks. Furthermore, the metabolic perturbations generated due to 

gene knockouts can be used to classify strains by grouping mutants in clusters if they 

arose from deletions, which are involved in identical or related cellular functions. This 

suggests that a process of defining a phenotype through the global changes induced in 

metabolism could be used to predict the function of genes deleted in a given system 

[Griffin2004]. Raamsdonk et.al. found that yeast mutants involving the deletion of one of 

two genes encoding the same enzyme, 6-phosphofructo-2-kinase, produced identical   

metabolic phenotype, and deletions involving oxidative phosphorylation also clustered 

together. Thus, such a process of defining a phenotype through the global changes 

induced in metabolism may be used to predict the function of genes deleted or up 

regulated in a given system through comparative metabolomics [Raamsdonk2001, 

Gareth2004]. In the present study, we have applied various statistical techniques for the 

analysis of metabolic profiles and for understanding the effects of gene knockouts on the 

metabolic network functionality of wild type yeast.  

 

3.1. Description of the data  

Sections 3.1.1-3.1.3 describes the data used in the statistical analysis. We have used the 

physiological profiles, amino acid labeling profiles and the transcript co-response data for 

elucidating the interrelationships in various gene knockouts under study. 

 

3.1.1. Physiological Growth (PG) profiles 

The physiological growth (PG ) profile of a mutant refers to the vector of physiological 

features like yield coefficients, which characterize the growth behaviour of a gene-

knockout mutant. In the present study, we used a data set I comprising 59 single gene 

knockout mutants. Out of these 59 mutants, 37 are grown under conditions in which 13C-

labeled glucose is the sole carbon source, 41 mutants are grown under conditions in 
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which 13C-labeled fructose is the sole carbon source and, analogously, 24 mutants are 

grown with 13C-labeled galactose as the sole provider of carbon atoms. These mutant 

subsets were selected for further computational analysis as they do not exhibit severe 

growth defects under the supply of the specific carbon source and the PG  profiles are 

available from our collaboration partners.  

The physiological profile iPG   for mutant i  consists of the growth rateiµ , the biomass 

yield iYxs, the ethanol yield iYp , the rate of biomass productioniQ  and the rate of ethanol 

production iQp . A dissimilarity matrix is generated using the iPG  for all three growth 

conditions, using the Euclidean distance as a dissimilarity measure. 

 

3.1.2. GC-MS amino acid fragment fractional labeling ( FL ) profiles 

The GC-MS amino acid fragment fractional labeling profile (FL  profile) for a mutant is 

a vector of fractional labelings of selected TBDMS [Tert-butyldimethylsilyl] amino acid 

derivatives and the respective mass fractions of these amino acid derivatives. For 

example alanine has two fractions namely ala_260 and ala_232. Other amino acid 

fractions which are quantified using the GC-MS spectra are gly_246, val_288, val_260, 

val_186, ile_200, pro_286, ser_390, ser_362, ser_288, thr_404, thr_376, phe_336, 

asp_418, glu_432, arg_442, arg_414 and tyr_466. For an amino acid fraction with three 

carbon atoms, the fractional labeling is calculated as follows: 

( ) ( ) ( ) ( )[ ] 33*32*21*10*0 +++++++= mmmmFLi                                             Equation 2 

Where i denotes the index number of the fraction, m  stands for the molecular weight of 

the thi fraction (like [M-57], [M-85], [M-159] etc.) and ( )0+m  denotes the intensity of 

the gc-ms peak (i.e. count associated with the signal) (known as abundance henceforth) 

of the unlabeled thi  amino acid fraction. Similarly ( )1+m  is the abundance of the amino 

acid fraction where exactly one carbon is labeled (13C). 

 

3.1.3. Transcript co-response data  

An important advance in the area of reconstruction of function relationships among genes 

is the elucidation of transcriptional units which are characterized by correlated changes in 

the mRNA expression levels. Transcript co-response profiles are the basis for the attempt 
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to deduce functional relationships between genes from correlations in the corresponding 

mRNA expression levels.  CSB.DB is a publicly accessible systems biology database for 

the analysis of large-scale transcript co-response data [Steinhauser2004a]. We 

downloaded from the CSB.DB database the correlation coefficient (ρ ) for all-against-all 

pair combinations of the genes in the mutant set I under study.  The implicit assumption 

here is that common transcriptional control of genes is reflected in corresponding, 

synchronous changes in transcript levels [Steinhauser2004].  

 

3.2. Analysis of metabolic profiling data using clustering algorithms  

Once quantitative datasets are obtained using high throughput techniques, there is a wide 

spectrum of data-analysis strategies that can be pursued with metabolite profiles 

[Roessner2001, Roessner-Tunali2003, Sauter1988, Allen2003, Brindle2002, 

Huhman2002]. The fundamental approach is to simply compare the abundance of a 

metabolite between an experimental and a control sample, and to use standard statistics to 

assess the significance of differences. These approaches can then be extended by one 

dimension in order to look at correlations in abundance of individual metabolites across 

different samples [Kose2001]. In recent past, a lot of interest has been focused on 

grouping approaches for whole metabolite profiles [Roessner2001, Fiehn2000, 

Huhman2002, and Kose2001]. 

 

3.2.1. Methods  

In general, clustering algorithms aggregate observations into groups, henceforth called 

clusters, such that the pairwise dissimilarities between observations in the same cluster 

are lower than those of observations assigned to different clusters [Jain1999]. Generally, 

various clustering methods fall under either partitional or hierarchical clustering 

technique [Figure 4]. A partitional clustering algorithm obtains a single partition of the 

data instead of a clustering structure, such as the dendrogram produced by a hierarchical 

technique. 

There are three types of clustering algorithms combinatorial, mixture modelling and 

mode seeking. Combinatorial algorithms do not assume any probability model in the 

reference data whereas mixture modelling algorithms treat each data point as a sample 
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from some population described by a probability density function [Hastie2001]. Mode 

seeking algorithms are nonparametric in nature and directly estimate distinct modes of 

the probability density function.  The squared error technique belongs to the partitional 

algorithms category, and minimizes the squared error for a clustering m  of a observation 

set l  (containing k clusters) is  
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where j
ix  is the thi  observation belonging to the thj  cluster and jc  is the centroid of the 

thj cluster [Jain99].  

 
Figure 4 Clustering algorithms [Jain99] 
 

The k -means clustering algorithm is the simplest and commonly used algorithm 

employing a squared error criterion [McQueen 1967]. It starts by partitioning the input 

points into k  initial sets (either randomly, or using some heuristic), followed by the 

calculation of mean point (centroid) of each set. The algorithm follows the following two 

steps iteratively. In the first step, it calculates new partitions by associating each input 

point to the closest centroid. In the second step, the cluster centers are recalculated using 
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the new partitions. This is iterated until convergence, e.g. until there is no reassignment 

of any pattern from one cluster to another, or until the squared error ceases to decrease 

significantly after some number of iterations. 

 

3.2.1.1. Supervised and unsupervised learning algorithms  

Learning algorithms can be generally divided into two classes namely supervised 

learning algorithms and unsupervised learning algorithms. Supervised learning 

algorithms use the response variable to guide the learning process whereas unsupervised 

learning algorithms look as how the original data is clustered with out any knowledge of 

response variables.  

Supervised methods are powerful methods that can be applied if one has some previous 

information about which genes are expected to cluster together. In these cases by 

selecting an initial number of cluster (k ), one could perform k –way classification. The 

Support Vector Machine (SVM) method is one such popular example of supervised 

learning methods [Brown2000, Quackenbush2001]. SVMs map the input vector x  into 

high- dimensional feature space Z through some nonlinear mapping, chosen a priori. In 

this space, an optimal separating hyperplane is constructed for data classification.  

Unsupervised learning methods work with the observed patterns iY . Each pattern is 

usually regarded as an independent sample coming from the underlying unknown 

probability density function )(YP . For example, density estimation methods like 

Bayesian networks, and feature selection techniques try to directly identify statistical 

regularities/irregularities in the input data [Grenander1976, Barlow1989, and 

Nowlan1990]. In the present thesis, we have applied the Partitioning Around Medoids 

(PAM) algorithm (sec. 3.2.1.2) and the hierarchical clustering algorithm (3.2.1.3), both of 

which belong to unsupervised clustering techniques.  

 

3.2.1.2. Partitioning Around Medoids algorithm  

Partitioning around medoids (PAM) was originally introduced by Kaufman and 

Rousseeuw [Kaufman1990]. The general idea of the PAM algorithm is based on the 

search for k  representative objects or medoids among the observations of the dataset. 

These observations should represent the structure of the data.  After identification of a set 
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of k  medoids, k   clusters are constructed by assigning each observation to the nearest 

medoid. The objective is to find k   representative objects which minimize the sum of the 

dissimilarities of the observations to their closest representative object. We use the PAM 

function as defined in the statistical programming environment R [R2005].  

For an arbitrary dissimilarity matrix, PAM aims at minimizing the sum over all objects of 

the distances to the closest of k prototypes [Kaufman1990]. This objective functions is 

locally optimized in two steps. In the BUILD phase, initial prototypes are chosen. In the 

SWAP phase, potential single replacements of prototypes with other data points are 

considered iteratively. Out of all pairs of objects, in which one is a prototype and the 

other is not, the swap (if any) that decreases the objective function most, is made. The 

algorithm is well suited for metabolic profiling datasets since it combines the flexibility 

of hierarchical clustering regarding arbitrary similarity matrices with the optimization 

approach of k-means. 

 

3.2.1.3. Hierarchical clustering algorithm 

In hierarchical agglomerative clustering, each mutant is initially assigned to a separate 

singleton cluster [Jain1999].  Then, iteratively, the two closest clusters in terms of the 

distance are joined, forming a new node of the clustering tree. The similarity matrix is 

updated with this new node replacing the two joined clusters. This process is repeated 

until only a single cluster remains. In each repeat step, the updated similarity matrix is 

calculated using the mutant dissimilarity between the mutants from the two joined 

clusters. The average linkage uses the average distance, single linkage the smallest and 

the complete linkage the largest distance. Hierarchical clustering is the most popular 

clustering algorithm in diverse areas like DNA microarray analysis due to the easy 

visualization of the cluster through a dendrogram [Figure 6]. In such a plot, a line 

connects clusters when they are joined. The height of this line denotes the distance 

between the clusters. The cluster with the smaller variation is plotted on the left-hand 

side. Another advantage is that this procedure provides a hierarchy of clusterings with the 

number of clusters ranging from one to the number of objects [Rahnenfuehrer2006]. 
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3.2.1.4. Silhouette width 

We used the silhouette width as the measure of quality of clustering. 

The silhouette width is a quantitative measure of the quality of a clustering. Equation 4 

displays the formula for the silhouette width,)(is , for a data point i in cluster x. 

))(),(max(

)()(
)(

iyix

ixiy
is

−=                                                                                                                 Equation 4 

 

where mutant i belongs to clusterx ; )(ix is the average dissimilarity of object i   to all 

members in its cluster  x  and )(iy  is the average dissimilarity of object i   to all 

members of the nearest neighbouring cluster y (i.e. the cluster which has the minimum 

dissimilarity for the data points in cluster x ). The "average silhouette width" for a cluster 

is calculated by calculating the mean of all )(is  values for that cluster. The average 

silhoutte width over the entire mutant set is denoted by s. It is calculated as an average of 

the “average silhouette width” for all the clusters.  

 

3.2.2.  Results of clustering methods 

Unsupervised learning methods have been extensively applied in studies on high 

throughput DNA microarray data but have not been systematically applied to PG and FL 

profiles. Here, we present the results from an investigation of metabolite profiling data 

with PAM and HC clustering algorithms [Hastie2001]. The objective is to partition 

metabolic profiles corresponding to different mutant sets into groups with higher 

similarities among mutants within a group than between mutants from different groups. 

This approach provides a means of estimating the discriminatory power of physiological 

mutant data including growth rate, biomass production, rate of ethanol production and 

rate of product formation. In the present analysis framework, we performed a stepwise 

analysis on four subsets of mutants derived from dataset I, namely: Mutant set totalM  

refers to the set of 59 mutants which is used for calculation of FL  profiles from GC-MS 

spectra; mutant set gluM is the set of 37 mutants which are grown under glucose 

conditions; mutant set fruM is the set of 41 mutants which are grown under fructose 
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conditions, and mutant set galM  is the set of 24 mutants which are grown under galactose 

conditions. 

We first start with performing large scale analysis of theFL profiles alone.  

 

3.2.2.1. FL  profile analysis 

We apply following steps, namely step 1 to 3 to the totalM  mutant dataset. Thereafter, we 

also present the results that we obtained for individual analysis steps [1-3] in the current 

section. 

 

Step1: Hierarchical clustering of mutant settotalM , using FL  profiles. In this step we study whether the 

overlap in the biosynthetic pathways of amino acids would result in the overlap in the labeling pattern of 

fragments originating from these biosynthetically linked amino acids. Also, we study whether this 

association between FL  profiles of biosynthetically linked amino acids could be used in clustering of 

related mutants.  

 

Step 2: Analysis of biosynthetically linked amino-acid fragments using corresponding 

FL  profiles. In this step, we analyze whether the amino acid fragments which are linked by precursor-

product relationship, also show similar FL  profiles or not.  

  

Step 3: Estimation of the optimal number of clusters in mutant sets: gluM , fruM  and galM , using PAM 

and HC; In this step, we apply PAM and HC algorithms on the mutants grown with diverse carbon sources. 

The basic idea is to identify whether the mutants which cluster together, also have some functional 

relationship, or whether we can make certain hypothesis about the possible functional relationships.  

 

 

Analysis of step 1 results: Hierarchical clustering of the mutant set Mtotal, using FL 

profiles. 

FL  profiles show low variance among functionally closely related mutants. We analyzed 

the complete FL  profile for each mutant for the mutant set totalM  (Table 1). We found 

that the complete FL  profile does not show statistically significant differences among the 

profiles obtained for the reference strain and for the functionally closely related mutant 

set totalM . This observation is plausible because all the mutants in this set are knock-outs 
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of known or putative regulators of central carbon metabolism in S. cerevisiae.  Figure 5 

represents the box plot of FL  profiles for entire mutant set of 59 mutants. This is in 

agreement with the results presented in a related publication by Gombert et.al. 

[Gombert2001]. 

 

Figure 5 FL Variance plot for 57 mutants grown under aerobic conditions. The x-axis denotes a fractional 

labeling percentage labeling of individual fragments as ( ) ( ) ( ) ( )[ ] NnmnmmmFLi ++++++++= *..2*21*10*0 , 

where n is the number of 13C in a given fragment, N  is the total number of carbon atoms in a fragment, 

)( nm+  refers to the intensity of GC-MS peak of the molecular weight= m+n. The y–axis denotes the 

amino acid fraction with the corresponding molecular weight (using the notation introduced in Section 
2.2.3) 
 

Analysis of step 2 results: Analysis of biosynthetically linked amino acid fragments 

using corresponding FL  profiles. 

Amino-acid fragments which are in a precursor–product relationship also show close 

correlation in the FL  profiles. We found that amino-acid fragments which are linked 

biosynthetically also are clustered into close proximity when the FL  profile for the 

mutant spectra is used for hierarchical clustering [Figure 6].  
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Figure 6 Dendrogram of FL profiles of amino acid precursor- product network components 
 

Hierarchical clustering plot using amino acid FL  profiles for 57 mutants. The y-axis 

denotes the separation among the clusters; the x-axis denotes the respective clusters from 

the smallest variation (left) to largest variation (right). Five sets of biosynthetically 

linked amino acids fragment denoted in the plot are: The first set (colored in blue) 

consists of Alanine fragment with molecular weight 158 D, represented as Ala_158, and  

Pro_286 , Ser_288. The other four sets are: II (colored in green): Glu_432, Ser_390; III 

(colored in yellow): Phe_336, Phe_234, Ala_260, Gly_218; IV (colored in red): Thr_376, 

Asp_302, V: Ala_232, Ser_362 (colored in pink). 

This provides evidence for tight metabolic coupling of amino acids which are in a 

precursor-product relationship. For example, valine and alanine fragments are used for 

deciphering the compartmentation of pyruvate and acetyl-CoA by one such precursor- 

product relationship [Falco1985]. The quantitative information on the enzyme activities 

could also be estimated by studying the labeling profiles of corresponding amino acid 

fragments. It is already established that the activity of malic enzyme (Mae1p) can be 

estimated by quantitative analysis of the FL  profiles of pyruvate and 

phosphoenolpyruvate [Boles1998].  

 

Analysis of step 3 results: Estimation of the optimal number of clusters using PAM 

and HC. 

In this step, we compute the optimal number of clusters in our datasets, using the 

clustering algorithms PAM and HC. Initially, we calculate a dissimilarity matrix,D  using 
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FL  profiles for each mutant. Then, we calculate the silhouette width s [see   3.2.1.4]. By 

construction, s lies in the interval [1, -1]. In our setting, clusters with high silhouette 

values have the property that the dissimilarity among mutants within the cluster is much 

lower than the dissimilarity between mutants belonging to different clusters. High 

silhouette widths (generally silhouette width in the range of 0.7-1) give us confidence in 

the assignment and elucidation of functional association, if any, among mutants 

calculated using solely the FL profiles. 

Here we present the results for the cluster analysis ofFL  profiling data for three sets of 

mutants, namely gluM , fruM , and galM . There is overlap among the mutant sets 

whenever a mutant shows considerable growth behaviour in several different conditions. 

galM  is the smallest mutant set mainly because the majority of the mutants were slow 

growers under galactose conditions. 

gluM  leads to s values of 0.31 and 0.36 under PAM and HC, respectively. Hence the 

quality of this classification is rather weak and resulting clusterings contain many small 

clusters (9 with PAM and 10 with HC) and singletons [Figure 7]. 

Figure 7 presents the results of clustering of mutants grown with glucose as the sole 

carbon source. The graphs on the top show the average silhouette widths in dependence 

of the number of clusters. The histogram on the bottom shows the silhouette widths of 

knockouts in the best clustering. N : denotes the number of mutants, andjC : the optimal 

number of clusters. 
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Figure 7 FL profiles based differentiation of mutant set gluM . 

 

The s values of 0.36 and 0.31 for PAM and HC forfruM  point towards a weak clustering 

among the mutants and lead to the conclusion thatFL data is not sufficiently 

discriminative and gives the same results as for the glucose conditions [Figure 7]. 

Figure 8 presents the results of clustering of mutants grown with fructose as the sole 

carbon source. The graphs on the top show the average silhouette-widths in dependence 

of the number of clusters. The histogram on the bottom shows the silhouette widths of 

knockouts in optimal clustering. N : number of mutants; jC : optimal number of clusters. 

 



  

 42

 

 

Figure 8 FL profiles based differentiation of mutant setfruM . 

 

Figure 9 presents the results of clustering of mutants grown with galactose as the sole 

carbon source. The graphs on the top show the average silhouette widths in dependence 

to number of clusters. The histogram on the bottom shows the silhoutte widths of 

knockouts in optimal clustering. N : number of mutants; jC : optimal number of clusters. 

In the case of growth with galactose too, we found the s to be 0.33 and 0.42 for PAM 

and HC clustering respectively. The clustering results are indicative of the weak grouping 

as the silhouette width is in the order of 0.5 s units. The s value equal to or less than 0.5 

indicates bad clustering. All three mutant sets grown under glucose, fructose and 

galactose show similar FL  profiles. The above result points to a need for integrating 

complementary sources of data which strengthen the confidence in the predicted 

functional association among the mutants.  
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Figure 9 FL profiles based differentiation of mutant set galM  

 
3.2.2.2. PG  profiles  

In this preliminary study, we apply the PAM and HC algorithms to the PGprofiles of a 

dataset of 109 mutants [refer appendix 3]. The silhouette width with PAM and HC 

algorithm was found to be 0.45 and 0.44 respectively. The PG profiles under glucose and 

fructose conditions show higher similarity than with the PG profiles under galactose 

conditions [Figure 9]. PG  profiles provide global features which must be complemented 

with other heterogeneous data types, for mutant differentiation. PG  profiles alone were 

not sufficient for mutant differentiation. Hence, in the next step, we performed an 

integrated analysis of PG  profiles and transcript co-response profiles under glucose, 

fructose and galactose conditions. 
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Figure 10 PG profile  based differentiation of mutant set gluM  

 
3.2.2.3. Pairwise correlation analysis of PG profiles and transcript co-response 

correlation analysis 

Here we investigated whether the similarity at the level of PG  profiles for a set of 

mutant is also reflected in transcript co-response correlation between gene expression 

profiles of these mutants?  

First we downloaded the transcript co-response data from CSB.DB for our mutant set. 

Next, we looked for only those ORF pairs where the co-response profile correlation 

values exceed 0.7. The mutants which show co-response profiles with correlation below 

0.7 were not considered to be significant pairs. The value 0.7 was taken to be the cutoff to 

eliminate any weaker corresponding ORF pairs.  Transcript co-response profiles on their 

own provide a preliminary indication of functional association among mutants. The 

transcript co-response profiles correlation is calculated using experimental data under 

culture conditions and hence there is a need to specifically test the accuracy of 

assignments. 
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We found that 33% of the highly correlated co-response profile mutant pairs also belong 

to the same cluster as given by PG  profile analysis using the PAM and HC algorithms. It 

is important to see that we are able to find association, though weakly so, based on global 

features like fractional labeling and heterogeneous data like transcript co-response 

profiles.  Out of 630 total pairs, 185 mutant pairs show correlation of at least 0.5 on the 

co-response profile level. Out of these, 91 pairs show a co-response profile correlation 

greater than or equal to 0.6 and there exist 29 mutant pairs which show co-response 

profile correlation of at least 0.7. These 29 mutant pairs were further studied as to 

whether there exists a strong correlation at the level of PG   profiles, as well [Figure 11].  

 

Figure 11 Correlation of PG  profile distances and transcript co-response profiles 

 

Figure 11 represents scatter plots of the PG  profile vs. transcript co-response correlation 

under glucose, fructose and galactose conditions, respectively. The x-axis denotes 

pairwise distances for the respective mutant sets, using the PG  profile; the y-axis 

denotes the transcript co-response profiles for all mutant pairs. Out of these 29 mutant 

pairs, 7 mutant pairs were also assigned to the same cluster using the PG  profile 

analysis. We also corrected for multiple testing on the co-response profile data and the 

adjusted p-value was less than or equal to 4.347e-05 using the Bonferroni method. This 

signifies that these p-values relate to the hypothesis that there is a positive correlation 

between the co-response profile correlation values of mutant pairs. 

We performed a Fisher test for the significance of the hypothesis that mutant pairs which 

show low values of Euclidean distance in thePG  profile space show higher correlation in 

the co-response profile space. We specifically tested for the null hypothesis that PG  

profile correlation lower than mean (PG  correlation) and co-response profile correlation 

higher than mean (co-response profile correlation) are independent.  
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We found statistically significant p values for all three sets gluM , fruM , and galM  [Fig 

10], confirming the dependence between PG  profiles and co-response profiles.. The p-

values are p=0.0455 for glucose, p=0.0017 for fructose, and p=0.0404 for galactose. 

Table 5 enlists  all the 9 pairs of mutant ORF sets which showed high correlation in co-

response profiles and close correlation in PG  profiles. 

ORF Set Confirmed 

biological 

relationship (+) 

Suggested 

biological 

relationship (*) 

No hypothesis 

on biological 

relationship (-) 

YIL107C, YIL154C  *  

YOL136C, YIL107C +   

YIL162W, YIL154C   - 

YKL062W, YML054C   - 

YKR097W, YBR018C +   

YBR184W, YKL062W   - 

YDR043C, YIL107C  *  

YDR073W, YGL035C  *  

YGR194C, YKR097W   - 

 
Table 5 ORF pairs showing high correlation in co-response profiles and PG profiles 
 
YIL107C [SGD: S000001369] and YIL154C [SGD: S000001416] 

YIL107C is a knockout of the gene coding for PFK26 [Swiss-Prot: P40433] andYIL154C 

is a knockout of the gene coding for IMP2 [Swiss-Prot: P46972]. 

IMP2 is a known transcriptional coactivator. It is known that IMP2 [Swiss-Prot: P46972] 

is involved in glucose depression as well as in regulation of GAL genes. 

The role of IMP2 in the galactose metabolism is predicted to be partially dependent on 

MIG1p along with NRG1p. However, disruption of MIG1p and NRG1p only partially 

relieves glucose repression of GAL genes, suggesting the existence of additional 

functional partners of IMP2. PFK26 is not needed to maintain adequate glycolytic 

activity but, rather, is concerned with maintaining the homeostasis of metabolite 

concentrations. It is probable that PFK26 activity is regulated by IMP2 for maintaining 

metabolite homeostasis. 
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YOL136C [SGD: S000005496] and YIL107C [SGD: S000001369] 

Another pair which shows high correlation between co-response profile and PG profile is 

YIL107C and YOL136C. This pair is involved in catalysis of the same metabolic reaction 

namely the phosphorylation of fructose-6-phosphate to fructose-2, 6-bisphosphate using 

ATP. YOL136C encodes for PFK27 which has far less enzymatic activity than PFK26, 

but nevertheless, the same cellular role. This is a positive indication that the present 

methodology can detect meaningful and close functionally associated ORFs. 

YIL162W [SGD: S000001424] and YIL154C [SGD: S000001416] 

Also we found a close link among YIL162W coding for SUC2, and YIL154C. These 

might have a functional association but we do not have any experimental evidence yet 

confirming the finding. 

YKL062W [SGD: S000001545] and YML054C [SGD: S000004518] 

YKL062W is a transcriptional activator related to Msn2p and is activated in stress 

conditions. YML054C codes for a membrane protein active in mitochondrial 

intermembrane space. There is no known evidence of activity of YML054C in the MAPK 

signaling pathway. YKL062W is a poorly characterized gene and the gene product is 

involved in MAPk signaling pathway. 

YKR097W [SGD: S000001805] and YBR018C [SGD: S000000222] 

YKR097W is a key enzyme in gluconeogenesis and its transcription is repressed by 

glucose. YBR018C encodes Galactose-1-phosphate uridyl transferase, synthesizes 

glucose-1-phosphate and UDP-galactose from UDP-D-glucose and alpha-Dgalactose-1-

phosphate in the second step of galactose catabolism. 

YBR184W [SGD: S000000388] and YKL062W [SGD: S000001545] 

YBR184W encodes a putative protein of unknown function. YKL062W is a 

transcriptional activator related to Msn2p. YBR184W shows physical interaction with 

Rad3p, Cnm67p and Jsn1p which show growth defects on fermentable carbon sources. 

YDR043C [SGD: S000002450] and YIL107C [SGD: S000001369] 

YDR043C mediates glucose repression and negatively regulates a variety of processes 

including filamentous growth and alkaline pH response and is a known regulator of 

glucose-repressed genes.YIL107C plays a key role in transcriptional regulation involving 

protein kinase A. 
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YDR073W [SGD: S000002480] and YGL035C [SGD: S000003003] 

The YGL035C knockout mutant leads to partial repression of glucose-regulated 

transcripts. YDR073W encodes for a subunit of the SWI/SNF chromatin remodeling 

complex involved in transcriptional regulation. YDR073W is known to have a functional 

interaction with the components SNF2p, SNF11p, and SNF12p of the SNF chromatin 

remodelling complex involved in transcriptional regulation. YGL035C gene product is 

regulated by SNF1p protein kinase by phosphorylation of MIG1 repressor. We propose a 

probable functional association among YGL035C and YDR073W via SNF1p. 

The last mutant pair found were YGR194C [S000003426] and YKR097W [S000001805] 

and there is no conclusive evidence or probable functional relationship between these two 

mutants. 

Out of 9 ORF sets, we were able to find positive confirmed biological relationship. For 3 

ORF sets, we were able to suggest a probable functional relationship. For the rest 4 ORF 

sets, we were not able to find any biological relationship.    

 

3.2.3. Discussion of clustering algorithms results 

 Using integrated analysis of co-response profiles and PGprofiles, we found that high 

co-response profiles correlation tends to come with lower distance of the mutant PG  

profiles, for the present study. In the future, larger amounts of data could be used to 

further corroborate the finding. The mutant pairs which have high co-response profile 

correlation but are assigned to different clusters were not studied further since our 

method is directed towards mutant differentiation using combined analysis of PG  

profiles and transcript co-response profiles data. Additionally, we found that FL profiles 

were not sufficient to derive any functional associations among the mutant set under 

study. For the present set of mutant set, we could not study the FL profile and 

PGprofiles together as the mutant dataset under study is different in these two cases.   

High-throughput metabolic profiling studies are becoming increasingly useful for 

systematic analysis of cellular systems and provide a valuable means for quantification of 

cellular pathway activity. The present work provides a robust method for such studies. 

The present method comprises a procedure developed in-house for automation of GC-MS 

spectra analysis, quantification of summed fractional labeling of proteogenic amino-acid 
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fragments in order to estimate metabolite concentrations which are vital indicators of 

state and extent of activity of certain subpathways and branch points in metabolic 

networks of S. cerevisiae, estimation of the extent of mutant association based on the 

global features growth rateµ ,biomass yield xsY , ethanol yield pY  rate of biomass 

production sQ  and rate of ethanol production pQ , followed by integration of transcript 

co-response profiles for mutant differentiation. In this framework, we have introduced a 

scheme for estimation of cluster quality in analysis of metabolic profiling data. This 

measure assesses whether the clustering is useful or is a mere weak assembly of distant 

mutant ORFs. We confirmed that the fractional labeling (FL ) is a useful procedure for 

obtaining insights into the activity of a number of sub-pathways. In particular, we could 

uncover similarities among the FL  profiles of those fragments which have biosynthetic 

linkages, such as precursor-product relationships. We show that by integrating transcript 

co-response profiles with PG  profiles one can identify functionally related ORF sets and 

could use this to generate plausible hypotheses about the functional roles of genes 

involved in metabolism and regulation of Saccharomyces cerevisiae central carbon 

metabolism. We proved that by analysis of set of mutants involved in regulating the 

central carbon metabolism.  

This framework can be extended by including in-silico flux estimates, in order to obtain 

greater insights into functional association among genes in eukaryotic organisms, using 

metabolic profiling data. 

As described in the previous sections, we applied unsupervised learning techniques to 

identify characteristic features of a gene knockout under varied carbon sources. However, 

it was found that the unsupervised learning methods produced clustering with silhouette 

widths below 0.5, which indicates the absence of strong clusters [see section 3.2].  To 

overcome this limitation, we developed a novel approach, based on adaptive reweighted 

estimation of mean and covariance (ARW method), which could answer the following 

queries for a given large-scale gene knockout metabolic profiling datasets, even when 

these mutants show can only be clustered weakly:  

1) Given a large-scale data set, which genes knockouts are most distinct 

(unlike/outliers) from the majority of the dataset?  
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2) For every gene knockout, what are the significant features which are characteristic 

of that knockout mutant? 

These questions are routinely asked in large-scale analysis of data originating from high-

throughput techniques like GC-MS, growth profiling, metabolomics etc. The following 

paragraph describes some of these large scale studies and their applications. 

In the last few years, several large-scale profiling studies using yeast have been carried 

out. Many of these studies are done with the goals of predicting the modes of action of 

external metabolites and for characterizing genes of unknown function [Luesch2006]. 

The availability of genome-wide heterozygous/homozygous diploid and haploid gene 

deletion strains fuelled large-scale profiling studies. Fitness profiling on a genomic scale 

with numerous nutrients has resulted in the verification of target pathways such as those 

for lovastatin (HMG), hydroxyurea (small subunit of ribonucleotide reductase) and 

methotrexate (DFR1) [Lum2004, Giaever2004].  Another approach called drug-induced 

haplo-insufficiency (lowering the gene dosage of the gene encoding the drug target 

increases the susceptibility to the drug), is also used to study the deletion mutant fitness.  

Drug-induced haplo-insufficiency occurs when lowering the dosage of a single gene from 

two copies to one copy in diploid cells results in a heterozygote that displays increased 

drug sensitivity compared with wild-type strains [Baetz2004]. 

The basic idea is to determine the abundance of each deletion strain in the co-culture 

using a PCR to amplify the barcodes (“used for knockout identification”) associated with 

each mutant.  Giaever et al found the drug target of tunicamycin using drug-induced 

haplo-insufficiency [Giaever1999]. Another approach is a kind of fingerprinting/pattern 

matching strategy in which gene expression profiles of drug treated cells are compared 

with large scale expression profiles derived from deletion mutants [Hughes2000]. This 

basic assumption is that the “fingerprint” of an active compound on gene expression will 

show resemblance to the profile of mutant strains displaying defects in the targeted 

pathway or in which the target-encoding gene is knocked out.  

In section 3.3, we study the outlier detection methods and their application to metabolic 

profiling data analysis. We developed an approach based on the adaptive reweighted 

estimation for mean and covariance (ARW) method and wrote a routine in the R 
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programming environment which assigns  p-values to all feature combinations in order to 

select the combination that is the most informative feature set for a given gene knockout. 

 

3.3. Analysis of metabolic profiling data using an outlier detection method 

Outliers are regarded as those observations which are found to come from a different 

underlying distribution than the distribution which encompasses rest of the data points in 

the dataset. Outliers are different from extreme values. This is because even when the 

extreme values are far away from the centre they still belong to the same distribution as 

rest of the dataset. The outliers can be either of univariate or multivariate in nature. The 

univariate outliers are usually a result of an experimental error and for their identification 

univariate approaches can be used. The multivariate outliers have a more complex nature 

and cannot be detected by univariate approaches [P.J. Rousseeuw 1987]. Identification of 

multivariate outliers requires multivariate techniques for example projection techniques. 

In a simple case, by projecting objects on one of the axes the outlier tends to be located 

far from the majority of the data, and thus, it can be easily detected. In figure 12, b is 

regarded as a multivariate outlier since none of the projections are sufficient to uncover 

the outlier because of its presence in the data cloud [Daszykowski2007]. 

 

Figure 12 Example of univariate and multivariate outliers (a) a univariate outlier (*) varies in terms of a 
single variable (b) a multivariate outlier (*) is an outlier which involves more than one variable. 
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For a single variable x  its mean,µ , is the sum of all elements divided by their number 

m : 

∑
=

=
m

i
ix

m 1

1µ                                                                                                                                  Equation 5 

However, in the presence of outliers in the data, the mean is not a reliable estimate of the 

data location, and therefore it is said to be a non-robust estimator. Location estimators 

can be divided into two categories, robust and non-robust. The robust estimators aim to 

describe well the location of the majority of the data regardless of data contamination. 

The robustness of an estimator can be described by its breakdown point; a concept 

introduced by Hempel et al. [Hempel1986]. For a finite sample, the breakdown point of 

an estimator is the maximal fraction of outlying objects in the data, even in the presence 

of which the estimator yields acceptable estimates, other than in case of random 

estimator. For instance, the breakdown point of the mean estimator equals 0%, since a 

single outlier can bring the mean to an arbitrary value. There are different types of robust 

estimators. Parametric estimators assume a certain data distribution, for instance a normal 

distribution and thus such estimators simply eliminate outliers. Non-parametric 

estimators are robust in their nature because they do not require knowledge of the data 

distribution at hand.The lack of robustness of the mean estimator can be attributed to its 

least-squares nature. The mean of a random variable is the point minimizing the average 

Euclidean distance to all data objects. This condition is expressed as: 
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where ||…|| is the L2-Euclidean norm. 

The median of the data is a robust alternative to the mean location estimator with a 

breakdown point of 50%, meaning that it takes contaminating 50% of the dataset to 

change the median value. The median of a variable is the middle element for an odd 

number of sorted elements. The median of a variable with an even number of sorted 

elements is the average of the two elements at the closest positions to the half-length of 

the variable.  
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In our study, where the data are multidimensional, i.e. the mutant profiles are described 

by several physico-chemical properties (variables), the data means and medians can be 

computed in a univariate manner, considering each data variable individually. This 

computation yields column means and column medians of the data (coordinate wise 

means and coordinate wise medians), respectively. It is also possible to consider the 

multidimensional nature of the data and the median as an estimate of a center of the 

multidimensional data cloud. The L1-median is a highly robust estimator of multivariate 

data location with a 50% breakdown point [Rousseeuw 1987]. The L1-median is a 

generalization of the univariate median. Although the L1-median seems to be the best-

known multidimensional median, some other exists as well. Robust estimates of location 

as well as other robust estimates can be also derived applying the fuzzy set theory 

[Sârbu2001, Rajkó1994]. When outliers are present in the data, they can influence the 

data mean to a different degree depending on their distance from the data majority. 

 

3.3.1. Methods 

In the section 3.3.1.1., we describe the theory of multivariate outlier detection methods.  

Section 3.3.1.2 gives the theory behind the adaptive reweighted estimator of mean and 

covariance (ARW) method for outlier detection.  

 

3.3.1.1. Multivariate outlier detection methods 

Multivariate outlier detection methods can be grouped into two classes. One class 

comprises statistical methods that are based on estimated distribution parameters. 

The second class comprises data mining methods that are typically parameter-free.  

� Statistical methods based on estimated distribution parameters 

Multivariate robust measures 

The Mahalanobis distance is a widely used distance. It depends on the estimated 

parameters of the multivariate distribution. Given n  observations from a p-dimensional 

dataset, nx  is the mean of the sample, and nC  denotes the covariance matrix, 
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The Mahalanobis distance (M ) for each multivariate data point i, i = 1,…, n , is denoted 

by iM  and given by 
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nii xxCxxM                Equation 8 

 

The data points that have a large Mahalanobis distance are regarded as outliers. There are 

two effects namely masking and swamping effects that can affect the adequacy of the 

Mahalanobis distance in outlier detection.  

Masking effect:  

One outlier masks a second outlier, if the second outlier can be considered as an outlier 

only by itself, but not in the presence of the first outlier. Thus, after the deletion of the 

first outlier the second instance emerges as an outlier. Masking occurs when a cluster of 

outlying observations skews the mean and the covariance estimates toward it, and the 

resulting distance of the outlying point from the mean is small. 

Swamping effect:  

One outlier swamps a second observation, if the second observation can be considered as 

an outlier only under the presence of the first one. In other words, after the deletion of the 

first outlier the second observation becomes a non-outlying observation. Swamping 

occurs when a group of outlying instances skews the mean and the covariance estimates 

toward it and away from other non-outlying instances, and the resulting distance from 

these instances to the mean is large, making them look like outliers. Hadi et al. proposed 

a method to replace the mean vector by a vector of variable medians and to compute the 

covariance matrix for the subset of those observations with the smallest Mahalanobis 

distance [Hadi1992]. A modified version of Hadi's procedure is presented in 

[Penny2001]. Caussinus et al. proposed a robust estimate for the covariance matrix, 

which is based on weighted observations according to their distance from the center 

[Caussinus1990]. Other robust estimators of the location (centroid) and the shape 

(covariance matrix) include the minimum covariance determinant (MCD) and the 

minimum volume ellipsoid (MVE) [Rousseeuw1985, Rousseeuw1987 and Acuna2004]. 

�  Data-Mining Methods for Outlier Detection 
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Data-mining methods are often non-parametric. Typically they do not assume an 

underlying generating model for the data. These methods can be classified into the 

following types: clustering methods, distance-based methods and spatial methods.  

In clustering based methods, clusters of small size (including size 1) are regarded as the 

clustered outliers. PAM [section 3.2.1.2] and Clustering Large Applications (CLARA) 

fall under the category of clustering based methods [Kaufman1990].  

CLARA essentially draws multiple samples from a dataset, applies PAM on each dataset 

and presents the best clustering as the output [Kaufmann1999]. CLARA has the 

advantage of being scalable to large datasets but at the same time it has disadvantages 

e.g. the efficiency of the algorithm depends on the sample size and also a good clustering 

using a sample will not be a good clustering for the entire dataset in case the sample is 

biased.  Distance-based methods regard an observation as a distance-based outlier if at 

least a fraction β of the observations in the dataset are further than r from it [Knorr1997, 

Knorr1998]. These methods have drawbacks including the dependence on a parameter r 

and the lack of a ranking of the outliers. The methods usually have time complexity of 

the order of O (pn2), where p is the number of features and n is the sample size.  

In spatial outlier methods, an outlier is defined as a spatially referenced object whose 

non-spatial attribute values are significantly different from the values of its neighborhood 

[Haining1993]. In other words, where an individual attribute value is not necessarily 

extreme in the distributional sense but is extreme in terms of the attribute values in 

adjacent areas. 

 

3.3.1.2. Adaptive reweighted estimator for multivariate location and scatter: ARW 

algorithm 

Multivariate outlier detection methods largely rely on the distance of the outlier from the 

centroid of the data as well as the shape of the dataset. The size and shape of multivariate 

data are quantified by the covariance matrix. In the majority of the methods, the 

Mahalanobis distance (M ) is used as a distance measure. 

For the normal distribution, the values of 2iM are approximately chi-square distributed 

with mdegrees of freedom (2mχ ). By setting the 2
iM  to certain quantiles of2

mχ , it is 

possible to define ellipsoids that define sets of points having the same Mahalanobis 
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distance [Gnanadesikan1977]. Thus all the points on a given ellipsoid have the same 

Mahalanobis distance to the centroid.   

The presence of single extreme observations which are different from the main data cloud 

has a severe effect on Mahalanobis distance because of the sensitivity of the covariance 

matrix to outliers [Hampel1986, Maronna1998]. To overcome this problem, Rousseeuw 

and coworkers developed a method called minimum covariance determinant (MCD ) 

estimator which is a robust estimator of the covariance matrix C  and the mean t where 

both C  and t  are resistant to the presence of outliers [Rosseeuw1999, Rousseeuw1985].  

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feature 

Index 

Feature 

short 

descriptor 

Feature long descriptor 

1 mue Growth rate 

2 Qs Rate of biomass production 

3 Qp Rate of ethanol production 

4 QO2 Rate of biomass production on oxygen 

5 ala_260 Alanine AAF M.W.=260 

6 ala_232 Alanine AAF M.W.=232 

7 gly_246 Glycine AAF M.W.=246 

8 val_288 Valine AAF M.W.=288 

9 val_260 Valine AAF M.W.=260 

10 val_186 Valine AAF M.W.=186 

11 ile_200 Isoleucine AAF M.W.=200 

12 pro_286 Proline AAF M.W.=286 

13 ser_390 Serine AAF M.W.=390 

14 ser_362 Serine AAF M.W.=362 

15 ser_288 Serine AAF M.W.=288 

16 thr_404 Threonine AAF M.W.=404 

17 thr_376 Threonine AAF M.W.=376 

18 phe_336 Phenylalanine AAF M.W.=336 

19 asp_418 Aspartic acid AAF M.W.=418 

20 glu_432 Glutamic acid AAF M.W.=432 

21 arg_442 Arginine AAF M.W.=442 

22 arg_414 Arginine AAF M.W.=414 

23 tyr_466 Tyrosine AAF M.W.=466 
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Table 6  Feature index and long descriptors. Abbreviation: AAF stands for “Amino acid fragment”; M.W. 
stands for “Molecular weight” 
 

MCD essentially looks for a subset of h  observations out of the total n  observations 

such that the covariance matrix defined by the subset has the smallest determinant. 

Generally methods have a breakdown value of )1/( +mn where n is the number of the 

observations and m  are the number of dimensions [Donoho1982]. MCD looks for the 

ellipsoid with smallest volume that covers h  data points where .2/ nhn <≤ , and has a 

breakdown value of( ) nhn /− . 

ARW is a powerful new method for multivariate outlier detection based on MCD which 

can distinguish between extreme values of a normal distribution and values originating 

from a different distribution (outliers) [Filzmoser2004]. It was originally applied for the 

analysis of geochemical data. The ARW method uses the MCD estimator with nh 75.0≈ . 

The location estimator is calculated as the average of these h  points. The breakdown 

value with nh 75.0≈  is approximately 25%. When the fraction of outliers exceeds 25% 

of the total observations, one would get completely biased estimates [Hampel1986]. iM  

is calculated using the robust estimates of location and scatter and henceforth referred to 

as iRD . 

 

3.3.1.3. Implementation of the ARW algorithm in the R programming environment 

 

         
          INPUT:  

• Physiological growth data and fractional labeling data for all mutants (Table 17 in  
        appendix 1). 
• Feature index refers tonfeat: 1, 2, 3……, 23(see Table 6).  

• Maximum number of  features to be used for all permutations of the parent dataset 
          nfeatsel 
 

        OUTPUT:  
• Most outlying feature set for each individual mutant 
• P-values for all feature combinations from i=1, 2……, 8.  
 

        PROCEDURE: 
• Drawing different combination of features from 1 to nfeatsel, from the parent  

       dataset consisting of nfeatselfeatures using R function, “ nscombinatio ” 

• Applying function, “ arwmy. ”, to calculate the true theoretical chi square distribution 

       followed by its comparison to the distribution coming from the permuted dataset. 
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• Calculation of the p-values for all feature combinations.  
• Measurement of the feature combination (k ) which gives the maximum of the  
       distance from the rest of the dataset, for each mutant. 

3.3.2. Results of outlier detection method (ARW) 

In the present analysis, we were able to find highly significant feature combinations for 

each individual mutant present in the original dataset. This method proves to be a method 

for fast characterization for the metabolic profiling datasets for large scale knockout 

analysis.  

We show that in the absence of strong phenotypic perturbations, for example in our case 

where the metabolic profiles prove not be sufficient in finding any underlying functional 

associations among  majority of the mutant set,  the ARW method can be used for a more 

granular analysis of each individual knockout mutant. Table 7 lists the most significant 

k - features for each individual mutant.   

  

Mutant Min-pval m

i

n

F 

Significant Feature Combination 

ACE2_gal 2.58387E-10 8 Mue, Qs, gly_246, ser_390, thr_404, phe_336, arg_414, tyr_466 

ADR1_gal 4.24879E-11 8 gly_246, val_288,  val_186, ser_390, ser_288, thr_404, thr_376, glu_432 

CAT8_gal 0 2 QO2, ser_362 

CYB2_gal 1.43743E-05 8 ala_260,val_288, ser_288, thr_404, phe_336, asp_418, glu_432 arg_442 

DLD2_fru 1.12875E-11 4 QO2, val_260, val_186, phe_336 

DLD2_gal 6.16483E-10 3 ser_390, ser_288, phe_336 

FBP1_gal 1.89384E-11 5 Mue, Qs, QO2, ile_200, phe_336 

FBP26_gal 0.002912756 3 gly_246, ser_390, thr_404 

GAD1_gal 9.16376E-08 6 QO2, gly_246, val_288, val_260, pro_286, thr_404 

GAL10_fru 1.68532E-13 8 Qs, Qp, ala_260, gly_246, val_260, phe_336, asp_418, arg_414 

GAL10_glc 0.000804473 3 gly_246, ile_200, pro_286 

GAL7_fru 4.32127E-11 3 QO2, phe_336, arg_414 

GAL80_glc 1.42109E-14 1 tyr_466 

GLK1_gal 6.64289E-07 8 ala_260, val_260, pro_286, ser_288, thr_404, asp_418, arg_414, tyr_466 

HXK2_gal 0.000829674 8 val_288, ile_200, ser_362, thr_404, thr_376, phe_336, asp_418, glu_432 

IMP2_fru 4.56749E-06 5 Qs, Qp, ile_200, ser_288, arg_442 

IMP2_gal 7.11391E-08 4 QO2, ile_200, thr_404, phe_336 

LEU4_fru 1.64293E-05 7 Mue, Qp, ala_260, val_260, thr_404, thr_376, arg_442 

LEU4_gal 2.38705E-10 5 ala_260, val_288, ser_390, thr_404, arg_442 
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MAE1_gal 0.001224323 5 ala_260, ala_232, val_260, ser_362, thr_376 

MAL33_fru 8.52123E-07 7 Qs, ala_232, val_288, ser_362, thr_404, thr_376, asp_418 

MAL33_glc 0.01301821 4 Mue, Qp, gly_246, pro_286 

MSN4_gal 3.33067E-16 8 Qp, ala_260, ala_232, gly_246, val_186, ile_200, ser_390, arg_442 

PCK1_fru 1.18469E-07 8 QO2, val_288, val_260, ser_390, thr_376, phe_336, asp_418, arg_414 

PCK1_gal 4.87388E-14 8 Mue, val_260, val_186, ser_390, ser_288, glu_432, arg_442, arg_414 

PFK26_fru 1.76617E-05 8 ala_260, val_288, ser_362, ser_288, thr_376, phe_336, arg_442, arg_414 

PFK26_gal 1.04222E-05 5 gly_246, val_186, pro_286, ser_362, arg_414 

PFK27_gal 8.18322E-07 5 QO2, gly_246, ser_390, ser_362, ser_288 

PGU1_fru 0 3 val_260, ile_200, arg_414 

SFA1_fru 0.004536613 5 ala_260, ala_232, ser_390, glu_432, arg_414 

SFA1_gal 0.002945495 3 QO2, ala_232,  val_186 

SFA1_glc 0.002293606 3 gly_246, ile_200, pro_286 

SIP3_gal 9.08784E-12 8 Mue, ala_232, gly_246, val_288, val_260, pro_286, ser_362, arg_414 

SNF11_gal 0 6 val_186, ile_200, ser_362, ser_288, thr_376, arg_414 

SNF2_fru 3.18552E-10 8 ala_260, ala_232, val_288, val_186, pro_286, ser_288, thr_376, asp_418 

SNF2_glc 0.002467652 2 ile_200, arg_442 

SUC2_fru 1.02178E-06 6 ala_232, val_260, val_186, ser_390, ser_362, thr_376 

SUC2_glc 0 1 tyr_466 

TYE7_gal 1.89204E-08 8 Mue, ala_232, val_288, val_260, val_186, ile_200, ser_390, phe_336 

UGA1_gal 0.003362803 3 ala_232, ser_288, thr_376 

UGA2_fru 4.14022E-08 8 ala_232, val_288, val_260, val_186, ser_390, ser_362, thr_376, phe_336 

UGA2_gal 0.000194988 3 val_288, ser_288, thr_404 

YBR184W_

gal 

8.85803E-12 8 QO2, ala_232, val_260, pro_286, ser_362, ser_288, glu_432, arg_414 

YDR248C_f

ru 

1.24612E-07 8 QO2, gly_246, val_186, ser_390, thr_404, thr_376, phe_336, asp_418 

 
Table 7 List of most significant k - features for each mutant in the mutant set.  min-pval is the minimum of 
the pvalues obtained using the feature combination 8,....,2,1=i . minF is the feature combination which 

show min-pval. Significant feature combination is the feature combination which are most significant (min-
pval) for a given mutant.  
 

We calculate minimum of the pvalues (min-pval) for the feature combinations, 

8,..,2,1=i . The min-pval is that lowest p-value obtained for any given mutant using any 

feature combinations namely, 8,..,2,1=i . Here min-pval denotes the feature combination 

which is the strongest outlier for a given mutant.  Figure 13 denotes a plot of log10(min-

pval) for mutants which are grown in three different experiments (MutFRU, MutGAL 

and MutGLC) namely differing in the type of carbon source used. It can be clearly seen 
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from this plot that in general the MutGLC (Mutants set grown with glucose as carbon 

source) is less discriminatory than the other mutants grown in the other two conditions 

i.e. fructose and galactose.  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 13 Comparison of the log10 (min-pvalues) for the most significant k features combination for each 
mutant in the entire mutant set. 
 

3.3.3. Discussion of outlier detection method (ARW) results 

The ARW method is an efficient method for identifying the most significant features for 

large scale metabolic profiling datasets as well as for comparison of knockout mutants 

under varying experimental conditions. In our analysis, we found that the knockout 

mutant of malic enzyme is a much more significant outlier when yeast is grown under 

glucose than when grown under galactose, thus pointing towards a differentiation of the 

metabolic phenotype. In the figure 14, it is evident that the metabolic profile of the malic 

enzyme when grown with glucose (Figure 14a, pvalue 0.06) shows the most 

differentiating outlier feature combination with 5 features whereas for the malic enzyme 

when grown with galactose show strong outlying behaviour with 3-5 features (Figure 

14b, pvalue ~0.002).  Preliminary investigation of the k- significant features for the malic 

enzyme knock-out in GLC and GAL conditions does reveal a different subset of amino 

acid fragments which are most discriminatory for the individual malic enzyme mutant. 
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(b) 

 

 

 

 

 

 

Figure 14 Malic enzyme (MAE1): plot of min-p values for the malic enzyme grown with glucose (a) and 
malic enzyme grown with galactose as carbon source (b). 8,....,2,1 CCC  refers to the mutants set with 1, 

2,….., 8 feature combinations, respectively.  
It was also shown by Boles et al. that there is an alternate pathway for pyruvate 

metabolism. 
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Figure 15 Analysis of Malic enzyme knockout: MAE_glc (grown with glucose) and MAE1_gal (grown 
with galactose) 
 

They also reported that the malic enzyme shows much clearer phenotype with galactose 

compared to when grown with glucose (Figure 15) [Boles1998]. This is a novel method 

for in-depth and comparative analysis of large scale knockout datasets and is fairly fast in 

terms of computation time. For a set of 5 feature combinations, it takes about 5 hours on 

a single processor pentium P4 machine for calculation of the significant features of all 

knockouts and determination of the most outlying knockout.  
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Part III:  Web server for metabolic network analysis 
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Chapter 4 

 

4. Introduction to metabolic network analysis 

 

4.1. Introduction 

In living cells, the study of chemical transformations of substances is of central 

importance. On an organism level, these chemical transformations form the metabolic 

network specific for that organism. The term “metabolism” comprises of the large 

number of chemical reactions which convert one or more educts into one or more than 

one product, in the cellular environment.  The area of metabolic network and pathway 

analysis has been vigorously researched in the last decade. With the emergence of system 

biology, diverse computational approaches have been developed. In this work, we 

developed a new webserver called MetaModel, for the analysis of genome-scale 

metabolic networks of eukaryotic organisms. Section 4.1.1-4.1.3 describes the general 

topological measures applied for network analysis and the KEGG pathway maps. Section 

4.2 summarizes various mathematical approaches applied in pathway analysis. Sections 

4.3-4.5 describe the theoretical basis and data used by MetaModel.  In the current 

implementation, the server facilitates analysis of the Saccharomyces cerevisiae metabolic 

models iFF708 and iND750, and of user-defined custom models. 

 

4.1.1. Types of biochemical networks  

A graph (or network) representation can be used to define a system of genes and gene 

products that interact or regulate each other. These graph models can be directed or 

undirected, and can represent various biochemical relationships existing among the node 

members.  For example, biochemical networks that capture mutual interactions like 

protein-protein binding can be best represented as undirected graph models, whereas 

directed graph models are suitable for representing biochemical reactions that transform a 

set of substrates into a set of products. These graphs can be augmented by labeling nodes 

and edges with additional information. Current incorporated information can be roughly 

classified into five categories namely 1) genomic information 2) transcriptomic 

information 3) proteomic information 4) metabolomic information and 5) interactomic 
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information.  Transcriptomic and metabolomic information can be used for indirect 

inference of molecular interactions. Except for the interactome, all other omics data 

generally provide information for labelling the nodes of a network. 

 

4.1.2. Topological network parameters 

In the literature, many graph theoretic topological measures have been used for studying 

biochemical networks. These measures can provide meaningful insights into functions 

and structural organization of biochemical networks [Christensen2007]. In the following 

we list the most widely used graph theoretic measures:  

a) Degree and degree distribution  

The degree of a node is defined as the number of edges incident to that node. In directed 

graphs, total degree of a node can be divided into an out-degree (# out-going edges) and 

an in-degree (# in-coming edges). In a graph in which edges have numerical weights, 

another measure called node strength can be defined. The strength of a node is the sum of 

the weights of the edges adjacent to that node. A global measure of network topology is 

called degree distribution, )(kP .  )(kP  is defined as the probability of a randomly 

selected node to have degreek . )(kP  is a simple measure that is calculated but counting 

the number of nodes with k =1,2,….edges, and then dividing these numbers by the total 

number of nodes in the network. Recent studies have shown that the majority of cellular 

networks have a scale-free degree distribution [Albert2002, Lee2002]. The degree 

distribution of scale-free networks follows a power law: γ−≈ AkkP )(   where A  is a 

normalisation constant andγ  is a degree exponent. For example, the degree distribution 

of metabolic networks and protein interaction networks typically obey power laws with  

32 〈〈γ [Jeong2000, Guelzim2002]. The important distinction of a network being a scale-

free network is that these generally show several “highly connected” nodes, the so called 

Hubs.  

b) Connectivity, path length, efficiency and paths 

A path in a metabolic network represents a sequence of chemical reactions that transform 

the compound represented by the source node of the path into that represented by the sink 

node of the path. The distance between two nodes in networks is the minimum number 
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(or sum of the weights in edge-weighted graphs) of the edges in any path connecting 

these nodes. Two nodes are connected if a sequence of adjacent nodes, a path, links these 

two nodes [Bolloba´s1979]. The average distance ijd  is the average number of edges in 

the shortest path between any two nodes i  and j , in the given network [Dijkstra1959].  

The global graph efficiency is defined as 〉〈 ijd1  [Latora2001, Latora2003]. Directed 

graphs in which every pair of nodes is connected by a directed path are called strongly 

connected graphs. We know that cellular networks are not strongly connected, in general, 

but it is advantageous to identify the maximal subgraphs inside these networks which are 

strongly connected, the so-called strong components.  The strong components of a graph 

are connected with each other in an acyclic fashion. The analysis of the connectivity 

structure of a metabolic network can give useful hints to its functional organization 

[Ma’ayan2004].    

c) Clustering coefficient 

The clustering coefficientiC , is a measure of the extent to which a node’s first 

neighbourhood is connected [Watts1998].  

)1(

2

−
≡

ii

i
i kk

E
C  

Here ik  is the degree of node i, and iE is the number of edges connecting the immediate 

neighbours of node i . The average clustering coefficient of a network, calculated by 

averaging the clustering coefficients of all of its nodes, is a useful measure of the strength 

of connectivity inside a network. A large average clustering coefficient suggests a high 

level of cohesiveness and redundancy [Wagner2001, Ravasz2002]. 

d) Betweenness centrality  

A node is termed a source if it has only outgoing edges, and a sink when it had only 

incoming edges. The Betweenness centrality )(xCB  of a nodex   which is neither sink nor 

source is defined as the number of shortest paths from node i  to nodej passing through 

nodex , divided by the total number of shortest ij – paths, for a graph with X nodes and 

E edges(Equation 9). The Betweenness centrality of a  
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node indicates the importance of that node for the propagation of flow within the network 

[Anthonisse1971, Freeman1977]. Holme et al. have shown that ubiquitous substrates in 

the biochemical networks may not have the highest degrees in the network, but they often 

have the highest betweenness centralities [Holme2003]. 

 

4.1.3. KEGG  pathway maps 

KEGG refers to the “Kyoto Encyclopedia of Genes and Genomes” [Kanehisa1997a]. 

KEGG is a knowledge base for systematic analysis of gene functions in terms of the 

networks of genes and molecules [Ogata1999]. It comprises three databases namely 

PATHWAY (repository of knowledge of molecular pathways and complexes), GENES 

(repository of gene catalogs of completely sequenced genomes and partial genomes) and 

LIGAND (repository of chemical compounds and chemical reactions) [Goto1998]. The 

PATHWAY database uses a graph-theoretic form for data representation.  In this graph 

representation, a node is a gene product or complex and an edge is a protein-protein 

interaction. This protein-protein interaction could be direct physical interaction, iso-

enzyme relation or gene expression relation among given gene products. GENES 

database has a collection of genes for all the organisms in KEGG. A typical entry in 

GENES database contains following information: organism name, gene name, functional 

description, functional hierarchy, chromosomal position, codon usage, nucleotide 

sequence and amino acid sequence. The LIGAND database contains information about 

chemical compounds, enzyme molecules, enzymatic and non-enzymatic reactions. 

PATHWAY contains protein-protein interaction networks for various cellular processes. 

In the KEGG pathway maps, DNA and chemical compounds are not considered as nodes 

but rather form the edges in the network.  A protein-protein interaction can be 1) a direct 

physical interaction such as protein modification, protein binding, or protein cleavage; 2) 

an indirect interaction representing association of two enzymes that catalyze two 

successive reaction steps; 3) an indirect interaction involving gene expression, namely, 

the relation between the genes encoding a transcription factor and a target gene product. 

The KEGG databases and computational tools are used in a semi-automated fashion to 
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find cores (i.e. basic wiring diagram of molecules in biological systems) of known 

pathways using the knowledge present in KEGG reference pathways. The organism-

specific KEGG pathways are generated by extension of these cores by integrating 

additional partners that are associated at the genome level (for example genes in the same 

operon), the transcriptome level (for example co-expressed genes), and the proteome 

level (for example binding partners). Figure 16 depicts the KEGG pathway map for 

lysine biosynthesis in the Saccharomyces cerevisiae. Both boxes and circles are clickable 

objects for retrieving detailed molecular information. A circle represents a metabolic 

compound. Each box represents an enzyme with the corresponding EC number inside it.  

The shading of the box indicates whether that gene product is present in the genome 

under study or not [Ogata1999]. The boxes (enzymes) whose genes are present in the 

genome under study are colored green. 

 

 

 
Figure 16 KEGG pathway map of lysine biosynthesis in Saccharomyces cerevisiae. 
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4.2. Mathematical approaches for pathway analysis 

The idea of these mathematical approaches has been to exploit as much system level 

information as available, for pathway analysis. Both schools of thought namely the one 

following bottom-up construction and the one following top-down construction have paid 

increased attention to the development of rigorous mathematics approaches for pathway 

analysis.  

Mathematical approaches for pathway analysis have been fundamental in the area of 

systems biology and metabolic engineering. These approaches have found direct 

application in modelling, simulation and optimization of metabolic pathways. These 

approaches can be divided into (i) Structural approaches, (ii) Stoichiometric approaches, 

(iii) Carbon flux approaches, (iv) Stationary and non-stationary mechanistic approaches 

and (v) Approaches based on gene regulation modeling [Wiechert2002]. (i) Structural 

model building starts with assimilation of the known knowledge on the mechanisms and 

components of reactions, published work and public data repositories like KEGG 

[Kanehisa1999], (ii) Stoichiometric models are a step ahead of structural models as they 

incorporate quantitative data on the cellular concentration of various reaction 

components. The stoichiometric modelling concept uses various abstraction levels like 

pooling of intracellular metabolites and lumping the intermittent steps in various 

subpathways, for which no quantitative data are available. Stoichiometric modeling 

approaches use a quasi-steady state assumption for modeling pathways, (iii) The carbon 

flux approaches are similar in essence to the stoichiometric approaches except that they 

use additional quantitative data to further dissect and balance the degree of freedom of 

stoichiometric balances. These quantitative data are generated from various labeling 

experiments in which a tracer like 13C is used as a label. This label is used for the growth 

experiments. The distribution of the label as part of various cellular intermediates, at 

steady state is used as additional information to dissect various metabolite conversion 

steps in pathway models, (iv) Mechanistic modeling approaches incrementally model 

individual reactions steps for the underlying pathway model. These individual steps are 

then subjected to the theory coming from standard enzyme kinetics.  (v) Modeling 

approaches involving gene regulation are still in their infancy. The basic idea of the 
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modeling with gene regulation is to use the constraints coming from gene regulatory 

mechanisms, for modeling reaction steps in the pathway model. 

Formal models of metabolic networks along with “metabolite snapshots” methods (the 

comprehensive measurement of metabolite concentrations) are powerful approaches for 

understanding the perturbation in cellular metabolism due to genomic perturbations, for 

example knocking out genes, in mutants.  Metabolite snapshot comparison amounts to the 

comparison of metabolite concentrations of mutants deleted for genes of unknown 

function, with metabolite concentrations of mutants deleted for genes of known function. 

It is not a new strategy but has existed in the area of population genetics for decades. The 

fitness defect can be thought of as the global effect of the all phenotypic changes that 

occur as a result of a genetic perturbation namely, knocking out single or multiple genes. 

These studies compare the knockout mutant strain to the wild type strain. Any change in 

the knockout mutant is hypothesized to be the result of verifiable/non-verifiable effects of 

the absence of particular genes. For yeast and other organisms, it was generally found 

that these knockout mutations usually show little or no fitness defect compared to the 

wild type strain [Drake1998, Keightley1999, and Lynch1999]. 

 

4.3. Stoichiometric analysis of metabolic networks 

Metabolic networks have been extensively used for understanding principles of metabolic 

organization. The phenotype of a strain could be regarded as the experimentally 

observable behaviour of the underlying metabolic networks and the interactions of 

several components of these networks. These interactions could not be intuitively studied 

which led to an ever expanding area of research called mathematical modeling of cellular 

networks. Stoichiometric analysis is one branch of mathematical modeling and analysis. 

Stoichiometric analysis exploits the structural nature of metabolic networks. It is a useful 

method to identify the constraints on existing paths between two components and the 

biochemical capabilities of a metabolic network [Varma1994, Schuster2000, 

Edwards2000, Stelling 2002, Famili2003 and Price2003]. 
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4.3.1. S. cerevisiae genome-scale metabolic models and their construction  

Genome-scale metabolic models of micro-organisms are important tools for model-

driven data analysis and can be used for calculating experimentally verifiable phenotypic 

predictions. Genome-scale metabolic model construction involves the assimilation of 

published biochemical, physiological and genomic information for a given organism. In 

addition to the information available in the books and journal publications, public data 

repositories like  MIPS, SGD, Yeast Proteome Database, KEGG Database, ExPASy 

Biochemical Pathways, ExPASy Enzyme Database, ERGO and Swiss-Prot provide a 

basis for metabolic model reconstruction. In 2003, Price et al. proposed a naming 

convention of these in silico genome-scale metabolic models in the following manner. 

For example genome-scale model iAA#ORF is an abbreviation in which “i” stands for an 

in silico model, AA are the initials of the first scientist who reconstructed that model, and 

#ORF is the total number of genes accounted for in the model. iFF708 and iND750 are 

two major genome-scale metabolic models of Saccharomyces cerevisiae [Price2003, 

Forster2003, Famili2003]. 

 

4.3.2. Stoichiometric matrix 

A stoichiometric matrix provides a detailed description of a biochemical network and is a 

useful mathematical formalism for representing the chemical interactions in a metabolic 

network. A stoichiometric reconstruction is performed by careful integration of data on 

the chemical transformations in a system with defined boundaries and in accordance with 

the principle of conservation of mass. The result is a matrix representation of data on 

network components and the interactions between these network components. The rows 

of the matrix correspond to the network components and the columns represent the 

chemical transformations (reactions) between the components. The elements of the 

matrix correspond to the stoichiometric coefficients of the associated chemical 

transformations. These elements are assigned a sign. Usually, a negative sign signifies 

that the node represented b the row of the matrix element is an “input (reactant)” and a 

positive sign represent an “output (product)”.   
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4.3.3. Sparsity of the stoichiometric matrix 

Any set of biochemical transformations can be described by system of ordinary 

differential equations as follows [equation 10]: 

)(/ XNvdtdX =                                                                                                                        Equation 10 

Where N  v  and X  denote the stoichiometric matrix, the vector of reaction rates and the 

vector of concentrations of “internal (metabolites with the variable concentrations)” 

metabolites respectively. Similarly those metabolites which are buffered are named as 

“external” metabolites. At stationary state, the system can be represented as in equation 

11: 

 0=Nv                                                                                                                                         Equation 11  
Equation 11 is in essence defines the energy, mass and redox potential contraints in the 

metabolic network. This in turn defines the constraints as well as capabilities of a given 

metabolic genotype. 

Also flux vector of the irreversible reactions,irrv , must follow equation 12. 

0≥irrv                                                                                                                                          Equation 12 

To decide whether a given enzyme set is actually a functionally coherent set in 

metabolism, it must be determined whether the corresponding flux vectors can fulfill 

equations 11 and 12 [Nuno 1997, Pfeiffer1999]. The region encompassed by these flux 

vectors is known as region of admissible (attainable) flux vectors (i.e the metabolic flux 

distributions that did not violate the energy, mass or redox balance constraints) 

[Rockafellar1970 and Nozicka1974].  

 The stoichiometric matrix provides concise information about the metabolic network that 

it represents. Stoichiometric matrices are generally sparse, i.e. they contain few nonzero 

elements, because only few metabolites are connected by a chemical reactions and 

reactions involve few metabolites (no more than 3, generally).  The complete set of 

vectors v  satisfying the equation 11 defines a region called the “null space” ofN . The 

stoichometric matrix represents a set of linear equations representing components of 

metabolic machinery of the organism [Lay1997]. In the past, a large number of linear 

algebra techniques have been applied to studying fundamental system properties 

[Clarke1988, Reder1988]. The “null space” defines all the possible and impossible 

capabilities of a given metabolic genotype [Schilling1999]. The null space,K , can be 
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mathematically represented as a matrix whose columns are linearly independent vectors 

spanning this subspace.  

0=NK                  Equation 13 
 
The “null space” can be used to identify metabolite production capabilities for a given 

metabolic network, ease of conversion of carbohydrates into other biomolecules for a 

given network, as well as to find the critical links(bottlenecks) in the metabolic network 

[Edwards1998, Varma1994].  

 

4.3.4. Related work 

Various computational approaches use the concept of stoichiometric analysis as the basis 

for the further method development. One such approach is called Flux Balance Analysis 

(FBA) [Varma1994, Schilling1999, and Palsson2000]. The general idea comes from 

concept of reduction of admissible flux space [see section 4.3.3]. As described in the 

previous section, stoichiometric matrices are sparse and the linear systems resulting from 

them are underdetermined. The feasible flux distributions (distribution which satisfies 

equation 11) of a network having r  reactions are restricted to the null-space of the 

stoichiometric matrix, and can be described by the onlyr - rank (stoichiometric matrix) 

free parameters instead of fullr  unknown reaction rates [Heinrich1996, Klamt2002]. The 

work by [Palsson2002, Papin2003, Holzhutter2004, Stephanopoulos2004 and 

Covert2001] present some of the applications of FBA approach [Bonarius1997, 

Edwards2002, Kauffman2003]. The FBA approach is a useful technique for 

quantification of metabolic capabilities (~production) of cellular systems. The system is 

assumed to be optimised with respect to functions such as maximisation of biomass 

production or minimisation of nutrient utilisation. This is followed by solving the system 

to obtain a steady-state flux distribution. This flux distribution is then used to interpret 

the metabolic capabilities of the system.  

 
T

nextn bbbvvvv

Sv
dt

dx

}.........{ 2121=

=
                                                                                      Equation 14 
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The dynamic mass balance of the metabolic system is described using the stoichiometric 

matrix, relating the flux rates of enzymatic reactions, vn × 1 to time derivatives of 

metabolite concentrations, xm × 1 as equation 14. Here iv  represents the internal fluxes (i.e 

system of fluxes that affect a particular intracellular metabolite), ib represents the 

exchange fluxes (i.e. fluxes which bring the metabolites into and out of the system 

boundries) in the system and next is the number of external metabolites in the system. 

External metabolites are the sources and sinks of the network. Also concentrations of 

external metabolites are assumed to be buffered. Internal metabolites (intermediates) 

have to be balanced with respect to production and consumption at steady state. Also 

since nm< , the system is under-determined and could be solved using optimisation 

criterion [Raman2005] 

Similar in essence to FBA is another approach known as Elementary Flux Modes (EFM) 

[Schuster2000]. A mode of a system is a relative flux distribution that fulfils the steady 

state condition for the intermediates and the sign constraints for irreversible reactions. 

EFM is based on the exhaustive enumeration of all feasible flux vectors (v ) for the 

equation 11. An EFM describes the minimal number of reactions capable of working 

together in a steady state and thereby indicating various modes of behaviour of a given 

system. EFM actually acts as a generating basis for all possible flux distributions and, 

thus, are minimal (constructive) description of the solution space. The algorithms for 

computing EFMs are generally from computational geometry; more specifically the 

algorithms for enumeration of extreme rays of polyhedral cones which and are 

combinatorially complex. 

Stoichiometric analysis of metabolic networks has been increasingly successful in terms 

of its predictive power compared to the topological approaches which are based on 

simple graph-theoretic methods. Another advantage of stoichiometric analysis is its 

scalability and feasibility even in the absence of the knowledge about kinetic parameters 

and rate equations, as compared to kinetic modeling approaches [Steuer2007]. 

   

4.3.5. Data 

Section 4.3.5.1 and 4.3.5.2 describes the data coming from the yeast genome-scale 

models. 
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4.3.5.1. iFF708 genome-scale metabolic model of yeast 

Foerster et al. build the first genome scale metabolic model of yeast. This model is called 

iFF708 [Forster2003]. iFF708 stands for “in silico” yeast model proposed by “Foerster 

and Famili”, accounting for 708 genes. This reconstructed metabolic model was the first 

comprehensive network for a eukaryotic organism. The initial model accounted for a total 

of 708 open reading frames (ORFs) corresponding to 1035 metabolic reactions 

[Foerster2003]. In this model, all metabolic reactions are assigned to three cellular 

localizations namely mitochondria, cytosol and extracellular space. All in vivo reactions 

belonging to other compartments as well as the reactions, for which no cellular 

localization information is available, are assumed to be cytosolic. iFF708 also provides 

information on whether a given reaction is reversible or irreversible. A reaction for which 

there is no directionality information available is assumed to be reversible.  Two-thirds of 

the reactions in the iFF708 are assumed to be irreversible.  

iFF708 reaction format  

Each comment in the reaction text file has to be marked by a leading # mark (hash-mark).  

A reaction line consists of one or more ORF names participating in the reaction and a 

reaction equation. The list of ORF(s) and the reaction equation have to be separated by a 

tab. If more than one ORFs influence a reaction, they have to be separated by a slash (/). 

The reaction equation is denoted in the common chemical notation for reactions. The 

names of the reactants have to be abbreviated as given in the metabolite text file [5.2.3.1]. 

There has to be a blank between coefficients, names, plus signs and the reaction arrow. 

Possible reaction arrows are:  

• ->  for a irreversible reaction and  
• <->  for a reversible reaction.  

The following example contains all relevant cases. 

 

 

Table 8 Example reaction for iFF708 coding style  
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iFF708 Metabolite format  
A metabolite line consists of the following columns separated by tabs: a) Abbreviation 

and b) Metabolite name. Both the columns are mandatory. Both the columns are 

mandatory. The following examples represents metabolite format for few cases in iFF708 

format. 

 

Abbreviation  
Name  

HIS  L-Histidine  

ATP  ATP  

ASP  L-Aspartate  

 

Table 9 Examples for Metabolites in iFF708 coding style 
 
4.3.5.2. iND750 genome scale metabolic model of yeast 

In the year 2004, Duarte et al. proposed a fully compartmentalized genome-scale model 

of Saccharomyces cerevisiae. The iND750 stands for “in silico” yeast model proposed by 

“Natalie C. Duarte”, accounting for 750 genes. The iND750 metabolic model is much 

more elaborate than the earlier iFF708 model. The iND750 summarizes the currently 

available information on ORFs, transcripts and proteins of yeast. Essentially the iND750 

model differs from the iFF708 model in the following manner: (a) Localization: five 

additional compartments were included namely peroxisome, nucleus, golgi apparatus, 

vacuole  and endoplasmic reticulum, (b) Revision of functional assignments of the gene 

products based on newly published results and description of the model in terms of 

elementally(mass conservation)and charge balanced reactions(charge conservation). (c) 

cell-wide proton balance. The iND750 file format is more detailed in terms of encoding 

reactions occurring in the metabolism of S. cerevisiae. While keeping the information on 

the reaction and the corresponding ORFs, it also includes information, like corresponding 

EC numbers, protein names as well as the biological processes to which it belongs and 

gives every reaction a unique reaction abbreviation. Furthermore it comprises higher 

number of compartments than the earlier iFF708 model.  

iND750 reaction format  

A reaction line consists of the following columns separated by tabs:  
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• Abbreviation of the reaction  
• Name of the reaction 
• Reaction equation  
• EC Number  
• Biological Process 
• ORF(s)  
• Protein(s) encoded by the corresponding ORF(s)  

The reaction equation is denoted in the common chemical notation for reactions. If the 

reaction takes place in only one compartment, the equation itself is preceded by a short 

tag representing the compartment. This tag is separated from the equation itself by a “:” 

mark. Encoded compartments and their tags are:  

 

Compartment  Tag  

Extracellular  [e]  

Peroxisome  [x]  

Cytosol  [c]  

Mitochondrion  [m]  

Vacuole  [v]  

Endoplasmic reticulum  [r]  

Golgi apparatus  [g]  

Nucleus  [n]  

 

Table 10  Table of the compartments used in the iND750 model and their corresponding tags 
  
In case of reactions connecting multiple compartments, the compartment tag at the 

beginning of the equation is omitted and the tag corresponding to its location is appended 

to every metabolite name. 

The names of the reactants have to be abbreviations given in the metabolite file. 

All coefficients other than 1 (default when no coefficient is given explicitly) have to be 

given in brackets, see Table 12 for an example. There has to be a blank between 

coefficients, names, plus signs and the reaction arrow. Possible reaction arrows are: 

• -->  for a irreversible reaction  
• <==>  for a reversible reaction.  
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Columns not used in a reaction (e.g. if the EC number is unknown) are to be left blank. 

However the tabs separating the columns must not be omitted.  

The following examples contain all relevant cases. 

Abbreviation  Name  Equation  EC-Number  Process  ORF(s)   Protein(s)  

ASNS1  Asparagine 

syn 

[c] : asp-

L + atp 

+ gln-L 

+ h2o  

EC-6.3.5.4  Alanine and aspartate  (YGR124W  or  (Asn2) or 

(Asn1) or  

 thase 

(glutamine  

--> amp 

+ asn-L 

+glu-L 

+h+  

 metabolism  YPR145W  or  (Asn3)  

 hydrolysing)  ppi    YML096W)    

TREH  alpha, alpha 

-trehalase  

[c] : h2o 

+ tre--

>(2)glc-

D  

EC-3.2.1.28  Alternate Carbon 

Metabolism  

(YDR001C 

YBR001C)  

or  (Nth1) or 

(Nth2)  

O2ter  O2 

endoplasmic 

reticulum 

transport 

o2[c] 

<==> 

o2[r]  

 Transport, 

Endoplasmic 

Reticular 

   

Table 11  Reaction examples for iND750 coding style  

 
iND750 Metabolite format  

A metabolite line consists of the following columns separated by tabs:  

• Abbreviation of the metabolite  
• Name 
•  Compartment 
• Formula 
•  Charge  

Of these items, the abbreviation and the compartment are mandatory. The name and 

formula can be left empty as we do not use these for mapping the metabolites to their 

participating reactions. For the compartment the full names as stated in the reaction 

section above have to be used. The following examples contain all relevant cases of 

metabolites notation of iND750 format:  

 

Abbreviation  Name  Compartment  Formula  Charge  

his-L  L-Histidine  cytosol  C6H9N3O2  0  
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atp  ATP  cytosol  C10H12N5O13P3  -4  

atp  ATP  mitochondrion  C10H12N5O13P3  -4  

 

Table 12  Examples for Metabolites in iND750 coding style  
 
4.4. Isotopomer analysis 

Abelson and Hoering et al. discovered the relative enrichment of C-13 in the carboxyl 

group of amino acids in nature [Abelson1961]. This was the first indication of the 

existence of isotope distributions in biological compounds.  Galimov et al. proposed that 

both in chemically equilibrated and non-equilibrated reaction systems, a microscopic 

reversibility of the enzymatic reactions is the cause of thermodynamically ordered 

isotope distributions [Galimov1985]. Schmidt et al. proposed that the kinetic isotope 

effects on the enzymatic reactions are the primary cause of isotope discriminations. In the 

last decade, various NMR and MS techniques have been developed to capture the stable 

isotope distributions (labeling pattern) of metabolites (see section 2.1.2).  

Isotopomer is an abbreviation for “Isotope Isomer”. Since a given carbon atom can either 

be labeled (C-13) or non-labeled (C-12) and also due to rule of numbering the carbon 

atom positions in a molecule, it is possible to code labeling patterns of metabolites as a 

sequence of ones and zeros.  Similar to the construction of the stoichiometric matrix, the 

nonzero elements of an isotopomer correspond to the isotope paths from source 

isotopomers to target (product) isotopomers. Isotopomer distributions provide the 

maximum amount of information which can be derived from the C-13 tracer studies. In 

this section, we will give the definitions and describe the theory of computational 

approaches for studying isotopomer distributions [Schmidt1997]. A molecule which has 

n  C atoms can have a theoretic maximum of 2n isotopomers. The vector of all 

isotopomers of a given metabolite is called IDV (Isotopomer Distribution Vector). IDV  

is the vector containing mole fractions of metabolite molecules that are labeled in a 

specific pattern. The labeling of the metabolites can be represented as 0 (C-12) or 1(C-

13). These sequences of zeros and ones can then be interpreted as binary numbers, the 

conversion of which to decimal numbers provides a unique way of ordering labeling 

patterns and thereby indexing them as elements of the IDVs . For example, in glucose 

IDV there are 26 = 64 elements [Equation 15]. The first element of this vector is indexed 
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as 0  and is depicted as ( )0glcI . The element at index 1 contains the mole fractions of the 

glucose molecules labeled by the binary number 000001bin, i.e. a single labeled carbon at 

the sixth position. The mole fraction of the glucose labeled at first carbon position will 

likewise be the element at index 32 because this fraction will be represented as 

100000bin. The complete labeling state of glucose is given by.  

( )
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4.4.1. Isotopomer mapping matrices 

Generally, individual reactions in the metabolic network have one or more reactants and 

one and more product molecules. Additionally, there is a large number of isotopomers in 

each metabolite pool; hence it becomes cumbersome to write a single equation for each 

individual isotopomer. To solve this issue, another concept called Isotopomer Mapping 

Matrices ( IMMs ) was introduced in the literature. IMMs are constructed to sum up all 

pairs of reactant isotopomers, which produce the respective product isotopomer in all 

positions of the productIDV [Schmidt1997].  For a single biochemical carbon exchange 

reaction, there will be singleIMM defined for each pair of reactant and product 

molecules. The number of columns of anIMM equal the number of vector elements of 

the reactantIDV . The number of rows of IMM equals the number of vector elements in 

the productIDV . See equation below for the complete oaapyrIMM >  of conversion of 

pyruvate (pyr) to oxaloacetate (oaa)  
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10000000

10000000

01000000

01000000

00100000

00100000

00010000

00010000

00001000

00001000

00000100

00000100

00000010

00000010

00000001

00000001

oaapyrIMM

                                                                 Equation 16 

 
4.4.2. Atom mapping matrices 

Atom mapping matrices ( AMM ) describe the conversion of atoms of a substrate 

metabolite to the atoms of the product by a given reaction. TheAMM elements are 

constants and are defined a priori for every reaction [Zupke1995]. In the web server 

(MetaModel), the AMM format is simple. The first line is the description line and the 

following several lines store the actualAMM . Different AMMs have to be separated by 

a blank line. Every description line begins with a # sign, followed by the reaction which 

is described by theAMM  in the form: Substrate Name →  Product Name; followed by the 

number of carbons of the two compounds taking part in the reaction is given as: 

yNpxNs == ;   

 

#PYR -> Ac-CoA;Ns=3;Np=2                                     #Cit -> Ac-CoA;Ns=6;Np=2 

100

010
                                                             

000010

000001
 

Table 13 Example for twoAMMs 
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EveryAMM  line consists of the coefficients of one row of theAMM  separated by 

spaces. No leading spaces in front of the first coefficient and after the last one are 

allowed. 

#G6P -> Ru5P;Ns=6;Np=5 

100000

010000

001000

001100

000010
 

#Cit -> a-KG;Ns=6;Np=5 

000001

000010

000100

001000

010000

 

#Ru5P -> F6P;Ns=5;Np=6 

10000

01000

00100

00010

00010

00001
 

#G6P -> CO2;Ns=6;Np=1           

000001  

#a-KG -> CO2;Ns=5;Np=1 

00001  

#Mal -> CO2;Ns=4;Np=1 

1000  

#F1,6biP -> DHAP;Ns=6;Np=3 

000100

000010

000001  

#F1,6biP -> GAP;Ns=6;Np=3 

100000

010000

001000
 

#Mal -> Pyr;Ns=4;Np=3 

0100

0010

0001  

#DHAP -> GAP;Ns=3;Np=3 

001

010

100
 

#Ru5P -> GAP;Ns=5;Np=3 

10000

01000

00100
 

#Pyr -> OAA;Ns=3;Np=4 

000

100

010

001
 

#Ac-CoA -> Cit;Ns=2;Np=6 

   

00

00

00

00

10

01

 

#OAA -> Cit;Ns=4;Np=6 

0001

1000

0100

0010

0000

0000

 

#CO2 -> OAA;Ns=1;Np=4 

1

0

0

0  

#PYR -> Ac-CoA;Ns=3;Np=2 

100

010  

#Cit -> Ac-CoA;Ns=6;Np=2 

000010

000001  

#Cit -> CO2;Ns=6;Np=1 

100000  

#a-KG -> OAA;Ns=5;Np=4;f17 

00010

00100

01000

10000
     

#a-KG -> OAA;Ns=5;Np=4;f18 

10000

01000

00100

00010
 

#Cit -> OAA;Ns=6;Np=4 

010000

001000

000100

100000  

#PYR -> CO2;Ns=3;Np=1 

001  

  

Table 14 AMM for metamodel 
4.4.3.Bottlenecks  

In various studies, determination of a large number of isotopomer mapping matrices is a 

complex task. In our webserver, we have automated the conversion of atom mapping 
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matrices into IMM. The estimation of the initial AMM set is an unsolved problem and 

there is no general method or repository available. 

 

4.4.4. Data 

The primary input for isotopomer analysis comprises the atom mapping matrices which 

present a comprehensive view of the atom flow in a set of metabolite pool. Basically, all 

chemical reactions need to be represented in terms of AMM  among individual 

metabolites involved in these reactions.  Table 14 comprises theAMMs that we used for 

isotopomer analysis. 

AMM  list: Here each box represents a AMM conversion table which captures a given 

cellular reaction. The first line the actually reaction, for example “#G6P ->Ru5P; Ns=6; 

Np=5” represents a reaction in which G6P gets converted to Ru5P, also Ns is the number 

of carbons in the substrate(G6P) and Np is the number of carbons in the product(Ru5P) 

 
4.5. Synthetic accessibility of metabolites 

 

4.5.1. Synthetic accessibility: Definition 

The synthetic accessibilityiS  of a metabolite i  is the minimal number of metabolic 

reactions needed to produce i from the network inputs [Wunderlich2006]. The total 

synthetic accessibility of biomass S  is the summation of the synthetic accessibility over 

all components of the biomass.  

∑=
i iSS

                                                                                                                                   Equation 17 
The algorithm for computing the synthetic accessibility is based on an iterative breadth-

first search. The algorithm initially examines all the reactions that require a specific 

metabolite as a reactant. It then labels the reactions for which all the reactants are 

available, as “accessible” and subsequently all the output metabolites of these reactions 

as “accessible”. The algorithm iteratively examines all the reactions which require one of 

the newly “accessible” labeled metabolites as a reactant, determines whether all reactions 

are accessible or not based on the “accessibility” of the reactants until no new metabolite 

is found to be “accessible”. 
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4.5.2. Measures of production capability 

In the past, many topological measures of network production capability have been 

reported. These include enzyme usage, node degree, graph diameter. Node degree refers 

to the number of incoming/outgoing edges linked to a node. The nodes with the higher 

degrees tend to be more important for the network functionality as they generally act as 

hubs and critical members for a large number of chemical transformations [Jeong2001, 

Albert2000]. Enzyme usage is another measure which is somewhat similar to the 

synthetic accessibility measure. It is defined as the number of times the reactions 

catalyzed by each enzyme are used to produce the biomass components in the wild type 

strain [Newman2001]. Also, increase in the graph diameter compared to the graph 

diameter of the wild type, can be a rough measure for inviability of a knockout. 

   

4.5.3. The scope of a metabolite  

The concept of scope of a metabolite for studying network expansion was first introduced 

by Handorf et al. [Handorf2005]. The concept of scope of a metabolite exploits the 

inherent hierarchical ordering of the metabolic reactions in metabolic pathways and 

networks. Scopes are defined as sets of metabolites that can be synthesised by a 

metabolic network when it is provided with given seeds (Sets of initial metabolic 

compounds). Thus, scopes represent synthesizing capacities of the seeds in the network 

[Handorf2006]. 

 

4.5.4. Growth medium  

With reference to the synthetic accessibility measure, the growth medium comprises all 

initial input metabolites. The input metabolites are chosen to cover the real composition 

of a minimal medium as much as possible.  For example, as our wild type strain is amino 

acid auxotrophic in nature, meaning thereby it requires certain metabolites namely the 

amino acids histidine, leucine, and uracil for normal growth. Hence these metabolites are 

included as the input metabolite in order to compensate for amino-acid auxotrophy.  

Other metabolites like oxidized form of thioredoxin, H1 (in the endoplasmic reticulum), 

NADPH (in the endoplasmic reticulum), and dolichol should also be included as inputs. 
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This is due to the fact that in the absence of these components, the wild type strain would 

also be rendered “inviable” (see section 4.5.6.1). 

 

4.5.5. Standard biomass components  

Similar to the concept of growth medium, the synthetic accessibility algorithm has a basic 

assumption that all standard biomass components should be synthesizable, hence should 

be part of the “accessible” output metabolites (see section 4.5.6.2).  

 

4.5.6. Data 

The following subsections list the input and output metabolites that are used to mimic 

growth under minimal media for yeast.  

 

4.5.6.1. Input medium components  

Amino Acids  

L-Alanine  L-Arginine  L-Asparagine  

L-Aspartate  L-Cysteine  L-Glutamine  

L-Glutamate  Glycine  L-Histidine  

L-Isoleucine  L-Leucine  L-Lysine  

L-Methionine  L-Phenylalanine  L-Proline  

L-Serine  L-Threonine  L-Tryptophan  

L-Tyrosine  L-Valine   

Nucleotides  

Adenine  Cytosine  Guanine  

Thymine    

Other Metabolites  

O2  K+  Na+  

SO4  Thioredoxin ox.  Trehalose  

Uracil  H2O  Ammonium  

CO2  H  Inorganic phosphate  

Dolichol    

Carbon Source  

Glucose    

 

Table 15 Standard medium composition assumed by the Synthetic Accessibility method 
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Table 15 depicts the standard input medium component assumed in the synthetic 

accessibility method in MetaModel. 

 
4.5.6.2. Output biomass components  

Table 16 depicts the standard input biomass component assumed in the synthetic 

accessibility method in MetaModel. 

 

1,3-beta-D-Glucan  L-Leucine  

AMP  L-Lysine  

L-Arginine  Mannan  

L-Asparagine  L-Methionine  

L-Aspartate  Phosphatidate, yeast-specific  

ATP  Phosphatidylcholine, yeast-specific  

CMP  Phosphatidylethanolamine, yeast-specific  

L-Cysteine  L-Phenylalanine  

dAMP  L-Proline  

dCMP  Phosphatidylserine, yeast-specific  

dGMP  Phosphatidyl-1D-myo-inositol, yeast-specific  

dTMP  L-Serine  

Ergosterol  Sulfate  

L-Glutamine  L-Threonine  

L-Glutamate  Trehalose  

Glycine  Triglyceride, yeast-specific  

Glycogen  L-Tryptophan  

GMP  L-Tyrosine  

H2O  UMP  

L-Histidine  L-Valine  

L-Isoleucine  Zymosterol  

 

Table 16 Standard biomass composition assumed by the Synthetic Accessibility method 
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Chapter 5 

 
5.  Implementation of the Web server for metabolic network analysis  

In this chapter, we describe the implementation, functionality and design of various 

analysis modules of our webserver, MetaModel. 

 

5.1. Introduction  

In the current implementation, MetaModel facilitates the analysis of the Saccharomyces 

cerevisiae metabolic models iFF708 and iND750, and of user-defined custom models. 

The web server has three modules namely, Stoichiometry, Isotopomer Path Tracing and 

Optimization. 

 

5.2.  Implementation  

Metamodel has been entirely coded in the Python language. It is currently available at  

http://mpiat3502.ag3.mpi-sb.mpg.de/metamodel/index.php.  
For further details, refer to the programmer’s guide in appendix 2. 
 
5.2.1. Schematic  view  

 
Figure 17 Metamodel webserver: basic modules 
 

Figure 17 represents the basic modules coded in Metamodel webserver. Module 1 deals 

with construction of stoichiometric matrices for literature defined or user defined genome 

scale model of yeast and other organisms. It also provides a functionality to edit the 

literature models and encodes search functions for metabolite-reactions and vice versa 

  Optimization  

Stoichiometric analysis and KEGG 
pathways annotation 

Isotopomer path tracing 

Module 3 Module 2 

Module 1 
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associations. Module 1 also has a script for finding out the KO pathway annotation for 

already annotated or unannotated ORF present in the genome scale model understudy. 

Module 2 deals with the calculation of isotopomer mapping matrices (IMM) from atom 

mapping matrices (AMM) for a given reaction set. Module 3 works on finding out the 

node type for all the metabolites present in the genome scale model understudy, as well 

as calculation of synthetic accessibility score for single and multiple gene knockout 

mutants. Sections 5.2.2-5.2.4 presents these three modules in further details.  

 

5.2.2. Module I: Stoichiometry 

 

5.2.2.1. Design and Implementation  

This module performs stoichiometric analysis on a given metabolic network. Figure 18 

depicts the user interface of the module I Stoichiometry  

 

Figure 18  Stoichiometry module’s user interface 
 

• Uploading  a Metabolic Model  
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There are three ways to input a metabolic model in MetaModel:  

• Use Standard Models:  

There are two models to choose from: iFF708 and iND750. For a detailed description of 

model format and the differences between the two models please use the online help on 

the web-server.  

• Modify Standard Models:  

When using this option you will see a text area containing the selected model’s reactions 

in raw format. You can modify the reaction set at this stage. This includes the possibility 

of deleting reactions, adding new reactions and modifying reactions. After pressing the 

Save Modifications button, you will be forwarded to the result page. 

•  Create Own Model:  

You can input custom-defined models by uploading the reactions and metabolites of the 

network, in iND750 like format (see section 4.3.5.2.). You can input the reactions and 

metabolites in the following ways: a) Uploading a file, b) Paste the text in the textbox, 

offered by the user interface. Alternatively the user can select to use the standard 

metabolites if not specified explicitly.  

Finally the user can specify the output format for the stoichiometric matrix. The text file 

is a tab-separated presentation of the matrix whereas the html file presents the data in the 

form of an html table. If the user selects one of the above models as well as the output 

format and clicks on the “Go” button, the next page will be showing the reactions 

comprising the selected model and the user gets forwarded to the result page.  

 
5.2.2.2. Functionality  

The Stoichiometry module calculates the stoichiometric matrix as well as statistics about 

the defined network and offers functions for searching for reactions and/or pathways 

containing given metabolites (Figure 22). The figure 22 depicts the two metabolite 

centric search functions encoded in the Stoichiometry module namely i) searching all the 

reactions in which a given metabolites participates and ii) searching all the processes in 

which a given metabolite participates. At this stage the user can go directly to module 2 

“Isotopomer Path Tracing” or proceed to the KO-based annotation method (Figure 23).  
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Figure 19 Link for module 2  
 
�  Stoichiometric matrix:  

 

Figure 20 Link for stoichiometric matrix download  
 
The stoichiometric matrix can be downloaded in the user-defined format.  

� Statistics: 

 

Figure 21 Statistics on the stoichiometry of the metabolic model 
 

Statistics include the following information namely, the number of reactions and 

metabolites which can be extracted from the input, a list of invalid reactions, the size of 

the matrix, the rank of the matrix, the sparseness of the matrix and the number of ORFs. 

Search functions:  

 
 
Figure 22  Search function interface  
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Depending on the format for encoding the reactions, which has been selected by the 

user, following search functions are offered:  

• iND750 format:  

• list the reactions which include a given metabolite. 
• list the pathways/processes which include a given metabolite.  

• iFF708 format: 

• Search reactions in which a given metabolites participates 

� KO-based Annotation:  

 
 
Figure 23 Input interface for KO based annotation  
 
The KO-based annotation uses scripts from the KOBAS library. This library annotates 

given ORF identifiers with the corresponding KEGG Orthology (KO) terms and 

identifies pathways which are statistically enriched with these genes. KO was developed 

for integration of pathway and genomic information in KEGG. KO is an extension of 

ortholog identifiers and is composed of a DAG hierarchy of four flat levels. The top level 

consists of the following five categories: metabolism, genetic information processing, 

environmental information processing, cellular processes and human diseases. The 

second level divides the five functional categories into finer sub-categories. The third 

level corresponds directly to the KEGG pathways, and the fourth level consists of the leaf 

nodes, which are the functional terms [Goto2000]. 

As input, the user can either select the relevant ORFs from the selection box or simply 

annotate all ORFs by checking the box ”Select all ORFs”. Another way of specifying the 
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ORFs which one wants to annotate is by entering them manually, separated by commas, 

in the text box supplied by the user interface. The output includes already annotated KO 

terms and a list of enriched pathways with the link to their corresponding KEGG-map. 

We used the KOBAS package to carry out the KO-based annotation [Wu2006].  

 
5.2.2.3.Validation  

Exploration of YBR019C (Gal10) gene knockout  

GAL10(YBR019C) encodes a bifunctional enzyme with mutarotase and UDP galactose 

4-epimerase activities. Both of these functions are key in the process of galactose 

catabolism; mutarotase converts beta-D-galactose into its alpha form and galactose 4-

epimerase catalyzes the reversible conversion between UDP-galactose and UDP-glucose 

(Majumdar2004, Fukasawa1980, DE1958, Cherry1998). Loss of Gal10p activity renders 

cells unable to grow when galactose is the sole carbon source (Douglas1964). In this 

work, we selected the “YBR019C” orf in the KO-based annotation script of the 

“Stoichiometry” module. Each annotation is accompanied by the p-values calculated 

using KO terms. 

 
Figure 24 Pathway annotation for the YBR019C 
 

We found that the KO-based annotation also assigns the YBR019C to “Nucleotide sugars 

metabolism” (p-value 0.008), “Galactose metabolism” (p-value 0.018) and 

“Glycolysis/Gluconeogenesis” (p-value 0.026) (Figure 24). All these annotations agree 

with the literature knowledge for YBR019C. KO-based annotation  is a straight forward 
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tool which can be applied to gene annotation. In addition to the functional annotation of 

the ORF specified, MetaModel provides a platform for interfacing with the KEGG 

pathway annotation for the ORF understudy, on the fly. Figure 26 depicts the KEGG 

map, ”Nucleotide Sugars Metabolism”, with the corresponding enzyme classification 

number of the ORF under study.  

 
Figure 25 Computational annotations for YBR019C from Saccharomyces Genome Database (SGD) 
 
Also, in case of uncharacterized ORFs, MetaModel provides most probable functional 

annotations along with the reference organism and the S. cerevisiae KEGG map.  

 
Figure 26 KEGG pathway map of YBR019C (from MetaModel). EC number 5.1.3.2 is the EC number of 
YBR019C.  
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Analysis of a set of genes  

In this work, we worked on analyzing a set of genes which have known or putative 

association with a specific biological process, using KO-based annotation in 

“Stoichiometry” module. We searched SGD to find those ORFs which are associated to 

the term “glucose metabolic process”. 

 

 
Table 17 Synthetic accessibility score of YBR019C calculated using “Optimization” module of MetaModel. 
 

There are 22 ORFs which are associated with the term “glucose metabolic process”. Out 

of these 22 ORFs, 12 ORFs are manually annotated (ManualK  set; method used: ISS 

(Inferred from Sequence or Structural similarity)\IGI (Inferred from Genetic 

Interactions)\IMP(Inferred from Mutant Phenotype)\TAS(Traceable Author Statement)) 

to the above term and the rest 10 ORFs are computationally inferred( nalComputatioK  set; 

method used: IEA i.e. Inferred from Electronic Annotation) to be associated with the 

above term. Table 18 lists the ORF set associated with the gene term “glucose metabolic 

process”. We start with entering these two sets of ORFs individually in the input text-box 

in KO-based annotation.  For the first ORF set, ManualK , we find that out of 12 ORFs we 

could annotate 4 ORFs with the pathways which are part of more general “glucose 

metabolic process” term. In addition, we find certain pathways like “Type II diabetes 
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mellitus” and “Insulin signalling pathways” which are close in terms of  association to 

“glucose metabolic process” (Table 19). 

Manual annotated mutant set 

( ManualK ) 

Computationally annotated mutant 

set( nalComputatioK ) 

YCL040W 

YKL048C 

YER129W 

YGL179C 

YHR044C 

YJL155C 

YKL038W 

YHR043C 

YFR053C 

YOR047C 

YDR043C 

YGL253W 

YIL042C 

YOR125C 

YNL241C 

YGR192C 

YKL127W 

YMR278W 

YJL052W 

YMR105C 

YJR009C 

YJR090C 

Table 18 List of manually and computationally annotated genes which are associated with the term 
“glucose metabolic process” 
 

 
Table 19 ManualK  mutant set’s pathway annotation using MetaModel.  
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Table 20 nalComputatioK  mutant set’s pathway annotation using MetaModel.  

For the second ORF set, nalComputatioK , we find that out of 10 ORFs we could annotate 6 

ORFs with the pathways  like “glycolysis”, “pentose phosphate pathway”, “streptomycin 

biosynthesis”, “galactose metabolism”, “starch and sucrose metabolism” and “glutathione 

metabolism” with pvalues less than 0.036(Table 20). 

 

5.2.3. Module II: Isotopomer Path Tracing   

 

5.2.3.1. Design and implementation  

Module II consists of two different methods namely, 

• Node discrimination  
• IMM generation and isotopomer path tracing  

� Node discrimination  

• The “Node discrimination” script calculates the types of metabolites in a 
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given metabolic network. The type of a metabolite is assigned according to 
in-degree and out-degree of its corresponding node [Forbes2001].  

 
Figure 27 Module 2: Input Interface  
 

� Input  

 
 
Figure 28 Input for the Node Discrimination method  
 
In this case the input is only the metabolic model. MetaModel performs node 

discrimination for three different metabolic models: 

• iND750 model  
• iFF708 model  
• custom model  



  

 98

For being able to select your own model, you first have to generate it using Module 1. On 

the result page of the stoichiometry model, you find a button labeled “Go to Isotopomer 

Path Tracing”. After clicking on this button you will be redirected to the “Isotopomer 

Path Tracing module.”  

� IMM Generation & Isotopomer Path Tracing  

“IMM Generation and Isotopomer Path Tracing” is the second method offered by Module 

II. For more information about the principles underlying these conversions please refer to 

the paper by Forbes et al. [Forbes2001, section 4.4.1]. 

� Input  

 
 
Figure 29 User interface for the Isotopomer Path Tracing method  
 

The input consists of a list of Atom Mapping Matrices. The user can either upload a file 

containing this list or just paste the list in the textbox. For specification of the AMM 

format see either our specification page on the MetaModel online help, or  section 4.4.2.  

� Results  

On the result page, the user can view the IMMs and Isotopomer Tracing results in html 

format and download these as tab-delimited text files.  
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Figure 30 Result page of for the Isotopomer Path Tracing method  
 
5.2.3.2.Functionality 

The user has the option of a) finding the number of nodes representing the four different 

node-types and all metabolites sorted by their node types, in a tabular format (node 

discrimination) and b) calculation of the source isotopomers from any traceable 

individual product isotopomer (isotopomer path tracing) [Figure 27-30]. The node 

discrimination function assigns all the model components under study into four types of 

nodes:  

• Merge: Node having more than one incoming edge and at most one 
outgoing edge  

• Split: Node having more than one outgoing edge and at most one incoming 
edge  

• Both: Node having more than one incoming and more than one outgoing 
edge  

• None: Node having maximum one incoming and one outgoing edge  

The isotopomer path tracing function calculates a set of Isotopomer Mapping Matrices 

(IMM) out of given Atom Mapping Matrices (AMM) and based on these calculates a set 

of possible input isotopomers for a given product isotopomer in a given model [section 

4.4.1]. The experimental isotopomer distribution is usually compared with the theoretical 

labeling patterns expected according to the pathways detected in any given genome. Our 

isotopomer path tracing helps in deciphering the flow of labeling pattern (13C) between a 

set of metabolites. 
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5.2.3.3.Validation 

In the present section, we validated whether what we could decipher in terms of 

isotopomer links between various atoms of amino acids in Desulfovibrio vulgaris (D. 

vulgaris). D. vulgaris is a sulfate reducing bacterium. The D. vulagris genome is fully 

annotated and that is the precise reason why it has been used as a model organism for 

studying the sulfate reducing physiology and in various functional genomics studies 

[Chhabra2006, He2006, and Mukhopadhyay2006]. Isotopomer analysis is a powerful 

technique for understanding central metabolic pathways and fluxes under steady state in 

various organisms.  The AMM set used in this study was obtained from Tang et.al. 

(Tang2006, Appendix 4). Table 21 enlists atom flow associations between a subset of 

metabolites, by finding the “Source Isotopomers” for the respective“Product 

Isotopomers”, using Isotopomer tracing method in Module 2 of MetaModel. Also the 

user can download an individual Isotopomer Mapping Matrices (IMM) for any given 

AMM set (Appendix 4). Table 21 is a subset of the isotopomer mapping result obtained 

for the AMM under study.  

We can clearly see that the similarity in isotopomer patterns in some amino acids is a 

result of an underlying association in terms of them being produced from the same 

precursor metabolites (shared biosynthetic pathway) [Weitzel2007, Jennings2008]. For 

further study, one could follow the biosynthetic pathways and validate the flow of labeled 

carbons from source isotopomers to respective isotopomer due to inherent biochemical 

associations. For example, we calculate that tyrosine and phenylalanine are derived from 

(i.e. source isotopomers) phosphoenolpyruvate and erythrose-4-phosphate. Furthermore, 

the actual IMMs and the source isotopomer results can be downloaded as simple text file 

which can be imported and used in further analysis using R or Matlab. 
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Product Isotopomer Source Isotopomer(s) 

PHE[000010000]                     E4P[0 0 0 0] PEP[0 0 1] 
PHE[000010001]                     E4P[0 0 0 1] PEP[0 0 1] 
PHE[000010010]                     E4P[0 0 1 0] PEP[0 0 1] 
PHE[000010011]                     E4P[0 0 1 1] PEP[0 0 1] 
PHE[000010100]                     E4P[0 1 0 0] PEP[0 0 1] 
PHE[000010101]                     E4P[0 1 0 1] PEP[0 0 1] 
PHE[000010110]                     E4P[0 1 1 0] PEP[0 0 1] 
PHE[000010111]                     E4P[0 1 1 1] PEP[0 0 1] 
PHE[000011000]                     E4P[1 0 0 0] PEP[0 0 1] 
PHE[000011001]                     E4P[1 0 0 1] PEP[0 0 1] 
PHE[000011010]                     E4P[1 0 1 0] PEP[0 0 1] 
PHE[000011011]                     E4P[1 0 1 1] PEP[0 0 1] 
PHE[000011100]                     E4P[1 1 0 0] PEP[0 0 1] 
PHE[000011101]                     E4P[1 1 0 1] PEP[0 0 1] 
PHE[000011110]                     E4P[1 1 1 0] PEP[0 0 1] 
TYR[000001000]                     E4P[1 0 0 0] PEP[0 0 0] 
TYR[000001001]                     E4P[1 0 0 1] PEP[0 0 0] 
TYR[000001010]                     E4P[1 0 1 0] PEP[0 0 0] 
TYR[000001011]                     E4P[1 0 1 1] PEP[0 0 0] 
TYR[000001100]                     E4P[1 1 0 0] PEP[0 0 0] 
TYR[000001101]                     E4P[1 1 0 1] PEP[0 0 0] 
TYR[000001110]                     E4P[1 1 1 0] PEP[0 0 0] 
TYR[000001111]                     E4P[1 1 1 1] PEP[0 0 0] 
TYR[000010000]                     E4P[0 0 0 0] PEP[0 0 1] 
TYR[000010001]                     E4P[0 0 0 1] PEP[0 0 1] 
TYR[000010010]                     E4P[0 0 1 0] PEP[0 0 1] 
TYR[000010011]                     E4P[0 0 1 1] PEP[0 0 1] 
TYR[000010100]                     E4P[0 1 0 0] PEP[0 0 1] 
TYR[000010101]                     E4P[0 1 0 1] PEP[0 0 1] 
TYR[000010110]                     E4P[0 1 1 0] PEP[0 0 1] 
TYR[000010111]                     E4P[0 1 1 1] PEP[0 0 1] 

Table 21 Subset of source isotopomer tracing results  
 

5.2.4. Module III: Optimization 

 

5.2.4.1. Design and implementation 

The third module is called “Optimization”. The optimization module currently encodes 

the notion of “Synthetic Accessibility”. The synthetic accessibility script has been 

motivated by the method introduced by Wunderlich & Mirny [Wunderlich2006]. In the 

present implementation we consider those substrates that are consumed in the given 

genome scale metabolic network, as input substrates. For example sugars, oxygen, 

nitrogen etc are regarded as part of the input substrates. The output substrates like amino 

acids, nucleotides and other components are regarded as the biomass. We calculate 
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synthetic accessibility jS  of an output j  as the minimal number of metabolite reactions 

needed to produce j  from the network inputs. jS  equal to infinity, means that the 

metabolite j  cannot be synthesized by the available input substrates. Total synthetic 

accessibility S  is the simple summation of the synthetic accessibility of all components 

of the biomass [section 4.5.1]. For a more detailed description of how the method works 

and what are the underlying assumptions please refer to that paper. Here we will only 

state the required inputs and explain the results (prediction of viability/growth speed of 

the yeast strains) generated by our webserver. Our method can perform viability 

calculations in the following two settings: 

• comparison of single mutant vs. wild type (multiple gene knockouts)   

• comparison of multiple mutant vs. wild type (single gene knockouts)  

Comparison of single mutant vs. wild type: 

In this case, multiple mutants with given enzyme deficiencies are compared to the wild 

type, one at a time. To specify the mutant’s deficiencies, the user should select the 

appropriate ORF identifiers given in the selection box. Furthermore, the user needs to 

select the medium composition on which the computation should be based (for standard 

medium composition see section 4.5.6.1). The user can perform the procedure on 

multiple carbon sources. The remaining medium ingredients are displayed in a textbox 

and the user can modify the medium by commenting them there. Next, the user can 

specify the biomass components (for the standard biomass composition, see section 

4.5.6.2). The biomass represents the metabolites the organism should be able to produce, 

in order to be viable. The user can either input them manually or select a set of 

metabolites considered important for viability by the respective authors of the underlying 

metabolism models (by checking the box ’Use Standard Metabolites’.  
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� Input  

 

 

Figure 31 User interface for the synthetic accessibility method 
 
Comparison of multiple mutants vs. wild type: Using this version the user can generate 

a comparison table for multiple mutants (with single gene knockouts). The user can paste 

a list of ORF identifiers or gene names separated by commas in the textbox. This method 

assumes standard medium and biomass composition and is not affected by changes to the 

medium or the biomass via the respective input fields of the “Single mutant Vs WT” 

method.  

Additionally for both of the methods, the user has to select the model to be used for 

calculations. The current models are iND750 and iFF708.  
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5.2.4.2. Functionality  

The result page differs between the two alternatives of the “Synthetic Accessibility” 

method implementation:  

� Single mutant vs. wild type comparison: First the invocation parameters, namely 

selected deficiencies and medium composition are stated.  

 

 
Figure 32 Typical result page for the single mutant vs. wild type method  
 
Next, the total synthetic accessibility score, S , of the wildtype and the mutant as well as 

the S  scores of the different output metabolites (biomass components) are calculated. 

 
� Multiple mutants vs. wild type comparison: 

Additionally, if the calculation was based on the iND750 model a tabular representation 

of the usage percentages of the different pathways of the wildtype and the mutant is 

given. The output in this case consists of a list of erroneous ORF names, if any, followed 

by a comparative table for the different mutants, with respect to viability and overall S 

scores.  
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Figure 33 Typical result page for multiple mutants vs. wild type comparison method  
 
5.2.4.3.Validation 

In this work, we compared the performance of our optimization module with the 

literature dataset (Duarte2004, Giaever2002). This literature dataset comprises of 562 

single gene knockouts of yeast. For the wild type strain, the total synthetic accessibility 

score, S , was equal to 471 and the number of reachable outputs was equal to 

43[Appendix 5]  The iND750 model by Palsson et al. has been earlier studied and 

validated by the use of Flux Balance Analysis (Giaever2002, Steinmetz2002) technique. 

In all these studies, a wide variety of growth conditions are considered.  

Experimental # ORF 

Viable 486 

Non Viable 76 

  

MetaModel 

Viable 535 

Non Viable 27 

 
True Positive(TP) 462 

True Negative(TN) 3 

Table 22  Comparison of MetaModel result and the FBA result from Palsson2004.  Total number of ORF 
used= 562. Growth condition used for calculation is YPD (glucose).  
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In our MetaModel server, we can replicate these conditions namely growth under defined 

carbon source like glucose(YPD), galactose(YPGal), glycerol(YPG), ethanol(YPE) and 

lactate(YPL) etc. For comparison, we run the “optimization” module on YPD data and 

compared with the literature (“experimental”) results from Duarte2004 and Giaever2002. 

The growth condition is YPD using glucose as a carbon source. For the ORF list and the 

detailed result, refer appendix 5.We calculated the sensitivity as ( )/()100( FPTPTP +× ) 

(%) and specificity as ( )/()100( FNTNTN +× ) (%) values using the result in Table 22. 

The sensitivity equals 86.5 % and specificity equals to 11.1% for the dataset understudy. 

The high overall sensitivity and low specificity can be attributed to the underlying 

assumption that since most genes are non essential, in our method we assign all those 

metabolic genes which are not included in the metabolic model, as viable (Duarte2004). 

Hence, the synthetic accessibility method works better in prediction of viable mutants 

than non-viable mutants. The performace of method is limited by the incomplete 

information on the underlying metabolic model. For further discussion on the 

performance of the method, refer the work by Mirny etal. [Mirny2006]. 
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Conclusions 

We have presented various computational techniques for metabolic network analysis 

based on metabolomics data. We have approached a niche area of development of 

web server for metabolic network analysis for genome scale metabolic models. 

Following are the problems that we attempted to solve in the present work:  

Automation of GC-MS spectrometric data analysis: The developed software tool, 

CalSpec, is useful for efficient processing of 13C labeling data from MS measure-

ments in 13C flux analysis. These MS data sets are generated in huge numbers due to 

(i) replicate measurements of one sample to assess the confidence in the measured 

values and estimation of error; (ii) replicate measurements of one experiment to check 

for isotopic steady-state; or (iii) different measurements of one sample with different 

protocols to obtain additional labeling information via alternative fragments. Our 

software tool, CalSpec, can process these large MS datasets in fast (running time few 

seconds) and automated fashion.   

Mutant classification based on metabolomics data: We also explored various 

statistical techniques for the analysis of metabolic profiles and for understanding the 

effects of gene knockouts on the metabolic network functionality of wild type yeast. 

The methods is coded in R-language and uses the in-house developed methods for 

automation of GC-MS spectra analysis, quantification of summed fractional labeling 

of proteogenic amino-acid fragments, estimation of the extent of mutant association 

based on the global features growth rateµ ,biomass yield xsY , ethanol yield pY  rate of 

biomass production sQ  and rate of ethanol production pQ , followed by integration of 

transcript co-response profiles for mutant differentiation. In this framework, we have 

introduced a scheme for estimation of cluster quality in analysis of metabolic 

profiling data. 

Method for mutant differentiation in the case of high similarity in metabolomics 

data: In the general case of when the genotypic perturbations (knockouts) are not 

sufficient for discrimination of mutant knockout metabolic profiles, we were able to 

find highly significant feature combinations for each individual mutant present in the 
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original dataset. This method is coded in R –language and is a useful method for fast 

characterization for the metabolic profiling datasets for large scale knockout analysis. 

We show that in the absence of strong phenotypic perturbations , for example in our 

case where the metabolic profiles prove not be sufficient in finding any underlying 

functional associations among  majority of the mutant set,  outlier detection method 

can be used for a more granular analysis of each individual knockout mutant.  

Web server for pathway analysis using genome scale metabolic models: In the 

recent years of computational systems biology research, a large number of theoretical 

methods have been developed for studying chemical transformations of substances. 

Also, in the last 5 years, several genome scale metabolic models have been 

reconstructed. We have approached the problem of analysis of various experimental 

data in the background of these genome scale models as well as prediction of viability 

of in-silico gene knockout mutants.  In the same direction, we developed a new web 

server called MetaModel, for the analysis of genome-scale metabolic networks of 

eukaryotic organisms. 
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Appendix 1 
Table 23 List of mutants studied by Outlier detection method in section 3.3.1.3 
 
Source of Gene ontology data: Amigo 29 May2007. (http://amigo.geneontology.org) 

Mutant_ORF 

 

Glu 

 

Fru 

 

Gal 

 

Molecular function Biological process Cellular 

component  

ACE2   √ transcriptional activator 

activity  

G1-specific transcription in 

mitotic cell cycle 

Cytosol, 

nucleus 

ADR1   √ trnscription factor activity transcription, regulation of 

carbohydrate metabolic 

process , peroxisome 

organization and biogenesis, 

negative regulation of 

transcription from RNA 

polymerase II promoter by 

glucose 

Nucleus 

CAT8 √  √ specific RNA polymerase 

II transcription factor 

activity 

positive regulation of 

gluconeogenesis , positive 

regulation of transcription 

from RNA polymerase II 

promoter 

Nucleus 

CYB2 √  √ L-lactate dehydrogenase 

(cytochrome) activity 

electron transport mitochondrial 

intermembrane 

space, 

mitochondrion 

DLD2 √ √ √ lactate metabolic process, 

actin binding 

lactate metabolic process mitochondrial 

matrix, 

mitochondrion 

FBP1 √ √ √ fructose-bisphosphatase 

activity 

gluconeogenesis Cytosol 

FBP26 √  √ fructose-2,6-bisphosphate 

2-phosphatase activity, 6-

phosphofructo-2-kinase 

activity 

glucose metabolic process Cytosol 

GAD1 √  √ glutamate decarboxylase 

activity 

response to oxidative stress, 

glutamate catabolic process 

cytoplasm 

GAL10 √ √  UDP-glucose 4-epimerase 

activity,  aldose 1-

epimerase activity  

galactose catabolic process  soluble 

fraction 

GAL4 √   transcriptional activator & 

factor activity 

positive regulation of 

transcription by galactose, 

galactose metabolic process 

nucleus 
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GAL7 √ √  UTP:galactose-1-

phosphate 

uridylyltransferase 

activity 

galactose catabolic process cytoplasm 

GAL80 √   specific transcriptional 

repressor activity 

galactose metabolic process, 
positive regulation of 

transcription by galactose 

nucleus, 
cytoplasm 

GLK1 √  √ glucokinase activity glucose import, glucose 

metabolic process, glycolysis, 
mannose metabolic process 

cytosol 

GLO1 √   lactoylglutathione lyase 

activity 

methylglyoxal catabolic 

process to D-lactate, 
glutathione metabolic process 

nucleus, 
cytoplasm 

HXK2   √ hexokinase activity fructose import, fructose 

metabolic process, glucose 

import, glucose metabolic 

process, glycolysis, mannose 

metabolic process, regulation 

of cell size, regulation of 

transcription by glucose, 
replicative cell aging 

cytosol, 

mitochondrion, 

nucleus 

IMP2 √ √ √ peptidase activity, 

mitochondrial inner 

membrane peptidase 

activity, transcription 

coactivator activity 

carbohydrate metabolic 

process, mitochondrial protein 

processing, DNA repair 

mitochondrial 

inner 

membrane 

peptidase 

complex, 
cytoplasm 

LAT1 √ √  dihydrolipoyllysine-

residue acetyltransferase 

activity 

pyruvate metabolic process mitochondrion, 
mitochondrial 

pyruvate 

dehydrogenase 

complex 

LEU4 √ √ √ 2-isopropylmalate 

synthase activity,  

leucine biosynthetic process mitochondrion, 
cytoplasm 

MAE1 √  √ malic enzyme activity pyruvate metabolic process, 
amino acid metabolic process 

mitochondrion 

MAL33 √ √ √ transcription factor 

activity 

carbohydrate metabolic 

process , regulation of 

transcription, DNA-dependent 

nucleus 

MIG1 √   specific transcriptional 

repressor activity, 
sequence-specific DNA 

binding 

negative regulation of 

transcription from RNA 

polymerase II promoter by 

glucose 

nucleus, 

nuclear 

envelope 

lumen 

MIG2 √   specific transcriptional 

repressor activity, 
sequence-specific DNA 

negative regulation of 

transcription from RNA 

polymerase II promoter by 

nucleus 
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binding glucose 

MSN4 √  √ transcription factor 

activity 

cellular response to glucose 

starvation, heat acclimation, 
regulation of transcription 

from RNA polymerase II 

promoter in response to stress, 
replicative cell aging, response 

to freezing, hydrostatic 

pressure, response to osmotic 

stress, oxidative stress and 

stress 

nucleus, 

cytoplasm 

NRG1 √ √  transcriptional repressor 

activity, DNA binding 

response to pH, regulation of 

transcription from RNA 

polymerase II promoter, 
pseudohyphal growth, invasive 

growth (sensu 

Saccharomyces), glucose 

metabolic process, biofilm 

formation 

nucleus 

NRG2 √ √  transcriptional repressor 

activity 

pseudohyphal growth, invasive 

growth (sensu 

Saccharomyces), biofilm 

formation, 

nucleus 

PCK1 √ √ √ phosphoenolpyruvate 

carboxykinase (ATP) 

activity 

gluconeogenesis cytosol 

PFK26 √ √ √ 6-phosphofructo-2-kinase 

activity 

regulation of glycolysis, 
fructose 2,6-bisphosphate 

metabolic process 

cytoplasm 

PFK27 √  √ 6-phosphofructo-2-kinase 

activity 

regulation of glycolysis, 
fructose 2,6-bisphosphate 

metabolic process 

cytoplasm 

PGU1 √ √  polygalacturonase activity pseudohyphal growth, pectin 

catabolic process 

extracellular 

region 

RBK1 √ √  ribokinase activity, ATP 

binding,  

D-ribose metabolic process nucleus, 
cytoplasm 

RGT1 √   transcriptional repressor 

activity, transcriptional 

activator activity, 
transcription corepressor 

activity, RNA polymerase 

II transcription factor 

activity, DNA binding 

regulation of glucose import, 

negative regulation of 

transcription, glucose 

metabolic process, 

nucleus 

SFA1 √ √ √ formaldehyde 

dehydrogenase 

(glutathione) activity, 

formaldehyde catabolic 

process 

mitochondrion, 
cytoplasm 
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alcohol dehydrogenase 

activity 

SIP3 √  √ transcription cofactor 

activity 

transcription initiation from 

RNA polymerase II promoter 

nucleus 

SNF11 √  √ general RNA polymerase 

II transcription factor 

activity,  

chromatin remodeling SWI/SNF 

complex, 
chromatin 

remodeling 

complex 

SNF2 √ √  general RNA polymerase 

II transcription factor 

activity, DNA-dependent 

ATPase activity, 

double-strand break repair, 
chromatin remodeling 

SWI/SNF 

complex, 
chromatin 

remodeling 

complex 

SUC2 √ √  beta-fructofuranosidase 

activity,  

sucrose catabolic process, mitochondrion 

TYE7 √  √ transcription factor 

activity 

transcription, positive 

regulation of glycolysis, G1/S-

specific transcription in mitotic 

cell cycle 

nucleus 

UGA1   √ 4-aminobutyrate 

transaminase activity 

nitrogen utilization intracellular 

UGA2 √ √ √ succinate-semialdehyde 

dehydrogenase 

[NAD(P)+] activity 

response to oxidative stress, 

glutamate decarboxylation to 

succinate, gamma-

aminobutyric acid catabolic 

process 

cytoplasm 

XKS1 √   xylulokinase activity xylulose catabolic process cytoplasm 

YBR184W √  √ Unknown  Unknown Unknown 

YDR248C  √  Unknown Unknown Unknown 
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Appendix 2 

MetaModel web server scripts 

a) Module 1: Stoichiometry 

Python (CGI)-scripts  

• decision.cgi:  
o Calls: sce.php or stoi.cgi  
o Is called by: sce.php  
o Function:  

decision.cgi is used to handle the processing of parameters such as file 
format, output format and wether the user has given any reaction or 
metabolite files. It either calls sce.php, which gives the user the possibility 
to change the standard model or calls stoi.cgi to calculate a new model 
using the user-supplied reaction file.  

• kegg_annot.cgi:  
o Calls: stoi.php  
o Is called by: stoi.php  
o Function:  

kegg_annot.cgi uses the KOBAS script blast2ko.py to create a KO based 
annotation of a user-selected set of ORFs. stoi.php is used for displaying  
ORF list from which the user can select the ORFs to be annotated and for 
displaying  the KOBAS output as well.  

o Annotation: Isn't fully implemented yet, because of problems with the 
KOBAS-package.  

• search1.cgi:  
o Calls: stoi.php  
o Is called by: stoi.php  
o Function:  

search1.cgi implements the search for reactions in which a user-selected 
metabolite takes part. As in the case of kegg_annot.cgi, stoi.php gives the user 
the possibility to select an input for the search and afterwards displays the 
results.  

• search2.cgi:  
o Calls: stoi.php  
o Is called by: stoi.php  
o Function:  

search1.cgi implements the search for processes in which a user-selected 
metabolite takes part. As in the case of kegg_annot.cgi, stoi.php gives the user 
the possibility to select an input for the search and afterwards displays the 
results.  

• stoi.cgi:  
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o Calls: stoi.php  
o Is called by: decision.cgi or sce.php  
o Function:  

stoi.cgi represents the actual calculation of the stoichiometric matrix. The 
parameters given either by sce.php or decision.php are used as the input 
for the calculation. After the model and several statistics have been 
calculated, the results are displayed by the script stoi.php.  

b) Module 2: Isotopomer path tracing 

• ammparse.cgi: 
o Calls: mutantmap.php 
o Is called by: sce.php 
o Function:ammparse.cgi parses the AMMs supplied either by uploading a 

file or pasted in the textbox, handles the AMM to IMM conversion, uses 
the created IMMs for Isotopomer Source Tracing and creates the output, 
which will be shown on the page mutantmap.php. 

• nodediscrimination.cgi: 
o Calls: 
o Is called by: sce.php 
o Function: nodediscrimination.cgi calculates the node types for the 

metabolites supplied in the selected model. It displays the results in tabular 
format. 

c) Module 3: Optimization  

• syn acc.cgi: 
o Calls: mopt.php 
o Is called by: sce.php 
o Function: syn_acc.cgi calculates the synthetic accessbility scores of mutants 

and either displays them directly (in case of invocation of ’Mutant vs WT’ 
functionality), or formats them for output in mopt.php (if the ’Mutant 
Comparison’ functionality is used). 
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Appendix 3 
Mutant name mue Qs Qp QO2 Mutant name mue Qs Qp QO2
CYB2_glc 0.279 15.6 24.4 1.3 FBP26_fru 0.348 21.002 9.778 0.73
GAL80_glc 0.307 19.8 19.6 1.3 ADR1_fru 0.412 26.639 31.017 1.98
GLO1_glc 0.342 21.3 26.7 2.2 MIG2_fru 0.354 22.524 20.949 1.4
GAD1_glc 0.312 20.8 26.1 1.4 HXK2_fru 0.273 12.842 16.739 0.92
CAT8_glc 0.35 23.4 27.9 1.8 UGA1_fru 0.332 19.089 25.604 2.47
SIP3_glc 0.329 19.2 30.1 1.6 YDR248C_fru 0.364 22.972 19.654 2.53
TYE7_glc 0.333 21.8 30.4 1.3 PCK1_fru 0.412 26.499 19.856 1.98
GAL4_glc 0.28 16.9 27.1 2.2 PGU1_fru 0.379 24.752 25.996 1.97
YBR184W_glc 0.292 16 27.9 1 NRG1_fru 0.403 26.853 22.487 1.75
SNF11_glc 0.4 22.9 39.2 2.5 MAL33_fru 0.332 17.906 17.49 1.18
XKS1_glc 0.396 22.6 33.6 1.8 RBK1_fru 0.4 28.782 31.606 1.6
GLK1_glc 0.32 21.3 23 1.2 SFA1_fru 0.394 24.535 24.1 1.64
MAE1_glc 0.282 16 27.9 1 DLD2_fru 0.341 23.02 13.341 1.21
RGT1_glc 0.294 23.3 29.5 1.3 UGA2_fru 0.377 22.747 21.087 1.76
MSN4_glc 0.294 16 23.9 0.9 GAL7_fru 0.326 21.54 17.252 0.78
FBP26_glc 0.288 15.8 26.2 1.1 GAL10_fru 0.317 18.275 22.355 1.08
MIG2_glc 0.288 13.5 22.2 0.9 NRG2_fru 0.401 25.382 20.771 0.98
MIG1_glc 0.289 21 32 0.6 PFK26_fru 0.392 24.208 26.092 1.7
PFK27_glc 0.286 19.3 27 0.9 SUC2_fru 0.371 20.016 18.986 0.31
PCK1_glc 0.338 22.9 29.9 2.1 LAT1_fru 0.381 27.467 21.51 0.6
PGU1_glc 0.311 20.4 30.7 1.1 LEU4_fru 0.378 20.132 9.045 1.58
NRG1_glc 0.232 13.1 15.2 0.8 FBP1_fru 0.354 20.852 26.611 0.7
MAL33_glc 0.306 20.6 34.1 1.2 IMP2_fru 0.385 24.558 40.216 0.71
RBK1_glc 0.341 24.9 36.5 1.5 SNF2_fru 0.287 16.8 19.93 0.71
SFA1_glc 0.351 21.6 28.1 3.3 Reference_fru 0.236 17.977 22.749 0.31
DLD2_glc 0.303 18.1 30.5 1 CYB2_gal 0.307 14.341 11.711 5.61038
UGA2_glc 0.24 14 17 0.6 GLO1_gal 0.316 13.387 12.434 4.166667
GAL7_glc 0.306 20 19.6 1.1 PFK2_gal 0.27 7.413 9.806 3.835227
GAL10_glc 0.338 22.1 35.7 2.9 GAD1_gal 0.316 10.606 16.682 5.642857
NRG2_glc 0.237 15.1 17.5 0.7 CAT8_gal 0.276 10.368 15.432 0.345
PFK26_glc 0.243 15.8 22.2 0.8 SIP3_gal 0.272 11.313 14.527 4.473684
SUC2_glc 0.287 23.7 22.1 3.2 TYE7_gal 0.216 8.849 9.898 3.970588
LAT1_glc 0.293 16.6 28 1.3 YBR184W_gal 0.259 12.075 12.985 2.475153
LEU4_glc 0.314 15.8 22.3 1.3 SNF11_gal 0.207 7.469 11.879 0.294034
FBP1_glc 0.225 12.4 20.9 0.7 XKS1_gal 0.297 19.623 17.299 5.557635
IMP2_glc 0.296 16.4 19.6 0.9 GLK1_gal 0.243 11.033 10.171 4.963235
SNF2_glc 0.236 16.2 20.1 1.8 ACE2_gal 0.225 19.288 17.69 4.210329
Reference_glc 0.32 13.9 18.2 2.3 MAE1_gal 0.26 7.98 11.461 5.762411
CYB2_fru 0.401 22.22 19.653 2.49 MSN4_gal 0.261 11.755 16.381 4.338431
GAL80_fru 0.373 19.523 16.576 2.49 FBP26_gal 0.236 9.914 9.742 3.782051
PFK2_fru 0.331 16.05 19.913 1.34 ADR1_gal 0.17 4.312 4.506 3.964552
GAD1_fru 0.317 18.517 20.548 1.46 MIG2_gal 0.34 13.462 19.267 2.361111
CAT8_fru 0.406 24.973 23.52 2.39 HXK2_gal 0.212 6.469 9.65 4.416667
SIP3_fru 0.4 23.628 38.489 2.98 UGA1_gal 0.277 13.755 12.522 3.170788
TYE7_fru 0.293 16.219 13.932 2.13 PFK27_gal 0.268 10.3 6.366 1.495536
GAL4_fru 0.369 22.935 18.489 1.28 PCK1_gal 0.181 6.376 3.261 3.269509
YBR184W_fru 0.436 24.465 10.041 2.48 MAL33_gal 0.196 5.938 3.7 3.223684
SNF11_fru 0.273 13.465 11.529 2.08 SFA1_gal 0.253 9.58 15.344 6.588542
XKS1_fru 0.336 18.281 16.383 2.28 DLD2_gal 0.199 5.835 4.259 4.783654
GLK1_fru 0.297 18.364 15.186 0.93 UGA2_gal 0.221 7.885 4.409 5.525
ACE2_fru 0.244 14.018 9.677 1.09 PFK26_gal 0.234 5.53 6.757 5.668605
MAE1_fru 0.418 26.156 10.853 3.53 LEU4_gal 0.22 5.108 5.874 5.926724
RGT1_fru 0.416 25.151 40.493 1.65 FBP1_gal 0.335 8.684 6.306 9.264381
MSN4_fru 0.412 23.461 32.52 1.84 IMP2_gal 0.293 9.931 8.201 8.102876

Reference_gal 0.223 6.504 8.262 5.402132
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Appendix 4 

AMM list for used in section 5.2.3.3. 

# Pyr -> PEP;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#PEP -> PGA;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#PGA -> T3P;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#CoA -> Acetate;Ns=2;Np=2 
1 0 
0 1 
 
#C1 -> GLY;Ns=1;Np=2 
0 
1 
 
#ICT -> CO2;Ns= 6;Np=1 
0 0 0 0 0 1 
 
#ACoA -> MAL;Ns= 2;Np=4 
0 0 
0 0 
0 1 
1 0 
 
#OXO -> CO2;Ns= 5;Np=1 
1 0 0 0 0 
 
#OXO -> GLU;Ns=5;Np=5 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
 
#OXO -> SUCC;Ns=5;Np=4 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
 
#ASP -> MET;Ns= 4;Np= 5  
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 
 
#PYR -> MAL;Ns=3;Np=4 
1 0 0  
0 1 0  
0 0 1  
0 0 1 

#ACoA -> LEU;Ns=2;Np=6 
1 0 
0 1 
0 0 
0 0 
0 0 
0 0 
 
#PYR -> LEU;Ns= 3;Np=6 
0 0 0 
0 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
 
#C1 -> MET;Ns=1;Np=5 
0 
0 
0 
0 
1 
 
#C1 -> HIS;Ns=1;Np= 6 
0 
0 
0 
0 
0 
1 
 
#E4P -> TYR;Ns= 4;Np=9 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#E4P -> F6P;Ns=4;Np=6 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#E4P -> PHE;Ns=4;Np=9 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

#CO2 -> OAA;Ns= 1;Np=4 
0 
0 
0 
1 
 
# F6P -> E4P;Ns=6;Np=4 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
 
#F6P -> G6P;Ns=6;Np=6 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
 
#F6P -> S7P;Ns=6;Np=7 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
 
#T3P -> F6P;Ns=3;Np=6 
0 0 1  
0 1 0  
1 0 0  
1 0 0  
0 1 0  
0 0 1  
 
#F6P -> C5P;Ns=6;Np=5 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
 
#ICT -> OXO;Ns=6;Np=5 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
 
#MAL -> OAA;Ns=4;Np=4 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#SER -> C1;Ns=3;Np=1 
0 0 1 
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#F6P -> G6P;Ns=6;Np=6 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
 
#G6P -> C5P;Ns= 6;Np=5 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
 
#GLX -> MAL;Ns=2;Np=4 
1 0 
0 1 
0 0 
0 0 
 
#GLY -> C1;Ns=2;Np=1 
0 1 
 
#GLY -> CO2;Ns=2;Np=1 
1 0 
 
#GLY -> SER;Ns=2;Np=3 
1 0 
0 1 
0 0 
 
#PYR -> CO2;Ns=3;Np=1 
1 0 0 
 
#PYR -> CoA;Ns=3;Np=2 
0 1 0 
0 0 1 
 
#C1 -> SER;Ns=1;Np=3 
0 
0 
1 
 
#CO2 -> MAL;Ns=1;Np=4 
0 
0 
0 
1 
 
#PYR -> OAA;Ns=3;Np=4 
1 0 0  
0 1 0  
0 0 1  
0 0 0 
 
#ICT -> GLX;Ns=6;Np=2 
1 0 0 0 0 0 
0 1 0 0 0 0 
 
#ICT -> SUC;Ns=6;Np=4 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 0 1 
 
#MAL_OAA -> CO2;Ns=4;Np=1 
0 0 0 1 
 
 

#AcoA_DvH -> ICT;Ns=2;Np=6 
1 0 
0 1 
0 0 
0 0 
0 0 
0 0 
 
#ACoA_Ecoli -> ICT;Ns=2;Np=6 
0 0 
0 0 
0 0 
0 1 
1 0 
0 0 
 
#OAA_DvH -> ICT;Ns=4;Np= 6 
0 0 0 0 
0 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
 
#OAA -> ICT_Ecoli;Ns=4;Np=6 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
 
#PYR -> ALA;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#OAA -> ASP;Ns=4;Np=4 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#PYR -> VAL;Ns=3;Np=5 
1 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
 
#PYR -> LYS;Ns=3;Np=6 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 1 
 
#ACoA -> C1;Ns=2;Np=1 
 0 1  
 
 
#PYR -> LEU;Ns=3;Np=6 
0 0 0 
0 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
 

#OAA -> CO2;Ns=4;Np=1 
0 0 0 1 
 
#PEP -> OAA;Ns=3;Np=4 
1 0 0 
0 1 0 
0 0 1 
0 0 0 
 
#OAA -> PEP;Ns=4;Np=3 
1 0 0 0 
0 1 0 0 
0 0 1 0 
 
#PEP -> PYR;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#C5P -> F6P;Ns=5;Np=6 
1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
 
#C5P -> S7P;Ns=5;Np=7 
1 0 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
 
#G6P -> CO2;Ns=6;Np=1 
1 0 0 0 0 0 
 
#PEP -> TYR;Ns=3;Np=9 
1 0 0 
0 1 0 
0 0 1 
0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
 
#PEP -> PHE;Ns=3;Np=9 
1 0 0 
0 1 0 
0 0 1 
0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
 
#T3P -> C5P;Ns=3;Np=5 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 1 
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#C5P -> HIS;Ns=5;Np=6 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
0 0 0 0 0 
 
#C5P -> S7P;Ns=5;Np=7 
1 0 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
 
#C5P -> T3P;Ns=5;Np=3 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
 
#PGA -> SER;Ns=3;Np=3 
1 0 0 
0 1 0 
0 0 1 
 
#ACoA -> CO2;Ns=2;Np=1 
 1 0  
 

#SUC -> MAL;Ns=4;Np=4 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#T3P -> E4P;Ns=3;Np=4 
0 0 0 
1 0 0 
0 1 0 
0 0 1 
 
#S7P -> E4P;Ns=7;Np=4 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

 
#S7P -> C5P;Ns=7;Np=5 
1 0 1 0 0 0 0 
0 1 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
 
 

 

#S7P -> F6P;Ns=7;Np=6 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
 
#SER -> GLY;Ns=3;Np=2 
1 0 0 
0 1 0 
 
#E4P -> S7P;Ns=4;Np=7 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
#E4P -> T3P;Ns=4;Np=3 
0 1 0 0 
0 0 1 0 
0 0 0 1 
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Appendix 5 

Synthetic accessibility results from section 5.2.4.3.  

MetaModel 
applied to 
Palsson2004   

MetaModel 
Prediction 

Experimental    
(+ (Viable);          

- (NonViable) 

MetaModel 
applied to 
Palsson2004   

MetaModel 
Prediction 

Experimental    
(+ (Viable);          

- (NonViable) 

ORF Gene product   ORF Gene product   

WT(Number of reachable output=43, S score=471) WT(Number of reachable output=43, S score=471) 

YMR056C AAC1 + + YBR205W KTR3 + + 

YNL141W AAH1 + + YBR199W KTR4 + + 

YKL106W AAT1 + + YPL053C KTR6 + + 

YLR027C AAT2 + + YNL071W LAT1 + + 

YNR033W ABZ1 - + YJL134W LCB3 + + 

YGR037C ACB1 - + YOR171C LCB4 + + 

YBL015W ACH1 + + YLR260W LCB5 + - 

YLR304C ACO1 + - YGL009C LEU1 + + 

YAL054C ACS1 + + YNL104C LEU4 + + 

YAR015W ADE1 + + YOR108W LEU9 + + 

YLR028C ADE16 + + YFL018C LPD1 + - 

YMR120C ADE17 + + YDR503C LPP1 + + 

YGR204W ADE3 + + YOR142W LSC1 + + 

YMR300C ADE4 + + YGR244C LSC2 + + 

YGL234W ADE57 + + YNL268W LYP1 + + 

YGR061C ADE6 + + YIR034C LYS1 + + 

YDR408C ADE8 + + YIL094C LYS12 + + 

YOL086C ADH1 + - YDL182W LYS20 + + 

YMR303C ADH2 + + YDL131W LYS21 + + 

YMR083W ADH3 + + YDR234W LYS4 + + 

YGL256W ADH4 + + YGL154C LYS5 + + 

YBR145W ADH5 + + YNR050C LYS9 + + 

YDR226W ADK1 + - YKL029C MAE1 + + 

YER170W ADK2 + + YGR289C MAL11 + + 

YJR105W ADO1 + - YGR292W MAL12 + + 

YCL025C AGP1 + + YBR298C MAL31 + + 

YFL055W AGP3 + + YBR299W MAL32 + + 

YMR170C ALD2 + + YOR221C MCT1 + - 

YMR169C ALD3 + + YKL085W MDH1 + + 

YOR374W ALD4 + + YOL126C MDH2 + + 

YER073W ALD5 + + YDL078C MDH3 + + 

YPL061W ALD6 - - YGR121C MEP1 + + 

YNL270C ALP1 + + YNL142W MEP2 + + 

YML035C AMD1 + + YPR138C MEP3 + + 

YDR242W AMD2 + + YKR069W MET1 + + 

YPR128C ANT1 + + YFR030W MET10 + + 

YCL050C APA1 + + YPL023C MET12 + + 

YDR530C APA2 + + YGL125W MET13 + + 

YML022W APT1 + + YKL001C MET14 + + 

YDR441C APT2 + + YPR167C MET16 + + 
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YBR149W ARA1 + + YLR303W MET17 + + 

YOL058W ARG1 + + YOL064C MET22 + - 

YJL071W ARG2 + + YJR010W MET3 + + 

YJL088W ARG3 + + YER091C MET6 + + 

YHR018C ARG4 + + YOR241W MET7 + - 

YER069W ARG5,6 + + YLL062C MHT1 + + 

YDR127W ARO1 - + YJR077C MIR1 + + 

YDR380W ARO10 + + YBR084W MIS1 + + 

YGL148W ARO2 - + YNL117W MLS1 + + 

YDR035W ARO3 + + YLL061W MMP1 + + 

YBR249C ARO4 + + YPL104W MSD1 + - 

YPR060C ARO7 + + YOL033W MSE1 + - 

YGL202W ARO8 + + YPR047W MSF1 + - 

YHR137W ARO9 + + YNL073W MSK1 + - 

YDL100C GET3, ARR4 + + YGR171C MSM1 + - 

YPR145W ASN1 + + YHR091C MSR1 + - 

YGR124W ASN2 + + YDR268W MSW1 + - 

YDR321W ASP1 + + YPL097W MSY1 + - 

YPR026W ATH1 + + YKR080W MTD1 + + 

YBL099W ATP1 + + YGR055W MUP1 + + 

YLR295C ATP14 + - YHL036W MUP3 + + 

YPL271W ATP15 + - YGR007W MUQ1 - + 

YDR377W ATP17 + - YLR382C NAM2 + - 

YML081C-A ATP18 + + YDL040C NAT1 + + 

YJR121W ATP2 + - YGR147C NAT2 + + 

YPR020W ATP20 + + YMR145C NDE1 + + 

YPL078C ATP4 + - YDL085W NDE2 + + 

YDR298C ATP5 + - YML120C NDI1 + + 

YKL016C ATP7 + - YLR138W NHA1 + + 

YOR011W AUS1 + + YJL126W NIT2 + + 

YBR068C BAP2 + + YLR351C NIT3 + + 

YDR046C BAP3 + + YLR328W NMA1 + + 

YJR148W BAT2 - + YGR010W NMA2 + + 

YGR282C BGL2 + + YOR209C NPT1 + + 

YGR286C BIO2 + + YGL067W NPY1 + + 

YNR058W BIO3 + + YDR001C NTH1 + + 

YNR057C BIO4 + + YBR001C NTH2 + + 

YNR056C BIO5 + + YKL120W OAC1 + + 

YJR025C BNA1 + + YKL055C OAR1 + - 

YJR078W BNA2 + + YPL134C ODC1 + + 

YBL098W BNA4 + + YOR222W ODC2 + + 

YLR231C BNA5 + + YJR073C OPI3 - + 

YFR047C BNA6 + + YOR130C ORT1 + + 

YCR032W BPH1 + + YJR051W OSM1 + + 

YEL063C CAN1 + + YDR538W PAD1 + + 

YPL111W CAR1 + + YIL145C PAN6 - + 

YLR438W CAR2 + + YKR097W PCK1 - + 

YML042W CAT2 + + YGR202C PCT1 + + 

YLR307W CDA1 + + YER178W PDA1 + + 

YLR308W CDA2 + + YBR221C PDB1 + + 
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YER061C CEM1 + - YLR044C PDC1 + + 

YCL064C CHA1 + + YLR134W PDC5 + + 

YGR157W CHO2 - + YGR087C PDC6 + + 

YBR023C CHS3 + + YGL248W PDE1 + + 

YNR001C CIT1 + + YOR360C PDE2 + + 

YCR005C CIT2 + + YBR035C PDX3 + - 

YPR001W CIT3 + + YBL030C PET9 + + 

YLR133W CKI1 + + YGR240C PFK1 - + 

YBR003W COQ1 + + YMR205C PFK2 - - 

YNR041C COQ2 + + YIL107C PFK26 + + 

YOL096C COQ3 + - YOL136C PFK27 + + 

YML110C COQ5 + - YKL127W PGM1 + + 

YGR255C COQ6 + - YMR105C PGM2 + + 

YBL045C COR1 + - YNL316C PHA2 + + 

YPL172C COX10 + + YBR092C PHO3 + + 

YLR038C COX12 + + YDR481C PHO8 + + 

YNL052W COX5A + + YML123C PHO84 + + 

YIL111W COX5B + + YCR037C PHO87 + + 

YHR051W COX6 + - YBR296C PHO89 + + 

YMR256C COX7 + - YJL198W PHO90 + + 

YLR395C COX8 + + YNR013C PHO91 + + 

YDL067C COX9 + - YPL268W PLC1 + - 

YOR303W CPA1 + + YPL036W PMA2 + + 

YJR109C CPA2 + + YCR024C-A PMP1 + + 

YNL130C CPT1 + + YEL017C-A PMP2 + + 

YOR100C CRC1 + + YDL095W PMT1 + + 

YDL142C CRD1 + + YAL023C PMT2 + + 

YBR036C CSG2 + + YOR321W PMT3 + + 

YDR256C CTA1 + + YDL093W PMT5 + + 

YBR291C CTP1 + + YGR199W PMT6 + + 

YGR088W CTT1 + + YGL037C PNC1 + + 

YEL027W CUP5 + - YLR209C PNP1 - + 

YML054C CYB2 + + YPL188W POS5 + - 

YAL012W CYS3 + + YIL160C POT1 + + 

YGR155W CYS4 + + YGL205W POX1 + + 

YOR065W CYT1 + + YHR026W PPA1 + - 

YML070W DAK1 + + YMR267W PPA2 + - 

YFL053W DAK2 + + YPL148C PPT2 + - 

YIR027C DAL1 + + YDR300C PRO1 + - 

YIR029W DAL2 + + YOR323C PRO2 + + 

YIR032C DAL3 + + YER023W PRO3 + + 

YIR028W DAL4 + + YHL011C PRS3 + - 

YJR152W DAL5 + + YBL068W PRS4 + + 

YIR031C DAL7 + + YOL061W PRS5 + + 

YFL001W DEG1 + - YGR170W PSD2 + + 

YHR011W DIA4 + - YPL212C PUS1 + + 

YLR348C DIC1 + + YGL063W PUS2 + + 

YPL265W DIP5 + + YNL292W PUS4 + + 

YDL174C DLD1 + + YLR142W PUT1 + + 

YLR172C DPH5 + + YHR037W PUT2 + + 
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YDR294C DPL1 - + YOR348C PUT4 + + 

YDR284C DPP1 + + YPL147W PXA1 + + 

YBR208C DUR1,2 + + YKL188C PXA2 + + 

YHL016C DUR3 + + YGL062W PYC1 + + 

YJR137C ECM17 + + YBR218C PYC2 + + 

YBR176W ECM31 - + YOR347C PYK2 + + 

YLR299W ECM38 + + YHR001W-A QCR10 + + 

YMR062C ECM40 + + YFR033C QCR6 + + 

YDR147W EKI1 + + YDR529C QCR7 + - 

YGR254W ENO1 + + YJL166W QCR8 + + 

YHR123W EPT1 - + YGR183C QCR9 + + 

YML126C ERG13 - + YDL090C RAM1 + - 

YMR202W ERG2 + + YCR036W RBK1 + + 

YNL280C ERG24 - - YIL053W RHR2 + + 

YLR056W ERG3 + + YBL033C RIB1 + - 

YGL012W ERG4 - + YEL024W RIP1 + + 

YMR015C ERG5 + + YIL066C RNR3 + + 

YML008C ERG6 + - YGR180C RNR4 + - 

YLR300W EXG1 + + YJL121C RPE1 + + 

YDR261C EXG2 + + YLR180W SAM1 + + 

YOR317W FAA1 + + YDR502C SAM2 + + 

YIL009W FAA3 + + YPL274W SAM3 + + 

YMR246W FAA4 + + YPL273W SAM4 + + 

YFR019W FAB1 + - YMR272C SCS7 + + 

YBR041W FAT1 + + YKL148C SDH1 + + 

YER183C FAU1 + + YLL041C SDH2 + + 

YLR377C FBP1 + + YDR178W SDH4 + + 

YJL155C FBP26 + + YOR184W SER1 + + 

YPR062W FCY1 + + YGR208W SER2 + + 

YER056C FCY2 + + YER081W SER3 + + 

YER060W FCY21 + + YIL074C SER33 + + 

YER060W-A FCY22 + + YDL168W SFA1 + + 

YCR034W FEN1 - + YJR095W SFC1 + + 

YCR028C FEN2 + - YBR263W SHM1 + + 

YLR342W FKS1 + - YLR058C SHM2 - + 

YMR306W FKS3 + + YDL052C SLC1 - + 

YIL134W FLX1 + + YNR034W SOL1 + + 

YBL013W FMT1 + + YCR073W-A SOL2 + + 

YKR009C FOX2 + + YHR163W SOL3 + + 

YLL043W FPS1 + + YGR248W SOL4 + + 

YBL042C FUI1 + + YKL184W SPE1 + + 

YPL262W FUM1 + + YOL052C SPE2 + + 

YMR250W GAD1 + + YPR069C SPE3 + + 

YBR020W GAL1 + + YLR146C SPE4 + + 

YBR019C GAL10 + + YOR190W SPR1 + + 

YLR081W GAL2 + + YMR101C SRT1 + + 

YBR018C GAL7 + + YKL218C SRY1 + + 

YKR039W GAP1 + + YDR536W STL1 + + 

YDR019C GCV1 + + YJR130C STR2 + + 

YMR189W GCV2 + + YMR054W STV1 + + 
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YAL044C GCV3 + - YIL162W SUC2 + + 

YEL042W GDA1 + + YBR294W SUL1 + + 

YOR375C GDH1 + + YLR092W SUL2 + + 

YDL215C GDH2 + + YPL057C SUR1 + + 

YAL062W GDH3 + + YDR297W SUR2 + + 

YCR098C GIT1 + + YLR372W SUR4 + - 

YEL011W GLC3 + + YLR354C TAL1 + + 

YCL040W GLK1 + + YBR069C TAT1 + - 

YOR168W GLN4 + + YOL020W TAT2 + + 

YML004C GLO1 + + YJL052W TDH1 + + 

YDR272W GLO2 + + YJR009C TDH2 + + 

YOR040W GLO4 + + YGR192C TDH3 + + 

YPL091W GLR1 + + YDL185W TFP1 + - 

YDL171C GLT1 + + YPL234C TFP3 + - 

YEL046C GLY1 + - YOL055C THI20 + + 

YHR183W GND1 + - YPL258C THI21 + + 

YGR256W GND2 + + YPR121W THI22 + + 

YDR508C GNP1 + + YPL214C THI6 + + 

YDL022W GPD1 - + YLR237W THI7 + + 

YOL059W GPD2 + + YHR025W THR1 + + 

YPR160W GPH1 + + YCR053W THR4 + + 

YDL021W GPM2 + + YIL078W THS1 + + 

YOL056W GPM3 + + YPR074C TKL1 + + 

YKL026C GPX1 + + YJR066W TOR1 + + 

YBR244W GPX2 + + YDR050C TPI1 + + 

YHR104W GRE3 + + YBR126C TPS1 + - 

YGR032W GSC2 + + YDR074W TPS2 + + 

YJL101C GSH1 + + YMR261C TPS3 + + 

YOL049W GSH2 + + YDR007W TRP1 + + 

YFR015C GSY1 + + YER090W TRP2 + + 

YLR258W GSY2 + + YKL211C TRP3 + + 

YHL032C GUT1 + + YDR354W TRP4 + + 

YIL155C GUT2 + + YGL026C TRP5 + + 

YER014W HEM14 + - YHR106W TRR2 + + 

YOR176W HEM15 + + YML100W TSL1 + + 

YDL205C HEM3 + + YGR019W UGA1 + + 

YER055C HIS1 + + YBR006W UGA2 + + 

YFR025C HIS2 + + YDL210W UGA4 + + 

YOR202W HIS3 + + YKL216W URA1 + + 

YCL030C HIS4 + + YMR271C URA10 + + 

YIL116W HIS5 + + YJL130C URA2 + + 

YIL020C HIS6 + + YLR420W URA4 + + 

YBR248C HIS7 + + YML106W URA5 + + 

YML075C HMG1 + + YBL039C URA7 + - 

YLR450W HMG2 + + YJR103W URA8 + + 

YBR034C HMT1 + + YDR400W URH1 + + 

YGL077C HNM1 + + YNR012W URK1 + + 

YDR305C HNT2 + + YJR049C UTR1 + + 

YDR158W HOM2 + + YPR036W VMA13 + - 

YER052C HOM3 + + YBR127C VMA2 + - 
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YJR139C HOM6 + + YOR332W VMA4 + + 

YER062C HOR2 + + YKL080W VMA5 + - 

YDR399W HPT1 + + YLR447C VMA6 + - 

YFR053C HXK1 + + YGR020C VMA7 + - 

YGL253W HXK2 + + YEL051W VMA8 + - 

YHR094C HXT1 + + YOR270C VPH1 + + 

YFL011W HXT10 + + YLR240W VPS34 + - 

YNL318C HXT14 + + YGR194C XKS1 + + 

YNR072W HXT17 + + YJR133W XPT1 + + 

YMR011W HXT2 + + YLR070C XYL2 + + 

YDR345C HXT3 + + YAR035W YAT1 + + 

YHR092C HXT4 + + YBR184W YBR184W + + 

YHR096C HXT5 + + YBR284W YBR284W + + 

YJL214W HXT8 + + YCR024C YCR024C + - 

YIR037W HYR1 + + YDR111C YDR111C + + 

YER065C ICL1 + + YEL041W YEL041W + + 

YPR006C ICL2 + + YEL047C YEL047C + + 

YOR136W IDH2 + + YER053C YER053C + + 

YDL066W IDP1 + + YER087W YER087W + + 

YLR174W IDP2 + + YFL030W YFL030W + + 

YNL009W IDP3 + + YFR055W YFR055W + + 

YER086W ILV1 + + YGR012W YGR012W + + 

YCL009C ILV6 + + YGR043C YGR043C + + 

YLR432W IMD3 + + YGR125W YGR125W + + 

YML056C IMD4 + + YGR287C YGR287C + + 

YHR046C INM1 - + YHL012W YHL012W + + 

YJL153C INO1 - + YJL045W YJL045W + + 

YDR072C IPT1 + + YJL068C YJL068C + + 

YPL040C ISM1 + - YJL070C YJL070C + + 

YDR497C ITR1 + + YJL200C YJL200C + + 

YOL103W ITR2 + + YJL216C YJL216C + + 

YKL217W JEN1 + + YKL132C YKL132C + + 

YIL125W KGD1 + + YLR089C YLR089C + + 

YDR148C KGD2 + + YLR164W YLR164W + + 

YDR483W KRE2 + + YML082W YML082W + + 

YOR099W KTR1 + + YML096W YML096W + + 

YKR061W KTR2 + + YMR084W YMR084W + + 

YOR071C YOR071C + + YMR085W YMR085W + + 

YOR192C YOR192C + + YMR118C YMR118C + + 

YKR053C YSR3 + + YMR293C YMR293C + - 

YJL139C YUR1 + + YKL067W YNK1 - + 
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