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Abstract

The notion of graph traversal is of fundamental importaocgoiving many com-
putational problems. In many modern applications invajvgimaph traversal such
as those arising in the domain of social networks, Interaset services, fraud
detection in telephone calls etc., the underlying graprery Varge and dynam-
ically evolving. This thesis deals with the design and eagiing of traversal
algorithms for such graphs.

We engineer various I/O-efficient Breadth First Search (BH§orithms for mas-
sive sparse undirected graphs. Our pipelined implememstvith low constant
factors, together with some heuristics preserving the tacase guarantees makes
BFS viable on massive graphs. We perform an extensive setpafrienents to
study the effect of various graph properties such as diagriatgal disk layouts,
tuning parameters, disk parallelism, cache-obliviousms. on the relative per-
formance of these algorithms.

We characterize the performance of NAND flash based storageas, including
many solid state disks. We show that despite the similariietween flash mem-
ory and RAM (fast random reads) and between flash disk anddiskdboth are
block based devices), the algorithms designed in the RAMahodthe exter-
nal memory model do not realize the full potential of the flasdmory devices.
We also analyze the effect of misalignments, aging, pastp@erns, etc. on
the performance obtained on these devices. We also corifiefficient BFS
algorithms for the case when a hard disk and a solid stateagéesksed together.

We present a simple algorithm which maintains the topokigicder of a directed
acyclic graph withn nodes under an online edge insertion sequenc®(irt"°)
time, independent of the numbar of edges inserted. For dense DAGsS, this is
an improvement over the previous best resul‘t)(xhin{m% logn, m2 + n?logn}).
While our analysis holds only for the incremental settingy, algorithm itself is
fully dynamic.
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We also present the first average-case analysis of onlinéomigal ordering algo-
rithms. We prove an expected runtime®fn? polylog(n)) under insertion of the
edges of a complete DAG in a random order for various increahéopological
ordering algorithms.



Kurzfassung

Die Traversierung von Graphen ist von fundamentaler Beoteutir das Losen
vieler Berechnungsprobleme. Moderne Anwendungen, di€eaghtraversierung
beruhen, findet man unter anderem in sozialen Netzwerkrnegtbasierten Di-
enstleistungen, Betrugserkennung bei Telefonanrufenvielen dieser Anwen-
dungen ist der zugrunde liegende Graph sehr gross undté@nctekontinuierlich.

Wir entwickeln mehrere 1/0O-effiziente Breitensuch-Algbmen fur massive, dinnbe-
siedelte, ungerichtete Graphen. Im Zusammenspiel mitistéeen zur Einhal-
tung von Worst-Case-Garantien, ermoglichen unsere ipgpélasierten Imple-
mentierungen die Praktikabilitat von Breitensuche autsngen Graphen. Wir
fuhren eine Vielfalt an Experimente durch, um die Wirkungtarschiedlicher
Grapheigenschaften zu untersuchen, wie z.B. Graph-Dwesbken, anfangliche
Belegung der Festplatte, Tuning-Parameter, Platteripbsatus.

Wir charakterisieren die Leistung von NAND-Flash basier&peichermedien,
einschliesslich vieler solid-state Disks. Wir zeigen,sitietz derAhnlichkeiten
von Flash-Speicher und RAM (schnelle wahlfreie Lese-Ateyrund von Flash-
Platten und Festplatten (beide sind blockbasiert) Algangn, die fur das RAM-
Modell oder das Externspeicher-Modell entworfenen wuyaécht das volle Po-
tential der Flash-Speicher-Medien ausschopfen. Zlisitanalysieren wir die
Wirkung von Ausrichtungsfehlern, Alterung, vorausgehemtO-Mustern, usw.,
auf die Leistung dieser Medien. Wir berticksichtigen adCnhéffiziente Breitensuch-
Algorithmen fir die gleichzeitige Nutzung von Festplattend solid-state Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Oeitinfiigen von Kan-
ten die topologische Ordnung von einem gerichteten, agsféin Graphen (DAG)
mit n Knoten beibehalt. Dieser Algorithmus hat eine Laufzeidexitat von
O(n?7®) unabhangig von der Anzahi der eingefiigten Kanten. Fuir dichte DAGs
ist dies eine Verbesserung des besten, vorherigen Erg;elsnjerO(min{m% logn,

m? + n’logn}). Wahrend die Analyse nur im inkrementellen Szenarioigiist,
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ist unser Algorithmus vollstandig dynamisch.

Ferner stellen wir die erste Average-Case-Analyse vonn@miilgorithmen zur
Unterhaltung einer topologischen Ordnung vor. Fur mehnmekrementelle Al-
gorithmen, welche die Kanten eines kompletten DAGs in ligér Reihenfolge
einfiigen, beweisen wir eine erwartete Laufzeit @m? polylog(n)).
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Chapter 1

Introduction

A theory must be tempered with reality.

— Jawaharlal Nehru

A graph is one of the most useful objects in discrete mathiemdt can be used
to represent physical networks such as electrical circuitadways or organic
molecules as well as less tangible interactions as mighirdncecosystems, so-
ciological relationships, databases or in the flow of cdntraa computer pro-
gram. It therefore comes as no surprise that graph theorg apglications in
physics, chemistry, communication science, computenseieelectrical and civil
engineering, architecture, operational research, gengisychology, sociology,
economics, anthropology and linguistics. The theory is aiimately related to
many branches of mathematics, including group theory,iriditeory, numerical
analysis, probability, topology, and combinatorics. lotfgraph theory serves as
a mathematical model for any system involving a binary retat

The notion of graph traversal is nearly as old and as impbearthe notion of
a graph itself. One of the most celebrated results in gragletsal dates back
to 1736 when Leonhard Euler solved the fam@even Bridges of ¢higsberg
problemusing a graph traversal technique called Euler tour. A ssirgly large
number of optimization problems from many different donsaian be reduced to
traversing graphs in a structured way.
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Graph traversal algorithms have therefore received ceralide attention in the
computer science literature. Simple linear time algorghmve been developed
for Breadth-First Search (BFS), Depth-First Search (DE&Nputing connected
and strongly connected components on directed graphspantbgical ordering
of directed acyclic graphs$[l]. Also, there exist near-linear time algorithms for
computing Minimum Spanning Trees (MSH®4, 88, 128 of undirected graphs.
Dijkstra’s algorithm p1] with Fibonacci heaps7[l] can solve the Single-Source
Shortest-Paths (SSSP91 71] problem on directed graphs with non-negative
weights inO(m+ nlogn), wheren is the number of nodes amd is the number
of edges in the graph. For All-Pair Shortest-Paths (AP3®)naive algorithm of
computing SSSP from all nodes takdém- n+ n?logn). It has been improved
to O(m-n+ n?loglogn) [127] for sparse graphs an@(n3/logn) [44] for dense
graphs.

1.1 Large graphs

In many applications involving graph traversal, the unged graph is too big
to fit in the internal memory of the computing device. Consithe following
examples:

e The World Wide Web (WWW) can be looked upon as a massive graph
where each web-page is a node and the hyperlink from one page-t
other is a directed edge between the nodes corresponditgpse pages.

As of August 2008, it is estimated that the indexed web costat least 27
billion webpages33].

Typical problems in the analysis (e.g39 95) of WWW graphs include
computing the diameter of the graph, computing the dianwténe core
of the graph, computing connected and strongly connectegbooents and
other structural properties such as computing the coraetpeters for the
power law modeling of WWW graphs. There has also been a lobokwn
understanding the evolution of such graphs.

Computing Page rank3p] (the basis of the Google search engine) is con-
sidered to be a very important problem with respect to welitggaowing

to its immense usage in search engines, classification ang ateer ma-
chine learning applications. A key challenge here is thatesthe webgraph

is continuously evolving, recomputing Page rank every tiheze is a mi-
nor modification in the webgraph is considered to be “indregyg infeasi-
ble” [59].
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e Social networking websites such as Facebook, Orkut, MySpaaokedin
etc. also provide massive and continuously evolving graphe nodes here
refer to the profiles of people and an edge refers to an ackuaggiment of
acquaintance between two people. Typical problems on thegghs are
computing similarity based clustering to find communitiépeople.

e Citation graphs of scientific papers from specific domairts&en® nodes are
the publications and a directed edge from one paper to ther ogiflects
a citation is yet another such graph class. The main problera is to
understand the nature of scientific collaboration and ileabmmunities.

e Automatic classification of data items, based on trainingas, can be
boosted by considering the neighborhood of data items inaphgstruc-
ture [16]. This is particularly useful when the objects to be clasdifare im-
ages (in web-sites such as Flickr) or videos (in web-sitek si8 YouTube).
The tags associated with these pictures and videos areyhamdugh for
their classification. The graph structure containing thengjs and dislik-
ings of different users provides important clues that caprowe the clas-
sification accuracy significantly. Such graphs can oftenitduge. For
example, the online photo sharing network Flickr that sthrh 2004 had
more than two billion pictures as of November 200D0|[and claims that
three to five million photos are updated daily on its network.

e There have also been attempts (e.§8]) to improve the results of web
search by using the implicit feedback obtained from queggld he under-
lying assumption behind these approaches is that by clicfonignoring)
the results provided by the search engines for a particulangusers mark
the relevance of clicked (or ignored) pages with respediea query. The
graph here is huge as the set of nodes consists not only oféhepages,
but also of all the queries posted by users to the search@ngfrere is an
edge between a node representing a qgemyd a node representing a web-
pagew if a user searches for the quegythe search engine shows him/her
the web-pagev as a result, and he/she clicks on it.

e Telephone call graphs: Telephone call graphs have thehmhepnumbers
operated by a company as nodes and there is a directed edgeehdivo
nodes if and only if there has been a call from one to anothardartain
time-frame. The call graphs managed by telecom comparkesAT&T
can be massive. Typical problems on telephone call graph&rand de-
tection and searching for local communities (e.g., by datganaximum

cliques fi]).
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e GIS terrain data: Remote sensing has made massive amoumitghafes-
olution terrain data readily available. Terrain analysiseéntral to a range
of important geographic information systems (GIS) appiores concerned
with the effects of topography. Typical problems in this dominvolve
flow routing and flow accumulatior2p).

¢ Route planning on small PDA device&] 141]: The PDA devices used to
compute the shortest/fastest routes have very small maimomye Although
the street maps of even continents are only a few hundred MBge, they
are too large to fit into the small main memory of these devices

e State space search in Artificial Intelligend]: In many applications of
model checking, the state space that needs to be searcloedig) tto fit in
the main memory. In these graphs, the different configunagtates are the
nodes and the edge between two nodes represent the pogsibditransi-
tion from one state to another in the course of the protolgmfghm being
checked. Typical problems in this domain are reachabiligiysis (to find
out if a protocol can ever enter into a wrong sta&][ cycle detection (to
search for liveness propertie®d, or just finding some path to eventually
reach a goal state (action planning).

e Semantic graphs (e.g.99]), where the nodes represent entities and the
edges represent relationship between two entities canbalsquite huge.
Typical problems in the analysis of semantic graphs incldetermining
the nature of the relationship between nodes in the grapth Sueries can
be answered by finding shortest paths or computing Steiees.trAnother
key area of interest on semantic graphs is community argalysi

e Purchase graph from electronic commerce (e-commerce) aoieg such
as the online book-shop Amazon is yet another example of imeaasd
continuously evolving graph. Here, the bipartite graphstsis of the prod-
ucts (such as books) and the buyers as the nodes and a puastasedge.
There has been a lot of work in building a personalized recendation
system to show those products to users that they may alsorlike is typ-
ically based on their past purchases. The key idea here detdify other
users whose purchasing behavior is similar and recommendgpropri-
ately weighted sum of their other purchases.

e Frameworks for keyword querying of relational databases (£28]) may
also involve traversing large graphs.

e Many problems arising in VLSI design, XML query processiggerying
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ontology DAGs, Delaunay triangulation of meshes in compuitaphics, vi-
sualization of biological networks such as protein-pmoiateractions, and
molecular data mining also involve traversing large graphs

While some solutions for these problems are based on spsaBe¢ dense-vector
multiplications, or approximating the solution using e linear programming,
a large number of solutions rely on traversing graphs. Famgpte, a community
detection algorithm by Newman and Girmalilf] uses all-pair BFS as a sub-
routine to identify edges with high “betweenness”, whereMeenness is some
measure that favors edges that lie between communitiesiafayars those that
lie inside communities. Removal of these edges reveal therént “natural” di-
vision of the network into groups.

1.2 Realistic setting for traversing large
graphs

Since, the standard linear or near-linear time algorithongyfaph traversal are
also reasonably simple, it is tempting to use them directlyeial applications
involving large and massive graphs as well. Unfortunatély,real world offers
many more challenges than the ones for which our simpleiéhgas are designed.

First and foremost, these algorithms are designed and zsthiy the von Neu-
mann or RAM model of computation. This model assumes a umsit @ocess to
any memory location. In reality, the computer architectsriar more complex.
There is a sophisticated memory hierarchy (cf. Sec?dn? and the cost of data
access depends on the level of memory where the data is tymresiding. In
particular, the cost of accessing the data from the disk autah million times
more than that of accessing it from the L1 cache.

As the storage requirements of the input graph reaches ae@és the size of the
main memory available, the running time of the simple linganear-linear time
algorithms deviates significantly from their predictedragyotic performance in
the RAM model. Furthermore, on massive graphs (with a Inilbo more edges),
these algorithms are simply non-viable as they require nmamyths or year$or
the requisite graph traversal. The main cause for such agavformance of these
algorithms on massive graphs is the number of 1/Os (trardfdata from/to the
external memory) they incur.

Figurel.1ldisplays the results of experiments with the commonly uses Bu-



Chapter 1: Introduction

T T T T
215 L Time taken by LEDA BFS --X-- X <
S | o
!
I/
212 - /l -
X
,g 510 [ ><// _
3 5
c 8 /X
= 2° X -1
2 x
/
[ 26 I~ /// .
/
4 _X
=K -X -1
2 X—x—x——X—X“X’* X— X oy
2 .
1 1 1 1 1

2 25 3 3.5
n (in millions)

Figure 1.1: Time (in seconds) required by BFS from the LEDApdr package on
random graphs witim= 4n edges.

tine of the LEDA [LO7] graph package on random grab] 67] G(n,m) with
m= 4n. These experiments were done on a machine with Intel Xeo@BDpro-
cessor, 1 GB RAM and 2 GB swap space on a Seagate Baracuddislafti42,.
On random graphs with 3.6 million nodes (and 14.4 millionegjgit takes around
10 hoursas compared to just 1€econddor graphs with 1.8 million nodes (and
7.2 million edges).

With the advent of solid state disks and other flash memorgdatrage medi-
ums, the memory hierarchy is likely to become even more stighted as the
read-write characteristics of these devices can be vefgrdiit from the tradi-

tional hard disks. Since the storage devices significaffthctthe practical per-
formance of traversal algorithms when running on large lgsapve would like

to exploit the 1/0O characteristics of these devices to degigph traversal algo-
rithms that perform better in practice. For this, it is imjamt to first properly

characterize these disks.

Another important challenge when dealing with real worlglagations is that
the input graphs are often dynamically changing. For irgathe World Wide
Web graph, social networking graphs, purchase graphs, @edti$ic collabora-
tion graphs are all continuously evolving. The telephoriegraphs are also con-
tinuously changing. Even the street maps for route planapmications which
may seem static most of the time are actually quite dynamie dine traffic jam
and other road-block information is accounted in. The @airay of recomput-
ing all the information every time there is a minor modificatiin the original
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graph is inefficient and for large and massive graphs, oftgractical. ldeally,
we would like to bound the amount of work needed to recomplgeréquired
traversal-related solution by a function of some measurehahge done in the
input graphs and the change in the output solutk8#]. Since this is not always
possible, our next best hope is to bound the required work i@naortized sense.
In other words, while some updates may necessiate a lot &, wearwould like to
bound the sum of the time required for recomputing the smiubiver a sequence
of graph updates.

While most of the algorithm design is done keeping the waaseacomplexity in
mind, the worst case graphs for many of these algorithmsuate kare. Most ap-
plication requirements are already met if an algorithmgens good on average.

In short, the simple graph traversal algorithms are oftapmmopriate for real ap-
plications involving massive graphs owing to the problenits whe computation
model, the noise and dynamicity of the input and the need dfferent complex-

ity measure (worst-case vs. average case).

Since most static algorithms analyzed for worst-case RAkh@exity are im-
practical for massive graphs, one often relies on heusisfice-computations or
exploiting special graph properties of underlying grapghgch solutions are usu-
ally tailored for particular domains and are often applmaispecific. For each
new application, one needs to design and implement diffemearistics from
the scratch. There is clearly a need for algorithms that moli only give nice
theoretical guarantees for general graphs (without assyany domain-specific
knowledge), but also perform good in practise. This themsi$es on the design,
analysis and engineering of such algorithms.

1.3 Our contribution

The main contributions of this thesis are:

e We consider the problem of 1/O-efficient Breadth-First $afBFS) on
massive sparse undirected graphs. We engineer thd&8MRalgorithm by
Munagala and Ranadé&15 into a practical implementation with low con-
stant factors in the I/0 complexity. Our pipelined implenation based on
the external memory library STXXL can use multiple disksudtlier alle-
viate the 1/0 bottleneck. With this implementation, we aoéedo compute
the BFS level decomposition of a web-crawl based graph afratd 30
million nodes and 1.4 billion edges in less than 3 hours,gigidisks.
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We also engineer the(n)-1/0 MM _BFS algorithm 106 by Mehlhorn and
Meyer. Our experiments suggest that while on small dianggtghs, MRBFS
performs quite well, MMBFS performs significantly better on moderate
to large diameter graphs. The usage of some heuristicsefumiproves
the running time of the faster variant of MBFS, while at the same time
preserving the worst-case asymptotic I/O-complexity of N\BAS. Demon-
strating the viability of our BFS implementation4 P, 13] on various syn-
thetic and real world benchmarks, we show that BFS level mositions
for large graphs (around a billion edges) can be computedareap ma-
chine in afew hours even if the underlying graph has large diameter.

We also present the design and engineering of simple |/Otesiti algo-
rithms for generating large input graphs (of various grajasses) and a
BFS decomposition verifier. As a part of our BFS implementatj we also
look into the past engineering efforts on list ranking, Eddair, minimum
spanning forest and connected components, and adapt sahesefimple-
mentations to the faster STXXL framework.

Furthermore, we compare the building blocks of our impletagon with
their corresponding cache-oblivious implementations @monstrate that
in the context of BFS on massive graphs, the cache-oblivioptementa-
tion is likely to be at least a factor of 4-5 slower than our lempentation.

The key engineering ideas in our implementations also fdrenstarting-
point for implementing other 1/O-efficient algorithms lik&ngle-Source
Shortest-Paths and Dynamic BFS. A significant chunk of odeas likely

to be re-used for these implementations.

Flash memory is fast becoming the dominant form of end-usgage in
mobile computing. Since storage devices play a crucial irotee perfor-
mance of (traversal) algorithms when the input (graph) da@s not fit
in the main memory, it is important to understand the I/Orabteristics
of the storage devices to be able to predict the real runmmnegst of these
algorithms. Such an understanding can also be exploite@¢smn algo-
rithms that are faster in practice. We characterid® 11] the performance
of NAND flash based storage devices, including many soligk stessks. We
show that these devices have better random read performthacehard
disks, but much worse random write performance. We also/aedhe ef-
fect of misalignments, aging, past I/O patterns, etc. onpirdormance
obtained on these devices. We show that despite the siti@taketween
flash memory and RAM (fast random reads) and between flashaaidk
hard disk (both are block based devices), the algorithmgyded in the
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RAM model or the external memory model do not realize thegotiential
of the flash memory devices.

In the scenario when a solid state disk is used as an addisecandary
storage rather than replacing the traditional hard diskemgineer the 1/0O-
efficient BFS implementation to exploit the comparativeatages of both
the disks. We show that this is at least 25% faster than ratydsimping
the data on the two disks.

e We present a simple algorithr@,[12] which maintains the topological order
of a directed acyclic graph with nodes under an online edge insertion
sequence iD(n*’®) time, independent of the numberof edges inserted.
For dense DAGsS, this is an improvement over the previous riessilt of
O(min{mg logn, m2 + n’logn}) by Katriel and Bodlaende®fl]. While our
analysis holds only for the incremental setting, our aldponi itself is fully
dynamic.

We also provide an empirical comparison of our algorithmhweither algo-
rithms for dynamic topological sorting.

The externalization of our algorithm provides interestimeyv results for
dynamic topological ordering in external memory.

We also present the first average-case anal¥si§] [of online topological
ordering algorithms. We prove an expected runtimed¢i? polylog(n))
under insertion of the edges of a complete DAG in a randomrdaitehe
algorithms of Alpern et al.15], Katriel and Bodlaenderdl], and Pearce
and Kelly [124].

1.4 Organization of the thesis

The rest of this thesis is organized as follows: Chaptiarmally defines a graph
and various notations used in the remaining chapters. dtstiews the various
computation models used to capture memory hierarchy ansepte the basic
tools and techniques for the design and engineering of fidient algorithms.
Chapter3 presents our work in engineering the I/O-efficient BFS atpars. We
also describe the related design and engineering of |/©Otesftialgorithms for list
ranking, Euler tour, directed breadth-first search, deéjpsth-search, and topolog-
ical ordering, and undirected connected components, niimrspanning forest,
single-source shortest paths, dynamic BFS, and diamebeox@mation.
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In Chapter4, we show the characterization of flash memory devices imatud
solid state disks. We also describe our efforts for tuninglfd-efficient BFS al-
gorithms to handle the case when the computing machine ogle$he traditional
hard disks as well as solid state disks for storage.

In Chapter5, we present ou®(n?°) algorithm for online topological ordering.
We also show some open problems that can help tighten thesisaf our algo-
rithm. Also, we show how to externalize our algorithm to abtateresting new
results on dynamic topological ordering in external memdfyrthermore, we
present our results for the average-case analysis of tireednpological ordering.
We show that the algorithms by Alpern et al5], Katriel and Bodlaenderd],
and Pearce and KellyLR4 require an expected runtime @f(n?- polylog(n)) for
maintaining the topological ordering, when edges of a cetedDAG are inserted
in a random order. We also briefly describe some recent adgandamproving
our bounds for this problem.



Chapter 2

Basic tools and techniques

Intelligence is the faculty of making artificial objectspesially tools to make
tools.

— Henri Bergson

We start this chapter (Sectidhl) by giving the formal definitions and notations
used in the remaining chapters. SecttBprovides some basic facts about prob-
ability theory and Sectiof.3 presents some random graph models. Se@idn
describes the real architecture and various computatraodkls used to capture
the memory hierarchy and SectioR$ and2.6 present the tools and techniques
used in the design and engineering of 1/0-efficient algargh A reader famil-
iar with the standard graph terminology, basic probabttitgory, random graph
models, and the computation models capturing memory luleies may wish to
skip section®.1, 2.2, 2.3and2.4, respectively.

2.1 Preliminary definitions

Formally, a graphG is an ordered pair of disjoint set¥,E) such thatE is a
subset of the set of unordered pairsvof In this manuscript, we only consider
finite graphs, that i¥ andE are always finite (though they are often very large).
The setV is the set ofverticesandE is the set ofedges If G is a graph then
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V =V(G) is the vertex set o andE = E(G) is the edge set. An edde, Y} is

said tojoin the verticesx andy. The vertices< andy are theend-verticeof this
edge. If{x,y} € E, thenx andy areadjacentor neighboringvertices ofG and the
verticesx andy areincidentwith the edge{x,y}. Two edges aradjacentif they
have exactly one common end-vertex. We also use the not@{}drE) to refer
to a graphG = (V,E) andG(V, E,w(+)) to refer to a weighted grapB = (V,E),

where each edge:= {x,y} € E is associated with a weight(e) (or w(x,y)).

The set of neighbors of a vertexin G is denoted byNg(V), or briefly by N(v).

More generally forld C V, the neighbors iV \ U of vertices inU are called
neighbors otJ; their set is denoted by (U ). The degreel(v) of a vertexv is the
numberE(v)| of edges av; this is equal to the number of neighbors/ofA vertex
of degree 0 igsolated The numbed(G) := min{d(v)|v € V} is theminimum
degreeof G, the numbe(G) := max{d(v)|v € V} denotes itsnaximum degree

The numbed(G) := ﬁ Svev d(V) = % is the average degreef G. Clearly,

5(G) < d(G) < A(G).

An independent seh G = (V,E) is a set of node¥’ C V such that ifu,v e V/,
{u,v} ¢ E i.e., no two nodes 0¥’ are adjacent ifs. A maximal independent set
is an independent set which is not contained in any largespgaddent set.

We say thatG' = (V/,E’) is asubgraphof G = (V,E) if V' CV andE’ CE. In
this case, we writ&’ C G. If G’ contains all edges d& that join two vertices in
V’ thenG' is said to be the subgraph induced\Wyand is denoted bB[V']. A
subgraphG’ of G is aninduced subgrapif G' = G|V(G')]. G’ C G is aspanning
subgraphof G if V/ spans all ofG, i.e. if V/ =V. We sayG’ spans G

A self-loopis an edge that connects a vertex to itselfsitaple graphs an undi-
rected graph that has no self-loops and no more than one etgedn any two
different vertices. In this thesis, we will only be dealingtwsimple graphs. A
complete graph is a simple graph in which every pair of destirertices is con-
nected by an edge. An empty graphrmonodes consists af isolated nodes with
no edges.

A path P from u to w in a graphG is a node sequenceg(Vvi,...,Vk) for some
k > 1, such that the edg€gsip,v1}, {vi,v2},....{w_1,w} are part ofE, vp = u,

andv, = w. If all nodesy; on P are pairwise distinct then we say that the path
is simple Cycles are those paths where the starting point and theoeridgre

identical. Theweightof a pathP = (vp,...,w) from u to v in a weighted graph
G(V,E,w(+)) is defined to b& " Fw(Vi, Vi1 1).

A non-empty graptG is calledconnectedf any two of its vertices are linked
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by a path inG. A maximal connected subgraph Gfis called acomponenbr

a connected component G. An acyclic graph, one not containing any cycles,
is called aforest A connected forest is calledteee The vertices of degree 1
in a tree are itdeaves The weight of a forest (tree) is defined to be the sum of
the weights of all the edges in the forest (tree). A fofegtreeT) that span<s

is aspanning fores{spanning tregof G. A spanning forest (spanning tree) of
minimum weight is calleagninimum spanning foregiinimum spanning trge

The distance dx,y) in G (also referred aslg(x,y)) of two verticesx,y is the
minimum weight of a path fromtoyin G; if no such path exists, we sefx,y) :=

. The greatest distance between any two verticeS is the diameterof G,
denoted by diarfG). Sometimes it is convenient to consider one vertex of a tree
as special; such a vertex is then calledat of this tree. A tree with a fixed root

is arooted tree

An edge seE of adirectedgraph consists of ordered pairs of nodes: an exige
from nodeu to nodev is denoted by = (u,v). Hereu is also called théail, v the
head and both nodes are calleddpoint®f (u,v). Furthermore(u,v) is referred

to as one olr's outgoingedges or one of's incomingedges, as an eddeaving

u or an edgeentering v The number of edges leaving (entering) a node is called
the out-degreg(in-degre@ of this node. Thealegreeof a node is the sum of its
in-degree and out-degree.

A path P from u to w in a directed graplG is a node sequenceg(Va, ..., V)

for somek > 1, such that the edgésp, V1), (V1,V2),...,(Vk_1,Vk) are part ofg,

Vo = U, andvix = w. The nodes andvy are called the starting point and endpoint
of P, respectively. If all nodes; on P are pairwise distinct then we say that the
path issimple Cycles are those paths where the starting point and theoerdp
are identical. A graph is calleatyclicif it does not contain any directed cycle.

A linear order is a relation that is reflexive, transitivetiggmmetric, and total. A
topological ordeiT of a directed grapl&(V, E) is a linear ordering of its nodes
such that for all directed paths frore V toy € V (x #y), it holds thatT (x) <
T(y). A directed graph has a topological ordering if and only i§iacyclic.

A walk is an alternating sequence of vertices and edges, begimmdgnding
with a vertex, in which each vertex is incident to the two edtigt precede and
follow it in the sequence, and the vertices that precede allaf an edge are the
end vertices of that edge. A walkatosedif its first and last vertices are the same,
andopenif they are different.

A trail is a walk in which all the edges are distinct. A closed trada#led atour
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or acircuit. Euler touris a tour which contains all the edges exactly once. A
graph that contains an Euler tour isBalerian graph

Graph traversalrefers to the problem of visiting all the nodes in a graph in a
particular (structured) manner. Popular examples of gteguersal are Breadth-
First Search, Depth-First Search, A*, and Dijkstra’s aiton. Tree traversals a
special case of graph traversal. Examples of tree traviexdabe pre-order, post-
order, and in-order traversal. A pre-order traversal siait nodes of a tree by
processing the root, then recursively processing all setrooted at its children
from left to right. A post-order traversal first recursivglyocesses all subtrees
from left to right and then processes the node. An in-ordmretrsal on binary
trees first processes the left subtree, then the root andy/fthalright subtree.

2.2 Basic probability theory

In this section we review a few basic definitions and factstlfiar probabilistic
analysis of algorithms.

Thesample spaceoften denoted2 of an experiment or random trial is the set of
all possible outcomes. Any subseC Q of the sample space is usually called an
event A probability measure Bs a function that satisfies the following three con-
ditions: 0< P[] < 1 for eache C Q, P[Q] =1, andP[Uj&| = 3 P[&] for pairwise
disjoint eventss;. A sample space together with its probability measure baild
probability space For a problem of size, we say that an everst occurswith
high probability (w.h.p.)if P[e] > 1—O(n~9) for an arbitrary but fixed constant

a > 1. Theconditional probability Re;|&] = P[;%?Z]EZ] refers to the probability of

an evente; to occur when we already know that another ewerfhappens. Two
eventse; ande; are calledndependenif P[e;|&s] = Pley).

Any real valued numerical functioX = X(Q) defined on a sample space
may be called aandom variable If X maps elements i@ to R, U {0} then
it is called anonnegativerandom variable. Adiscreterandom variable only
takes isolated values with nonzero probability. Typicagresentatives for dis-
crete random variables abénary random variables, which map element<€ino
{0,1}. Two random variableX andY are calledndependentif, for all X,y € R,
PX =xY =y] =P[X =X].

Theexpectatiorof a discrete random variableis given byE[X] = S ycr X-P[X =
x]. Here are a few important properties of the expectation fbitrary random
variablesX andY:

e If X is nonnegative, theB[X] > 0.
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[EIX][ < E[IX]].

Elc-X] =c-E[X] for anyc € R.
e E[X+Y]=E[X]+E[Y] (Linearity of expectation).
If X andY are independent, thef[X - Y] = E[X] - E[Y].

Frequently, we are interested in the probability that randariables do not devi-
ate too much from their expected values. TWarkov Inequalityfor an arbitrary
nonnegative random variab}¢ states thaP[X > k] < % for anyk > 0. The
Chebyshev Inequalitstates that if a random variabkehas an expected valye

and finite variance?, then for any real numbér> 0,

1
PIX—ul>k-o] < 2
In our average case analysis of online topological ordeaiggrithms, we will
use an alternative formulation of this inequality:

2
(0)
P[[X—pu| >v] < V2

More powerful tail estimates exist for the sum of independandom variables.
Here is one version of the well-know@hernoff bound Let Xy,..., Xk be inde-
pendent binary random variables gnd-= E[z'j‘zlxj]. Then it holds for alld > 0
that

k .
PIY X > (1+8) - p] < e mn(o-elu/3
=1
Furthermore, it holds for all & & < 1 that

k
PLY X <(1-8)-p <e 42
=1

2.3 Random Graph Model

Random graph models are important tools for the average-amalysis of graph
traversal algorithms. Furthermore, since most real-wohlehomenon have a ran-
dom component, many important properties of real-worlggsaare similar to
those of random graphs. For instance, our experiments stgjtigt the perfor-
mance of various external memory BFS algorithms on webgreg$imilar to that
on random graphs.
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Erd6s and Rényid6, 67] introduced and popularized random graphs. They de-
fined two closely related model&(n, p) andG(n,m). The G(n, p) model (0<

p < 1) consists of a graph with nodes in which each edge is chosen indepen-
dently with probabilityp. On the other hand, th&(n,m) model assigns equal
probability to all graphs witin nodes and exactlgn edges. Each such graph oc-
curs with a probability of £(1Y), whereN := (3).

For our study of online topological ordering algorithms, uge the random DAG
model of Barak and Erd62§]. They obtain a random DAG by directing the edges
of an undirected random graph from lower to higher indexetices. Depending
on the underlying random graph model, this definefXA&(n, p) andDAG(n,M)
model.

The set of all DAGs witm nodes is denoted bPAG". For a random variablé
with probability spac®AG", Ev [f] andEp[f] denotes the expected value in the
DAG(n,M) andDAG(n, p) model, respectively.

The following theorem shows that in most investigationsrtiwlelsG(n, p) and
G(n,m) are practically interchangeable, provideds close top- N.

Theorem 1 Given a function f G" — [0,a] with a> 0 and f(G) < f(H) for all
G C H and functions p and m of nwith< p< 1, q:=1-p, N:= (3), and
me N,

pPN—m
NEIN
2. If i N= lim —

a PN = o, /o
A closer look at the proof for it given by Bolloba33] reveals that the probabilistic
argument used to show the close connection betvigenp) and G(n,M) can
be applied in the same manner for the two random DAG madls(n, p) and
DAG(n,M).

1. Ifr!im qu:r!im = oo, then Ey [f] < Ep[f]+0(1).

= oo, then E,[f] <Em[f]+0(1).

Theorem 2 Given a function f DAG" — [0,a] with a> 0and f(G) < f(H) for
all G C H and functions p and m of n with< p< 1, q:=1-p, N:= (3), and
me N,

pPN—m
v PAN
m— pN
v PaN

1. Ifrllim qu:r!im = oo, then Em [f] <Ep[f]+0(1).

2. If lim pgN= lim = oo, then Ep[f] <Em|[f]+0(1).
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2.4 Computation models capturing memory
hierarchies

We start this section by describing the RAM model which is ofh¢he most
popular computation models for designing algorithms.

2.4.1 RAM model or von Neumann model

The running time of an algorithm is traditionally analyzeddmunting the num-
ber of executed primitive operations or “instructions” asuaction of the in-
put sizen. The implicit underlying model of computation is the on@gessor,
random-access machinBAM) model. The RAM model or the “von Neumann
model of computation” consists of a computing device agdcto a storage de-
vice (or “memory”). The following are the key assumptionglu model:

e Every instruction takes the same amount of time, at leasbgmall con-
stant factors.

e Unbounded amount of available memory.
e Memory stores words of siZg(logn) bits wheren is the input size.
e Any desired memory location can be accessed in unit time.

The above assumptions greatly simplify the analysis ofrélyms and allow for
expressive asymptotic analysis.

2.4.2 Real Architecture

Unfortunately, modern computer architecture is not as Enfpather than having

an unbounded amount of unit-cost access memory, we havesadiig of storage
devices (Figur.1) with very different access times and storage capacitiexsi-M
ern computers have a microprocessor attached to a fiegadters Thefirst level

(L1) caches usually only a few kilobytes large and incurs a delay ofva éock
cycles. Often there are separate L1 caches for instrucindslata. Nowadays,
typical second level (L2) cachieas a size of about 32-64 KB and access latencies
around ten clock cycles. Some processors also have a ratemsavethird level

(L3) cacheof up to 256 MB made of fast static random access memory calls.
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A
<1KB 1 ns
< 256 MB C'(];ChCS 10 ns
Size Speed
r_
<8GB Main Memory 570 ms
>20G 10 ms
Hard Disk
v

Figure 2.1: Memory Hierarchy in modern computer architesetu

cache consists afache lineghat each store a number of memory words. If an
accessed item is not in the cache, it and its neighbor ergreefetched from the
main memory and put into a cache line. These caches usuakylimaited asso-
ciativity, i.e. an element brought from the main memory carptaced only in
a restricted set of cache lines. Idaect-mappedcache the target cache line is
fixed and only based on the memory address, whereasuih-@associativecache
the item can be placed anywhere. Since the former is toactagtrand the latter
is expensive to build and manage, a compromise often usedes-associative
cache. There, the item’s memory address determines a fixexf sache lines
into which the data can be mapped, though within each setcactye line can be
used. The typical size of such a set of cache lines is a powrimfthe range
from 2 to 16. For more details about the structure of cachegtierested reader
is referred to 127 (in particular its Chapter 7).

The main memorys made out of dynamic random access memory cells. These
cells store a bit of data as a charge in a capacitor ratherstiosimg it as the state

of a flip-flop which is the case for most static random accessong cells. It
requires practically the same amount of time to access aoemf data stored in

the main memory, irrespective of its location, as there iphgsical movement
(e.g. of areading head) involved in the process of retrgdata. Main memory
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is usually volatile, which means that it loses all data whendomputer is powered
down. At the time of writing this thesis, the main memory siasually between
512 MB and 8 GB and a typical RAM memory has an access time of Ato
nanoseconds.

Magnetic hard disksoffer cheap non-volatile memory with an access time of
10 ms, which is 10times slower than a register access. This is because it takes
very long to move the access head to a particular track ofigkeashd wait until

the disk rotates into the seeked position. However, onchehd starts reading or
writing, data can be transfered at the rate of 35-105 MB@}. [Hence, reading

or writing a contiguous block of hundreds of KB takes only aiivice as long

as accessing a single byte, thereby making it imperativedogss data in large
chunks.

Apart from the above mentioned levels of a memory hierartttere are instruc-
tion pipelines, an instruction cache, logical/physicajes the translation look-
aside buffer (TLB), magnetic tapes, optical disks and thevokk, which further
complicate the architecture.

The reasons for such a memory hierarchy are mainly econaritica faster mem-

ory technologies are costlier and, as a result, fast mesiiidn large capacities
are economically prohibitive. The memory hierarchy emergse a reasonable
compromise between the performance and the cost of a machine

Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides a#l thessy details of
computer architecture from the algorithm designer andeatéme time, it encap-
sulates the comparative performance of algorithms rerbéykaell. It strikes a
fine balance by capturing the essential behavior of computhile being simple
to work with. The performance guarantees in the RAM modehatearchitecture-
specific and therefore robust. However, this is also theilmifactor for the suc-
cess of this model. In particular, it fails significantly whihe input data or the
intermediate data structure is too large to reside comletghin the internal
memory.

For most (traversal) problems on large (graph) data se¢sjdiminant part of the
running time of algorithms is not the number of “instrucsdybut the time these
algorithms spend waiting for the data to be brought from el hlisk to internal
memory. The I/Os or the movement of data between the memergrchies (and
in particular between the main memory and the disk) are rgiticad by the RAM
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model and hence, the predicted performance on the RAM moagimereasingly
deviate from the actual performance.

Future Trends

The problem is likely to aggravate in the future. In follogiwith the Moore’s
law, the number of transistors double every 18 months. Assaltethe CPU
speed continues to improve at nearly the same pace, i.eveaage performance
improvement of 1% per week. Besides, the usage of paratiebssors and multi-
cores makes the computations even faster. On the other hamdiom access
memory speeds and hard drive seek times improve at best acl@&rmages per
year. Although the capacity of the random access memoryldswout every
two years, users double their data storage every 5 montltesIntérnet applica-
tions like social networks and e-commerce companies (cfti®@el.1) are also
extending their user and product base at a very fast pace.

2.4.3 External Memory Model

CPU

Memory M

-

Figure 2.2: The external memory model

The 1/0 model or the external memorfgl) model (depicted in Figur2.2) as in-
troduced by Aggarwal and VitteB] assumes a single central processing unit and
two levels of memory hierarchy. The internal memory is fast,has a limited size

of M words. In addition, we have an external memory which can balgccessed
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using I/Os that mov® contiguous words between internal and external memory.
For graph traversal problems, the notation is slightlyralle we assume that the
internal memory can have up M data items of a constant sife.g., vertices or
edges), and in one I/O operatiddcontiguous data items move between the two
memories. At any particular time, the computation can osly the data already
present in the internal memory. The measure of performahee algorithm is
the number of 1/Os it performs. An algorithAis better than another algorithm
Aif Arequires less I/Os tha#y.

Although we mostly use the sequential variant of the extemeamory model, it
also has an option to express disk parallelism. There c@hdeeallel disks and in
one 1/O,D arbitrary blocks can be accessed in parallel from the difks.usage
of parallel disks helps us alleviate the 1/0O bottleneck.

2.4.4 Parallel Disk Model

;CPU;

Memory M

Figure 2.3: Parallel Disk Model

The parallel disk model (depicted in Figu2ed) by Vitter and Shriver 157 is
similar to the external memory model, except that it addsadistec restriction
that only one block can be accessed per disk during an I/@eréban allowing
D arbitrary blocks to be accessed in parallel. The parallel disk modebtso be
extended to allow parallel processing by allowidgarallel identical processors
each withM /P internal memory and equipped wibdy P disks.

Sanders et al140 gave efficient randomized algorithms for emulating thesext
nal memory model of Aggarwal and VitteB][on the parallel disk model.
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2.45 ldeal Cache Model

In the external memory model we are free to choose any twdd®fghe mem-
ory hierarchy as internal and external memory. For thisaeasxternal memory
algorithms are sometimes also referred to as cache-awgoathms (“aware” as
opposed to “oblivious”). There are two main problems witkeexling this model
to caches: limited associativity and automated replacémeshown by Sen and
Chatterjee 143, the problem of limited associativity in caches can be wine
vented at the cost of constant factors. Frigo etZ8] §howed that a regular algo-
rithm causes asymptotically the same number of cache migde&RU or FIFO
replacement policy as with optimal off-line replacemematggy. Intuitively, an
algorithm is called regular if the number of incurred cachissas (with an op-
timal off-line replacement) increases by a constant fastoen the cache size is
reduced to half.

Similar to the external memory model, the ideal cache mosimes a two level
memory hierarchy, with the faster level having a capacitstofing at mosM ele-
ments and data transfers in chunk8aflements. In addition, it also assumes that
the memory is managed automatically by an optimal off-linehe-replacement
strategy, and that the cache is fully associative.

2.4.6 Cache-Oblivious Model

In practice, the model parametdsandM need to be finely tuned for an optimal
performance. For different architectures and memory lgéras, these values can
be very different. This fine-tuning can be at times quite carmbme. Besides,
we can optimize only one memory hierarchy level at a time allgewe would
like a model that would capture the essence of the memonargiey without
knowing its specifics, i.e. values BfandM, and at the same time be efficient on
all hierarchy levels simultaneously. Yet, it should be dergnough for a feasible
algorithm analysis. The cache oblivious model introducgd-higo et al. [/ 3]
promises all of the above. In fact, the immense popularityisf model lies in its
innate simplicity and its ability to abstract away the haadevparameters.

The cache-oblivious model also assumes a two level memeratdchy with an
internal memory of siz& and block transfers d elements in one I/O. The per-
formance measure is the number of I/Os incurred by the dlguriHowever, the
algorithm does not have any knowledge of the valuegl@ndB. Consequently,
the guarantees on |/O-efficient algorithms in the cachexolols model hold not
only on any machine with multi-level memory hierarchy bugaabn all levels of
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the memory hierarchy at the same time. In principle, theyeapected to perform
well on different architectures without the need of any niaefspecific optimiza-
tion.

The cache-oblivious model assumes full associativity gotihr@l replacement
policy. However, as we argued for the ideal cache model @¢tiSn2.4.5, these
assumptions do not affect the asymptotics on realisticasach

However, note that cache-oblivious algorithms are usumatlye complicated than
their cache-aware 1/O-efficient counterparts. As a rethutconstant factors hid-
den in the complexity of cache-oblivious algorithms arealisuhigher and on

large external memory inputs, they are slower in practice.

2.4.7 Various streaming models

In the data stream model]lq, input data can only be accessed sequentially in
the form of a data stream, and needs to be processed usingiagvworemory that

is small compared to the length of the stream. The main pasmef the model
are the numbep of sequential passes over the data and thessifehe working
memory (in bits). Since the classical data stream modebisdsitrictive for graph
algorithms and even the undirected connectivity requasep = Q(n) [82] (where

nis the number of nodes in a graph), less restrictive variaingsreaming models
have also been studied. These include stream-sort méjdehere sorting is also
allowed, W-stream modebB] where one can use intermediate temporary streams
and semi-streaming modd§|, where the available memory @&(n- polylog(n))
bits.

2.4.8 Other memory hierarchy models

Recently, Arge et al43] have proposed Parallel External-Memory model as a nat-
ural parallel extension of the external-memory model of &geal and Vitter 8],
to private-cache chip multiprocessors.

There are still a number of issues not addressed by thesdsribdecan be critical
for performance in practical settings, e. g. branch migptihs [87], TLB misses
etc. For other models on memory hierarchies, refedt@5$, 94, 114, 131].
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2.5 Basic tools for designing external memory
graph traversal algorithms

Many different tools and techniques have been developedrigh algorithms
in external memory in the last couple of decades. In thisi@ectve describe
some of the commonly used building blocks for the design©féfficient graph
traversal algorithms.

2.5.1 Parallel scanning

Scanning many different streams (of data from the disk) kameously is one of

the most basic tools used in 1/0O-efficient algorithms. Tlais be used, for exam-
ple, to copy some information from one stream to the othem&umes, different

streams represent different sorted sets and parallel sgpoan be used to com-
pute various operations on these sets such as union, ictierseor difference.

Givenk = O(M/B) streams containing a total 6{n) elements, we can scan them
“in parallel” in scarfn) = O(n/B+ k) I/Os. This is done by simply keepir@©(1)
blocks of each stream in the internal memory. When we needck Inlot present
in the internal memory, we remove (or write back to the disle) ¢xisting block
from the corresponding stream and load the required blaxk the disk.

2.5.2 Sorting

Sorting is fundamental to many 1/O-efficient graph traveasgorithms. In partic-
ular, sorting can be used to rearrange the nodes on the dis&tsgraph traversal
algorithm does not have to spefq1) I/Os for loading the adjacency list of each
node into the internal memory.

Sortingn elements in the external memory requires8or= (5 Iog% 8) 1/0s[3].
There exist many different algorithms for 1/0-efficient 5og. The most com-
monly used external memory sorting algorithm is basedMriB)-way merge
sort. It first scans through the input data, loadMglements at a time, sorting
them internally and writing them back to disk. In the nextnmduwe treat each
of these chunks as a stream and medgkl/B) streams at a time using “parallel
scanning” to produce sorted chunks of s@2@V?/B). By repeating this process
for O(Iog% g§) rounds, we get all the elements sorted.
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External memory libraries such as STXX&4, 57] and TPIE R1] provide fast im-
plementations of external memory sorting routines. STXXdodas specialized
functions for sorting elements with integer keys and sgritreams.

In the cache-oblivious setting, funnel-soi3[ and lazy funnel-sort39], also
based on a merging framework, lead to sorting algorithmis thi&¢ same 1/0 com-
plexity of O(g Iog% §) 1/Os. Brodal et al.41] show that a careful implementa-
tion of this algorithm outperforms several widely usedaiyrimplementations of
quick-sort on uniformly distributed data. For the largestances in the RAM,
this implementation outperforms its nearest rival stdat:fom the STL library
included in GCC 3.2 by 10-40% on many different architectuilee Pentium Ill,
Athlon and Itanium 2.

2.5.3 PRAM simulation

A Parallel Random Access Machine (PRAM) is a basic model ofmatation that
consists of a number of sequential processors, each witvitsnemory, working
synchronously and communicating between themselvesghracommon shared
memory.

Simulating a PRAM algorithm48] on the external memory model is an impor-
tant tool in the design of 1/0-efficient graph algorithms. RAM algorithm that
usesp processors an@(p) (shared memory) space and runs in tif{g) can be
simulated inO(T (p) - sort(p)) I/Os.

Each step taken by a PRAM involves each processor indepdyndeading a
data element, computing on it and writing some output. Ireotd simulate it
on the external memory model, the read requests of all theepsors are sorted
according to the location of the required data. Afterwaaage scan of the entire
data of the shared memory is enough to fetch all the requdsita. This is then
sorted back according to the processor ids. Thereaftenensoan of the fetched
data, we perform all the computations by all the processmiscallect the output
data (together with its location) that would have been peediby each processor.
This is then sorted according to the memory location andsvriback to the disk.
Thus, each step of tHe(p)-processor PRAM algorithm requirir@(p) space can
be simulated by a constant number of sorts and scan€{sort p)) I/Os.

PRAM simulation is particularly appealing as it translatesarge number of
PRAM-algorithms into 1/0O-efficient and sometimes 1/O-opdl algorithms.

Even without directly using the simulation, 1/0-efficieriyarithms can be ob-
tained by appropriately translating PRAM algorithms, aswnaf the ideas ap-
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plied in parallel computing for reducing a problem into mangiependent sub-
problems are also useful for designing external memoryralgns. For many
problems, the bounds obtained by appropriately trang/&RAM algorithms are
much better than those obtained by direct simulation.

2.5.4 Algorithms on trees

Efficient external memory algorithms are known for manyeti#int problems on
undirected trees. These include rooting a tree, computiagppler, post-order
or in-order traversal, computing the depth of each nodet leammon ancestor
queries, etc. Most of these algorithms (e.qg., the tree tsal@lgorithms in48])
are efficient translations of their PRAM counterparts.

2.5.5 Priority queues

A priority queue is an abstract data structure that storeg@ered set of keys and
allows efficient insertion, search of the minimum elememidfnin) and deletion

of the minimum element (deletmin). Sometimes operations such as deleting
an arbitrary key and decreasing the value of the key are algpasted. Prior-
ity queues are fundamental to many graph traversal algositiparticularly for
computing single-source shortest-paths.

One way of implementing efficient external memory priorityeges is using
buffer trees 17]. Buffer trees are useful for batched operations, i.e., wtine
answers to the queries are not required immediately butieskyn

A buffer tree has degre®(M/B). Each internal node is associated with a buffer
containing a sequence of up & M) updates and queries to be performed in its
subtree. Leaves contaf®(B) keys. Updates and queries are simply performed
by inserting the appropriate signal in the root node buffahe buffer is full, the
signal buffer is flushed to its children. This process mayriedoe repeated all the
way down to the leaves. Since flushing the buffer requdds! /B) 1/0s (which

is done after insertin@(M) signals) and the tree h&logy gn/B) levels, the
amortized cost of the update and query operatioQ¥ {4/B) -logy g (n/B)) I/Os.

It can be shown that the re-balancing operations for manimgithe tree can also
be done within the same bounds.

In order to use buffer trees as a priority queue, the entifiebaf the root node
together with theD(M /B) leftmost leaves (all the leaves of the leftmost internal
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node) is kept in internal memory. We maintain the invaridwat tall buffers on
the path from the root to the leftmost leaf are empty. Thus ellement with the
smallest priority always remains in internal memory. Thenmant is maintained
by flushing out all buffers in the leftmost path whenever that buffer is flushed,
at a total cost oO((M/B) - logy 5 (n/B)) 1/Os. The amortized cost of updates
and queries still remaind((1/B) - logy g (n/B)) 1/Os.

Note that the buffer tree based priority queue can not efffisigperform a de-
creasekey of an element, if we do not know its old key. For efficient lazy
decreas&ey operations, we can use tournament tré&3 [On an I/O-efficient
tournament tree with elements, any sequencezadperations each of them being
either a delete, deletain or an update, requires at mast(z/B) - log, (n/B))
I/Os. The update operation referred here is a combinedtiaserdecreaskey
operation.

Cache-oblivious priority queues with amortized(1/B) - logy 5 (n/B)) 1/O in-
sertion, deletion and deletain operations have also been develop2d (39].
The cache-oblivious bucket heap based priority quel@ provides amortized
O((1/B)-log, (n/B)) update, delete and deletein operations, where the update
operation is similar to the one provided by tournament trees

2.5.6 Time forward processing

Time forward processingl[/, 48] is an elegant technique for solving problems
that can be expressed as a traversal of a directed acycph EAG) from its
sources to its sinks. L& be a DAG andp(v) be a label associated with the node
v. The goal is to compute another labelligigv) for all nodesv € G, given that
Y(v) can be computed from labetg(v) and (uy), ..., P(uk), whereuy,. .., ug
are the in-neighbors of

Time forward processing on annode DAG can be solved in external memory in
O(sortn)) I/Os if the following conditions are met:

1. The nodes ofs are stored in topologically sorted order.
2. Y(v) can be computed fromp(v) and(uy), ..., P(uk) in O(sortk)) 1/Os.

This bound is achieved by processing the nodes in the toallbgsorted order
and letting each node pass its lalgeto its out-neighbors using a priority queue.
Each nodeu insertsy(u) in the priority queue for each out-neighbowith the
key being the topological number ef T (v). We ensure that before we process
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we extract all the nodes with priority (v) and therefore, get all the necessary
information to computey(v).

2.5.7 Graph contraction

The key idea in graph contraction is to reduce the size ofrthetigraphG while
preserving the properties of interest. Such a procedurféas applied recursively
till either the number of edges or the number of nodes arecestiby a factor of
O(B) or the number of nodes is reduced@0M). In the first case, the algorithm
can afford to spen®(1) I/Os per remaining node to solve the problem. In the
latter case, an efficient semi-external algorithm is usesbtee the problem.

Graph contraction is particularly useful for problems ld@nnected components
and minimum spanning forests, where the connectivity mfation is preserved
(see e.qg.18]) during the edge contraction steps.

2.5.8 Graph clustering

Clustering a graph refers to decomposing the graphs infmidislusters of nodes.
Each cluster contains the adjacency lists of a few nodessélrhedes should be
close in the original graph. Since each cluster is conneatéidsmall, if a node of
the cluster is visited during BFS, SSSP or APSP, the othezsiotithe cluster will
also be visited “shortly”. This fact can be exploited to dgsbetter algorithms
(see e.q.104], [112) for these problems.

2.5.9 Ear decomposition

An ear decompositioa = (Py, Py, P, ..., F) of a graphG = (V,E) is a partition
of E into an ordered collection of edge-disjoint simple pa@hwith endpointss
andt;. EarPyis an edge. For ¥ i <Kk, earR, shares its two endpoinssandt;, but
none of its internal nodes, with the uniBguU ... B _1 of all previous ears. A graph
has an ear decomposition if and only if it is two-edge conedcie., removing
any edge still leaves a connected subgraph.

An ear decomposition of a graph can be compute@(sortn)) 1/Os in external
memory [L03.
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2.6 Tools for engineering external memory
graph traversal algorithms

In the last decade, many techniques have evolved for emyigesxternal memory
graph traversal algorithms. Libraries specifically comitag fundamental algo-
rithms and data structures for external memory have beeglaged. Techniques
such as pipelining can save some constant factors from@edmplexity of the
external memory implementations, which can be significantrfaking the imple-
mentation viable. In this section, we describe some of tt@sle and techniques.

2.6.1 External memory libraries

External memory libraries play a crucial role in enginegratgorithms running
on large data-sets. These libraries not only reduce thdaj@went time for exter-
nal memory algorithms, but also speed up the implementtisemselves. The
former is done by abstracting away the details of how an If&@réormed and pro-
viding ready-to-use building blocks including algorithswech as sorting and data
structures such as priority queues. The latter is done leyiofj frameworks such
as pipelining (described ahead in this section) that camaethe constant factors
in the I/0O complexity of an implementation. Furthermores #tigorithms and data
structures provided are optimized and perform less inteneanory work.

STXXL

STXXL [56, 57] is an implementation of the C++ standard template librarri 5147
for external memory computations. Since the data-strastand algorithms in
STXXL have a well known generic interface similar to STL iriéee, it is easy
to use and the existing applications based on STL can beyeaaille to work
with STXXL. STXXL supports parallel disks, overlapping teten disk 1/0 and
computation and theipelining technique that can save a significant fraction of
the 1/Os. It provides 1/O-efficient implementations of vars containers (stack,
queue, deque, vector, priority queugt-tree, etc.) and algorithms (scanning,
sorting using parallel disks, etc.). It is being used botadgademic and industrial
environments for a range of problems including text proogsgraph algorithms,
computational geometry, Gaussian elimination, visuibra and analysis of mi-
croscopic images, differential cryptographic analydis, e



30

Chapter 2: Basic tools and techniques

TPIE

TPIE [2]1] or “Transparent Parallel /O Environment” is another Cemplate li-
brary supporting out-of-core computations. The goal oftRE&E project has been
to provide a portable, extensible, flexible, and easy to usgrpmming envi-
ronment for efficiently implementing I/O-efficient algdrihs and data structures.
Apart from supporting algorithms with a sequential 1/0 patt(i.e., algorithms
using primitives such as scanning, sorting, merging, p&angwand distributing)
and basic data structures suchdstree, it supports many more external memory
data structures such és, b)-tree, persisters-tree,Bkd-tree,K-D-B-tree,R-tree,
EPStree,CRBtree etc. It is used for many geometric and GIS implemenati

2.6.2 Pipelining

Conceptually, pipelining is a partitioning of the algonilinto practically indepen-
dent parts that conform to a common interface, so that thee ciat be streamed
from one part to the other without any intermediate extemmainory storage. This
may reduce the constant factors in the 1/0 complexity of ligerghm. It leads

to better structured implementations, as different pdrte@ pipeline only share
a narrow common interface. On the other hand, it may als@asa the compu-
tational costs as in a stream, searching an element canote loy exponential
or binary search, but by going through potentially all theneénts in the stream.
This means that the correct extent of pipelining needs tabefally determined.

Usually, a pipelined code requires more debugging effortisheence, significantly
more development time. For more details on the usage ofipipglas a tool to
save 1/Os, refer tog5).
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Breadth first search on massive
graphs

Debugging is twice as hard as writing the code in the first platherefore, if you
write the code as cleverly as possible, you are, by definitiohsmart enough to
debug it.

—Brian W. Kernighan

Breadth-First Search (BFS) is an archetype for many impbgeaph problems.
Many real world problems involve BFS (and some of its gernzaitibns like short-
est paths o0A*) traversal on large graphs. These applications (cf. Sedtibfor
more details) include crawling and analyzing the WWWIL§ 144, route plan-
ning using small navigation devices with flash memory cait8}, [state space
exploration p4], and community detectiorifL9.

Given a large undirected grah(V.E) (n:= [V|,m:= |E|) and a source nodg
the goal of BFS is to decompose the set of nddeso disjoint subsets called BFS
levels, such that the levelcomprises of all nodes that can be reached fsona

i edges, but no less. The problem of computing the BFS levardposition can
also be viewed as computing single source shortest pathsweighted graphs.

BFS is well-understood in the RAM model. There exists a sariplear time
algorithm b1 (hereafter referred as INBFS) for the BFS traversal in a graph.
However, as discussed in Sectibr2, this algorithm (as implemented in LEDA)
performs quite badly when the input graph does not fit in theammeemory. Fur-
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thermore, on massive graphs (with a billion or more edgéské algorithms are
simply non-viable as they require mamponths or yeargor the requisite graph
traversal.

External memory algorithms for computing BFS have theeefien studied. For
general undirected graphs, Munagala and Ranade proposetle algorithm
(MR_BFS) that incur€O(n+ sortm)) 1/0s. Mehlhorn and Meyer proposed the
firsto(n) I/O algorithm (MM_BFS) that improves the results for sparse graphs.

In this chapter, we focus on engineering these external meBIeS algorithms.
Since most of the large real world graphs are sparse, we yn@nkentrate on the
problem of computing a BFS level decomposition for massparse undirected
graphs. Demonstrating the viability of our BFS implemeiotat on various syn-
thetic and real world benchmarks, we show that BFS level mgositions for
large graphs (around a billion edges) can be computed onapahachine in a
few hours

The rest of the chapter is organized as follows: We reviewesostated work

in Section3.1 In Section3.2, we describe the external memory algorithms for
list ranking, computing Euler tours on trees, minimum spagorests and con-
nected components on general undirected graphs. Thesetferouilding blocks

in the external memory BFS algorithms presented in Se@i8nSections3.4 —
3.7present our implementations of MBFS and MMBFS. We also designed and
engineered I/O-efficient frameworks for generating masgraphs and checking
if the BFS decomposition is correct. These are discusseddtidh3.8and Sec-
tion 3.9, respectively. SectioB.10describes the evolution of our BFS codes into
a software package. Our detailed empirical study is preseint Section3.11
Section3.12discusses the extensions of BFS to SSSP and dynamic BFSeim ext
nal memory. It also describes the recent advances in appabixig the diameter
of the graph that can help us decide which BFS algorithm to &setion3.13
concludes with related open problems.

Note that in this chapter, the term “adjacency list” refershie set of all adjacent
edges of a node, and not to some list data structure conggini set.

3.1 Related prior work

External-memory BFS algorithms are known for special gsapasses like trees,
grid graphs 19], planar graphs01], outer-planar graphslpQ, and graphs of
bounded tree widthl[0Z. These algorithms use special graph properties such as
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planar separators, planar and outerplanar embeddinggsresxdecompositions.
For graphs with small separators (not necessarily plama)can represent the
graph B0, 31] in a more compact way that minimizes the I/Os required by the
standard algorithms.

Very little is known for traversing general directed graphsexternal memory.
The main result known in this direction is ti@¥ (n+ m/B)log, § + sortm)) /O
algorithm §3] for computing Breadth-First Search (BFS), and DepthtSesarch
(DFS) on general directed graphs and topological ordermgeneral directed
acyclic graphs. These algorithms crucially rely on a datacstire called buffered
repository tree43] for removing edges leading to visited nodes.

3.1.1 Engineering Directed DFS in external memory

Owing to theO(nlog, §) term in the 1/O complexity, these algorithms are consid-
ered impractical for general sparse directed graphs. Sewlevorld graphs are
usually sparse, it is unlikely that these algorithms wilpimve the running time
significantly as compared to the internal memory travergmrahms. As such,
there has been no engineering attempt (up to the best of owl&dge) for these
algorithms.

Sibeyn et al. 146 showed an implementation of semi-external DFS (i.e., aaimp
ing DFS wherM > c-nfor some small constaig) based on the batched process-
ing framework. We assume that the internal memory can congaito 2 edges.

We maintain a tentative DFS tree throughout the algoriththéninternal memory
and proceed in rounds. In each round, all the edges of thégnagprocessed in
cyclic order. A round consists ofi/n phases and in each phase we load a batch of
n edges and compute the DFS of theetiges in the internal memory. The DFS
computation can be made faster by the following heuristid$jf

e Rearrange the tree after every round so as to find the glob&lte more
rapidly. For each node, we visit its children (in the tree)descending
order of their sub-tree sizes. Thus, after rearrangemeriettmost child of
any node has more descendants than any other child, theeeiigtically
reducing the number of forward (left to right) cross edges.

e Reduce the number of nodes and edges “active” in any round spleave
more space in the internal memory for loading new edges.eSiodes on
the leftmost path are not going to change their place in tbe anymore
(unless they are rearranged), they can be marked “passiveieanoved
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from consideration. Furthermore, we can mark all nodésat satisfy the
following conditions passive:

— All nodes on the path from root node ticare already marked passive.

— There is no edge from any node with smaller pre-order numbéené¢
current tree) to any node with pre-order number equal torgetahan
that ofu.

Together with these heuristics, the batched processingefrark manages to
compute DFS on a variety of directed graphs (such as randaphgrand 2-
dimensional random geometric graphs) with very few (3—-M@rage accesses
per edge (and hence few 1/0Os). It can compute strongly caeadesomponents
(using the DFS) of an AT&T call graph with around 9.9 milliondes and 268.4
million edges in around 4 hours on a Pentium Il machine with@Hz processor.

3.1.2 Engineering external memory A*

A* [81]] is a goal-directed graph traversal strategy that finds d¢lasttcost path
from a given source node to a target node. A* is similar to Sliji’'s famous
shortest path algorithn6[l], except that it visits the node with the minimum sum
of distance from the source node and the heuristic distartbetarget node rather
than the node with the minimum distance from the source.

A* can be solved using external memory priority queued{n+m/B-log, (m/B))
I/Os. For implicit unweighted graphs, a suitably modifiedsien of the external
memory BFS algorithm MBBFS by Munagala and RanadEelH (cf. Section3.3
for more details) helps computing A* i@(sortm)) 1/Os [64]. This is because
in implicit graphs accessing the adjacency list of a nodes aae require 1/0s to
fetch it from the disk, but only internal memory computattorgenerate it.

The practical performance of A* crucially depends on theristic estimate of the
distance between target node and a given node. This estimaim is heavily
application-dependent.

Edelkamp et al.§5 engineered the variant of external memory A* for implicit
undirected unweighted graphs and used it for many differedel checking ap-
plications. They improved the practical performance oeaxal memory A* for
their applications further by the following heuristics:

e Delayed duplicate detection: Unlike MBFS, duplicates are not removed
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till the nodes are actually visited.

e The nodes with equal value of the sum of distances from thees@and the
target node, are visited in increasing order of their dis¢ainom the source
node.

External A* as incorporated in the External SPIN model cleedoftware was
used to detect the optimal path to a deadlock situation in pinc@l Telegraph
protocol involving 14 stations. This problem required 3algrtes of hard disk
space (with 3 GB RAM) and took around 8 days with 4 instances of Parallel
External SPIN running on 4 AMD Opteron dual processor maehivith NFS
shared hard disk. In model checking applications invohangassive state space,
finding such deadlocks can be critical for the correct penforce of the protocol
and hence, even running-times of weeks are consideredtabbep

However, this implementation as well as the heuristics asedpecific to A* on
implicit graphs and are unlikely to yield good results for86&n general graphs.

3.2 Basic building blocks

In the RAM model, graph problems like connected componetatsan be effi-

ciently solved by graph traversal strategies such as DEpst-Search (DFS) and
Breadth-First Search (BFS). However, the picture is veffedint in the mem-

ory hierarchy models. Algorithms for connected componentsimum spanning
tree, Euler tour and list ranking are asymptotically fastem the currently best
ones for BFS and DFS. Hence, many algorithms for graph tsavstrategies like
BFS and DFS use connected components, minimum spannirggdpEauler tour

and list ranking as sub-routines. In this section, we rextiemalgorithms for these
building blocks.

3.2.1 Euler tour of a hi-directional tree

An Euler tour of a (bi-directional) tre& = (V,E) traverses every edge exactly
twice, once in each direction. Such a traversal produceseatilist of edges
or vertices capturing the structure of the tree. In orderaimgute such a tour,
we choose an order of the edglasws }, ..., {v,w} incident to each nodeof T.
Then, we mark the successor{o¥;, v} to be{v,w;;1} and the successor {#, v}

to be{v,w;}. We break the resulting circular list at some nod®y choosing an



36

Chapter 3: Breadth first search on massive graphs

edge{v,r} with successofr,w}, setting the successor ¢¥,r} to be null, and
choosing{r,w} to be the first edge of the traversal.

An Euler tour of a (bi-directional) tree can be compute®itsortn)) I/Os.

3.2.2 List ranking

Alist L is a collection of elements, ..., X, such that each elemext except the
last element of the list, stores a pointer to its successonwn elements have the
same successor and every element can reach the last elgnielfdWwing succes-
sor pointers. Given a lidt of elements kept in an arbitrary order on the disk and
a pointer to the first element and weight®n all edges, the list ranking problem
is that of computing for every elemexyt its distance from the first element.

The external memory list ranking algorithmd computes an independent et
of sizeQ(n). All elementsx; € | are removed fronh by markingsucgx;) as the
successor opred(x;), wheresucgx;) and pred(x;) are the successor and prede-
cessor ofx; in L. The weight of the new edggpred(x;),sucdx;)} is the sum
of the weights of{pred(x),x } and {x,sucdx;)}. The problem on the com-
pressed list is recursively solved. For each ngde I, its distance from the
head is equal to the sum of the distancepoéd(x;) (computed for the com-
pressed list) and the weight of the edfyered(x;),x }. All operations for com-
pressing the list incu©(sortn)) 1/0s and thus the total cost of list ranking is
I(n) =1(a-n)+0O(sortn)) = O(sortn)) I1/0s, for some constantQ a < 1.

Note that any maximal independent set of a list has size at tg8. Thus in
order to compute the independent keif size Q(n), we just need to compute a
maximal independent set. A maximal independent sta graphG(V,E) can
be computed simply by a greedy algorithm in which the nodespancessed in
an arbitrary order. When a nodec V is visited, we add it to the sétif none of
its neighbors is already in This can be done i®(sort{n+ m)) I/Os using time
forward processing (cf. Sectidh5.9. A list of lengthn can thus be ranked in
O(sortn)) I/Os.

3.2.3 Minimum Spanning Forest

Given an undirected connected grdpha spanning tree d& is a subgraph which
is a tree and connects all the nodes. A minimum spanning sreespanning
tree with minimum weight. For a general undirected graph (mezessarily con-
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nected), we define a minimum spanning forest (MSF) to be tienwof the mini-
mum spanning trees for its connected components. Compatmigimum span-
ning forest of a grapks is a well-studied problem in the RAM model.

The first algorithm for this problem is due to Boruvi@]. This algorithm runsin
phases; in each phase we find the lightest edge incidenthoeale. These edges
are output as a part of the MSF. Contracting these edgestieadsew graph with
at most half of the nodes. Since the remaining MSF edges soeirathe MSF
of the contracted graph, we recursively output the MSF edf¢ise contracted
graph.

The most popular algorithms for MSF in the RAM model are Kalskand Prim’s
algorithms. Kruskal’s algorithn®2] looks at the edges in increasing order of their
weight and maintains the minimum spanning forest of the edgen so far. A new
edge is output as a part of the MSF if its two endpoints belordifferent compo-
nents in the current MSF. The necessary operations can bemped efficiently
using a disjoint set (union-find) data structuv®|[ The resultant complexity for
this algorithm iSO(n- a(n)) [149, wherea (-) is the inverse Ackermann function.

Unlike Kruskal’s algorithm which maintains potentially madifferent MSTs at
the same time, Prim’s algorithn8§, 130 works by “growing” one MST at a
time. Starting with an arbitrary node, it searches for tigatiést edge incident to
the current tree and outputs it as a part of the MST. The otheéspeint of the
edge is then added to the current tree. The candidate edgesaantained using
Fibonacci heaps/[l], leading to an asymptotic complexity @f(m+ nlogn). If
there is no edge between the nodes in and outside the curi@ntWe “grow” a
new MST from an arbitrarily chosen node outside the MSF “groso far.

Semi-external Kruskal’'s algorithm

In the semi-external version of Kruskal’s algorithm, anesrall memory sorting
algorithm is used to sort the edges according to their edgghtgee The minimum
spanning forest and the union-find data structure are kgpeimternal memory
(as both requir®©(n) space). The I/O complexity of this algorithm@sortm)).

External memory Prim’s algorithm

In order to externalize Prim’s algorithm, we use an extemaimory priority
queue (cf. Sectio.5.5 for maintaining the set of candidate edges to grow the
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current minimum spanning tree. This results in an /0 comipleof O(n+
sortm)). TheO(n) term comes from the unstructured accesses to the adjacency
lists, as we spen®(1+d(v)/B) (d(v) being the degree of) I/Os to get hold of
edges incident to the nodehat need to be inserted into the priority queue.

External memory Boruvka steps

In most external memory algorithms, a Boruvka step like @tion method is
used to reduce the number of nodes to eitbévl) or O(m/B). In the first case,
semi-external Kruskal’s algorithm or other semi-extefvede cases are used. In
the latter case, any external algorithm like Prim’s aldonitor MR BFS can be
used as we can afford one 1/O per node in the contracted graph.

We initialize the adjacency lists of all nodes by sortingelges first according to
their tail node and that being equal, by their weight. In eéabhBoruvka phase,
we find the minimum weight edge for each node and output it eartagh MSF.
This can easily be done by scanning the sorted adjacensyTikts partitions the
nodes into pseudo-trees (a tree with one additional edg®.nTfinimum weight
edge in each pseudo-tree is repeated twice, as it is the mnmniweight edge in-
cident to both its end-points. Such edges can be identifigd(gor{m)) 1/Os.
By removing the repeated edges, we obtain a forest. We seleeider for each
tree in the forest and let each node V know the leadet.(u) of the tree con-
taining it. This can be done by variants of external mematrinking algorithm
(cf. Section3.2.2 or by using time forward processing (cf. Sectb.6 and can
be done inO(sortn)) 1/0s. We then replace each edgev) in E by an edge
(L(u),L(v)). Atthe end of the phase, we remove all isolated nodes, phealges
and self loops. Again, this requires a constant number d$ gord scans of the
edges.

The Boruvka steps as described here reduce the number of hydat least a
factor of 2 in one phase and co€$sortm)) I/Os. Thus, it takes Iog'n—B phases
to reduce the number of nodes@m/B), after which the externalized version
of Prim’s algorithm or BFS algorithm can be used. This givastal /0O com-
plexity of O(sor{m) -log™B). Alternatively, we can hav®(log;) phases of
Boruvka algorithm to reduce the number of node®{M) in order to apply semi-
external Kruskal’s algorithm afterwards. This will resmlta total I/O complexity
of O(sortm) - logyy).

An O(sort(m) - Ioglog(”'—rf)) I/O algorithm

Arge et. al. L8] improved the asymptotic complexity of the above algorithyn
dividing the O(log ”'—rr'?) phases of Boruvka steps in@(loglog”‘—n?) super-phases
requiring O(sort{m)) 1/0Os each. The idea is that rather than selecting only one
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edge per node, we seleg¢fS lightest edges for contraction in each super-phase,

where§ := 232 (= §/2)_ If a node does not have that many adjacent edges, all
its incident edges are selected and the node becomes mathie selected edges
form a graphG;. We apply log/S phases of Boruvka steps @ to compute a
leaderL(u) for each nodes € V. At the end of the super-phase, we replace each
edge(u,v) in E by an edgéL(u),L(v)) and remove isolated nodes, parallel edges
and self loops.

The number of active nodes after phase at mostn/(S-S_1---S) =n/(S-

32/3 ) < n/sls/3 <n/S;1 and thus,O(IogIog”'—rr?) super-phases suffice to
reduce the number of nodes@gn-B/m).

Note that in super-phasethere are log/S phases of Boruvka steps @Gj. Since

Gi has at mosh/S nodes at the beginning of phaisendn,/S/S edges (as each
of then/S nodes selects/S edges around it), total cost of all these Boruvka
phases i9(sor(n/v/S) -10g/S) = O(sortn)) I/0s. The cost of replacing the
edges by the contracted edges and other post-procesgdigas{m)) 1/0s.

Since each super-phase take&ortm)) 1/0Os, the total I/O complexity of the
algorithm isO(sortm) - log Iog(”'—n?)).

Arge et al. RQ] propose a cache-oblivious minimum spanning tree algarittat
uses a cache-oblivious priority queue to achieve the I/Ogtexity of O(sort(m) -
loglogn).

Connected componentdlinimum spanning forest also contains the information
regarding the connected components of the graph. For ireatnputing con-
nected components, one can use the above algorithm by nraglifye compara-
tor function for edge weights (since the weights on the edgesbe ignored for
connected components computation) — an edge is smalletthieasther edge if
either the head node has a smaller index or the two head noslegjaal, but the
tail node has a smaller index.

Randomized CC and MSF

Abello et. al. ] proposed a randomized algorithm for computing conneabea-c
ponents and minimum spanning tree of an undirected grapktamel memory
in O(sortm)) expected 1/Os. Their algorithm uses Boruvka steps togetitéar
edge sampling and batched least common ancestor (LCA)eguera tree.
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Figure 3.1: A phase in the BFS algorithm of Munagala and Ranad
3.3 Algorithms

There are two main problems associated with running annatenemory BFS
algorithm for computation on an externally stored graph:

e Remembering visited nodes neddan) I/Os in the worst case

e Unstructured access to adjacency lists, i.e., random BQstth adjacent
edges may result i®(n) 1/Os

3.3.1 Munagala and Ranade’s algorithm

The algorithm (MRBFS) by Munagala and Ranad#1f (as depicted in Fig-
ure3.1) solves the first problem by exploiting the fact that in anivexted graph,

the edges from a node in BFS levdead to nodes in BFS levels-1,t ort +1

only. Thus, in order to compute the nodes in BFS lévell, one just needs to
collect all neighbors of nodes in levelremove duplicates and remove the nodes
visited in levelst — 1 andt. Except the unstructured accesses to the adjacency
lists, all steps can be done ®@(sort{m)) I/Os. The total number of I/Os required
by this algorithm i9(n+sortm)) as it may incuiQ(n) random 1/Os (for reading

the adjacency lists) in the worst-case.

3.3.2 Mehlhorn and Meyer’s algorithm

In order to solve the problem of unstructured accesses &edgy lists, Mehlhorn
and Meyer 10§ (MM _BFS) propose a pre-processing step in which the input
graph is rearranged on the disk. The preprocessing phaseeésvclustering the
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input graph into small disjoint groups of nodes that are eliosthe input graph.
The edges incident to all nodes of a cluster are contiguaitshed on the disk.
This is useful as once a node from the cluster is visited,ratbdes in the clus-
ter will also be visited soon (owing to their proximity in tleeiginal graph). By
spending only one random access (and possibly, some se&jumstdesses de-
pending on the cluster size) for loading the whole clustel tnen keeping the
cluster data in some efficiently accessible data structuse gool) until it is all
used up, the total number of 1/Os can be reduced by a factqy tf /B on sparse
graphs. The neighboring nodes of a BFS level can be compirtgdysby scan-
ning the hot pool and not the whole graph. Though some edgg$macanned
multiple times in the hot pool, unstructured I/Os for fetaiadjacency lists are
considerably reduced, thereby decreasing the total nuofld&ds.

The input graph is decomposed irn/ ) clusters of diamete®(u)* for some
parameteiu to be fixed later. This can be done in two ways — “parallel eust
growing” and “Euler tour chopping”.

“Parallel cluster growing” variant

This variant (hereafter referred as MBFS_R) works by randomly choosin
master nodes. The source naie also chosen to be a master node. Thereafter,
we run a local BFS from all master nodes “in parallel”. In eemlnd, each master
node tries to capture all unvisited neighbors of its cureert-graph. The ties can
be resolved arbitrarily.

Capturing new nodes on the fringes of all clusters can be dtgngorting the
neighbors of the nodes captured in the previous round amdsitenning the ad-
jacency lists of the input graph. Each rouinthus takegO(sort(m) + scarfm))
I/Os, wheremy is the number of edges adjacent to nodes captured in rourid
The total number of clusters is at most 1/ and the number of rounds (number
of edges in a shortest path between any node and its clustergesO(logn- 1)
with high probability (w.h.p.). Thus the total complexitgrfthis clustering is
O(sort{n+ m) + scarfm) - u - logn) w.h.p. and it produce®(n/u) clusters of
diameterO(logn- u) w.h.p.

1Just a® notation hides constant factors in the complexitpides the polylogarithmic factors
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Euler tour based clustering

In this variant (MM BFS.D), we first use the connected components (CC) algo-
rithm to identify the component of the graph containing tbarse nodes. The
nodes outside this component are output with BFS levahd can be safely ig-
nored, as they do not affect the BFS level of any other noden’TWwe compute a
spanning tree of nodes in this connected component. Cangjdde undirected
edges of this tree as bi-directional edges, we compute agr Eur on these (up
to 2n— 2) edges. We then employ the list ranking algorithm to steeniodes on
the disk in the order of their appearance in the Euler tourteMoat the internal
nodes of the spanning tree may appear multiple times indhis The nodes ar-
ranged in this way are then chopped iﬁi?z clusters of sizgi. After removing
the duplicates from this node sequence, we get the requlsgeering of nodes.

Since CC/MST can be computed @((1+ Ioglog”'—n?) -sor{n+m)) 1/Os and
the Euler tour and list ranking d(n) elements can both be done@jisortn))
I/Os, the total complexity of this preprocessing@§ 1+ log Iog”'—mB) -sor{n+m))
I/0s. If the randomized expect&dfsortm)) 1/0O algorithm for CC/MST is used
instead, we get a total expected 1/0 complexityQgEortm)) for the Euler tour
based clustering.

BFS phase

The actual BFS computation is similar to MBFS, but with one crucial differ-
ence: the adjacency lists of nodes in the current leaeke no longer accessed
directly from the input graph using random I/Os. Instead,tbdes in BFS level

t are scanned in parallel with the nodes in the hot pbab compute the cluster
indices of all nodes in BFS leveélwhose adjacency lists are not already there
in H. The multi-set of these cluster indices is then sorted ampdichtes are re-
moved from the sorted multi-set. The clusters correspantbrthe resultant set
of indices are then merged intd. A next round of scanning the nodes in BFS
levelt in parallel with the hot poaH fetches all the required adjacency lists.

Since each cluster is merged exactly once, it requies 1 + scarfm)) 1/Os to

load these clusters intd. For the Euler tour based approach, each adjacency
list in H is scanned for at mo$d(u) rounds as the distance between any two
nodes in the cluster i©®(u). Thus the total number of 1/Os required for the
BFS phase by the Euler tour based variant of NBAS isO(n/u + u - scarin +

m) + sor{n+m)). By choosingu = max{ 1, /W?Hm)} we get a total I/0
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complexity (including the pre-processing)©f/n- scarin+ m) + sortn+m) +
ST(n,m)) 1/0Os for MM_BFS.D, whereST(n,m) is the number of I1/Os required
to compute a spanning tree (of the connected componenticmgdhe source
node) of a graph witim nodes andn edges. Using the randomized algorithm
for MST/CC withO(sortn+ m)) expected I/O complexity, MMBFS.D requires

expectedD(4/n-scarfn+m) +sort{n+m)) I/Os.

For the “parallel cluster growing” variant, an adjacenat Btays inH for O(u -
logn) levels w.h.p. Since there are at most% clusters and each cluster is

loaded at most once, loading them ith{crequires()(g +scarim)) I/Os. The total
complexity for MM_.BFS R is thusO(n/u + u - logn- scarfn+m) -+ sor{n+m))

I/Os w.h.p. Choosingt = max{l, /an)k)gn} we get an 1/0 complexity
of O(/n-scarfn+m) - logn+sor{n+m)) 1/0Os w.h.p. for MM BFS R.

3.4 Engineering MR _BFS

One of the first decisions in designing any external memopleémentation is to
decide whether or not to use an external memory library @£tiSn2.6.1). The
advantage of using these libraries is that they reduce tela@ment time by ab-
stracting away the details of how an 1/O is performed and igiog ready-to-use
efficient implementations of basic algorithms and datacttmes. We decided to
work with STXXL [56, 57] because of the geographic proximity of its develop-
ment and its easy to use STL interface. Over the course of thisptomany
bugs were discovered and fixed in STXXL and quite a few adufiideatures
were requested and added. These bug-fixes and featuresdiped making the
library more usable.

Although certain special features of STXXL are crucial taldeith some extreme
graph classes, we believe that modulo some constant fatiterperformance of
our implementation should be the same on most graphs evarottier external
memory libraries, such as TPIE]].

2The development of STXXL started in 2002 at Max Planck lostifiir Informatik,
Saarbriicken
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3.4.1 STXXL

The key component of STXXL used by us is the stream sorteiGhwvhins in two
phases — thRuns Creator (RC) Phaseand theRuns Merger (M) Phase In the
runs creator phase, the input vector/stream is divideddhtmks ofM elements
and each chunk is sorted within itself. These chunks ared#fier written to the
disk space. In the runs merger phase, the first blocks of alktrted chunks
are brought to internal memory and merged there to produe®ulput stream
which does not necessarily have to be stored on the disk. da ttee sorting
requires more than two rounds, the runs merger phase mérgasstted chunks
recursively. For better efficiency, it is recommended toad®the block size and
the internal memory available in such a way that the sortoesdot require more
than one round of merging.

Our data structures are implemented using the STXXL veata-type. A vector

in STXXL is organized as a collection of blocks residing oe trarallel disks
(or any other external storage). Each vector maintainslg &sisociative cache

in internal memory. The vector cache consists of some fixeduatnof pages.
Each page in turn consists Bfexternal blocks. A random access to an element
in the vector involves I/Os and therefore, in order to make full use of the disk
parallelism, it is recommended thatbe some multiple of the number of parallel
disks.

When accessing an element, if the page which the requeste@pt belongs to, is
in the vector cache, a reference to the element in the cacbrirmied. Otherwise,
the page is first brought into the cache. If there is no freeespa the cache,
some page needs to be evicted. Each vector maintains itsagungpstrategy that
decides which page is to be evicted. STXXL currently progidBU and random
paging strategies.

Each vector also has its own allocation strategy that dedider the vector will be
stored across multiple disks. STXXL supports many diffeedlocation strategies
that stripe the data across disks (usually in some randaiwag).

We also developed our own allocation strategies to dealtwéltase of heteroge-
nous disks (e.g., when a hard disk and a solid state disk & insparallel).
This has been particularly useful when we ran our BFS impigat®n in such a
setting (cf. Sectiod.4).

STXXL vector also maintains a dirty flag with each page in thehe. The pur-
pose of the flag is to track whether any element of the page difred and there-
fore the page needs to be written to the disk(s) when it has &vlzted from the
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cache. STXXL distinguishes between constant and non-anhatcesses to the
element, as the dirty flag is set when non-constant referencre of the page’s
elements is returned.

3.4.2 Graph representation

Our main consideration in choosing our graph represematias to keep it as
compact as possible. This is important as the I/O volume oB#S implemen-
tations involves scanning the graph representation meltimes and a compact
representation can save significant constant factors s IADthe same time, we
want to be able to access the adjacency list of an arbitradgwim O(1+d(v)/B)
I/Os and able to scan all the edges of the grap@(im/B) 1/Os.

In our graph representation, nodes are assumed to haveimpisigned integer
labels in the range from 0 to— 1. The representation consists of two STXXL
vectors -N andE. Theith entry inN contains the index to the beginning of the
adjacency list of nodein E. Note that this index is not the same as keeping a
pointer to the appropriate location on disk, which may regjup to 12 bytes of
storage. Each eddl, v} is stored twice irE — once a¥ in the adjacency list of

u and once as in the adjacency list of. Note that an element of the node vector
N contains only the index of an elementtn In particular, it does not contain the
node label itself. An element of the edge vediorontains only the node label of
the adjacent node and not of the node itself. If a node labkhigtes (number of
nodes less than®2— 1) and an index ifE is 8-bytes (number of edges less than
263_1), the total storage requirement of our graph representfor MR_BFS is
8n+4mbytes.

Although we minimize the amount of information kept with modnd edge el-
ements in this data-structure, our implementation is gaheric: it can handle
graphs with arbitrary number of nodes (by appropriately iiyoth the data-type
of a node label) and the graph template is basic and can befasether graph
algorithms as well.

In order to get the adjacency list of nodeve first load the page containing ttibe
and(i + 1)th entry inN into its vector cache. This gives us the necessary indexes
in E. We then load all the pages containing elements in this rangés’s cache

one by one and output the required adjacency list. Note thatder to efficiently
handle the last nod@&y contains a dummy node at the end that marks the end of
E.
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From an unordered list of edges, we can obtain the above gempesentation in
O(sortm)) I/Os as follows: For each edde,v} we enter two entries {u,v) and

(v,u) into a STXXL vector. We then sort this vector with respectte first node
in the ordered tuple, remove duplicates (if there are angl)iaitialize the node
vectorN with the correct indexes of adjacency lists in this vectdre €dge vector
E is then obtained by removing the label of the first node froohesdge element.

Our output format that stores the BFS decomposition is ammilhe two vectors,
referred ad. and NL, represent the BFS levels and the nodes in those levels,
respectively. Theth entry in vector. merely contains the index to a location in
vectorNL where the nodes in theh BFS level are stored. This ensures that we do
not spend one I/O per level when storing the output which ispnperformance
consideration for large diameter graphs (cf. Sec8ah5.

3.4.3 Implementing MR BFS

We present the details of our software using flow-charts. ciiteilar or elliptical
blocks in these flow-charts represent storage on the exteredia, the arrows
leading to these blocks correspond to write I/Os and thenarfeading away from
these blocks correspond to read I/Os. Fighishows the flow-chart of MEBFS.
LetL(t) denote the set of nodes in BFS leteE(t) be the adjacency lists of the
nodes inL(t), A(t) be the multi-set of neighbors of nodedLi(t) andN(S) denote
the set of neighbors of nodes in a SeGivenL(t — 1), L(t) andN(L(t)) computed
in the previous iteration, we computét + 1) in the current iteration. This is done
by reading the nodes in sorted sket$ — 1), L(t) andN(L(t)) from the disk and
scanning them in parallel to compuitét + 1) = {N(L(t)) \ (L(t —1) UL(t))}.
The set(t + 1) so produced is also sorted. It is then written back to the. digk
collect the adjacency lists of all nodeslift + 1) from the disk (using potentially
random I/Os) a€(t +1). Note that sincd.(t + 1) is sorted, this step requires
O(scarim)) 1/Os. UsingE(t + 1), we compute the multi-séi(t + 1) which is
written to the disk.A(t 4+ 1) is then passed as an input to the runs creator (the
first phase of STXXL sorting) which produces sorted runstésbchunks otV
elements). These runs are read from the disk and mergedpbase of STXXL
sorting). Duplicates are removed from this sorted set toprgesN(L(t + 1))
which is written to the disk. This forms the SdtL(t)) for the next BFS level
(t :=t+1) or the next iteration.

Summing over all BFS levels, the worst case number of I/Oghisrimplementa-
tion of MR_BFS (assuming a single merge pass in sorting) is given byotlen-
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Figure 3.2: Flow-chart of MEBBFS implementation.
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ing expression:

n+Scar(Z(|L(t)|—|—|L(t—1)|—|—2-|L(t—|—1)|—|—|E(t+l)|+6-|A(t+l)|+2-|N(L(t))|))

The factor 2 for scanning(t + 1) andN(L(t)) stems from summing the read-
ing and writing costs and the factor 6 fAft + 1) comes from reading and writ-
ing A(t + 1), sorted runs ofA(t + 1) and sortedA(t +1). Sincey|L(t)| < n,
S [E(H)] < 2m, 3 JA®)] < 2m, andy, [N(L(1))] < Fe(IL(t— )]+ L)+ [L(t+
1)|) < 3n, the worst case total number of I/Osis- scar{10n+ 14m).

3.4.4 Pipelined MR BFS

Recall from Sectior.6.2that an engineering technique called pipelining is of-
ten employed in external memory algorithms to save congsatars in the 1/O
complexity. The key idea behind pipelining is to connect\aegisequence of al-
gorithmic steps with an interface so that the data can beegdassough from one
algorithm to another without needing any external memotgrmediate storage.
Figure3.3shows the flow-chart of a coalesced MBES algorithm.

\ 4
@ SCAN
\
RC

Sorted
Runs (A(t+1))

Figure 3.3: Flow-chart of pipelined MBFS implementation.
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The complexity of the pipelined MBBFS mainly lies in its scanner. The scanner
receives the stream of sorted multi-#€t). While looking at the elements one
at a time, it determines if it is a duplicate by checking witle stored previous
element of the stream. If not, it checks if this element ik(i) or L(t — 1) reading
these sets from the disk as sorted streams. If not, it cellact element into the
L(t+ 1) buffer and reads its adjacency list from the disk (represeasE (t + 1)

in the figure) to form the strea(t + 1). The streanA(t + 1) is passed directly
to runs creator and sorted runs are written on the disk. Taeskater merged and
passed to the scanner as sorted multiAger for the next level.

In this case, the worst case number of I1/Os (again assumiimgke snerge pass)
is given by the following expression:

n—l—Scar(Z(|L(t—1)\ +|L)|+[L(t+2)|+ |E(t+1)|+2- |A(t)]))

Sincey; [L(t)] < n, 3¢|E(t)] < 2m, andy; |A(t)| < 2m, the worst case total num-
ber of I/Os for pipelined MBBFS isn+ scar{3n+ 6m). Thus, for MRBFS,
pipelining reduces the worst case number of I/Os fromscar{10n+ 14m) to
n- scar{3n+6m). This is particularly significant for graphs that do not f®rc
MR_BFS to incum I/Os for reading adjacency lists.

3.4.5 Dealing with large diameter graphs

Consider the case of large diameter graphs with a good layodisk such as a
list where the nodes are stored on the disk in the order thedg@ithm needs
to traverse them. Theoretically, MBFS should requir®(n/B) I/Os on these
graphs as reading the graph stored in this way and storinguitpait can both be
done inO(n/B) 1/0s. Our preliminary implementation however tooKn) I/Os.
We discovered that the reason for this has been that thalingiion of the runs
creator for sortindN(L(t)) (even if it contained only one node) and converting a
vector into stream (even if the vector contained only onenel&) both required
Q(1) I/Os. Since for each level, a new instance of runs creatornitiglized and
a vector is converted into a stream, this caudés) I/Os for the list graphs. The
reason for this behavior is that STXXL was designed to haexternal memory
data and it was not conceived that in the course of it, it mayp &lave to sort
streams wittk < B elements without incurring any 1/Os.

New features were added to STXXL to handle these problemse JHXXL
stream sorter (from version 0.75 onwards) does not need/@nwlith the ap-
propriate flag) ifk < B. Also, for this case, the internal work is proportional to
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nlogn, independent oB. Converting a vector into a stream or initialization of
runs creator or runs merger do not cause any 1/0.

While these new features helped reduce the I/O time, the atatipn time re-
mained quite high. This was because of the overhead assdeiéth initializing

the external sorters, which involved allocating apprdaereamount of memory. In
the pipelined version of MBBFS, we do not know in advance the exact number
of elements to be sorted and hence, we can’t switch betweeexternal and
the internal sorter so easily. In order to get around thiblero, we first buffer
the firstB elements and initialize the external sorter only when thiéebis full.
Otherwise, we sort it internally.

Overall, these add-ons reduced the I/O and the computatetfor running
MR_BFS on large diameter graphs significantly and helped acigetie theoret-
ical bounds for this case. The BFS phase of NB#S inherits these optimizations
and hence, does not suffer fraix(1) I/O and high computation cost per level.

3.5 Engineering MM BFS_R

In this section, we first present the graph representatiab we use both for
MM _BFS. R and MM BFS.D. We then describe our pipelined implementation of
MM BFSR.

3.5.1 Graph representation

We consider here the graph representation to store thequesgsed input graph.
Together with the nodes and edges, we also need to storeusierohg infor-
mation. From this representation, we should be able to ciofl# nodes in an

arbitrary cluster inO(1) + W‘EI/OS. Each edge needs to keep not only
the labels of both the adjacent nodes, but also their clusdéres, so that we can
efficiently determine whether or not the cluster of the agljggrode is in the hot
pool.

Rather than having each cluster consist of an adjacency aortaining nodes
and edges belonging to it, we store the partitioned inpuply@s three vectors
F, N, andE (as shown in Figur&.4). VectorsN andE contain the nodes and
adjacency lists, respectively. Vectris kept sorted according to cluster indices
of the nodes and that being equal, according to the nodeslakelges in vector
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Figure 3.4: 1/O-efficient data structure to represent afpamned graph.

E are kept sorted with respect to the cluster index of the fogierand that being
equal, according to the first node label. Titteentry in vectoiF contains only an
index of vectoN representing the beginning of the set of nodes inttheluster.
Elements inN contain the node label as well as an index of ve&awhere the
adjacency list of a particular node starts. Each edgé contains the labels of
both the adjacent nodes as well as their cluster indices.

In order to facilitate accessing all nodes in the last cluatel the adjacency list
of the last node, we keep dummy nodes at the end of veEtarglN to mark the
last element oN andE, respectively.

3.5.2 Pipelined MM _BFS

Figure 3.5 shows the flow-chart of the pipelined version for the “palatllus-
ter growing” phase of MMBFS.R. This phase begins with randomly selecting
n/u nodes to be master nodes. The main scanner (SCAN 1) of theeghkes
the stream of the sorted sequence of the nodes on the fringepahding clus-
ters and stores the cluster index (by including the fringéeasanto their corre-
sponding clusters) with these nodes. It also reads the ejgdists of these
nodes to compute the new sequence of fringe nodes to be std tawo-phase
sorter. After the partitioning of nodes into clusters is @bate, SCAN 2 stores
the cluster index of the tail node with each edge. We thenEBaxith respect
to the head node label. The next scanner (SCAN 3) then stoeesluster in-
dex of the head node with each edge. We then Boand E with respect to
the cluster index (of the tail node) and that being equalp@iing to the (tail)
node label. SCAN 4 then adjusts the cluster and the nodedatsr@vhich are
indexes inN andE respectively) appropriately. Since the diameter of angtelu

is less tharu - logn w.h.p., the total number of I/Os for this phase is bounded by

scan<16m+ 6N+ +2- (m+n)- Iogn-u) w.h.p.
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Figure 3.5: Flow-chart for the “parallel cluster growingigse of MMBFS.R.
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Figure 3.6: Flow-chart for the BFS phase of MBFS.

New edges
to be merged

SCAN 1

L

L(t+1)

Graph
partitioning
data structure

Sorted
Runs
N(L(t+1))




54

Chapter 3: Breadth first search on massive graphs

In the pipelined BFS phase of MBFS (which is common to both MMBFS R
and MM_BFS.D) shown in Figure3.6, the first scanner (SCAN 1) receives the
sorted sequendd(L(t)) of neighbor nodes df(t) from the merger stream com-
puted in the previous iteration. It reatdst — 1) andL(t) from the disk and the
adjacency lists of nodes in(t) from the hot pooH (t) (at levelt) and computes
F(t+1) — the multi-set of cluster indices of nodeslift + 1) — and in the pro-
cess, also writes (sortetlft + 1) to disk. The second scanner (SCAN 2) takes
the sorted strearf (t + 1) and eliminates duplicates from it. It then checks if
the cluster (corresponding to the elemenFift + 1)) is already loaded into the
hot poolH (t). If not, it reads the cluster edges from the graph partitigrdata
structure and outputs these edges as the stream to the tge-pbrter. The next
scanner (SCAN 3) reads the sorted sequence of edges thatsméedmerged
into the hot pool, removes the adjacent edges of nodeséti 1) and computes
H(t+1) := (H(t) UMerged cluster edgée§ Adj(L(t + 1)), where Ad|S) repre-
sents the edges adjacent to nodes in &skt the process, this third scanner also
outputs the multi-seM(L(t +1)). This is then sorted and passed on to the next
round as sortedll(L(t)).

The total number of I/Os for this phase is bounded lojusters+ scar{8m-
clusterdiameter+ 10m+ 6n). Since for MMLBFS.R, each cluster diameter is
bounded byu -logm w.h.p. and the number of clusters isk]%, the total I/0
complexity is bounded by + ﬁ + scar{10m+ 6n + 8mlogm- u) w.h.p. For
MM _BFS.D, the cluster diameter is bounded ppyand the number of clusters
is at most%. So, the total number of 1/0Os required by MBFS D is bounded by

2+ scar(10m+6n+8m- ).

3.6 Engineering MM BFS_D

As discussed in SectioB.3, the key components of the Euler tour based prepro-
cessing of MMBFS include minimum spanning tree, list ranking and the Eule
tour of a tree. In this section, we discuss the various desigices for each of
these components.

3.6.1 Engineering minimum spanning forest

Dementiev et al.§4] carefully engineered an external memory MSF algorithm.
Their implementation is based on a sweeping paradigm toceethe number of
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nodes tadO(M) and then running the semi-external Kruskal’s algorithme fibde
contraction phase consists of repeatedly choosing a nade@m and contract-
ing the lightest edge incident to it. In external memorygsehg random nodes
can be done by using I/O-efficient random permutation (€189) and looking
at the nodes in that order. In contracting the edges, onesrte€thform” all the
other neighbors of the non-leader node about the leader fitdkecan be done by
time-forward processing (cf. Secti@b.6 using external memory priority queues
or using a bucket structure. This MSF implementation usesX&Tfor sorting,
priority queue and other basic data structures.

Dementiev et al.§4] showed that with their tuned implementation, massive min-
imum spanning tree problems filling several hard disks casobesd “overnight”

on a low cost PC-server with 1 GB RAM. They experimented witdngndifferent
graph classes — random graphs, random geometric graphsidmggaphs. In gen-
eral, they observed that their implementation of semi+exeieruskal’s algorithm
only loses a factor of 2 in the execution time per edge as cozdp@ the inter-
nal memory algorithm. Running on disks, their external mgnimplementation
merely loses an additional factor of 2.

Our experiments confirmed that this implementation is giaigt in practice and
despite the fact that the underlying graph representatidng different than ours,
it is well-suited for our application.

3.6.2 Engineering List Ranking

The list ranking algorithm by Sibeyrd#5 has low constant factors (for realistic
input size) in its I/O complexity and is therefore, more picad than the algo-
rithm [48] (described in Sectio.2.2 based on independent set removal. The
algorithm splits the input list into sublists of siZ¥M) and goes through the data
in a wave-like manner. For all elements of the current stbtifllows the links
leading to the elements of the same sublist and updates fibveni@tion on their
final element and the number of links to it. For all elementghinks running
outside the current sublist, the required information guested from the sublists
containing the elements to which they are linked. The algoriusesucketing
andlazy processin@f the requests and the answers to the sublists, i.e., Bstor
them in one common stack and processes them only when thetivaegh the
data hits the corresponding sublist.

Unfortunately, Sibeyn’s implementation relies on the apieg system for 1/0s
and does not guarantee that the top blocks of all the staokaingn the internal
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Figure 3.7: The bi-directed tree (shaded circles and soigs) and the closed
linked list of its edges (dashed lines) on the left. The omfethe vertices and
their partitioning before and after the duplicates remavathe right.

memory, which is a necessary assumption for the asympiwaiysis of the algo-
rithm. Besides, its reliance on internal arrays and swapespats a restriction on
the size of the lists it can rank. We re-implemented this @tigm using STXXL
stacks and vectors. The deeper integration of the algoiiththre STXXL frame-
work makes it possible to obtain a scalable solution, whichld handle graph
instances of the size we require while keeping the the@iletiorst case bounds.

Our implementation of this algorithm in the STXXL framewadskquite fast in
practice and takes only around 20 minutes for a list8fe2ements.

3.6.3 Euler tour

Recall from SectiorB.2 that in order to construct the Euler tour around the bi-
directional minimum spanning tree (Figue’), each node chooses a cyclic order
of its neighbors. For every edde,V), its successor is defined to be the edge
(v,w) (u may be the same ag) such that in the cyclic order of neighors afu

is followed byw. In one scan of the edges of the bi-directional tree, eacle edg
is linked to its successor. The linear ordering induced leysinccessor function
constitutes the Euler tour. This tour is then split at therseunodes by marking

an edge leading away frogsin the circuit as the starting edge of the tour.

The position of an edge in the Euler tour is computed usingaisking. These
edges are then sorted such that they are stored on the dikk wrder of their
position in the tour. While scanning the nodes in the ordey thppear in the
tour (some nodes may be repeated), we subdivide the toucinioks of size
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max{1, %} nodes. Thereafter, we remove the duplicate nodes usin@thte s

ing routine of STXXL and get the partitioning of the input gha

3.7 A heuristic for maintaining the pool

In this section, we propose a heuristic for efficient manag@nof the hot pool.
This heuristic is aimed at speeding up the practical perdowwe of MMBFSD,
particularly for large diameter graphs. At the same timgyréserves the worst
case /O bounds of MMBFS.

For many large diameter graphs, the pool fits into the intem&mory most of
the time. Although in this case, the number of edges in the ijgawt so large,
scanning all the edges in the pool for each level can stilldmeputationally quite
expensive. Hence, we keep a portion of the pool that fits inrttegnal memory
as a multi-map hash table. Given a node as a key, it returtiseatiodes adjacent
to the current node. Thus, to get the neighbors of a set ofswvdgust query the
hash table for those nodes and then delete them from the &lalsh For loading
the cluster, we just insert all the adjacency lists of thestduin the hash table,
unless the hash table has alre@{yv) elements.

Recall that after the deterministic preprocessing, thacatcy lists are stored
on the disk in the order in which their corresponding nodgseap on the Eu-
ler tour around a spanning tree of the input graph. The Ewoler is chopped

into clusters with ma{ 1, /%} nodes (before the duplicate removal) ensur-

ing that the maximum distance between any two nodes in thstarlis at most

maxs 1, 4 /&'—%1 — 1. However, the fact that the contiguous adjacency listhen t

disk have their corresponding nodes closer in terms of B##&des not restricted
to intra-cluster nodes. The adjacency lists that come aldedhe requisite cluster
will also be required soon and by caching these other adggdests, we can save
some 1/Os in the future. This caching is particularly benaffiwhen the pool fits

in the internal memory. Note that we still load the dx,/%n node clusters

in the pool, but keep the remaining elements of the block énpbol-cache. For
MM BFS.D on linked lists, this means that we lo&i/B) nodes in the inter-
nal pool, while keeping the remainir@(B) adjacency lists which we get in the
same block, in the pool-cache, thereby reducing the 1/0 dexitg for the BFS
traversal on linked lists to that of scanning a list storethmmranked order.

Recall that we represent the adjacency lists of nodes in idgeghgas a STXXL
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Figure 3.8: Scheme depicting an example run of the impleatiemtof our heuris-
tic. The dark regions denote the clusters that need to betbiado the hot pool.
The entire block containing the two clusters is first load®d the vector-cache.
At this juncture, the internal hot-pool (a multi-map hasbléd can only hold one
more cluster. Therefore, one of the clusters goes into ttegnal pool and the
other cluster is stored on the external hot-pool.

vector. STXXL already provides a fully associative cachthvevery vector. Be-
fore doing an 1/O for loading a block of elements from a vegiidiirst checks if
the block is already there in the vector-cache. If so, itdsdhe 1/0O and provides
the elements from the cache instead. Increasing the veatire size of the ad-
jacency list vector with a layout computed by the Euler toasdx preprocessing
and choosing the replacement policy to be LRU provides ul aitimplemen-
tation of the pool-cache. Figu@8 depicts the implementation of our heuristic.

3.8 External memory graph generator

For the purpose of this study, we designed and implementgubéined version of
an 1/O efficient framework for generating large graphs of yndifferent classes.
Our graph generator can be easily de-coupled from our gegmiesentation and
is therefore, of independent interest. Since it can geaenassive graphs quickly,
it was one of the few graph generators recommended for theAQI®implemen-
tation challenge on shortest patle&]

Our graph generator first produces a stream of edges (eadlected edge is rep-
resented as a pair of directed edges, one in each direatamadomly permutes the
node labels if required by the graph class, sorts the edgeesee, removes du-
plicates, and converts it into our graph representationaf”d/O-efficient random

permutation needed in the generation process of many graghsse 139.
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3.8.1 Graph classes.

We consider the following graph classes covering a broadtspe of different
characteristics influencing the performance of externahorg BFS algorithms:

Random Graph

The random graph mod@&(n, p) [66, 67] (cf. Section2.3) refers to graphs with
nodes in which each edge is chosen independently with pildigap. Generating
such a graph by considering whether or not an edge existsebatevery pair
would takeQ(n?) time. So, we consider a different notion of random graphs in
which all themedges are chosen with having tail and head nodes pickedmrdypdo
i.e., onn node graphs, we randomly selectedges with replacement. We make
sure that the randomly chosen tail and head nodes are noarnhe t® avoid self
loops. From the multi-set of edges so generated, we remagolécdtes to avoid
parallel edges. The random gngaph SO obtained is equivalemtrandom graph
G(n,p) with p=1— (1— ﬁ) . For our experiments, we mostly work with
2

m= 4n which corresponds tp ~ -4

n—1-

A random graphG(n, p) has a giant connected component with a small diameter
w.h.p. ifp= Q("’%). In conformity with the theoretical results, we observeatth
on large random graphs with around 4, there is a big connected component
(containing more than.09n nodes) with 10-15 BFS levels starting from a random
node.

B-level random graph

Givenn, mandB, consider the graph in FiguBe9. The graph consists ofnodes,

and with the exception of the source naslihey are spread ovd levels of”%s1
nodes each. Thed®levels approximate the BFS levels, as edges in this graph
only connect nodes between consecutive levels. The soodeia connected to

_n-1 ,
all nodes in the first BFS level. Th@'ﬁ edges between any two consecutive
levelsi andi + 1 have their one end-point from levednd the other end-point from
leveli + 1 chosen randomly with a uniform probability distribution.

The following layout of this graph on the disk causes MRS to incur its worst
case ofQ(n) I/Os: For each level, the nodes are arranged in the nodervecto
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Figure 3.9: B-level random graph

such that each node in the level resides in a different bl&ck.this, we choose
the node labels such that tité levelL; = {ulu modB = i}. Since these levels
approximate BFS levels and MBFS involves accessing these nodes in the node

vector together, it will cause MBFS to incur~ ”%Bl I/Os for every BFS level.

Summing over alB BFS levels, it will cause MBBFS to haveQ(n) I/Os.

We consideB-level random graphs witm= 4n. They have a giant connected
component and the levels correspond very well with the 4&ES8 levels.

One can also generate the above graph with a random layounteodigk. The
performance of external memory BFS algorithms on the twouéyis similar.

B-level spider web graph

\ /

r

Figure 3.10:B-level spider web graph

This graph class (as shown in Figl8d.0 is a specialization of web graph (not to
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Figure 3.11: MM BFS worst graph

be confused with the power-law graphs used to simulate WWWW\W crawls)
defined in L53. It also consists oB levels, each havinég—1 nodes. Allnodesin a
level are connected in a cyclic fashion and a node has an edigecbrresponding
node in the level before and after. The initial layout of tleeles on the disk is
random. A similar graph witk/B levels is also supported by our generator.

MM BFS worst graph

Given two parameters and u (closely related to the MMBFS parameter with
the same notation), this grapB7 shown in Figure3.11 consists of a source
nodes and a nodd connected by := /n independent paths of length:=
log; 1/, (1/+/n). Furthermoret is connected tm independent nodas, .. ., Un
by an edge. The total number of nodes and edges in this gr&uimjs This graph

is so named as it causes MBFS_R to incur its worst case @ (n- —5~ +sortn)

I/Os w.h.p. on sparse graphs.

Grid Graph

Givenx, y and p, a grid graph consists of anx y grid where each edge of this
grid is chosen independently with a probabilgyThe layout of this graph on the
disk is random. We mostly consider the case vpith 1, x = [\/n] andy = |/n].
For this case, the grid graph has a diametdngf| + [ /n].
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We also consider long and narrow grids in two dimensions disasgrids in three
and four dimensions as examples of large diameter graphs.

List graphs

A list graph consists oh nodes andh — 1 edges such that there exist two nodes
u andv, with the path fromu to v consisting of all then— 1 edges. We consider
three different initial layouts — simple, in which consecetnodes in the list ap-
pear contiguous on the disk; B-interleaved in which congeeunodes are all in
different but consecutive blocks; random in which the ageament of nodes on
disk is given by a random permutation.

Webgraph

As an instance of a real world graph, we consider an actuell afa part of the
world wide web in 2001150, where an edge represents a hyperlink between two
sites. Although this is a directed graph, we treat it as wuotéd. This graph has
around 130 million nodes and 1.4 billion edges. It has a cdrehvconsists of
most of its nodes and behaves like a random graph.

Our graph generator also includes a translator to read gligraph, make it undi-
rected (by inserting an edge in the other direction) and edntinto our graph
representation.

Other graph classes

There are many other graph classes supported by our gengmnatoas geometric
graphs where the nodes are associated with points in sore apd the proba-
bility of an edge to exist between two nodes in the graph iensely proportional
to the Euclidean distance between their correspondinggoin

3.9 External memory BFS decomposition
verifier

As another side tool, we designed an I/O efficient verifietiraito determine
whether or not a BFS level decomposition is correct for amiyeph.
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For an undirected connected graph, the following are nacgssid sufficient con-
ditions for a BFS level labeling to be correct:

1. BFS level 0 contains the source nadnly.

2. Every noder €V, v# shas a unique BFS levefs levelv) > 0.

3. Y(u,v) € E, |bfslevelu) — bfslevelv)| < 1.

4. YueV in BFS levelk (k > 0), 3 edgé€u, V) such thaw is in BFS levek — 1.

Next, we show how to check all these conditionsQfsort{n+ m)) 1/Os in a
pipelined way. Figur&.12shows the flow-chart of our pipelined implementation
of the BFS checker. Recall that the representation of the @RBut consists of
two vectors - andNL. In NL, the nodes of the graph are kept sorted according
to their BFS levels. Theh entry inL contains the index of an elementhiL from
where the nodes in théh BFS level begin.

The first scanner (SCAN 1) checks the first condition and fdupkes of the form
< node label bfslevel> from the BFS output representation. These tuples are
then sorted according to node label and passed on to thedsscanner (SCAN
2). SCAN 2 checks the second condition. It also does a pasate of the sorted
(w.r.t. the tail node label) set of edges and stores the B td the first end-
point with each edge. The set of edges is then sorted accptalithe label of the
other end-point (head node of each edge). SCAN 3 then scensdited edge
set in parallel with the sorted tuple list and stores the B&@llof the head node
with each edge. In the process, it also checks if the thirdlitimm is satisfied.
The set of edges is then sorted according to the BFS leveediihnode and that
being equal with the BFS level of the head node. The last ggi®CAN 4) then
checks the last condition on this sorted set of edges. A B#S tkecomposition
is correct only if it satisfies all the conditions checked hg scanners.

3.10 BFS software package

The software isn’t finished until the last user is dead.
—Anonymous

Our code for the experimental study of external memory BigSrithms has now
evolved into a software package that can be used as a bladiotimany applica-
tions. We eventually plan to integrate this code into a hjpaf external memory
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Figure 3.12: Flow-chart of the pipelined BFS checker.
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algorithms dealing with massive graphs.

Many features for easing the usability of the code (both foaive and an expert
user) have been integrated in this package. The softwarertlyr supports many
different input graph formats such as a list of edges or tHdATS shortest path
challenge graph format (with adaptors to convert them intograph represen-
tation in O(sortm)) I/Os). It can also output the BFS results in many different
formats such as a BFS tree, BFS levels of all nodes and allsniode particular
BFS level (both in binary and ASCII format).

Our implementation can be used on many different 32-bit afbibarchitec-

tures with single or multi-core processors and single ottiplel (homogenous or
heterogenous) external disks. In order to efficiently useeaternal memory im-
plementations on different machines, one needs to tuneaiues of block size,
number of external disks, and available main memory sizedas the underlying
hardware.

This package has been continously evolving for the last y@ars. The latest
stable version of our code is available from the SVN repogitdtps://svn.mpi-
inf.mpg.de/AG1/EM/ajwani/embfs/trunk. Apart from manydsfixes, it includes
many features requested by the users of our software package

The download page of an earlier version of our code was disttere than 300
times in the last two years. We released this code under GNhuei@ePublic
License (GPL) version 2 as freely downloadable and did neplkany statistics
about our users. From the log of feature requests, we fouatdilere have been
attempts to use (an older version of) our code for at leastalt@ving applica-
tions:

e Processing large semantic graphs in order to build a seafzohllel data
management system.

e Searching in social network graphs.

e A graph visualization project dealing with large graphs.

3.10.1 Goals

Our most important goal in engineering these BFS algorithassbeen to make
BFS viable on massive graphs. Constant factors in the I/Qopt®xity are partic-
ularly important in an external memory setting as they cakarthe difference
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between an implementation running overnight and one tkasta month. When-
ever we had a trade-off between saving I/Os and more deveoptime, we

always chose to optimize our code by saving 1/0Os. Pipelimwglves more de-
velopment time, makes the code less readable and makesatldifo debug, but
since optimization has been our key priority we continuestg on it heavily.

Our next goal has been reusability. The extensive use oflsgagprovides a lot
of flexibility with respect to using our code in different digations.

Last but not least, reliability is an important consideyati Not only the imple-

mentation should result in a correct output, but it shousd ot terminate before
giving the output (e.g., with an error message or segmemtéult). This is par-

ticularly important for external memory implementatiorsstaey may take hours
and days of running. In this context, errors that happerequently constitute
the main problems. We have put a lot of effort to make this caglbug-free as
possible.

3.11 Results of our experimental study

In this section, we present the main results of our exteresxyerimental study
with external memory BFS algorithms. For comparing theedédht algorithms,
we consider the total running time and the 1/0 wait time — thtalttime spent by
an implementation waiting for an 1/0 to complete, and not fii@e — the total

time spent by an implementation on I/Os. This distinctiomasessary as STXXL
maximizes the overlap of I/0O with computation.

The external memory BFS algorithms require hours, days ante8mes even
months for computing BFS on various graph classes. As soahe ©f the results
presented in this section (specifically those requiring th@nhave been interpo-
lated using the symmetry in the graph structure.

3.11.1 Configuration

We have implemented the algorithms in C++ using the g++ ctamfoptimiza-
tion level —O3) on th®ebian GNU/Linwdistribution with a Linux kernel and the
external memory library STXXL. Tabl8.1 summarizes the configuration of the
three machines on which we ran our experiments. Note thahimnological rea-
sons, Config A had only partial support for large diametephsaa 16-byte edge
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| | Config A | Config B | Config C |
Processor Intel Opteron Opteron
Processor speed 2.0 GHz 2.0 GHz 2.5 GHz
Cache 512 KB 1 MB 1 MB
RAM 1GB 1GB 25GB
Disk Model ST3250823A ST3250823A ST3500320AS
Disk capacity 250 GB 250 GB 500 GB
Disk Buffer cache 8 MB 8 MB 32 MB

Disk: Sustained data
transfer rate (outer zong)65 MBps 65 MBps 105 MBps
Disk: Average latency | 4.16 msec | 4.16 msec | 4.16 msec
Disk: Spindle Speed 7200 rpm 7200 rpm 7200 rpm

Disk: Random read

seek time <11.0msec | <11.0 msec | < 8.5 msec
Disk: Random write

seek time <12.0 msec | <12.0 msec | < 9.5 msec
Disk: Connecting

interface PATA PATA SATA 3Gbps
g++ version 3.3.2 4.0.2 4.1.2

Linux kernel 2.4 2.6 2.6

STXXL version 0.77 0.77 1.1.1
STXXL support for

large diameter graphs | Partial Complete Complete
EMBFS Heuristic No Yes Yes
MR_BFS edge

size 16 8 4

Table 3.1: Configuration of different machines used for expenting with EM
BFS algorithms.

representation for MBBFS and no heuristic included in MBFS. Also note that
with the hard disks used in all of these machines, it takesyrhandreds of hours
for 228 (most common value af in our experiments) random reads and writes.

The relative performance of different algorithms does rayvmuch across dif-
ferent architectures. In this section, we therefore presanous performance
measures on different configurations to illustrate the leagures of our results.
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3.11.2 Fine-tuning Parameters

Most practitioners of external memory algorithms know it block sizeB is a
parameter that needs to be finely tuned for optimal perfoomafhis is all the
more relevant in the STXXL design framework, as the STXXLteecs organized

as a collection of blocks (of siZ®) residing on the external storage media (parallel
disks). Recall from SectioB.4.1that access to the external blocks is organized
through the fully associativeachewhich consists of a few (P§lr) in-memory
pages where a page is a collection of a f@l¢gically consecutive blocks. Apart
from PgNr andP, another important parameter to be fine-tuned is the interna
memory reserved for a runs creator and a runs merger. Winileguhese param-
eters, a key constraint is that the internal memory all@tgteall the vectors, runs
creators and runs mergers active simultaneously, at argy should be less than
the main memory available for the user. Typically, half o thain memory is
kept for OS requirements. The allocation strategy of blamles disks in a multi-
disk setting and the page replacement policy of a vectorecach some other
parameters to be considered. For our implementations, weeth= 512 KB/1

MB (depending on the machine), By = 4, P = number of parallel disks in use,
allocation strategy = randomized cyclic striping and LRg@aeplacement strat-

egy.

Another important parameter to be optimized for MBEFS is u which is re-
lated to the diameter of the clusters. For worst case opitynale chooseu =

max{l, W?Hm)} for MM _BFSD andu := max{l, /—scar(n+nm)-log(n)} for

MM _BFS.R. On the other hand, if some a priori information is avagafabout

the graph structure, one can use it to reduce the random oesgal accesses by
appropriately modifyingt. We consider both the cases — one in which we choose
our u value independent of the graph-structure (commpand one in which we
assume a priori knowledge of the graph diameter (grapletstrel dependent).

3.11.3 IM_BFS looses fast

Figure3.13shows the total running time of IBFS, MR BFS, MM_BFS R, and
MM _BFS.D on random graphs of varying sizes (keepmg= 4n) on config A
(cf. Table3.1). An important point to note here (also see Figlrd is that even
when half of the graph fits in internal memory, the perforneant IM_BFS is
much worse than that of the external BFS algorithms. Fordhge (22 nodes
and 24 edges), the I/O wait time of IMBFS (8.09hours dominates the total
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Figure 3.13: Variation of running time of IMBFS, MR BFS, MM_BFS R, and
MM _BFS.D (in logarithmic scale) on random graph withmodes (also in loga-
rithmic scale) anan = 4n edges.

running time (8.11hourg, thereby explaining the worse behavior of IBFS.
On the other hand, MBBFS, MM_BFS R, and MM BFS D have much less I/O
wait time (0.70, 5.15 and 4.3®inutesrespectively) and consequently, the total
running time (0.97, 11.11 and 10.28inutesrespectively) is also small. This
further establishes the need for efficient implementatafexternal memory BFS
algorithms.

3.11.4 Single disk — common u

Table3.2shows the 1/0 wait time and running time (in hours) for diéet graphs
in the single disk commop case. Note that MEBFS does not usg in any way.

First, observe that for these large graphs, even the efficigiementations of ex-
ternal memory algorithms are 1/O dominant. This is paraclyltrue for MRBFS

as the 1/0 wait time for MBRBFS on most graph classes accounts for most of its
total running time.
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MR_BFS MM _BFSR MM _BFS D
Graph class n m | I/O wait | Total | I/O wait | Total | I/O wait | Total
Time | Time Time | Time Time | Time
Random 228 230 09| 1.0 45| 8.0 44| 83
Webgraph ~221114.10° 1.7 1.8 52| 8.4 30| 6.4
2D-Grid 228 229 3300| 3300 30.9| 34.9 11.6| 16.0
4D-Grid 228 | 230 23.5| 23.6 21.1| 24.9 12.4| 16.5
B-level random| 228 230 5000 | 5000 37.1| 52.6 29| 7.2

Table 3.2: 1/0O wait time and total running time (in hours) ofRMBFS,
MM BFS R, and MM BFS D on various graph classes on Config C.

Let us first consider the case of random graphs. The totalfomBFS traversal

(particularly MRBFS) on random graphs is much less than that for most other

graph classes. This is explained by the fact that there axefew BFS levels
in random graphs (typically 10-15 for the graph sizes weisti)d In fact, it is
known [135 that a random grapfs(n,c/n) has an expected diamet®flogn).

Both MR_BFS and MMBFS benefit from the low diameter of the graph, though

to a different degree.

MR_BFS directly benefits from fewer BFS levels as it inc@(sortn+m)) 1/Os
per level, thus avoiding the expensi®én) factor. MM_BFS benefits from low di-
ameter as the cluster diameters are small (at least snitaietihe graph diameter)
and consequently, nodes do not stay in the hot pool for tog.IBor MM_BFS R,
this also means that the preprocessing time is less. Fortrer the clusters get
loaded in fewer sort steps and as such MBHAS need not incuf2(1) 1/0Os for
loading each cluster. Nonetheless, owing to its more cotgete structures and
its inherent simplicity, MRBFS not only outperforms MMBFS (on low diameter
graphs) in terms of I/O wait time by a factor of around five, blso in terms of
total running time by a factor of around eight.

While MR_BFS performs better than the other two on random graphs gavin
few hours MM _BFS D with the heuristic outperforms MBFS and MMBFSR
on moderate@(y/n) or O(v/B) diameter) to large@(n)) diameter graphs with
a non-simpl@ layout on disk saving a fewnonthsand a fewdays respectively.
This performance behavior on large diameter graphs is jmdietause of the
different asymptotic I/O complexities of these algorithm®n ([/n] x [/n])
2D-grid graphs and-level random graphs, MIBBFS incurs close to its worst

3By a simple layout of a graph, we mean that the adjacencydfstedes are kept on the disk
sorted according to the BFS level of these nodes.
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case I/O complexity of2(n) 1/Os for loading the adjacency lists.

Apart from diameter, another important considerationdiifg the relative per-
formance of the two algorithms is the initial graph layouttbe disk. The prepro-
cessing phase of MMBFS neutralizes the impact of an adverse layout. So, while
we observe that on Config A, the 1/0 wait time of MBS (0.6hourg is much
less than 84.8oursof MM _BFS R (dominated by the 84.Boursin the prepro-
cessing phase) on a simple list graph, the I/O wait time of BFS (167.6 and
177.7day9 is much more than that of MMBFS (4.2 and 4.Hay9 on random
and B-interleaved layouts. Thus, preprocessing makes B provide better
worst case guarantees (savingnth3 at the cost of loosing out on simple layouts
(loosingdays.

3.11.5 Two phases of MM BFS

Let’s analyze the performance of MBFS in terms of its two phases. Tab@8
and 3.4 show the results of the preprocessing and the BFS phase divthe
MM _BFS variants. The preprocessing time of MBFS. D only depends on the
graph size and not its structure. The I/O wait time for thesEtdur based prepro-
cessing of graphs with around®edges is around 2 hours, while that for graphs
with 230 edges is around 2.7 hours. This is because Euler tour cotipufal-
lowed by list ranking only require®(sort{m)) I/Os independent of the diameter
of the graph.

MM _BFSR MM _BFS D
Graph class n m | 1/0O wait | Total | I/O wait | Total
Time | Time Time | Time
Random 228 230 23| 3.0 26| 3.7
Webgraph ~221114.10° 37| 43 19| 26
2D-Grid 228 | 229 51| 5.4 22| 3.0
4D-Grid 228 | 280 27| 3.4 27| 3.7
B-level random| 228 230 23| 3.0 27| 4.0

Table 3.3: 1/0 wait time and total running time (in hours) bétpreprocessing
phase of the two MNMBFS variants on Config C.

On the other hand, the “parallel cluster growing” prepreassin the worst case

scans the grapfd ( /WM) times, and thus incurrin@(/n- scarfn+ m))
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MM _BFSR MM _BFS D

Graph class n m | 1/O wait | Total | I/O wait | Total

Time | Time Time | Time
Random 2728 230 22| 5.0 18| 4.6
Webgraph ~227 1 1.4.10° 15| 4.1 11| 3.8
2D-Grid 228 | 229 25.8| 29.5 9.4| 13.0
4D-Grid 228 | 230 18.4| 21.5 9.7| 12.8
B-level random| 228 230 34.8| 49.6 02| 3.2

Table 3.4: 1/0O wait time and total running time (in hours) leéBFS phase of the
two MM _BFS variants on Config C.

| Graphclass| n | m |MM_BFSR|MM_BFSD |

Random graph 228 | 230 500 630
Random List | 228 | 22821 | 10500 480

Table 3.5: 1/0 volume (in GB) required in the preprocessihgge by the two
variants of MM.BFS on Config A.

I/Os w.h.p. But if the diameter of the graph is small, no twd@e®in a cluster are
further than the diameter and hence, MBFS R needs to scan the graph fewer
times. Thus, while the 1/0 volume of the “parallel clusteogmg” preprocessing

on random graphs is around 500 GB, it is more than 10.5 TeesByt a random
list graph (cf. Table3.5). As for MM_BFS.D preprocessing, the 1/0 volume is
less for the random list graph because it has fewer numbelgégse Therefore,
while the preprocessing time increases for MBAS R from 3.0 hours for random
graphs to 4.8 hours on@(+/n) diameter square grid graph, it decreases from 3.7
hours to 2.6 hours for MMBFS D (cf. Table3.3).

Except for some special cases, BFS phase dominates thegtime of MM_BFS.
The BFS phase itself is a balance between the random I/Oaddlhe clusters into
the hot pool and the sequential 1/Os to update and scan thedobt For small
diameter graphs, we do not ne@dl) random I/Os to load a cluster. All clusters
are loaded in a span of a few BFS levels and the cost for thlsuss, subsumed
by 1/0s required to scan the graph a few times. Hence in thege,cthe scan-
ning of hot pools dominate the running time. For large diaangtaphs, the hot
pool almost always fits in the internal memory and no I/Os arpiired to scan
it. MM _BFS also significantly benefits from our heuristics in thiseeaSo for
large diameter graphs, the random I/Os to load the clustersréates the running
time of the BFS phase. The moderate diameter graphs are yhehalenge for
the BFS phase as here, we need to incur I/Os both for loadengltisters and for
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scanning the hot pool.

As compared to MMBFS.R, MM_BFS.D provides dual advantages: First, the
preprocessing itself is faster and second, for most gragések, the partition-
ing is also more robust, thus leading to better worst-casaing-times (cf. Ta-
ble 3.4) in the BFS phase. The later is because the clusters getidnatEuler

tour based preprocessing are of diameter at most{rﬁaé/wﬂm } while the

ones generated by “parallel cluster growing” preprocessan have a larger di-

n-logn ; : :
ameter o0 W) causing adjacency lists to be scanned more often. Also,

MM BFS.D benefits much more from our caching heuristic than MMS R as
Euler tour based preprocessing gathers neighboring ctustehe graph on con-
tiguous locations in the disk.

3.11.6 Effect of Disk parallelism

MR_BFS MM _BFSR
Graph class n m | Single| Four| Single| Four
Disk | Disks| Disk | Disks
Random 228 230 3.4 1.3 96| 4.4

B-level Random | 228 | 230 | 3994.8| 2105.1| 49.7| 26.0
B-level Spider Weh 228 | ~ 22° | 3366.5| 1497.9| 39.8| 17.1
MM Worst 225 | ~ 225 25.4| 13.7| 32.4| 105
Random list 228 | 2281 4167.7| 4156.2| 283.3| 239.9
B-interleaved list | 228 | 228 | 4222.6| 1258.7| 280.8| 239.9

Table 3.6: The running times (in hours) of MBS and MMBFS.R on Config
A in the single-disk and multi-disk settings.

Phase 1 Phase 2
Graph class n m | Single| Four| Single| Four
Disk | Disks| Disk | Disks
Random 228 230 51| 25 45| 1.9

B-level random 228 230 5.1 25| 446| 235
B-level Spider Wel 228 | ~ 22° 73| 32| 325| 139
Random list 228 228 | 80.4| 50.5| 200.4| 189.4

Table 3.7: The running times (in hours) of the two phases of BF5.R on
Config A in the single-disk and multi-disk settings.
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In the multi-disk setting, we ran our experiments with theegarameters, except
that the vectors are randomly striped over four disks. Altiiothe usage of mul-

tiple disks allows us to handle larger volumes of data, Imena restrict ourselves

to smaller sizes for better comparison with the single desec

As Tables3.6 and 3.7 show, the usage of parallel I/O channels alleviates the I/O
problem further. In general, we see a performance impromehyea factor of two

to three with four disks as compared to the single-disk c&s®.many graphs,
the computation time starts becoming the bottleneck, itiqudar for MM_BFS,
which seems to gain more from the parallel /0 channels. Hewavith some
new features of STXXL like a SMP multi-processor version aiftifg routines,

we hope to bring down the total running time fairly close te tfO wait time.
Besides, the computation speed increases at a much faste¢haa the external
memory throughput, thereby reducing the computation tielative to the 1/0
wait time.

While MR_BFS on random list graphs hardly seems to have any benefittirem
multiplicity of disks, it is almost four times better withdo disks orB-interleaved
list graphs. This is because a random access to a block khegseighboring
blocks on other disks automatically to the internal memany ¢herefore, the
access to the adjacency lists of the next three nodes (boatehe other three
disks) comes without any extra I/Os.

3.11.7 Exploiting a priori information about graph diam-
eter

Recall from Sectior8.11.5that the BFS phase of MMBFS for small diameter
graphs is dominated by sequential accesses to the hot ppdbalarge diameter
graphs is dominated by the random I/Os for loading the dlsst&ince we choose
U to balance the random 1/Os to load the clusters and sequaentesses to the
hot pool, it makes sense to choose a very low valye fafr small diameter graphs
(to ensure that an adjacency list stays for a really shoe tmhot pool) and very
high value ofu for large diameter graphs (as the hot pool stays internamand
want to reduce the random 1/Os to load the clusters).

Tables3.8and3.9show the 1/0 wait time and running time for the two algorithms
in the single disk case, whefecould be optimized based on the graph structure.
With a low value ofu (u ~ 1.5), the 1/O wait time and the total running-time
of the BFS phase of MMBFS R on random graphs is less than that of RS

on Config A. In general, with an approprigtevalue chosen to balance the 1/10
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MR_BFS MM _BFSR
Graph class n m | I/O wait | Total | I/O wait | Total

Time | Time Time | Time
Random 228 2% 2.4 3.4 55 7.9
B-level Random | 228 | 230 | 3989.8| 3994.8 10.0| 16.6
B-level Spider Well 228 | ~ 22° | 3364.2| 3366.5 25.1| 29.3

Table 3.8: Single Disk, Graph structure dependertl/O wait time and running

time (in hours) of MRBFS and MMBFS on Config A.

MM BFSR Phase 1 MM _BFS R Phase 2
Graph class n m | 1/0O wait Total | 1/0 wait Total
Time Time Time Time
Random 228 2% 3.3 4.9 2.2 3.0
B-level Random | 228 | 230 4.0 5.5 6.0 11.1
B-level Spider Wel 228 | ~ 22° 12.9 13.7 12.2 15.6

Table 3.9: Single Disk, Graph structure dependertl/O wait time and running
time (in hours) of the two phases of MAFS on Config A.

time of the two phases of MMBFS, one can save a significant factor in the 1/0
complexity. Our experiments with graph-dependgrdand disk parallelism sug-

gest that when used together, they can significantly alievee 1/0 bottleneck for
MM BFS.

3.11.8 Results on the webgraph

MR_BFS MM _BFSR MM _BFSR
Commonu Graph depu
I/O wait | Total | I/O wait | Total | I/O wait | Total
Time | Time Time | Time Time | Time
Single disk 3.7, 4.0 74| 94 6.3| 8.4
Multiple disk 20| 2.3 27| 4.8 23| 45

Table 3.10: I/O wait time and running time (in hours) of thetalgorithms on a
web graph on Config A.

As an instance of a real world graph, we consider an actuall @athe world
wide web [L50, where an edge represents a hyper-link between two sites. T
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graph has around 130 million nodes and 1.4 billion edges.blieof the nodes
are contained in the core of this web graph spanning 10-1218Fs (similar
to random graphs). The remaining nodes are spread out amesdhds of levels
with 2—3 nodes per level (which behaves more like a list graptowever, the
I/0 wait time as well as the total running time for BFS trawaiis dominated by
the core of this graph and hence, the results are similaremties for random
graphs. As Table.10 shows for Config A, both MEBFS and MMBFS can
compute the BFS decomposition of this graph in a matter ofvahfeurs In fact
as Table3.2shows, MRBFS requires merely 1.8 hours on Config C with a single
disk, owing to its more compact edge-representation th&ieilar to random
graphs, MRBFS outperforms both MMBFS.R and MM_.BFS.D on webgraph.

3.11.9 Penalty for cache-obliviousness

Brodal et al. 0] gave a cache-oblivious undirected BFS algorithm (BES)
that has a complexity dd(sorfm) + (m/B) -logn+ y/n-m/B+ ST(n,m)) I/Os,
whereST(n,m) is the complexity of computing a spanning tree of a graph with
nnodes andnedges in a cache-oblivious way. The currently best caclieials
algorithms for computing a spanning tree reqeort{m) - loglog(n)) I/Os de-
terministically andO(sortm)) 1/0s randomized.

Christiani 49] gave a prototypical cache-oblivious implementation of RS
and the preprocessing phase of MBFS R and MM BFS D. These implemen-
tations use cache-oblivious algorithms for sorting, mmmspanning tree and
list ranking. In this subsection, we provide evidence thanethough the cache-
oblivious BFS algorithms have the same asymptotic 1/0O cexipt as their ex-
ternal memory counterparts, they are slower in practicgfaphs that do not fit
in the main memory.

Sorting

While CO_SORT provides tight asymptotic guarantees on all levels emary
hierarchy, it is a factor three to four slower than STX®ORT in practice for
data-sizes that do not fit in the main memory. Our results showable3.11are
in conformity with that of Brodal et al.41], where it is shown that the external
memory sorting algorithm in the library TPIE%$]] is better than their carefully
implemented cache-oblivious sorting algorithm, when romisk.
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I | CO_SORT | STXXL_SORT|
256x 10° 21 8
512x 10° 46 13
1024x 10P 96 25

Table 3.11: Timing in minutes for sortingelements using either CQORT or
STXXL_SORT on Config B.

| Graph class | CO.MST | EM_MST |
Random graph;
n=2%8 m=2% 107 35
List graph with contiguous
disk layout (Simple List)n = 228 38 16
List graph with random
disk layout (Random Listyy = 228 47 22

Table 3.12: Timing in hours (on Config B) required by Eulerrtbased prepro-
cessing of Christiani’s implementation using either 3T or EM_MST.

Spanning forest

The Euler tour based preprocessing of Christi@®]| uses the cache-oblivious
MST (CO.MST) algorithm P]. Table 3.12 shows the total time required by
Christiani’s MM_BFS_D preprocessingd9] using CQMST and the one in which

CO_MST isreplaced by the external memory MST implementatifrSection3.6.1).

List ranking and Euler tour

The cache-oblivious implementatioAd uses the algorithm based on indepen-
dent set removaMg] for list ranking. While it takes around 13hoursfor ranking
229 element random list using 3 GB RAM on Config B, our adaptatioBibeyn’s
algorithm (cf. Sectior8.6.2 takes less than 4finutesn the same setting.

MM_BFS_D comparison

We compared the performance of our implementation of WS D with Chris-
tiani’s implementation 49] based on cache-oblivious subroutines. TaBl&3
show the preprocessing time for the two extreme graph dassandom graphs
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and list graphs with random layout on disk. We observe thdath graph classes,
the preprocessing time required by our implementationgeicantly less than
the one by Christiani.

Graphclass | n m COBFS | MM BFSD
Random graph 228 | 2°0 107 5.2
Random List | 228 | 228 _1 47 3.2

Table 3.13: Timing in hours for computing Euler tour basedppocessing of
MM _BFS by the two implementations of MBFS_D on Config A.

We suspect that the performance losses in Christiani’'sBES implementations
are inherent in cache-oblivious algorithms to a certairxand will be carried
over to any cache-oblivious BFS implementation.

3.11.10 Remark on the shape of the spanning tree

The shape of the computed spanning tree can have a significpatt on the
clustering and the disk layout of the adjacency list afteleEtour based pre-
processing, and consequently on the BFS phase. For instartbe case of the
square grid graphs, a spanning tree containing a list waimehts in a snake-like
row major order produces long and narrow clusters, whileaadom” spanning
tree is likely to result in clusters with low diameters. Sactrandom” spanning
tree can be obtained by assigning random weights to the eddbke graph and
then computing a minimum spanning tree or by randomly parnguhe indices
of the nodes. The nodes in the long and narrow clusters testhyolonger in
the pool and therefore, their adjacency lists are scanned often. This causes
the pool to grow external and results in larger 1/0 volume. tBa other hand,
low diameter clusters are evicted from the pool sooner andeanned less often
reducing the 1/O volume of the BFS phase. Consequently ale Bab4 shows,
the BFS phase of MMBFS.D takes only 28 hours on Config B with clusters pro-
duced by “random” spanning tree, while it takes 51 hours \atig and narrow
clusters.

| Graphclass | n | m | Long clusters] Random clusters
[Grid(@® =25 [ 28| 22°] 51 | 28 |

Table 3.14: Time taken (in hours) by the BFS phase of lMS_D with long and
random clustering on Config B.
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3.11.11 Summary

| Graphclass | n | m | MRBFS | MM_BFSR | MM _BFSD |
Random 228 230 1.4 7% 6
Webgraph | ~227| 1.4.10° 2.6 3.5x 2%
Grid (24 x 24y | 228 229 2.5x 1.25x 21
Grid (22t x 27) | 2?8 ~ 229 >100x >10x 4.0
Grid (227x2) | 228 | ~ 2281227 | >500x >25x 3.8
Simple List 228 2281 0.4 7x 7x
Random List | 228 2281 >1300x >75x% 3.6

Max ~1/2year | ~ 1week < 1lday

Table 3.15: The best total running time (in hours) for BFSdraal on different
graphs on Config B with the best external memory BFS impleat&nmts; Entries
like > 25x denote that this algorithm takes more than 25 times the takent by
the best algorithm for this input instance.

Table3.15points to the current state of the art implementations cfretl mem-
ory BFS on different graph classes (on Config B). Our MRS implementation
outperforms the other external memory BFS implementat@nsow diameter
graphs or when the nodes of a graph are arranged on the disk ander required
for BFS traversal. For random graphs with 256 million nodes a billion edges,
MR_BFS performs BFS in just 1.4 hours. Similarly, MBFS takes only 2.6 hours
on webgraphs (whose runtime is dominated by the short demeete) and 0.4
hours on list graph with contiguous layout on disk. For ladiganeter graphs like
random list graphs, MMBFS D along with our heuristic computes the BFS in just
about 3.ehours which would have taken MBBFS a fewmonthsan improvement
by a factor of more than 1300. In general, if there is no a pimdormation about
the graph structure or its layout on the disk, one should uSeBFS.D as it has
better asymptotic worst case guarantee.

3.12 Recent work related to EM BFS

In this section, we review some recent work related to esiemmemory BFS.
Meyer and Osipov 11]] have extended our work to external memory single-
source shortest paths (SSSP). We briefly review this exiertiegether with other
known results on EM SSSP in Secti@nl2.1 Meyer recently proposed algo-
rithms for dynamic BFS11( and approximating the diameter of an undirected
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graph [L09. We review these algorithms in SectiBrl2.2and Sectior8.12.3 re-
spectively. We believe that the key ideas and the code in ouk wan also easily
be extended to implement dynamic BFS and to approximateitraader. Effi-
ciently approximating the diameter of the graph can in tweip lietermine which
BFS algorithm to use and with what parameters.

3.12.1 Single-Source Shortest Paths

The single-source shortest paths (SSSP) problem takesrgsaa large weighted
undirected grapks(V, E) and a source nodeand computes the shortest path dis-
tanced(s,v) for all nodesv € V. It can be computed i®(nlogn+ m) in internal
memory using Dijkstra’s algorithn®fl] with a Fibonacci heap/[1] based priority
qgueue. Dijkstra’s algorithm relies heavily on the priofifyeue.

Kumar and Schwabe proposed@m+m/B-log, (m/B)) I/0 algorithm P3] that
relies on 1/0O-efficient tournament trees for priority queyerations. Once again,
theO(n) term comes from unstructured accesses to adjacency lidtsemause of
it, this algorithm is unlikely to yield good results on reabdrld massive graphs,
which are usually sparse. Furthermore, due to edge weitftease are typically
many more “levels”.

As regards resolving the problem of unstructured accessesljacency lists,
Meyer and Zeh112 proposed an algorithm MBSSP that has a preprocessing
phase where the adjacency lists are re-arranged on the didike BFS where
the edges are all unweighted, MEZSSP distinguishes between edges with differ-
ent weights and separates the edges into categories baskdioweights. The
total /O complexity of this algorithm i®(,/(n- m-logW) /B+MST(n,m)) I/Os,
whereW is the ratio between the weights of the heaviest and thedggleidge and
MST(n,m) is the number of I/Os required to compute a minimum spanmieg t
of a graph withn nodes anan edges.

Meyer and Zeh113 extended this framework to handle the case of unbounded
edge-weights. Their algorithm for SSSP with unbounded edgights requires
O((y/n-m/B) -logn+MST(n,m)) I/Os.

Brodal et al. #0] showed that SSSP can be compute®{m+ sortm)) I/Os with

a cache-oblivious algorithm relying on a cache-obliviousket heap for prior-

ity queue operations. Allulli et al.1{4] gave a cache-oblivious SSSP algorithm
improving the upper bound t0(,/(n-m-logW)/B+ (m/B) - logn + sortm) +
MST(n,m), whereW is the ratio between the smallest and the largest edge weight
andMST(n,m) is the 1/0 complexity of the cache-oblivious algorithm cartipg
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a minimum spanning tree ofranode andnedge graph.

Engineering EM SSSP

Recently, some external memory SSSP approaches (simifeatume to the one

proposed in 93]) have been implemented$, 13§ and tested on graphs of up
to 6 million nodes. However, in order to go external and siiit produce huge

running times for larger graphs, these implementatiorsiceshe main memory

size to rather unrealistic 4 to 16 MB.

Meyer and Osipov]1]] extended our work to engineer a practical I/O-efficient
single-source shortest-paths algorithm on general uctéidegraphs where the ra-
tio between the largest and the smallest edge weight ismaaobounded. Their
implementation is semi-external as it assumes that the mamory is big enough
to keep some constant bits of information per node. Thisraption allows them

to use a bit vector of size kept in the internal memory for remembering settled
nodes.

In order to get around the lack of optimal decre&sg operation in current exter-
nal memory priority queues, it allows up tidv) (degree of node) many entries
for a nodev in the priority queue at the same time and when extractingnthie
discards all but the first one with the help of the bit vectos. rAgards accessing
the adjacency lists in an unstructured way, they do a pregsiceg similar to the
Euler tour based variant of MMBFS (i.e., without considering the edge weights
at all) to form clusters of nodes. For integer edge weighamff1,... W} and

k = log, W, the algorithm keepk “hot pools” where the-th pool is reserved for
edges of weight betweeri2 and 2 — 1. It loads the adjacency lists of all nodes
in a cluster into these “hot pools” as soon as the first nodedrcluster is settled.

In order to relax the edges incident to settled nodes, thpdals are scanned and
all relevant edges are relaxed. The algorithm crucialliesebn the fact that the
relaxation of large weight edges can be delayed becaus@idbran edge (even
assuming thatitis in the shortest path), it takes some teh@rb the other incident
node needs to be settled. The hot pools containing higheghivedges are thus
touched less frequently than the pools containing shogdg

Similar to the implementation of MMBFS, it partially maintains the pool in the
internal memory hash table for efficient dictionary look agher than computa-
tionally quite expensive scanning of all hot pool edges. mleenory can be shared
between “hot pools” either uniformly or in an exponentialgcreasing way. The
latter makes sense as the hot pools with lighter edges ammedanore often.
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When the clusters are small enough, the algorithm cachesiglboring clusters
that are anyway loaded into the main memory while rea@idements from the
disk.

For random edge weights uniformly distributed[1n..., W], the expected num-
ber of 1/Os incurred by this algorithm B(+/(n-m-logW)/B+MST(n,m)), the
same as that for MASSSP.

Similar to our implementations, their pipelined implenain makes extensive
use of STXXL algorithms and data structures such as streamgo

SSSP in practice

As predicted theoretically, this SSSP approach is acckptabgraphs with uni-
formly distributed edge weights. For random graph® (@des and ¥ edges)
with uniformly random weights ifil, . . ., 237, it requires around 40 hours to com-
pute SSSP (with 1 GB RAM). On a US road network graph with add2dhmillion
nodes and around 29 million edges, it requires only aroutfcahehour for com-
puting SSSP, even when the node labels are randomly perretece. On many
difficult graph classes for BFS, the running time of this S&Bproach is within
a factor of two to the BFS implementatiotbdq.

The final performance of this algorithm has been shown todpafsgsantly depen-
dent on the quality of the spanning tree and the way spacksa#td in the main
memory among different “hot pools”.

3.12.2 Dynamic BFS in external memory

In many real-world applications, the underlying input drdgeeps on evolving
continuously (cf. Sectiod.1). Since even the best of the carefully tuned imple-
mentations of external memory graph algorithms usualle tadurs and days of
time (for massive graphs), it is difficult to re-compute g¥bing from scratch
every time there is any modification in the input graph.

Very few results are known for dynamic graph algorithms iteexal memory.
Meyer [L10 shows an interesting result for computing BFS on generdirented
graphs in incremental or decremental setting. They provaraartized high-
probability bound ofd(n/B%°+ sori(n) - logB) I/0Os per update under a sequence
of either®(n) edge insertions, but no deletions ®(n) edge deletions, but no
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insertions.

Recall that the deterministic preprocessing in the stai§ B.06 works by com-
puting an Euler tour around a spanning tree of the input gexphdividing it
into chunks of sizeu where 1< u = O(v/B). The nodes belonging to different
clusters can be assigned to any of them. This can potentiallge many clusters
with O(1) adjacency lists. For dynamic BFS, this is modified such thaehelus-
ter (except possibly the last) contains an expe€éd) nodes. This is done by
exploiting the following observation: In the sequence ofle®in the Euler tour
of a spanning tree, an intermediate visit of a node is diyguiéceded by the last
visit to one of its children and followed by the first visit torae other child. This
means that in any chunk half of the nodes are either the firgtetast visit of
a node. Thus, if rather than assigning nodes to differenbksarbitrarily (as in
static BFS), we make a node belong to the chunk correspomalitgfirst and last
visit each with probability one half, the expected numbeadjacency lists per
cluster will be at least: /8.

For the BFS phase, lets consider the insertion oftthedge(u, v) in incremental
setting and refer to the graph (and the shortest path dissainom the source in
the graph) before and after the insertion of this eddgg;as (d;_1) andG; (d;). We

first run an external memory connected component algoritharder to check if
the insertion of(u, v) enlarges the connected componégbf the source node

If so, we run the MRBFS algorithm on the nodes in the new component starting
from nodev (assuming w.l.0.g. that € Cs) and addd;(u) + 1 (di (u) = di_1(u) in

this case) to all the distances obtained.

Otherwise, we run the BFS phaseMM_BFS with the difference that the ad-
jacency list forv is added tdH when creating BFS level m&®,d;_1(v) — o} of
G;, for a certain advance > 1. For nodes witldi_1(v) — di(v) > a, we import
the whole clusters containing their adjacency lists idtasing random 1/Os. If
it requires more thaa - n/B random cluster accesses, we increadey a factor
of two, compute a new clustering f@; 1 with larger chunk size and start a new
attempt by repeating the whole approach with the increaaemhpeters.

The decremental version is similar, except that rather #dhrancing the adja-
cency lists, we let them be in hot pool for BFS levels. For nodes with
di(v) —di_1(v) > a, we use random I/Os to get the cluster containiisgadja-
cency list later on.

The analysis relies on the fact that there can be only be weryipdates in which
the BFS levels change significantly for a large number of soéds such, most of
the updates will require few random I/Os in early attempt$witle advance.
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We believe that our work can easily be extended to engineenplementation of
this algorithm.

3.12.3 External memory approximation graph algorithms

One of the major approximation challenges in external mgngoaph traver-
sal has been to compute approximate diameter of an undireperse graph in
o(n/+/B) I/0s. For unweighted graphs, BFS from an arbitrary nodeadyeyives

a 2-approximation to the diameter of a connected graph. Asdna SectiorB8.3,
BFS on undirected sparse graphs=£ O(n)) can be computed in external memory
in O(n/v/B+sort(n)) 1/Os.

Recently, Meyer09 proposed an algorithm that computes an expeciedk)-
approximation for the diameter of a sparse undirected ametigited graph with
n nodes andn = O(n) edges using(n- y/logk/(k-B) + k- scar{n) + sortn))
I/Os. This is done by reducing this problem to that of compmitexact shortest
paths on a grapB’ with O(n/k) nodes and(m) edges.

GraphG' is computed using a preprocessing similar to the “paralieiter grow-
ing” variant of MM_BFS as follows: We first choose each node to be a master
node with a probability Zk. Then, we select every-th node in the Euler-tour
traversal around an arbitrary spanning tre&pfo also be a master node. There-
after, we grow the clusters “in parallel”. In each round,leataster node tries to
capture all unvisited neighbors of the current clustersTidone by first sorting
the nodes at the fringes of the clusters and then scanniragifaeency-lists of the
nodes in the yet unexplored graph. Ties are broken arlytrari

Let C(u) be the cluster containing. An edge{u,v} € G results in an edge
{C(u),C(v)} € G if C(u) # C(v). The weight of the created edd€(u),C(v)}
is dc(u) + 1+ dc(Vv), wheredg(u) is the distance ofi from its cluster center. We
remove the parallel edges by keeping only the lightest edgedenC(u) and
C(v).

We run single source shortest path from an arbitrary ne@de G’ and output
the maximum distance frorato any other node irfG’. Note that this is a 2-
approximation to the weighted diameter @f. It can easily be shown that the
weighted diameter o8’ Dg is more tharDg. Next, in order to show thddg is
aO(v/k) approximation of the diameter & (Dg), we consider two cases:

e Dg < 2V/k. Consider any edggu,Vv) replaced by{C(u),C(v)} in G'. The
shortest path between any two nodesGris at most 2/k and therefore,
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de(u) < 2vk— 1 for any nodeu € G. The weight of{C(u),C(v)} is at most
4/k— 1. The weighted diameter &' can thus be at mogth/k — 1) - Dg.

e D¢ > 2vk. Consider any patR € G of lengthp such thatvk < p < 2vk
and considen € P such thatd;(u) is minimum. Note that for all € P,
dc(v) < d¢(u) +d(u,v), as otherwise the master nodeuwdan also capture
v during the cluster growing phase. Alsodfu) # C(v), there have to be
node disjoint paths from andv to the cluster centers. Consider larger and
larger neighborhoods arourR®luntil we find the first level with a cluster
center at distancd.(u). Since each node has been chosen to be a clus-
ter center with uniform probability /K, the expected number of nodes we
have to check till reaching the first cluster centek.iRecall that each edge
{u,v} € Gleads to an edgfC(u),C(v)} € G’ with weightdc(u) +dc(v) + 1.
Thus, there should exist a pa@he G’ with expected weighD(k).

For longer path8 < G of lengthp,, we consider sub-paths of leng@fv/k).
For each such sub-path the corresponding pathG’ has expected weight
O(k). Using linearity of expectation, we can show that the cqoesling
pathP € G’ has expected weightk - p. This implies that the weighted

diameter ofG’ can be at most/k - Dg.

Since eaclk-th node on the Euler tour is a master node, each nodeG is

at most distanc& away from a master node and the clusters are grown for at
mostk rounds. Each cluster growing round requi@gcarim)) 1/Os to scan
the adjacency lists of the unexplored graph and each nodsaeppnly once as

a fringe node of some cluster leading to a totalQfsortn)) 1/0s. Thus, the
total complexity of computing’ is O(k - scar{n+ m) + sortn+m) + ST(n,m))
I/0s, whereST(n,m) is the 1/0O complexity of computing a spanning tree of an
n node andm edge undirected graph. Computing single source shorteélst pa
on a graph withO(n/k) nodes andO(m) edges with the ratio between max-
imum and minimum edge weight beingrequiresO(/(n-m-log,k)/(k-B) +
sortn+m) + ST(n,m)) I/Os. The total I/O complexity for this algorithm is thus
O(y/(n-m-log,k)/(k- B) + k- scarfn+m) + sortn+m) + ST(n,m)) I/Os.

We believe that our implementation can be extended to appeig the graph
diameter using the above algorithm.

I/O-efficient heuristics for approximating graph diameter S

Brudaru B2] implemented a heuristic to 1/0-efficiently approximate thumber
of BFS levels from a given source nogin a large undirected unweighted graph.
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This heuristic first computes an arbitrary spanning Tred the undirected graph,
roots it at the source node by computithg(s, v) for all v € V and then iteratively
computes a new tre€’ such thatdy/(s,v) < dr(s,v) Vv € V. These iterations
come in the following variants:

e “Offline variant”: For eaclveV and{u,v} € E, we compute mig{dr(s,u)+
1} and if it is less thamly (s,v), we mark the edgév, P(v)} (P(v) being the
parent ofv in rootedT) for deletion and the edge leading to the shortest
distance for insertion in the next iteration.

e “Online variant”: In this variant, as the new tree is beingnputed and
dr(s,v) reduces, this information is communicated to the neighitioas
will be processed ahead (without waiting for the round toshiji We use
time-forward processing (cf. Sectié@b.6 to do this communication. We
first process the nodes in increasing orded(fs, v) and then in decreasing
order ofdr (s,v).

Both of these variants are shown to converge fast to a BFS\Waée the “offline
variant” requires less time per iteration, it may need a @igtumber of iterations.
Empirical evidence42] suggests that just one round of iterations is enough to
determine whether the number of BFS level®itogn), O(/n) or O(n).

This is particularly useful for our BFS software. If we caniakly determine
the number of BFS levels to b@( WM), we can either use MBFS or

MM BFS.D with u : = T ;scadn+m)’ where diamypp(G) is the approxi-

mated diameter of the graph. Recall that for each level,BFS incursO(sortm))

I/0s and therefore, MEBFS requiresO(diam(G) - sor{m)) I/Os. Similarly for

MM BFSD, the 1/0 complexity (cf. Sectio8.3) is O(n/u + u - scarfn+ m) +

sortn+m)). The termy - scarin+ m) comes from the fact that each edge may

be scanne®(u) times. However, no edge can be scanned more often than the

total number of BFS leveldJ(diam(G))). Thus, the total compIeX|ty becomes
O(n/u+diam(G) - scarin-+m) +sort n+m)). Substitutingu = duamapp(e) SCarAT

and assumingliam(G) = O(diamypp(G)), we get a complexity oO(diam(G) -

scar{n+m)+sort{n+m)) I/0Os. On the other hand, if the diameteﬂ< W';Hm)) :

we can use MMBFS.D with the worst-case value @f := max{1,

for a total I/0O complexity ofO(y/n-scarin+ m) + sort{n+m)).

scan{rr11+m) }
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Problems Best known upper bounds
MST/CC (on undirected graphs)O(sortm) - loglog(n-B/m))
MST/CC (randomized

on undirected graphs) O(sor{m))
List ranking O(sortm))
Euler Tour O(sortm))
BFS (on undirected graphs) | O(y/n-scarfm)+

sor{m) +MST(n,m))
BFS, DFS and Topological O(min{n+ [n/M] - scarfm),

ordering (on directed graphs) (n+scarim)) -logy,n, m})
SSSP (on undirected graphs

with integer weights) O(,/n-scarfm) - logW +MST(n,m))
SSSP (on undirected graphs

with unbounded weights) O(y/n-scarim) -logn+MST(n,m))
APSP (on unweighted

undirected graphs) O(n-sor{m))

APSP (on undirected graphs
with non-negative weights) O(n- (y/n-scarfm) + scar{m) - log(m/B)))

Table 3.16: 1/0O complexity of state-of-the-art algorithgassumingm > n) for
graph traversal problems.

We implemented external memory BFS algorithms and showedd¢bmparative
analysis. Together with pipelining, disk parallelism, and heuristic for main-
taining the pool, our implementations provide viable BF&/érsal on different
classes of massive sparse graphs. In particular, we redbeedinning time of
a fewmonthsfor many graph classes required by IBFS to a fewhoursusing
EM_BFS. We believe that our results can be further improved bydaalysis of
graph structure (such as I/O-efficient approximation opgrdiameter) and using
it to tune parameters for external memory BFS algorithms.

Empirical evidence suggests that MBES performs better on small diameter
random graphs. However, the better asymptotic worst-c&3edomplexity of
MM _BFS.D helps it to outperform MEBFS for moderate to large diameter sparse
graphs with non-simple disk layout, where MBES incurs close to its worst case
of Q(n) I/Os.

Extending our work to external-memory single-source ststrpaths may benefit
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many real world applications. Our code can also be usefuéhgineering 1/0-
efficient dynamic BFS algorithms.

In general, the design and analysis of external memory grapbrsal algorithms
has greatly improved the worst case upper bounds for thedi@ptexity of many
graph traversal problems. Talel6 summarizes the state-of-the-art in external
memory graph traversal algorithms on general graphs.

Engineering some of these algorithms has extended theslwhithe graph size
for which a traversal can be computed in “acceptable timdiisTnh turn means
that optimization problems of larger and larger sizes aimng viable with
advances in external memory graph traversal algorithms pMfe to eventually
integrate these implementations into an external membrgry for graph algo-
rithms.

Many of these algorithms are still far from optimal. Simifawhile implemen-
tations of these algorithms provide good results on simipie ¢r high diameter)
graph classes, it is still far from satisfactory for the difit graph classes. More
work is required both in designing and engineering theseralgns, particularly
for directed graphs, to make traversal on even larger greiphse.



Chapter 4

Characterizing the performance
of Flash memory storage
devices

As knowledge advances, we are able to invent better andrbetdels, which
reproduce more and more features of the real world, more aaceraccurately.
Nobody knows whether there is some natural end to this pspoesvhether it will
go on indefinitely. In trying to understand common sense ha# take a similar
course...

— Edwin Thompson Jaynes (Probability Theory: The Logic oéBce, 1993)

Flash memory is a form of non-volatile computer memory tfzet loe electrically
erased and reprogrammed. Flash memory devices are liginbeg, shock resis-
tant, consume less power and hence are particularly suteddbile computing.
Initially used in digital audio players, digital cameraspliie phones, and USB
memory sticks, flash memory may become the dominant form dfuser stor-
age in mobile computing: Some producers of notebook compiieve already
launched models (Apple MacBook Air, Sony Vaio UX90, Sams@igSSD and
Q30-SSD) that completely abandon traditional hard diskavor of flash mem-
ory (also called solid state disks). Market research compaiStat predictedd3]
in July 2006 that 50% of all mobile computers would use flasst@ad of hard
disks) by 2013.
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Frequently, the storage devices (be it hard disks or flasthnat only used to
store data but also to actually compute on it if the probletmeaitd does not com-
pletely fit into main memory (RAM); this happens on both vanedl devices (like
PDAs used for online route planning) and high-performarwepmute servers (for
example when dealing with huge graphs like the web). Thus,ifhportant to
understand the characteristics of the underlying storagiees in order to predict
the real running time of algorithms, even if these devicesused as an external
memory. In case of hard disks, the access cost depends onrtleatcposition
of the disk-head and the location that needs to be readéwritThis has been
well researched; and there are good computation modelSéction2.4) such
as the external memory modd][and the cache-oblivious moderf 3] that can
help in realistic analysis of algorithms that run on harckslisWe would like to
have a similar understanding of various access patternssés Hased on flash
memory and to come up with computation models capturing dropmance of
algorithms on these disks. In this chapter, we show our gitémcharacterize the
performance (read/writes; sequential/random) of flash angiaevices by analyz-
ing the effects of random writes, misalignment, aging, pé3tpatterns etc. on
the access cost. We also discuss the implications of flashomyecharacteristics
on the real running time of basic algorithms.

State of the art for flash memories.

Recently, there has been growing interest in using flash mestm improve the
performance of computer systen®9] 96, 117]. This trend includes the experi-
mental use of flash memories in database syst&@slL7], in Windows Vista’s
use of USB flash memories as a cache (a feature called ReaslyBodhe use of
flash memory caches in hard disks (e.g., Seagate’s MomeaQsBSD hybrid
drives, which include 256 MB on the drive’s controller), angroposals to inte-
grate flash memories into motherboards or I/O busses (Btgl’sITurbo Memory
technology).

Most previous algorithmic work on flash memory concespsrating systeralgo-
rithms and data structures that were designed to efficieietywith flash memory
cells wearing out, e.g., block-mapping techniques and fastific file systems.
A comprehensive overview on these topics was recently plbdl by Gal and
Toledo [74]. The development of application algorithms tuned to flagmmary is
in its absolute infancy. We are only aware of very few puldsinesults beyond
file systems and wear leveling:

Wu et al. 154, 155 proposed flash-aware implementation8erees andr-trees
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without file system support by explicitly handling block-ppang within the ap-
plication data structures.

Goldberg and Werneck p] considered point-to-point shortest-path computations
on pocket PCs where preprocessed input graphs (road nefand stored on
flash-memory; due to space-efficient internal-memory datactures and local-
ity in the inputs, data manipulation remains restrictednt@rnal memory, thus
avoiding difficulties with unstructured flash memory writecasses. Recently,
Sanders et al1f41] also consider this problem. Their algorithm also con$ts
preprocessing where “contraction hierarchies” of the noetsvork are computed.
The preprocessed external memory graph representatioenistored on the flash
disks. However since querying for point-to-point shorpegths involves only read
I/Os, they are also able to avoid unstructured writes on #gshfinemory.

Goals.

Our first goal is to see how standard algorithms and datatstesfor basic al-
gorithms like scanning, sorting and searching designeddrRIAM model or the
external memory model perform on flash storage devices. Awitant question
here is whether these algorithms can effectively use thargdges of the flash de-
vices (such as faster random read accesses) or there is foneddndamentally
different model for realizing the full potential of thesevites.

Our next goal is to investigate why these algorithms behlagenmay they behave
by characterizing the performance of more than 20 diffei@mtend and high-end
flash devices under typical access patterns presented laydbgsrithms. Such a
characterization can also be looked upon as a first step disvedataining a model
for designing and analyzing algorithms and data structtirascan best exploit
flash memory. Previous attemp®&6[ 117] at characterizing the performance of
these devices reported measurements on a small numberioésl¢t and 2, re-
spectively), so it is not yet clear whether the observed Wiehaeflects the flash
devices, in general. Also, these papers didn't study ifdhsesvices exhibit any
second-order effects that may be relevant.

Our next goal is to produce a benchmarking tool that woulnraits users to mea-
sure and compare the relative performance of flash devices &tool should not
only allow users to estimate the performance of a device uadgven workload
in order to find a device with an appropriate cost-effectassfor a particular ap-
plication, but also allow quick measurements of relevamapeters of a device
that can affect the performance of algorithms running on it.
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These goals may seem easy to achieve, but they are not. Té@sesiemploy
complex logical-to-physical mapping algorithms and camphechanisms to de-
cide which blocks to erase. The complexity of these mechanand the fact that
they are proprietary mean that it is nearly impossible tbetehctly what factors
affect the performance of a device. A flash device can be ugad hlgorithm de-
signer like a hard disk (under the external memory or the €atilivious model),
but its performance may be far more complex.

It is also possible that flash memory becomes an additiora@nskary storage
device, rather than replacing the hard disk. Our last, batlewst, goal is to
find out how one can exploit the comparative advantages ¢f indhe design of
application algorithms, when they are used together.

Outline.

The rest of this chapter is organized as follows. In Sectidp we develop a
basic understanding of the architecture of flash disks. kti@®4.2, we show
how the fundamental algorithms like merge-sort and binaarch perform on
flash memory devices and how appropriate are the standargutation mod-
els in predicting these performances. In Secddd) we present our experimen-
tal methodology, and our benchmarking program, which wetoseeasure and
characterize the performance of many different flash devidée also show the
effect of random writes, misalignment, controllers anchggin the performance
of these devices. In Sectiagh4, we provide an algorithm design framework for
the case when flash devices are used together with a hardviéslso show the
results of engineering the external memory BFS algorithongHis setting. We
conclude with a preliminary computation model for predigtthe performance of
algorithms on flash memory devices in Sectbh

4.1 Basics of flash memory disks

Large-capacity flash memory devices use NAND flash chips. NAIND flash

chips have common characteristics, although differemsctiffer in performance
and in some minor details. The memory space of the chip igipaed into blocks
callederase blocksThe only way to change a bit from 0 to 1 is to erase the entire
unit containing the bit. Each block is further partitionatbipages which usually

store 2048 bytes of data and 64 bytes of meta-data (smalips tlave pages
containing only 512+16 bytes). Erase blocks typically eam32 or 64 pages.
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Bits are changed from 1 (the erased state) to Programmingwriting) data onto
a page. An erased page can be programmed only a small numtweresf(one
to three) before it must be erased again. Reading data @ke®t microseconds
for the first access to a page, plus tens of nanoseconds per\Witing a page
takes hundreds of microseconds, plus tens of nanoseconds/fgee Erasing a
block takes several milliseconds. Finally, erased blockanout; each block can
sustain only a limited number of erasures. The guarantegtbars of erasures
range from 10,000 to 1,000,000. To extend the life of the eBipiuch as possible,
erasures should therefore be spread out roughly evenlytlwentire chip; this is
calledwear leveling

Because of the inability to overwrite data in a page withast grasing the entire
block containing the page, and because erasures shoulddmdsput over the
chip, flash memory subsystems miagical block addressef_BA) to physical
addresses in complex way#&4]. This allows them to accept new data for a given
logical address without necessarily erasing an entirekblaad it allows them to
avoid early wear even if some logical addresses are writitendre often than
others. This mapping is usually a non-trivial algorithmttbaes complex data
structures, some of which are stored in RAM (usually insiderhemory device)
and some on the flash itself.

The use of a mapping algorithm within LBA flash devices me&as their per-
formance characteristics can be worse and more complextiegrerformance of
the raw flash chips. In particular, the state of the on-flasppimy and the volatile
state of the mapping algorithm can influence the performahoeads and writes.
Also, the small amount of RAM can cause the mapping mechatosperform
more physical I/O operations than would be necessary witterRAM.

4.2 Implications of flash devices for algorithm
design

In this section, we look at how the RAM model and external mgnnaodel algo-
rithms behave when running on flash memory devices. In theggsy we try to
ascertain whether the analysis of algorithms in either @t®o models also carry
over to the performance of these algorithms obtained on tlasites.

In order to compare flash memory with DRAM memory (used as nme@mory),
we ran a basic RAM model list ranking algorithm on two arctiiiees — one with
8 GB RAM memory and the other with 2 GB RAM, but 32 GB flash memory
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Recall from Sectior2.5that in the list ranking problem, we are given a list with
individual elements randomly stored on disk and our goab isrntd the distance
of each element from the head of the list. The sequential RAddehalgorithm
consists of just hoping from one element to its successaril@reby computing
the distances of nodes from the head of the list. Here, we toamsider the cost
of writing the distance labels of each node.

We stored a P-element list of long integers (8 Bytes) in random order, tree
elements were kept in the order of a random permutation gatebeforehand.
While ranking such a list took minutes in RAM, it took days kvitash. This
is because even though the random reads are faster on flashtltis the hard
disk, they are still much slower than RAM. Furthermore, &mto the case of
BFS on hard disk (cf. Figurgé.l), the performance of the RAM model algorithm
significantly deviates from its predicted linear time bebgvwhen the size of
the input list approaches and exceeds the available intaremory. Thus, we
conclude that the RAM model is not useful for predicting tregfprmance (or
even relative performance) of algorithms running on flasimary devices and
that some standard RAM model algorithms leave a lot to be el i they are to
be used on external flash devices.

Algorithm Hard Disk| Flash
Generating a random double and writing it 0.2us | 0.37us
Scanning (per double) 0.3us | 0.28us
External memory Merge-Sort (per doublg) 1.06 us 1.5us
Random read 11.3ms | 0.56 ms
Binary Search 25.5ms | 3.36 ms

Table 4.1: Runtime of basic algorithms when running on Steagarracuda
7200.11 hard disk as compared to 32 GB Hama Solid State Disk.

As Table4.1 shows, the performance of basic algorithms when runningawd h
disks and when running on flash disks can be quite differemtiqularly when it
comes to algorithms involving random read 1/Os such as pis@arch on a sorted
array. While such algorithms are extremely slow on hardsiisécessitating B-
trees and other I/O-efficient data structures, they are rfagtbr on flash devices.
On the other hand, algorithms involving write 1/0Os such asgaesort (with two
read and write passes over the entire data) run much fastearandisk than on
flash.

It seems that the algorithms that run on flash have to achieliesent tradeoff
between reads and writes and between sequential and rarcdessas than hard
disks. Since the cost of accesses does not drop or rise piagaly over the
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entire spectrum, the algorithms running on flash deviced t@be qualitatively
different from the one on hard disk. In particular, they dddae able to tradeoff
write 1/0Os at the cost of extra read I/Os. Standard extermahory algorithms that
assume same cost for reading and writing fail to take adgantd fast random
reads offered by flash devices. Thus, there is a need for afmeadtally different
model for realistically predicting the performance of algams running on flash
devices.

4.3 Characterization of flash memory devices

In order to see why the standard algorithms behave as mexitioefore, we char-
acterize more than 20 flash storage devices. This charzatien can also be
looked at as a first step towards a model for designing ang/zinglalgorithms
and data structures running on flash memory. We start thigaday describing
our hardware and software resources that were designeldi$arttaracterization.

4.3.1 Configuration

Our tests were performed on many different machines:

e A 1.5GHz Celeron-M with 512 MB RAM

e A 3.0GHz Pentium 4 with 2 GB RAM

e A 2.0Ghz Intel dual core T7200 with 2 GB RAM

e A2 x Dual-core 2.6 GHz AMD Opteron with 2.5 GB RAM
All of these machines were running a 2.6 Linux kernel.

The devices included USB sticks, compact-flash and SD megags and solid
state disks (of capacities 16 GB and 32 GB). They include bigth-end and low-
end devices. The USB sticks were connected via a USB 2.(fastsrmemory
cards were connected through a USB 2.0 card reader (maderbg)tbet PCMCIA
interface, and solid state disks with IDE interface werédlhsd in the machines
using a 2.5 inch to 3.5 inch IDE adapter and a PATA serial bus.
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Our benchmarking tool and methodology.

Standard disk benchmarking tools likeav [108 156 fail to measure character-
istics that are important in flash devices (e.g., write spesithice they are similar
to read speeds on hard disks, or sequential-after-randaesyyrand commercial
benchmarks tend to focus on end-to-end file-system perfacejavhich does not
characterize the performance of the flash device in a wayshigeful to algorithm
designers. Therefore, we decided to implement our own beadting program
that is specialized (designed mainly for LBA flash devicésit, highly flexible
and can easily measure the performance of a variety of ape¢tgsns, including
random and sequential reads and writes, with given bloassind alignments,
and with operation counts or time limits.

Our benchmarking software (running under linux) performsedes of experi-
ments on a given block devices according to instructionsnimaut file. Each
line in the input file describes one experiment, which uguadinsists of many
reads or writes. Each experiment can consist of sequenti@noom reads or
writes with a given block size. The accesses can be alignadtaltiple of the
block size or misaligned by a given offset. Sequential ese®start at a random
multiple of the block size. Random accesses generate aradpesenutation of the
possible starting addresses (so addresses are not repebassithe entire address
space is written). The line in the input file describes the benof accesses or
a time limit. An input line can instruct the program to perfoa self scaling ex-
periment §7], in which the block size is repeatedly doubled until theotighput
increases by less than 2.5%.

The buffers that are written to flash include either the apipnate age of the
device (in number of writes) or the values00 to 0xff, cyclically.

The block device is opened with tlieDIRECT flag, to disable kernel caching.
We did not use raw I/O access, which eliminates main memoffgibaopying
by the kernel, because it exhibited significant overheadls small buffers. We
assume that these overheads were caused by pinning usergsgges to physical
addresses. In any case, buffer copying by the kernel prplhigs not have a
large influence at the throughput of flash memories (we neweasored more
than 30 MB/s).

We used this program to run a standard series of tests on eaated The first
tests measure the performance of aligned reads and wradsrdndom and se-
quential, at buffer sizes that start at 512 and double to 8 Mi® the self-scaling
limit, whichever comes last. For each buffer size, the expent starts by sequen-
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tially writing the entire device using a 1 MB buffer, folloddy sequential reads
at the given buffer size, then random reads, then sequenttak, and finally ran-

dom writes. Each pattern (read/write, sequential/randsrperformed 3 times,
with a time limit of 30 seconds each (90 seconds total for gattern).

We also measure the performance of sequential writes foilplursts of random
writes of varying lengths (5, 30, and 60 seconds). As in thedd@st, each such
burst-sequential experiment follows a phase of sequéntiaiting the entire de-
vice. We measure and record the performance of the seglentes at a higher
resolution in this test, using 30 phases of 4 seconds ea@sstss the speed at
which the device recovers from the random writes. We testedom bursts of
both 2 KB writes and of random writes at the same buffer sizh@asubsequent
sequential writes.

Finally, we also measure the performance of misalignedamndrites. These
experiments consisted of 3 phases of 30 seconds for eacr Bidé and for each
misalignment offset.

Entire-device sequential writes which separate diffeexgeriments are meant
to bring the device to roughly the same state at the beginmirgach test. We

cannot guarantee that this always returns the logicahissigal mapping to the

same state (it probably does not), but it allows the deviceeschance to return to
a relatively simple mapping.

We also used the program to run endurance tests on a few delndbese exper-
iments, we alternate between 1000 sequential writes ofrtheedogical address
space and detailed performance tests. In the detailed phaseead and write
on the device sequentially and randomly, in all relevantdrgizes 3 times 30
seconds for each combination. The phases consisting of W0@€s to the en-

tire address space wear out the device at close to the festegtossible, and the
detailed experiments record its performance as it wears out

It is possible that there are other factors that influencéopaance of some LBA
flash devices. However, since many modifications to the beadcking methodol-
ogy can be implemented simply by editing a text file, the bematking program
should remain useful even if more behaviors need to be testdae future. Of
course, some modifications may also require changes to tgggm itself (e.g.,
the alignment parameter was added relatively late to thgram).
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4.3.2 Result and Analysis

Performance of steady, aligned access patterns.
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Figure 4.1: Performance (in logarithmic scale) of the 1 GBhHiba TransMemory
USB flash drive.

Figures4.1and4.2show the performance of two typical devices under the atigne
access patterns. The other devices that we tested variatlygire the absolute
performance that they achieved, but not in the generalnpattall followed the
patterns shown in Figuresland4.2

In all the devices that we tested, random writes using smatikbsizes were
slower than all the other access patterns. The differentvecle@ random writes
and other access patterns is particularly large at smdibsizes, but it is usu-
ally still evident even on fairly large block sizes (e.g.628B in Figure4.1 and
128 KB in Figure4.2). In most devices, small-buffer random writes were at least
10 times slower than sequential writes with the same buiter, and at least
100 times slower than sequential writes with large buff@iable4.2 shows the
read/write access time with two different block sizes (532eB and 2 MB) for
sequential and random accesses on some of the devices ttestec.

We believe that the high cost for random writes of small b#iskbecause of the
LBA mapping algorithm in these devices. These devicestpartihe virtual and
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Figure 4.2: Performance (in logarithmic scale) of the 1 GBd&ton compact-
flash card.

physical address spaces into chunks larger than an erasle lmlomany cases
512 KB. The LBA mapping maps areas of 512 KB logical addressghysical
ranges of the same size. On encountering a write requessygtem writes the
new data into a new physical chunk and keeps on writing cootigly in this
physical chunk till it switches to another logical chunk.eTlbgical chunk is now
mapped twice. Afterwards, when the writing switches to haotogical chunk,
the system copies over all the remaining pages in the oldkchnd erases it. This
way every chunk is mapped once, except for the active chuhlghnis mapped
twice. On devices that behave like this, the best randortevperformance (in
seconds) is on blocks of 512 KB (or whatever is the chunk si2g¢)that size,
the new chunk is written without even reading the old chunk.sialler sizes,
the system still ends up writing 512 KB, but it also needs tarstuff from the
old location of this chunk, so it is slower. We even found thatsome devices,
writing randomly 256 or 128 KB is slower than writing 512 KB, absolute time.

In most devices, reads were faster than writes in all bloe&ssi This typical be-
havior is shown in Figurd.l But as Figure4.2 shows, this is not a universal
behavior of LBA flash devices. In the device whose perforneaashown in Fig-
ure4.2 large sequential writes are faster than large sequeetals: This shows
that designers of such devices can trade off read perforenand write perfor-
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DEVICE Buffer size 512 Bytes Buffer size 2 MB
NAME SIZE SR RR sSwW RW SR RR sSwW RW
KINGSTON DT SECURE 512mB 0.97 0.97 0.64 | 0.012 || 33.14 | 33.12 | 14.72 9.85

MEMOREX MINI
TRAVELDRIVE 512mB 0.79 0.79 0.37 | 0.002 13.15 | 13.15 5.0 5.0
TOSHIBA TRANSMEMORY | 512MB 0.78 0.78 | 0.075| 0.003 12.69 | 12.69 4.19 4.14

SANDISK U3 CRUZER

MICRO 512mB 0.55 0.45 0.32 | 0.013 12.8 12.8 5.2 4.8
M-SYSTEMS MDRIVE 1GB 0.8 0.8 0.24 | 0.005 26.4 26.4 | 15.97 | 15.97
M-SYSTEMS MDRIVE100 1GB 0.78 0.78 | 0.075| 0.002 12.4 12.4 3.7 3.7

TOSHIBA TRANSMEMORY 1B 0.8 0.8 0.27 | 0.002 12.38 | 12.38 4.54 4.54

SMI FLASH DEVICE 1B 0.97 0.54 0.65 0.01 13.34 | 13.28 9.18 7.82

KINGSTON CF CARD lcB 0.60 0.60 0.25 | 0.066 3.55 3.55 4.42 3.67

KINGSTON DT ELITE

HS 2.0 2GB 0.8 0.8 0.22 | 0.004 24.9 24.8 | 12.79 6.2

KINGSTON DT ELITE
HS 2.0 4GB 0.8 0.8 0.22 | 0.003 || 25.14 | 25.14| 12.79 6.2

MEMOREX TD
CLASsSIC003c 4GB 0.79 0.17 0.12 | 0.002 12.32 | 12.15 5.15 5.15
120x CF CARD 8GB 0.68 0.44 0.96 | 0.004 19.7 19.5 | 18.16 | 16.15

SUPERTALENT SOLID

STATE FLASH DRIVE 16GB 1.4 0.45 0.82 | 0.028 12.65 | 12.60 9.84 9.61

HAMA SOLID STATE
DISK 2.5” IDE 32GB 2.9 2.18 4.89 | 0.012 28.03 | 28.02 24.5 12.6

IBM DESKSTAR

HARD DRIVE 60GB 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2

SEAGATE BARRACUDA
7200.11HARD DISK 500GB 6.2 | 0.063 51 0.12 87.5 69.6 88.1 71.7

Table 4.2: The tested devices and their performance (in MBpder sequential
and random reads and writes with block size of 512 Bytes an&ZIWe notations
SR, RR, SW and RW stand for sequential reads, random reafisgrstéal writes
and random writes, respectively.

mance. Optimizing for write performance can make sensedioresapplications,
such as digital photography where write performance caeraghe the rate at
which pictures can be taken. To professional photographi@ssis more impor-
tant than the rate at which pictures can be viewed on cametavanloaded to a
computer.
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Poor random-write performance is not a sign of poor desighphrt of a trade-

off. All the devices that achieve sequential-write perfarmce of over 15 MB/s
(on large buffers) took more than 100 ms for small randomesritThe two de-

vices with sub-10ms random writes achieved write bandwidthonly 6.9 and

4.4 MB/s. The reason for this behavior appears to be as felloWwo achieve

high write bandwidths, the device must avoid inefficientseras (ones that re-
quire copying many still-valid pages to a new erase blocK)e €asiest way to
ensure that sequential writes are fast is to always mapgumis logical pages to
contiguous physical pages within an erase block. That exage blocks contain,
say 128 KB, then each contiguous logical 128 KB block is mdppethe pages
of one erase block. Under aligned sequential writes, tladdeo optimal write

throughput. But when the host writes small random blockesdigvice performs a
read-modify-write of an entire erase block for each writguest, to maintain the
invariant of the address mapping.

On the other hand, the device can optimize the random-weatépnance by
writing data to any available erased page, enforcing nactre at all on the
address mapping. The performance of this scheme dependy ooghe state of
the mapping relative to the current access pattern, andeoarttount of surplus
physical pages. If there are plenty of surplus pages, exasian be guaranteed
to be effective even under a worst-case mapping. Supposa thavice withn
physical pages exports onty/2 logical pages. When it must erase a block to
perform the next write, it containg/2 obsolete pages, so on at least one erase
block half the pages are obsolete. This guarantees a 50Urerftectiveness. If
there are only few surplus pages, erasures may free onlygkegage. But if the
current state of the mapping is mostly contiguous withirhezrase block and the
access pattern is also mostly contiguous, erasures acgiwffand do not require
much copying.

This tradeoff spans a factor of 10 or more in random-writdqyerance and a
factor of about 4 or 5 in sequential-write performance. &ystlesigners selecting
an LBA flash device should be aware of this tradeoff, decidatvitadeoff their
system requires, and choose a device based on benchmdtk.resu

Another nearly-universal characteristic of the flash dewis the fact that sequen-
tial reads are not faster than random reads. The read perfmerdoes depend on
block size, but usually not on whether the access patteansam or sequential.
On a few exceptional devices where the sequential readsster than random
reads, the difference between the two access patternsiérl@dock size) is very
small.

The performance in each access pattern usually increasestomically with the
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Performance Summary
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Figure 4.3: Speeds of the 512 MB Toshiba TransMemory USB flasite. This
device achieves its maximum write speed at a 64 KB buffer. size

block size, up to a certain saturation point. Reading andingrismall blocks
is always much slower than the same operation on large hidg8ésFigure4.3
shows an exception. The best sequential-write performahdas occurs with
blocks of 64 KB; on larger blocks, performance drops (by nibas 20%).

Comparison to hard disks. Quantitatively, the only operation in which LBA
flash devices are faster than hard disks is random reads df lsuffars. Many
of these devices can read a random page in less than a nalidesometimes
less than 0.5ms. This is at least 10 times faster than cunightend hard disks,
whose random-access time is 5-15ms. Even though the raneladperformance
of LBA flash devices varies, all the devices that we testedbiteu better random-
read times than those of hard disks.

In all other aspects, most of the flash devices tested by usfeor to hard
disks. The random-write performance of LBA flash devicesisipularly bad and
particularly variable. A few devices performed random esiabout as fast as hard
disks, e.g., 6.2ms and 9.1ms. But many devices were morelthémes slower,
taking more than 100ms per random write, and some took mare30ms.

Even under ideal access patterns, flash devices we have pestaede smaller I/O
bandwidths than hard disks. One flash device reached reauaigtput approach-
ing 30 MB/s and write throughput approaching 25 MB/s. Hasksdican achieve
well over 100 MB/s for both reads and writes. Even disks desigfor laptops
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can achieve throughput approaching 60 MB/s. Flash deviceddaneed to im-
prove significantly before they outperform hard disks irs thetric. The possible
exception to this conclusion is large-capacity flash devigdizing multiple flash
chips, which should be able to achieve high throughput byingiin parallel to
multiple chips.

Performance of large number of random writes.

Large number of random writes on flash memory
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Figure 4.4: Total time taken by large number of random wiates 32 GB Hama
Solid state disk.

We observed an interesting phenomenon (Figudewhile performing large num-
ber of random writes on a 32 GB Hama (2.5” IDE) solid state disfker the first
3000 random writes (where one random write is writing a &byl number at
a random location in a 8 GB file on flash), we see some spikeseitotial run-
ning time. Afterwards, these spikes are repeated reguldtdy about every 2000
random writes. This behavior is not restricted to the Hanta state disk but is
observed in many other flash devices too.

We believe that it is because the random writes cause margtegpdh the page
table. After a while, the controller rearranges the pagdberblocks to simplify
the LBA mapping. This process takes 5-8 seconds while rediiyng the data
on the disk takes less than 0.8 seconds for 2000 random we#aesing the spikes
in the total time.
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Figure 4.5: Graphs showing the effect of random writes orssgbent sequential
writes on Toshiba 1 GB TransMemory USB flash drive.

Effect of random writes on subsequent operations.

On some devices, a burst of random writes slows down subsegegquential
writes. The effect can last a minute or more, and in rare dagess (of sustained
writing). No such effect was observed on subsequent reads.

Figure4.5presents the performance of one such device. In these mgmEs, we
performedt seconds of random writing, far= 5,30 and 60. We then measured
the performance of sequential writes during each 4 secomoldofer the next 120
seconds. The two graphs in Figu#es show the median performance in these
30 4-second periods relative to the steady-state perfarenahthe same pattern
(read or write and with the same block size). As we can se&gigrsmall blocks
the median performance in the two minutes that follow thedoam writes can
drop by more than a factor of two. Even on larger blocks, perémce drops by
more than 10%. Figuré.6presents the performance of a device in which random
writes slow down subsequent sequential operations. Iretbe&periments, we
performedt seconds of random writing, far= 5,30 and 60. We then measured
the performance of sequential writes during each 4 secomoldofer the next 120
seconds. The two graphs in the middle show the median peaforenin these 30
4-second periods relative to the steady-state performafribe same pattern (read
or write and with the same block size). As we can see, for verglisblocks the
median performance in the two minutes that follow the randaaites can drop
by more than a factor of two. Even on larger blocks, perforceasirops by more
than 10%.

The two graphs in the middle row of Figude6 differ in the block size during the
t seconds of random writes. In the middle-left graph, the camavrites were of
the same size as the subsequent operation, whereas in tdkemght graph the
random writes were always of 2 KB buffers. The behavior o tarticular device
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Figure 4.6: Toshiba TransMemory USB flash drive results. fbipetwo graphs
show the speeds. The two graphs in the middle show how thealeaffected
by random writes. The bottom left graph shows the time itsakeaeturn back to
60% of the median speed. The bottom right graph shows theteffenisaligned
calls on random writes.
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in the two cases is similar, but on other devices later thedases differ. When
the two cases differ, random writes of 2 KB usually slow dowhsequent writes
more than random writes of larger blocks. This is typified gy tesults shown in
Figure4.7.
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Figure 4.7: Results of the M-Systems mDrive 100 USB devibeysng a con-

stant decrease in the sequential write speed, with no rectivee.
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blocks of the device in Figurd.6. The time line starts at the end of 5 or 30
seconds of random writes (again with a 32 KB buffer size). Miaekers show the
write bandwidth in each 4-second period following the randerites.
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Figure 4.9: An example of extreme recovery times, as obsenvahe 2 GB
Kingston DT Elite 2.0. The graph shows the time (measuredimutas) it takes
to write the entire device sequentially with a 2 MB bufferesefter random writes
of 5 to 60 seconds. Random writes were performed using bsiffes of at most
2 KB.

In experiments not reported here we explored the effecmrafom writes on sub-
sequent read operations and on subsequent random writegidwiet discover
any effect on these subsequent operations, so we do nofletioe detailed re-
sults of these experiments.

The graph on the lower-left corners of Figude$ and4.7 show how long it took
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the device to recover back to 60% of the median performantgeitwo minutes
following the random writes. The device in Figudes usually recovers imme-
diately to this performance level, but in some buffer sizesan take it 20-30
seconds to recover. Note that recovery here means a retar@.6fraction of the
median post-random performance, not to the base perfoemartbe particular
access pattern.

Figure4.8presents the recovery time in a different way, on a time likfeer a 30
seconds random write time, the speed of the sequential sloies down to about
30% of the normal speed. After 30 seconds of a sequentia vihi¢ speed climbs
back towards the normal speed. We have seen similar bekarmiother devices
that we tested.

On the high-end 2 GB Kingston DT Elite 2 device, random writeth buffer
sizes of 2 KB or less cause a drop in the the performance oégulest sequential
writes to less than 5% of the normal (with the same buffer)siZée device did
not recover to its normal performance until it was entir@written sequentially.
Normally, it takes 3 minutes to write the entire device seadly with a buffer
size of 2 MB, but after random small-buffer writes, it cangakore than 25 min-
utes, a factor of 8 slower (Figu#e9). We observed the same behavior in the 4 GB
version of this device.

We have also observed many devices whose performance waffexied at all
by random writes.

Effects of misalignment.

On many devices, misaligned random writes achieve muchrlpegormance
than aligned writes. In this setting, alignment means thatstarting address of
the write is a multiple of the block size. We have not obsewsiadlar issues with
sequential access and with random reads.

Figure4.10ashows the ratio between misaligned and aligned random swore
1 GB TRANSMEMORY USB flash device. The misalignmentis by 2 KB, 16 KB
and 32 KB. All of these sizes are at most as large as a single plage. Many
of the devices that we have tested showed some performaopedmisaligned
addresses, but the precise effect varied from device tadeor example, the
128 MB SuperTalent USB device is affected by misalignmeri2 BB but not by
misalignments of 16 KB or 32 KB.
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Figure 4.10: Effect of misalignment and aging on the perfmmoe of flash de-
vices.

Effects of Aging.

We were not able to detect a significant performance degoadas devices get
older (in terms of the number of writes and erasures). Figut®bshows the
performance of 51®B SANDISK CRUZER MICRO USB device as a function of
the number of sequential writes on the entire device. Théopaance of each
access pattern remains essentially constant, even af@@@®@rites. On 51218
KINGSTON DATATRAVELER |1+ USB device, we ran a similar experiment writ-
ing more than 320,000 times, exceeding its rated enduranatlbast a factor of
3 and did not observe any slowing down with age.

Effect of different controller interfaces.

We connected a compact-flash card via a USB 2.0 interface, Bi&Nhterface
and an IDE interface (using a card reader) and found thattheexting interface
does not affect the relative access patterns (sequentighndom, read vs. write
and the effect of different block sizes) of the flash deviddswever, the maxi-
mum throughputs that we could obtain from USB 2.0, PCMCIA kbid interface
are 19.8 MBps, 0.95 MBps, and 2.16 MBps for read and 18.2 MB88§ MBps,
and 4.38 MBps for write, respectively.
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4.4 Designing algorithms to exploit flash
when used together with a hard disk

Till now, we discussed the characteristics of the flash mgrdevices and the per-
formance of algorithms running on architectures where tshftlisks replace the
hard disks. Another likely scenario is that rather thanaeiplg hard disks, flash
disks may become an additional secondary storage, usetthéogath hard disks.

From the algorithm design point of view, it leads to manyiegting questions. A
fundamental question here is how can we best exploit the acatige advantages
of the two devices while running an application algorithm.

The simple idea of directly using external memory algorishmth input and in-
termediate data randomly striped on the two disks treats that disks as equal.
Since the sequential throughput and the latency for rand@s of the two de-
vices is likely to be very different, the I/Os of the sloweskican easily become a
bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a sgtis to restrict the

random accesses to a static data-structure. This statiesttaicture is then kept
on the flash disk, thereby exploiting the fast random readbede devices and
avoiding unnecessary writing. The sequential read anc&wKas are all limited

to the hard disk.

We illustrate this basic framework with the help of exterma@mory BFS algo-
rithm of Mehlhorn and Meyer]06 (MM _BFS). Recall from Sectioi.3 that
MM _BFS involves a preprocessing phase that groups the nodes wiigut graph
into disjoint clusters of small diameter and stores the@atay lists of the nodes
in a cluster contiguously on the disk. After each BFS levems clusters are
merged into an efficiently accessible data structure (hot)pdrhis hot pool is
then scanned for the adjacency lists of the nodes in the rduleeel and these
adjacency lists are then removed from the hot pool.

This algorithm is well suited for our framework as randomd/@&e mostly re-
stricted to the data structure keeping the graph clustefigle the hot pool
accesses are mostly sequential. Also, the graph clustexingly stored once
whereas the hot pool is modified (read and written) in evesatton. Thus, we
keep the graph clustering data structure on the flash diskhenbdot pool on the
hard disk.

We ran our implementation (cf. Secti@¥%) of this algorithm on the graph class
shown in Figure4.11 This graph class is a tree witiB+ 1 BFS levels. Level
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Figure 4.11: A graph class that forces the Mehlhorn/Meye§ Bifgorithm to
incur its worst case 1/0 complexity.

Operation Random striping Our strategy
1 Flash 2 Hard disks Same Smaller
+ 1 Hard disk cluster size| cluster size
I/O wait time 10.5 6.3 7.1 5.8
Total time 11.7 7.5 8.1 6.3

Table 4.3: Timing (in hours) for the second phase of Mehlhdayer's BFS
algorithm on 28-node graph.

0 contains only the source node which has an edge to all nodegdl 1. Levels

1...v/B have% nodes each and th& node injt" level (1< j < v/B) has an

edge to the!" node in levelsj — 1 andj + 1.This graph class has large diameter
(vB+ 1) and the hot pool size is greater than the available inteneanory for
the most part of the execution. As such, it is one of the dilfigtaph classes for
all our EM BFS implementations.

As compared to striping the graph as well as pool randomlwéen the hard
disk and the flash disk, the strategy of keeping the graphering data structure
in flash disk and hot pool in hard disk performs around 25%ebetTable4.3
shows the running time for the second phase of the algoritha £8-node graph.
Although the number of I/Os in the two cases are nearly theeséime time spent
waiting for I/Os is much better for our disk allocation s&gy, leading to better
overall runtime.

The cluster size in the BFS algorithm was chosen in a way so halance the
random reads and sequential 1/0Os on the hard disks, but ndwsimew setting,
we can reduce the cluster size as the random 1/Os are beirgrdooh faster
by the flash memory. Our experiments suggest that this lea@vdn further
improvements in the runtime of the BFS algorithm.
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4.5 Conclusion

We have characterized the performance of flash storageagsgivicbenchmarking
more than 20 different such devices. We conclude that thtéwetie/erase behav-
ior of flash is radically different than that of other extdrbick devices like hard
disks. Though flash devices have faster random access tnhattth disk, they can
neither provide the read/write throughput of the disker provide faster random
writes than hard disks. We found out that access costs ondiaghes also de-
pend on the past history (particularly, the number of randaites done before)
and misalignment, but not on the aging of devices.

We also showed that the existing RAM model and external mgralgorithms
can not realize the full potential of the flash devices. Mantgriesting open prob-
lems arise in this context such as how best can one sort (ars@aech) on a block
based device where the read and write costs are signifiadiffdyent.

Furthermore, we observe that in the setting where the flasbrbes an additional
level of secondary storage and used together with hard dtblerr than replacing
it, one can exploit the comparative advantages of both hyiceésg the random
read I/Os to a static data structure stored on the flash and tfs¢ hard disk for
all other 1/Os.

Our results indicate that there is a need for more experiah@malysis to find
out how the existing external memory and cache-oblivious dé&ructures like
priority queues and search trees perform, when running sh fii@vices. Such
experimental studies should eventually lead to a model fedipting realistic
performance of algorithms and data structures running @ fieevices, as well
as on combinations of hard disks and flash devices. Comingthpawnodel that
can capture the essence of flash devices and yet is simplgletowdesign and
analyze algorithms and data structures, remains an impatallenge.

As a first model, we may consider a natural extension of thedsta external-
memory model that will distinguish between block acceseesdading and writ-
ing. The cost measure for an algorithm incurrkrgad I/Os ang write 1/0s could
bex+ oy -y, where the parameteyy > 1 is a penalty factor for write accesses.

An alternative approach might be to assume different bloaksfer sizesBg for
reading andyy for writing, whereBr < By andcgr- x4+ ow -y (with cr,on > 1)
would be the modified cost measure.

1As of late 2007, the ones that could provide were far more esige than the same capacity
hard disk
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Dynamic topological ordering

What we imagine is order is merely the prevailing form of chao
— Kerry Thornley

There has been a growing interest in dynamic graph algositbver the last two
decades due to their applications in a variety of contextisiding operating sys-
tems, information systems, network management, assendoiynipg, VLSI de-
sign and graphical applications. Typical dynamic graploalgms maintain a
certain property (e. g., connectivity information) of a gjnathat changes (a new
edge inserted or an existing edge deleted) dynamically tover. An algorithm

or a problem is calledully dynamicif both edge insertions and deletions are al-
lowed, and it is calleghartially dynamicif only one (either only insertion or only
deletion) is allowed. If only insertions are allowed, thet@dly dynamic algo-
rithm is called incremental; if only deletions are allowéds called decremen-
tal. While a number of fully dynamic algorithms have beenanied for vari-
ous properties on undirected graphs (&% &nd references therein), the design
and analysis of fully dynamic algorithms for directed gralas turned out to be
much harder (e. g./R, 134, 136, 137)). Much of the research on directed graphs
is therefore concentrated on the design of partially dyeaagorithms instead
(e.qg., R4, 50, 91]). In this chapter, we focus on the analysis of algorithms fo
maintaining a topological ordering of directed graphs inremmemental setting.

A topological ordeiT of a directed grapls = (V,E) (with n:= [V| andm:= |E|)
is a linear ordering of its nodes such that for all directetthpromx eV toy e V
(x#y), it holds thatT (x) < T(y). A directed graph has a topological ordering
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if and only if it is acyclic. There are well-known algorithnier computing the
topological ordering of a directed acyclic graph (DAG)@im+n) time in an
offline setting (see e.g5[]). In a fully dynamic setting, each time an edge is
added or deleted from the DAG, we are required to update jeetive mapping .

In the online/incremental variant of this problem, the exdgéthe DAG are not
known in advance but are inserted one at a time (no deletibmsead). As the
topological order remains valid when removing edges, migsirahms for online
topological ordering can also handle the fully dynamicisgtt However, there
are no good bounds known for the fully dynamic case. Mostrélgos are only
analyzed in the online setting.

Given an arbitrary sequence of edges, the online cycle ti@teproblem is to
discover the first edge which introduces a cycle. Till nove best known al-
gorithm for this problem involves maintaining an online etgmical order and
returning the edge after which no valid topological ordesesx Hence, results for
online topological ordering also translate into resultstfe online cycle detec-
tion problem. Online topological ordering is required fociemental evaluation
of computational circuitsl5] and in incremental compilatiorip4, 120 where
a dependency graph between modules is maintained to rede@artount of re-
compilation performed when an update occurs. An applioafo online cycle
detection is pointer analysi42§.

For insertingm edges, the naive way of computing an online topological or-
der each time from scratch with the offline algorithm taks + mn) time.
Marchetti-Spaccamela, Nanni, and Rohn&fig gave an algorithm (MNR) that
can inserim edges inO(mn) time. Alpern, Hoover, Rosen, Sweeney, and Zadeck
proposed an algorithmip] (AHRSZ) which runs inO(])K (| log(])K{()) time per
edge insertion with)K (| being a local measure of the insertion complexity. How-
ever, there is no analysis of AHRSZ for a sequence of edgetioss. Katriel
and Bodlaender (KB)91] analyzed a variant of the AHRSZ algorithm and ob-
tained an upper bound @(min{mg Iogn,mg +n?logn}) for inserting an arbi-
trary sequence o edges. In addition, they show that their algorithm runs in
time O(m- k- log? n) for a DAG for which the underlying undirected graph has a
treewidthk. Also, they give arO(nlogn) algorithm for DAGs whose underlying
undirected graph is a tree. The algorithm by Pearce and KeHy) [124 em-
pirically outperforms the other algorithms for random edgertions leading to
sparse random DAGs, although its worst-case runtime isiorfeo KB.

In this chapter, we propose a simple algorithm that work®(n? °,/logn) time
andO(n?) space, thereby improving upon the results of Katriel andl&@ser
for dense DAGs. With some simple modifications in our datacstrre, we can
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getO(n%"°) time with O(n>2°) space 00(n*"°) expectedime withO(n?) space.
Our algorithm can also be used for online cycle detectiorraplys. Moreover, it
permits an arbitrary starting point, which makes a hybrigrapch possible, i. e.,
using the PK or KB algorithm for sparse graphs and ours whegtaphs become
dense.

We conjecture that our analysis can be improved. We redegertiblem of tighter
analysis of our algorithm to a combinatorial graph problem.

We also show how we can externalize our algorithm and get terb&tortized
bound than th@(sort(m)) I/Os per edge bound based on time-forward process-

ing.

We also present the first average-case analysis of onlirdamigal ordering al-
gorithms. We prove an expected runtimeQin® polylog(n)) under insertion of
the edges of a complete DAG in a random order for AHRSZ, KB afd P

The rest of this chapter is organized as follows. In Sedidnwe review the pre-
vious algorithms for dynamic topological ordering. In Sewnt5.2, we describe
our algorithm and the data structures involved. In Seci@)we give the cor-
rectness argument for our algorithm, followed by an analggiits runtime in
Section$.4and5.5. The details of our implementation and an empirical compar-
ison with other algorithms follow in Sectidn6. Section5.7 shows the reduction
of tighter analysis of our algorithm to a combinatorial gevh. Sectiorb.8 de-
scribes the externalization of our algorithm. Sectto@shows our average-case
analysis for AHRSZ, KB and PK. Sectidn10discusses recent advances on im-
proving the upper bounds for this problem. Secttofhl concludes with some
open problems related to dynamic topological ordering.

5.1 Related work

This section first introduces some notations and then resvtee previous algo-
rithms MNR, AHRSZ, KB, and PK. We keep the current topoloymaler as a
bijective functionT : V — [1..n]. In this and the subsequent sections, we will use
the following notations:d(u,v) denotesT (u) — T(Vv)|, u < v is a short form of
T(u) < T(v), u— vdenotes an edge fromto v, andu~» v expresses that is
reachable fronu. Note thatu~- u, butnot u— u. Thedegreeof a node is the sum
of its in- and out-degree. We will also referTgv) as the priority of the node

Consider the-th edge insertiom — v. We say that an edge insertionsalidat-
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ing if u> v before the insertion of this edge. We defR@ = {x eV |VIXAX~

u}, RY = {yeV |y<unv~y}tands® = RY URY. Let|5M| denote the num-
ber of nodes iV and let||61V|| denote the number of edges incident to nodes of
51, Note thatdV) as defined above is different from the adaptive paranetr

the bounded mcremental computation model. If an edge |5|m\m1|dat|ng then

|RB | = |RF | = |60)| = 0. Note that for an invalidating edgE?F ﬂRB 0 as
otherwise the algorithms will just report a cycle and teratén

We now describe the insertion of tinth edgeu — v for all the algorithms. As-
sume for the remainder of this section thiat> v is an invalidating edge, as oth-
erwise none of the algorithms do anything for that edge. ARt be the set of
all nodesx such thatv < x < u. We define an algorithm to blecal if it only
changes the ordering of nodesAfRR") to compute the new topological ord&f
of GU{(u,v)}. All of these algorithms are local and they work in two phases
“discovery phase” and a “relabelling phase”.

MNR is probably the simplest of these algorithms. A depth-fiestrsh starting

from v and limited to nodes iAR") marks all nodes iR\ as visited. Thereafter,
all marked nodes are shifted up in the topological ordermmediately afteu.

For this, all nodes ifAR" \ Rg)} are moved down appropriately in the topologi-
cal order. The relative order of the nodesﬁg? remains intact.

In the discovery phase (HK the set() is identified using a forward depth-first
search frorrv (giving a selRF ) and a backward depth- first search frar(giving

a setRB ). The relabelling phase is also very simple. It sorts both Rg and
Rg) separately in increasing topological order and then aléscaew priorities

according to the relative position in the sequeﬁgemllowed bng). It does not
alter the priority of any node not iaV, thereby greatly simplifying the relabeling
phase. The runtime of PK for a single edge insertigB(i$6() || + 51| log| 31 |).

Alpern et al. [L5] used the bounded incremental computation mod84|[ and
introduced the measurgK(|. For an invalidated topological orddr, the set

K CV is acoverif forall xyeV: (x~y A y<x = xeKvyeK). This
states that for any connectedandy which are incorrectly ordered, a covigr
must includex or y or both. |K| and||K|| denote the number of nodes and edges
touching nodes irK, respectively. We defingK(| := |K| + [|K|| and a coveK

to be minimalif |YK(| < |)K( ,[YK(| captures the
minimal amount of work required to calculate the new topaaborderT’ of
GuU{(u,v)} assuming that the algorithm is local and that the adjaceyg®thust

be traversed.
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AHRSZs discovery phasenarks the nodes of a covErby marking some of the
unmarked nodes,y € 3% with x~ y andy < x. This is done recursively by
moving two frontiers starting fronv and u towards each other. Here, the cru-
cial decision is which frontier to move next. AHRSZ tries tinimize ||K|| by
balancing the number of edges seen on both sides of thedrofitine recursion
stops when forward and backward frontier meet. Note thateveal necessarily

visit all nodes inRg) (Rg)) while extending the forward frontier (backward fron-
tier). It can be provenl[f] that the marked nodes indeed form a cokesind that
K < 3K

The relabeling phaseemploys the dynamic priority space data structure due to
Dietz and Sleatord0]. This permits new priorities to be created between exgstin
ones inO(1) amortized time. This is done in two passes over the nodds in
During the first pass, it visits the nodes léfin reverse topological order and
computes a strict upper bound on the new priorities to bgasdito each node. In
the second phase, it visits the nodeKim topological order and computes a strict
lower bound on the new priorities. Both together allow to@ssiew priorities

to each node ifK. Thereafter they minimize the number of different labeledus

to speed up the operations on the priority space data steuctypractice. It can

be proven that the discovery phase wjtk (| priority queue operations dominates
the time complexity, giving an overall bound Of |) K (| log|)K(|).

KB is a slight modification of AHRSZ. In the discovery phase AHRSunts the
total number of edges incident on a node. KB counts instebcdtloa in-degree of
the backward frontier nodes and only the out-degree of tivedia frontier nodes.
In addition, KB also simplified the relabeling phase. The e®dlisited during
the extension of the forward (backward) frontier are deldtem the dynamic
priority space data-structure and are reinserted, in threegalative order among

themselves, after (before) all nodeng) (Rg)) not visited during the backward

(forward) frontier extension. The algorithm thus compuatesverk C 5() and its
complexity per edge insertion B(|)K(|log|)K(|). The worst case running time

of KB for a sequence ahedge insertions i@(min{mg logn, m2 +n? logn}).

5.2 Algorithm

We keep the current topological order as a bijective fumclioV — [1..n]. If
we start with an empty graph, we can initializewith an arbitrary permutation,
otherwiseT is the topological order of the initial graph, computed a#li In this
and the subsequent sections, we will use the following fastatd(u,v) denotes
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|T(u) —T(v)|, u< vis ashort form off (u) < T(v), u— v denotes an edge from
utov, andu~-» v expresses thatis reachable fronu. Note thatu~-» u, but not
u— u.

Figure 5.1 gives the pseudo code of our algorithm. Throughout the ooé
inserting new edges, we maintain some data structures venelkdlependent on
the current topological order. Inserting a new edgg/) is done by calling -
SERT(U,V). If v> u, we do not change anything in the current topological order
and simply insert the edge into the graph data structureer@ike, we call R-
ORDERt0 update the topological order as well as the data strustlgpendent on

it. As we will prove in Theoremd, detectingv = u in a call of REORDER(U, V)
indicates a cycle. 17 < u, we first collect the sorted sefsandB. A is the set

of out-neighbors o/ whose topological order is not greater thkfu). Analo-
gously,B is the set of in-neighbors af whose topological order is not less than
T(v). If both A andB are empty, we swap the topological order of the two nodes
and update the data structures. Otherwise, we recursiadlyReORDER until
everything inside is topologically ordered. To make theseirsive calls efficient,
we first merge the sorted sefg} UA andBU {u} and (using this merged list)
compute the sefu’: (U e BU{u}) A (U > V)} for each node/ € {v} UA. The
collection of setA andB and the update operations are described in more detail
after the data structures have been introduced.

Data structure

We store the current topological order as a set of two arrgysdintaining the bi-
jective mappingr and its invers@ —*. This ensures that finding(u) andT (i)
are constant time operations.

The graph itself is stored as an array of vertices. For eatbxee maintain two
adjacency lists, which keep the incoming and outgoing edgesrately. Each
adjacency list is stored as an array of buckets of verticemhBbucket contains
at mostt nodes for a fixed. Depending on the concrete implementation of the
buckets, the parameters later chosen to be approximatef’® so as to balance
the number of inserts and deletes from the buckets and treeedges touched by
the algorithm. Thea-th bucket { > 0) of a nodex contains all adjacent nodgs
withi-t <d(x,y) < (i+1)-t. The nodes of a bucket are stored with node index
(and not topological order) as their key. This has the adgmthat there is no
change necessary if two nodes that lie in the same bucketvapped. The bucket
can be kept as a balanced binary tree, as an arreybas, or as a hash-table of a
universal hashing function. The only requirement for thekat data structure is
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INSERT(U, V)
> Insert edgé€u,v) and calculate new topological order
1 if v<uthen REORDERU,V)
2 insert edg€u,v) in graph
REORDERU,V)
> Reorder nodes betweerandv if v<u

1 if u=vthenreport detected cycle and quit
2 A:={w:v—wandw<u}
3 B:={w:w—uandv<w}
4 ifA=0andB=0
thenr> Correct the topological order
5 swapT (u) andT (v)
6 update the data structure
else > Reorder node pairs betweemandu
7 for vV € {v} UAin decreasing topological order
8 for U € BU{u} AV < U inincreasing topological order
9 REORDERU V)

Figure 5.1: Our algorithm
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that it should provide efficient support for the followingele operations:
1. Insert Insert an element in a given bucket.

2. Delete Given an element and a bucket, find out if that element ekigtsat
bucket. If yes, delete the element from there and returnde,Eéturn O.

3. Collect-all: Copy all the elements from the bucket to some vector.

Depending on how we choose to implement the buckets, we fetetit run-
times. This will be discussed in Secti@b. We will now discuss how we do
the insertion of an edge, computationfdandB, and updating the data structure
under swapping of nodes in terms of the above three basiatpes.

Inserting an edgéu, v) means inserting nodein the forward adjacency list af
andu in the backward adjacency list of This require$D(1) bucket inserts.

For givenu andyv, the setA := {w: v — wandw < u} sorted according to the
current topological order can be computed from the adjacksicof v by sorting

all nodes of the firsfd(u,v) /t| outgoing buckets and choosing alwith w < u.

This can be done b®(d(u,v)/t) collect-all operations on buckets. This means
traversing all elements @ as well as all elements of tHel(u,v) /t|-th outgoing
bucket. OverallO(|A| +t) elements are visited. These elements are integers in
the range{1..n} and can be sorted @(|A| +t) time using a two-pass radix sort
algorithm sincet is chosen such that> n%’>. The setB is computed likewise
from the incoming edges.

When we swap two nodesandv, we need to update the adjacency listsiaind

v as well as that of all nodesg that are adjacent toand/orv. First, we show how

to update the adjacency lists ofandv. If d(u,v) > t, we build their adjacency
lists from scratch. Otherwise, the new bucket boundaridistvffier from the old
boundaries byd(u,v) and at mostd(u,v) nodes will need to be transferred be-
tween any pair of consecutive buckets. The total numberaokters are therefore
bounded byd(u,v)[n/t]. Determining whether a node should be transferred can
be done irD(1) using the inverse mappify ! and as noted above, a transfer can
be done inO(1) bucket inserts and deletes. Hence, updating the adjacistept

u andv needs at most mfm,d(u,v)[n/t]} bucket inserts and deletes.

Letw be a node which is adjacenttior v. Its adjacency list needs to be updated
only if uandv are in different buckets. This correspondsatteing in different
buckets of the adjacency lists ofandv. Therefore, the number of nodes to be
transferred between different buckets for maintainingitii@cency lists of alv's

is the same as the number of nodes that need to be transfermaaiintaining the
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adjacency lists ofi andyv, i. e., min{n,d(u,v)[n/t]}.

Updating the mappingE andT ~1 after such a swap is trivial and can be done in
constant time. Thus, we conclude that swapping nadasdv can be done by
O(d(u,v)[n/t]) bucket inserts and deletes.

5.3 Correctness

In this section we will show the following theorem.

Theorem 1 The above algorithm returns a valid topological order aft=ch
edge insertion.

Proof. For a graph with no edges, any ordering is a correct topodbgicder,
and therefore, the theorem is trivially correct. Assumihgttwe have a valid
topological order of a grapls, we show that when inserting a new edgev)
using INSERT(u, V), our algorithm maintains the correct topological ordeGbf=
GU{(u,v)}. If u<yv, thisis trivial.

We need to prove that< y for all nodesx, y of G’ with x~» y. If there was a path
X~ yin G, Lemma2 givesx < y. Otherwise (if there is n&~» y in G), the path
X~y must have been introduced ® by the new edgéu,v). Hencex <yin G
by Lemma3 since there ix~» u— v~ yin G. O

Lemma 2 Given a DAG G and a valid topological order, if4 v and u< v, then
all subsequent calls tREORDERWill maintain u< v.

Proof. Let us assume the contrary. Consider the first call BERDER which

for a node paiu,v with u~» vandu < v leads tou > v. Either this call led to
swappingu andw with v < w or it caused swapping andv with w < u. Note that

in our algorithm, a call of RORDERU, V) leads to a swapping only A= 0 and

B = 0. Assuming that it was the first case (swappingndw) caused by the call

to REORDERU,w), A= 0. However, since, Vv s the first such pair to get violated,

x € Afor anx with u — x~» v, leading to a contradiction. The other case is proved
analogously. O

Lemma 3 Given a DAG G with v y and x~ u, a call of REORDERU, V) will
ensure that x y.

Proof. Consider the recursion tree of a call te ®RDER, in which the recursive
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calls emanating in lineg and8 are its children. The proof follows by induction
on the recursion tree height oERRDERU, V). For leaf nodes (calls of EORDER
with zero recursion tree height) of the recursion tike; B = 0. If x < y before
this call, Lemma ensures that < y will still hold. Otherwise)y := v andx:= u.
The swapping ofi andv in line 5 givesx < y.

We assume this lemma to be true for calls @d&RDERup to a certain recursion
tree height and consider a call with a higher recursion tteé =~ 0, then there
is av'such thatr — V~»y, otherwisev=v =Y. If B+# 0, then there is a Such
thatx ~ 0 — u, otherwiseu™= u = x. Hencev~ y < x~» (. Thefor-loops
of lines7 and8 will call REORDER(, V). By the inductive hypothesis, this will
ensurex < y. According to Lemma, further calls to RORDER will maintain
X<Yy. ]

Theorem 4 The algorithm detects a cycle if and only if there is a cycléhe
given edge sequence.

Proof. “=": First, we show that within a call toNSERT(u,V), there are paths
v~V andu ~» u for each recursive call to ®ORDERU',V). This is trivial for
the first call to RRORDERand follows immediately by the definition éfandB for
all subsequent recursive calls te ®BRDER This implies that if the algorithm indi-
cates a cycle in lind of REORDER there is indeed a cycle— v~ V = U ~» u.
In fact, the cycle itself can be computed using the recurstank of the current
call to REORDER

“<": Consider the edgéu,v) of the cyclev~» u — vinserted last. Since~>u
before the insertion of this edge, the topological ordergotad will satisfyv < u
(Theoreml) and therefore, RORDER(u,V) would be called. In fact, all edges
in the pathv~» u will obey the current topological ordering and by Lemg)at
will remain so for all subsequent calls oERRDER We prove by induction on
the number of nodes in the path- u (includingu andv) that whenevev ~ u
and REORDERU,V) is called, it detects the cycle. A call oFRRDERU ,V') with

U =V or REORDERU V') with V' — U’ clearly reports a cycle. Consider a path
vV — X~y — u of lengthk > 2 and the call of RORDERU,V). As noted before,
v < X <y < ubefore the call to RORDER U, V). Hencex € Aandy € B and a call
to REORDERYY, X) will be made in the for loop of lineg and 8. Asy~» x has
k— 2 nodes in the path, the call toERRDERY,X) (by our inductive hypothesis)
will detect the cycle. O



5.4 Runtime 123

5.4 Runtime

The following theorem is the main result of this section.

Theorem 5 Incremental topological ordering can be maintained whitegess-
ing any sequence of edge insertions usin@¥®/t) bucket inserts and deletes,
O(n3/t) bucket collect-all operations collecting(6°t) elements, and @?° +
n’t) operations.

Proof. Consider the pseudo code in Fig&rd. Since there can be a maximum of
n(n—1)/2 edges inserted in a DAG, there @én?) calls of INSERT. Inserting

an edge in the graph involvé€¥1) bucket operations and therefore, the total cost
of Line 2 of INSERTIis O(n?).

Lemma8 shows that RORDER s calledO(n?) times. Linel of REORDER re-
quiresO(1) operations per call of RORDER except the one time it does encounter
a cycle (when it require®(n) time). Lemmal0 shows that the calculation of the
setsA andB over all calls of RORDERcan be done b@(n3/t) bucket collect-all
operations touchin@®(n’t) edges, and(n?° 4 n’t) operations. Lineg and5
requireO(1) operations per call of RoORDER In Lemmal2, we prove that all the
updates can be done B(n3°/t) bucket inserts and deletes.

For lines7 and8 of the pseudo-code, we first merge the two sorted AetisdB.
This takesO(|A| + |B|) operations. For a particular nodee {v} UA, we can
compute the se¥’ = {u': (U € BU{u}) A (U > V)} (as required by line3)
using this merged set in complexi®(1+ [V'|), which is also the number of
calls of REORDER emanating for this particular node. Summing over the en-
tire for loop of line 7, the total complexity of line§¥ and 8 is O(|A| + |B| +
number of calls of RORDERemanating from hepe Since by Lemma4, the sum-
mation of|A| + |B| over all calls of RORDERis O(n?) and by Lemma8, the total
number of calls to RORDER s alsoO(n?), we get a total ofd(n?) operations
for lines7 and8. The theorem follows by simply adding the complexity of each
line. O

Lemma 6 REORDERIS local, i.e., a call toREORDERU,V) does not affect the
topological ordering of nodes w such that eithexw or w > u just before the
call was made.

Proof. Thislemma can be proven by induction on the level of the ourtree of
a call to REORDERU, V). For the leaf node of the recursion tré&, = |B| = 0 and
the topological order ofi andv is swapped, not affecting the topological ordering
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of any other node.

We assume this lemma to be true up to a certain tree level. 8thse it is also
valid for one level higher, note that the arra®ndB contain elements/ such
thatv < w < u. Since each call of RORDERIN thefor-loop of line7 and8 is from

an element oA to an element oB and all of these calls are themselves local by
our induction hypothesis, this call ofF®RDERIs also local. O

Lemma 7 If two nodes are swapped in a call ®EORDER their relative order
will remain unchanged in the future.

Proof. Let us assume, two nodasandVv are swapped within one of the recursive
calls of REORDER invoked by NSERT(u,V). After the insertion of edgéu,v),
there is a path’ ~ u — v~ V. Therefore, by Lemma the relative order of/
andV will not be changed in any subsequent call RSERT.

It remains to prove that also within the recursion tree a8DRDERU, V), the rel-
ative order ofu’ andV will not be changed after they have been swapped. This is
ensured by the order in which the tiar-loops in lines7 and8 iterate since there
can be no calls to RORDERU ,w) with w > V' or REORDERW,V') with u < U’
after the call of RORDERU, V). O

Lemma 8 REORDERIs called Qn?) times.

Proof. As we have proven that the algorithm is correct in secbd) we now
know that for each paifu,v) the following holds: If REORDERU,V) is called,
thenv < u holds before and < v holds afterwards. As by Lemmathis implies
that REORDERU, V) can only be called once for each péir,v), the number of
calls to REORDER can be upper bounded In. O

Lemma 9 The summation d#\ + |B| over all calls of REORDERis O(n?).

Proof. Consider arbitrary nodes andv. We prove that for alv e V, vV € A
happens only once over all calls oEBRDERU, V). This proves tha¥ |A| < n, for
all such calls of RORDERU, V). Therefore, summing up for alic V, ¥ |A| < n?
over all calls of RRORDER

In order to see that for alt € V, V' € A happens only once over all calls oER
ORDERU, V), consider the first such call. Singec A, V' < uandv — V before
the call was made. By Lemnt u < V after this call and hence’ ¢ A for any
call of REORDERafterwards. As for calls within the recursive substructfrthe
first call, the order in which these calls are made ensurésitaee will be no calls
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of REORDER(uU,w) for anyw < V' before REORDER(u,V') and sinceu < V' after
REORDER(U,V), V ¢ Afor REORDER(U,W).

Analogously, it can be proven that for arbitrary nodesndVv and for allu € V,
V' € Bhappens only once over all calls oERRDERU, V). The proof fory |B| < n?
follows similarly and it completes the proof of this lemma. O

Lemma 10 Calculating the sorted sets A and B over all callSREORDERcan be
done by @n3/t) bucket collect-all operations touching a total ofi3t) elements
and Q(n?® + n’t) operations for sorting these elements.

Proof. Consider the calculation of sét in a call of REORDERU,V). As dis-
cussed before in sectidn2, we look at the out adjacency list of stored in
the form of buckets. In particular, we will ne€d(d(u,v)/t) bucket collect-all
operations touchin®(|A| +t) elements to calculat&. The additional worst-case
factor oft stems from the last bucket visited. Summing up over all c#lIRE-
ORDER we getO( 3 d(u,v)/t) collect-all's touchingy (|A| + |B| +t) elements.
Sinced(u,v) < n for every call of RRORDERU,V) and there aré(n?) calls of
REORDER (Lemma8), there areO(n®/t) bucket collect-all operations. Also,
sincey (|A|+|B|) = O(n?) by Lemma9, the total number of elements touched
is O(n?+ St) = O(nt). Since the keys are in the rang#..n}, we can use a
two-pass radix sort to sort the elements collected from tlokdts. The total sort-
ing time over all calls of RORDERIS 5 (2(|A| +t) +/N)+ 3 (2(|B| +t) +/N) =
O(n?°4-n?). O

Lemma 11 Y d(u,v) = O(n>?) where the summation is taken over all calls of
REORDERU,V) in which u and v are swapped.

Proof. Let T* denote the final topological ordering and

d(u,v) if REORDERU,V) leads to a swapping
0 otherwise

X(TH (W), T*(v)) i= {

As Lemma7 implies that each node pair is swapped at most once, theblaria
X(i,]) is clearly defined. Next, we model a few linear constraintsXadn j),
formulate it as a linear program and use this LP to prove tread{iy j X (i, )} =

O(n®/2). By definition ofd(u,v) andX(i, j),
0<X(i,j)<n foralli,je[1l..n].

For j <i, the corresponding edg€8* ~1(i), T* ~1(j)) go backwards and thus are
never inserted at all. Consequently,

X(i,j)=0 forall j <i.
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Now consider an arbitrary node which is finally at position, i.e., T*(u) =

i. Over the insertion of all edges, this node has been moveduef right via
swapping with several other nodes. Strictly speaking, s lb@en swapped right
with nodes at final positiong > i and has been swapped left with nodes at final
positionsj < i. Hence, the overall movement to the rightjis.; X(i, j) and to
leftis ¥ i X(j,i). Since the net movement (difference between the final and the
initial position) must be less than

ZX(i,j)—ZX(j,i) <nforalll<i<n.

J>I J<i
Putting all the constraints together, we aim to solve thievahg linear program.

max Z X(i, j) such that
1<i<n

1<j<n

(i) X(i,j)=0forall1<i<nand 1< j <i,
(i) 0 <X(i,j)<nforalll<i<nandi<j<n,
(i) ¥j=iX(,]) = Yj<iX(j,i) <nforall1<i<n.

Note that these are necessary constraints, but not suffidgart this is enough
for our purpose as an upper bound to the solution of this LIPgiike an upper
bound for they X(i, j) in our algorithm. In order to prove the upper bound on the
solutions of this LP, we consider the dual problem

min | n % Y(i-n+j) +ny Y(n?+i) | such that
0<i<n 0<i<n
i<j<n

() Y(i-n+j)>1forall0O<i<nandj<i,
(i) Y(i-n+))+Y(M+i)=Y(n?’+j)>1forall0O<i<nandj>i,
(i) Y(i)>O0forall0<i<n?+n.

and the following feasible solution for the dual:

Y(i-n+j)=1 forall0<i<nand0< | <i,
Y(i-n+j)=1 forallO<i<nandi<j<i+1+2yn,
Y(i-n+j)=0 forallO<i<nandj>i+1+2yn,

Y(?+i)=+vn—i forall0<i<n.

This solution has a value af® +2n%2 + ny" /i = O(n®?), which by the
primal-dual theorem is a bound on the solution of the origirka



5.5 Bucket data structure 127

In fact, it can be shown that there is a solution to primal LRséwalue i©(n>?),
namely

X(i,j)=0 forall 0<i<nandO0< j <i,
X(i,j)=n forall0<i<nandi < j <i+ [VIE=1T,
X(i,j)=0 forall 0<i<nandj >i+[@] n

Lemma 12 Updating the data structure over all calls ®EORDERrequires Gn3%/t)
bucket inserts and deletes.

Proof. Our data structure requireé3(d(u,v)n/t) bucket inserts and deletes to
swap two nodesl andv. Lemma7 shows that each node pair is swapped at
most once. Hence, summing up over all calls &RDERU, V) whereu andv are
swapped, we need(s d(u,v)n/t) = O(n33/t) bucket inserts and deletes using
Lemmall (|

5.5 Bucket data structure

We get different runtimes and space requirements of ourrighgo depending on
the data structures of the buckets used:

(a) Balanced binary trees (see e.q]): Balanced binary trees give @1+
logT) time insert and delete ar@{( 1+ 1) time collect-all operation, where
is the number of elements in the bucket. Therefore, by Time&re¢he total
time required will beO(n?t + n3°logn/t). Substitutingt = n®">,/logn,
we get a total time ofd(n?’%,/logn). The total space requirement will
be O(n?) as a balanced binary tree neddi@) nodes for storing at most
elements.

(b) n-bit array: A bucket that stores at mdstlements can be kept as a+bit
array, where each bit is 0 or 1 depending on whether or notlémeent is
present in the bucket. Also, we can keep a list of all elemierttse bucket.
To insert, we just flip the appropriate bit and insert at the @fnthe list. To
delete, we just flip the appropriate bit. To collect all, wetlgmugh the list
and for each element in the list, we check if the correspantinis 1 or O.
If itis O, we also remove it from the list. This gives us comgtame insert
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and delete and the time for collect-all operation will betibtal output size
plus the total number of delete. Each delete is counted ancellect-all

as we remove the corresponding element from the list afeefirtét collect-
all. By Theorem5, the total time required will b©(n’t +n3°/t), giving

usO(n?7®) for t = n%’>, The total space requirement will k¥n) for each
bucket, leading to a total @(n?2°) for O(n?/t) buckets.

(c) Uniform Hashing121]: A data structure based on uniform hashing coupled
with a list of elements in the bucket operated in the same sapen-bit
array will give an expected constant-time insert and dedeig the same
bound for collect-all as for thie-bit array. This gives an expected total time
of O(r?t +n33/t). With t = n%7® this yields an expected time @f(n?®).
Since the hashing based data structure as describ&@iyt@kes only linear
space, the total space requiremer®{s?).

5.6 Empirical comparison

We conducted our experiments on a 2.4 GHz Opteron machihe8@B of main
memory running Debian GNU/Linux. For PK, MNR, and AHRSZ weadghe
C++/Boost based implementation of David J. Pearce ($24d)[ For our algo-
rithm (AFM), we implemented variant (b) of secti&nb using C++/STL. Addi-
tionally, we also implemented a local (cf. Lemr@gavariant of KB using an or-
dered bi-directional list data structut@(]. The code of AFM and KB is available
upon request. All codes were compiled using gcc 3.3 in 3Babde and optimiza-
tion level-03. The timings were measured using g timeofday function of
<sys/time.h> and all the results are averaged over 10 runs each.

We examined all five algorithms on two classes of DAGs. Fir&,considered
random edge insertion sequences leading to a complete DG rdndom DAG
model by R€] is similar to the well-knowrG(n, m) random graph model obf].
On a random edge sequence, all the algorithms are quiterfdst@e of them
encounters its worst-case behavior. Therefore, we alseidered a particular
sequence of edges which we believe is a hard instance of tiséepn. This edge
sequence is similar to the worst-case sequence give@Ihydr their algorithm.
On this sequence, KB, PK, MNR, and AHRSZ (the variant chap#ie smallest
permitted priority) face their worst-case @f n®) operations, while our algorithm
takesQ(n?°) time complexity. This sequence of edges is depicted in Fig.
Let us briefly describe its structure. For a graph withodes, we divide the set
of nodes into four blocks of different sizes: block 1 corsist nodeg0..n/3),
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@ all pairs @ all pairs

( Block 1 )

(Block 2 Block 3] | Block 4 )

® 21

Figure 5.2: Our hard-case graph

block 2 of node$n/3..n/2), block 3 of nodesn/2..2n/3), and block 4 of nodes
[2n/3..n). First, we inserh — 4 edges such that within each block, the vertices
form a directed path from left to right. Then we insert thédwaing edges,

(@) v je[0.n/3) vke [o.

n/6) : add edgéj,k+n/2),

)
(b) gj € [0..n/6) : add edg€2j, j +n/3) and edg€2j +1,j +n/3),
)

(c) v jel0.n/6) vke[o.

<7 <1

(d) v j€[0..n/6) vke o..

n/3) : add edgéj +n/3,k+2n/3),

n/6) : add edgéj +n/2,k+n/3),

whereg> denotes going from left to right in thi®r-loop and§ the other way

around.
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Figure 5.3: Experimental data on full random graphs witlywey n.

Fig. 5.3 shows the runtimes of the five algorithms in consideratianrémdom
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Figure 5.5: Experimental data on a class of hard instancidsvaryingn.

edge sequences leading to complete DAGs with varying numlgdrvertices
(and withm= (g)) We see that AFM is approximately 30% faster than KB and a
constant factor of 2-4 away from AHRSZ, MNR, and PK.

Fig. 5.4shows the average runtimes for random graphs with1000 and a vary-
ing number of edges. AFM looses a lot during the insertioreffirstO(nlogn)
edges because in this phase, updating the data structteesseéry swapping
proves very costly. But after that, the curves between AFMRK/MNR/KB are
almost parallel, while the slope for AHRSZ is around 2 timfest tof AFM. For
practical purposes, we believe therefore that a hybrid Gaagr would perform
best. That is, one inserts the fi@tnlogn) edges with either PK or KB and then
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inserts the remaining edges with our algorithm.

Fig. 5.5shows the runtimes of the five algorithms in consideratiotheclass of
hard edge sequences described before. The differencernmpéstyc behaviour as
discussed before is clear from the graph.

5.7 Towards a tighter analysis of our
algorithm

It is not clear if the analysis of our algorithm as shown inteec5.4 and sec-
tion 5.5is tight. We conjecture that the analysis of our algorithm lsa improved.
In this section we describe an approach that can potenimflyove the analysis.

Consider the following problem: We are given two s&tandB of nodes and we
construct a graph based on the following rules:

e We start with an empty graph

¢ In order to add an edge in the graph, we select a micel8 andv € A, swap
them (i.e., after the swap,c A andv € B), and insert a directed edge from
utov.

¢ At no point of this construction, there should be an edge famynode in
B to any node irA.

Figure5.6 shows an example with valid and invalid moves for constngcsuch
graphs.

Our combinatorial problem is to bound the maximum numbedgisE (|A|, |B|)
that can be inserted in this way.

Here are a few properties that we can conclude about theiresglaph:

Theorem 13 The resulting graph will be a directed acyclic graph.

Proof. We will prove this by contradiction. Assume that there is@clied cycle

in the resulting graph and consider the last edge (u,v) of this cycle being
inserted. In other words, before the insertion of this edigere is a path fromr

to u and this edge completes the cycle. After inserting this edgeA andv € B.
Since, there is a path fromto u, there will be some edge in the path that goes
from some node iB to some node i (as the path starts frol and eventually
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Figure 5.6: An example of inserting edges in the combinatgpiaph. The node
pairs marked in red in the images on the left are being coraidier putting the
next edge and the right side shows the resulting orderin@dés. The first three
edge insertions are legal while the last edge is not allowed.
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reachesh). This edge clearly violates our constraint and thus theeedg (u, v)
will not be inserted in the first place. This leads to a conttamh and proves the
fact that there can’t be directed cycles in this graph. O

Theorem 14 E(n/2,n/2) = Q(nlogn).

Proof. In order to prove this, we need to show an example where a gréph
Q(nlogn) edges can be constructed in this waylAf= |B| = 1, then we simply
swap the two nodes and insert the corresponding edge. Qsieenme first recur-
sively build two graphs witm/4 nodes in each set. Let’s call the sAtandB of
the first graphs a81, B; and that of the second graph/&s B,. Then we sort the
nodes in both sets of both graphs topologically and thentitisen/4 edges in the
following sequence: We start from the topologically smstlieode in seB; and
insert an edge to topologically biggest node inAgtThereafter we put the edge
from the next smallest (topologically) nodeBf to second largest (topologically)
node of sefA; of the second graph and so on. Itis easy to check that thiesequ
of edge insertions never leads to any edge fBor B UBy to A:= A UA,. Con-
structing the graph in such a way, we find t&&h/2,n/2) > 2E(n/4,n/4) +n/4.
SinceE(1,1) =1,E(n/2,n/2) = Q(nlogn). O

Theorem 15 E(i,n—i) =0(n%?) forall 1<i<n—1.

Proof. The resulting graph will have the following properties:
e Itis a directed acyclic graph (cf. TheorelB)

e The difference between in-degree and out-degree of any isodemost
one. This follows from the fact that a node goes from aBst a setA iff
its out-degree increases by one and a node goes fromAateed setB iff
its in-degree increases by one. Since all nodes start frimaréi or B and
end up inA or B, the difference between the in-degree and out-degree of
any node can be atmost one.

Next, we show that a DAG in which each node hast-degree- in-degre¢ < 1
hasO(n3/2) edges. This is shown by an LP based proof. Tédenote the final
topological ordering an&(T*(u), T*(v)) := 1 iff there is an edge fronu to v.
Thus, the maximum number of edges in such a DAG is equal to

max Z X(i, j) such that

1<i<n
1<j<n
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(i) X(i,j)=0forall1<i<nand 1< j <i,
(i) 0 <X(i,j)<1foralll<i<nandi < j<n,
(i) ¥j=iX(,]) = Yj<iX(j,i) <1lforall1<i<n.

Similar to the proof of Lemmal, it can be shown that the solution of this LP and
hence, the maximum number of edges in such a DAG(i¥/?). O

The following is our main theorem that links the maximum n@mbf edges in
this graph to the analysis of online topological orderingpaithms.

Theorem 16 ¥, d(u,v) < YT E(i,n—i)

Proof. Consider a particular positiofi,n—i) in the topological ordering, i.ei,
nodes are to the left and— i nodes are to the right of this position. We say that a
node-pair(u, V) crosses the positiofi,n—1i) if in the topological ordering before
swapping the nodasandv, T (u) > i andT (v) <i and after the swappinb(u) <i
andT (v) > i.

Throughout the execution of the online topological ordgmtgorithm, the num-

ber of node-pairs that cross this position can be at l8dsh—i). This is because
the nodes to the left and right can be thought of as belongimga different sets

and we never allow edges from the right of this position toléfie Whenever we

want to insert an edge, the algorithm first swaps their locaind always puts the
edge from the left to the right.

Consider the sdt:= {((u,V), (i,n—i))|node-pair(u,v) crosses the positiofi,n—
i)}. Clearly,|L| = ¥,,d(u,v) as each node-paju,v) crossesl(u,v) positions.
For every positior(i,n—i), the number of node-pairs crossing this position is at
mostE(i,n—i) as shown before. Sinck= Ui<i<n-1/{(u,V)|(u,Vv) crossesgi,n—
D}, [L| < $P1E(i,n—i). Putting togethery,,d(u,v) = [L| <y LE(®i,n—
i). O

This implies that if one can prove that for alkli < n—1, E(i,n—i) = o(n%?),
than the analysis of all the topological ordering algorittelying ony ,, d(u,v)
for their analysis such as ours (cf. SectAd0for another algorithm that relies
on Lemmall) will get improved.
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5.8 Dynamic topological ordering in external
memory

Many information retrieval applications rely on being atdejuery ontology (e.qg.,
Gene Ontology, SUMO, Cyc, YAGO, DBpedia etc.) graphs forramtivity,
reachability, BFS, shortest paths, steiner trees 88}.tp learn relations between
different semantic entities. Natural relations (exgs,located iny, wis a sub-class
of z) between these entities are often acyclic and transitidecan thus be mod-
eled as directed acyclic graphs4g. These ontology DAGs can be quite large.
For instance, DBpedia 3.1 has more than 100 million edg@s [

In external memory, efficient computation of topologicall@ering is particularly
important as many different traversal problems such ashedality, BFS, SSSP
etc. can be reduced to computing topological orderin@(sort(m)) I/Os. This
is done using the technique of time-forward processingSettion2.5.6 as fol-
lows: Given the topological ordering of the DAG(V, E), we sort the adjacency
lists according to the topological ordering of their taildes and we process the
nodes in this order. We ignore all nodes until we reach thecsonode. We
mark the source node as reachable or visited with BFS level@edistance zero
from the source. This information is then propagated to utsreighbors who
will be processed in future using an external memory pyagiteues. The infor-
mation is entered into the priority queue with the topolagimumber of the head
node as the key. When we process any nodéer having processed the source
node, we first extract all the information from the priorityepe kept for this node
(with v's topological number as its key) by its in-neighbors. Thecreability, BFS
level or shortest path distance for this node is then congploésed on this infor-
mation. This is then propagated forward to its out-neigbhaing the external
memory priority queue. Since all the priority queue operatican be performed
in O(sort(m)) I/Os and sorting the adjacency lists also requidésort(m)) 1/Os,
reachability, BFS and shortest paths can all be compute@dme IDAGs using
O(sort(m) +TO(n,m)) 1/0s, whereT O(n,m) is the number of 1/Os required to
compute the topological ordering of a DAG withhodes anan edges.

The best-known algorithm for computing topological ordgrin external memory
is based on directed DF83 and requiresO((n+ m/B)log, § + sort(m)) I/Os.
The naive way of recomputing from scratch whenever a new &lmserted re-
guires the same number of I/Os and is thus, very inefficient.

Fortunately, we can improve upon this by using time-forwprdcessing. We
know the topological orderind, g of the DAG before the new edge is inserted



136

Chapter 5: Dynamic topological ordering

and we process the nodes in that order. As in all the dynarpmagical order-
ing algorithms seen so far, we do not do anything if the neweddgv) is not
invalidating. Otherwise, for all nodes such thatT,q(w) < Tgq(v), we assign
Then(W) = Toig(W) as they are not affected by the new edge. We start processing
the nodes by assignigew(V) := Toig(u) + 1. This information is then propagated
forward using an external memory priority queue by inserig(V) + 1 with pri-
ority Toig(V), for each out-neighbor of v. If a nodex being processed has not
received any information from its in-neighbofenw(X) := Toig(X). Otherwise x
updates its topological number as the maximum of all en&igsacted from the
priority queue with the priorityToq(X), andToig(X). This is then communicated
forward by insertindlew(X) + 1 with priority Toi4(X') for each out-neighbot’ of

X.

In case we want to g&hew: V — [1..n], we can easily do so by sorting the nodes
according toTneyw and assigning them numbers onentoThe whole process of
computing a new topological ordering thus only requidgsort(m)) 1/Os.

. . . | X
Our algorithm can be externalized to give@n n>°. 4/ M) I/Os for

maintaining the topological ordering under the insertibmedges. For inserting
m’ edges into a DAG withm edges, this is an improvement over Bésort(m))

/0 algorithm ifm = w (ngt'zfn) . \/W).

Since our algorithm requires to ke€)n®/t) (= O(n'?°)) buckets simultane-
ously, it is not possible to even keep one element per buokéei internal mem-
ory if n125 > M. We therefore, keep all the buckets completely in the eslern
memory. These buckets are implemented as dynamic B-tressrting an ele-
ment require$D(1) 1/0s, non-lazy deletion (which includes searching) reegiir
O(loggn) 1/0s and collect-all operation requir€{1+ k/B) I/Os for collecting

k elements. Recall from Theorefthat our algorithm require®(n®®/t) bucket
inserts and deletes, ai@{n3/t) bucket collect-all operations collectir@(n? - t)
elements for processing any sequence of edge insertioeseTperations require

3.5
0 (% + %) I/Os in total.

Sorting all elements collected from the buckets to compateA andB can be
done using external memory sorting algorithms (cf. SecBdn?. In the worst
case, there may b@(n?) calls (one for each call of FORDER sortingO(n? - t)
elements in total. Summing over all calls, this requiBéa? 4 n-t - sort(n)) 1/Os.

All other operations including accesses Toand T~ require O(n3°/t) 1/Os.
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3.5
Thus, the externalized version of our algorithm requds™2%" | .. sort(n))

/Os. Substituting := n%75. E;A%BB?, we get that our external dynamic topolog-

ical ordering algorithm require® <n2-75- \/ w) /Os.

5.9 Average-case analysis of online
topological ordering algorithms

The algorithm by Pearce and Kelly (PK)34] empirically outperforms the other
algorithms for random edge insertions, although its woeste runtime is inferior
to KB. This difference in the behavior of online topologicatering algorithms
between random edge insertion sequences (REIS) and vasstsequences lead
us to the theoretical study of online topological orderitgpathms on REIS.

In this section, we show an expected runtime©gn? log? n) for inserting all edges

of a complete DAG in a random order with PK. Also, we show aneexgd run-
time of O(n?log®n) for complete random edge insertion sequences for AHRSZ
and KB.

Recall from Sectior2.3that by directing the edges of an undirected random graph
from lower to higher indexed vertices, we obtain the randoh@&Dnodel of Barak
and Erd6s26]. Depending on the underlying random graphs, we get twoagand
DAG models -DAG(n,m) andDAG(n, p). In this section, we will prove our main
results on thdDAG(n,m) model since it is better suited to describe incremental
addition of edges. However, since the independence of ddgégs DAG(n, p)
model makes the analysis easier, we will prove our resuisditDAG(n, p) and
then use Theorer@to get the correspondinAG(n, m) results.

5.9.1 Analysis of PK

When inserting thé-th edgeu — v, PK only regards nodes i) := {xc V | v <

X< UA (V~ XV X~ u)} with “<” defined according to the current topological
order. As discussed in Sectidnl, PK performsO(||67 | + |61|log|5"|) oper-
ations for inserting thé-th edge. The intuition behind the proofs in this section
is that in the early phase of edge-insertions (the @@&tlogn) edges), the graph
is sparse and so only a few edges are traversed during therB\e3dals. As the
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graph grows, fewer and fewer nodes are visited in DFS traiseﬂs‘i(i)| is small)
and so the total number of edges traversed in DFS travetsalsmiled above by
1601]) is still small.

Theoremsl9 and 25 of this section show for a random edge insertion sequence
(REIS) of N edges thagN ;[6()| = O(n?) andE [ZiN:1||5(i)||] = O(n?log?n).
This proves the following theorem.

Theorem 17 For a random edge insertion sequence (REIS) leading to a =enp
DAG, the expected runtime of PK igiBlog?n).

A comparable pair (of nodes) are two distinct nog@sdy such that eithex~»y
ory~» x. We define a potential functioh; similar to Katriel and Bodlaende®1].
Let ®; be the number of comparable pairs after the insertiaredges. Clearly,

AD =P —D_1>0 foralll<i<m,

®o—=0, and Py <n(n—1)/2. (6.1)

Theorem 18 For all edge sequences, (§")| < A®; +1 and (i) || < 2A®;.

Proof. Consider thé-th edge(u v). If u < v, the theorem is trivial sinc®()| = 0.

Otherwise, each vertex (RF and RB (as defined in Sectiob.1) gets newly
ordered with respect toandyv, respectively. The sd:j xRl i (X, v)ﬂU (u X) =

{(u,v)}. This means that overall at IedRF | + |RB | — 1 node pairs get newly

ordered: , , .
A% > [RY|+IRg |~ 1=[6] -1
Also, since in this casad; > 1, (51| < 2Ad;. O
N

Theorem 19 For all edge sequenceil|6(i)| <n(n—1)=0(n?).

N N

Proof. By Theorem18 (i), we getz\|6(')| < Z(ACDi +1) =Py +N<n(n—
= =

1)/2+n(n—1)/2=n(n—1). O

The remainder of this section provides the necessary toepstsy step to finally
prove the desired bound gff |6 || in Theorem25. One can also interpre;
as a random variable DAG(n, m) with m=i. The corresponding functio# for
DAG(n, p) is defined as the total number of comparable node pailG(n, p).
Pittel and Tungol129 showed the following theorem.
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Theorem 20 For p:=clog(n)/nand c> 1, Ep[¥] = (1+0(1)) ”—22 (1- (—1:)2

Using Theoren?, this result can be transformeddoas defined above f@AG(n, m)
and gives the following bounds fdy [Py].

Theorem 21 For nlogn < k < N — 2nlogn,

n? (n—1)logn \?
Em[®y] = (1+0(1)) ) <1— m)
For N—2nlogn < k < N —2logn,
n? (n—1)logn ’
Ewm [¢k]:(1+0(1))5<1—2(k+\/m)> .

We skip the rather technical proof of this theorem for theesaibetter readability.
Readers are referred t6][for the formal proof of this theorem.

The degree sequence of a random graph is a well-studiedgmnoflhe following
theorem is shown in33)].

Theorem 22 If pn/logn — o, then almost every graph G in the(iG p) model
satisfie\(G) = (1+0(1)) pn, whereA(G) is the maximum degree of a node in G.

As noted in Sectior2.3, the undirected graph obtained by ignoring the directions
of DAG(n, p) is aG(n, p) graph. Therefore, the above result is also true for the
maximum degree (in-degree + out-degree) of a nod@A(n, p). Using Theo-
rem1, the above result can be transformed®#®G(n, m), as well.

Theorem 23 With probabilityl — O(%), there is no node with degree higher than
213 for sufficiently large n and m nlogn in DAG(n, m).

The formal and rather technical proof of this theorem candomd in [6]. Here,
we only give a high level idea of the proof.

Rough SketchWe examine the following two functions:

e f1(g): Number of nodes with degree at legsh)
o f2(9) = ff(9)

For f1, f2 in G(n, p), g(n) := pn+ 2/pgnlogn, and some constat Bollobas
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[32] showed

; (5.2)
[f2(9)] — E5[f1(9)] < ¢ Ep[fa(g)].

We transform these mean and variance resulG(tm m) by breaking down the
analysis depending an. At first, consider the simpler caserof> (L N_| 2) nlogn.

nlogn
For sufficiently largen, 21- > n— 1 in this case and therefore, no node can have
degree higher than it.

Next, we consideme (knlogn, (k+ 1) nlogn] for 1 <k <1, wherel := | 5t | -

2, and we prove the theorem for each interval. Chooping- (k+ 2) ”",’\lg”, Qi :=
1— px, andgk(n) := pkn+ 2\/pkaknlogn satisfies the conditions in Theoren
and thereforeEwm [ fi(gk)] = Ep, [fi(gk)] +0(1) fori=1,2 and 1< k < |. Using

Equation 6.2), we getEm [f1(gk)] = O(Ep, [f1(gk)]) = O (%) and

o (fL(ak)) = Em [f2(0)] — Eft [f1(9)] = O(Ep [f2(ak)] — E3, [f1(0K)])
= O(ag(fa(ak))) = O(Ep, [f1(g)]) = O(3) -

Having transformed the mean and variancddfy) to G(n,m) model, we use a
variant of Chebyshev’s inequality (BX — u| > v} < 3—5) (cf. Section2.2) to get

Pr{lfi(g) — I = 1- 4} <O (7o ) O(3).

Since f1(gk) is a non-negative random variable {Pr(gx) > 1} = Pr{|f1(gk) —
pl >1—pu} =0(2). In other words, with probabilityl — O(2)), there is no

n
node with a degree higher thagp(n)(< 2%“) in any interval.

Since any randor®AG(n, m) must have been obtained by taking a random graph
G(n,m) and ordering the edges, the degree of a nodeA(n, m) is the same

as the degree of the corresponding nod&{n,m). Therefore, with probability
1-— O(%), there is no node with a degree higher thaif'21 DAG(n, m). O

As the maximum degree of a nodeDAG(n, i) is O(i/n), we finally just need to
show a bound ory; (i -|6(")]) to prove Theoren25. This is done in the following
theorem.



5.9 Average-case analysis of online topological orderinggorithms 141

Theorem 24 For DAG(n,m) and r:= N — 2logn,

= O(n%log?n).

r .
E|S (i-8")
[Z
Proof. Let us decompose the anaIyS|s in three steps. First, we shmurad on

the firstnlogn edges. By definition o6 |5 | < n. Therefore,

nlogn nlogn

; i.E[Ié(i)q < ; -n—0(rflog?n) 53

The second step is to bourgi_oqni-[6"] with t := N —2nlogn. For this,
Theoreml8 (ii) shows for allk such thanlogn < k < t that

<2E = 2E [P — Dy 1] = 2E [D] — 2E[Dy_4]. (5.4)

E [Z|5<‘>| Zmi

The function hidden in the(1) in Theorem20is decreasing irp [129. Hence,
also theo(1) in Theorem21is decreasing ifk. Plugging this in Equation5(4)
yields (withs:= nlogn)

e 300 < omr (1= S (- S %))
2 2

= (1+0(1))n*(n—1) '09”<2(k— 1ty 2t+s

(n_?ogn<(t+ls)2 a (k—11+s)2>>

< (1+0(1))n*(n—1)logn (k—1+8_ tiS)

< (140(1))n*(n—1) Iognlel. (5.5)
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By linearity of expectation and Equatios.p),

E[i_gliw(”\]:i_g (o))< 3. (25 5 efo"])
log([4]) t

< 5 (2s 3 E[ia"])

=
Il

[
Il
D2
T
=
=

=1 i=20-Yst1
|Og(|—Ls—D ) ) 1
J _ -
< gl (2Is(1+0(1))n?(n 1)Iogn2(j71)s)
log([L])

— (2(1+0(1)) n*(n— 1) logn)
—=2(140(1))n?(n—1)log?n = O(n*log?n).

For the last step considelkasuch that < k < r. Theoreml8 (ii) gives

E [25@\] <2E kai

Using Theoren21 and similar arguments as before, this yields (wsth) :=
logn (N —k))

£l (a0
[gk\ |
(n—1)logn\?2 (n—1)logn 2
§(1+o(1))n2<(1—72(r+s(r>)) _<1_2(k—1+s(k—1))> )

2 2

= (1+0(1)n’(n—1) 'Ogn<2(k— Trsk—1)) 2(r+s(r)

(n—1)logn 1 1
4 <(r +s(r)? (k—l—i—s(k—l))Z) '

m is a monotoni-

cally decreasing function in this interval. Theref% — m <0,

= 2E[®; — Dy_41] = 2E[®;] — 2E [D_4].

Sincek + s(k) is monotonically increasing far< k < r,
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which proves the following equation.

[Z(|6 < (140 >)n2(n_l>|09n(k—1+ls(k—1)_r+ls(r))

< (1—|—o(1))n2(n—1)lognkT11. (5.6)

By linearity of expectation and Equatio.6),

r
E i|o0) |]
[i_N—%ogn+1

r

el

r

< (N —2logn) i:NgognHE [|5(i)\]

< (N—2logn) (14-0(1))n?(n—1)logn

N —2nlogn—1
— O(nlogn). O

Theorem 25 For DAG(n, m), [Zlﬂé || = O(n?log?n).

Proof. By definition of||51)||, we know||6(| < i and hence

nlogn

159]| = O(nPlog?n).
2,

Again, letr := N — 2logn. Theorem23 tells us that with probability greater than
(1— %) for some constant’, there is no node with degree &! (for ¢ = 21).
Since the degree of an arbitrary node in a DAG is bounded,bye get with

Theoremsl9 and?24,
r ] r AN r (i)
E[ T 160 :o(e cila"| —I—E[ 5 neldl) '])
o o o n
i=nlogn+1 i=nlogn+1 i=nlogn+1

r

o(% E [Zl(i 1500)) —|—n2>

= O(% (n*log?n) + n2> — O(n?log?n).
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By again using the fact that the degree of an arbitrary no@DAG is at mosh,
we obtain

l. rileS I =

Thus,

) (n % n) O(n?logn).

i=r+1

ofe| 3 1

k]

nlogn r

[Zi||5 ||] —Elzi 18] - n%n+l||5 I rz+1”5 ||]

O(n?log?n) 4+ O(n*log?n) 4+ O(n*logn) = O(n? log®n). [

+E +E

5.9.2 Other average-case results

Recall from Sectiorb.1 that for an invalidated topological ordé&r, a setk CV

is acoverif for all xyeV: (x~y A y<x = xeKvyeK). In order
to prove that the expected complexity of AHRSZ on REIS)(sr;rzlog3 n), ob-
serve thatd!) is a valid cover Therefore by definition oK D(| as minimal
cover, it follows that)K() (| < Y60 (| = |61 (]| Note that the complexity
of maintaining the topological ordering with AHRSZ whileserting an edge is
O()K(|log|)K(|) (cf. Section5.1 The expected complexity of AHRSZ on REIS

is thusE [z{il KO Iog|>K<\] . Using Theorem49 and25 we get,

- m - m -
KD (Jlog)K(|| <logn- 5 [6V|+E [T |6V
[Z 2 2

KB also computes a covef C 3 and its complexity per edge insertion is
O(|)K (| log|)K(|). Therefore))K (| < |6M|+ ||6"|| and with a similar argument
as above, the expected complexity of KB on REI®{g?log>n).

= O(n?log®n)

An interesting question in all this analysis is how many edgdl actually in-
validate the topological ordering and force any algorittindd something about
them. Here, we show a non-trivial upper bound on the expechhdke of the
number of invalidating edges on REIS. Consider the follgniandom variable:
INVAL (i) = 1 if thei-th edge inserted is an invalidating edgevAL (i) = O other-
wise.
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m

Theorem 26 E[ZINVAL (i)| = O(min{m, n? Iog% n}).
i=

Proof. If the i-th edge is invalidatingd(| > 2; otherwisaNvaL (i) = |51 = 0
In either caseinvAL (i) < |80)]/2. Thus, fors:= nZ logZ n andt := min{m,N —
2nlogn},

t 2(n—
Z INVAL ( Z 6— 1+o(1))M
i=s+1 i=s+1 2 2s
< (1 ;’(1))n§ Iog% n.

The second inequality follows by substitutikg= s+ 1 in Equation §.5). Also,
since the number of invalidating edges can be at most eqtiat timtal number of
edgesy; ;INVAL (i) <s.

E [_ilNVAL (i)] =E [_imvm_ (i)

<O(s) +0(n?log? n) + O(nlog n) = O(n? log

t

Z INVAL (i)

=st+1

+E +E

M3

INVAL (i)]

Nl=

n).

The second boun# 3" ; INVAL (i)] < mis obvious by definition ofNVAL (i).
U

5.10 Recent advances in online topological
ordering algorithms

Recently, Haeupler et al7§] gave two new algorithms for online topological or-
dering. Their algorithm for the sparse case requﬁ)(as?’/z) time while their algo-
rithm for the dense case requi@§n®°) time, independent of the number of edges
inserted. Their algorithm for the dense case cruciallyesatin our Lemmal. In-
dependently, Liu and Cha®7] gave an algorithm witfﬁ(nz-5) bound. Their
algorithm is largely based on our algorithm, but uses bic&kexponentially in-
creasing sizes. Very recently, Bender et 2¥][gave anO(n? log? n) algorithm for
this problem. It can be further improved@(n?logn) [69).

Regarding lower bounds, Ramalingam and R43§[show that an adversary can
force any algorithm maintaining explicit labels to ne&ethlogn) time complexity
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for insertingn— 1 edges. Katriel90] gave a class of examples on which any local
algorithm that maintains the topological order as an exkphi@ppingT:V —
[1..n] must doQ(n?) node relabellings for inserting edges. Heupler et al7g]
show a class of examples on which any local algorithm mus@gam/2) node
relabellings for inserting edges.

5.11 Conclusion

In this chapter, we considered the problem of dynamic tagpo#d ordering. We
have presented the firstn®) algorithm for incremental topological ordering. The
analysis of our algorithm is however, not tight. A non-talviower bound of
O(r?logn) for our algorithm can be infered from Theoreld. However, it is
still quite far from the upper bound @(n?’®) for this algorithm. We show some
ideas that can potentially lead to tightening the analyfsisis algorithm. A better
analysis of this algorithm still remains an open problem.

There is still a large gap between the current best lower é®(ef. Sectiord.10
and the upper bound @(min{m'® n?logn}). Bridging this gap remains an open
problem.

As mentioned at the beginning of this chapter, nothing best&nown for on-
line cycle detection so far than to maintain topologicalesiag in an incremental
setting. Itis not clear if a faster online cycle detectiogoaithm can be developed.

The externalization of our algorithm provides interestiregv results for dynamic
topological ordering in external memory. It would be insgneg to see if the

faster incremental topological ordering algorithms deped recently also lead to
improved external memory results.

We also presented the first average-case analysis of oojpadogical ordering
algorithms. We proved an expected runtimeQgh? polylog(n)) under insertion

of the edges of a complete DAG in a random order for AHRSZ, KB BIK.

An interesting question here is whether one can obtainietiends for the case
when there aren= o(n?) edges inserted into a previously empty DAG or into an
arbitrary DAG.

It will also be interesting to find out whether the averagseceesults can be ex-
tended to the fully dynamic case. Note that in the worst caseagio, it is not
possible to obtain any interesting results for this casengsafgorithm that ex-
plicitly maintains the node labellings can be made tdxa) work for a pair of
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insertion and deletion. This can be seen, for example, bytaiaing a list DAG,
deleting the edge in the middle and inserting a new edge cbingethe previous
end-point of the list to the previous starting point of tret.liHowever, when the
sequence of insertions and deletions is random, such wasst scenarios will
happen with low probability and it might be possible to pr@ane interesting
bounds.

For the analysis of these algorithms to make more sensedbapglications, we
may consider changing our notion of change. Typically, wendbhave edges
coming one at a time. Rather a few edges get inserted or dedetéwe want to
use the old topological ordering to compute the new one efftty. Pearce]23
proposed a modification of online topological ordering, imeth a batch of edges
are inserted at a time.
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Summary

The notion of graph traversal is of fundamental importaocgoiving many com-
putational problems. It has therefore received considerattention in the com-
puter science literature - many linear or near-linear tilger@thms for traversing
graphs have been developed. In many modern applicatiookving graph traver-
sal such as those arising in the domain of social networksrriat based services,
fraud detection in telephone calls etc., the underlyinglyria very large and dy-
namically evolving. For these applications, the simpledinor near-linear time
RAM-model static graph traversal algorithms are often prapriate because of
the large number of I/Os they incur. Also, these algoritharstde easily adapted
to the dynamic framework. Furthermore, many applicatioedseare already ful-
filled if the total running time is bounded in the averageecasd not necessarily
in the worst-case. This thesis deals with the design andneegng of graph
traversal algorithms for massive and/or dynamic graphs.

We engineer various I/O-efficient Breadth First Search (B#§orithms for mas-
sive sparse undirected graphs. Our pipelined implememisitvith low constant
factors makes BFS viable on massive graphs. For many grajphsamund a
billion edges (with 1-3 GB RAM), it reduces the running-tifioe BFS traversal
from a fewmonthsrequired by the simple RAM model BFS algorithm to a few
hours Our code has now evolved into a software package, that eidventually
integrated into an external memory library.

Our detailed experimental study suggests that a simpler@ttmemory BFS al-
gorithm by Munagala and Ranad&lf (MR_BFS) performs quite well on low
diameter graphs or when the edges are kept on the disk in dee rquired for
the BFS traversal. The better asymptotic worst-case I/vdaid the BFS algo-
rithm by Mehlhorn and Meyerl0g (MM _BFS) help it to outperform MEBFS
on moderate to large diameter graphs. MB#S also benefits from our heuristics
that preserve its worst-case guarantees. Exploiting & riowledge of the graph
structure and disk parallelism further alleviate the I/@leoaeck of MM BFS. We
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also show evidence that the cache-oblivious BFS algoritmast least a factor of
four to five slower than their external memory counterpavtsen the input graph
resides on the disk.

Flash memory is fast becoming the dominant form of end-useage in mobile
computing. Since storage devices play a crucial role in @ropmance of (traver-
sal) algorithms when the input (graph) data does not fit imthen memory, it is
important to understand the I/O-characteristics of theagt® devices to be able
to predict the real running times of these algorithms. Suchraderstanding can
also be exploited to design algorithms that are faster intw& We characterize
the performance of NAND flash based storage devices, inojutiany solid state
disks. We show that unlike hard disks, these devices haverfeendom reads
than random writes. Interestingly, we found that the costaoidom writes on
flash devices is non-uniform in time and depends on the I&ehy of the device.
We also analyze the effect of misalignments, aging, coetratterface, etc. on
the performance obtained on these devices. We show thatel&sp similarities
between flash memory and RAM (fast random reads) and betwasndisk and
hard disk (both are block based devices), the algorithmiyded in the RAM
model or the external memory model do not realize the fulepbal of the flash
memory devices. Thus, there is a need for a different modeldIstinguishes
between read and write blocks to get the best performancasimdlevices.

In the scenario when a solid state disk is used as an addisenandary storage
rather than replacing the traditional hard disk, we engitlee I/O-efficient BFS
implementation to exploit the comparative advantages tf thee disks. We show
that on a difficult graph class for external memory BFS, thiatileast 25% faster
than randomly striping the data on the two disks.

We present a simple algorithm which maintains the topokigioder of a directed
acyclic graph withn nodes under an online edge insertion sequen@@(it ')
time, independent of the numbar of edges inserted. For dense DAGS, this is
an improvement over the previous best resuIO()rfnin{mg logn, m2 + n?logn})

by Katriel and Bodlaenderdfl]. While our analysis holds only for the incre-
mental setting, our algorithm itself is fully dynamic. Theternalization of our
algorithm provides interesting new results for dynamicological ordering in
external memory.

We also present the first average-case analysis of onliméomigal ordering algo-
rithms. We prove an expected runtime@fn? polylog(n)) under insertion of the
edges of a complete DAG in a random order for various increah¢opological

ordering algorithms.



Zusammenfassung

Die Traversierung von Graphen ist von fundamentaler Beotepfur das Losen
vieler Berechnungsprobleme. Folglich findet sie grosseBiag in der Informatik-
Literatur; es wurden viele lineare oder fast-lineare Tradgungsalgorithmen vorgeschla-
gen. Moderne Anwendungen, die auf Graphtraversierunghleerufindet man
unter anderem in sozialen Netzwerken, internetbasieriendileistungen, Be-
trugserkennung bei Telefonanrufen. In vielen dieser Ardueigen ist der zu-
grunde liegende Graph sehr gross und andert sich kontiichieEinfache lineare
oder fast-lineare Graphtraversierungs-Algorithmen fdiiedlas RAM-Modell en-
twickelt wurden, sind in diesen Anwendungen oft nicht agitgda sie eine hohe
Anzahl von I/O-Zugriffen verursachen. Auch ist es nichthgidiese Algorith-
men fur dynamische Szenarien anzupassen. Ferner werdefnébrderungen
vieler Anwendungen bereits erfullt, wenn die Gesamtlaifim Average-Case
und nicht unbedingt im Worst-Case begrenzt ist. Diese Afai den Entwurf
und das Entwickeln von Graphtraversierungs-Algorithmamhassive und/oder
dynamische Graphen zum Thema.

Wir entwickeln mehrere I/O-effiziente Breitensuch-Algbmen fur massive, diinnbe-
siedelte, ungerichtete Graphen. Im Zusammenspiel mitistéeen zur Einhal-
tung von Worst-Case-Garantien, ermoglichen unsereipgigsierten Implemen-
tierungen die Praktikabilitat von Breitensuche auf massiGraphen. Fir viele
Graphen mit rund eine Milliarde Kanten (mit 1-3 GB RAM) wirgdreitensuch-
Laufzeit von wenigen Monaten, die vom einfachen RAM-Mod&tjorithmus

zur Breitensuche benotigt werden, auf wenige Stunderezretu Unser Code ist

als Software-Paket vorhanden, das voraussichtlich inEeiernspeicher-Bibliothek
integriert wird.

Unsere detaillierte, experimentelle Untersuchung ledgitenalass ein einfacher
Breitensuchalgorithmus fur den externen Speicher, $direagala and Ranad&15
(MR_BFS), gute Leistung erbringt, wenn der Graph einen kleinarcbmesser
hat, oder seine Kanten im Speicher in der Reihenfolge aggslad, die von
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der Breitensuche benotigt wird. Die bessere, asymptwisO-Grenze fur den
Worst-Case des Breitensuch-Algorithmus von Mehlhorn uegéd [LOg (MM _BFS)
fuhrt zu einer besseren Leistung als bei MRS auf Graphen mit moderatem bis
grossem Durchmesser. MBFS profitiert auch von unseren Heuristiken, welche
die Worst-Case-Garantien bewahren. Das Wissen uiber dighGiruktur und den
Plattenparallelismus mildern die Wirkung des I/O-Engpadsei MM BFS. Wir
zeigen auch Indizien dafur auf, dass cache-oblivioust&neuch-Algorithmen
mindestens um Faktor Vier oder Funf langsamer sind alsRleredants fur den
externen Speicher, wenn der Graph auf der Platte residiert.

Flash-Speicher wird immer mehr zur dominanten Form dercBeeung fur End-
benutzer im Mobile Computing. Da Speichermedien eine wgehRolle fur die
Leistung von Traversierungs-Algrithmen spielen, wenn [daen nicht in den
Hauptspeicher passen, ist es notwendig, die I/O-MerkmaheSpeichermedien
zu verstehen, um reale Laufzeiten fur diese Algorithmererzusagen. Dieses
Verstandnis kann ausgenutzt werden, um Algorithmen zwesién, die in der
Praxis schneller sind.

Wir charakterisieren die Leistung von NAND-Flash basier&peichermedien,
einschliesslich vieler solid-state Disks. Wir zeigen,ddi€se Medien, im Gegen-
stz zu Festplatten, einen schnelleren wahlfreien Les&diseibe-Zugriff haben.
Interessanterweise haben wir herausgefunden, dass dierkKdss wahlfreien
Schreibe-Zugriffs auf Flash-Medien ungleichmassig inzigpauf die Zeit sind
und von der I/O-Historie des Mediums abhangen. Zus#tziicalysieren wir
die Wirkung von Ausrichtungsfehlern, Alterung, vorausgetien 1/0O-Mustern,
usw., auf die Leistung dieser Medien. Wir zeigen, dass wletzAhnlichkeiten
von Flash-Speicher und RAM (schnelle wahlfreie Lese-Zteyrund von Flash-
Platten und Festplatten (beide sind blockbasiert) Algangn, die fur das RAM-
Modell oder das Externspeicher-Modell entworfenen wuyaérht das volle Po-
tential der Flash-Speicher-Medien ausschopfen. Fdigjibt es also einen Bedarf
fur ein neues Modell, das zwischen Lese- und Schreibek®lid unterscheidet,
um beste Leistung auf Flash-Medien zu gewahrleisten.

Wir entwickeln einen 1/O-effiziente Breitensuch-Algomtlas fir das Szenario,
in dem eine solid-state Disk als zusatzlicher Zweitspaiaind nicht als Ersatz
fur die traditionelle Festplatte benutzt wird, um die kargtiven Vorteile beider
Disks auszunutzen Wir zeigen, dass dies mindestens 25%lgahist als ein

zufalliges Aufteilen der Daten auf beiden Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Oetiainfligen von Kan-
ten die topologische Ordnung von einem gerichteten, agsféin Graphen (DAG)
mit n Knoten beibehalt. Dieser Algorithmus hat eine Laufzeitipdexitat von
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O(n?"®) unabhangig von der Anzahi der eingefiigten Kanten. Fuir dichte DAGs
ist dies eine Verbesserung des besten, vorherigen Erg;leals;m'erO(min{m:‘z3 logn,
m? + n?logn}), siehe Katriel and Bodlaende3q]. Wahrend die Analyse nur im
inkrementellen Szenario gutlig ist, ist unser Algoritrsnudlistandig dynamisch.
Die Externalisierung unseres Algorithmus liefert neueriessante Ergebnisse fur
dynamische, topologische Ordnungen im externen Speicher.

Ferner stellen wir die erste Average-Case-Analyse vonn@niilgorithmen zur
Unterhaltung einer topologischen Ordnung vor. Fur mehnmekrementelle Al-
gorithmen, welche die Kanten eines kompletten DAGs in ligér Reihenfolge
einfiigen, beweisen wir eine erwartete Laufzeit @m? polylog(n)).
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