
Traversing large graphs in realistic settings

Deepak Ajwani
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften(Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten I
der Universität des Saarlandes

Betreuender Hochschullehrer – Supervisor
Prof. Dr. h. c. Kurt Mehlhorn,
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Gutachter – Reviewers
Prof. Dr.-Ing. Ulrich Meyer,
Institut für Informatik,
Goethe-Universität, Frankfurt am Main, Germany

Gerth Brodal, Ph.D.,
Department of Computer Science,
Aarhus University,̊Arhus, Denmark

Vorsitzender des Pr̈ufungsausschusses – Chairman of the Examination Board
Prof. Dr. Raimund Seidel,
Universität des Saarlandes, Saarbrücken, Germany

Beisitzer – Observer
Dr. Stefan Canzar,
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Dekan – Dean
Prof. Dr. Joachim Weickert,
Universität des Saarlandes, Saarbrücken, Germany

Datum des Kolloquiums – Date of Defense
21. Dezember 2008 – December 21st, 2008

Deepak Ajwani
MADALGO – Center for Massive Data Algorithmics,
IT-parken,Åbogade 34,
DK-8200Århus N, Denmark
ajwani@madalgo.au.dk

Abstract

The notion of graph traversal is of fundamental importance to solving many com-
putational problems. In many modern applications involving graph traversal such
as those arising in the domain of social networks, Internet based services, fraud
detection in telephone calls etc., the underlying graph is very large and dynam-
ically evolving. This thesis deals with the design and engineering of traversal
algorithms for such graphs.

We engineer various I/O-efficient Breadth First Search (BFS) algorithms for mas-
sive sparse undirected graphs. Our pipelined implementations with low constant
factors, together with some heuristics preserving the worst-case guarantees makes
BFS viable on massive graphs. We perform an extensive set of experiments to
study the effect of various graph properties such as diameter, initial disk layouts,
tuning parameters, disk parallelism, cache-obliviousness etc. on the relative per-
formance of these algorithms.

We characterize the performance of NAND flash based storage devices, including
many solid state disks. We show that despite the similarities between flash mem-
ory and RAM (fast random reads) and between flash disk and harddisk (both are
block based devices), the algorithms designed in the RAM model or the exter-
nal memory model do not realize the full potential of the flashmemory devices.
We also analyze the effect of misalignments, aging, past I/Opatterns, etc. on
the performance obtained on these devices. We also considerI/O-efficient BFS
algorithms for the case when a hard disk and a solid state diskare used together.

We present a simple algorithm which maintains the topological order of a directed
acyclic graph withn nodes under an online edge insertion sequence inO(n2.75)
time, independent of the numberm of edges inserted. For dense DAGs, this is
an improvement over the previous best result ofO(min{m3

2 logn,m
3
2 +n2 logn}).

While our analysis holds only for the incremental setting, our algorithm itself is
fully dynamic.

ii Abstract

We also present the first average-case analysis of online topological ordering algo-
rithms. We prove an expected runtime ofO(n2 polylog(n)) under insertion of the
edges of a complete DAG in a random order for various incremental topological
ordering algorithms.

Kurzfassung

Die Traversierung von Graphen ist von fundamentaler Bedeutung für das Lösen
vieler Berechnungsprobleme. Moderne Anwendungen, die aufGraphtraversierung
beruhen, findet man unter anderem in sozialen Netzwerken, internetbasierten Di-
enstleistungen, Betrugserkennung bei Telefonanrufen. Invielen dieser Anwen-
dungen ist der zugrunde liegende Graph sehr gross und ändert sich kontinuierlich.

Wir entwickeln mehrere I/O-effiziente Breitensuch-Algorithmen für massive, dünnbe-
siedelte, ungerichtete Graphen. Im Zusammenspiel mit Heuristiken zur Einhal-
tung von Worst-Case-Garantien, ermöglichen unsere pipeline-basierten Imple-
mentierungen die Praktikabilität von Breitensuche auf massiven Graphen. Wir
führen eine Vielfalt an Experimente durch, um die Wirkung unterschiedlicher
Grapheigenschaften zu untersuchen, wie z.B. Graph-Durchmesser, anfängliche
Belegung der Festplatte, Tuning-Parameter, Plattenparallelismus.

Wir charakterisieren die Leistung von NAND-Flash basierten Speichermedien,
einschliesslich vieler solid-state Disks. Wir zeigen, dass trotz derÄhnlichkeiten
von Flash-Speicher und RAM (schnelle wahlfreie Lese-Zugriffe) und von Flash-
Platten und Festplatten (beide sind blockbasiert) Algorithmen, die für das RAM-
Modell oder das Externspeicher-Modell entworfenen wurden, nicht das volle Po-
tential der Flash-Speicher-Medien ausschöpfen. Zusätzlich analysieren wir die
Wirkung von Ausrichtungsfehlern, Alterung, vorausgehenden I/O-Mustern, usw.,
auf die Leistung dieser Medien. Wir berücksichtigen auch I/O-effiziente Breitensuch-
Algorithmen für die gleichzeitige Nutzung von Festplatten und solid-state Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Online-Einfügen von Kan-
ten die topologische Ordnung von einem gerichteten, azyklischen Graphen (DAG)
mit n Knoten beibehält. Dieser Algorithmus hat eine Laufzeitkomplexität von
O(n2.75) unabhängig von der Anzahlmder eingefügten Kanten. Für dichte DAGs
ist dies eine Verbesserung des besten, vorherigen Ergebnisses vonO(min{m3

2 logn,

m
3
2 +n2 logn}). Während die Analyse nur im inkrementellen Szenario gütlig ist,

iv Kurzfassung

ist unser Algorithmus völlständig dynamisch.

Ferner stellen wir die erste Average-Case-Analyse von Online-Algorithmen zur
Unterhaltung einer topologischen Ordnung vor. Für mehrere inkrementelle Al-
gorithmen, welche die Kanten eines kompletten DAGs in zufälliger Reihenfolge
einfügen, beweisen wir eine erwartete Laufzeit vonO(n2 polylog(n)).

Acknowledgements

First of all, I would like to thank my two supervisors Kurt Mehlhorn and Ulrich
Meyer for their generous support. In particular, I would like to thank Uli for his
guidance, not only in scientific affairs, but also in practical matters of everyday
life. At the same time, he gave me considerable scientific freedom to work on
many different topics at the same time, thereby providing meample opportunities
to develop my own ideas and grow as an independent researcher. He has been
very patient with me, as the engineering projects in this dissertation took much
longer than expected.

I would also like to thank my co-authors Saurabh Ray, Roman Dementiev, Tobias
Friedrich, Khaled Elbassioni, Hans Raj Tiwary, Sathish Govindarajan, Vitaly Os-
ipov and Raimund Seidel. I learnt a lot while working with them. I am also grate-
ful to Norbert Zeh for sharing valuable insights and many helpful discussions.
Thanks are also due to Andreas Beckmann for his great help with organizing and
debugging the external memory implementations.

I am also grateful to the members of my thesis examination committee who care-
fully read this thesis and raised many interesting questions during my defense.

My friends Shirley, Sky, Imran, Rali, Joisy and Chris made the life in Saar-
bruecken so much fun. I always looked forward to having discussions with the
lunch-group of the Databases and Information Retrieval group, in particular Fabian,
Gjergji, Julia, Gerard and Mouna.

I would also like to acknowledge the International Max-Planck Research School
(IMPRS), Deutsche Forschungsgemeinschaft (DFG) and Max-Planck Society for
their financial support in the past years. MPII has been an incredibly nice place
to work. Its transparent building and the beautiful nature surrounding it add to
its charms. The bureacracy here is almost hidden – the ease ofprocuring new
hardware and getting it installed is truly amazing.

vi Acknowledgements

I am indebted to my parents, who made sure that I get the best possible education
and let me pursue my career abroad.

And last but not the least, I would like to thank my wife Georgiana Ifrim for
her unflinching love through the thick and thin. She had been encouraging and
understanding, even as I had been mentally immersed in my work.

Contents

1 Introduction 1
1.1 Large graphs . 2
1.2 Realistic setting for traversing large graphs. 5
1.3 Our contribution. 7
1.4 Organization of the thesis. 9

2 Basic tools and techniques 11
2.1 Preliminary definitions. 11
2.2 Basic probability theory. 14
2.3 Random Graph Model. 15
2.4 Computation models capturing memory hierarchies. 17
2.5 Basic tools for designing external memory graph traversal

algorithms. 24
2.6 Tools and techniques for engineering external memory graph

traversal algorithms. 29

3 Breadth first search on massive graphs 31
3.1 Related prior work . 32
3.2 Basic building blocks. 35
3.3 Algorithms . 40
3.4 Engineering MRBFS . 43
3.5 Engineering MMBFS R . 50
3.6 Engineering MMBFS D . 54
3.7 A heuristic for maintaining the pool. 57
3.8 External memory graph generator. 58
3.9 External memory BFS decomposition verifier. 62
3.10 BFS software package. 63
3.11 Results of our experimental study. 66
3.12 Recent work related to EM BFS. 79
3.13 Discussion. 87

viii CONTENTS

4 Characterizing the performance of Flash memory storage devices 89
4.1 Basics of flash memory disks. 92
4.2 Implications of flash devices for algorithm design. 93
4.3 Characterization of flash memory devices. 95
4.4 Designing algorithms to exploit flash when used togetherwith a

hard disk. 110
4.5 Conclusion . 112

5 Dynamic topological ordering 113
5.1 Related work . 115
5.2 Algorithm . 117
5.3 Correctness. 121
5.4 Runtime. 123
5.5 Bucket data structure. 127
5.6 Empirical comparison. 128
5.7 Towards a tighter analysis of our algorithm. 131
5.8 Dynamic topological ordering in external memory. 135
5.9 Average-case analysis of online topological ordering algorithms . 137
5.10 Recent advances in online topological ordering algorithms 145
5.11 Conclusion . 146

Chapter 1

Introduction

A theory must be tempered with reality.

— Jawaharlal Nehru

A graph is one of the most useful objects in discrete mathematics. It can be used
to represent physical networks such as electrical circuits, roadways or organic
molecules as well as less tangible interactions as might occur in ecosystems, so-
ciological relationships, databases or in the flow of control in a computer pro-
gram. It therefore comes as no surprise that graph theory finds applications in
physics, chemistry, communication science, computer science, electrical and civil
engineering, architecture, operational research, genetics, psychology, sociology,
economics, anthropology and linguistics. The theory is also intimately related to
many branches of mathematics, including group theory, matrix theory, numerical
analysis, probability, topology, and combinatorics. In fact, graph theory serves as
a mathematical model for any system involving a binary relation.

The notion of graph traversal is nearly as old and as important as the notion of
a graph itself. One of the most celebrated results in graph traversal dates back
to 1736 when Leonhard Euler solved the famousSeven Bridges of K̈onigsberg
problemusing a graph traversal technique called Euler tour. A surprisingly large
number of optimization problems from many different domains can be reduced to
traversing graphs in a structured way.

2 Chapter 1: Introduction

Graph traversal algorithms have therefore received considerable attention in the
computer science literature. Simple linear time algorithms have been developed
for Breadth-First Search (BFS), Depth-First Search (DFS),computing connected
and strongly connected components on directed graphs, and topological ordering
of directed acyclic graphs [51]. Also, there exist near-linear time algorithms for
computing Minimum Spanning Trees (MST) [45, 88, 128] of undirected graphs.
Dijkstra’s algorithm [61] with Fibonacci heaps [71] can solve the Single-Source
Shortest-Paths (SSSP) [61, 71] problem on directed graphs with non-negative
weights inO(m+ nlogn), wheren is the number of nodes andm is the number
of edges in the graph. For All-Pair Shortest-Paths (APSP), the naı̈ve algorithm of
computing SSSP from all nodes takesO(m· n+ n2 logn). It has been improved
to O(m·n+ n2 loglogn) [127] for sparse graphs andO(n3/ logn) [44] for dense
graphs.

1.1 Large graphs

In many applications involving graph traversal, the underlying graph is too big
to fit in the internal memory of the computing device. Consider the following
examples:

• The World Wide Web (WWW) can be looked upon as a massive graph
where each web-page is a node and the hyperlink from one page to an-
other is a directed edge between the nodes corresponding to those pages.
As of August 2008, it is estimated that the indexed web contains at least 27
billion webpages [53].

Typical problems in the analysis (e.g., [35, 95]) of WWW graphs include
computing the diameter of the graph, computing the diameterof the core
of the graph, computing connected and strongly connected components and
other structural properties such as computing the correct parameters for the
power law modeling of WWW graphs. There has also been a lot of work on
understanding the evolution of such graphs.

Computing Page rank [36] (the basis of the Google search engine) is con-
sidered to be a very important problem with respect to webgraphs, owing
to its immense usage in search engines, classification and many other ma-
chine learning applications. A key challenge here is that since the webgraph
is continuously evolving, recomputing Page rank every timethere is a mi-
nor modification in the webgraph is considered to be “increasingly infeasi-
ble” [59].

1.1 Large graphs 3

• Social networking websites such as Facebook, Orkut, MySpace, LinkedIn
etc. also provide massive and continuously evolving graphs. The nodes here
refer to the profiles of people and an edge refers to an acknowledgement of
acquaintance between two people. Typical problems on thesegraphs are
computing similarity based clustering to find communities of people.

• Citation graphs of scientific papers from specific domains, where nodes are
the publications and a directed edge from one paper to the other reflects
a citation is yet another such graph class. The main problem here is to
understand the nature of scientific collaboration and identify communities.

• Automatic classification of data items, based on training samples, can be
boosted by considering the neighborhood of data items in a graph struc-
ture [16]. This is particularly useful when the objects to be classified are im-
ages (in web-sites such as Flickr) or videos (in web-sites such as YouTube).
The tags associated with these pictures and videos are hardly enough for
their classification. The graph structure containing the likings and dislik-
ings of different users provides important clues that can improve the clas-
sification accuracy significantly. Such graphs can often be quite huge. For
example, the online photo sharing network Flickr that started in 2004 had
more than two billion pictures as of November 2007 [70] and claims that
three to five million photos are updated daily on its network.

• There have also been attempts (e.g., [98]) to improve the results of web
search by using the implicit feedback obtained from query logs. The under-
lying assumption behind these approaches is that by clicking (or ignoring)
the results provided by the search engines for a particular query, users mark
the relevance of clicked (or ignored) pages with respect to their query. The
graph here is huge as the set of nodes consists not only of the web-pages,
but also of all the queries posted by users to the search engine. There is an
edge between a node representing a queryq and a node representing a web-
pagew if a user searches for the queryq, the search engine shows him/her
the web-pagew as a result, and he/she clicks on it.

• Telephone call graphs: Telephone call graphs have the telephone numbers
operated by a company as nodes and there is a directed edge between two
nodes if and only if there has been a call from one to another ina certain
time-frame. The call graphs managed by telecom companies like AT&T
can be massive. Typical problems on telephone call graphs are fraud de-
tection and searching for local communities (e.g., by detecting maximum
cliques [1]).

4 Chapter 1: Introduction

• GIS terrain data: Remote sensing has made massive amounts ofhigh res-
olution terrain data readily available. Terrain analysis is central to a range
of important geographic information systems (GIS) applications concerned
with the effects of topography. Typical problems in this domain involve
flow routing and flow accumulation [22].

• Route planning on small PDA devices [76, 141]: The PDA devices used to
compute the shortest/fastest routes have very small main memory. Although
the street maps of even continents are only a few hundred MBs in size, they
are too large to fit into the small main memory of these devices.

• State space search in Artificial Intelligence [64]: In many applications of
model checking, the state space that needs to be searched is too big to fit in
the main memory. In these graphs, the different configuration states are the
nodes and the edge between two nodes represent the possibility of a transi-
tion from one state to another in the course of the protocol/algorithm being
checked. Typical problems in this domain are reachability analysis (to find
out if a protocol can ever enter into a wrong state) [84], cycle detection (to
search for liveness properties) [63], or just finding some path to eventually
reach a goal state (action planning).

• Semantic graphs (e.g., [99]), where the nodes represent entities and the
edges represent relationship between two entities can alsobe quite huge.
Typical problems in the analysis of semantic graphs includedetermining
the nature of the relationship between nodes in the graph. Such queries can
be answered by finding shortest paths or computing Steiner trees. Another
key area of interest on semantic graphs is community analysis.

• Purchase graph from electronic commerce (e-commerce) companies such
as the online book-shop Amazon is yet another example of massive and
continuously evolving graph. Here, the bipartite graph consists of the prod-
ucts (such as books) and the buyers as the nodes and a purchaseas an edge.
There has been a lot of work in building a personalized recommendation
system to show those products to users that they may also like. This is typ-
ically based on their past purchases. The key idea here is to identify other
users whose purchasing behavior is similar and recommend the appropri-
ately weighted sum of their other purchases.

• Frameworks for keyword querying of relational databases (e.g., [28]) may
also involve traversing large graphs.

• Many problems arising in VLSI design, XML query processing,querying

1.2 Realistic setting for traversing large graphs 5

ontology DAGs, Delaunay triangulation of meshes in computer graphics, vi-
sualization of biological networks such as protein-protein interactions, and
molecular data mining also involve traversing large graphs.

While some solutions for these problems are based on sparse-matrix dense-vector
multiplications, or approximating the solution using integer linear programming,
a large number of solutions rely on traversing graphs. For example, a community
detection algorithm by Newman and Girman [119] uses all-pair BFS as a sub-
routine to identify edges with high “betweenness”, where betweenness is some
measure that favors edges that lie between communities and disfavors those that
lie inside communities. Removal of these edges reveal the inherent “natural” di-
vision of the network into groups.

1.2 Realistic setting for traversing large
graphs

Since, the standard linear or near-linear time algorithms for graph traversal are
also reasonably simple, it is tempting to use them directly in real applications
involving large and massive graphs as well. Unfortunately,the real world offers
many more challenges than the ones for which our simple algorithms are designed.

First and foremost, these algorithms are designed and analyzed in the von Neu-
mann or RAM model of computation. This model assumes a unit cost access to
any memory location. In reality, the computer architectureis far more complex.
There is a sophisticated memory hierarchy (cf. Section2.4.2) and the cost of data
access depends on the level of memory where the data is currently residing. In
particular, the cost of accessing the data from the disk is about a million times
more than that of accessing it from the L1 cache.

As the storage requirements of the input graph reaches and exceeds the size of the
main memory available, the running time of the simple linearor near-linear time
algorithms deviates significantly from their predicted asymptotic performance in
the RAM model. Furthermore, on massive graphs (with a billion or more edges),
these algorithms are simply non-viable as they require manymonths or yearsfor
the requisite graph traversal. The main cause for such a poorperformance of these
algorithms on massive graphs is the number of I/Os (transferof data from/to the
external memory) they incur.

Figure1.1displays the results of experiments with the commonly used BFS rou-

6 Chapter 1: Introduction

216

215

214

212

210

28

26

24

22

1
 2 2.5 3 3.5

T
im

e
(in

 s
ec

)

n (in millions)

Time taken by LEDA BFS

Figure 1.1: Time (in seconds) required by BFS from the LEDA graph package on
random graphs withm= 4n edges.

tine of the LEDA [107] graph package on random graph [66, 67] G(n,m) with
m= 4n. These experiments were done on a machine with Intel Xeon 2.0GHz pro-
cessor, 1 GB RAM and 2 GB swap space on a Seagate Baracuda hard-disk [142].
On random graphs with 3.6 million nodes (and 14.4 million edges), it takes around
10 hoursas compared to just 10secondsfor graphs with 1.8 million nodes (and
7.2 million edges).

With the advent of solid state disks and other flash memory based storage medi-
ums, the memory hierarchy is likely to become even more sophisticated as the
read-write characteristics of these devices can be very different from the tradi-
tional hard disks. Since the storage devices significantly affect the practical per-
formance of traversal algorithms when running on large graphs, we would like
to exploit the I/O characteristics of these devices to design graph traversal algo-
rithms that perform better in practice. For this, it is important to first properly
characterize these disks.

Another important challenge when dealing with real world applications is that
the input graphs are often dynamically changing. For instance, the World Wide
Web graph, social networking graphs, purchase graphs, and scientific collabora-
tion graphs are all continuously evolving. The telephone call graphs are also con-
tinuously changing. Even the street maps for route planningapplications which
may seem static most of the time are actually quite dynamic once the traffic jam
and other road-block information is accounted in. The naı̈ve way of recomput-
ing all the information every time there is a minor modification in the original

1.3 Our contribution 7

graph is inefficient and for large and massive graphs, often impractical. Ideally,
we would like to bound the amount of work needed to recompute the required
traversal-related solution by a function of some measure ofchange done in the
input graphs and the change in the output solution [132]. Since this is not always
possible, our next best hope is to bound the required work in an amortized sense.
In other words, while some updates may necessiate a lot of work, we would like to
bound the sum of the time required for recomputing the solution over a sequence
of graph updates.

While most of the algorithm design is done keeping the worst case complexity in
mind, the worst case graphs for many of these algorithms are quite rare. Most ap-
plication requirements are already met if an algorithm performs good on average.

In short, the simple graph traversal algorithms are often inappropriate for real ap-
plications involving massive graphs owing to the problems with the computation
model, the noise and dynamicity of the input and the need for adifferent complex-
ity measure (worst-case vs. average case).

Since most static algorithms analyzed for worst-case RAM complexity are im-
practical for massive graphs, one often relies on heuristics, pre-computations or
exploiting special graph properties of underlying graphs.Such solutions are usu-
ally tailored for particular domains and are often application-specific. For each
new application, one needs to design and implement different heuristics from
the scratch. There is clearly a need for algorithms that willnot only give nice
theoretical guarantees for general graphs (without assuming any domain-specific
knowledge), but also perform good in practise. This thesis focuses on the design,
analysis and engineering of such algorithms.

1.3 Our contribution

The main contributions of this thesis are:

• We consider the problem of I/O-efficient Breadth-First Search (BFS) on
massive sparse undirected graphs. We engineer the MRBFS algorithm by
Munagala and Ranade [115] into a practical implementation with low con-
stant factors in the I/O complexity. Our pipelined implementation based on
the external memory library STXXL can use multiple disks to further alle-
viate the I/O bottleneck. With this implementation, we are able to compute
the BFS level decomposition of a web-crawl based graph of around 130
million nodes and 1.4 billion edges in less than 3 hours, using 4 disks.

8 Chapter 1: Introduction

We also engineer theo(n)-I/O MM BFS algorithm [106] by Mehlhorn and
Meyer. Our experiments suggest that while on small diametergraphs, MRBFS
performs quite well, MMBFS performs significantly better on moderate
to large diameter graphs. The usage of some heuristics further improves
the running time of the faster variant of MMBFS, while at the same time
preserving the worst-case asymptotic I/O-complexity of MMBFS. Demon-
strating the viability of our BFS implementations [7, 9, 13] on various syn-
thetic and real world benchmarks, we show that BFS level decompositions
for large graphs (around a billion edges) can be computed on acheap ma-
chine in afew hours, even if the underlying graph has large diameter.

We also present the design and engineering of simple I/O-efficient algo-
rithms for generating large input graphs (of various graph classes) and a
BFS decomposition verifier. As a part of our BFS implementations, we also
look into the past engineering efforts on list ranking, Euler tour, minimum
spanning forest and connected components, and adapt some ofthese imple-
mentations to the faster STXXL framework.

Furthermore, we compare the building blocks of our implementation with
their corresponding cache-oblivious implementations anddemonstrate that
in the context of BFS on massive graphs, the cache-obliviousimplementa-
tion is likely to be at least a factor of 4-5 slower than our implementation.

The key engineering ideas in our implementations also form the starting-
point for implementing other I/O-efficient algorithms likeSingle-Source
Shortest-Paths and Dynamic BFS. A significant chunk of our code is likely
to be re-used for these implementations.

• Flash memory is fast becoming the dominant form of end-user storage in
mobile computing. Since storage devices play a crucial rolein the perfor-
mance of (traversal) algorithms when the input (graph) datadoes not fit
in the main memory, it is important to understand the I/O-characteristics
of the storage devices to be able to predict the real running times of these
algorithms. Such an understanding can also be exploited to design algo-
rithms that are faster in practice. We characterize [10, 11] the performance
of NAND flash based storage devices, including many solid state disks. We
show that these devices have better random read performancethan hard
disks, but much worse random write performance. We also analyze the ef-
fect of misalignments, aging, past I/O patterns, etc. on theperformance
obtained on these devices. We show that despite the similarities between
flash memory and RAM (fast random reads) and between flash diskand
hard disk (both are block based devices), the algorithms designed in the

1.4 Organization of the thesis 9

RAM model or the external memory model do not realize the fullpotential
of the flash memory devices.

In the scenario when a solid state disk is used as an additional secondary
storage rather than replacing the traditional hard disk, weengineer the I/O-
efficient BFS implementation to exploit the comparative advantages of both
the disks. We show that this is at least 25% faster than randomly striping
the data on the two disks.

• We present a simple algorithm [8, 12] which maintains the topological order
of a directed acyclic graph withn nodes under an online edge insertion
sequence inO(n2.75) time, independent of the numberm of edges inserted.
For dense DAGs, this is an improvement over the previous bestresult of
O(min{m3

2 logn,m
3
2 +n2 logn}) by Katriel and Bodlaender [91]. While our

analysis holds only for the incremental setting, our algorithm itself is fully
dynamic.

We also provide an empirical comparison of our algorithm with other algo-
rithms for dynamic topological sorting.

The externalization of our algorithm provides interestingnew results for
dynamic topological ordering in external memory.

We also present the first average-case analysis [5, 6] of online topological
ordering algorithms. We prove an expected runtime ofO(n2 polylog(n))
under insertion of the edges of a complete DAG in a random order for the
algorithms of Alpern et al. [15], Katriel and Bodlaender [91], and Pearce
and Kelly [124].

1.4 Organization of the thesis

The rest of this thesis is organized as follows: Chapter2 formally defines a graph
and various notations used in the remaining chapters. It also shows the various
computation models used to capture memory hierarchy and presents the basic
tools and techniques for the design and engineering of I/O-efficient algorithms.
Chapter3 presents our work in engineering the I/O-efficient BFS algorithms. We
also describe the related design and engineering of I/O-efficient algorithms for list
ranking, Euler tour, directed breadth-first search, depth-first search, and topolog-
ical ordering, and undirected connected components, minimum spanning forest,
single-source shortest paths, dynamic BFS, and diameter approximation.

10 Chapter 1: Introduction

In Chapter4, we show the characterization of flash memory devices including
solid state disks. We also describe our efforts for tuning our I/O-efficient BFS al-
gorithms to handle the case when the computing machine uses both the traditional
hard disks as well as solid state disks for storage.

In Chapter5, we present ourO(n2.75) algorithm for online topological ordering.
We also show some open problems that can help tighten the analysis of our algo-
rithm. Also, we show how to externalize our algorithm to obtain interesting new
results on dynamic topological ordering in external memory. Furthermore, we
present our results for the average-case analysis of the online topological ordering.
We show that the algorithms by Alpern et al. [15], Katriel and Bodlaender [91],
and Pearce and Kelly [124] require an expected runtime ofO(n2 · polylog(n)) for
maintaining the topological ordering, when edges of a complete DAG are inserted
in a random order. We also briefly describe some recent advances in improving
our bounds for this problem.

Chapter 2

Basic tools and techniques

Intelligence is the faculty of making artificial objects, especially tools to make
tools.

— Henri Bergson

We start this chapter (Section2.1) by giving the formal definitions and notations
used in the remaining chapters. Section2.2provides some basic facts about prob-
ability theory and Section2.3 presents some random graph models. Section2.4
describes the real architecture and various computationalmodels used to capture
the memory hierarchy and Sections2.5 and2.6 present the tools and techniques
used in the design and engineering of I/O-efficient algorithms. A reader famil-
iar with the standard graph terminology, basic probabilitytheory, random graph
models, and the computation models capturing memory hierarchies may wish to
skip sections2.1, 2.2, 2.3and2.4, respectively.

2.1 Preliminary definitions

Formally, a graphG is an ordered pair of disjoint sets (V,E) such thatE is a
subset of the set of unordered pairs ofV. In this manuscript, we only consider
finite graphs, that isV andE are always finite (though they are often very large).
The setV is the set ofverticesandE is the set ofedges. If G is a graph then

12 Chapter 2: Basic tools and techniques

V = V(G) is the vertex set ofG andE = E(G) is the edge set. An edge{x,y} is
said tojoin the verticesx andy. The verticesx andy are theend-verticesof this
edge. If{x,y} ∈ E, thenx andy areadjacentor neighboringvertices ofG and the
verticesx andy areincidentwith the edge{x,y}. Two edges areadjacentif they
have exactly one common end-vertex. We also use the notationG(V,E) to refer
to a graphG = (V,E) andG(V,E,w(·)) to refer to a weighted graphG = (V,E),
where each edgee := {x,y} ∈ E is associated with a weightw(e) (or w(x,y)).

The set of neighbors of a vertexv in G is denoted byNG(v), or briefly byN(v).
More generally forU ⊆ V, the neighbors inV \U of vertices inU are called
neighbors ofU ; their set is denoted byN(U). The degreed(v) of a vertexv is the
number|E(v)| of edges atv; this is equal to the number of neighbors ofv. A vertex
of degree 0 isisolated. The numberδ (G) := min{d(v)|v ∈ V} is theminimum
degreeof G, the number∆(G) := max{d(v)|v∈V} denotes itsmaximum degree.
The numberd(G) := 1

|V|∑v∈V d(v) =
2|E|
|V| is theaverage degreeof G. Clearly,

δ (G)≤ d(G)≤ ∆(G).

An independent setin G = (V,E) is a set of nodesV ′ ⊆V such that ifu,v∈V ′,
{u,v} /∈ E i.e., no two nodes ofV ′ are adjacent inG. A maximal independent set
is an independent set which is not contained in any larger independent set.

We say thatG′ = (V ′,E′) is asubgraphof G = (V,E) if V ′ ⊆ V andE′ ⊆ E. In
this case, we writeG′ ⊆ G. If G′ contains all edges ofG that join two vertices in
V ′ thenG′ is said to be the subgraph induced byV ′ and is denoted byG[V ′]. A
subgraphG′ of G is aninduced subgraphif G′ = G[V(G′)]. G′ ⊆G is aspanning
subgraphof G if V ′ spans all ofG, i.e. if V ′ = V. We sayG′ spans G.

A self-loopis an edge that connects a vertex to itself. Asimple graphis an undi-
rected graph that has no self-loops and no more than one edge between any two
different vertices. In this thesis, we will only be dealing with simple graphs. A
complete graph is a simple graph in which every pair of distinct vertices is con-
nected by an edge. An empty graph onn nodes consists ofn isolated nodes with
no edges.

A path P from u to w in a graphG is a node sequence (v0,v1, . . . ,vk) for some
k≥ 1, such that the edges{v0,v1},{v1,v2}, . . . ,{vk−1,vk} are part ofE, v0 = u,
andvk = w. If all nodesvi on P are pairwise distinct then we say that the path
is simple. Cycles are those paths where the starting point and the endpoint are
identical. Theweightof a pathP = (v0, . . . ,vk) from u to v in a weighted graph
G(V,E,w(·)) is defined to be∑k−1

i=0 w(vi ,vi+1).

A non-empty graphG is calledconnectedif any two of its vertices are linked

2.1 Preliminary definitions 13

by a path inG. A maximal connected subgraph ofG is called acomponentor
a connected componentof G. An acyclic graph, one not containing any cycles,
is called aforest. A connected forest is called atree. The vertices of degree 1
in a tree are itsleaves. The weight of a forest (tree) is defined to be the sum of
the weights of all the edges in the forest (tree). A forestF (treeT) that spansG
is a spanning forest(spanning tree) of G. A spanning forest (spanning tree) of
minimum weight is calledminimum spanning forest(minimum spanning tree).

The distance d(x,y) in G (also referred asdG(x,y)) of two verticesx,y is the
minimum weight of a path fromx to y in G; if no such path exists, we setd(x,y) :=
∞. The greatest distance between any two vertices inG is the diameterof G,
denoted by diam(G). Sometimes it is convenient to consider one vertex of a tree
as special; such a vertex is then called aroot of this tree. A tree with a fixed root
is arooted tree.

An edge setE of a directedgraph consists of ordered pairs of nodes: an edgee
from nodeu to nodev is denoted bye= (u,v). Hereu is also called thetail, v the
head, and both nodes are calledendpointsof (u,v). Furthermore,(u,v) is referred
to as one ofu’s outgoingedges or one ofv’s incomingedges, as an edgeleaving
u or an edgeentering v. The number of edges leaving (entering) a node is called
the out-degree(in-degree) of this node. Thedegreeof a node is the sum of its
in-degree and out-degree.

A path P from u to w in a directed graphG is a node sequence (v0,v1, . . . ,vk)
for somek≥ 1, such that the edges(v0,v1),(v1,v2), . . . ,(vk−1,vk) are part ofE,
v0 = u, andvk = w. The nodesv0 andvk are called the starting point and endpoint
of P, respectively. If all nodesvi on P are pairwise distinct then we say that the
path issimple. Cycles are those paths where the starting point and the endpoint
are identical. A graph is calledacyclic if it does not contain any directed cycle.

A linear order is a relation that is reflexive, transitive, antisymmetric, and total. A
topological orderT of a directed graphG(V,E) is a linear ordering of its nodes
such that for all directed paths fromx∈V to y∈V (x 6= y), it holds thatT(x) <
T(y). A directed graph has a topological ordering if and only if itis acyclic.

A walk is an alternating sequence of vertices and edges, beginningand ending
with a vertex, in which each vertex is incident to the two edges that precede and
follow it in the sequence, and the vertices that precede and follow an edge are the
end vertices of that edge. A walk isclosedif its first and last vertices are the same,
andopenif they are different.

A trail is a walk in which all the edges are distinct. A closed trail iscalled atour

14 Chapter 2: Basic tools and techniques

or a circuit. Euler tour is a tour which contains all the edges exactly once. A
graph that contains an Euler tour is anEulerian graph.

Graph traversalrefers to the problem of visiting all the nodes in a graph in a
particular (structured) manner. Popular examples of graphtraversal are Breadth-
First Search, Depth-First Search, A*, and Dijkstra’s algorithm. Tree traversalis a
special case of graph traversal. Examples of tree traversalinclude pre-order, post-
order, and in-order traversal. A pre-order traversal visits all nodes of a tree by
processing the root, then recursively processing all subtrees rooted at its children
from left to right. A post-order traversal first recursivelyprocesses all subtrees
from left to right and then processes the node. An in-order traversal on binary
trees first processes the left subtree, then the root and finally the right subtree.

2.2 Basic probability theory
In this section we review a few basic definitions and facts forthe probabilistic
analysis of algorithms.

Thesample space, often denotedΩ of an experiment or random trial is the set of
all possible outcomes. Any subsetε ⊆Ω of the sample space is usually called an
event. A probability measure Pis a function that satisfies the following three con-
ditions: 0≤P[ε]≤ 1 for eachε ⊆Ω, P[Ω] = 1, andP[∪iεi] = ∑i P[εi] for pairwise
disjoint eventsεi. A sample space together with its probability measure builda
probability space. For a problem of sizen, we say that an eventε occurswith
high probability (w.h.p.)if P[ε]≥ 1−O(n−α) for an arbitrary but fixed constant

α ≥ 1. Theconditional probability P[ε1|ε2] =
P[ε1∩ε2]

P[ε2]
refers to the probability of

an eventε1 to occur when we already know that another eventε2 happens. Two
eventsε1 andε2 are calledindependentif P[ε1|ε2] = P[ε1].

Any real valued numerical functionX = X(Ω) defined on a sample spaceΩ
may be called arandom variable. If X maps elements inΩ to R+ ∪ {0} then
it is called anonnegativerandom variable. Adiscreterandom variable only
takes isolated values with nonzero probability. Typical representatives for dis-
crete random variables arebinary random variables, which map elements inΩ to
{0,1}. Two random variablesX andY are calledindependentif, for all x,y∈ R,
P[X = x|Y = y] = P[X = x].

Theexpectationof a discrete random variableX is given byE[X] = ∑x∈R x·P[X =
x]. Here are a few important properties of the expectation for arbitrary random
variablesX andY:

• If X is nonnegative, thenE[X]≥ 0.

2.3 Random Graph Model 15

• |E[X]| ≤ E[|X|].

• E[c·X] = c·E[X] for anyc∈ R.

• E[X +Y] = E[X]+E[Y] (Linearity of expectation).

• If X andY are independent, thenE[X ·Y] = E[X] ·E[Y].

Frequently, we are interested in the probability that random variables do not devi-
ate too much from their expected values. TheMarkov Inequalityfor an arbitrary
nonnegative random variableX states thatP[X ≥ k] ≤ E[X]

k for any k > 0. The
Chebyshev Inequalitystates that if a random variableX has an expected valueµ
and finite varianceσ2, then for any real numberk > 0,

P[|X−µ| ≥ k ·σ]≤ 1
k2 .

In our average case analysis of online topological orderingalgorithms, we will
use an alternative formulation of this inequality:

P[|X−µ| ≥ ν]≤ σ2

ν2 .

More powerful tail estimates exist for the sum of independent random variables.
Here is one version of the well-knownChernoff bound: Let X1, . . . ,Xk be inde-
pendent binary random variables andµ = E[∑k

j=1Xj]. Then it holds for allδ > 0
that

P[
k

∑
j=1

Xj ≥ (1+δ) ·µ]≤ e−min{δ 2,δ}·µ/3.

Furthermore, it holds for all 0< δ < 1 that

P[
k

∑
j=1

Xj ≤ (1−δ) ·µ]≤ e−δ 2·µ/2.

2.3 Random Graph Model

Random graph models are important tools for the average-case analysis of graph
traversal algorithms. Furthermore, since most real-worldphenomenon have a ran-
dom component, many important properties of real-world graphs are similar to
those of random graphs. For instance, our experiments suggests that the perfor-
mance of various external memory BFS algorithms on webgraphs is similar to that
on random graphs.

16 Chapter 2: Basic tools and techniques

Erdős and Rényi [66, 67] introduced and popularized random graphs. They de-
fined two closely related models:G(n, p) andG(n,m). TheG(n, p) model (0<
p < 1) consists of a graph withn nodes in which each edge is chosen indepen-
dently with probabilityp. On the other hand, theG(n,m) model assigns equal
probability to all graphs withn nodes and exactlym edges. Each such graph oc-
curs with a probability of 1

/(N
m

)

, whereN :=
(n

2

)

.

For our study of online topological ordering algorithms, weuse the random DAG
model of Barak and Erdős [26]. They obtain a random DAG by directing the edges
of an undirected random graph from lower to higher indexed vertices. Depending
on the underlying random graph model, this defines theDAG(n, p) andDAG(n,M)
model.

The set of all DAGs withn nodes is denoted byDAGn. For a random variablef
with probability spaceDAGn, EM [f] andEp [f] denotes the expected value in the
DAG(n,M) andDAG(n, p) model, respectively.

The following theorem shows that in most investigations themodelsG(n, p) and
G(n,m) are practically interchangeable, providedm is close top ·N.

Theorem 1 Given a function f: Gn→ [0,a] with a> 0 and f(G)≤ f (H) for all
G⊆ H and functions p and m of n with0 < p < 1, q := 1− p, N :=

(n
2

)

, and
m∈ N,

1. If lim
n→∞

pqN= lim
n→∞

pN−m√
pqN

= ∞, then EM [f]≤ Ep [f]+o(1).

2. If lim
n→∞

pqN= lim
n→∞

m− pN√
pqN

= ∞, then Ep [f]≤ EM [f]+o(1).

A closer look at the proof for it given by Bollobás [33] reveals that the probabilistic
argument used to show the close connection betweenG(n, p) andG(n,M) can
be applied in the same manner for the two random DAG modelsDAG(n, p) and
DAG(n,M).

Theorem 2 Given a function f: DAGn→ [0,a] with a> 0 and f(G)≤ f (H) for
all G ⊆ H and functions p and m of n with0 < p < 1, q := 1− p, N :=

(n
2

)

, and
m∈ N,

1. If lim
n→∞

pqN= lim
n→∞

pN−m√
pqN

= ∞, then EM [f]≤ Ep [f]+o(1).

2. If lim
n→∞

pqN= lim
n→∞

m− pN√
pqN

= ∞, then Ep [f]≤ EM [f]+o(1).

2.4 Computation models capturing memory hierarchies 17

2.4 Computation models capturing memory
hierarchies

We start this section by describing the RAM model which is oneof the most
popular computation models for designing algorithms.

2.4.1 RAM model or von Neumann model

The running time of an algorithm is traditionally analyzed by counting the num-
ber of executed primitive operations or “instructions” as afunction of the in-
put sizen. The implicit underlying model of computation is the one-processor,
random-access machine (RAM) model. The RAM model or the “von Neumann
model of computation” consists of a computing device attached to a storage de-
vice (or “memory”). The following are the key assumptions ofthis model:

• Every instruction takes the same amount of time, at least up to small con-
stant factors.

• Unbounded amount of available memory.

• Memory stores words of sizeO(logn) bits wheren is the input size.

• Any desired memory location can be accessed in unit time.

The above assumptions greatly simplify the analysis of algorithms and allow for
expressive asymptotic analysis.

2.4.2 Real Architecture

Unfortunately, modern computer architecture is not as simple. Rather than having
an unbounded amount of unit-cost access memory, we have a hierarchy of storage
devices (Figure2.1) with very different access times and storage capacities. Mod-
ern computers have a microprocessor attached to a file ofregisters. Thefirst level
(L1) cacheis usually only a few kilobytes large and incurs a delay of a few clock
cycles. Often there are separate L1 caches for instructionsand data. Nowadays,
typicalsecond level (L2) cachehas a size of about 32-64 KB and access latencies
around ten clock cycles. Some processors also have a rather expensivethird level
(L3) cacheof up to 256 MB made of fast static random access memory cells.A

18 Chapter 2: Basic tools and techniques

SpeedSize

Caches

Main Memory

Hard Disk

Registers
< 1 KB

< 8 GB

10 ms

< 256 MB

1 ns

10 ns

5-70 ns

> 20 GB

Figure 2.1: Memory Hierarchy in modern computer architecture.

cache consists ofcache linesthat each store a number of memory words. If an
accessed item is not in the cache, it and its neighbor entriesare fetched from the
main memory and put into a cache line. These caches usually have limited asso-
ciativity, i. e. an element brought from the main memory can be placed only in
a restricted set of cache lines. In adirect-mappedcache the target cache line is
fixed and only based on the memory address, whereas in afull-associativecache
the item can be placed anywhere. Since the former is too restrictive and the latter
is expensive to build and manage, a compromise often used is aset-associative
cache. There, the item’s memory address determines a fixed set of cache lines
into which the data can be mapped, though within each set, anycache line can be
used. The typical size of such a set of cache lines is a power of2 in the range
from 2 to 16. For more details about the structure of caches the interested reader
is referred to [122] (in particular its Chapter 7).

The main memoryis made out of dynamic random access memory cells. These
cells store a bit of data as a charge in a capacitor rather thanstoring it as the state
of a flip-flop which is the case for most static random access memory cells. It
requires practically the same amount of time to access any piece of data stored in
the main memory, irrespective of its location, as there is nophysical movement
(e. g. of a reading head) involved in the process of retrieving data. Main memory

2.4 Computation models capturing memory hierarchies 19

is usually volatile, which means that it loses all data when the computer is powered
down. At the time of writing this thesis, the main memory sizeis usually between
512 MB and 8 GB and a typical RAM memory has an access time of 5 to70
nanoseconds.

Magnetichard disksoffer cheap non-volatile memory with an access time of
10 ms, which is 106 times slower than a register access. This is because it takes
very long to move the access head to a particular track of the disk and wait until
the disk rotates into the seeked position. However, once thehead starts reading or
writing, data can be transfered at the rate of 35-105 MB/s [80]. Hence, reading
or writing a contiguous block of hundreds of KB takes only about twice as long
as accessing a single byte, thereby making it imperative to process data in large
chunks.

Apart from the above mentioned levels of a memory hierarchy,there are instruc-
tion pipelines, an instruction cache, logical/physical pages, the translation look-
aside buffer (TLB), magnetic tapes, optical disks and the network, which further
complicate the architecture.

The reasons for such a memory hierarchy are mainly economical. The faster mem-
ory technologies are costlier and, as a result, fast memories with large capacities
are economically prohibitive. The memory hierarchy emerges as a reasonable
compromise between the performance and the cost of a machine.

Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides all the messy details of
computer architecture from the algorithm designer and at the same time, it encap-
sulates the comparative performance of algorithms remarkably well. It strikes a
fine balance by capturing the essential behavior of computers while being simple
to work with. The performance guarantees in the RAM model arenot architecture-
specific and therefore robust. However, this is also the limiting factor for the suc-
cess of this model. In particular, it fails significantly when the input data or the
intermediate data structure is too large to reside completely within the internal
memory.

For most (traversal) problems on large (graph) data sets, the dominant part of the
running time of algorithms is not the number of “instructions”, but the time these
algorithms spend waiting for the data to be brought from the hard disk to internal
memory. The I/Os or the movement of data between the memory hierarchies (and
in particular between the main memory and the disk) are not captured by the RAM

20 Chapter 2: Basic tools and techniques

model and hence, the predicted performance on the RAM model may increasingly
deviate from the actual performance.

Future Trends

The problem is likely to aggravate in the future. In following with the Moore’s
law, the number of transistors double every 18 months. As a result, the CPU
speed continues to improve at nearly the same pace, i.e., an average performance
improvement of 1% per week. Besides, the usage of parallel processors and multi-
cores makes the computations even faster. On the other hand,random access
memory speeds and hard drive seek times improve at best a few percentages per
year. Although the capacity of the random access memory doubles about every
two years, users double their data storage every 5 months. The Internet applica-
tions like social networks and e-commerce companies (cf. Section 1.1) are also
extending their user and product base at a very fast pace.

2.4.3 External Memory Model

D · B

Memory M

CPU

Disk 1 Disk i Disk D

Figure 2.2: The external memory model

The I/O model or the external memory (EM) model (depicted in Figure2.2) as in-
troduced by Aggarwal and Vitter [3] assumes a single central processing unit and
two levels of memory hierarchy. The internal memory is fast,but has a limited size
of M words. In addition, we have an external memory which can onlybe accessed

2.4 Computation models capturing memory hierarchies 21

using I/Os that moveB contiguous words between internal and external memory.
For graph traversal problems, the notation is slightly altered: we assume that the
internal memory can have up toM data items of a constant size(e.g., vertices or
edges), and in one I/O operation,B contiguous data items move between the two
memories. At any particular time, the computation can only use the data already
present in the internal memory. The measure of performance of an algorithm is
the number of I/Os it performs. An algorithmA is better than another algorithm
A′ if A requires less I/Os thanA′.

Although we mostly use the sequential variant of the external memory model, it
also has an option to express disk parallelism. There can beD parallel disks and in
one I/O,D arbitrary blocks can be accessed in parallel from the disks.The usage
of parallel disks helps us alleviate the I/O bottleneck.

2.4.4 Parallel Disk Model

Memory M

CPU

Disk 1 Disk i Disk D

BBBBB BBB

Figure 2.3: Parallel Disk Model

The parallel disk model (depicted in Figure2.3) by Vitter and Shriver [152] is
similar to the external memory model, except that it adds a realistic restriction
that only one block can be accessed per disk during an I/O, rather than allowing
D arbitrary blocks to be accessed in parallel. The parallel disk model can also be
extended to allow parallel processing by allowingP parallel identical processors
each withM/P internal memory and equipped withD/P disks.

Sanders et al. [140] gave efficient randomized algorithms for emulating the exter-
nal memory model of Aggarwal and Vitter [3] on the parallel disk model.

22 Chapter 2: Basic tools and techniques

2.4.5 Ideal Cache Model

In the external memory model we are free to choose any two levels of the mem-
ory hierarchy as internal and external memory. For this reason, external memory
algorithms are sometimes also referred to as cache-aware algorithms (“aware” as
opposed to “oblivious”). There are two main problems with extending this model
to caches: limited associativity and automated replacement. As shown by Sen and
Chatterjee [143], the problem of limited associativity in caches can be circum-
vented at the cost of constant factors. Frigo et al. [73] showed that a regular algo-
rithm causes asymptotically the same number of cache misseswith LRU or FIFO
replacement policy as with optimal off-line replacement strategy. Intuitively, an
algorithm is called regular if the number of incurred cache misses (with an op-
timal off-line replacement) increases by a constant factorwhen the cache size is
reduced to half.

Similar to the external memory model, the ideal cache model assumes a two level
memory hierarchy, with the faster level having a capacity ofstoring at mostM ele-
ments and data transfers in chunks ofB elements. In addition, it also assumes that
the memory is managed automatically by an optimal off-line cache-replacement
strategy, and that the cache is fully associative.

2.4.6 Cache-Oblivious Model

In practice, the model parametersB andM need to be finely tuned for an optimal
performance. For different architectures and memory hierarchies, these values can
be very different. This fine-tuning can be at times quite cumbersome. Besides,
we can optimize only one memory hierarchy level at a time. Ideally, we would
like a model that would capture the essence of the memory hierarchy without
knowing its specifics, i.e. values ofB andM, and at the same time be efficient on
all hierarchy levels simultaneously. Yet, it should be simple enough for a feasible
algorithm analysis. The cache oblivious model introduced by Frigo et al. [73]
promises all of the above. In fact, the immense popularity ofthis model lies in its
innate simplicity and its ability to abstract away the hardware parameters.

The cache-oblivious model also assumes a two level memory hierarchy with an
internal memory of sizeM and block transfers ofB elements in one I/O. The per-
formance measure is the number of I/Os incurred by the algorithm. However, the
algorithm does not have any knowledge of the values ofM andB. Consequently,
the guarantees on I/O-efficient algorithms in the cache-oblivious model hold not
only on any machine with multi-level memory hierarchy but also on all levels of

2.4 Computation models capturing memory hierarchies 23

the memory hierarchy at the same time. In principle, they areexpected to perform
well on different architectures without the need of any machine-specific optimiza-
tion.

The cache-oblivious model assumes full associativity and optimal replacement
policy. However, as we argued for the ideal cache model (cf. Section2.4.5), these
assumptions do not affect the asymptotics on realistic caches.

However, note that cache-oblivious algorithms are usuallymore complicated than
their cache-aware I/O-efficient counterparts. As a result,the constant factors hid-
den in the complexity of cache-oblivious algorithms are usually higher and on
large external memory inputs, they are slower in practice.

2.4.7 Various streaming models

In the data stream model [116], input data can only be accessed sequentially in
the form of a data stream, and needs to be processed using a working memory that
is small compared to the length of the stream. The main parameters of the model
are the numberp of sequential passes over the data and the sizes of the working
memory (in bits). Since the classical data stream model is too restrictive for graph
algorithms and even the undirected connectivity requiress×p= Ω(n) [82] (where
n is the number of nodes in a graph), less restrictive variantsof streaming models
have also been studied. These include stream-sort model [4] where sorting is also
allowed, W-stream model [58] where one can use intermediate temporary streams
and semi-streaming model [68], where the available memory isO(n · polylog(n))
bits.

2.4.8 Other memory hierarchy models

Recently, Arge et al. [23] have proposed Parallel External-Memory model as a nat-
ural parallel extension of the external-memory model of Aggarwal and Vitter [3],
to private-cache chip multiprocessors.

There are still a number of issues not addressed by these models that can be critical
for performance in practical settings, e. g. branch mispredictions [87], TLB misses
etc. For other models on memory hierarchies, refer to [4, 25, 94, 114, 131].

24 Chapter 2: Basic tools and techniques

2.5 Basic tools for designing external memory
graph traversal algorithms

Many different tools and techniques have been developed forgraph algorithms
in external memory in the last couple of decades. In this Section, we describe
some of the commonly used building blocks for the design of I/O-efficient graph
traversal algorithms.

2.5.1 Parallel scanning

Scanning many different streams (of data from the disk) simultaneously is one of
the most basic tools used in I/O-efficient algorithms. This can be used, for exam-
ple, to copy some information from one stream to the other. Sometimes, different
streams represent different sorted sets and parallel scanning can be used to com-
pute various operations on these sets such as union, intersection, or difference.

Givenk= O(M/B) streams containing a total ofO(n) elements, we can scan them
“in parallel” in scan(n) = O(n/B+k) I/Os. This is done by simply keepingO(1)
blocks of each stream in the internal memory. When we need a block not present
in the internal memory, we remove (or write back to the disk) the existing block
from the corresponding stream and load the required block from the disk.

2.5.2 Sorting

Sorting is fundamental to many I/O-efficient graph traversal algorithms. In partic-
ular, sorting can be used to rearrange the nodes on the disk sothat a graph traversal
algorithm does not have to spendΩ(1) I/Os for loading the adjacency list of each
node into the internal memory.

Sortingnelements in the external memory requires sort(n) = Θ(n
B logM

B

n
B) I/Os [3].

There exist many different algorithms for I/O-efficient sorting. The most com-
monly used external memory sorting algorithm is based on(M/B)-way merge
sort. It first scans through the input data, loadingM elements at a time, sorting
them internally and writing them back to disk. In the next round, we treat each
of these chunks as a stream and mergeO(M/B) streams at a time using “parallel
scanning” to produce sorted chunks of sizeO(M2/B). By repeating this process
for O(logM

B

n
B) rounds, we get all the elements sorted.

2.5 Basic tools for designing external memory graph traversal
algorithms 25

External memory libraries such as STXXL [56, 57] and TPIE [21] provide fast im-
plementations of external memory sorting routines. STXXL also has specialized
functions for sorting elements with integer keys and sorting streams.

In the cache-oblivious setting, funnel-sort [73] and lazy funnel-sort [39], also
based on a merging framework, lead to sorting algorithms with the same I/O com-
plexity of Θ(n

B logM
B

n
B) I/Os. Brodal et al. [41] show that a careful implementa-

tion of this algorithm outperforms several widely used library implementations of
quick-sort on uniformly distributed data. For the largest instances in the RAM,
this implementation outperforms its nearest rival std::sort from the STL library
included in GCC 3.2 by 10-40% on many different architectures like Pentium III,
Athlon and Itanium 2.

2.5.3 PRAM simulation

A Parallel Random Access Machine (PRAM) is a basic model of computation that
consists of a number of sequential processors, each with itsown memory, working
synchronously and communicating between themselves through a common shared
memory.

Simulating a PRAM algorithm [48] on the external memory model is an impor-
tant tool in the design of I/O-efficient graph algorithms. A PRAM algorithm that
usesp processors andO(p) (shared memory) space and runs in timeT(p) can be
simulated inO(T(p) ·sort(p)) I/Os.

Each step taken by a PRAM involves each processor independently reading a
data element, computing on it and writing some output. In order to simulate it
on the external memory model, the read requests of all the processors are sorted
according to the location of the required data. Afterwards,one scan of the entire
data of the shared memory is enough to fetch all the requisitedata. This is then
sorted back according to the processor ids. Thereafter, in one scan of the fetched
data, we perform all the computations by all the processors and collect the output
data (together with its location) that would have been produced by each processor.
This is then sorted according to the memory location and written back to the disk.
Thus, each step of theO(p)-processor PRAM algorithm requiringO(p) space can
be simulated by a constant number of sorts and scans, i.e.,O(sort(p)) I/Os.

PRAM simulation is particularly appealing as it translatesa large number of
PRAM-algorithms into I/O-efficient and sometimes I/O-optimal algorithms.

Even without directly using the simulation, I/O-efficient algorithms can be ob-
tained by appropriately translating PRAM algorithms, as many of the ideas ap-

26 Chapter 2: Basic tools and techniques

plied in parallel computing for reducing a problem into manyindependent sub-
problems are also useful for designing external memory algorithms. For many
problems, the bounds obtained by appropriately translating PRAM algorithms are
much better than those obtained by direct simulation.

2.5.4 Algorithms on trees

Efficient external memory algorithms are known for many different problems on
undirected trees. These include rooting a tree, computing pre-order, post-order
or in-order traversal, computing the depth of each node, least common ancestor
queries, etc. Most of these algorithms (e.g., the tree traversal algorithms in [48])
are efficient translations of their PRAM counterparts.

2.5.5 Priority queues

A priority queue is an abstract data structure that stores anordered set of keys and
allows efficient insertion, search of the minimum element (find min) and deletion
of the minimum element (deletemin). Sometimes operations such as deleting
an arbitrary key and decreasing the value of the key are also supported. Prior-
ity queues are fundamental to many graph traversal algorithms, particularly for
computing single-source shortest-paths.

One way of implementing efficient external memory priority queues is using
buffer trees [17]. Buffer trees are useful for batched operations, i.e., when the
answers to the queries are not required immediately but eventually.

A buffer tree has degreeΘ(M/B). Each internal node is associated with a buffer
containing a sequence of up toΘ(M) updates and queries to be performed in its
subtree. Leaves containΘ(B) keys. Updates and queries are simply performed
by inserting the appropriate signal in the root node buffer.If the buffer is full, the
signal buffer is flushed to its children. This process may need to be repeated all the
way down to the leaves. Since flushing the buffer requiresΘ(M/B) I/Os (which
is done after insertingΘ(M) signals) and the tree hasO(logM/B n/B) levels, the
amortized cost of the update and query operations isO((1/B) · logM/B(n/B)) I/Os.
It can be shown that the re-balancing operations for maintaining the tree can also
be done within the same bounds.

In order to use buffer trees as a priority queue, the entire buffer of the root node
together with theO(M/B) leftmost leaves (all the leaves of the leftmost internal

2.5 Basic tools for designing external memory graph traversal
algorithms 27

node) is kept in internal memory. We maintain the invariant that all buffers on
the path from the root to the leftmost leaf are empty. Thus, the element with the
smallest priority always remains in internal memory. The invariant is maintained
by flushing out all buffers in the leftmost path whenever the root buffer is flushed,
at a total cost ofO((M/B) · logM/B(n/B)) I/Os. The amortized cost of updates
and queries still remainsO((1/B) · logM/B (n/B)) I/Os.

Note that the buffer tree based priority queue can not efficiently perform a de-
creasekey of an element, if we do not know its old key. For efficient but lazy
decreasekey operations, we can use tournament trees [93]. On an I/O-efficient
tournament tree withn elements, any sequence ofzoperations each of them being
either a delete, deletemin or an update, requires at mostO((z/B) · log2(n/B))
I/Os. The update operation referred here is a combined insert and decreasekey
operation.

Cache-oblivious priority queues with amortizedO((1/B) · logM/B (n/B)) I/O in-
sertion, deletion and deletemin operations have also been developed [20, 38].
The cache-oblivious bucket heap based priority queue [40] provides amortized
O((1/B) · log2(n/B)) update, delete and deletemin operations, where the update
operation is similar to the one provided by tournament trees.

2.5.6 Time forward processing

Time forward processing [17, 48] is an elegant technique for solving problems
that can be expressed as a traversal of a directed acyclic graph (DAG) from its
sources to its sinks. LetG be a DAG andφ(v) be a label associated with the node
v. The goal is to compute another labellingψ(v) for all nodesv ∈ G, given that
ψ(v) can be computed from labelsφ(v) andψ(u1), . . . ,ψ(uk), whereu1, . . . ,uk

are the in-neighbors ofv.

Time forward processing on ann-node DAG can be solved in external memory in
O(sort(n)) I/Os if the following conditions are met:

1. The nodes ofG are stored in topologically sorted order.

2. ψ(v) can be computed fromφ(v) andψ(u1), . . . ,ψ(uk) in O(sort(k)) I/Os.

This bound is achieved by processing the nodes in the topologically sorted order
and letting each node pass its labelψ to its out-neighbors using a priority queue.
Each nodeu insertsψ(u) in the priority queue for each out-neighborv with the
key being the topological number ofv, T(v). We ensure that before we processv,

28 Chapter 2: Basic tools and techniques

we extract all the nodes with priorityT(v) and therefore, get all the necessary
information to computeψ(v).

2.5.7 Graph contraction

The key idea in graph contraction is to reduce the size of the input graphG while
preserving the properties of interest. Such a procedure is often applied recursively
till either the number of edges or the number of nodes are reduced by a factor of
O(B) or the number of nodes is reduced toO(M). In the first case, the algorithm
can afford to spendO(1) I/Os per remaining node to solve the problem. In the
latter case, an efficient semi-external algorithm is used tosolve the problem.

Graph contraction is particularly useful for problems likeconnected components
and minimum spanning forests, where the connectivity information is preserved
(see e.g. [18]) during the edge contraction steps.

2.5.8 Graph clustering

Clustering a graph refers to decomposing the graphs into disjoint clusters of nodes.
Each cluster contains the adjacency lists of a few nodes. These nodes should be
close in the original graph. Since each cluster is connectedand small, if a node of
the cluster is visited during BFS, SSSP or APSP, the other nodes of the cluster will
also be visited “shortly”. This fact can be exploited to design better algorithms
(see e.g. [106], [112]) for these problems.

2.5.9 Ear decomposition

An ear decompositionε = (P0,P1,P2, . . . ,Pk) of a graphG = (V,E) is a partition
of E into an ordered collection of edge-disjoint simple pathsPi with endpointssi

andti. EarP0 is an edge. For 1≤ i ≤ k, earPi shares its two endpointssi andti, but
none of its internal nodes, with the unionP0∪ . . .Pi−1 of all previous ears. A graph
has an ear decomposition if and only if it is two-edge connected, i.e., removing
any edge still leaves a connected subgraph.

An ear decomposition of a graph can be computed inO(sort(n)) I/Os in external
memory [103].

2.6 Tools and techniques for engineering external memory graph
traversal algorithms 29

2.6 Tools for engineering external memory
graph traversal algorithms

In the last decade, many techniques have evolved for engineering external memory
graph traversal algorithms. Libraries specifically containing fundamental algo-
rithms and data structures for external memory have been developed. Techniques
such as pipelining can save some constant factors from the I/O complexity of the
external memory implementations, which can be significant for making the imple-
mentation viable. In this section, we describe some of thesetools and techniques.

2.6.1 External memory libraries

External memory libraries play a crucial role in engineering algorithms running
on large data-sets. These libraries not only reduce the development time for exter-
nal memory algorithms, but also speed up the implementations themselves. The
former is done by abstracting away the details of how an I/O isperformed and pro-
viding ready-to-use building blocks including algorithmssuch as sorting and data
structures such as priority queues. The latter is done by offering frameworks such
as pipelining (described ahead in this section) that can reduce the constant factors
in the I/O complexity of an implementation. Furthermore, the algorithms and data
structures provided are optimized and perform less internal memory work.

STXXL

STXXL [56, 57] is an implementation of the C++ standard template library STL [147]
for external memory computations. Since the data-structures and algorithms in
STXXL have a well known generic interface similar to STL interface, it is easy
to use and the existing applications based on STL can be easily made to work
with STXXL. STXXL supports parallel disks, overlapping between disk I/O and
computation and thepipelining technique that can save a significant fraction of
the I/Os. It provides I/O-efficient implementations of various containers (stack,
queue, deque, vector, priority queue,B+-tree, etc.) and algorithms (scanning,
sorting using parallel disks, etc.). It is being used both inacademic and industrial
environments for a range of problems including text processing, graph algorithms,
computational geometry, Gaussian elimination, visualization, and analysis of mi-
croscopic images, differential cryptographic analysis, etc.

30 Chapter 2: Basic tools and techniques

TPIE

TPIE [21] or “Transparent Parallel I/O Environment” is another C++ template li-
brary supporting out-of-core computations. The goal of theTPIE project has been
to provide a portable, extensible, flexible, and easy to use programming envi-
ronment for efficiently implementing I/O-efficient algorithms and data structures.
Apart from supporting algorithms with a sequential I/O pattern (i.e., algorithms
using primitives such as scanning, sorting, merging, permuting and distributing)
and basic data structures such asB+-tree, it supports many more external memory
data structures such as(a,b)-tree, persistentB-tree,Bkd-tree,K-D-B-tree,R-tree,
EPS-tree,CRB-tree etc. It is used for many geometric and GIS implementations.

2.6.2 Pipelining

Conceptually, pipelining is a partitioning of the algorithm into practically indepen-
dent parts that conform to a common interface, so that the data can be streamed
from one part to the other without any intermediate externalmemory storage. This
may reduce the constant factors in the I/O complexity of the algorithm. It leads
to better structured implementations, as different parts of the pipeline only share
a narrow common interface. On the other hand, it may also increase the compu-
tational costs as in a stream, searching an element can’t be done by exponential
or binary search, but by going through potentially all the elements in the stream.
This means that the correct extent of pipelining needs to be carefully determined.

Usually, a pipelined code requires more debugging efforts and hence, significantly
more development time. For more details on the usage of pipelining as a tool to
save I/Os, refer to [55].

Chapter 3

Breadth first search on massive
graphs

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it.

–Brian W. Kernighan

Breadth-First Search (BFS) is an archetype for many important graph problems.
Many real world problems involve BFS (and some of its generalizations like short-
est paths orA∗) traversal on large graphs. These applications (cf. Section 1.1 for
more details) include crawling and analyzing the WWW [118, 144], route plan-
ning using small navigation devices with flash memory cards [76], state space
exploration [64], and community detection [119].

Given a large undirected graphG(V,E) (n := |V|,m := |E|) and a source nodes,
the goal of BFS is to decompose the set of nodesV into disjoint subsets called BFS
levels, such that the leveli comprises of all nodes that can be reached froms via
i edges, but no less. The problem of computing the BFS level decomposition can
also be viewed as computing single source shortest paths on unweighted graphs.

BFS is well-understood in the RAM model. There exists a simple linear time
algorithm [51] (hereafter referred as IMBFS) for the BFS traversal in a graph.
However, as discussed in Section1.2, this algorithm (as implemented in LEDA)
performs quite badly when the input graph does not fit in the main memory. Fur-

32 Chapter 3: Breadth first search on massive graphs

thermore, on massive graphs (with a billion or more edges), these algorithms are
simply non-viable as they require manymonths or yearsfor the requisite graph
traversal.

External memory algorithms for computing BFS have therefore been studied. For
general undirected graphs, Munagala and Ranade proposed a simple algorithm
(MR BFS) that incursO(n+ sort(m)) I/Os. Mehlhorn and Meyer proposed the
first o(n) I/O algorithm (MM BFS) that improves the results for sparse graphs.

In this chapter, we focus on engineering these external memory BFS algorithms.
Since most of the large real world graphs are sparse, we mainly concentrate on the
problem of computing a BFS level decomposition for massive sparse undirected
graphs. Demonstrating the viability of our BFS implementations on various syn-
thetic and real world benchmarks, we show that BFS level decompositions for
large graphs (around a billion edges) can be computed on a cheap machine in a
few hours.

The rest of the chapter is organized as follows: We review some related work
in Section3.1. In Section3.2, we describe the external memory algorithms for
list ranking, computing Euler tours on trees, minimum spanning forests and con-
nected components on general undirected graphs. These formthe building blocks
in the external memory BFS algorithms presented in Section3.3. Sections3.4 –
3.7present our implementations of MRBFS and MMBFS. We also designed and
engineered I/O-efficient frameworks for generating massive graphs and checking
if the BFS decomposition is correct. These are discussed in Section3.8and Sec-
tion 3.9, respectively. Section3.10describes the evolution of our BFS codes into
a software package. Our detailed empirical study is presented in Section3.11.
Section3.12discusses the extensions of BFS to SSSP and dynamic BFS in exter-
nal memory. It also describes the recent advances in approximating the diameter
of the graph that can help us decide which BFS algorithm to use. Section3.13
concludes with related open problems.

Note that in this chapter, the term “adjacency list” refers to the set of all adjacent
edges of a node, and not to some list data structure containing this set.

3.1 Related prior work

External-memory BFS algorithms are known for special graphs classes like trees,
grid graphs [19], planar graphs [101], outer-planar graphs [100], and graphs of
bounded tree width [102]. These algorithms use special graph properties such as

3.1 Related prior work 33

planar separators, planar and outerplanar embeddings, andtree-decompositions.
For graphs with small separators (not necessarily planar),we can represent the
graph [30, 31] in a more compact way that minimizes the I/Os required by the
standard algorithms.

Very little is known for traversing general directed graphsin external memory.
The main result known in this direction is theO((n+m/B) log2

n
B +sort(m)) I/O

algorithm [43] for computing Breadth-First Search (BFS), and Depth-First Search
(DFS) on general directed graphs and topological ordering on general directed
acyclic graphs. These algorithms crucially rely on a data structure called buffered
repository tree [43] for removing edges leading to visited nodes.

3.1.1 Engineering Directed DFS in external memory

Owing to theO(nlog2
n
B) term in the I/O complexity, these algorithms are consid-

ered impractical for general sparse directed graphs. Sincereal world graphs are
usually sparse, it is unlikely that these algorithms will improve the running time
significantly as compared to the internal memory traversal algorithms. As such,
there has been no engineering attempt (up to the best of our knowledge) for these
algorithms.

Sibeyn et al. [146] showed an implementation of semi-external DFS (i.e., comput-
ing DFS whenM ≥ c·n for some small constantc) based on the batched process-
ing framework. We assume that the internal memory can contain up to 2n edges.
We maintain a tentative DFS tree throughout the algorithm inthe internal memory
and proceed in rounds. In each round, all the edges of the graph are processed in
cyclic order. A round consists ofm/n phases and in each phase we load a batch of
n edges and compute the DFS of the 2n edges in the internal memory. The DFS
computation can be made faster by the following heuristics [146]:

• Rearrange the tree after every round so as to find the global DFS tree more
rapidly. For each node, we visit its children (in the tree) indescending
order of their sub-tree sizes. Thus, after rearrangement the leftmost child of
any node has more descendants than any other child, thereby heuristically
reducing the number of forward (left to right) cross edges.

• Reduce the number of nodes and edges “active” in any round so as to leave
more space in the internal memory for loading new edges. Since nodes on
the leftmost path are not going to change their place in the tree anymore
(unless they are rearranged), they can be marked “passive” and removed

34 Chapter 3: Breadth first search on massive graphs

from consideration. Furthermore, we can mark all nodesu that satisfy the
following conditions passive:

– All nodes on the path from root node tou are already marked passive.

– There is no edge from any node with smaller pre-order number (in the
current tree) to any node with pre-order number equal to or larger than
that ofu.

Together with these heuristics, the batched processing framework manages to
compute DFS on a variety of directed graphs (such as random graphs and 2-
dimensional random geometric graphs) with very few (3–10) average accesses
per edge (and hence few I/Os). It can compute strongly connected components
(using the DFS) of an AT&T call graph with around 9.9 million nodes and 268.4
million edges in around 4 hours on a Pentium III machine with a1 GHz processor.

3.1.2 Engineering external memory A*

A* [81] is a goal-directed graph traversal strategy that finds the least-cost path
from a given source node to a target node. A* is similar to Dijkstra’s famous
shortest path algorithm [61], except that it visits the node with the minimum sum
of distance from the source node and the heuristic distance to the target node rather
than the node with the minimum distance from the source.

A* can be solved using external memory priority queues inO(n+m/B· log2(m/B))
I/Os. For implicit unweighted graphs, a suitably modified version of the external
memory BFS algorithm MRBFS by Munagala and Ranade [115] (cf. Section3.3
for more details) helps computing A* inO(sort(m)) I/Os [64]. This is because
in implicit graphs accessing the adjacency list of a node does not require I/Os to
fetch it from the disk, but only internal memory computationto generate it.

The practical performance of A* crucially depends on the heuristic estimate of the
distance between target node and a given node. This estimatein turn is heavily
application-dependent.

Edelkamp et al. [85] engineered the variant of external memory A* for implicit
undirected unweighted graphs and used it for many differentmodel checking ap-
plications. They improved the practical performance of external memory A* for
their applications further by the following heuristics:

• Delayed duplicate detection: Unlike MRBFS, duplicates are not removed

3.2 Basic building blocks 35

till the nodes are actually visited.

• The nodes with equal value of the sum of distances from the source and the
target node, are visited in increasing order of their distance from the source
node.

External A* as incorporated in the External SPIN model checker software was
used to detect the optimal path to a deadlock situation in an Optical Telegraph
protocol involving 14 stations. This problem required 3 Terabytes of hard disk
space (with 3.6 GB RAM) and took around 8 days with 4 instances of Parallel
External SPIN running on 4 AMD Opteron dual processor machines with NFS
shared hard disk. In model checking applications involvinga massive state space,
finding such deadlocks can be critical for the correct performance of the protocol
and hence, even running-times of weeks are considered acceptable.

However, this implementation as well as the heuristics usedare specific to A* on
implicit graphs and are unlikely to yield good results for BFS on general graphs.

3.2 Basic building blocks

In the RAM model, graph problems like connected components etc. can be effi-
ciently solved by graph traversal strategies such as Depth-First Search (DFS) and
Breadth-First Search (BFS). However, the picture is very different in the mem-
ory hierarchy models. Algorithms for connected components, minimum spanning
tree, Euler tour and list ranking are asymptotically fasterthan the currently best
ones for BFS and DFS. Hence, many algorithms for graph traversal strategies like
BFS and DFS use connected components, minimum spanning forests, Euler tour
and list ranking as sub-routines. In this section, we reviewthe algorithms for these
building blocks.

3.2.1 Euler tour of a bi-directional tree

An Euler tour of a (bi-directional) treeT = (V,E) traverses every edge exactly
twice, once in each direction. Such a traversal produces a linear list of edges
or vertices capturing the structure of the tree. In order to compute such a tour,
we choose an order of the edges{v,w1}, . . . ,{v,wk} incident to each nodev of T.
Then, we mark the successor of{wi ,v} to be{v,wi+1} and the successor of{wk,v}
to be{v,w1}. We break the resulting circular list at some noder by choosing an

36 Chapter 3: Breadth first search on massive graphs

edge{v, r} with successor{r,w}, setting the successor of{v, r} to be null, and
choosing{r,w} to be the first edge of the traversal.

An Euler tour of a (bi-directional) tree can be computed inO(sort(n)) I/Os.

3.2.2 List ranking

A list L is a collection of elementsx1, . . . ,xn such that each elementxi , except the
last element of the list, stores a pointer to its successor, no two elements have the
same successor and every element can reach the last element by following succes-
sor pointers. Given a listL of elements kept in an arbitrary order on the disk and
a pointer to the first element and weightsw on all edges, the list ranking problem
is that of computing for every elementxi , its distance from the first element.

The external memory list ranking algorithm [48] computes an independent setI
of sizeΩ(n). All elementsxi ∈ I are removed fromL by markingsucc(xi) as the
successor ofpred(xi), wheresucc(xi) and pred(xi) are the successor and prede-
cessor ofxi in L. The weight of the new edge{pred(xi),succ(xi)} is the sum
of the weights of{pred(xi),xi} and {xi ,succ(xi)}. The problem on the com-
pressed list is recursively solved. For each nodexi ∈ I , its distance from the
head is equal to the sum of the distance ofpred(xi) (computed for the com-
pressed list) and the weight of the edge{pred(xi),xi}. All operations for com-
pressing the list incurO(sort(n)) I/Os and thus the total cost of list ranking is
I(n) = I(α ·n)+O(sort(n)) = O(sort(n)) I/Os, for some constant 0< α < 1.

Note that any maximal independent set of a list has size at least n/3. Thus in
order to compute the independent setI of sizeΩ(n), we just need to compute a
maximal independent set. A maximal independent setI of a graphG(V,E) can
be computed simply by a greedy algorithm in which the nodes are processed in
an arbitrary order. When a nodev∈V is visited, we add it to the setI if none of
its neighbors is already inI . This can be done inO(sort(n+m)) I/Os using time
forward processing (cf. Section2.5.6). A list of lengthn can thus be ranked in
O(sort(n)) I/Os.

3.2.3 Minimum Spanning Forest

Given an undirected connected graphG, a spanning tree ofG is a subgraph which
is a tree and connects all the nodes. A minimum spanning tree is a spanning
tree with minimum weight. For a general undirected graph (not necessarily con-

3.2 Basic building blocks 37

nected), we define a minimum spanning forest (MSF) to be the union of the mini-
mum spanning trees for its connected components. Computinga minimum span-
ning forest of a graphG is a well-studied problem in the RAM model.

The first algorithm for this problem is due to Boruvka [34]. This algorithm runs in
phases; in each phase we find the lightest edge incident to each node. These edges
are output as a part of the MSF. Contracting these edges leadsto a new graph with
at most half of the nodes. Since the remaining MSF edges are also in the MSF
of the contracted graph, we recursively output the MSF edgesof the contracted
graph.

The most popular algorithms for MSF in the RAM model are Kruskal’s and Prim’s
algorithms. Kruskal’s algorithm [92] looks at the edges in increasing order of their
weight and maintains the minimum spanning forest of the edges seen so far. A new
edge is output as a part of the MSF if its two endpoints belong to different compo-
nents in the current MSF. The necessary operations can be performed efficiently
using a disjoint set (union-find) data structure [75]. The resultant complexity for
this algorithm isO(n·α(n)) [149], whereα(·) is the inverse Ackermann function.

Unlike Kruskal’s algorithm which maintains potentially many different MSTs at
the same time, Prim’s algorithm [86, 130] works by “growing” one MST at a
time. Starting with an arbitrary node, it searches for the lightest edge incident to
the current tree and outputs it as a part of the MST. The other end-point of the
edge is then added to the current tree. The candidate edges are maintained using
Fibonacci heaps [71], leading to an asymptotic complexity ofO(m+ nlogn). If
there is no edge between the nodes in and outside the current MST, we “grow” a
new MST from an arbitrarily chosen node outside the MSF “grown” so far.

Semi-external Kruskal’s algorithm

In the semi-external version of Kruskal’s algorithm, an external memory sorting
algorithm is used to sort the edges according to their edge weights. The minimum
spanning forest and the union-find data structure are kept inthe internal memory
(as both requireO(n) space). The I/O complexity of this algorithm isO(sort(m)).

External memory Prim’s algorithm

In order to externalize Prim’s algorithm, we use an externalmemory priority
queue (cf. Section2.5.5) for maintaining the set of candidate edges to grow the

38 Chapter 3: Breadth first search on massive graphs

current minimum spanning tree. This results in an I/O complexity of O(n+
sort(m)). TheO(n) term comes from the unstructured accesses to the adjacency
lists, as we spendO(1+d(v)/B) (d(v) being the degree ofv) I/Os to get hold of
edges incident to the nodev that need to be inserted into the priority queue.

External memory Boruvka steps

In most external memory algorithms, a Boruvka step like contraction method is
used to reduce the number of nodes to eitherO(M) or O(m/B). In the first case,
semi-external Kruskal’s algorithm or other semi-externalbase cases are used. In
the latter case, any external algorithm like Prim’s algorithm or MR BFS can be
used as we can afford one I/O per node in the contracted graph.

We initialize the adjacency lists of all nodes by sorting theedges first according to
their tail node and that being equal, by their weight. In eachEM Boruvka phase,
we find the minimum weight edge for each node and output it as a part of MSF.
This can easily be done by scanning the sorted adjacency lists. This partitions the
nodes into pseudo-trees (a tree with one additional edge). The minimum weight
edge in each pseudo-tree is repeated twice, as it is the minimum weight edge in-
cident to both its end-points. Such edges can be identified inO(sort(m)) I/Os.
By removing the repeated edges, we obtain a forest. We selecta leader for each
tree in the forest and let each nodeu ∈ V know the leaderL(u) of the tree con-
taining it. This can be done by variants of external memory list ranking algorithm
(cf. Section3.2.2) or by using time forward processing (cf. Section2.5.6) and can
be done inO(sort(n)) I/Os. We then replace each edge(u,v) in E by an edge
(L(u),L(v)). At the end of the phase, we remove all isolated nodes, parallel edges
and self loops. Again, this requires a constant number of sorts and scans of the
edges.

The Boruvka steps as described here reduce the number of nodes by at least a
factor of 2 in one phase and costsO(sort(m)) I/Os. Thus, it takes logn·Bm phases
to reduce the number of nodes toO(m/B), after which the externalized version
of Prim’s algorithm or BFS algorithm can be used. This gives atotal I/O com-
plexity of O(sort(m) · log n·B

m). Alternatively, we can haveO(log n
M) phases of

Boruvka algorithm to reduce the number of nodes toO(M) in order to apply semi-
external Kruskal’s algorithm afterwards. This will resultin a total I/O complexity
of O(sort(m) · log n

M).

An O(sort(m) · loglog(n·B
m)) I/O algorithm

Arge et. al. [18] improved the asymptotic complexity of the above algorithmby
dividing theO(log n·B

m) phases of Boruvka steps intoO(loglogn·B
m) super-phases

requiringO(sort(m)) I/Os each. The idea is that rather than selecting only one

3.2 Basic building blocks 39

edge per node, we select
√

Si lightest edges for contraction in each super-phase,
whereSi := 2(3/2)i

(= S3/2
i−1). If a node does not have that many adjacent edges, all

its incident edges are selected and the node becomes inactive. The selected edges
form a graphGi . We apply log

√
Si phases of Boruvka steps onGi to compute a

leaderL(u) for each nodeu∈V. At the end of the super-phase, we replace each
edge(u,v) in E by an edge(L(u),L(v)) and remove isolated nodes, parallel edges
and self loops.

The number of active nodes after phasei is at mostn/(Si ·Si−1 · · ·S0) = n/(Si ·
S2/3

i · · ·S0) ≤ n/S5/3
i ≤ n/Si+1 and thus,O(loglogn·B

m) super-phases suffice to
reduce the number of nodes toO(n ·B/m).

Note that in super-phasei, there are log
√

Si phases of Boruvka steps onGi . Since
Gi has at mostn/Si nodes at the beginning of phasei andn

√
Si/Si edges (as each

of the n/Si nodes selects
√

Si edges around it), total cost of all these Boruvka
phases isO(sort(n/

√
Si) · log

√
Si) = O(sort(n)) I/Os. The cost of replacing the

edges by the contracted edges and other post-processing isO(sort(m)) I/Os.

Since each super-phase takesO(sort(m)) I/Os, the total I/O complexity of the
algorithm isO(sort(m) · loglog(n·B

m)).

Arge et al. [20] propose a cache-oblivious minimum spanning tree algorithm that
uses a cache-oblivious priority queue to achieve the I/O complexity of O(sort(m) ·
loglogn).

Connected componentsMinimum spanning forest also contains the information
regarding the connected components of the graph. For directly computing con-
nected components, one can use the above algorithm by modifying the compara-
tor function for edge weights (since the weights on the edgescan be ignored for
connected components computation) – an edge is smaller thanthe other edge if
either the head node has a smaller index or the two head nodes are equal, but the
tail node has a smaller index.

Randomized CC and MSF

Abello et. al. [2] proposed a randomized algorithm for computing connected com-
ponents and minimum spanning tree of an undirected graph in external memory
in O(sort(m)) expected I/Os. Their algorithm uses Boruvka steps togetherwith
edge sampling and batched least common ancestor (LCA) queries in a tree.

40 Chapter 3: Breadth first search on massive graphs

s a

c e

f

b d

L(t-1)L(t-)2 L(t)

a

d

e

d

e

a
ñ
d

b

e

a
ñ
d

a
b
d
e

N(b)

N(c)

N(L(t-1)) - dupl. - L(t-1) - L(t-2)

Figure 3.1: A phase in the BFS algorithm of Munagala and Ranade.

3.3 Algorithms

There are two main problems associated with running an internal memory BFS
algorithm for computation on an externally stored graph:

• Remembering visited nodes needsΘ(m) I/Os in the worst case

• Unstructured access to adjacency lists, i.e., random I/Os to fetch adjacent
edges may result inΘ(n) I/Os

3.3.1 Munagala and Ranade’s algorithm

The algorithm (MRBFS) by Munagala and Ranade [115] (as depicted in Fig-
ure3.1) solves the first problem by exploiting the fact that in an undirected graph,
the edges from a node in BFS levelt lead to nodes in BFS levelst−1, t or t +1
only. Thus, in order to compute the nodes in BFS levelt + 1, one just needs to
collect all neighbors of nodes in levelt, remove duplicates and remove the nodes
visited in levelst − 1 andt. Except the unstructured accesses to the adjacency
lists, all steps can be done inΘ(sort(m)) I/Os. The total number of I/Os required
by this algorithm isΘ(n+sort(m)) as it may incurΩ(n) random I/Os (for reading
the adjacency lists) in the worst-case.

3.3.2 Mehlhorn and Meyer’s algorithm

In order to solve the problem of unstructured accesses to adjacency lists, Mehlhorn
and Meyer [106] (MM BFS) propose a pre-processing step in which the input
graph is rearranged on the disk. The preprocessing phase involves clustering the

3.3 Algorithms 41

input graph into small disjoint groups of nodes that are close in the input graph.
The edges incident to all nodes of a cluster are contiguouslystored on the disk.
This is useful as once a node from the cluster is visited, other nodes in the clus-
ter will also be visited soon (owing to their proximity in theoriginal graph). By
spending only one random access (and possibly, some sequential accesses de-
pending on the cluster size) for loading the whole cluster and then keeping the
cluster data in some efficiently accessible data structure (hot pool) until it is all
used up, the total number of I/Os can be reduced by a factor of up to

√
B on sparse

graphs. The neighboring nodes of a BFS level can be computed simply by scan-
ning the hot pool and not the whole graph. Though some edges may be scanned
multiple times in the hot pool, unstructured I/Os for fetching adjacency lists are
considerably reduced, thereby decreasing the total numberof I/Os.

The input graph is decomposed intoO(n/µ) clusters of diameter̃O(µ)1 for some
parameterµ to be fixed later. This can be done in two ways – “parallel cluster
growing” and “Euler tour chopping”.

“Parallel cluster growing” variant

This variant (hereafter referred as MMBFS R) works by randomly choosingnµ
master nodes. The source nodes is also chosen to be a master node. Thereafter,
we run a local BFS from all master nodes “in parallel”. In eachround, each master
node tries to capture all unvisited neighbors of its currentsub-graph. The ties can
be resolved arbitrarily.

Capturing new nodes on the fringes of all clusters can be doneby sorting the
neighbors of the nodes captured in the previous round and then scanning the ad-
jacency lists of the input graph. Each roundi thus takesO(sort(mi) + scan(m))
I/Os, wheremi is the number of edges adjacent to nodes captured in roundi−1.
The total number of clusters is at most 1+n/µ and the number of rounds (number
of edges in a shortest path between any node and its cluster center) isO(logn ·µ)
with high probability (w.h.p.). Thus the total complexity for this clustering is
O(sort(n+ m) + scan(m) · µ · logn) w.h.p. and it producesO(n/µ) clusters of
diameterO(logn ·µ) w.h.p.

1Just asO notation hides constant factors in the complexity,Õ hides the polylogarithmic factors

42 Chapter 3: Breadth first search on massive graphs

Euler tour based clustering

In this variant (MMBFS D), we first use the connected components (CC) algo-
rithm to identify the component of the graph containing the source nodes. The
nodes outside this component are output with BFS level∞ and can be safely ig-
nored, as they do not affect the BFS level of any other node. Then, we compute a
spanning tree of nodes in this connected component. Considering the undirected
edges of this tree as bi-directional edges, we compute an Euler tour on these (up
to 2n−2) edges. We then employ the list ranking algorithm to store the nodes on
the disk in the order of their appearance in the Euler tour. Note that the internal
nodes of the spanning tree may appear multiple times in this tour. The nodes ar-
ranged in this way are then chopped into2n−2

µ clusters of sizeµ. After removing
the duplicates from this node sequence, we get the requisiteclustering of nodes.

Since CC/MST can be computed inO((1+ log logn·B
m) · sort(n+ m)) I/Os and

the Euler tour and list ranking ofO(n) elements can both be done inO(sort(n))
I/Os, the total complexity of this preprocessing isO((1+ loglogn·B

m) ·sort(n+m))
I/Os. If the randomized expectedO(sort(m)) I/O algorithm for CC/MST is used
instead, we get a total expected I/O complexity ofO(sort(m)) for the Euler tour
based clustering.

BFS phase

The actual BFS computation is similar to MRBFS, but with one crucial differ-
ence: the adjacency lists of nodes in the current levelt are no longer accessed
directly from the input graph using random I/Os. Instead, the nodes in BFS level
t are scanned in parallel with the nodes in the hot poolH to compute the cluster
indices of all nodes in BFS levelt whose adjacency lists are not already there
in H. The multi-set of these cluster indices is then sorted and duplicates are re-
moved from the sorted multi-set. The clusters corresponding to the resultant set
of indices are then merged intoH. A next round of scanning the nodes in BFS
level t in parallel with the hot poolH fetches all the required adjacency lists.

Since each cluster is merged exactly once, it requiresO(n/µ + scan(m)) I/Os to
load these clusters intoH. For the Euler tour based approach, each adjacency
list in H is scanned for at mostO(µ) rounds as the distance between any two
nodes in the cluster isO(µ). Thus the total number of I/Os required for the
BFS phase by the Euler tour based variant of MMBFS isO(n/µ + µ · scan(n+

m) + sort(n+ m)). By choosingµ = max

{

1,
√

n
scan(n+m)

}

, we get a total I/O

3.4 Engineering MR BFS 43

complexity (including the pre-processing) ofO(
√

n ·scan(n+m)+sort(n+m)+
ST(n,m)) I/Os for MM BFS D, whereST(n,m) is the number of I/Os required
to compute a spanning tree (of the connected component containing the source
node) of a graph withn nodes andm edges. Using the randomized algorithm
for MST/CC withO(sort(n+m)) expected I/O complexity, MMBFS D requires
expectedO(

√

n ·scan(n+m)+sort(n+m)) I/Os.

For the “parallel cluster growing” variant, an adjacency list stays inH for O(µ ·
logn) levels w.h.p. Since there are at most 1+ n

µ clusters and each cluster is
loaded at most once, loading them intoH requiresO(n

µ +scan(m)) I/Os. The total
complexity for MM BFS R is thusO(n/µ + µ · logn ·scan(n+m)+sort(n+m))

I/Os w.h.p. Choosingµ = max

{

1,
√

n
scan(n+m)·logn

}

, we get an I/O complexity

of O(
√

n ·scan(n+m) · logn+sort(n+m)) I/Os w.h.p. for MM BFS R.

3.4 Engineering MR BFS

One of the first decisions in designing any external memory implementation is to
decide whether or not to use an external memory library (cf. Section2.6.1). The
advantage of using these libraries is that they reduce the development time by ab-
stracting away the details of how an I/O is performed and providing ready-to-use
efficient implementations of basic algorithms and data structures. We decided to
work with STXXL [56, 57] because of the geographic proximity of its develop-
ment2 and its easy to use STL interface. Over the course of this project, many
bugs were discovered and fixed in STXXL and quite a few additional features
were requested and added. These bug-fixes and features have helped making the
library more usable.

Although certain special features of STXXL are crucial to deal with some extreme
graph classes, we believe that modulo some constant factors, the performance of
our implementation should be the same on most graphs even with other external
memory libraries, such as TPIE [21].

2The development of STXXL started in 2002 at Max Planck Institut für Informatik,
Saarbrücken

44 Chapter 3: Breadth first search on massive graphs

3.4.1 STXXL

The key component of STXXL used by us is the stream sorter, which runs in two
phases – theRuns Creator (RC) Phaseand theRuns Merger (M) Phase. In the
runs creator phase, the input vector/stream is divided intochunks ofM elements
and each chunk is sorted within itself. These chunks are thereafter written to the
disk space. In the runs merger phase, the first blocks of all the sorted chunks
are brought to internal memory and merged there to produce the output stream
which does not necessarily have to be stored on the disk. In case the sorting
requires more than two rounds, the runs merger phase merges the sorted chunks
recursively. For better efficiency, it is recommended to choose the block size and
the internal memory available in such a way that the sorting does not require more
than one round of merging.

Our data structures are implemented using the STXXL vector data-type. A vector
in STXXL is organized as a collection of blocks residing on the parallel disks
(or any other external storage). Each vector maintains a fully associative cache
in internal memory. The vector cache consists of some fixed amount of pages.
Each page in turn consists ofP external blocks. A random access to an element
in the vector involvesP I/Os and therefore, in order to make full use of the disk
parallelism, it is recommended thatP be some multiple of the number of parallel
disks.

When accessing an element, if the page which the requested element belongs to, is
in the vector cache, a reference to the element in the cache isreturned. Otherwise,
the page is first brought into the cache. If there is no free space in the cache,
some page needs to be evicted. Each vector maintains its own paging strategy that
decides which page is to be evicted. STXXL currently provides LRU and random
paging strategies.

Each vector also has its own allocation strategy that decides how the vector will be
stored across multiple disks. STXXL supports many different allocation strategies
that stripe the data across disks (usually in some randomized way).

We also developed our own allocation strategies to deal withthe case of heteroge-
nous disks (e.g., when a hard disk and a solid state disk are used in parallel).
This has been particularly useful when we ran our BFS implementation in such a
setting (cf. Section4.4).

STXXL vector also maintains a dirty flag with each page in the cache. The pur-
pose of the flag is to track whether any element of the page is modified and there-
fore the page needs to be written to the disk(s) when it has to be evicted from the

3.4 Engineering MR BFS 45

cache. STXXL distinguishes between constant and non-constant accesses to the
element, as the dirty flag is set when non-constant referenceto one of the page’s
elements is returned.

3.4.2 Graph representation

Our main consideration in choosing our graph representation was to keep it as
compact as possible. This is important as the I/O volume of our BFS implemen-
tations involves scanning the graph representation multiple times and a compact
representation can save significant constant factors in I/Os. At the same time, we
want to be able to access the adjacency list of an arbitrary nodev in O(1+d(v)/B)
I/Os and able to scan all the edges of the graph inO(m/B) I/Os.

In our graph representation, nodes are assumed to have implicit unsigned integer
labels in the range from 0 ton−1. The representation consists of two STXXL
vectors –N andE. The ith entry inN contains the index to the beginning of the
adjacency list of nodei in E. Note that this index is not the same as keeping a
pointer to the appropriate location on disk, which may require up to 12 bytes of
storage. Each edge{u,v} is stored twice inE – once asv in the adjacency list of
u and once asu in the adjacency list ofv. Note that an element of the node vector
N contains only the index of an element inE. In particular, it does not contain the
node label itself. An element of the edge vectorE contains only the node label of
the adjacent node and not of the node itself. If a node label is4-bytes (number of
nodes less than 232−1) and an index inE is 8-bytes (number of edges less than
263−1), the total storage requirement of our graph representation for MR BFS is
8n+4mbytes.

Although we minimize the amount of information kept with node and edge el-
ements in this data-structure, our implementation is stillgeneric: it can handle
graphs with arbitrary number of nodes (by appropriately modifying the data-type
of a node label) and the graph template is basic and can be usedfor other graph
algorithms as well.

In order to get the adjacency list of nodei, we first load the page containing theith
and(i +1)th entry inN into its vector cache. This gives us the necessary indexes
in E. We then load all the pages containing elements in this rangeinto E’s cache
one by one and output the required adjacency list. Note that in order to efficiently
handle the last node,N contains a dummy node at the end that marks the end of
E.

46 Chapter 3: Breadth first search on massive graphs

From an unordered list of edges, we can obtain the above graphrepresentation in
O(sort(m)) I/Os as follows: For each edge{u,v} we enter two entries –(u,v) and
(v,u) into a STXXL vector. We then sort this vector with respect to the first node
in the ordered tuple, remove duplicates (if there are any) and initialize the node
vectorN with the correct indexes of adjacency lists in this vector. The edge vector
E is then obtained by removing the label of the first node from each edge element.

Our output format that stores the BFS decomposition is similar. The two vectors,
referred asL and NL, represent the BFS levels and the nodes in those levels,
respectively. Theith entry in vectorL merely contains the index to a location in
vectorNL where the nodes in theith BFS level are stored. This ensures that we do
not spend one I/O per level when storing the output which is a major performance
consideration for large diameter graphs (cf. Section3.4.5).

3.4.3 Implementing MR BFS

We present the details of our software using flow-charts. Thecircular or elliptical
blocks in these flow-charts represent storage on the external media, the arrows
leading to these blocks correspond to write I/Os and the arrows leading away from
these blocks correspond to read I/Os. Figure3.2shows the flow-chart of MRBFS.
Let L(t) denote the set of nodes in BFS levelt, E(t) be the adjacency lists of the
nodes inL(t), A(t) be the multi-set of neighbors of nodes inL(t) andN(S) denote
the set of neighbors of nodes in a setS. GivenL(t−1), L(t) andN(L(t)) computed
in the previous iteration, we computeL(t +1) in the current iteration. This is done
by reading the nodes in sorted setsL(t−1), L(t) andN(L(t)) from the disk and
scanning them in parallel to computeL(t + 1) = {N(L(t)) \ (L(t − 1)∪ L(t))}.
The setL(t +1) so produced is also sorted. It is then written back to the disk. We
collect the adjacency lists of all nodes inL(t +1) from the disk (using potentially
random I/Os) asE(t + 1). Note that sinceL(t + 1) is sorted, this step requires
O(scan(m)) I/Os. UsingE(t + 1), we compute the multi-setA(t + 1) which is
written to the disk.A(t + 1) is then passed as an input to the runs creator (the
first phase of STXXL sorting) which produces sorted runs (sorted chunks ofM
elements). These runs are read from the disk and merged (second phase of STXXL
sorting). Duplicates are removed from this sorted set to compute N(L(t + 1))
which is written to the disk. This forms the setN(L(t)) for the next BFS level
(t := t +1) or the next iteration.

Summing over all BFS levels, the worst case number of I/Os forthis implementa-
tion of MR BFS (assuming a single merge pass in sorting) is given by the follow-

3.4 Engineering MR BFS 47

Figure 3.2: Flow-chart of MRBFS implementation.

48 Chapter 3: Breadth first search on massive graphs

ing expression:

n+scan(∑
t
(|L(t)|+|L(t−1)|+2· |L(t +1)|+|E(t +1)|+6· |A(t +1)|+2· |N(L(t))|))

The factor 2 for scanningL(t + 1) andN(L(t)) stems from summing the read-
ing and writing costs and the factor 6 forA(t +1) comes from reading and writ-
ing A(t + 1), sorted runs ofA(t + 1) and sortedA(t + 1). Since∑t |L(t)| ≤ n,
∑t |E(t)| ≤ 2m, ∑t |A(t)| ≤ 2m, and∑t |N(L(t))| ≤ ∑t(|L(t−1)|+ |L(t)|+ |L(t +
1)|)≤ 3n, the worst case total number of I/Os isn+scan(10n+14m).

3.4.4 Pipelined MR BFS

Recall from Section2.6.2that an engineering technique called pipelining is of-
ten employed in external memory algorithms to save constantfactors in the I/O
complexity. The key idea behind pipelining is to connect a given sequence of al-
gorithmic steps with an interface so that the data can be passed-through from one
algorithm to another without needing any external memory intermediate storage.
Figure3.3shows the flow-chart of a coalesced MRBFS algorithm.

Figure 3.3: Flow-chart of pipelined MRBFS implementation.

3.4 Engineering MR BFS 49

The complexity of the pipelined MRBFS mainly lies in its scanner. The scanner
receives the stream of sorted multi-setA(t). While looking at the elements one
at a time, it determines if it is a duplicate by checking with the stored previous
element of the stream. If not, it checks if this element is inL(t) or L(t−1) reading
these sets from the disk as sorted streams. If not, it collects this element into the
L(t +1) buffer and reads its adjacency list from the disk (represented asE(t +1)
in the figure) to form the streamA(t +1). The streamA(t +1) is passed directly
to runs creator and sorted runs are written on the disk. Theseare later merged and
passed to the scanner as sorted multi-setA(t) for the next level.

In this case, the worst case number of I/Os (again assuming a single merge pass)
is given by the following expression:

n+scan(∑
t
(|L(t−1)|+ |L(t)|+ |L(t +1)|+ |E(t +1)|+2 · |A(t)|))

Since∑t |L(t)| ≤ n, ∑t |E(t)| ≤ 2m, and∑t |A(t)| ≤ 2m, the worst case total num-
ber of I/Os for pipelined MRBFS is n+ scan(3n+ 6m). Thus, for MRBFS,
pipelining reduces the worst case number of I/Os fromn+ scan(10n+ 14m) to
n+ scan(3n+ 6m). This is particularly significant for graphs that do not force
MR BFS to incurn I/Os for reading adjacency lists.

3.4.5 Dealing with large diameter graphs

Consider the case of large diameter graphs with a good layouton disk such as a
list where the nodes are stored on the disk in the order the BFSalgorithm needs
to traverse them. Theoretically, MRBFS should requireO(n/B) I/Os on these
graphs as reading the graph stored in this way and storing theoutput can both be
done inO(n/B) I/Os. Our preliminary implementation however tookΩ(n) I/Os.
We discovered that the reason for this has been that the initialization of the runs
creator for sortingN(L(t)) (even if it contained only one node) and converting a
vector into stream (even if the vector contained only one element) both required
Ω(1) I/Os. Since for each level, a new instance of runs creator is initialized and
a vector is converted into a stream, this causesΩ(n) I/Os for the list graphs. The
reason for this behavior is that STXXL was designed to handleexternal memory
data and it was not conceived that in the course of it, it may also have to sort
streams withk < B elements without incurring any I/Os.

New features were added to STXXL to handle these problems. The STXXL
stream sorter (from version 0.75 onwards) does not need any I/O (with the ap-
propriate flag) ifk < B. Also, for this case, the internal work is proportional to

50 Chapter 3: Breadth first search on massive graphs

nlogn, independent ofB. Converting a vector into a stream or initialization of
runs creator or runs merger do not cause any I/O.

While these new features helped reduce the I/O time, the computation time re-
mained quite high. This was because of the overhead associated with initializing
the external sorters, which involved allocating appropriate amount of memory. In
the pipelined version of MRBFS, we do not know in advance the exact number
of elements to be sorted and hence, we can’t switch between the external and
the internal sorter so easily. In order to get around this problem, we first buffer
the firstB elements and initialize the external sorter only when the buffer is full.
Otherwise, we sort it internally.

Overall, these add-ons reduced the I/O and the computation cost for running
MR BFS on large diameter graphs significantly and helped achieving the theoret-
ical bounds for this case. The BFS phase of MMBFS inherits these optimizations
and hence, does not suffer fromΩ(1) I/O and high computation cost per level.

3.5 Engineering MM BFS R

In this section, we first present the graph representation that we use both for
MM BFS R and MM BFS D. We then describe our pipelined implementation of
MM BFS R.

3.5.1 Graph representation

We consider here the graph representation to store the preprocessed input graph.
Together with the nodes and edges, we also need to store the clustering infor-
mation. From this representation, we should be able to collect all nodes in an
arbitrary cluster inO(1)+ cluster size

B I/Os. Each edge needs to keep not only
the labels of both the adjacent nodes, but also their clusterindices, so that we can
efficiently determine whether or not the cluster of the adjacent node is in the hot
pool.

Rather than having each cluster consist of an adjacency array containing nodes
and edges belonging to it, we store the partitioned input graph as three vectors
F, N, andE (as shown in Figure3.4). VectorsN andE contain the nodes and
adjacency lists, respectively. VectorN is kept sorted according to cluster indices
of the nodes and that being equal, according to the node labels. Edges in vector

3.5 Engineering MM BFS R 51

E

N

F

Figure 3.4: I/O-efficient data structure to represent a partitioned graph.

E are kept sorted with respect to the cluster index of the first node and that being
equal, according to the first node label. Theith entry in vectorF contains only an
index of vectorN representing the beginning of the set of nodes in theith cluster.
Elements inN contain the node label as well as an index of vectorE where the
adjacency list of a particular node starts. Each edge inE contains the labels of
both the adjacent nodes as well as their cluster indices.

In order to facilitate accessing all nodes in the last cluster and the adjacency list
of the last node, we keep dummy nodes at the end of vectorsF andN to mark the
last element ofN andE, respectively.

3.5.2 Pipelined MM BFS

Figure3.5 shows the flow-chart of the pipelined version for the “parallel clus-
ter growing” phase of MMBFS R. This phase begins with randomly selecting
n/µ nodes to be master nodes. The main scanner (SCAN 1) of this phase takes
the stream of the sorted sequence of the nodes on the fringe ofexpanding clus-
ters and stores the cluster index (by including the fringe nodes into their corre-
sponding clusters) with these nodes. It also reads the adjacency lists of these
nodes to compute the new sequence of fringe nodes to be sent tothe two-phase
sorter. After the partitioning of nodes into clusters is complete, SCAN 2 stores
the cluster index of the tail node with each edge. We then sortE with respect
to the head node label. The next scanner (SCAN 3) then stores the cluster in-
dex of the head node with each edge. We then sortN and E with respect to
the cluster index (of the tail node) and that being equal, according to the (tail)
node label. SCAN 4 then adjusts the cluster and the node iterators (which are
indexes inN andE respectively) appropriately. Since the diameter of any cluster
is less thanµ · logn w.h.p., the total number of I/Os for this phase is bounded by

scan
(

16m+6n+ n
µ +2 · (m+n) · logn ·µ

)

w.h.p.

52 Chapter 3: Breadth first search on massive graphs

Figure 3.5: Flow-chart for the “parallel cluster growing” phase of MMBFS R.

3.5 Engineering MM BFS R 53

Figure 3.6: Flow-chart for the BFS phase of MMBFS.

54 Chapter 3: Breadth first search on massive graphs

In the pipelined BFS phase of MMBFS (which is common to both MMBFS R
and MM BFS D) shown in Figure3.6, the first scanner (SCAN 1) receives the
sorted sequenceN(L(t)) of neighbor nodes ofL(t) from the merger stream com-
puted in the previous iteration. It readsL(t −1) andL(t) from the disk and the
adjacency lists of nodes inL(t) from the hot poolH(t) (at levelt) and computes
F(t + 1) – the multi-set of cluster indices of nodes inL(t + 1) – and in the pro-
cess, also writes (sorted)L(t + 1) to disk. The second scanner (SCAN 2) takes
the sorted streamF(t + 1) and eliminates duplicates from it. It then checks if
the cluster (corresponding to the element inF(t + 1)) is already loaded into the
hot poolH(t). If not, it reads the cluster edges from the graph partitioning data
structure and outputs these edges as the stream to the two-phase sorter. The next
scanner (SCAN 3) reads the sorted sequence of edges that needto be merged
into the hot pool, removes the adjacent edges of nodes inL(t +1) and computes
H(t + 1) := (H(t)∪Merged cluster edges) \Adj(L(t + 1)), where Adj(S) repre-
sents the edges adjacent to nodes in a setS. In the process, this third scanner also
outputs the multi-setN(L(t + 1)). This is then sorted and passed on to the next
round as sortedN(L(t)).

The total number of I/Os for this phase is bounded by #clusters+ scan(8m ·
clusterdiameter+ 10m+ 6n). Since for MM BFS R, each cluster diameter is
bounded byµ · logm w.h.p. and the number of clusters is 1+ n

µ , the total I/O
complexity is bounded by 1+ n

µ + scan(10m+ 6n+ 8mlogm · µ) w.h.p. For
MM BFS D, the cluster diameter is bounded byµ and the number of clusters
is at most2n

µ . So, the total number of I/Os required by MMBFS D is bounded by
2n
µ +scan(10m+6n+8m·µ).

3.6 Engineering MM BFS D

As discussed in Section3.3, the key components of the Euler tour based prepro-
cessing of MMBFS include minimum spanning tree, list ranking and the Euler
tour of a tree. In this section, we discuss the various designchoices for each of
these components.

3.6.1 Engineering minimum spanning forest

Dementiev et al. [54] carefully engineered an external memory MSF algorithm.
Their implementation is based on a sweeping paradigm to reduce the number of

3.6 Engineering MM BFS D 55

nodes toO(M) and then running the semi-external Kruskal’s algorithm. The node
contraction phase consists of repeatedly choosing a node atrandom and contract-
ing the lightest edge incident to it. In external memory, selecting random nodes
can be done by using I/O-efficient random permutation (e.g.,[139]) and looking
at the nodes in that order. In contracting the edges, one needs to “inform” all the
other neighbors of the non-leader node about the leader node. This can be done by
time-forward processing (cf. Section2.5.6) using external memory priority queues
or using a bucket structure. This MSF implementation uses STXXL for sorting,
priority queue and other basic data structures.

Dementiev et al. [54] showed that with their tuned implementation, massive min-
imum spanning tree problems filling several hard disks can besolved “overnight”
on a low cost PC-server with 1 GB RAM. They experimented with many different
graph classes – random graphs, random geometric graphs and grid graphs. In gen-
eral, they observed that their implementation of semi-external Kruskal’s algorithm
only loses a factor of 2 in the execution time per edge as compared to the inter-
nal memory algorithm. Running on disks, their external memory implementation
merely loses an additional factor of 2.

Our experiments confirmed that this implementation is quitefast in practice and
despite the fact that the underlying graph representation in it is different than ours,
it is well-suited for our application.

3.6.2 Engineering List Ranking

The list ranking algorithm by Sibeyn [145] has low constant factors (for realistic
input size) in its I/O complexity and is therefore, more practical than the algo-
rithm [48] (described in Section3.2.2) based on independent set removal. The
algorithm splits the input list into sublists of sizeO(M) and goes through the data
in a wave-like manner. For all elements of the current sublist, it follows the links
leading to the elements of the same sublist and updates the information on their
final element and the number of links to it. For all elements with links running
outside the current sublist, the required information is requested from the sublists
containing the elements to which they are linked. The algorithm usesbucketing
and lazy processingof the requests and the answers to the sublists, i.e., it stores
them in one common stack and processes them only when the wavethrough the
data hits the corresponding sublist.

Unfortunately, Sibeyn’s implementation relies on the operating system for I/Os
and does not guarantee that the top blocks of all the stacks remain in the internal

56 Chapter 3: Breadth first search on massive graphs

0

1

2

3

4

5

6

7

0 1 0 2 3 2 4 2 0 7 5 7 6 7 0

0 1 2 3 4 7 5 6

Figure 3.7: The bi-directed tree (shaded circles and solid lines) and the closed
linked list of its edges (dashed lines) on the left. The orderof the vertices and
their partitioning before and after the duplicates removalon the right.

memory, which is a necessary assumption for the asymptotic analysis of the algo-
rithm. Besides, its reliance on internal arrays and swap space puts a restriction on
the size of the lists it can rank. We re-implemented this algorithm using STXXL
stacks and vectors. The deeper integration of the algorithmin the STXXL frame-
work makes it possible to obtain a scalable solution, which could handle graph
instances of the size we require while keeping the theoretical worst case bounds.

Our implementation of this algorithm in the STXXL frameworkis quite fast in
practice and takes only around 20 minutes for a list of 229 elements.

3.6.3 Euler tour

Recall from Section3.2 that in order to construct the Euler tour around the bi-
directional minimum spanning tree (Figure3.7), each node chooses a cyclic order
of its neighbors. For every edge(u,v), its successor is defined to be the edge
(v,w) (u may be the same asw) such that in the cyclic order of neighors ofv, u
is followed byw. In one scan of the edges of the bi-directional tree, each edge
is linked to its successor. The linear ordering induced by the successor function
constitutes the Euler tour. This tour is then split at the source nodes by marking
an edge leading away froms in the circuit as the starting edge of the tour.

The position of an edge in the Euler tour is computed using list ranking. These
edges are then sorted such that they are stored on the disk in the order of their
position in the tour. While scanning the nodes in the order they appear in the
tour (some nodes may be repeated), we subdivide the tour intochunks of size

3.7 A heuristic for maintaining the pool 57

max{1,
√

n·B
n+m} nodes. Thereafter, we remove the duplicate nodes using the sort-

ing routine of STXXL and get the partitioning of the input graph.

3.7 A heuristic for maintaining the pool

In this section, we propose a heuristic for efficient management of the hot pool.
This heuristic is aimed at speeding up the practical performance of MMBFS D,
particularly for large diameter graphs. At the same time, itpreserves the worst
case I/O bounds of MMBFS.

For many large diameter graphs, the pool fits into the internal memory most of
the time. Although in this case, the number of edges in the pool is not so large,
scanning all the edges in the pool for each level can still be computationally quite
expensive. Hence, we keep a portion of the pool that fits in theinternal memory
as a multi-map hash table. Given a node as a key, it returns allthe nodes adjacent
to the current node. Thus, to get the neighbors of a set of nodes we just query the
hash table for those nodes and then delete them from the hash table. For loading
the cluster, we just insert all the adjacency lists of the cluster in the hash table,
unless the hash table has alreadyΘ(M) elements.

Recall that after the deterministic preprocessing, the adjacency lists are stored
on the disk in the order in which their corresponding nodes appear on the Eu-
ler tour around a spanning tree of the input graph. The Euler tour is chopped

into clusters with max
{

1,
√

n·B
n+m

}

nodes (before the duplicate removal) ensur-

ing that the maximum distance between any two nodes in the cluster is at most

max
{

1,
√

n·B
n+m

}

−1. However, the fact that the contiguous adjacency lists on the

disk have their corresponding nodes closer in terms of BFS levels is not restricted
to intra-cluster nodes. The adjacency lists that come alongside the requisite cluster
will also be required soon and by caching these other adjacency lists, we can save
some I/Os in the future. This caching is particularly beneficial when the pool fits

in the internal memory. Note that we still load the max
{

1,
√

n·B
n+m

}

node clusters

in the pool, but keep the remaining elements of the block in the pool-cache. For
MM BFS D on linked lists, this means that we loadO(

√
B) nodes in the inter-

nal pool, while keeping the remainingO(B) adjacency lists which we get in the
same block, in the pool-cache, thereby reducing the I/O complexity for the BFS
traversal on linked lists to that of scanning a list stored inthe ranked order.

Recall that we represent the adjacency lists of nodes in the graph as a STXXL

58 Chapter 3: Breadth first search on massive graphs

B

B B
External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 3.8: Scheme depicting an example run of the implementation of our heuris-
tic. The dark regions denote the clusters that need to be loaded into the hot pool.
The entire block containing the two clusters is first loaded into the vector-cache.
At this juncture, the internal hot-pool (a multi-map hash table) can only hold one
more cluster. Therefore, one of the clusters goes into the internal pool and the
other cluster is stored on the external hot-pool.

vector. STXXL already provides a fully associative cache with every vector. Be-
fore doing an I/O for loading a block of elements from a vector, it first checks if
the block is already there in the vector-cache. If so, it avoids the I/O and provides
the elements from the cache instead. Increasing the vector-cache size of the ad-
jacency list vector with a layout computed by the Euler tour based preprocessing
and choosing the replacement policy to be LRU provides us with an implemen-
tation of the pool-cache. Figure3.8 depicts the implementation of our heuristic.

3.8 External memory graph generator

For the purpose of this study, we designed and implemented a pipelined version of
an I/O efficient framework for generating large graphs of many different classes.
Our graph generator can be easily de-coupled from our graph representation and
is therefore, of independent interest. Since it can generate massive graphs quickly,
it was one of the few graph generators recommended for the DIMACS implemen-
tation challenge on shortest paths [62].

Our graph generator first produces a stream of edges (each undirected edge is rep-
resented as a pair of directed edges, one in each direction),randomly permutes the
node labels if required by the graph class, sorts the edge-sequence, removes du-
plicates, and converts it into our graph representation. For an I/O-efficient random
permutation needed in the generation process of many graphs, we use [139].

3.8 External memory graph generator 59

3.8.1 Graph classes.

We consider the following graph classes covering a broad spectrum of different
characteristics influencing the performance of external memory BFS algorithms:

Random Graph

The random graph modelG(n, p) [66, 67] (cf. Section2.3) refers to graphs withn
nodes in which each edge is chosen independently with probability p. Generating
such a graph by considering whether or not an edge exists between every pair
would takeΩ(n2) time. So, we consider a different notion of random graphs in
which all themedges are chosen with having tail and head nodes picked randomly,
i.e., onn node graphs, we randomly selectm edges with replacement. We make
sure that the randomly chosen tail and head nodes are not the same to avoid self
loops. From the multi-set of edges so generated, we remove duplicates to avoid
parallel edges. The random graph so obtained is equivalent to a random graph

G(n, p) with p = 1−
(

1− 1
(n

2)

)m

. For our experiments, we mostly work with

m= 4n which corresponds top∼ 4
n−1.

A random graphG(n, p) has a giant connected component with a small diameter
w.h.p. if p = Ω(logn

n). In conformity with the theoretical results, we observed that
on large random graphs withm around 4n, there is a big connected component
(containing more than 0.99nnodes) with 10–15 BFS levels starting from a random
node.

B-level random graph

Givenn, mandB, consider the graph in Figure3.9. The graph consists ofn nodes,
and with the exception of the source nodes they are spread overB levels of n−1

B
nodes each. TheseB levels approximate the BFS levels, as edges in this graph
only connect nodes between consecutive levels. The source node is connected to

all nodes in the first BFS level. The
m− n−1

B
B−1 edges between any two consecutive

levelsi andi +1 have their one end-point from leveli and the other end-point from
level i +1 chosen randomly with a uniform probability distribution.

The following layout of this graph on the disk causes MRBFS to incur its worst
case ofΩ(n) I/Os: For each level, the nodes are arranged in the node vector

60 Chapter 3: Breadth first search on massive graphs

Figure 3.9: B-level random graph

such that each node in the level resides in a different block.For this, we choose
the node labels such that theith level Li = {u|u mod B = i}. Since these levels
approximate BFS levels and MRBFS involves accessing these nodes in the node
vector together, it will cause MRBFS to incur∼ n−1

B I/Os for every BFS level.
Summing over allB BFS levels, it will cause MRBFS to haveΩ(n) I/Os.

We considerB-level random graphs withm= 4n. They have a giant connected
component and the levels correspond very well with the actual BFS levels.

One can also generate the above graph with a random layout on the disk. The
performance of external memory BFS algorithms on the two layouts is similar.

B-level spider web graph

Figure 3.10:B-level spider web graph

This graph class (as shown in Figure3.10) is a specialization of web graph (not to

3.8 External memory graph generator 61

Figure 3.11: MM BFS worst graph

be confused with the power-law graphs used to simulate WWW orWWW crawls)
defined in [153]. It also consists ofB levels, each havingn−1

B nodes. All nodes in a
level are connected in a cyclic fashion and a node has an edge to its corresponding
node in the level before and after. The initial layout of the nodes on the disk is
random. A similar graph with

√
B levels is also supported by our generator.

MM BFS worst graph

Given two parametersn andµ (closely related to the MMBFS parameter with
the same notation), this graph [37] shown in Figure3.11 consists of a source
nodes and a nodet connected byk :=

√
n independent paths of lengthL :=

log1−1/µ (1/
√

n). Furthermore,t is connected ton independent nodesu1, . . . ,un

by an edge. The total number of nodes and edges in this graph isO(n). This graph

is so named as it causes MMBFS R to incur its worst case ofΘ
(

n ·
√

logn
B +sort(n)

)

I/Os w.h.p. on sparse graphs.

Grid Graph

Givenx, y and p, a grid graph consists of anx× y grid where each edge of this
grid is chosen independently with a probabilityp. The layout of this graph on the
disk is random. We mostly consider the case withp= 1, x= ⌈√n⌉ andy= ⌊√n⌋.
For this case, the grid graph has a diameter of⌈√n⌉+ ⌊√n⌋.

62 Chapter 3: Breadth first search on massive graphs

We also consider long and narrow grids in two dimensions as well as grids in three
and four dimensions as examples of large diameter graphs.

List graphs

A list graph consists ofn nodes andn−1 edges such that there exist two nodes
u andv, with the path fromu to v consisting of all then−1 edges. We consider
three different initial layouts – simple, in which consecutive nodes in the list ap-
pear contiguous on the disk; B-interleaved in which consecutive nodes are all in
different but consecutive blocks; random in which the arrangement of nodes on
disk is given by a random permutation.

Webgraph

As an instance of a real world graph, we consider an actual crawl of a part of the
world wide web in 2001 [150], where an edge represents a hyperlink between two
sites. Although this is a directed graph, we treat it as undirected. This graph has
around 130 million nodes and 1.4 billion edges. It has a core which consists of
most of its nodes and behaves like a random graph.

Our graph generator also includes a translator to read this webgraph, make it undi-
rected (by inserting an edge in the other direction) and convert it into our graph
representation.

Other graph classes

There are many other graph classes supported by our generator such as geometric
graphs where the nodes are associated with points in some space and the proba-
bility of an edge to exist between two nodes in the graph is inversely proportional
to the Euclidean distance between their corresponding points.

3.9 External memory BFS decomposition
verifier

As another side tool, we designed an I/O efficient verifier routine to determine
whether or not a BFS level decomposition is correct for a given graph.

3.10 BFS software package 63

For an undirected connected graph, the following are necessary and sufficient con-
ditions for a BFS level labeling to be correct:

1. BFS level 0 contains the source nodes only.

2. Every nodev∈V, v 6= s has a unique BFS levelbfs level(v) > 0.

3. ∀(u,v) ∈ E, |bfs level(u)−bfs level(v)| ≤ 1.

4. ∀u∈V in BFS levelk (k > 0),∃ edge(u,v) such thatv is in BFS levelk−1.

Next, we show how to check all these conditions inO(sort(n+ m)) I/Os in a
pipelined way. Figure3.12shows the flow-chart of our pipelined implementation
of the BFS checker. Recall that the representation of the BFSoutput consists of
two vectors –L andNL. In NL, the nodes of the graph are kept sorted according
to their BFS levels. Theith entry inL contains the index of an element inNL from
where the nodes in theith BFS level begin.

The first scanner (SCAN 1) checks the first condition and formstuples of the form
< node label, bfs level> from the BFS output representation. These tuples are
then sorted according to node label and passed on to the second scanner (SCAN
2). SCAN 2 checks the second condition. It also does a parallel scan of the sorted
(w.r.t. the tail node label) set of edges and stores the BFS level of the first end-
point with each edge. The set of edges is then sorted according to the label of the
other end-point (head node of each edge). SCAN 3 then scans this sorted edge
set in parallel with the sorted tuple list and stores the BFS level of the head node
with each edge. In the process, it also checks if the third condition is satisfied.
The set of edges is then sorted according to the BFS level of the tail node and that
being equal with the BFS level of the head node. The last scanner (SCAN 4) then
checks the last condition on this sorted set of edges. A BFS level decomposition
is correct only if it satisfies all the conditions checked by the scanners.

3.10 BFS software package

The software isn’t finished until the last user is dead.

–Anonymous

Our code for the experimental study of external memory BFS algorithms has now
evolved into a software package that can be used as a black-box for many applica-
tions. We eventually plan to integrate this code into a library of external memory

64 Chapter 3: Breadth first search on massive graphs

Figure 3.12: Flow-chart of the pipelined BFS checker.

3.10 BFS software package 65

algorithms dealing with massive graphs.

Many features for easing the usability of the code (both for anaı̈ve and an expert
user) have been integrated in this package. The software currently supports many
different input graph formats such as a list of edges or the DIMACS shortest path
challenge graph format (with adaptors to convert them into our graph represen-
tation in O(sort(m)) I/Os). It can also output the BFS results in many different
formats such as a BFS tree, BFS levels of all nodes and all nodes in a particular
BFS level (both in binary and ASCII format).

Our implementation can be used on many different 32-bit and 64-bit architec-
tures with single or multi-core processors and single or multiple (homogenous or
heterogenous) external disks. In order to efficiently use our external memory im-
plementations on different machines, one needs to tune the values of block size,
number of external disks, and available main memory size based on the underlying
hardware.

This package has been continously evolving for the last fouryears. The latest
stable version of our code is available from the SVN repository https://svn.mpi-
inf.mpg.de/AG1/EM/ajwani/embfs/trunk. Apart from many bug-fixes, it includes
many features requested by the users of our software package.

The download page of an earlier version of our code was visited more than 300
times in the last two years. We released this code under GNU General Public
License (GPL) version 2 as freely downloadable and did not keep any statistics
about our users. From the log of feature requests, we found that there have been
attempts to use (an older version of) our code for at least thefollowing applica-
tions:

• Processing large semantic graphs in order to build a scalable parallel data
management system.

• Searching in social network graphs.

• A graph visualization project dealing with large graphs.

3.10.1 Goals

Our most important goal in engineering these BFS algorithmshas been to make
BFS viable on massive graphs. Constant factors in the I/O complexity are partic-
ularly important in an external memory setting as they can make the difference

66 Chapter 3: Breadth first search on massive graphs

between an implementation running overnight and one that takes a month. When-
ever we had a trade-off between saving I/Os and more development time, we
always chose to optimize our code by saving I/Os. Pipelininginvolves more de-
velopment time, makes the code less readable and makes it difficult to debug, but
since optimization has been our key priority we continue to rely on it heavily.

Our next goal has been reusability. The extensive use of templates provides a lot
of flexibility with respect to using our code in different applications.

Last but not least, reliability is an important consideration. Not only the imple-
mentation should result in a correct output, but it should also not terminate before
giving the output (e.g., with an error message or segmentation fault). This is par-
ticularly important for external memory implementations as they may take hours
and days of running. In this context, errors that happen infrequently constitute
the main problems. We have put a lot of effort to make this codeas bug-free as
possible.

3.11 Results of our experimental study

In this section, we present the main results of our extensiveexperimental study
with external memory BFS algorithms. For comparing the different algorithms,
we consider the total running time and the I/O wait time – the total time spent by
an implementation waiting for an I/O to complete, and not I/Otime – the total
time spent by an implementation on I/Os. This distinction isnecessary as STXXL
maximizes the overlap of I/O with computation.

The external memory BFS algorithms require hours, days and sometimes even
months for computing BFS on various graph classes. As such, some of the results
presented in this section (specifically those requiring months) have been interpo-
lated using the symmetry in the graph structure.

3.11.1 Configuration

We have implemented the algorithms in C++ using the g++ compiler (optimiza-
tion level –O3) on theDebian GNU/Linuxdistribution with a Linux kernel and the
external memory library STXXL. Table3.1 summarizes the configuration of the
three machines on which we ran our experiments. Note that forchronological rea-
sons, Config A had only partial support for large diameter graphs, a 16-byte edge

3.11 Results of our experimental study 67

Config A Config B Config C

Processor Intel Opteron Opteron
Processor speed 2.0 GHz 2.0 GHz 2.5 GHz
Cache 512 KB 1 MB 1 MB
RAM 1 GB 1 GB 2.5 GB
Disk Model ST3250823A ST3250823A ST3500320AS
Disk capacity 250 GB 250 GB 500 GB
Disk Buffer cache 8 MB 8 MB 32 MB
Disk: Sustained data
transfer rate (outer zone)65 MBps 65 MBps 105 MBps
Disk: Average latency 4.16 msec 4.16 msec 4.16 msec
Disk: Spindle Speed 7200 rpm 7200 rpm 7200 rpm
Disk: Random read
seek time <11.0 msec <11.0 msec < 8.5 msec
Disk: Random write
seek time <12.0 msec <12.0 msec < 9.5 msec
Disk: Connecting
interface PATA PATA SATA 3Gbps
g++ version 3.3.2 4.0.2 4.1.2
Linux kernel 2.4 2.6 2.6
STXXL version 0.77 0.77 1.1.1
STXXL support for
large diameter graphs Partial Complete Complete
EMBFS Heuristic No Yes Yes
MR BFS edge
size 16 8 4

Table 3.1: Configuration of different machines used for experimenting with EM
BFS algorithms.

representation for MRBFS and no heuristic included in MMBFS. Also note that
with the hard disks used in all of these machines, it takes many hundreds of hours
for 228 (most common value ofn in our experiments) random reads and writes.

The relative performance of different algorithms does not vary much across dif-
ferent architectures. In this section, we therefore present various performance
measures on different configurations to illustrate the key features of our results.

68 Chapter 3: Breadth first search on massive graphs

3.11.2 Fine-tuning Parameters

Most practitioners of external memory algorithms know thatthe block sizeB is a
parameter that needs to be finely tuned for optimal performance. This is all the
more relevant in the STXXL design framework, as the STXXL vector is organized
as a collection of blocks (of sizeB) residing on the external storage media (parallel
disks). Recall from Section3.4.1that access to the external blocks is organized
through the fully associativecachewhich consists of a few (PgNr) in-memory
pages where a page is a collection of a few (P) logically consecutive blocks. Apart
from Pg Nr andP, another important parameter to be fine-tuned is the internal
memory reserved for a runs creator and a runs merger. While tuning these param-
eters, a key constraint is that the internal memory allocated for all the vectors, runs
creators and runs mergers active simultaneously, at any time, should be less than
the main memory available for the user. Typically, half of the main memory is
kept for OS requirements. The allocation strategy of blocksover disks in a multi-
disk setting and the page replacement policy of a vector cache are some other
parameters to be considered. For our implementations, we choseB = 512 KB/1
MB (depending on the machine), PgNr = 4, P = number of parallel disks in use,
allocation strategy = randomized cyclic striping and LRU page replacement strat-
egy.

Another important parameter to be optimized for MMBFS is µ which is re-
lated to the diameter of the clusters. For worst case optimality, we chooseµ :=

max

{

1,
√

n
scan(n+m)

}

for MM BFS D andµ := max

{

1,
√

n
scan(n+m)·log(n)

}

for

MM BFS R. On the other hand, if some a priori information is available about
the graph structure, one can use it to reduce the random or sequential accesses by
appropriately modifyingµ. We consider both the cases – one in which we choose
our µ value independent of the graph-structure (commonµ) and one in which we
assume a priori knowledge of the graph diameter (graph-structure dependentµ).

3.11.3 IM BFS looses fast

Figure3.13shows the total running time of IMBFS, MR BFS, MM BFS R, and
MM BFS D on random graphs of varying sizes (keepingm = 4n) on config A
(cf. Table3.1). An important point to note here (also see Figure1.1) is that even
when half of the graph fits in internal memory, the performance of IM BFS is
much worse than that of the external BFS algorithms. For thiscase (222 nodes
and 224 edges), the I/O wait time of IMBFS (8.09hours) dominates the total

3.11 Results of our experimental study 69

214

212

210

28

26

24

22

1

2-2

2-4

222221220219218217216215214213

T
im

e
(in

 s
ec

)

n

IM BFS
MR BFS

MM BFS R
MM BFS D

Figure 3.13: Variation of running time of IMBFS, MR BFS, MM BFS R, and
MM BFS D (in logarithmic scale) on random graph withn nodes (also in loga-
rithmic scale) andm= 4n edges.

running time (8.11hours), thereby explaining the worse behavior of IMBFS.
On the other hand, MRBFS, MM BFS R, and MM BFS D have much less I/O
wait time (0.70, 5.15 and 4.36minutesrespectively) and consequently, the total
running time (0.97, 11.11 and 10.23minutesrespectively) is also small. This
further establishes the need for efficient implementationsof external memory BFS
algorithms.

3.11.4 Single disk – common µ

Table3.2shows the I/O wait time and running time (in hours) for different graphs
in the single disk commonµ case. Note that MRBFS does not useµ in any way.

First, observe that for these large graphs, even the efficient implementations of ex-
ternal memory algorithms are I/O dominant. This is particularly true for MRBFS
as the I/O wait time for MRBFS on most graph classes accounts for most of its
total running time.

70 Chapter 3: Breadth first search on massive graphs

MR BFS MM BFS R MM BFS D
Graph class n m I/O wait Total I/O wait Total I/O wait Total

Time Time Time Time Time Time
Random 228 230 0.9 1.0 4.5 8.0 4.4 8.3
Webgraph ∼ 227 1.4 ·109 1.7 1.8 5.2 8.4 3.0 6.4
2D-Grid 228 ∼ 229 3300 3300 30.9 34.9 11.6 16.0
4D-Grid 228 ∼ 230 23.5 23.6 21.1 24.9 12.4 16.5
B-level random 228 230 5000 5000 37.1 52.6 2.9 7.2

Table 3.2: I/O wait time and total running time (in hours) of MR BFS,
MM BFS R, and MM BFS D on various graph classes on Config C.

Let us first consider the case of random graphs. The total timefor BFS traversal
(particularly MRBFS) on random graphs is much less than that for most other
graph classes. This is explained by the fact that there are very few BFS levels
in random graphs (typically 10–15 for the graph sizes we studied). In fact, it is
known [135] that a random graphG(n,c/n) has an expected diameterO(logn).
Both MR BFS and MMBFS benefit from the low diameter of the graph, though
to a different degree.

MR BFS directly benefits from fewer BFS levels as it incursO(sort(n+m)) I/Os
per level, thus avoiding the expensiveO(n) factor. MM BFS benefits from low di-
ameter as the cluster diameters are small (at least smaller than the graph diameter)
and consequently, nodes do not stay in the hot pool for too long. For MM BFS R,
this also means that the preprocessing time is less. Furthermore, the clusters get
loaded in fewer sort steps and as such MMBFS need not incurΩ(1) I/Os for
loading each cluster. Nonetheless, owing to its more compact data structures and
its inherent simplicity, MRBFS not only outperforms MMBFS (on low diameter
graphs) in terms of I/O wait time by a factor of around five, butalso in terms of
total running time by a factor of around eight.

While MR BFS performs better than the other two on random graphs saving a
few hours, MM BFS D with the heuristic outperforms MRBFS and MMBFS R
on moderate (O(

√
n) or O(

√
B) diameter) to large (O(n)) diameter graphs with

a non-simple3 layout on disk saving a fewmonthsand a fewdays, respectively.
This performance behavior on large diameter graphs is mainly because of the
different asymptotic I/O complexities of these algorithms. On (⌈√n⌉ × ⌊√n⌋)
2D-grid graphs andB-level random graphs, MRBFS incurs close to its worst

3By a simple layout of a graph, we mean that the adjacency listsof nodes are kept on the disk
sorted according to the BFS level of these nodes.

3.11 Results of our experimental study 71

case I/O complexity ofΩ(n) I/Os for loading the adjacency lists.

Apart from diameter, another important consideration affecting the relative per-
formance of the two algorithms is the initial graph layout onthe disk. The prepro-
cessing phase of MMBFS neutralizes the impact of an adverse layout. So, while
we observe that on Config A, the I/O wait time of MRBFS (0.6hours) is much
less than 84.8hoursof MM BFS R (dominated by the 84.3hoursin the prepro-
cessing phase) on a simple list graph, the I/O wait time of MRBFS (167.6 and
177.7days) is much more than that of MMBFS (4.2 and 4.1days) on random
andB-interleaved layouts. Thus, preprocessing makes MMBFS provide better
worst case guarantees (savingmonths) at the cost of loosing out on simple layouts
(loosingdays).

3.11.5 Two phases of MM BFS

Let’s analyze the performance of MMBFS in terms of its two phases. Tables3.3
and 3.4 show the results of the preprocessing and the BFS phase of thetwo
MM BFS variants. The preprocessing time of MMBFS D only depends on the
graph size and not its structure. The I/O wait time for the Euler tour based prepro-
cessing of graphs with around 229 edges is around 2 hours, while that for graphs
with 230 edges is around 2.7 hours. This is because Euler tour computation fol-
lowed by list ranking only requiresO(sort(m)) I/Os independent of the diameter
of the graph.

MM BFS R MM BFS D
Graph class n m I/O wait Total I/O wait Total

Time Time Time Time
Random 228 230 2.3 3.0 2.6 3.7
Webgraph ∼ 227 1.4 ·109 3.7 4.3 1.9 2.6
2D-Grid 228 ∼ 229 5.1 5.4 2.2 3.0
4D-Grid 228 ∼ 230 2.7 3.4 2.7 3.7
B-level random 228 230 2.3 3.0 2.7 4.0

Table 3.3: I/O wait time and total running time (in hours) of the preprocessing
phase of the two MMBFS variants on Config C.

On the other hand, the “parallel cluster growing” preprocessing in the worst case

scans the graphΩ
(

√

n
scan(n+m)

)

times, and thus incurringΩ(
√

n ·scan(n+m))

72 Chapter 3: Breadth first search on massive graphs

MM BFS R MM BFS D
Graph class n m I/O wait Total I/O wait Total

Time Time Time Time
Random 228 230 2.2 5.0 1.8 4.6
Webgraph ∼ 227 1.4 ·109 1.5 4.1 1.1 3.8
2D-Grid 228 ∼ 229 25.8 29.5 9.4 13.0
4D-Grid 228 ∼ 230 18.4 21.5 9.7 12.8
B-level random 228 230 34.8 49.6 0.2 3.2

Table 3.4: I/O wait time and total running time (in hours) of the BFS phase of the
two MM BFS variants on Config C.

Graph class n m MM BFS R MM BFS D

Random graph 228 230 500 630
Random List 228 228−1 10500 480

Table 3.5: I/O volume (in GB) required in the preprocessing phase by the two
variants of MMBFS on Config A.

I/Os w.h.p. But if the diameter of the graph is small, no two nodes in a cluster are
further than the diameter and hence, MMBFS R needs to scan the graph fewer
times. Thus, while the I/O volume of the “parallel cluster growing” preprocessing
on random graphs is around 500 GB, it is more than 10.5 TeraBytes on a random
list graph (cf. Table3.5). As for MM BFS D preprocessing, the I/O volume is
less for the random list graph because it has fewer number of edges. Therefore,
while the preprocessing time increases for MMBFS R from 3.0 hours for random
graphs to 4.8 hours on aO(

√
n) diameter square grid graph, it decreases from 3.7

hours to 2.6 hours for MMBFS D (cf. Table3.3).

Except for some special cases, BFS phase dominates the running time of MM BFS.
The BFS phase itself is a balance between the random I/Os to load the clusters into
the hot pool and the sequential I/Os to update and scan the hotpool. For small
diameter graphs, we do not needΩ(1) random I/Os to load a cluster. All clusters
are loaded in a span of a few BFS levels and the cost for this is thus, subsumed
by I/Os required to scan the graph a few times. Hence in this case, the scan-
ning of hot pools dominate the running time. For large diameter graphs, the hot
pool almost always fits in the internal memory and no I/Os are required to scan
it. MM BFS also significantly benefits from our heuristics in this case. So for
large diameter graphs, the random I/Os to load the clusters dominates the running
time of the BFS phase. The moderate diameter graphs are the key challenge for
the BFS phase as here, we need to incur I/Os both for loading the clusters and for

3.11 Results of our experimental study 73

scanning the hot pool.

As compared to MMBFS R, MM BFS D provides dual advantages: First, the
preprocessing itself is faster and second, for most graph classes, the partition-
ing is also more robust, thus leading to better worst-case running-times (cf. Ta-
ble 3.4) in the BFS phase. The later is because the clusters generated by Euler

tour based preprocessing are of diameter at most max

{

1,
√

n
scan(n+m)

}

, while the

ones generated by “parallel cluster growing” preprocessing can have a larger di-

ameter ofO
(√

n·logn
scan(n+m)

)

causing adjacency lists to be scanned more often. Also,

MM BFS D benefits much more from our caching heuristic than MMBFS R as
Euler tour based preprocessing gathers neighboring clusters of the graph on con-
tiguous locations in the disk.

3.11.6 Effect of Disk parallelism

MR BFS MM BFS R
Graph class n m Single Four Single Four

Disk Disks Disk Disks
Random 228 230 3.4 1.3 9.6 4.4
B-level Random 228 230 3994.8 2105.1 49.7 26.0
B-level Spider Web 228 ∼ 229 3366.5 1497.9 39.8 17.1
MM Worst 225 ∼ 225 25.4 13.7 32.4 10.5
Random list 228 228 4167.7 4156.2 283.3 239.9
B-interleaved list 228 228 4222.6 1258.7 280.8 239.9

Table 3.6: The running times (in hours) of MRBFS and MMBFS R on Config
A in the single-disk and multi-disk settings.

Phase 1 Phase 2
Graph class n m Single Four Single Four

Disk Disks Disk Disks
Random 228 230 5.1 2.5 4.5 1.9
B-level random 228 230 5.1 2.5 44.6 23.5
B-level Spider Web 228 ∼ 229 7.3 3.2 32.5 13.9
Random list 228 228 80.4 50.5 200.4 189.4

Table 3.7: The running times (in hours) of the two phases of MMBFS R on
Config A in the single-disk and multi-disk settings.

74 Chapter 3: Breadth first search on massive graphs

In the multi-disk setting, we ran our experiments with the same parameters, except
that the vectors are randomly striped over four disks. Although the usage of mul-
tiple disks allows us to handle larger volumes of data, herein we restrict ourselves
to smaller sizes for better comparison with the single disk case.

As Tables3.6 and3.7 show, the usage of parallel I/O channels alleviates the I/O
problem further. In general, we see a performance improvement by a factor of two
to three with four disks as compared to the single-disk case.For many graphs,
the computation time starts becoming the bottleneck, in particular for MM BFS,
which seems to gain more from the parallel I/O channels. However, with some
new features of STXXL like a SMP multi-processor version of sorting routines,
we hope to bring down the total running time fairly close to the I/O wait time.
Besides, the computation speed increases at a much faster rate than the external
memory throughput, thereby reducing the computation time relative to the I/O
wait time.

While MR BFS on random list graphs hardly seems to have any benefit fromthe
multiplicity of disks, it is almost four times better with four disks onB-interleaved
list graphs. This is because a random access to a block bringsthe neighboring
blocks on other disks automatically to the internal memory and therefore, the
access to the adjacency lists of the next three nodes (located on the other three
disks) comes without any extra I/Os.

3.11.7 Exploiting a priori information about graph diam-
eter

Recall from Section3.11.5that the BFS phase of MMBFS for small diameter
graphs is dominated by sequential accesses to the hot pool and for large diameter
graphs is dominated by the random I/Os for loading the clusters. Since we choose
µ to balance the random I/Os to load the clusters and sequential accesses to the
hot pool, it makes sense to choose a very low value ofµ for small diameter graphs
(to ensure that an adjacency list stays for a really short time in hot pool) and very
high value ofµ for large diameter graphs (as the hot pool stays internal andwe
want to reduce the random I/Os to load the clusters).

Tables3.8and3.9show the I/O wait time and running time for the two algorithms
in the single disk case, whereµ could be optimized based on the graph structure.
With a low value ofµ (µ ∼ 1.5), the I/O wait time and the total running-time
of the BFS phase of MMBFS R on random graphs is less than that of MRBFS
on Config A. In general, with an appropriateµ value chosen to balance the I/O

3.11 Results of our experimental study 75

MR BFS MM BFS R
Graph class n m I/O wait Total I/O wait Total

Time Time Time Time
Random 228 230 2.4 3.4 5.5 7.9
B-level Random 228 230 3989.8 3994.8 10.0 16.6
B-level Spider Web 228 ∼ 229 3364.2 3366.5 25.1 29.3

Table 3.8: Single Disk, Graph structure dependentµ – I/O wait time and running
time (in hours) of MRBFS and MMBFS on Config A.

MM BFS R Phase 1 MM BFS R Phase 2
Graph class n m I/O wait Total I/O wait Total

Time Time Time Time
Random 228 230 3.3 4.9 2.2 3.0
B-level Random 228 230 4.0 5.5 6.0 11.1
B-level Spider Web 228 ∼ 229 12.9 13.7 12.2 15.6

Table 3.9: Single Disk, Graph structure dependentµ – I/O wait time and running
time (in hours) of the two phases of MMBFS on Config A.

time of the two phases of MMBFS, one can save a significant factor in the I/O
complexity. Our experiments with graph-dependentµ and disk parallelism sug-
gest that when used together, they can significantly alleviate the I/O bottleneck for
MM BFS.

3.11.8 Results on the webgraph

MR BFS MM BFS R MM BFS R
Commonµ Graph depµ

I/O wait Total I/O wait Total I/O wait Total
Time Time Time Time Time Time

Single disk 3.7 4.0 7.4 9.4 6.3 8.4
Multiple disk 2.0 2.3 2.7 4.8 2.3 4.5

Table 3.10: I/O wait time and running time (in hours) of the two algorithms on a
web graph on Config A.

As an instance of a real world graph, we consider an actual crawl of the world
wide web [150], where an edge represents a hyper-link between two sites. This

76 Chapter 3: Breadth first search on massive graphs

graph has around 130 million nodes and 1.4 billion edges. Thebulk of the nodes
are contained in the core of this web graph spanning 10–12 BFSlevels (similar
to random graphs). The remaining nodes are spread out over thousands of levels
with 2–3 nodes per level (which behaves more like a list graph). However, the
I/O wait time as well as the total running time for BFS traversal is dominated by
the core of this graph and hence, the results are similar to the ones for random
graphs. As Table3.10 shows for Config A, both MRBFS and MMBFS can
compute the BFS decomposition of this graph in a matter of a few hours. In fact
as Table3.2shows, MRBFS requires merely 1.8 hours on Config C with a single
disk, owing to its more compact edge-representation there.Similar to random
graphs, MRBFS outperforms both MMBFS R and MM BFS D on webgraph.

3.11.9 Penalty for cache-obliviousness

Brodal et al. [40] gave a cache-oblivious undirected BFS algorithm (COBFS)
that has a complexity ofO(sort(m)+(m/B) · logn+

√

n ·m/B+ST(n,m)) I/Os,
whereST(n,m) is the complexity of computing a spanning tree of a graph with
n nodes andmedges in a cache-oblivious way. The currently best cache-oblivious
algorithms for computing a spanning tree requireO(sort(m) · loglog(n)) I/Os de-
terministically andO(sort(m)) I/Os randomized.

Christiani [49] gave a prototypical cache-oblivious implementation of MRBFS
and the preprocessing phase of MMBFS R and MM BFS D. These implemen-
tations use cache-oblivious algorithms for sorting, minimum spanning tree and
list ranking. In this subsection, we provide evidence that even though the cache-
oblivious BFS algorithms have the same asymptotic I/O complexity as their ex-
ternal memory counterparts, they are slower in practice forgraphs that do not fit
in the main memory.

Sorting

While CO SORT provides tight asymptotic guarantees on all levels of memory
hierarchy, it is a factor three to four slower than STXXLSORT in practice for
data-sizes that do not fit in the main memory. Our results shown in Table3.11are
in conformity with that of Brodal et al. [41], where it is shown that the external
memory sorting algorithm in the library TPIE [151] is better than their carefully
implemented cache-oblivious sorting algorithm, when run on disk.

3.11 Results of our experimental study 77

n CO SORT STXXL SORT

256×106 21 8
512×106 46 13
1024×106 96 25

Table 3.11: Timing in minutes for sortingn elements using either COSORT or
STXXL SORT on Config B.

Graph class CO MST EM MST

Random graph;
n = 228, m= 230 107 35
List graph with contiguous
disk layout (Simple List);n = 228 38 16
List graph with random
disk layout (Random List);n = 228 47 22

Table 3.12: Timing in hours (on Config B) required by Euler tour based prepro-
cessing of Christiani’s implementation using either COMST or EM MST.

Spanning forest

The Euler tour based preprocessing of Christiani [49] uses the cache-oblivious
MST (CO MST) algorithm [2]. Table 3.12 shows the total time required by
Christiani’s MM BFS D preprocessing [49] using COMST and the one in which
CO MST is replaced by the external memory MST implementation (cf. Section3.6.1).

List ranking and Euler tour

The cache-oblivious implementation [49] uses the algorithm based on indepen-
dent set removal [48] for list ranking. While it takes around 14.3hoursfor ranking
229 element random list using 3 GB RAM on Config B, our adaptation of Sibeyn’s
algorithm (cf. Section3.6.2) takes less than 40minutesin the same setting.

MM BFS D comparison

We compared the performance of our implementation of MMBFS D with Chris-
tiani’s implementation [49] based on cache-oblivious subroutines. Table3.13
show the preprocessing time for the two extreme graph classes – random graphs

78 Chapter 3: Breadth first search on massive graphs

and list graphs with random layout on disk. We observe that onboth graph classes,
the preprocessing time required by our implementation is significantly less than
the one by Christiani.

Graph class n m CO BFS MM BFS D
Random graph 228 230 107 5.2
Random List 228 228−1 47 3.2

Table 3.13: Timing in hours for computing Euler tour based preprocessing of
MM BFS by the two implementations of MMBFS D on Config A.

We suspect that the performance losses in Christiani’s COBFS implementations
are inherent in cache-oblivious algorithms to a certain extent and will be carried
over to any cache-oblivious BFS implementation.

3.11.10 Remark on the shape of the spanning tree

The shape of the computed spanning tree can have a significantimpact on the
clustering and the disk layout of the adjacency list after Euler tour based pre-
processing, and consequently on the BFS phase. For instance, in the case of the
square grid graphs, a spanning tree containing a list with elements in a snake-like
row major order produces long and narrow clusters, while a “random” spanning
tree is likely to result in clusters with low diameters. Sucha “random” spanning
tree can be obtained by assigning random weights to the edgesof the graph and
then computing a minimum spanning tree or by randomly permuting the indices
of the nodes. The nodes in the long and narrow clusters tend tostay longer in
the pool and therefore, their adjacency lists are scanned more often. This causes
the pool to grow external and results in larger I/O volume. Onthe other hand,
low diameter clusters are evicted from the pool sooner and are scanned less often
reducing the I/O volume of the BFS phase. Consequently as Table 3.14shows,
the BFS phase of MMBFS D takes only 28 hours on Config B with clusters pro-
duced by “random” spanning tree, while it takes 51 hours withlong and narrow
clusters.

Graph class n m Long clusters Random clusters

Grid(214×214) 228 229 51 28

Table 3.14: Time taken (in hours) by the BFS phase of MMBFS D with long and
random clustering on Config B.

3.12 Recent work related to EM BFS 79

3.11.11 Summary

Graph class n m MR BFS MM BFS R MM BFS D

Random 228 230 1.4 7× 6×
Webgraph ∼ 227 1.4 ·109 2.6 3.5× 2×

Grid (214×214) 228 229 2.5× 1.25× 21
Grid (221×27) 228 ∼ 229 >100× >10× 4.0
Grid (227×2) 228 ∼ 228+227 >500× >25× 3.8
Simple List 228 228−1 0.4 7× 7×

Random List 228 228−1 >1300× >75× 3.6
Max ∼ 1/2 year ∼ 1 week < 1 day

Table 3.15: The best total running time (in hours) for BFS traversal on different
graphs on Config B with the best external memory BFS implementations; Entries
like > 25× denote that this algorithm takes more than 25 times the time taken by
the best algorithm for this input instance.

Table3.15points to the current state of the art implementations of external mem-
ory BFS on different graph classes (on Config B). Our MRBFS implementation
outperforms the other external memory BFS implementationson low diameter
graphs or when the nodes of a graph are arranged on the disk in the order required
for BFS traversal. For random graphs with 256 million nodes and a billion edges,
MR BFS performs BFS in just 1.4 hours. Similarly, MRBFS takes only 2.6 hours
on webgraphs (whose runtime is dominated by the short diameter core) and 0.4
hours on list graph with contiguous layout on disk. For largediameter graphs like
random list graphs, MMBFS D along with our heuristic computes the BFS in just
about 3.6hours, which would have taken MRBFS a fewmonths, an improvement
by a factor of more than 1300. In general, if there is no a priori information about
the graph structure or its layout on the disk, one should use MM BFS D as it has
better asymptotic worst case guarantee.

3.12 Recent work related to EM BFS

In this section, we review some recent work related to external memory BFS.
Meyer and Osipov [111] have extended our work to external memory single-
source shortest paths (SSSP). We briefly review this extension together with other
known results on EM SSSP in Section3.12.1. Meyer recently proposed algo-
rithms for dynamic BFS [110] and approximating the diameter of an undirected

80 Chapter 3: Breadth first search on massive graphs

graph [109]. We review these algorithms in Section3.12.2and Section3.12.3, re-
spectively. We believe that the key ideas and the code in our work can also easily
be extended to implement dynamic BFS and to approximate the diameter. Effi-
ciently approximating the diameter of the graph can in turn help determine which
BFS algorithm to use and with what parameters.

3.12.1 Single-Source Shortest Paths

The single-source shortest paths (SSSP) problem takes as aninput a large weighted
undirected graphG(V,E) and a source nodesand computes the shortest path dis-
tanced(s,v) for all nodesv∈V. It can be computed inO(nlogn+m) in internal
memory using Dijkstra’s algorithm [61] with a Fibonacci heap [71] based priority
queue. Dijkstra’s algorithm relies heavily on the priorityqueue.

Kumar and Schwabe proposed anO(n+m/B· log2(m/B)) I/O algorithm [93] that
relies on I/O-efficient tournament trees for priority queueoperations. Once again,
theO(n) term comes from unstructured accesses to adjacency lists and because of
it, this algorithm is unlikely to yield good results on real-world massive graphs,
which are usually sparse. Furthermore, due to edge weights,there are typically
many more “levels”.

As regards resolving the problem of unstructured accesses to adjacency lists,
Meyer and Zeh [112] proposed an algorithm MZSSSP that has a preprocessing
phase where the adjacency lists are re-arranged on the disk.Unlike BFS where
the edges are all unweighted, MZSSSP distinguishes between edges with differ-
ent weights and separates the edges into categories based ontheir weights. The
total I/O complexity of this algorithm isO(

√

(n ·m· logW)/B+MST(n,m)) I/Os,
whereW is the ratio between the weights of the heaviest and the lightest edge and
MST(n,m) is the number of I/Os required to compute a minimum spanning tree
of a graph withn nodes andmedges.

Meyer and Zeh [113] extended this framework to handle the case of unbounded
edge-weights. Their algorithm for SSSP with unbounded edge-weights requires
O((
√

n ·m/B) · logn+MST(n,m)) I/Os.

Brodal et al. [40] showed that SSSP can be computed inO(n+sort(m)) I/Os with
a cache-oblivious algorithm relying on a cache-oblivious bucket heap for prior-
ity queue operations. Allulli et al. [14] gave a cache-oblivious SSSP algorithm
improving the upper bound toO(

√

(n ·m· logW)/B+(m/B) · logn+ sort(m)+
MST(n,m), whereW is the ratio between the smallest and the largest edge weight
andMST(n,m) is the I/O complexity of the cache-oblivious algorithm computing

3.12 Recent work related to EM BFS 81

a minimum spanning tree of an node andmedge graph.

Engineering EM SSSP

Recently, some external memory SSSP approaches (similar innature to the one
proposed in [93]) have been implemented [46, 138] and tested on graphs of up
to 6 million nodes. However, in order to go external and stillnot produce huge
running times for larger graphs, these implementations restrict the main memory
size to rather unrealistic 4 to 16 MB.

Meyer and Osipov [111] extended our work to engineer a practical I/O-efficient
single-source shortest-paths algorithm on general undirected graphs where the ra-
tio between the largest and the smallest edge weight is reasonably bounded. Their
implementation is semi-external as it assumes that the mainmemory is big enough
to keep some constant bits of information per node. This assumption allows them
to use a bit vector of sizen kept in the internal memory for remembering settled
nodes.

In order to get around the lack of optimal decreasekey operation in current exter-
nal memory priority queues, it allows up tod(v) (degree of nodev) many entries
for a nodev in the priority queue at the same time and when extracting them, it
discards all but the first one with the help of the bit vector. As regards accessing
the adjacency lists in an unstructured way, they do a preprocessing similar to the
Euler tour based variant of MMBFS (i.e., without considering the edge weights
at all) to form clusters of nodes. For integer edge weights from {1, . . . ,W} and
k = log2W, the algorithm keepsk “hot pools” where thei-th pool is reserved for
edges of weight between 2i−1 and 2i −1. It loads the adjacency lists of all nodes
in a cluster into these “hot pools” as soon as the first node in the cluster is settled.

In order to relax the edges incident to settled nodes, the hotpools are scanned and
all relevant edges are relaxed. The algorithm crucially relies on the fact that the
relaxation of large weight edges can be delayed because for such an edge (even
assuming that it is in the shortest path), it takes some time before the other incident
node needs to be settled. The hot pools containing higher weight edges are thus
touched less frequently than the pools containing short edges.

Similar to the implementation of MMBFS, it partially maintains the pool in the
internal memory hash table for efficient dictionary look up rather than computa-
tionally quite expensive scanning of all hot pool edges. Thememory can be shared
between “hot pools” either uniformly or in an exponentiallydecreasing way. The
latter makes sense as the hot pools with lighter edges are scanned more often.

82 Chapter 3: Breadth first search on massive graphs

When the clusters are small enough, the algorithm caches allneighboring clusters
that are anyway loaded into the main memory while readingB elements from the
disk.

For random edge weights uniformly distributed in[1, . . . ,W], the expected num-
ber of I/Os incurred by this algorithm isO(

√

(n ·m· logW)/B+MST(n,m)), the
same as that for MZSSSP.

Similar to our implementations, their pipelined implementation makes extensive
use of STXXL algorithms and data structures such as stream sorting.

SSSP in practice

As predicted theoretically, this SSSP approach is acceptable on graphs with uni-
formly distributed edge weights. For random graphs (228 nodes and 230 edges)
with uniformly random weights in[1, . . . ,232], it requires around 40 hours to com-
pute SSSP (with 1 GB RAM). On a US road network graph with around 24 million
nodes and around 29 million edges, it requires only around half an hour for com-
puting SSSP, even when the node labels are randomly permutedbefore. On many
difficult graph classes for BFS, the running time of this SSSPapproach is within
a factor of two to the BFS implementation [106].

The final performance of this algorithm has been shown to be significantly depen-
dent on the quality of the spanning tree and the way space is allocated in the main
memory among different “hot pools”.

3.12.2 Dynamic BFS in external memory

In many real-world applications, the underlying input graph keeps on evolving
continuously (cf. Section1.1). Since even the best of the carefully tuned imple-
mentations of external memory graph algorithms usually take hours and days of
time (for massive graphs), it is difficult to re-compute everything from scratch
every time there is any modification in the input graph.

Very few results are known for dynamic graph algorithms in external memory.
Meyer [110] shows an interesting result for computing BFS on general undirected
graphs in incremental or decremental setting. They prove anamortized high-
probability bound ofO(n/B2/3+sort(n) · logB) I/Os per update under a sequence
of eitherΘ(n) edge insertions, but no deletions orΘ(n) edge deletions, but no

3.12 Recent work related to EM BFS 83

insertions.

Recall that the deterministic preprocessing in the static BFS [106] works by com-
puting an Euler tour around a spanning tree of the input graphand dividing it
into chunks of sizeµ where 1< µ = O(

√
B). The nodes belonging to different

clusters can be assigned to any of them. This can potentiallycause many clusters
with O(1) adjacency lists. For dynamic BFS, this is modified such that each clus-
ter (except possibly the last) contains an expectedΩ(µ) nodes. This is done by
exploiting the following observation: In the sequence of nodes in the Euler tour
of a spanning tree, an intermediate visit of a node is directly preceded by the last
visit to one of its children and followed by the first visit to some other child. This
means that in any chunk half of the nodes are either the first orthe last visit of
a node. Thus, if rather than assigning nodes to different chunks arbitrarily (as in
static BFS), we make a node belong to the chunk correspondingto its first and last
visit each with probability one half, the expected number ofadjacency lists per
cluster will be at leastµ/8.

For the BFS phase, lets consider the insertion of theith edge(u,v) in incremental
setting and refer to the graph (and the shortest path distances from the source in
the graph) before and after the insertion of this edge asGi−1 (di−1) andGi (di). We
first run an external memory connected component algorithm in order to check if
the insertion of(u,v) enlarges the connected componentCs of the source nodes.
If so, we run the MRBFS algorithm on the nodes in the new component starting
from nodev (assuming w.l.o.g. thatu∈Cs) and adddi(u)+1 (di(u) = di−1(u) in
this case) to all the distances obtained.

Otherwise, we run the BFS phase ofMM BFS, with the difference that the ad-
jacency list forv is added toH when creating BFS level max{0,di−1(v)−α} of
Gi , for a certain advanceα > 1. For nodes withdi−1(v)−di(v) > α, we import
the whole clusters containing their adjacency lists intoH using random I/Os. If
it requires more thanα ·n/B random cluster accesses, we increaseα by a factor
of two, compute a new clustering forGi−1 with larger chunk size and start a new
attempt by repeating the whole approach with the increased parameters.

The decremental version is similar, except that rather thanadvancing the adja-
cency lists, we let them be in hot pool forα BFS levels. For nodesv with
di(v)− di−1(v) > α, we use random I/Os to get the cluster containingv’s adja-
cency list later on.

The analysis relies on the fact that there can be only be very few updates in which
the BFS levels change significantly for a large number of nodes. As such, most of
the updates will require few random I/Os in early attempts with little advance.

84 Chapter 3: Breadth first search on massive graphs

We believe that our work can easily be extended to engineer animplementation of
this algorithm.

3.12.3 External memory approximation graph algorithms

One of the major approximation challenges in external memory graph traver-
sal has been to compute approximate diameter of an undirected sparse graph in
o(n/
√

B) I/Os. For unweighted graphs, BFS from an arbitrary node already gives
a 2-approximation to the diameter of a connected graph. As noted in Section3.3,
BFS on undirected sparse graphs (m= O(n)) can be computed in external memory
in O(n/

√
B+sort(n)) I/Os.

Recently, Meyer [109] proposed an algorithm that computes an expectedO(
√

k)-
approximation for the diameter of a sparse undirected and unweighted graph with
n nodes andm = O(n) edges usingO(n ·

√

logk/(k ·B)+ k · scan(n)+ sort(n))
I/Os. This is done by reducing this problem to that of computing exact shortest
paths on a graphG′ with O(n/k) nodes andO(m) edges.

GraphG′ is computed using a preprocessing similar to the “parallel cluster grow-
ing” variant of MM BFS as follows: We first choose each node to be a master
node with a probability 1/k. Then, we select everyk-th node in the Euler-tour
traversal around an arbitrary spanning tree ofG, to also be a master node. There-
after, we grow the clusters “in parallel”. In each round, each master node tries to
capture all unvisited neighbors of the current cluster. This is done by first sorting
the nodes at the fringes of the clusters and then scanning theadjacency-lists of the
nodes in the yet unexplored graph. Ties are broken arbitrarily.

Let C(u) be the cluster containingu. An edge{u,v} ∈ G results in an edge
{C(u),C(v)} ∈ G′ if C(u) 6= C(v). The weight of the created edge{C(u),C(v)}
is dc(u)+ 1+ dc(v), wheredc(u) is the distance ofu from its cluster center. We
remove the parallel edges by keeping only the lightest edge betweenC(u) and
C(v).

We run single source shortest path from an arbitrary nodes in G′ and output
the maximum distance froms to any other node inG′. Note that this is a 2-
approximation to the weighted diameter ofG′. It can easily be shown that the
weighted diameter ofG′ DG′ is more thanDG. Next, in order to show thatDG′ is
aO(
√

k) approximation of the diameter ofG (DG), we consider two cases:

• DG ≤ 2
√

k. Consider any edge(u,v) replaced by{C(u),C(v)} in G′. The
shortest path between any two nodes inG is at most 2

√
k and therefore,

3.12 Recent work related to EM BFS 85

dc(u)≤ 2
√

k−1 for any nodeu∈G. The weight of{C(u),C(v)} is at most
4
√

k−1. The weighted diameter ofG′ can thus be at most(4
√

k−1) ·DG.

• DG > 2
√

k. Consider any pathP∈G of lengthp such that
√

k≤ p≤ 2
√

k
and consideru ∈ P such thatdc(u) is minimum. Note that for allv ∈ P,
dc(v)≤ dc(u)+d(u,v), as otherwise the master node ofu can also capture
v during the cluster growing phase. Also, ifC(u) 6= C(v), there have to be
node disjoint paths fromu andv to the cluster centers. Consider larger and
larger neighborhoods aroundP until we find the first level with a cluster
center at distancedc(u). Since each node has been chosen to be a clus-
ter center with uniform probability 1/k, the expected number of nodes we
have to check till reaching the first cluster center isk. Recall that each edge
{u,v} ∈G leads to an edge{C(u),C(v)}∈G′ with weightdc(u)+dc(v)+1.
Thus, there should exist a pathP′ ∈G′ with expected weightO(k).
For longer pathsPl ∈Gof lengthpl , we consider sub-paths of lengthΘ(

√
k).

For each such sub-path the corresponding pathP′ ∈G′ has expected weight
O(k). Using linearity of expectation, we can show that the corresponding
pathP′l ∈ G′ has expected weight

√
k · pl . This implies that the weighted

diameter ofG′ can be at most
√

k ·DG.

Since eachk-th node on the Euler tour is a master node, each nodeu ∈ G is
at most distancek away from a master node and the clusters are grown for at
most k rounds. Each cluster growing round requiresO(scan(m)) I/Os to scan
the adjacency lists of the unexplored graph and each node appears only once as
a fringe node of some cluster leading to a total ofO(sort(n)) I/Os. Thus, the
total complexity of computingG′ is O(k · scan(n+m)+sort(n+m)+ST(n,m))
I/Os, whereST(n,m) is the I/O complexity of computing a spanning tree of an
n node andm edge undirected graph. Computing single source shortest path
on a graph withO(n/k) nodes andO(m) edges with the ratio between max-
imum and minimum edge weight beingk requiresO(

√

(n ·m· log2k)/(k ·B)+
sort(n+m)+ST(n,m)) I/Os. The total I/O complexity for this algorithm is thus
O(
√

(n ·m· log2k)/(k ·B)+k ·scan(n+m)+sort(n+m)+ST(n,m)) I/Os.

We believe that our implementation can be extended to approximate the graph
diameter using the above algorithm.

I/O-efficient heuristics for approximating graph diameter s

Brudaru [42] implemented a heuristic to I/O-efficiently approximate the number
of BFS levels from a given source nodes in a large undirected unweighted graph.

86 Chapter 3: Breadth first search on massive graphs

This heuristic first computes an arbitrary spanning treeT of the undirected graph,
roots it at the source node by computingdT(s,v) for all v∈V and then iteratively
computes a new treeT ′ such thatdT ′(s,v) ≤ dT(s,v) ∀v ∈ V. These iterations
come in the following variants:

• “Offline variant”: For eachv∈V and{u,v}∈E, we compute minu{dT(s,u)+
1} and if it is less thandT(s,v), we mark the edge{v,P(v)} (P(v) being the
parent ofv in rootedT) for deletion and the edge leading to the shortest
distance for insertion in the next iteration.

• “Online variant”: In this variant, as the new tree is being computed and
dT(s,v) reduces, this information is communicated to the neighborsthat
will be processed ahead (without waiting for the round to finish). We use
time-forward processing (cf. Section2.5.6) to do this communication. We
first process the nodes in increasing order ofdT(s,v) and then in decreasing
order ofdT(s,v).

Both of these variants are shown to converge fast to a BFS tree. While the “offline
variant” requires less time per iteration, it may need a higher number of iterations.
Empirical evidence [42] suggests that just one round of iterations is enough to
determine whether the number of BFS levels isO(logn), O(

√
n) or O(n).

This is particularly useful for our BFS software. If we can quickly determine
the number of BFS levels to beO(

√

n
scan(n+m)

), we can either use MRBFS or

MM BFS D with µ := n
diamapp(G)·scan(n+m) , wherediamapp(G) is the approxi-

mated diameter of the graph. Recall that for each level, MRBFS incursO(sort(m))
I/Os and therefore, MRBFS requiresO(diam(G) · sort(m)) I/Os. Similarly for
MM BFS D, the I/O complexity (cf. Section3.3) is O(n/µ + µ · scan(n+ m) +
sort(n+ m)). The termµ · scan(n+ m) comes from the fact that each edge may
be scannedO(µ) times. However, no edge can be scanned more often than the
total number of BFS levels (O(diam(G))). Thus, the total complexity becomes
O(n/µ +diam(G)·scan(n+m)+sort(n+m)). Substitutingµ = n

diamapp(G)·scan(n+m)

and assumingdiam(G) = O(diamapp(G)), we get a complexity ofO(diam(G) ·
scan(n+m)+sort(n+m)) I/Os. On the other hand, if the diameter isΩ

(

√

n
scan(n+m)

)

,

we can use MMBFS D with the worst-case value ofµ := max{1,
√

n
scan(n+m)}

for a total I/O complexity ofO(
√

n ·scan(n+m)+sort(n+m)).

3.13 Discussion 87

3.13 Discussion

Problems Best known upper bounds

MST/CC (on undirected graphs)O(sort(m) · loglog(n ·B/m))
MST/CC (randomized
on undirected graphs) O(sort(m))
List ranking O(sort(m))
Euler Tour O(sort(m))

BFS (on undirected graphs) O(
√

n ·scan(m)+
sort(m)+MST(n,m))

BFS, DFS and Topological O(min{n+ ⌈n/M⌉ ·scan(m),
ordering (on directed graphs) (n+scan(m)) · log2n, m})
SSSP (on undirected graphs
with integer weights) O(

√

n ·scan(m) · logW+MST(n,m))
SSSP (on undirected graphs
with unbounded weights) O(

√

n ·scan(m) · logn+MST(n,m))
APSP (on unweighted
undirected graphs) O(n ·sort(m))
APSP (on undirected graphs
with non-negative weights) O(n · (

√

n ·scan(m)+scan(m) · log(m/B)))

Table 3.16: I/O complexity of state-of-the-art algorithms(assumingm≥ n) for
graph traversal problems.

We implemented external memory BFS algorithms and showed their comparative
analysis. Together with pipelining, disk parallelism, andour heuristic for main-
taining the pool, our implementations provide viable BFS traversal on different
classes of massive sparse graphs. In particular, we reducedthe running time of
a few monthsfor many graph classes required by IMBFS to a fewhoursusing
EM BFS. We believe that our results can be further improved by fast analysis of
graph structure (such as I/O-efficient approximation of graph diameter) and using
it to tune parameters for external memory BFS algorithms.

Empirical evidence suggests that MRBFS performs better on small diameter
random graphs. However, the better asymptotic worst-case I/O complexity of
MM BFS D helps it to outperform MRBFS for moderate to large diameter sparse
graphs with non-simple disk layout, where MRBFS incurs close to its worst case
of Ω(n) I/Os.

Extending our work to external-memory single-source shortest-paths may benefit

88 Chapter 3: Breadth first search on massive graphs

many real world applications. Our code can also be useful forengineering I/O-
efficient dynamic BFS algorithms.

In general, the design and analysis of external memory graphtraversal algorithms
has greatly improved the worst case upper bounds for the I/O complexity of many
graph traversal problems. Table3.16summarizes the state-of-the-art in external
memory graph traversal algorithms on general graphs.

Engineering some of these algorithms has extended the limits of the graph size
for which a traversal can be computed in “acceptable time”. This in turn means
that optimization problems of larger and larger sizes are becoming viable with
advances in external memory graph traversal algorithms. Weplan to eventually
integrate these implementations into an external memory library for graph algo-
rithms.

Many of these algorithms are still far from optimal. Similarly, while implemen-
tations of these algorithms provide good results on simple (low or high diameter)
graph classes, it is still far from satisfactory for the difficult graph classes. More
work is required both in designing and engineering these algorithms, particularly
for directed graphs, to make traversal on even larger graphsviable.

Chapter 4

Characterizing the performance
of Flash memory storage

devices

As knowledge advances, we are able to invent better and better models, which
reproduce more and more features of the real world, more and more accurately.
Nobody knows whether there is some natural end to this process, or whether it will
go on indefinitely. In trying to understand common sense, we shall take a similar
course...

– Edwin Thompson Jaynes (Probability Theory: The Logic of Science, 1993)

Flash memory is a form of non-volatile computer memory that can be electrically
erased and reprogrammed. Flash memory devices are lighter,more shock resis-
tant, consume less power and hence are particularly suited for mobile computing.
Initially used in digital audio players, digital cameras, mobile phones, and USB
memory sticks, flash memory may become the dominant form of end-user stor-
age in mobile computing: Some producers of notebook computers have already
launched models (Apple MacBook Air, Sony Vaio UX90, SamsungQ1-SSD and
Q30-SSD) that completely abandon traditional hard disks infavor of flash mem-
ory (also called solid state disks). Market research company In-Stat predicted [83]
in July 2006 that 50% of all mobile computers would use flash (instead of hard
disks) by 2013.

90 Chapter 4: Characterizing the performance of Flash memory storage devices

Frequently, the storage devices (be it hard disks or flash) are not only used to
store data but also to actually compute on it if the problem athand does not com-
pletely fit into main memory (RAM); this happens on both very small devices (like
PDAs used for online route planning) and high-performance compute servers (for
example when dealing with huge graphs like the web). Thus, itis important to
understand the characteristics of the underlying storage devices in order to predict
the real running time of algorithms, even if these devices are used as an external
memory. In case of hard disks, the access cost depends on the current position
of the disk-head and the location that needs to be read/written. This has been
well researched; and there are good computation models (cf.Section2.4) such
as the external memory model [3] and the cache-oblivious model [73] that can
help in realistic analysis of algorithms that run on hard disks. We would like to
have a similar understanding of various access patterns on disks based on flash
memory and to come up with computation models capturing the performance of
algorithms on these disks. In this chapter, we show our attempt to characterize the
performance (read/writes; sequential/random) of flash memory devices by analyz-
ing the effects of random writes, misalignment, aging, pastI/O patterns etc. on
the access cost. We also discuss the implications of flash memory characteristics
on the real running time of basic algorithms.

State of the art for flash memories.

Recently, there has been growing interest in using flash memories to improve the
performance of computer systems [29, 96, 117]. This trend includes the experi-
mental use of flash memories in database systems [96, 117], in Windows Vista’s
use of USB flash memories as a cache (a feature called ReadyBoost), in the use of
flash memory caches in hard disks (e.g., Seagate’s Momentus 5400 PSD hybrid
drives, which include 256 MB on the drive’s controller), andin proposals to inte-
grate flash memories into motherboards or I/O busses (e.g., Intel’s Turbo Memory
technology).

Most previous algorithmic work on flash memory concernsoperating systemalgo-
rithms and data structures that were designed to efficientlydeal with flash memory
cells wearing out, e.g., block-mapping techniques and flash-specific file systems.
A comprehensive overview on these topics was recently published by Gal and
Toledo [74]. The development of application algorithms tuned to flash memory is
in its absolute infancy. We are only aware of very few published results beyond
file systems and wear leveling:

Wu et al. [154, 155] proposed flash-aware implementations ofB-trees andR-trees

91

without file system support by explicitly handling block-mapping within the ap-
plication data structures.

Goldberg and Werneck [76] considered point-to-point shortest-path computations
on pocket PCs where preprocessed input graphs (road networks) are stored on
flash-memory; due to space-efficient internal-memory data-structures and local-
ity in the inputs, data manipulation remains restricted to internal memory, thus
avoiding difficulties with unstructured flash memory write accesses. Recently,
Sanders et al. [141] also consider this problem. Their algorithm also consistsof a
preprocessing where “contraction hierarchies” of the roadnetwork are computed.
The preprocessed external memory graph representation is then stored on the flash
disks. However since querying for point-to-point shortestpaths involves only read
I/Os, they are also able to avoid unstructured writes on the flash memory.

Goals.

Our first goal is to see how standard algorithms and data structures for basic al-
gorithms like scanning, sorting and searching designed in the RAM model or the
external memory model perform on flash storage devices. An important question
here is whether these algorithms can effectively use the advantages of the flash de-
vices (such as faster random read accesses) or there is a needfor a fundamentally
different model for realizing the full potential of these devices.

Our next goal is to investigate why these algorithms behave the way they behave
by characterizing the performance of more than 20 differentlow-end and high-end
flash devices under typical access patterns presented by basic algorithms. Such a
characterization can also be looked upon as a first step towards obtaining a model
for designing and analyzing algorithms and data structuresthat can best exploit
flash memory. Previous attempts [96, 117] at characterizing the performance of
these devices reported measurements on a small number of devices (1 and 2, re-
spectively), so it is not yet clear whether the observed behavior reflects the flash
devices, in general. Also, these papers didn’t study if these devices exhibit any
second-order effects that may be relevant.

Our next goal is to produce a benchmarking tool that would allow its users to mea-
sure and compare the relative performance of flash devices. Such a tool should not
only allow users to estimate the performance of a device under a given workload
in order to find a device with an appropriate cost-effectiveness for a particular ap-
plication, but also allow quick measurements of relevant parameters of a device
that can affect the performance of algorithms running on it.

92 Chapter 4: Characterizing the performance of Flash memory storage devices

These goals may seem easy to achieve, but they are not. These devices employ
complex logical-to-physical mapping algorithms and complex mechanisms to de-
cide which blocks to erase. The complexity of these mechanisms and the fact that
they are proprietary mean that it is nearly impossible to tell exactly what factors
affect the performance of a device. A flash device can be used by an algorithm de-
signer like a hard disk (under the external memory or the cache-oblivious model),
but its performance may be far more complex.

It is also possible that flash memory becomes an additional secondary storage
device, rather than replacing the hard disk. Our last, but not least, goal is to
find out how one can exploit the comparative advantages of both in the design of
application algorithms, when they are used together.

Outline.

The rest of this chapter is organized as follows. In Section4.1, we develop a
basic understanding of the architecture of flash disks. In Section 4.2, we show
how the fundamental algorithms like merge-sort and binary search perform on
flash memory devices and how appropriate are the standard computation mod-
els in predicting these performances. In Section4.3, we present our experimen-
tal methodology, and our benchmarking program, which we useto measure and
characterize the performance of many different flash devices. We also show the
effect of random writes, misalignment, controllers and aging on the performance
of these devices. In Section4.4, we provide an algorithm design framework for
the case when flash devices are used together with a hard disk.We also show the
results of engineering the external memory BFS algorithms for this setting. We
conclude with a preliminary computation model for predicting the performance of
algorithms on flash memory devices in Section4.5.

4.1 Basics of flash memory disks

Large-capacity flash memory devices use NAND flash chips. AllNAND flash
chips have common characteristics, although different chips differ in performance
and in some minor details. The memory space of the chip is partitioned into blocks
callederase blocks. The only way to change a bit from 0 to 1 is to erase the entire
unit containing the bit. Each block is further partitioned intopages, which usually
store 2048 bytes of data and 64 bytes of meta-data (smaller chips have pages
containing only 512+16 bytes). Erase blocks typically contain 32 or 64 pages.

4.2 Implications of flash devices for algorithm design 93

Bits are changed from 1 (the erased state) to 0 byprogramming(writing) data onto
a page. An erased page can be programmed only a small number oftimes (one
to three) before it must be erased again. Reading data takes tens of microseconds
for the first access to a page, plus tens of nanoseconds per byte. Writing a page
takes hundreds of microseconds, plus tens of nanoseconds per byte. Erasing a
block takes several milliseconds. Finally, erased blocks wear out; each block can
sustain only a limited number of erasures. The guaranteed numbers of erasures
range from 10,000 to 1,000,000. To extend the life of the chipas much as possible,
erasures should therefore be spread out roughly evenly overthe entire chip; this is
calledwear leveling.

Because of the inability to overwrite data in a page without first erasing the entire
block containing the page, and because erasures should be spread out over the
chip, flash memory subsystems maplogical block addresses(LBA) to physical
addresses in complex ways [74]. This allows them to accept new data for a given
logical address without necessarily erasing an entire block, and it allows them to
avoid early wear even if some logical addresses are written to more often than
others. This mapping is usually a non-trivial algorithm that uses complex data
structures, some of which are stored in RAM (usually inside the memory device)
and some on the flash itself.

The use of a mapping algorithm within LBA flash devices means that their per-
formance characteristics can be worse and more complex thanthe performance of
the raw flash chips. In particular, the state of the on-flash mapping and the volatile
state of the mapping algorithm can influence the performanceof reads and writes.
Also, the small amount of RAM can cause the mapping mechanismto perform
more physical I/O operations than would be necessary with more RAM.

4.2 Implications of flash devices for algorithm
design

In this section, we look at how the RAM model and external memory model algo-
rithms behave when running on flash memory devices. In the process, we try to
ascertain whether the analysis of algorithms in either of the two models also carry
over to the performance of these algorithms obtained on flashdevices.

In order to compare flash memory with DRAM memory (used as mainmemory),
we ran a basic RAM model list ranking algorithm on two architectures – one with
8 GB RAM memory and the other with 2 GB RAM, but 32 GB flash memory.

94 Chapter 4: Characterizing the performance of Flash memory storage devices

Recall from Section2.5 that in the list ranking problem, we are given a list with
individual elements randomly stored on disk and our goal is to find the distance
of each element from the head of the list. The sequential RAM model algorithm
consists of just hoping from one element to its successor, and thereby computing
the distances of nodes from the head of the list. Here, we do not consider the cost
of writing the distance labels of each node.

We stored a 230-element list of long integers (8 Bytes) in random order, i.e. the
elements were kept in the order of a random permutation generated beforehand.
While ranking such a list took minutes in RAM, it took days with flash. This
is because even though the random reads are faster on flash disks than the hard
disk, they are still much slower than RAM. Furthermore, similar to the case of
BFS on hard disk (cf. Figure1.1), the performance of the RAM model algorithm
significantly deviates from its predicted linear time behavior, when the size of
the input list approaches and exceeds the available internal memory. Thus, we
conclude that the RAM model is not useful for predicting the performance (or
even relative performance) of algorithms running on flash memory devices and
that some standard RAM model algorithms leave a lot to be desired if they are to
be used on external flash devices.

Algorithm Hard Disk Flash
Generating a random double and writing it 0.2 µs 0.37µs
Scanning (per double) 0.3 µs 0.28µs
External memory Merge-Sort (per double) 1.06µs 1.5 µs
Random read 11.3 ms 0.56 ms
Binary Search 25.5 ms 3.36 ms

Table 4.1: Runtime of basic algorithms when running on Seagate Barracuda
7200.11 hard disk as compared to 32 GB Hama Solid State Disk.

As Table4.1 shows, the performance of basic algorithms when running on hard
disks and when running on flash disks can be quite different, particularly when it
comes to algorithms involving random read I/Os such as binary search on a sorted
array. While such algorithms are extremely slow on hard disks necessitating B-
trees and other I/O-efficient data structures, they are muchfaster on flash devices.
On the other hand, algorithms involving write I/Os such as merge sort (with two
read and write passes over the entire data) run much faster onhard disk than on
flash.

It seems that the algorithms that run on flash have to achieve adifferent tradeoff
between reads and writes and between sequential and random accesses than hard
disks. Since the cost of accesses does not drop or rise proportionally over the

4.3 Characterization of flash memory devices 95

entire spectrum, the algorithms running on flash devices need to be qualitatively
different from the one on hard disk. In particular, they should be able to tradeoff
write I/Os at the cost of extra read I/Os. Standard external memory algorithms that
assume same cost for reading and writing fail to take advantage of fast random
reads offered by flash devices. Thus, there is a need for a fundamentally different
model for realistically predicting the performance of algorithms running on flash
devices.

4.3 Characterization of flash memory devices

In order to see why the standard algorithms behave as mentioned before, we char-
acterize more than 20 flash storage devices. This characterization can also be
looked at as a first step towards a model for designing and analyzing algorithms
and data structures running on flash memory. We start this section by describing
our hardware and software resources that were designed for this characterization.

4.3.1 Configuration

Our tests were performed on many different machines:

• A 1.5GHz Celeron-M with 512 MB RAM

• A 3.0GHz Pentium 4 with 2 GB RAM

• A 2.0Ghz Intel dual core T7200 with 2 GB RAM

• A 2 × Dual-core 2.6 GHz AMD Opteron with 2.5 GB RAM

All of these machines were running a 2.6 Linux kernel.

The devices included USB sticks, compact-flash and SD memorycards and solid
state disks (of capacities 16 GB and 32 GB). They include bothhigh-end and low-
end devices. The USB sticks were connected via a USB 2.0 interface, memory
cards were connected through a USB 2.0 card reader (made by Hama) or PCMCIA
interface, and solid state disks with IDE interface were installed in the machines
using a 2.5 inch to 3.5 inch IDE adapter and a PATA serial bus.

96 Chapter 4: Characterizing the performance of Flash memory storage devices

Our benchmarking tool and methodology.

Standard disk benchmarking tools likezcav [108, 156] fail to measure character-
istics that are important in flash devices (e.g., write speeds, since they are similar
to read speeds on hard disks, or sequential-after-random writes); and commercial
benchmarks tend to focus on end-to-end file-system performance, which does not
characterize the performance of the flash device in a way thatis useful to algorithm
designers. Therefore, we decided to implement our own benchmarking program
that is specialized (designed mainly for LBA flash devices),but highly flexible
and can easily measure the performance of a variety of accesspatterns, including
random and sequential reads and writes, with given block sizes and alignments,
and with operation counts or time limits.

Our benchmarking software (running under linux) performs aseries of experi-
ments on a given block devices according to instructions in an input file. Each
line in the input file describes one experiment, which usually consists of many
reads or writes. Each experiment can consist of sequential or random reads or
writes with a given block size. The accesses can be aligned toa multiple of the
block size or misaligned by a given offset. Sequential accesses start at a random
multiple of the block size. Random accesses generate and usea permutation of the
possible starting addresses (so addresses are not repeatedunless the entire address
space is written). The line in the input file describes the number of accesses or
a time limit. An input line can instruct the program to perform a self scaling ex-
periment [47], in which the block size is repeatedly doubled until the throughput
increases by less than 2.5%.

The buffers that are written to flash include either the approximate age of the
device (in number of writes) or the values0x00 to 0xff, cyclically.

The block device is opened with theO DIRECT flag, to disable kernel caching.
We did not use raw I/O access, which eliminates main memory buffer copying
by the kernel, because it exhibited significant overheads with small buffers. We
assume that these overheads were caused by pinning user-space pages to physical
addresses. In any case, buffer copying by the kernel probably does not have a
large influence at the throughput of flash memories (we never measured more
than 30 MB/s).

We used this program to run a standard series of tests on each device. The first
tests measure the performance of aligned reads and writes, both random and se-
quential, at buffer sizes that start at 512 and double to 8 MB or to the self-scaling
limit, whichever comes last. For each buffer size, the experiment starts by sequen-

4.3 Characterization of flash memory devices 97

tially writing the entire device using a 1 MB buffer, followed by sequential reads
at the given buffer size, then random reads, then sequentialwrites, and finally ran-
dom writes. Each pattern (read/write, sequential/random)is performed 3 times,
with a time limit of 30 seconds each (90 seconds total for eachpattern).

We also measure the performance of sequential writes following bursts of random
writes of varying lengths (5, 30, and 60 seconds). As in the basic test, each such
burst-sequential experiment follows a phase of sequentially writing the entire de-
vice. We measure and record the performance of the sequential writes at a higher
resolution in this test, using 30 phases of 4 seconds each, toassess the speed at
which the device recovers from the random writes. We tested random bursts of
both 2 KB writes and of random writes at the same buffer size asthe subsequent
sequential writes.

Finally, we also measure the performance of misaligned random writes. These
experiments consisted of 3 phases of 30 seconds for each buffer size and for each
misalignment offset.

Entire-device sequential writes which separate differentexperiments are meant
to bring the device to roughly the same state at the beginningof each test. We
cannot guarantee that this always returns the logical-to-physical mapping to the
same state (it probably does not), but it allows the device some chance to return to
a relatively simple mapping.

We also used the program to run endurance tests on a few devices. In these exper-
iments, we alternate between 1000 sequential writes of the entire logical address
space and detailed performance tests. In the detailed phases we read and write
on the device sequentially and randomly, in all relevant buffer sizes 3 times 30
seconds for each combination. The phases consisting of 1000writes to the en-
tire address space wear out the device at close to the fastestrate possible, and the
detailed experiments record its performance as it wears out.

It is possible that there are other factors that influence performance of some LBA
flash devices. However, since many modifications to the benchmarking methodol-
ogy can be implemented simply by editing a text file, the benchmarking program
should remain useful even if more behaviors need to be testedin the future. Of
course, some modifications may also require changes to the program itself (e.g.,
the alignment parameter was added relatively late to the program).

98 Chapter 4: Characterizing the performance of Flash memory storage devices

4.3.2 Result and Analysis

Performance of steady, aligned access patterns.

Figure 4.1: Performance (in logarithmic scale) of the 1 GB Toshiba TransMemory
USB flash drive.

Figures4.1and4.2show the performance of two typical devices under the aligned
access patterns. The other devices that we tested varied greatly in the absolute
performance that they achieved, but not in the general patterns; all followed the
patterns shown in Figures4.1and4.2.

In all the devices that we tested, random writes using small block sizes were
slower than all the other access patterns. The difference between random writes
and other access patterns is particularly large at small buffer sizes, but it is usu-
ally still evident even on fairly large block sizes (e.g., 256 KB in Figure4.1 and
128 KB in Figure4.2). In most devices, small-buffer random writes were at least
10 times slower than sequential writes with the same buffer size, and at least
100 times slower than sequential writes with large buffers.Table4.2 shows the
read/write access time with two different block sizes (512 Bytes and 2 MB) for
sequential and random accesses on some of the devices that wetested.

We believe that the high cost for random writes of small blocks is because of the
LBA mapping algorithm in these devices. These devices partition the virtual and

4.3 Characterization of flash memory devices 99

Figure 4.2: Performance (in logarithmic scale) of the 1 GB Kingston compact-
flash card.

physical address spaces into chunks larger than an erase block; in many cases
512 KB. The LBA mapping maps areas of 512 KB logical addressesto physical
ranges of the same size. On encountering a write request, thesystem writes the
new data into a new physical chunk and keeps on writing contiguously in this
physical chunk till it switches to another logical chunk. The logical chunk is now
mapped twice. Afterwards, when the writing switches to another logical chunk,
the system copies over all the remaining pages in the old chunk and erases it. This
way every chunk is mapped once, except for the active chunk, which is mapped
twice. On devices that behave like this, the best random-write performance (in
seconds) is on blocks of 512 KB (or whatever is the chunk size). At that size,
the new chunk is written without even reading the old chunk. At smaller sizes,
the system still ends up writing 512 KB, but it also needs to read stuff from the
old location of this chunk, so it is slower. We even found thaton some devices,
writing randomly 256 or 128 KB is slower than writing 512 KB, in absolute time.

In most devices, reads were faster than writes in all block sizes. This typical be-
havior is shown in Figure4.1. But as Figure4.2 shows, this is not a universal
behavior of LBA flash devices. In the device whose performance is shown in Fig-
ure4.2, large sequential writes are faster than large sequential reads. This shows
that designers of such devices can trade off read performance and write perfor-

100 Chapter 4: Characterizing the performance of Flash memory storage devices

DEVICE Buffer size 512 Bytes Buffer size 2 MB

NAME SIZE SR RR SW RW SR RR SW RW

KINGSTON DT SECURE 512MB 0.97 0.97 0.64 0.012 33.14 33.12 14.72 9.85

MEMOREX MINI

TRAVELDRIVE 512MB 0.79 0.79 0.37 0.002 13.15 13.15 5.0 5.0

TOSHIBA TRANSMEMORY 512MB 0.78 0.78 0.075 0.003 12.69 12.69 4.19 4.14

SANDISK U3 CRUZER

MICRO 512MB 0.55 0.45 0.32 0.013 12.8 12.8 5.2 4.8

M -SYSTEMS MDRIVE 1 GB 0.8 0.8 0.24 0.005 26.4 26.4 15.97 15.97

M -SYSTEMS MDRIVE100 1 GB 0.78 0.78 0.075 0.002 12.4 12.4 3.7 3.7

TOSHIBA TRANSMEMORY 1 GB 0.8 0.8 0.27 0.002 12.38 12.38 4.54 4.54

SMI FLASH DEVICE 1 GB 0.97 0.54 0.65 0.01 13.34 13.28 9.18 7.82

KINGSTON CF CARD 1 GB 0.60 0.60 0.25 0.066 3.55 3.55 4.42 3.67

KINGSTON DT ELITE

HS 2.0 2 GB 0.8 0.8 0.22 0.004 24.9 24.8 12.79 6.2

KINGSTON DT ELITE

HS 2.0 4 GB 0.8 0.8 0.22 0.003 25.14 25.14 12.79 6.2

MEMOREX TD

CLASSIC003C 4 GB 0.79 0.17 0.12 0.002 12.32 12.15 5.15 5.15

120× CF CARD 8 GB 0.68 0.44 0.96 0.004 19.7 19.5 18.16 16.15

SUPERTALENT SOLID

STATE FLASH DRIVE 16 GB 1.4 0.45 0.82 0.028 12.65 12.60 9.84 9.61

HAMA SOLID STATE

DISK 2.5” IDE 32 GB 2.9 2.18 4.89 0.012 28.03 28.02 24.5 12.6

IBM DESKSTAR

HARD DRIVE 60 GB 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2

SEAGATE BARRACUDA

7200.11HARD DISK 500GB 6.2 0.063 5.1 0.12 87.5 69.6 88.1 71.7

Table 4.2: The tested devices and their performance (in MBps) under sequential
and random reads and writes with block size of 512 Bytes and 2 MB. The notations
SR, RR, SW and RW stand for sequential reads, random reads, sequential writes
and random writes, respectively.

mance. Optimizing for write performance can make sense for some applications,
such as digital photography where write performance can determine the rate at
which pictures can be taken. To professional photographers, this is more impor-
tant than the rate at which pictures can be viewed on camera ordownloaded to a
computer.

4.3 Characterization of flash memory devices 101

Poor random-write performance is not a sign of poor design, but part of a trade-
off. All the devices that achieve sequential-write performance of over 15 MB/s
(on large buffers) took more than 100 ms for small random writes. The two de-
vices with sub-10ms random writes achieved write bandwidths of only 6.9 and
4.4 MB/s. The reason for this behavior appears to be as follows. To achieve
high write bandwidths, the device must avoid inefficient erasures (ones that re-
quire copying many still-valid pages to a new erase block). The easiest way to
ensure that sequential writes are fast is to always map contiguous logical pages to
contiguous physical pages within an erase block. That is, iferase blocks contain,
say 128 KB, then each contiguous logical 128 KB block is mapped to the pages
of one erase block. Under aligned sequential writes, this leads to optimal write
throughput. But when the host writes small random blocks, the device performs a
read-modify-write of an entire erase block for each write request, to maintain the
invariant of the address mapping.

On the other hand, the device can optimize the random-write performance by
writing data to any available erased page, enforcing no structure at all on the
address mapping. The performance of this scheme depends mostly on the state of
the mapping relative to the current access pattern, and on the amount of surplus
physical pages. If there are plenty of surplus pages, erasures can be guaranteed
to be effective even under a worst-case mapping. Suppose that a device withn
physical pages exports onlyn/2 logical pages. When it must erase a block to
perform the next write, it containsn/2 obsolete pages, so on at least one erase
block half the pages are obsolete. This guarantees a 50% erasure effectiveness. If
there are only few surplus pages, erasures may free only a single page. But if the
current state of the mapping is mostly contiguous within each erase block and the
access pattern is also mostly contiguous, erasures are effective and do not require
much copying.

This tradeoff spans a factor of 10 or more in random-write performance and a
factor of about 4 or 5 in sequential-write performance. System designers selecting
an LBA flash device should be aware of this tradeoff, decide what tradeoff their
system requires, and choose a device based on benchmark results.

Another nearly-universal characteristic of the flash devices is the fact that sequen-
tial reads are not faster than random reads. The read performance does depend on
block size, but usually not on whether the access pattern is random or sequential.
On a few exceptional devices where the sequential reads are faster than random
reads, the difference between the two access patterns (for 2MB block size) is very
small.

The performance in each access pattern usually increases monotonically with the

102 Chapter 4: Characterizing the performance of Flash memory storage devices

0.5K 2K 8K 32K 128K 512K 2MB
0

2

4

6

8

10

12

14

Buffer Size

M
B

/s

Performance Summary

0.5K 2K 8K 32K 128K 512K 2MB

0.0625
0.125

0.25
0.5

1
2
4
8

16

Buffer Size

M
B

/s

Performance Summary (log scale)

read,seq
read,rand
write,seq
write,rand

Figure 4.3: Speeds of the 512 MB Toshiba TransMemory USB flashdevice. This
device achieves its maximum write speed at a 64 KB buffer size.

block size, up to a certain saturation point. Reading and writing small blocks
is always much slower than the same operation on large blocks. But Figure4.3
shows an exception. The best sequential-write performanceof this occurs with
blocks of 64 KB; on larger blocks, performance drops (by morethan 20%).

Comparison to hard disks. Quantitatively, the only operation in which LBA
flash devices are faster than hard disks is random reads of small buffers. Many
of these devices can read a random page in less than a millisecond, sometimes
less than 0.5ms. This is at least 10 times faster than currenthigh-end hard disks,
whose random-access time is 5-15ms. Even though the random-read performance
of LBA flash devices varies, all the devices that we tested exhibited better random-
read times than those of hard disks.

In all other aspects, most of the flash devices tested by us areinferior to hard
disks. The random-write performance of LBA flash devices is particularly bad and
particularly variable. A few devices performed random writes about as fast as hard
disks, e.g., 6.2ms and 9.1ms. But many devices were more than10 times slower,
taking more than 100ms per random write, and some took more than 300ms.

Even under ideal access patterns, flash devices we have tested provide smaller I/O
bandwidths than hard disks. One flash device reached read throughput approach-
ing 30 MB/s and write throughput approaching 25 MB/s. Hard disks can achieve
well over 100 MB/s for both reads and writes. Even disks designed for laptops

4.3 Characterization of flash memory devices 103

can achieve throughput approaching 60 MB/s. Flash devices would need to im-
prove significantly before they outperform hard disks in this metric. The possible
exception to this conclusion is large-capacity flash devices utilizing multiple flash
chips, which should be able to achieve high throughput by writing in parallel to
multiple chips.

Performance of large number of random writes.

Figure 4.4: Total time taken by large number of random writeson a 32 GB Hama
Solid state disk.

We observed an interesting phenomenon (Figure4.4) while performing large num-
ber of random writes on a 32 GB Hama (2.5” IDE) solid state disk. After the first
3000 random writes (where one random write is writing a 8-byte real number at
a random location in a 8 GB file on flash), we see some spikes in the total run-
ning time. Afterwards, these spikes are repeated regularlyafter about every 2000
random writes. This behavior is not restricted to the Hama solid state disk but is
observed in many other flash devices too.

We believe that it is because the random writes cause many updates in the page
table. After a while, the controller rearranges the pages inthe blocks to simplify
the LBA mapping. This process takes 5-8 seconds while reallywriting the data
on the disk takes less than 0.8 seconds for 2000 random writes, causing the spikes
in the total time.

104 Chapter 4: Characterizing the performance of Flash memory storage devices

Figure 4.5: Graphs showing the effect of random writes on subsequent sequential
writes on Toshiba 1 GB TransMemory USB flash drive.

Effect of random writes on subsequent operations.

On some devices, a burst of random writes slows down subsequent sequential
writes. The effect can last a minute or more, and in rare caseshours (of sustained
writing). No such effect was observed on subsequent reads.

Figure4.5presents the performance of one such device. In these experiments, we
performedt seconds of random writing, fort = 5,30 and 60. We then measured
the performance of sequential writes during each 4 second period for the next 120
seconds. The two graphs in Figure4.5 show the median performance in these
30 4-second periods relative to the steady-state performance of the same pattern
(read or write and with the same block size). As we can see, forvery small blocks
the median performance in the two minutes that follow the random writes can
drop by more than a factor of two. Even on larger blocks, performance drops by
more than 10%. Figure4.6presents the performance of a device in which random
writes slow down subsequent sequential operations. In these experiments, we
performedt seconds of random writing, fort = 5,30 and 60. We then measured
the performance of sequential writes during each 4 second period for the next 120
seconds. The two graphs in the middle show the median performance in these 30
4-second periods relative to the steady-state performanceof the same pattern (read
or write and with the same block size). As we can see, for very small blocks the
median performance in the two minutes that follow the randomwrites can drop
by more than a factor of two. Even on larger blocks, performance drops by more
than 10%.

The two graphs in the middle row of Figure4.6differ in the block size during the
t seconds of random writes. In the middle-left graph, the random writes were of
the same size as the subsequent operation, whereas in the middle-right graph the
random writes were always of 2 KB buffers. The behavior of this particular device

4.3 Characterization of flash memory devices 105

0.5K 2K 8K 32K 128K 512K 2MB
0

2

4

6

8

10

12

14

Buffer Size

M
B

/s

Performance Summary

0.5K 2K 8K 32K 128K 512K 2MB

0.0625
0.125

0.25
0.5

1
2
4
8

16

Buffer Size

M
B

/s

Performance Summary (log scale)

read,seq
read,rand
write,seq
write,rand

8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Non−Aligned/Aligned Random Write Ratio

 2K
16K
32K

0.5K 2K 8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Seq write after rand write (rand buf = seq buf)

0.5K 2K 8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Seq write after rand write (rand buf = 2k)

0.5K 2K 8K 32K 128K 512K 2MB

0

10

20

30

40

50

Buffer Size

R
ec

ov
er

y
T

im
e

[s
ec

on
ds

]

Recovery time after random write

 5s
30s
60s

Figure 4.6: Toshiba TransMemory USB flash drive results. Thetop two graphs
show the speeds. The two graphs in the middle show how the device is affected
by random writes. The bottom left graph shows the time it takes to return back to
60% of the median speed. The bottom right graph shows the effect of misaligned
calls on random writes.

106 Chapter 4: Characterizing the performance of Flash memory storage devices

in the two cases is similar, but on other devices later the twocases differ. When
the two cases differ, random writes of 2 KB usually slow down subsequent writes
more than random writes of larger blocks. This is typified by the results shown in
Figure4.7.

0.5K 2K 8K 32K 128K 512K 2MB
0

2

4

6

8

10

12

14

Buffer Size

M
B

/s

Performance Summary

0.5K 2K 8K 32K 128K 512K 2MB

0.0625
0.125

0.25
0.5

1
2
4
8

16

Buffer Size

M
B

/s

Performance Summary (log scale)

read,seq
read,rand
write,seq
write,rand

8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Non−Aligned/Aligned Random Write Ratio

 2K
16K
32K

0.5K 2K 8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Seq write after rand write (rand buf = seq buf)

0.5K 2K 8K 32K 128K 512K 2MB
0

0.2

0.4

0.6

0.8

1

Buffer Size

R
el

at
iv

e
B

an
dw

id
th

Seq write after rand write (rand buf = 2k)

0.5K 2K 8K 32K 128K 512K 2MB

0

10

20

30

40

50

Buffer Size

R
ec

ov
er

y
T

im
e

[s
ec

on
ds

]

Recovery time after random write

 5s
30s
60s

Figure 4.7: Results of the M-Systems mDrive 100 USB device, showing a con-
stant decrease in the sequential write speed, with no recovery time.

4.3 Characterization of flash memory devices 107

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

seconds

M
B

/s
ec

Sequential write speed after random write

5 secs
30 secs
Normal rate

Figure 4.8: A time line showing the sequential write performance with 32 KB
blocks of the device in Figure4.6. The time line starts at the end of 5 or 30
seconds of random writes (again with a 32 KB buffer size). Themarkers show the
write bandwidth in each 4-second period following the random writes.

0 10 20 30 40 50 60
0

5

10

15

20

25

30
Sequential write time on entire device (2 MB buffer)

Random write time [seconds]

m
in

ut
es

512 bytes
1024 bytes
2048 bytes

Figure 4.9: An example of extreme recovery times, as observed in the 2 GB
Kingston DT Elite 2.0. The graph shows the time (measured in minutes) it takes
to write the entire device sequentially with a 2 MB buffer size after random writes
of 5 to 60 seconds. Random writes were performed using buffersizes of at most
2 KB.

In experiments not reported here we explored the effects of random writes on sub-
sequent read operations and on subsequent random writes. Wedid not discover
any effect on these subsequent operations, so we do not describe the detailed re-
sults of these experiments.

The graph on the lower-left corners of Figures4.6and4.7show how long it took

108 Chapter 4: Characterizing the performance of Flash memory storage devices

the device to recover back to 60% of the median performance inthe two minutes
following the random writes. The device in Figure4.6 usually recovers imme-
diately to this performance level, but in some buffer sizes,it can take it 20-30
seconds to recover. Note that recovery here means a return toa 0.6 fraction of the
median post-random performance, not to the base performance in the particular
access pattern.

Figure4.8presents the recovery time in a different way, on a time line.After a 30
seconds random write time, the speed of the sequential writeslows down to about
30% of the normal speed. After 30 seconds of a sequential write, the speed climbs
back towards the normal speed. We have seen similar behaviors in other devices
that we tested.

On the high-end 2 GB Kingston DT Elite 2 device, random writeswith buffer
sizes of 2 KB or less cause a drop in the the performance of subsequent sequential
writes to less than 5% of the normal (with the same buffer size). The device did
not recover to its normal performance until it was entirely rewritten sequentially.
Normally, it takes 3 minutes to write the entire device sequentially with a buffer
size of 2 MB, but after random small-buffer writes, it can take more than 25 min-
utes, a factor of 8 slower (Figure4.9). We observed the same behavior in the 4 GB
version of this device.

We have also observed many devices whose performance was notaffected at all
by random writes.

Effects of misalignment.

On many devices, misaligned random writes achieve much lower performance
than aligned writes. In this setting, alignment means that the starting address of
the write is a multiple of the block size. We have not observedsimilar issues with
sequential access and with random reads.

Figure4.10ashows the ratio between misaligned and aligned random writes on
1 GB TRANSMEMORY USB flash device. The misalignment is by 2 KB, 16 KB
and 32 KB. All of these sizes are at most as large as a single flash page. Many
of the devices that we have tested showed some performance drop on misaligned
addresses, but the precise effect varied from device to device. For example, the
128 MB SuperTalent USB device is affected by misalignment by2 KB but not by
misalignments of 16 KB or 32 KB.

4.3 Characterization of flash memory devices 109

(a)

0 10,000 20,000 30,000 40,000 50,000 60,000
4.5

5

5.5

6

6.5

7

7.5

8
Speeds with a 128K buffer size

Device Age (est.)

M
B

/s

Sequential Read
Random Read
Sequential Write
Random Write

(b)

Figure 4.10: Effect of misalignment and aging on the performance of flash de-
vices.

Effects of Aging.

We were not able to detect a significant performance degradation as devices get
older (in terms of the number of writes and erasures). Figure4.10bshows the
performance of 512MB SANDISK CRUZER M ICRO USB device as a function of
the number of sequential writes on the entire device. The performance of each
access pattern remains essentially constant, even after 60,000 writes. On 512MB

K INGSTON DATATRAVELER II+ USB device, we ran a similar experiment writ-
ing more than 320,000 times, exceeding its rated endurance by at least a factor of
3 and did not observe any slowing down with age.

Effect of different controller interfaces.

We connected a compact-flash card via a USB 2.0 interface, PCMCIA interface
and an IDE interface (using a card reader) and found that the connecting interface
does not affect the relative access patterns (sequential vs. random, read vs. write
and the effect of different block sizes) of the flash devices.However, the maxi-
mum throughputs that we could obtain from USB 2.0, PCMCIA andIDE interface
are 19.8 MBps, 0.95 MBps, and 2.16 MBps for read and 18.2 MBps,0.95 MBps,
and 4.38 MBps for write, respectively.

110 Chapter 4: Characterizing the performance of Flash memory storage devices

4.4 Designing algorithms to exploit flash
when used together with a hard disk

Till now, we discussed the characteristics of the flash memory devices and the per-
formance of algorithms running on architectures where the flash disks replace the
hard disks. Another likely scenario is that rather than replacing hard disks, flash
disks may become an additional secondary storage, used together with hard disks.
From the algorithm design point of view, it leads to many interesting questions. A
fundamental question here is how can we best exploit the comparative advantages
of the two devices while running an application algorithm.

The simple idea of directly using external memory algorithms with input and in-
termediate data randomly striped on the two disks treats both the disks as equal.
Since the sequential throughput and the latency for random I/Os of the two de-
vices is likely to be very different, the I/Os of the slower disk can easily become a
bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a setting is to restrict the
random accesses to a static data-structure. This static data-structure is then kept
on the flash disk, thereby exploiting the fast random reads ofthese devices and
avoiding unnecessary writing. The sequential read and write I/Os are all limited
to the hard disk.

We illustrate this basic framework with the help of externalmemory BFS algo-
rithm of Mehlhorn and Meyer [106] (MM BFS). Recall from Section3.3 that
MM BFS involves a preprocessing phase that groups the nodes of the input graph
into disjoint clusters of small diameter and stores the adjacency lists of the nodes
in a cluster contiguously on the disk. After each BFS level, some clusters are
merged into an efficiently accessible data structure (hot pool). This hot pool is
then scanned for the adjacency lists of the nodes in the current level and these
adjacency lists are then removed from the hot pool.

This algorithm is well suited for our framework as random I/Os are mostly re-
stricted to the data structure keeping the graph clustering, while the hot pool
accesses are mostly sequential. Also, the graph clusteringis only stored once
whereas the hot pool is modified (read and written) in every iteration. Thus, we
keep the graph clustering data structure on the flash disk andthe hot pool on the
hard disk.

We ran our implementation (cf. Section3.6) of this algorithm on the graph class
shown in Figure4.11. This graph class is a tree with

√
B+ 1 BFS levels. Level

4.4 Designing algorithms to exploit flash when used togetherwith a hard disk 111

n
√

B

√

B

Figure 4.11: A graph class that forces the Mehlhorn/Meyer BFS algorithm to
incur its worst case I/O complexity.

Operation Random striping Our strategy
1 Flash 2 Hard disks Same Smaller

+ 1 Hard disk cluster size cluster size
I/O wait time 10.5 6.3 7.1 5.8
Total time 11.7 7.5 8.1 6.3

Table 4.3: Timing (in hours) for the second phase of Mehlhorn/Meyer’s BFS
algorithm on 228-node graph.

0 contains only the source node which has an edge to all nodes in level 1. Levels
1. . .
√

B have n√
B

nodes each and theith node in jth level (1< j <
√

B) has an

edge to theith node in levelsj −1 and j +1.This graph class has large diameter
(
√

B+ 1) and the hot pool size is greater than the available internal memory for
the most part of the execution. As such, it is one of the difficult graph classes for
all our EM BFS implementations.

As compared to striping the graph as well as pool randomly between the hard
disk and the flash disk, the strategy of keeping the graph clustering data structure
in flash disk and hot pool in hard disk performs around 25% better. Table4.3
shows the running time for the second phase of the algorithm for a 228-node graph.
Although the number of I/Os in the two cases are nearly the same, the time spent
waiting for I/Os is much better for our disk allocation strategy, leading to better
overall runtime.

The cluster size in the BFS algorithm was chosen in a way so as to balance the
random reads and sequential I/Os on the hard disks, but now inthis new setting,
we can reduce the cluster size as the random I/Os are being done much faster
by the flash memory. Our experiments suggest that this leads to even further
improvements in the runtime of the BFS algorithm.

112 Chapter 4: Characterizing the performance of Flash memory storage devices

4.5 Conclusion

We have characterized the performance of flash storage devices by benchmarking
more than 20 different such devices. We conclude that the read/write/erase behav-
ior of flash is radically different than that of other external block devices like hard
disks. Though flash devices have faster random access than the hard disk, they can
neither provide the read/write throughput of the disks1, nor provide faster random
writes than hard disks. We found out that access costs on flashdevices also de-
pend on the past history (particularly, the number of randomwrites done before)
and misalignment, but not on the aging of devices.

We also showed that the existing RAM model and external memory algorithms
can not realize the full potential of the flash devices. Many interesting open prob-
lems arise in this context such as how best can one sort (or even search) on a block
based device where the read and write costs are significantlydifferent.

Furthermore, we observe that in the setting where the flash becomes an additional
level of secondary storage and used together with hard disk rather than replacing
it, one can exploit the comparative advantages of both by restricting the random
read I/Os to a static data structure stored on the flash and using the hard disk for
all other I/Os.

Our results indicate that there is a need for more experimental analysis to find
out how the existing external memory and cache-oblivious data structures like
priority queues and search trees perform, when running on flash devices. Such
experimental studies should eventually lead to a model for predicting realistic
performance of algorithms and data structures running on flash devices, as well
as on combinations of hard disks and flash devices. Coming up with a model that
can capture the essence of flash devices and yet is simple enough to design and
analyze algorithms and data structures, remains an important challenge.

As a first model, we may consider a natural extension of the standard external-
memory model that will distinguish between block accesses for reading and writ-
ing. The cost measure for an algorithm incurringx read I/Os andy write I/Os could
bex+cW ·y, where the parametercW > 1 is a penalty factor for write accesses.

An alternative approach might be to assume different block transfer sizes,BR for
reading andBW for writing, whereBR < BW andcR · x+cW · y (with cR,cW > 1)
would be the modified cost measure.

1As of late 2007, the ones that could provide were far more expensive than the same capacity
hard disk

Chapter 5

Dynamic topological ordering

What we imagine is order is merely the prevailing form of chaos.

— Kerry Thornley

There has been a growing interest in dynamic graph algorithms over the last two
decades due to their applications in a variety of contexts including operating sys-
tems, information systems, network management, assembly planning, VLSI de-
sign and graphical applications. Typical dynamic graph algorithms maintain a
certain property (e. g., connectivity information) of a graph that changes (a new
edge inserted or an existing edge deleted) dynamically overtime. An algorithm
or a problem is calledfully dynamicif both edge insertions and deletions are al-
lowed, and it is calledpartially dynamicif only one (either only insertion or only
deletion) is allowed. If only insertions are allowed, the partially dynamic algo-
rithm is called incremental; if only deletions are allowed,it is called decremen-
tal. While a number of fully dynamic algorithms have been obtained for vari-
ous properties on undirected graphs (see [65] and references therein), the design
and analysis of fully dynamic algorithms for directed graphs has turned out to be
much harder (e. g., [72, 134, 136, 137]). Much of the research on directed graphs
is therefore concentrated on the design of partially dynamic algorithms instead
(e. g., [24, 50, 91]). In this chapter, we focus on the analysis of algorithms for
maintaining a topological ordering of directed graphs in anincremental setting.

A topological orderT of a directed graphG = (V,E) (with n := |V| andm := |E|)
is a linear ordering of its nodes such that for all directed paths fromx∈V to y∈V
(x 6= y), it holds thatT(x) < T(y). A directed graph has a topological ordering

114 Chapter 5: Dynamic topological ordering

if and only if it is acyclic. There are well-known algorithmsfor computing the
topological ordering of a directed acyclic graph (DAG) inO(m+ n) time in an
offline setting (see e. g. [51]). In a fully dynamic setting, each time an edge is
added or deleted from the DAG, we are required to update the bijective mappingT.
In the online/incremental variant of this problem, the edges of the DAG are not
known in advance but are inserted one at a time (no deletions allowed). As the
topological order remains valid when removing edges, most algorithms for online
topological ordering can also handle the fully dynamic setting. However, there
are no good bounds known for the fully dynamic case. Most algorithms are only
analyzed in the online setting.

Given an arbitrary sequence of edges, the online cycle detection problem is to
discover the first edge which introduces a cycle. Till now, the best known al-
gorithm for this problem involves maintaining an online topological order and
returning the edge after which no valid topological order exists. Hence, results for
online topological ordering also translate into results for the online cycle detec-
tion problem. Online topological ordering is required for incremental evaluation
of computational circuits [15] and in incremental compilation [104, 120] where
a dependency graph between modules is maintained to reduce the amount of re-
compilation performed when an update occurs. An application for online cycle
detection is pointer analysis [126].

For insertingm edges, the naı̈ve way of computing an online topological or-
der each time from scratch with the offline algorithm takesO(m2 + mn) time.
Marchetti-Spaccamela, Nanni, and Rohnert [105] gave an algorithm (MNR) that
can insertm edges inO(mn) time. Alpern, Hoover, Rosen, Sweeney, and Zadeck
proposed an algorithm [15] (AHRSZ) which runs inO(|〉K̂〈| log(|〉K̂〈|)) time per
edge insertion with|〉K̂〈| being a local measure of the insertion complexity. How-
ever, there is no analysis of AHRSZ for a sequence of edge insertions. Katriel
and Bodlaender (KB) [91] analyzed a variant of the AHRSZ algorithm and ob-
tained an upper bound ofO(min{m3

2 logn,m
3
2 + n2 logn}) for inserting an arbi-

trary sequence ofm edges. In addition, they show that their algorithm runs in
time O(m· k · log2n) for a DAG for which the underlying undirected graph has a
treewidthk. Also, they give anO(nlogn) algorithm for DAGs whose underlying
undirected graph is a tree. The algorithm by Pearce and Kelly(PK) [124] em-
pirically outperforms the other algorithms for random edgeinsertions leading to
sparse random DAGs, although its worst-case runtime is inferior to KB.

In this chapter, we propose a simple algorithm that works inO(n2.75√logn) time
andO(n2) space, thereby improving upon the results of Katriel and Bodlaender
for dense DAGs. With some simple modifications in our data structure, we can

5.1 Related work 115

getO(n2.75) time withO(n2.25) space orO(n2.75) expectedtime withO(n2) space.
Our algorithm can also be used for online cycle detection in graphs. Moreover, it
permits an arbitrary starting point, which makes a hybrid approach possible, i. e.,
using the PK or KB algorithm for sparse graphs and ours when the graphs become
dense.

We conjecture that our analysis can be improved. We reduce the problem of tighter
analysis of our algorithm to a combinatorial graph problem.

We also show how we can externalize our algorithm and get a better amortized
bound than theO(sort(m)) I/Os per edge bound based on time-forward process-
ing.

We also present the first average-case analysis of online topological ordering al-
gorithms. We prove an expected runtime ofO(n2 polylog(n)) under insertion of
the edges of a complete DAG in a random order for AHRSZ, KB and PK.

The rest of this chapter is organized as follows. In Section5.1, we review the pre-
vious algorithms for dynamic topological ordering. In Section 5.2, we describe
our algorithm and the data structures involved. In Section5.3, we give the cor-
rectness argument for our algorithm, followed by an analysis of its runtime in
Sections5.4and5.5. The details of our implementation and an empirical compar-
ison with other algorithms follow in Section5.6. Section5.7shows the reduction
of tighter analysis of our algorithm to a combinatorial problem. Section5.8 de-
scribes the externalization of our algorithm. Section5.9 shows our average-case
analysis for AHRSZ, KB and PK. Section5.10discusses recent advances on im-
proving the upper bounds for this problem. Section5.11 concludes with some
open problems related to dynamic topological ordering.

5.1 Related work

This section first introduces some notations and then reviews the previous algo-
rithms MNR, AHRSZ, KB, and PK. We keep the current topological order as a
bijective functionT : V → [1..n]. In this and the subsequent sections, we will use
the following notations:d(u,v) denotes|T(u)−T(v)|, u < v is a short form of
T(u) < T(v), u→ v denotes an edge fromu to v, andu ; v expresses thatv is
reachable fromu. Note thatu; u, butnot u→ u. Thedegreeof a node is the sum
of its in- and out-degree. We will also refer toT(v) as the priority of the nodev.

Consider thei-th edge insertionu→ v. We say that an edge insertion isinvalidat-

116 Chapter 5: Dynamic topological ordering

ing if u> v before the insertion of this edge. We defineR(i)
B := {x∈V | v≤ x∧x;

u}, R(i)
F := {y∈V | y≤ u∧v; y} andδ (i) = R(i)

F ∪R(i)
B . Let |δ (i)| denote the num-

ber of nodes inδ (i) and let‖δ (i)‖ denote the number of edges incident to nodes of
δ (i). Note thatδ (i) as defined above is different from the adaptive parameterδ of
the bounded incremental computation model. If an edge is non-invalidating, then

|R(i)
B | = |R

(i)
F | = |δ (i)| = 0. Note that for an invalidating edge,R(i)

F ∩R(i)
B = /0 as

otherwise the algorithms will just report a cycle and terminate.

We now describe the insertion of thei-th edgeu→ v for all the algorithms. As-
sume for the remainder of this section thatu→ v is an invalidating edge, as oth-
erwise none of the algorithms do anything for that edge. LetAR(i) be the set of
all nodesx such thatv≤ x≤ u. We define an algorithm to belocal if it only
changes the ordering of nodes inAR(i) to compute the new topological orderT ′

of G∪{(u,v)}. All of these algorithms are local and they work in two phases– a
“discovery phase” and a “relabelling phase”.

MNR is probably the simplest of these algorithms. A depth-first search starting

from v and limited to nodes inAR(i) marks all nodes inR(i)
F as visited. Thereafter,

all marked nodes are shifted up in the topological ordering immediately afteru.

For this, all nodes in{AR(i) \R(i)
F } are moved down appropriately in the topologi-

cal order. The relative order of the nodes inR(i)
F remains intact.

In the discovery phase ofPK, the setδ (i) is identified using a forward depth-first

search fromv (giving a setR(i)
F) and a backward depth- first search fromu (giving

a setR(i)
B). The relabelling phase is also very simple. It sorts both sets R(i)

F and

R(i)
B separately in increasing topological order and then allocates new priorities

according to the relative position in the sequenceR(i)
B followed byR(i)

F . It does not
alter the priority of any node not inδ (i), thereby greatly simplifying the relabeling
phase. The runtime of PK for a single edge insertion isΘ(‖δ (i)‖+ |δ (i)| log|δ (i)|).

Alpern et al. [15] used the bounded incremental computation model [134] and
introduced the measure|〉K̂〈|. For an invalidated topological orderT, the set
K ⊆ V is a cover if for all x,y ∈ V : (x ; y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). This
states that for any connectedx andy which are incorrectly ordered, a coverK
must includex or y or both. |K| and‖K‖ denote the number of nodes and edges
touching nodes inK, respectively. We define|〉K〈| := |K|+ ‖K‖ and a coverK̂
to beminimal if |〉K̂〈| ≤ |〉K〈| for any other coverK. Thus, |〉K̂〈| captures the
minimal amount of work required to calculate the new topological orderT ′ of
G∪{(u,v)} assuming that the algorithm is local and that the adjacent edges must
be traversed.

5.2 Algorithm 117

AHRSZs discovery phasemarks the nodes of a coverK by marking some of the
unmarked nodesx,y ∈ δ (i) with x ; y andy < x. This is done recursively by
moving two frontiers starting fromv andu towards each other. Here, the cru-
cial decision is which frontier to move next. AHRSZ tries to minimize ‖K‖ by
balancing the number of edges seen on both sides of the frontier. The recursion
stops when forward and backward frontier meet. Note that we do not necessarily
visit all nodes inR(i)

F (R(i)
B) while extending the forward frontier (backward fron-

tier). It can be proven [15] that the marked nodes indeed form a coverK and that
|〉K〈| ≤ 3|〉K̂〈|.

The relabeling phaseemploys the dynamic priority space data structure due to
Dietz and Sleator [60]. This permits new priorities to be created between existing
ones inO(1) amortized time. This is done in two passes over the nodes inK.
During the first pass, it visits the nodes ofK in reverse topological order and
computes a strict upper bound on the new priorities to be assigned to each node. In
the second phase, it visits the nodes inK in topological order and computes a strict
lower bound on the new priorities. Both together allow to assign new priorities
to each node inK. Thereafter they minimize the number of different labels used
to speed up the operations on the priority space data structure in practice. It can
be proven that the discovery phase with|〉K̂〈| priority queue operations dominates
the time complexity, giving an overall bound ofO(|〉K̂〈| log|〉K̂〈|).

KB is a slight modification of AHRSZ. In the discovery phase AHRSZ counts the
total number of edges incident on a node. KB counts instead only the in-degree of
the backward frontier nodes and only the out-degree of the forward frontier nodes.
In addition, KB also simplified the relabeling phase. The nodes visited during
the extension of the forward (backward) frontier are deleted from the dynamic
priority space data-structure and are reinserted, in the same relative order among

themselves, after (before) all nodes inR(i)
B (R(i)

F) not visited during the backward
(forward) frontier extension. The algorithm thus computesa coverK⊆ δ (i) and its
complexity per edge insertion isO(|〉K〈| log|〉K〈|). The worst case running time
of KB for a sequence ofm edge insertions isO(min{m3

2 logn,m
3
2 +n2 logn}).

5.2 Algorithm

We keep the current topological order as a bijective function T : V → [1. .n]. If
we start with an empty graph, we can initializeT with an arbitrary permutation,
otherwiseT is the topological order of the initial graph, computed offline. In this
and the subsequent sections, we will use the following notations: d(u,v) denotes

118 Chapter 5: Dynamic topological ordering

|T(u)−T(v)|, u < v is a short form ofT(u) < T(v), u→ v denotes an edge from
u to v, andu ; v expresses thatv is reachable fromu. Note thatu ; u, but not
u→ u.

Figure5.1 gives the pseudo code of our algorithm. Throughout the process of
inserting new edges, we maintain some data structures whichare dependent on
the current topological order. Inserting a new edge(u,v) is done by calling IN-
SERT(u,v). If v > u, we do not change anything in the current topological order
and simply insert the edge into the graph data structure. Otherwise, we call RE-
ORDER to update the topological order as well as the data structures dependent on
it. As we will prove in Theorem4, detectingv = u in a call of REORDER(u,v)
indicates a cycle. Ifv < u, we first collect the sorted setsA andB. A is the set
of out-neighbors ofv whose topological order is not greater thanT(u). Analo-
gously,B is the set of in-neighbors ofu whose topological order is not less than
T(v). If both A andB are empty, we swap the topological order of the two nodes
and update the data structures. Otherwise, we recursively call REORDER until
everything inside is topologically ordered. To make these recursive calls efficient,
we first merge the sorted sets{v}∪A andB∪ {u} and (using this merged list)
compute the set{u′ : (u′ ∈ B∪{u})∧ (u′ ≥ v′)} for each nodev′ ∈ {v}∪A. The
collection of setsA andB and the update operations are described in more detail
after the data structures have been introduced.

Data structure

We store the current topological order as a set of two arrays by maintaining the bi-
jective mappingT and its inverseT−1. This ensures that findingT(u) andT−1(i)
are constant time operations.

The graph itself is stored as an array of vertices. For each vertex we maintain two
adjacency lists, which keep the incoming and outgoing edgesseparately. Each
adjacency list is stored as an array of buckets of vertices. Each bucket contains
at mostt nodes for a fixedt. Depending on the concrete implementation of the
buckets, the parametert is later chosen to be approximatelyn0.75 so as to balance
the number of inserts and deletes from the buckets and the extra edges touched by
the algorithm. Thei-th bucket (i ≥ 0) of a nodex contains all adjacent nodesy
with i · t < d(x,y) ≤ (i +1) · t. The nodes of a bucket are stored with node index
(and not topological order) as their key. This has the advantage that there is no
change necessary if two nodes that lie in the same bucket are swapped. The bucket
can be kept as a balanced binary tree, as an array ofn-bits, or as a hash-table of a
universal hashing function. The only requirement for the bucket data structure is

5.2 Algorithm 119

INSERT(u,v)

� Insert edge(u,v) and calculate new topological order
1 if v≤ u then REORDER(u,v)
2 insert edge(u,v) in graph

REORDER(u,v)

� Reorder nodes betweenu andv if v≤ u
1 if u = v then report detected cycle and quit
2 A := {w: v→ w andw≤ u}
3 B := {w: w→ u andv≤w}
4 if A = /0 andB = /0

then� Correct the topological order
5 swapT(u) andT(v)
6 update the data structure

else � Reorder node pairs betweenv andu
7 for v′ ∈ {v}∪A in decreasing topological order
8 for u′ ∈ B∪{u}∧v′ ≤ u′ in increasing topological order
9 REORDER(u′ ,v′)

Figure 5.1: Our algorithm

120 Chapter 5: Dynamic topological ordering

that it should provide efficient support for the following three operations:

1. Insert: Insert an element in a given bucket.

2. Delete: Given an element and a bucket, find out if that element existsin that
bucket. If yes, delete the element from there and return 1. Else, return 0.

3. Collect-all: Copy all the elements from the bucket to some vector.

Depending on how we choose to implement the buckets, we get different run-
times. This will be discussed in Section5.5. We will now discuss how we do
the insertion of an edge, computation ofA andB, and updating the data structure
under swapping of nodes in terms of the above three basic operations.

Inserting an edge(u,v) means inserting nodev in the forward adjacency list ofu
andu in the backward adjacency list ofv. This requiresO(1) bucket inserts.

For givenu andv, the setA := {w: v→ w andw < u} sorted according to the
current topological order can be computed from the adjacency list of v by sorting
all nodes of the first

⌈

d(u,v)/t
⌉

outgoing buckets and choosing allw with w < u.
This can be done byO

(

d(u,v)/t
)

collect-all operations on buckets. This means
traversing all elements ofA as well as all elements of the

⌈

d(u,v)/t
⌉

-th outgoing
bucket. OverallO(|A|+ t) elements are visited. These elements are integers in
the range{1. .n} and can be sorted inO(|A|+ t) time using a two-pass radix sort
algorithm sincet is chosen such thatt ≥ n0.75. The setB is computed likewise
from the incoming edges.

When we swap two nodesu andv, we need to update the adjacency lists ofu and
v as well as that of all nodesw that are adjacent tou and/orv. First, we show how
to update the adjacency lists ofu andv. If d(u,v) > t, we build their adjacency
lists from scratch. Otherwise, the new bucket boundaries will differ from the old
boundaries byd(u,v) and at mostd(u,v) nodes will need to be transferred be-
tween any pair of consecutive buckets. The total number of transfers are therefore
bounded byd(u,v)⌈n/t⌉. Determining whether a node should be transferred can
be done inO(1) using the inverse mappingT−1 and as noted above, a transfer can
be done inO(1) bucket inserts and deletes. Hence, updating the adjacency lists of
u andv needs at most min{n,d(u,v)⌈n/t⌉} bucket inserts and deletes.

Let w be a node which is adjacent tou or v. Its adjacency list needs to be updated
only if u andv are in different buckets. This corresponds tow being in different
buckets of the adjacency lists ofu andv. Therefore, the number of nodes to be
transferred between different buckets for maintaining theadjacency lists of allw’s
is the same as the number of nodes that need to be transferred for maintaining the

5.3 Correctness 121

adjacency lists ofu andv, i. e., min{n,d(u,v)⌈n/t⌉}.

Updating the mappingsT andT−1 after such a swap is trivial and can be done in
constant time. Thus, we conclude that swapping nodesu andv can be done by
O(d(u,v)⌈n/t⌉) bucket inserts and deletes.

5.3 Correctness

In this section we will show the following theorem.

Theorem 1 The above algorithm returns a valid topological order aftereach
edge insertion.

Proof. For a graph with no edges, any ordering is a correct topological order,
and therefore, the theorem is trivially correct. Assuming that we have a valid
topological order of a graphG, we show that when inserting a new edge(u,v)
using INSERT(u,v), our algorithm maintains the correct topological order ofG′ :=
G∪{(u,v)}. If u < v, this is trivial.

We need to prove thatx < y for all nodesx, y of G′ with x; y. If there was a path
x ; y in G, Lemma2 givesx < y. Otherwise (if there is nox ; y in G), the path
x ; y must have been introduced toG′ by the new edge(u,v). Hencex < y in G′

by Lemma3 since there isx ; u→ v ; y in G′.

Lemma 2 Given a DAG G and a valid topological order, if u; v and u< v, then
all subsequent calls toREORDERwill maintain u< v.

Proof. Let us assume the contrary. Consider the first call of REORDER which
for a node pairu,v with u ; v andu < v leads tou > v. Either this call led to
swappingu andw with v≤w or it caused swappingw andv with w≤ u. Note that
in our algorithm, a call of REORDER(u,v) leads to a swapping only ifA = /0 and
B = /0. Assuming that it was the first case (swappingu andw) caused by the call
to REORDER(u,w), A= /0. However, sinceu,v is the first such pair to get violated,
x∈A for anx with u→ x; v, leading to a contradiction. The other case is proved
analogously.

Lemma 3 Given a DAG G with v; y and x; u, a call of REORDER(u,v) will
ensure that x< y.

Proof. Consider the recursion tree of a call to REORDER, in which the recursive

122 Chapter 5: Dynamic topological ordering

calls emanating in lines7 and8 are its children. The proof follows by induction
on the recursion tree height of REORDER(u,v). For leaf nodes (calls of REORDER

with zero recursion tree height) of the recursion tree,A = B = /0. If x < y before
this call, Lemma2 ensures thatx < y will still hold. Otherwise,y := v andx := u.
The swapping ofu andv in line 5 givesx < y.

We assume this lemma to be true for calls of REORDER up to a certain recursion
tree height and consider a call with a higher recursion tree.If A 6= /0, then there
is a ṽ such thatv→ ṽ ; y, otherwise ˜v := v = y. If B 6= /0, then there is a ˜u such
that x ; ũ→ u, otherwise ˜u := u = x. Hence ˜v ; y < x ; ũ. The for -loops
of lines7 and8 will call REORDER(ũ, ṽ). By the inductive hypothesis, this will
ensurex < y. According to Lemma2, further calls to REORDER will maintain
x < y.

Theorem 4 The algorithm detects a cycle if and only if there is a cycle inthe
given edge sequence.

Proof. “⇒”: First, we show that within a call to INSERT(u,v), there are paths
v ; v′ andu′ ; u for each recursive call to REORDER(u′ ,v′). This is trivial for
the first call to REORDERand follows immediately by the definition ofA andB for
all subsequent recursive calls to REORDER. This implies that if the algorithm indi-
cates a cycle in line1 of REORDER, there is indeed a cycleu→ v ; v′ = u′; u.
In fact, the cycle itself can be computed using the recursionstack of the current
call to REORDER.

“⇐”: Consider the edge(u,v) of the cyclev ; u→ v inserted last. Sincev ; u
before the insertion of this edge, the topological order computed will satisfyv< u
(Theorem1) and therefore, REORDER(u,v) would be called. In fact, all edges
in the pathv ; u will obey the current topological ordering and by Lemma2, it
will remain so for all subsequent calls of REORDER. We prove by induction on
the number of nodes in the pathv ; u (includingu andv) that wheneverv ; u
and REORDER(u,v) is called, it detects the cycle. A call of REORDER(u′ ,v′) with
u′ = v′ or REORDER(u′ ,v′) with v′→ u′ clearly reports a cycle. Consider a path
v→ x ; y→ u of lengthk > 2 and the call of REORDER(u,v). As noted before,
v< x≤ y< u before the call to REORDER(u,v). Hencex∈ A andy∈ B and a call
to REORDER(y,x) will be made in the for loop of lines7 and 8. As y ; x has
k−2 nodes in the path, the call to REORDER(y,x) (by our inductive hypothesis)
will detect the cycle.

5.4 Runtime 123

5.4 Runtime

The following theorem is the main result of this section.

Theorem 5 Incremental topological ordering can be maintained while process-
ing any sequence of edge insertions using O(n3.5/t) bucket inserts and deletes,
O(n3/t) bucket collect-all operations collecting O(n2t) elements, and O(n2.5 +
n2t) operations.

Proof. Consider the pseudo code in Figure5.1. Since there can be a maximum of
n(n−1)/2 edges inserted in a DAG, there areO(n2) calls of INSERT. Inserting
an edge in the graph involvesO(1) bucket operations and therefore, the total cost
of Line 2 of INSERT is O(n2).

Lemma8 shows that REORDER is calledO(n2) times. Line1 of REORDER re-
quiresO(1) operations per call of REORDER, except the one time it does encounter
a cycle (when it requiresO(n) time). Lemma10 shows that the calculation of the
setsA andB over all calls of REORDERcan be done byO(n3/t) bucket collect-all
operations touchingO(n2t) edges, andO(n2.5 + n2t) operations. Lines4 and5
requireO(1) operations per call of REORDER. In Lemma12, we prove that all the
updates can be done byO(n3.5/t) bucket inserts and deletes.

For lines7 and8 of the pseudo-code, we first merge the two sorted setsA andB.
This takesO(|A|+ |B|) operations. For a particular nodev′ ∈ {v} ∪A, we can
compute the setV ′ = {u′ : (u′ ∈ B∪ {u})∧ (u′ ≥ v′)} (as required by line8)
using this merged set in complexityO(1+ |V ′|), which is also the number of
calls of REORDER emanating for this particular node. Summing over the en-
tire for loop of line 7, the total complexity of lines7 and 8 is O(|A|+ |B|+
number of calls of REORDERemanating from here). Since by Lemma9, the sum-
mation of|A|+ |B| over all calls of REORDER is O(n2) and by Lemma8, the total
number of calls to REORDER is alsoO(n2), we get a total ofO(n2) operations
for lines7 and8. The theorem follows by simply adding the complexity of each
line.

Lemma 6 REORDER is local, i. e., a call toREORDER(u,v) does not affect the
topological ordering of nodes w such that either w< v or w> u just before the
call was made.

Proof. This lemma can be proven by induction on the level of the recursion tree of
a call to REORDER(u,v). For the leaf node of the recursion tree,|A|= |B|= 0 and
the topological order ofu andv is swapped, not affecting the topological ordering

124 Chapter 5: Dynamic topological ordering

of any other node.

We assume this lemma to be true up to a certain tree level. To see that it is also
valid for one level higher, note that the arraysA andB contain elementsw such
thatv< w< u. Since each call of REORDER in thefor-loop of line7 and8 is from
an element ofA to an element ofB and all of these calls are themselves local by
our induction hypothesis, this call of REORDER is also local.

Lemma 7 If two nodes are swapped in a call ofREORDER, their relative order
will remain unchanged in the future.

Proof. Let us assume, two nodesu′ andv′ are swapped within one of the recursive
calls of REORDER invoked by INSERT(u,v). After the insertion of edge(u,v),
there is a pathu′ ; u→ v ; v′. Therefore, by Lemma2 the relative order ofu′

andv′ will not be changed in any subsequent call of INSERT.

It remains to prove that also within the recursion tree of REORDER(u,v), the rel-
ative order ofu′ andv′ will not be changed after they have been swapped. This is
ensured by the order in which the twofor-loops in lines7 and8 iterate since there
can be no calls to REORDER(u′ ,w) with w > v′ or REORDER(w,v′) with u < u′

after the call of REORDER(u′ ,v′).

Lemma 8 REORDER is called O(n2) times.

Proof. As we have proven that the algorithm is correct in section5.3, we now
know that for each pair(u,v) the following holds: If REORDER(u,v) is called,
thenv≤ u holds before andu≤ v holds afterwards. As by Lemma7 this implies
that REORDER(u,v) can only be called once for each pair(u,v), the number of
calls to REORDERcan be upper bounded byn2.

Lemma 9 The summation of|A|+ |B| over all calls ofREORDER is O(n2).

Proof. Consider arbitrary nodesu and v′. We prove that for allv ∈ V, v′ ∈ A
happens only once over all calls of REORDER(u,v). This proves that∑ |A| ≤ n, for
all such calls of REORDER(u,v). Therefore, summing up for allu∈V, ∑ |A| ≤ n2

over all calls of REORDER.

In order to see that for allv∈V, v′ ∈ A happens only once over all calls of RE-
ORDER(u,v), consider the first such call. Sincev′ ∈ A, v′ < u andv→ v′ before
the call was made. By Lemma3, u < v′ after this call and hence,v′ /∈ A for any
call of REORDERafterwards. As for calls within the recursive substructureof the
first call, the order in which these calls are made ensures that there will be no calls

5.4 Runtime 125

of REORDER(u,w) for anyw < v′ before REORDER(u,v′) and sinceu < v′ after
REORDER(u,v′), v′ /∈ A for REORDER(u,w).

Analogously, it can be proven that for arbitrary nodesv andv′ and for allu∈V,
v′ ∈Bhappens only once over all calls of REORDER(u,v). The proof for∑ |B| ≤ n2

follows similarly and it completes the proof of this lemma.

Lemma 10 Calculating the sorted sets A and B over all calls ofREORDERcan be
done by O(n3/t) bucket collect-all operations touching a total of O(n2t) elements
and O(n2.5+n2t) operations for sorting these elements.

Proof. Consider the calculation of setA in a call of REORDER(u,v). As dis-
cussed before in section5.2, we look at the out adjacency list ofu, stored in
the form of buckets. In particular, we will needO(d(u,v)/t) bucket collect-all
operations touchingO(|A|+ t) elements to calculateA. The additional worst-case
factor of t stems from the last bucket visited. Summing up over all callsof RE-
ORDER, we getO

(

∑d(u,v)/t
)

collect-all’s touching∑(|A|+ |B|+ t) elements.
Sinced(u,v) ≤ n for every call of REORDER(u,v) and there areO(n2) calls of
REORDER (Lemma8), there areO(n3/t) bucket collect-all operations. Also,
since∑(|A|+ |B|) = O(n2) by Lemma9, the total number of elements touched
is O(n2 + ∑ t) = O(n2t). Since the keys are in the range{1. .n}, we can use a
two-pass radix sort to sort the elements collected from the buckets. The total sort-
ing time over all calls of REORDER is ∑(2(|A|+ t)+

√
n)+∑(2(|B|+ t)+

√
n) =

O(n2.5+n2t).

Lemma 11 ∑d(u,v) = O(n5/2) where the summation is taken over all calls of
REORDER(u,v) in which u and v are swapped.

Proof. Let T∗ denote the final topological ordering and

X(T∗(u),T∗(v)) :=

{

d(u,v) if REORDER(u,v) leads to a swapping

0 otherwise

As Lemma7 implies that each node pair is swapped at most once, the variable
X(i, j) is clearly defined. Next, we model a few linear constraints onX(i, j),
formulate it as a linear program and use this LP to prove that max{∑i, j X(i, j)}=

O(n5/2). By definition ofd(u,v) andX(i, j),

0≤ X(i, j)≤ n for all i, j ∈ [1. .n].

For j ≤ i, the corresponding edges(T∗ −1(i),T∗ −1(j)) go backwards and thus are
never inserted at all. Consequently,

X(i, j) = 0 for all j ≤ i.

126 Chapter 5: Dynamic topological ordering

Now consider an arbitrary nodeu, which is finally at positioni, i. e., T∗(u) =
i. Over the insertion of all edges, this node has been moved left and right via
swapping with several other nodes. Strictly speaking, it has been swapped right
with nodes at final positionsj > i and has been swapped left with nodes at final
positions j < i. Hence, the overall movement to the right is∑ j>i X(i, j) and to
left is ∑ j<i X(j, i). Since the net movement (difference between the final and the
initial position) must be less thann,

∑
j>i

X(i, j)−∑
j<i

X(j, i)≤ n for all 1≤ i ≤ n.

Putting all the constraints together, we aim to solve the following linear program.

max ∑
1≤i≤n
1≤ j≤n

X(i, j) such that

(i) X(i, j) = 0 for all 1≤ i ≤ n and 1≤ j ≤ i,
(ii) 0 ≤ X(i, j)≤ n for all 1≤ i ≤ n andi < j ≤ n,
(iii) ∑ j>i X(i, j)−∑ j<i X(j, i)≤ n for all 1≤ i ≤ n.

Note that these are necessary constraints, but not sufficient. But this is enough
for our purpose as an upper bound to the solution of this LP will give an upper
bound for the∑X(i, j) in our algorithm. In order to prove the upper bound on the
solutions of this LP, we consider the dual problem

min

[

n ∑
0≤i<n
i< j<n

Y(i ·n+ j) + n ∑
0≤i<n

Y(n2+ i)

]

such that

(i) Y(i ·n+ j)≥ 1 for all 0≤ i < n and j ≤ i,
(ii) Y(i ·n+ j)+Y(n2+ i)−Y(n2+ j)≥ 1 for all 0≤ i < n and j > i,
(iii) Y(i)≥ 0 for all 0≤ i < n2+n.

and the following feasible solution for the dual:

Y(i ·n+ j) = 1 for all 0≤ i < n and 0≤ j ≤ i,
Y(i ·n+ j) = 1 for all 0≤ i < n andi < j ≤ i +1+2

√
n,

Y(i ·n+ j) = 0 for all 0≤ i < n and j > i +1+2
√

n,
Y(n2+ i) =

√
n− i for all 0≤ i < n.

This solution has a value ofn2 + 2n5/2 + n∑n
i=1

√
i = O(n5/2), which by the

primal-dual theorem is a bound on the solution of the original LP.

5.5 Bucket data structure 127

In fact, it can be shown that there is a solution to primal LP whose value isO(n5/2),
namely

X(i, j) = 0 for all 0≤ i < n and 0≤ j ≤ i,

X(i, j) = n for all 0≤ i < n andi < j ≤ i + ⌈
√

1+8i−1
2 ⌉,

X(i, j) = 0 for all 0≤ i < n and j > i + ⌈
√

1+8i−1
2 ⌉.

Lemma 12 Updating the data structure over all calls ofREORDERrequires O(n3.5/t)
bucket inserts and deletes.

Proof. Our data structure requiresO(d(u,v)n/t) bucket inserts and deletes to
swap two nodesu and v. Lemma7 shows that each node pair is swapped at
most once. Hence, summing up over all calls of REORDER(u,v) whereu andv are
swapped, we needO(∑d(u,v)n/t) = O(n3.5/t) bucket inserts and deletes using
Lemma11.

5.5 Bucket data structure

We get different runtimes and space requirements of our algorithm depending on
the data structures of the buckets used:

(a) Balanced binary trees (see e. g. [77]): Balanced binary trees give usO(1+
logτ) time insert and delete andO(1+τ) time collect-all operation, whereτ
is the number of elements in the bucket. Therefore, by Theorem 5, the total
time required will beO(n2t + n3.5 logn/t). Substitutingt = n0.75√logn,
we get a total time ofO(n2.75√logn). The total space requirement will
be O(n2) as a balanced binary tree needsO(t) nodes for storing at mostt
elements.

(b) n-bit array: A bucket that stores at mostt elements can be kept as ann-bit
array, where each bit is 0 or 1 depending on whether or not the element is
present in the bucket. Also, we can keep a list of all elementsin the bucket.
To insert, we just flip the appropriate bit and insert at the end of the list. To
delete, we just flip the appropriate bit. To collect all, we gothrough the list
and for each element in the list, we check if the corresponding bit is 1 or 0.
If it is 0, we also remove it from the list. This gives us constant-time insert

128 Chapter 5: Dynamic topological ordering

and delete and the time for collect-all operation will be thetotal output size
plus the total number of delete. Each delete is counted once in collect-all
as we remove the corresponding element from the list after the first collect-
all. By Theorem5, the total time required will beO(n2t + n3.5/t), giving
usO(n2.75) for t = n0.75. The total space requirement will beO(n) for each
bucket, leading to a total ofO(n2.25) for O(n2/t) buckets.

(c) Uniform Hashing [121]: A data structure based on uniform hashing coupled
with a list of elements in the bucket operated in the same way as then-bit
array will give an expected constant-time insert and deleteand the same
bound for collect-all as for then-bit array. This gives an expected total time
of O(n2t +n3.5/t). With t = n0.75 this yields an expected time ofO(n2.75).
Since the hashing based data structure as described in [121] takes only linear
space, the total space requirement isO(n2).

5.6 Empirical comparison

We conducted our experiments on a 2.4 GHz Opteron machine with 8GB of main
memory running Debian GNU/Linux. For PK, MNR, and AHRSZ we used the
C++/Boost based implementation of David J. Pearce (see [124]). For our algo-
rithm (AFM), we implemented variant (b) of section5.5 using C++/STL. Addi-
tionally, we also implemented a local (cf. Lemma6) variant of KB using an or-
dered bi-directional list data structure [60]. The code of AFM and KB is available
upon request. All codes were compiled using gcc 3.3 in 32-bitmode and optimiza-
tion level-O3. The timings were measured using thegettimeofday function of
<sys/time.h> and all the results are averaged over 10 runs each.

We examined all five algorithms on two classes of DAGs. First,we considered
random edge insertion sequences leading to a complete DAG. This random DAG
model by [26] is similar to the well-knownG(n,m) random graph model of [66].
On a random edge sequence, all the algorithms are quite fast and none of them
encounters its worst-case behavior. Therefore, we also considered a particular
sequence of edges which we believe is a hard instance of the problem. This edge
sequence is similar to the worst-case sequence given by [91] for their algorithm.
On this sequence, KB, PK, MNR, and AHRSZ (the variant choosing the smallest
permitted priority) face their worst-case ofΩ(n3) operations, while our algorithm
takesΩ(n2.5) time complexity. This sequence of edges is depicted in Fig.5.2.
Let us briefly describe its structure. For a graph withn nodes, we divide the set
of nodes into four blocks of different sizes: block 1 consists of nodes[0. .n/3),

5.6 Empirical comparison 129

Figure 5.2: Our hard-case graph

block 2 of nodes[n/3. .n/2), block 3 of nodes[n/2. .2n/3), and block 4 of nodes
[2n/3. .n). First, we insertn−4 edges such that within each block, the vertices
form a directed path from left to right. Then we insert the following edges,

(a)
→
∀ j ∈ [0..n/3)

←
∀ k∈ [0..n/6) : add edge(j,k+n/2),

(b)
→
∀ j ∈ [0..n/6) : add edge(2 j, j +n/3) and edge(2 j +1, j +n/3),

(c)
→
∀ j ∈ [0..n/6)

←
∀ k∈ [0..n/3) : add edge(j +n/3,k+2n/3),

(d)
→
∀ j ∈ [0..n/6)

←
∀ k∈ [0..n/6) : add edge(j +n/2,k+n/3),

where
→
∀ denotes going from left to right in thefor -loop and

←
∀ the other way

around.

 0

 5

 10

 15

 20

 25

 30

 35

 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(in

 s
ec

)

Number of nodes n

PK
MNR

AHRSZ
KB

AFM

Figure 5.3: Experimental data on full random graphs with varying n.

Fig. 5.3 shows the runtimes of the five algorithms in consideration for random

130 Chapter 5: Dynamic topological ordering

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

500K450K400K350K300K250K200K150K100K50K

T
im

e
(in

 s
ec

)

Number of edges m

PK
MNR

AHRSZ
KB

AFM

Figure 5.4: Experimental data on random graphs withn = 1000 and varyingm.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
(in

 s
ec

)

Number of nodes n

PK
MNR

AHRSZ
KB

AFM

Figure 5.5: Experimental data on a class of hard instances with varyingn.

edge sequences leading to complete DAGs with varying numbern of vertices
(and withm=

(n
2

)

). We see that AFM is approximately 30% faster than KB and a
constant factor of 2-4 away from AHRSZ, MNR, and PK.

Fig. 5.4shows the average runtimes for random graphs withn= 1000 and a vary-
ing number of edges. AFM looses a lot during the insertion of the firstO(nlogn)
edges because in this phase, updating the data structures after every swapping
proves very costly. But after that, the curves between AFM and PK/MNR/KB are
almost parallel, while the slope for AHRSZ is around 2 times that of AFM. For
practical purposes, we believe therefore that a hybrid approach would perform
best. That is, one inserts the firstO(nlogn) edges with either PK or KB and then

5.7 Towards a tighter analysis of our algorithm 131

inserts the remaining edges with our algorithm.

Fig. 5.5shows the runtimes of the five algorithms in consideration onthe class of
hard edge sequences described before. The difference in asymptotic behaviour as
discussed before is clear from the graph.

5.7 Towards a tighter analysis of our
algorithm

It is not clear if the analysis of our algorithm as shown in section 5.4 and sec-
tion 5.5is tight. We conjecture that the analysis of our algorithm can be improved.
In this section we describe an approach that can potentiallyimprove the analysis.

Consider the following problem: We are given two setsA andB of nodes and we
construct a graph based on the following rules:

• We start with an empty graph

• In order to add an edge in the graph, we select a nodeu∈B andv∈A, swap
them (i.e., after the swap,u∈ A andv∈ B), and insert a directed edge from
u to v.

• At no point of this construction, there should be an edge fromany node in
B to any node inA.

Figure5.6 shows an example with valid and invalid moves for constructing such
graphs.

Our combinatorial problem is to bound the maximum number of edgesE(|A|, |B|)
that can be inserted in this way.

Here are a few properties that we can conclude about the resulting graph:

Theorem 13 The resulting graph will be a directed acyclic graph.

Proof. We will prove this by contradiction. Assume that there is a directed cycle
in the resulting graph and consider the last edgee = (u,v) of this cycle being
inserted. In other words, before the insertion of this edge,there is a path fromv
to u and this edge completes the cycle. After inserting this edge, u∈ A andv∈ B.
Since, there is a path fromv to u, there will be some edge in the path that goes
from some node inB to some node inA (as the path starts fromB and eventually

132 Chapter 5: Dynamic topological ordering

Figure 5.6: An example of inserting edges in the combinatorial graph. The node
pairs marked in red in the images on the left are being considered for putting the
next edge and the right side shows the resulting ordering of nodes. The first three
edge insertions are legal while the last edge is not allowed.

5.7 Towards a tighter analysis of our algorithm 133

reachesA). This edge clearly violates our constraint and thus the edge e= (u,v)
will not be inserted in the first place. This leads to a contradiction and proves the
fact that there can’t be directed cycles in this graph.

Theorem 14 E(n/2,n/2) = Ω(nlogn).

Proof. In order to prove this, we need to show an example where a graphwith
Ω(nlogn) edges can be constructed in this way. If|A|= |B| = 1, then we simply
swap the two nodes and insert the corresponding edge. Otherwise, we first recur-
sively build two graphs withn/4 nodes in each set. Let’s call the setsA andB of
the first graphs asA1, B1 and that of the second graph asA2, B2. Then we sort the
nodes in both sets of both graphs topologically and then insert then/4 edges in the
following sequence: We start from the topologically smallest node in setB1 and
insert an edge to topologically biggest node in setA2. Thereafter we put the edge
from the next smallest (topologically) node ofB1 to second largest (topologically)
node of setA2 of the second graph and so on. It is easy to check that this sequence
of edge insertions never leads to any edge fromB := B1∪B2 to A := A1∪A2. Con-
structing the graph in such a way, we find thatE(n/2,n/2)≥ 2E(n/4,n/4)+n/4.
SinceE(1,1) = 1, E(n/2,n/2) = Ω(nlogn).

Theorem 15 E(i,n− i) = O(n3/2) for all 1≤ i ≤ n−1.

Proof. The resulting graph will have the following properties:

• It is a directed acyclic graph (cf. Theorem13)

• The difference between in-degree and out-degree of any nodeis at most
one. This follows from the fact that a node goes from a setB to a setA iff
its out-degree increases by one and a node goes from a setA to a setB iff
its in-degree increases by one. Since all nodes start from eitherA or B and
end up inA or B, the difference between the in-degree and out-degree of
any node can be atmost one.

Next, we show that a DAG in which each node has|out-degree− in-degree| ≤ 1
hasO(n3/2) edges. This is shown by an LP based proof. LetT∗ denote the final
topological ordering andX(T∗(u),T∗(v)) := 1 iff there is an edge fromu to v.
Thus, the maximum number of edges in such a DAG is equal to

max ∑
1≤i≤n
1≤ j≤n

X(i, j) such that

134 Chapter 5: Dynamic topological ordering

(i) X(i, j) = 0 for all 1≤ i ≤ n and 1≤ j ≤ i,
(ii) 0 ≤ X(i, j)≤ 1 for all 1≤ i ≤ n andi < j ≤ n,
(iii) ∑ j>i X(i, j)−∑ j<i X(j, i)≤ 1 for all 1≤ i ≤ n.

Similar to the proof of Lemma11, it can be shown that the solution of this LP and
hence, the maximum number of edges in such a DAG isO(n3/2).

The following is our main theorem that links the maximum number of edges in
this graph to the analysis of online topological ordering algorithms.

Theorem 16 ∑u,vd(u,v)≤ ∑n−1
i=1 E(i,n− i)

Proof. Consider a particular position(i,n− i) in the topological ordering, i.e.,i
nodes are to the left andn− i nodes are to the right of this position. We say that a
node-pair(u,v) crosses the position(i,n− i) if in the topological ordering before
swapping the nodesu andv, T(u) > i andT(v)≤ i and after the swappingT(u)≤ i
andT(v) > i.

Throughout the execution of the online topological ordering algorithm, the num-
ber of node-pairs that cross this position can be at mostE(i,n− i). This is because
the nodes to the left and right can be thought of as belonging to two different sets
and we never allow edges from the right of this position to theleft. Whenever we
want to insert an edge, the algorithm first swaps their location and always puts the
edge from the left to the right.

Consider the setL := {((u,v),(i,n− i))|node-pair(u,v) crosses the position(i,n−
i)}. Clearly, |L| = ∑u,vd(u,v) as each node-pair(u,v) crossesd(u,v) positions.
For every position(i,n− i), the number of node-pairs crossing this position is at
mostE(i,n− i) as shown before. Since,L =∪1≤i≤n−1|{(u,v)|(u,v) crosses(i,n−
i)}, |L| ≤ ∑n−1

i=1 E(i,n− i). Putting together,∑u,vd(u,v) = |L| ≤ ∑n−1
i=1 E(i,n−

i).

This implies that if one can prove that for all 1≤ i ≤ n−1, E(i,n− i) = o(n3/2),
than the analysis of all the topological ordering algorithmrelying on∑u,vd(u,v)
for their analysis such as ours (cf. Section5.10for another algorithm that relies
on Lemma11) will get improved.

5.8 Dynamic topological ordering in external memory 135

5.8 Dynamic topological ordering in external
memory

Many information retrieval applications rely on being ableto query ontology (e.g.,
Gene Ontology, SUMO, Cyc, YAGO, DBpedia etc.) graphs for connectivity,
reachability, BFS, shortest paths, steiner trees etc. [89] to learn relations between
different semantic entities. Natural relations (e.g.,x is located iny, w is a sub-class
of z) between these entities are often acyclic and transitive and can thus be mod-
eled as directed acyclic graphs [148]. These ontology DAGs can be quite large.
For instance, DBpedia 3.1 has more than 100 million edges [52].

In external memory, efficient computation of topological ordering is particularly
important as many different traversal problems such as reachability, BFS, SSSP
etc. can be reduced to computing topological ordering inO(sort(m)) I/Os. This
is done using the technique of time-forward processing (cf.Section2.5.6) as fol-
lows: Given the topological ordering of the DAGG(V,E), we sort the adjacency
lists according to the topological ordering of their tail nodes and we process the
nodes in this order. We ignore all nodes until we reach the source node. We
mark the source node as reachable or visited with BFS level zero or distance zero
from the source. This information is then propagated to its out-neighbors who
will be processed in future using an external memory priority queues. The infor-
mation is entered into the priority queue with the topological number of the head
node as the key. When we process any nodev after having processed the source
node, we first extract all the information from the priority queue kept for this node
(with v’s topological number as its key) by its in-neighbors. The reachability, BFS
level or shortest path distance for this node is then computed based on this infor-
mation. This is then propagated forward to its out-neighbors using the external
memory priority queue. Since all the priority queue operations can be performed
in O(sort(m)) I/Os and sorting the adjacency lists also requiresO(sort(m)) I/Os,
reachability, BFS and shortest paths can all be computed on large DAGs using
O(sort(m)+ TO(n,m)) I/Os, whereTO(n,m) is the number of I/Os required to
compute the topological ordering of a DAG withn nodes andm edges.

The best-known algorithm for computing topological ordering in external memory
is based on directed DFS [43] and requiresO((n+ m/B) log2

n
B + sort(m)) I/Os.

The naı̈ve way of recomputing from scratch whenever a new edge is inserted re-
quires the same number of I/Os and is thus, very inefficient.

Fortunately, we can improve upon this by using time-forwardprocessing. We
know the topological orderingTold of the DAG before the new edge is inserted

136 Chapter 5: Dynamic topological ordering

and we process the nodes in that order. As in all the dynamic topological order-
ing algorithms seen so far, we do not do anything if the new edge (u,v) is not
invalidating. Otherwise, for all nodesw such thatTold(w) < Told(v), we assign
Tnew(w) = Told(w) as they are not affected by the new edge. We start processing
the nodes by assigningTnew(v) := Told(u)+1. This information is then propagated
forward using an external memory priority queue by insertingTnew(v)+1 with pri-
ority Told(v′), for each out-neighborv′ of v. If a nodex being processed has not
received any information from its in-neighbors,Tnew(x) := Told(x). Otherwise,x
updates its topological number as the maximum of all entriesextracted from the
priority queue with the priorityTold(x), andTold(x). This is then communicated
forward by insertingTnew(x)+1 with priority Told(x′) for each out-neighborx′ of
x.

In case we want to getTnew: V→ [1. .n], we can easily do so by sorting the nodes
according toTnew and assigning them numbers one ton. The whole process of
computing a new topological ordering thus only requiresO(sort(m)) I/Os.

Our algorithm can be externalized to give anO

(

n2.75 ·
√

logM/Bn·logB n
B

)

I/Os for

maintaining the topological ordering under the insertion of medges. For inserting
m′ edges into a DAG withm edges, this is an improvement over theO(sort(m))

I/O algorithm ifm′ = ω
(

n2.75

sort(m) ·
√

logM/Bn·logB n
B

)

.

Since our algorithm requires to keepO(n2/t) (= O(n1.25)) buckets simultane-
ously, it is not possible to even keep one element per bucket in the internal mem-
ory if n1.25 > M. We therefore, keep all the buckets completely in the external
memory. These buckets are implemented as dynamic B-trees. Inserting an ele-
ment requiresO(1) I/Os, non-lazy deletion (which includes searching) requires
O(logBn) I/Os and collect-all operation requiresO(1+ k/B) I/Os for collecting
k elements. Recall from Theorem5 that our algorithm requiresO(n3.5/t) bucket
inserts and deletes, andO(n3/t) bucket collect-all operations collectingO(n2 · t)
elements for processing any sequence of edge insertions. These operations require

O
(

n3.5·logB n
t + n2·t

B

)

I/Os in total.

Sorting all elements collected from the buckets to compute setsA andB can be
done using external memory sorting algorithms (cf. Section2.5.2). In the worst
case, there may beΩ(n2) calls (one for each call of REORDER) sortingO(n2 · t)
elements in total. Summing over all calls, this requiresO(n2+n· t ·sort(n)) I/Os.

All other operations including accesses toT and T−1 requireO(n3.5/t) I/Os.

5.9 Average-case analysis of online topological ordering algorithms 137

Thus, the externalized version of our algorithm requiresO
(

n3.5·logB n
t +n · t ·sort(n)

)

I/Os. Substitutingt := n0.75·
√

B·logB n
logM/B n, we get that our external dynamic topolog-

ical ordering algorithm requiresO

(

n2.75 ·
√

logM/B n·logB n
B

)

I/Os.

5.9 Average-case analysis of online
topological ordering algorithms

The algorithm by Pearce and Kelly (PK) [124] empirically outperforms the other
algorithms for random edge insertions, although its worst-case runtime is inferior
to KB. This difference in the behavior of online topologicalordering algorithms
between random edge insertion sequences (REIS) and worst-case sequences lead
us to the theoretical study of online topological ordering algorithms on REIS.

In this section, we show an expected runtime ofO(n2 log2n) for inserting all edges
of a complete DAG in a random order with PK. Also, we show an expected run-
time of O(n2 log3n) for complete random edge insertion sequences for AHRSZ
and KB.

Recall from Section2.3that by directing the edges of an undirected random graph
from lower to higher indexed vertices, we obtain the random DAG model of Barak
and Erdős [26]. Depending on the underlying random graphs, we get two random
DAG models -DAG(n,m) andDAG(n, p). In this section, we will prove our main
results on theDAG(n,m) model since it is better suited to describe incremental
addition of edges. However, since the independence of edgesin the DAG(n, p)
model makes the analysis easier, we will prove our results first onDAG(n, p) and
then use Theorem2 to get the correspondingDAG(n,m) results.

5.9.1 Analysis of PK

When inserting thei-th edgeu→ v, PK only regards nodes inδ (i) := {x∈V | v≤
x≤ u∧ (v ; x∨ x ; u)} with “≤” defined according to the current topological
order. As discussed in Section5.1, PK performsO(‖δ (i)‖+ |δ (i)| log|δ (i)|) oper-
ations for inserting thei-th edge. The intuition behind the proofs in this section
is that in the early phase of edge-insertions (the firstO(nlogn) edges), the graph
is sparse and so only a few edges are traversed during the DFS traversals. As the

138 Chapter 5: Dynamic topological ordering

graph grows, fewer and fewer nodes are visited in DFS traversals (|δ (i)| is small)
and so the total number of edges traversed in DFS traversals (bounded above by
‖δ (i)‖) is still small.

Theorems19 and25 of this section show for a random edge insertion sequence

(REIS) of N edges that∑N
i=1 |δ (i)| = O(n2) andE

[

∑N
i=1‖δ (i)‖

]

= O(n2 log2n).

This proves the following theorem.

Theorem 17 For a random edge insertion sequence (REIS) leading to a complete
DAG, the expected runtime of PK is O(n2 log2n).

A comparable pair (of nodes) are two distinct nodesx andy such that eitherx; y
or y; x. We define a potential functionΦi similar to Katriel and Bodlaender [91].
Let Φi be the number of comparable pairs after the insertion ofi edges. Clearly,

∆Φi := Φi−Φi−1≥ 0 for all 1≤ i ≤m,
Φ0 = 0, and ΦM ≤ n(n−1)/2.

(5.1)

Theorem 18 For all edge sequences, (i)|δ (i)| ≤ ∆Φi +1 and (ii) |δ (i)| ≤ 2∆Φi.

Proof. Consider thei-th edge(u,v). If u< v, the theorem is trivial since|δ (i)|= 0.

Otherwise, each vertex ofR(i)
F and R(i)

B (as defined in Section5.1) gets newly
ordered with respect tou andv, respectively. The set

⋃

x∈R(i)
B

(x,v)∩⋃
x∈R(i)

F
(u,x) =

{(u,v)}. This means that overall at least|R(i)
F |+ |R

(i)
B | −1 node pairs get newly

ordered:
∆Φi ≥ |R(i)

F |+ |R
(i)
B |−1 = |δ (i)|−1.

Also, since in this case∆Φi ≥ 1, |δ (i)| ≤ 2∆Φi.

Theorem 19 For all edge sequences,
N

∑
i=1
|δ (i)| ≤ n(n−1) = O(n2).

Proof. By Theorem18 (i), we get
N

∑
i=1
|δ (i)| ≤

N

∑
i=1

(∆Φi + 1) = ΦN + N ≤ n(n−

1)/2+n(n−1)/2= n(n−1).

The remainder of this section provides the necessary tools step by step to finally
prove the desired bound on∑N

i=1‖δ (i)‖ in Theorem25. One can also interpretΦi

as a random variable inDAG(n,m) with m= i. The corresponding functionΨ for
DAG(n, p) is defined as the total number of comparable node pairs inDAG(n, p).
Pittel and Tungol [129] showed the following theorem.

5.9 Average-case analysis of online topological ordering algorithms 139

Theorem 20 For p := clog(n)/n and c> 1, Ep [Ψ] = (1+o(1)) n2

2

(

1− 1
c

)2
.

Using Theorem2, this result can be transformed toΦ as defined above forDAG(n,m)
and gives the following bounds forEM [Φk].

Theorem 21 For nlogn < k≤N−2nlogn,

EM [Φk] = (1+o(1))
n2

2

(

1− (n−1) logn
2(k+nlogn)

)2

.

For N−2nlogn < k≤ N−2logn,

EM [Φk] = (1+o(1))
n2

2

(

1− (n−1) logn

2(k+
√

logn(N−k))

)2

.

We skip the rather technical proof of this theorem for the sake of better readability.
Readers are referred to [6] for the formal proof of this theorem.

The degree sequence of a random graph is a well-studied problem. The following
theorem is shown in [33].

Theorem 22 If pn/ logn→ ∞, then almost every graph G in the G(n, p) model
satisfies∆(G) = (1+o(1)) pn, where∆(G) is the maximum degree of a node in G.

As noted in Section2.3, the undirected graph obtained by ignoring the directions
of DAG(n, p) is a G(n, p) graph. Therefore, the above result is also true for the
maximum degree (in-degree + out-degree) of a node inDAG(n, p). Using Theo-
rem1, the above result can be transformed toDAG(n,m), as well.

Theorem 23 With probability1−O(1
n), there is no node with degree higher than

21m
n for sufficiently large n and m> nlogn in DAG(n,m).

The formal and rather technical proof of this theorem can be found in [6]. Here,
we only give a high level idea of the proof.

Rough Sketch.We examine the following two functions:

• f1(g) : Number of nodes with degree at leastg(n)
• f2(g) := f 2

1 (g)

For f1, f2 in G(n, p), g(n) := pn+ 2
√

pqnlogn, and some constantc, Bollobás

140 Chapter 5: Dynamic topological ordering

[32] showed

Ep [f1(g)] = O
(

1
n

)

,

σ2
p(f1(g)) = Ep [f2(g)]−E2

p [f1(g)]≤ c·Ep [f1(g)] .

(5.2)

We transform these mean and variance results toG(n,m) by breaking down the

analysis depending onm. At first, consider the simpler case ofm>
(

⌊ N
nlogn⌋−2

)

nlogn.

For sufficiently largen, 21· mn ≥ n−1 in this case and therefore, no node can have
degree higher than it.

Next, we considerm∈ (knlogn,(k+1)nlogn] for 1≤ k< l , wherel := ⌊ N
nlogn⌋−

2, and we prove the theorem for each interval. Choosingpk := (k+2)nlogn
N , qk :=

1− pk, andgk(n) := pkn+ 2
√

pkqknlogn satisfies the conditions in Theorem1
and therefore,EM [fi(gk)] = Epk [fi(gk)]+o(1) for i = 1,2 and 1≤ k < l . Using
Equation (5.2), we getEM [f1(gk)] = O(Epk [f1(gk)]) = O

(1
n

)

and

σ2
M(f1(gk)) = EM [f2(gk)]−E2

M [f1(gk)] = O
(

Epk [f2(gk)]−E2
pk

[f1(gk)]
)

= O(σ2
pk

(f1(gk))) = O(Epk [f1(gk)]) = O
(1

n

)

.

Having transformed the mean and variance off1(gk) to G(n,m) model, we use a

variant of Chebyshev’s inequality (Pr{|X−µ| ≥ ν} ≤ σ2

ν2) (cf. Section2.2) to get

Pr{| f1(gk)−µ| ≥ 1−µ} ≤O

(

1
n(1−µ)2

)

= O
(1

n

)

.

Since f1(gk) is a non-negative random variable, Pr{ f1(gk) ≥ 1} = Pr{| f1(gk)−
µ| ≥ 1− µ} = O

(

1
n

)

. In other words, with probability(1−O(1
n)), there is no

node with a degree higher thangk(n)(≤ 21m
n) in any interval.

Since any randomDAG(n,m) must have been obtained by taking a random graph
G(n,m) and ordering the edges, the degree of a node inDAG(n,m) is the same
as the degree of the corresponding node inG(n,m). Therefore, with probability
1−O(1

n), there is no node with a degree higher than 21m
n in DAG(n,m).

As the maximum degree of a node inDAG(n, i) is O(i/n), we finally just need to
show a bound on∑i (i · |δ (i)|) to prove Theorem25. This is done in the following
theorem.

5.9 Average-case analysis of online topological ordering algorithms 141

Theorem 24 For DAG(n,m) and r := N−2logn,

E

[

r

∑
i=1

(i · |δ (i)|)
]

= O(n3 log2n).

Proof. Let us decompose the analysis in three steps. First, we show abound on
the firstnlogn edges. By definition ofδ (i), |δ (i)| ≤ n. Therefore,

nlogn

∑
i=1

i ·E
[

|δ (i)|
]

≤
nlogn

∑
i=1

i ·n = O
(

n3 log2n
)

. (5.3)

The second step is to bound∑t
i=nlogn i · |δ (i)| with t := N− 2nlogn. For this,

Theorem18(ii) shows for allk such thatnlogn < k < t that

E

[

t

∑
i=k

|δ (i)|
]

≤ 2E

[

t

∑
i=k

∆Φi

]

= 2E [Φt−Φk−1] = 2E [Φt]−2E [Φk−1] . (5.4)

The function hidden in theo(1) in Theorem20 is decreasing inp [129]. Hence,
also theo(1) in Theorem21 is decreasing ink. Plugging this in Equation (5.4)
yields (withs := nlogn)

E

[

t

∑
i=k

|δ (i)|
]

≤ (1+o(1))n2

(

(

1− (n−1) logn
2(t +s)

)2
−
(

1− (n−1) logn
2(k−1+s)

)2
)

= (1+o(1))n2(n−1) logn
(2

2(k−1+s)
− 2

2(t +s)
+

(n−1) logn
4

(1
(t +s)2 −

1
(k−1+s)2

))

≤ (1+o(1))n2(n−1) logn

(

1
k−1+s

− 1
t +s

)

≤ (1+o(1))n2(n−1) logn
1

k−1
. (5.5)

142 Chapter 5: Dynamic topological ordering

By linearity of expectation and Equation (5.5),

E

[

t

∑
i=s+1

i |δ (i)|
]

=
t

∑
i=s+1

(

i E
[

|δ (i)|
])

≤
log(⌈ t

s⌉)

∑
j=1

(

2 js
2 js

∑
i=2(j−1)s+1

E
[

|δ (i)|
])

≤
log(⌈ t

s⌉)

∑
j=1

(

2 js
t

∑
i=2(j−1)s+1

E
[

|δ (i)|
])

≤
log(⌈ t

s⌉)

∑
j=1

(

2 js(1+o(1))n2(n−1) logn
1

2(j−1)s

)

=
log(⌈ t

s⌉)

∑
j=1

(

2(1+o(1))n2(n−1) logn
)

= 2(1+o(1))n2(n−1) log2n = O(n3 log2n).

For the last step consider ak such thatt < k < r. Theorem18 (ii) gives

E

[

r

∑
i=k

|δ (i)|
]

≤ 2E

[

r

∑
i=k

∆Φi

]

= 2E [Φr −Φk−1] = 2E [Φr]−2E [Φk−1] .

Using Theorem21 and similar arguments as before, this yields (withs(k) :=
√

logn (N−k))

E

[

r

∑
i=k

|δ (i)|
]

≤ (1+o(1))n2

(

(

1− (n−1) logn
2(r +s(r))

)2
−
(

1− (n−1) logn
2(k−1+s(k−1))

)2
)

= (1+o(1))n2(n−1) logn

(

2
2(k−1+s(k−1))

− 2
2(r +s(r))

+

(n−1) logn
4

(1
(r +s(r))2−

1
(k−1+s(k−1))2

)

)

.

Sincek+s(k) is monotonically increasing fort < k < r, 1
(k+s(k))2 is a monotoni-

cally decreasing function in this interval. Therefore,1
(r+s(r))2 − 1

(k−1+s(k−1))2 < 0,

5.9 Average-case analysis of online topological ordering algorithms 143

which proves the following equation.

E

[

r

∑
i=k

|δ (i)|
]

≤ (1+o(1))n2(n−1) logn

(

1
k−1+s(k−1)

− 1
r +s(r)

)

≤ (1+o(1))n2(n−1) logn
1

k−1
. (5.6)

By linearity of expectation and Equation (5.6),

E

[

r

∑
i=N−2nlogn+1

i |δ (i)|
]

=
r

∑
i=N−2nlogn+1

(

i E
[

|δ (i)|
])

≤ (N−2logn)
r

∑
i=N−2nlogn+1

E
[

|δ (i)|
]

≤ (N−2logn)(1+o(1))n2(n−1) logn
1

N−2nlogn−1

= O(n3 logn).

Theorem 25 For DAG(n,m), E

[

N

∑
i=1
‖δ (i)‖

]

= O(n2 log2n).

Proof. By definition of‖δ (i)‖, we know‖δ (i)‖ ≤ i and hence

nlogn

∑
i=1
‖δ (i)‖= O(n2 log2n).

Again, letr := N−2logn. Theorem23 tells us that with probability greater than
(

1− c′
n

)

for some constantc′, there is no node with degree≥ c i
n (for c = 21).

Since the degree of an arbitrary node in a DAG is bounded byn, we get with
Theorems19 and24,

E

[

r

∑
i=nlogn+1

‖δ (i)‖
]

= O

(

E

[

r

∑
i=nlogn+1

c i |δ (i)|
n

]

+E

[

r

∑
i=nlogn+1

n c′ |δ (i)|
n

])

= O
(1

n
E

[

r

∑
i=1

(i |δ (i)|)
]

+n2
)

= O
(1

n

(

n3 log2n
)

+n2
)

= O(n2 log2n).

144 Chapter 5: Dynamic topological ordering

By again using the fact that the degree of an arbitrary node ina DAG is at mostn,
we obtain

E

[

N

∑
i=r+1

‖δ (i)‖
]

= O
(

n ·E
[

N

∑
i=r+1

|δ (i)|
]

)

= O
(

n ·
N

∑
i=r+1

n
)

= O(n2 logn).

Thus,

E

[

N

∑
i=1
‖δ (i)‖

]

= E

[

nlogn

∑
i=1
‖δ (i)‖

]

+E

[

r

∑
i=n logn+1

‖δ (i)‖
]

+E

[

N

∑
i=r+1

‖δ (i)‖
]

= O(n2 log2n)+O(n2 log2n)+O(n2 logn) = O(n2 log2n).

5.9.2 Other average-case results

Recall from Section5.1 that for an invalidated topological orderT, a setK ⊆V
is a cover if for all x,y ∈ V : (x ; y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). In order
to prove that the expected complexity of AHRSZ on REIS isO(n2 log3n), ob-
serve thatδ (i) is a valid cover. Therefore, by definition of|〉K̂(i)〈| as minimal
cover, it follows that|〉K̂(i)〈| ≤ |〉δ (i)〈|= |δ (i)|+‖δ (i)‖. Note that the complexity
of maintaining the topological ordering with AHRSZ while inserting an edge is
O(|〉K̂〈| log|〉K̂〈|) (cf. Section5.1. The expected complexity of AHRSZ on REIS

is thusE
[

∑m
i=1 |〉K̂(i)〈| log|〉K̂〈|

]

. Using Theorems19and25we get,

E

[

m

∑
i=1
|〉K̂(i)〈| log|〉K̂〈|

]

≤ logn ·
m

∑
i=1
|δ (i)|+E

[

m

∑
i=1
‖δ (i)‖

]

= O(n2 log3n)

KB also computes a coverK ⊆ δ (i) and its complexity per edge insertion is
O(|〉K〈| log|〉K〈|). Therefore,|〉K〈| ≤ |δ (i)|+‖δ (i)‖ and with a similar argument
as above, the expected complexity of KB on REIS isO(n2 log3n).

An interesting question in all this analysis is how many edges will actually in-
validate the topological ordering and force any algorithm to do something about
them. Here, we show a non-trivial upper bound on the expectedvalue of the
number of invalidating edges on REIS. Consider the following random variable:
INVAL (i) = 1 if the i-th edge inserted is an invalidating edge;INVAL (i) = 0 other-
wise.

5.10 Recent advances in online topological ordering algorithms 145

Theorem 26 E

[

m

∑
i=1

INVAL (i)

]

= O(min{m,n
3
2 log

1
2 n}).

Proof. If the i-th edge is invalidating,|δ (i)| ≥ 2; otherwiseINVAL (i) = |δ (i)|= 0.

In either case,INVAL (i)≤ |δ (i)|/2. Thus, fors := n
3
2 log

1
2 n andt := min{m,N−

2nlogn},

E

[

t

∑
i=s+1

INVAL (i)

]

≤ E

[

t

∑
i=s+1

|δ (i)|
2

]

≤ (1+o(1))
n2(n−1) logn

2s

≤ (1+o(1))

2
n

3
2 log

1
2 n.

The second inequality follows by substitutingk := s+1 in Equation (5.5). Also,
since the number of invalidating edges can be at most equal tothe total number of
edges,∑s

i=1 INVAL (i)≤ s.

E

[

m

∑
i=1

INVAL (i)

]

= E

[

s

∑
i=1

INVAL (i)

]

+E

[

t

∑
i=s+1

INVAL (i)

]

+E

[

m

∑
i=t

INVAL (i)

]

≤O(s)+O(n
3
2 log

1
2 n)+O(nlogn) = O(n

3
2 log

1
2 n).

The second boundE [∑m
i=1 INVAL (i)] ≤ m is obvious by definition ofINVAL (i).

5.10 Recent advances in online topological
ordering algorithms

Recently, Haeupler et al. [78] gave two new algorithms for online topological or-
dering. Their algorithm for the sparse case requiresO(m3/2) time while their algo-
rithm for the dense case requiresO(n2.5) time, independent of the number of edges
inserted. Their algorithm for the dense case crucially relies on our Lemma11. In-
dependently, Liu and Chao [97] gave an algorithm withÕ(n2.5) bound. Their
algorithm is largely based on our algorithm, but uses buckets of exponentially in-
creasing sizes. Very recently, Bender et al. [27] gave anO(n2 log2n) algorithm for
this problem. It can be further improved toO(n2 logn) [69].

Regarding lower bounds, Ramalingam and Reps [133] show that an adversary can
force any algorithm maintaining explicit labels to needΩ(nlogn) time complexity

146 Chapter 5: Dynamic topological ordering

for insertingn−1 edges. Katriel [90] gave a class of examples on which any local
algorithm that maintains the topological order as an explicit mappingT : V →
[1..n] must doΩ(n2) node relabellings for insertingn edges. Heupler et al. [79]
show a class of examples on which any local algorithm must doΩ(nm1/2) node
relabellings for insertingn edges.

5.11 Conclusion

In this chapter, we considered the problem of dynamic topological ordering. We
have presented the firsto(n3) algorithm for incremental topological ordering. The
analysis of our algorithm is however, not tight. A non-trivial lower bound of
O(n2 logn) for our algorithm can be infered from Theorem14. However, it is
still quite far from the upper bound ofO(n2.75) for this algorithm. We show some
ideas that can potentially lead to tightening the analysis of this algorithm. A better
analysis of this algorithm still remains an open problem.

There is still a large gap between the current best lower bounds (cf. Section5.10)
and the upper bound ofO(min{m1.5,n2 logn}). Bridging this gap remains an open
problem.

As mentioned at the beginning of this chapter, nothing better is known for on-
line cycle detection so far than to maintain topological ordering in an incremental
setting. It is not clear if a faster online cycle detection algorithm can be developed.

The externalization of our algorithm provides interestingnew results for dynamic
topological ordering in external memory. It would be interesting to see if the
faster incremental topological ordering algorithms developed recently also lead to
improved external memory results.

We also presented the first average-case analysis of online topological ordering
algorithms. We proved an expected runtime ofO(n2 polylog(n)) under insertion
of the edges of a complete DAG in a random order for AHRSZ, KB and PK.
An interesting question here is whether one can obtain better bounds for the case
when there arem= o(n2) edges inserted into a previously empty DAG or into an
arbitrary DAG.

It will also be interesting to find out whether the average-case results can be ex-
tended to the fully dynamic case. Note that in the worst case scenario, it is not
possible to obtain any interesting results for this case as any algorithm that ex-
plicitly maintains the node labellings can be made to doΩ(n) work for a pair of

5.11 Conclusion 147

insertion and deletion. This can be seen, for example, by maintaining a list DAG,
deleting the edge in the middle and inserting a new edge connecting the previous
end-point of the list to the previous starting point of the list. However, when the
sequence of insertions and deletions is random, such worst case scenarios will
happen with low probability and it might be possible to provesome interesting
bounds.

For the analysis of these algorithms to make more sense for real applications, we
may consider changing our notion of change. Typically, we donot have edges
coming one at a time. Rather a few edges get inserted or deleted and we want to
use the old topological ordering to compute the new one efficiently. Pearce [123]
proposed a modification of online topological ordering, in which a batch of edges
are inserted at a time.

148 BIBLIOGRAPHY

Bibliography

[1] J. Abello, P. Pardalos, and M. Resende. On maximum cliqueproblems
in very large graphs.External Memory Algorithms, AMS-DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 50:119–130,
1999.

[2] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to
external graph algorithms.Algorithmica, 32:437–458, 2002.

[3] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and
related problems.Communications of the ACM, 31:1116–1127, 1988.

[4] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On thestreaming
model augmented with a sorting primitive. InProceedings of the forty-fifth
annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
540–549, 2004.

[5] D. Ajwani and T. Friedrich. Average-case analysis of online topological
ordering. InProceedings of the eighteenth International Symposium on
Algorithms and Computation (ISAAC), Vol. 4835 ofLecture Notes in Com-
puter Science (LNCS), pp. 464–475. Springer, 2007.

[6] D. Ajwani and T. Friedrich. Average-case analysis of online topological
ordering, 2008.arXiv:0802.1059.

[7] D. Ajwani, R. Dementiev, and U. Meyer. A computational study of external
memory BFS algorithms. InProceedings of the seventeenth annual ACM-
SIAM Symposium On Discrete Algorithms (SODA), pp. 601–610, 2006.

[8] D. Ajwani, T. Friedrich, and U. Meyer. AnO(n2.75) algorithm for online
topological ordering. InProceedings of the tenth Scandinavian Workshop
on Algorithm Theory (SWAT), Vol. 4059 ofLecture Notes in Computer Sci-
ence (LNCS), pp. 53–64. Springer, 2006.

[9] D. Ajwani, U. Meyer, and V. Osipov. Improved external memory BFS
implementation. InProceedings of the ninth workshop on Algorithm Engi-
neering and Experiments (ALENEX), pp. 3–12, 2007.

[10] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Characterizing the perfor-
mance of flash memory storage devices and its impact on algorithm design.
Technical Report MPI-I-2008-1-001, Max Planck Institut f¨ur Informatik,
2008.

[11] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Characterizing the perfor-
mance of flash memory storage devices and its impact on algorithm design.

BIBLIOGRAPHY 149

In Proceedings of the seventh international Workshop on Experimental Al-
gorithms (WEA), pp. 208–219, 2008.

[12] D. Ajwani, T. Friedrich, and U. Meyer. AnO(n2.75) algorithm for online
topological ordering.ACM Transactions on Algorithms, 2009. A prelimi-
nary version of this paper appeared as [8].

[13] D. Ajwani, U. Meyer, and V. Osipov. Breadth first search on massive
graphs. DIMACS series book devoted to the ninth implementation chal-
lenge on shortest paths, 2009. A preliminary version of this paper appeared
as [9].

[14] L. Allulli, P. Lichodzijewski, and N. Zeh. A faster cache-oblivious shortest-
path algorithm for undirected graphs with bounded edge lengths. InPro-
ceedings of the eighteenth annual ACM-SIAM Symposium On Discrete Al-
gorithms (SODA), pp. 910–919, 2007.

[15] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K.Zadeck. In-
cremental evaluation of computational circuits. InProceedings of the first
annual ACM-SIAM Symposium On Discrete Algorithms (SODA), pp. 32–
42, 1990.

[16] R. Angelova and G. Weikum. Graph-based text classification: Learn from
your neighbors. InProceedings of the twenty-ninth annual international
ACM SIGIR conference on research and development in Information Re-
trieval, pp. 485–492, 2006.

[17] L. Arge. The Buffer Tree: A new technique for optimal I/O-algorithms.
In Proceedings of the fourth International workshop on Algorithms and
Data Structures (WADS), Vol. 955 of Lecture Notes in Computer Science
(LNCS), pp. 334–345. Springer, 1995.

[18] L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and
multi-way planar graph separation. InProceedings of the eighth Scandina-
vian Workshop on Algorithmic Theory (SWAT), Vol. 1851 ofLecture Notes
in Computer Science (LNCS), pp. 433–447. Springer, 2000.

[19] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on
grid-based terrains. InProceedings of the second Workshop on Algorithm
Engeneering and Experiments (ALENEX), pp. 217–236, 2000.

[20] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro. Cache-oblivious priority queue and graph algorithmapplications.
In Proceedings of the thirty-fourth annual ACM Symposium on Theory of
Computing (STOC), pp. 268–276, 2002.

150 BIBLIOGRAPHY

[21] L. Arge, O. Procopiuc, and J. Vitter. Implementing I/O-efficient data struc-
tures using TPIE. InProceedings of the tenth annual European Sympo-
sium on Algorithms (ESA), Vol. 2461 ofLecture Notes in Computer Science
(LNCS), pp. 88–100. Springer, 2002.

[22] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wick-
remesinghe. Efficient flow computation on massive grid terrain datasets.
Geoinformatica, 7:283–313, 2003.

[23] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental par-
allel algorithms for private-cache chip multiprocessors.In Proceedings of
the twentieth annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA), pp. 197–206, 2008.

[24] G. Ausiello, G. F. Italiano, A. Marchetti-Spaccamela,and U. Nanni. In-
cremental algorithms for minimal length paths.Journal of Algorithms, 12:
615–638, 1991.

[25] B. Babcock, S. Babu, M. Datar, R. Motwani, and R. Widom. Models
and issues in data stream systems. InProceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles Of DatabaseSystems
(PODS), pp. 1–16, 2002.

[26] A. B. Barak and P. Erdős. On the maximal number of strongly independent
vertices in a random acyclic directed graph.SIAM Journal on Algebraic
and Discrete Methods, 5:508–514, 1984.

[27] M. Bender, J. Fineman, and S. Gilbert. Online topological ordering. In
Proceedings of the twentieth annual ACM-SIAM Symposium On Discrete
Algorithms (SODA), 2009 (to appear).

[28] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Key-
word searching and browsing in databases using BANKS. InProceedings
of the eighteenth International Conference on Data Engineering (ICDE),
pp. 431–440, 2002.

[29] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A designfor high-
performance flash disks.ACM SIGOPS Operating Systems Review, 41:
88–93, 2007.

[30] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations
of separable graphs. InProceedings of the fourteenth ACM-SIAM annual
Symposium On Discrete Algorithms (SODA), pp. 679–688, 2003.

[31] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental analysis

BIBLIOGRAPHY 151

of a compact graph representation. InProceedings of the sixth Workshop
on Algorithm engineering and experiments (ALENEX), 2004.

[32] B. Bollobás. Degree sequences of random graphs.Discrete Maths, 33:
1–19, 1981.

[33] B. Bollobás.Random Graphs. Cambridge, 2001. ISBN 0-521-79722-5.

[34] O. Boruvka. O jistém problému minimálnı́m [About a certain minimal
problem].Práce, Moravsḱe Prirodovedecḱe Spolecnosti, 3:37–58, 1926.

[35] U. Brandes and T. Erlebach (Eds.).Network Analysis, Vol. 3418 ofLecture
Notes in Computer Science (LNCS). Springer, 2005. ISBN 978-3-540-
24979-5.

[36] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine.Computer Networks and ISDN Systems, 30:107–117, 1998.

[37] G. S. Brodal. Personal communication between Gerth Brodal and Ulrich
Meyer.

[38] G. S. Brodal and R. Fagerberg. Funnel heap – a cache oblivious priority
queue. InProceedings of the thirteenth International Symposium on Algo-
rithms and Computation, (ISAAC), pp. 219–228, 2002.

[39] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping.
In Proceedings of twenty-ninth International Colloquium Automata, Lan-
guages and Programming (ICALP), Vol. 2380 ofLecture Notes in Com-
puter Science (LNCS), pp. 426–438, 2002.

[40] G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data
structures and algorithms for undirected breadth-first search and shortest
paths. InProceedings of the ninth Scandinavian Workshop on Algorithm
Theory (SWAT), Vol. 3111 ofLecture Notes in Computer Science (LNCS),
pp. 480–492. Springer, 2004.

[41] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineeringa cache-oblivious
sorting algorithm. InProceedings of the sixth workshop on Algorithm En-
gineering and Experiments (ALENEX), pp. 4–17, 2004.

[42] I. I. Brudaru. Heuristics for average diameter approximation with external
memory algorithms. Master’s thesis, Max Planck Institut f¨ur Informatik,
Saarbrücken, Germany, 2007.

[43] A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook.
On external memory graph traversal. InProceedings of the eleventh an-

152 BIBLIOGRAPHY

nual ACM-SIAM Symposium On Discrete Algorithms (SODA), pp. 859–
860. ACM-SIAM, 2000.

[44] T. M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time.
Algorithmica, 50:236–243, 2008.

[45] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann
type complexity.Journal of the ACM, 47:1028–1047, 2000.

[46] M. Chen, R. A. Chowdhury, V. Ramachandran, D. L. Roche, and L. Tong.
Priority queues and Dijkstra’s algorithm. Technical Report TR-07-54, The
University of Texas at Austin, Department of Computer Sciences, 2007.

[47] P. M. Chen and D. A. Patterson. A new approach to I/O performance
evaluation—self-scaling I/O benchmarks, predicted I/O performance. In
Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 1–12, 1993.

[48] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff,
and J. S. Vitter. External memory graph algorithms. InProceedings of the
sixth annual ACM-SIAM Symposium On Discrete Algorithms (SODA), pp.
139–149. ACM-SIAM, 1995.

[49] F. J. Christiani. Cache-oblivious graph algorithms. Master’s thesis, Univer-
sity of Southern Denmark, 2005.

[50] S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to
semi-dynamic problems on digraphs.Theoretical Computer Science, 203:
69–90, 1998.

[51] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. The
MIT Press, Cambridge, MA, 1989. ISBN 0-262-03141-8.

[52] DBpedia Blog, 2008. http://blog.dbpedia.org/2008/08/18/

dbpedia-31-breaks-100-million-triples-barrier/.

[53] M. de Kunder. Geschatte grootte van het geı̈ndexeerde world wide
web. Master’s thesis, Universiteit van Tilburg, 2006. http://www.
worldwidewebsize.com/.

[54] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an ex-
ternal memory minimum spanning tree algorithm. InProceedings of the
third International Conference on Theoretical Computer Science (TCS), pp.
195–208. Kluwer, 2004.

[55] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template

BIBLIOGRAPHY 153

Library for XXL Data Sets. Technical Report 18, Fakultät f¨ur Informatik,
University of Karlsruhe, 2005.

[56] R. Dementiev, P. Sanders, and L. Kettner. STXXL: Standard Template
library for XXL data sets. InProceedings of the thirteenth annual European
Symposium on Algorithms (ESA), Vol. 3669 ofLecture Notes in Computer
Science (LNCS), pp. 640–651, 2005.

[57] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template
library for XXL data sets. Software: Practice and Experience, 38:589–
637, 2008.

[58] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes
in graph streaming problems. InProceedings of the seventeenth annual
ACM-SIAM Symposium On Discrete Algorithms (SODA), 2006.

[59] P. K. Desikan, N. Pathak, J. Srivastava, and V. Kumar. Divide and conquer
approach for efficient pagerank computation. InProceedings of the sixth
International Conference on Web Engineering (ICWE), pp. 233–240, 2006.

[60] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a
list. In Proceedings of the nineteenth annual ACM Symposium on Theory
of Computing (STOC), pp. 365–372, 1987.

[61] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[62] DIMACS Implementation Challenge – Shortest Paths.http://www.dis.

uniroma1.it/∼challenge9/download.shtml.

[63] S. Edelkamp and S. Jabbar. Large-scale directed model checking LTL.
In Proceedings of the thirteenth international SPIN workshopon model
checking software (SPIN), Vol. 3925 ofLecture Notes in Computer Science
(LNCS), pp. 1–18, 2006.

[64] S. Edelkamp, S. Jabbar, and S. Schrödl. External A∗. In Proceedings
of the twenty-seventh German conference on Artificial Intelligence (KI),
Vol. 3238 ofLecture Notes in Artificial Intelligence (LNAI), pp. 226–240.
Springer, 2004.

[65] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graphalgorithms. In
M. J. Atallah, editor,Algorithms and Theory of Computation Handbook,
chapter 8. CRC Press, 1999.

[66] P. Erdős and A. Rényi. On random graphs.Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

154 BIBLIOGRAPHY

[67] P. Erdős and A. Rényi. On the evolution of random graphs. Matematikai
Kutato Intezetenek Kozlemenyei. Magyar Tudomanyos Akademia, 5:17–61,
1960.

[68] J. Feigenbaum, S. Kannan, A. Mcgregor, and J. Zhang. On graph problems
in a semi-streaming model. InProceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP), pp. 531–543.
Springer-Verlag, 2004.

[69] J. Fineman, 2008. Personal communication.

[70] Flickr Blog. http://blog.flickr.net/en/2007/11/13/holy-moly/.

[71] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and theiruses in im-
proved network optimization algorithms.Journal of the ACM, 34:596–615,
1987.

[72] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic
shortest paths and negative cycles detection on digraphs with arbitrary arc
weights. InProceedings of the European Symposium on Algorithms (ESA),
Vol. 1461 of Lecture Notes in Computer Science (LNCS), pp. 320–331,
1998.

[73] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. InProceedings of the fortieth annual Symposium on
Foundations of Computer Science (FOCS), pp. 285–297. IEEE Computer
Society Press, 1999.

[74] E. Gal and S. Toledo. Algorithms and data structures forflash memories.
ACM Computing Surveys, 37:138–163, 2005.

[75] B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Com-
munications of the ACM, 7:301–303, 1964.

[76] A. Goldberg and R. Werneck. Computing point-to-point shortest paths from
external memory. InProceedings of the seventh workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 26–40, 2005.

[77] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. InProceedings of the nineteenth annual Symposium on Foundations
of Computer Science (FOCS), pp. 8–21. IEEE, 1978.

[78] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan. Faster algo-
rithms for incremental topological ordering. InProceedings of the thirty-
fifth International Colloquium on Automata, Languages and Programming
(ICALP), pp. 421–433, 2008.

BIBLIOGRAPHY 155

[79] B. Haeupler, S. Sen, and R. E. Tarjan. Incremental topological ordering
and strong component maintenance, 2008.arXiv:0803.0792v1.

[80] Hard Drive Chart, 2007.http://www23.tomshardware.com/storage.
html?modelx=33&model1=117&model2=676&chart=33.

[81] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths.IEEE Transactions on Systems
Science and Cybernetics SSC, 4:100–107, 1968.

[82] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. In”External Memory algorithms”, DIMACS series in Discrete
Mathematics and Theoretical Computer Science, Vol. 50, pp. 107–118,
1999.

[83] In-Stat press release, 2006.http://www.instat.com/press.asp?
ID=1706&sku=IN0603343SI.

[84] S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In
Proceedings of the sixth international conference on Verification, Model
Checking and Abstract Interpretation (VMCAI), Vol. 3385 ofLecture Notes
in Computer Science (LNCS), pp. 313–329, 2005.

[85] S. Jabbar and S. Edelkamp. Parallel external directed model checking with
linear I/O. InProceedings of the seventh international conference on Veri-
fication, Model Checking and Abstract Interpretation (VMCAI), Vol. 3855
of Lecture Notes in Computer Science (LNCS), pp. 237–251, 2006.

[86] V. Jarnı́k. O jistém problému minimálnı́m [About a certain minimal prob-
lem]. Práce Moravsḱe P̌rı́rodov̌edecḱe Spolěcnosti, 6:57–63, 1930.

[87] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In
Proceedings of the fourteenth annual European Symposium onAlgorithms
(ESA), pp. 780–791, 2006.

[88] D. Karger, P. Klein, and R. Tarjan. A randomized linear time algorithm to
find minimum spanning trees.Journal of the ACM, 42:321–328, 1995.

[89] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G.Weikum.
STAR: Steiner Tree Approximation in Relationship-graphs.In Proceed-
ings of the twenty-fifth IEEE International Conference on Data Engineer-
ing (ICDE), 2009 (to appear).

[90] I. Katriel. On algorithms for online topological ordering and sorting.
Technical Report MPI-I-2004-1-003, Max Planck Institut f¨ur Informatik,
Saarbrücken, Germany, 2004.

156 BIBLIOGRAPHY

[91] I. Katriel and H. L. Bodlaender. Online topological ordering. ACM Trans-
actions on Algorithms, 2:364–379, 2006. Announced at SODA ’05.

[92] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem.Proceedings of the American Mathematical Society, 7:
48–50, 1956.

[93] V. Kumar and E. J. Schwabe. Improved algorithms and datastructures
for solving graph problems in external memory. InProceedings of the
eighth IEEE Symposium on Parallel and Distributed Processing (IPDPS),
pp. 169–177, 1996.

[94] A. LaMarca and R. E. Ladner. The influence of caching on the performance
of sorting.Journal of Algorithms, 31:66–104, 1999.

[95] L. Laura, S. Leonardi, S. Millozzi, U. Meyer, and J. F. Sibeyn. Algorithms
and experiments for the webgraph. InProceedings of the eleventh annual
European Symposium on Algorithms (ESA), pp. 703–714, 2003.

[96] S.-W. Lee and B. Moon. Design of flash-based DBMS: an in-page logging
approach. InSIGMOD International Conference on Management of Data,
pp. 55–66. ACM, 2007.

[97] H. F. Liu and K. M. Chao. AñO(n2.5)-time algorithm for online topologi-
cal ordering, 2008.arXiv:0804.3860v2.

[98] J. Luxenburger and G. Weikum. Exploiting community behavior for en-
hanced link analysis and web search. InProceedings of the ninth Interna-
tional Workshop on the Web and Databases (WebDB), pp. 14–19, 2006.

[99] K. Macherey, F. J. Och, and H. Ney. Natural language understanding using
statistical machine translation. InProceedings of the seventh European
Conference on Speech Communication and Technology (EUROSPEECH),
pp. 2205–2208, 2001.

[100] A. Maheshwari and N. Zeh. External memory algorithms for outerplanar
graphs. InProceedings of the tenth International Symposium on Algorithms
and Computations (ISAAC), Vol. 1741 ofLecture Notes in Computer Sci-
ence (LNCS), pp. 307–316. Springer, 1999.

[101] A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using
separators. InProceedings of the thirteenth annual ACM-SIAM Symposium
On Discrete Algorithms (SODA), pp. 372–381. ACM-SIAM, 2002.

[102] A. Maheshwari and N. Zeh. I/O-efficient algorithms forgraphs of bounded

BIBLIOGRAPHY 157

treewidth. InProceedings of the twelfth annual ACM-SIAM Symposium On
Discrete Algorithms (SODA), pp. 89–90. ACM-SIAM, 2001.

[103] Y. Maon, B. Scheiber, and U. Vishkin. Parallel ear decomposition search
(EDS) and st-numbering in graphs. InTheoretical Computer Science,
Vol. 47, pp. 277–298, 1986.

[104] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. On-line graph algo-
rithms for incremental compilation. InProceedings of nineteenth Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG),
Vol. 790 ofLecture Notes in Computer Science (LNCS), pp. 70–86, 1993.

[105] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining a topo-
logical order under edge insertions.Information Processing Letters, 59:
53–58, 1996.

[106] K. Mehlhorn and U. Meyer. External-memory breadth-first search with
sublinear I/O. InProceedings of the tenth annual European Symposium
on Algorithms (ESA), Vol. 2461 of Lecture Notes in Computer Science
(LNCS), pp. 723–735. Springer, 2002.

[107] K. Mehlhorn and S. Naher.The LEDA Platform of Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999. ISBN 0521563291.

[108] R. V. Meter. Observing the effects of multi-zone disks. In USENIX Annual
Technical Conference, pp. 19–30, 1997.

[109] U. Meyer. On trade-offs in external-memory diameter-approximation. In
Proceedings of the eleventh Scandinavian Workshop on Algorithm Theory
(SWAT), pp. 426–436, 2008.

[110] U. Meyer. On dynamic Breadth-First Search in external-memory. InPro-
ceedings of the twenty-fifth annual Symposium on Theoretical Aspects of
Computer Science (STACS), pp. 551–560, 2008.

[111] U. Meyer and V. Osipov. Design and implementation of a practical I/O-
efficient shortest paths algorithm, 2008.

[112] U. Meyer and N. Zeh. I/O-efficient undirected shortestpaths. InProceed-
ings of the eleventh annual European Symposium on Algorithms (ESA), Vol.
2832 ofLecture notes in Computer Science (LNCS), pp. 434–445. Springer,
2003.

[113] U. Meyer and N. Zeh. I/O-efficient undirected shortestpaths with un-
bounded edge lengths. InProceedings of the fourteenth annual European

158 BIBLIOGRAPHY

Symposium on Algorithms (ESA), Vol. 4168 ofLecture Notes in Computer
Science (LNCS), pp. 540–551. Springer, 2006.

[114] U. Meyer, P. Sanders, and J. Sibeyn (Eds.).Algorithms for Memory Hierar-
chies, Vol. 2625 ofLecture Notes in Computer Science (LNCS). Springer,
2003. ISBN 3-540-00883-7.

[115] K. Munagala and A. Ranade. I/O-complexity of graph algorithms. InPro-
ceedings of the tenth annual ACM-SIAM Symposium On DiscreteAlgo-
rithms (SODA), pp. 687–694. ACM-SIAM, 1999.

[116] S. Muthukrishnan.Data Streams: Algorithms and Applications, Vol. 1 (2)
of Foundations and Trends in Theoretical Computer Science. NOW, 2005.

[117] D. Myers. On the use of NAND flash memory in high-performance rela-
tional databases. Master’s thesis, Massachussets Institute of Technology,
2008.

[118] M. Najork and J. Wiener. Breadth-first search crawlingyields high-quality
pages. InProceedings of the tenth International World Wide Web Confer-
ence, pp. 114–118, 2001.

[119] M. E. J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks.Physical Review E, 69:026113–1–026113–15, 2004.

[120] S. M. Omohundro, C.-C. Lim, and J. Bilmes. The Sather language com-
piler/debugger implementation. Technical Report TR-92-017, International
Computer Science Institute, Berkeley, 1992.

[121] A. Östlin and R. Pagh. Uniform hashing in constant time and linear
space. InProceedings of the thirty-fifth Symposium on Theory of Com-
puting (STOC), pp. 622–628. ACM, 2003.

[122] D. A. Patterson and J. L. Hennessy.Computer organization and design.
The hardware/software interface. Morgan Kaufmann Publishers Inc., 3rd
edition, 2005.

[123] D. J. Pearce.Some directed graph algorithms and their application to
pointer analysis. PhD thesis, Imperial College of Science, Technology and
Medicine, University of London, 2005.

[124] D. J. Pearce and P. H. J. Kelly. A dynamic topological sort algorithm for
directed acyclic graphs.Journal of Experimental Algorithmics, 11:1.7.1–
24, 2006. Preliminary version appeared as [125].

[125] D. J. Pearce and P. H. J. Kelly. A dynamic algorithm for topologically
sorting directed acyclic graphs. InProceedings of the third international

BIBLIOGRAPHY 159

Workshop on Experimental and Efficient Algorithms (WEA), Vol. 3059 of
Lecture Notes in Computer Science, pp. 383–398, 2004.

[126] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Online cycledetection and
difference propagation for pointer analysis. InProceedings of the 3rd in-
ternational IEEE Workshop on Source Code Analysis and Manipulation
(SCAM), 2003.

[127] S. Pettie. A new approach to all-pairs shortest paths on real-weighted
graphs.Theoretical Computer Science, 312:47–74, 2004.

[128] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algo-
rithm. Journal of the ACM, 49:16–34, 2002.

[129] B. Pittel and R. Tungol. A phase transition phenomenonin a random
directed acyclic graph.Random Structures and Algorithms, 18:164–184,
2001.

[130] R. C. Prim. Shortest connection networks and some generalisations.Bell
System Technical Journal, 36:1389–1401, 1957.

[131] N. Rahman and R. Raman. Analysing the cache behaviour of non-uniform
distribution sorting algorithm. InProceedings of the eighth annual Euro-
pean Symposium on Algorithms (ESA), pp. 380–391, 2000.

[132] G. Ramalingam.Bounded Incremental Computation, Vol. 1089 ofLecture
Notes in Computer Science (LNCS). Springer, 1996. ISBN 978-3-540-
61320-6.

[133] G. Ramalingam and T. W. Reps. On competitive on-line algorithms for the
dynamic priority-ordering problem.Information Processing Letters, 51:
155–161, 1994.

[134] G. Ramalingam and T. W. Reps. On the computational complexity of dy-
namic graph problems.Theoretical Computer Science, 158:233–277, 1996.

[135] J. Reif and P. Spirakis. Expected parallel time and sequential space com-
plexity of graph and digraph problems.Algorithmica, 7:597–630, 1992.

[136] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for di-
rected graphs with an almost linear update time. InProceedings of the
thirty-sixth annual ACM Symposium on Theory of Computing (STOC), pp.
184–191, 2004.

[137] L. Roditty and U. Zwick. On dynamic shortest paths problems. InProceed-
ings of the twelfth European Symposium on Algorithms (ESA), Vol. 3221 of
Lecture Notes in Computer Science, pp. 580–591. Springer, 2004.

160 BIBLIOGRAPHY

[138] B. Sach and R. Clifford. An empirical study of cache-oblivious pri-
ority queues and their application to the shortest path problem, 2008.
arXiv:0802.1026v1.

[139] P. Sanders. Random permutations on distributed, external and hierarchical
memory.Information Processing Letters, 67:305–309, 1998.

[140] P. Sanders, S. Egner, and J. H. M. Korst. Fast concurrent access to parallel
disks. InProceedings of the eleventh ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 849–858, 2000.

[141] P. Sanders, D. Schultes, and C. Vetter. Mobile route planning. InPro-
ceedings of the sixteenth European Symposium on Algorithms(ESA), num-
ber 5193 in Lecture Notes in Computer Science (LNCS), pp. 732–743.
Springer, 2008.

[142] Seagate Technology. http://www.seagate.com/cda/products/

discsales/marketing/detail/0,1081,628,00.html.

[143] S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms.
In Proceedings of the eleventh annual ACM-SIAM Symposium on discrete
algorithms (SODA), pp. 829–838. SIAM, 2000.

[144] V. Shkapenyuk and T. Suel. Design and implementation of a high-
performance distributed web crawler. InProceedings of the eighteenth In-
ternational Conference on Data Engineering (ICDE), pp. 357–368. IEEE,
2002.

[145] J. F. Sibeyn. From parallel to external list ranking. Technical report, Max
Planck Institut für Informatik, Saarbrücken, Germany, 1997.

[146] J. F. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external depth
first search on directed graphs. InProceedings of the fourteenth annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp.
282–292, 2002.

[147] A. Stepanov and M. Lee.The Standard Template Library. Hewlett Packard
Laboratories, 1995.http://www.sgi.com/tech/stl/.

[148] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago – a largeontology
from wikipedia and wordnet.Elsevier Journal of Web Semantics, 2008. (to
appear).

[149] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.Jour-
nal of the ACM, 22:215–225, 1975.

BIBLIOGRAPHY 161

[150] The Stanford WebBase Project.http://www-diglib.stanford.edu/
∼testbed/doc2/WebBase/.

[151] TPIE. http://madalgo.au.dk/Trac-tpie/.

[152] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two
level memories.Algorithmica, 12:110–147, 1994.

[153] E. W. Weisstein. ”Web Graph” from MathWorld – A WolframWeb Re-
source.http://mathworld.wolfram.com/WebGraph.html.

[154] C. H. Wu, L. P. Chang, and T. W. Kuo. An efficient R-tree implementation
over flash-memory storage systems. InProceedings of the eleventh ACM
international symposium on Advances in Geographic Information Systems,
pp. 17–24. ACM Press, 2003.

[155] C. H. Wu, L. P. Chang, and T. W. Kuo. An efficient B-tree layer implemen-
tation for flash-memory storage systems.ACM Transactions on Embedded
Computing Systems, 6, 2007.

[156] ZCAV. http://www.coker.com.au/bonnie++/zcav/.

162 BIBLIOGRAPHY

Summary

The notion of graph traversal is of fundamental importance to solving many com-
putational problems. It has therefore received considerable attention in the com-
puter science literature - many linear or near-linear time algorithms for traversing
graphs have been developed. In many modern applications involving graph traver-
sal such as those arising in the domain of social networks, Internet based services,
fraud detection in telephone calls etc., the underlying graph is very large and dy-
namically evolving. For these applications, the simple linear or near-linear time
RAM-model static graph traversal algorithms are often inappropriate because of
the large number of I/Os they incur. Also, these algorithms can’t be easily adapted
to the dynamic framework. Furthermore, many application needs are already ful-
filled if the total running time is bounded in the average-case and not necessarily
in the worst-case. This thesis deals with the design and engineering of graph
traversal algorithms for massive and/or dynamic graphs.

We engineer various I/O-efficient Breadth First Search (BFS) algorithms for mas-
sive sparse undirected graphs. Our pipelined implementations with low constant
factors makes BFS viable on massive graphs. For many graphs with around a
billion edges (with 1–3 GB RAM), it reduces the running-timefor BFS traversal
from a fewmonthsrequired by the simple RAM model BFS algorithm to a few
hours. Our code has now evolved into a software package, that will be eventually
integrated into an external memory library.

Our detailed experimental study suggests that a simple external memory BFS al-
gorithm by Munagala and Ranade [115] (MR BFS) performs quite well on low
diameter graphs or when the edges are kept on the disk in the order required for
the BFS traversal. The better asymptotic worst-case I/O bound of the BFS algo-
rithm by Mehlhorn and Meyer [106] (MM BFS) help it to outperform MRBFS
on moderate to large diameter graphs. MMBFS also benefits from our heuristics
that preserve its worst-case guarantees. Exploiting a priori knowledge of the graph
structure and disk parallelism further alleviate the I/O bottleneck of MM BFS. We

164 Summary

also show evidence that the cache-oblivious BFS algorithmsare at least a factor of
four to five slower than their external memory counterparts,when the input graph
resides on the disk.

Flash memory is fast becoming the dominant form of end-user storage in mobile
computing. Since storage devices play a crucial role in the performance of (traver-
sal) algorithms when the input (graph) data does not fit in themain memory, it is
important to understand the I/O-characteristics of the storage devices to be able
to predict the real running times of these algorithms. Such an understanding can
also be exploited to design algorithms that are faster in practice. We characterize
the performance of NAND flash based storage devices, including many solid state
disks. We show that unlike hard disks, these devices have faster random reads
than random writes. Interestingly, we found that the cost ofrandom writes on
flash devices is non-uniform in time and depends on the I/O-history of the device.
We also analyze the effect of misalignments, aging, controller interface, etc. on
the performance obtained on these devices. We show that despite the similarities
between flash memory and RAM (fast random reads) and between flash disk and
hard disk (both are block based devices), the algorithms designed in the RAM
model or the external memory model do not realize the full potential of the flash
memory devices. Thus, there is a need for a different model that distinguishes
between read and write blocks to get the best performance on flash devices.

In the scenario when a solid state disk is used as an additional secondary storage
rather than replacing the traditional hard disk, we engineer the I/O-efficient BFS
implementation to exploit the comparative advantages of both the disks. We show
that on a difficult graph class for external memory BFS, this is at least 25% faster
than randomly striping the data on the two disks.

We present a simple algorithm which maintains the topological order of a directed
acyclic graph withn nodes under an online edge insertion sequence inO(n2.75)
time, independent of the numberm of edges inserted. For dense DAGs, this is
an improvement over the previous best result ofO(min{m3

2 logn,m
3
2 +n2 logn})

by Katriel and Bodlaender [91]. While our analysis holds only for the incre-
mental setting, our algorithm itself is fully dynamic. The externalization of our
algorithm provides interesting new results for dynamic topological ordering in
external memory.

We also present the first average-case analysis of online topological ordering algo-
rithms. We prove an expected runtime ofO(n2 polylog(n)) under insertion of the
edges of a complete DAG in a random order for various incremental topological
ordering algorithms.

Zusammenfassung

Die Traversierung von Graphen ist von fundamentaler Bedeutung für das Lösen
vieler Berechnungsprobleme. Folglich findet sie grosse Beachtung in der Informatik-
Literatur; es wurden viele lineare oder fast-lineare Traversierungsalgorithmen vorgeschla-
gen. Moderne Anwendungen, die auf Graphtraversierung beruhen, findet man
unter anderem in sozialen Netzwerken, internetbasierten Dienstleistungen, Be-
trugserkennung bei Telefonanrufen. In vielen dieser Anwendungen ist der zu-
grunde liegende Graph sehr gross und ändert sich kontinuierlich. Einfache lineare
oder fast-lineare Graphtraversierungs-Algorithmen, diefür das RAM-Modell en-
twickelt wurden, sind in diesen Anwendungen oft nicht adäquat, da sie eine hohe
Anzahl von I/O-Zugriffen verursachen. Auch ist es nicht leicht diese Algorith-
men für dynamische Szenarien anzupassen. Ferner werden die Anforderungen
vieler Anwendungen bereits erfüllt, wenn die Gesamtlaufzeit im Average-Case
und nicht unbedingt im Worst-Case begrenzt ist. Diese Arbeit hat den Entwurf
und das Entwickeln von Graphtraversierungs-Algorithmen für massive und/oder
dynamische Graphen zum Thema.

Wir entwickeln mehrere I/O-effiziente Breitensuch-Algorithmen für massive, dünnbe-
siedelte, ungerichtete Graphen. Im Zusammenspiel mit Heuristiken zur Einhal-
tung von Worst-Case-Garantien, ermöglichen unsere pipelinebasierten Implemen-
tierungen die Praktikabilität von Breitensuche auf massiven Graphen. Für viele
Graphen mit rund eine Milliarde Kanten (mit 1–3 GB RAM) wird die Breitensuch-
Laufzeit von wenigen Monaten, die vom einfachen RAM-Modell-Algorithmus
zur Breitensuche benötigt werden, auf wenige Stunden reduziert. Unser Code ist
als Software-Paket vorhanden, das voraussichtlich in eineExternspeicher-Bibliothek
integriert wird.

Unsere detaillierte, experimentelle Untersuchung legt nahe, dass ein einfacher
Breitensuchalgorithmus für den externen Speicher, sieheMunagala and Ranade [115]
(MR BFS), gute Leistung erbringt, wenn der Graph einen kleinen Durchmesser
hat, oder seine Kanten im Speicher in der Reihenfolge abgelegt sind, die von

166 Zusammenfassung

der Breitensuche benötigt wird. Die bessere, asymptotische I/O-Grenze für den
Worst-Case des Breitensuch-Algorithmus von Mehlhorn und Meyer [106] (MM BFS)
führt zu einer besseren Leistung als bei MRBFS auf Graphen mit moderatem bis
grossem Durchmesser. MMBFS profitiert auch von unseren Heuristiken, welche
die Worst-Case-Garantien bewahren. Das Wissen über die Graphstruktur und den
Plattenparallelismus mildern die Wirkung des I/O-Engpasses bei MMBFS. Wir
zeigen auch Indizien dafür auf, dass cache-oblivious Breitensuch-Algorithmen
mindestens um Faktor Vier oder Fünf langsamer sind als ihrePendants für den
externen Speicher, wenn der Graph auf der Platte residiert.

Flash-Speicher wird immer mehr zur dominanten Form der Speicherung für End-
benutzer im Mobile Computing. Da Speichermedien eine wichtige Rolle für die
Leistung von Traversierungs-Algrithmen spielen, wenn dieDaten nicht in den
Hauptspeicher passen, ist es notwendig, die I/O-Merkmale von Speichermedien
zu verstehen, um reale Laufzeiten für diese Algorithmen vorherzusagen. Dieses
Verständnis kann ausgenutzt werden, um Algorithmen zu entwerfen, die in der
Praxis schneller sind.

Wir charakterisieren die Leistung von NAND-Flash basierten Speichermedien,
einschliesslich vieler solid-state Disks. Wir zeigen, dass diese Medien, im Gegen-
stz zu Festplatten, einen schnelleren wahlfreien Lese- alsSchreibe-Zugriff haben.
Interessanterweise haben wir herausgefunden, dass die Kosten des wahlfreien
Schreibe-Zugriffs auf Flash-Medien ungleichmässig im Bezug auf die Zeit sind
und von der I/O-Historie des Mediums abhängen. Zusätzlich analysieren wir
die Wirkung von Ausrichtungsfehlern, Alterung, vorausgehenden I/O-Mustern,
usw., auf die Leistung dieser Medien. Wir zeigen, dass trotzder Ähnlichkeiten
von Flash-Speicher und RAM (schnelle wahlfreie Lese-Zugriffe) und von Flash-
Platten und Festplatten (beide sind blockbasiert) Algorithmen, die für das RAM-
Modell oder das Externspeicher-Modell entworfenen wurden, nicht das volle Po-
tential der Flash-Speicher-Medien ausschöpfen. Folglich gibt es also einen Bedarf
für ein neues Modell, das zwischen Lese- und Schreibe-Blöcken unterscheidet,
um beste Leistung auf Flash-Medien zu gewährleisten.

Wir entwickeln einen I/O-effiziente Breitensuch-Algorithmus für das Szenario,
in dem eine solid-state Disk als zusätzlicher Zweitspeicher und nicht als Ersatz
für die traditionelle Festplatte benutzt wird, um die komparativen Vorteile beider
Disks auszunutzen Wir zeigen, dass dies mindestens 25% schneller ist als ein
zufälliges Aufteilen der Daten auf beiden Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Online-Einfügen von Kan-
ten die topologische Ordnung von einem gerichteten, azyklischen Graphen (DAG)
mit n Knoten beibehält. Dieser Algorithmus hat eine Laufzeitkomplexität von

Zusammenfassung 167

O(n2.75) unabhängig von der Anzahlmder eingefügten Kanten. Für dichte DAGs
ist dies eine Verbesserung des besten, vorherigen Ergebnisses vonO(min{m3

2 logn,

m
3
2 +n2 logn}), siehe Katriel and Bodlaender [91]. Während die Analyse nur im

inkrementellen Szenario gütlig ist, ist unser Algorithmus völlständig dynamisch.
Die Externalisierung unseres Algorithmus liefert neue interessante Ergebnisse für
dynamische, topologische Ordnungen im externen Speicher.

Ferner stellen wir die erste Average-Case-Analyse von Online-Algorithmen zur
Unterhaltung einer topologischen Ordnung vor. Für mehrere inkrementelle Al-
gorithmen, welche die Kanten eines kompletten DAGs in zufälliger Reihenfolge
einfügen, beweisen wir eine erwartete Laufzeit vonO(n2 polylog(n)).

168 Zusammenfassung

Curriculum Vitae

Personal Data

Name Deepak Ajwani
Citizenship Indian
Marital Status Married
Telephone +45-89425785
Email ajwani@madalgo.au.dk
WWW http://www.mpi-inf.mpg.de/~ajwani

Research Interests

Algorithms for memory hierarchies, Dynamic graph algorithms, Algorithm Engi-
neering

Education

2005 - Ph.D. candidate, Computer Science
Universiẗat des Saarlandes & Max Planck Institut für Informatik
Advisor: Prof. Dr. h. c. Kurt Mehlhorn

2003 - 2005 M.Sc., Computer Science
Universiẗat des Saarlandes & Max Planck Institut für Informatik
Advisors: Dr.-Ing. Ulrich Meyer and Dr. rer. nat. Peter Sanders

1998 - 2003 M.Tech. + B.Tech., Computer Science and Engineering.
Indian Institute of Technology, Delhi
Advisor: Prof. Sandeep Sen

170 Curriculum Vitae

Work Experience

• Worked asteaching assistantfor a course on “Algorithms and Data Struc-
tures” with Dr.-Ing. Ulrich Meyer, Dr. Ernst Althaus and Dr.Surender Baswana,
Universität des Saarlandes.

• Worked as asoftware engineer(July – Oct 2003) with Read-Ink Tech-
nologies Pvt. Ltd., a company started by Stanford emeritus Prof. Thomas
Binford, to develop a handwriting analysis software for PDAs.

• Worked asteaching assistantfor a course on “Numeric and Scientific Com-
puting” under Dr. Dheeraj Bhardwaj, Indian Institute of Technology, Delhi.

• Worked as anintern with Prof. Ron Shamir, Tel Aviv University during
May – July, 2001.

Awards and Scholarships

• Recipient ofInternational Max Planck Research Schoolscholarship.

• Recipient ofJawahar Gajree Scholarshipfrom IIT Delhi.

• Secured99.79 percentile in GATE-2003(nationwide examination for mas-
ters and Ph.D. positions in India).

• Recipient ofMerit-cum-means Scholarshipfrom IIT Delhi.

• Secured166th rank (All India) out of a total of 120,000 students in IIT-
JEE 1998.

• Recipient ofNational Talent Search Scholarshipby National Council of
Education Research and Training (NCERT), India.

• Scholarship offered by Central Board for Secondary Education, India for
excellent performance in X Board(99 % in Science).

Curriculum Vitae 171

Publications

Book chapters

• Realistic Computer Models.
In “Algorithm Engineering”, M. Müller-Hannemann and S. Schirra (eds.),
Springer, (to be published in 2008).
Joint work with Henning Meyerhenke.

• Design and engineering of external memory traversal algorithms for
general graphs.
Accepted for publication in the Springer LNCS book devoted to the DFG
Schwerpunktprogramm 1126 on “Algorithmik grosser und komplexer Net-
zwerke”.
Joint work with Ulrich Meyer.

Refereed Journal articles

• Breadth First Search on Massive Graphs.
Accepted for publication in the DIMACS Series book devoted to the 9th
Implementation Challenge.
Joint work with Ulrich Meyer and Vitaly Osipov.

• An O(n2.75) Algorithm for Online Topological Ordering .
Accepted for publication in the ACM Transactions on Algorithms.
Joint work with Tobias Friedrich and Ulrich Meyer.

• Average-case analysis of Online Topological Ordering.
(Under submission).
Joint work with Tobias Friedrich.

Refereed conference articles

• Efficient Algorithms for Flash Memories.
(Under submission).
Joint work with Andreas Beckmann, Riko Jacob, Ulrich Meyer and Gabriel
Moruz.

172 Curriculum Vitae

• Characterizing the Performance of Flash Memory Storage Devices and
its Impact on Algorithm Design.
In Proceedings of the 7th International Workshop on Experimental Algo-
rithms (WEA’08), pp. 208–219, Massachusetts, USA, 2008.
A detailed version of this paper is available as Max Planck Institut für In-
formatik Research Report no. MPI-I-2008-1-001
Joint work with Itay Malinger, Ulrich Meyer and Sivan Toledo.

• Average-Case Analysis of Online Topological Ordering.
In Proceedings of the 18th International Symposium on Algorithms and
Computation (ISAAC’07), pp. 464–475, Sendai, Japan, 2007.
Joint work with Tobias Friedrich.

• On Computing the Centroid of the Vertices of an Arrangement and
Related Problems.
In Proceedings of the 10th Workshop on Algorithms and Data Structures
(WADS’07), pp. 520–529, Halifax, Canada, 2007.
Joint work with Saurabh Ray, Raimund Seidel and Hans Raj Tiwary.

• Conflict-Free Coloring for Rectangle Ranges UsingO(n0.382+ε) Colors.
In Proceedings of the 19th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA’07), pp. 181–187, San Diego, CA, USA, 2007.
Joint work with Khaled Elbassioni, Sathish Govindarajan and Saurabh Ray.

• Improved External Memory BFS Implementations.
In Proceedings of the 9th Workshop on Algorithm engineeringand experi-
ments (ALENEX’07), pp. 3–12, New Orleans, USA, 2007.
Also accepted at 9th DIMACS implementation challenge on shortest path,
Piscataway, NJ, USA, 2006.
Joint work with Ulrich Meyer and Vitaly Osipov

• An O(n2.75) Algorithm for Online Topological Ordering .
In Proceedings of the 10th Scandinavian workshop on Algorithm Theory
(SWAT’06), pp. 53–64, Riga, Latvia, 2006
A preliminary version of this paper appeared in Electronic Notes in Discrete
Mathematics, vol. 25, pp. 7-12, 2006
Joint work with Tobias Friedrich and Ulrich Meyer

• A Computational Study of External Memory BFS Algorithms .
In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms
(SODA’06), pp. 601–610, Miami, USA, 2006
Joint work with Roman Dementiev and Ulrich Meyer

Curriculum Vitae 173

• Parallel Algorithm for Real Time Decision System for Financial Mar-
kets.
Accepted as a poster in the 10th annual International Conference on High
Performance Computing (HiPC’03), Hyderabad, India, 2003.
Joint work with Dheeraj Bhardwaj and Manish Sansi

Software Projects

• External Memory BFS
This project involved design, implementation and experimentation with ex-
ternal memory Breadth-First Search (BFS) algorithms. The software pack-
age consists of pipelined I/O efficient graph generators, BFS decompo-
sition verifiers, Munagala and Ranade’s BFS traversal algorithm and the
randomized and deterministic versions of Mehlhorn and Meyer’s approach.
An extensive empirical study analyzing the behaviour of these algorithms
for different graph classes in general, and for very large sparse graphs,
in particular, has been carried out. On many of these graphs,this soft-
ware brings down the runtime of computing BFS level decomposition
from months (with standard implementations, e.g. LEDA BFS)to a few
hours, thereby making BFS viable for massive graphs.

• Cache-efficient FFT
The goal of this software project was to study the effects of emulating the
cache (as given by S. Sen and S. Chatterjee) on the number of conflict
misses and the actual running time of FFT implementation. The project
involved a lot of experiments on the actual execution time and cache be-
haviour of various cache-efficient algorithms for bit-reverse permutations,
matrix transposition, general permutations and FFT.On various architec-
tures, the running time of my implementation in C is significantly better
than that of the widely used FFT library FFTW .

• Expander
During my internship with Prof. Ron Shamir (May – July, 2001)in Tel
Aviv University, I designed and implemented a Java softwareincorporating
different visualization tools for clustering algorithms.The software package
involved elaborate user documentation and a powerful GUI embedding the
clustering algorithms – Hierarchial, K-Means, SOM and CLICK, various
normalization routines and different kind of visualization tools like the red-
green matrix, similarity data matrix and some designed by mebased on

174 Curriculum Vitae

sammon mapping and other heuristics. Particular emphasis was laid to make
it reasonably fast, even for large biological data-sets. This software later
evolved into EXPANDER (EXpression Analyzer and DisplayER), a tool
for the analysis of gene expression data. Currently, it has more than5,500
downloads and 50 citations.

