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3AbstratWe disuss how to ompute and implement three geometri problems dealing with non-linear three-dimensional surfaes. As a main tool we rely on planar subdivisions induedby algebrai urves, developed in Cgal (Computational Geometry Algorithm Library).First, we ahieve lower envelopes of quadris using Cgal's Envelope_3 pakage. Seond,we extend Cgal's Arrangement_2 pakage to support two-dimensional arrangements on aparametri referene surfae. Two main examples are disussed: Arrangements indued byalgebrai surfaes on an ellipti quadri and on a ring Dupin ylide. Third, we deompose aset of quadris or a set of algebrai surfaes into ells using projetion. Our goal is to ahievetopologial information for the surfaes, while preserving their geometri properties. Wemaintain a speial two-dimensional arrangement; the lifting to the third dimension bene�tsfrom the reently presented bitstream Desartes method. The obtained ell deompositionsupports a set of other geometri appliations on surfaes.Our implementations follow the geometri programming paradigm. That is, we splitombinatorial tasks from geometri operations by generi programming tehniques. It isalso ensured that eah geometri prediate returns the mathematially orret result, evenif it internally exploits approximative methods to speed up the omputation.The thesis is written in English.
ZusammenfassungWir besprehen die Berehnung und Implementierung dreier Probleme aus der algorith-mishen Geometrie, deren Eingabe aus gekrümmten Ober�ähen besteht. Als Werkzeugbenutzen wir in Cgal (Computational Geometry Algorithm Library) entwikelte Zerle-gungen der Ebene durh algebraishe Kurven.Zunähst berehnen wir die untere Einhüllende einer Menge von Quadriken. Danaherweitern wir Cgals Arrangement_2Paket, so dass zweidimensionale Zerlegungen auf para-meterisierbaren Ober�ähen berehnet werden können, und führen zwei konkrete Beispieleaus: Zerlegungen induziert durh algebraishe Ober�ähen auf einer Quadrik und auf ei-nem ringförmigen Zykliden nah Dupin. Zum Abshluss unterteilen wir eine Menge vonQuadriken bzw. algebraishen Ober�ähen in disjunkte Untermannigfaltigkeiten mit Hilfeeiner Projektion. Die Hebung erfolgt mit einem kürzlih vorgestellten approximativen Ver-fahren zur Nullstellenisolation (bitstream Desartes). Ingesamt erhalten wir geometrisheEigenshaften der Eingabe und erfahren mehr über deren topologishe Zusammensetzung.Die kombinatorishe Ausgabe hilft bei der Berehnung anderer geometrisher Problemeauf den Ober�ähen.Unsere Implementierungen trennen kombinatorishe Aufgaben von geometrishen durhAnwenden von generishen Programmiertehniken. Wir stellen auÿerdem siher, dass Prä-dikate stets das mathematish korrekte Ergebnis ausgeben, auh wenn sie intern mit ap-proximativen Methoden rehnen.Die Arbeit ist in englisher Sprahe verfasst.
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13The world is not linear.

1IntrodutionGeometry is one of the oldest sienes on earth. Several thousand years ago, people hadalready disovered priniples about lengths, angles, areas, and volumes. Progress in under-standing geometry was mainly driven by pratial needs required in some rafts: surveyingthe earth to reate maps (e. g., to demarate ownership), astronomy, and, of ourse, on-strutions of buildings and other infrastruture. More generally, geometry1 is a sub�eldof mathematis that deals with the shapes of objets, their sizes and relative positions,and with the properties of spae. Eulid presented fundamental axioms of geometry in hisbooks. The �eld is also strongly oupled with numbers that represent geometri entities,suh as lengths and areas, and also oordinate systems that were introdued by Desartes.Desartes also observed the onnetion between geometri objets and their algebrai de-sriptions. Atually, the �eld of algebrai geometry, whih de�nes objets by polynomialequations, is a large and important sub�eld on its own. In partiular, its low-dimensionalvariant for real spaes are ritial for many reent appliations in the world of surveying,motion planning, and onstrution. In these latter areas, the fous is on urved objets,that is, objets de�ned by non-linear equations, suh as irles, spheres, ones, tori, andmany others. Even the earth itself is an ellipsoid.2 Dealing with suh urved objets isoften not solely for artisti purpose. In ontrast, urved objets are essential for spei�design goals. For instane, ar and plane manufaturers try to redue the air drag oef-�ient that saves fuel, or loudspeakers have a urved hassis to avoid undesired aoustire�etions. Fields like omputer-aided geometri design (CAGD), robotis, or moleularbiology an model their problems with algebrai equations, whih provide aurate teh-niques. Indeed, auray is a entral goal in geometry as a slight displaement of an objetmay result in a ompletely di�erent ombinatorial relation among the geometri shapes.While the movement of a geometri objet may still be ontinuous, that is, it an be per-formed without jumps, the alignment of the objet with respet to another one might be1Based on Greek words geo for earth and metria for measurement.2Atually, the earth is a geoid whose shape is dependent on the loal gravity. However, the ellipsoidalshape is the state-of-the-art tehnique to model the surfae, for example, for geographi informationsystems.



14 Introdutionnon-ontinuous. An example is the relative position of a point and an in�nite line in theplane; see Figure 1.1. While moving the point, it an be uniquely determined whether
Figure 1.1. Non-ontinuous funtion for red point and blue (oriented) line: It is eitherto the left of the line, on it, or to its right.the point meets the line or on whih of the two sides of the line it resides. The point'sontinuous movement is mapped to a three-valued status. Another example is illustratedin Figure 1.2. We see segments interseting at a ommon point. Notie that the piturealso visualizes their ombinatorial relation: It indues a graph whose nodes are endpointsof segments and their intersetions. An edge is added between two nodes if they are on-neted by a piee of an input segment. If we slightly move one of the segments, as, forinstane, in Figure 1.2 (b), the graph hanges dramatially:Figure 1.2. Geometry indues ombinatoris
(a) Three segments interset in asingle point. The indued graphhas 7 nodes and 6 edges. (b) A slight hange in the geome-try an have muh impat on thestruture of the graph: It now has9 nodes and 9 edges.The number of nodes inreases, and a non-empty bounded area surrounded and de-�ned by segments (shaded) appears. Note that the existene of this area an also bemodelled as a non-ontinuous funtion in terms of the position of the segments. Thus, weemphasize that in our de�nition of geometry, dealing with geometri objets also involvesanalyzing their ombinatorial struture. The struture is determined by evaluations of anumber of non-ontinuous funtions � that we also all prediates. This, indeed, opensan algorithmi way to takle geometri problems.While dealing with non-ontinuous funtions poses no problem in theory, the �eld ofgeometri omputing strives for an atual and robust algorithmi handling of geometriproblems on a omputer. Doing so e�iently is also one of its important objetives. Ex-amples are to ompute onvex hulls and Voronoi diagrams, to reonstrut surfaes from a



1.1. Our ontributions 15point loud, or to ompute the partitioning of a spae indued by geometri objets as inthe reent example. Usually, eah suh task an be solved by a ombinatorial algorithmwhose exeution path is determined by geometri onstrutions and, as mentioned, eval-uations of non-ontinuous funtions. A entral goal is to guarantee the termination andthe orretness of the output. This goal an be ahieved if two priniples are ful�lled:First, the algorithmi design is guaranteed to deal with all possible ases. That is, it alsohandles so-alled degeneraies. Seond, the evaluations of non-ontinuous funtions haveto ompute the orret values. If these goals annot be ful�lled, a geometri omputationan quikly rash, loop forever, or simply produe inorret results. It typially requiresextraordinary e�ort to meet the seond requirement on a omputer. The reason is that, asmentioned, numbers play a key role in geometry, but standard hardware that arries outarithmeti represents only �nite sets of (solely the rational) numbers.It is no seret that both problems have been suessfully takled, even in software,when omputing geometri problems with linear objets, suh as line segments. Startingin the 1990s, researhers have been providing more and more robust implementations forvarious geometri tasks. Main examples of libraries olleting suh software are Leda,the Library of E�ient Data strutures and Algorithms, and Cgal, the ComputationalGeometry Algorithms Library. It is exiting that their implementations are highly e�ientand even ompetitive with non-robust software.3 However, there are also urved objets,espeially the mentioned ones that are de�ned algebraially. In three-dimensional spae,they are formed by the vanishing sets of uni-, bi-, and trivariate polynomials. Suh beamemore popular reently in several domains: Computer graphis, omputer aided geometridesign, motion planning, and robotis. One way to approah suh issues is to approxi-mate eah objet with a orresponding set of linear objets, for example, onneted linesegments for urves, or triangular meshes for surfaes. But approximation implies draw-baks. First, it is hard to ensure that the funtion evaluations on approximations re�etthe exat version and thus subsequent omputations atually output the orret answers.Seond, the number of linear objets required to reah this stage might be very large, ifpossible at all. This may lead to an ine�ient approah. On the other hand, it mightbe advantageous to diretly deal with urved objets, that is, non-linear algebrai ones� although this objetive is highly ambitious. Exploiting generi and symboli omputeralgebra systems seems to be the alternative. Cylindrial algebrai deomposition (ad) isperhaps the most famous example. Unfortunately, suh systems usually have extremelylong running times. However, in reent years, omputational geometers have developedrobust and e�ient software for urved objets, too. This work fousses on geometri andtopologial properties. The key to suess is to abstrat ombinatorial tasks from simpleprediates, and to replae their ostly symboli evaluations with approximative but erti-�ed omputations as muh as possible. But up to now, most work of that kind has beenrestrited to urves embedded in the plane.1.1. Our ontributionsThe main ontents of this thesis are exatly ut from the same loth. We aim for robust ande�ient software for geometri problems, but in �2.5 dimensions�. The fration indiates,3If the non-robust version omputes �by aident� the orret result�in other ases, a omparison isnot meaningful.



16 Introdutionthat the input is usually a set of surfaes in three-dimensional spae, but either the outputis two-dimensional, or we redue the problem to a two-dimensional one in order to omputethe desired three-dimensional output. In partiular, we deal with the following hallenges.Eah is a geometri problem whose input onsists of surfaes in R3:(a) Construt lower envelopes of quadris(b) Construt and maintain arrangements on two-dimensional parametri surfaes() Stratify algebrai surfaes using planar arrangementsFigure 1.3. Examples of our ontributions
(a) Lower envelopeof three quadris (b) Arrangement on atorus indued by tenquadris () Deompose set ofsurfaes into �nitelymany lifted ells (andompute adjaenies)taken from presentation of [BKS08℄Eah of the main hapters is dediated to one hallenge. It turns out that the on-strution of two-dimensional arrangements is a fundamental and essential tool for eah.For this purpose, we rely on Cgal's matured Arrangement_2 pakage developed by DanHalperin's group at Tel-Aviv University with main ontributions by Ron Wein and E�Fogel. The problems we disuss mainly utilize this pakage, while (b) desribes its newgeneralization that we ompleted in ollaboration with olleagues at Tel-Aviv University.For eah hallenge, we show its relation to two-dimensional arrangements, and we alsoidentify whih problem spei� adaptations are required.Computing lower envelopes of surfaes also exploits Cgal's generi Envelope_3 pak-age. In a remarkable amount of engineering work, Mihal Meyerovith from Tel-AvivUniversity extended planar arrangements to provide this enhanement. In order to sup-port a ertain family of surfaes, the implementation expets a ertain set of geometritypes, prediates, and onstrutions. In ollaboration with Mihal, we provide a properand runtime-e�ient set for the ase of quadris.For the other two hallenges we develop new ombinatorial frameworks that deouplegeneri issues from surfae-spei� tasks. We also instantiate them with onrete imple-mentations. That is, we learn how to ompute arrangements on an ellipti quadri or aring Dupin ylide (a generalization of a torus), both indued by algebrai surfaes in-terseting the referene surfae. The latter is joint work with Mihael Kerber from theMax-Plank-Institut für Informatik. For the strati�ation of surfaes, we provide the re-quired geometri operations for quadris and for algebrai surfaes of any degree. Theseresults are based on joint work with Mihael Kerber and Mihael Sagralo�.



1.2. Related work 17Besides two-dimensional arrangements, our three main objetives fundamentally relyon a two-dimensional algebrai urve kernel that provides exat analysis of planar algebraiurves and pairs of suh urves. An important instane of suh a kernel has mainly beendeveloped and is maintained by Mihael Kerber. As our various implementations mostlyperform ombinatoris on suh planar analyses, it is no surprise that the �nal performanemeasures we observe strongly depend on the e�ieny of the supporting two-dimensionalalgebrai kernel.We remark that hallenge (b) and () onstitute major building bloks towards three-dimensional arrangements of algebrai surfaes, or at least possibilities to support them.While we deompose the input into zero-, one-, and two-dimensional ells, we are not ableyet to ombine them into a oherent data struture that ombinatorially represents theindued partitioning of the spae, inluding (maximal) onneted three-dimensional ells.The obtained aurate topologial and geometri information of algebrai objets is ruialfor other interesting utilizations, suh as omputing substrutures, good visualizations, andfor meaningful approximations by simpler objets (as triangles or splines).Finally, it should be mentioned, that our ahieved results math goals reorded in 2004as part of a strategy report of the Exaus projet [Exa04℄. This projet started in 2001at the Max-Plank-Institut für Informatik in Saarbrüken, aiming for robust, e�ient, andomplete software for non-linear urves and surfaes. Main parts of our software are nowontained in Cgal, as Exaus is absorbed in Cgal.1.2. Related workImplementing robust and e�ient algorithms for non-linear problems in omputationalgeometry has reeived a lot of attention in reent years, espeially for algebraially de�nedobjets. A fundamental problem is the (real) root isolation of a univariate polynomialthat is often a key substep for more sophistiated algorithms. Several tehniques exist,eah having advantages and disadvantages. Real root solving using ontinued frationshas been onsidered in [TE08℄. A method relying on Desartes' rule of signs with optimalmemory onsumption and using multipreision interval arithmeti is presented in [RZ03℄.Its adaptation into a Cgal-like interfae is shown in [LPT08℄. Completely implemented inCgal are two real root solvers, both based on Desartes's rule of sign [HL07℄. While onedeals with an exat representation of the oe�ients, the other interfaes them as possiblyin�nite bitstreams. This allows one to isolate real roots of polynomials whose oe�ientsare algebrai or even transendental [EKK+05℄. A omparison of di�erent approahes isonduted in [EHK+08℄.In two dimensions, the prominent example is the exat omputation of arrangement in-dued by urved objets. A key ontribution in terms of software is Cgal's Arrangement_2pakage developed by Dan Halperin's group at Tel-Aviv University [WFZH07a℄. Besidesbasi linear objets ontained in the pakage and Cgal's kernels, there exists support forvarious families of urves (and ars of them): Pion and Teillaud give a irular kernel thatenables the omputation of arrangements of irles and line segments [PT07℄. The samegoal is aimed at by work of Wein and Zukerman [WZ06℄. Wein also presented how to om-pute arrangements of onis [Wei02℄. In ooperation with Hanniel he developed an exatimplementation that allows to ompute arrangements of Bézier urves [HW07℄. There isalso a joint initiative to develop an �open urved kernel� [EKP+04℄.



18 IntrodutionIn parallel, the members of the Exaus projet also derived robust and e�ient algo-rithms (as software) to ompute arrangements of non-linear urves and the orrespondingars of these urves. Berberih et al. developed the ConiX library. It allows one to onsider(ars of) oni urves and polygons bordered by suh urves [BEH+02℄. Besides proper sup-port for Cgal's Arrangement_2 pakage, it has been shown how to extend Leda's sweepline algorithm, whih originally dealt only with line segments, to urved input. Later,Eigenwillig et al. extended the set with ubi urves in the CubiX library [EKSW06℄. Re-ently, Kerber et al. have been able to robustly implement the analyses of algebrai urvesof any degree [EKW07℄, [EK08a℄, whih allows to ompute arrangements of them using aframework that interfaes the analyses into geometri prediates and onstrutions [BE08℄.The Arrangement_2 pakage itself is augmented with various interesting extensions, suhas observers that get noti�ed about strutural hanges of an arrangement, the possibility tooverlay two arrangements, or various point loation strategies; see [WFZH07b℄. In addition,it is possible to ompute lower envelopes of them [Wei07a℄ or to perform regularized booleanset operations [FWZH07℄. More details on planar arrangements appear in �2.4. Theyare also utilized in Cgal's Envelope_3 pakage by Meyerovith that allows to ompute(lower) envelopes of surfaes de�ned in three-dimensional spae; see [Mey06a℄, [Mey06b℄,and [MWZ07℄. Her implementation applies a randomized divide-and-onquer-strategy andmakes use of (dis)ontinuity information of the surfaes and their intersetions. Note thatthe problem is two-and-a-half-dimensional: The input onsists of objets in R3, while theoutput deomposes a two-dimensional spae.When inreasing the dimension from two to three, we are also aware of related results.First, we mention Esolid, a boundary evaluation system by Keyser et al. [KCF+04℄.It an deal with low-degree urved solids (suh as quadris). However, it requires thatsolids be in general position. Namely, it is not able to handle all degeneraies. Addi-tionally, there exist three main speialized approahes for quadris. The �rst sweeps aplane through the sene of quadris, maintaining a pseudo-trapezoidal deomposition onthe plane. This approah is due to Mourrain et al. [MTT05℄; however, an implementationis missing. The seond tehnique uses a parameterization of the intersetion urves byDupont et al. [DLLP08a, DLLP08b, DLLP08℄, whih is based on Levin's result [Lev79℄.It has been used to suessfully onstrut the adjaeny graph of quadris [DHPS07℄. Thethird approah by Berberih et al. [BHK+05℄ omputes for a given referene quadri twoplanar arrangements, one for its lower part and one for its upper part. In ombination,these arrangements enode the arrangement that is indued by other quadris intersetingthe referene surfae. While these approahes do not fully ompute a three-dimensionalarrangement, Cgal provides the Nef_3 pakage whih is a omplete, robust, and e�ientimplementation for three-dimensional Nef-Polyhedra [HK07b℄, [HKM07℄. A d-dimensionalNef-polyhedron is a point set P ⊂ Rd generated from a �nite number of open halfspaes byset omplement and set intersetion operations [Nef78℄. Union and (symmetri) di�erenean be redued to intersetion and omplement. The topologial operations boundary, in-terior, exterior, losure, and regularization an also be modelled with Nef-polyhedra. Thepakage is restrited to linear features.This ompiled list of results omprises general results obtained in the omputationalgeometry's subarea of robust realizations for (non-linear) geometri problems. Further re-sults spei� to one of our three problems are postponed to the individual related hapters.There, we �rst introdue the problems themselves in more details.



1.3. Outline 191.3. OutlineBut �rst, in Chapter 2, we give a omprehensive review of onepts and tools requiredthroughout this thesis. This inludes an introdution to algebrai foundations, a guide forimplementing robust geometri algorithms, the presentation of available arithmeti andalgebrai tools, and �nally a detailed disussion of planar arrangements, as they are theonneting entity of the main hapters.Chapter 3 starts with a short introdution to (lower) envelopes and also remembershow to robustly ompute intersetion urves indued on a quadri. In its main setion wedisuss how to obtain required geometri types and prediates in order to ompute lowerenvelopes of quadris. The hapter loses with experimental results and some variants.Thereafter, in Chapter 4, we present an extension to Cgal's Arrangement_2 pakagethat allows to onstrut and maintain arrangements on two-dimensional orientable para-metri surfaes. The hapter is organized as follows. We �rst introdue the setting followedby a disussion of existing work. We then show in individual steps how we augment al-gorithms and implementations for planar arrangements to �nally support arrangementson parametri surfaes. To do so, we abstrat surfae- and urve-spei� geometri andtopologial tasks from generi funtionality. As a �rst step we show how to obtain aunique order of events on the surfae, even if some points have multiple pre-images inthe parameter spae of the surfae. As seond step, we show how a new olletion ofsimple surfae-spei� funtions an be used to onsistently onstrut the Del (double-onneted-edge-list) that represents the indued arrangement. At the end of the hapterwe desribe two example surfaes in detail. We onsider arrangements on ellipti quadrisindued by other quadris, and arrangements on ring Dupin ylides (ontaining the torusas speial ase) that are indued by the intersetion with algebrai surfaes of arbitrarydegree. We show that the geometri operations an be established by mostly ombinatorialreombinations of operations atually designed for algebrai plane urves. We onludethe hapter with an outlook for future diretions.In Chapter 5 we show how to stratify a set of algebrai surfaes. We �rst abstratlyidentify required tasks, and introdue a deomposition of the given surfaes into ells.We then show that algebrai surfaes serve these needs. Our atual implementation issplit into two parts. The ombinatoris are handled by a framework that de�nes a set oftasks demanded by surfaes. We are able to implement these tasks for algebrai surfaesof arbitrary degree, and a speialized version for quadris that exploits their low degree.We �nally show utilizations that an be implemented in terms of the ahieved output.Results of experiments are reported before we onlude the hapter with diretions forfuture progress and researh.
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2Algebrai FoundationsGeometri ProgrammingArrangementsThe main parts of this thesis over the area of urved geometry, that is, it deals withobjets beyond segments, triangles, planes, even beyond spheres. The role of this hapteris to equip the reader with basi terminology and fundamental information on the objets,basi tools and data strutures we deal with in later hapters, namely with and towardsarrangements of algebrai objets in two and three dimensions.The geometri objets we want to handle are de�ned algebraially. They form a lassof non-linear input, while their partiularities pop up interesting ases to onsider. �2.1introdues very basi algebrai notation and main tools, like polynomials, sequenes ofthem, their roots, and how to isolate real roots. In �2.1.4 we turn towards algebraiurves, while �2.1.5 overs algebrai surfaes. Both are de�ned by multivariate polynomials.A general ansatz for dealing with arbitrary polynomials in any dimension (atually forquanti�er elimination) is the ylindrial algebrai deomposition that we present in �2.1.6.We lose the theoretial introdution by some terms of topology in �2.1.7.Implementing geometri algorithms is a highly non-trivial task, espeially if the inputonsists of urved objets. As we are not only interested in theoretial algorithm design,but also aim for a state-of-the-art implementation of our algorithms, �2.2 surveys ourringdi�ulties, introdues the geometri programming paradigm, and presents the geometrilibraries Cgal and Exaus.The development of geometri software from srath is not neessary. A large numberof tools are available. �2.3 showases the kit we use. It onsists of number types, �ltertehniques and algebrai kernels. Suh kernels exist for the one- and the two-dimensionalase. We also give details on the interfae of a speial real root isolator.We lose the hapter with an introdution to a basi but very fundamental struturein omputational geometry in its own setion, namely the arrangement. Arrangementsan be de�ned in any dimension, however in �2.4 we fous on the ases where d = 3 and



22 Algebrai Foundations, Geometri Programming, Arrangementsfor d = 2. Throughout the thesis, two-dimensional arrangements form the main build-ing blok. Thus, we shortly repeat how to onstrut and maintain planar arrangements,followed by details of two-dimensional planar arrangements in Cgal. We �nally presentin �2.4.4 a generi lass that queries a so-alled two-dimensional algebrai kernel withanalysis (see �2.3.3) in order to provide basi geometri types and operations required forCgal's Arrangement_2 pakage. Depending on the algebrai kernel this triple enables auser to ompute arrangements of algebrai urves.2.1. Algebrai foundationsA lot of geometri objets, even the very simple ones, are usually (pieewise) de�ned by(semi-)algebrai sets. In partiular, all objets we are dealing with in the main haptersare algebraially de�ned. Thus, we sketh entral algebrai onepts and onsiderationswhih should already be known to an experiened reader. Most of this ontent is basiand previously appears in standard textbooks like [vdW71℄, [Lan02℄, [Bos06℄, [CLO97℄,[CLO05℄, or the omprehensive overview in [MPS+℄. This also implies that the tools weintrodue are well-known and proven, suh that we are less omprehensive than any of thegiven referenes. We refer to them for very basi onepts, generalizations of the resultsthat we state, and the proofs. In ontrast, we try to formulate the tools as algorithmiallyas possible, as our ultimate goal is also to provide a working implementation. It is above allChapter 5 for whih we unreel some of the theory. The other hapters rely on ombinatorialinformation of algebrai urves by properly querying analyses provided by algebrai kernels.2.1.1. PolynomialsThe key expressions in our ompiled list of algebrai onepts are polynomials.De�nition 2.1 (Polynomial). Let D be a fatorial domain. An expression of the form
f =

n∑

i=0

ait
i ∈ D[t]is a polynomial over D with oe�ients an 6= 0, an−1, . . . , a0 ∈ D. We may regard variable tas a formal symbol of indeterminate meaning. D[t] denotes the ring of polynomials withoe�ients in D.Properties of polynomials We start with very tehnial terms for a given polynomial f .The degree of f , denoted by deg(f) is the greatest non-vanishing power of t, whih is nas we have an 6= 0. If f ≡ 0, deg(f) = −∞. Another expression for the i-th oe�ient aiis coef i(f). We all an the leading oe�ient of f and denote it lcf(f) = coefn(f). With

f(k) :=
∑k

i=0 ait
i we denote the k-th redutum of f .With K we denote a �eld that ontains D. We usually refer to K = Q or K = C whihis already algebraially losed. We use the fration �eld K = Q(u1, . . . , uk) if the problemsdepends on parameters u1, . . . , uk. Remember that D = Z (or D being a �eld) is fatorial,that is, 0 6= r ∈ D an be deomposed (up to order) into r = u · r1 · . . . · rℓ with u being aunit, ri ∈ D, and all irreduible in D. Following Gauss' theorem ([Bos06, �2.7℄), it holds

D[t] is also fatorial, whih has several impliations.



2.1. Algebrai foundations 23First, for ai, aj ∈ K, the gcd(ai, aj) exists and is well-de�ned, and so for f, g ∈ K[t].The ontent of f is the gcd of the oe�ients, that is, cont(f) = gcd(a1, . . . , an). We referto a primitive polynomial if cont(f) = 1, and to the primitive part of f for pp(f) := f
cont(f) .A polynomial g ∈ K[t] is a fator of f if there exists a polynomial h ∈ K[t] with f = g ·h.Contrary, two polynomials f, g ∈ K[t] are alled oprime if gcd(f, g) is a onstant. We analso de�ne the fatorization of f ∈ K[t] (deg(f) > 0) by f = u ·Πn

i=1fi with u = lcf(f)and fi being moni irreduible elements of K[t] with positive degree. We all f square-freeif all fi are distint. For a square-free f it holds that gcd(f, f ′) is a onstant. On theontrary, the square-free part f⋆ of f an be obtained by f⋆ = f
gcd(f,f ′) . Alternatively, onean also ompute a �ner granulation of f into square-free fators f̂j. We group the fi bytheir number of ourrenes whih results in a square-free fatorization f = u ·Πk

j=1f̂
j
j ,that is, f̂j ∈ K[t] ontains all fi that appear j times in the fatorization of f . It is obviousthat k ≤ n. Yun's square-free fatorization algorithm leverly ombines iterated gcds toompute suh f̂j; see [GCL92, Algorithm 8.2℄ and [Yun76℄ for details. For our purposesthe weaker onept of the square-free fatorization ful�lls the needs.Roots of polynomialsDe�nition 2.2 (Root). Let f(t) ∈ D[t] be a polynomial. We all an element α with

f(α) = 0 a root of f .Usually, the roots of f are not neessarily elements of D. We mostly refer to the realroots of a polynomial. Swithing to the algebrai losure C of D allows to write f , with
deg(f) = n, as a produt of linear fators

f(t) = u ·Πn
i=1(t− αi)with u being the leading oe�ient of f and αi being the not neessarily distint roots of

f over C, whose number is n.De�nition 2.3 (Multipliity). Let f(t) ∈ D[t] be a polynomial with root α ∈ C. Thenumber of linear fators (t− α) in f(t) de�nes the multipliity m of α as root of f . Suha root is alled simple if m = 1, and multiple if m > 1. We also refer to the m-fold root
α of f .It an be shown, that a square-free polynomial over D only ontains simple roots, asotherwise, some fator appears twie and thus, eah root of suh a omponent must be amultiple of the polynomial.Multivariate polynomials A polynomial ring D[t] an serve as a domain again. This strat-egy yields to multivariate polynomials whose ring is given by D[t1] . . . [td] = D[t1, . . . , td].The order of adjuntion an be hosen freely. Two views on a multivariate polynomial fare ommon.Hierarhial: f is univariate in a hosen outermost variable, say td, that is, f ∈ D[td]with D = D[t1, . . . , td−1].Flat: f is expressed as a sum of monomials ai1,...,idt

i1
1 , . . . , tidd .



24 Algebrai Foundations, Geometri Programming, ArrangementsThe total degree degtotal(f) of f is the highest sum of exponents i1 + . . .+ id among allmonomials in the �at view. The value degti is equal to deg(f) assuming f being univariatein ti. A multivariate polynomial f ∈ D[t1, . . . , td] is ti-regular if it ontains a monomial ofthe form c · tdegtotal(f)
i with 0 6= c ∈ D, whih is equivalent to degtotal(f) = degti(f).In the hierarhial view, we an deompose a multivariate f ∈ D[t1, . . . , td] into f =

conttd(f) ·pptd
(f), where conttd(f) ∈ D[t1, . . . , td−1] and pptd

(f) ∈ (D[t1, . . . , td−1])[td].We all a multivariate polynomial f square-free if conttd(f) and pptd(f), seen as univariatepolynomials in td, are square-free. Mind a possible reursion for conttd(f). f being square-free is equivalent to gcd(f, f ′) = c and also equivalent to: There is no non-trivial g ∈
D[t1, . . . , td] with g2|f . Computing a square-free fatorization of f redues to ompute onefor conttd(f), one for pptd

(f), and to multiply fators of same multipliity. The later stepis often omitted as conttd(f) has interesting properties with respet to the vanishing set of
f that we introdue in De�nition 2.4 and used in �2.1.4 (page 38 �) and �2.1.5 (page 42 �).For numbers α = (α1, . . . , αd) ∈ Kd we an evaluate f either in full whih resultsin a salar s ∈ K, or with a subvetor of α, whih gives another polynomial over a ringdependent on the domain of the αi. Atually, arbitrary evaluation is not expeted often,but the following set of homomorphisms is of interest. For a �xed k: D[t1, . . . , td] →
Kd−k. Let α(k) be a sequene (vetor) of k numbers (α1, . . . , αk) from a �eld K and
fα(k) := f(α1, . . . , αk, tk+1, . . . , td) ∈ K[tk+1, . . . , td], that is, evaluating the d-dimensionalpolynomial f with k ≤ d numbers αi results in a (d− k)-dimensional polynomial over K.We often have k = d− 1, whih eventually leads to a univariate polynomial ∈ K[td].De�nition 2.4 (Vanishing set). Let f(t1, . . . , td) ∈ D[t1, . . . , td] be a polynomial and K bea �eld. We all VK(f) := {α(d) ∈ Kd | fα(d) = f(α1, . . . , αd) = 0} the vanishing set of fover Kd.The following proposition is essential for us and also easy to verify.Proposition 2.5. Let f ∈ K[t1, . . . , td] with f = f1 · f2 and f1, f2 ∈ K[t1, . . . , td]. Then
VK(f) = VK(f1) ∪ VK(f2). Diret impliations are VK(f) = VK(c · f), with 0 6= c ∈ K,
VK(f) = VK(fk

1 f ℓ
2), with k, l ∈ N, and if f1|f , then VK(f1) ⊂ VK(f) (similar for f2).Our geometri appliations mainly strive for objets de�ned by the vanishing sets of(simple) integral polynomials in dimensions 1, 2 and 3 over R. However, as D = Z the gcdand the square-free fatorization are only de�nable up to onstant fator. That is, it ispossible to ompute for f, g ∈ Z[t] a polynomial g = c · gcd(f, g), with c ∈ Z (and similarfor the other deompositions). The good news is, that, as stated in Proposition 2.5, suha onstant fator does not hange the vanishing sets of the resulting polynomials in whihwe are mainly interested in subsequent parts; see �2.1.2 for real roots, �2.1.4 for algebraiurves, and �2.1.5 for algebrai surfaes.Polynomial sequenes We next turn to more sophistiated algebrai tools, namely sub-resultant and Sturm-Habiht sequenes. They are well-studied in algebrai geometry, suhthat we omit to unreel the full theoretial onsiderations, and refer to textbooks disussingthem in detail. We narrow their introdution to mention their existene and give resultsrelevant for our further onsiderations.De�nition 2.6 (Sylvester matrix, subresultant and sequenes). Given f =

∑n
i=0 ait

i ∈



2.1. Algebrai foundations 25
D[t] and g =

∑m
i=0 bit

i ∈ D[t] with n = deg(f) ≥ deg(g) = m > 0.
• For k ≤ m, the k-th Sylvester submatrix has dimension (m + n− 2k)× (m + n− k),build with (m− k) rows of oe�ients of f and (n − k) rows of oe�ients of g. Ithas the following form:

Sylk(f, g) =





an · · · · · · a0. . . . . .
an · · · · · · a0

bm · · · · · · b0. . . . . .
bm · · · · · · b0



These matries our when asking for (non)-zero polynomials u, v with deg(u) <
m − k and deg(v) < n − k and ful�lling uf + vg = 0. It orresponds to the linearsystem of equations (u, v)Sylk(f, g) = 0, where u and v are identi�ed with theiroe�ient vetor.

• For 0 ≤ k ≤ n, the k-th subresultant of f and g is de�ned as
Sresk(f, g) :=






∑k
i=0 Mk

i (f, g)ti k ≤ m− 1

g k = m

0 m + 1 ≤ k < 1

f k = nwhere Mk
i (f, g) is the determinant of the matrix build with the �rst n + m− 2k− 1and the (n + m− k − i)th olumn of Sylk(f, g).4

• The k-th prinipal subresultant oe�ient, 0 ≤ k ≤ n, is given by
sresk(f, g) :=

{
coefk(Sresk(f, g)) 0 ≤ k < n

1 k = n

• The k-th oprinipal subresultant oe�ient, 1 ≤ k ≤ n, is given by coresk(f, g) :=
coefk−1(Sresk(f, g)).

• The subresultant sequene of f and g is given by Sresn(f, g), . . . ,Sres0(f, g). Similarsequenes exists of sres and cores.
• It holds Sres0(f, g) = sres0(f, g) =: Res(f, g), where Res(f, g) states the resultant of

f and g. If g = f ′, then we all Res(f, f ′) the disriminant of f .
• We also write Restd(f, g), whih espeially makes sense, if D itself is a polynomial ring,that is, we onsider f and g as univariate polynomials in some td, whose oe�ientsan be themselves polynomials in other variables. Similar for Srestd,k, srestd,k, and

corestd,k.4This de�nition of the subresultant is di�erent from the standard literature (e. g., [BPR06℄). It ispresented in [Ker06℄.



26 Algebrai Foundations, Geometri Programming, ArrangementsWe next state without proofs results relevant for our work, where f and g are polyno-mials as in De�nition 2.6.Proposition 2.7. The resultant Res(f, g) ∈ K is zero if and only if f and g have a non-onstant ommon fator, that is, for h = gcd(f, g), it holds deg(h) > 0.If K = C, Res(f, g) = 0 holds if and only if f and g have a ommon omplex root.For details on this proposition we refer to [Ber04, Proposition 2.1.14℄. Observe, thatin any ase it holds Res(f, g) ∈ K. Thus, the omplexity of the problem has been re-dued with respet to dimensionality. On the other hand, Res(f, g) is an expression ofomplexity O(m ·n). In partiular, if Res(f, g) is a polynomial again: Consider, for exam-ple, Rest2(f, g) ∈ D[t1]. Then, it holds degt1(Rest2(f, g)) = n ·m (with n = degt2(f) and
m = degt2(g)).For the ase that f, g ∈ K[t1, . . . , td], elimination theory paves a way to ompute azero-dimensional solution for f = g = 0 by redution of dimension. We �rst omputea partial solution α1, . . . , αd−1 whih is being extended in a seond step by all possi-ble full solutions α1, . . . , αd. It is obvious that the method should be applied reur-sively. The laim is, that the solutions to Restd(f, g) onstitute a set of partial solu-tions that an be extended. However, this is broken if for suh a solution α1, . . . , αd−1,we have that lcftd(f)(α1, . . . , αd−1) = 0 and lcf td(g)(α1, . . . , αd−1) = 0. In this ase,
Restd(f, g)(α1, . . . , αd−1) vanishes ignoring the fat whether α1, . . . , αd−1 is a partial solu-tion or not. The reason is that the �rst olumn of the Sylvester matrix ompletely vanishes.However, Restd(f, g)(α1, . . . , αd−1) = 0 is a neessary ondition for α1, . . . , αd−1 being anextendible partial solution. The problem beomes handy if f or g is td-regular.Proposition 2.8. Let K be a �eld, and let f, g ∈ K[t1, . . . , td] be non-zero polynomials.Furthermore, let f be td-regular. Then, for all (α1, . . . , αd−1) ∈ K

d−1 the two onditions1. Restd(f, g)((α1, . . . , αd−1)) = 02. There is αd ∈ K suh that f(α1, . . . , αd)) = g((α1, . . . , αd)) = 0are equivalent; see also [Ber04, Proposition 2.1.13℄.Cylindrial algebrai deomposition (see �2.1.6 on page 44 f) mainly uses terms intro-dued in De�nition 2.6 and Propositions 2.7 and 2.8 to projet an algebrai problem toan instane of lower dimensionality. In �2.1.4 and �2.3.3 the tehnique is used to analyzealgebrai urves, and in Chapter 5 we also rely on dimension redution to analyze algebraisurfaes.There is a relation of the greatest ommon divisor and the subresultant sequene.Proposition 2.9 ([BPR06, Prop. 10.14, Cor. 10.15℄).
• deg(gcd(f, g)) = min{k ∈ {0, . . . , n} | sresk(f, g) 6= 0}
• Sresk(f, g) ∼ gcd(f, g)(h1 ∼ h2 denotes that either h1 = c ·h2 or c ·h1 = h2, for h1 and h2 polynomials over some

D and c ∈ D.)One an even show, that the subresultant sequenes ontains (up to assoiates) allpolynomials ourring during the Eulidean algorithm to ompute the gcd, but with lessomplexity of the oe�ients [BPR06, � 8.2℄. Proposition 2.9 implies the following twoalgorithms on polynomials.



2.1. Algebrai foundations 27Algorithm 2.1. Computing greatest ommon divisor with subresultantsInput: f, g ∈ K[t] as in De�nition 2.6Output: gcd(f, g) ∈ K[t]
• k ← 0
• While (sign(sresk(f, g)) = 0) Do k ← k + 1
• Return Sresk(f, g)Algorithm 2.2. Computing square-free part of a polynomial using subresultantsInput: f ∈ K[t] as in De�nition 2.6Output: f⋆ ∈ K[t] that ontains eah distint fator of f one.
• Compute h = gcd(f, f ′) with Algorithm 2.1
• Return f/hThe subresultant is robust with respet to ring homomorphisms ϕ : D → D′ that aredegree-preserving for f and g. Then, ∀i : ϕ(Syli(f, g)) = Syli(ϕ(f), ϕ(g)), where ϕ(A)means to apply ϕ to eah entry of A (see, e. g., Algorithm 2.4). As the determinant is justa sum of produts, we have ϕ(det(A)) = det(ϕ(A)), whih proves the following theorem(see also [Yap00, �4.4, Lemma 4.9℄).Theorem 2.10 (Speialization property). Given a homomorphism of domains ϕ : D→ D′,with lcf(f), lcf(g) 6∈ ker(ϕ). Then, for 0 ≤ i ≤ n, ϕ(Sresi(f, g)) = Sresi(ϕ(f), ϕ(g)).There is a main appliation whih explains the name of the theorem. Think of D = D[t]for some basi domain D, that is, D has the parameter t. There is a simple homomorphismto D that speializes t to some value α. Then, instead of Sresi(f |t=α, g|t=α), it is possibleto aess Sresi(f, g)|t=α. Atually, the number of parameters is free, and a homomorphisman speialize all of them, or just a subset.In Algorithm 2.2 we set g = f ′. It is easy to see, that applying this idea in generalto the given sequenes, allows to obtain interesting information on the multiple fators ofa single polynomial f . The Sturm-Habiht sequene, that we introdue next, is anothersequene that derives even more information for suh a f . Atually, the sequene an alsobe de�ned for arbitrary g, from whih we abstain, as we are aiming to only introdue thetools relevant for subsequent hapters.De�nition 2.11 (Sturm-Habiht sequene [GVRLR℄). Given f =

∑n
i=0 ait

i ∈ K[t] with
n = deg(f), and δk := (−1)k(k+1)/2. For k ∈ {0, . . . , n}, the k-th Sturm-Habiht polyno-mial of f is de�ned as

StHan(f) := f

StHan−1(f) := f ′

StHak(f) := δn−k−1Sresk(f, f ′), k = 0, . . . , n− 2We de�ne sthak(f), the k-th prinipal Sturm-Habiht oe�ient of f , as the oe�ientof tk in StHak(f).In [BPR06℄ the Sturm-Habiht sequene is introdued as signed subresultant sequene,whih re�ets that the Sturm-Habiht sequene basially oinides with the subresultant



28 Algebrai Foundations, Geometri Programming, Arrangementssequene, but whose members are possibly multiplied by −1. This slight di�erene has noimpliation on the speialization property. That is, a Sturm-Habiht (oe�ient) sequenestill behaves well under speialization. On the other side, the (possible) multipliationby −1 makes a di�erene, as Sturm-Habiht sequenes allow to ompute the number mof distint real roots of f in a given interval [c, d] without atually atuating a real rootisolator (to be presented in �2.1.2). In fat, that setion desribes an isolator that deisivelyrelies on this information. The theoretial result that allows the ompute m is stated witha full proof in [GVN02℄, while the version in [EKW07℄ is restrited to I = ]−∞,∞[.Instead of the theorem, we give an algorithm.Algorithm 2.3. Computing the number of distint real roots using Sturm-Habiht sequeneInput: f ∈ R[t], with deg(f) = n > 0Output: The number m of distint real roots of f1. Compute the sequene S = s0, . . . , sn with si := sign(sthai(f)). Observe, that
sthai(f) ∈ R.2. m← 03. For eah subsequene S′ = (a, (0)0...k, b) of S with a 6= 0, b 6= 0 and k ≥ 0 Do
• If k even, then m← m + (−1)k/2sign(ab)4. Return mBesides the number of distint real roots, we are also interested in multiple roots.In that diretion, Proposition 2.9 states a fundamental result used in Algorithm 2.1 toompute an important information, namely the degree k of gcd(f, f ′). By the de�nitionsof StHai and sthai, it is easy to see, that Algorithm 2.1 still omputes the orret k, if

sresi is replaed by sthai and Sresi by StHai.Remark. If both m and k are desired, it is reommended to �rst ompute m with Algo-rithm 2.3 and then to reuse the sequene S = s0, . . . , sn in Algorithm 2.1 whih gives kas side-e�et: Namely, when searhing for the minimal k with sthak = 0. A lever om-bination of the two algorithms allows to obtain k with no additional osts on top of theexpenses of Algorithm 2.3.Computing gcd(f, f ′) in the seond part of modi�ed Algorithm 2.1 still needs StHak forthe given k, and omputing f⋆ needs the subsequent division in Algorithm 2.2. However,the ofators of the Sturm-Habiht polynomials already ontain f⋆ [BPR06, Prop. 8.38℄.Proposition 2.12. For j < n, there exist polynomials uj, vj with deg(uj) ≤ n − j − 2,
deg(vj) ≤ n− j − 1 suh that StHaj(f) = ujf + vjf

′.All ofators uj and vj an be written as determinants of Sylvester-like matries. Thesquare-free part f⋆ of f is given by one of the vj's [BPR06, Prop. 10.14, Cor. 10.15℄.Lemma 2.13. If k = deg(gcd(f, f ′)) > 0, then f⋆ = vk−1.



2.1. Algebrai foundations 29Algorithm 2.4. Computing square-free part of a polynomial using Sturm-Habiht sequeneInput: f ∈ K[t] as in De�nition 2.6Output: f⋆ ∈ K[t] that ontains eah distint fator of f one.
• k ← 0
• While (sthak(f, g) = 0) Do k ← k + 1
• Return vk−1 as stated in Lemma 2.13An algorithm to ompute a Sturm-Habiht sequene with ofators is [BPR06, Alg.8.22℄. In addition, it is more e�ient to prefer a polynomial remainder sequene [Loo82a℄than omputing the Sturm-Habiht sequene via determinantal expressions.Subresultant and Sturm-Habiht sequenes in ombination with their speializationproperty are key tools when analyzing algebrai objets of higher degree. We present fur-ther basis on this in �2.1.2, while �2.1.4 introdues algebrai urves and �2.1.4 algebraisurfaes. Chapter 5 presents how to analyze algebrai surfaes in the spirit as previouslydone for algebrai urves [EKW07℄,[EK08a℄. Both ases still require some exat omputa-tions, that is, launhing algorithms that we presented in this setion.2.1.2. Algebrai numbers and real root isolationDe�nition 2.14 ((Real) algebrai number). Let K be a �eld, and f(t) ∈ K[t]. We all anelement α with f(α) = 0, an algebrai number over K. It is alled real algebrai numberif α ∈ R. If f is irreduible over K (i. e., f annot be expressed in the form f = f1f2, with

f1 6= 1 and f2 6= 1), then we all f the minimal polynomial of α. The other roots α 6= α ofthe minimal polynomial are the onjugates of α. The degree of α is de�ned by the degreeof the minimal polynomial. If f is reduible, there always exists a minimal polynomialthat is a fator of f , and de�nes the degree.In our geometri appliations, we fous on the ase K = R. For proofs, we sometimesalso have to refer to the omplex roots of a polynomial. An important property is, that theroots of polynomial f with algebrai numbers as oe�ients are also algebrai numbers.In the remainder of this part we shortly disuss how to represent (real) algebrai numbers,how to ompare two of them, and how to isolate the real roots of a univariate polynomial.Representation, omparison, evaluationAn algebrai number an be expressed in form of an algebrai expression E formed by adireted ayli graph whose leaves are integers, and whose inner nodes de�ne operations ontheir hildren. Allowed operations are +, −, · , /, k
√, and ⋄. The expression ⋄(j,Ed, . . . , E0)identi�es the 1 ≤ j ≤ d root of the polynomial ∑d

i=0 val(Ei)t
i, where val(E) is the realvalue given by the expression E.5 Eah node knows an interval approximation of the exatvalue de�ned by its subgraph, whih an be re�ned by reursively approximating the valueswith higher preision. An operation is applied by reating a new root node, onneting it tothe graph, and by omputing a �rst approximation. The omparison of two suh numbersis redued to the omputation of the sign of a di�erene. If the approximation interval ofthe di�erene does not ontain zero, the answer is simple. Otherwise, a separation bound5Note that ⋄ atually subsumes all other operations.



30 Algebrai Foundations, Geometri Programming, Arrangementsis omputed, that is, a value E with the property that val(E) 6= 0 ⇒ |val(E)| ≥ E. Thismeans, that an expression E is either zero, or has a minimal absolute value. Thus, theorret sign is ahieved by re�ning the approximation until the absolute values of both endsare smaller (or greater) than E, whih allows to deide the sign. The theory on separationbounds is wide-spreaded. We refer to [LY01℄ and [BFM+01℄ for further reading and to �3.3(page 97 �) where we utilize orresponding number types. For the next representation weneed a term.De�nition 2.15 (Isolating interval). Let f be a univariate polynomial with a root α ∈ R.A losed interval [a, b] ⊂ R ontaining α, but no other root of f , is alled an isolatinginterval for α with respet to f . Containing means that either a = α = b or a < α < b.This setion ontains a brief overview on algorithms that isolate all real roots of apolynomial, while for now, we state without proofs, that for eah real root, there existssuh an isolating interval, whih even an be re�ned to arbitrary small length (if notalready degenerate) in a sequene of nested intervals. Suh an interval is a key ingredientto represent a real algebrai number α over K; see De�nition 2.16. Usually, we have K = Z.Observe that suh a number is also algebrai over Q. So, we restrit to the integral asefor the following de�nition.De�nition 2.16 (Integral interval representation). Let α be a real algebrai number thatis a root of f ∈ Z[t] having an isolating interval I = [a, b]. We all α =̂(f ; I) an (integral)interval representation of α. The representation is simple, if α is a simple root of f .Note that the representation uniquely identi�es the root, though neither the polynomialnor the interval is unique. Arithmeti on this representation is not diretly supported, butalso not desired. Its main purpose is to represent, to re�ne, and to ompare real algebrainumbers. De�nition 2.17 gives a more generi representation for a ertain set of algebrainumbers over K = R. Some of our intended appliations require them.For the interval boundaries, one usually hooses a, b ∈ Q, as Q is dense in R. However,every set that is dense in R is possible. For a simple representation of α =̂(f ; [a, b]), wehave f(a)f(b) < 0. This diretly implies a bisetion method to re�ne I: Namely, I isreplaed by Iℓ = [a, a+b
2 ] or Ir = [a+b

2 , b], depending on the sign of f(a+b
2 ). This strategyallows to re�ne an isolating interval with linear onvergene. An alternative with quadratibehavior is due to Abbot [Abb06℄. Algorithm 2.5 gives a high-level desription of a methodto ompute the order of two suh representations.Algorithm 2.5. Compare two simple interval representationsInput: α1 =̂(f1; I1); α2 =̂(f2; I2), both simpleOutput: Order of α1 and α2

• If I1 and I2 are disjoint, we return the order and are done.
• Compute I = I1 ∩ I2 = [a, b]
• Chek if I is isolating for α1 and α2 by determine the signs of f1(a), f1(b) and

f2(a), f2(b). If not, we re�ne I1 and I2 until they are disjoint, whih gives the order.
• Otherwise, ompute g = gcd(f1, f2) and hek whether g(a) and g(b) have di�erentsigns. If so, I is isolating for a ommon root of f1 and f2, whih gives α1 = α2.
• If not, re�ne I1 and I2 until they are disjoint, whih gives the order.



2.1. Algebrai foundations 31There are subtleties in the re�nement and omparison that must be onsidered, forexample, an ourring zero sign (in some fi(a) or fi(b)). However, we omitted them forsimpliity. A similar algorithm is used to ompute the sign of a polynomial at a giveninterval representation.Algorithm 2.6. Computing sign of a polynomial at simple interval representationInput: g ∈ Z[t], square-free; α =̂(f ; I), simple with f ∈ Z[t]Output: sign(g(α))
• Compute h = gcd(f, g) and hek whether h(a) and h(b) have di�erent signs. If so,return 0.
• Compute J = [c, d] = h(I) with interval arithmeti (see �2.3.1 on page 53).
• If sign(c) = sign(d), return sign(c).
• Otherwise, re�ne I to I ′ and restart with the omputation of a new J .There are further diret representations of real algebrai numbers, like Thom's enod-ing [BPR06℄. However, we do not go into the details. Usually, we make use of the isolatinginterval representation.Remember that the roots of a univariate polynomial with algebrai oe�ients arealgebrai again. One way to obtain suh a polynomial is to evaluate a d-variate polynomialof rational oe�ients with d − 1 algebrai numbers. For example, let α1, α2 be realalgebrai numbers, f ∈ Q[t1, t2], g ∈ Q[t1, t2, t3], then fα1(t2) := f(α1, t2) ∈ R[t2] and

gα1,α2(t3) := g(α1, α2, t3) ∈ R[t3] are suh polynomials. We introdue a more generirepresentation for suh real algebrai numbers over R.De�nition 2.17 (Algebrai interval representation). Let d > 1 be some dimension, f ∈
Z[t1, . . . , td], primitive, and α(d−1) = (α1, . . . , αd−1) ∈ Rd−1, β ∈ R, where α1 is in intervalrepresentation, while αi with i > 1 is reursively de�ned with α(i−1). Remember that
fα(d−1)(td) := f(α1, . . . , αd−1, td) ∈ R[td].If fα(d−1)(β) = 0 and I = [a, b] ⊂ R is isolating for β, we all β =̂(f ;α(d−1); I) analgebrai interval representation (of dimension d) of β. Again, β is simple if it is a simpleroot of fα(d−1) .Additional remarks:
• αi with 1 < i < d is an algebrai interval representation of dimension i at α(i−1),namely αi =̂(fi;α

(i−1); Ii)
• We all the olletion of numbers α(d−1) a base point (of dimension (d−1)) and referto the polynomial of shape fα(d−1)(td) as a lifting polynomial at the base point α(d−1).We should mention that there are methods to onvert an algebrai interval represen-tation into an integral interval representation [Loo82a℄. Although this allows to diretlyapply Algorithms 2.5 and 2.6, we abstain for reasons of e�ieny to deploy this strategy.Instead, we pursue an indiret approah in order to ompare two algebrai intervalrepresentations or to ompute the sign of a polynomial at an algebrai interval represen-tation. In fat, it turns out that the sign determination is key when re�ning isolatingintervals. Reall that iterated re�nements of the isolating intervals su�e to deide theorder of two non-equal numbers. Thus, before explaining how to deide equality for twoalgebrai interval representations, we �rst onsider how to re�ne the interval I of a given

β =̂(f ;α(d−1); I). Below, we present a methods to isolate the real roots of a square-free



32 Algebrai Foundations, Geometri Programming, Arrangementspolynomial based on Desartes' rule of sign. It provide as by-produt a possibility to re�nesuh intervals. The following is more diret, but also holds only if fα(d−1) is square-free: De-ploying the bisetion approah in order to re�ne I redues to ompute three signs, namely
sign(fα(d−1)(r)), where r ∈ {a, a+b

2 , b}. By de�ning gr ∈ Z[t1, . . . , td−1] as the integralizedversion of f(t1, . . . , td−1, r) (mind that integralizing keeps roots and signs), the remainingproblem is to ompute sign(gr(α1, . . . , αd−1). The following algorithm is a reursive versionof Algorithm 2.6 exploiting the fat, that αi depends on α(i−1).Algorithm 2.7. Computing the sign of a polynomial at algebrai interval representationsInput: g ∈ Z[t1, . . . , td]; α(d) = (α1, . . . , αd), forming a sequene of algebrai intervalrepresentations where α1 =̂(f1; I1) and αi =̂(fi;α
(i−1); Ii) for 1 < i ≤ d. Observe that

fi ∈ Z[t1, . . . , ti], and Ii = [ai, bi] ⊂ ROutput: sign(g(α1, . . . , αd))
• Let f := fd. Compute h = gcd(fα(d−1) , gα(d−1)).
• Compute (reursively) the signs of h(ad) and h(bd). If they have di�erent signs,return 0.
• Compute J = [c, d] = h(Id) with interval arithmeti using all Ij , 1 ≤ j ≤ d.
• If sign(c) = sign(d), return sign(c).
• Otherwise, re�ne Id to I ′d and restart with the omputation of a new J .At two positions the reursion takes plae, namely when determining the signs of h(ad)and h(bd), and when re�ning Id to I ′d. In addition, the algorithm makes an assumptionthat we have not yet proposed a solution for. It assumes that gcd(fα(d−1) , gα(d−1)) an beomputed. Theoretially, using the standard Eulidean algorithm, this task does not pose aproblem. However, the demanded operations on suh algebrai oe�ients of large degreeare simply infeasible, in partiular, for arbitrary polynomials. The solution we proposerelies on the fat, that both polynomials fα(d−1) and gα(d−1) are lifting polynomials at thesame base point α(d−1). Algorithm 2.8 enhanes Algorithm 2.1 with the speializationproperty to ompute gcd(fα(d−1) , gα(d−1)).Algorithm 2.8. Computing greatest ommon divisor with speialized subresultantsInput: f, g ∈ Z[t1, . . . , td]; α(d−1) ∈ Rd−1Output: gcd(fα(d−1) , gα(d−1)) ∈ R[td]
• k ← 0
• While (sign(sresk(f, g)(α(d−1))) = 0) Do k ← k + 1
• Return Sresk(f, g)α(d−1) ∈ R[td]We �nally mention, that Algorithm 2.8 is also launhed when omputing the gcd in amodi�ed version of Algorithm 2.5 in order to deide whether α =̂(f ; γ; I), and β =̂(g; γ;J)are equal.6While De�nition 2.17 is generi, we are restrited in this thesis to utilizations for di-mensions 2 and 3 only. However, we still need to know how to ompute the isolatingintervals for integral and algebrai interval approximations. The theory on real root iso-lation is disussed next. Tehnial details on how to use algebrai interval representations6The input now onsists of two algebrai interval representations replaing the integral ones.



2.1. Algebrai foundations 33of dimension 2 to represent y-oordinates of algebrai urves are later given in �2.3.3 and�2.3.4. Chapter 5 disusses how to advane those ideas by one dimension suh that weare able to represent z-oordinates for points on an algebrai surfaes by algebrai intervalrepresentations of dimension 3.Real root isolationIsolating the real roots of a univariate polynomial of arbitrary degree is a well-studiedproblem in (omputational) algebra. Although not at the heart of the thesis, its entralontributions rely on previous work in this �eld. In Chapter 5 we even fae real rootisolation onretely, when omputing algebrai interval representations of dimension 3. Themethod that we rely on is the well-known Desartes method [CA76℄; there are variantsfor inexat oe�ients [EKK+05℄, and a modi�ation of it [EKW07℄. The tehnique isomprehensively disussed in [Eig08℄, to whih we also refer for its enylopedi desriptionof other root isolations, for example, numerial solvers, the method based on ontinuedfrations, and the subdivision sheme using Sturm sequenes, as well as all their variants.To disuss all of them lies beyond the sope of this thesis. Thus, we only extrat importantinformation of the parts on the Desartes method from [Eig08℄, that also ontains missingdetails in the presentation.Before getting deeper into it, we should mention that most approahes, as well asthe Desartes method, require the input polynomial to be square-free. If not, we havetwo options. The �rst onsists of omputing f 's square-free part f⋆ either using f⋆ =
f

gcd(f,f ′) or by deploying subresultants (as in Algorithm 2.2 or Algorithm 2.4) followed bya subsequent restart. As seond possibility, we square-free fatorize, and apply the realroot isolator to eah of the fators. In that approah, a subsequent sorting of the roots isoften expeted, whih requires omparisons. On the other hand, later omputations maybene�t from the fat that de�ning polynomials are of smaller degree. Note that we do notompute the minimal polynomial for an interval representation. However, it is possible tointeratively replae the de�ning polynomial by a simpler one, namely in the ase that the
gcd in Algorithm 2.5 is non-trivial.The basi idea of the Desartes methods is to onsider initially an interval that ontainsall roots and to repeatedly subdivide it until we are left with a situation where eah intervalis guaranteed to ontain either no or exatly one root.Theorem 2.18 (Desartes' rule of signs). Let f =

∑n
i=0 aix

i and V (f) be the number ofsign hanges in (an, . . . , a0) (ignoring ai = 0). Let α1, . . . , αr be the positive real roots of
f with multipliities m1, . . . ,mr. Let M+ =

∑r
j=0 mj .Then V (f)−M+ is non-negative and even.For a proof we refer to [BPR06℄. Using a Möbius transformation Desartes' rule ofsigns also gives a bound on the number of real roots of the polynomial f within an interval

I. We denote this bound by V (f ; I). More details appear in [RZ03℄; a variant using theBernstein basis is presented in [HL93℄. This basis has advantages with respet to splittingintervals. This splitting is essential in the following Algorithm 2.9 for real root isolation.



34 Algebrai Foundations, Geometri Programming, ArrangementsAlgorithm 2.9. Real root isolation with bound on number of rootsInput: f ∈ Z[t], square-freeOutput: list of disjoint intervals, with as many real roots of f than intervals, eahontaining exatly one real root of f
• Compute I0 ontaining all real roots, and initialize a ontainer Q with I0

• While Q is not empty,� Pop an interval I from Q, ompute V (f ; I).� If V (f ; I) > 1, subdivide I into Ileft and Iright and add them to Q.� If V (f ; I) = 1, return I.� If V (f ; I) = 0, remove I from QRemarks (on Algorithm 2.9).
• The algorithm works with any subroutine that orretly omputes V (f ; I). UsingDesartes' Rule of Sign is our preferred method.
• Computing a good I0 is a problem on its own. Several bounds are known and werefer to [Eig08, �2.4℄ for a olletion of some.
• The algorithm simpli�es, as it does not hek whether the boundaries of intervalsare roots of f . However, for this introdution, we an assume, that no suh rootexists. Algorithmially, it an be handled by either expliitly heking whether theboundaries are roots. There also exists tehniques, like random perturbations of thepolynomial's oe�ients, that still ensure the orretness of the omputed isolatingintervals for the original real roots.
• The algorithmi desription misses to give a strategy on how elements of Q arepopped, whih atually does not play a role for the e�etivity of the approah; butmaybe a�ets the e�ieny.More detailed, we an see Q as a subdivision tree. If naively traversed with a depth-�rst searh strategy, its number of nodes (also measured in depth of the tree) anexeed a value that is linear bounded by deg(f). The situation slightly improvesby �rstly performing the Desartes test on a subdivided interval I ′, and make it ahild of the tree (�put it into Q�) only if V (f ; I ′) > 1. In ontrast, a breadth-�rstsearh ensures that the number of nodes in eah depth of the tree is linear boundedby deg(f). Breadth-�rst searh is ruial if a depth-dependent ounting argumenton the V (f ; I) beomes another riterion. The m-k-variant that we present belowontains suh a riterion.Polynomials with inexat oe�ients We require so far that the oe�ients of f arefrom a subring R ⊂ R whih an be handled exatly, for example the rational numbers.Thus, we refer to this approah as the exat Desartes method (EDM). The expetation onoe�ients to be given exat an be relaxed in some sense: The simple roots of a (square-free) polynomial ontinuously depend on the polynomial's oe�ients. When perturbing

f 's oe�ients by some (small) ε, an impliation is: If I is an isolating interval for a simpleroot of fε then I is also isolating for a simple root of f , for su�iently small ε. This fatopens the door for variants of algorithms for real root isolation: One alternative evaluatesthe Desartes test for oe�ients that are expressed by interval approximations (e. g.,[CJK02℄, [RZ03℄, [MRR05℄). A generalization of this approah is given by the bitstreamDesartes method (BDM) [EKK+05℄. It assumes that the oe�ients of a polynomial fare given as potentially in�nite bit-streams, that is, oe�ients are known to arbitrary



2.1. Algebrai foundations 35preision, but, in general, never exatly. The oe�ients are interfaed to the BDM byrepeatedly asking for more bits, that is, it is required to ompute a binary representationof a oe�ient of arbitrary preision. We later give the tehnial interfae in �2.3.4. Aslong as a Desartes test fails to determine the orret number of sign hanges for a ertainpreision, the method demands for a better approximation, and restarts the test. A leverombination of the subdivision and the evaluations ensures that eah oe�ient is not toomuh over-approximated, whih would diretly lead to a slump in the overall performane.A rather simple appliation of the adaptive preision is possible even for the exatsetting. In ontrast to interfaing a (possible) lengthy exat representation, we only providean inreasing number of initial bits, until the BDM is suessful. Espeially, for polynomialswith nie separations bound, the bitstream version of the test sueeds with using less bitsthan for the exat version. But atually, the BDM exatly �ts the needs for polynomialswhose oe�ients might be transendental or arbitrary algebrai numbers. A very suitableexample is the polynomial fα(d−1) introdued in De�nition 2.17. Using interval arithmeti(see �2.3.1) and the re�neable representation of eah involved α1, . . . , αd−1, it is possibleto ompute a re�neable interval approximation of fα(d−1) 's oe�ients. Thus, the BDMis a very elegant way of omputing the isolating intervals for the real roots of fα(d−1) . Ausage for dimension 2 is given in �2.3.4 (page 64f), while we augment this approah foralgebrai interval representations of dimension 3 in �5.4.2.Re�ning intervals with Desartes However, isolating the real roots of suh a polynomialis not the sole appliability of the (bitstream) Desartes method, or, atually, Desartes'rule of signs. Consider a leaf of the (impliit) subdivision tree with V (f ; I) = 1 for itsinterval I. In order to re�ne I, it is only required to subdivide further, and keep thehalf I ′ for whih Desartes' rule of signs still reports V (f ; I ′) = 1. Of ourse, an atualimplementation should avoid any further Möbius transformation of the polynomial toompute V (f ; Ileft) or V (f ; Iright). These numbers are already known to be either 1 or 0and sum up to 1. The 0-interval is disarded for our desired re�nement. The requiredsign omputation beomes more expensive with dereasing interval length, and more bitsfrom the streams are expeted. On the other hand, this approah naturally enhanes thealready required root isolation algorithm � in ontrast to the pure bisetion approahpresented for algebrai interval representations that relies on exat sign omputations.A nie interfae for isolating and re�ning the reals roots of a (bitstream) polynomial ispresented in �2.3.4 (page 64).Remark. We remember again, that iterated re�nements annot deide the equality of twosuh isolated roots. This goal still requires symboli omputations, as we exemplary pre-sented for algebrai interval representations that use speialized subresultants; see Algo-rithm 2.8.Not eah polynomial is square-free Assume a polynomial f being not square-free, and
α being a multiple real root of f . It is easy to see, that the Desartes method in general,and the bitstream Desartes method in partiular, do not terminate when exeuted onsuh an f . The reason is that the multipliity of α is at least 2. Thus, for eah interval Iontaining α it holds V (f ; I) ≤ 2, suh that no (further) subdivision an lead to an I forwhih one of the two termination onditions of Algorithm 2.9 applies.An important step into this diretion has been made by the m-k-Desartes method



36 Algebrai Foundations, Geometri Programming, Arrangementsproposed by [EKW07℄. It allows to isolate the real roots of a polynomial f that ontainsat most one multiple root, or, otherwise, reports the existene of more than one multipleroot. The variant atually runs a usual Desartes algorithm, and for simpliity we do notdistinguish the di�erenes between the exat and the bitstream version in the following.The method is oblivious of the fat, that if f has a multiple root, the ontainer Q neverbeomes empty. However, it is fed with additional knowledge on f , namely the number
m of distint real roots, and the degree k of gcd(f, f ′). We have presented in �2.1.1 howto ompute these values. Utilizing these piees of information, the m-k-variant interruptsthe exeution of the running Desartes method if one of two onditions is satis�ed:1. There are exatly m− 1 intervals in Q indiating a simple root.2. For all intervals I in Q it holds that V (f ; I) ≤ k.[EKW07℄ state that the variant terminates with either of the two onditions. Intuitively,if f has at most one multiple root the �rst ondition is eventually satis�ed. In this ase,the m-k-variant stops with suess, while V (f ; I) for the single remaining interval I onlystates an upper bound of the multiple root's multipliity with orret parity. Thus, theodd ase still an transform to a simple root. It depends on the inquiring appliation howto deal with this restrited information. In ase f has more than one (omplex) multipleroot, none of their multipliities an reah k. However, for a su�iently small interval Iontaining an r-fold root, it holds that V (f ; I) = r [Eig07℄. Thus, ondition two is ful�lledand the detetion of more than one multiple root is reported by the algorithm.Remark. Either onditions an be validated in ase f ontains exatly one real multipleroot and further imaginary ones. However, it is hard to predit whether the algorithmterminates with suess or not. It simply depends on the distribution of the roots and howthe algorithm explores sign variations on related (and subdivided) intervals.It remains to mention how to ompute m and k. For polynomials with integral orrational oe�ients, these values an be omputed diretly with the Sturm-Habiht se-quene using Algorithm 2.3 and the modi�ed version of Algorithm 2.8. If the oe�ientsof f are arbitrary in R, the situation is, in general, not feasible. Again, there is a speialase that is important for us. Consider a situation as in De�nition 2.17, with a polynomial
f ∈ K[t1, . . . , td] and a vetor of real algebrai numbers α with dimension d − 1. We aimfor the number of distint real roots of fα ∈ R[td], whih is not neessarily square-free.The trik to ompute m is afresh the speialization property that is deployed in the nextalgorithm.Algorithm 2.10. Computing number of distint real roots of a speialized polynomialInput: f ∈ Z[t1, . . . , td]; α(d−1) = (α1, . . . , αd−1) ∈ R, eah αi in (reursive) algebraiinterval representationOutput: The number of distint real roots m of fα(d−1)1. Compute the sequene S = s0, . . . , sn with si := sign(stha(f)α(d−1)). Observe, that

sthai(f)α(d−1) ∈ R. The sign omputation is performed by Algorithm 2.7.2. Use S to proeed with Step 3 of Algorithm 2.3Remark. In order to apply the speialization property, we assumed that deg(fα(d−1)) =
degtd

(f); otherwise a proper redutum of f must be onsidered. This modi�ation relieson Lemma 2.19.



2.1. Algebrai foundations 37Lemma 2.19. Let dα = degtd
(fα(d−1)). Then, for all j = 0, . . . , dα, it holds that

StHaj(fα(d−1)) = StHaj(f(dα))|(t1,...,td−1)=α(d−1)This obviously extends to stha.Computing k is again free of ost using the known sequene S in the �rst step of theSturm-Habiht-version of Algorithm 2.1.While the overall desription is quite abstrat, we mention that the m-k-Desartesmethod in ombination with Algorithm 2.10 to ompute m (and somehow k) has suess-fully applied when analyzing algebrai urves; see [EKW07℄ and [EK08a℄. These publia-tions also disuss what to do when a multivariate f is, in ontrast to our assumption, notprimitive. We also disuss this subtlety, when using the same ansatz to lift planar pointsonto algebrai surfaes in order to analyze them; see Chapter 5.Remark (Low degree polynomials). For the sake of ompleteness we �nally want to mentionthat there exists exat solution formulas for univariate polynomials of degree at most 4by Cardano, Tartaglia, and del Ferro. Furthermore, it is possible to ompute the isolatingintervals for suh polynomials o�-line and to model the omparison of suh numbers asa �nite deision tree; see [ET03b℄ and [ET03a℄. For the main parts of this thesis, thepolynomial often have degree larger than 4 and it is not analyzed in how far these methodsstill work in ombination with bitstream oe�ients, that we also deploy a lot. Thus, wedeided to launh the general approahes. However, we enourage to ross hek theapproahes for suh low-degree polynomials. Depending on the results,7 the speializedmethods an beome the default for low degrees.2.1.3. Impliit funtions and delineabilityWhen presenting next algebrai urves and surfaes, we want to make use of impliitfuntions. Thus, we quikly introdue them and present the impliit funtion theorem.Although the statement of the theorem is true in a more general setting, we restrit it toa ase, whose abstration is still su�ient to over its appliation for urves and surfaes.The restrition mathes also the onditions of delineability that we also introdue here.Given a relation, our goal is to provide a tool that onverts it into a funtion, that is,the relation should be represented as the graph of a funtion. We do not aim for a singlefuntion, but there may be one for a restrition of the relation's domain.Theorem 2.20 (Impliit Funtion Theorem). Let f : Rd−1 × R → R be a ontinuouslydi�erentiable funtion and let (û1, . . . , ûd−1, v̂) ∈ Rd−1 ×R with f(û1, . . . , ûd−1, v̂) = 0. If
∂f
∂v (û1, . . . , ûd−1, v̂) 6= 0, then there exist open sets U , with (û1, . . . , ûd−1) ∈ U ⊆ Rd−1, and
V ⊆ R, with v̂ ∈ V , and a unique ontinuously di�erentiable funtion G : U ×V suh that
{(u1, . . . , ud−1, G(u1, . . . , ud−1))} = {(u1, . . . , ud−1, v) | f(u1, . . . , ud−1, v) = 0} ∩ U × V ,that is, the graph of G is preisely the ontinuous set f |U×V = 0.A proof an be found in [Kön93, �3.6℄, while [KP02℄ disusses various aspets of thetheorem in detail. It is advantageous, that no knowledge on the exat G is required.The theorem only states about its existene. Very often, G annot be solved with exat7We onsider running time and the stability of the speialized methods for bitstream oe�ients.



38 Algebrai Foundations, Geometri Programming, Arrangementsformulas. Let us next establish a onnetion between impliit funtions, multivariatepolynomials, and real algebrai numbers in algebrai interval representation: We introduea term that is well-known in ylindrial algebrai deomposition; see �2.1.6 for a shortintrodution and [CJ98℄ for a detailed survey.De�nition 2.21 (Delineation). Let f ∈ R[t1, . . . , td], degtd
(f) = n, A ⊂ Rd−1. The rootsof f are delineable on A, and funtions f1, . . . , fm delineate the real roots of f on A if for

(α1, . . . , αd−1) ∈ A we have
• m ≥ 0 and there are integers w1, . . . , wm, wi > 0 suh that f(α1, . . . , αd−1, td) has

m distint real roots, with multipliities w1, . . . , wm.
• f1 < f2 < . . . fm are ontinuous funtions from A to R.
• fi(α1, . . . , αd−1) is a root of f(α1, . . . , αd−1, td) with multipliity wi.
• If β ∈ R with f(α1, . . . , αd−1, β) = 0, then ∃1 ≤ i ≤ m with β = fi(α1, . . . , αd−1).
• ∑m

i=1 wi = n, whih implies lcf td(f) 6= 0.Observe that m is independent on the hoie of (α1, . . . , αd−1) ∈ A. As a result, fora multivariate polynomial f ∈ R[t1, . . . , td], the not yet spei�ed impliit funtion over aondition ful�lling set U an be identi�ed by fi if U is a delineable subset Rd−1. Evenmore, as the image of an impliit funtion is onneted, it su�es to ompute one of itsvalues, that is, we need to desribe β for α(d−1) = (α1, . . . , αd1) ∈ A. If all elementsof α(d−1) are given in algebrai interval representation, to ompute the algebrai intervalrepresentation of β requires to isolate the real roots of fα(d−1)(td), for example using thebitstream Desartes method. This tehnique has already been used to analyze algebraiurves, and we ome bak to this point when analyzing algebrai surfaes in Chapter 5.2.1.4. Algebrai plane urvesWhen inreasing the dimension to 2, the vanishing set of a polynomial does not de�nea set of algebrai numbers, but it de�nes a urve. In this setion we introdue algebraiplane urves, explore their properties, and show whih other objets it an de�ne.De�nition 2.22 (Algebrai plane urve). Let K be a �eld, and f ∈ K[x, y]. The algebraiplane urve indued by f is the point set VK(f). If K = R, it is named real, while for
K = C the set de�nes a omplex urve.First, we remark, that for the reason of intuition, we prefer the more desriptive variablenames x and y over the abstrat ones t1 and t2. Seond, abusing notation, we often referto urve f while atually meaning the point set VK(f) indued by f . If some p = (px, py)ful�lls f(px, py) = 0, that is p ∈ VK(f), we shortly say that p lies on f . If f fatorizes,(see �2.1.1), eah fator onstitutes a omponent of a urve. For omponents of a urveProposition 2.5 an be applied. An impliation is, that the square-free part f⋆ of f de�nesthe same urve as f . In real appliations, it is usual to ompute a (square-free) fatorizationof f �rst, and then to handle eah fator as its own urve.An algebrai urve has a vertial line at α if f(α, y) ≡ 0. The existene of a vertial linein a urve ompliates its analysis, while urves onsisting of vertial lines only are almosttrivial to analyze. Fortunately, it an be shown that fatorizing f = cont(f) · pp(f),deomposes the urve into two omponents: The urve de�ned by cont(f) ontains allvertial line omponents, while pp(f) is free of them. Applying the presented multivariate



2.1. Algebrai foundations 39square-free fatorization without the subsequent multipliation (see �2.1.1), we an killtwo birds with one stone: We obtain the square-free fators of f , and eah fator de�nesa urve that onsists either of vertial lines only, or it is free of suh. In the following,when presenting more details on algebrai urves, we exlude the simple vertial ase, andassume that a urve is primitive, that is, cont(f) is onstant, and square-free. We identify
fx with ∂f

∂x (p) and fy with ∂f
∂y (p).De�nition 2.23 (Points on urves). Let p be a point on some urve f and onsiderthe gradient given by the vetor (fx(p), fy(p))T . We all p singular if the gradient iszero. Otherwise, p is regular and we de�ne the tangent at p as the line through p andperpendiular to the gradient. The point p is ritial if fy(p) = 0. If p is a ritial regularpoint it is x-extreme, if the minimal index n with f

(n)
y (p) = 0 is even. We all p an eventpoint if it is singular or x-extreme.Remark. We �nally aim to deompose algebrai urves into x-monotone suburves withspeial properties. This explains whty we all points with fy(p) = 0 ritial. In asesplitting into y-monotone suburves is desired, one would all points with fx(p) = 0ritial.It an be shown with Bézout's theorem that the number of points on f with fx(p) = 0is �nite, and so for fy(p) = 0. This implies that the number of singular points, the numberof ritial points and the number of extreme points is �nite. The x-oordinates of ritialpoints are de�ned by the roots of Resy(f, fy). These roots αi, 0 ≤ i < k, deompose the

x-axis into k + 1 (possible unbounded) open intervals Ii, 0 ≤ i ≤ k.Consider a non-ritial point p = (px, py) on f . By Theorem 2.20 for d = 2 we havethat the urve de�ned by f is given loally around p by a funtion y = g(x), that is, fora point p = (px, py), we have py = g(px). This holds in partiular for all points p with
px ∈ Ii.Splitting a urve f at ritial points deomposes the urve into onneted and opensets of points. The points of eah suh sets meets the riteria of the impliit funtiontheorem. An impliation is, that eah suh set is x-monotone and we all its losure anar of f . Ars de�ned suh are maximal sets respeting ritial points. It an be shownthat the number of maximal ars is �nite.We atually distinguish three kinds of ars: A segment has two �nite endpoints, aray has one �nite endpoint and one unbounded end, and a branh has two unboundedends. For an unbounded end we an distinguish whether it either approahes a horizontalasymptote, a vertial asymptote, or a tilted asymptote. The axis-aligned asymptotes of fan be omputed. We state the orresponding theorem without proof.Theorem 2.24 (Vertial and horizontal asymptotes). Consider f ∈ R[x, y] as a univariatepolynomial in y, with lcfy ∈ R[x] being its leading oe�ient. If x−α, α ∈ R is a vertialasymptote of f , it holds lcfy(α) = 0.Consider f ∈ R[x, y] as a univariate polynomial in x, with lcfx ∈ R[y] being its leadingoe�ient. If y − β, β ∈ R is a horizontal asymptote of f , it holds lcfx(β) = 0.At �nite ends, ars are onneted via ritial points. An ar is inident to suh a p eitherfrom left or from right. The inidene numbers of p an be enoded as pair (ℓ, r), where ℓis the number of ars inident from left and r the orresponding number for the right side;



40 Algebrai Foundations, Geometri Programming, ArrangementsFigure 2.1. Important numbers for a single urve. The values next to the x-axisenode the number of intersetions of the urve with the vertial lines. Dashed forritial events, dotted for intervals indued by the events' x-oordinates.
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(b) Ar numberssee also Figure 2.1 (a). The inidene numbers of a non-ritial point are equal to (1, 1).For all inidene numbers (ℓ, r), it holds that ℓ + r mod 2 = 0, and ∑
p critical(ℓp + rp) is�nite. In �2.3.3 we present an interfae to provide information on inidene numbers forany point on a urve, espeially the ritial ones.De�nition 2.25 (Ar number). Let f be an algebrai urve, and α ∈ R be an x-oordinate.We de�ne fα := f(α, y) ∈ R[y]. Let β0 < . . . < βr−1 be the r distint real roots of fα.We say that a point p = (px, py) ∈ R2 is supported by α if px = α and py = βj forsome 0 ≤ j < r. The value j is the ar number of p.Figure 2.1 (b) gives an illustration. Observe, that βi meets the onditions for algebraiinterval representations of dimension 2. The isolating intervals an be omputed withthe bitstream Desartes method, if fα is square-free, whih holds for all α ∈ Ii, for eahvalid i. If α is a root of Resy(f, fy), fα is not square-free. The m-k-variant of the bitstreamDesartes method terminates: If suessful, fα has at most one multiple root. Otherwise,it detets the existene of more than one multiple root. In the latter ase, we an eitherompute the square-free part of fα using Algorithm 2.4 or apply a shear; see De�nition 2.26.By the impliit funtion theorem and the onditions on the inidene numbers, it anbe shown that the number of points supported by all α ∈ Ii for some i, is onstant.As an impliation it is easy to see, that all interior points of an ar arry the same arnumber. That is, to desribe a (not neessarily maximal) ar it su�es to give an x-range8

X = [xmin, xmax] and three ar numbers, namely one for xmin, one for xmax, and the onethat gives the onstant ar number for the ar's interior points.8We also allow for X the intervals ] −∞, xmax], [xmin, +∞[, and ] −∞, +∞[



2.1. Algebrai foundations 41In the setting we desribed so far, it an be, that ritial points share ommon oor-dinates. A tehnique to overome this problem is a hange of oordinates by applying ashear, for example, of the y-axis. This is possible as the number of distint bitangents ofa urve is �nite.De�nition 2.26 (Shear). The shearing of a point p = (px, py) with fator s is Ss(px, py) =(
1 s
0 1

)
(px, py) = (px + spy, py). It an also be applied to a point set P : Ss(P ) = {Ss(p) |

p ∈ P}.The shearing of a urve uses the inverse S−s, that is, Ssf(x, y) = (f ◦ S−s)(x, y) =
f(x− sy, y) and it follows f(p) = 0⇔ Ssf(Ss(p)) = 0.Shearing is often applied to simplify the analysis of a urve. A shearing preservesthe topologial properties of the urve. However, it hanges the geometry, exept for y-oordinates. Aiming for a geometrial-topologial orret analysis, a bak-shear has to beapplied, whih is non-trivial due to algebrai numbers of high degree. We skip details, forexample disussed in [EKW07℄, and heneforth assume, w.l.o.g. the possibility to omputeinidene and ar numbers of a urve without shearing.

Figure 2.2. Shearing of a urve: (Left) The input. (Right) Its sheared version with
s = 8

7 . Observe, that overtial degeneraies vanish on the right, however, the numberof split points inreased.We next turn towards a pair of (oprime) urves f and g. A solution to detet their(andidate) intersetions is to merge the sequenes of roots of Resy(f, fy), Resy(g, gy) and
Resy(f, g). For the resulting intervals J between suh numbers, re�nements of the rootsof fr and gr give the intersetion sheme of f and g along the line x = r with r ∈ J ∩ Q.No intersetion of f and g takes plae at suh an r. It is more ompliated if we onsideran α that is a root of Resy(f, g), as for it we an have an intersetion of f and g along theline x = α. A straightforward approah is to ompute the square-free part of gcd(fα, gα)using the stha-versions of Algorithm 2.1 and Algorithm 2.4. A more sophistiated solutionusing �lter tehniques (see �2.3.2) is presented in [EK08a℄ and [Ker℄.For more detailed introdutions to algebrai urves we reommend to read [Wal50℄and [Gib98℄, while [Ker06℄ fousses on the goal to support their analyses via an algebraikernel; see also �2.3.3 (page 56 �).



42 Algebrai Foundations, Geometri Programming, Arrangements2.1.5. Algebrai surfaesWe next introdue algebrai surfaes. They form the entral input for our algorithms inChapters 3, 4, and 5.De�nition 2.27 (Algebrai surfae). Let K be a �eld, and f ∈ K[x, y, z]. The algebraisurfae indued by f is the point set VK(f). If K = R, it is named real, while for K = Cthe sets de�nes a omplex surfae.One again we prefer variable names that math to the oordinate axes, here of thereal a�ne spae, as we do not disuss omplex surfaes in this thesis. Surfaes are verysimilar to urves, as both are supported by multivariate polynomials. Hene, we alsoabuse notation and talk about the surfae f instead of the surfae indued by f . A point
p = (px, py, pz) ∈ R3 lies on the surfae if f(px, py, pz) = 0. The fators of f de�neomponents of f . The square-free part f⋆ of f de�nes the same surfae, and usually, it isreommended to ompute a (square-free) fatorization of f to handle eah omponent of
f as a surfae of its own.A surfae ontains a z-vertial line at p = (px, py) if f(px, py, z) ≡ 0. We all asurfae z-vertial if for eah point p = (px, py, pz) ∈ VK(f) it holds f(px, py, z) ≡ 0. Ifthe ontext talks about a surfae we write vertial instead of z-vertial. As for urves,deomposing a surfae f = cont(f) ·pp(f) partitions f into two surfaes, one that isvertial, namely cont(f) and one that is not vertial, namely pp(f). The multivariatesquare-free fatorization (without post-proessive multiplying) splits urves into square-free vertial and non-vertial omponents. As vertial surfaes are easy to handle, we donot trae them further, and assume that a surfae is square-free and primitive. Nonetheless,a primitive surfae an still ontain (isolated) vertial lines. We refer to Chapter 5 wherewe disuss this problem in depth.The gradient vetor of a point p on f is given by (fx(p), fy(p), fz(p))T , where fx = ∂f

∂x ,
fy = ∂f

∂y , and fz = ∂f
∂z , whih allows to lassify points on f .De�nition 2.28 (Points on surfaes). Let p be a point on an algebrai surfae f andonsider its gradient vetor. We all p singular if the gradient is zero. Otherwise, p isregular and we de�ne the tangent at p as the plane through p and perpendiular to thegradient. The point p is ritial if fz(p) = 0.Consider a non-ritial point p = (px, py, pz) on f , then Theorem 2.20 for d = 3 meansthat the surfae de�ned by f is given loally around p by a funtion y = g(x, y), that is, fora point p = (px, py, pz), we have pz = g(px, py). In Chapter 5 we introdue a deompositionof R2 into delineable sets for whih the impliit funtions as desribed exists. For eah setwe provide additional ombinatorial data that helps to analyze the algebrai surfae. Wealso say that the surfae is xy-funtional over suh a onneted two-dimensional ell. Thelosure of the funtion graph is alled a sheet.In ontrast to urves, there is no left and right (zero-dimensional) end that togetherdesribe the losure of suh a sheet. Atually, it is a one-dimensional set of points. Suha spae urve models the onnetion of sheets. De�nition 2.33 formally introdues spaeurves. There are also sheets that lop o� towards z = −∞ or z = +∞ when approahingtheir �boundary�. To ompute how sheets are onneted (or extend to in�nity) is anothermajor goal that we are aiming for in Chapter 5. Besides the atual omputation, we



2.1. Algebrai foundations 43also disuss an interfae to aess this information. We next extend the de�nition of arnumbers to surfaes.De�nition 2.29 (Sheet number). Let f be an algebrai surfae, and α, β ∈ R be an x- and
y-oordinate. We de�ne fα,β := f(α, β, z) ∈ R[z]. Let γ0 < . . . < γr−1 be the r distintreal roots of fα,β.We say that a point p = (px, py, pz) ∈ R3 is supported by α and β if px = α, py = βand pz = γj for some 0 ≤ j < r. The value j is the sheet number of p.As for urves, it is possible to apply a shear on a surfae in order to remove degeneratesituations that are with respet to the hoie of the oordinate system. That is, the topo-logial properties of the surfae are preserved, while its geometry hanges (with onstant
z-oordinates). This helps to analyze the topology of the surfaes. However, shearingalso has drawbaks. Applying a shear inreases the bit-lengths of f 's oe�ients and theresulting polynomial is dense with respet to z. Both negatively in�uenes the runningtimes of subsequent algorithms. In addition, obtaining geometri information with respetto the original system is often expeted, but regaining it is a highly non-trivial task. Theseitems are reason enough for us to abstain from shearing when analyzing algebrai surfaesin Chapter 5.In Chapter 4 we onsider speial examples of surfaes, namely suh that are (rationally)parameterizable.De�nition 2.30 (Parameterizable surfae). A parametri surfae S in R3 is given by aparametri equation in two variables, that is, the surfae is the image of ϕ : Φ = U ×V →
R3, (u, v) 7→ (X(u, v), Y (u, v), Z(u, v)), where X,Y,Z are funtions U × V → R.Example 2.31 (Parameterizable surfaes).
• The graph of a bivariate funtion is parameterized with ϕ(u, v) = (u, v, f(u, v)).
• A ylinder of radius r around the x-axis is given by ϕ(u, v) = (u, r cos(v), r sin(v)),with x ∈ R, and v ∈ [0, 2π].
• The unit sphere's parameterization is ϕ(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)),with u ∈ [0, π] and v ∈ [−π, π].It is easy to see, that the same surfae admits several parameterizations. Furthermore,if Φ is bijetive exept for an at most one-dimensional set, there is another nie property.This property is mandatory for rational surfaes.De�nition 2.32 (Rational surfae). A surfae S is said to be rational if1. S is algebrai (i. e., de�ned by a polynomial f ∈ Z[x, y, z]).2. There exists a parameterization ϕ(u, v) = (X(u, v), Y (u, v), Z(u, v)) of S by fun-tions X,Y,Z whih are quotients of polynomials in u and v having rational oe�-ients.3. (u, v) ∈ U × V , where U and V are itself de�ned in a simple way by polynomialinequalities in u and v and that, exept for a few equally simple urves and points,

ϕ is bijetive.We present in �4.6.2 ring Dupin ylides that are rational surfaes whih generalizetori.



44 Algebrai Foundations, Geometri Programming, ArrangementsThe union of two vanishing sets of trivariate polynomials f1, f2 an be modelled bymultiplying f1 · f2. The intersetion of two sets de�nes a new geometri objet.De�nition 2.33 (Algebrai spae urve). Let f, g ∈ K[x, y, z], and oprime. The algebraispae urve indued by f and g is the point set VK(f)∩VK(g) = {(x, y, z) ∈ K3 | (x, y, z) ∈
VK(f) ∧ (x, y, z) ∈ VK(g)} If K = R, it is named real, while for K = C the sets de�nes aomplex spae urve.An algebrai spae urve indued by f and g is also referred to as the intersetionurve of f and g. A speial spae urve of our interest is the silhouette urve of a surfae fde�ned by the intersetions of f and fz. The silhouette urve ontains all ritial points of
f . From elimination theory introdued in �2.1.1 and espeially Proposition 2.8 (assuming
z-regularity), we remember that the vanishing set of Resz(f, fz) onstitute extendiblesolutions for the silhouette urve and Resz(f, g) onstitute extendible solutions for theintersetion urve of f and g. It might be the ase, that for a �xed solution there is nosuh extension, a single one, or even more than one extension, whih is also due to the fatthat algebrai urves are Zariski-losed.92.1.6. Cylindrial algebrai deomposition (ad)In this setion, we shortly review ylindrial algebrai deompositions (ad) introduedby Collins in his seminal work [Col75℄, whih basially provides a general framework forapplied elimination theory. We do so, as basi steps in our work, espeially in Chapter 5,adopt ideas that have already been supporting ylindrial algebrai deompositions. Inontrast to ad, that failitates quanti�er elimination and thus endorses various potentialappliations in any dimension, we fous in this thesis on tools supporting low dimensionalgeometri problems.The input for a ad onsists of a �nite number of d-dimensional integral polynomials,while the output is a subdivision of Rd into ells, where eah input polynomial is sign-invariant within eah omputed ell � a ad. The algorithmi idea to ompute it is arepeated two-step approah: The �rst step, the projetion, eliminates one variable, whilethe seond step, the lifting , onstruts so alled staks based on information obtained in the�rst step. Atually, the algorithm is reursive. The projetion is stopped when univariatepolynomials remain, whih deompose R into ells that are sign-invariant with respetto the polynomials. Lifting is applied using sample points for eah lower-dimensionalsign-invariant ell until the deomposition of Rd is obtained. A lifting step onstruts astak that is partitioned into ells that are sign-invariant. Cells that result in zeros in thepolynomials prior to the projetion are alled setions, while the open intervals between(and semi-in�nite intervals preeding and following all zeros) are alled setors. Eah ellof a d-dimensional ad has an index (c1, . . . , cd), ci > 0. For example (4, 2) is the seond9 In Algebrai Geometry, there exists a naturally indued topology, alled the Zariski-topology. It isde�ned by the assignement of a set to be open if and only if its omplement is the vanishing set of an ideal.Thus, a plane algebrai urve C is always Zariski-losed as it is given as the vanishing set of a polynomial f ,that is, C = VK(f). A more intuitive geometri onsequene is that for eah point p on C there existsa neighborhood U suh that C|U is either an isolated point or star-shaped whose enter is p. Note thatin ase of a non-singular point p, the urve C, restrited to U , is homeomorphi to a line segment. Indesriptive language we obtain the following: When �walking� on an algebrai urve (i. e., not isolated),one never reahes a point where the urve has a dead-end. As an example, we mention that a line segmentdoes not onstitute an algebrai urve; only the supporting line is one.



2.1. Algebrai foundations 45ell (from bottom) onstruted over the fourth ell (from left) in a ad of R2. Projetionand lifting heavily relies on delineability; see De�nition 2.21 in �2.1.3.A ruial step of the ad is the projetion. In the original work, a huge bunh of poly-nomials are omputed. In partiular, as input all fi ∈ Z[t1, . . . , td−1][td], all oe�ientsof all fi, all prinipal subresultant oe�ients of fi and f ′
i , and all prinipal subresultantoe�ients of fi and fj with i 6= j are onsidered. It is assumed that the fi are td-regular,otherwise, proper redutums must be used when onstruting the prinipal subresultantoe�ient. Computing all these polynomials needs a signi�ant amount of time, whilethe large number also leads to a very �ne deomposition of Rd−1. This, as a sequene,results in the lifting of many ells, whih again is time-onsuming. The projetion hasbeen improved by MCallum [MC℄ and Brown [Bro01b℄. They show how to obtain anorder-invariant deomposition (ompare the de�nition in [MC℄). For suh a deomposi-tion, it su�es to only onsider the leading oe�ients and the disriminants of (possiblyredued) polynomials to ensure delineability. We ome bak to this point when analyzingalgebrai surfaes in Chapter 5. Besides these omputations of �projetion polynomials�other symboli subalgorithms are required, for example, to ompute multivariate greatestommon divisors, or, during lifting, to onvert real numbers in algebrai interval represen-tations into their integral interval representations. Notie that all operations are arriedout with pure symboli omputation, that require exat and e�ient integral arithmeti.Projetions and liftings apparently result in a ad, whih onstitutes a deompositioninto onneted sign-invariant ells. An additional adjaeny step omputes how ells areinterating. It is said that two ells are adjaent if their union is also onneted. Thereexists approahes to ompute the adjaenies for the two-dimensional ase [ACM84℄ andfor the three-dimensional ase [ACM88℄. Adjaenies also open the door to join adjaentells with the idential sign-invariant to the same topologial omponent. Arnon allssuh maximal sets lusters. Computing lusters redues the number of liftings, as foreah luster only one lift is demanded, and liftings are usually ostly as they involvedalgebrai numbers [Arn88℄. Thus, lusterings enable possible time savings, but they mustbe weighted against the time to ompute the luster. When analyzing algebrai surfaes inChapter 5, we impliitly luster the ells of the �rst projetion (into the two-dimensionalplane) using Cgal's planar arrangements; see �2.4.Cylindrial algebrai deompositions have various appliations; a omprehensive list isgiven in the introdution of [CJ98℄. We exemplary mention the possibility to ompute thetopology of semi-algebrai sets, to solve systems of polynomial equalities and inequalities,and robot motion planning. The later onsiders given algebrai objets, some of themmovable, others not. We want to know whether the movable objets an be ontinuouslymoved, ollision-free, from an initial on�guration to a �nal one. A on�guration is givenas a point in a high-dimensional algebrai spae, as eah parameter desribes position andorientation of one objet. A solution exists if the initial on�guration an be onnetedwith the �nal one by a ontinuous path within a onneted luster of the high-dimensionalad. For the deision it su�es to ompute the luster of the two on�gurations, while theatual movements an then be produed from a ollision-free path within the luster, forexample, by onstruting it with the help of ell-to-ell paths. More details an be foundin [SS83℄, [SSH87℄, and [Lat93℄.



46 Algebrai Foundations, Geometri Programming, Arrangements2.1.7. Topology and CW omplexWe lose the theoretial foundations with some information on topology. An k-simplex isa topologial spae that is equivalent to a k-ball Bk, that is, every k-simplex onstitutesa k-dimensional manifold with boundary. A k-ell is a spae that is homeomorph to a
k-simplex. An open k-ell is homeomorph to the interior of Bk. We all k the dimensionof the ell. If the boundary of a topologial k-spae is the �nite union of k′-spaes with
k′ < k, we say that it has the boundary property.A omplex is a topologial spae onstruted from simplexes whih are wisely on-neted. A omplex allows to desribe a ompliated spae in terms of onneted simplespaes. In general, topology deomposes objets into k-ells. We only mention two om-plexes. The simpliial omplex K for a set M is a subset of the power set K ⊆ P(M),that is, a family of subsets that are losed under set intersetions. Geometrially, a sim-pliial omplex K is a omplex of simplexes suh that the empty set and all boundaries ofsimplexes are ontained in K, and for s1, s2 ∈ K it holds s1 ∩ s2 is a boundary of s1 and
s2. Whitehead [Whi49℄ introdued an even stronger omplex.De�nition 2.34 (CW omplex). A Hausdor� spae10 X that deomposes into open ells
(I)i∈I is alled ell-omplex, or losure-�nite weak-topology omplex (CW omplex), if1. for eah ci ∈ X there is a harateristi ontinuous funtion fi : Bk → X, suhthat the interior of Bk is mapped homeomorphially to ci and the boundary of Bkis mapped to a �nite number of ells with dimension < k (boundary property) and2. M ⊆ X is losed if and only if M ∩ fi(B

k) for all i is losed.Deompositions of urves into ars, see �2.1.4, and surfaes that we �nally analyze inChapter 5 are CW omplexes. A more basi introdution is given in [Hat02℄.2.2. Implementing geometri algorithmsThe desription of geometri algorithms usually assumes the real RAM , that is, eahbasi operation is to be onsidered as being exat and running in onstant time [PS85℄.These assumptions ease the theoretial onsiderations of an algorithm. But, not keeping itspratial limitations for a onrete implementation in mind, they quikly lead to disastrousresults: Code rashes, produes mathematially wrong results, or does not terminate. Anexample is an inremental onvex hull onstrution that onstruts non-onvex hulls. Thisand other lassroom examples are given more detailed in [Sh96℄, [KMP+04℄, or morereently in [Sh08℄.In theory, life is also often simpli�ed by the general position assumptions, that is, anydegenerate input with respet to the algorithm is preluded. For example, no three pointsin the plane should lie on a ommon line. In ontrast to theoretial expetations, degenerateinput is not rare in pratial appliations, as, for example, sanners and sensors onlyhave �nite preision. Algebrai urves and surfaes also have degeneraies, for example,singularities and tangential intersetions. If aiming for an aurate result in the originaloordinate system, we have to deal with them.In order to takle these problems Kettner and Näher aimed for geometri programming ,whih asks for geometri software that is orret, e�ient, adaptable and extensible, and10Any two points an be "housed o�" from eah other by open sets.



2.2. Implementing geometri algorithms 47easy to use [KN04℄. To ful�ll suh a task, the inorporation of two well-known paradigmsis bene�ial, namely the generi programming paradigm and the exat geometri ompu-tation paradigm, whih we disuss in the sequel.2.2.1. Generi programming (GP)In the de�nition of Musser et al. [MS88℄, generi programming onsists of the graduallifting of onrete algorithms that abstrat over details, while preserving the algorithm'se�ieny and semantis. Basi and well-known abstrations that a supported by variousprogramming languages are subroutines, data type abstration, and inheritane, as objet-oriented ode an provide.However, generi programming is more powerful. In C++ it extensively makes use oflass- and funtion-templates. Suh a template expets one (or several) parameters ofonrete lasses (or funtions) that exatly ful�ll requirements positioned by the template.So-alled onepts de�ne the abstrat de�nition and requirements for data types, whiletypes (e. g., lasses) that exatly ful�ll suh spei�ations are referred to as the modelsof a onept. Models are allowed to implement more than one onept at the same time,and suh lasses an also provide funtionality beyond the expetations of a onept.Conepts an also be organized hierarhially. We refer to the re�nement of a onept if aderived version has stronger expetations on a model. For example, a re�nement expetsan additional type or funtion in order to model the stronger. An interesting sub-ase ofmodels that desribe behaviors of objets are alled traits lasses. The notation has beenintrodued by Myers [Mye95℄. His design allows to attah information to lasses that arenot modi�able, suh as poiters. In ontrast, we usually refer to a di�erent interpretationof the name traits lass. It provides basi types and operations on them. Instantiatinga templated data struture or algorithm with suh a lass determines the struture's oralgorithm's atual behavior; see the sorting example below.Conepts and models are nothing spei� to (generi) programming. Atually, math-ematiians are very familar with suh, for example in algebra. Several onepts exists:Group, ring, �eld, vetor spae. A group is modelled by a set of (abstrat) objets and abinary operation �+� that has to ful�ll the known onditions. Examples of groups are Zwith their addition as binary operation, or Zp with p = 2, 3, 5, 7, 11, . . . with additionmodulo p. A �traits lass� is also re�eted in algebra: Swithing the �+� operation fromaddition to multipliation leads to a multipliative group. We remark further subtletiesas to restrit the elements. But observe that an implementation an use traits lassesto de�ne ertain groups. Re�nements of onepts also exist in mathematis. A group isalled abelian, if the binary operation is also ommutative. An abelian group forms a ring,if there is a seond binary and assoiative operation � · � and the distributive law holds.Fields and vetor spaes are other re�nements of abelian groups.Generi ode splits into two parts:1. the instrutions that desribe the algorithmi steps and2. requirements that speify whih properties its argument types must satisfy.Example 2.35. A simple example is a sorting routine that relies on a less-based omparisonstrategy on objets; like insertion sort. In the exeution of the sorting algorithm it mustbe deided whether one given objets is smaller than a seond one. The instrutions ofthe algorithm are independent of the atual type of objets, while we demand objets to



48 Algebrai Foundations, Geometri Programming, Arrangementsbe LessThanComparable. This way, an unexperiened user in sorting algorithms an stilldeploy the implementation, by just knowing about the order of two objets.More abstrat, it su�es to implement a model for the intended type of objets inorder to bene�t from generi implementations. This is usually muh simpler than the fullimplementation of an algorithm for these objets. Implementations that follow the generiprogramming paradigm reuse ode, and thus avoid opy-and-paste whih is often a soureof error. Additionally, it implies less maintenane.Generi programming also looses the drawbaks of objet-oriented programming, suhas a strong inheritane relationship, with additional memory onsumption for virtual mem-bers and virtual-funtion table lookups. In ontrast, it bene�ts from �exibility, type hek-ing at ompile time, and no loss of e�ieny. Full details of generi programming in itsvarious aspets an be found in the book by Austern [Aus99℄. It also surveys the Stan-dard Template Library (Stl) [15℄ whose various basi data strutures and algorithms arepart of the C++ standard library sine 1994. The Boost libraries [2℄ implement additionalsoftware in the spirit of the STL and to work hand-in-hand with it. A very nie overviewis given in [Kar06℄. The Library of E�ient Datastrutures and Algorithms (Leda) [10℄provides fundamental data strutures and algorithms from various domains, and basiobjets for geometri omputations. Fully foussed on geometri problems are the Com-putational Geometry Algorithms Library (Cgal) [3℄, and the Libraries for Exat andE�ient Algorithms for Curves and Surfaes (Exaus) [6℄. We present both in detailin �2.2.3 and �2.2.4.Generi programming for omputational geometry makes perfet sense, as it allows todeouple geometri onstrutions and prediates from topologial onsiderations and om-binatorial algorithms and data strutures. Templating algorithmi frameworks or datastrutures implements the desired abstration. The instantiation of suh a lass with aonrete traits inspires the skeleton with respet to the given geometri objets and oper-ations on them. This way, a user with limited knowledge about the lass-template, thatis, the geometri algorithm or data struture, an use it with his own geometri objets,as long as he an provide a proper traits lass. The expeted operations usually imple-ment geometri or algebrai omputations. We detail this issue when disussing the exatgeometri omputation paradigm next. Beforehand, we want to mention the importantobjetive for a onept to be minimal. A tight onept simpli�es the development of anew traits lass drastially, as less (maybe only slightly) di�erent operations must be im-plemented. If they are too similar, it might be hard to rystallize their di�erenes, and itis also dangerous that the same (algebrai) value is omputed several times.The ability of generi programming to deouple ombinatoris from geometri predi-ates is also a very nie way to resign from the generi position assumption. That is, thedeveloper of a generi geometri struture an implement all partiularities of an algo-rithm from the literature with respet to degeneraies assuming that geometri prediatesimplement the desired operation. He never has to are about the details how to providethe orret answer. This is another task. Again, this onsideration is ross-linked withthe exat geometri omputation paradigm; see �2.2.2. Although this strategy is valid, itshould be taken with a pinh of salt: Cheking a degeneray is often ostly, espeially inthe EGC approah. However, it might be possible to modify an algorithm suh that thishek and its (positive or negative) outome is ombinatorially dedued from (a set of)less expensive prediates.



2.2. Implementing geometri algorithms 49We want to mention that we illuminate as our major example of a templated geometridata struture the details of Cgal's Arrangement_2 lass in �2.4.3 Atually, to broaden theappliability of the lass with respet to other domains than the bounded plane, we disussan important hange of its template parameters in Chapter 4.2.2.2. Exat geometri omputation (EGC)The omputational path of a geometri algorithm is in�uened by two types of basioperations: Construtions that reate new geometri objets and prediates that determineonditional steps in an algorithm. The splitting of these basi operations from the generialgorithm an be established in terms of generi programming. From this abstration, wean onlude that di�erent omputational paths, that is, di�erent evaluations of operations,lead to di�erent ombinatorial strutures and statuses. Although sometimes tolerable,numerial errors (as they are typial for �oating-point arithmeti) in suh evaluations, anquikly lead to an invalid or inonsistent status of an algorithm. In order to avoid suhproblems, we have to ensure that prediate evaluations always ompute the mathematialorret result. This goal is expressed by Yap [Yap04℄ as the exat geometri omputation(EGC) paradigm. While we expeted the real RAM to ompute eah operation in exatfashion, this paradigm relaxes the exatness requirements with respet to omputed results.To explain this more preisely: In numerial stable settings an inexat, but fast, numbertype an already su�e to ompute the orret result of a geometri prediate. This isusually the ase in non-degenerate situations. However, this still requires tehniques toverify the orretness of the result. In more degenerate ases suh an approah might fail,and one has to fall bak to an exat omputation. In the spirit of the EGC paradigmseveral tehniques have been implemented to ensure exat prediate evaluations, suh aslazy-evaluation, adaptive omputations, and �oating points �lters; see [She96℄, [BEPP97℄,[MN00, �9.7℄, [FM02℄ and �2.3.2.The example of a fully �ltered geometry kernel is given in [KN04℄. It is also possibleto �lter geometri onstrutions. If so, one �rst reates a non-expensive (approximative)representation that serves non-ritial needs, but whih su�es to be onverted to an exatrepresentation if needed, for example, in degenerate situations. One option is to representthe intersetion point of urves by a onstrution graph (i. e., its onstrution history)along with a rough approximation of its oordinates. The work of Hanniel and Wein onBézier urves [HW07℄ implements suh a tehnique.Combining these two paradigms in geometri programming leads to onvenient odethat allows an easy swith to other number types, other omputation tehniques (maybewith �lters), or instantiate generi ode with exatly those objets a user is demanding for.All in all, it is usually just a minor hange in the ode. Often, it only requires to hangea few type de�nitions.For the sake of ompleteness, we mention that ontrolled perturbation is another teh-nique to attak the mentioned, not very pratial, assumptions. It has been introduedby Halperin and Shelton [HS98℄. Its entral idea is to perturb the input in a ontrolledfashion, suh that degeneraies vanish and �nite preision su�es to implement onsistentand orret prediates for non-degenerate ases. The sheme usually adapts the perturba-tion and the required preision in several rounds until a orret result for a slightly wronginput is obtained. Controlled perturbation lead to �xed preision algorithms for numerous



50 Algebrai Foundations, Geometri Programming, Arrangementsgeometri appliations; see [HL04℄, [EH05℄, [HS98℄, [Raa99℄. It also onstitutes a simpleand generi framework [FKMS05℄,[MOS06℄.Despite of the suess of ontrolled perturbation, this thesis does not pursue this ap-proah any further, but fousses on the EGC paradigm. In this light, we want to mentiontwo software libraries that exellently show with some of their main ontributions theEGC's right to exist.2.2.3. The Computational Geometry Algorithms Library (Cgal)Cgal - the Computational Geometry Algorithms Library has been started in 1997 foundedby aademi sites in Europe and Israel. Its goal at that time (as today) is to promoteresearh in omputational geometry to reliable and e�ient software that serves bothaademi and industrial users. Sine a few years Cgal is available as an open-soureliene. For users who want to hide their developed ode using Cgal from the publi (bethey industrial or aademi) GeometryFatory [8℄ sells proper lienes.Cgal follows the generi programming (see [BKSV98℄) and the exat geometri om-putation paradigms, whih means that properly instantiated it always omputes the orretresult and never fails. For a detailed explanation of this topi we refer to [3, �The CgalPhilosophy�℄.Central part of the library are geometri kernels. A geometri kernel ontains onstant-size non-modi�able basi geometri objets (e. g., in two-dimensional Cartesian oordi-nates) and a large set of basi operations on them. In addition to the kernels, Cgal par-titions its ode with respet to a wide range of geometri problems or data strutures intopakages. We exemplary mention onvex hulls, triangulations, Voronoi diagrams, meshingand subdivisions, geometri optimizations, kineti data strutures, and the Arrangement_2pakage that we strip down in �2.4.3. The main lasses and algorithms of eah pakage areusually templated and expet traits lasses that de�ne the geometri objets onsideredand the required operations on them. Of ourse, Cgal provides traits lasses for well-known and wide-spreaded objets, suh as segments, lines, irles, triangles, meshes andmore. Very often, one of Cgal's basi geometri kernels (2D, 3D, dD) already ful�lls therequirement to serve as a model for a templated algorithm or data struture.The appliation programming interfae (API) of the library and eah pakage is imple-mented in the spirit of the Stl. This way, an easy and onvenient onnetion of Cgal withother software through iterators and funtors (as, e. g., the Boost libraries) is ensured.The basis of Cgal is onstituted by non-geometri support failities, suh a generators,iterators, I/O-apabilities, visualization interfaes, and a tremendous support for numbertypes and algebrai strutures, like polynomials. The later entities have been redesignedin for Cgal's urrent publi release 3.3 with respet to the experiene that the Exaus-projet (see �2.2.4) gained in this area. It was a non-trivial task to exhange nearlythe full support by a muh more powerful implementation, while still keeping bakwardompatibility issues. The orresponding hapter [Hem07a℄ of Cgal's manual pages givesa detailed introdution to that important part of the library. Main basi number types11that we deal with in this thesis are taken from Leda and Core, that is, we rely on theirexat implementation of integers, rationals, and big�oats, as well as the interval type fromBoost.11Cgal's Number_type pakage has also reeived non-trivial adaptions with the integration of Exaus.



2.2. Implementing geometri algorithms 51Cgal is a living projet, thus it is ontinuously improved and new geometri problemsare takled every day by a large number of developers worldwide. Code quality is ensuredby Cgal's Editorial Board that reviews new submissions of pakages, and an exhaustivetestsuite. This quality is known in the aademi ommunity and also for a growing numberof industrial users, whih states the suess of Cgal. For all further details of the librarywe refer to its website [3℄ or its omprehensive manual [CGA07℄.Ongoing work in Cgal that is touhed and in�uened by the aura of this thesis, butbeyond our atual ontributions, is the design and the implementation of algebrai kernels,mainly in one and two dimensions, whose details we present in �2.3.3.2.2.4. Libraries for Exat Algorithms for Curves and Surfaes (Exaus)The Exaus-projet has been founded in 2001 at the Max-Plank-Institut für Informatikin Saarbrüken in order to implement E�ient and Exat Algorithms for Curves andSurfaes as a olletion of C++-libraries. The fous of the projet has always been totakle problems in omputing with urved objets that are algebraially de�ned followingthe exat geometri omputation paradigm. These goals turned out to be also a demand-ing soure for missing basi mahinery, as, for example, integrating implementations fore�ient and erti�ed real root isolation.While in the �rst years of its development it was advantageous to experiment withdesign rationales. With growing maturation, the separation from Cgal has beome dis-advantageous, as Cgal also started to dig into the non-linear world. Therefore, theExaus-developers deided in 2005 to merge their libraries as new pakages into the moreprestigious and popular Cgal. Thus, Exaus is no longer on a release trak, insteadlass-by-lass moves. This reloation is an on-going task, as �rst Cgal should not breakup, seond demos in Exaus are expeted to work during their move to Cgal, and thirdExaus' development proess should smoothly migrate towards Cgal, too.We shortly repeat in the following Exaus' main libraries with their ontent and theirstatus with respet to the move. Thus, although more detailed, the artile publishedin 2005 [BEH+05℄ turns out to be slightly outdated. The goal of our desription of thelibraries is to give an overview, while terminology that we use is either taken from thestandard literature on this topi, or, if relevant for the thesis, given more detailed in �2.4and �2.1.Support This library provided basi support for non-geometry-related objetives. Itused to ontain memory alloation, I/O-methods, timers, basi enumerations andthe Handle_with_poliy lass that implements a (possibly hierarhial) referene-ounting sheme [Ket06℄. Atually, main parts were loan from Cgal. These days,Support is not existing anymore. Classes that do not have an adequate alterna-tive in Cgal or Boost have been integrated in Cgal's basi pakages, suh as thementioned Handle_with_poliy.NumeriX The support for number types and algebrai strutures developed in this li-brary has been the suessful prototype of Cgal's new and urrent basis for thisbusiness. Thus, this part has already moved ompletely to Cgal. Reently, theExaus' polynomials also have been integrated as Polynomial pakage of their ownin Cgal [Hem07℄. Parallel to it, various representations for real algebrai numbers



52 Algebrai Foundations, Geometri Programming, Arrangementsand a ouple of real root isolators exists; see [EK08b℄ for relevant parts in Cgal'sAlgebrai_kernel_d pakage. The library also ontains other smaller lasses, whose�nal role in Cgal is not determined yet. Some of them will move mostly unhanged,others an be expressed in terms of a more sophistiated design hosen for lassesthat already moved to Cgal. We omit details on this.SweepX ontains a generi sweep line algorithm [BO79℄ (see also �2.4.2 for a review ofthe algorithm) whose output is represented as Leda-graph enhaned with geomet-ri information. Atually, it is based on Leda's implementation for line segmentintersetions [MN00, �10.7℄. The library also provides a generi implementation toperform regularized boolean set operations on polygons whose boundaries are de-sribed by urved ars. We stopped to develop this ode, as it is published undera speial restritive liene and Cgal's Arrangement_2 pakage o�ers muh more�exible and extendable ounterparts.In ontrast, we already extrated and improved an important module from SweepXas pakage in Cgal. A framework to represent points and ars on urves that an beanalyzed is now available as Cgal's Curved_kernel_via_analysis_2 pakage. Thispakage plays an important role for our work. We are using it instantiated withalgebrai urves. Its details are presented in �2.4.4. The orresponding visualiza-tion [Eme07℄ also has already found its way into Cgal, and an even be used torender arrangements on a surfae; see �4.6.2.ConiX,CubiX,AliX Eah of these libraries implements the analysis of a single algebraiurve and the analysis of pairs of them. ConiX has been implemented �rst andsupports urves of degree up to 2 (onis, [BEH+02℄), while CubiX an deal withurves of degree up to 3 (ubis, [EKSW06℄). AliX is the newest library. Itsanalyses does not have any restrition on the degree of the supported planar urves;12see [EKW07℄, [EK08a℄. �2.3.3 repeats its main ahievements. Very reently, thedevelopment of AliX has stopped, and its ingredients have been interfaed asCgal's new Algebrai_urve_kernel_2; we refer to �2.3.3 for more details. Theother libraries might be integrated as �lters (see �2.3.2) for low-degree urves. Furtherlasses, suh as ombinatorial representation in ConiX, will be integrated elsewherein Cgal.QuadriX The library urrently still implements two approahes with respet to algebraisurfaes of degree 2, so-alled quadris. One approah uses a parameterization of theintersetion urves [DHPS07℄, while the other approah projets them onto the xy-plane. For the latter, a speialized planar urve (and pairs of them) an be analyzedand lifted bak [BHK+05℄. In this thesis, we show how to box the approah usingCgal's new hierarhies.For a short time, we added algebrai surfaes of arbitrary degree to this library.Obviously, this addition was only temporarily as the whole library is planned to bemaintained as a new pakage in Cgal, that is, the surfaes already found their plaein Cgal's new Algebrai_kernel_d pakage. Chapter 5 takes up the disussion ofalgebrai surfaes.12Theoretially. In pratie, the required running time onstitutes limits on reasonable algebrai degreesof the urves.



2.3. The arithmeti and algebrai tool kit 53Main ontributors of Exaus are the authors of [BEH+05℄ and Pavel Emeliyanenko,Mihael Kerber, and Sebastian Limbah who joined more reently. Both libraries, Exausand Cgal, provide, besides other libraries, a large set of various lasses and tools on whihwe rely in this thesis. We ontinue to present our kit.2.3. The arithmeti and algebrai tool kit2.3.1. Arithmeti and number typesGeometri algorithms are losely oupled with arithmeti. As we learned in �2.2, geometrialgorithms assume the real RAM, whih is not modeled by omputers. In ontrast, thehardware provides standardized �xed-size integers and IEEE 754 [IEE85℄ �oating-pointarithmeti. Both have the drawbak of limited preision, that is, it is not possible to modelarbitrary large or preise values. The hardware �oating-point numbers (like double) modelonly a �nite and disretized subset of Q ⊂ R, whih implies rounding errors. Both fatsgo against the onditions for the real RAM. In fat, also no software type exatly ful�llsthese onditions.Consider a bit-array of variable length, that models arbitrary-size integers. Here, thevariable length is a ontradition to the onstant-time operations assumed. Similar forrational numbers modeled as a pair of integers. Usually, rational numbers are onsideredas the fundamental arithmeti type for geometri appliations, as it allows to input ex-at information, for example, the endpoints of a triangle. In terms of software, severallibraries are available to model arbitrary-size integer and rationals. Examples are Gmp [9℄Mpfi [11℄, Mpfr [12℄, Leda [10℄, and Core [4℄. A speial subset of rational numbers,namely �oating-point numbers whose preision an be determined at run-time, so-alledbig�oats, are also provided by some of the libraries.But rational numbers are not the end of the road, as for ertain geometri operations,suh as the omputation of the intersetion of objets, we quikly reah (real) algebrainumbers of higher degree. So the dilemma is, how to deal with them, when only rationalarithmeti is e�etively available. As presented in �2.1.2 various methods exist to modelalgebrai numbers. The exat approah using algebrai expressions is implemented byCore's Expr number type and Leda's real number type. On the other hand, Cgalprovides a generi type to represent real algebrai numbers using a square-free polynomialand an isolating interval; see De�nition 2.16. Being suh generi allows to selet both maintypes: For the interval boundaries usually a rational number is hosen, while intervals ofbig�oats are also ondutable. The type of the polynomial's oe�ients is also seletable.Beyond integral oe�ients, it is possible, for example, to represent roots of f ∈ Q(
√

2)[t].A speial subset of algebrai numbers (for example to represent suh oe�ients) are�eld extensions by square-roots, for example, Q(
√

2). Cgal provides a number typeSqrt_extension that allows to represent one-root numbers α in the form α = a + b ·√c,where usually a, b, c ∈ Q. However, a nesting is also possible, that is, some ases requirethat a, b, c are already of type Sqrt_extension. This nesting poses no problem for thistype. Example usages are: Rotating urves by algebrai angles [BCW07℄, or representinga parameterization of the intersetion urve of two quadris [LPP06℄. We give anotherin Chapter 3.All these libraries are freely available for open-soure aademi developing.



54 Algebrai Foundations, Geometri Programming, ArrangementsIn order to ombine related number types, Cgal de�nes an ArithmetiKernel onept.Two models are available: One for the number types of Leda and one for the numbertypes of Core. Eah lass onsists of type de�nitions for integers (Integer), rationals(Rational), exat �oating-point numbers (Exat_float_number), and algebrai numbersusing algebrai expressions (Field_with_kth_root). If not stated otherwise, we are usingthe Core-version (CORE_arithmeti_kernel).Interval arithmetiPerforming arithmeti on exat algebrai numbers is ostly. However, it is often the ase,that an approximative solution su�es to dedue the orret answer. Interval arithmetiis one tehnique to ahieve this goal. Instead of an exat value, we store an interval thatapproximates the value from below and above, also alled the inlusion property. Eaharithmeti operation preserves this property, that is, the exat result of the operationis also ontained in the resulting interval. Several variants of interval arithmeti exists.Some of them try to minimize an intrinsi drawbak of the method, namely the over-estimation after an arithmeti operation. In our setting, we rely on Boost's [2℄ intervalarithmeti apabilities. Its implementation allows to hoose the number type of the intervalboundaries, for whih we typially hoose rational numbers or Leda's big�oats. Note thatCore's BigFloat type already implements an interval. Interval arithmeti is usually hosenas a �lter, for example, to detet whether an algebrai expression may be equal to 0.2.3.2. FiltersIn geometri prediates we are mainly interested in the sign of an algebrai expression.Though, exat or multi-preision arithmeti produes orret results, their usage is quiteexpensive ompared to the unit-ost model of onstant-preision �oating-point arithmetiin hardware, whih often omputes an almost orret result. The error propagation isusually of small amount. A wrong sign happens to appear if the value of whih the signis sough is (lose to) 0. Geometrially, we an identify degenerate or near-degeneratesituation for suh ases. In ase the value is not (lose) to 0, the omputed sign is usuallyorret. The solution to this dilemma is a method that ombines approximative methodswith a orretness guarantee for the ase it sueed. Before we dig into the details, let usintrodue the onept of a �lter generially.De�nition 2.36 (Filter). A �lter is a tehnique to ompute a deision with an approxima-tive method that also provides a erti�ate saying that the omputed deision is identialto the deision when omputing it with an exat method.If the erti�ate annot guarantee the orretness of the deision omputed by approx-imated methods, we all it a �lter failure. In this ine�etive ase, another method mustbe used to ompute the orret deision, for example, a �lter with more preision, or theexat method.For a onrete appliation it has to be heked, whether a �nally orret result isrequired. In the EGC paradigm, that we follow, this is mandatory. When utilizing a�lter it is expeted that it often sueeds, and the osts of the remaining exat fall-baks(where no �lter applies) will be amortized over many alls of a prediate. Finding theoptimal �lter is non-trivial, and depends on various fators. The struture of operations



2.3. The arithmeti and algebrai tool kit 55in a prediate and how eah a�ets the omputational error are suh fators. On the otherside, the input data also in�uenes the suess of a ertain �lters, as it fails more often in(almost) degenerate situations. Typially, a asade of �lters is a good idea. It �rst triesthe less preise and fastest one, and in ase of failures it ontinues with more preise andmore expensive ones. We next present some �lter tehniques used in geometri algorithms.Arithmeti �lters We already mentioned in the introdution to �lters that inexat arith-meti omputation often leads to orret result (e. g., in terms of a omputed sign). Varioustehniques exploiting this fat exist. One of the easiest one is interval arithmeti that wealready introdued in �2.3.1. Arithmeti expressions and polynomials an be evaluatedusing interval arithmeti. It should be remarked, that a naive way may lead to unnees-sarily bad results, or in other words: There exist evaluations shemes that minimize the(expeted) error.Interval arithmeti is a very e�ient way to hek, whether an arithmeti expressionan evaluate to zero or not: If the resulting interval does not ontain zero, the sign isdetermined. It depends on the appliation, of whih type the interval boundaries are. Itis very ommon to use hardware �oating-point arithmeti for this purpose. However, wemainly use rational arithmeti, as the boundaries of isolating intervals of real algebrainumbers are usually represented as suh. This enables to quikly hek, whether a poly-nomial at some algebrai α an be 0. For example, Algorithm 2.6 an be enhaned withsuh a �lter, that is, before omputing the ostly gcd. Anyhow, an even better �ltering ofa gcd-omputation an be established with modular arithmeti; see below.Interval arithmeti is a dynami �lter, that is, no prior analysis of the arithmetiexpression is required. To its ontrary, stati �lters apply an o�-line analysis of possibleerrors, and design the �lter with respet to this analysis [FV96℄. As we are not using stati�lters, we skip their disussion.Modular arithmeti Modern omputer algebra systems heavily rely on modular arith-meti, whih also holds for the algebrai omputations that we are exeuting. Togetherwith the Chinese remainder theorem it speeds up several algebrai algorithms, like the gdor the resultant omputation; see, for example, [vzGG99℄. In addition, it an be used asa very e�ient �lter. The reason it that it is often possible to exlude that some value iszero by omputing its modular orrespondent with respet to one prime only. The modularorrespondent requires only a �xed number of bits, whih is the ruial fat for the e�-ieny of the �lter. We want to mention that the vast majority of algebrai omputationsonduted in this thesis are �ltered with modular arithmeti in the atual implementation.For details see [Hem07b℄ and [HH07℄.Geometri �ltering Filters are not restrited to arithmeti expressions. An approximateversion of a geometri objet also allows to derive a orret deision in some ases. Awell-known tehnique is to �lter a routine that omputes the intersetions of two geometrishapes. For that purpose eah objet an be enhaned with a bounding box. The rationaleof the intended �lter is, that two suh objets only interset, if their bounding boxesinterset. Figure 2.3 lists the three possible ases. Suh boxes an be represented withrational or even fast �oating-point arithmeti. If they are axis-aligned, their intersetiontest redues to a few omparisons.



56 Algebrai Foundations, Geometri Programming, ArrangementsFigure 2.3. Geometri �ltering by bounding boxes
(a) Bounding boxesdo not overlap, thusno intersetion (b) Bounding boxesoverlap, but no in-tersetion ontained () Bounding boxesoverlap, an interse-tion is ontainedWe exemplary mention the intersetion tests of two ars on oprime onis. If theirbounding boxes do not interset, the �lter avoids to try to ompute intersetion pointswhose oordinates are algebrai of degree up to 4. Other examples for applying boundingbox �lters are given in [PTT06℄ and [Ker08℄.Combinatorial dedution We have already seen an example of ombinatorial dedution,namely the m-k-Desartes method, where additional information on a non-square-free poly-nomial allows to lead the Desartes method to a termination.The rationale of a ombinatorial dedution is to use available ombinatorial informationto simplify the problem, or to exlude a non-trivial set of solutions, similar to a branh-and-ut strategy in ombinatorial optimization. In what follows, we often use the degree ofa polynomial as a bound on the number of possible solutions. An example is a speializedimplementation to analyze algebrai surfaes of degree 2 as it is onduted in Exaus'ConiX library. We present another appliation in in �5.4.2.2.3.3. Algebrai kernelsMost geometri prediates required in algorithms of omputational geometry are expressedin terms of algebrai omputations. In order to be prepared for suh omputations Cgalfollows the generi programming paradigm to speify algebrai kernel onepts.ConeptsInCgal, there is no single algebrai kernel onept. In ontrast, the projet has introdueda hierarhy of onepts that de�nes what omputations are expeted from di�erent kindsof algebrai kernels. The onepts have been designed by the author in ollaborationwith Mihael Hemmer, Menelaos Karavelas, and Monique Teillaud in the lifetime of theAs-projet [1℄ and improved in a series of tehnial reports [BHK+06a℄, [BHKT07℄. The�nal review by Ron Wein [Fab07℄ lead to the urrent version [BHKT08℄ that we skethnext. The hierarhy onsists of three layers. Eah layer expets basi algebrai types andoperations on them.AlgebraiKernel_d_1Types:
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• Polynomial_1 for univariate polynomials
• Coeffiient its oe�ient type
• Algebrai_real_1 for real algebrai numbers (real roots of univariate polyno-mials)
• Boundary is the type for the boundaries of isolating intervalsOperations:
• On polynomials, the following self-explaining basi operations are expeted:Is_square_free_1, Make_square_free_1, Square_free_fatorize_1, andIs_oprime_1, Make_oprime_1.
• Solve_1 is expeted to implement a real root isolation, while Sign_at_1 om-putes the sign of a polynomial at a given algebrai real.
• With Lower_boundary_1 and Upper_boundary_1 it is possible to approximate asingle algebrai real, while Refine_1 takes are to improve the approximation.
• Two real algebrai numbers an be ompared with Compare_1, and if they arenot equal) Boundary_between_1 returns an intermediate value between themAlgebraiKernel_d_2This onept re�nes the univariate onept, by adding bivariate types and operations.Types:
• Polynomial_2 for bivariate polynomials (using Coeffiient)
• Algebrai_real_2 for zero-dimensional solutions of equational systems de�nedby bivariate polynomialsOperations:
• The polynomial operations naturally extend to the bivariate ase:Is_square_free_2, Make_square_free_2, Square_free_fatorize_2, andIs_oprime_2, Make_oprime_2.
• Central operations of the onept are to ompute the zero-dimensional solu-tions of bivariate systems with Solve_2 and to determine the sign of a bivariatepolynomial at a given Algebrai_real_2 with Sign_at_2.
• For a single solution, aess to its individual oordinates is granted by Get_x/y_2that returns instanes of type Algebrai_real_1. The two oordinates anbe approximated independently as �interval� with Lower_boundary_x/y_2 andUpper_boundary_x/y_2; a oordinate-spei� approximation an be improvedwith Refine_x/y_2.
• For possible performane tuning, speialized (lexiographi) omparisons ontwo solutions are expeted: Compare_x_2, Compare_xy_2, Compare_y_2. If aoordinate is not equal, it is possible to ompute a value between two withBoundary_between_x/y_2.AlgebraiKernelWithAnalysis_d_2This most re�ned onept expets two additional types that interpret bivariate poly-nomials as real algebrai urves in the plane; see De�nition 2.22.
• Curve_analysis_2 analyzes a urve in the spirit of a two-dimensional ylindri-al algebrai deomposition, that is, a y-per-x-view is established. To be more
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(b) Unbounded urveFigure 2.4. The analysis of a single urve provides information on the urve at eah x-oordinate, in partiular the ritial ones, and for representative boundaries in the openintervals indued by them. For eah queried x-oordinate a status-line is onstrutedthat stores how often the urve intersets the line, the ar number and inidene numbersfor eah intersetion and a geometri approximation (green box). The analysis alsoprovides aess for information on possible vertial asymptotes of the urve; this aseis not exampled in the �gure.preise, for eah x-oordinate x0 ∈ R it is possible to aess a Status_line_a_1that provides information about the urve's geometry and topology at x0: Thenumber of distint intersetions of the urve with the line x = x0, their oordi-nates, and how branhes of the urve to the left and right are onneted withthese intersetions (also known as inidene numbers); see Figure 2.4 for exam-ples of analysis of single urves and �2.1.4 for basi terminology on (algebrai)urves.
• Curve_pair_analysis_2 provides, in the same spirit, y-per-x-information forpairs of oprime urves at eah x-oordinate. For a given x0 ∈ R an instane ofStatus_line_pa_1 desribes the pattern how the two urves interset the line

x = x0. Figure 2.5 gives an example of an analysis for a pair of urves.The ruial fat is, that a given urve or pair of urves only has a �nite number ofdi�erent loal topologies. That is, if only the topologial information is desired, itsu�es for a urve (or a pair of urves) to ompute the status line instanes at all
x-oordinates of the event points and at a (rational) representative x-oordinate foreah of the intervals that are indued by the events' x-oordinates. Implementationsare reommended to take are of it and to bene�t from this issue. Solely, the geomet-ri information at a speially queried x-oordinate requires loalized omputations,that is, to ompute another status line at a non-representative point in an induedopen interval. In general, it is advised to ompute status lines only on-demand, andto ahe them after they have been omputed for the �rst time.ModelsConepts for algebrai kernels should also be modelled. Some already have been published,eah implementing a di�erent strategy.
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gFigure 2.5. Analysis of a pair of urves f and g: For eah ritial x-oordinate andfor eah indued open interval, we onstrut a status line that stores a string re�etingthe intersetion pattern of the two urves in inreasing y-order along the line. Theharater 'I' in the string enodes an intersetion of urves f and g.
• A purely univariate model has been proposed by Lazard et al. [LPT08℄, whose polyno-mial's oe�ient type isGmp's type for arbitrary-length integers, while the boundarytype usesMpfr. Real roots are isolated by using the interval Desartes method takenfrom Rs [14℄, [RZ03℄. The re�nement of their intervals applies quadrati re�nementby Abbot [Abb06℄. There is no hoie of number types.
• The Synaps projet [16℄ also implements a univariate model for whose real root iso-lation several approahes are available: Using Sturm sequenes, using sleeves (i. e.,lower and upper bounds on the polynomial), and several implementations for on-tinued frations [TE08℄ (some with enhaned support from the Ntl [13℄). Again,Synaps de�nes the number types.
• Cgal implements a univariate algebrai kernel lass-template alledAlgebrai_kernel_d_1< AlgebraiRealRep, RootIsolator >See [HL07℄ for details. It has its origin in Exaus' NumeriX library. Its �exibil-ity onsists of the parameters: The �rst allows to hoose the representation of thealgebrai real type while the seond determines the method for real root isolation.From the �rst parameter it also dedues the type of the univariate polynomial, itsoe�ient type, and the boundary type of the isolating intervals.The authors provide di�erent hoies for eah parameter: For algebrai reals there ex-ist Algebrai_real_rep using rational boundaries and Algebrai_real_rep_bfi thatrepresents boundaries as intervals of big�oats. Quadrati onvergene for inter-val re�nements is enabled by using Algebrai_real_quadrati_refinement_rep_bfi;see [Abb06℄. None of them is restrited to a ertain number type to represent thepolynomial's oe�ients. Several valid hoies exist in Core, Leda, and Cgal;even Cgal's Sqrt_extension type is oneivable.



60 Algebrai Foundations, Geometri Programming, ArrangementsTo isolate roots, there is the hoie between the Desartes method as proposedin [CA76℄ and the bitstream Desartes method approximating the exat oe�ientswith ever-growing preision; see [EKK+05℄ and [Eig08℄. If not stated otherwise, weselet as default the b�-version with Abbot's re�nement and the bitstream variantfor real root isolation.The di�erent models have been ompared with eah other on polynomials with di�erentharateristis (inreasing bit-length of oe�ient, inreasing degree, Mignotte polynomi-als, and more) [EHK+08℄. However, there is no superior implementation for every input.We only want to remark that for large bit-lengths, the bitstream Desartes method salesbest; we expet remarkable bit-lengths in the appliations that are presented in Chapter 4and Chapter 5.Classes that model bivariate onepts are also available.
• Cgal's Algebrai_kernel_for_irles_2_2 is a model of the AlgebraiKernel_d_2onept. It supports the algebrai omputations that are demanded from Cgal'sCirular_kernel_2. In partiular, the types to represent polynomials are speializedto irles, and the types for real algebrai solutions are limited in its degree by 2.More details an be found in [BHK+06b℄ and [PT07℄
• Very reently Mihael Kerber has re-interfaed the ingredients of Exaus' AliXlibrary whih now forms Cgal's �rst model of the AlgebraiKernelWithAnalysis_d_2onept, alled Algebrai_urve_kernel_2 (or ACK_2 for short in this thesis). It re-�nes a given univariate algebrai kernel. Central to this model are the analyses ofurves and of pairs of them. This is very advantageous in ases where the kernelis mainly used beause of these features. On other side, the resulting inevitable

y-per-x-view also has some drawbaks with respet to other funtionality: Due tothis projetion ansatz the representation of y-oordinates is not expliit but onlyapproximative. That is, a symboli, usually ostly, omputation is required wheneventually aessing (Get_y_2) or omparing (Compare_y_2) arbitrary y-oordinates.Thus, it is reommended to hek whether the projeted appliation atually ravesfor these operations. Another example is the implementation of Solve_2 that �rstanalyzes two algebrai urves and then queries the orresponding pair to report thezero-dimensional solutions. This might pose a omputational overhead, and oneshould arefully hek whether it an amortize. As we mainly ompute arrange-ments, we are not su�ering from these problems. All required prediates providedby the Curved_kernel_via_analysis_2 fully rely on the analyses of urves diretly,using exhaustively the (ombinatorial) y-per-x-information; see �2.4.4.It should be remarked, that implementing robust and e�ient urve analyses is aresearh topi on its own and we desist from going into full detail. However, below,we review main results from this area of researh and emphasize, in partiular, high-lights of Cgal's new fully-�edged bivariate algebrai kernel. For more details on thekernel's design, we refer to [EK08b℄.
• This referene atually desribes a prequel of the previously desribed kernel. Thisprequel is still available internally, whih allows to ope with still existing analysesof urves in Exaus's libraries: Tehnially, the Algebrai_urve_kernel_2 an beompiled in wrapping mode. Then it expets, besides the parameter for the univari-ate kernel, a seond parameter: CurvePair_2. The parameter must be instantiatedwith an Exaus-type that analyzes a pair of urves. Note that this type omprises



2.3. The arithmeti and algebrai tool kit 61as nested type Exaus' ounterpart of the analysis of a single urve. In other words:The Algebrai_urve_kernel_2 in wrapping mode mainly rewrites the depreated in-terfae of Exaus-lasses to ful�ll the AlgebraiKernelWithAnalysis_2 onept. Foursuh lasses for pairs of urves exists:� Coni_pair_2 taken from ConiX, for algebrai urves of degree at most 2;see [BEH+02℄ and [Hem02℄.� Cubi_pair_2 taken from CubiX, for algebrai urves of degree at most 3;see [EKSW06℄ and [Eig03℄.� P_quadri_urve_pair_2 taken from QuadriX, for algebrai urves that rep-resent projeted silhouettes and intersetions of quadris. Suh urves do notexeed a degree of 4; see [BHK+05℄ and [Ber04℄.� Algebrai_urve_pair_2 taken from AliX, for algebrai urves of arbitrarydegree; see [EKW07℄ and [EK08a℄. These lasses are not maintained anymore.The ode already has moved into the non-wrapping Algebrai_urve_kernel_2of Cgal.The wrapping allows to still use the speialized analyses, in partiular, for onis, and,as we see in Chapter 3, for projetions of quadri intersetion urves. Of ourse, thelong-term plans are to onsider the low-degree analyses as possible �lters for the non-wrapping Algebrai_urve_kernel_2. However, this requires reliable performaneomparisons and some developing time.
• A kernel that an deal with rotations is urrently in an experimental status. TheRotated_algebrai_urve_kernel_2 allows to rotate algebrai urve around a givenpoint by angles α whose sin is a (nested) one-root number. For example, sin(45◦) =

1
2

√
2. To do so, the kernel uses as Coeffiient type Cgal's Sqrt_extension numbertype. Further details an be found in [BCW07℄ (for onis) and [Ker℄.

• Finally, there exists Filtered_algebrai_urve_kernel_2 ful�lling the most re�nedAlgebraiKernelWithAnalysis_2 onept. It tries to prevent ostly algebrai omputa-tions, like resultant omputations, by upstream �lters using approximative boundingboxes. Details and results an be found in [Ker08℄.Analyzing algebrai urvesThe e�etivity and e�ieny of an exat bivariate kernel model an depend on the under-lying analysis of algebrai urves. In partiular, if there is no restrition on the degree,the exat analysis of algebrai urves and omputing the solutions of a bivariate zero-dimensional polynomial systems are hallenging tasks. The ad-approah, as presentedin �2.1.6, states a generi solution.If only aiming for the analysis of a single urve, it is very popular to restrit theomputation to its topology; see [GVEK96℄, [GVN02℄, [SW05℄, and [MPS+, �3.6℄. It isommon that suh approahes hose a generi oordinate system This avoids the handlingof degenerate situations with respet to the oordinate system (e. g., overtial x-extremepoints). Only some of them are available in software, and none of them ful�lls the desiredAlgebraiKernelWithAnalysis_2 onept.For more than one urve, most solutions13 restrit the maximal allowed degree, for ex-ample irles [DFMT02℄, [WZ06℄, onis [Wei02℄, [BEH+02℄, [EKP+04℄, ubis [EKSW06℄,13Some of them atually do not fous on the analysis of urves, but have to do it somehow in order tosupport arrangements of theses urves.



62 Algebrai Foundations, Geometri Programming, Arrangementsand projeted intersetions of quadris [BHK+05℄. There also exist solutions not restritedin the degree, but speialize for a ertain input, namely Bézier urves [HW07℄ and non-singular algebrai plane urves [KCMK00℄, [Wol03℄. As mentioned before, some of theman be used to de�ne a model of the AlgebraiKernelWithAnalysis_2 onept. However, thereare only two implementations, that pose no restrition on the input urves: Synaps [16℄laims to ful�ll the the most powerful algebrai kernel onept; however, detailed informa-tion and aess to the implementation is missing. The hoie of number types is �xed.The seond one is the matured implementation in Cgal's Algebrai_urve_kernel_2.This is the most generi implementation and full details are given in a sequene of publi-ations [Ker06℄, [EKW07℄, [EK08a℄, [Ker℄. The solutions has several advantages. It
• ful�lls the AlgebraiKernelWithAnalysis_2 onept,
• has no restritions on the input, that is, urves an have arbitrary degree, and on-tain degeneraies, like singularities, overtial intersetions, vertial asymptotes, andisolated points, and
• is available in Cgal.14Thus, its key ontributions onsist in the exat topologial and geometrial analysis ofsingle arbitrary real algebrai urves and pairs of them.Its e�ieny is established by several levers. One is an extensive ahing strategy,another reason is the lazy-evaluation sheme, that is, ertain results are only omputedon demand and then stored for further queries. However, the main lever for e�ienyis a lever ombination of (unavoidable) exat omputations, like resultant and greatestommon divisor, with erti�ed numerial (�lter) methods, for real root solving. The hosenapproximative methods often replae usually ostly symboli omputations, while stillguaranteeing the orretness of the overall result. The entral approximative tool is thebitstream Desartes method (see �2.3.4) for the square-free ase, and its m-k-variant fornon-square-free polynomials. It is used to ompute the loal topology of a urve at somealgebrai x-oordinates α, by mainly isolating the real roots of fα := f(α, y) ∈ R[y],where f is the de�ning bivariate polynomial of a urve. The value α is hosen amongthe x-oordinates of the urve's ritial events whih are usually of non-trivial degree,and rational values in between. How to realize this tehnially is desribed in �2.3.4.However, there are still ases, where suh approximate methods fail. For exat symboliomputations, the Sturm-Habiht sequene (see �2.1.1, also known as (signed) subresultantsequene [BPR06, �4℄) is used. In fat, it is the omputation of this sequene that mainlylimits the pratiality of the approah for higher degrees. A key goal for the future is toreplae the resultant omputation with a modular version, as it it already done for the

gcd; see [Hem08, �2.3℄An important information is, that the obtained analyses are expressed with respetto the original oordinate system, that is, they do not expet the input urves to be ingeneral position. However, an internal hange of oordinates (a shear; see �2.1.4) an beapplied, for example if the urves have vertial asymptotes or overtial ritial points. Asubsequent bak-shear step reovers the original geometri information from the shearedversion. Besides the polynomial sequenes, it is the shear-and-bak-shear approah thathas signi�ant in�uene on the running time. Ideas to avoid the hange of oordinatesmore often might be implemented in a future version.14Contained in an internal release, but subjet to be publily available with one of the next o�ialreleases of Cgal.



2.3. The arithmeti and algebrai tool kit 63Our hoie In our entral hapters we are demanding for bivariate algebrai kernels withanalyses that handle urves of degree 4 and even more. For that purpose, we mostlyrely on Cgal's new Algebrai_urve_kernel_2, espeially in Chapters 4 and 5, while theexperiments in Chapter 3 are still with respet to the quadri-spei� analyses of projetedurves implemented in Exaus' QuadriX library.The atual reason why we are demanding for suh kernels is to ompute arrangements ofalgebrai urves. We disuss arrangements in �2.4, in partiular two-dimensional ones. Forthat purpose a set of geometri types and operations is required. A generi implementationproviding these is presented in �2.4.4; it relies on analyses of urves.2.3.4. Interfaes for the bitstream Desartes methodWe lose our disussion of the algebrai tool kit with tehnial details on how to interfaethe bitstream Desartes method. In fat, there are two mu�s to ouple. For both thegeneri programming paradigm does a good job. The implementation of the bitstreamDesartes method (BDM) provided by Arno Eigenwillig maintains a subdivision tree whosenodes and leaves represent intervals enhaned with sign variations. For a given polynomial,the tree is explored by interfaing the polynomial's inexat oe�ients with an instaneof a model that ful�lls the BitstreamDesartesRndlTreeTraits onept. We �rst present theonept, followed by a list of available models. On the other side, a potential user isexpeting a very simple interfae to get the isolating (and re�neable) intervals of the realroots for a queried polynomial with bitstream oe�ients. We �nally disuss solutions howto interfae these piees of information.The traits onept for the bitstream Desartes methodAn instane of a traits lass modelling a polynomial with bitstream oe�ients and ful�llingthe BitstreamDesartesRndlTreeTraits onept is expeted to provide the following types.Coeffiient The model-spei� oe�ient type supplied during onstrution.Integer A type for in�nite-preision integer arithmeti equipped with operator>>, andoperator<<. Examples are leda::integer or CORE::BigInt.Boundary Instanes of this type are used to express omputed interval boundaries. Exam-ples are Exat_float_number< Integer >, leda::rational or CORE::BigRat).It is also required to de�ne a small set of funtors related to the types whih mainlyensure that one an approximate a Coeffiient  to any arbitrarily small absolute error
2−p, p ∈ Z and to deliver that approximation saled with 2p as an Integer i. Another ex-peted funtor is responsible to loate the leading 1-bit in the bitstream of the polynomial'sleading oe�ient.The main funtors are aessed only one for a single polynomial. This enables thatthe providing instane an maintain an internal status, An example is to hide some non-trivial approximation or evaluation proess. This is sometimes the reason that enables theisolation at all; below, we present suh a model. Finally, there is also a funtor to onvertthe internal representation of the intervals' boundaries using two Integer and one long, tothe user-supplied type Boundary.



64 Algebrai Foundations, Geometri Programming, ArrangementsModelsThe �rst model that ful�lls BitstreamDesartesRndlTreeTraits atually wraps a polyno-mial f , whose oe�ients are integral and exatly known. At �rst glane, this strategyseems weak-minded. Why do we not use all piees of information that are available? Theanswer is simply that not all information might be required. Remember that the isolationounts the number of sign hanges of a polynomial in order to determine a bound on thenumber of real roots in an interval. But omputing a sign only needs a large preisionif it is zero or lose to zero. In numerially more stable situations less preision usuallysu�es to ompute the orret sign. Thus, the bitstream Desartes method �rst ask for arough approximation of the oe�ients (eah normalized to be ontained in [−1, 1]), anddemands for more bits only until it is able to deide the Desartes test. Only in degenerateor near-degenerate ases, full preision is essential. For further details, we refer to [HL07℄and [EHK+08℄, that also ontain various sets of experiments, even in omparison withother real root isolators.The seond model isolates the real roots of a polynomial with true non-rational oef-�ients, namely fα := f(α, y) ∈ R[y], where f ∈ Z[x, y], and α ∈ R in integral intervalrepresentation α =̂(p; I). We identi�ed this setting in �2.3.3 among the task to analyzealgebrai urves. Remember that I is re�neable to arbitrary small length, whih opensthe door to approximate fα's oe�ients to any preision using interval arithmeti. Aninstane of suh a traits is onstruted from f and α and keeps the urrent approximationof α as internal status. In addition, the traits instane maintains a map to ahe alreadyomputed approximations if needed for another oe�ient. This is basially ruial, as itis reommended to only provide the number of bits of a oe�ient urrently requested bythe bitstream Desartes method. Otherwise, too muh preision an have a negative e�eton the method's performane. Although the Desartes test de�nitely omputes the orretresult, it will spend too muh time due to overwhelming preision and seond, omputingmany bits is also a ostly task on its own.Very reently, a new generi model has been added: Bitstream_oeffiient_kernel. Itimplements all neessary funtions in terms of two simple operations on the Coeffiient:
• given a oe�ient c, ompute its approximation as interval of Bigfloat numbers ofa demanded preision
• hek whether c = 0Observe that the seond atually ontradits the �bitstream� philosophy, but some-times, it is possible (by �lters or symboli omputations) to deide this test. In the asethat this test is available, the model is able to support the omputation of a stronger start-ing interval for the atual real root isolation. We remark that the previous two modelsalready rely on this wrapper.In the spirit of the seond model, we present in �5.4.2 (page 228 �) another lass thatmodels the BitstreamDesartesRndlTreeTraits onept in order to isolate the real roots of atrivariate integral polynomial whose x- and y-oordinates are substituted with algebrainumbers.Maintaining the subdivision treeWe have learned that the Desartes method an be modelled as a binary subdivisiontree whose orret traversal is essential in some ases, for example, in the m-k-variant.



2.4. Arrangements 65Thus, besides the model of the BitstreamDesartesRndlTreeTraits onept, a lass is requiredthat implements Algorithm 2.9 or one of its variants. It is responsible to initialize thesubdivision tree and to update it with respet to the omputed sign variations. That is,for the standard approah, it applies breadth-�rst searh until only intervals with signvariation 0 or 1 are left, while for the m-k-variant it also has to hek the additionaltermination onditions; see �2.1.2. The polynomial itself is interfaed by the user with aproper instane of a bitstream traits. He atually does not are about any internal treemaintenane. In ontrast, he is �nally aiming for basi interests suh as the number ofreal roots, the left and right boundaries for the isolating intervals, and a lever to re�neeah. For ertain variants, for example, the m-k-method, an extended set of informationis expeted. We exemplary mention to hek whether an isolating interval surely ontainsa simple or multiple root, or whih interval ontains the multiple root.Cgal's Bitstream_desartes lass is a model of Cgal's RootIsolator onept, thatis, it an be used as a root isolator in the generi univariate algebrai kernel that weintrodued in �2.3.3. It extensively uses C++ derivations and virtual funtions in order tospeialize with respet to some variants. For eah variant (ontaining the standard andthe m-k-method) an individual onstrutor exists. Variant-spei� base lasses ensure themaintenane of the subdivision tree with respet to the onstruted instane.Aess to information is given by some self-explaining members: number_of_real_roots,left_boundary(int i), right_boundary(int i), and refine_interval(int i). Internally,virtual funtions dispath among the di�erent variants, whih ensures that (the orret leafof) the orret tree is aessed. Calls to the members is_ertainly_simple_root(int i)and is_ertainly_multiple_root(int i) are only allowed in ase the m-k-variant onstru-tor has been used. Otherwise, virtual funtions look-ups indiate an error. The detetionof more than one multiple root by the m-k-variant triggers to throw a C++-exeption. Itan be aught in order to trigger a di�erent way, for example, using a shear.As �nal note, we mention that for the analysis of an algebrai urve there exists aspeial bak-shear variant [Ker06℄. In �5.4.2 we present a variant, that is atually abusingthe interfae to merge various root isolators. But for now, we skip further details.2.4. ArrangementsArrangements are widely known in the �eld of omputational geometry. They have beenstudied sine deades serving as key ingredients for many theoretial results and pratialappliations.De�nition 2.37 (Arrangement). Given a d-dimensional onneted spae D and a �niteset of geometri objets O that reside in D. The arrangement A(O) is the subdivision of
D indued by O into a �nite number of relatively open ells of dimension 0, 1, . . . , d. A
d-dimensional ell in A(O) is a maximal onneted subset of D that is not interseted byany objet in O.The restrition to �nite number of ells is quite natural, as otherwise, the desriptionof a subdivision with an unbounded number of ells an only be established if it has aspeial struture, for example, a periodi behavior.First researh on arrangements onentrated on theoretial results espeially on lineararrangements [Ede87℄. It turned towards the analysis and omputation of arrangements



66 Algebrai Foundations, Geometri Programming, Arrangementsindued by urved objets; see [SA95℄, [Hal04℄, [AS00℄. While most of these results on-entrate on theoretial aspets, pratiality issues also ame to the fore of researh in pastyears. This omprises to strengthen robust implementations and to improve the usabilityof arrangements. A detailed survey is given in [FHK+, Chapter 1℄ that we reommend forfurther reading. Our ontribution pursues the work on arrangements in this spirit, andespeially enlightens the speialty of two-dimensional arrangements in a three-dimensionalworld.Arrangements are a popular and important (sub)struture in various �elds. Well-knownexamples are omputer vision, robot motion planing, geographi information systems, andomputer-aided biology; see for examples [HS94℄, [HS98℄, [FH00℄, [CL07℄. These and otherappliations bene�t from big advantages of an arrangement: It provides exat aess to aontinuous problem in disretized hunks, that is, it models the deomposition of D intoa �nite number of (open) ells, whose boundaries are desribed with a �nite number ofelements. The representation is omplete, that is, no detail for a given input is missing.Often, problems an be redued to operations on arrangements, for example, existenedeisions an be expressed in terms of point loation. Or the theoretial omplexity analysison arrangements an serve as a soure of bounds, if one an formulate another problemin terms of a speial arrangement, or just one of its ells. One tehnique to transform aproblem into �arrangement�-lingo is duality, that is surveyed in [dBvKOS00, Chapter 8℄.We desist from olleting the wide range of theoretial results on arrangements in order toonentrate on the aspets of algorithm engineering when aiming for a generi and e�ientimplementation. Questions here are: How to ope with degeneraies? How to ompute anexat result?Let us start with arrangements where D = R3.Problem 2.38 (Three-dimensional arrangement). Given a set of surfaes S in R3, om-pute the arrangement A(S) indued by S, that is, ompute a representation of the sub-division of R3 indued by S. The resulting ells of dimension 0, 1, 2, and 3 are alledverties, edges, faes, and volumes.We want to spot that the de�nition makes no assumptions on how surfaes are de�ned,exept that they indue a �nite number of ells. In �2.1.5 we introdued algebrai surfaeswhih form the entral geometri input objets throughout this thesis. We are not awareof robust ode that implements Problem 2.38 for suh (generi) surfaes. We an restritto the linear ase. An arrangement indued by the losure of half-spaes under boolean setoperations in onstituted by Cgal's Nef_3 pakage; see [HKM07℄ and [Ha07℄. Thus, theimplementation supports non-manifold situations, as for example tight-passages requiredin robot motion planning. The basis of this implementation goes bak to Nef's seminalbook on polyhedra [Nef78℄. In its representation, eah vertex is surrounded by a so-alled sphere-map whih enodes the loal neighborhood around the vertex. Elements ofdi�erent neighborhoods are onneted with respet to the topology indued by the givenhalf-spaes. These onnetions are stored in a struture alled the Seletive Nef Complex(SNC). Although this idea is promising to work also for urved surfaes, we do not followthis strategy in Chapter 5, but use elimination theory, whih leads us to two-dimensionalarrangements.Problem 2.39 (Two-dimensional arrangement). Given a set of urves C in D, with



2.4. Arrangements 67
dim(D) = 2, ompute the arrangement A(S) indued by C, that is, ompute a repre-sentation of the subdivision of D indued by C. The resulting ells of dimension 0, 1,and 2 are alled verties, edges, and faes.In ontrast to the three-dimensional ase, we here let the hoie of the atual domain
D open. For this bakground information we set D = R2 and interpret it as the xy-plane,a quite natural setting when onsidering arrangements. However, Chapter 4 interprets
D = R2 only as a speial ase of a two-dimensional parametri surfae; see De�nition 2.30.Similar to Problem 2.38, the type of urves is not spei�ed, however they respet the usualde�nitions.De�nition 2.40 (Curve). A urve is a funtion γ : I → D with1. I is an open, half-open, or losed interval with endpoints 0 and 1;2. γ is ontinuous and injetive exept for losed urves where we allow γ(0) = γ(1);3. if 0 6∈ D, that is, the urve has no start point, the urve starts at in�nity or morepreise: limt→0+ |γ(t)| =∞. We have a similar ondition if 1 6∈ D;The task at issue is to transform the ontinuous problem into a �nite, disretizedrepresentation by means of ombinatorial algorithmi steps. As already learned in �2.2,suh steps are driven by evaluations of prediates, that is, by ontinuous funtions whoseoutput is disrete. This simpli�ation of the ontinuousness quikly opens the door towrong results, espeially in numerially unstable situations. Before we present the twomain algorithmi (and ombinatorial) approahes to ompute A(C) in �2.4.2, we introduein �2.4.1 the data struture that is used to represent a two-dimensional arrangement.2.4.1. The Doubly-Conneted-Edge-List (Del)A well-known data struture to represent two-dimensional subdivisions is the so-alleddoubly-onneted-edge-list, or Del for short [dBvKOS00, �2.2℄. This data strutureallows easy and onvenient onstrutions, updates, and queries of subdivisions. We give ashort introdution to the Del, while [Ket07℄ gives full details and referenes to similarstrutures.A Del (mainly) onsists of three types of kinds or reords, namely verties, halfedges,and faes. It provides methods to insert and delete reords, Euler operators, and iteratorsto traverse the struture. All reords of one type are stored independently from othertypes in either double-onneted lists or ontainers. Eah single reord an be aessed bya handle (see for example [Ha07℄). Eah item also stores its own adjaeny and inidenerelations with respet to other reords. In addition, eah vertex and eah halfedge isassoiated with geometri information.Halfedge Central items to the struture are halfedges. A halfedge is direted and alwaysoexists with its twin halfedge of opposite diretion. The two twins are onnetedby pointers, and as a pair they represent a geometri urve that is not interseted inits interior by any other urve stored along with halfedges in the Del-instane.The direted halfedge points to a vertex. Is also has an impliit inident fae toits left whih is usually referened by a pointer. Both pointers are not required bya minimal Del that optimizes storage. However, for reasons of onveniene ande�ieny, it is reommended and usual to inlude them. In ontrast, a pointer to the



68 Algebrai Foundations, Geometri Programming, Arrangementsnext halfedge that has the same inident fae is inevitable. It has to hold, that theorigin of the next halfedge is idential to this halfedge's destination. In fat, the nextand the twin pointer are the only mandatory ones, all other pointers are optional �though reommended.Vertex A vertex represents a zero-dimensional feature of the deomposition, that is, it isassoiated with a geometri point, be it the end of a urve, the intersetion of urves,or even both.A pointer stores an inident halfedge that direts to the vertex. All halfedges tar-geting a vertex an be onneted by a (bidiretional) irular linking. Although notpart of the original Del-design, we, that is, when using the Del for arrangements,allow that no halfedge is inident to a vertex. In this ase, the pointer is simply NULL.However, suh an isolated vertex is not slobbing around. A fae pointer (whih isNULL otherwise) indiates the fae that ontains the isolated vertex.Fae A fae represents a two-dimensional onneted set impliitly, that is, no atual ge-ometri objet is assoiated with it. To obtain geometri information, a fae issurrounded by a irular list of halfedges that have the fae to their left. The link-ing is established with the help of the halfedges' next pointers, or more preisely:Eah fae is surrounded by halfedges that wind in ounter-lokwise order alongthe outer boundary of the fae. We all it the outer onneted omponent of theboundary (OCCB). The fae knows an ob-pointer to one these halfedges.Nevertheless, this simple design atually allows to only represent deompositionswhose faes are simply onneted. But in general, two-dimensional arrangementsan ontain faes that are not simply onneted; for an example we refer to thealready mentioned isolated verties, or to Figure 2.6, where faes F2 and F3 areompletely inside F1. Fae F0 even surrounds all other faes.De�nition 2.41 (Hole). A onneted set H is alled a hole of fae F if it makes Floally non-simply onneted. That is, there is a simply onneted subset of F thatgets non-simply onneted when we remove H from F .Holes an be two-, one-, and zero-dimensional, and their number an be arbitrary,but �nite. In order to support the di�erent ases, eah fae maintains two addi-tional lists: One for isolated verties and one for inner onneted omponents of theboundary (ICCB). An inner omponent of a fae F is similar to its outer ounterpart,namely a list of halfedges having F to their left. However, they wind in lokwiseorder. This way, the yle of twin edges desribes a two- or even one-dimensionalset that is exluded from F . In the example of Figure 2.6, the inner CCB de�nedby E2 removes a two-dimensional set, while the inner CCB de�ned by E3 is onlyone-dimensional.Remarks.
• Atually, there is no geometri way to distinguish outer and inner CCBs. By topo-logial inversions eah CCB ould beome outer.
• However, for the plane, the ommon onvention is to de�ne the CCB as outer whihwinds, as written, (one) ounter-lokwisely around the normal-vetor of the plane
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Figure 2.6. How to use the Del to represent a planar arrangement (of interior-disjoint line segments): The unbounded fae F0 has a single onneted omponentthat forms a hole in it. This hole is separated with a halfedge-yle ontaining E0,a so-alled inner CCB (onneted omponent of the boundary) of F0. The holeitself omprises several faes, for example F1, whose outer CCB is the halfedge-yle de�ned by E1. Along this outer CCB, E1 is preeded by Eprev and sueededby Enext. The halfedge E1 onnets V1 with V2, while together with its twin E′
1it represents the line segments that onnets the points assoiated with V1 and

V2. This segment separates F1 from F4. E′
1 de�nes the outer CCB of F4. Notethat, in ontrast to E1 and E′

1, the edges E4 and E′
4 do not separate di�erentfaes. The fae F1 also has holes: The two-dimensional hole separated with F1'sinner CCB de�ned by E2, the one-dimensional hole separated with F1's seondinner CCB de�ned by E3, and two isolated verties V3 and V4. All other faesonly have a single outer CCB.



70 Algebrai Foundations, Geometri Programming, Arrangementsloated at an interior point of the fae, that is, in the left area of the CCB (as thehalfedges have their inident fae to the left).
• In Chapter 4 we use a Del for non-planar two-dimensional subdivisions. For suh,to haraterize CCBs by windings makes less sense. Thus, we next introdue thenesting graph in De�nition 2.42.
• A general purpose halfedge data struture is presented in [Brö01a℄. It disusses theseand other aspets.De�nition 2.42 (Nesting graph). We onstrut the nesting graph of faes. Nodes of thegraph orrespond to faes, while we add an oriented edge from node f1 to node f2 if f2is separated from f1 by an inner CCB of f1. That is, there is a twin of halfedges e1and e2 (with e1->twin() == e2 and e2->twin() == e1) suh that e1->fae() == f1 ande2->fae() == f2 and e1 belongs to an inner CCB of f1 (and e2 belongs to an outer CCBof f2).The Del-representation for eah deomposition of the plane with bounded urves(and points) always has a fae that has no outer CCB. This fae orresponds to the planehaving holes in it. Thus, the nesting graph of suh a deomposition is a tree, whose root isthe fae without outer CCB, the outermost fae. The root's diret hildren are the faesseparated by the inner CCBs of the outermost fae. Note that a single inner CCB anresult in more than one hildren; see Figure 2.7. Atually, one ould extend the nestinggraph with speial nodes for isolated points and one-dimensional holes. In fat, addingthem would omplete the representation of the Del as graph. However, for our purposes,they are irrelevant. We emphasize that the way CCBs are assigned to the list of outer andinner CCBs of a fae fully determine the nesting graph's edges. As written, by topologialinversion we an make every fae the root of the tree, though, this results in anothernesting graph (with other assignments of CCBs to the list of lower and outer CCBs of afae).

F0

F1 F4 F5 F6

F2 F3Figure 2.7. Nesting graph (here: tree) for the Del of Figure 2.6We already mentioned that urves stored in a Del are required not to pair-wiselyinterset in their interior. Consider a losed urve, for example p = γ(0) = γ(1) thatwould be embedded by a pair of halfedges. However, eah halfedge forms a self-loop, thatis, it points to its originating vertex. This implies, that there must be a vertex, whihmust be onstrutible on γ. Although self-loops are not forbidden by design, algorithmsonstruting a Del avoid them, for example, as they require to split urves into x-monotone sub-urves. Suh a split implies that eah onneted omponent of a boundaryonsists of at least two halfedges. We espeially want to single out this fat for eahouter omponent and also for inner omponents that desribe a one-dimensional set. We



2.4. Arrangements 71also remark, that a fae that does neither ontain an inner CCB nor an isolated vertexis simply onneted. The Del, as desribed here, su�es to support an arrangementthat is embedded in an orientable surfae whih is homeomorphi to an (open) dis. Forarrangements on parametri surfaes, that we disuss in Chapter 4, we have to extend theDel further.We also bene�t from the Del's advantages of easy traversals of its items and the possi-bility to support their e�ient overlay [dBvKOS00, �2.3℄. In general, the Del, also knownas Halfedge-Datastruture (HDS), is widely known and used in omputational geometryand inesapable, for example, in two- and three-dimensional triangulations. This also holdsfor Cgal. However the Arrangement_2 pakage uses a speialized version. In order to unifythese di�erene the two implementations are urrently in a redesign proess [KC08℄. Itsgoal is to provide an implementation that serves throughout all pakages of Cgal thatrequire an HDS. The main improvement is the introdution of optional border-edges andHalfedgeCyles. Halfyles are intended to unify outer and inner onneted omponents ofthe boundary. In Chapter 4 we only touh these extensions in our disussion, as they arenot yet used produtively. For three-dimensional regular omplexes15 Bru and Teillaudsuggested another extension of Cgal's HalfedgeDS, alled ellular data struture [BT08℄.2.4.2. Computing planar arrangementsUnfortunately, the urves in the given input C are usually neither x-monotone nor disjointin their interior, that is, the input typially onsists of non-x-monotone (or even vertial)urves that interset or (partially) overlap. We wish to onstrut a Del that desribes thesubdivision A(C) indued by C using only weakly x-monotone urves, see De�nition 2.43.De�nition 2.43 (Curve ontinued). We extend De�nition 2.40.4. A urve γ is alled weakly x-monotone, if for t1 < t2, t1, t2 ∈ I it holds that γ(t1) <lex

γ(t2), where <lex denotes smaller in lexiographi xy-ordering. Observe that alsovertial urves are lassi�ed to be weakly x-monotone.Suh a deomposition has the advantage that maintenane is simpli�ed, but also en-ables us to easily extend the Del towards a vertial deomposition [dBvKOS00℄. Algo-rithm 2.11 gives a naive onstrution for a Del.Algorithm 2.11. Construt Del naivelyInput: Set of urves C in R2Output: Del that represents A(S)1. Split eah non-x-monotone urve of C into weakly x-monotone sub-urves C′.2. Compute all intersetions of urves in C′ and subdivide them suh that they areinterior disjoint3. Use Euler operators to modify the Del with respet to the split input. Optionalpointers might link to the originating urve(s) of C.This approah, however, requires a quadrati number of intersetion tests, and doesnot exploit proximity of urves for intersetion tests, or atually non-proximity to avoid15A three-dimensional regular omplex is a �nite deomposition R
3, whose ells are pairwise interiordisjoint and the boundary of a ell onsist of the union of other ells [ES94℄.



72 Algebrai Foundations, Geometri Programming, Arrangementsthem. In pratie, two other approahes are more ommon to onstrut a Del. Similar tothe naive approah, their �rst step onsists in breaking the input into weakly x-monotoneurves. Thus, we heneforth assume that C onsists of suh urves.
The sweep line approah The basi idea goes bak to Bentley and Ottmann [BO79℄who gave an algorithm to ount and ompute the intersetions of line segments. Lukily,by observing the exeution path of the algorithm it is possible to onstrut the induedDel; we give more details below.We give a sketh of the algorithm that works for line segments C = {s1, . . . , sn} thatful�ll the general position assumption. More detailed desriptions, whih also disuss thedegenerate ases, an be found in [dBvKOS00, Chapter 2℄, or [MN00, �10.7℄.The main idea is to sweep with a vertial line, the sweep line, from left to right overthe plane. At every position the sweep line is interseted by some segments of input in aertain order. The ruial observation is that this order only hanges at a �nite numberof events, whih are exatly the positions where the topology of the segments intersetingthe sweep line hanges, and thus, also the topology of the indued arrangements: Theseevents are the minimal and maximal ends of segments and intersetion points of segments.The sweep line algorithm maintains two dynami data strutures. The status-line16 Lrepresents an intersetion pattern of the input segments with the sweep line at its urrentposition. It is empty at the beginning of the sweep and also exhausted when the sweepends. Events are maintained in a priority queue that sorts its entries lexiographially byoordinates. This event-queue17 Q is initialized with the minimal and maximal ends ofthe input segments. The sweep of the line atually onsists in extrating at any time thenext minimal event from the event-queue and to update the struture with respet to theloal situation at the event. The proess keeps two invariants valid:1. Events with smaller lexiographi oordinates than the urrent event (to the left ofthe sweep line) have already been disovered and handled.2. At least the following events are stored in the event-queue: (a) All endpoints ofinput urves that have greater lexiographi oordinates than the urrent event (tothe right of the sweep line) and (b) the next intersetion of two segments that areurrently adjaent in the status-line.Observe that at the beginning of the algorithm, the invariants are ful�lled by howwe initialized the dynami strutures. Algorithm 2.12 desribes how to sweep over theline segments, atually, its main loop disusses the (possible not required) updates of thestrutures when sweeping over the urrent event.16Some texts all the status-line also Y-struture.17The event-queue is also referred to as the X-struture.



2.4. Arrangements 73Algorithm 2.12. Sweeping line segmentsInput: Set of line segments C in R2Output: Lexiographi proessing of events and how they are onneted with sub-urves
• Insert minimal and maximal point of eah segment in C into Q
• While the Q is not empty� Extrat Q's urrent minimal event ev (and remove it).� If ev is the minimal endpoint pmin of some si, we insert si into L. This requiresto ompute the relative vertial alignment of pmin with the segments alreadyexisting in L. We either hit a segment sj or pmin is positioned in betweensegments sbelow and sabove (if existing). In the former ase we have to omparewhether si is below or above sj right after their intersetion at ev = pmin, whihalso de�nes now unique sbelow and sabove. Chek if si intersets to the right of

ev with sbelow and if so, insert the next intersetion into the Q. Do the samefor si and sabove.� If ev is a maximal endpoint pmax of some si, then si is loated between sbelowand sabove. We remove si from L and hek whether sbelow and sabove intersetlexiographially larger than ev. If so, we insert the next intersetion into Q (ifnot already existing).� If ev is the intersetion of some si and sj (where their order in L is: sbelow <
si < sj < sabove), we exhange them in L. Then, sj is above si and we heknext for a future intersetion of sbelow and sj and for a future intersetion of siand sabove. If suh exist, we insert them into Q.Remarks.

• Note, that in eah step sbelow and sabove might not exist. If so, the orrespondingases an be ignored.
• The algorithm neither reports intersetion points nor onstruts a Del. However,having a ontinuously look on the algorithm's exeutional steps by some entity, thisentity an simply extrat intersetion points or onstrut the Del that emerges tothe left of the sweep line. Tehnially, the visitor design pattern [GHJV99℄ desribessuh entities. We refer to �2.2.3 that disusses details on how Cgal's Sweep_line_2lass is ombined with visitors for di�erent purposes.
• The algorithm assumes general position of the segments. However, by arefullyextending individual steps it is possible to handle isolated points, vertial and/oroverlapping segments, more than two segments running through a ommon point,or events that share a ommon x-oordinate (i. e., overtial events). Leda's andCgal's implementation mind all these degeneraies.
• The running time of the algorithm is O((n + k) log n), where n is the number ofinput segments and k the number of intersetions. It requires spae O(n + k), whihan be improved to O(n): We only have to revise Q from future intersetions ofsegments that just lost their adjaeny in L. When omputing a Del, this strategyis not advised as the output needs spae O(n + k) anyhow, and the re-omputationsof intersetions and maintenane operations for the event-queue harm the pratialperformane; see again [MN00, �10.7℄.Already Bentley and Ottmann experiened the fat that their idea is appliable to anyset of x-monotone urves, suh as half-irles. A generalized desription is given in [SH89℄.



74 Algebrai Foundations, Geometri Programming, ArrangementsIn ontrast to the linear ase, some di�ulties must be takled:Problem 2.44 (Sweeping non-linear urves).
• Two non-linear urves an interset more than one.
• The order of two non-linear urves to the right of an intersetion is not always thereversed order the urves had to the left of the intersetion.However, solutions to both problems exist. For the �rst, it atually su�es to onlyompute the next intersetion. However, it is enouraged to augment the event-queuewith all future intersetion points of two non-linear urves, if available, as soon as theybeome adjaent in the status-line for the �rst time. Note that in the �nal Del all ofthem pop up anyhow.A naive solution for the reordering of ℓ urves passing an event (at point p) is aomparison-based sorting. It onsists of pair-wisely omputing the order of y-oordinatesof two suh urves slightly to the right of the ommon intersetion. However, this resultsin an algorithm with O(ℓ log ℓ) running time, while eah omparison is also a task ofnon-trivial ost.The reordering an be improved if one knows the multipliity of intersetion in thepoint for two suh urves. This is, for example, the ase for input that is supported byalgebrai urves (see �2.1.4), if the intersetion does not takes plae at a singularity (whihan be exluded). The preise de�nition of this value is given in [MPS+℄. Intuitively,the two urves hange their relative vertial alignment when passing p, if the multipliityis odd, while their order is preserved if the multipliity is even. This leads to an easyombinatorial deision on how to update L. Based on these multipliities there existsan O(Mℓ) algorithm that reorders ℓ (algebrai) urves passing through p, where M isthe maximal multipliity of intersetion that ours for two urves passing the point; see[BEH+02℄ and [FHK+, Chapter 1℄ for a more detailed proof. Even better, it is possibleto remove M by onstruting a multipliity tree. The algorithm presented in [BK07℄ onlyrequires time O(ℓ) relying on pair-wise multipliities of intersetions.Abstrating from the urve-spei� details, we an state a generi version of the sweepline algorithm.Algorithm 2.13. Sweeping (weakly) x-monotone urvesInput: Set of urves C in R2Output: Lexiographi proessing of events and how they are onneted with sub-urves
• Replae eah urve c ∈ C by urves that represent a deomposition of c into (weakly)

x-monotone urves
• Insert lexiographial minimal and maximal point of eah (weakly) x-monotone urvein C into Q
• While the Q is not empty� Extrat minimal ev event from Q� Remove all urves from L that end at ev� Reorder all urves passing through ev� Insert all urves into L that begin at ev, ompute intersetions for newly adja-ent urves and insert them into QHaving this generi sweep line algorithm, we next onentrate on the individual tasks



2.4. Arrangements 75in eah step, that is, we break down the approah into subtasks onsisting of geometriprediates and onstrutions. As already mention, we require to deompose arbitraryone-dimensional input into (weakly) x-monotone piees.Make x-monotone Given a one-dimensional input objet c, deompose it into weakly
x-monotone urves. If other prediates expet stronger onditions than just weak
x-monotoniity, it is the responsibility of this geometri onstrution to ensure themas well. We refer to suh a split urve γ as a sweepable urve.We next desribe the prediates that are required to maintain the event-queue and toupdate the status-line when sweeping over an event.Figure 2.8. Geometri onstrutions (a),(b),() and prediates (d),(e),(f) required forthe sweep line algorithm

(a) Make x-monotone min

min max

max

(b) Min/max end () Intersetions
(d) xy-order of points (e) Point-urve-relation (f) Compare-to-rightMinimal/maximal-end Given a weakly x-monotone urve c, the prediates returns itslexiographial smallest (largest) point. They are used during initialization, to hekwhether a urve starts or ends at an event, and to determine the loation of a startingurve in the status-line.Compare-xy Given two points p1, p2, ompare them lexiographially. We require thisprediate to keep the event-queue sorted, and to hek whether a urve starts or endsat an event.Point-urve-relation Given an x-monotone urve c and a point p in the x-range of c,this prediate determines the relative vertial alignment of p and c, that is, whether

p lies below, on, or above c at p's x-oordinate. In ase of a vertial c, it returnswhether p is below the minimal point of c, on c, or above the maximal point of c. Inthe sweep line algorithm, this prediate is used to loate the position of a urve that



76 Algebrai Foundations, Geometri Programming, Arrangementsstarts at an event in the status-line. To do so, the urve's minimal end is omparedwith the urves already stored in the status-line. Of ourse, no suh omparison isrequired if other urves end or pass the urrent event, as the algorithm rememberstheir position in L. That is, it knows where to insert new urves. If there are passingurves, the next prediate is required upon a starting urve.Compare-to-right Given two weakly x-monotone urves c1, c2 that interset at p. Thisprediate determines the relative vertial alignment of c1 and c2 after passing p, thatis immediately to the right of p. The prediate is alled to determine the loationof a urve that starts at an event with passing urves, that is, we determine theposition of the new urve (whose minimal end lies on a urve in the status-line) inthe sequene of urves to the right of an event.Intersetions Given two weakly x-monotone urves c1, c2 ompute their intersetions.Usually the set of intersetion is zero-dimensional, that is, it onsists of a �nitenumber of points. It might be helpful to also obtain the orresponding multipliitiesof intersetion (or at least their parities). In degenerate situations, the two urvesmay overlap. In suh a ase the onstrution is requested to ompute all overlappingparts. Of ourse, the proessing of an event resulting in proper updates of thedynami data strutures, also has to deal with overlapping urves. We omit thesetehnialities, as they are previously disussed elsewhere; see [MN00, �10.7℄.The inremental approah The aggregated onstrution using the sweep line approahis very e�ient, in partiular when the number of intersetion is relatively small, that is
k < O( n2

log n). A drawbak of the approah is that all urves must be known in advane,whih some appliation do not provide, as new urves an arrive in an on-line fashion.For suh ases, an inremental (and loal) update should be privileged. Algorithm 2.14gives a method that inserts a weakly x-monotone urve c into an existing (not neessarilyempty) arrangement A. Non-weakly-x-monotone urves are deomposed beforehand as inthe sweep line approah.Algorithm 2.14. Inrementally inserting a weakly x-monotone urve cInput: (non-empty) arrangement A; urve cOutput: re�ned A with inserted c1. Split c into (weakly) x-monotone urves. For the next steps we assume that c hasthis property.2. Loate the minimal end of c and either update the found vertex (loate position ofurve in its irular list of inident urves), or split the found halfedge-pair, or inserta new vertex in the interior of the found fae.3. Traverse the zone of c, that is, all Del-items interseted by c. Whenever we detetan intersetion of c with some vertex or some halfedge-pair, we split c into two sub-urves cleft and cright, update the vertex or the halfedge-pair aordingly, proess
cleft, and proeed with cright until we reah c's maximal end.4. Loate c's maximal end and proeed similar to what we did for c's minimal end.Speial are is needed when c overlaps with an existing urve in A, or c ompletely lies ina fae of A. In the latter ase, c must be inserted as a new hole in that fae.The subtlety for inremental insertion is that it requires point loation, that is, given



2.4. Arrangements 77a point p determine the Del-item to whih it belongs. We shortly disuss point loationin �2.4.3. The running time for inrementally inserting n weakly x-monotone segments is
O(n2). Thus, for dense arrangements, k ≥ ω( n2

log n), the inremental approah theoreti-ally (and pratially) beats the sweep line approah whih requires O((n + k) log n) time.However, the running time of the sweep line method is output sensitive. The proofs andmore details on the inremental onstrution of arrangements an be found in [dBvKOS00,Chapter 8℄.Needless to say, that both approahes an be ombined. For example, the sweep linemethod is used to onstrut the Del for an initial set of urves, while it is augmentedby urves arriving in an on-line fashion by applying the inremental algorithm. Or aninitial dense arrangement is onstruted by the inremental method, while later a set ofurves that imply only a few new intersetion are �swept� into the arrangement. Note thatsweeping an arrangement of non-interseting urves is a muh easier task, theoretiallyand pratially, as no intersetion has to be omputed and the event-queue is not alteredat any time. All this �exibility on two-dimensional arrangements is o�ered by Cgal'sArrangement_2 pakage that we present next. In its presentation, we also ater for how todelete urves in an existing arrangement.2.4.3. Arrangements in CgalWe next introdue Cgal's Arrangement_2 pakage with various details. It is developedand maintained at Tel-Aviv University in the lab of Dan Halperin. During the pakage'slifetime, it always has been improved, while for Cgal version 3.2 a major redesign hasbeen applied, that was mainly driven by Dan Halperin's students Ron Wein, E� Fogel, andBaruh Zukerman. The �hangelog� is reported in a sequene of publiations: [FHH+00℄,[FWH04℄, [WFZH05℄, and [WFZH07b℄.In this setion, we present the Arrangement_2 pakage of Cgal 3.2. that only supportsbounded urves in the plane: It maintains a single unbounded fae that ontains all inputobjets, that themselves �t in the interior of a �nite retangular area. We show in Chapter 4how newer extensions (Cgal 3.3) already enable unbounded urves, and how the restritionof the embedding surfae to be a plane is removed (upoming version of Cgal).The Arrangement_2 pakage implements the generi programming paradigm as ex-plained in �2.2.1. This tehnique allows to separate the ombinatorial and topologialalgorithms and data strutures from whatever geometri objets are at hand. Central tothe pakage are only a few lasses. The main lass-template is intended to represent aplanar embedding of weakly x-monotone urves that are pairwise disjoint in their interior.It is instantiated with two parameters:Arrangement_2< GeometryTraits_2, Del >GeometryTraits_2 This is the main parameter for the pakage, as it de�nes the type ofgeometri urves (and points) that indue an arrangement. It also implements basioperations on the types to support the arrangement's onstrution and maintenane.As a positive side-e�et of this distintion, a developer with less experiene in om-putational geometry, and arrangements in partiular, an engage in the pakage withall its funtionality for its own urves, as long as he provides a proper geometri-traits lass for them. The list of required operations has been redued over time



78 Algebrai Foundations, Geometri Programming, Arrangementsand �nalized in the ArrangementTraits_2 onept of Cgal version 3.2.18 We presentdetails of the onept and available models below.Del This parameter determines the type (and speialties) of the underlying topologialstruture used to represent the planar subdivision. A default implementation isontained in the pakage and if it should be used, one even an omit to speify theargument to de�ne the arrangement type. On the other side, a more experiened useris able to replae it, for example, to attah user-spei� data to the Del-reords.A valid two-dimensional arrangement (of bounded urves) has one unbounded fae.Eah fae, exept the unbounded one, has an outer CCB (onneted omponent of theboundary). The non zero-dimensional holes within a fae are represented by a numberof inner CCBs. The zero-dimensional holes (also known as isolated verties) are storedexpliitly. The latter two entities are not required to exist. The hierarhial order of holesand isolated verties in a fae is distinguished by graph- and edge-based strutures.The arrangement lass-template provides all neessary apabilities to onstrut andmaintain the Del that is extended with geometri data. Basi funtions are available toaess, to modify, or to traverse an arrangement. For example, all verties, edges, and faesan be visited by iterators, or the halfedges of a CCB and the inident edges of a vertexan be irulated. The entral modi�ers are the basi insertion and deletion methods.It is possible to insert points or weakly x-monotone urves. For a new point, either avertex for it already exists, then nothing happens, or it lies on an existing halfedge-pair,that is going to split, or it will be added as an isolated point in a fae's interior. Whenadding a new weakly x-monotone urve, we distinguish four ases: Either it is inserted in afae's interior, its minimal/maximal point hits a non-fae, or both ends hit a non-fae (twopossibilities). In every ase the Del has to reeive some modi�ations, for example, whenshort-utting an inner CCB, a new fae is onstruted, and some CCBs must be adapted.Figure 2.9 explains the various ases. Similar modi�ations are required when removingan edge. The arrangement takes are of the orret order of modi�ations to transformthe Del from one valid state to a new valid state that represent the new situation. Theuser who adds or removes the objet does not even notie about all the details, at leastnot diretly. Note that these operations impliitly modify the nesting graph of the Del.For the user's information on hanges of the arrangement's struture, the pakageimplements the observer pattern [GHJV99℄. An observer reeives noti�ations from agiven arrangement-instane, for example, when a vertex is added or deleted, or a newedge is inserted. A default observer lass-template with empty implementations ontainedin the pakage an serve as soure lass to derive models that exeute speial ode onsuh hanges. An example appliation is a point loation that relies on auxiliary data(landmarks) whih should be kept up-to-date upon strutural hanges of the arrangementit is onneted to. The numbers of observes attahed to an arrangement is not limited.The pakage is also equipped with a number of free19 insert funtions, that allow toinsert urves into a given empty or non-empty arrangement. Depending on the ase a single18One may wonder why the parameter is alled GeometryTraits_2 and not ArrangementTraits_2.The reason is that ArrangementTraits_2 is the most re�ned onept, but one an also use Arrangement_2with weaker onepts (e. g., the input urves do not interset). Thus, the more generi name. We usuallyrefer to the most re�ned version.19Floating in namespae CGAL:: without oupling to a lass.
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Figure 2.9. Basi insertions into a planar arrangement of line segments
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80 Algebrai Foundations, Geometri Programming, Arrangementsurve is inrementally added or a group of urves is inserted with the sweep line approah.The free overlay funtion e�iently overlays two given arrangements. If a group of urves isknown not to interset in their interior, speial insert_non_interseting_urves funtionsare also available, that have impat on the e�ieny and the required operations: Thesemethods are faster and only demand a redued set of geometri operations. In partiular,the onstrution of intersetions is avoided, whih usually results in geometri objets withan inreased omplexity. For example, bit-lengths for intersetions of urves are usuallylarger than for the originating objets.The free insertion funtions are internally implemented in terms of the visitor designpattern. That is, the aggregated onstrution is based on theSweep_line_2< GeometryTraits_2, Visitor,...>lass-template that implements a generi sweep line algorithm as desribed in �2.4.2. Inpartiular it an deal with any degeneray that is possible, for example, vertial urves,overtial events, more than two urves interseting in a point, intersetion at endpoints, oroverlapping urves. The GeometryTraits_2 parameter again refers to the geometry modelthat should be used, while the given instane of type Visitor reeives noti�ations aboutthe status of sweep line algorithm and an at with respet to these hanges. With thisstrategy the atual sweep line ode is entralized, reusable, and easy to maintain. Theimplementation of a sweep-based algorithm boils down to write the visitor that onstrutsthe desired output from the noti�ations. The pakage provides a number of visitor lassesfor various purposes:
• onstrut the intersetions of urves
• onstrut the arrangement as Del indued by urves
• insert a set of urves into an existing arrangement
• overlay two arrangements
• perform bathed point loationsOther sweep-based algorithms an be realized by writing own visitors.In the same spirit, the inremental insertion is realized by a model of the ZoneVisitoronept that inserts the urve, while the generi zone omputation, implemented by thelass-template Arrangement_zone_2< Arrangement, ZoneVisitor, ...>is exeuted. There is another visitor for the zone algorithm that just report intersetionsalong the zone. As before, writing own visitors allows to easily develop omputations thatare based on the zoning.FuntionalityWe want to highlight three apabilities provided with Cgal's Arrangement_2 pakage thatare onstantly applied through the main hapters of this thesis. It only represents a smallsubset of the full funtionality provided by the pakage.Deorating The Arrangement_2 pakage provides several methods to attah additionaldata to the geometry. For example, input urves an be enhaned with a user-spei� type



2.4. Arrangements 81(e. g., a olor) that is even preserved when applying omputations (e. g., a sweep line) onthem. The most sophistiated method to attah data onsists of the lass-templateArr_extended_del< GeometryTraits_2, VertexData, HalfedgeData, FaeData,...>that an be used when instantiating the Arrangement_2 template. Eah type of Del-reords is then equipped with the orresponding type and the data of a given Del-reord(be it a vertex, a halfedge, or a fae) an be aessed by a data() member.Overlay As already mentioned there exists a free funtionCGAL::overlay(arr1, arr2, arr_ovl, ovl_traits)that omputes the overlay of arr1 and arr2 and stores the result in arr_ovl. Its orretnessand e�ieny is ensured by instantiating the sweep line implementation with theArr_overlay_sl_visitor< OverlayTraits >that is instantiated with a model of the OverlayTraits onept. If no user-spei� datais attahed, the default Arr_default_overlay_traits su�es as argument for ovl_traits,otherwise the neessary merging of attahed data must be implemented by a ase-spei�model. Suh a lass determines, for example, how to ombine the data attahed whenoverlaying a fae of arr1 with a fae of arr2, and all other possible ombinations. Werefer to the manual [WFZH07a℄ for further details, and mention only the simple example,where a bool is attahed to eah Del-reord, and the model of the OverlayTraits oneptimplements a boolean operation (like and) on the attahed boolean values.Point loation Having an arrangement instane at hand, a very ommon query onsistin the question where a query point q is loated, that is, to identify the Del-reordto whih q belongs. For random points, the found objet is usually a fae, while fordegenerated queries the point an be loated on an edge or even oinide with a vertex.Again, the Arrangement_2 pakage relies on the generi programming paradigm apabilitiesto implement various kinds of point-loation strategies. In partiular, a developer is invitedto write its own method, while a basi set of strategies omes out-of-the-box:
• The naive strategy exhaustively sans eah Del-reord until it suesses.
• The simple approah uses some geometri �ltering.
• A more sophistiated method walks along a vertial ray emanating from q until ithits an edge or vertex, or extends to in�nity. Depending on this the orrespondingDel an be obtained.
• There is also a point loation that relies on a set of landmarks stored for the ar-rangement. The positions of landmarks are known. The query onsists in an e�ientdetetion of the nearest landmark to q and the traversal of the line that onnets qwith this landmark. This method requires auxiliary data.
• Auxiliary data is also required by the point loation strategy that utilizes a partialvertial deomposition of the arrangement.See Cgal's manual pages for full details [WFZH07a℄.Remember that the point-loation strategy might not be a game of its own, as forexample, the inremental insertion of a urve using Algorithm 2.14 has to loate the



82 Algebrai Foundations, Geometri Programming, Arrangementsurve's endpoint before starting the zone omputation. This fat should be adhered, whenhoosing the point-loation strategy.We skip further details on the impressive funtionality of Cgal's Arrangement_2 pak-age, and refer to [WFZH07b℄ and [WFZH07a℄ for further reading. In addition, Cgal'smanual pages also over details to use the pakage for envelopes of urves [Wei07a℄,Minkowski sums in two dimensions [Wei07b℄, or as basi support in regularized booleanset operations [FWZH07℄.The ArrangementTraits_2 oneptThe basis interfae between the Arrangement_2 pakage and the geometri objet is theGeometryTraits_2 parameter, that ful�lls the ArrangementTraits_2 onept or one of theweaker versions: The onept is atually desribed hierarhially, as some algorithms andmaintenane operations only require very basi types and operations on them, while othersare expeting a larger set (of types or operations, or both). We omit to present the fulldistintion of layers that enables a �ne adjustment of available traits model and the desiredappliation. In fat, all models we know are implementing the full set of requirements. Amodel of Cgal's ArrangementTraits_2 onept is expeted to provide three main types:Curve_2 This type is used to store a general urve, howsoever it is represented. Its topologymight be very omplex, for example, it an have self-intersetion, or omprises severalomponents that even may be zero-dimensional. No further spei� requirements aredemanded from this type, exept from the fat that it an be deomposed. We referto Make_x_monotone_2 for further details.X_monotone_urve_2 This type is used to represent a (weakly) x-monotone urve. Allgeometri algorithms of the Arrangement_2 pakage are designed to rely on weakly
x-monotone urves.Point_2 Objets of this type are used to represent (�nite) ends of weakly x-monotoneurves, and their (�nite) intersetions.Any model of the ArrangementTraits_2 onept is also expeted to provide geometriprediates and onstrutions as funtors. For Curve_2 only one onstrution is expeted.Make_x_monotone_2 Deomposes a general Curve_2 into a �nite number of (weakly) x-monotone urves and (maybe) a �nite number of isolated points. If the remainingoperations require more onditions on the urves, this funtor also has to take areto onstrut the sub-urves respeting these prerequisites.All other operations involve only (weakly) x-monotone urves and points, and it isno surprise that the following prediates and onstrutions �t the tasks that we alreadyidenti�ed as required for the sweep line algorithm. It turns out that the mentioned ones arethe most important, while the list olleting the missing ones after the following detaileddesriptions gives operations that are of more tehnial nature.Compare_x_2, Compare_xy_2 Compare the x-oordinates of two points or, respetively, om-pare the oordinates of two points lexiographially, that is �rst by x-oordinate, thenby y-oordinate.



2.4. Arrangements 83Construt_min_vertex_2, Construt_max_vertex_2 Extrats the lexiographial smallest(largest, respetively) endpoint of a weakly x-monotone urve.Compare_y_at_x_2 Determines the relative vertial alignment of a point with respet to aweakly x-monotone urve.Compare_y_at_x_right_2, (Compare_y_at_x_left_2) Determines the relative vertial align-ment of two weakly x-monotone urve, immediately to the right of one of their in-tersetions.Remark. Compare_y_at_x_left_2 is only expeted when the tag Has_left_ategoryhas been set to CGAL::Tag_true, otherwise its expeted outome an also be deduedfrom onverting the problem into a �right�-ase. We omit the tehnial details. Any-how, only some algorithms really require this prediate.Interset_2 Computes the intersetion of two weakly x-monotone urves, sorted in in-reasing lexiographi order. If a Multipliity of intersetion is known, it is attahedto eah intersetion point. In ase (parts of the) urves overlap, the overlapping por-tions are returned as (weakly) x-monotone urves as well.The following self-explanatory operations that are expeted for weakly x-monotoneurves are of more tehnial nature: Equal_2, Is_vertial_2, Split_2, Are_mergeable_2,Merge_2. The exat signatures for eah onstrution and prediate is listed in Cgal'smanual [WFZH07a℄.Remark (Asymmetry). The asymmetry of the expeted funtors (for example, there is noCompare_yx_2) is intended and results from the fat that we split urves into x-monotonepiees and also assume that we sweep with a line from left to right. Any model ful�llingis allowed to over-ahieve the onept's demands by further funtors.Available models Cgal's Arrangement_2 pakage already ontains several models of theArrangementTraits_2 onept, among them lasses for line segments (with di�erent ahingstrategies), and one for polylines. Both require only exat rational arithmeti. There arealso lasses for non-linear urves whih are omputationally more omplex and require alge-brai numbers of higher degree. The simplest is the one that handles segments and irularars [WZ06℄. Cirles are speial algebrai urves of degree 2. The Arr_oni_traits_2 lasshandles ars of arbitrary degree 2 urves [Wei02℄, so-alled onis. A model for arbitraryalgebrai urves of any degree is not part of the pakage. However, there are two speial-izations for any degree. The simpler one allows to ompute and maintain arrangementsde�ned by rational funtions [FHK+, �1.4.2℄, that is, an ar is de�ned by an interval
I := [ℓ, r] and by the graph of a funtion y = f(x) = p(x)

q(x) over I, with p, q ∈ Q[x]. Themost sophistiated model ontained in the pakage deals with Bézier urves of arbitrarydegree [HW07℄. The e�ieny of the later implementation results from a onsistent appli-ation of geometri �lters, that is, most omputations an be derived from the geometriproperties of Bézier ars, namely their bounding polygons. Only in a few (near-)degenerateases, exat algebrai methods annot be avoided.There are also some �external� ontributions of ArrangementTraits_2 models, that is,they are not shipped with the Arrangement_2 pakage. Cgal's Cirular_kernel_2 ex-tends a linear kernel with irles and a basi set of prediates and onstrutions. It also



84 Algebrai Foundations, Geometri Programming, Arrangementsprovides a model of the ArrangementTraits_2 onept [PT07℄. The kernel has been usedto ompute aggregated unions of irular polygons that our in VLSI design [dCPT07℄.Outside Cgal, Lazard et al. have developed a model that also realizes ars of rationalfuntions [LPT08℄. It internally uses Rs for real root solving of the ourring univariatepolynomials.The Exaus-team also partiipated in the hallenging task to provide models. Inontrast to the previous lasses, the projet does not have speialized models for di�erenturves, but maintains a generi implementation. The entral idea is that all requiredoperations an be expressed in terms of the analysis of single urves and pairs of them. Thislayer of abstration has been implemented in Exaus' SweepX library. Its name usedto be generi algebrai points and segments (Gaps). As mentioned, the Exaus librariesare moving into Cgal. Thus, we desist from disussing the original implementation,and refer to �2.4.4 where we present Cgal's new Curved_kernel_via_analysis_2 pakagethat emerged from Gaps and even improved it. We only mention, that this way it ispossible to ompute arrangements of onis [BEH+02℄, ubis [EKSW06℄ (theoretiallyimproved by [CGV08℄), projeted silhouettes and intersetions of quadris [BHK+05℄, andalgebrai urves of arbitrary degree [EK08a℄. Caravantes and González-Vega �lled the gapwith arbitrary quarti urves [CGV07℄, however, an implementation is missing. Using aspeialized algebrai kernel, it is also possible to ompute arrangement of onis rotatedby angles whose sin and cos are (nested) one-root numbers; see [BCW07℄. In an internalversion of Cgal, the same idea has already been applied to algebrai urves of arbitrarydegree.We also mention that the Arrangement_2 pakage provides a set of wrapping traitsmodels, that is, a given model an be enhaned with additional properties. An example isthe Arr_ounting_traits_2 that ounts how often eah geometri operation has been alled,for example, when inserting urves with a sweep into an empty arrangement. The outomean help to improve an implementation. Another wrapper is the Arr_traing_traits_2lass, that prints the input and output for eah traits operation during an exeution. Thisis very helpful for debugging purposes.Remark (Boundedness). We remember the fat that all presented algorithms are designed towork for urves γ with I = [0, 1], that is, all urves are bounded. The Arrangement_2 lass-template of Cgal version 3.2 only allows to have one unbounded fae, and, as arefullydenoted, the types and operations expeted from a model of the ArrangementTraits_2onept also expet �nite ends of urves.However, Chapter 4 desribes how the pakage has been extended to remove suh re-stritions. We antedate that all presented models for urves in the plane have been adaptedtowards unboundedness, that is, their urrent version is already primed and out�tted withthe extended set of operations that we disuss in �4.2.1.We onlude this introdution on arrangements by presenting a generi model of theArrangementTraits_2 onept that relies on analyses provided by a model similar to theAlgebraiKernelWithAnalysis_d_2 onept. It plays an important role throughout the the-sis.



2.4. Arrangements 852.4.4. Curved_kernel_via_analysis_2In this setion we present Cgal's new Curved_kernel_via_analysis_2 pakage that pro-vides a generi kernel for urves than an be analyzed. The kernel is one of the mainahievements in terms of ommunity servie that we present. Its history goes bak tothe Generi Algebrai Points and Segments (Gaps) module that used to be part of Ex-aus's SweepX-library. That module has been initiated in [EKSW06℄ to support pointsand ars of ubi urves. While this �rst version had some restrition with respet tothe generi position assumption, we removed them, and ompleted the implementationfor [BHK+05℄. We skip further details on Gaps and present next what emerged fromthat ode, namely the Curved_kernel_via_analysis_2 lass and its dependent lasses. Theurrent, improved, design and the implementation results from joint work of the authorwith Pavel Emeliyanenko. More details and the referene doumentation an be foundin [BE08℄.The Curved_kernel_via_analysis_2 pakage is a layer between urves that an be an-alyzed on one side and objets supported by suh urves along with geometri prediatesand onstrutions on the other side. We already mentioned analyses of urves and pairs ofsuh in �2.3.3. The Curved_kernel_via_analysis_2 pakage heavily relies on exatly suhanalyses. In ontrast to the Gaps module, it does not assume urves to be algebrai. Thus,the main Curved_kernel_via_analysis_2-lass is templated in a more generi parameterCurved_kernel_via_analysis_2< CurveKernel_2 >We omit to disuss the more generi CurveKernel_2 onept in detail, as the di�erenesto the AlgebraiKernelWithAnalysis_2 are mainly names avoiding algebrai terminology.Thus, we an assume, for simpliity of presentation in this thesis, that we instantiatethe Curved_kernel_via_analysis_2 lass-template with a bivariate algebrai kernel withanalysis, for example ACK_2:typedef Curved_kernel_via_analysis_2< ACK_2 > CKvA_2;An important subtlety in this simpli�ation step should be mentioned: We identify theXy_oordinate_2 type de�ned in the CurveKernel_2 onept with the Algebrai_real_2de�ned in the ACK_2. This means, that we also assume a speial internal representationand onstrutor for an Algebrai_real_2, that is, its internal representation relies on aurve-analysis; see De�nition 2.45 that gives the details. This hoie enables an inte-grated usage of the analyses, in both ACK_2 and CKvA_2, and additional omputationale�ort is avoided from the beginning. The strategy mainly supports the overall goal ofthe Curved_kernel_via_analysis_2 to derive all geometri operations without the expliitknowledge of y-oordinates, as this an be a ostly task.De�nition 2.45 (Impliit y-oordinate). Eah point p = (px, py) on a urve c, that anbe analyzed, an be uniquely represented as a triple (px, c, a), where a denotes the indexthat identi�es p among the sorted distint intersetions of c with the vertial line at px,where ounting starts at 0.Thus, the integrated handling of urve analyses is ensured by representing an instaneof type Xy_oordinate_2 (and thus, by assumption, an Algebrai_real_2) by suh a triple
(x, c, a). Of ourse, it is still possible to extrat the exat y-oordinate. However, it is not



86 Algebrai Foundations, Geometri Programming, Arrangementsexpeted by the Curved_kernel_via_analysis_2. In any ase, this hoie has impliationson how to ompare two instanes of type Xy_oordinate_2 lexiographially.Algorithm 2.15. Lexiographial omparison of two Xy_oordinate_2Input: xy1 := (x1, c1, a1); xy2 := (x2, c2, a2)Output: Lexiographi order of xy1 and xy2

• If x1 6= x2, return their order.
• Else, if c1 = c2, return the order of a1 and a2.
• Else, analyze pair of urves de�ned by c1 and c2, and ompute their status line at

x1(= x2). Loate a1-th �ar� of c1 as index i1, and a2-th �ar� of c2 as index i2 insequene of merged urves along the status line at x1. Return the order of i1 and i2.An illustration of this algorithm is given in Figure 2.10.
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Figure 2.10. Compare-xy via analyses of urvess: Given p1 = (x1, f, 1), p′1 =
(x1, f, 2), q1 = (g, x1, 0) and p2 = (f, x2, 1), q2 = (g, x2, 1). All points with x = x1are lexiographially smaller than points with x = x2. Then, p1 <lex p′1 as both lie on
f and ap1 < ap′1

. It also holds that p1 <lex q1, as m(x1, f, ap1) < m(x1, g, aq1) and
q1 <lex p′1, as m(x1, g, aq1) < m(x1, f, ap′1

). Finally, p2 =lex q2, as m(x2, f, ap2) =
m(x2, g, aq2).The tehniques used in Algorithm 2.15 an be seen as blueprints for other geometrioperations implemented in the Curved_kernel_via_analysis_2; see below.Basi typesIn fat, the ombinatorial information obtained from urve analyses is a entral soureof knowledge within the Curved_kernel_via_analysis_2. While the Curve_analysis_2 andCurve_pair_analysis_2 types are given through instantiation, three new types to representgeometri objets are de�ned by the Curved_kernel_via_analysis_2 lass.



2.4. Arrangements 87Point_2 This is the simplest one among the three. A standard point is onstruted froma triple (x, c, a). Internally it holds a pointer to an Xy_oordinate_2 instane. In thealgebrai ase, the x-oordinate an be a real algebrai number of any degree.Although not handled until Chapter 4, we already remark that there are speialpoints to represent ends of non-bounded ars. Suh points, however, are not expliitlyonstrutible by the user.Ar_2 Represents a one-dimensional onneted and weakly x-monotone subset of a urve.An Ar_2 arc is either vertial, or it has the property, that the ar number for allpoints in its interior is onstant.Internally, it stores besides minimal and maximal endpoint pmin, pmax, its supportingurve c, and three ar number amin, a, and amax. Note that the supporting urvesof pmin and pmax do not have to math c, and similar their ar numbers do not haveto math amin and amax. However, amin, a, and amax must be hosen suh, that therepresented ar is a onneted subset of c.Poly_ar_2 This type is only for the user's onveniene, as it allows to represent a non-
x-monotone onneted subset of a urve c by a hain of onneted Ar_2 instanes.There are preonditions, that all these ars must be supported by the same urve,and all ars are either vertial or non-vertial. There is the plan to provide a one-dimensional objet omposed of ars supported by di�erent urves.In order to simplify the subsequent disussion we assume that the onsidered support-ing urves have a �nite number of (self-)intersetions. Of ourse, the implementation takesare of suh speial ases, and simpli�es in an on-line fashion (i. e., interatively during ex-eution of an operation) the internal representations of the Point_2 and Ar_2 respetively.Simpli�ation means to hoose urves that only have a �nite number of (self-)intersetions,and to adapt a�eted ar numbers, respetively.OperationsIn this part, we present the entral operations of the kernel. Muh more are implementedand urrently doumented in [BE08℄.Make_x_monotone_2 The main operator of this funtor deomposes a given urve c with thehelp of a left-to-right traversal of c's analysis into a �nite number of Ar_2 instanesand isolated points of type Point_2.Another operator unhains the linking of a Poly_ar_2.There are two trivial operators for Ar_2 and Point_2 that just return the givenobjets itself as it is already (weakly) x-monotone.A �nal operator takes a CGAL::Objet that is allowed to enapsulate any of theCurved_kernel_via_analysis_2's geometri types. Depending on the type, one ofthe previous four operators is applied and the proper deomposition is returned.Compare_xy_2 For two instanes of type Xy_oordinate_2 stored for the two given points,the funtor exeutes Algorithm 2.15 to ompare them lexiographially.



88 Algebrai Foundations, Geometri Programming, ArrangementsCompare_y_at_x_2 The funtor ompares the relative vertial alignment of a point p andan ar arc. As preondition the point must lie in the x-range of arc. The result isobtained from onstruting a point parc on the ar at p's x-oordinate, and then to(lexiographially) ompare p with parc. Note that we an simply skip the omparisonof x-oordinates in this ase.Compare_y_at_x_right_2 Given two ars and one of their intersetion points. If the sup-porting urves of the ars are equal, we an just ompare the two interior ar num-bers. Otherwise, we ompute a status line of the orresponding pair of urves slightlyto the right of the intersetion (e. g., at a representative and rational r within theopen interval to the right of the intersetion's x-oordinate), and ompare the rel-ative vertial alignment of the ars in the spirit of the y-omparisons of points inAlgorithm 2.15.Interset_2 Given two ars, ompute all their zero- and one-dimensional intersetions.Note that the supporting urves are not equal and have a �nite number of interse-tions. We �rst ompute the ommon x-range of the two ars. Then, we traverse theanalysis of the orresponding pair of supporting urves from the left end of the om-mon range to the right end, detet in eah status line of an event the intersetionsof the two urves. This information, su�es to onstrut the intersetion points. Anoverlap is deteted priorly, and requires a mathing between the ommon supportingurve(s) and the two urves supporting the input ars.Eah of these operations also has some subtleties, for example with respet to thehandling of vertial ars. We do not want to disuss the tehnial details in this overview.The Curved_kernel_via_analysis_2 as ArrangementTraits_2 modelWe aim to use an instantiated Curved_kernel_via_analysis_2 as the GeometryTraits_2for Cgal's Arrangement_2 pakage. Thus, it has to ful�ll the ArrangementTraits_2 on-ept. All neessary funtors are already in plae. It remains to de�ne the required types.Remember that the ArrangementTraits_2 onept expets three types. For the Point_2we do not have a hoie, and as the X_monotone_urve_2 only Ar_2 is su�ient. Some�exibility is a�orded with respet to the input type Curve_2. As the Make_x_monotone_2funtor an deal with all internal types, it is the user's hoie to typedef Curve_2 eitherto Curve_analysis_2, Poly_ar_2, Ar_2, Point_2 or even CGAL::Objet that is most �ex-ible as it an enapsulate eah of the former types. We reommend to hoose amongCurve_analysis_2, Poly_ar_2, or CGAL::Objet, as for the others no Make_x_monotone_2 isrequired.To summarize, we obtain a valid model of Cgal's ArrangementTraits_2 onept foralgebrai urves to be used as GeometryTraits_2 in the Arrangement_2 pakage by instan-tiating the Curved_kernel_via_analysis_2 with a bivariate algebrai kernel (e. g., diretor wrapping version of Algebrai_urve_kernel_2). We heneforth use the shorter termCKvA_2 when referring to suh an instantiated instane.In Chapter 3 we use Algebrai_urve_kernel_2wrapping QuadriX's P_urve_pair_2,while in Chapter 4 and 5 we mainly rely on the self-ontained Algebrai_urve_kernel_2in ombination with the Curved_kernel_via_analysis_2. Typially, we only make use ofthe Curved_kernel_via_analysis_2 as a mediating layer. However, in �4.3 we show how it



2.4. Arrangements 89must be extended to support unbounded urves, while in �4.6 we even modify it notieablein order to ompute arrangements on parametri surfaes. These modi�ations are possibledue to the hosen software design.Software design The design of the Curved_kernel_via_analysis_2 is held �exible. Anintelligent ombination of derivation and template meta programming allows to replaethe two basi types Point_2 and Ar_2. This way, the original lass an be substituted byderived versions that are enhaned with additional funtionality, suh as a onstrutionhistory. But not only the basi types an be exhanged, it is also possible to replae indi-vidual funtors, for example, with a �ltered version. Contained in the pakage we alreadyprovide a derived Filtered_urved_kernel_via_analysis_2 whose funtors are equippedwith bounding box �ltering in order to avoid analyses of pairs of urves; see [Ker08℄. Theurrent version is preliminary, that is, further improvements should be aomplishable.Other derivations replae point and ar lasses and some funtors. Examples arethe Quadrial_kernel_via_analysis_2 for urves on a quadri (see �4.6.1) and the newArr_surfaes_interseting_dupin_ylide_traits_2 lass that enables urves on a ringDupin ylide (see �4.6.2).The kernel is also equipped with a robust visualization by Pavel Emeliyanenko forpoints and ars following the ideas of [Eme07℄. The pakage and its visualization an alsobe experiened in the web when omputing arrangements of algebrai urves of arbitrarydegree in an interative demo; see [7℄ and [EK08℄. We also rely on the planar visualizationwhen drawing an arrangement indued on a ring Dupin ylide.
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3Lower Envelopes of QuadrisOur journey between the three- and two-dimensional world starts with an important stru-ture in omputational geometry � lower envelopes. We present the omputation of en-velopes of a set of quadrati algebrai surfaes de�ned in R3 using Cgal's Envelope_3pakage. This pakage provides a generi and robust implementation of a divide-and-onquer algorithm. In this hapter, we onentrate on the algebrai and ombinatorialtasks that our for quadrati surfaes and their implementation. As the pakage followsthe generi programming paradigm, we have to provide a quadri-spei� model of a er-tain onept. Both, the pakage and the model are exat and robust, thus the obtainedimplementation follows the exat geometri omputing paradigm. As we see at the end ofthis hapter, the e�ieny depends on three riteria.Parts of this hapter also appear in [Mey06a℄, as we desribe a joint work with MihalMeyerovith from Tel-Aviv University, Tel-Aviv, Israel. A short version of our results hasbeen presented 2007 [BM07℄.3.1. EnvelopesLower envelopes are fundamental strutures in omputational geometry, whih have manyappliations like omputing general Voronoi diagrams, or performing hidden surfae re-moval. Let S = {S1, . . . , Sn} be a set of n (hyper)surfae pathes in Rd. We denote with
x1, . . . , xd the axes of Rd, and assume (for now) that eah Si is monotone in (x1, . . . , xd−1),namely every line parallel to the xd-axis intersets Si in at most one real point (withoutounting multiple intersetions). If we now onsider eah path Si as a partially de�ned
(d − 1)-variate funtion Rd−1 → R, with xd = Si(x1, . . . , xd−1), we an de�ne the lowerenvelope.De�nition 3.1 (Envelope). The lower envelope ES of S is the point-wise minimum of thesefuntions: ES(x1, . . . , xd−1) := minSi(x1, . . . , xd−1), where the minimum is taken over allfuntions de�ned at (x1, . . . , xd−1).



92 Lower Envelopes of QuadrisInstead of saying that a funtion Si is not de�ned at some point (x1, . . . , xd−1), we analso assume that Si(x1, . . . , xd−1) =∞.De�nition 3.2 (Minimization Diagram). The minimization diagram MS of S is the sub-division of Rd−1 into maximal onneted ells suh that ES is attained by a �xed (possiblyempty) subset of funtions over the interior of eah ell.Similarly, the upper envelope is de�ned as the point-wise maximum of the funtions Siwhih leads to their maximization diagram. However, until the end of the hapter we referfor the sake of simpliity to lower envelopes only.The omplexity of an envelope is de�ned by the omplexity of its minimization dia-gram. Several analyses exists [HS94℄, [Sha94℄, [SA95℄. Construting an envelope for a setof (hyper)surfaes is also well-studied. Observe that the minimization diagram of algebrai(hyper)surfaes an be easily extrated from the proper ylindrial algebrai deomposi-tion [Col75℄ (see also �2.1.6). The ad only needs to be lustered with respet to theminimization. However, the onstrution of a ad omputes muh more than needed, inpartiular, it always adheres hidden features. Hidden means that it onsiders boundaries orintersetions of surfaes that �nally do not show up in the minimization diagram. Severalmore e�ient algorithms have been developed for low-dimensional envelopes, espeiallyfor d = 3. There exist output-sensitive algorithms for speial ases [dBHO+94℄, [KOS92℄,[Mul89℄. A randomized inremental algorithm is due to Boissonnat and Dobrindt [BD96℄.It runs in time O(n2+ε), with ε > 0. The same time is needed by the divide-and-onquerapproah presented by Agarwal et al. [ASS96℄.Meyerovith presented the generi and exat implementation of a divide-and-onqueralgorithm for the three-dimensional ase that deouples the ombinatorial part from thegeometri prediates using the generi programming paradigm [Mey06b℄. The implemen-tation is ontained in Cgal's Envelope_3 pakage, that has been released with Cgal ver-sion 3.3. It is based on and strongly oupled with Cgal's Arrangement_2 pakage, whih isa well-taken hoie, sine the problem atually is two-and-a-half-dimensional: The input Sonsists of objets in R3, while their minimization diagram is represented by an augmentedplanar arrangement in R2, that is, eah ell of the arrangement (vertex, edge, and fae)is labeled with the set of surfaes that attain the minimum over the ell. We typiallydistinguish between an empty set, a singleton, or more than one surfae. Algorithm 3.1desribes how the labels are assigned using a divide-and-onquer approah.Remarks (on Algorithm 3.1).
• We observe that its output is with respet to the xy-monotone piees g1, . . . , gk ofthe Si. This atually poses no real problem, as eah gj an store from whih Si itoriginates. In �3.3 we see an impliit storage strategy for quadris.
• The splitting into G1 and G2 is not spei�ed. However, in pratie, a randomizedpartition obtains the best results. This has also been shown in theory by an analysisof the expeted running time [HSS08℄.
• The desriptions of the algorithm ontained in [Mey06a℄ and [Mey06b℄ over moredetails. In partiular, they disuss subtleties that we skipped for the sake of sim-pliity, they explain how to use Cgal's Arrangement_2 pakage for the atual im-plementation, and they also presents how to propagate ontinuity and disontinuityinformation of the surfaes in order to signi�antly redue the amount of geomet-ri onstrutions and omparisons by ombinatorial dedutions. Suh operations



3.1. Envelopes 93
Algorithm 3.1. Lower envelope with divide-and-onquerInput: Set of surfaes S = {S1, . . . , Sn}Output: Minimization diagram MS representing the lower envelope ES of S

• Extrat (weakly) xy-monotone piees of eah Si (eah line parallel to the z-axisintersets suh a piee at most one, or Si is ompletely vertial). Let G be the setolleting them.
• If G = {g}, ompute MG. This is done by �rst projeting the boundary of g intothe xy-plane whih indues faes. For eah fae it is deided whether it representsa projetion of g. There an be more than one suh ative fae. In ase of g beingvertial, no fae is ative. The deision is lead by a �ag attahed to eah x-monotoneprojeted urve of the boundary indiating whether the projetion of g is above,below, or none of them; for an exat spei�ation of these terms see De�nition 3.4.
• If |G| > 1, we split G into two non-empty sets G1 and G2 (of roughly the samesize), reursively onstrut MG1 and MG2 , and �nally merge them into MG with thefollowing steps (simpli�ed):1. Overlay the planar arrangements representing MG1 and MG2 resulting in O.Store for eah ell Γ of O two pointers to Γ's originating ells Γ1 ∈MG1

and Γ2 ∈
MG2

.2. Update the labeled set ℓc ⊆ G for eah ell Γ of O: Let ℓ1 ⊆ G1 and ℓ2 ⊆ G2be the labeled set of surfaes attahed to Γ1 and Γ2. We skip the trivial ases,where at least one ℓ1 = ∅ or ℓ2 = ∅ holds. In the remaining non-trivial ase theenvelope over Γ is the envelope of ℓ1∪ℓ2. Redue the sets ℓ1, ℓ2 to representativesingletons ℓ′1 = {g1} and ℓ′2 = {g2}. Split Γ (if not a vertex) with respet tothe projeted intersetion of g1 and g2. For eah resulting ell Γ′
1, . . . ,Γ

′
k (kan beome large) determine whether either ℓ′1, ℓ′2, or ℓ′1∪ ℓ′2 forms its envelope.Flush with re-replaing the representatives ℓ′1, ℓ′2 with ℓ1, ℓ2 in the labels ofeah Γ′

i.3. Clean up by removing edges whose two inident faes arry the same labelingas the edge. Also delete verties of degree 2 whose two inident edges arry thethe same labeling as the vertex and that an be merged geometrially (i. e., theedges and the vertex originate from a single projeted urve).



94 Lower Envelopes of Quadrisare usually expensive, espeially when following the exat geometri omputationparadigm.The outline of Algorithm 3.1 already de�nes the tasks that must be provided in or-der to support a ertain lass of surfaes. In partiular, we detet (a) the extration of(weakly) xy-monotone piees, (b) to onstrut the projeted boundary (with side informa-tion) for a single xy-monotone surfae, () to onstrut the projeted intersetion of two
xy-monotone surfaes, (d) to overlay arrangements omposed of suh onstruted urves,and �nally, (e) to determine the relative z-order of xy-monotone surfaes over a ell of aplanar arrangement.Cgal's Envelope_3 pakage implements the generi parts, as the maintenane of theplanar arrangement, or the overlay using the sweep-line algorithm. However, in order toompute the lower envelope for a ertain family of surfaes, the surfae-spei� geometritypes and operations must be provided. As usual for generi programming, this is done inform of a traits lass ful�lling a ertain onept. The Envelope_3 pakage already ontainssuh traits lasses for triangles, planes, and spheres. In �3.3 we present the details of theonept, and show how to implement a proper model for quadris.3.2. QuadrisDe�nition 3.3 (Quadri). A quadri is a real algebrai surfae for whose de�ning polyno-mial f ∈ Z[x, y, z] it holds degtotal(f) = 2.As olleted in �1.2, basially three approahes to omputationally study quadrisexist. Namely, (a) the sweep of a plane perpendiular to the x-axis, while keeping trak oftopologial hanges, (b) the parametri approah, where intersetion urves are representedin the parameter spae of the quadris, and () the projetion approah, whih projetsurves of interest onto the xy-plane, analyzes them, and lifts them bak to the thirddimension. We notie that espeially the projetion method turns out to be a fundamentalbasis when omputing envelopes. Let us brie�y review the results of [BHK+05℄, that isbasially motivated by the ylindrial algebrai deomposition method, see �2.1.6.Let Q := {q0, . . . , qn} be a set of n quadris, among whih we selet one referenequadri, w. l. o. g. q0. Abusing notation we identify with qi also the vanishing set of thepolynomial, that is, the surfae itself. By resultant omputations and Proposition 2.8 theintersetion urves are projeted onto the xy-plane. The resulting real algebrai planeurves have degree at most 4 and are Zariski losed. We all them projeted intersetion.The silhouette of q0, de�ned by the intersetion of q0 and ∂q0

∂z , partitions q0 into a lowerand an upper part. We also projet the silhouette onto the xy-plane. The orrespondingurve is also Zariski losed, has degree at most 2, and is alled the projeted silhouette. Wean ombine a proper model of the AlgebraiKernelWithAnalysis_2 onept with Cgal'sCurved_kernel_via_analysis_2 (CKvA_2) to ompute the indued planar arrangements ofthe projeted urves as explained in �2.4.4. Two suh models exist. One instantiatesthe Algebrai_kernel_2 (in wrapping mode, see �2.3.3) with quadri-spei� analyses ofplanar urves of degree 4. These analysis are taken from Exaus's QuadriX library,and presented in [BHK+05℄. The other is Cgal's new Algebrai_urve_kernel_2 thatomprises the analysis of algebrai urves of arbitrary degree,20 that also su�es for our20Formerly known as Exaus' AliX library.



3.2. Quadris 95purpose. The ingredients are published in [EKW07℄ and [EK08a℄. These days, we prefer theseond approah, as its analyses keep shearing internally, while the analyses of the quadri-spei� analyses have preonditions on the hoie of the three-dimensional oordinatesystem.For the plane sweep, urves get deomposed into maximal ars with onstant ar num-ber in their interior; see �2.1.4. However, in the projetion of the three-dimensional urvesonto the xy-plane the spatial information is lost. In order to reover it [BHK+05℄ usesa stronger deomposition of projeted intersetion urves, suh that eah (maximal) sub-urve an be uniquely assigned to the lower or upper part of q0. As before, the projetionof q0's intersetion with some qi is split at its ritial points, but also at its intersetionpoints with the projeted silhouette of q0; see, in partiular, Figure 3.1 ().Note that this deomposition is onservative in the sense that the urve may be split atprojeted points of q0 ∩ qi where the spatial ounterpart only touhes the silhouette of q0,but does not ross it.In the next step, eah suh sub-urve (and eah existing isolated point) is hekedwhether it belongs to the lower part of q0 or the upper part of q0 (or even both, whih isalso possible) by �nding the ommon intersetion(s) of q0 and qi with a z-vertial line. Inthe generi ase, the �ip of intersetions along two related lines with rational x- and y-oordinate is deteted to deide whether a urves lies on the lower or upper part of q0. Fig-ure 3.2 illustrates this ase. In the other ases, we have to diretly ompare z-oordinatesof quadris' intersetions with a vertial line. We disuss these intersetions below. Forfurther details on the deomposition and the assignment we refer to [BHK+05℄ and [Ber04℄.We next onentrate on the intersetions of a quadri with a vertial line ℓp at somepoint p, whih is important for the previous assignment. It is essential to ompute therelative z-order of two quadris, expeted by the onept we have to model to ompute alower envelope of quadris; see �3.3.Let qi be a quadri and onsider a point p = (px, py) ∈ R2 with Ri(p) := {z ∈ R | 0 =
qi(px, py, z) ∈ R[z]}. As degz(qi) ≤ 2, it holds that |Ri(p)| ≤ 2. That is, if any is existing,
qi has either one or two intersetions with ℓp and Ri(p) exatly de�nes their z-oordinates;see also Lemma 5.64. Let us have a loser look at the algebrai degrees of Ri(p)'s elements.
• If p is a rational point, then r ∈ Ri(p) is an algebrai number of degree at most 2.Suh a number an be represented in the form r = a + b

√
c, with a, b, c ∈ Q, alsoreferred to as a one-root number. Cgal's number type Sqrt_extension is able torepresent suh one-root numbers, allows to ompare them, and provides arithmetioperators on them.

• Next, think of p lying on a projeted silhouette of a quadri, with px being rational.Then, by degy(Resz(qi,
∂qi

∂z )) ≤ 2, py is not worse than a one-root number. Weassume the worst, and thus onlude, that although r ∈ Ri(p) having algebraidegree 4, it an be represented by a nested one-root number of depth 1: We an write
r = a′+b′

√
c′ where a, b, c are simple one-root numbers itself. Cgal's Sqrt_extensiontype allows suh a nesting.

• Let now p be a singular point of a projeted intersetion urve of two quadris. Asshown in [Wol02℄ (and used in [BHK+05℄), p's x- and y-oordinates an be repre-sented as nested-one-root numbers of depth 1. Applying the previous idea again,
r ∈ Ri(p) is representable as nested one-root number of depth 2. Alternatively,we an swith to numbers types representing algebrai expressions involving the ⋄-



96 Lower Envelopes of Quadris
Figure 3.1. Developing the two arrangements on a referene quadri
(a) Red and green quadri areinterseting the gray referenequadri q0

(b) The same situation on q0

() The projetion of the referene's silhouette and the two interse-tion urves onto the xy-plane. The projeted intersetion urves mustbe split and assigned to the lower and upper part of q0.
(d) Arrangement on lower part of q0 (e) Arrangement on upper part of q0
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Figure 3.2. Lifting the intersetions of the blue quadri with the red referenequadri q0 to q0's lower and upper part. In this generi ase, it su�es to loatethe �ip (dashed retangles) along pairs of z-axis parallel lines with rational x0 and ra-tional yi. The piture takes plae in the plane x = x0. In degenerate ases, omparisonsof one-root numbers give the answer.operator. Examples are leda::real or CORE::Expr as stated in �2.3.1.
• Suh algebrai expressions onstitute the default representation for z-oordinates of

ℓp∩qi, for all other p. In partiular, if p is an intersetion of a projeted silhouette anda projeted intersetion. Its x-oordinate has algebrai degree up to 8, whih impliesfor its y-oordinate a degree of up to 16. Thus, r ∈ Ri(p) already has degree 32.Of ourse, it is possible that algebrai expressions ould also be used for all asesreplaing all (nested) one-root numbers. However, deteting the equality of two suhnumbers r1 and r2 is more ostly for algebrai expression, as |r2−r1| must be approximatedbelow the separation bound to derive a erti�ed answer. On the other hand, heking
r2−r1 = 0 using (nested) one-root numbers redues to repeated squaring of the expression
r2 − r1 until no square-root remains. This is usually the heaper approah; see [Meh01℄.Remark. In Chapters 4 and 5 quadris also play a fundamental role. Observe that theintersetion urves q0 ∩ qi, 1 ≤ i ≤ n atually indue a two-dimensional arrangementon the surfae of q0. The software presented in [BHK+05℄ is only able to ompute twoprojeted arrangements, that is, one for the lower part of q0 and one for its upper part.Their onnetions are missing. Chapter 4 desribes a framework that an be used todiretly ompute a sole two-dimensional arrangement for an ellipti q0. In Chapter 5 weredesign the analysis of surfaes. The expliit representation for z-oordinates is replaedby an approximated version relying on the output of the bitstream Desartes method.We inorporate the idea for quadris again, but also generalize to algebrai surfaes ofarbitrary degree.3.3. EnvelopeTraits_3 onept and the model for quadrisCgal's Envelope_3 pakage implements the generi programming paradigm, that is, in or-der to ompute lower envelopes for a ertain family of surfaes, the algorithm template mustbe instantiated with a traits lass (see �2.2.1) that enapsulates basi geometri objetsand operations on them. The requirements are also referred to as the onept that must



98 Lower Envelopes of Quadrisbe ful�lled. The Envelope_3 pakage expets a lass that implements the EnvelopeTraits_3onept. In this setion, we present the details of the onept and how we provide animplementation for quadris. For the reason of readability, we simplify syntatial issues.The interested reader is enouraged to read the referene doumentation in [MWZ07℄.As the omputation of lower envelopes is based on two-dimensional arrangements andalso employs their overlays, the EnvelopeTraits_3 onept is a diret re�nement of Cgal'sArrangementTraits_2 onept. Thus, we automatially inherit types for planar points(Point_2), planar urves (X_monotone_urve_2) and basi operations on them; see �2.4.3.For quadris: Thus, we derive the new model from the CKvA_2 that is instantiatedwith one of the two possible algebrai kernels as written in �3.2.The onept also expets spatial types and operations related to them. Two types areexpeted, namely Surfae_3 and Xy_monotone_surfae_3.For quadris: We map both types to QuadriX's Quadri_3 lass. This may besurprising at �rst, sine a quadri, in general, is not xy-monotone. However, it is only animplementation detail to simplify matters. All subsequent operations that are expeted towork on an xy-monotone surfae g onsider only the lower part of the appropriate quadri.If f ∈ Z[x, y, z] de�nes a quadri, its lower part is separated from its upper part by itsintersetion with the plane de�ned by ∂f
∂z , the silhouette.Due to this hoie of types, the �rst expeted operation21 is simple:

• Extrat xy-monotone surfaesTask: The funtion objet Make_xy_monotone_3 is expeted to deompose a givensurfae S into its xy-monotone subsurfaes.For quadris: As both basi surfae types use the same representation, we simplyreturn the given quadri itself as the sole output objet.For the other spatial funtors, we �rst introdue some notation on planar urves.De�nition 3.4 (Points below and above a urve). Let c be a planar non-vertial x-monotone urve.
• We say that a point p = (px, py) 6∈ c is below c if it lies in the x-range of c and if

py < p′y, where p′ = (p′x, p′y) ∈ c with p′x = px. The analog ase of above c is met if
py > p′y.

• The vertial half-open line segment de�ned by Cp,c := {(x, y) ∈ R2 | x = px ∧ p′y <
y ≤ py} is alled the ritial segment between p and c. The ritial segment for apoint above c is de�ned analogously.

• The set of all points p below c de�ne a half-stripe alled area below c, while the setof all points p above c de�ne its ounterpart, alled the area above c.The notation of below and above is even used for a vertial c; but with exhangedoordinates. Figure 3.3 illustrates this de�nition.Remark. Mind that we arefully distinguish notation here. The terms below and abovelassify planar points related to a projeted planar urve and a ritial segment is loatedin the xy-plane as well; see De�nition 3.4. In ontrast, over deals with intersetions of asurfae (or two surfaes) with a line parallel to the z-axis going through a planar point p21Eah operation is interfaed as funtion objet (also known as funtor).



3.3. EnvelopeTraits_3 onept and the model for quadris 99(or a representative point pc on a given projeted urve c). In the latter ase we mainlyompute a set Ri(p) or ompare entries of sets Ri(p) and Rj(p); see �3.2 for more details.Figure 3.3. Points below and above urves
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p4
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(a) Points p2 and p4 are abovethe non-vertial c1; points p1and p3 are below it. The riti-al segment for p4 is intersetedby the red urve c2.
belowabove

p7

c3

p8

p6

p5

c4(b) Points p5 and p8 are above thevertial c3; points p6 and p7 are be-low it. The ritial segment for p7is interseted by the red urve c4.The next two expeted operations perform the projetion of boundaries or intersetionsinto the plane of the minimization diagram. Their implementation for quadris, bene�tsfrom prior work that we repeated in �3.2.
• Construt projeted boundaryTask: The funtion objet Construt_projeted_boundary_2 omputes for a given(xy-monotone) surfae g all planar (weakly) x-monotone urves (and possibly iso-lated planar points) that form the projetion of g's boundary into the xy-plane. Notethat these objets are at most one-dimensional, that is, it is required to label induedopen two-dimensional sets (faes), whether the surfae exists over them (i. e., overti-al to the planar fae). For that purpose eah reported (weakly) x-monotone urve cis enhaned with a �ag whether the projetion of g is (loally) below or above c. The�ag an atually also enode the third, degenerate, ase, namely that g is vertialover the orresponding urve c (i. e., g ontains every line parallel to the z-axis, thatrun through points on c). The �ag is used to properly tag all faes. Observe thatthe objetive of this funtion objet is to support the omputation of M{g}, that is,the minimization diagram for a single surfae as expeted in Algorithm 3.1.For quadris: The projeted silhouette of a quadri q is easy deomposable into(weakly) x-monotone urves and isolated points, using Make_x_monotone_2 suppliedby CKvA_2. The assignment to whih side of some c the non-vertial lower part of qis projeted is deided in two steps: First, we hoose a rational point p = (px, py)below c, but lose enough. This means that the ritial segment between p and c isnot interseted by any another projeted boundary of q. Seond, we ompute the



100 Lower Envelopes of QuadrisFigure 3.4. Construting the projeted boundary for a quadri, three examples
(a) Quadri 1 (b) Quadri 2 () Quadri 3ardinality m := |R(p)|. This value gives the number of real roots of q(p, z) ∈ R[z],or more geometrially, the number of distint real intersetion of q with ℓp. If m > 0,the projeted quadri is below c (by hoie of point), otherwise it is above c. Thissimple impliation (i. e., the else-ase) is allowed as (1) quadris that only show asingle intersetion over a non-boundary have no boundary at all and (2) if q is vertialthis information is stored with q itself. Thus a single ardinality su�es. We simplysave to hek the ardinality over a seond point above c to deide vertiality.
• Construt projeted intersetionTask: The funtion objet Construt_projeted_intersetion_2 omputes the ob-jets of the projeted intersetions of two xy-monotone surfaes g1 and g2. If suh anobjet is an isolated point (Point_2) it is either the projeted image of a degenerate(isolated) intersetion, or the projetion of a vertial intersetion urve. Otherwise,an objet an also be a one-dimensional (weakly) x-monotone urve c, whih isequipped with an optional integral multipliity. If this multipliity is an odd value,we know that the two surfaes interset transversely over c, that is, they hange theirrelative z-order on either side of the spatial ounterpart of c. An even multipliityindiates that the surfaes maintain their relative z-order. The divide-and-onqueralgorithm an derive the relative z-order of two surfaes on one side from their knownrelative z-order on the other side. This avoids expliit tests inorporating one of theremaining funtors below, and thus, improves the overall performane of the algo-rithm. If the multipliity is set to 0, additional omparisons are unavoidable.For quadris: We mainly onsider the projeted intersetion urve as presentedin �3.2. Remember that we deomposed it with respet to its ritial points andits intersetions with the projeted silhouette of a referene quadri. This time, wepartition it with respet to the projeted silhouettes of both given quadris. Thisdeomposition paves the way to assign (the interior of) sub-urves (and isolatedpoints) uniquely to the lower part of both involved quadris: For eah point andeah urve we hek, using ray-shooting as in �3.2, to whih part of the �rst quadriit belongs, and to whih part of the seond quadri it belongs. We �nally return allsub-urves and points that have been assigned to the lower parts of both surfaes.The remaining expeted funtion objets ompute the relative z-order of two xy-monotone surfaes g1 and g2 over projeted ells of a planar arrangement. We distinguish



3.3. EnvelopeTraits_3 onept and the model for quadris 101Figure 3.5. Construting the projeted intersetion for pairs of quadris
(a) Quadri 1+2 (b) Quadri 1+3 () Quadri 2+3�ve ases, olleted in three funtors. For quadris, all of them rely on omputing andomparing the minimal intersetions of q1(= g1) and q2(= g2) with ℓp at some suitablepoint p = (px, py). It is easy to see that the relative z-order of the lower part of q1and the lower part of q2 over p is given by the order of r1 := g1(p) = min R1(p) and

r2 := g2(p) = min R2(p). That is, we mainly explain how to �nd a suitable point for eahdesired omparison. Depending on the representation (algebrai degree) of the point, anatual z-omparison is simply arried out by the omparisons of the orresponding numbertypes: either (nested) one-root numbers or algebrai expressions. We refer to �3.2 wherewe disussed the di�erent possibilities.
• Compare z over xyTask: The funtion objet Compare_z_at_xy_3 provides three operators. Eah on-siders as input two given non-vertial xy-monotone surfaes g1 and g2 and a planargeometri objet.1. The �rst determines the relative z-order of g1, g2 at a given planar point p =

(px, py). Both surfaes must be de�ned over p. The returned information is theomparison result of g1(p) and g2(p).2. The seond determines the relative z-order of g1, g2 over the interior of a given(weakly) x-monotone urve c. It has the preondition that c is fully ontained inthe xy-de�nition range of both surfaes, and that c is not part of the projetedintersetion of g1 and g2. The funtor is expeted to return the omparisonresult of g1(p
′) and g2(p

′) for some point p′ in the interior of c.3. The last operator is only required if unbounded surfaes our. Atually, thesurfaes must be de�ned over the entire xy-plane having no boundary and no in-tersetion at all. A simple example onsists two planes parallel to the xy-plane.The operator determines the relative z-order by (tehnially) hoosing someplanar point p′ ∈ R2 and returning the omparison result of g1(p
′) and g2(p

′).For quadris: We disuss the three operators in reversed order, as this re�ets 1howompliated eah is.For the third, we simply hoose p = (0, 0), ompute one-root numbers r1 and r2 asde�ned, and ompare them.For the seond operator, we distinguish two ases, namely either
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Figure 3.6. Compare relative z-order of (lower parts of) of two quadris over aprojeted boundary urve (Example)� c is part of a projeted boundary of a quadri's lower part or� c is part of a projeted intersetion of surfaes g′1 and g′2, with {g′1, g′2} 6= {g1, g2}.We see that the algebrai degrees of the orresponding p′'s oordinates an be keptquite small in both ases, whih starts with hoosing a rational number for p′x in c's
x-range.22 If c is part of a projeted boundary, p′y is a one-root number, and thus
r1 and r2 an be omputed and ompared as nested one-root numbers of depth 1.Figure 3.6 shows an example for suh a omparison. In the other ase, we bene�tfrom the fat that the projeted intersetion is not of the queried surfaes g1 and g2,whih implies that there is a two-dimensional onneted (maybe open) subarea below
c whose points' ritial segments are not interseted by the projeted intersetion of
g1 and g2. Thus, a point from this subarea is a good andidate. However, we also needto ensure that the topology of g1 and g2 over suh a point is idential to the topologyof the surfae over points of c. We hoose a rational point p′ in the subarea below
c whose ritial segment between p′ and c is not interseted by any of the followingurves: (1) The projeted intersetion of g1 and g2, (2) the urve that supports c(the projeted intersetion of some g′1 and g′2), and (3) the projeted boundaries of
g1 and of g2 . The orresponding values r1 and r2 are one-root numbers.It turns out that the omparison of the lower parts of two quadris over a point
p is the most expensive one as p's oordinates are often algebrai numbers of highdegree. In addition, there is no guarantee to �nd a nie point p′ (i. e., best withrational oordinates) nearby where q1 and q2 have the same order. In fat, most ofthe time suh a nie point will just not exist, as the majority of usages of this methodby the lower envelope algorithm only our in degenerate situations. An impliationis, that we are really fored to exatly ompare the surfaes' relative z-order over apoint with oordinates of higher algebrai degree. However, the list of possible asesis not arbitrary. In fat, the generi divide-and-onquer implementation exploitsontinuity and disontinuity information of the envelopes to arry a deision overbetween inident ells. Bringing this into onsideration, the omparison of surfaesover a point an our only in two speial situations. They remain by heking allthe possible ases where a point is reated in the merge step, and keeping only thosewhere the omparison method over a point is invoked: Either p is an isolated point22If c is vertial, think of swapped oordinates for the whole proedure.
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Figure 3.7. Compare relative z-order of (lower parts of) of two quadris over aplanar point (Example)of a urve, or p lies on a projeted boundary of an xy-monotone surfae. In bothases, the algebrai omplexity is not the highest possible.In most ases, we an ompute and ompare r1 and r2 using (nested) one-root num-bers. In partiular, this holds for p being isolated, as an isolated point is singularand the oordinates of singular points of projeted intersetions an be representedas (nested) one-root numbers [BHK+05℄; the singularity (if existing) of a projetedboundary is, due to the degree, even rational; see Figure 3.7. If p lies on a projetedboundary, we distinguish by the algebrai degree of px. If it is at most 2, we still anope with nested one-root numbers. If if exeeds 2, we have no hoie and swithto algebrai expressions to represent r1 and r2. This implies the ostly usage of the
⋄-operator. However, the algebrai degree of px is bounded by 8. Note that this aseforms the most expensive omparison in the algorithm, espeially, if it eventuallyholds that r1 = r2.Summarizing, it is possible in all ases to ompute the relative z-order of the lowerparts of two quadris over a point or a urve. One an see, that due to the algebraidegree of quadris, we an always use (nested) one-root numbers as long as thealgebrai degree of the x-oordinate does not exeed two. Otherwise we have toswith to the expensive ⋄-operation. Note that, in general, the omparison over anarbitrary algebrai point p is possible using the same tehniques, in partiular whenrelying on algebrai expressions. However, this an be arbitrary ostly (dependingon the degrees) and it is not expeted during the exeution of the divide-and-onqueralgorithm, beause of the speial are taken in designing the algorithm [Mey06b℄.

• Compare z over area below (or above) urve cTask: The funtion objet Compare_z_at_xy_below_3 omputes the relative z-orderof the two given xy-monotone surfaes g1 and g2 immediately over a point that isbelow one of their projeted intersetion urves c. It has the preondition, that bothsurfaes are de�ned below c, and their relative z-order is kept unhanged in somesmall enough neighborhood of points below c.For quadris: To ompute this information for quadris, the strategy is similaras the omparison over a projeted intersetion urve. We hoose a rational pointbelow c whose ritial segment is not interseted by any of the following urves:(1) the projeted boundaries of q1 and q2 and (2) the projeted intersetion urve of
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Figure 3.8. Compare relative z-order of (lower parts of) of two ylinders over apoint in the area below their projeted intersetion (Example)
q1 and q2. This ensures that both surfaes are de�ned over p and, by a ontinuityargument, that the z-order over p is the desired order.We skip the symmetri disussion of the also required above-version.Remark (Unbounded surfaes). Cgal's Arrangement_2 pakage in version 3.2 an only dealwith urves having �nite ends, whih does not allow to store the projetion of an un-bounded xy-monotone surfae. Its projetion is simply not a ompat set. In addition,if all urve-ends are �nite, the arrangement only has to deal with a single unboundedfae. This onstitutes another problem, as it is insu�ient to store the minimization di-agram for a set of unbounded surfaes. There are simple examples (e. g., S ontains asingle in�nite ylinder) where MS may omprises more than one unbounded fae, andeah suh fae stores an individual labeling. Both problems have been attaked by Cgal'sArrangement_on_surfae_2 pakage, whih generalizes two-dimensional arrangements. Theunbounded plane dealing with more than one unbounded fae is the �rst surfae that hasbeen takled. We present full details on the generi Arrangement_on_surfae_2 frameworkin Chapter 4.3.4. ResultsUsing the model presented in �3.3, we an suessfully onstrut lower envelopes (mini-mization diagrams) of quadris with Algorithm 3.1 by alling CGAL::lower_envelope for aset of input surfaes. Figure 3.9 shows the �nal lower envelope of the surfaes introduedin Figure 3.1. The atual implementation of the traits lass for quadris is still in Exaus'QuadriX library. The whole library is going to move soon as a pakage of its own intoCgal. Thus, a future publi release of Cgal will not only ontain two main strategiesto analyze quadris and their intersetions, but also omprise the omputation of lowerenvelopes of quadris. In addition, some variants are available as well. We present themat the end of this hapter; see �3.5.The performane of our traits lass for quadris used in Cgal's divide-and-onqueralgorithm to ompute lower envelopes has also been heked experimentally. For inreas-ing n we reated �ve sets of random quadris whose oe�ients are ten-bit integers. We



3.4. Results 105Figure 3.9. Lower envelope of quadris

(a) Final lower envelope (b) Look from z = −∞
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Figure 3.10. The running time required to ompute the lower envelope of sets ofquadris as a funtion of the number of input quadris.
n of 200 400 600 800 1000quadris 114.4 225.3 353.0 460.5 589.2non-Ellipsoids 117.1 231.8 342.7 452.8 574.2ellipsoids 99.1 206.0 275.9 408.6 483.2Table 3.1. Averaged running times (in seonds) required for omputing the lowerenvelope of instanes of quadris.



106 Lower Envelopes of QuadrisProperties of MS1000 of #S #V #E #F (unb.)quadris 8 15 22 8 (5)non-ellipsoids 7 16 22 7 (5)ellipsoids 67 249 324 77 (1)Table 3.2. The number of attained surfaes and the size of minimization diagrams fora seleted instane of 1000 quadris of di�erent kind.used a version of Cgal's Arrangement_2 pakage that is able to maintain several un-bounded faes (see Chapter 4, where we disuss this extension in detail). This allowed usto onsider bounded and unbounded quadris. Atually, we distinguish between ellipsoids,non-ellipsoidal quadris, and mixed sets. All experiments were exeuted on a 3 GHz Pen-tium IV mahine with 2 MB of ahe. For exat arithmeti we used Leda's number types,and relied for the analyses of projeted (boundary and intersetion) urves on QuadriX'sspeialized approah [BHK+05℄. The resulting times in Figure 3.10 and Table 3.1 wereaveraged over several runs on the instanes of same size. The obtained running times seemto (nearly) linear depend on the number of input surfaes. We emphasize that an exat re-sult for 1000 arbitrary quadris is omputable in less than 10 minutes. As we an see fromTable 3.1, omputing lower envelopes of bounded quadris (ellipsoids) is even remarkablyfaster. A reason is that ellipsoids are bounded and thus in�uene only a restrited ompatplanar set. In ontrast the area of possible intersetions of an unbounded quadri is larger,and thus modi�ations of the minimization diagram are more probable. In partiular,when omputing the lower envelope, an unbounded quadri an simplify the minimizationdiagram drastially. A single unbounded fae an remain, while all previous (reursivelyomputed) diagrams beome obsolete. For an ellipsoid this probability is smaller. Thisfat is also re�eted in the omplexities of the �nal minimization diagrams. The numberof surfaes attained in the envelope (#S) and the number of faes (#F ), and thus forverties and edges, is smaller for unbounded surfaes as for bounded ones; see Table 3.2for examples.It is easy to see that the performane of the omputation is mainly in�uened by threeparameters. The �rst is the hoie of the partitioning into subsets, whih is beyond thesope of this work and we refer to [HSS08℄ that disusses a randomized hoie. The seondis the performane in two-dimensions itself, that is, how e�ient are analyses of projetedurves and pairs of them. Our implementation relies on a planar algebrai kernel forthis task. The last fator is the amount of time spent to ompute the relative z-ordersof surfaes. The model presented in this hapter relies on (nested) square-root numbersprovided by Cgal or algebrai expression from Leda or Core. In Chapter 5 we presentanother tehnique to ompute the intersetion pattern of surfae along a vertial line.Besides these elementary fators, it is also the ombinatorial dedution employed bythe algorithm itself that improves the general performane of the lower envelope ompu-tation. As explained the algorithms propagates ontinuity and disontinuity informationto deide the relative z-order of inident planar ells. To quantify this improvement, weounted for example sets of 1000 surfaes the number of suh savings. Table 3.3 shows theamount of �nally exeuted omparisons ompared with the number of atual omparisons(in parentheses) when not using ombinatorial dedution. As one an see, the omputation



3.5. Variants 107Number of omparisons overabove/below1000 of Point Curve Curvequadris 0 (18315) 2804 (31373) 1273 (4638)non-ellipsoids 0 (18087) 2386 (30777) 1273 (4640)ellipsoids 0 (22747) 1292 (38172) 1282 (3798)Table 3.3. Amount of required alls to ompute the relative z-order of two surfaesduring invoation of lower envelope algorithm for a set of 1000 arbitrary quadris, 1000non-ellipsoids, and 1000 ellipsoids. The number of operations when not propagatinginformation to neighbored ells is shown in parenthesis.of the envelope signi�antly bene�ts from this propagation of ontinuity and disontinuityinformation about the relative z-order of quadris.

Figure 3.11. Cutout of the lower envelope of 400 quadris, hyperboloids and ellipsoids.It onsists of 30 faes, 4 of whih are unbounded, 101 edges, and 76 verties.3.5. VariantsAt the end of this hapter, we shortly want to mention some variants that an be extratedby slight modi�ations of the model that we presented for quadris in �3.3.Upper envelope Computing the upper envelope of a set of quadris, requires only twosmall adaptions of the traits lass. The �rst hange a�ets the omputation of the projetedintersetion of two xy-monotone parts of quadris. Instead of returning the (weakly) x-monotone urves (and isolated points) that an be assigned to the lower parts of the twoinput quadris, we only return the ones that an be assigned to the proper upper partsof the quadris; this task is diretly supported by the work in [BHK+05℄ on whih werely throughout this hapter. The other modi�ation onerns the relative z-order over



108 Lower Envelopes of Quadrisdi�erent projeted geometri objets. Remember that we �rst ompute a suitable point p,then determine r1 := min R1(p) and r2 := minR2(p), and �nally ompare r1 and r2 toobtain the orret z-order. One we store r1 and r2 in a proper number type (whih isthe seond atual problem, besides omputing p), we just generially all the omparisonoperator on this number type. When now omputing upper envelopes, it su�es to onsider
r′1 := maxR1(p) and r′2 := maxR2(p) instead of r1 and r2. Our analysis of the involvedalgebrai degrees also holds for these values, and thus the same number types an be used.It remains to all CGAL::upper_envelope, that swithes the algorithm to a status that takesthe topmost surfae in the labeling step, instead of the bottommost one.It is easy to see that the omputational e�ort for lower and upper envelopes followingthis strategy is idential, suh that we abstain from reporting additional experiments forupper envelopes.Arbitrary diretions Lower and upper envelopes are with respet to the z-parallel pro-jetion onto the xy-plane. However, the traits lass an also be used to ompute lowerand upper envelopes in arbitrary diretions. To do so, if su�es to apply a rigid hange ofoordinates R(x, y, z) that models a rotation. One an even think of more sophistiatedlinear mappings.Instead of thinking that a point has moved in spae by a map, it is possible to hange thede�ning polynomials of input quadris. That is, for a quadri q we de�ne R(q(x, y, z)) :=
(q ◦ R−1)(x, y, z). It follows that q(p) = 0 ⇔ R(q(R(p))) = 0. Thus, in order to omputethe envelope in the diretion of the rotated xy-plane (de�ned by R), we onsider as inputthe quadris R(q1), . . . , R(qn). A simple example is the upper envelope where R(x, y, z) =
(x, y,−z).Again, the ombinatorial e�ort keeps unhanged, while the way we handle the rotationmainly in�uenes the bit-lengths of the quadri's oe�ients and the denseness of theirde�ning polynomials. Thus, additional experiments ould only re�et the e�ieny ofthe quadris' analyses with respet to these parameters. However, these onsideration arealready disussed elsewhere; see [BHK+05℄.Voronoi DiagramsDe�nition 3.5 (Voronoi Diagram). Let O := {o1, . . . , on} be a set of n pairwise disjointonvex objets in Rd and δ be a metri on Rd. The Voronoi Diagram of O with respet to δis a partition of Rd into maximal onneted ells, eah of whih onsists of the points thatis loser to one partiular objet than to any other. A Voronoi ell of objet oi is the set
{p ∈ Rd | δ(p, oi) < δ(p, oj) ∀j 6= i}. The set of points Bi,j := {p ∈ Rd | δ(p, oi) = δ(p, oj)}is alled the bisetor of oi and oj .As observed by Edelsbrunner and Seidel [ES86℄, every Voronoi diagram is exatly theminimization diagram of a set of surfaes in Rd+1, that is, the projetion of their lowerenvelope, where the surfaes are given by the graphs of funtions fi : Rd → R de�ned by
fi(x) = δ(x, Si). More details on this duality an also be found in [dBvKOS00, �11.5℄.We restrit in the following to d = 2, whih implies that every two-dimensional Voronoidiagram an be omputed by Cgal's Envelope_3 pakage, provided that a proper traitslass is supplied. Its two-dimensional objets and operations are responsible to build theplanar subdivision of the diagram, the three-dimensional objets are supposed to model



3.5. Variants 109the graph of the distane funtion for an objet. Atually, the expliit storage of suh asurfae is super�uous in an e�ient model, as it su�es to represent them by the objets
oi themselves. Three fats justify this simpli�ation.
• Observe that in unbounded domains and metris (as R2), the graph of the distanefuntion has no projeted boundary.
• The projeted intersetion of two sites is diretly given by the bisetor of the twoplanar objets. If possible, as usual, there is no need to onstrut the bisetor byinterseting the distane surfaes.
• The desired relative z-orders of two sites an be diretly enoded by omparing thedistanes of a point p to the two involved objets.Atually, there is work by Halperin, Setter, and Sharir, that disuss this idea moredetailed [HSS08℄. It presents a framework to apply the divide-and-onquer approah forenvelopes to ompute various kinds of Voronoi diagrams and shows that through ran-domization the expeted running time is near-optional (in a worst-ase sense). The workalso omprises a olletion of robust and e�ient traits lasses to ompute Voronoi dia-grams, power diagrams, Apollonius diagrams in the plane. For some they rely on Cgal'snew algebrai kernel and also the Curved_kernel_via_analysis_2 as modelling the pla-nar ArrangementTraits_2 onept. Some of the diagrams an even be established on thesphere using Cgal's new Arrangement_on_surfae_2 pakage whose details we present inChapter 4; see also [FHS08℄.As mentioned, the expliit storage is not needed, however, we want to onlude thishapter with another modi�ation of the EnvelopeTraits_3 model for quadris. Our goal isto use the modi�ed version in Cgal's divide-and-onquer algorithm to ompute the Apol-lonius diagram in two dimensions; see also Cgal's Apollonius_graph_2 pakage [KY07℄.De�nition 3.6 (Apollonius diagram). Let Ai = (pi, wi), 1 ≤ i ≤ n be a set of sites, where

pi ∈ R2 and wi is the weight of Ai. The Apollonius diagram of the Ai is the Voronoidiagram of the pi with δ(x, pi) := ||x− pi|| − wi, where || · || denotes the Eulidean norm.The Apollonius diagram is also known as additively weighted Voronoi diagram.If all wi are equal, the Apollonius diagram is idential to the standard Voronoi diagram.Following Edelsbrunner and Seidel's relation, the Voronoi diagram of {p1, . . . , pn} is thevertial projetion onto the xy-plane of the lower envelopes of a set of ones in R3. Foreah pi we de�ne a one Ci whose apex is pi itself. The one's axis is a line parallel tothe z-axis passing through pi, its angle is 45◦, and pi is the one's point with minimal
z-oordinate.For the Apollonius diagram, we have to onsider the weights in this geometri setting.For that reason the apex of Ci is shifted in z-diretion by a quantity equal to the weight
wi of Ai. A site with positive weight orresponds to a one whose apex is in the positive
z-halfspae, the apex of a site with negative weight is in the negative z-halfspae. Fig-ure 3.12 shows an example. The Apollonius diagram is attained by omputing the vertialprojetion onto the xy-plane of the lower envelope of the shifted ones, that is, the ones'minimization diagram.Remark (Shifted ones). First, observe that the Apollonius ell of a site Ai an be empty,whih happens to be in the ase, where Ai's shifted one Ci is hidden in some other one
Cj for site Sj, j 6= i, that is, Ci ∩ Cj = ∅; see Figure 3.13 for an example.
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Figure 3.12. Cones that de�ne the Apollonius diagram

(a) Weighted points are trans-formed into ones whose apies'
z-oordinates orresponded toweights. (b) The ones seen from z =

−∞. The lower envelope repre-senting the Apollonius diagraman be guessed.

Figure 3.13. A hidden one
(a) The input onsists of threeweighted points, but one of theorresponding ones is hidden. . . (b) . . . and thus, it does not in-�uene their lower envelope.



3.5. Variants 111Seond, as the projetion of the lower envelope is z-axis parallel, the Apollonius diagramkeeps unhanged, if we translate all ones by the same amount in z-diretion. Withouthanging the algebrai omplexity, we an move the apies of all ones into the positive
z-halfspae. Thus, w. l. o. g., we assume that all wi > 0, as it is the ase in Figure 3.12.An impliation of this fat is a geometri denotation: A site Ai = (pi, wi) an be seen asa irle entered at pi with radius wi. For more details on this, we refer to [KY07℄.We �nally explain whih steps are required to ompute the Apollonius diagram usingour quadri traits. The key step is to onstrut the input surfae for a site A = (p,w).We refer to px as p's x-oordinate, and to py as p's y-oordinate. In ontrast to the workin [HSS08℄, we use an expliit representation of the surfae in R3 modelling Ai's distanefuntion. In our ase, we have to model a one whose apex is at (p,w) and opening with 45◦in positive z-diretion. Unfortunately, there is no polynomial q ∈ Z[x, z, y] whose vanishingset V (q) de�nes suh a one. However, if we mirror and opy the one at the horizontalplane through its apex, we obtain a double-one whih an be de�ned algebraially, namelyby q = x2 + y2 − z2 − 2pxx− 2pyy + 2wz + (p2

x + p2
y − w2). Observe that degtotal(q) = 2.Thus, we atually ould diretly run Cgal's divide-and-onquer algorithm with ourtraits lass to ompute the lower envelope of these quadris. However, this would notresult in the minimization diagram denoting the Apollonius diagram of weighted points,for whih we are looking for. The problem is that the input onsist of double ones, but weatually want to ompute the lower envelope of the ones' upper parts. In order to ahievethis goal, we modify the implementation of our quadrial traits lass at some positions.

• First of all, we return no projeted boundary for a quadri. Atually, the projetedboundary of a double one is an isolated point, that is, the projeted version of thedouble-one's (singular!) apex. We just skip it. This is �ne, as the distane funtionof a site is not bounded.
• When omputing the projeted intersetions of quadris, we hange the ode to onlyreturn the projeted x-monotone urves that an be assigned to the upper parts ofboth double-ones. Observe that neither isolated points nor vertial urves our inthe projeted intersetions of two double-ones. This is atually true for all Voronoidiagrams, and should be inorporated when using a lower envelope algorithm forVoronoi diagrams.
• Finally, we adapt the omputation of the relative z-order of two quadris (heredouble-ones q1 and q2) in the obvious way. Instead of omparing r1 := min R1(p)with r2 := min R2(p), we now ompare r′1 := maxR1(p) with r′2 := maxR2(p). Infat, we neither have to onsider the omparison over boundaries nor over isolatedpoints. This way, we are lukily left with the omparisons that an be determinedwith a rational p.As a result, we an suessfully ompute Apollonius diagrams of (weighted) points usingour modi�ed traits. We tested various examples taken from Cgal's repository [KY07℄.While all of them produed orret output, the performane numbers seen for these testsare bad, whih somehow is an intrinsi problem. There are mainly three reasons.
• We onsider expliit representations of the surfaes modelling the distane funtion(the shifted ones).
• The surfaes are more ompliated than required, that is, we onsider a double-one instead of a single one. This also has impliations on the omputation of the�bisetor�, whih is here given by parts of the projeted intersetion of two double-
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(a) Output with xquadri (b) Output with demo fromCgal'sApollonius_graph_2 pakageFigure 3.14. Apollonius diagram of 500 weighted pointsones. The algebrai degree of suh a projeted intersetion is 4, while all bisetorsof weighted points in the plane are atually onis (i. e., urves of degree 2).
• Comparing the distanes to two sites by heking the real relative z-order of two onesusing pure exat arithmeti is far too ompliated. In most ases, we should be ableto derive the order of δ(x, pi) and δ(x, pj) by erti�ed numerial approximations, forexample using interval arithmeti.For these reasons, we abstain from reporting extensive experiments on this naive ap-proah, and refer to [HSS08℄ for a more sophistiated implementation of the problem usingCgal's divide-and-onquer algorithm for lower envelopes. However, it must be aknowl-edged for our toy example that in terms of oding it is simple to modify the traits in orderto ahieve results beyond pure envelopes.In this hapter, we have seen how to ome up with a model of Cgal's EnvelopeTraits_3onept for arbitrary quadris. The model is based on a planar algebrai kernel whihprovides analyses of urves and pairs of them. In addition, we have shown how tiny mod-i�ations of the model (in ollaboration with onstruting proper input) render possiblevariants of envelopes, or even (naively) support another geometri problem, that is, theomputation of the Apollonius diagram for a set of weighted points.
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4Two-Dimensional Arrangementson SurfaesIn this hapter we present a framework to ompute arrangements of urves embedded on atwo-dimensional parametri surfae. Its development is driven by maximizing ode-reuse.In partiular, we generalize the sweep line algorithm and the zone algorithm to onstrutarrangements on the desired surfaes. The main tool in this diretion is again the generiprogramming paradigm whih allows to deouple the ombinatorial representation fromthe atual supporting surfae and the urves embedded on it. The framework originallyextended Cgal's Arrangement_2 pakage. For the upoming Cgal 3.4 release it has beenrenamed to Arrangement_on_surfae_2.The outline of the hapter is as follows. We �rst present the framework, and how wehave extended Cgal's Arrangement_2 pakage to support various parametri surfaes asthe unbounded plane, spheres, ylinders, tori, and more. This part of the hapter is basedon results obtained in ollaboration with E� Fogel, Dan Halperin, and Ron Wein fromTel-Aviv University, Tel-Aviv, Israel, and Kurt Mehlhorn from the Max-Plank-Institutfür Informatik, Saarbrüken, Germany. A short version previously appeared in [BFH+07℄.Support for several surfaes with di�erent kinds of urves embedded on eah already exists.In the seond part of the hapter we exemplary disuss two partiular settings. As ourinitial example, we present what is needed to use the framework to onstrut, maintain,and overlay arrangements on an ellipti quadri. The urves embedded on suh a surfaeare de�ned by its intersetions with arbitrary quadris. As �nal example we onsiderthe ase of a ring Dupin ylide as the referene surfae that is interseted by arbitraryalgebrai surfaes. This implementation is joint work with Mihael Kerber from the Max-Plank-Institut für Informatik, Saarbrüken, Germany. It has been presented in [BK08℄.4.1. Setting and related workWe are given a parametri surfae S in R3 and a set of urves C embedded on S. Theurves C subdivide S into a �nite number of ells of dimension 0 (verties), 1 (edges), and
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2 (faes). We refer to this subdivision as the arrangement indued by C on S and nameit AS(C). Until reently, Cgal's Arrangement_2 pakage was only apable of onstrutingand maintaining arrangements indued by bounded planar urves; see �2.4.3. There isnot even native support for unbounded urves. Handling suh urves requires to heat onthe software with typially one of two options. The �rst solution is to lip the urves atsome retangle (or some other shape that is homeomorphi to a irle). However, it isthe user's responsibility to hoose the retangle suh that no essential information is lost,for example, a �nite intersetion point. In addition, the size of the retangle also matterswhen trying to overlay two suh arrangements. It must be ensured that both are lippedwith respet to the same box, and if not, at least one must be reomputed, whih is ostly,non-trivial, and annoying. Alternatively, one an introdue a symboli representation fora point at an unbounded end of a urve. Suh a strategy has been formerly applied inExaus's old Gaps module. Its generi model of Cgal's ArrangementTraits_2 oneptwas apable of dealing with unbounded urves. However, both solutions are somehowfaking, generially inonvenient, and still insu�ient for some appliations.The reason is that both still maintain only one unbounded fae. But remember thatCgal uses planar arrangements to represent the minimization diagram MS for a set ofsurfaes S, where eah ell is labeled with the subset of surfaes that indue the lower en-velope over that ell; see Chapter 3 and [Mey06a℄ for details. As remarked, if onsideringunbounded surfaes for lower envelopes, generally more than one unbounded fae is ex-peted in the representation of MS. Atually, Mehlhorn and Seel [MS03℄ already proposedthe in�maximal frame for extending the sweep line algorithm to handle unbounded urves.However, the design was intended for lines in the plane and it is unlear how it extends toarbitrary urves, be they algebrai or not. More problemati is, that their tehnique doesnot extend to parametri surfaes � a ase that we espeially want to inlude.There already exist results that deal with arrangements on non-planar surfaes, for ex-ample, Hahenberger and Kettner ompute two-dimensional boolean operations of geodesiars on a sphere [HK07a℄. Suh arrangements represent sphere maps around verties in athree-dimensional Nef-like data struture [HKM07℄. The sphere is also overed by Andradeand Stol� [AS01℄, Halperin and Shelton [HS98℄, and reently by Cazals and Loriot [CL07℄.Cazals and Loriot provide a software pakage that an sweep over a sphere onstrutingexat arrangements of arbitrary irles on it. They also show appliations in omputa-tional biology that frequently employ spherial arrangements in moleular modeling: eahsphere represents an atom of a moleule and the arrangement on the sphere representsthe intersetion pattern with neighboring atoms. Their extension, so-alled anisotropiinterations of atoms, an be modeled using ellipsoids as primitive objets. The work byBerberih et al. [BHK+05℄ onstruts arrangements on quadris, whih inlude ellipsoids.However, it onsiders two planar arrangements of projeted intersetion and silhouetteurves, one for the lower part of a quadri, and one for its upper part; see �3.2 for an in-trodution. The approah requires as post-proessing step the stithing of the two planararrangement; this part is unfortunately not available. Stithing of sub-arrangements isalso a key tool in work by Fogel and Halperin [FH07℄. They model the single arrangementof ars of great irles on a sphere with six arrangements of linear segments in the planethat orrespond to the six faes of a ube irumsribing the sphere.None of the previous solutions takles in a generi fashion all problems that an our,suh as lipping, stithing, or the support for various urves. This justi�es our goal to



4.1. Setting and related work 115develop a framework that e�etively and generially deals with all of them. We start withthe unbounded plane beause this is a speial ase of a bijetively parametri surfae. Ina seond step, we generalize, and allow non-injetivity on the boundary of the parameterspae, whih lead to the urrent implementation of the pakage.Remember Cgal's Arrangement_2 lass-template as presented in �2.4. It is parame-terized in two arguments. First, it takes a GeometryTraits_223 that basially de�nes theurves to onsider and operations on them. One urves have been split into (weakly)
x-monotone urves in a pre-proessing step, these operations are used to feed the internalalgorithms and data strutures to onstrut, maintain, and overlay arrangements of them.The seond parameter is the Del type. Eah arrangement internally maintains an instaneof this type. Its verties are enhaned with geometri points and its edges arry (weakly)
x-monotone geometri urves. Eah of the beforehand mentioned maintenane and on-strution operations modify the ombinatorial struture of the internal Del-instane, insyn with updating the stored geometri objets. We listed in �2.4.3 basi insertions (andrespetive deletions) that onsistently modify the Del. Suh onsistent modi�ationsare alled by the onstruting visitor lass for the two main algorithms that onstrut (oroverlay) arrangements, namely the sweep line algorithm, and the inremental insertionusing the zone algorithm. Atually, these algorithms only produe a anonial output andit is the visitor that de�nes whih basi insertions must be alled. The anonial output ofan algorithm is de�ned by the exeution path of the algorithm, whih itself is ontrolled bythe outome of geometri prediates and onstrutions provided by the given geometri-traits lass. We shortly repeat the internal �ow of eah algorithm in order to understandfor what we provide geometri operations.
• The sweep (of weakly x-monotone urves) involves the handling of events and themaintenane of the status-line. Handling events omprises to maintain the sortedevent-queue, that is, new events must be inserted, while the minimal event at atime is removed. In the planar ase, events are endpoints of urves, or their (zero-dimensional) intersetions, while their order is given by the lexiographial om-parison of points stored with events. The status-line is updated, whenever a urvereahes its endpoints, a new urve starts, or the order of urves hanges. In eitherase, urves that beome adjaent in the status-line are heked for intersetions tothe right of the sweep line and any suh intersetion is inserted into the event-queue.
• The entral operations for the zone algorithm are to loate the ends of a new urve,and to ompute the urve's intersetions with existing urves. That is, we requiregeometri operations to loate points, and to interset urves.We want to generalize this existing work to two-dimensional parametri surfaes. Thegeometry of S is aptured by a parameterization as in De�nition 2.30, that is, there is afuntion ϕS : Φ = U×V → R3 whose image de�nes S. We allow intervals U = [umin, umax],

U = [umin,+∞), U = (−∞, umax], or U = (−∞,+∞), and similarly for V . Intervals thatare open at �nite endpoints bring no additional power and we therefore do not disussthem here. Curves on parametri surfaes are de�ned as in De�nition 2.40; here we have
D = Φ = U × V . What used to be x-monotoniity for bounded planar urves, is nownaturally extended: A urve γ is alled sweepable if it is (weakly) u-monotone, that is, if23Expets basially a model ful�lling the ArrangementTraits_2 onept, however, there is a hierarhy ofonepts, and eah re�nement level of the hierarhy is valid (for a ertain goal).
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t1 < t2 then γ(t1) <lex γ(t2), where <lex now denotes lexiographi uv-ordering. For theinternal arrangement tasks, we onsider all urves to be sweepable. If an input urve doesnot ful�ll this property we apply, as before, a pre-proessing step. The standard planarsweep, for example, orresponds to U = V = (−∞,+∞), and ϕS(u, v) = (u, v, 0), butnone of the input urves extends to in�nity. Other instanes are given in Example 2.31,or appear in the remainder of this hapter.While the input proessing turns to out to be relatively simple, we have to work harderfor the internal strutures of the arrangement pakage. In partiular, we expet answersto the following raised questions:1. How do we keep the general �ow of the onstruting algorithms mainly unhanged?2. How do we ensure to properly onstrut and update a Del with respet to givensurfae?We do give the answers for both questions in several steps. In �4.2 we �rst disuss howto ensure a anonial output for the sweep line and the zone algorithm. The disussionstarts with bijetive parameterizations and then we remove injetivity on the boundary ofthe parameter spae. The atual onstrution of the Del is presented afterwards in �4.4.As for some surfae there often exist several valid enodings of an indued arrangement asa Del. Our solution aims for this �exibility.4.2. Sweeping and zoning on a surfaeIn this setion we explain how to modify the two main algorithms suh that they anbe exeuted for a parametri surfae, to be prepared for the seond task: An attahedvisitor lass should be able to orretly interpret the visiting pattern of the algorithm forits purposes, namely to onstrut the Del. We mainly onsider the sweep algorithm inthis setion, and refer to the simpler zone algorithm shortly at the respetive plaes.Sweeping a parametri surfae, in terms of the standard two-dimensional sweep algo-rithm, should be orretly seen as taking plae in the parameter spae, that is, we sweepwith a vertial line u = us from umin to umax. However, for reasons of intuition, it anbe more onvenient, to see it from a di�erent angle, namely to sweep over S with theurve on S de�ned by the moving image of the vertial line u = us under ϕS . Both viewsare valid. The onsiderations of this setion assume that the sweep (zone) takes plae inthe retangle de�ned by U and V . We swith to the surfae-view in �4.4, when atuallyonstruting the Del on S.Let us state an important remark with respet to the hosen parametri view.Remark (Parameterization). We do not expet surfaes and urves to be given in parametriform, but onsider this tool for the de�nition of the problem, and for its realization ofthe adapted algorithms. In �4.3 we learn that the algorithms still learn about surfae,urves, and points only through a well-de�ned set of geometri prediates provided byan extended geometri-traits lass. It is the hoie of the traits' implementer how toompute these piees of information. While the example of �4.6.2 does really deploy theparameterization, the example exerised in �4.6.1 leverly ombines planar ounterpartsto dedue the expeted answers for the parameter spae.
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Figure 4.1. Sweeping a sphere: sweeping a line in parameter spae from u = 0 to
u = π orresponds under ϕS to sweep a meridian from 0◦ to 360◦ around the sphere.4.2.1. Bijetive parameterizationsOur �rst generalization disusses surfaes whose parameterization is bijetive. At �rstsight, there seems to be simple solution to just inorporate the parameterization into thegeometri-traits lass. This strategy is even �ne and no further onsiderations must bemade � if only bounded urves our. The true di�erentiation from the standard sweepline algorithm emerges in the ase, where urves are allowed to extend to in�nity. Or inother words, we an neither restrit U nor V to an interval [−M,M ], for su�iently large

M ∈ R, suh that the event queue (whih ontains ends of (weakly) u-monotone urvesand their intersetions) only has to deal with �nite points as event. If unbounded urvesare allowed, we fae the problem that these urves do not have suh �nite endpoints.Our solution to this problem is to extend the de�nition of an event. We basiallydistinguish two kinds of event. The �rst kind, an interior event enapsulates (as before)a �nite point. For the seond kind, we introdue the term of a urve-end. Eah (weakly)
u-monotone urve γ : D → (−∞,∞) × (−∞,∞) has two urve-ends, the lexiographialminimal one, and the lexiographial maximal one (in uv-ordering). A urve-end mayeither be a �nite endpoint or represent an unbounded entity in ase that the sequene ofpoints attained by γ towards the spei�ed end approahes the boundary of the parameterspae: More preisely, we say that the urve-end 〈γ, 0〉 approahes the left (right) boundaryif limt→0+ γ(t) = (−∞, v0) ((+∞, v0), respetively), for some v0 ∈ R ∪ {−∞,+∞}, andthat it approahes the bottom (top) boundary if limt→0+ γ(t) = (u0,±∞) for some u0 ∈ R.Remark (Asymmetry). Observe the slight asymmetry in the de�nition. If a urve-end atu-ally approahes one of the four ases (±∞,±∞), we subsume them belonging to the leftor right boundary. This simpli�es the later disussion, and also re�ets the asymmetry wealready notied for prediates required for the (bounded planar) sweep line algorithm.Following this notation, we an use the pre-proessing step to assoiate an event witheah end of a (weakly) u-monotone urve: An interior event, assoiated with the �niteendpoint, is assigned if 0 ∈ D (1 ∈ D). A near-boundary event, assoiated with theunbounded urve-end 〈γ, 0〉 (〈γ, 1〉), is assigned if 0 6∈ D (1 6∈ D).
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Figure 4.2. Arrangement of four in�nite urves that interset in 5 �nite points. Tosweep the urves, we have to de�ne a lexiographi order that an handle with �nitepoints, but also with the 8 in�nite urve-ends.The order of events in the event queue of the standard sweep line proedure is simplyde�ned by the uv-lexiographi order of �nite events. For our extended de�nition ofevents we augment their omparison proedure. It is required to also handle those eventsassoiated with unbounded urve-ends as well. This is done by subdividing the proedureinto separate ases.First of all, two �nite events are still ordered purely uv-lexiographially. It remainsto de�ne the order of two events where at least one is an unbounded urve-end. Most ofwhih an be handled in a straightforward manner. For example, it is lear that an eventon the left boundary is smaller than any event assoiated with a �nite point, whih issmaller than any event on the right boundary. To ompare two urve-ends approahingthe left (right) boundary, we onsider the intersetion of relevant urves with a vertialline u = u0 for small (large) enough u0 and return the v-order of these points. �Smallenough� (�large enough�) means that the result does not depend on the hoie of u0 (or
v0), whih is well-de�ned as urves are allowed to interset only at �nitely many points.That is, we are interested in the relative vertial order of two urves immediately to theright of the left (to the left of the right) boundary. There is the exeption of overlappingurves, whih onstitutes a speial ase on its own: The omparison of events representingunbounded urve-ends of overlapping urves are allowed to return equal. Two ases areleft, namely to ompute the relative horizontal (in u-diretion) order of an interior eventwith a near-boundary event for the bottom- or top-boundary, and to ompute the sameorder for two near-boundary events where both attahed urve-ends approah the bottom-or top-boundary. Note again that it su�es to only onsider a situation lose enough tothe boundary, that is, intuitively one an hoose �nite points lose enough to the boundarythat re�et the orret order and return their relative horizontal order. An illustration ofthe oneptual desription of the required omparisons is given in Figure 4.3. Tehnially,they are olleted in an extended version of Cgal's ArrangementTraits_2 onept that wepresent in �4.3. As for eah onept, it is not spei�ed how to �nally implement it.Observe that we only enhane events and their order for the sweep line. The atualsweep proess remains mostly unhanged. In fat, some maintenane operations for thestatus-line an even be established without exeuting any geometri omparison. Note
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Figure 4.3. Compare urve-ends near boundary: The view is in parameter spae.Left boundary: min1 <y min2 <y min3. Right boundary: max6 <y max7 <y max3.Bottom and top boundary: max2 <x max1 <x min4 =x max4 =x min5 =x max5 <x

min7 <x min6. The omparison funtors that we present in �4.3.1 are responsibleto ensure this order. But: The atual omputation is not expeted to elaborate theparameterization.



120 Two-Dimensional Arrangements on Surfaesthat the �rst events in the event-queue tagged with on left boundary are already sorted inorret inreasing v-order. Thus, as long as the sweep extrats suh near-boundary events,we an simply put the orresponding urve(s) at the top of the status-line. Similarly, whenwe proeed with the sweep line algorithm and handle a minimal event whose urve-endapproahes the bottom (top) boundary, we know that the urve must lie below (above) allother urves urrently maintained in the status-line. Thus, we an simply insert the urveat the bottom (top) of the status-line without any additional geometri operation. As allintersetion points do not take plae on the boundary of the parameter spae, there is alsono need to modify the sweep in its intersetion handling.As a result, we entralize the handling of events near the boundary in the sweep linealgorithm itself, while keeping the geometri interfae small. In addition, we obtain away to avoid some geometri omparisons in the maintenane of the status-line, whih areusually ostly, espeially if a model implements the exat geometri omputation paradigm.The output of the sweep still onsists of a unique visitor pattern. By now, it is open how totransform it into a Del-representation that stores the indued arrangement. We desribethis step in �4.4.The zone algorithm for a given urve γ onsists of two main steps, namely the loaliza-tion of γ's ends and to ompute γ's intersetions with existing urves in the arrangement.Again, the intersetions do not take plae on the (unbounded) boundary of the parameterspae, and thus, no modi�ations are needed. In ontrast to the loalizations. For themit is expeted to return the ell of the existing arrangement to whih the given end of γbelongs. That is, we either obtain a fae, an edge, or a vertex. Note that we have tagged
γ's ends with information whether eah lies in the interior of the parameter spae or whihboundary it approahes. This information is needed, but not su�ient. In fat, we doneed knowledge on how the arrangement (ontaining urves approahing the boundaryof the parameter spae) is represented as Del. Only this allows to return the orretDel-reord. In �4.4 we generalize the Del-representations for arrangements, and a partof the task is the loalization of urve-ends on the boundary.4.2.2. Allowing non-injetivity on the boundariesWe just introdued events near the boundary of the parameter spae, whih we by now onlyuse to represent end of urves that extend to in�nity. But what we desribe also enablesan elegant generalization of the sweep line proedure for urves embedded on a parametrisurfae in R3; see De�nition 2.30 and Example 2.31 for suh surfaes. A parameterization
ϕS is allowed to be non-bijetive, that is, some points in S may have multiple pre-imagesin Φ. In fat, we allow one-dimensional sets to do so, as it is the ase for rational surfaes.Let us exemplary remember the unit sphere, where we have ϕS(−π, v) = ϕS(+π, v)for all v, while ϕS(u,−π

2 ) = (0, 0,−1) and ϕS(u, π
2 ) = (0, 0, 1) for all u. The urve

v 7→ ϕS(−π, v) is a meridian on the sphere, analogous to the international date line, andthe points (0, 0,±1) orrespond to south and north pole, respetively. The non-injetivityof ϕS indues the date line, whih implies that a losed urve on the sphere, for example theequator, may be the image of a non-losed urve in parameter spae. The poles also poseanother problem: They always lie on the sweep urve (i. e., the image of ϕS for u = u0,for u0 from umin to umax) during the sweep.The example of the unit sphere introdues two ases where we relax the requirementsfor surfae parameterization, in order to model a wider range of surfaes, as ylinders,



4.2. Sweeping and zoning on a surfae 121paraboloids, tori, and their homeomorphi ounterparts. Central is that we require bi-jetivity of ϕS only in the interior of Φ, while non-injetivity is allowed on the boundaryof Φ, denoted by ∂Φ. More preisely, we demand that ϕS(u1, v1) = ϕS(u2, v2) with
(u1, v1) 6= (u2, v2) implies (u1, v1) ∈ ∂Φ and (u2, v2) ∈ ∂Φ.Before allowing non-injetivity in a ontrolled way, we preise the weak de�nitionfrom �4.2.1 for the loation of a point in parameter spae.De�nition 4.1 (Loations). Let p = (u, v) ∈ Φ = U × V . We say that p lies on the leftboundary if u = umin, or that p lies on the right boundary if u = umax. If p does neitherlie on the left nor on the right boundary, we say that p lies on the bottom boundary if
v = vmin, or that p lies on the top boundary if v = vmax. If no suh ondition holds, wesay that p lies in the interior of Φ.This disjoint partitioning of Φ implies four boundary sides ∂lΦ, ∂rΦ, ∂bΦ, ∂tΦ of theparameter spae, and its relative interior Φ̊. Observe again, that the left and right side arede�ned (for the known reason) asymmetri to the bottom and top side.For the four sides of ∂Φ we allow two kinds of relaxations, given in De�nitions 4.2and 4.3.De�nition 4.2 (Contration). A losed side ∂sΦ is alled ontrated if the image of ∂sΦ isa single point ps ∈ S, that is, ∀(u, v) ∈ ∂sΦ it holds ϕS(u, v) = ps. We all ps a ontrationpoint.In the running example of the sphere, we have that the bottom and the top boundary,induing the south and north pole, are ontrated. That is, ∀u ∈ Ů we have ϕS(u, vmin) =
(0, 0,−1) and ϕS(u, vmax) = (0, 0, 1).De�nition 4.3 (Identi�ation). Two opposite losed sides of ∂Φ, that is, either ∂lΦ and
∂rΦ or ∂bΦ and ∂tΦ, are alled identi�ed if they de�ne the same urve γI on S. We all γIthe urve of identi�ation. More preisely, identifying the left and right boundary meansthat ∀v ∈ V,ϕS(umin, v) = ϕS(umax, v), while identifying the bottom and top boundaryimplies ∀u ∈ Ů , ϕS(u, vmin) = ϕS(u, vmax).We detet an identi�ation of the left and right boundary for the parameterized unitsphere. Its urve of identi�ation indues the international date line. Let us see what othersurfaes we an model using identi�ation and ontration.
• A triangle with orners (a1, b1), (a2, b2), and (a3, b3) is parameterizable via Φ =

[0, 1]×[0, 1] with ϕS(u, v) = (a1+u(a2−a1)+uv(a3−a2), b1+u(b2−b1)+uv(b3−b2), 0).We observe that ∂lΦ is ontrated.
• An open or losed ylinder is modelled by identifying, for example, ∂lΦ and ∂rΦ,while V is an open or losed interval.
• A torus is modelled by identifying both opposite pairs of ∂Φ; see also �4.6.2.
• A paraboloid or one is modelled by identifying ∂lΦ and ∂rΦ, and ontrating ∂bΦ.If the surfae opens to in�nity, ∂tΦ should be tagged as unbounded.For eah of them, there exist other equivalent ombinations with exhanged sides. However,we expliitly forbid to ombine ontration and identi�ation on one boundary side. Thiswould allow to model a genus-one surfae with a single pinh point by identifying bothopposite pairs, while one pair is also ontrated. Although this surfae would be sweepablewith our framework, we exlude it, as an embedded arrangement might not be representable



122 Two-Dimensional Arrangements on Surfaesusing a typial Del-struture. The reason is that the Del-vertex for the pinh pointan beome inident to two di�erent faes, whih is not overed by Del-representations;see Figure 4.4 for suh a surfae.

Figure 4.4. The �roissant�: a surfae with one pinh point and whose parameteri-zation would ontain two identi�ations. One of these identi�ations must atually beontrated as well. © Herwig Hauser, www.freigeist./gallery.htmlAt this point we swith to a rather generi sweep, that is, we are given a surfae Sand (notationally) its parameterization ϕS . We know for eah side of the parameter spaean expliit tag annotating its type, that is, either bordered, unbounded, ontrated, oridenti�ed. Bordered onstitutes a �nite urve of delimitation, as for the example in thease of a triangle. An identi�ation tag on one side of the boundary implies the same tag forits opposite side. As input, we are also given a set of urves embedded in S. Coneptually,we aim to sweep over the parameter spae of S, that is, the retangle de�ned by U × Vwith speial properties at its boundaries.We ome to the phases of the sweep, and start with pre-proessing of input urves (inparameter spae) to feed the atual sweep. Sweepable urves are expeted to meet tworiteria: First, as for the standard sweep, urves are expeted to be (weakly) monotone inthe diretion the sweep line moves. In our ase, we split input urves into their (weakly) u-monotone omponents. This splitting already partially ful�lls the other riterion: A urvethat is not fully ontained in ∂Φ is expeted to touh ∂Φ only at its ends. This onditionimplies that we split urves whose interior intersets with a ontrated or identi�ed side.Note that due to ahieved u-monotoniity, it only remains to hek the bottom and topboundary for this purpose. After this partitioning, the urves with their urve-ends an beharaterized. A �rst observation is that only non-losed urves in Φ exist. The interiorof eah suh urve is either ompletely ontained in some ∂sΦ (maybe in its identi�edounterpart, too), or it ompletely lies in Φ̊. In the latter ase, the two ends are allowed tomeet (not neessarily24) distint boundary sides. As in �4.2.1 eah suh urve-end an beuniquely annotated with one out of �ve loations: ∂lΦ, ∂bΦ, Φ̊, ∂tΦ, and ∂rΦ. Note that inase of identi�ation, atually two hoies exists, but the onnetion to the interior of theurve gives the desired one; see, for example, Figure 4.5 (b). The two urves c1 and c2 rossthe identi�ation in p. However, we split them to be u-monotone in the parameter spae,and obtain cleft
1 , cright

1 and cleft
2 , cright

2 . The minimal ends of cleft
i lie on the left boundary,while the maximal ends of cright

i lie on the right boundary. All other ends exist in the24Note that a u-monotone urve annot start and end on ∂lΦ. The same holds for ∂rΦ. There is nosuh restrition for the bottom and top boundary.



4.2. Sweeping and zoning on a surfae 123interior of parameter spae. Input fully embedded on a boundary is disussed below.We next study how to sort the event-queue of the sweep. We an assume to exeutea sweep over the open surfae attained by ϕS(Φ̊), while handling ends of urves meeting
ϕS(∂Φ) are handled following the strategy from �4.2.1. We are able to derive the orretorder of events using the expliit distintion between interior events that are assoiatedwith points in Φ̊ and near-boundary events that our for urve-ends approahing ∂Φ.Again, most omparisons of suh events are straightforward, while all remaining an beanswered using exatly the same set of additional geometri prediates as introdued forunbounded urves � assuming they take plae in parameter spae; see Figure 4.3. Weompare urve-ends in an ε-distane away from boundary (in the diretion of Φ̊) to obtaina unique order of di�erent near-boundary events that do not have a trivial order. Notethat the ε-environment is oneptual only, that is, how the atual omparison is ahieved isnot determined, in partiular, it is not enfored to ompute in parameter spae. Figure 4.5presents two examples on surfaes. In �4.6 we explain how to implement the omparisonsfor ellipti quadris and ring Dupin ylides.Figure 4.5. Two examples of omparisons near non-unbounded boundaries

c1
c2

(a) Compare u near top ontra-tion: c1 <u c2
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right
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right
1
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cleft
2
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cleft
1

(b) Compare v near left-right identi-�ation: cleft
2 <v cleft

1 and cright
1 <v

cright
2With this strategy eah urve-end �nally meeting a boundary side gets its own eventfor the sweep, that is, if we have k sweepable urves inident to a point on ϕS(∂Φ) (namelya ontration point or a point on the urve of identi�ation), we handle k separate eventsthat relate to this point. An example is a set of longitudes on the sphere. The maximalend of eah longitude results in its own event, although eventually all longitudes meet inthe north pole; see the example depited in Figure 4.6. Our urrent goal is only to obtain aunique order for the sweep events. The sweep itself proeeds then exatly as the standardsweep does; see Algorithm 2.13. In �4.4 we explain how we tie all the loose ends left out bythe sweep proedure and onstrut a well-de�ned Del that represents an arrangementof urves on S. Or more exemplary, how we obtain a single Del-vertex for the sphere's
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Figure 4.6. Not eah sweep line event (here blue nodes near ontrations, i. e., poles)are supposed to model a Del-vertex. In �4.5 we disuss how to unify di�erent butrelated events, and how the verties representing suh ontrations (north and southpole) are reated.We are left with the ompletion of the sorting of events, that �nally should also ompriseinput that is fully ontained in the image of some ∂sΦ For suh points and ends of suhurves, we introdue boundary events. In the following we explain how suh events areordered among eah other, and in omparison to interior and near-boundary events.We start with the simple ase of a ontrated side. Note that the only boundary eventthat an our relates to a single isolated point. We need to hek whether a point lies onsuh a ontration, and if so, we reate the speial event without any inident urve. Thehandling of an isolated event during the sweep an be kept unhanged, however, we needto determine the position of this isolated boundary event in the event queue in relation toother events. The solution is to de�ne that this speial event is always the smallest eventthat belongs to the orresponding side of the boundary. This hoie already de�nes theorder with respet to every other near-boundary event, but also to interior events. Seeevent be6 in the example depited in Figure 4.7.Bounded sides and identi�ed sides are left. We again expet a possibility to hekwhether a point or a urve is ontained in suh a side of the boundary; see �4.3 for thetehnial details. If an objet is deteted to lie on a left-right identi�ation, we onsider itsleft pre-image, while we handle an objet deteted to lie on a bottom-top identi�ation assolely belonging to the bottom boundary. This handling is only internal, that is, in ase ofan identi�ation the user has not to are about these details; see our respetive interfaein �4.3.7.We reate a boundary event for eah suh isolated point (no inident urves), foreah minimal point, and for eah maximal point of suh a urve. We remark that theminimal or maximal end of suh a urve an be unbounded; for example in the ase of anin�nite ylinder. Considering this fat, the order of boundary events on a single side ofthe boundary is given by omparing their u- or v-oordinates, depending on the side infous. But this order is not su�ient if we also have to ompare a boundary event with



4.2. Sweeping and zoning on a surfae 125near-boundary and interior events. For the sweep we de�ne the following order amongdi�erent kinds of events at the same oordinate:
• There are some straightforward relations:

Bl <u Nl <u I <u Nr <u Brwith
Bl := {be|be is a boundary event on ∂lΦ}
Nl := {ne|ne is near-boundary event related to ∂lΦ}
I := {ie|ie is an interior event}

Nr := {ne|ne is a near-boundary event related to ∂rΦ}
Br := {be|be is a boundary event on ∂rΦ}Note that within eah set the v-order must still be determined to know �<lex�. Weexpet orresponding omparisons; see �4.3.

• We are left with interior events and those related to ∂bΦ and ∂tΦ. We �rst orderthem by u-oordinate.25
• If two of them share the same u-oordinate, the order of two events is given by thefollowing symboli perturbation.� The boundary event of an ending urve is smaller than a near-boundary eventof an ending urve.� The near-boundary event of an ending urve is smaller than an isolated bound-ary event or an interior event.� An isolated26 bottom boundary event is smaller than an interior event whih issmaller than an isolated top boundary event.� An isolated boundary or an interior event is smaller than a near-boundary eventof a starting urve.� A near-boundary event of a starting urve is smaller than a boundary event ofa starting urve.The order of near-boundary events again requires an external geometri prediate.All other members of a set of equivalent events an be assumed to be equal.We remark that most of this ase-distintion is internal and thus serves ode reuse. Thegeometri-traits lass is only expeted to provide the mentioned, speialized, omparisons.Among them, it is expeted to ompare u- or v-oordinates of (always �nite) points on ∂Φ.In �4.4 we see another usage of omparisons of oordinates on a boundary.Let us summarize what has been done in order to keep the sweep generi for a parame-terized surfae S. Instead of a single event type for �nite points, we rely on three kinds ofevents, namely interior events that orrespond to points in Φ̊, near-boundary events thatenode ends of urves on ∂Φ whose interior is still ontained in Φ̊, and boundary events forisolated points on ∂Φ and ends of urves that are fully ontained in ∂Φ. We de�ne a unique

uv-lexiographi order of all events, desribed by large, but internal, ase distintion, that25Observe that u-oordinates of points and urve-ends on bordered and identi�ed bottom- and top-boundaries are available.26We onsider near-boundary events of vertial urves as �isolated� as well.
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Figure 4.7. Events on the sphere for input that also omprises urves and points on ∂Φ

(a) Input: Two urvesand one isolated point onthe identi�ation, an isolatedpoint at the south pole, 4urves meeting the identi�a-tion, 2 urves inident to thenorth pole, one interior urve,and one isolated vertex in theinterior.
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(b) Events: 6 boundary events(bei), 6 near-boundary events(nej), 11 interior events (iek).The indies indiate the uv-lexiographial order, derivedusing the loations of urve-ends (and points) in Φ and byon-boundary-, near-boundary-,or interior-omparisons.



4.3. Extending the ArrangementTraits_2 onept 127relies on a small set of simple geometri omparisons. We give the full list in �4.3. Why dowe exert ourselves with this distintion? The reason is simple: We do not want the user todo it. Most of these omparisons are straightforward and would appear repeated times foreah family of urves that are supported on a spei� parametri surfae. With the ho-sen approah, we maximize ode reuse. By splitting the annoying task into easy-to-solvesubtasks, we also redue the expeted level of expertise for someone who plans to providenew urves. There is another reason: Theoretially, it is possible to already unify events,for example, ombining boundary and near-boundary events belonging to the same point
p on S. However, this redues the �exibility to hoose a ertain Del-representation forsome parameterization. We learn in �4.4 that is it bene�ial to give the responsibility ofsuh a uni�ation to another entity.For the zone algorithm the situation is similar as for unbounded urves. We againhave to loate the Del-feature that is met by a urve's minimal or maximal end. Butto provide this information, knowledge how Del-reords enode bordered, unbounded,ontrated, or identi�ed sides is expeted. Thus, we postpone this problem to �4.4.4.3. Extending the ArrangementTraits_2 oneptAs explained in �2.4.3 the Arrangement_2 pakage is instantiated with a model of Cgal'sArrangementTraits_2 onept that provides types and geometri onstrutions and pred-iates in order to support the arrangement onstrution and maintenane. The versionof the onept until Cgal 3.2 supports bounded urves, while impliitly assuming thatthe embedding surfae is the xy-plane. We refer to this version as the NoBoundaryTraitsre�nement. This version also onstitutes the root of a hierarhy of re�ned onepts thatwe unover in this setion. The new Arrangement_on_surfae_2 pakage, that replaesthe former Arrangement_2 pakage in an upoming version of Cgal, is able to deal withthis hierarhy of geometri-traits onepts. An illustration of the hierarhy is given inFigure 4.8.For eah re�nement we present whih additional funtors are expeted, or said inother words, we give the tehnial details of the various prediates that we only ontouredin �4.2. We distinguish abstrat and onrete re�nements. A onrete re�nement de�nesall spei�ations that are required in order to support some spei� kind on a boundaryside of the parameter spae. In ontrast, an abstrat re�nement onstitutes a ommonanestor for various onrete re�nements. For a spei� family of surfaes, it is possible,and often required, to ombine onrete re�nements to support di�erent kinds of boundarysides; see Example 4.4 at the end of this setion. Suh a ombined onept onstitutesthe minimal requirements imposed by geometri algorithms in the pakage that operateon arrangements for the desired family of surfaes. The hierarhial struture alleviatesthe prodution of models (for urves on suh a surfae) and inreases the usability ofthe algorithms. Eah re�nement features a set of new expeted funtors. We mainlydistinguish funtors that give loation information and funtors that ompute a relativeorder of two geometri objets.Remark. We deided to stik with the traditional naming of variables hosen for Cgal'sarrangement onepts, that is, in ontrast to u and v for variables in the parameter spae,we refer to x and y. In addition, we simplify the struture to be exposed next: Somere�nements atually distinguish whether a ertain kind of boundary appears for the x- or
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y-oordinate. In suh ases, we here only disuss the x-ase. The analogue y-version isalways supposable and should be ommemorated. In addition, we simplify the tehnialpresentation that not exatly meets the expeted syntax of C++ (e. g., omitting onst-delarations, passing parameters by referene, et etera).NoBoundaryTraitsHasBoundaryTraitsUnboundedBoundaryTraits �CombinedBoundaryTraits� Identi�edBoundaryTraitsPointOnBoundaryTraits CompareOnBoundaryTraitsBorderedBoundaryTraitsContratedBoundaryTraitsFigure 4.8. Re�nement hierarhy of Cgal's ArrangementTraits_2 onepts for sur-faes. The gray onepts are abstrat, that is, they only ollet funtors required bymore than one onrete re�nement. The �CombinedBoundaryTraits� is a plaeholder forvarious ombinations, for example, a paraboloid re�nes all but BorderedBoundaryTraits.We remark that the drawing is simpli�ed, as we are missing atual oordinate-spei�distintions.4.3.1. HasBoundaryTraitsFollowing Figure 4.8, the NoBoundaryTraits onept is re�ned by a single abstrat on-ept: HasBoundaryTraits. It lists additional prediates required to support any urves thatapproah or even reah ∂Φ. Before we give the expeted funtors, we need to generally in-trodue some enumerations used in the interfae in addition to Cgal's Comparison_resultwhih distinguishes between SMALLER, EQUAL, and LARGER.enum Arr_urve_end{ ARR_MIN_END,ARR_MAX_END};

Allows to selet the minimal or maximalend of a urve.
enum Arr_parameter_spae{ ARR_LEFT_BOUNDARY = 0,ARR_RIGHT_BOUNDARY,ARR_BOTTOM_BOUNDARY,ARR_TOP_BOUNDARY,ARR_INTERIOR};This enumeration ategorizes the loa-tion of a urve-end or an isolated pointin Φ.The �rst additional funtor is very basi.

• Parameter_spae_in_x_2The funtor is expeted to provide the operator



4.3. Extending the ArrangementTraits_2 onept 129Arr_parameter_spae operator()(X_monotone_urve_2 xv,Arr_urve_end e)that returns the loation of xv's urve-end de�ned by e in parameter spae in x-diretion. It an return ARR_LEFT_BOUNDARY, ARR_INTERIOR, or ARR_RIGHT_BOUNDARY.Note that xv is a (weakly) x-monotone urve whose interior lies in Φ̊.As mentioned, the similar version Parameter_spae_in_y_2 also exists.Remark. The onept does neither mention nor speify how the loations of urve-endsare omputed. However, it is enouraged to adapt Make_x_monotone_2 suh that eahonstruted (weakly) x-monotone urve is enhaned with these piees of information. Infat, Make_x_monotone_2 already has to do parts of this job, as it ensures to split urvessuh that there are no zero-dimensional intersetions of the interior of a urve with theboundary of the parameter spae. For that reason, a model of this re�nement also needsknowledge about the geometry of the surfae.The next two funtors provide omparisons of urve-ends near the boundary. Weexpliitly mention x- and y-ase, as they are expeted to provide operators with di�erentsignatures.
• Compare_x_near_boundary_2An instane of this funtor is expeted to provide two operators:Comparison_result operator()(Point_2 p,X_monotone_urve_2 xv, Arr_urve_end e)whih should return the relative x-order of p's x-oordinate (in parameter spae) andxv's urve-end de�ned by e that approahes the bottom or top boundary.Comparison_result operator()(X_monotone_urve_2 xv1, Arr_urve_end e1,X_monotone_urve_2 xv2, Arr_urve_end e2)returns for two urve-ends approahing the bottom or top boundary the relativeorder of their x-oordinates (in parameter spae) near the boundary.
• Compare_y_near_boundary_2The instane of this funtor must provide a single operator, namelyComparison_result operator()X_monotone_urve_2 xv1,X_monotone_urve_2 xv2,Arr_urve_end e)The expeted output of this member is the relative y-alignment of the two urve-ends slightly to the right of the left boundary if e determines their minimal ends.



130 Two-Dimensional Arrangements on SurfaesOtherwise, we ompare slightly to the left of the right boundary. Both urves areexpeted to approah (or reah) the referred boundary side, respetively.Remark. We again mention that the omparisons funtors are expeted as to work in pa-rameter spae. However, a onrete implementation is not fored to ompute the answerthis way. There might be other (more e�ient) methods to obtain the same result. We seea model that does not rely on the parameterization to give these answers in �4.6.1. Thesame remark propagates to other omparisons funtors presented in this setion.As said, the onept is abstrat, that is, a model of it does not su�e to ompute anarrangement on some surfae. It remains to expliitly introdue funtors for di�erent kindsof boundary side. We do so by onrete re�nements.4.3.2. UnboundedBoundaryTraitsThe simplest next re�nement is expeted if a boundary side of the parameter spae istagged as unbounded. In order to ful�ll the onept, the following funtor is required.
• Is_bounded_2An instane of this funtors should providebool operator()(X_monotone_urve_2 xv, Arr_urve_end e)whih returns true if the intended urve-end is �nite, and false otherwise. If a urve-end is �nite it is allowed to aess the aording point by Construt_min_vertex_2or Construt_max_vertex_2, respetively.A model of this re�nement allows to ompute and maintain arrangements of urveswhih an be unbounded, as explained in �4.2.1.4.3.3. PointOnBoundaryTraitsThis abstrat re�nement is rather tiny, as we only expet one additional operator for anexisting funtor.
• Parameter_spae_in_x_2must additionally provideArr_parameter_spae operator()(Point_2 p)that is, we expet to loate a (�nite) point in Φ. In other words, it is possible that anisolated point exists on ∂Φ, whih is deteted by this funtor. Again, the y-versionan also appear.



4.3. Extending the ArrangementTraits_2 onept 1314.3.4. CompareOnBoundaryTraitsIf a ertain side is not labeled as unbounded, all points on that side are �nite and an beaessed by the mentioned onstrutions. This abstrat re�nement introdues a funtor toexpliitly ompare their relative order within the side. We exemplary mention
• Compare_x_on_boundary_2An instane of this funtor must provideComparison_result operator()(Point_2 p1,Point_2 p2)that omputes the relative x-order of two points. As a preondition eah point mustlie on either the bottom or the top boundary.The analogue y-version is also supposable.4.3.5. ContratedBoundaryTraitsThis onrete onept does not add further requirements to PointOnBoundaryTraits. How-ever, we introdue it in order to expliitly distinguish the ontration ase from theBorderedBoundaryTraits.4.3.6. BorderedBoundaryTraitsAs for the previous re�nement, this one is arti�ial, that is, though onrete it is not atrue re�nement, as no new requirements are lists. Its intention is to onstitute a on-rete onept for the ase that a surfae omprises a bordered boundary. It re�nes fromtwo abstrat onepts, namely PointOnBoundaryTraits and CompareOnBoundaryTraits. Weintrodue it, in order to distinguish from other onrete onepts.4.3.7. Identi�edBoundaryTraitsThis onept is almost similar to the previous one, but there is a signi�ant di�erene: It isnot a re�nement of the PointOnBoundaryTraits In ontrast to the Parameter_spae_in_x_2for a point, it expets an additional funtor whose utilization is more spei� for an iden-ti�ation:
• Is_on_x_identifiation_2An instane of this funtor must provide two members, namelybool operator()(Point_2 p)andbool operator()(X_monotone_urve_2 xv)



132 Two-Dimensional Arrangements on SurfaesEah heks whether the designated geometri objet is fully ontained in the left-right identi�ation (i. e., in �x�-diretion), or not. For a bottom-top identi�ation,the y-version is also oneivable.Note that by this design of the interfae, the model is not obliged to deide whethera point or a urve lying on an identi�ation is attained by the left or the right (bottomor top) pre-image. It just returns that the point or the urve lies on the boundary. Wepreviously deided, how to deal with suh objets internally; see �4.2.2 for more details.4.3.8. CombinedBoundaryTraitsInternally, a lever dispathing of tags (we omit the tehnial details) allows to ombinethe previous onrete onepts. This enables to dedue a onept that �ts for a ertainfamily of surfaes. That is, a model for a ertain surfae ontains a set of tags thatreports whih onepts it implements. The Arrangement_on_surfae_2 pakage uses thisinformation to internally and automatially provide dummy implementations for the non-expeted funtors. This simpli�es the development of a onrete model for a ertainfamily of surfaes, as one only has to implement the funtors that are really exeuted. Theompilation is ensured by the non-alled dummy implementations. In fat a quite a largenumber of ombinations are possible; see Table 4.1.Example 4.4 (Paraboloid). A geometri-traits lass for urves embedded on the paraboloidis expeted to be a model of almost all onepts that we introdued in this setion.One side, for example ∂lΦ, is ontrated to model the paraboloid's apex. Then, ∂rΦmust be unbounded in ase the paraboloid opens to in�nity, or bordered, in ase theparaboloid is �nite. The remaining pair of opposite sides (∂bΦ and ∂tΦ) are identi-�ed. In the language of the herein introdued onepts, we expet the model to im-plement the ContratedBoundaryTraits for ∂lΦ, the UnboundedBoundaryTraits for ∂rΦ, andthe Identi�edBoundaryTraits for ∂bΦ and ∂tΦ.4.4. Maintaining a Del on a surfaeAs already mentioned in �2.4.3, Cgal uses visitors to proess the topologial informationgathered in the ourse of the sweep (or the zoning) in order to onstrut (or modify) theDel that represents an arrangement of urves. That is, the anonial output of the sweeponsists in proessing events, while maintaining the event-queue and the status-line. Oneah ombinatorial hange a visitor is noti�ed on the progress of the sweep proess, forexample, whih event is urrently handled, and whih sub-urves are emerging to its left.Similar for the zone algorithm. It is the visitor's implementation that deides the atualand �nal output of the proedure. It varies from just reporting intersetion points, or mayomprise a more sophistiated task suh as to onstrut the arrangement of the proessedurves. Another variant inserts new urves into an existing arrangement, or overlays twosuh. More information is given in �2.4.3 and [WFZH07b℄. In what omes next we mainlyonentrate on the onstrution of an arrangement. The other appliations are similar orstraightforward; where needed we give additional details. A visitor that onstruts the



4.4. Maintaining a Del on a surfae 133# Left Right1 Bordered Bordered2 Bordered Contration3 Bordered PlusIn�nity4 Identi�ation Identi�ation5 Contration Bordered6 Contration Contration7 Contration PlusIn�nity8 MinusIn�nity Bordered9 MinusIn�nity PlusIn�nity10 MinusIn�nity ContrationTable 4.1. Combinations of possible onditions at ∂lΦ and ∂rΦ. The same list analso be used for ∂bΦ and ∂tΦ.It is possible to enode all ases of onditions on the boundaries of ∂Φ as pair (LR,BT ).For example (1, 1) de�nes a surfae equivalent to a quadrangle, (4, 6) a surfae equiva-lent to a sphere. The ases ({6, 7, 9, 10}, 4) are, for example, formed by ellipti quadristhat we disuss in �4.6.1. The double-identi�ation (4, 4) forms genus-one surfaes,among whih we disuss ring Dupin ylides in �4.6.2. It is easy to also derive the pairs
(LR,BT ) for triangles, fans, half-planes, diss, and many other surfaes. However, itis unlear, whether for some ombinations smooth surfaes exists, for example, (6, 6),
(7, 7), or (10, 10).arrangement of swept, or zoned, (weakly) x-monotone urves27 needs to keep trak thereation of new sub-urves. A new sub-urve is reated whenever an intersetion of morethan one urve or a maximal urve-end is proessed, that is, the portions of the urve(s)to the left of the event are inserted into the arrangement using one of the basi insertionsproedures. We already mentioned them in �2.4.1. Eah reates or updates relevant Del-features. The Del for bounded planar urves is unique and well-de�ned, in partiular,there is only a single unbounded fae.What we like to emphasize is that the atual onstrution by the visitor utilizes onlytopologial information available during the sweep (or zone) algorithm in order to performthe basi insertions of sub-urves � without invoking any extra geometri information. Inontrast to perform a post-proessing of the swept events, it is the on-line and interweavedfashion of the onstrution that is worth to mention.We aim for a similar strategy when onstruting a Del for an arrangement indued ona parametri surfae whose parameter spae may have speial properties at its boundarysides; see our introdution in �4.2. Note that only speial boundaries imply an elaboratehandling. An empty arrangement onsists of a single fae and if no urve approahes orreahes the boundary, proessing the urves is �isomorphi� to what we do for boundedurves in the plane. That is, all urves lying in the interior of the parameter spae analready be handled with the existing tools. If no urves interats with boundary, thenesting graph is supposed to be still a tree. Speial diligene is only needed when urvesmeet the boundary of the parameter spae. As a result, we sream for reusing existing27Observe that we stay with Cgal's naming sheme, that is, we use x and y for the variables of theparameter spae.



134 Two-Dimensional Arrangements on Surfaesmahinery as muh as possible. We only want to modify Cgal's Arrangement_2 pakagein its handling with respet to speial boundaries.By now, it is ompletely open how to transform the various kinds of boundaries intoan atual Del-representation, whih is �ne, as it turns out that various possibilities anexist. As we will see, these hoies also lead to di�erent nesting graphs.Several operations on arrangements are quite similar in all ases. As examples wemention basi insertion and deletion proedures. It turns out that Cgal's Arrangement_2pakage already suites well to serve as a building blok. We28 extended it to Cgal'sArrangement_on_surfae_2 pakage whih now serves as the entralized omponent thatollets surfae- and urve-independent algorithms and strutures for two-dimensional ar-rangements on a wide range of surfaes and urves on them. The entral lass-template ofthe pakage has two parameters:Arrangement_on_surfae_2< GeometryTraits_2, TopologyTraits_2 >As known, it is the GeometryTraits_2 that provides the urve-spei� omponents, andwe have learned in �4.2 and �4.3 how to extend it in order to support urves embed-ded on a parametri surfae with speial kinds of boundaries. Remember that this lassmust also be aware of the geometry of the embedding surfae, for example, to implementMake_x_monotone_2.Similarly, all surfae-spei� proedures are expeted from the new �external� om-ponent. We all the orresponding parameter TopologyTraits_2. Suh a lass enap-sulates the topology of the surfae on whih the arrangement is embedded, determinesthe underlying Del representation, and supports its maintenane. It does so by de�n-ing nested types that are used in various arrangement-related operations. Additionally,it provides prediates and operations dealing with urve-ends or points related to ∂Φthat are required to onsistently modify or update the Del. In �4.5 we present thefull ArrTopologyTraits_2 onept that an instane of type TopologyTraits_2 must ful-�ll. Beforehand, we shortly review whih tasks and omponents of the arrangementlass are atually surfae-dependent. This helps to larify some design rationales of theArrTopologyTraits_2 onept; see also [BFWZ07℄.As a �rst remark, we observe that the TopologyTraits_2 parameter has replaed theDel parameter. Consequently, the new omponent must provide the Del-type. In-ternally, the arrangement derives the Vertex-, Edge- and Fae-type to equip them with aninterfae that respets arrangement-spei� goals. The atual interfae of the arrangementlass an be partitioned into three groups:Traversal methods provide information about the number of Del-reords (as ells),and the aess to eah valid one. We allow that a Del-reord an be geometriallyinvalid, that is, it does not arry relevant geometri information, but only serves toenode some topologial information. Suh �titious reords should be �ltered.Basi insertions, deletions, and modi�ations are entral operations on the Del;see �2.4.2. We distinguish the insertion of an isolated point and an x-monotoneurve whose interior is disjoint from all existing verties and edges of the urrent28Central ideas by Ron Wein, E� Fogel, Dan Halperin, and the author. Main oding by Ron Wein;signi�ant ontributions by E� Fogel, Baruh Zukerman, and the author.



4.4. Maintaining a Del on a surfae 135arrangement, the deletion of an edge (or of an isolated vertex), the splitting of anedge as prior operation for an insertion, and the merge of two edges as posterioroperation of an edge-deletion.Global funtions are used to onstrut arrangements from srath, to insert urves intoan existing one, or to two overlay two instanes. As learned, proper visitors an beombined with the generi Sweep_line_2 template or the zone algorithm in order toprovide these operations. The zone algorithm additionally requires a point-loationstrategy.We are not going into the tehnial details for all of these interfaes. However, weare already able to identify surfae-spei� tasks expeted by them. An example is the�ltering of �titious Del-reords. Surfae-spei� are also speialized visitors used by theglobal funtions that are tailored to ertain Del-representations: They deploy additionalknowledge whih saves alls to geometrial and topologial prediates in order to deidewhih basi insertion funtions must be alled. Only the basi insertions and deletions re-quire elaborate modi�ations. We explain suh when disussing the handling of onnetedomponents of a fae's boundaries (CCBs). Another example is the extended support forthe loalization of points in the existene of a speial property at a boundary side.4.4.1. Choie of DelAn important fat is, that the generi arrangement lass itself is no longer responsible todetermine the atual Del representation for the indued subdivision. A subtask is tode�ne how the Del of an empty arrangement on some S is enoded. It mainly must bedeided whether the initial fae is unbounded (e. g., for a plane, a paraboloid, or an openylinder) or bounded (e. g., for a triangle, a sphere, a losed ylinder, or a torus). It ismore hallenging to ommit to a ertain representation as Del for the boundary of theparameter spae as it is typial that several possibilities exists.A tangible example is onstituted by the unbounded plane. We aim to onstrut anarrangement that may ontain several unbounded faes. We already hose not to lip atan expliit bounding retangle. Instead, a possibility is to introdue an impliit boundingretangle embedded in the Del, that is, it onsists of �titious edges. Eah suh edgedoes not represent any onrete planar urve; its sole purpose is to lose the outer CCBof an unbounded fae. Or vie-versa: A fae is unbounded, if its outer CCB ontains a�titious edge. Atually, there is one speial fae that has no outer CCB, and its soleinner CCB onsists of �titious edges only. However, this fae is of pure tehnial nature.The orners of the �titious retangle are given by speial verties Vbl, Vtl, Vbr, and Vtr.As they do not atually belong to the arrangement they must be �ltered for a traversal.A urve-end that extends to in�nity is represented as a �titious vertex on this retangle,but never oinides with one of the four orner verties. The insertion of an unboundedurve implies a �titious edge to split. Figure 4.9 (a) gives an illustration of suh a Del.As it maintains a �titious outermost fae F , the nesting graph of this Del is a tree.An alternative solution, as shown in Figure 4.9 (b), is to use a single �titious vertexat in�nity Vinf and all urves extending to in�nity are onneted to this vertex. A faeis then onsidered to be unbounded, if its outer CCB inludes Vinf . For this hoie, nosplit of a �titious edge is required, but we need to determine the position of a new urvein the irular list of existing urves around Vinf . Note that there is no single outermost
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Figure 4.9. Two possible Del-representations for the unbounded plane
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F9(a) This Del uses �titious edges (dashed) and four speial verties Vlb,
Vlt, Vrb, Vrt that do not arry geometri information. The verties V1, . . . , V8represent in�nite urve-ends. The faes F1, . . . , F8 are unbounded, as they areinident to a �titious edge. The fae F is �titious without any geometrimeaning. The nesting graph is a tree rooted at F .
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F9(b) This Del ontains a single �titious vertex Vinf to whih all unboundedurve-ends are inident. The unbounded faes F1, . . . , F8 are the ones that areinident to this vertex; see, for example, the indiated outer CCB of F3. Thenesting graph of this Del is a forest.



4.4. Maintaining a Del on a surfae 137fae: In partiular, eah unbounded fae is a root in the nesting graph, and also a boundedfae that is not a hole29 of a another bounded fae onstitutes a root. That is, we obtainseveral equitable outermost faes. Following the nesting graph is a forest. A root growsto a tree, if it has at least one two-dimensional hole in it, suh as F7.Both representation are useful and legitimate, and none an be preferred over the other.Atually, eah an be more suitable than the other in di�erent situations. In fat, evenmixed ases are oneivable, for example, we an have two �titious verties for urvesextending to x = ±∞ and sequenes of �titious halfedges onneting (at in�nity) urvesthat extend to y = ±∞. The relevane of suh a representation is questionable, but we donot judge on this. For Cgal 3.3, we deided to represent unbounded planar arrangementswith the impliit bounding retangle. Other representations might be inluded in futurereleases.We next generalize the topologial tasks beyond the unbounded plane, similar to thegeneralization of the geometrial tasks. We basially have two strategies to representarrangements on parametri surfaes as Del.Tree-strategy This strategy requires to agree upon a single outermost fae. This istypially done by hoosing a referene point that is expeted to be ontained inthis losed fae (i. e., its interior and its inner CCBs). We have to ensure that thereation of new faes, and in partiular the assignment of CCBs that pop up, aimfor a tree rooted at this outermost fae. Below, we identify the tasks how to supportthis deision in order to maintain a tree.Forest-strategy In this strategy, several faes an be outermost, that is, they are eq-uitable. Making faes equitable means to separate them by outer CCBs. For thisstrategy it must be lear what outermost means for a spei� surfae. One thisis �xed, any operation that requires an update of CCBs (e. g., the reation of anew fae) has to follow the hosen de�nition. The tasks we identify below help toimplement the hosen de�nition for an outermost fae.Remarks.
• In both strategies, the �rst root of the nesting graph has no outer CCB.
• Note that already in the bounded plane, we have some kind of equitable faes; see, forexample, faes F2 and F3 in Figure 2.6. However, they are surrounded by a ommoninner CCB; see in the example E2 whih determines that F2 and F3 are hildrenof F1. Equitable means that none makes the other loally non-simply onneted; seealso De�nition 2.41. Thus, they are separated by outer CCBs from eah other andnone is a root, in ontrast to the forest-strategy that already expets equitable roots.We admit, that the strategies seems 1 abstrat. On the other hand, the hosen strategyhas impliations on the nesting graph. That is, by hoosing a strategy, we are atuallyasking for a onsistent way of assigning CCBs to the lists of inner and outer CCBs offaes. These assignments eventually de�ne the nesting graph. Thus, we onentrate onthis lassi�ation when disussing CCBs below. There, we also extend our onsiderationto surfaes with identi�ations. More tehnial details are given in �4.5.5.29A hole makes a fae non-simply onneted; see De�nition 2.41.



138 Two-Dimensional Arrangements on Surfaes4.4.2. Boundary tasksIn addition to the Del-deisions, we already have deteted some surfae-spei� topo-logial tasks:
• Remember that visitors (for sweep or zone) all the basi insertion funtions tomodify the Del with respet to the insertion of a urve c. There are speial asesthat the arrangement has to take are of. An example is that some urve-end of aurve c an oinide with an isolated vertex in a fae, so the insertion is atuallyfrom a vertex. This is already a solved problem for the bounded plane. However, inour ase the arrangement deals with boundaries of the parameter spae. But it hasno hane to deide itself how to insert the relevant urve-end. Remember the twoways (�titious retangle, �titious vertex at in�nity) to represent an unboundedarrangement as Del. In both ases, the insertion is atually from a vertex atin�nity. Similar ases are oneivable for other topologies. Thus, our solution to thisproblem onsists in the arrangement's query of the attahed topology-traits lass. Itreturns a CGAL::Objet omprising one of the following types:� A handle for a �titious halfedge, whih means that the queried urve-end splitsthe designated �titious halfedge in its interior. The split-point beomes the(�titious) vertex representing the urve-end.� A handle for a vertex to whih the urve-end is inident.� An empty objet, whih implies that it is required to reate a new vertex rep-resenting the urve-end. The urve itself is the sole inident urve to the vertexthat will be reated.If only one urve is inident to a vertex, the insertion from a vertex is simple,otherwise, we refer to the next task.Remark (Isolated point). Remember that some topologies allow isolated points on

∂Φ. Thus, the topology-traits lass must also be able to ompute the same piee ofinformation for suh a point, instead of a urve-end.
• Find the position of a urve inident to a Del-vertex V on ∂Φ in the irular orderof urves around V . This holds for both �titious and non-�titious verties.
• Split a �titious edge. The ounterpart of this operation onsists of the detetionand removal of a redundant vertex on the boundary.We refer to �4.5 where we explain how these tasks are tehnially interfaed.4.4.3. FaesNote that faes of the subdivision (i. e., open onneted point sets on the surfae) are storedimpliitly, that is, not speial geometri objet is deposit in the Del. However, part ofthe impliit representation is the orret assignment of onneted omponents of the fae'sboundaries (CCBs). Eah insertion or deletion of a urve an also imply a modi�ation ofa fae's CCBs. In partiular, a fae an be split into two faes. For the di�erent kinds ofboundaries, we have to onsider spei� possibilities.Unbounded faes If an unbounded fae is split by a bounded urve, it must be deidedby the topology-traits lass whih of the two resulting faes is unbounded.
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cv

EprevF1

E′1
E1
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Efict

Figure 4.10. We onsider an arrangement of line segments in a �nite retangle whoseboundary is modelled with �titious edges. The insertion of cv results in a split of F0.The new fae F1 has an outer CCB that is formed by Eprev, E1, and Efict.Bordered edges Consider a �nite retangle, whih onstitutes a ompat surfae whoseboundary onsist of four bordered sides. We an represent these bordered sides with thehelp of �titious halfedges (as for the unbounded retangle). In suh a ase, it is possiblethat the insertion of a bounded urve from a single vertex splits a fae, suh that one doesnot make the other loally non-simply onneted; see the illustration in Figure 4.10. It isthe topology-traits lass that takes are of this deision.CCBs, roots of the nesting graph � and identi�ations Remember the tree- and theforest-strategy that we only introdued abstratly. We next disuss examples for them onsurfaes with a urve of identi�ation. This helps us to detet the tasks that we requirefrom the topology-traits lass for any kind of parametri surfae we want to onsider.In the tree-strategy, the de�nition of the root fae is simple. It is de�ned by piking areferene point. On a sphere, we an hoose, for example, the north pole. The followingexample is also illustrated in Figure 4.11: The initial Del onsists of a single boundedfae F0. It does not have any outer CCB. This ontrasts with the planar ase, where eahbounded fae has an outer boundary. Next onsider that we lose the tropi of Caner(northern turning irle) and the tropi of Capriorn (southern turning irle). For the�rst urve, the initial fae is split into two. The fae FN now ontains the north pole,that is, the referene point. Thus, aording to our strategy, it should obtain an innerCCB (represented by E1), that separates F ′
S (ontaining the south pole and the equator)from FN . This ensures that F ′

S beomes a hild of FN . F ′
S itself gets a single outer CCB(represented by E′

1). After adding the seond tropi, there are now three faes FN , FE ,and FS . The latter two originate from the split of F ′
S . Note that FS gets a single outerCCB (represented by E′

2) and is separated from FE orresponding to the strategy by aninner CCB (represented by E2) of FE . Observe that we ome to two deisions: Make E′
1the outer CCB of F ′

S (and not E1) and make E′
2 the outer CCB of FS (and not E2). Arespetive twin de�nes an inner CCB for the proper originating fae.Similarly, we an pik a �referene point� on a ylinder C, even if it is unbounded. Forexample, we hoose as referene some point on C with z = +∞. This ase is illustrated



140 Two-Dimensional Arrangements on SurfaesFigure 4.11. The tree-strategy on a sphere
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(a) Single boundedfae F0 with neitherouter CCB nor innerCCB.
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(b) Closing the north-ern tropi by cv1 re-sults in two faes: FNgets a fae separatedby an inner CCB thatis de�ned by E1. Fae
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S gets a single outerCCB de�ned by E′
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cv2() Adding the south-ern tropi cv2 re-sults in another split:
FE inherits the outerCCB de�ned by E′

0,while the new fae FSis separated from it byan inner CCB de�nedby E2. The split fae
FS gets a single outerCCB de�ned by E′

2.in Figure 4.12. Mind again, that two deisions help to de�ne the the �nal Del: Make
E′

1 the outer CCB of F1 (and not E1) and (again) make E′
2 the outer CCB of F2 (andnot E2).Remarks (on the tree-strategy).

• The tree rooted at a referene fae in ensured by de�ning whih CCB beomes outerof a newly reated fae. Let us keep this task in mind.
• Note that F1 in Figure 4.12 is an unbounded leaf in the nesting graph. This may benot very intuitive, but remember that this is due to the fat that the tree-strategysimply de�nes an outermost fae.To avoid suh unbounded leaves, we atually enourage to apply the forest-strategy inthe ase of a ylinder. We again start with an example, illustrated in Figure 4.13: Thereis the single unbounded fae F0. When adding cv1 the fae F0 splits into the faes F0and F1. As both are unbounded we do not want to make one nested below the other.Thus, we deide to make them equitable on the ylinder. Consequently, eah gets its ownouter CCB: E′

1 de�nes the one for F0, while E1 de�nes the outer CCB for F1. We nextinsert cv2. This separates F2 from F0. Again, we do make F2 equitable to the other, thatis, F2 beomes a root. This time, the reason is that F2 should be nested below F0 andbelow F2 at the same time. However, this would lead to a nesting graph, that is not aforest. We do not want to exlude this possibility in general, but it is less intuitive, that a



4.4. Maintaining a Del on a surfae 141Figure 4.12. The tree-strategy on a ylinder
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(a) Single unboundedfae F0 with neitherouter CCB nor innerCCB.
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1(b) Adding cv1 re-sults in two faes. F0gets separated from

F1 by saying that E1de�nes an inner CCBof F0. That is, bystrategy, F1 is a hildof F0 in the nestinggraph.
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1() Adding cv2 nowsplits F0 again. Sim-ilarly, F0 gets sepa-rated from F2 by say-ing that E2 de�nes aninner CCB of F0. Wemake F2 a hild of F0.In parallel F1 beomesa hild of F2 as E1stays an inner CCB,but now for F2.set of points should be �somehow� a subset of two disjoint sets.30 Thus, to make F2 a rootfae is a nie and sensible solution. However, it is now surrounded by two outer CCBs.31While E′

1 is already determined to be one of them, it must be deided that E2 de�nes theseond (and not E′
2). Following, E′

2 automatially de�nes an outer CCB for F0.Remarks (on the forest-strategy).
• We require a de�nition that spei�es the properties of a root. In the example, wehoose �unboundedness� and �not a unique nesting�. However, these onditions arenot preise.
• One root faes are deided, we need a test that determines whether a newly reatedouter CCB belongs to the same root fae as another (�xed) outer CCB. Let us alsokeep this task in mind.We remark that the forest-strategy also makes sense for bounded surfaes, for example,as de�ning a referene point might not re�et the user's wish. In partiular, he maybewants to avoid an arti�ial hierarhy of faes. Using the forest-strategy is a way out ofthis dilemma. As example, we mention the retangle as in Figure 4.10, or we refer toFigure 4.14Note that with these examples in mind, it makes sense to extend the Del: In addition30Note that a fae is supposed to represent a onneted subset, and all faes of a Del model a disjointdeomposition of the input surfae.31The reason is that neither E′

1 nor E2 an de�ne an inner CCB, as this would model that F2 is nestedbelow another fae.



142 Two-Dimensional Arrangements on SurfaesFigure 4.13. The forest-strategy on a ylinder
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F0.Figure 4.14. The forest-strategy on a sphere
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1 is the seondbesides E2. FN thengets the outer CCBde�ned by E1.



4.4. Maintaining a Del on a surfae 143to maintaining a list of inner CCBs, we are now onfronted with ases, where a fae anhave more than one outer CCBs. Thus, we require a Del-lass that is able to store a listontaining more than one outer CCB for a fae. Note that eah list of CCBs an also beempty.We admit that our examples are hosen arefully to show whih surfae-spei� topo-logial tasks must be handled. The examples for the forest-strategy are even �restrited�.That is, eah of their faes is a root. However, there exist faes on suh surfaes thatare surely none-roots. In order to preisely de�ne what makes a fae a root, we have toreonsider the basi insertion of a urve at two verties into a fae F . Among the basifuntions modifying the Del, this is the only one that an onstrut a new fae; seeFigure 2.9. We know that F models a onneted set of points on an orientable surfaewhose boundaries are desribed by the given CCBs of F . Eah CCB forms a yle and theintended fae is to the left of the oriented edges ontained in theses yles. When insertinga urve cv at two (non-isolated) verties, we are given two predeessor edges, eah lyingon some CCB of F . Remember that the interior of cv must ompletely lie in the fae F .Following, both CCBs belong the F . Upon this insertion, we remove a one-dimensionalset of points from the fae by adding edges for cv. These edges get somehow onnetedin between the predeessor edges and their suessors. It results in either merging twoCCBs into one, or we get two individual CCBs. We basially have to deal with 3 di�erentombinations: Figure 4.15. Inserting a urve at an outer CCB
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cv(a) Curve cv is added at two ver-ties. Its predeessor edges lie onthe same outer CCB. E1
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prev1
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prev2F ′(b) F ′ is split from F , but it doesnot make F loally non-simplyonneted. Thus, prev2 still de-�nes F 's outer CCB (with E1),while prev1 (with E2) de�nes thenew fae F ′'s outer CCB.Both predeessor edges belong to the same outer CCB: We an assume that theCCBs of F only onsist of this single outer CCB. Thus, the fae is two-dimensionaland it looks in the neighborhood of cv like an open half-plane; see Figure 4.15 (a).Following, cv separates a two-dimensional set F ′ from F . Even more: F ′ annotmake F loally non-simply onneted. Thus, F ′ models a new fae and we obtaintwo individual CCBs. One beomes the new outer CCB of F ′, while the other staysthe outer CCB of F . That is, F ′ is equitable to F ; see Figure 4.15 (b). We all thisase an outer split.In the nesting graph, the node for F gets replaed by two nodes: One for F ′ and onefor the remaining part of F . If F was a hild of some F̂ , then F ′ beomes a hild of
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F̂ as well; onsider, for example, faes F2 and F3 in Figure 2.6. More important is:If F was a root, then F ′ beomes a root fae as well.The predeessor edges belong to di�erent CCBs There exist several ombinationsand all have in ommon that the insertion of cv adds edges that merges the twoinvolved CCBs into a single CCB. That is, we merge two boundaries of a fae. Thiskeeps the fae onneted. If one of the originating CCBs was outer, the merged CCBalso beomes outer. In ase that both were inner, the merged also onstitutes aninner CCB. As no new fae is onstruted, these ases are simple and of no relevanefor our further objetives. Espeially not with respet to hanges on the nestinggraph upon fae reations in the tree- or forest-strategy.Both predeessor edges belong to the same inner CCB: This ase requires a moreelaborate study. First of all, observe that the existing inner CCB separates a set ofpoints that is onsidered to be a hild of F in the nesting graph. This set is eithertwo- or one-dimensional. If it is two-dimensional the insertion is analog to the outersplit: Simply replae �outer� with �inner�. The inner CCB gets rerouted, while a newouter CCB appears that separates the split set of points F ′. The di�erene to theouter split is that F annot be a root, and so F ′.If the insertion of cv loses a one-dimensional set to a one-dimensional non-simplyonneted loop, three possibilities exist. They are depending on the involved urvesand mainly on the surfae that embeds the urves:(1) F gets split into two disjoint two-dimensional sets, suh that one makes the otherloally non-simply onneted(2) F gets split into two disjoint two-dimensional sets, where one does not make theother loally non-simply onneted(3) the loop of urves desribes a one-dimensional subset of F , but does not make

F loally non-simply onnetedThe examples in Figures 4.9, 4.11, 4.14, 4.12, and 4.13 show di�erent situation wherewe have to distinguish between ase (1) and ase (2). Case (3) is more speial, asit only ours on surfaes with two identi�ations. Below we give further details onthis ase; a onrete example is given in Figure 4.25 that is inluded in �4.6.2, wherewe disuss a family of surfaes whose parameterization omprises two identi�ations.Note that the �inner split� that we desribed �rst an be seen as a variant of ase (2).Atually, the redution an be established by ontrating the two-dimensional set toa one-dimensional.Summing up, we detet that in most ases, the required modi�ations of the Del bythe basi insertion of a urve at two verties are straightforward � exept for the insertionat two verties that onnet a ommon inner CCB. For this situation, we have identi�edthree di�erent ases, that must be distinguished with the help of the topology-traits lass.Thus, we next onentrate on this task.Notie that the former inner CCB splits into two CCBs, and we have to deide whathappens with them; ompare also with the examples presented in this setion. There arebasially four options, and we shortly see that the hosen strategy has impliations onwhih option gets launhed.



4.4. Maintaining a Del on a surfae 145(a) Create a new fae F ′ and nest it below F , that is, assign one of the resulting CCBs tothe list of inner CCBs of F , while the other beomes the outer CCB of F ′.(b) Create a new fae F ′ and make it equitable to F , that is, one CCB beomes outer for
F ′, while the other CCB must be added to the list of outer CCBs of F .() No new fae is reated and the two resulting CCBs beome inner for F , that is, thereis a one-dimensional �hole� surrounded by two inner CCBs.(d) No new fae is reated and the two resulting CCBs beome outer for F , that is, F isnow surrounded by two outer CCBs.It is obvious that options (a) and (b) must orrespond to ase (1) and (2), whileoptions () and (d) are related to ase (3). The topology-traits implements either the tree-or the forest-strategy. The strategy guides the basi insertion in the following way: Forase (1) both strategies hose option (a); this is straightforward. In ontrast to ase (2),where the tree-strategy has again to trigger option (a), while the forest-strategy hoosesoption (b). For the speial ase (3), option () is the hoie for the tree-strategy, as thisensures that there is always an outermost fae not having an outer CCB.32 This fae issupposed to onstitute the root of the tree. However, there an be an innermost fae, thatis surrounded by two outer CCBs. As this fae would be nested below two other faes,we do not enourage the tree-strategy for a surfae with two identi�ations. For suh, wereommended the forest-strategy that deides for option (d) in ase (3). This ensures thatfurther splits of F result in faes that are equitable, and thus an model di�erent roots.Observe that options (a) and (b) still need some more guidane from the topology-traitslass, as seen in the examples. In option (a), it is unlear whih of the two CCBs beomesouter for a newly reated fae. This must be deided surfae-spei�ally. Atually, it isadvantageous to know for a loop of urves attahed to a CCB whether it is ontratible toa point on S. Then, the answer an be derived as for bounded planar urves:
• Determine the diretion of the predeessor halfedge at the lexiographial33 smallervertex.
• If it is from left to right34 this halfedge de�nes the outer CCB of the new fae.
• Otherwise, the predeessor halfedge at the other vertex de�nes the outer CCB of thenew fae.Following, the open question is only of substantial nature if a loop of urves on S annotbe ontrated to a point. By how we parameterize surfaes, this is only possible if atleast one urve of identi�ation exists; all other surfaes are homeomorphi to a dis. Forsurfaes with identi�ation the problem is more elaborate. The open question in option (b)is: Whih of the two CCBs gets assigned to the list of F 's outer CCBs? We shortly givefurther details on realizing these �CCB-tasks� for surfaes with identi�ations.Let us reonsider roots of the nesting graph. If the topology-traits lass implements thetree-strategy, we never reate a new root: The initial root has no outer CCB, so no outersplit an happen. In addition, inner splits do not reate new roots, and �nally, option (b)is never triggered, whih onstitutes the remaining possibility to reate a new root.In ontrast, the forest-strategy reates new roots. Note that the �rst new one mustbe triggered by option (b), as the initial fae has no outer CCB. Further roots an appearupon outer splits and onstrutions by option (b).32Observe that otherwise the initial fae is the andidate to get an outer CCB.33Given in parameter spae34Again in parameter spae



146 Two-Dimensional Arrangements on SurfaesDe�nition 4.5 (Root).Tree-strategy: A root is a fae without an outer CCB. Note that there is only one.Forest-strategy: A fae that makes another fae loally non-simply onneted annot bea root. Eah other fae is a root.This onludes the disussion on fae reations and what to do with CCBs. The fulltehnial interfae is given in �4.5.5. Observe that by this abstration the full ontrol onthe assignments of the CCBs is given to the topology-traits lass. Thus, it onstitutes theentity that deides whih strategy is implemented for its surfae, and following whether thenesting graph is a tree or a forest. This way, we onserve the possibility to represent thesubdivision of a surfae with di�erent strategies � depending on the user's preferenes.Remark (Reloation of holes). Remember that the split of a fae implies some queries:Namely, we have to hek for eah isolated vertex and for eah inner omponent in theoriginal fae, whether it should be moved to the newly reated split fae. This task boilsdown to determine the lexiographial (always �nite) minimal point of suh an objetand to let the topology-traits lass hek whether it is ontained in a newly onstrutedfae. We have to inorporate the topology-traits lass here, as the speial boundaries, inpartiular identi�ed ones, do not allow to derive a surfae-independent strategy. Note thatthis also has impliations on the nesting graph.Remark (Removal). The arrangement also demands for basi removal funtions. Amongthem, it is the deletion of an edge that demands in some ases help from the topology-traits lass that provides surfae-spei� answer. The key question for this task is, whetherthe deletion of a pair of twin halfedges, eah lying on an outer CCB, ause the reation ofa new inner omponent; otherwise two inident faes should be merged.We refer to �4.5.5 where we give tehnial details and the interfae for all requiredtasks of a topology-traits lass. That is, we present Cgal's new ArrTopologyTraits_2onept. Conrete examples of models are then disussed in �4.6. We illustrate details onthe implementation for two families of urved surfaes with identi�ations. Both modelsexploit a tehnique that we present next.Realizing a model for surfaes with identi�ations We previously identi�ed in a high-level desription whih tasks a model of the topology-traits lass has to provide withrespet to faes and their CCBs. Several models exists in Cgal, out of whih we disusstwo onrete examples for surfaes with identi�ations in �4.6.1 and �4.6.2. To simplifytheir presentation, we already reapitulate the tasks and give tools to realize eah.The tree-strategy expets the following deisions:
• How to detet ase (3)?
• How to deide whih CCB out of two gets outer for a new fae in option (a)?The forest-strategy expets an enhaned set of deisions:
• How to distinguish between ase (1), (2), and (3)?
• How to deide whih CCB out of two gets outer for a new fae in option (a)?
• How to deide whih CCB out of two gets also outer for a new fae in option (b)?Note that the tasks for the tree-strategy are a �subset� of the tasks for the forest-strategy.



4.4. Maintaining a Del on a surfae 147Surfae has one urve of identi�ation: Before we really turn to suh surfaes, thinkof any loop in a surfae that is homeomorphi to an (open or losed) dis. As thesurfae is simply onneted suh a loop is ontratible to a single point. In general,this does not hold for a loop on a surfae with a urve of identi�ation. In partiular,when also respeting possible ontration points. If we remove suh points, eahsurfae with a single urve of identi�ation is homeomorphi to an open or losedylinder. In what follows we assume w.l.o.g. that this ylinder's parameterizationomprises a left-right identi�ation.We an distinguish two kinds of loops: Loops that are ontratible to a point, andloops that are not.35 Let us have a loser look at properties of suh loops: Assumethat a loop L does not ross the urve of identi�ation. Then, it is ontratible toa single point, as the image of the parameter spae's interior is, by preondition,bijetive to an open dis. Moreover, onsider a loal ontinuous transformation of aloop's non-yli subpath suh that this part now rosses (not touhes) the urve ofidenti�ation twie. As the surfae is orientable a loal map exists that supports thistransformation. Vie versa, we an onlude that every loop that rosses a urve ofidenti�ation 2n times is ontratible to a point, by the �reversed� transformation.Now onsider a loop that has exatly one rossing with the urve of identi�ation.It is easy to see, that there is no over of maps homeomorphi to open diss suhthat the loop an be ontrated to a single point in their union. Thus, suh a loop isnon-ontratible. By the same argument as in the even ase, we an loally transforma non-yli subpath of the loop to ross a urve of identi�ation 2n + 1-times. Still,it is non-ontratible.36De�nition 4.6 (Perimetri loop, CCB, and fae). Let S be a parametri surfaewith an identi�ation exluding possible ontration points, and L be a loop on it.We say that L is perimetri if it is non-ontratible to a point. This property isequivalent to L having an odd number of rossing with the urve of identi�ationon S. A CCB is alled perimetri, if the attahed urves form a perimetri loop on S.We all a fae F on S perimetri if it has a perimetri CCB.Example 4.7 (Perimetri loop). Examples of perimetri loops are urves (cv1, cva) inFigure 4.11 (b), urve (cv2) in Figure 4.11 () (and eah also in Figure 4.14) urve
(cv1) in Figure 4.12 (b), urve (cv2) in Figure 4.12 () (and eah also in Figure 4.13),urves (cva, cv1, cvb) in Figure 4.25 (a), and urves (cvc, cv2, cvd) in Figure 4.25 (b).De�nition 4.8 (Direted loop). A direted loop −→L is a sorted sequene of urves
(cv0, . . . , cvk) that are traversed in a spei�ed ommon diretion: Let −−→max(cvi) be themaximal urve-end of cvi in the order of the traversal, and let −−→min(cvi) be cvi's orre-sponding minimal urve-end. It holds ∀0 ≤ i ≤ k : −−→max(cvi) =

−−→
min(cv(i+1) mod k) =:

pi. We all pi th i-the onnetion point.35The two sets are idential to the homotopy groups of the ylinder.36Touhing intersetions and rossings in the orner an be �removed� by symbolially perturbing theurve of identi�ation: That is, if moving the urve of identi�ation, a touhing interseting either vanishesor rosses it twie in opposite diretions. Following we an ignore it. Crossings in the orners an be handledby moving them on ∂Φ in lokwise diretion symbolially by a tiny amount. Note that this is alreadyre�eted by assigning a urve-end uniquely to one of the four boundary sides.



148 Two-Dimensional Arrangements on SurfaesWe onsider two soures of direted loops:
• The insertion of a urve cv at two verties that short-uts an inner CCB withgiven predeessor edges prev1 and prev2 de�nes two direted loops −→L prev1 =

(cv1
0 , . . . , cv1

k1−1, cv) and −→L prev2 = (cv2
0 , . . . , cv

2
k2−1, cv). The urves cv1

i arethose attahed to the edge-range [prev2->next(), prev1] (using ->next()). Theurves cv2
i are those attahed to the edge-range [prev1->next(), prev2] (using->next()). Note that the two direted loops traverse cv in opposite diretions.

• A CCB de�ned by an edge E spei�es a direted loop of urves −→L E. Thediretion of E determines the diretion of the urves' traversal.An important property is that no interior of a urve being part of a direted loopintersets with the urve of identi�ation. The reason is, that Make_x_monotone_2splits urves at suh intersetion. Following, these intersetions only take plae atthe onnetion points of a direted loop.Figure 4.16. Insertions on a surfae with an identi�ation
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(a) Case (1): Adding
cv splits F ′ from Fby two non-perimetriloops.
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prev2(b) Case (2): Adding
cv splits F ′ from F bytwo perimetri loops.
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() Case (2): Adding
cv splits F ′ from F bya perimetri and a non-perimetri loop.We next show that direted loops onstitute a deisive tool whih help to distinguishbetween ase (1) and ase (2). Consider the direted loops −→L prev1 and −→L prev2 emerg-ing upon the insertion of cv on the �ylinder� (i. e., S without possible ontrationpoints). We have two possibilities:

• Eah loop is ontratible to a point, that is, non-perimetri. Then, they de-�ne a two-dimensional subfae F ′ from F that makes F non-simply onneted.Following, we are in ase (1); see Figure 4.16 (a).
• At least one of the loops is perimetri. If exatly one is perimetri, the otherseparates a subset F ′ that does not make F loally non-simply onneted. Thissituation is similar to an inner split; see Figure 4.16 (). However, we do notknow whih one is perimetri, and in addition, both an be perimetri. Thisase also results in a separation of some subset F ′. But this time, it is along thewhole loop; an example is given in Figure 4.16 (b). However, both situationsresult in ase (2).



4.4. Maintaining a Del on a surfae 149De�nition 4.9 (Sign of a direted loop). Let −→L = (cv0, . . . , cvk) be a direted loopwith onnetion points pi, and cvΦ
i the pre-image of cvi in the parameter spae Φof S. Remember that we assume ∂rΦ and ∂lΦ to be identi�ed. The other ase issymmetri.The sign of −→L at pi is given by

sign(
−→
L , i) :=






+1 if −−→max(cvΦ
i ) ∈ ∂rΦ ∧

−−→
min(cvΦ

(i+1) mod k) ∈ ∂lΦ

−1 if −−→max(cvΦ
i ) ∈ ∂lΦ ∧

−−→
min(cvΦ

(i+1) mod k) ∈ ∂rΦ

0 in all other ases 


More intuitively, the sign of a direted loop at onnetion point pi is +1 if thepre-image of the loop approahes the right boundary of the parameter spae, rossesthe left-right identi�ation, and ontinuous emanating from the left boundary; theanalogy is similar for the negative ase.37The sign of a direted loop is simply the sum of the signs:
sign(

−→
L ) =

k∑

i=0

sign(
−→
L , i)Observe that a loop with sign zero orresponds to an even number of rossing withthe identi�ation, that is, this loop is non-perimetri. In ontrast, a non-zero signimplies its perimetriy. By how we de�ned the sign of a direted loop, we also obtainsome geometri interpretation with respet to the orners of the parameter spae:De�nition 4.10 (Orientation). Let −→L = (cv0, . . . , cvk) be a direted loop with on-netion points pi and sign(

−→
L ) 6= 0. That is, −→L is perimetri. Denote with cvΦ

i thepre-image of cvi in the parameter spae Φ of S. Let w be a orner of the parameterspae Φ.We say that −→L turns to w if there is a cvi with the following onditions:
• pΦ

i := −−→max(cvΦ
i ) ∈ ∂Φ.

• When traversing ∂Φ in ounter-lokwise order starting in pΦ
i we meet w beforehitting any other pΦ

j .Otherwise, we say that −→L abandons from w.Combining De�nitions 4.9 and 4.10 we get the following:Corollary 4.11. A direted loop −→L with sign(
−→
L ) = 1 turns to wmax = (umax, vmax)and abandons from wmin = (umin, vmin). If sign(
−→
L ) = −1, then it turns to wmin andabandons from wmax.The orollary's proof is by onstruting the di�erent ases. For an example, seeFigure 4.17 (): L2 in the spei�ed diretion has positive sign and thus turns to wmax37In ase that some pΦ

i is idential to a orner of the parameter spae, we again onsider a onsistentsymboli perturbation in lokwise diretion along ∂Φ.



150 Two-Dimensional Arrangements on Surfaesand abandons from wmin. Following, the area on S to the left of the direted loopwith positive sign must omprise ϕ(wmax), while ϕ(wmin) is de�nitely not ontainedin this area. The negative ase is analog. The reason is that a perimetri loop on aylinder is separating, that is, it splits the �ylinder� S into two disjoint sets.We are left with the assignments of CCBs. If both −→L prev1 and −→L prev1 are non-perimetri, the answer whih predeessor edge de�nes the outer CCB an be deter-mined by the diretion of the edge whose target is the leftmost urve-end of cv. Inthe example of Figure 4.16 (a) prev1 is this edge and it is direted from left to right.Thus, it de�nes the outer CCB of the new fae F ′.In the other ases, we rely on sprev1 := sign(
−→
L prev1) and sprev2 := sign(

−→
L prev2). Twopossibilities exist for option (a); see also Figure 4.16 (b) and ().

• If sprev1 = 0, then prev1 de�nes the outer CCB of the new F ′. If sprev2 = 0,then prev2 de�nes the outer CCB of the new F ′.
• Otherwise sprev1 6= 0 and sprev2 6= 0. In addition, it must hold that sprev1 6=

sprev2 . Thus, we only onsider sprev1 . For the tree-strategy, we have to ensurethat the nesting tree with respet to the referene point is ensured. The CCBde�ned by some edge prev1 is outer for the new fae F ′ if −→L prev1 abandons fromthe referene point. We an sensibly assume w.l.o.g. that the referene point isidential to wmax. Following, prev1 de�nes the outer CCB of F ′ if sprev1 = −1.In some ases, we may want to hoose wmin as referene point. If so, prev1de�nes the outer CCB of F ′ if sprev1 = 1. For the forest-strategy, this testis only involved if F originally has no outer CCB. But as we make F and F ′equitable on S, we an let any of prev1 or prev2 be de�ning for the outer CCBof F ′.If we aim for the forest-strategy and F originally has some perimetri outer CCBde�ned by some edge E0, then F ′ is split from F in the neighborhood of this CCB.Thus, E0 de�nes the �rst outer CCB of F ′. However, as F ′ is separated equitablefrom F it demands for a seond one. It will be one of the edges E1 (sueeding prev2)or E2 (sueeding prev1) we added for cv. Note that E1 and E2 de�ne outer CCBsby the forest-strategy. Both CCBs are perimetri and it holds 0 6= sE1 := sign(
−→
L E1),

0 6= sE2 := sign(
−→
L E2), and also sE1 6= sE2 . The test whih of the two forms thedesired seond CCB an also be realized in terms of these signs:

• We know that 0 6= sE0 := sign(
−→
L E0). By Corollary 4.11 and its impliations,the outer CCB de�ned by E1 also points into F ′ if sE1 6= sE0 . Similarly, theouter CCB de�ned by E2 belongs to F ′ if sE2 6= sE0 . Note that exatly one of

sE1 or sE2 is expeted to ful�ll this property.Surfae has two urves of identi�ation: We are left with the ase that the para-metri surfae S omprises two urves of identi�ation, that is, there is a left-rightidenti�ation and a bottom-top identi�ation. Suh a surfae is homeomorphi to atorus; as example, we disuss ring Dupin ylides in �4.6.2. We basially want to ap-ply the same ideas as for a surfae with a single urve of identi�ation. Fortunately,this ase an be simulated: Ideally, one would atually split S along some urve ofidenti�ation. This would be the simple solution. However, this �pre-proessing�



4.4. Maintaining a Del on a surfae 151
Figure 4.17. Removing a non-ontratible loop L1 from a surfae with two identi�a-tions results in a subsurfae S\L1 that an be parameterized with a single identi�ation.See red dashed lines in the �reombined� views of parameter spae (on eah right side).
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(d) Counter-example: L1 rossesleft-right identi�ation twie andbottom-top identi�ation twie.This splits Φ (and so S) into twodisjoint sets of points, in ontrastto Figures (a-). In addition, eahloop in ϕS(Φ′) is ontratible to apoint (e. g., L2)



152 Two-Dimensional Arrangements on Surfaesontrasts with the on-line strategy of the visitor. Note that due to double identi�-ation any �rst non-ontratible loop L1 does not split the surfae into two disjointomponents. In ontrast, the surfae �exists� to both sides of the loop, that is, S \L1is homeomorphi to an open ylinder. We refer to Figure 4.17 for some examples ofsuh loops in parameter spae. This property of L1 is also the reason why we have todeal with ase (3). Atually, the detetion of this ase is still undetermined. Notiethat a loop is non-ontratible if it rosses a urve of identi�ation an odd numberof times. That is, to deide (3) upon the insertion of a urve, we only have to test,whether it triggers the �rst loop that rosses some identi�ation an odd number oftimes. Depending on the strategy we an then selet option () or option (d). Seeagain Figure 4.17 (a-): The left-right identi�ation is rossed an odd number oftimes, while the number of bottom-top rossings varies. The parameter spaes anbe reombined suh that a single identi�ation remains, namely the one that hasbeen rossed by L1 an odd number of times, and thus has been seleted. If bothidenti�ations are rossed by L1 an odd number of times, eah an be hosen.In fat, as L1 is formed by urves embedded on S no other loop on the surfae anross this �urve of identi�ation� L1. Thus, everything we previously presented fora surfae with a single urve of identi�ation now holds for S \L1. We only have torestrit signs of paths with respet to the one identi�ation of S (out of two!) thatis seleted by L1.4.5. The ArrTopologyTraits_2 oneptIn the previous setion we ontoured whih hanges the Arrangement_2 pakage has un-dergone during its transition to the Arrangement_on_surfae_2 pakage, and we identi�edtasks expeted from an instane of the TopologyTraits_2 parameter. In this setion wetight the spei�ations and exatly de�ne the ArrTopologyTraits_2 onept. In our pre-sentation, we group tasks serving related (or similar) purposes. Although tehnial, weomit details in our presentation that are usually expeted by an atual referene manual.In �4.6 we shortly review available models for di�erent surfaes, and deep the desriptionof implementation details for two seleted families of surfaes.4.5.1. Nested typesWe expet that eah model of the ArrTopologyTraits_2 onept is parameterized by asuitable geometri-traits lass, so eah also knows the proper geometri type de�nitions.As already notied, the TopologyTraits_2 parameter replaes the Del parameter, so �rstof all, a model is expeted to provide the following type.
• Del � the Del-model that is used to represent the two-dimensional subdivision.It must be a model of Cgal's ArrangementDel onept (see [WFZH07a℄). We hereonly remember the non-standard extension for it, namely that a fae an have no,one, or several inner and outer CCBs (and isolated verties). We also remark thepossibility to de�ne a Del type that allows to extend its reords by additional data;see also �2.4.3.



4.5. The ArrTopologyTraits_2 onept 153As mentioned, visitors ombined with Cgal's generi Sweep_line_2 lass-template en-able to ompute various output. As we are aiming to support a basi subset, eah modelof the ArrTopologyTraits_2 onept has at least to provide the following visitors:
• Sweep_line_onstrution_visitor� this visitor is expeted to onstrut a new ar-rangement from a set of input urves (or points). It is used by the global CGAL::insertfuntion for aggregated insertion of urves into an arrangement, if it is empty. Theonept also expets the Sweep_line_non_interseting_onstrution_visitor type,whih either implements a speialized version for non-interseting urves, or it justrede�nes the Sweep_line_onstrution_visitor, knowing that its Interset_2 fun-tion objet is never queried.
• Sweep_line_insertion_visitor�using this visitor while sweeping over an existingarrangement inserts a set of new input urves into it. The Arrangement_on_surfae_2pakages dispathes this visitor, when alling the global CGAL::insert funtion whenaggregately inserting a set of urves in an arrangement whih is not empty. Likefor the onstrution, the Sweep_line_non_interseting_insertion_visitor type isalso expeted. Again, either a speialized implementation takes advantages of thenon-intersetion property, or the model rede�nes the Sweep_line_insertion_visitortype knowing that Interset_2 is never alled.
• template <lass ArrA, lass ArrB, lass OverlayTraits>Sweep_line_overlay_visitor � this visitor is ombined with the sweep line algo-rithm in the global CGAL::overlay funtion with the goal to ompute the overlay oftwo arrangements (of di�erent types �A� and �B�, but with same geometry of urvesand same topology of the underlying surfae). The reombination of attahed data totwo Del-reords into one is proessed aording to the given OverlayTraits type.
• template< lass OutputIterator >Sweep_line_bathed_point_loation_visitor � ombining this visitor with thesweep line algorithm enables to answer a bathed point-loalization, that is, to lo-alize a set of points.In order to simplify the development of visitors, there exists for eah task a lass-template that an be speialized using small helper strutures respeting the surfae'stopology. The template implements the surfae-independent ode for a ertain objetive(onstruting, inserting, overlaying, et etera) while the helper ��lls in� the missing surfae-spei� details. Of ourse, it is allowed, though not enouraged, to develop eah visitorfrom srath.As for the sweep line algorithm, Cgal's zone algorithm an also be ombined with avisitor instane in order to ompute visitor-spei� output during the zone omputation.For arrangements on surfaes, an ArrTopologyTraits_2 model is expeted to support theinsertion of urves to an arrangement with the following visitor.
• Zone_insertion_visitor � the insertion of a single (weakly) x-monotone urveinto an existing, not neessarily empty, arrangement with the global CGAL::insertfuntion is internally performed by ombining this visitor with the zone algorithm.



154 Two-Dimensional Arrangements on SurfaesBesides this minimal set of visitors, eah model an also provide visitors that enableother appliations. For example, there exists a lass-template for a visitor that omputesthe vertial deomposition of an arrangement while the sweep proesses. As for the others,we only have to provide the surfae-spei� helper lass. Remember that the zone algorithmexpets the possibility to loate points (or urve-ends). In order to support this, thefollowing type is expeted.
• Default_point_loation_strategy_2 � this type must be a model of Cgal'sArrangementPointLoation onept. It supports point-loation queries in an arrange-ment. As not all point-loation strategies work on all surfaes, a model of theArrTopologyTraits_2 onept has to de�ne this type whih spei�es the default ap-proah for point loations if no other strategy is provided by the user (e. g., for aninremental insertion).4.5.2. The boundary of the parameter spaeIn addition to the nested types, a model of Cgal's ArrTopologyTraits_2 onept also hasto provide some member funtions. We start with very basi ones. The �rst providesinformation about what happens on the boundary of the parameter spae.
• Arr_boundary_type boundary_type(Arr_parameter_spae ps)returns the boundary type for a given loation on the boundary of the parameterspae: For given ARR_LEFT_BOUNDARY, ARR_RIGHT_BOUNDARY, ARR_BOTTOM_BOUNDARY, orARR_TOP_BOUNDARY it returns a value of the following enumeration.enum Arr_boundary_type{ ARR_BORDER = 0,ARR_UNBOUNDED,ARR_CONTRACTION,ARR_IDENTIFICATION};4.5.3. Members for the DelThe next members are related to the Del.
• Del& del()returns a referene to the internal Del representation. This ensures referentialmodi�ations of the Del by the Arrangement_on_surfae_2 lass-template for non-boundary ases.
• void init_del()initialize an empty Del struture for the spei� topology of the surfae.
• bool is_empty_del()



4.5. The ArrTopologyTraits_2 onept 155returns true if the arrangement is empty, and false otherwise. An empty arrange-ment is attained, if no urve or point indues a one- or zero-dimensional ell on S.In partiular, it returns true when alled right after init_del().Remember that we allow �titious Del-reords. Suh reords do not store geometriinformation, but some topologies rely on them to model ertain boundaries as Del. Onthe other side, a user of an instantiated Arrangement_on_surfae_2 lass-template does notwant to are about suh arti�ial objets. Thus, the arrangement in ooperation with thetopology-traits lass �lters unwanted reords.De�nition 4.12 (Valid and onrete Del-reords).
• A fae is alled valid if it represents an open two-dimensional subset of points on S.See Figure 4.9 (a): Fi are valid for the unbounded plane, while F is invalid.
• A halfedge is alled valid if it is inident to a valid fae and represents an open one-dimensional subset of points on S. The solid halfedges in Figure 4.9 (a) are valid,while the dashed ones are invalid.
• A vertex is alled valid if it is inident to a valid halfedge. The verties Vi inFigure 4.9 (a) are valid, while Vbl, Vtl, Vbr, and Vtr are invalid.
• A vertex is alled onrete if is valid and has a �nite point attahed. All vertiesexept Vi and Vbl, Vtl, Vbr, and Vtr in Figure 4.9 (a) are onrete (i. e., the red ones).To the user, the arrangement lass �lters non-onrete verties, and non-valid halfedgesand faes. For this purpose the following members are expeted. There are other �ltersthat also return valid verties. These are required, for example, in ase one wants to runa graph algorithm on an arrangement.
• bool is_valid_fae(onst fae *f)heks whether a given fae is valid.
• Size number_of_valid_faes()returns the number of valid faes stored in the Del. Return type is Size whih isa nested type in Del.
• bool is_valid_halfedge(onst Halfedge *he)heks whether a given halfedge is valid.
• Size number_of_valid_halfedges()returns the number of valid verties stored in the Del.
• bool is_valid_vertex(onst Vertex *v)heks whether a given vertex is valid.
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• Size number_of_valid_verties()returns the number of valid verties stored in the Del.
• bool is_onrete_vertex(onst Vertex *v)heks whether a given vertex is onrete.
• Size number_of_onrete_verties()returns the number of onrete verties stored in the Del.4.5.4. Verties and edges on the boundaryIn �4.4 we already deteted that the arrangement lass is able to handle Del-reordsin the interior of the parameter spae on its own, while for Del-reords related to theboundary of the spae it relies on external and surfae-spei� query results. For this reasonit interats with the following members of a model of the ArrTopologyTraits_2 onept.
• CGAL::Objet plae_boundary_vertex(Fae *f,X_monotone_urve_2 xv,Arr_urve_end e,Arr_parameter_spae psx,Arr_parameter_spae psy)We are searhing for the position of a vertex to be onstruted that represents thegiven urve-end. The loation of the urve's end is on the boundary, that is, exatlyone of psx or psy is equal to ARR_INTERIOR. The returned objet may either be empty,it may wrap a �titious edge that is going to split for the vertex, or it omprises ofa vertex to whih to urve's halfedges will be onneted.
• void notify_on_boundary_vertex_reation(Vertex *v,X_monotone_urve_2 xv,Arr_urve_end e,Arr_parameter_spae psx,Arr_parameter_spae psy)This member is alled to notify the instane of the ArrTopologyTraits_2 model bythe arrangement on the reation of a new vertex on the boundary. This noti�ationhelps to keep the internal struture of the model up to date, for example, to maintaina sorted list of verties for an identi�ation. On the other side, the arrangement lassis still able to send noti�ations to observers upon strutural hanges of the Del.
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• void loate_urve_end(X_monotone_urve_2 xv,Arr_urve_end e,Arr_parameter_spae psx,Arr_parameter_spae psy)While plae_boundary_vertex is alled when information about the fae ontainingthe urve-end is available (e. g., during the sweep), this member loates the Delfeature that ontains a given urve-end, whih must relate to the boundary of theparameter spae. It an either be an existing vertex, an existing edge, or an existingfae. The method forms a subtask demanded by a point loation operation.
• Halfedge* loate_around_boundary_vertex(Vertex *v,X_monotone_urve_2 xv,Arr_urve_end e,Arr_parameter_spae psx,Arr_parameter_spae psy)If a urve-end is deteted to be inident to a vertex on the boundary, this funtionloates the predeessor halfedge in the irular order of halfedges around the vertex.The loation on the boundary is enoded with psx and psy as for the other twoloalizations members. If the vertex is isolated, it returns NULL.
• Halfedge* split_fititious_edge(Halfedge *he,Vertex *v)On the other hand, the loalization of a urve-end on the boundary might return a�titious edge. This member performs the split of the edge at the vertex that repre-sent the new urve-end. It returns one of the newly inident halfedges to the vertex.Note that the topology-traits lass implements this funtion, as it is a modi�ationof the Del representing the boundary of the parameter spae.
• bool are_equal(Vertex *v,X_monotone_urve_2 xv,Arr_urve_end e,Arr_parameter_spae psx,Arr_parameter_spae psy)Cheks if a given vertex on the boundary is assoiated with the given urve-end onthe boundary. Is used, for example, to distinguish whether the minimal or maximalend of a urve is inident to the vertex.The reation of boundary verties is not the sole purpose of the traits. If deleting aurve related to the boundary (or an isolated vertex on it) the Del also requires surfae-spei� updates that are supported by the following two member funtions.
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• bool is_redundant(onst Vertex *v)Determines whether the given vertex on the boundary has beome redundant. If so,the arrangement triggers its deletion.
• Halfedge* erase_redundant_vertex(onst Vertex *v)Erases the given redundant vertex (e. g., by merging �titious edges). The funtionis not expeted to free the vertex. It returns one of the merged twins of halfedges.4.5.5. Faes and their boundariesFor the last set of members, we turn towards the designated faes of the arrangement. Westart with two simple prediates.
• bool is_unbounded(onst Fae *f)Deides whether a given fae is unbounded.
• bool is_in_fae(onst Fae *f,Point_2 p,onst Vertex *v)Determines whether the given point lies in the interior of the given fae, ignoring inneromponents and isolated verties ontained in it. If the point is already assoiatedwith a vertex, then v is not null and �nite.Finally, eah model of the ArrTopologyTraits_2 onept must provide information re-quired to orretly onstrut or delete faes in syn with proper update of relevant CCBs.
• std::pair<bool, bool> fae_split_after_edge_insertion(onst Halfedge *prev1,onst Halfedge *prev2,X_monotone_urve_2 xv)This member is queried when the urve xv is going to be inserted at the targetverties of prev1 and prev2. Both determine the position where to insert the newpair of halfedges in the irular order of halfedges around the verties. We also knowthat both predeessor halfedges belong to the same inner CCB. The funtion hasto ompute what happens when the insert is aomplished. To do so, it returns apair of boolean values. The �rst �ag indiates whether the insertion will ause thefae to split. If yes, the seond determines whether the split fae will form a newinner omponent nested below the original fae. Otherwise, the split fae beomes



4.5. The ArrTopologyTraits_2 onept 159equitable to the originating one. If the �rst returns false, the seond determines,whether the two CCBs emerging from a non-simply onneted loop on S should betransformed into two outer CCBs (false) or two inner CCBs (true).38 We remarkthat this funtion implements the topology-traits lass' deision whih out of the fouroptions (a), (b), (), or (d) presented in �4.4.3 (on page 138) should be triggered.
• bool hole_reation_after_edge_removal(onst Halfedge *he)The funtion somehow onstitutes the omplement of the previous one. It determineswhether the removal of a given halfedge (and, of ourse, its twin) will ause thereation of a hole. The funtion is only queried if both he and its twin lie on an outerCCB, and both do not represent the tip of an antenna.The remaining two members are related to assignments of the CCBs:39
• bool is_on_new_fae_boundary(onst Halfedge *prev1,onst Halfedge *prev2,X_monotone_urve_2 xv)The situation is similar as for fae_split_after_edge_insertion, that is, the twohalfedges are predeessor edges of the same inner CCB that is perimetri. They areused for the insertion of xv whih separates a new fae. It must be deided whetherprev1 will be inident to this new fae or not. That is, it deides whether prev1 isgoing to de�ne the outer CCB of the new fae. The split fae an be perimetri ornot. The originating one stays perimetri in any ase.Consider as an example the losing of the northern tropi on a sphere in Fig-ure 4.11 (b), where E′

1,prev is �nally inside the new fae F ′
S and thus E′

1. Similarsituations are given in Figure 4.11 (), Figure 4.12 (b) and () and Figure 4.16 (b).In all these example the split fae is perimetri. Figure 4.16 () gives an input wherethe split is non-perimetri.
• bool boundaries_of_same_fae(onst Halfedge *he1,onst Halfedge *he2)The situation is as follows: a perimetri fae has just split into two perimetri andequitable faes. That is, no new inner CCB is onstruted. Only two outer CCBsappear. The halfedge he1 de�nes an outer CCB of the original fae, while he2 is anouter CCB that just emerged along one of the two sides of the perimetri loop thattriggered the split. It must be determined, whether he2 points into the same faeas he1. The atual question is whether the two outer CCBs have di�erent diretionswith respet to the fae de�ned by he1.38This seond ase, it not yet realized in Cgal's implementation.39The urrent onepts expets is_on_new_perimetri_fae_boundary(). However, its atual se-mantis is not overed by this. Thus, for this presentation we hose to give a less restrited name.



160 Two-Dimensional Arrangements on SurfaesFor an example see Figure 4.13 (): It must be determined whether the CCB de�nedby E2 or the one de�ned by E′
2 (both just emerged) belongs to the same fae as E′

1does, namely to the new split fae F2. Similar situations are given in Figure 4.14 (b)and (), and Figure 4.25 (b).Let us give some �nal remarks.Remarks.
• Remember that Del-reords for objets in the interior of the parameter spae arereated and maintained by the arrangement lass itself, while the topology-traitsmodi�es those related to the boundary of the parameter spae. This has impli-ations on observers attahed to an arrangement. Remember that an observer re-eives noti�ations about the arrangement's strutural hanges. Our hosen designstill allows the arrangement to send suh noti�ations, even if Del-reords relatedto the boundary of the parameter spae are onstruted or deleted. For example,it sends before_split_fititious_edge() prior to alling split_fititious_edge(),and after_split_fititious_edge() after alling this topology-traits method. Otherexamples are the reation and deletion of Del-verties on the boundary.
• Models of the ArrTopologyTraits_2 onept an provide speial surfae-spei� mem-ber funtions. An example is the aess to a sorted sequene of Del-verties alongidenti�ed boundary sides.We have to admit, that the onept, although quite stable, is still under development.The presented details orrespond to its status at the date of thesis's submission. Furtherhanges that improve or extend the interfae are oneivable. In partiular, it must beheked what is missing to �nally support isolated verties on and urves fully ontainedin the boundary of the parameter spae. In addition, the interfae with respet to CCBsis serving all ases; however, it seems ompliated. We hope to be able to simplify it.However, the design is suessful: This fat is emphasized by the variety of existing models.In �4.6, we �rst list available lasses, followed by a detailed disussion of two models thatsupport important non-linear surfaes.4.6. ExamplesCombining the di�erent possibilities for the four boundaries of the parameter spae resultsin a large list of feasible (and also some infeasible) topology-traits lasses; see Table 4.1.The ombinations representing basi families of surfaes are already implemented, that is,Cgal provides geometri-traits and topology-traits lasses for them:For the plane, we distinguish one topology-traits lass for bounded urves, and onefor unbounded urves that implements the impliit retangle of �titious edges aroundthe sene; see �4.4 and [WFZH07a℄. A set of geometri-traits lasses for various kindsof urves in the plane exists. We exemplary mention lasses handling linear objets,irles, onis, rational urves, and Bézier urves; see also �2.4.3. All of them ful�llUnboundedBoundaryTraits onept at all four sides, that is, eah supports urves that ex-tend to in�nity in any diretion. The same holds for Cgal's the generi model namedCurved_kernel_via_analysis_2 that we presented in �2.4.4. It is used in [EK08a℄ to om-pute arrangements of unbounded algebrai urves of any degree by instantiating the lass-



4.6. Examples 161template with a suited bivariate algebrai kernel. The authors of the artile provide Cgal'sadequate Algebrai_urve_kernel_2.As �rst non-planar surfae, Cgal provides a topology-traits lass for the sphere, whihontrats bottom and top boundary and identi�es left and right boundary. A geometri-traits lass for geodesi ars on the unit-sphere is available. A geodesi ar is the shortestonnetion between two points on a surfae. Exat rational arithmeti su�es to provideall relevant geometry-traits operations. The authors of [FHS08℄ give details on the traitslasses, and also show various appliations. An example is the overlay of maps on amodel of the earth, or to ompute a Voronoi diagram of points on the sphere using Cgal'sgeneri divide-and-onquer algorithm for lower envelopes. Another appliation is the exatomputation of Minkowski sums of onvex polyhedra using Gaussian maps; see [BFH+07℄.There is also a video [FSH08℄. Sébastian Loriot from INRIA (Sophia-Antipolis) is workingon a geometri-traits lass that deals with arbitrary irles on a sphere. He adapts previouswork [CL07℄ with respet to the design of Cgal's Arrangement_on_surfae_2 pakage. Itis worth to mention, that he is possible to use the existing topology-traits lass for thesphere. We do not disuss details on these workings.In ontrast, at the end of this hapter, we now fous on two sophistiated examples ofsurfaes, namely ellipti quadris and ring Dupin ylides. The later onstitute a gener-alization of tori. We present details on both surfae-spei� topology-traits models whosedisussion omprises interesting aspets to onsider with respet to the ourring iden-ti�ations. For eah surfae we provide a juiy geometry-traits lass. The remarkablefat for both geometri-traits lasses is, that they redue the geometry on the surfae toa planar geometry. More detailed, eah geometri-traits lass inherits from the planarCurved_kernel_via_analysis_2, and augments (modi�es) it ase-spei�ally in order tomodel the appropriate �CombinedBoundaryTraits� onept required for the surfae.For eah of the two examples in �4.6.1 and �4.6.2 we �rst give a short introdution,followed by details on the geometry- and topology-traits lasses, and onlude with results.4.6.1. On a quadri Figure 4.18. Ellipti quadris
(a) ellipsoid (b) ellipti paraboloid () ellipti ylinderGiven a list of quadris q0, q1, . . . , qn. Remember from De�nition 3.3 that a quadri isan algebrai surfae that is formed by the vanishing set of a trivariate polynomial of totaldegree 2. We often abuse notation and refer to qi as the polynomial and the vanishing set,depending on the ontext. We all q0 the referene quadri, while qi, 1 ≤ i ≤ n are sup-posed to interset with q0, onstituting the interseting set. We show how to ompute thearrangement on q0 indued by the interseting set using Cgal's Arrangement_on_surfae_2



162 Two-Dimensional Arrangements on Surfaespakage that is instantiated with a proper geometri-traits and topology-traits lass. Thisimplementation is robust, that is, it handles all degeneraies,40 and is exat, as all un-derlying geometri operations follow the exat geometri omputation paradigm. For thisexample ase, we restrit the hoie of the referene quadri q0 to be an x-ellipti one.De�nition 4.13 (Ellipti quadri). A quadri q is x-ellipti, if the intersetion of any plane
x = x0 with q is an ellipse (embedded in the given plane).The set of x-ellipti quadris omprises all ellipsoids, ellipti ylinders that are un-bounded in x-diretion, and paraboloids that are either unbounded towards x = −∞or x = +∞. Figure 4.18 ollets the three ases. These quadris have pretty proper-ties: First, they onsists of a single onneted omponent and seond, they allow a niegeometri-traits lass that we derive next.Remarks.
• The tehniques that we deploy next an be similarly applied to all other quadris.For referenes quadris onsisting of two onneted omponents (e. g., hyperboloidof two sheets) two individual arrangements must be onstruted.
• There is no restrition on the hoie of quadris q1, . . . , qn in the interseting set.They an be arbitrary. In fat, in Chapter 5 we present tehniques that enable us toonsider algebrai surfaes of any degree as interseting set and still using the samespeial onstruted parameter spae that we introdue here.The geometryThe non-xy-funtional ellipti quadri q0 an be subdivided into two xy-funtional surfaes(z = f(x, y)) by a single urve. This silhouette is given by silhouette(q0) := V (q0)∩V (∂q0

∂z ).It indues the lower and upper part of q0. For example, the equator splits the sphere intothe northern and into the southern hemisphere. Both hemispheres are xy-funtional. Theprojeted silhouette of q0 onto the xy-plane is algebraially de�ned by Resz(q0,
∂q0

∂z ).Consider the spatial intersetion urve of q0 with another quadri qi, that is, V (q0) ∩
V (qi). The (Zariski-losed) projetion of this set onto the xy-plane is a real algebrai planeurve of total degree 4, de�ned by Resz(q0, qi). As in Chapter 3 we remember that suha projeted urve an be split at its ritial points and its intersetion with the projetedsilhouette of q0, resulting in isolated points and (weakly) x-monotone urves. Eah suhobjet an be assigned to the lower or upper part of q0 (in some ases also to both parts);see [BHK+05℄ for details, or �3.2 for a rollbak. In that original work, two individualarrangements that onstitute the subdivisions on the lower part and on the upper part,respetively, are omputed; to merge the two Del instanes is missing.In ontrast, we here deploy the fat that an x-ellipti quadri q0 is niely param-eterizable by Φ = U × V = [l, r] × [0, 2π], with l, r ∈ R ∪ {±∞}, using ϕq0(u, v) =
(u, y(u, v), r(u, y(u, v),− sin v)).41 We de�ne y(u, v) = yu,min + (sin v

2 )(yu,max − yu,min).The interval [yu,min, yu,max] denotes the y-range of the ellipse that q0 indues on the plane40Though desribed in �4.2.2, the implementation of the Arrangement_on_surfae_2 pakage ur-rently laks support for isolated points and urves on the boundary of the parameter spae. Thus, somespeial input is not yet handled � in software.41Atually, the interval U is open on the sides where l or r are in�nite.
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x = u. The funtion r(x, y, s) returns the minimal (s ≤ 0) or maximal (s > 0) element of
Rq0,x,y := {z | q0(x, y, z) = 0}, |Rq0,x,y| ≤ 2.However, this parameterization is stated only to show its existene. For our pratialrealization, we make use of its properties only. Note that the sin-funtion divides theparameter spae �horizontially� into two parts, namely Φ0 := [l, r] × [0, π] and Φ1 :=
[l, r] × (π, 2π). These parts diretly orrespond to the (losed) lower part of q0 and the(open) upper part of q0. As ϕq0(u, 0) = ϕq0(u, 2π), we detet a urve of identi�ationfor this parameterization. This urve is a subset of q0's silhouette. Depending on thetype of q0, if l (or r) is �nite, we detet a ontration point (ellipsoid, bounded tip ofparaboloid) or an unbounded side (in�nite end of paraboloid, ylinder). In Figure 4.19 weillustrate suh a partitioning on the example of a paraboloid that is interseted by someother quadris.The partitioning into two areas is the key tool to de�ne our speial geometry on thereferene quadri using as basi ingredient a planar geometry. Given a point w0 = (u0, v0),with p0 := ϕq0(u0, v0) = (x0, y0, z0) being its ounterpart on q0, the level of p0 is ℓ ∈ {0, 1}if w0 ∈ Φℓ. We represent a point pi = (xi, yi, zi) on q0 as the ombination of a planarpoint pi(xi, yi) and its level ℓi ∈ {0, 1}. Given two points p1, p2, the uv-lexiographi orderof their ounterparts w1, w2 in parameter spae is re�eted by the order of x1 = u1 and
x2 = u2, and if u1 = u2 we infer the v-order from (y1, ℓ1) and (y2, ℓ2): If ℓ1 < ℓ2 then
w1 <lex w2 (and thus p1 <lex p2), else if ℓ1 = ℓ2 = 0, then w1 and w2's v-order is identialto the y-order of p1 and p2. If, �nally, ℓ1 = ℓ2 = 1, then w1 and w2's v-order is attainedby the opposite of p1 and p2's y-order.A u-monotone ar cv on q0 is represented by a projeted ar cv that is enhaned bythree levels, namely ℓmin at the minimal end of cv, ℓmax at the maximal end of cv and ℓrepresenting the level in the interior of cv.Remarks.
• Note that the level in the interior of an ar is onstant, as we split eah projetedintersetion urve also at its intersetions with the projeted silhouette.
• Remember that Φ0 is losed, whih has the following impliation: Consider an arwith ℓ = 1 (lying on the upper part of q0). If one of its ends lies on q0's silhouette,the level of this end is 0. This holds, in partiular, if the end meets the urve ofidenti�ation.Our goal is to reuse the Curved_kernel_via_analysis_2 (that is instantiated withCgal's Algebrai_urve_kernel_2) in order to provide a geometri-traits model that re-�ets our de�ned lexiographi order in the onstruted parameter spae of q0. In par-tiular, we developed the following steps for our model of the �CombinedBoundaryTraits�onept.1. Derived Quadri_point_2 from Point_2 and Quadri_ar_2 from Ar_2 that extendthe projeted objets with one level (point) or three levels (ar).2. Derived Quadrial_kernel_via_analysis_2 from Curved_kernel_via_analysis_2. Inthis step we replae the point and the ar type by the quadrial derivations. Thisrequires some worth-to-mention sophistiated template programming. However, wehose not to do, as these tehnial details do not serve the simpliity and eleganeof this approah and presentation.3. Adapted Make_x_monotone_2 to partition the spatial intersetion urve of qi with q0



164 Two-Dimensional Arrangements on SurfaesFigure 4.19. Illustration of simulation of a paraboloid's parameterization: the dark-shaded (orange) area represents Φ0, the bright-shaded (yellow) area orresponds to Φ1.
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u(b) Simulation in the planeby inversion of upper partinto instanes of type Quadri_ar_2 and Quadri_point_2 (for isolated points). Notethat the input type Curve_2 is a seond quadri. The atual input is impliitlyde�ned by the referene quadri and any seond. We �nally store loations ofpoints and ends of urves with respet to the parameter spae (ARR_INTERIOR orARR_[LEFT,RIGHT,TOP,BOTTOM℄_BOUNDARY).4. Derived all geometri prediates that involve y-omparisons. The relevant fun-tors are Compare_xy_2, Compare_y_at_x_2, and Compare_y_at_x_right_2. We modi�edthem to re�et the speial lexiographi order of our onstruted parameter spae.More detailed, we return the opposite result of omparison of y-oordinates, if bothinput objets have level 1.5. Derived and modi�ed onstrutions with respet to levelling. Relevant funtors are,for example, Interset_2 and Split_2.6. Derived and modi�ed Compare_[x,y℄_near_boundary_2 to re�et the order of urveslose to ontrated and in�nite boundaries (in �x�-diretion) or lose to the identi�-ation (in �y�-diretion).We only disuss Compare_y_near_boundary_2 on the example of a omparison next toa left ontration point: Given two minimal urve-ends of urves cv1 =̂(cv1, ℓ1) and
cv2 =̂(cv2, ℓ2) approahing the left boundary (the ontration point). The levels attheir minimal ends must both be 0. If ℓ1 6= ℓ2 (the interior levels), the desired v-orderis simply the order of ℓ1 and ℓ2. If ℓ1 = ℓ2, then both ars lie on the lower part or bothon the upper part of q0. In the �rst ase, the orret v-order is attained by the resultwhen the projeted ounterparts cv1 and cv2 interseting at the minimal ends (dueto ontration) get ompared slightly to the right of the projeted ontration point.This is established by alling the planar Compare_y_at_x_right_2 for cv1 and cv2 and



4.6. Examples 165their ommon minimal point (i. e., the projetion of the ontration). In ase thatboth urves lie on the upper part, the opposite of this result re�ets the orret v-order of cv1 and cv2 near the left ontration. In ase of a right ontration point, wehave to use the planar Compare_y_at_x_left_2 and the orresponding maximal ends.The others ases (unbounded, ompare near x) similarly ombine level omparisonsand planar prediates.7. Implemented Compare_x_on_boundary_2 to interfae the order of points along theurve of identi�ation. This prediates uses the planar Compare_x_2 for points. Notethat this is required to implement the Identi�edBoundaryTraits onept.Coneptually, all these modi�ation and extensions are simple reombinations of theexisting planar (muh more sophistiated) ounterparts. However, it is the straightfor-wardness of the levelling that allows to simulate the onstruted parameter spae of theellipti quadri in terms of projetion without expliitly knowing the atual parameteri-zation. As the levels tests are purely ombinatorial, we expet that the planar operationsmainly in�uene the performane of this geometri-traits.Conerning the implementation, our well-designed derivation hierarhy based on tem-plate programming allows the de�nition of the Quadrial_kernel_via_analysis_2 in itsvarious details. We an even use Cgal's Filtered_urved_kernel_via_analysis_2 as theplanar orale inside the Quadrial_kernel_via_analysis_2; see �2.3.3 (page 58 �).The topologyThe topology of the referene quadri q0 requires speial handling. We next disuss detailsof our topology-traits lass (Arr_qdx_topology_traits_2) that ombines the various ases(ellipsoid, paraboloid, ylinder). Remember that the topology-traits lasses mainly helpsto onsistently onstrut a Del respeting the surfae's topology. We already remarkthat our model realizes the tree-strategy for ellipsoids and paraboloids, while it applies theforest-strategy for ylinders.It starts with the initialization of the Del, whih for our ellipti quadri q0 requiresto onstrut a single fae that has no outer CCBs and no inner CCBs. It is bounded, if
q0 is an ellipsoid, and unbounded if q0 is a paraboloid or a ylinder.The topology-traits lass also maintains speial Del-verties, namely those related tothe four sides of the parameter spae. For the left and the right side, two speial verties
Vleft and Vright are designated. Suh a vertex reords the inidenes of urves to either apoint of ontration, or an unbounded end depending on q0's shape: For an ellipsoid bothverties represent ontration points, for a ylinder both represent unbounded sides, andthe orientation of the paraboloid determines whether the left is a ontration and the rightis unbounded, or vie versa. Verties on the identi�ation of the bottom and top boundaryare maintained in a sorted sequene (std::map). The order of stored verties is de�ned bythe order of attahed points using the geometri-traits funtor Compare_x_on_boundary_2.The topology-traits lass for quadris also implements the loalizations of urve-endswith plae_boundary_vertex (and the similar loate_urve_end). Atually, this is a feasibletask using a ase-distintion on the given loation in the parameter spae. For urve-endsrelated to the left (right) boundary, we simply hek if Vleft (Vright) is NULL. If so, we returnNULL whih triggers its onstrution, if not, we return the existing vertex. For the identi-�ation this proess is preeded by a look-up in the sorted sequene, that is, we atuallyhek whether the topology-traits is already aware of a vertex on the identi�ation at a er-



166 Two-Dimensional Arrangements on Surfaestain x-oordinate. The update of the reords after notify_on_boundary_vertex_reationrelies on the same ase-distintion.It is also expeted that loate_around_boundary_vertex loates a urve in the irularlist of inidene urves around a vertex on the boundary. If the vertex equals Vleft or
Vright our implementation relies on the geometri omparisons Compare_y_near_boundary_2.For verties on the identi�ation, our ode makes use of an internal funtor of Cgal'sArrangement_2 pakage: Arr_traits_adaptor_2::Is_between_w_2 heks whether a givenurve is in ounter-lokwise order between two urves that are already inident to avertex. Its implementation is an elaborate ombination of the Compare_y_at_x_right_2and Compare_y_at_x_left_2 prediates.Besides the loalizations, the topology-traits must also provide information on theonsistent onstrution of faes, and CCBs, in partiular, if identi�ations are existing.The funtions that must be implemented are listed in �4.5.5. As illustrated in �4.4.3 eahof them an be implemented with the help of direted loops and the hosen strategy. Letus start with fae_split_after_edge_insertion that is alled upon the insertion of a urvewhose predeessor edges belong to the same inner CCB. We have to deide two answers.The �rst is whether a fae splits. The answer is always true as our parameterization ofa quadri only involves a single urve of identi�ation. Following, the speial ase (3)that would require to return false annot our. It remains to deide whether the splitfae should be nested below the originating one, or to beome equitable to originatingone. If q0 is an ellipsoid or a paraboloid, we deided to go for the tree-strategy, and,thus, return true. That is, it gets nested. If q0 is a ylinder, we follow the forest-strategyand thus evaluate the signs sprev1 and sprev2 of the two direted loops −→L prev1 and −→L prev2that emerge upon the insertion of the urve cv in fous. If both are non-zero we returntrue. This implies that the new split fae gets nested below the originating. We triggeroption (a). Otherwise, at least one direted loop is perimetri and thus splits F suh thatno set of points makes the other loally non-simply onneted. That is, we are in ase (2)and return false. This triggers option (b) (as we are in the forest-strategy). The splitfae is then equitable to the originating one.The required funtion is_on_new_fae_boundary also exploits the non-zero values ofdireted loops to provide their answer. We rely on Corollary 4.11 for this purpose; seealso �4.4.3. A direted loop with positive sign turns to wmax, whih orresponds to Vright.Following, we deide that the CCB de�ned by prev1 beomes the outer CCB of the newfae, if the sign(

−→
L prev1) 6= 1. These deisions imply that the fae whih ontains ϕq0(wmax)is onsidered to be outermost if we follow the tree-strategy, as we do for ellipsoids. Thisinvariant is also feasible for a paraboloid that opens towards x = +∞. Note that iteven avoids unbounded leaves in the nesting tree. To also avoid unbounded leaves for aparaboloid that opens towards x = −∞, we revert the deision: The CCB de�ned by prev1de�nes the outer CCB of the new fae, if the sign(

−→
L prev2) 6= −1. Following, for suh aparaboloid, the fae whih ontains ϕq0(wmin) forms the root of the nesting tree. For theylinder, where we implement the forest-strategy, we an go with any onsistent turningof direted loops towards some orner of Φ. Thus, we implement for suh a q0 the samedeision as for an ellipsoid.Lastly, the forest-strategy expliitly demands for boundaries_of_same_fae that tests,whether a queried perimetri and outer CCB de�ned by E′ belongs to the same fae asanother given perimetri and outer CCB de�ned by E. We have seen that this is the



4.6. Examples 167ase if sign(
−→
L E′) 6= sign(

−→
L E). Thus, for ylinders, the Arr_qdx_topology_traits_2 lassimplements this omparison.Remark. It is super�uous to disuss funtions related to �titious edges here, as the hosenrepresentation as Del goes without suh. In addition, we also skip other straightforwardmembers of the topology-traits onept.As mentioned in �4.5.1, the topology-traits is �nally expeted to provides some visitortypes. Fortunately, Cgal's Arrangement_on_surfae_2 pakage already provide generiimplementations for onstrution, insertion, and overlay utilizing its Sweep_line_2 lass-template. We have to provide the quadri-spei� helper lasses. The �onstrutive� helperis responsible to pre-proess events of the sweep line: Whenever an event on the boundaryis going to be onsidered next during the sweep proess, the helper �rst heks whether theattahed topology-traits lass already stores a orresponding Del-vertex for the event'spoint (or urve-end, in ase of an event at in�nity). If this is not the ase, it simplytriggers its onstrutions. In any ase, it stores with the event a pointer to the obtainedvertex. This later helps to orretly insert sub-urves into the Del that emerge to theright of the urrent event. This helper is also responsible to maintain a list of sub-urvesthat an see the top boundary of the parameter spae. These sub-urves are andidates ofinner omponents that must be reloated into a newly reated split fae. We also providethe helper lasses that are required to insert urves into an existing arrangement, or tooverlay two arrangements. Their implementations are similar: Atually, for eah involvedarrangement (one in the insertion ase, the red and the blue arrangement in the overlayase), they maintain a pointer to the urrently topmost fae. A fae F of an arrangementis alled urrently topmost if there is a simply-onneted path in F from the urrent sweepevent to the image of the parameter spae's top boundary. In other words: If the urrentevent would result in an isolated vertex, then, this vertex would be isolated in F . Bothhelpers update the orresponding pointer(s) upon proessing events, that is, eah modi�esthe pointer(s) when an event on the top boundary is �swept�.ResultsWe instantiated Cgal's Arrangement_on_surfae_2 lass-template with the two desribedtraits-lasses, whih results in a robust algorithm to ompute an arrangement on an elliptiquadri. Even if the arrangement is highly degenerated it is suessfully onstruted bythis piee of software, as the example in Figure 4.20 shows.Base Ellipsoid Cylinder ParaboloidData #V #E #F t (s) #V #E #F t (s) #V #E #F t (s)q50 5722 10442 4722 28.3 1714 3082 1370 12.5 5992 10934 4944 29.3q200 79532 155176 75646 399.8 27849 54062 26214 189.9 82914 161788 78874 418.3e50 870 1526 658 7.2 1812 3252 1442 14.4 666 1092 428 6.6e200 10330 19742 9414 74.6 24528 47396 22870 175.8 9172 17358 8189 68.8Table 4.2. Performane measures for arrangements indued on three base quadris byintersetions with 50 or 200 quadris (q), or ellipsoids (e).To demonstrate e�ieny we also measured the performane when omputing the ar-rangement on given base quadris indued by intersetions with other quadris. As base
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Figure 4.20. Degenerate arrangement on an ellipsoid indued by 23 other ellipsoidsinterseting it
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Figure 4.21. Performane measures for arrangements indued on three base quadrisby intersetions with quadris and ellipsoids (in seonds).



4.6. Examples 169quadris we reated a random ellipsoid, a random ylinder, and a random paraboloid.These quadris are interseted by two di�erent families of random quadris. The �rstfamily onsists of sets with up to 200 interseting generi quadris, sets of the other familyinlude up to 200 ellipsoids interseting eah of the base quadris. The oe�ients of allquadris are 10-bit integers. All performane heks are exeuted on a 3.0 GHz Pentium IVmahine with 2 MB of ahe, with the exat arithmeti number types provided by Ledaand using Cgal's Algebrai_urve_kernel_2 in wrapping mode for analyses of urves inthe plane. That is, we rely on the urve analyses speialized to the quadrial ase takenfrom Exaus; see also [BHK+05℄.Table 4.2 shows for seleted instanes the number of indued ells, as well as timeonsumption in seonds required to onstrut the individual arrangements. Figure 4.21illustrates the average running time on up to 5 instanes ontaining sets of ellipsoids (e)and general quadris (q) of di�erent sizes interseting di�erent base quadris. Growth issuper linear in the number of quadris, as one expets for a sweep line approah.Clearly, the more omplex the arrangement, the more time is required to ompute it.To give a better feeling for the relative time onsumption, we indiate the time spent foreah pair of half-edges in the Del of the omputed arrangement. This time varies in thenarrow range between 2.5 ms and 6.0 ms. Other parameters have signi�ant e�et on therunning time as well, for example the bit-size of the oe�ients of the intersetion urves.We next want to analyze the in�uene of the hosen topology-traits lass. For theseexperiments we interset instanes from [Hem08℄ ontaining 10,20,40, and 80 quadris withthe three referene quadris (ellipsoid, ylinder, and paraboloid). For eah ombination weompute three arrangements. Two planar ones, as in [BHK+05℄, that separately representthe indued arrangement on the lower and upper of the referene quadri, and one diretlyembedded on the surfae using our new Arrangement_on_surfae_2-framework with thequadrial topology-traits lass. The splitting step is idential in both ases, as we have toassign ars of planar urves to the lower and upper part of the referene. These experimentswere exeuted on an AMD Dual-Core Opteron(tm) 8218 multi-proessor Debian Ethplatform, eah ore equipped with 1 MB internal ahe and loked at 1 GHz. The totalmemory onsists of 32 GB. As ompiler we used g++ in version 4.1.2 with �ags -O2 -DNDEBUG.For analyses of planar urves we rely on Cgal's new Algebrai_urve_kernel_2 (in non-wrapping mode).Table 4.3 gives the performane numbers of these omputations. First of all, theobtained results show that the quadrial topologies are almost as fast as the two planararrangements. However, they also ompute slightly more: The two planar arrangementsare not yet onneted and this step requires non-trivial further proessing. In ontrast,the quadrial arrangement already orretly represents the referene's subdivision intoells of dimension 0, 1, and 2 indued by the interseting quadris. This also explains thenon-mathing numbers of ells: Verties lying on the silhouette of the referene quadriare reported in eah planar arrangement, but only one in the quadrial one. Furthermore, the planar arrangements are not bounded by the projeted silhouette. Thus, theirnumber of faes is typially smaller than for the on-surfae arrangement. Besides saving apost-proessing step, there is one more thing: Cgal's Arrangement_on_surfae_2 pakageis able to diretly overlay two suh arrangements. And one more: Cgal supports pointloation queries on suh arrangements. And more; see [WFZH07b℄.



170 Two-Dimensional Arrangements on SurfaesReferene: EllipsoidSplit sweep two planar arrangements sweep ellipsoidal arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 2.36 213+217 295+289 84+84 1.29 396 584 190 1.3620 4.18 544+540 844+838 302+300 4.53 1038 1682 646 4.9040 7.62 1831+1837 3192+3210 1363+1375 20.57 3568 6402 2836 21.5080 15.47 7187+7191 13363+13379 6178+6190 97.66 14144 26742 12600 104.56Referene: CylinderSplit sweep two planar arrangements sweep ylindrial arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 1.65 191+179 260+240 71+64 1.17 344 500 158 1.2320 3.38 551+509 852+780 303+273 4.74 1012 1632 622 5.0040 6.76 1821+1755 3168+3040 1349+1287 21.28 3474 6208 2736 22.5780 14.28 7086+6914 13179+12831 6095+5919 100.91 13768 26010 12244 108.76Referene: ParaboloidSplit sweep two planar arrangements sweep paraboloidal arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 1.02 28+16 37+13 11+2 0.14 36 50 17 0.1420 1.86 124+96 181+129 60+35 0.93 196 310 116 0.9640 4.83 469+337 787+533 321+198 5.21 756 1320 566 5.3880 9.87 1303+1267 2309+2272 1008+1006 20.25 2472 4580 2110 20.90Table 4.3. Comparing planar and quadrial topologies: We report performane mea-sures (in seonds) for random quadris interseting three referene quadris and distin-guish the omputation of two planar arrangements and one quadrial arrangement.4.6.2. On a (ring) Dupin ylideWe ome to our �nal example, namely to ompute arrangements on a parameterized ringDupin ylide Z. The family of Dupin ylides ontains regular tori as a speial subset.The arrangements that we onsider are indued by intersetion of the arbitrary algebraisurfaes S1, . . . , Sn with the given referene ylide Z. This example is interesting for tworeasons. First, the referene surfae has genus one. Seondly, the geometri-traits lassthat we derive for this purpose is the �rst non-planar lass that really makes use of asurfae's (rational) parameterization. Remember that the quadrial lass simulates theparameter spae by projetion, while the one representing geodesi ars on the unit sphererelies on vetorial diretions; see [FHS08℄.We �rst shortly introdue Dupin ylides, along with a rational parameterization, thenshow how we provide a suited geometri-traits lass that does not assume generi position,followed by details on how to onsistently onstrut the Del with the help of a ylideanmodel of Cgal's ArrTopologyTraits_2 onept. This �nally leads to an implementationof an algorithm to onstrut and overlay arrangements on a ylide. We onlude withexperimental results.Dupin ylides have been introdued by Dupin as surfaes whose lines of urvature areall irular [Dup22℄. Later, the usage of the term ylide has swithed for quarti surfaesthat ontain a irle at in�nity as double urve [For12℄. Sine then, Dupin's surfaes areexpliitly tagged with his name, namely Dupin ylides. We only refer to the originalde�nition. Hene, and for short notation, we always simply refer to ylides. One an



4.6. Examples 171imagine a (ring) Dupin ylide as a torus with variable, but positive,42 tube radius. Dupinylides are the generalization of the natural geometri surfaes like planes, ylinders,ones, spheres, and tori. Due to this fat they are privileged for appliations in solidmodeling; see, for example, [CDH89℄, [Pra90℄, [Boe90℄, [Joh93℄, [Pra95℄.The following parameterization already appears more detailed in [Büh95, �1℄, whilea quite intuitive onstrution of a (Dupin) ylide is due to Maxwell, who we ite fromBoehm [Boe90℄:�Let a su�iently long string be fastened at one end to one fous of anellipse, let the string be kept always tight while sliding smoothly over theellipse, then the other end sweeps out the whole surfae of a ylide Z.�Observe that a torus is yield if the ellipse is atually a regular irle. For simpliity ofpresentation, we assume that a ylide is in standard position and orientation, that is, thehosen base ellipse is de�ned by
(x/a)2 + (y/b)2 = 1, a ≥ b > 0Figure 4.22. Two examples of ring Dupin ylides

(a) a = 2, b = 2, µ = 1 (b) a = 13, b = 12, µ = 11.We indiate outer irle, tube ir-le, and pole; see below.All ylide pitures are produed with xsurfae that is based on Cgal's planar urve renderer [Eme07℄. Theauthor thanks Pavel Emeliyanenko for his ontribution.For our pratial realization, below, we allow ylides to be translated or even rotatedby a rational matrix. Three parameters uniquely de�ne the ylide in standard position: aand b determine the base ellipse, while µ helps to enode the length of the string given by
µ− a. However, hoosing arbitrary values for these parameters, may also lead to ylidesthat ontain self-intersetions, that are urrently beyond the sope of our work.43 Wede�ne c =

√
a2 − b2, whih represents the distane between the fous and the enter of42If the radius would drop to zero at one position, we would get the disallowed roissant surfae; seeFigure 4.4.43Self-intersetions of surfaes are not (yet) handled by Cgal' Arrangement_on_surfae_2 frame-work.



172 Two-Dimensional Arrangements on Surfaesthe ellipse. In ombination with µ it allows to distinguish three types of ylides; seealso [Bez07℄.
0 < µ < c In this ase, the ylide has two pinh points and is alled horned ylide. Suha surfae looks like a torus with two ontrations (i. e., the union of two surfaestopologial equivalent to spheres, but touhing at two isolated points; none is insidethe other).
c < µ < a In this ase, the ylide looks like a squashed torus. Suh a surfae is free of(real) pinh points. It is alled ring ylide. Its shape looks like a losed tubial loopof variable radius; see Figure 4.22 for two examples. We fous on suh ylides forour work.
a < µ This relation results in a spindle ylide. The resulting surfae ontains againtwo pinh points that onnet two omponents that are topologially equivalent tospheres. In ontrast to a horned ylide, one of these omponents is �in the interior�of the other (exept for the touhing points).
µ = c, µ = a These ases form intermediate degenerate ases (e. g., µ = a is a surfae witha single pinh point) that are (urrently) of no speial interest for our objetives.For more details on the lassi�ation of ylides (there are, e. g., also paraboli ylides),we refer to [CDH89℄ and, for a quik overview, to [17℄.Very important for us is that ring Dupin ylides are rational surfaes; see De�ni-tion 2.32. Several parameterizations exists. The following goes bak to Forsyth [For12℄.He proposed two alternative impliit equations of the regular ylide (torus). The non-torus ase is a natural extension of the following.

(x2 + y2 + z2 − µ2 + b2)2 = 4(ax− cµ)2 + 4b2y2 (4.1)
(x2 + y2 + z2 − µ2 − b2)2 = 4(cx− aµ)2 − 4b2z2 (4.2)It is easy to prove that the intersetion of the ylide with the plane y = 0 results intwo irles [Joh93℄

(x + a)2 + z2 = (µ + c)2 (4.3)
(x− a)2 + z2 = (µ− c)2 (4.4)and the intersetion with z = 0 are the two irles
(x + c)2 + y2 = (a + µ)2 (4.5)
(x− c)2 + y2 = (a− µ)2 (4.6)As we are onsidering the ase of a ring ylide, we always have that the interiors ofof (4.3) and (4.4) are disjoint, and that the irle (4.6) is fully ontained in the interiorof (4.5).A (trigonometri) parameterization of the ylide is given by

(
α
β

)
7→





µ(c−a cos α cos β)+b2 cos α
a−c cos α cos β

b(a−µ cos β) sin α
a−c cos α cos β

b(c cos α−µ) sinβ
a−c cos α cos β







4.6. Examples 173with α, β ∈ [−π, π].Speial diligene is required for the boundaries of the parameter spae.Lemma 4.14. If α = π or (α = −π) is �xed, the parameterization above yields theirle (x + a)2 + z2 = (µ + c)2. If β = π (or β = −π) is �xed, it yields the irle
(x + c)2 + y2 = (a + µ)2. We all these irles tube irle and outer irle, respetively.Proof. Fix α = π, whih yields to the parameterization

β 7→





µ(c+a cos β)−b2

a+c cos β

0
−b(c+µ) sin β

a+c cos β



Sine the denominator does not vanish, this parameterizes a losed path in the plane
y = 0, so it must be one of the irles (4.3) or (4.4). By setting β = π, we get the point
(−µ−c−a, 0, 0), so it must be irle (4.3). The same argument an be used for β = π.The point p := (−µ − c − a, 0, 0) itself is speial, as it is the intersetion of the tubeirle and the outer irle. We refer to it as the pole of the ylide.By now, the parameterization is trigonometri. However, we aim for a rational pa-rameterization that allows to represent the intersetion of an algebrai surfae with Z asplanar algebrai urve. We use the standard trik to get rid of the trigonometri fun-tions (ompare [Gal01℄) using the following identities:

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2If we now set u := tan α

2 and v := tan β
2 , we obtain

P̊ : R2 → R3,

(
u
v

)
7→





µ(c(1+u2)(1+v2)−a(1−v2)(1−u2))+b2(1−u2)(1+v2)
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2u(a(1+v2)−µ(1−v2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2v(c(1−u2)−µ(1+u2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)



Observe, that the image of P̊ is the ylide without the tube irle and the outer irle.To lose this gap, we set α = π (or β = π) and apply the same trik. This yields rationalparameterizations of the tube irle and of the outer irle. Alternatively, we also get theseirles by taking the limit of P̊ when u → ±∞ (v → ±∞), that is, we ould onsider an(impliit) ompati�ation of R2 as U × V .There is also a geometri intuition behind this parameterization. We an think ofutting the ylide along the outer irle and tube irle and �roll out� the surfae to overthe plane. Thus, we also refer to the outer irle and the tube irle of a ylide as itsut irles.Note that there also exists other parameterizations of the ylide that do not roll it outto the whole plane, but only to a bounded spae [Bez07℄. However, what follows does notbene�t from suh a parameterization, in fat, we later re-interpret in�nity whih simpli�esmatters.



174 Two-Dimensional Arrangements on SurfaesInternally, we deal with a homogeneous parameterization of the ylide, that is, the non-zero denominator an be written as a separate variable. De�ne u+ := 1+u2, u− := 1−u2,
v+ := 1 + v2 and v− := 1− v2:

P̂ : R2 → P3
R
,

(
u
v

)
7→





µ(cu+v+ − au−v−) + b2u−v+

2u(av+ − µv−)b
2v(cu− − µu+)b
au+v+ − cu−v−



Homogenization also applies for the outer irle
P̂O : R→ P3

R
, u 7→





µ(cu+ + au−) + b2u−

2u(a + µ)b
0

au+ + cu−



and the tube irle
P̂ T : R→ P3

R
, v 7→





µ(cv+ + av−)− b2v+

0
−2v(c + µ)b
av+ + cv−



Finally, we also write the pole in homogeneous oordinates. Note that p̂ indeed represents p,sine b2 = a2 − c2.
p̂ :=





−µ(a− c)− b2

0
0

a− c



We eventually onsider as parameterization of Z the funtion ϕZ whose parameterspae Φ is the ompati�ed plane R2. The funtion ϕZ is ombined from P̂ , P̂O, P̂ T ,and p̂. Φ has interesting onditions on its boundaries. Namely, we detet identi�ationof both opposite pairs of boundaries. More preisely, ∀v ∈ V,ϕZ(umin, v) = ϕZ(umax, v)and ∀u ∈ U,ϕZ(u, vmin) = ϕZ(u, vmax), so for eah point on the outer- and the tube-irle there exist two pre-images in parameter spae. For the pole we even see four suh.We have to deal with these identi�ations. For example, when we sweep with a irleof variable radius along the tube of the ylide, that is, the image of the line u = usunder ϕZ . Two goals must be ahieved: First, we require a unique order of events in theparameter spae. Seond, for a point on the ylide with multiple pre-images, we atuallywant to onstrut only one Del-vertex. How to takle these two problems has abstratlybeen disussed previously. Pratially, it is required to provide a suited geometri-traitslass and a suited topology-traits lass. We next present both and start with details ona geometri-traits lass that allows to onsider arrangements on a ring ylide induedby algebrai surfaes interseting Z. Below, we ontinue with partiularities on a propermodel of the ArrTopologyTraits_2 onept required for the ylidean topology.



4.6. Examples 175The geometryConsider the referene ylide Z and an algebrai surfae Si interseting it. We aim torepresent the indued urve Z ∩ Si as algebrai urve in the two-dimensional parameterspae of Z. However, we have to deal with some peuliarities when interpreting a urve inthe parameter spae as �existing on the ylide�.Let gi ∈ Z[x, y, z] be the de�ning polynomial of surfae Si, with total degree Di. Wedenote with ĝi the homogenization of gi.Lemma 4.15. The vanishing set of fi := ĝi(P̂ (u, v)) ∈ Z[u, v] parameterizes the interse-tion points of gi with the ylide without those at the ut irles.Proof. By de�nition, the vanishing set of gi(P̊ (u, v)) in R2 de�nes the intersetion urveof gi and P̊ away from the ut irles. On the other hand, gi(P̊ (u, v)) = 0 if and only if
fi = ĝi(P̂ (u, v)) = 0.Figure 4.23. Two ut-outs of an arrangement in the planar parameter spae of aylide. It is indued on the surfae by 5 interseting surfaes of degree 3 and onsistsof 208 verties, 314 edges, and 107 edges. rendered with [7℄

(a) Overview (b) Closeup viewThat is, for a set of input surfaes g1, . . . , gn interseting the ylide, we obtain aset of real algebrai urves in the parameter spae of the ylide de�ned by polynomials
f1, . . . , fn ∈ Z[u, v]. Figure 4.23 shows an example of suh urves. This way we reduedthe geometri part of the arrangement omputation on the ylide to a geometri part of anarrangement omputation in the plane. However, this still requires to ompute an arrange-ment of algebrai urves embedded in the real plane. The urves we have to onsider havea relative high degree. Corretly, they reah bidegree (2 · deg(gi), 2 · deg(gi)). As we allowthe gi to have arbitrary degree, we require a model of Cgal's ArrangementTraits_2 on-ept that supports algebrai urves in R2 of any degree in order to ompute the induedplanar arrangements. Suh a model is given by Cgal's Curved_kernel_via_analysis_2(see �2.4.4), if instantiated with Cgal's Algebrai_urve_kernel_2provided by Eigenwilligand Kerber [EK08a℄; we all this planar traits Curved_kernel_via_analysis_2< ACK_2 >,or CK_2 for short. Details about the e�ieny of the used algebrai kernel are olletedin �2.3.3. We only remember, that the non-avoidable symboli omputations in the kernel(omputation of subresultant sequenes), atually limits its usability for urves of higher



176 Two-Dimensional Arrangements on Surfaesdegree; and thus for surfaes interseting the ylide. The planar kernel assumes no on-ditions on the input. Covertial events, vertial asymptotes, and singularities poses noproblem for the outome of expeted analyses of urves and pairs of them. Only runningtime an be a�eted by suh degeneraies. For example, some ases require a linear hangeof oordinates (i. e., shear) with a subsequent bak-shear step in order to report the resultswith respet to the original oordinate system. Nevertheless, we an onlude that noonditions on the algebrai surfaes gi interseting the ylide are imposed.Remark. There might be other parameterizations of the ylide that lead to urves fi ofsmaller (bi-)degree, whih would also show that P̂ results in urves of non-optimal degree.However, it is unknown whether suh a parameterization (if existing) is appliable for ourpurpose. In partiular, it must be heked whether the hosen implementation still works,and if so, whih modi�ation are expeted.Representation The CK_2 itself is a model of the UnboundedBoundaryTraits onept inboth variables; see hierarhy in Figure 4.8. We have to adapt it with respet to theylidean topology. We next show how to turn it into a model, alledArr_surfaes_interseting_dupin_ylide_traits_2and ful�lling the Identi�edBoundaryTraits onept; again in both variables. For simpliity,we refer to it as the Cylide_geo_traits_2.The Cylide_geo_traits_2 is derived from CK_2. An instane is onstruted from agiven referene ylide, whih is stored as the traits' status. The �rst required modi�ationis the rede�nition of the nested Curve_2 to Algebrai_surfae_3,44 that is, the type of alge-brai surfaes. This rede�nition implies also an adaption of the model's Make_x_monotone_2funtor,45 whih splits an instane of type Curve_2 into instanes of type Point_2 andX_monotone_urve_2. At this point, we mention that points and ars on the ylide arerepresented with respet the ylide's parameter spae. This also explains the deriva-tion of Cylide_geo_traits_2 from CK_2. Thus, the realization of Make_x_monotone_2 istwo-step. First, we apply for the given surfae Lemma 4.15. This requires aess to thestored referene ylide. Seond, we deompose the resulting planar urve into (weakly)
x-monotone ars and isolated points using CK_2's version of Make_x_monotone_2. Observe,that we do not need to derive speialized lasses for Cylide_geo_traits_2's Point_2 andX_monotone_urve_2 types. Even the assignment to the boundaries of the parameter spaekeeps valid, with the di�erene that we now interpret the in�nite boundaries as identi�a-tions.Remark (Points and urves on ut irles). Atually, there is one subtlety in this interpre-tation. Isolated points and urves fully embedded in one of the ut irles annot berepresented with the CK_2's point and urve type. Remember that suh objets havemultiple pre-images in the ylide's parameter. CK_2 is not expeted to represent suhobjets at in�nity, while Cylide_geo_traits_2 re-interprets the ompati�ation of R2as being on the surfae of the ylide. However, although theoretially desribed how todeal with events related to suh speial points and ars (see �4.2), the ompletion of the44typedef Algebrai_surfae_3 Curve_2;45Observe for this part of the text that the geometri-traits lass uses the variable names x and y, whilein our ase we atually refer to u and v.



4.6. Examples 177Arrangement_on_surfae_2 pakage with respet to suh objets is planned for the future.One this objetive is reahed, derived Cylide_point_2 and Cylide_x_monotone_urve_2lasses with speialized onstrutors beome required.Anyhow, let us mention that for a omplete surfae gi, the formal leading oe�ientsof the resulting polynomial fi already enodes some speial intersetions with respet tothe ut irles of Z. Observe that degtotal(fi) ≤ 4n, degu(fi) ≤ 2n and degv(fi) ≤ 2n.Lemma 4.16. Let coef(fi, xh, r) ∈ R[x1, . . . , xh−1, xh+1, . . . , xn] denote the oe�ient of fin xr
h. Then, we have

ĝi(P̂ T (v)) = coef(fi, u, 2Di)

ĝi(P̂O(u)) = coef(fi, v, 2Di)

ĝi(p̂) = coef(coef(fi, u, 2Di), v, 2Di).Proof. The funtion coef( · , xh, r) is linear. Thus, it su�es to show the equality for thease that ĝ = xdxydyzdzwdw is a monomial with dx + dy + dz + dw = Di. We show the �rstpart of the lemma, while the two remaining statements follow similar arguments.Sine for dy > 0, ĝi(P̂ T (v)) = 0, and also, degu(fi) < 2Di, we an assume that dy = 0.Let P̂1, . . . , P̂4 denote the polynomials of P̂ 's parameterization. Then, we have
coef(f, u, 2Di) = (coef(P̂1, u, 2))dx (coef(P̂3, u, 2))dz (coef(P̂4, u, 2))dz ,and omparing this with ĝi(P̂ T (v)) yields the desired equality.Lemma 4.16 also has a geometri interpretation, namely it shows that isolated inter-setion points on the ut irles appear as real roots of coef(fi, u, 2Di) or coef(f, v, 2Di).In addition, it is possible to detet speial intersetions with the ylide.Corollary 4.17.

• degu(fi) < 2Di if and only if gi and Z interset in the whole tube irle of Z.
• degv(fi) < 2Di if and only if gi and Z interset in the whole outer irle of Z.
• degtotal(fi) < 4Di if and only if gi and Z interset in the pole of Z.This information an be used in the future when onstruting speial representationsfor points and ars embedded in the ut irles. We remark that omputing the degreesis a heap task, while the root isolation is performed anyway, namely when determiningthe asymptotes of fi below. We already enourage to ahe suh information in an atualimplementation.Prediates and onstrutions Besides the geometri representation, we also expet fromthe Cylide_geo_traits_2 lass to provide geometri prediates and onstrutions. Notany modi�ation of the CK_2 is required to prediates that relate to the interior of theparameter spae. First, remember that the Arrangement_on_surfae_2 pakage leverlyombines the outome of a set of omparisons of near (or on) the boundaries in order toobtain a unique order for the sweep line events. In partiular, the geometri-traits lassis asked for the horizontal or vertial alignment of two urve-ends in�nitesimally away



178 Two-Dimensional Arrangements on Surfaesfrom a boundary. In our ase, the order of urve-ends approahing a ut irle is enodedby the order of the orresponding urve-ends in parameter spae approahing in�nity.Thus, we again only re-interpret CK_2's existing funtors Compare_x_near_boundary_2 andCompare_y_near_boundary_2 that ompare urve-ends approahing in�nity in parameterspae as funtors that ompare urve-ends approahing a ut irle.However, some funtors have to expliitly are about the boundary of the parameterspae. The prominent among them are the ones demanded by the Identi�edBoundaryTraitsonept, in partiular, Compare_x_on_boundary_2and Compare_y_on_boundary_2. Both mustompare �points� that are lying at in�nity in the parameter spae. To simplify, we anassume, that we onsider urve-ends of unbounded ars of a urve fi. There are tworepresentations for suh an end:
• Either, the ar is asymptoti to a vertial line u = u0, that is, it approahes thetop- or bottom-boundary. Then, we know a symboli endpoint (u0, fi,±∞). ByTheorem 2.24 we know that u0 is a root of lcfy(fi). The order of two suh points onthe bottom-top-identi�ation is given by the order of their u-values.
• Or, seond, the ar approahes the left or right boundary, whih means that its endis represented by a symboli point (±∞, fi, ai), where ai is the point's ar numberon fi. However, this information is not su�ient to ompute the v-order of two suhpoints, espeially to detet their equality. Thus, we next show how to obtain moreinformation on the symboli endpoint of ars that extend to u = ±∞. Suh anar an have a horizontal asymptote v = v0. In this ase it represents an ar onthe ylide that intersets the interior of the tube irle at PT (v0) and thus lies onthe left or right boundary. Finally, it an also be unbounded in v as well. Then itonverges to one of the four orner points (±∞,±∞) in parameter spae. On theylide, suh an ar runs into the ylide's pole.For the further onsiderations on this seond ase, we restrit to a single algebrai planeurve f . In the atual realization of Compare_y_on_boundary_2,46 we apply the followingmethod to both urves urrently in fous. It is well known, that an algebrai urve onlyhas a �nite number of easily omputable horizontal asymptotes. Their v-values are de�nedas roots of the leading oe�ient lcfu(f); see Theorem 2.24.This observation leads to an algorithm that assigns urve-ars approahing u = ±∞ tothe �nite number of possible symboli endpoints (±∞, vl), l = 0, . . . , k+1, where v0 = −∞and vk+1 = +∞, and v1 < . . . < vk denote the sorted real roots of lcfu(f)(v). We nextde�ne k + 2 bukets (−∞, q0), (q0, q1), . . ., (qk−1, qk), (qk,∞) with the help of omputedintermediate rational values q0, . . . , qk with vl < ql < vl+1 for all l ∈ {0, . . . , k}. Observethat eah buket (ql, ql+1) ontains exatly vl. The handling of the left and the right sideboundary are similar, thus, we restrit Algorithm 4.1 for simpliity to the left ase.

46Observe the naming v ≡ y.



4.6. Examples 179Algorithm 4.1. Assign ar numbers of urve to non-vertial asymptotesInput: Plane algebrai urve fOutput: Assignment whih ars number of f at u = −∞ orrespond to whih non-vertialasymptote of f .1. Choose a (rational) value ur to the left of any ritial x-oordinate of f (i. e., x-oordinates of f 's singularities, f 's x-extreme points or f 's vertial asymptotes areritial). The required ur is easy to ompute, as f 's analysis is aware of all of itsritial x-oordinates.2. Next, ompute
uleft := min{ur, min

l=0,...,k
min{µ | f(µ, ql) = 0}}by isolating the real roots of f(x, ql).3. Finally, isolate the real roots v′1, . . . , v

′
k of f(uleft, v), and determine with intervalre�nements the buket eah v′l falls into. This gives the desired assignment.An illustration of Algorithm 4.1 is given in Figure 4.24. Theorem 4.18 gives the or-retness of the algorithm. In our implementation, we do not use the algebrai number

uleft, but a rational value to its left. This hoie still ensures the orret assignment.Figure 4.24. Conneting ars with non-vertial asymptotes taken from [BK08℄
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uleft(b) Roots of the urve for a uleftthat is to the left of any bukethange. Information about non-vertial asymptotes an be reado� diretly.Theorem 4.18. Let the v′l of f(uleft, y) be in the buket of vj . Then, the l-th ar of f with
u→ −∞ onverges to (−∞, vj).Proof. Sine uleft < ur, v′l lies on the l-th ar of f that goes to u = −∞. Moreover, uleftis smaller than any root of f(x, qh), h = 0, . . . , k. It follows that f does not interset anyline x = qh on the left of uleft. Consequently, the l-th ar of f annot hange the buketanymore to the left of uleft. So, (−∞, vj) is the only possible end of the ar.



180 Two-Dimensional Arrangements on SurfaesAll other �planar� funtors only need small wrappings in order to work �on the y-lide�. For example, eah end of a urve is now �nite, or Interset_2 also has to reportintersetions on the boundary, whih again requires to detet whether two ars have thesame asymptote. The omputation of the vertial alignment of two urves right (left) ofan intersetion point must also be adapted if the intersetion lies on the boundary. Usu-ally, a proper all of Cylide_geo_traits_2's funtor Compare_y_near_boundary_2 gives theanswer, exept for the pole that requires to use the information whether the ars atuallyapproah the �bottom orner points� or �top orner points� of the parameter spae.The topologyAs for a quadri, the topology of a ylide requires speial attention. We already remarkedon the existene of two identi�ations in its parameter spae. Our ylidean topology-traitslass (Arr_dupin_ylide_topology_traits_2) is aware of these speialties with respet tothis surfae of genus one.The initial Del of an empty arrangement on a ylide onsists of a single boundedfae that has neither an inner nor an outer CCB. We are going to implement the forest-strategy for this traits lass. For eah identi�ation we maintain a sorted list of Del-verties, or more intuitively: One for eah ut irle. Their order is determined byCompare_x_on_boundary_2 and Compare_y_on_boundary_2 provided by our new ylideangeometri-traits lass. The funtors ompare the parametri values of points on the utirles, that is, aording to P̂O and P̂ T . The loalization of verties on the boundary(with the help of plae_boundary_vertex and loate_urve_end) is again feasible. It onlyrequires to perform a binary searh in the orret list. Either, a vertex is found and re-ported, or NULL is returned. If so, the found position is used for the subsequent updateoperation triggered by notify_on_boundary_vertex_reation. This way, the arrangementitself is responsible to onstrut verties, while the topology-traits lass keeps the ontrolfor Del-reords on the boundary. This proess forms an important part of the on-linerealization of the existing identi�ations. For the deletion of a vertex the proess is similar.Again, the loalization of a urve in the irular list of inident urves around a vertexis performed with the help of Arrangement_on_surfae_2-internal funtor Is_between_w_2that returns true if a urve is ounter-lokwisely in between two urves meeting at thesame point.An instane of Arr_dupin_ylide_topology_traits_2 also monitors whether the in-sertion or deletion of a urve implies a fae split or a hole reation. We already dis-ussed in �4.4.3 whih ases an our. We remember that we have to detet the �rstperimetri loop L1 and to selet whih urve of identi�ation is rossed by L1 an oddnumber of times. Upon this detetion of L1 by fae_split_after_edge_insertion, it re-turns std::pair< false, false >. The value-pair triggers the speial option (d) for thebasi insertion funtion, that is, the initial fae gets now bounded by two outer CCBs.Note that this exatly orresponds to what is expeted by the forest-strategy. After L1 islosed, the implementation of all further prediates with respet to faes and their CCBs(fae_split_after_edge_insertion, is_on_new_fae_boundary, boundaries_of_same_fae)are idential to the ylinder ase presented in �4.6.2. That is, we are left with an impliitsingle urve of identi�ation, whih we have to onentrate on when ounting rossings offurther direted loops. An illustration of the two �rst steps is given in Figure 4.25.



4.6. Examples 181
Figure 4.25. Closing loops on a ylide. We start in (a) with a single bounded fae
F0 that has two inner CCBs de�ned by E1,prev (or E′

1,prev) and E2,prev (or E′
2,prev).The views in parameter spae (right) are shemati.
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(b) Adding cv2 (and thus E2 and E′
2) splits the inner CCB de�ned by E2,previnto two outer CCBs (de�ned by E2 and E′

2). Now there are two perimetrifaes F0 and F1. Eah has two outer CCBs: F0's CCBs are de�ned by E1and E′
2, F1's CCBs are given by E2 and E′

1. The outer CCBs have di�erentdiretions and di�erent non-zero signs. There are no more inner CCBs.



182 Two-Dimensional Arrangements on SurfaesRemark. The remaining methods of Arr_dupin_ylide_topology_traits_2 are either sim-ple to implement or related to �titious edges, that, again, do not our for this topology.The ylidean topology-traits is also obliged to provide some nested types, namelythe visitor lasses required for arrangement onstrution, insertion, and overlay via thesweep line approah, a visitor lass for the inremental onstrution, and the default pointloation strategy. For most of them generi templates exists. As for quadris, eah mustonly be adapted with a surfae-spei� helper lasses: For example, the helper for theonstrution via sweep line is responsible to pre-proess events, namely to assign the orretverties to eah, whih �nally helps to onstrut and insert urves that emanate to theright of an event. In addition, it maintains a list of urves that only see the top boundaryabove them. The reloation of holes after splitting a fae relies on this information. Theremaining helpers and lasses are very similar to the quadrial ase; see �4.6.1.ResultsWith the presented traits lasses, we an suessfully, robustly, and e�iently onstrutarrangements on Dupin ylide using Cgal's Arrangement_on_surfae_2 lass-template.An example is given in Figure 4.26.

Figure 4.26. The shown arrangement on a ylide is indued by 5 algebrai surfaesof degree 3 interseting the referene surfae. It onsists of 240 verties, 314 edges,and 74 faes. It is visualized with xsurfae by Pavel Emeliyanenko.We also run experiments to hek that this approah does not lak e�ieny. All test areexeuted on an AMD Dual-Core Opteron(tm) 8218 multi-proessor Debian Eth platform,



4.6. Examples 183Instane #S #V #E #F t (onCylide) t (onPlane)ipl-1 10 119 190 71 0.14 0.14ipl-1 20 384 682 298 0.58 0.58ipl-1 50 1837 3363 1526 2.14 2.00ipl-2 10 358 575 217 1.07 1.25ipl-2 20 1211 2147 937 3.14 3.04ipl-3 10 542 847 305 4.84 4.62ipl-3-6points 10 680 1092 412 32.43 31.17ipl-3-2sing 10 694 1062 368 5.82 5.57ipl-4 10 785 1204 419 50.42 49.97ipl-4-6points 10 989 1529 540 461.74 450.54ipl-4-2sing 10 933 1471 538 53.01 52.78Table 4.4. Running times (in seonds) to onstrut arrangements on Z1 indued byalgebrai surfaesInstane #S #V #E #F t (onCylide) t (onPlane)ipl-1 10 169 280 111 0.53 0.46ipl-1 20 456 808 352 0.86 0.54ipl-1 50 3228 6084 2856 3.78 3.33ipl-2 10 450 710 260 1.22 1.21ipl-2 20 1323 2247 924 3.44 3.57ipl-3 10 474 682 208 5.24 5.36ipl-4 10 988 1406 418 50.93 52.43Table 4.5. Running times (in seonds) to onstrut arrangements on Z2 indued byalgebrai surfaeseah ore equipped with 1 MB internal ahe and loked at 1 GHz. The total memoryonsists of 32 GB. As ompiler we used g++ in version 4.1.2 with �ags -O2 -DNDEBUG. Tworesults were obtained for eah instane. First, we omputed the arrangement using theylidean topology (onCylide). Seond, we omputed the two-dimensional arrangementof the indued intersetion urves in uv-parameter spae, that is, with the topology of anunbounded plane (onPlane).Our implementation allows to transform a ylide in standard position and orientation,that is, to translate it by a vetor and to rotate it with respet to a rotational matrix withrational entries. In our tests, we used two di�erent referene ylides. First, the standardtorus Z1 with a = 2, b = 2, µ = 1, entered at the origin with no applied rotation. Seond,a non-torial ylide Z2 with a = 13, b = 12 and µ = 11, entered at (1, 1, 1) and a rotationde�ned by the matrix
1

3




2 −2 1
2 1 −2
1 2 2



Our �rst lass of test examples are surfaes of �xed degree whih interpolate randomlyhosen points on a three-dimensional grid, having no or some degeneraies with respetto Z1: the surfaes in �6points� instanes share at least 6 ommon points on Z1, one of



184 Two-Dimensional Arrangements on SurfaesInstanes #S #V,#E,#F tquadris 10 428,646,219 1.59degree-3 5 240,314,74 1.56Overlay - 942,1508,566 1.91degree-3 10 794,1218,424 6.25degree-4 10 325,418,93 13.36Overlay - 1623,2644,1021 13.83degree-4 10 816,1188,372 50.86degree-4 5 325,418,93 13.52Overlay - 1581,2488,907 47.30Table 4.6. Running times (in seonds) to onstrut arrangements indued by algebraisurfaes of di�erent degree on Z2, and to overlay them afterwardsthem is the pole of Z1. The surfaes in the �2sing� instanes indue (at least) two singularintersetions on Z1.Our obtained running times are listed in Tables 4.4 and 4.5. For suh random examples,our algorithm shows a good general behavior, even for higher degree surfaes. Degeneraieswith respet to the referene surfae result in higher running times as the instane �6points�shows. But this e�et already appears in parameter spae; we remark on the similarrunning times in the onPlane-olumn. In general, it is observable and remarkable that inall tested instanes, the spent time on the ylides is (almost) idential to the omputationof the urves in their parameter spae. This allows to onlude two results:1. The performane of our implementation is not harmed by the ylidean topology-traits lass, that is, the ylidean model is as e�ient as the topology-traits lass forthe unbounded plane.2. The additionally required omputation of horizontal asymptotes seems (as expeted)to be a heap task. Most time is spent for geometri operations on algebrai urves.Thus, we infer that the hosen approah strongly hinges on the e�ieny of the underlyingimplementation for arrangements of algebrai plane urves, in partiular the (bivariate)algebrai kernel, and onlude the parametri ansatz to be suessful in its idea.The ylidean topology-traits also provides the visitor lasses for various sweep lineonstrution, in partiular the model that enables the Arrangement_on_surfae_2's overlaymehanism. That is, we are able to overlay two arrangements on the same ylide byusing the apabilities of generi programming. Therefore, we also generated instanes ofrandom surfaes with degree up to 4 interseting Z2, piked two of them, omputed theirarrangement and �nally overlaid them. A seletion of suh ombinations along with thesizes of the resulting arrangements and running times is presented in Table 4.6. We remark,that due to persistent ahing, the times for the overlay are usually less than the sum ofthe times required to reate the two originating arrangements. The reason is simply thatduring the overlay only some additional pairs of algebrai urves have to be newly reated.We should also mention that the loalization of a point (given by its parametri oor-dinates) in an arrangement on the ylide is supported by the Arrangement_on_surfae_2pakage. We obtain the ell of the arrangement that ontains the point. Again, thedependeny on the planar bakup is expeted to be the bottlenek.
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Figure 4.27. Overlay of two arrangements: The red is indued by �ve surfaes ofdegree 3 that indued degeneraies on the torus. The blue is indued by �ve othersurfaes of degree 2. Overlay intersetions are shown in green.4.7. Conlusion and outlookAhievements We have seen how to onstrut and maintain two-dimensional arrange-ments on parametri surfaes. We pay speial attention to ode reuse. In partiular, werevised the abstration of main arrangement-related algorithms and data strutures frombasi geometri operations and extrated new abstrations with respet to surfae-spei�topologial operations. This �parameterization� simpli�es the development of traits lassesfor handling new families of urves and new surfae topologies in a straightforward manner.Suh extensions bene�t from a highly e�ient (and well-tested) ode base for the mainarrangement-related lasses.Beyond a rough overview of existing traits lasses, we disussed two onrete exam-ples of surfae families in their details, namely ellipti quadris and ring Dupin ylides.For both we provide valid models of the new ArrTopologyTraits_2 onept. Their im-plementations are family-spei�, however they also share basi ideas. We also providegeometri-traits lasses that allow to ompute arrangements on suh referene surfaes,indued by their intersetions with other quadris or even algebrai surfaes. Both lassesleverly, but di�erently, modify a model that originally suites for planar algebrai urvesonly. The enhanement �lifts� the planar urves on the referene surfae itself. In bothases, the applied hanges do not signi�antly harm the e�ieny of the approah, thatis, the performane of the traits lasses for arrangements on quadris and ring Dupin y-lides is mainly determined by the e�ieny of the underlying algebrai kernel that alreadysupports the analyses of planar urves.



186 Two-Dimensional Arrangements on SurfaesThe hosen strategy also shows the power of generi programming. Developing, surfae-spei� traits-lasses is a omparably small task ompared to an implementation fromsrath, not using the Cgal's Arrangement_on_surfae_2 framework and its algebrai ker-nels. This results in faster development time and less ode to debug. In addition we bene-�t from advaned programming tehniques applied to Cgal's Arrangement_on_surfae_2pakage [WFZH07b℄. In partiular, there is immediate support for observers that notifyon strutural hanges of the arrangement, or the possibility to extend the Del with data.Future work Beyond what we have presented on the geometri-traits lasses, there isroom for further improvements. For example, it would be nie to allow algebrai surfaesof arbitrary degree interseting an ellipti quadri. It is the lifting onto the lower or upperpart that must be adapted. In fat, we present in Chapter 5 (in partiular in �5.5.3)the required tools, to ompute suh spae urves. For the ase of the ylide, we alsobelieve that the performane ould be further improved: We analyze the planar urvesused to represent intersetion of the ylide with algebrai surfaes without any bene�ialknowledge indued by the used parameterization. In partiular, it is possible to simplifythe one resultant whose roots de�ne a urve's ritial x-oordinates by a non-trivial fator.That is, the real-root isolation an atually deal with a muh simpler polynomial. Inaddition, suh planar urves often ontain numerous vertially asymptoti ars; see, forexample, Figure 4.23. However, we use the strategy desribed in [EKW07℄, that is, toshear and to shear-bak suh non-regular urves. This step is expensive, in partiular,if applied to a large fration of the urves. A desirable goal is to develop a omparablye�ient alternative approah that avoids to shear urves of this sub-lass.It would also be nie to onsider more families of surfaes, in partiular, if they providea rational parameterization, as ring Dupin ylides do. In priniple, we an derive a similarversion of a geometri-traits lass that expliitly elaborates the parameterization of suhsurfaes. Of ourse a suitable model for the ArrTopologyTraits_2 onept is also expeted.However, in pratie, the degrees of the algebrai urves in the parameter spae onstitutesour urrent limit of pratial usability of the parametri approah.Conerning the framework itself, we already proposed in theory how to deal with iso-lated points and urves fully embedded in the boundary of the parameter spae. However,the ode has not yet been adapted with respet to these ideas. This step is planned forthe near future.With introduing the ArrTopologyTraits_2 onept, we suessfully abstrated topologi-al operations required to maintain a surfae-spei�Del from more generi arrangement-lasses. However, the topology-traits lasses for ellipti quadris and ring Dupin ylides(and even for the omitted one of the sphere) show some visible similarities. For example,all maintain a sorted sequene of points on an identi�ation, and the deision with respetto fae splits and their CCBs rely on similar information. As future diretion, it should beanalyzed, in how far a uni�ed model an be established. Suh a model an be on�guredwith respet to various topologies, by onstruting it, for example, by just naming whathappens on the boundaries of the parameter spae.In this work, we also restrited ourselves to the single domain ase, that is Φ = U ×V .Another future goal is to extend the framework to handle general orientable surfaes, whihan be onveniently represented by a olletion of domains, eah of whih supported bya retangular parameter spae. It is known whih polygonal maps give rise to orientable



4.7. Conlusion and outlook 187surfaes and eah orientable surfae has a normal form, whih already inludes surfaesof higher genus. In addition, one might to onsider surfaes with singularities (e. g., adouble one), whih requires to deompose them suh that singularities only appear onthe boundary of parameter spaes. We give suh a deomposition for algebrai surfaes inChapter 5. Conerning the framework, the di�erent individually obtained parameter spaesare glued together aording to the topology of the surfae and therefore will naturally bedesribed in, and handled by, an extension of the ArrTopologyTraits_2 onept. However,arrangements on surfaes with singularities annot be represented with a usual Del. Thereason is that a vertex an be inident to two faes at the same time. An example is theapex of a double-one.Arrangements on surfaes an also be a tool in other utilizations. For example, itan serve as basi support to ompute the adjaeny graph that is indued by a set ofsurfaes. This objetive requires to identify equal verties and edges on di�erent surfaes.How to do this for quadris has been shown in [Hem08℄. The hosen approah uses adiret parameterization of the quadris. However, the important subtask, namely theidenti�ation of verties and edges an be formulated almost abstratly. Then, it shouldbe possible to easily ombine it with the Arrangement_on_surfae_2 pakage in order toompute adjaeny graphs for all surfaes on whih we an ompute arrangements. It mightbe required to add another geometri primitive that robustly determines the equality of twoverties (and edges?) in the parameter spaes of two di�erent surfaes. The onstrutionof a fully-�edged three-dimensional arrangement of surfaes is the ultimate objetive.Although it is beyond the sope of this thesis, we onlude that the (in ombinationwith the adjaeny-graph to ompute) our ontributions onstitute major building blokstowards this goal.
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5E�ient Strati�ationof Algebrai Surfaeswith Planar ArrangementsIn this hapter, we inrease the dimension by one and turn towards the topologial andgeometrial analysis of algebrai surfaes ombining three main tools: Planar arrangementsindued by algebrai urves, the bitstream Desartes method, and interval arithmeti.Our onern is beyond the theoretial design of a new algorithm, but aiming for a leverombination of existing tools to provide a robust and e�ient implementation for the �nalproblem:Given a �nite set S = {S1, . . . , Sn} of square-free primitive, and oprime algebraisurfaes in R3, de�ned by polynomials fi ∈ Q[x, y, z], i ≤ 1 ≤ n, with Di = degtotal(fi)and D := maxi(Di). We are interested in the geometri and topologial information todesribe S. So, we aim for a ell deomposition of the surfaes with respet to S intoells of dimension 0, 1, and 2. The ells should form smooth subvarieties of some Si. Weare also interested in how the ells are onneted. In addition, the ells should share theboundary property, that is, the boundary of a single ell is formed by a union of other ellsin the deomposition. Suh a deomposition is also known as strati�ation, while a singleell is alled stratum; see [BPR06, �5.5℄ and ompare also with the CW omplex that wepresent in �2.1.7. The obtained deomposition is similar to a lustered ylindrial algebraideomposition of R3. Of ourse, we also allow that n = 1, whih atually onstitutes aspeial ase.The approah onsists of three steps:1. First, we projet the z-ritial points of S to ompute an unbounded planar arrange-ment AS with a �nite number of relatively open ells. Eah ell shares some invariantproperties for all of its points. In partiular, they share the same z-pattern.2. A z-pattern at some point p enodes the sequene of intersetions of Si ∈ S with thevertial line ℓp at p and is omputed for eah ell during the lifting . It su�es toompute a z-pattern only for a sample point of eah ell of AS. The lifting of the



190 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementssample points leads to our ell deomposition ΩS.3. As �nal step, we obtain the adjaeny relation between the ells of ΩS.The approah is similar to Collins' ylindrial algebrai deomposition (ad); see �2.1.6. Ineah of these steps, we exploit methods that try to replae ostly symboli omputations byombinatorial dedutions and erti�ed approximative solutions. We exemplary mention thebitstream Desartes method with its m-k-extension for the non-square-free ase; see �2.1.2.In any ase, we guarantee to re�et the mathematial orret strati�ation, as expetedby the exat geometri omputation paradigm (EGC); see �2.2.2. This is done by eitherertifying that the approximative �lters ompute the desired result, or eventually swithingto an exat method. Our deomposition onsists of O(n5D5) many ells. It is possibleto re�ne the deomposition into simply onneted ells without ompromising the �nalomplexity.We remark that our approah is free of assumptions on the input surfae. Algorith-mially, we never hange the spatial oordinate system in order to prevent degeneraies.The (geometri) output is with respet to the original oordinate system. While this hasadvantages, for example to enable arbitrary dense sampling of the deomposition, it alsomeans that degenerate situations must be handled, in partiular vertial lines ontainedin a surfae. To satisfy the boundary property of the ells in the deomposition, suh linesmust be deomposed further.Our implementation is robust and e�ient. To our knowledge it is the �rst EGC-software for the topologial analysis of algebrai surfaes, inluding singular ones. Asbasi tool, we rely on arrangements of planar algebrai urves; see �2.3.3, �2.4.3, and �2.4.4.The ode follows the generi programming paradigm, whih allows to takle the problemin two related parts: One onstitutes a framework that extends a planar (unbounded)arrangements in order to support the lifting into the third dimension. The frameworkde�nes the new SurfaeTraits_3 onept, that is, it expets from surfaes some types andoperations. The onept breaks down the rather omplex hallenge into a small set ofsimple tasks demanded on surfaes, like to ompute approximations of Si ∩ ℓp for some p.It is the aountability of the framework to ombine the output of these operations toobtain the desired output.We provide two models ful�lling the SurfaeTraits_3 onept that form the seond partof the implementation: One model for quadris and one model for algebrai surfaes ofany degree. The �rst bene�ts from the low degree of quadris, while the seond requires amore sophistiated handling to e�iently takle the non-restrited input.This way, the implementation deouples geometri operations and ombinatorial in-formation. The ombinatorial output allows to onsider various utilizations by other ge-ometri algorithms, espeially if restriting to suh that only involve a small number ofsurfaes at a time.47 The reason is that the omplexity of ΩS is O(n5D5). We give abasi set of well-known examples: The framework supports the analysis and meshing ofa single surfae, the analysis and onstrution of a spae urve de�ned by two surfaes,or the omputation of the lower envelope of surfaes. It an also serve in the future as akey ingredient in a three-dimensional arrangement. Some of these appliations are evenalready available as software.We present experiments that show good performane. However, it must be remarkedthat the projetion step of our approah de�nes a bound on the pratial appliability47Either the task is de�ned suh, or eah substep of the foussed algorithm involves only some surfaes.



191for high-degree surfaes. The reason is that we have to onsider algebrai urves of de-gree O(D2), where D is the largest degree that ours. Compared to that e�ort, the liftingonly requires a fration of the total running time.The outline of the hapter is as follows: We next present related work. In �5.1 weintrodue the problem theoretially and derive some onditions that surfaes are requiredto ful�ll and identify simple tasks. How to realize them with algebrai surfaes is explainedin �5.2. Then, �5.3 disusses the generi part of the implementation � the framework. Wealso introdue the SurfaeTraits_3 onept. We ontinue in �5.4 with the details on ourmodels. Both rely on the same projetion, but di�er in the lifting and adjaeny tasks.Details on the individual handling of a vertial line possibly ontained in an algebraisurfae is postponed to this part of the hapter. A set of possible algorithms utilizingthe framework is surveyed in �5.5. We onlude with experimental results in �5.6 and asummary in �5.7 that also shows further diretions.Main parts of this hapter are based on results obtained in ollaboration with MihaelKerber and Mihael Sagralo� from the Max-Plank-Institut für Informatik, Saarbrüken,Germany. They previously appeared in [BS08℄ and [BKS08℄.Related work Our strategy for algebrai surfaes in general follows elimination the-ory [BPR06℄ and main ideas of the powerful ylindrial algebrai deomposition (ad);see our introdution in �2.1.6 that presents the basi algorithm and also a series of im-provements that redue the number of onsidered polynomials. A olletion of artilesemblazing di�erent aspets of ad is given in [CJ98℄. Some ideas of our algorithm alreadyappeared in those artiles; for other problems, we propose novel alternatives. We dis-uss the similarities and di�erenes with the appropriate referenes when we disuss thealgorithm in detail.Many algorithms in omputational geometry an be expressed in terms of a ad-instane. A famous example is the Piano Mover's problem that is extensively disussedin [SSH87℄. Unfortunately, many implementations, if any, avoid this tehnique. We believefor two reasons. The �rst is the quite high omplexity of ad. The other is the algebrai fo-us, that usually requires good knowledge of the topi. Thus, with our framework we wantto lose the gap, between ad-tehniques and implementations of algorithms in omputa-tional geometry. Our goal is to provide an easy-to-use framework, with full power on theanalysis of surfaes, while always fousing towards appliations in omputational geometry.As we deouple ombinatoris from prediates, it depends on the model used, whether theinstantiated framework follows the exat omputation paradigm [Yap04℄. Note that mostgeneri implementations of geometri algorithms show an undetermined behavior or failto stop if instantiated with �oating-point arithmeti. Thus, we strongly enourage to usethe framework with models relying on exat number types and to apply onsistent anderti�ed �lters for speed-ups. Our models do so.If restriting to the three-dimensional ase, we already mentioned earlier Cgal's Nef_3pakage that provides a robust and e�ient implementation of three-dimensional Nef-polyhedra; see [HKM07℄ and [HK07b℄. Its extension for quadris is urrently under devel-opment [HL08℄ relying on the parameterization of the the quadris' intersetions [DHPS07℄.However, up to now, no omplete implementation for arrangements of algebrai surfaesis available (even not for low degrees). [MTT05℄ presented a method to ompute arrange-ments of quadris using a spae-sweep. An implementation is missing. For two quadris,



192 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsa speialized projetion approah is available as software [BHK+05℄. In ontrast to thatwork, the proposed framework an deal with more than two quadris, allows more surfaes,and does not pose any generi position assumptions. Thus, it an be interpreted as a keystep towards arrangements of surfaes.Even if we restrit to one or two surfaes, our work onstitutes an important step.Prinipally, there are two approahes for the topology omputation of an algebrai surfae:One onsiders level-urves of the surfae for ertain ritial values and to onnet theomponents of these levels in order to obtain a topologial desription of the surfae;for example, Mourrain and Téourt [MT05℄ (see also [BCSM+℄), Fortuna et al. [FGL04℄,[FGPT03℄ (for non-singular urves), and Alázar et al. [ASS07℄ (with missing onnetion)follow this idea. The other approah relies on a projetion of the ritial points of thesurfae to the plane. The topology is then dedued by lifting the features indued by thisprojetion. Note that our work falls into this ategory; see also Cheng et al. [CGL05℄ andthe mentioned relations to ad.It should be remarked that all algorithms that ompute a surfae's topology are similar,that is, they require to analyze urves and have to detet ritial points of the surfae.This typially involves resultant-alulus or Groebner bases. To simplify, most algorithmsapply a linear (topology-preserving) shear; for example, [MT05℄, [FGL04℄, [FGPT03℄, and[CGL05℄ (for vertial lines). We abstain from this strategy, as we also want to preservegeometri properties of the input. In addition, it seems not easy to derive a bak-shearalgorithm, as it is established in the planar ase; see [BKS08℄ and [EK08a℄.Unfortunately, pratial performanes are not stated for any of these artiles [MT05℄,[FGL04℄, [FGPT03℄, [ASS07℄, [CGL05℄, if they provide an implementation at all. Pratialresults are inluded only for speial sub-lasses, suh as quadris [BHK+05℄ and non-singular surfaes [PV07℄. All other arry out symboli omputations, or abstain fromreporting on implementations of ertain substeps.Reently, results on spae urves that are de�ned by the intersetion of two surfaeshave been published [Kah08℄, [AS05℄, [GLMT05℄, and [DMR08℄. The speial ase of torithat are interseted by natural quadris has been analyzed by Reithmann [Rei08℄.In ontrast to all the previous work, our results pro�t from erti�ed approximativemethods that aelerate the algorithm signi�antly. We take this as the main reason ofthe overall good pratial performane of our algorithm.5.1. ProblemLet S = {S1, . . . , Sn} be a set of surfaes, that is, two-dimensional manifolds in three-dimensional Eulidean spae. We next introdue our objetive formally, whih allows tosplit the problem into a set of subtasks. For p = (px, py) ∈ R2, we denote with ℓp =
{(px, py, z) ∈ R3} ⊂ R3 the vertial line through p. We denote Vi := {p ∈ R2 | ℓp ⊂ Si}the set of all points p ∈ R2 where Si ontains the vertial line ℓp. Let V =

⋃
1,...,n Vi.We takle the following abstrat problems, that is, we onsider a surfae as set ofpoints.Problem 5.1 (Intersetions with vertial line). Given a set of surfaes S, ompute for anarbitrary point p ∈ R2 the ordered sequene of intersetions of all Si ∈ S with ℓp (or that

ℓp ∩ Si = p×R).



5.1. Problem 193In order to enode the sequene of intersetions of Si ∈ S, i = 1, . . . , n, with ℓp we usean ordered sequene of subsets:De�nition 5.2 (z-pattern). We all the sequene Wp,S = wp,1, . . . , wp,k of subsets of
{1, . . . , n} a z-pattern with respet to p and S. The pattern also omprises a subset
w

|
p := {i ∈ {1, . . . , n} | p ∈ Vi}. All subsets an be empty.Intuitively, Wp,S desribes how the surfaes behave along ℓp. Some of them are vertialat p, the remaining ones have �nite intersetions with ℓp. Eah wp,l orresponds to a z-oordinate zl where at least one suh surfae intersets ℓp, that is, wp,l := {i ∈ {1, . . . , n} |

(p, zl) ∈ Si}.Example 5.3. Consider S = {S1, S2} onsisting of two unit spheres: S1 entered at the originand S2 entered at (0, 0,−2). That is, the south pole of S1 intersets with the north poleof S2. This is the only intersetion of the spheres. Let p1 = (0, 0), p2 = (1
2 , 0), p3 = (1, 0),and p4 = (2, 0).Then, ∀h = 1 . . . 4 we have w

|
ph

= ∅. The other sequenes are: Wp1,S = {2}, {1, 2}, {1}.
Wp2,S = {2}, {2}, {1}, {1}, Wp3,S = {2}, {1}, while Wp4,S is an empty sequene.If we �x p, Problem 5.1 an be split into two, the onseutive Problems 5.4 and 5.22.Problem 5.4 (Compute z-pattern). Given a surfae Si and a point p ∈ R2 ompute Wp,{Si}.We require the following ondition.Condition 5.5 (Finite number of vertial lines). For a given surfae Si it holds |Vi| is�nite. This implies that V also has �nite size.We introdue the following ontainer.De�nition 5.6 (z-�ber). Let Si ∈ S, p = (px, py) ∈ R2. A �nite subset Zp,i ⊂ {z ∈ R |
(px, py, z) ∈ Si} ∪ {±∞} is alled z-�ber of Si at p. We sort its mp,i + 2 elements in thefollowing way:

−∞ = zp,i,−1 < zp,i,0 < . . . < zp,i,mp,i−1 < zp,i,mp,i
= +∞Whereas the ontainer is intended to enode the intersetions of a surfae Si with ℓp for

p /∈ Vi, its purpose for p ∈ Vi is to store interesting z-oordinates of Si. Its atual ontentwith respet to p ∈ Vi is spei�ed in De�nition 5.10 and �xed by the Conditions 5.7 and 5.9that de�ne how surfaes are allowed to be onneted.We onentrate on the fat, that mp,i denotes its number of �nite elements. In general,we annot ompute Zp,i for all p ∈ R2. Thus, we aim for a subdivision of the planeinto �nitely many (relatively) open and onneted ells of dimension 0, 1, and 2 with theproperty that all points of a ell arry the same m-value. Suh a �nite subdivision an berepresented as a planar arrangement; see �2.4. More detailed, we aim for surfaes to ful�llthe following ondition.Condition 5.7 (Finite surfae arrangement). Given a surfae Si ∈ S. An arrangement
A{Si} with the following properties exists:



194 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangements
• A{Si} onsists of a �nite number of ells and is indued by a �nite number of on-tinuous urves and a �nite number of isolated points.
• A{Si} ontains every point in Vi as vertex.
• Eah ell Γ of A{Si} is invariant with respet to m, that is, ∀p1, p2 ∈ Γ : mp1,i =

mp2,i =: mΓ,i.Suh an arrangement is alled mi-invariant.As a onsequene, it su�es to only onsider a sample point pΓ of a ell Γ, if one issimply interested in mp,i for any point p ∈ Γ. This piee of information is valid for thewhole ell. On the other hand, geometry is loal to the point: In general, the entries of
Zp1,i di�er from Zp2,i if p1 6= p2, even if p1, p2 ∈ Γ. Anyhow, we denote, for onveniene,the z-�ber of Γ's sample point pΓ with ZΓ,i. It is possible to lift Γ:De�nition 5.8 (Lift). Let Si be a surfae, and Γ be an mi-invariant set. For eah l =
0, . . . ,mΓ,i, the l-th lift of Si over Γ is given by

Γ(l,i) := {(px, py, zp,i,l) ∈ Γ× R | zp,i,l ∈ Zp,i}Lifts allow to deompose Si into open ells, whih requires Condition 5.9. Below, weintrodution deompositions formally.It is missing, how the entries of ZΓ1,i and ZΓ2,i, for Γ1,Γ2 being ells of A{Si}, arerelated, and, thus, enodes the adjaenies of lifts. Let us introdue a ondition that helpsto preisely de�ne this relation.Condition 5.9 (Continuation). Let Si ∈ S, A{Si} an mi-invariant arrangement, and Γ1,Γ2being two ells of it with dim(Γ1) > 0. Then, Si is ontinuous in the following sense:1. Let pt ∈ Γ1 be a sequene of points with a unique limit in Γ2, that is, limt→∞ pt = p ∈
Γ2. Let Zpt,i =

{
zpt,−1, . . . , zpt,i,mΓ1,i

}. Then, for any l ∈ {0, . . . ,mΓ1,i − 1} we have
{limt→∞ zpt,i,l | pt ∈ Γ1 with pt → p} = [zp,i,v−

l
, zp,i,v+

l
] =: Ip,i,l with zp,i,v±

l
∈ Zp,iand limt→∞ zpt,i,l1 ≤ limt→∞ zpt,i,l2 for −1 ≤ l1 < l2 ≤ mΓ1,i.2. For p 6∈ Vi eah interval [zp,i,v−l

, zp,i,v+
l
] onsists of exatly one point, that is, zp,i,v−l

=
zp,i,v+

l
.Note that the number of intervals [zp,i,v−

l
, zp,i,v+

l
] must be �nite, as mΓ1,i is �nite.This neighborhood-relation su�es to enode the onnetivity of all lifted ells. Weremark that from the above onditions it follows that eah ell Γ ∈ A{Si} \ Vi is theprojetion of mΓ,i onneted, disjoint ells of Si respetively. Note the similar notation ofdelineation in �2.1.3. For p ∈ Vi the intervals [zp,i,v−

l
, zp,i,v+

l
] play an important role whendeomposing ℓp in De�nition 5.28.Whereas the z-�ber at a point p /∈ Vi is determined preisely, its ontent at points

p ∈ Vi is only impliitly given by the hosen arrangement and Condition 5.9:De�nition 5.10 (Content of z-�ber). For a surfae Si ∈ S with mi-invariant arrange-ment A{Si} the entries of the z-�ber Zp,i are de�ned as follows:
• Zp,i := {z ∈ R | (px, py, z) ∈ Si} ∪ {±∞} for p 6∈ Vi

• Zp,i := {z ∈ R | ∃Γ ∈ A{Si}, l ∈ {−1, . . . ,mΓ,i} suh that z is an endpoint of some
IΓ,i,l} for p ∈ Vi



5.1. Problem 195Problem 5.11 (Compute z-�ber). For given surfae Si ∈ S and given point p ∈ R2,ompute Zp,i, even if p ∈ Vi. For an illustration see Figure 5.1.

p

ℓp

Figure 5.1. Computing the z-�ber for a surfae at given point: We aim to represent�nite entries as re�neable intervals.It remains to ompute the onnetions between lifted ells whih is enoded in termsof onnetions between lifted sample points.Problem 5.12 (Adjaeny). Given A{Si} for a surfae Si ∈ S. Let Γ1,Γ2 denote inidentells of A{Si} and p1, p2 their respetive planar sample points. Then, we are interestedin how an entry of Z1 := ZΓ1,i is onneted with the intervals de�ned by the entries of
Z2 := ZΓ2,i. We are asking for a list L of pairs (a, b) ∈ A× B, with A := {−1, . . . ,mΓ1,i}and B := {−1, . . . ,mΓ2,i}. We distinguish 5 ases for a �xed a0 ∈ {0, . . . ,mΓ1,i − 1}:
{b | (a0, b) ∈ L} = ∅: Indiates, that there exists no ontinuous path on Si whose losureonnets (p1, zp1,i,a0) with some (p2, zp2,i,b), b ∈ B.
{b | (a0, b) ∈ L} = {b0} ∧ b0 6∈ {−1,mΓ2,i}: The pair (a0, b0) then denotes the existene ofa ontinuous path on Si, lying over Γ1, whose losure onnets (p1, zp1,i,a0) with

(p2, zp2,i,b0).
{b | (a0, b) ∈ L} = {b0} ∧ b0 = −1 (or b0 = mΓ2,i): The pair (a0, b0) denotes the existeneof a ontinuous path, lying over Γ1, whose losure onnets (p1, zp1,i,a0) with thein�nite �point� (p2,−∞) (or (p2,+∞)), that is, Si has a vertial asymptote withrespet to z at p2.
|{(a0, b) ∈ L}| = 2: Let (a0, b0) and (a0, b1) be these pairs. They denote the existene ofan in�nite number of ontinuous paths on Si, lying over Γ1, suh that exatly allpoints (p2, z), z ∈ [zp2,i,b0, zp2,i,b1 ] are onneted with (p1, zp1,i,a0) by onsidering thelosure of a path. In ase that b0 = −1 or b1 = mΓ2,i, the interval is meant to beopen at that end.For an illustration we refer to Figure 5.2. The ase distintion is analogue for �xed
b0 ∈ {0, . . . ,mΓ2,i − 1}. Note that we only ompute adjaenies between zero-, one-, andtow-dimensional ells. The adjaenies to three-dimensional open ells are given impliitlyby them and the projetion tehnique.
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Figure 5.2. Compute adjaeny relation of inident z-�bersWe next turn to onsider more than one surfae and we already state the �rst onditionthat haraterizes the surfaes' intersetions. In what follows, let always Si, Sj ∈ S with
i 6= j.Condition 5.13 (One-dimensional intersetion). dim(Si ∩ Sj) ≤ 1.Similar to the single-surfae ase, we introdue an abstrat ontainer:De�nition 5.14 (Multi-surfae z-�ber). Let S = {S1, . . . , Sn} be a set of surfaes and
p = (px, py) ∈ R2. A �nite subset Zp,S ⊂ {z ∈ R | ∃i ∈ {1, . . . , n} : (px, py, z) ∈ Si}∪{±∞}is alled multi-surfae z-�ber of S at p. We sort the entries of Zp,S:

−∞ = zp,S,−1 < zp,S,0 < . . . < zp,S,mS−1 < zp,S,mS
= +∞Its purpose is to store the intersetions of S with ℓp if p 6∈ V. In ase that p ∈ V, wewant to store interesting z-oordinates that deompose ℓp into a �nite number of openintervals. The value mp,S denotes the number of �nite entries of a multi-surfae z-�ber.In De�nition 5.26 we also introdue multi-surfae lifts, whih pose a entral tool for ourintended ell deomposition. But before, we remark that suh a �ber an be related tosingle-surfae z-�bers, in partiular for two given surfaes:De�nition 5.15 (mp,i,j). Let Si, Sj ∈ S, i 6= j and let p ∈ R2 \ (Vi ∪ Vj). Then mp,i,j :=

|{z ∈ Zp,S | z ∈ Zp,i ∧ z ∈ Zp,j}|. A onneted set of points Γ is alled mi,j-invariant if
mp1,i,j = mp2,i,j for p1, p2 ∈ Γ with p1 6= p2. We de�ne mΓ,i,j := mp,i,j for some p ∈ Γ.Again, we annot ompute multi-surfae z-�bers for an in�nite number of points. Thisfat founds another ondition on two surfaes (and thus on any number of surfaes). Similarto the single-surfae ase, we want to group points into sets:Condition 5.16 (Finite two-surfae arrangement). Given surfaes Si, Sj ∈ S, i 6= j. Anarrangement A{Si,Sj} exists, with:
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• A{Si,Sj} onsists of a �nite number of ells and is indued by a �nite number ofontinuous urves and a �nite number of isolated points.
• A{Si,Sj} ontains every point of Vi ∪ Vj as a vertex.
• For eah ell Γ of A{Si,Sj}\Vi∪Vj, the following equations hold: ∀p1, p2 ∈ Γ : mp1,i =

mp2,i,mp1,j = mp2,j,mp1,i,j = mp2,i,j.Suh an arrangement is alled mi,j-invariant.Remark. Observe that A{Si,Sj} is an mi- and mj-invariant arrangement.Again, it su�es to hoose a sample point pΓ, in ase, one is only interested in the ell-related information mΓ,i,j. In addition, it holds that ∀p1, p2 ∈ Γ : W{Si,Sj},p1
= W{Si,Sj},p2

.Note that geometri information an be dedued from the individual �bers Zp,i and Zp,j,for any p ∈ Γ, but typially we use p = pΓ.Condition 5.17 (Continuation for two surfaes). Let S = {Si, Sj}, A{Si,Sj} an mi,j-invariant arrangement and Γ1,Γ2 being two ells of it with dim(Γ1) > 0.1. Let pt ∈ Γ1 be a sequene of points with limt→∞ pt = p ∈ Γ2, and Zpt,S ={
zpt,−1, . . . , zpt,S,mΓ1,S

}. For any l ∈
{
0, . . . ,mΓ1,S − 1

} we have {limt→∞ zpt,S,l |
pt ∈ Γ1 with pt → p} = [zp,S,v−

l
, zp,S,v+

l
] =: Ip,S,l with zp,S,v±

l
∈ Zp,S. In addition,

limt→∞ zpt,S,l1 ≤ limt→∞ zpt,S,l2 for −1 ≤ l1 < l2 ≤ mΓ1,S.2. For p 6∈ Vi ∪ Vj eah interval [zp,S,v−l
, zp,S,v+

l
] onsists of exatly one point, that is,

zp,S,v−l
= zp,S,v+

l
.Note again that the number of intervals [zp,S,v−l

, zp,S,v+
l
] must be �nite, as mΓ1,S is�nite.It is no surprise that we next want to de�ne the atual ontent of a multi-surfae z-�ber, followed by some remarks on the adjaeny omputation. We an assume that Sonsists of two surfaes Si and Sj. The extension to any number is straightforward.An impliation of Condition 5.13 and Condition 5.17 is that eah non-vertial part

Si ∩ Sj is expeted to have a unique end-point (p, pz), even if p ∈ Vi ∪ Vj . In addition,we have: If p 6∈ Vi then pz = zp,i,l′i
for some l′i and if p 6∈ Vj then pz = zp,j,l′j

for some l′j .Following, (Zp,i ∪ Zp,j) \ {±∞} omprises all z-oordinates of Si ∩ Sj ∩ ℓp for p 6∈ Vi ∪ Vj .Thus, for suh p we an de�ne Zp,{Si,Sj} := Zp,i ∪ Zp,j, whih onstitutes the easy aseof De�nition 5.20. In ontrast, if p ∈ Vi ∪ Vj , there is no suh diret solution. We de�neanother set, whih also implies a problem to solve:De�nition 5.18 (Z |
p,i,j). Consider the setting as in Condition 5.17, that is, S = {Si, Sj}.Let p ∈ Vi ∪ Vj . Then Z

|
p,i,j := {z ∈ R | ∃Γ ∈ AS, l ∈ {−1, . . . ,mΓ,S} suh that z is anendpoint of some IΓ,S,l}.Remark. Atually, it is valid to also de�ne Z

|
p,i,j for any p ∈ R2. But nothing is won bydoing so, as, by Condition 5.9, we have Z

|
p,i,j ⊂ Zp,i ∪ Zp,j.Problem 5.19 (Compute Z

|
p,i,j). For given Si, Sj with i 6= j, and p ∈ Vi∪Vj, ompute Z

|
p,i,j.



198 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsDe�nition 5.20 (Content of multi-surfae z-�ber). Let S = {S1, . . . , Sn} be a set ofsurfaes and p ∈ R2. Then
Zp,S =




⋃

i={1,...,n}

Zp,i



 ∪




⋃

p∈Vi∪Vj ,i6=j

Z
|
p,i,j



is alled the multi-surfae z-�ber of S at p.Problem 5.21 (Compute Zp,S). For given S and p ∈ R2, ompute Zp,S.Observe that the z-pattern for p ∈ R2 \ V an be de�ned in terms of Zp,S. We have
∀0 ≤ l ≤ mS − 1 :

wp,l := {i ∈ {1, . . . , n} | zp,S,l ∈ Zp,S : zp,S,l ∈ Zp,i} (5.1)The z-pattern for p ∈ V requires to also onsider Z
|
p,i,j. To atually ompute Zp,S inboth ases, for example, with a multi-way merge algorithm, we must be able to deide thefollowing problem:Problem 5.22 (Compare entries of z-�bers). Let Si, Sj ∈ S, i 6= j. Given a point p and

zp,i,li ∈ Zp,i and zp,j,lj ∈ Zp,j deide whether zp,i,li < zp,j,lj , zp,i,li = zp,j,lj , or zp,i,li > zp,j,lj .A similar omparison is required for zp,i,li ∈ Zp,i and z
|
p,i′,j′,li′,j′

∈ Z
|
p,i′,j′, for i′ 6= j′. Thisproblem is illustrated in Figure 5.3.

=
?

Figure 5.3. Chek whether two z-�ber entries have equal z-oordinateNote that this onstitutes a solution to Problem 5.1. Atually, we learn in �5.3.1 thatthe equality deision is su�ient to ompute the multi-surfae z-�ber and the orresponding
z-pattern. The reason is that we represent eah ±∞ 6= zp,i,l ∈ Zp,i (and so the entriesof Z

|
p,i,j) with a re�neable interval approximation. If su�iently re�ned, it is easy todeide < and >, while for = the re�nement would never stop. Thus, we need to deide itexternally.Let us �nally ollet the missing tasks. Note that Problem 5.24 onstitutes the entralobjetive of our work.



5.1. Problem 199Problem 5.23 (Compute planar arrangements). For given surfaes Si, Sj ∈ S, i 6= j,ompute A{Si}, A{Sj}, and A{Si,Sj}. Figure 5.4 shows the di�erent ases.Figure 5.4. Compute planar arrangements
(a) Compute A{Si} and A{Sj} (b) Compute A{Si,Sj}Problem 5.24 (Compute AS, ompute z-�bers and their adjaeny relation). Given aset of surfaes S ful�lling the listed onditions. Compute a �nite planar arrangement ASwith the property that for eah of its ells Γ it holds: ∀p1, p2 ∈ Γ : WS,p1

= WS,p2
. Inaddition, we want to solve Problem 5.25, that is, to ompute the adjaeny relation ofentries of multi-surfae z-�bers; see also Figure 5.5.Problem 5.25 (Multi-surfae adjaeny). Given AS for a set of surfae S. Let Γ1,Γ2denote inident ells of AS and p1, p2 their respetive planar sample points. Then, we areinterested in how an entry of ZΓ1,S is onneted with the intervals de�ned by the entriesof ZΓ2,S. The output is idential to Problem 5.12.

Figure 5.5. Deompose S into a �nite number of lifted ells and ompute their adja-eny relationIt is lear that lifting the overlay of all arrangements A{Si} and A{Si,Sj} and omputingthe adjaeny relation of their lifts onstitutes a solution to Problem 5.24. We laim thatthe framework that we present in �5.3 implements this solution using subalgorithms forProblems 5.23 (planar arrangements), 5.11 and 5.19 (z-�bers), 5.22 (ompare entries of z-�bers), and 5.12 (adjaeny). The last is used to derive the desired onnetivity of entriesof z-patters from the onnetivities of z-�bers of single surfaes. Only in ase that someell ontains p ∈ V we have to solve a speial subase of Problem 5.25 as well.



200 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsCell deompositionsWe next introdue deompositions of surfaes into onneted ells of dimension 0, 1, and 2using planar arrangements and z-�bers. However, one de�nition is missing for this purpose:De�nition 5.26 (Multi-surfae lift). Let S be a set of surfaes, and Γ be a set with onstant
z-pattern WΓ,S for all points p ∈ Γ. For l = 0, . . . ,mΓ,S − 1, the l-th multi-surfae lift of
S over Γ is given by

Γ(l,S) := {(px, py, zp,S,l) ∈ Γ× R | zp,S,l ∈ Zp,S}Note that for �xed l0 it holds that Γ(l0,S) = Γ(li,i) with li ∈ wΓ,l0 and that in ase ofan intersetion we have |wΓ,l0 | > 1. Multi-surfae lifts are essential for our deomposition.In addition, speial diligene is required for vertial lines ontained in a surfae. But, westart with a simple ase:De�nition 5.27 (Cell deomposition of Si without vertial line). Let Si be a surfae,with Vi = ∅ and A{Si} ful�lling Condition 5.7. Let Γ ∈ A{Si}, ZΓ,i its z-�ber, and mΓ,ithe number of �nite elements in ZΓ,i. The ell deomposition Ω{Si} is de�ned as
Ω{Si} :=

⋃

Γ∈A{Si}




⋃

l=0,...,mΓ−1

{Γ(l,i)}



For given Si and Sj, j 6= i, we an also use A{Si,Sj} (instead of A{Si}) to support Ω{Si},as A{Si,Sj} also ful�lls Condition 5.7. However, this typially results in a larger number ofells.We next extend De�nition 5.27 to give a ell deomposition for a surfae Si that alsoomprises vertial lines. Remember that the set of vertial lines is �nite. The idea is to alsodeompose eah ℓp with p ∈ Vi into segments and rays respeting the intervals boundariesarising from Condition 5.9.De�nition 5.28 (Cell deomposition of Si with vertial line(s)). Let Si be a surfae withan arrangement A{Si} ful�lling Condition 5.7. For p ∈ Vi, let ωp denote the partition of ℓpinto elements of Zp,i and their indued intervals of R. We de�ne
Ω{Si} :=

⋃

Γ∈A{Si}
\Vi




⋃

l=0,...,mΓ−1

{Γ(l,i)}



 ∪
⋃

p∈Vi

ωpWe turn to the ase of multiple surfaes ontained in a set S. For this objetive, webase the de�nition of ΩS on the planar arrangement AS.De�nition 5.29 (Cell deomposition of S). Let S be a set of n surfaes and AS as om-puted by Problem 5.24. For p ∈ V, let ωp denote the partition of ℓp into elements of Zp,Sand their indued intervals of R.
ΩS :=

⋃

Γ∈AS\V




⋃

l=0,...,mΓ,S−1

{Γ(l,S)}



 ∪
⋃

p∈V

ωp



5.1. Problem 201In �5.2.4 we show that these deompositions onstitutes strati�ations of algebraisurfaes and also state bounds on the strati�ations' omplexities.The ells of a deomposition Ω with respet to De�nition 5.27, 5.28, and 5.29 are,by onstrution, onneted. However, sometimes it might be advantageous to ahievesimply onneted ells. Remember that a ell is simply onneted if eah yle in a ell isontratible to a point. Thus, we show how Ω an be transformed into a deomposition
Ω′ onsisting of simply onneted ells only. Remember that in order to obtain Ω wehomeomorphially lift a planar arrangement A. Thus, the main idea is Algorithm 5.1 thatre�nes some arrangement A into an arrangement A′ of simply onneted ells. We showin Proposition 5.31 that A′ and has the same omplexity as A. Notie that only ells ofdimension 1 and 2 of an arrangement A an be non-simply onneted.Algorithm 5.1. Re�ne A into simply onneted ellsInput: Planar arrangement AOutput: A′ onsisting of simply onneted ells only
• Transform A into a planar graph G by mapping its zero-dimensional ells to nodes,and its one-dimensional onneted ells to edges.
• A one-dimensional irular edge is made simply onneted by adding a new vertex;see the squared verties in the Figure 5.6.
• We are left with non-simply onneted faes. While G ontains a bounded onnetedomponent:� Choose suh a omponent and onnet its y-minimal point downwards using avertial ar until it reahes another omponent of G (or if this does not happen,the ar goes to −∞); see dashed lines in Figure 5.6.

Figure 5.6. How to make ells of an arrangement A simply onneted? Break one-dimensional irles (squares) and add vertial ars (dashed). Eah resulting fae issimply onneted.Observe that eah suh ar either merges two onneted omponents, or turns one ofthem unbounded. Thus, it is lear that the algorithm terminates, and produes a graphwithout bounded onneted omponents. Some properties and results of the algorithm:



202 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsProposition 5.30. Eah ell of A′ is simply onneted.Proof. Assume for a ontradition that there is a ell Γ of A′ whih is not simply onneted.Clearly, Γ annot be one-dimensional as we split all yles. So assume that Γ is a fae.Sine it is not simply onneted, there is a yle C that is not ontratible. Hene, itsinterior ontains a onneted omponent, whih must be bounded. That ontradits thefat that there is no bounded onneted omponent.Proposition 5.31. The omplexity of A′ is the same as A.Proof. Notie that for eah onneted omponent of G, we introdue at most one edge andtwo verties and split at most one fae. The number of onneted omponents is upperbounded by the number of faes of A. We add at most 4 ells for eah fae of A. Thisproves that we do not inrease the omplexity.Remarks.
• In the terminology of Cgal's Arrangement_2 (see �2.4.3), we introdue a �nite num-ber of new (vertial) edges that suh eah inner CCB gets onneted to the outerCCB of the fae it belongs to. This means, that no fae has an inner CCB andonly one outer CCB. In addition, eah isolated vertex is also onneted to the outerCCB of the fae that ontains the point by a new (vertial) edge. An unboundedfae is onneted with the impliit �titious outer CCB (see Figure 4.9 (a)). As aresult, eah (non-�titious) fae has neither an inner CCB nor an isolated vertex. Byde�nition, suh a fae in a planar arrangement is simply onneted.
• The omputed graph indues a re�ned arrangement A′ of A. If the ells of A omprisedata, the newly added ells obviously inherit the attahed data of the ell they areinluded.In what follows we only onsider the single-surfae ase, as the multi-surfae ase is itsnatural extension and the orresponding adaptions for multi-surfae ell-deompositions

Ω are straightforward.The arrangement A′
{S} implies a ell deomposition Ω′

{S} by lifting the ells of A′
{S};similar to De�nition 5.27.Proposition 5.32. Eah ell of Ω′

{S} is simply onneted.Proof. Eah ell ω′ of Ω′
{S} is the homeomorphi image of a (simply onneted) ell Γ′of A′

{S}. It follows that ω′ is simply onneted as well.We mention that this re�nement into simply onneted ells has not yet been integratedinto our implementation that we present in �5.3.5.2. Operating algebrai surfaesWe next onentrate on algebrai surfaes. Suh a surfae Si is de�ned by a trivariate poly-nomial fi ∈ Q[x, z, y] of total degree Di. We refer to degz(fi) as Dz,i. We an assume that
fi is square-free and primitive, that is, Si ontains no irreduible omponent twie, and hasno two-dimensional vertial omponent. In addition, eah pair Si, Sj, with i 6= j is de�ned



5.2. Operating algebrai surfaes 203by oprime polynomials. If the input does not ful�ll these onditions, we an deomposepairs of non-oprime surfaes into (up to three) oprime ones and apply a square-free fa-torization as in �2.1.1. In other words: We treat vertial and multiple parts of eah inputsurfae separately. The intersetion of two surfaes is at most one-dimensional. Note thatfor a �xed i we sometime use Si = VR(fi) = VR(aDz,i
zDz,i+, . . . +, a0z

0).We �rst, as in �5.2.1, onsider z-�bers of a single surfae and remember algebraientities derived related to z-�bers that help to onstrut the desired planar arrangements
A{Si} and A{Si,Sj} in �5.2.2 without the need to atually ompute the �bers. But werequire them for the atual lifting. �5.2.3 shows that the ontinuation onditions areful�lled, while �5.2.4 revives the ell deompositions from �5.1 for algebrai surfaes. Wealso show that algebrai surfaes ompletely ful�ll the onditions raised in �5.1. At theend of this setion we give a short link to semi-algebrai surfaes.5.2.1. z-�bersDe�nition 5.33. Let Si ∈ S be an algebrai surfae de�ned by the vanishing set of fi. The
z-�ber of a point p := (px, py) ∈ R2 \ Vi is

Zp,i := {z ∈ R | fi(px, py, z) = 0}Note that this de�nition omits to de�ne z-�bers for p ∈ Vi, as for suh points {z ∈
R | fi(px, py, z) = 0} = R. This ontrasts De�nition 5.6 that expets |Zp,i| to be �nite.To takle this task, we below introdue three polynomials whose roots de�ne the desiredentries. Thus, the formal spei�ation of suh a z-�ber is postponed to De�nition 5.61 onpage 232 of �5.4.2. For now, we only rely on the fat that Zp,i with p ∈ Vi deomposes ℓpinto a �nite number of piees.To ompute Zp,i we require a method that is able to isolate the real roots of thepolynomial fi(p) := fi(px, py, z) ∈ R[z], where p's oordinates are algebraially de�ned,whih onstitutes the �rst problem: fi(p) ∈ R[z] has algebrai oe�ients for many z-�bersomputed by our method. A seond problem is that fi(p) might have multiple roots.Theorem 5.34 (Complexity of z-�ber for p 6∈ Vi). Let S be an algebrai surfae of degree
D and p 6∈ Vi. Then, |Zp,i| ≤ D.Proof. fi(p) := fi(px, py, z) ∈ R[z] de�nes Zp,i and deg(fi(p)) ≤ Dz,i ≤ D.Let us derive additional exat values on fi(p) in order to simplify the desired ompu-tation.De�nition 5.35 (Loal degrees). Let p be as above. The loal degree dp,i is the degree of
fi(p) in z. We also say that p is dp,i-regular. In ase that fi(p) ≡ 0, dp,i = −∞. The loalgd degree kp,i is the degree of gcd(fi(p), ∂

∂zfi(p)). We also say that p has degradation kp,i.The loal real degree mp,i is the number of distint real roots of fi(p).How to ompute these values? We start with the loal degree dp,i. Remember that
fi =

∑Dz,i

d=0 ad(x, y)zd. If fi is z-regular, we are done. This an be heked by determiningwhether degz(fi) = D, that is, whether ∀x, y ∈ R we have aDz,i
(x, y) = c 6= 0. Otherwise,we ompute dp,i := max{d | ad(px, py) 6= 0} by starting with d = Dz,i and stopping assoon as ad(px, py) 6= 0. If even a0(px, py) = 0, then p ∈ Vi (remember that we exludedthat S is ompletely vertial). In this ase dp,i := −∞.



204 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsFor omputing mp,i and kp,i we refer the reader to Algorithm 2.10 on page 36 that is aspeialized form of Algorithm 2.3. The algorithm relies on Sturm-Habiht sequenes (seeDe�nition 2.11) to obtain the number of real roots of fi(p). It is important to use a properredutum of fi if dp,i 6= Dz,i; see also Lemma 2.19. Sturm-Habiht sequenes are similar tosigned subresultants. Thus, we enourage to follow the remark and invitation on page 28to bene�t from omputed sequenes when aiming for kp,i; see also Lemma 2.13.It must be said, that the speialization property (see Theorem 2.10) is entral to thisomputation, as, in partiular, we only know restrited information on p: We will knowre�neable interval approximations px and py and we will be able to hek whether p lieson some planar urve. This is a perfet setting for the bitstream Desartes method.We desribe in detail how to use this method in ombination with the omputed valuesin �5.2.1. That part also disusses the missing ase of how to ompute the entries of Zp,i(and Zp,S) for p ∈ Vi.5.2.2. Planar arrangementsWe next present (onstrutive) de�nitions for the desired arrangements A{Si} and A{Si,Sj}for algebrai surfaes Si, Sj ∈ S, Si 6= Sj. We do not only prove that suh arrangementsexist, but also try to keep their sizes almost minimal with respet to the number of faes,edges, and verties.Construting A{Si}Remember the loal degrees from De�nition 5.35 that give additional information on z-�bers of a single surfae Si. In this part we onstrut an arrangement A{Si}, whose ellshave invariant d and k. Following �5.2.1 the points of a ell also share the same m. As anarrangement onsists of �nitely many ells this onstrution shows that Condition 5.7 isful�lled for an algebrai surfae Si. Impliitly, we also show Condition 5.5. Consequently,we are able to onstrut z-�bers over any point of the plane, sine all algebrai information(loal degrees) an be stored along eah ell of A{Si} and is valid for eah of the ell's points.De�nition 5.36 ((d,k)-invariane). A onneted set Γ ⊂ R2 is alled (d,k)-invariant withrespet to a surfae Si = V (fi) if the loal degree dΓ,i := dp,i and the loal gd degree
kΓ,i := kp,i of fi are invariant for all p ∈ Γ. A (d,k)-arrangement for Si is a planararrangement whose verties, edges, and faes are (d,k)-invariant with respet to Si.The delineability (see De�nition 2.21) of fi on any (d,k)-invariant set has also beenshown by Collins in his seminal work on ylindrial algebrai deomposition [Col75℄. Re-member the impliation: The (real) lift over the set is the union of mp,i disjoint funtiongraphs (also known as sheets; see �2.1.5). A slightly weaker version is:Theorem 5.37. Let Γ be a (d,k)-invariant set for V (fi). Then, eah p ∈ Γ has the sameloal real degree mΓ,i. Even more: For eah l = 0, . . . ,mΓ,i− 1, the l-th lift Γ(l,i) over Γ isonneted.Proof. The number of distint omplex roots over a (d,k)-invariant set is onstantly d− k.The roots of fi(p) ontinuously depend on p, thus, in an open neighborhood of any pointon Γ the imaginary roots stay imaginary. As the total number of roots is preserved and



5.2. Operating algebrai surfaes 205imaginary roots only appear together with its omplex onjugate, the real roots also remainreal; see [Col75, Theorem 1℄ for more details.The next onstrution also appears in Collins' work [Col75, Theorem 4℄:Theorem 5.38 (Existene of (d,k)-invariant). For eah algebrai surfae Si, there existsa (d,k)-arrangement.Proof. Our proof is onstrutive. Let p be an arbitrary point in the plane, and fi =∑Dz,i

d=0 ad(x, y)zd. The loal degree of fi at p simply depends on the oe�ients ad. Re-member from above:
dp,i = degz(fi(p)) [= max D]with D := {d = 0, . . . ,Dz,i | ad(p) 6= 0}. Note that in ase dp,i = −∞, it holds D = ∅.The same way, the loal gd degree depends on the prinipal Sturm-Habiht oe�ients

sthak((fi)(dp)) by
kp,i = degz(gcd(fi(p), ∂

∂z fi(p))) [= min K]with K := {k = 0, . . . , dp,i − 1 | sthak((fi)(dp))(p) 6= 0}. Note that in ase kp,i = −∞ itholds K = ∅.The oe�ients ad and sthak((fi)(d) de�ne algebrai plane urves αd = V (ad) and
σd,k = V (sthak((fi)(d))), respetively, of degree at most D(D − 1). Then, dp,i and kp,i aredetermined by the urves p is part of. Thus, the arrangement indued by αDz,i

, . . . , α0and, for all d = 1, . . . ,Dz,i, σd,0, . . . , σd,d has only (d,k)-invariant ells.Note that the number of urves is �nite, and as eah urve indues a �nite arrangement,also the overlay onsisting of all urves indues a �nite arrangement. In addition, A{Si}subdivides R2 into ells of points that have an invariant pattern of (multiple) roots of
fi(p)(z) for all p in a ell. This implies, that the z-pattern W{S},p an only hange uponswithing to another ell. This shows Condition 5.7. In addition: As Si does not ontaintwo-dimensional vertial omponents, all αi interset in �nitely many points, whih resultsin an alternative de�nition of Vi := {p ∈ R2 | ∀d = 0, . . . ,Dz,i : ad(px, py) = 0}. Thisshows Condition 5.5.The proof of Theorem 5.38 gives a way to onstrut some (d,k)-arrangement for asurfae. However, its number of ells might be larger than needed. We aim for a lusteringinto few (d,k)-ells.De�nition 5.39 (Projeted silhouette). The projeted silhouette τSi

of Si is de�ned by
stha0(fi) = Resz(fi,

∂fi

∂z )Lemma 5.40. For any point, (dp,i, kp,i) = (Dz,i, 0) if and only if p is not on τSi
. Conse-quently, all edges and verties of a (d,k)-arrangement not belonging to τSi

an be removedand their inident ells an be merged to a larger (d,k)-invariant ell.Proof. Following [BPR06, Proposition 4.27℄, we have Resz(fi,
∂fi

∂z ) = aDz,i
Disc(fi) where

Disc(fi) denotes the disriminant of fi. It is lear that dp,i = Dz,i for a point p if and onlyif aDz,i
(p) 6= 0. From the de�nition of the disriminant, kp,i = 0 for a regular point p ifand only if Disc(fi)(p) 6= 0.



206 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsThis opens the door to apply a ombinatorial minimization of any (d,k)-arrangement.For what follows, we assume that eah ell Γ of a (d,k)-arrangement is equipped withits loal degrees dΓ,i and kΓ,i as data. As post-proessing, one an remove all edges andverties away from τS , and remove verties on τS that have exatly two adjaent edges, andboth edges have the same loal degree and loal gd degree as the vertex (and merge theadjaent edges). A similar idea of lustering a ad has been proposed by Arnon [Arn88℄,but, in ontrast, (d, k)-invariane models a stritly weaker ondition. Thus, it produeslarger ells.As we are aiming for an atual implementation using Cgal's Arrangement_2 pakageto onstrut the (d,k)-arrangement, we present Algorithm 5.2 that turns the atual post-proessing into a bottom-up onstrution of the (d,k)-arrangement, whih lowers the sizeof intermediate arrangements.48 The main tool for Algorithm 5.2 is Cgal's possibility tooverlay arrangements. Given arrangements A1 and A2, the overlay is the union A3 of botharrangements. In addition, we an ensure that eah ell of A3 knows from whih ells of
A1 and A2 it originates.Remark (on Algorithm 5.2). There are two optimizations: First, to set the loal gd degreeone only has to onsider those degrees d that appear as the loal degree of at least one ell.Seond, the inner iteration over the k's is stopped as soon as all ells of degree d knowtheir loal gd degree.

A{Si}, as onstruted with Algorithm 5.2, basially onsists of the overlay of the leadingoe�ient urve and the disriminant urve of fi (ompare Lemma 5.40). However, thisurve is subdivided by additional points in order to ensure (d,k)-invariane. We admit, thatthe approah is in similar spirit as the improved projetion operators in ad omputation;see the work of MCallum [MC℄ and the slight improvement by Brown [Bro01b℄. Insteadof (d,k)-invariane, they introdue order-invariane and show that suh ells also ensuredelineability. Consequently, the non-leading oe�ients and the prinipal Sturm-Habihtoe�ients are super�uous for Theorem 5.37. However, the knowledge about the loaldegree and the loal gd degree in our (d,k)-invariant deomposition enables fast methodsin the lifting step, as we learn in �5.3.3.We now onsider a set S := {S1, . . . , Sn} of algebrai surfaes. The de�nition of loaldegrees naturally extends:De�nition 5.41 (Loal multi-regularity). Given a point p = (px, py) ∈ R2. We all it
(d1, . . . , dn)-regular with respet to S := {S1, . . . , Sn} if and only if p is dp,i-regular withrespet to Si. Note that having some dp,i = −∞ is allowed.We �rst onentrate on n = 2, that is, we restrit to two surfaes only. Afterwardsit is easy to de�ne an arrangement for an arbitrary number of surfaes for our purposes.Let S1, S2 ∈ S be two surfaes and A∗

{S1,S2}
be the overlay of the arrangements A{S1}and A{S2}. Then, for eah ell of A∗

{S1,S2}
the regularity with respet to {S1, S2} staysinvariant.We next show that there exists a re�nement A{S1,S2} of A∗

{S1,S2}
, suh that on eahomponent Γ ∈ A{S1,S2} the z-patterns W{S1},p, W{S2},p, and W{S1,S2},p stay the same. Forthis purpose we have to introdue some further notation based on subresultant sequenes.48Arrangements of large size are usually more ostly to onstrut than suh with a small number of ells.



5.2. Operating algebrai surfaes 207
Algorithm 5.2. Construt lustered A{S} with low-size intermediate arrangementsInput: Algebrai surfae S of degree DOutput: A{S} with minimal number of (d,k)-invariant ells1. Computing the arrangement A indued by the projeted silhouette τS only. Re-member that τS may be not square-free. To handle this ase, we typially apply asquare-free fatorization (see �2.1.1) and ompute AτS

by overlaying individual ar-rangements indued by the resulting square-free urves. In this ase, eah resultingedge of A an be assigned with the multipliity of the orresponding fator of τS.2. Eah fae of A reeives the values (Dz , 0) respeting Lemma 5.40.3. Deompose A suh that eah resulting ell has invariant loal degree by repeatingthe following steps for d = Dz, . . . , 0:
• Compute the arrangement Ad indued by αd; as above, we atually onsiderthe square-free fatorization of ad.
• Overlay A with Ad, the result is A′.
• Remove all verties and edges of A′ that originate from a fae of A.
• Remove also all verties of A′ that originate from an edge of A whose loaldegree has already been set.
• For eah ell of A′ that originates from a fae of Ad, and whose degree is notset yet, assign its loal degree to d.
• Set A← A′ and proeed with the next iteration.4. Set the loal degree of all ells whih are not yet set to −∞, as S must be vertialabove these ells (verties).5. It remains to deompose A into (d,k)-invariant ells. The strategy is similar: It-erate over the degrees and overlay with the orresponding prinipal Sturm-Habihtoe�ient urves σd,k. Thus, repeat for d = Dz, . . . , 1: Repeat for k = 0, . . . , d− 1:
• Compute the arrangement Ad,k indued by σd,k; as above, we atually onsiderthe square-free fatorization of sthak(f(d)).
• Overlay A with Ad,k, the result is A′.
• Remove all verties and edges of A′ that originate from a fae of A.
• Remove all verties of A′ that originate from an edge of A whose loal gddegree has already been set, or whose loal degree does not equal d.
• For eah ell of A that lies on a fae of Ad,k, whose loal degree is d, and whoseloal gd degree is not yet set, assign the loal gd degree to k.
• Set A← A′ and proeed with the next iteration.



208 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsDe�nition 5.42 (Loal multi-degradation). Let p = (px, py) be a (d1, d2)-regular point,with d1 6= −∞ and d2 6= −∞. We say that p has degradation kp,1,2 with respet to {S1, S2}if and only if
kp,1,2 := degz(gcd(f1(p), f2(p)))− 1 [= min K1,2]with K1,2 := {k = 0, . . . ,min{d1, d2} − 1 | sresk((f1)(d1)(p, z), (f2)(d2)(p, z), z) 6= 0}. Notethat if kp,1,2 = −∞ we have K1,2 = ∅.Let Γ ∈ A∗

{S1,S2}
be a ell of regularity (d1, d2), then, there exist ommon minimaldegradations k1,Γ, k2,Γ for Γ. If Γ is a fae, kΓ,1 = kΓ,2 = 0. Otherwise, kΓ,i is de�ned and

≥ 0 if dΓ,i 6= −∞. However, Γ may not yet be invariant with respet to ommon rootsof f1(p, z) and f2(p, z). Remember from Proposition 2.7 that f1(p, z) and f2(p, z) onlyhave a ommon (omplex) root, if Resz(f1, f2, z) vanishes. That is, the two surfaes mayonly interset above some p if kp,1,2 ≥ 0. Following, p ∈ VR(Resz(f1, f2)) is a neessaryondition for having an intersetion of the surfaes over p. Points having this onditionare given by the following urve:De�nition 5.43 (Projeted intersetion). The projeted intersetion τ0,S1,S2 of {S1, S2}is de�ned by sres0(f1, f2, z) = Resz(f1, f2).To overlay the (d1, d2)-regular arrangement A∗
{S1,S2}

with the projeted intersetionis the main step in Algorithm 5.3. However, it still does not ensure that the obtainedells are invariant with respet to z-patterns. p ∈ Resz(f1, f2) only means that gp :=
gcd(f1(p, z), f2(p, z)) is non-trivial. Only if gp has real roots then f1 and f2 have real inter-setions over p. As before, the number and distribution of (omplex) roots of polynomials
f1(p, z) and f2(p, z) ontinuously depend on p, and so the roots of gp. The distributionof its roots (i. e., their number and multipliities) hanges only where the degrees or thefatorizations of fi or g alter; see Proposition 2.9 in ombination with Theorem 2.10 andTheorem 5.37. Fortunately, the subresultant sequene gives a (deliberate) algebrai in-diation for a hange in gp's degree � and thus a possible hange in the number of realintersetions.We already onsidered the individual degradations of f1 and f2. But, we still have tore�ne the ells indued by τ0,S1,S2 with respet to further degradations, that is, with respetto urves τk,S1,S2 = VR(sresk(f1, f2, z). Note that if kp,1,2 = 0 implies that degz(g(p)) = 1,that is, there is one real intersetion of S1 and S2 over p (by degree there annot be amultiple or omplex one). Remember that kp,1,2 onstitutes an upper bound on the numberreal intersetions of S1 and S2 over p. These observations �nally lead to Algorithm 5.3.Remark (on Algorithm 5.3). Observe that our onstrution of A{S1,S2} is onservative in thesense that it might keep ells having the same number (and order) of real intersetion overit as its neighbored ells. The reason is simply that the algebrai indiation that we relyon does not ignore omplex roots.However, by onstrution it is ensured that the loal degrees for eah individual surfaestays invariant in eah ell, and the intersetion pattern of two surfaes over a given ell alsoannot hange. We admit, that at this point the loal real degrees are not yet determined,though they are theoretially �xed in terms of the others. Thus, Condition 5.16 is alsoful�lled for algebrai surfaes.Remark. As for a single surfae, the onstrution is similar to what is done for a ylindrial
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Algorithm 5.3. Construt lustered A{S1,S2}Input: Algebrai surfaes S1, S2 of degree D1,D2Output: A{S1,S2} with minimal number of invariant ells with respet to loal degreesand degradations1. Compute overlay of A{S1} and A{S2} and all it A∗

{S1,S2}
.2. Compute the arrangement Aτ0,S1,S2

of τ0,S1,S2 . As above, remember that Aτ0,S1,S2
anbe omposed of the overlay of τ0,S1,S2 's square-free fators. Thus, eah of Aτ0,S1,S2
'sedges an be assigned with the multipliity of the orresponding fator.3. Overlay A∗

{S1,S2}
with Aτ0,S1,S2

. The result is A{S1,S2}. However, kΓ,1,2 for Γ ∈
A{S1,S2} is still unknown and some edges an even split further:4. Set kΓ,1,2 = 0 for all ells Γ that originate from verties and edges in Aτ0,S1,S2

, and
kΓ,1,2 = −∞ for all other ells (meaning invalid).If Γ is suh a speial vertex or edge let d1,Γ and d2,Γ denote its loal degrees withrespet to S1 and S2.5. For suh a vertex at point p we have to ompute the orret (and maybe larger)
kp,1,2. For 1 ≤ k < min{dp,1, dp,2}:
• Chek whether p lies on τk,1,2 (or one of its square-free fators, and note that

τk,1,2 depends on dp,1 and dp,2). If so, ontinue, otherwise set kp,1,2 = k andstop. Note that this point-on-urve test enodes whether sresk(f1, f2, z)(p) = 0.6. For suh an edge E two options are possible. Again, for 1 ≤ k < min{dE,1, dE,2}:
• Chek if E is part of τk,1,2, by testing whether the polynomial de�ning the urvethat supports E has a ommon fator with sresk(f1, f2, z). If so, set kE,1,2 = kand ontinue with next k.
• Otherwise, hek if E has a �nite number of intersetions with τk,1,2. Split Eat them whih reates new verties. For eah suh vertex at point p, assign

kp,1,2 = k and proeed with the desribed handling for verties.



210 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsalgebrai deomposition; see �2.1.6. In ontrast, we expliitly handle the projetion as aplanar arrangement and bene�t from the possibilities to ombinatorially luster ells andto attah additional data, suh as the multipliities of τ0,S1,S2 or degradations k1,2.The extension to more than two surfaes is natural:De�nition 5.44 (AS). Let S = {S1, . . . , Sn} be algebrai surfaes and let A{Si,Sj}, i 6= jthe arrangement as onstruted with Algorithm 5.3. Then, we de�ne AS to be the overlayof all arrangements A{Si,Sj}.By how we onstruted A{Si,Sj} it an be seen that AS onsists of ells Γ ∈ AS suh that
WS,p is idential for all p ∈ Γ. Thus, AS is mi-invariant for 1 ≤ i ≤ n and mi,j-invariantfor any 1 ≤ i, j ≤ n, i 6= j.5.2.3. ContinuationIn this setion we show that Condition 5.9 is ful�lled for an algebrai surfae Si. Addi-tionally, we learn that a lifted fae F of some A{Si} an be inident to a whole intervalalong some ℓp for p ∈ F and p ∈ Vi, whih helps in �5.2.4 to deompose Si and to proofthe boundary property of the deomposition.As we already know that Condition 5.16 holds for p 6∈ Vi, Condition 5.9 an be ver-i�ed by the fat that the roots of a polynomial ontinuously depend on its oe�ients:Remember that in this ase Zp,i = {z ∈ R | 0 = fi(px, py, z) ∈ R[z]}. Thus, for some
Γ ∈ A{Si}, p ∈ ∂Γ and the sequene of points pt ∈ Γ with limt→∞ pt = p, we mustget {

limt→∞ zpt,i,−1, . . . , limt→∞ zpt,i,mΓ,i

}
⊂ Zp,i and limt→∞ zpt,i,l1 ≤ limt→∞ zpt,i,l2 for

l1 < l2. The same argument applies to Condition 5.17 for p 6∈ Vi ∪ Vj and A{Si,Sj}.The situation is di�erent when we have p ∈ Vi. In what follows, it does not make adi�erene whether we have A{Si}, A{Si,Sj}, or even AS. We only �x an arbitrary surfae Si.The proess is idential for any other surfae.We assume that p is a vertex in AS and for a neighborhood of p, none of the surfaes
Sj, j 6= i ontains a vertial line, exept at p. Now we onsider a sequene of points
pt ∈ Γ ⊂ AS that onverges against p. Then, we have to determine possible limits of their
l-th lifts (pt, zpt,i,l) ⊂ pt × Zpt,i ⊂ pt × Zpt,S. If all pt lie on an edge E, then the limit isuniquely given as endpoint (above p) of the l-th lift of E with respet to Si.For a fae F ∈ AS, adjaent to p, it an happen that the limits of the l-th lifts of twodi�erent sequenes pt, p

′
t ∈ F are distint.Theorem 5.45. Given a surfae Si ∈ S, Γ ∈ AS, and two sequenes pt, p

′
t ∈ Γ with

p = limt→∞ pt = limt→∞ p′t and for some 0 ≤ l < mΓ,i we have z0 = limt→∞ zpt,i,l,
z1 := zp′t,i,l

. Then, for any z∗ in between z0 and z1 there exists a sequene p∗t ∈ Γ with
p = limt→∞ p∗t and z∗ = limt→∞ zp∗t ,i,l.Proof. If z0 = z1 there is nothing to prove, thus we an assume z0 < z1. We an furtherassume that |pt − p| and |p′t − p| are monotone. As AS is expeted to be mi-invariant itfollows that there exists an ε0 suh that Uε ∩ Γ is onneted for all ε < ε0 and Uε :=
{q ∈ R2 : |q − p| ≤ ε}. Thus, we an assume that Ut ∩ Γ is onneted, where Ut := {q ∈
R2| |q − p| ≤ 2max{|pt − p| , |p′t − p|}}.



5.2. Operating algebrai surfaes 211Now we onsider a ontinuous path Πt ⊂ (Γ∩Ut), that onnets pt and p′t. As the rootsof fi(q, z) ontinuously depend on the point q ∈ Γ, for eah z∗t in between zpt,i,l and zp′t,i,lwe an hoose a p∗t ∈ Πt that lifts to zp∗t ,i,l = z∗t . As z0 = limt→∞ zpt,i,l and z1 := zp′t,i,lthere exists a t0 ∈ N suh that z∗ ∈ [zpt,i,l, zp′t,i,l
] for all t > t0. Thus, we an hoose z∗t = z∗from whih it follows that p∗t ∈ Γ onverges against p and ful�lls z∗ = limt→∞ zp∗t ,i,l.Theorem 5.45 shows that for any element Γ ∈ AS, adjaent to p, and any l ∈

{0, . . . ,mΓ,i−1}, the set of limits limt→∞ zpt,i,l (pt ∈ Γ a sequene that onverge against p)is an interval of IΓ,i,l ⊂ R. Thus, algebrai surfaes ful�ll Condition 5.9 and following thespei�ations for Zp,i onstituted in De�nition 5.10.Conerning Condition 5.17, we an apply the same proof idea. Atually, Theorem 5.45in ombination with Condition 5.13 show the desired result for algebrai surfaes. Thereason is that lifts of a fae F ∈ AS uniquely belong to a single surfae.However, it is not yet disussed, how to ompute the entries of Zp,i for p ∈ Vi, and
Z

|
p,i,j for p ∈ Vi∪Vj . We give the details on this task in �5.4.2. The onstrution desribedthere provides also the proofs for the following theorems. We require them to bound theomplexity of our ell deomposition that we introdue next in �5.2.4.Theorem 5.46 (Complexity of z-�ber for p ∈ Vi). Let Si be an algebrai surfae of degree

D and p ∈ Vi. Then |Zp,i| ∈ O(D3).Theorem 5.47 (Complexity of Z
|
p,i,j). Let Si, Sj be two algebrai surfaes of degree Dand p ∈ Vi ∪ Vj. Then |Z |

p,i,j| ∈ O(D3).Corollary 5.48 (Complexity of multi-surfae z-�ber for p 6∈ V). Let S be a set of nalgebrai surfaes with maximal degree D and p 6∈ V. Then, |Zp,S| ∈ O(nD).Proof. Remember the de�nition of Zp,S for suh p. Theorem 5.34 gives |Zp,i| ≤ D. Thereare n surfaes.Corollary 5.49 (Complexity of multi-surfae z-�ber for p ∈ V). Let S be a set of nalgebrai surfaes with maximal degree D and p ∈ V. Then, |Zp,S| ∈ O(n2D3).Proof. Remember the de�nition of Zp,S. Theorem 5.46 gives |Zp,i| ∈ O(D3). There are nsurfaes. Theorem 5.47 gives Z
|
p,i,j ∈ O(D3). There are O(n2) di�erent pairs of surfaes.5.2.4. Strati�ations and their omplexitiesWe next show that the ell deompositions we introdued in �5.1 onstitute strati�ationsof algebrai surfaes.De�nition 5.50 (Strati�ation; see [BPR06, �5.5℄). Let Si be a surfae. A strati�ationof Si is a deomposition of Si into ells suh that

• eah ell is a smooth subvariety of Si of dimension 0, 1, or 2, and
• the boundary of a ell is given by the �nite union of other ells; also known as theboundary property.The ells of a strati�ation are also alled strata.



212 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsCompare also the similar notion of a CW omplex; see �2.1.7 and [Mas67℄, [Bre95℄.In addition, we give omplexity bounds for eah of these deomposition in terms of thenumber of surfaes and their algebrai degree.As previously mentioned Ω{Si} should ful�ll the boundary property. An equivalentstatement is, that for any two ells M1,M2 with dim(M1) < dim(M2), we must have
M1 ∩M2 = ∅ or M1 ⊂M2. In the previous ase, the two ells of Si are not related, whilein the latter ase, we all them adjaent. To hek whether M1 is adjaent to M2 an beexpressed with respet to an arbitrary point p ∈M1: Two ells are adjaent if and only if
p ∈M2. We �rst assume that Vi = ∅.Theorem 5.51. Let M1,M2 ∈ ΩSi

with dim(M1) < dim(M2) and Γ1,Γ2 ∈ A{Si} theirorresponding projetions onto the plane. If Γ1 has loal degree dΓ1,i 6= −∞ and M1∩M2 6=
∅, then M1 = M2 ∩ (Γ1 × R).Proof. Let M2 be the l2-th lift of Γ2 and p = (p∗, z0) ∈ M2 ∩ (Γ1 × R) an arbitrarypoint, ontained in a lift Γ

(l1,i)
1 of Γ1. For the lifts p∗(l,i) of p∗ we hoose a box neigh-borhood Bp∗ of p∗ and also disjoint boxes B1, . . . , BmΓ1,1

lying above Bp∗ with Bi =

Bp∗ ×
[
p∗(l,i) − δ, p∗(l,i) + δ

] and a δ > 0. We an assume that Bp∗ and δ are hosen suhthat the l-th lift of Γ1 ∩Bp∗ is ontained in Bl. For Bp∗ small enough, it follows that the
l2-th lift of Bp∗ ∩ Γ2 is also ontained in Bl1 as p ∈ Bl1 ∩M2. As a diret onsequene
((Bp∗ ∩ Γ1)×R)∩M2 is the l1-th lift of (Bp∗ ∩ Γ1). Now for any two points p∗1 and p∗2 on
Γ1 there exists a ompat path Π on Γ1, whih onnets them. Then, we onsider an openovering of Π with loal neighborhoods Bp′ , p′ ∈ Γ, suh that ((Bp′ ∩Γ1)×R)∩M2 is the
lp′-th lift of Γ1. Then, from restriting to a �nite partial overing it follows that lp′ = l1for all p′, thus Γ

(l1),i
1 = M2 ∩ (Γ1 × R). Now M1 ∩M2 6= ∅ exatly if M1 = Γ

(l1,i)
1 .Theorem 5.51 assumed that Si does not ontain a vertial line. Thus, we turn to sur-faes that inlude vertial lines and deompose them into ells aording to De�nition 5.28.It also must be shown that this extended deomposition Ω{Si} is still a strati�ation, thatis, the boundary property is ful�lled. Remember that Si only ontains a �nite set of ver-tial lines. Observe that not splitting vertial lines is insu�ient as suh an ℓp, in general,onstitutes a superset of a boundary of a lifted fae. However, Ω{Si} as in De�nition 5.28splits ℓp aording to the interval boundaries de�ned by the following impliation of The-orem 5.45:Corollary 5.52. Let Si ontain the vertial line ℓp and F ∈ A{Si} be a fae, whih isadjaent to p. Then for any surfae path F (l,i) there exists an interval I(F (l,i)) ⊂ R, suhthat p× I(F (l,i)) = F (l,i) ∩ ℓp.Thus, the boundary property is ensured by how we onstruted Zp,i aording to Con-dition 5.9 whih is ful�lled by Corollary 5.52.The boundary property of ΩS is given by the fats, that with respet to a singlesurfae Si the arrangement AS is a re�nement of A{Si} and a lift of any urve τSj

or
τ0,Si,Sj

for any j 6= i only splits a ell M of Ω{Si}. Note that M already has the boundaryproperty. If Vi = ∅, the boundary property follows by Theorem 5.51 applied to Si and AS.Otherwise, we have to onsider the ase that M an be adjaent to a vertial line at p with
I(M) being non-degenerate and that M is split by a lift of some τSj

or τ0,Si,Sj
for any
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j 6= i into M1 and M2. Note that by Condition 5.17 the z-oordinate of the endpoint ofsuh a urve's lift is inluded in Zp,{Si,Sj}. Thus, the way ΩS splits ℓp ensures that I(M1)and I(M2) are re�eted by the deomposition and thus, the boundary property is ful�lled.As promised we also analyze the omplexities of the ell deompositions. Again, westart with a single surfae Si de�ned by fi having total degree D and its (d,k)-arrangement
A{Si} as onstruted by Algorithm 5.2. We �rst show, that the omplexity of A{Si} is notgreater than that for τS .Theorem 5.53. The number of ells of A{Si} is O(D4).Proof. First remark that D = Di. It su�es to ount the number of verties, as arrange-ments form planar graphs. For suh graphs, the number of edges and faes linearly dependon them by the Euler formula. First observe that the projeted silhouette τSi

is of degreeat most D2. By Bézout's theorem it has at most D4 ritial points. It remains to showthat its deomposition with respet to αd and σd,k does not reate more than D4 newverties.Consider the deomposition of τSi
into irreduible omponents γj with degree νj , and�x one γ = γj of degree ν. In the exeution of the algorithm, we only introdued newverties for γ (that are not removed in the same iteration) in two iteration steps:First, when a oe�ient urve αd does not ontain the whole urve γ. This introduesat most ν ·D many verties. All further oe�ient urves αd−1, . . . , α0 do not introduenew verties on γ, sine the loal degree of all edges for γ is set to d.Seond, new verties are introdued when a Sturm-Habiht polynomial sthak(f(d))does not ontain the whole urve γ. This introdues at most ν ·D2 many new verties. Allfurther Sturm-Habiht urves sthak−1(f(d), . . . , stha0(f(d)) do not introdue new vertieson γ, sine the loal gd degree of all edges for γ is set to k.Finally, eah γ gets at most O(νj ·D2) many new verties, and the νj sum up to D2.Corollary 5.54. For a surfae Si without vertial line, the number of ells in Ω{Si} is O(D5).The proof is given by Theorem 5.34 and Theorem 5.53. An impliation is that weahieve a topologial desription of the surfae using O(D5) many sample points. A or-responding ad onsists of Ω(D7) ells, due to its vertial deomposition strategy in theplane. However, the advantage of having a small number of ells implies less topolog-ial information, for example, to replae (lifted) edges by straight-lines requires furtherproessing. How to ompute the adjaeny relation of Ω{Si}'s ells is presented in �5.4.2.The omplexity of Ω{Si} with Vi 6= ∅ an also be stated. Note that we need to ompute

Zp,i for p ∈ V . We learn in �5.4.2 that we atually ompute a superset of Zp,i thatis algebraially de�ned by the real roots of three polynomials. That is, for p ∈ Vi, itholds that Ω{Si}'s deomposition of ℓp is �ner than tehnially required by Condition 5.9.However, Theorem 5.46 still holds to �nally proof that Ω{Si} stays with the known worst-ase omplexity:Theorem 5.55. The number of ells of Ω{Si} is O(D5).Proof. For lifts not related to p ∈ Vi, Corollary 5.54 still applies. It only remains to boundthe number of ells introdued for vertial lines by O(D5): Observe that deg(fi) ≤ Dimplies |Vi| ≤ D2. It remains to apply Theorem 5.46.



214 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsWe turn to the ase of multiple surfaes. Note that ∀Di : Di ≤ D. We already learnedin �5.2.2 that AS omposed of all A{Si,Sj} for two surfaes Si, Sj, i 6= j forms the basis for
ΩS. In order to derive ΩS's omplexity, we �rst have to proof a result on AS's omplexity:Theorem 5.56. The number of ells of AS is O(n4D4).Proof. Again, it su�es to ount the number of verties, for the same reason as in theproof of Theorem 5.53.We perform the ounting in two steps: First, we onsider the verties of the individualarrangements that our. Seond, we analyze how many verties our during overlays.For a single surfae Si, the omplexity of A{Si} is mainly driven by τSi

, that is, analgebrai urve of degree at most D2. The arrangement has, following Theorem 5.53,
O(D4) verties. When onstruting A{Si,Sj} for two surfaes Si, Sj , i 6= j, we addi-tionally onsider τ0,Si,Sj

. This urve is also of degree at most D2 and thus has at most
D4 ritial points. During the exeution of Algorithm 5.3, τ0,Si,Sj

gets segmented bysome sresk(fi, fj , z) with k ≥ 1. The maximal number of segmentation verties ours if
sres0(fi, fj , z) gets segmented by sres1(fi, fj, z). Bounding deg(sres1(fi, fj , z)) by D2 issu�ient (though not very tight) as is allows to onlude that the number of segmentationverties of τ0,Si,Sj

is upper bounded by D4. Thus, both the re�ned τSi
and the re�ned

τ0,Si,Sj
have at most O(D4) ritial points.It remains to give a bound on the number of verties that are introdued with respetto overlays of arrangements. We only have to onsider how often urves τSi

and τ0,Si,Sj
aninterset.49 Remember that deg(sres0(fi,

∂fi

∂z , z)) ≤ D2 and also deg(sres0(fi, fj , z)) ≤ D2.Thus, two suh urves interset by Bézout's theorem in at most D4 points. There are nprojeted silhouettes, and O(n2) projeted intersetion urves. As we overlay all of them,we have to onsider eah pair and thus get up to O(n4D4) new intersetion points.In total, AS has omplexity O(nD4) + O(n2D4) + O(n4D4) = O(n4D4).The next orollaries are simple impliations of Theorem 5.56, Corollaries 5.48 and 5.49,and the fat that |V| ≤ nD2.Corollary 5.57. For a set S = {S1, . . . , Sn} of algebrai surfaes of total degree D, thenumber of ells in ΩS is O(n5D5).Corollary 5.58. For algebrai surfaes S1, S2 of total degree D, the number of ells of
A{S1,S2} is O(D4) and the number of ells in Ω{S1,S2} is O(D5).Assume we replae AS in De�nition 5.29 by A′

S that results from applying Algorithm 5.1on AS. By Proposition 5.32 we obtain a ell deomposition Ω′
S onsisting of simply on-neted ells, whose omplexity an also be bounded:Corollary 5.59. For Si ∈ S, |Ω′

{Si}
| ∈ O(D5) and |Ω′

S| ∈ O(n5D5).5.2.5. Semi-algebrai surfaesLet us also shortly refer to semi-algebrai surfaes, that onstitute possible input. Asemi-algebrai surfae S≥ is de�ned by a polynomial equation f = 0 that is re�ned by49Mind that the oe�ients urves αl only segment τSi
.



5.3. Implementation in a framework 215a sequene of polynomial inequalities gj ≥ 0, with 1 ≤ j ≤ r for some r. Suh a semi-algebrai surfae is losed, and thus ful�lls the onditions expeted by the framework.In partiular, the arrangement A{VR(f),VR(g1),...,VR(gr)} onstitutes an arrangement A{S≥}ful�lling Condition 5.7 for S≥. However, this deomposition of the plane is far from beingoptimal, as most of its ells are redundant due to the fat, that A{VR(f),VR(f1),...,VR(fk)}onsiders the pair-wise ombination of all involved surfaes de�ned by polynomials. As for
S≥ we are only interested in hanges of the z-�ber of S = VR(f) with respet to a singleinequality gj , the following inremental strategy is enouraged to onstrut A{S≥}. Startwith A{VR(f)} and re�ne it with respet to the projeted intersetions of VR(f) with VR(gj)for inreasing j (mind loal degrees and degradations). It is still possible to simplify theobtained A{S≥}, for example, by merging neighboring ells that do not omprise a projetedpoint of S≥, or by removing a projeted intersetions of VR(f) and some VR(gj) if it lies ina fae of A{VR(f)} and its inident higher-dimensional ells arry the same z-pattern. Weomit further details and refer in the further disussion only in exeptional ases again tosemi-algebrai surfaes.5.3. Implementation in a frameworkIt is ommon, that algorithms in this area of researh are laking their implementation,or that ertain degeneraies are exluded, suh as vertial lines or singularities. We donot join this queue. In ontrast, we provide a C++-implementation for the tasks listedin �5.1. It is part of the software projets Cgal [3℄ and Exaus [6℄; see also �2.2.3and �2.2.4. We admit that the implementation has beome feasible by relying on existingode of the projets. Our C++-implementation onsists of two related omponents, thatsplit ombinatorial parts from surfae-spei� geometri tasks using generi programming;see �2.2.1.The Framework maintains planar arrangements, omputes sample points, exeutes thee�ient onstrution of (multi-surfae) z-�bers (with �lters), and is responsible tostore the adjaeny relation of multi-surfae z-�bers. In other words, it implementsthe surfae-independent tasks from �5.1; see also �5.3.2 and �5.3.3. In order to do so,it de�nes a onept that expets basi geometri types (suh as the one for a surfae)and basi operations on them; the onept is desribed in �5.3.1.Additionally, the framework provides lasses that rewrite or use the obtained om-binatorial results to enable other geometri algorithms on surfaes; main examplesare given in �5.5.Models provide onrete implementations for the onept. That is, the model for aertain family of surfaes implements the surfae-spei� sets of tasks listed in �5.1;suh as to provide surfae related projeted urves, to reate single-surfae z-�bers,to detet the equality of their entries, or to obtain the single-surfae adjaeny.This part of the thesis onentrates on the framework. In �5.4 we present two models foralgebrai surfaes. The framework implement in an experimental pakage of Cgal, that isplanned for future submission to the projet's editorial board. All framework-spei� odeonsists of about 10,000 lines of templated C++. This number is not ounting requiredbasi lasses of the libraries or Cgal's matured Arrangement_2 pakage, on whih the



216 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsframework's implementation is mainly based. In partiular, we rely on the Arrangement_2'sapabilities to extend Del-ells with data and to overlay (suh) arrangements; see �2.4.3and remember that in order to support a ertain family of urves, a proper model ofArrangementTraits_2 must be provided. This and other requirements are listed next, whenwe present the SurfaeTraits_3 onept.5.3.1. The SurfaeTraits_3 oneptThe SurfaeTraits_3 onept spei�es geometri types operations on them to �nally supportthe omputation of Problem 5.24. As eah onept, it is a olletion of syntati andsemanti premises. No assumptions on how to implement them are stated, as long asthe demanded funtionality is ensured and supported by the formal parameters. We nextintrodue the onept in its details and show in �5.3.2 and �5.3.3 how the frameworkinterats with a model of the onept to reah the goal. As in �4.3 and �4.5, the desriptionof the onept laks the preision of a referene manual. The reason is that suh we anemphasize the simpliity of the tasks. In �5.4 we present onrete models ful�lling theSurfaeTraits_3 onept.A model of the SurfaeTraits_3 is supposed to provide the following types:
• Surfae_3An instane of this type should represent a surfae Si ∈ S. How an instane isonstruted is not spei�ed. It depends on the surfae the type represents.
• BoundaryA type to represent lower and upper approximations of oordinates.
• Kernel_2This type determines the geometri properties of the planar arrangements we are go-ing to onstrut. As we will rely on Cgal's Arrangement_2 pakage for this purposeKernel_2 must be a model of Cgal's ArrangementTraits_2 onept. Thus, it pro-vides types Curve_2, X_monotone_urve_2, and Point_2 and the operations on themas presented in �2.4.3. We use it to onstrut A{Si} and A{Si,Sj} and their over-lays. It depends on the family of surfaes whih model is su�ient. The embeddedtype Curve_2 is used to represent the orresponding projeted urves, that an bedeomposed into zero- and (weakly) x-monotone one-dimensional omponents withMake_x_monotone_2.In addition to the ArrangementTraits_2 onept, we require more spei� funtion-ality with respet to the nested types:� Construt_interior_vertex_2An instane of this funtor is expeted to provide the following operator:Point_2 operator()(X_monotone_urve_2 xv)whih should return a point in the interior of xv, best with oordinates on-struted from type Boundary.



5.3. Implementation in a framework 217� Lower_boundary_x_2(and also: Upper_boundary_x_2, Lower_boundary_y_2, and Upper_boundary_y_2)An instane of this funtor is expeted to provide the following operator:Boundary operator()(Point_2 pt)whih should return a lower approximation of the pt's x-oordinate as instaneof type Boundary; similar for the upper approximation of x, and analog also forthe point's y-oordinate. Eah approximation must be unequal to the atualoordinate.� Refine_x_2 (and also: Refine_y_2)An instane of this funtor is expeted to provide the following operator:void operator()(Point_2 pt)whose purpose is to re�ne the interval de�ned by lower and upper approxima-tions of pt's x-oordinate (y-oordinate, respetively).
• Z_at_xy_isolatorAn instane of this type omputes, represents, and approximates the set Zp,i \{±∞}for a given surfae Si at a given Point_2 p as re�neable intervals. Similar for Z

|
p,i,jand two surfaes. Its member size() gives their number, that is, enodes mp,i. Thevalues z = {±∞} are impliitly handled.Re�neable means that the z-oordinate with index 0 ≤ l < size() might notbe known exatly, but at least a lower and an upper boundary is aessible bylower_boundary(int l) and upper_boundary(int l). This approximation an be im-proved by refine_interval(int l). The type of suh an interval-end is given byBoundary.Besides these types, the onept also demands for funtors related to the projetion aspresented in �5.1:

• Construt_silhouette_2This funtor has to provide three operator()s that ompute di�erent planar urvesemanating from a given surfae S. The output is returned as std::pair< Curve_2,unsigned int > through an OutputIterator (OI). The unsigned int de�nes the mul-tipliity of a urve, if possible to ompute, else −1 is hosen. For example, bivariatepolynomials de�ning algebrai urves an be fatorized by multipliity; see �2.1.1.OI operator()(Surfae_3 s, OI oi)This �rst operator returns all urves that belong to the projeted silhouette of s.OI operator()(Surfae_3 s, int d, OI oi)



218 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsThe seond omputes for given d all urves whose points an derease the regularityof a planar point with respet to s to d.OI operator()(Surfae_3 s, int d, int k, OI oi)This last operator omputes for given regularity d and given 0 ≤ k < d all urveswhose points an inrease the degradation of a planar point of regularity d to k withrespet to the given surfae s.
• Construt_intersetion_2This funtor is very similar to the previous one. Its output iterator relies on thesame value-type, but the signature of the two demanded operators now expets twosurfaes S1 and S2.OI operator()(Surfae_3 s1, Surfae_3 s2, OI oi)This �rst operator returns all urves belonging to the projeted intersetion of thetwo surfaes. Note that we assumed surfaes to interset at most one-dimensional.OI operator()(Surfae_3 s1, Surfae_3 s2, int d1, int d2, int k, OI oi)This seond operator returns for given regularities d1 and d2 and given 0 ≤ k <

min{d1, d2} all urves whose points an inrease the degradation of a planar pointwith (d1, d2)-regularity to k with respet to the two surfaes.Finally, the onept expets funtors supporting the lifting and adjaeny phase:
• Construt_isolatorAn instane of this funtor is expeted to provide the following operator(s):Z_at_xy_isolator_2 operator()(Point_2 pt, Surfae_3 s, Cell_info1 i)whih onstruts for given pt and S the orret instane of Z_at_xy_isolator type,that is, it omputes Zpt,i for Si = S; even if S has a vertial line at pt. For anillustration see Figure 5.1.The given point is inluded in a ell Γ of A{S}. To trigger a speial or more e�ientimplementation, the ell-info i omprises integral values for dim(Γ), dΓ, kΓ, and,in ase that dim(Γ) = 1 (i. e., Γ is an edge), the multipliity of τS 's fator thatontains pt. In addition, it arries boolean values indiating whether S onsists of atwo-dimensional vertial omponent, or whether S is vertial loally at pt.Z_at_xy_isolator_2 operator()(Point_2 pt, Surfae_3 s1, Surfae_3 s2,Cell_info1 i1, Cell_info1 i2, Cell_info2 i12)



5.3. Implementation in a framework 219This operator is expeted to ompute Z
|
p,i,j. As preondition we have that S1or S2 has a vertial line at pt. Similar to the previous operator the providedCell_info1 ontainers give information for the ell of A{S1} and A{S2} that on-tain pt. The Cell_info2 ontainer ollets information on A{S1,S2}'s ell Γ1,2 on-taining pt: dim(Γ1,2), kΓ1,2,1,2, and, in ase that dim(Γ1,2) = 1 (i. e., Γ1,2 is an edge),the multipliity of τ0,S1,S2 's fator that ontains pt.

• AdjaenyAn instane of this funtor is expeted to ompute for a surfae s the adjaenyrelation of two inident ells of A{S} as depited in Problem 5.12 by the followingoperator:OI operator()(Surfae_3 s,Point_2 pt1, Cell_info1 i1, Z_at_xy_isolator iso1,Point_2 pt2, Cell_info1 i2, Z_at_xy_isolator iso2,OI oi)The ells are interfaed in terms of their sample points pt1 and pt2. As before,the Cell_info ontainer ollet information on these ells Γ1 and Γ2 of A{S}. Theinterfaed instanes of Z_at_xy_isolator represent Zpt1 and Zpt2. The value-type ofthe OutputIterator (OI) is std::pair< int, int >, re�eting an entry L as de�nedin Problem 5.12; see Figure 5.2 for an illustration. For p ∈ V, it also an be the asethat iso1 is idential to Zp,S. But note that Zp,S ⊃ Zp,i, that is, we only onsider a�ner deomposition of ℓp.
• Equal_zAn instane of this funtor has to provide the following operator:bool operator()(Surfae_3 s, Point_2 ptZ_at_xy_isolator iso1, int l1, Cell_info1 i1,Z_at_xy_isolator iso2, int l2, Cell_info1 i2,Cell_info2 i12,)It heks whether the l1's entry of iso1 is supposed to be equal to l2's entry of iso2.Both isolators belong to pt. Remember that they are only required to store re�neableapproximations of the entries. Even in simple ases this information is insu�ient,as their equality annot be �nally dedued from iterated re�nements of the isolatingintervals. If the isolators have aess to an exat representation the detetion ofequality an just be forwarded. However, in general, we do not expet this ase.Thus, having this funtor keeps the hane that the equality deision is ahievedless diretly; for example, using information provided by the interfaed ell-info on-tainers. In addition, suh information may even improve Equal_z's performane by�lters. Mind that Equal_z usually implements ostly omputations, for example,unavoidable symboli evaluations in some ases of algebrai surfaes; see �5.4.2.However, the funtor has not to deal with all ases. Before it is triggered, we apply aset of �lters; see Algorithm 5.5 for details. In partiular, we know, when alled, that



220 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsall intervals of the two given isolators are already re�ned suh, that eah intervaloverlaps with at most one interval of the other isolator. Thus, the set of overlapsforms a andidate list of real intersetions. It is the funtors tasks to deide for thequeried (still undeided) andidate, whether there is really an intersetion or whetherthe isolating intervals will separate after a �nite number of further re�nements. Anexample is given in Figure 5.3.This onludes the disussion of the SurfaeTraits_3 onept. It is our goal for thefuture to further abstrat the implementation from algebrai omponents. Finally, it isstrongly enouraged to deploy an extensive ahing strategy when implementing thesefuntors to avoid unneessary re-omputations of usually ostly tasks.5.3.2. Planar arrangements and attahed dataThe entral lass of our framework is alled Projetion_2. It is a referene-ounted ver-sion [Ket06℄ of Cgal's Arrangement_2. We instantiate with Kernel_2 as geometri-traitslass, and the topology-traits for the unbounded plane, provided by Cgal 3.4. That is,there is a speial �titious retangle at in�nity (as in Figure 4.9 (a)) to distinguish severalseveral unbounded faes.We enhane the arrangement's Del by using Cgal's Arr_extended_del to attah aninternal data lass P_del_data to eah vertex, eah edge, and eah fae. An instane oftype P_del_data for a ell Γ omprises the following data:
• the id of the Projeted_2 instane it belongs to
• an enumeration re�eting dim(Γ)
• a CGAL::Objet that enapsulate a handle to aess Γ
• a list of surfaes whose projeted silhouette or projeted intersetions are involvedin Γ
• a list of surfaes with a two-dimensional vertial omponent over Γ
• a list of surfaes that have a vertial line over Γ (only if Γ is a vertex)
• a map that assigns a surfae S whose projeted silhouette partiipates in Γ to aCell_info1 ontainer. The ontainer ollets information suh as the ell's regularity,degradation with respet to S or, if Γ is an edge, the multipliity of the fator ofthe projeted silhouette that supports Γ. It also stores a Del-handle to the ell of

A{Si} from whih Γ might originate (after an overlay)
• a map that assigns pairs of surfaes Si, Sj whose projeted intersetion partiipatesin Γ to a Cell_info2 ontainer. This ontainer ollets information suh as kΓ,i,j, aDel-handle to the ell of Aτ0,Si,Sj

from whih Γ might originate (after an overlay),or, if Γ is an edge, the multipliity of τ0,Si,Sj
's fator that supports the edge

• an instane of type Point_2, that is, a sample point in Γ's relative interior
• an instane of type Z_fiber (see �5.3.3 for details on this type)The stored list of data helps in two diretions: First, it provides the data expeted bythe funtors required by the SurfaeTraits_3 onept. Examples are Construt_isolatoror Equal_z. They an bene�t from this data for good reasons: The global omputation ofregularities and degradations for all ells of an arrangement saves repeated loal omputa-tions within the funtors. In addition, the best algorithm aording to the given data anbe triggered diretly in a funtor. Seond, the list onstitutes ombinatorial informationthat enable to �lter tasks; for examples see �5.3.3 or �5.5.



5.3. Implementation in a framework 221Publi members of Projetion_2 also provide aess to the stored information forpotential users, suh as the appliations we present in �5.5. We exemplary mention.has_silhouette(Del_handle h) and .has_intersetion(Del_handle h), where the tem-plate Del_handle orresponds to either a vertex-, an edge-, or a fae-handle. In addition,Projetion_2 forwards iterators to traverse all verties, edges, and faes. Unfortunately,Cgal's Arrangement_2 fores us to split urves into x-monotone piees. Thus, these traver-sal do not re�et if inident ell share the same attahed data. For that reason, we providespeial traversals that re�et this property. Consider a single surfae: We are able to om-bine verties and edges to maximal (d,k)-onstant paths, that is, a vertex is �ltered out ifits degree is 2 and the vertex and its two inident edges all share the same (d,k)-values.Having this enhaned arrangement we are now able to takle Problem 5.23 and theprojetion step of Problem 5.24 in terms of software. The framework provides the funtorConstrut_projetion_2 that inludes exatly three operators. Eah is either onstrutinga new arrangement or overlaying existing ones. We present implementation details, whileommon subtasks are postponed.
• Projetion_2 operator()(Surfae_3 s)onstruts A{s} for given s. It implements Algorithm 5.2: First onstrut Aτs , set(d,k)-values for faes, and re�ne edges respet to other arrangements Aαs,d and Aσs,d,kby overlays. We introdue for eah (re�ned) ell a map-entry from s to a new ell-info ontainer and update its information (regularity, degradation) aordingly. Ofourse, we tuned the implementation not to run all iterations, but to stop as soonas all ells know their d-k-values. This saves the ostly onstrution of new arrange-ments (and urve-analyses) and overlays with the existing ones. Note that all re-quired urves are provided by the SurfaeTraits_3's funtor Construt_silhouette_2.We �nally �ll missing �elds in eah ell's P_del_data ontainer: id of omputedProjetion_2, handle to ell it belongs to, list of involved surfaes (just add s).
• Projetion_2 operator()(Surfae_3 s1, Surfae_3 s2)onstruts A{s1,s2} for given s1 6= s2. It implements Algorithm 5.3: First we over-lay As1 and As2. Then, we onstrut Aτ0,s1,s2 and overlay it with the previousoverlay. Finally, re�nements of edges with respet to Aτk,s1,s2 to set the k-valuesare performed. Similar, we introdue for eah ell a map-entry from the pair s1,s2to a new ell-info ontainer and update its information (degradation) aordingly.Again, the implementation stops further re�nements, as soon as all k-values areknown. Note that all required urves are provided by the SurfaeTraits_3's funtorConstrut_intersetion_2. Again, missing �elds in eah ell's P_del_data ontainerare set at the end: id of omputed Projetion_2, handle to ell it belongs to, list ofinvolved surfaes (add s1 and s2).
• template < lass InputIterator >Projetion_2 operator()(InputIterator begin, InputIterator end)



222 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsonstruts AS, where S is attained by the input range [begin,end). The operatorimplements an overlay of all pairs A{Si,Sj}, i 6= j. This is feasible by Cgal's ar-rangements. Conerning the attahed data, note that the ell-info ontainer for apoint with respet to a given surfae (or a pair of surfaes) must be equal, even ifstored in di�erent arrangements. As overlaying suh arrangements only re�nes ells(with attahed data), it su�es to merge the originating key-value-pairs of propermaps. The same holds for the list of involved surfaes and list of surfaes with ver-tial omponents. At any point, no deletion of an entry in a list or map is required.Finally, we again assign the id of the resulting arrangement and a ell handle to eahell. As eah A{Si} appears up to n times, we remark that there is room for furtherimprovements, using a more diret overlay.Remark. The funtor exploits an internal ahing strategy to avoid repeated onstrutions.This means that for a given surfae Si, there will be exatly one Projeted_2 instanethat represents A{Si}, and for eah pair Si, Sj , i 6= j, there will be exatly one Projeted_2instane that represents A{Si,Sj}. Eah suh instane has a unique id in memory. Thefuntor, again, is responsible to orretly assign this id to eah resulting Del-ell (forlater look-ups).As promised, some remarks on subtasks:
• A �rst subtask is to ompute an arrangement for a set of planar urves. Rememberthat eah urve reported by a projetion-funtor of the SurfaeTraits_3 onept, isenhaned with a multipliity. In this substep we split eah urve into its isolatedpoints and (weakly) x-monotone urves, ompute the indued arrangement, andassign the orresponding multipliity to eah edge. Finally, these arrangements areoverlaid, while propagating the multipliity information for edges.This substep is used when omputing AτSi

from urves reported by the simplest op-erator of Construt_silhouette_2 and Aτ0,Si,Sj
from urves reported by the simplestoperator of Construt_intersetion_2. We already remark that AτS

is entral in anappliation that we present later in �5.5.3 on page 248 �.As Kernel_2 is a model of Cgal's ArrangementTraits_2 onept, the onstrutionsand overlays of arrangements an be handled by Cgal's Arrangement_2 pakage; seealso �2.4.3.
• Although the re�nements in Algorithm 5.2 and Algorithm 5.3 involve di�erent values,they share ommon abstrat steps:� ompute an overlay of two arrangements� detet the ells whose values gets set� ompute the value from the information available in the urrent iteration� remove unneessary ellsOur implementation exatly follows these generi steps, while ode speializes forthe re�nement of an arrangement with respet to multipliities, regularities, anddegradations. Atually, the ultimate goal is to abstrat further and to iterativelyompute the property (suh as regularity or degradation) for eah ell in a sequeneof overlays: Eah overlay step adds a new attribute value (here, the existene of aurve), while after eah overlay, it is heked whether the property an already be



5.3. Implementation in a framework 223omputed from the the available attributes. However, this generalization is beyondthe sope of this thesis.For the lifting of surfaes, a sample point for eah ell is required. As a vertex ofan arrangement is zero-dimensional, there is no hoie. The sample point of a vertex issimply the attahed Point_2. An edge is one-dimensional, so there is some hoie. Notethat eah edge stores an X_monotone_urve_2. A point in its interior an be omputed byKernel_2::Construt_interior_vertex_2, even with a x- or y-oordinate of type Boundary.To ompute the sample point of fae, remember that we an aess an approximation ofa point that represents a retangle. Thus, we hoose a point p on a CCB of a fae. Let Bbe the retangle de�ned by p's approximation. Pik a point p′ on a part of B that isinterseted by the desired fae. In ase, the boundary of the retangle does not intersetwith the fae, we re�ne the point's approximation until its boundary has an intersetionwith the fae. Note that following this strategy, the omplexity of sample points for edgesand faes depends on the provided planar kernel. We atually try to ompute suh withrational oordinates of low bit-size, if possible.Consider now a ell that originates from the overlay of two arrangements. We ansimply ompute a new sample point for this ell. However, as the sample point is alsothe base of the lifting, whih we explain next, we do not want to have too many di�erentsample points. Thus, it is �rst heked, whether one of the sample points of the originatingells �ts for the resulting ell. If so, this one is hosen.5.3.3. Z_fiberOne the planar arrangements enhaned with ombinatorial data and sample points foreah ell are omputed, we an lift them to the third dimension in order to ahieve a elldeomposition; see �5.1. Conerning the implementation we have to represent a z-patternfor eah ell along with geometri information on the surfaes' z-oordinates. Thus, wepresent the lass Z_fiber that serves both goals.In what follows we �x a single ell Γ ∈ AS, where the ase |S| = 1 is speial and requiresonly trivial proessing. Let p ∈ Γ. For our purpose, we typially have p = pΓ where pΓ isthe sample point of Γ. However, if desired, any point is seletable; we only detet hangesin the surfaes' z-oordinates, when moving p within Γ. So, assume p = pΓ.Let SΓ = SΓ,1, . . . , SΓ,r be the set of surfaes involved in Γ. We know this information.In partiular, by available ombinatorial information, we an even partition SΓ into S
|
Γ⊎S∗Γsuh that for S ∈ S

|
Γ we have ℓp ⊂ S and for S ∈ S∗Γ we have ℓp 6⊂ S. Thus, an instane oftype Z_fiber maintains a list for surfaes being vertial over p. We are missing to ahievegeometri information for S ∈ S∗Γ. Thus, for eah suh S we all Construt_isolatorinterfaing the available ell-info as expeted, whih returns a Z_at_xy_isolator instaneproviding the desired (approximative) z-oordinates for S at p. The Z_fiber maintainsa map that assigns S to its respetive isolator. This ompletes the part of an Z_fiberinstane dealing with geometri information.We next turn to ompute the sequene Wp,S∗

Γ
= wp,1, . . . , wp,k representing (togetherwith S

|
Γ =: w

|
p) the z-pattern over Γ. The Z_fiber lass maintains a sorted list of surfae-sets. Eah set is alled a Z_ell and stores instanes of std::pair< Surfae_3, int >.Suh a pair denotes a surfae lift over Γ. Note that the int orresponds to the sheet



224 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsnumber of the Surfae_3 instane at p; see also De�nition 2.29. Observe that the Z_fiberdeouples the ombinatorial z-pattern from the geometri information (i. e., Zp,i). But asa Z_ell an store a lift for eah S ∈ SΓ, we are able to reassemble them: It is easy tore�ne the intervals of the stored isolators suh that all intervals belonging to one surfaelift are isolating with respet to the intervals belonging to surfae lifts of the neighbored(below/above) Z_ell, if existing. That is, their onvex hulls are isolating to eah other.We remark, that ells for z = ±∞ are not expliitly stored.Theoretially, Equation (5.1) de�nes wp,l and thus the entries of a Z_ell. In pratiewe still have to determine eah. In ase that |SΓ| = 1, this task is obvious. Computing
Wp,S∗

Γ
with |SΓ| > 1 is implemented via a multi-way merging. That is, for a set of z-oordinates Z := {zp,i,li | 1 ≤ i ≤ r} we have to ompute Zmin := {i | zp,i,li = min(Z)}.This requires to ompare the z-oordinates as stated in Problem 5.22. The isolators storedfor the surfaes do not provide su�ient information to determine Zmin, atually to deter-mine if |Zmin| > 1. The reason is, that an isolator only provides re�neable approximationfor all zp,i,li . At this point, the SurfaeTraits_3's funtor Equal_z enters the stage. Thesubsequent disussion assumes that |SΓ| = 2; the extension to |SΓ| > 2 is straightforward.In order to enable a two-way merge, our task is to ompute the order of zp,1,l1 ∈ Zp,1and zp,2,l2 ∈ Zp,2 for surfaes S1 and S2. The diret solution is given by Algorithm 5.4.Algorithm 5.4. Compare entries of z-�bers of two surfaesInput: zp,1,l1 ∈ Zp,1, zp,2,l2 ∈ Zp,2Output: Their order1. Re�ne intervals of isolators representing Zp,1 and Zp,2 suh that eah interval overlapswith at most one interval of the other isolator.2. The overlapping intervals form a andidate list for possible intersetions of S1 and

S2 along ℓp. If no andidate is found, proeed with (5).3. Chek if the intervals approximating zp,1,l1 and zp,2,l2 overlap. This an be done interms of indies l1 and l2. If not, proeed with 5.4. Call Equal_z for zp,1,l1 and zp,2,l2 . If it returns true, return EQUAL.5. Reahing here indiates that zp,1,l1 and zp,2,l2 are not equal, that is, their approxi-mative intervals an be re�ned until they do not overlap any more, whih gives theorret order, that is, SMALLER or GREATER.Algorithm 5.4 fully relies on the SurfaeTraits_3's funtor Equal_z to deide the equal-ity. However, this strategy ignores available ombinatorial information attahed to Γ andontinuations we expet from surfaes. Thus, we present Algorithm 5.5 that exploits thesedata in order to avoid, usually ostly, alls to Equal_z. One of the �lters (highlighted)detets that zp,1,l1 = zp,2,l2 , while most of them deide that zp,1,l1 6= zp,2,l2 .For reasons of e�ieny, the �lters are ative by default. When we disuss algebraisurfaes in �5.4, they help to avoid ostly equality test, for example, at points with highalgebrai degrees. Note that the equality over verties is only expliitly heked, if thereexists an isolated point (a degenerate ase). However, the oordinates of verties areusually the ones with the highest algebrai degrees. Thus, it is bene�ial to �lter suhases with ombinatoris. For the future, we hope to develop further �lters.We want to remark, that the lifting follows the lazy evaluation sheme. This meansthat sample points for Del-omponents and their z-�bers are only omputed on de-mand. Further requests for them are served by ahed versions. Of ourse, Projetion_2
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Algorithm 5.5. Compare entries of z-�bers of two surfaes, with �ltersInput: zp,1,l1 ∈ Zp,1, zp,2,l2 ∈ Zp,2Output: Their order1. If dim(Γ) = 2 (fae), proeed with (10).2. If τ0,S1,S2 is not involved in Γ, proeed with (10).3. Re�ne intervals of isolators representing Zp,1 and Zp,2 suh that eah interval overlapswith at most one interval of the other isolator.4. The overlapping intervals form a andidate list for possible intersetions of S1 and
S2 along ℓp. If no andidate is found, proeed with 10.5. Chek if the intervals approximating zp,1,l1 and zp,2,l2 overlap. This an be done interms of indies l1 and l2. If not, proeed with (10).6. If there is exatly one overlap, hek if dim(Γ) = 1 (edge) and if it stores multipliity 1for τ0,S1,S2 . If so return EQUAL, if not, proeed with (10).7. If dim(Γ) = 0 (vertex), selet inident edges of Γ ∈ A{S1,S2} whose Z_fiber indiatean intersetion of S1 and S2. Compute for eah Z_ell ontaining an intersetionthe adjaenies of S1 and S2 towards given vertex (using SurfaeTraits_3 Adjaenyfuntor). For eah we obtain a pair of indies. If one pair mathes (l1, l2), returnEQUAL, whih follows by Condition 5.9. Otherwise proeed with (10).8. If dim(Γ) = 0 (vertex), hek whih τS1 and τS2 are involved in Γ. If none, proeedwith (10), as only isolated points remain for possible intersetions, but an isolatedpoint is indiated by the existene of a projeted silhouette.9. Finally, all Equal_z for zp,1,l1 and zp,2,l2 . If it returns true, return EQUAL.10. Reahing here indiates that zp,1,l1 and zp,2,l2 are not equal, that is, their approxi-mative intervals an be re�ned until they do not overlap any more, whih gives theorret order, that is, SMALLER or GREATER.



226 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementso�ers publi members to aess sample points (.sample_point(Del_handle h) and z-�bers(.z_fiber(Del_handle h) for given Del-handles. When merging attahed data due toan overlay, we already mentioned that our ode always tries to reuse already omputedsample points. Obviously, the same idea is possible for Z_fiber instanes attahed to aell, espeially for the stored isolators.In general, we have seen how to e�iently onstrut the z-pattern for a ell Γ, thatalso impliitly de�nes the multi-surfae z-�ber of surfaes involved in Γ. The omputationshighly bene�t from preomputed ombinatorial data attahed to Γ.Remark. In ase that p ∈ V, Algorithm 5.4 is also used to ompute Zp,S by merging theentries of Zp,i, Zp,j and Z
|
p,i,j.As last step, it remains to onnet Z_ell instanes with respet to the adjaenyrelation(s). For that reason, eah suh ell maintains a list storing handles to adjaentells. If S onsists of a single surfae, the lists an diretly be �lled with informationprovided by querying SurfaeTraits_3's Adjaeny funtor for all pairs of inident ells of

AS. In priniple, the same idea is appliable if |S| > 1. The di�erene is now that theindies of the z-pattern wΓ,l are not idential to the surfae lifts. To orretly maintainthe lists of adjaent Z_ell instanes, we have to loate wΓ1,l1 and wΓ2,l2 that ontains thereported index-pairs L of z-�bers to link them; see also Equation 5.1, Problem 5.12 and,for an illustration, Figure 5.7.Figure 5.7. Propagate single-surfae adjaenies to multi-surfae �bers
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������() . . . propagatethem using sheetnumbers.Remark. Note that this propagation only works if none of the ells Γ1, Γ2 ontains a vertial
ℓp of some surfae. Otherwise, we have by Condition 5.17 that more than one surfaein�uenes the deomposition of ℓp. Let us assume that Γ1 = {p} with p ∈ V. In this ase
Zp,i must be replaed by Zp,S and we ompute the adjaeny relation of eah Si betweenits lifts over Γ1 and all lifts of Si over Γ2. Note that we only have to math orret indiesfor lifts of Γ2, while the indies for Γ1 are already reported with respet to Zp,S.



5.4. Models for algebrai surfaes 2275.4. Models for algebrai surfaesIn this setion, we �nally present details on two models that we provide for the newSurfaeTraits_3 onept. Both deal with algebrai surfaes.Quadri_3_traits Supports algebrai surfaes of degree at most 2. It was our initial model,and allows ombinatorial �lters for the funtors related to lifting.Algebrai_surfae_3_traits This model supports algebrai surfaes of any degree.The models have in ommon, that none expets to shear the three-dimensional oor-dinate system in order to avoid degeneraies. In the reent implementation, the quadrialmodel is a re�nement of the other. But let us present the details step by step. Algebraisurfaes have already been touhed in �5.2. Thus, we mainly onentrate on implementa-tion details. We start with the basi types and swith in �5.4.1 to the projetion tasks.Then, �5.4.2 overs the details on the lifting phase. There, we also give the missing om-putation of Zp,i and Z
|
p,i,j for algebrai surfae Si and Sj .Algebrai surfaes are represented by the lass template Algebrai_surfae_3. It isbased on Cgal's Polynomial lass, but adds surfae-spei� funtions. An objet of thistype is onstruted from a trivariate polynomial. We typedef Surfae_3 to this type.For our quadrial model, Exaus' lass Quadri_3 derives from the Algebrai_surfae_3and adds onstrutors (e. g., from ten oe�ients de�ning the quadri) and other spei�members: for example, to ompute the quadri's matrix representation, or the quadri'sinertia (not required here). Both lasses are templated by an Arithmeti_kernel that pro-vides oherent types for integer, rational, and big�oat numbers; see �2.3.1. We typedefBoundary to Arithmeti_kernel::Rational.505.4.1. Projetions for algebrai surfaesAs seen in �5.2.2, the projetion for algebrai surfaes requires to onstrut and overlayarrangements of algebrai urves. Their degree is bounded by D2, where D is the maximum(total) degree of any input surfaes. Thus, for quadris we need a model of Kernel_2 thatan deal with algebrai urves of degree at most 4, while the any-degree model, requires amodel that supports algebrai urves without restritions on their degree. Suh a modelhas beome available reently with Cgal's Curved_kernel_via_analysis_2 if instantiatedwith Cgal's bivariate Algebrai_urve_kernel_2; see �2.4.4, [BE08℄, and �2.3.3, [EK08a℄,[EKW07℄ for more details. In fat, the Curved_kernel_via_analysis_2 also provides theadditional funtors (interior vertex, approximations for points) as listed in �5.3.1. Similarto the geometri prediates and onstrutions expeted by Cgal's ArrangementTraits_2onept, they are implemented relying on the provided algebrai kernel. Thus, we are ableto �nally typedef Kernel_2 to CKvA_2< Algebrai_urve_kernel_2>. Note that we do notspeialize for quadris.The same holds for the funtors related to the projetion, that is, they serve bothmodels. For simpliity, we abuse notation and identify surfae and de�ning polynomial.Remember that f =
∑D

d=0 adz
d and for D0 < D: f(D0) :=

∑D0
d=0 adz

d. We requireto deompose the polynomials Resz(f, ∂f
∂z ), ad, and sthak(f(d)) into square-free fators50In a future version, it is an objetive to use Arithmeti_kernel::Bigfloat as Boundary type.



228 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsand onstrut orresponding urve instanes. We utilize Cgal's Polynomial [Hem07℄and Algebrai_kernel_d [BHKT08℄ pakage, that provide all required operations, suh assquare-free fatorization, resultants and their sequenes. It allows to provide a straight-forward implementation of Construt_silhouette_2 and Construt_intersetion_2. Thevalue-type of the funtor's OutputIterator is std::pair< Curve_2, int >, where Curve_2is atually a Curve_analysis_2 provided by the Algebrai_urve_kernel_2. The reportedint represents the orresponding multipliity of the square-free fator.The funtor Construt_silhouette_2 has to provide three operators for a given surfae:OI operator()(Surfae_3 f, OI oi)we ompute and report the square-free fatorization of Resz(f, fz),OI operator()(Surfae_3 f, int d, OI oi)we ompute and report the square-free fatorization of ad with 0 ≤ d ≤ DOI operator()(Surfae_3 f, int d, int k, OI oi)we ompute and report the square-free fatorization of sthak(f(d),
∂
∂zf(d), z) with 0 ≤ k <

d ≤ D.For the Construt_interset_2 funtor, exatly the same approah is taken, with thedi�erene that the desired polynomials are expressed with respet to two given surfaes.OI operator()(Surfae_3 f1, Surfae_3 f2, OI oi)we ompute and report the square-free fatorization of Resz(f1, f2)OI operator()(Surfae_3 f1, Surfae_3 f2, int d1, int d2, int k, OI oi)we ompute and report the square-free fatorization of sresk((f1)(d1), (f2)(d2), z), with
0 ≤ k < min(d1, d2) ≤ D.Remark. We ompute Sturm-Habiht sequenes with ofators as given by [BPR06, Al-gorithm 8.22℄. This algorithm relies on polynomial remainder sequenes [Loo82b℄. Inpratial setting this is more e�ient than omputing the Sturm-Habiht sequene viadeterminantal expressions.Note that the atual onstrution of the desired arrangements is implemented usingexatly the output of these funtors; see �5.3.2 and Algorithms 5.2 and 5.3.5.4.2. Lifting for algebrai surfaesIn the lifting phase, we have three tasks to ahieve. Namely, to onstrut isolators rep-resenting Zp,i and Z

|
p,i,j, to deide equality for two entries of suh isolators for di�erentsurfaes, and to ompute the adjaeny relation between the entries of two isolators be-longing to the same surfae. We �rst disuss these tasks for algebrai surfaes of anydegree, and �nally present how to ombinatorially �lter the quadrial ase.



5.4. Models for algebrai surfaes 229IsolatorFor all onstrutions of Zp,i we rely on the bitstream Desartes method that has beenpresented with its details in �2.3.4. Remember that the method isolates the real rootsof a polynomial whose oe�ients are given as possible in�nite bitstreams, that is, theapproximation of its oe�ients an be improved to arbitrary preision. Thus, we typedefZ_at_xy_isolator to Cgal's type Bitstream_desartes.For our purposes, we require a new model ful�lling the BitstreamDesartesRndlTreeTraitsonept, whih we all the Bitstream_z_at_xy_traits. There are three onstrutors forthis traits:square-free-onstrutionBitstream_z_at_xy_traits(Polynomial_3 f, Point_2 pt)whih supports to isolate the roots of f(pt) := f(px, py, z) =
∑D

d=0 ad(pt)zd ∈ R[z]with the bitstream Desartes method. Remember that ak ∈ Q[x, y]. The onstrutorrequires that f(pt) is square-free.m-k-onstrutionBitstream_z_at_xy_traits(Polynomial_3 f, Point_2 pt,int m, int k)whih supports to isolate the roots of f(pt) := f(px, py, z) =
∑D

d=0 ad(pt)zd ∈ R[z]with the m-k-bitstream method, where m represent the loal real degree of f(pt) and k theloal gd degree of f(pt). It is suessful, if f(pt) has at most one multiple root, otherwisean exeption is thrown; see also �2.1.2.vertial-line-onstrutiontemplate < lass InputIterator >Bitstream_z_at_xy_traits(InputIterator begin, InputIterator end)whih supports a simulated isolation. It only forwards the input range [begin,end)of handles to already isolated intervals, that is, to entries of isolators onstruted withthe square-free or m-k-variant. We use it to represent the isolator for Zp,i for p ∈ Vi, orfor Z
|
p,i,j. Below, we see that suh sequenes onsists of links to roots of a small numberof polynomials.The �rst two onstrutors rely on the possibility to re�ne pt's oordinates to arbitrarypreision; see �5.3.1 and �5.4.1. This diretly supports the omputation of the approxima-tions as Bigfloat intervals as expeted by the Bitstream_oeffiient_kernel. Addition-ally, for c ∈ Q[x, y] (as ad, or stha-oe�ients) we an even determine sign(c(px, py)) usingAlgebrai_urve_kernel_2's Sign_at_2 funtor. It internally uses a lever ombination ofanalyses of urves and interval arithmeti. Note that this enables the zero-test that isexpeted to obtain a better initial interval; see Bitstream_oeffiient_kernel in �2.3.4.Even more, the m-k-variant relies on the funtor to ompute a sequene of signs; see below.



230 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsThe di�erent variants (square-free-onstrutor, m-k-onstrutor, sequene-onstrutor)are interfaed through the ommon Bitstream_desartes lass; see also �2.3.4. This allowsthat a user (as, e. g., Algorithm 5.5), is not aware of the various details required in eahvariant. Its main objetives with respet to some isolator are:
• How many entries does some isolator have?
• Give me an interval approximation of zp,l for given l.
• Re�ne the interval approximation of zp,l for given l.
• Whih l belongs to the multiple root? (Only for the m-k-variant!)It remains to disuss how Construt_isolator ombines the di�erent traits onstru-tions in order to orretly provide the desired isolator for Zp,i. Note that the interfae ofthe funtor reeives via a ell-info the loal degrees dp,i, kp,i, mp,i (see �5.2.1), and infor-mation on whether Γ ∈ A{Si} with p ∈ Γ is a vertex, an edge, or a fae. In ase Γ is anedge, the multipliity of τSi

's fator that supports the edge is also provided.We �rst onsider the non-vertial ase, that is p 6∈ Vi. If kp,i = 0, then fi(p) is square-free; this triggers the standard onstrution of the Bitstream_z_at_xy_traits from fi and ponly. The traits itself ensures iterated and oherent re�nements of interval approximationsfor px and py to serve the atual isolation; atually it demands for them from the algebraikernel.Otherwise, if kp,i > 0, we �rst try to run the m-k-Bitstream Desartes method (seealso [EKW07, Setion 5℄) on fi(p). This extension exploits our knowledge on the loal realdegree and the loal gd degree, and isolates the real roots using numerial approximationseven if fi(p) has at most one multiple root. However, we are required to ompute m. Thisan be done, for example, using a modi�ed version of Algorithm 2.3 that an deal withspeialized polynomials. For omputing the signs of sthai we rely on the algebrai kernel'sfuntor Sign_at_2.However, it is not ensured, that the m-k-variants exists with suess. So we are leftwith the ase, that fi(p) has more than one multiple root. In this ase, we ompute thesquare-free part f∗
i (p) of fi(p) using Algorithm 2.4 and apply the Bitstream Desartesmethod on f = fi(p)∗ using the �rst onstrutor. As f is square-free, termination isensured. Observe that in all ases, we simplify by ignoring ±∞ being part of a z-�ber.It is essential that the algebrai kernel models the planar points' oordinates in algebraiinterval represention; see De�nition 2.17. Following, all obtained z-oordinates an beexpressed as algebrai interval representations of dimension 3.However, it is open, and promised in �5.2, to ompute the entries of Zp,i if p ∈ Vi.Remember from De�nition 5.10 how the entries of Zp,i are haraterized, namely as theendpoints of intervals of lifted faes that are inident to p; see also Theorem 5.45 andCorollary 5.52. The omputation of a superset Z∗

p,i for Zp,i is shown in [BKS08℄. As weare foussing on the algorithmi part of the objetive, we only review its main ideas andpresent the entral result; for the (lengthy) proofs we refer to the original work.Let F ∈ A{Si} be a fae inident to p and let I(F (l,i)) be a non-degenerate adjaenyinterval. Choose an arbitrary interior point (p, z0) ∈ I(F (l,i)), that is, z0 /∈ Zp,i. It is animpliation of Theorem 5.45 that the planar urve Cz0 = {(x, y) ∈ R2|fi(x, y, z0) = 0},embedded into the arrangement A{Si}, ontains at least one ar that leaves p and passesfae F . Vie versa, eah ar of Cz0 starting in p orresponds uniquely to a lifted surfaepath above F whih is adjaent to (p, z0). This observation is the basis for the omputation



5.4. Models for algebrai surfaes 231of possible interval endpoints by a oneptual sweep along ℓp: We keep trak of the speialarrangement A{Si},z0
that is indued by the overlay of A{Si} and ACz0

, while moving with
z0 from −∞ to +∞. It is the objetive to detet possible topologial hanges of A{Si},z0loal to p. To be more preise: Compute all z ∈ R where for any fae F in A{Si} thenumber of ars of Cz leaving p and passing F hanges. Observe that for most z0, a slightperturbation of z0 deforms Cz0 in suh a way, that the loal topology of A{Si},z0

at p ispreserved. Hene, an ar of Cz0 ontained in F still lifts to the same F (l,i). In ontrast,perturbing an z0 that belongs to an endpoint of an interval I(F (l,i)) results in either loosingan ar that passes p or in an ar that swithes to another fae F ′; see Figure 5.8 whereloosing ars happens at z0 = ±1
2 , and swithing ars happen at z0 = 0.

Figure 5.8. Steiner Roman surfae with horizontal intersetions at z =
1
2 , 2

5 , 3
10 , 1

10 ,− 3
10 , 2

5 taken from [BKS08℄The following theorem from [BKS08℄ algebraially desribes the non-generi z-valuesthat respet loal topology hanges of A{Si},z0
at p ∈ Vi.Theorem 5.60. Let Si be an algebrai surfae without two-dimensional vertial omponent,de�ned by fi ∈ Q[x, y, z] being square-free and let p ∈ Vi as above. Let

r(x, z) := Resy(fi,
∂fi

∂y
) = (x− px)

r0 r̃(x, z),

t(x, z) := Resy(fi,Resz(fi,
∂fi

∂z
)) = (x− px)t0 t̃(x, z)with the following de�nitions of exponents

r0 := max{r′ : (x− px)
r′ |r(x, z)},

s0 := min{s′ : ∂s′

∂ys′
fi(px, py, z) 6≡ 0}

t0 := max{t′ : (x− px)t
′ |t(x, z)}.Then for z0 6∈ Z∗

p,i := {z|r̃(px, z) = 0∨ ∂s0

∂ys0 fi(px, py, z) = 0∨t̃(px, z) = 0} the loal topologyof A{Si},z0
at p is preserved for any su�iently small perturbation of z0. Additionally,

Zp,i ⊂ Z∗
p,i.By assumption Cz is square-free and does not share a ommon omponent with τS for allbut �nitely many z ∈ R. Suh degenerate z-values are exatly given by Resy(fi,

∂fi

∂y )(x, z) ≡
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0 or Resy(fi,Resz(fi,

∂fi

∂z )) ≡ 0. An impliation is that the fatorization of r(x, z) and t(x, z)as well as s0 is well de�ned. In partiular for eah z0 ∈ Zp,i, the urve Cz0 is square-free andit neither ontains the vertial line L := VR(x− px) ⊂ R2 nor any omponent of τSi
. Notethat Z∗

p,i de�nes a superset of Zp,i. For the full proof and more details we refer to [BKS08℄.As an impliation, we an preisely de�ne the ontent of Si's z-�ber for p ∈ Vi.De�nition 5.61 (z-�ber for p ∈ V ). Consider the polynomials
R(z) := r̃(px, z) S(z) := ∂s0

∂ys0
fi(px, py, z) T (z) := t̃(px, z)ontained in R[z]. We relax De�nition 5.10, and allow also a superset of the intervalboundaries as z-�ber. Thus, we now de�ne

Zp,i := {z ∈ R | R(z) = 0 ∨ S(z) = 0 ∨ T (z) = 0}To ompute this set, we isolate the real roots of R(z), S(z), and T (z) with the bitstreamDesartes method; remember that the polynomial's oe�ients are expressed with respetto p's oordinates, that are, in general, algebrai. However, we know, as in the non-vertial ase, approximations for them and how to re�ne them. Atually, we an obtain alist of polynomials P1(z), . . . , Pl(z) representing the square-free and oprime ounterpartsof R(z), S(z), and T (z) using Algorithms 2.4 and 2.8 (pages 29 and 32). This treatmentsimpli�es two steps: First, eah polynomial is square-free. Thus, we an diretly apply thesquare-free-variant of the bitstream Desartes method. Seond, as no two polynomials Pl1 ,
Pl2 with l1 6= l2 share a ommon root, the merge of the obtained sequenes of isolating(and re�neable) intervals is simple.The atual implementation redues the omputation of suh a Zp,i to urve- and urve-pair analyses. This trik an be seen as keeping x a little bit longer indeterminate. Inaddition, �lters developed for planar urves do now apply also for this task, whih arenot aessible in the diret approah as presented above. Doing it this way, also helpsto remove fators of (x − px) from the original polynomials, as the bivariate polynomialsde�ning urves an be deomposed into �vertial lines� and �non-vertial urves�; see �2.1.4.Thus, we ignore the vertial lines, and only proess three non-vertial urves at x = px.Finally, we just report the merged sequene of obtained isolating intervals as inputrange to the third onstrutor of the bitstream traits model.Remark. It is an open question, whether there is a more strit de�nition of Zp,i, best onethat tightly de�nes the boundaries of all I(F (l,i)). The onjeture is: For given z0 ∈ R, wehave S(z0) = 0⇒ R(z0) = 0.The desired O(D5) omplexity of the ell-deomposition Ω{S} introdued in De�ni-tion 5.28 is ful�lled as we now an give the missing proof of Theorem 5.46.Proof. (of Theorem 5.46) Observe that we only have to show that |Zp,i| ∈ O(D3) a-ording to De�nition 5.61 of Zp,i. Consider the polynomials R(z), S(z), T (z) whose rootsde�ne Zp,i. Eah is of degree at most O(D3). Thus, eah an have up to O(D3) real roots,whih implies the desired bound for the union of them.Following Condition 5.17, De�nition 5.18, and �nally desired by Problem 5.19, we alsohave to ompute Z

|
p,i,j for given p ∈ Vi ∪Vj for two surfaes Si, Sj , i 6= j. That is, we have



5.4. Models for algebrai surfaes 233to explain how to implement the seond operator expeted by Construt_isolator. Tosolve it, a strategy similar to the one that de�nes Zp,i for p ∈ Vi an be used. Analogously,we want to extrat z-oordinates at whih Si and Sj indues intervals along ℓp. As inTheorem 5.60, we use a loal projetion onto the yz-plane.Theorem 5.62. Let Si, Sj be algebrai surfaes without two-dimensional vertial ompo-nent, de�ned by fi, fj ∈ Q[x, y, z] being square-free, oprime and let p ∈ Vi ∪ Vj as above.Let
ui(x, z) := Resy(fi,Resz(fj,

∂fj

∂z
)) = (x− px)u

(i)
0 ũi(x, z)

uj(x, z) := Resy(fj ,Resz(fi,
∂fi

∂z
)) = (x− px)

u
(j)
0 ũj(x, z)

vi(x, z) := Resy(fi,Resz(fi, fj)) = (x− px)v
(i)
0 ṽi(x, z)

vj(x, z) := Resy(fj ,Resz(fi, fj)) = (x− px)
v
(j)
0 ṽj(x, z)and the following de�nitions of the exponents

u
(i)
0 := max{u′ : (x− px)

u′ |ui(x, z)}
u

(j)
0 := max{u′ : (x− px)

u′ |uj(x, z)}
v
(i)
0 := max{v′ : (x− px)v

′ |vi(x, z)}
v
(j)
0 := max{v′ : (x− px)v

′ |vj(x, z)}De�ne Z
|
p,i,j := Zp,i ∪ Zp,j ∪ Z ′

p,i ∪ Z ′
p,j ∪ Z∗

p,i ∪ Z∗
p,j with

Z ′
p,i :=

{
{z ∈ R|ũi(px, z) = 0} , if p ∈ Vi ∧ τSj

(p) = 0

∅ , otherwise
Z∗

p,i :=

{
{z ∈ R|ṽi(px, z) = 0} , if p ∈ Vi ∧ τ0,Si,Sj

(p) = 0

∅ , otherwiseand similar for Z ′
p,j and Z∗

p,jThen for z0 6∈ Z
|
p,i,j the loal topology of A{Si,Sj},z0

at p is preserved for any su�ientlysmall perturbation of z0.Intuitively, Z
|
p,i,j deomposes ℓp into intervals suh that eah fae F of A{Si,Sj} inidentto p is adjaent to exatly one suh interval. This ensures the boundary property formulti-surfae z-lifts of a multi-surfae arrangement. The proof of Theorem 5.62 is analogto Theorem 5.60. To atually ompute Z

|
p,i,j, we again rely on the bitstream Desartesmethod for uk and vk (as we previously did for r, s, and t), while the �nal merging of setsinto Zp,{Si,Sj} is analog to the merge presented for Zp,i with p ∈ Vi using Algorithm 5.4.This onstrution also shows that De�nition 5.20 is well-hosen for algebrai surfaes. Itremains to proof the omplexity of Zp,{Si,Sj}



234 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsProof. (of Theorem 5.47) Observe that we only have to show that |Z |
p,i,j| ∈ O(D3)aording to De�nition 5.18. We already have |Zp,i| ∈ O(D3) and |Zp,j| ∈ O(D3). Theremaining sets that de�ne Z

|
p,i,j are determined by roots of polynomials whose degrees in zare at most O(D3). Thus, eah an have up to O(D3) real roots, whih implies the desiredbound for the union of them.Choosing the bitstream Desartes method to ompute the isolators is not an arbitrarydeision. First of all, the Desartes method is onsidered to be a pratially e�ient rootisolation method, and using numerial approximations of the oe�ients is experienedto speed up the omputation further [Str06℄, [CJK02℄, [Bro02℄. Thus, our hoie for theBitstream Desartes aims for pratial e�ieny, but it has another advantage: The algo-rithm guarantees a suessful real root isolation for the square-free ase by a randomizedhoie of subdivision points, and by its adaptive preision management � regardless ofthe polynomial's root separation. This implies, that we never have to swith to a symboliroot isolator. The same guarantee is given for the m-k-variant. Only if the polynomial isalgebraially di�ult, that is, it has several multiple roots, it must be made square-freeby symboli omputation; see Algorithm 2.4. However, the obtained square-free part anagain be takled with the original version of the Bitstream Desartes method. In aseof the vertial-line �isolation�, our implementation relies on robust urve-analyses. Forour purpose, they an be onsidered as a sophistiated variant of the bitstream Desartesmethod.Remark (Semi-algebrai surfae). If we onsider a semi-algebrai surfae, for example, asphere with a removed ap, the funtor has to modify its report. In partiular, the in-equalities gi ≥ 0 that restrit f = 0 also restrit Zp,i for a given p. That is, we �rstompute Zp,f , but only report those zp,f,l that ful�ll ∀i : gi(p, zp,f,l)) ≥ 0.EqualityWe next disuss how to implement Equal_z that should deide the equality of zp,1,l1 ∈ Zp,1and zp,2,l2 ∈ Zp,2. Remember that we already �ltered some ases; see Algorithm 5.5.However, sometimes we still need this external answer for algebrai surfaes. Our so-lution is to ompute the loal gd gp := gcd((f1)(dp,1)(p), (f2)(dp,2)(p)) at p. This anbe done using Algorithm 2.8. Even better, by Lemma 2.13, we an diretly set gp :=

Sreskp,1,2((f1)(dp,1), (f2)(dp,2), z)p, as kp,1,2, dp,1 and dp,2 are known and interfaed for theell Γ ∈ A{S1,S2} that ontains p.To deide the equality, we only have to hek whether the intervals for zp,1,l1 and zp,2,l2are both isolating for gp. In ase that gp only ontains simple roots, this task an besolved by evaluating gp at the boundaries of zp,1,l1 's available approximation (and similarfor zp,2,l2) and to hek whether they have di�erent signs. The loal gd gp is surely square-free if kp,1,2 = 1, or if kp,1 = 0 or kp,2 = 0. Otherwise, we isolate gp's roots by interpreting
gp := Sreskp,1,2((f1)(dp,1), (f2)(dp,2), z) as algebrai surfae and all Construt_isolator.Observe that this algebraially omplex ase (several intersetions) implies that gp mustbe made square-free using Algorithm 2.4.Note that this funtor is also used to deide equality of entries of Zp,1, Zp,2 and Z

|
p,1,2when omputing Zp,{S1,S2} for p ∈ V1 ∪ V2.



5.4. Models for algebrai surfaes 235AdjaenyThe �nal task expeted from an algebrai surfae Si by the SurfaeTraits_3 onept is toompute the adjaeny relation of its z-patterns. As notied, it su�es to ompute it onlyfor z-�bers of inident ells in A{Si}. We next explain how to implement the Adjaenyfuntor. Remember that we are basially given Zp,1 and Zp,2. Eah of its entries has anindex l1 and l2. We are aiming for the list L of pairs of indies that de�ne the adjaenyrelation as in Problem 5.12. We make a ase-distintion over the dimensionality of theplanar ells.Edge-fae adjaenies: Let E be an edge of A{Si}, and let F denote an adjaent fae.The boundary property allows us to pik E's sample point pE in its interior toproeed. We assume that E is non-vertial and pE is hosen suh that its x-oordinateis rational.51 If dpE
= Di and p has been lifted with the m-k-variant, then all butone roots of fi(pE) are simple. The ells over E to whih these simple roots belonghave preisely one adjaent lift over F . The remaining lifts over F must be adjaentto the possibly multiple root over E. This strategy to obtain adjaenies has alreadybeen applied in [GVN02℄, [Ber04℄, and [EKW07℄.Otherwise, the implementation is similar to the one in [ACM88℄. Determine q =

(qx, qy) for F with qx = px, and qx, qy ∈ Q and onsider the planar urve fi|x=px :=
f(px, y, z) ∈ Q[y, z]. The lF -th lift F (lF ,i) of F is adjaent to the lE-th lift E(lE ,i) of
E if and only if there is an ar of the urve VR(fi|x=px) onneting the lF -th pointover qy with the lE-th point over py. To ompute the adjaenies of VR(fi|x=px)we rely on Cgal's Algebrai_urve_kernel_2; see also [EKW07℄. An illustration isgiven in Figure 5.9.Adjaenies of a vertex Let p be the vertex V 's point. Let us assume �rst, that p 6∈ Vi.We onsider the other ase separately below.Note that the vertex has at least one inident fae, and if there is more than one,there are also inident edges. Let F be suh a fae and E be suh an edge. Firstobserve, that if p has been suessfully lifted with the m-k-variant, the same idea asfor the edge-fae-adjaenies applies for adjaenies between V and E and between Vand F .Seond, due to Condition 5.9, the adjaenies between V and some E an often bederived by a transitivity argument: Let F1 and F2 be the faes to both sides of E. Ifevery lift over V is adjaent to a lift over F1 or F2, knowing the adjaenies between
V and F1 and between F1 and E, or between V and F2 and between F2 and E,diretly gives the adjaenies between V and E as well; see also Figure 5.9.In ase that f(p) has more than one multiple root, or some lift over V is onnetedto an isolated lift of an edge E (i. e., the lifted edge has no inident lifted fae), weimplement the following buketing strategy:Choose rational values q−1, . . . , qmp,i−1 suh that ql−1 < zp,i,l < ql for all l =
0, . . . ,mp,i−1. The mp,i+1 many planes z = ql divide the real spae in mp,i+2 manybukets that separate the lifts over V : One for eah entry of Zp,i; even ±∞. The51Otherwise, pE's y-oordinate is rational and we proeed analogously.
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pxFigure 5.9. First: Edge-fae adjaeny is given by analyzing VR(fi|x=px). Se-ond: Vertex-fae adjaenies and fae-edge adjaenies are known (without ar-rows). Thus, vertex-edge adjaeny (with arrows) an be dedued by transitivity.bukets help �nd points on inident faes and edges whose lifts uniquely determinethe adjaeny relation.De�nition 5.63 (Buket-loyal). Let Γ ∈ AS be inident to V . We say that p′ ∈ Γis buket-loyal if there is a path Π ⊂ Γ from p′ to p suh that eah lift Π(l,i) stays inthe l-th buket.Thus, �nding a buket-loyal point p′ for an inident Del-ell Γ of V gives a possi-bility to ompute the adjaeny between V 's lifts and Γ's lifts: If the l′p-th lift over p′lies in the buket of zp,i,l, then, the lifts V (l,i) and Γ(l′p,i) are adjaent. Lifts of Γ thatbelong to the bottom-most and top-most buket are speial: The z-oordinate of Π'sendpoint at p is +∞ or −∞, that is, they belong to asymptoti lifts. If p 6∈ Vi, Con-dition 5.9 implies that for eah Γ inident to V , there exists a buket-loyal path Π.However, we have to ompute the z-�ber of fi over p′. If p′ is too lose to p, then
fi(p

′) has a bad root separation, whih we want to avoid. Thus, we next propose astrategy to �nd good buket-loyal points for the ells inident to V .
• The �rst ruial observation is that p′ 6= p is buket-loyal if and only if Π doesnot interset any of the buket urves bl de�ned by fi(x, y, ql) ∈ Q[x, y]. As

ℓp 6⊂ Si no buket urve intersets p by onstrution. Following, we an de�ne abuket box B around p suh that it does not ontain any of the buket urves;see the dashed red urves in Figure 5.10 (a). We exploit interval arithmeti toreah the goal: Approximate p's x- and y-oordinate as intervals [px], [py] anduse them to evaluate Il := f([px], [py], ql) for all l = −1, . . . ,mp,i. As long assome resulting interval Il ontains zero, re�ne p's approximation and proeed.The �nal approximation of p de�nes B. Eah point on B's boundary and inside
B is buket-loyal; see De�nition 5.63.

• Next, we shrink B suh that eah inident ell of V has a buket-loyal point on
B's boundary. This is done by hoosing a sample point for eah edge E inident
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Figure 5.10. Computing buket-loal points around a vertex (shemati)

p

(a) Compute initial buketbox B that does not inter-set any buket urve
p

(b) Re�ne B with respetto sample points of inidentedges
F

p′E

p′F

p

E

() Compute intersetions of Bwith edges and determine buket-loyalpoints for edges and inident faes



238 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsto V and re�ne B suh that these sample points are outside B;52 an illustrationis given in Figure 5.10 (b).
• We �nally ompute all intersetion points of A{Si} with B's boundary. Byonstrution of B and Condition 5.9, the buket-loyal point p′E for an edge Einident to V is given by the �rst intersetion of E with B's boundary, whentraversing E starting in p. Consider next the fae F that sueeds E in ounter-lokwise order on the boundary of B. The intersetion points of A{Si} and B'sboundary are also ordered ounter-lokwisely. Let p′next the intersetion thatsueeds p′E. The desired point p′F is given by a point on B's boundary between

p′E and p′next. Note that by onstrution the path between p and p′F is buket-loyal. Figure 5.10 () illustrates the two ases.We have implemented this strategy, whih gives us the desired adjaenies; see alsoFigure 5.11 whih illustrates the buketing in three dimensions. There is one missingase for p 6∈ Vi. Namely, the vertex V an be isolated in some F . In this ase, wehoose p′F on the vertial line x = px with p′F ∈ F and having a rational y-oordinate.

p

E p′F
p′E

B

F

Figure 5.11. Computing adjaenies: here between vertex and edgeWe admit, that the strategy exploits similar ideas as the loal box algorithm byCollins and MCallum [MC02℄ for ylindrial algebrai deompositions. The maindi�erene is that our buket box onstrution only involves heap interval arithmeti,and thus is expeted to be more e�ient. In addition, their loal box algorithmsrequires to fatorize polynomials, while we provide a purely geometri algorithm.On the other side, this ompliates the atual onstrution, as we have to deal withinident ells that are not x-monotone.Adjaenies for vertial line ells: We turn to the ase that V is de�ned by a point pwith p ∈ Vi. In general, we proeed similar to the previous ase. However, there52Note that we onsider E to be a maximal d-k-path emanating V and not an x-monotone urve inidentto V atually maintained in the underlying arrangement of Cgal. Thus, E an be a self-loop.



5.4. Models for algebrai surfaes 239
Figure 5.12. Computing buket-loyal points around a vertex of a vertial line(shemati)

p

(a) Compute initial buketbox B suh that no interse-tion of a buket urve with
A{Si} is inside B

p

(b) Re�ne B with respetto sample points of inidentedges
E

p′Fv

p′Ep

p′Fn

Fv

Fn

() Loate points on buket urves todetet adjaeny of a lifted fae to avertial line; then, hoose buket-loyalpoints for remaining edges and faes



240 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsis one ompliation here: If V has an inident fae F that is adjaent to a non-degenerate interval along ℓp, then, the orresponding buket urve bl (with ql beingin the interior of the interval) intersets p in the plane. Following, we need a �x forthe onstrution of the buket box, as interval arithmeti is not su�ient.
• To determine B's initial size, we now ompute the overlay of A{Si},B with allbuket urves. The initial B is hosen suh around p that no intersetion of Band A{Si},B is ontained in B, exept the unavoidable intersetions at p itself;see Figure 5.12 (a) for an illustration.
• As before, we re�ne B, suh that the sample point pE of eah inident edge Eis not ontained in B anymore; see Figure 5.12 (b).
• The orresponding buket-loyal point p′E is again given by traversing E startingin p and hoosing the �rst intersetion of E with B. Lifting p′E reveals byCondition 5.9 and how we de�ned Zp,i the desired adjaenies. Figure 5.12 ()displays this step.
• The strategy for a fae F is di�erent from the previous handling. We startto detet lifts of faes that are adjaent to a line segment along ℓp. Eahsuh segment has to ontain an intermediate buket value ql. Following, thelift of F (lF ,i) that is adjaent to the interval results in an ar of the buketurve bl that lies in F (in A{Si}) and ends in p. To �nd them we propose thefollowing strategy: For eah buket urve bl that leaves p and lies in F , let qlbe orresponding buket value. Choose a sample point pbl

on bl but inside B(see Figure 5.12 ()) and lift it. Note that its lifting orresponds to lifts of
F . Determine whih F (lF ,i) has the z-oordinate ql (by interval arithmeti).Following Problem 5.12, we report the pairs (lF , l) and (lF , l+1); an illustrationin three dimensions is given in Figure 5.13.

• Finally, we are left with the lifts of F that are adjaent to a single point on ℓp.We simply ompute a buket-loyal point p′F as in the p 6∈ Vi ase and determinethe bukets of the remaining lifts analogously. This gives the full adjaenyrelation. The fae adjaenies are also presented in Figure 5.12 ().Remark. Remember that we also have to ompute speial adjaenies between Zp0,S and
Zp1,S with p0 ∈ V and p1 6∈ V for a given Si. The ritial ase is p1 ∈ F ∈ AS with Fbeing inident to p0. Note that the ideas of the buketing strategy also lead to a suessfulomputation. The di�erene is that the number of bukets de�ned over p0 has inreasedand we have to ignore other surfaes existing in the multi-surfae z-�ber Zp1,S.There is also the possibility of ombinatorial �ltering: We only have to onsider thosebukets of Sp0,S that omprise z-oordinates in the �nite z-range of Zp0,i. This redues thenumber of buket urves in the plane. On the other side, we have to maintain a mappingbetween all and the seleted bukets. If we are only interested in a single inident fae Fto p0, we an even further restrit the z-range that must be onsidered by querying thesingle-surfae adjaeny of lifts of p0 and p1 �rst, whih gives us I(F (lF )) ⊂ ℓp0 for theorret lF .
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p

B

F
p′F

Figure 5.13. Computing adjaenies at a vertial line: a lifted fae is inident to aninterval along ℓpAlternative idea The adjaeny relation of a lifted vertex with its lifted inident ells analso be determined by analyzing a two-dimensional arrangement embedded on a vertialylinder C around ℓp. The radius of C is hosen suh that c := C|z=0 �ts in the boxde�ned by B as above and the enter of c should be equal to p � in theory. Below, weshow that we an atually perturb c's enter to rational oordinates.Consider the arrangement on C indued by VR(f) and all VR(z = ql). The later induesa set of horizontal irles around the ylinder that split C again into bukets. VR(f) alsoindues urves on C.Let ℓp′ ⊂ C be parallel to ℓp, that is, hoose a point a point p′ on c. If p 6∈ Vi, then, byonstrution of C the point p′ is buket-loyal for the inident ell Γ of V with p′ ∈ Γ. Thismeans, that along ℓp′ the urves VR(f) and VR(z = ql) do not interset. The adjaenyrelation between lifts of V and lifts of Γ an be determined by the order of VR(f) and
VR(z = ql) along ℓp′ � the status line at p′. We only have to �nd p′ for all inident edgesand faes: Compute the intersetions of c with A{S}. Think of c being the boundary of Band proeed as above.An interesting phenomena an be seen for the lift of fae F (lF ,i) that is adjaent to aninterval of ℓp. In this ase, there is a p′F on c de�ned by the c's intersetion with a buketurve bl, where VR(f) intersets the irle de�ned by VR(z = ql) along the line ℓp′F

. Thevalue l determines to whih interval along ℓp the lift F (lF ,i) is adjaent. For all other faes(and edges), we proeed as before.By now, the approah is idential to the box idea, with the di�erene that we hosea irle as planar base. But we an also analyze the arrangement on C itself whih givesfurther information. For simpliity, we assume that p = (0, 0) and r = 1. Then, C anbe rationally parameterized by ϕC(t, z) = (1−t2

1+t2
, 2t

1+t2
, z), for t, z ∈ R. Homogenizing it,allows to us ompute the arrangement on C with the help of a set of real algebrai planeurves; in fat, the topology is similar to the one we introdued in �4.6.1 for quadris, while
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Figure 5.14. Adjaenies by a two-dimensional arrangement on a ylinder
ℓp

p

c p′F(a) All points of c are buket-loyal. Thus, VR(f) (blak) on
C stays within one buket

ℓp

+∞

p

c p′Fv(b) VR(f) rosses some
VR(z = ql). Thus, there isa lift of a fae F (lF ,i) that isadjaent to p×[zp,i,l, zp,i,l+1].



5.4. Models for algebrai surfaes 243onerning the geometry, we should adopt ideas similar to what we did for a Dupin ylidein �4.6.2. Speial are is only required for t = ±∞, that is, C's urve of identi�ation.However, as VR(x = px) is not part of Si (by input assumption), the orresponding urve-ends for t = ±∞ have a unique limit. Or we simply onsider p′ = (−1, 0) as an additionalspeial ase on the boundary. Let AC be the arrangement on C indued by VR(f) and
VR(z = ql). The ritial t-oordinates of AC are given by the t-extremal points of VR(f)and t-oordinates of VR(f)'s intersetions with some VR(z = ql) only appear if some liftof an inident fae is adjaent to an interval along ℓp. Note that neither VR(z = ql) nor
VR(f) have self-intersetions on C. For VR(z = ql) this is lear by onstrution, for VR(f)this follows from how we hoose the radius of c: No target point of an edge E that leaves
p is inside c. Observe that the t-ritial points of AC orrespond to points on c whereedges E or buket urves bl interset c. This gives a more diret way to ompute (buket-loyal) points for edges and faes. Computing the adjaenies now redues to �nd all suh
t-oordinates and to analyze the vertial lines of AC in the tz-plane for suh oordinates.We start with the intersetions of bl with c, if existing, to detet fae lifts adjaent tovertial intervals. Then, we proeed with the t-extremal points of VR(f), to determineadjaenies for lifted inident edges and �nally analyze the status line slightly to the rightof a t-extremal oordinate. This gives us the adjaenies for lifted inident faes that onlymeet a point along ℓp.In terms of Cgal's Arrangement_2 pakage, we an imagine a speial visitor that onlyreports the adjaenies while sweeping over a set of annotated urves (i. e., whether eahbelongs to VR(f) or VR(z = ql)) on C.In an atual implementation one would better hoose a ylinder whose enter line ℓC isslightly perturbed away from p, suh that pC has rational-oordinates. The perturbationmust be hosen suh that C|z=0 still de�nes buket-loyal points. Atually, every vertialylinder inside B × R that inludes ℓp in its interior ful�lls this ondition.5.4.3. Filters for lifting of quadrisIf we only onsider quadris, the funtors related to lifting an bene�t from ombinatorial�lters. We next present the details.Construt_isolator We �rst haraterize the entries of some Zp,i.Lemma 5.64. Let fi = a2z

2 + a1z
1 + a0z

0 be a polynomial de�ning a quadri Si, that is,
degtotal(f) ≤ 2. Let p ∈ R2. Then, fi(px, py, z) ∈ R[z] has either no real root, a doublereal root, or two distint real roots. If it has a double root, then Resz(fi,

∂fi

∂z )(px, py) = 0.Contrary if Resz(fi,
∂fi

∂z )(px, py) = 0 then, the z-�ber at p ontains at most one �nite point.Proof. The �rst assertion is rather trivial. If z0 is a multiple root of fi(px, py, z) then it isalso a root of ∂
∂zfi(px, py, z), thus Resz(fi,

∂fi

∂z )(px, py) = 0. For a2(p) = 0 and p 6∈ Vi thebakward diretion is trivial as in this ase fi(x, y, z) is a polynomial of degree one or lessin z for all (x, y). If a2(p) 6= 0 and Resz(fi,
∂fi

∂z )(px, py) = 0 the polynomials fi(px, py, z)and ∂fi

∂z (px, py, z) must share a ommon root z0, thus for p 6∈ Vi, the z-�ber Zp,i is givenby {z0} ∪ {±∞}. In ase where Si ontains a vertial line at p, we refer to the paragraphabout vertial lines below.



244 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsUsing Lemma 5.64 we isolate with the Bitstream Desartes method the real roots of
fi(px, py, z) in ase kp,i = 0 or of ∂fi

∂z (px, py, z) if kp,i > 0. Observe that both polyno-mials ful�ll the demanded property of being square-free, while still determining the Si'sintersetion with ℓp. Note that we are able to ombinatorially avoid to all the m-k-variant.Equal_z Remember that we have to deide whether zp,1,l1 ∈ Zp,1 and zp,2,l2 ∈ Zp,2 areequal. However, we an bene�t from previous information: When Equal_z is alled, eah
Zp,1 and Zp,2 has to ontain a positive number of �nite entries. As they orrespond to realroots of f1(p) and f2(p), Lemma 5.64 implies that we see one or two suh. In addition, weknow that the approximations of Zp,1 and Zp,2 have already been re�ned suh that theyoverlap with at most one interval of the other. As τ0,S1,S2 exists at p and Zp,1 and Zp,2ontain �nite entries, at least one of these andidates must orrespond to a true equality;see also Algorithm 5.5. Thus, most ases are trivial to deide. Only if |Zp,1| = |Zp,2| = 2we require further work. Two possibilities exists:1. Both f1(p, z) = a2(p)z2 + a1(p)z + a0(p) and f2(p, z) = b2(p)z2 + b1(p)z + b0(p) havetwo distint real roots and they are both equal at the given p. That is, there existsa onstant c ∈ R \ {0} with f1(p, z) = c · f2(p, z). This is exatly the ase if the twovetors

(a2(p), a1(p), a0(p))Tand
(b2(p), b1(p), b0(p))Tare linear equivalent, whih an be heked by

(a0b1 − a1b0)(p) = 0 ∧
(a0b2 − a2b0)(p) = 0 ∧
(a1b2 − a1b2)(p) = 0Note that

h0,1 := (a0b1 − a1b0) ∈ Q[x, y], degtotal(h01) ≤ 3

h0,2 := (a0b2 − a2b0) ∈ Q[x, y], degtotal(h02) ≤ 2

h1,2 := (a1b2 − a1b2) ∈ Q[x, y], degtotal(h12) ≤ 1and even degtotal(hi,j) < degtotal(Resz(f1, f2)) holds. Thus, we hek whether thethree onditions are ful�lled by interpreting hi,j as low-degree planar urves, andtest whether p lies on them with the Sign_at_2 funtor provided by Cgal's planarAlgebrai_urve_kernel_2. This funtor even exploits interval arithmeti to quiklydeide a non-zero sign. Note that the algebrai kernel is available anyhow, as we useit for the projetion. For eah pair of quadris only one suh set of urves is required,so we an ahe them. Of ourse, we start testing with h1,2 as it has lowest degree.We ontinue with the h0,2 only if the test result is suessful. Similar for h0,2 and
h0,1. If all three onditions hold, then two ommon roots exists (out of two possible).Thus, return true. This ase is illustrated in Figure 5.15.2. Otherwise, two andidate overlaps remain for a single equality. We re�ne theirapproximations in parallel, until only one overlap is left. If the given indies l1 and
l2 orrespond to that overlap, return true, else return false.
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Figure 5.15. Illustration of two overtial intersetions (ase 1)Adjaeny This funtor is implemented mostly ombinatorially. First observe that byLemma 5.64, the adjaenies between lifted verties and lifted edges, if existing, are �xed.We always return (0, 0) as the unique lifts all lie in the same plane de�ned by ∂f
∂z . Thease that a vertex orresponds to a vertial line is disussed separately below.Thus, we are left with edge-fae-adjaenies. Let 0 ≤ mE ≤ 1 be the number of �nitelifts of some E, and 0 ≤ mF ≤ 2 be the number of �nite lifts of an inident fae. Note thatnot both an be zero. If mE = 0, then mF = 1 and the F (0) must be asymptoti when�approahing� E. In this diretion F (0) is monotoni inreasing or dereasing, whih anbe determined by omputing the sign of ∂fi

∂z evaluated at F 's sample point with intervalarithmeti. Otherwise, mE = 1 and we are left with two ases: mF = 1 implies toreturn (0, 0), while mF = 2 results in reporting (0, 0) and (0, 1) (by Lemma 5.64 andCondition 5.9).Quadris and vertial lines: A quadri Si ontains a vertial line ℓp at p ∈ R2 exatlyif a2(p) = 0 and p is an intersetion point of the line L = VR(a1(p)) and the oni
C = VR(a0(p)). Then, for eah point p 6∈ L, there exists a unique lift (px, py, z) ∈ Si with
z = −a0(p)

a1(p) . Furthermore, there exists no point on Si above any p ∈ L \ (L ∩ C) and foreah (of at most 2) intersetion point p ∈ L ∩ C the quadri ontains the vertial line ℓp.The arrangement A{Si} as de�ned in �5.2.2 is quite simple in this situation: The projetedsilhouette L divides R2 into two half-planes, whih are the faes F1 and F2 of A{Si}. Theintersetion points L ∩ C represents all verties in A{Si} and they deompose L into atmost 3 edges. As these edges annot be lifted onto Si, no adjaenies between them andverties an be reported.In the following steps we will show how to determine the �ber Zp,i for the vertieswith p ∈ Vi and how to get the adjaeny information between verties and faes. InTheorem 5.45 we have already proven that for eah fae F = F1 or F = F2 there exists aorresponding interval IF suh that for eah z∗ ∈ Iv we have a sequene pt ∈ F , onvergingagainst p, with z∗ = limt→∞ zpt = limt→∞−a0(pt)
a1(pt)

.From an a�ne hange of oordinates we an assume that L = VR(y), that is, L is the
x-axis. Writing a0(x, y) = c0x

2 + c1y
2 + c2xy + c3x + c4y + c5 with variable oe�ients

ci ∈ R, for the z-value of any (x, y, z) ∈ Si we have
z =

c0x
2 + c1y

2 + c2xy + c3x + c4y + c5

y



246 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsFor a �xed y 6= 0 the set of z-values is given by a parabola (c0 6= 0), whih has its uniqueloal extremum zmax,y at the point xmax with
2c0xmax,y + c2y + c3 = 0Thus, we get xmax,y = −c3−c2y

2c0
and

zmax,y =
4c0c5 + 4yc0c4 − 2yc2c3 − c2

3 + 4y2c0c1 − y2c2
2

4yc0Now we distinguish three ases:1. c0 = 0: C and L interset in a unique point p = (− c5
c3

, 0). Now given an arbitrary
z∗ ∈ R, we have

f(xy, y, z∗) = 0⇔ xy(c2y + c3) = yz∗ − c1y
2 − c4y − c5For y → 0 we get xy → − c5

c3
, thus the oni Cz∗ , whih is impliitly given by theequation x(c2y + c3) = yz∗ − c1y

2 − c4y − c5 passes the point p and the fae F . Itfollows the existene of a sequene pt → p ∈ VR(a0) ∩ VR(a1) with zpt → z∗.2. |VR(a0) ∩ VR(a1)| = 0 or 2 and c0 6= 0 : For a �xed z∗ ∈ R, the oni Cz∗ =
VR(f(x, y, z∗)) has exatly two intersetion points with L. Hene, Cz∗ has onlyordinary intersetions with L. Thus, Cz∗ ontains an ar that passes VR(a0)∩VR(a1)and the fae F . It follows the existene of a sequene pt → p ∈ VR(a0)∩VR(a1) with
zpt → z∗.3. |VR(a0) ∩ VR(a1)| = 1 : In this ase the quadrati polynomial a0(x, 0) has a multipleroot and p = VR(a0)∩VR(a1) = (−c3

2c0
, 0). Hene, we get c2

3−4c5c0 = 0 and furthermore
lim
y→0

zmax,y = lim
y→0

4yc0c4 − 2yc2c3 + 4y2c0c1 − y2c2
2

4yc0

=
2c0c4 − c2c3

2c0Now, the line Lmax, impliitly given by 2c0x + c2y + c3 = 0 passes the point p andontains a sequene of points pt → p with zpt → 2c0c4−c2c3
2c0

=: zp,0 for t → ∞.In the next step we will show that for any other sequene p′t → p we must get
zpt → z′ ≥ zp,0 or ≤ zp,0 depending on whether c0 > 0 or c0 < 0. W.l.o.g. we assumethat c0 > 0. Then, for a �xed y the parabola c0x2+c1y2+c2xy+c3x+c4y+c5

y has a globalminimum zmax,y at xmax,y. Thus, for any point p′t = (x′
t, y

′
t) we must have zp′t

=

−a0(x′
t,y

′
t)

a1(x′
t,y

′
t)
≥ zmax,y′

t
. It follows that limp′t→p zp′t

≥ limp′t→p zmax,y′
t
= zp,0.In the two ases (1) and (2) we have shown that the unique lifts of the two faes F1and F2 are both adjaent to any point on the vertial line ℓp, that is, for any (p, z∗) ∈ ℓpthere exist sequenes p

(l,i)
t ∈ Fj with (p

(l,i)
t , z

p
(l,i)
t

) → (p, z∗) for l = 1, 2. Thus, it su�esthat Zp,i = {±∞}, that is, Construt_isolator returns an empty instane and so Equal_zis trivial. It is lear that Adjaeny returns for an inident lifted fae F (l,i) towards p thepairs (0,−1) and (0, 0).



5.5. Appliations 247In the third ase, for exatly all z∗ in between 2c0c4−c2c3
2c0

and ±∞ (depending onwhether c0 > 0 or c0 < 0, respetively) there exists a sequene p
(l,i)
t ∈ Fj with p

(l,i)
t → pand z

p
(l,i)
t

)→ z∗. As we an also pursue the a�ne oordinate transformation in ase where
fi is given with arbitrary variable oe�ients, it is possible to get formulas in terms ofthese oe�ients to deide in whih ase we are and to determine the single non-in�nityentry zp,i,0 of Zp,i. Observe that p = (px, py) and zp,i,0 are all rational. Thus, Equal_zan be implemented in terms of rational arithmeti. Adjaeny returns for an inidentfae towards the vertial line at p, either the pairs (0,−1), (0, 0) or the pairs (0, 0), (0, 1),depending on the sign of c0 and the fae.5.5. AppliationsThe proposed design and its implementation provides three-dimensional information on aset of surfaes S, that is, we ompute a strati�ation ΩS enhaned with geometri informa-tion. The basi struture is a planar arrangement whose verties, edges, and faes an bequeried to obtain the third dimension. The adjaenies of lifts also provide onnetivities.Although it is remarkable that the rihness of omputed information is rather omplex, itis also abstrat. In addition, we have seen that the omplexity of ΩS is quite high due tothe projetion and the lifting; even for relatively small D.On the other hand, based on this deomposition, it is possible to rely on the frameworkas a key ingredient when providing or supporting more onrete appliations in geometriomputing. In this setion, we present a list of suh. For some, we only give basi ideas;their details require further work. Other appliations are illustrated more elaborate; forexample, the omputation of spae urves (�5.5.3) and lower envelopes (�5.5.4).5.5.1. Analysis of a single surfaeStrati�ation Given a single surfae S. First of all, we an simply report the strati�ationof S along with its full adjaeny information. This, for example, supports the loalizationof a query point in the strati�ation. That is, we return the ell to whih a point on
S belongs. The ell deomposition an also be queried to detet three-dimensional ellsindued by S. In fat, we an use adjaeny information to luster them into maximalsets. Note that this is a major steps towards the three-dimensional arrangements induedby S. This also paves the way to loate any p ∈ R3 with respet to S. However, we aremainly missing a data struture to e�iently store these lusters.Sampling A big advantage of our method is that geometri information is kept with re-spet to the original oordinate system. Thus, we an sample S in arbitrary preision,inluding its ritial points. This possibility an be exploited, for example, in a visual-ization: One, A{S} is omputed, a dense grid of points is loated and lifted using theadaptive bitstream Desartes method. It only requires to speify the grid-width and themaximal length of the intervals that approximate z-oordinates to de�ne the desired pre-ision of the sampling. The implementation onsists in onstrution the grid and to re�nethe liftings. Note that lifting is a perfet tasks for a parallelized omputations as we shouldusually have a muh larger number of liftings than available proessors. We mention this



248 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementspossibility, as modern omputers are usually equipped with multi-ore arhitetures andthus onstitute an ideal platform for this objetive.Meshing A desirable goal is to ompute a simpli�ed representation for S, for example,in the form of a mesh. That is, we aim for a simpliial omplex that is isotopi to S andwhose points are loated on S. This omplex annot be diretly extrated from Ω{S}. Inorder to maintain the topology of S further deompositions are required. We refer to [BKS℄for on-going work of suh a triangulation of an algebrai surfae.It should also be analyzed how many triangles are required to form a omplex thatis isotopi to S, but whose verties are not required to lie on S. There is a gap foralgebrai surfaes: A deomposition of S with degree D into non-singular ells requires
Ω(D3) ells [Bru81℄. In ontrast, using a ylindrial algebrai deomposition (ad) resultsin a omplex with O(D7) ells. It is unknown where the true value is.5.5.2. Analysis of two or more surfaeStrati�ation As for a single surfae, we also have seen how to ompute the strati�ationfor a set of surfaes S, that is, respeting their intersetions, too. The loalization of apoint in the set of strata is a task that is diretly supported by the framework. Again,the adjaeny relation for any two ells is available, whih enables similar to the single-surfae ase, to identify indued three-dimensional ells, and to luster them into maximalonneted sets. Although the boundary of suh a ell an be desribed, this only onstitutesa restrited representation of the three-dimensional arrangement indued by S. We omitdetails on point loalization, sampling, and meshing as they are similar to the single-surfaease.Semi-algebrai sets We mentioned that the framework also supports semi-algebrai sur-faes. But not only in their handling, but also for their representation: We an extrat thedeomposition of suh a surfae S≥ de�ned by f = 0 and a set of polynomial inequalities
gi ≥ 0, 1 ≤ i ≤ r into onneted zero-, one-, and two-dimensional ells having the bound-ary property. Note that all points of a single lift of a ell in A{S≥} share the same signswith respet to all gi. We only have to selet those ells whose signs are all non-negativeby hoosing the stratum de�ned by the inequalities.5.5.3. Spae urvesThe strati�ation of two surfaes also allows to extrat the spae urve de�ned by twosurfaes:De�nition 5.65 (Spae urve). A spae urve is the intersetion set of two surfaes S1, S2,if at most one-dimensional.To represent a spae urve, one usually deomposes it into its zero- and one-dimensionalparts, where zero-dimensional parts form isolated points, while the one-dimensional arsan have properties, like x- or xy-monotoniity. Our implementation provides C++ lasstemplates alled Surfae_point_3 and Surfae_ar_3. The representation of a point is or-ganized as a tuple (Point_2, Surfae_3, int), that is, a planar base point, a supportingsurfae, and its lift index (also known as sheet number). x- and y-oordinate are given



5.5. Appliations 249expliitly by the planar point, the z-oordinate is enoded impliitly by the other twotypes. A bounded one-dimensional ar in 3D is represented as a tuple (Surfae_point_3,Surfae_point_3, X_monotone_urve_2, Surfae_3, int, int, int), where the points en-ode the lexiographi smallest and largest point of the ar. The remaining entries lift theplanar urve onto the given surfae. The int instanes enode sheet numbers at the lexi-ographi smallest and largest point, and in the interior of the ar, where the number mustbe onstant. Note that all three an even be equal or di�erent. The supporting surfaes ofthe ar and its minimal and maximal point are not required to be equal. Speial onstru-tions for unbounded and vertial ars are implemented, but omitted in this desription.Similar in Algorithm 5.6 that omputes the deomposition of the spae-urve de�ned by
S1 and S2 into isolated verties and one-dimensional ars:Algorithm 5.6. Deompose spae urve into ars and pointsInput: Two surfaes S1, S2 with dim(S1 ∩ S2) ≤ 1Output: The deomposition of S1 ∩ S2 into ars of dimension 1 and isolated points ofdimension 0.1. Compute A{S1,S2} and extrat verties and edges belonging to τ0,S1,S2 .2. Obtain for eah suh vertex and eah suh edge its Z_fiber; identify their Z_ellinstanes that de�ne an intersetion.3. Compute for eah lift of an edge that forms an intersetion of S1 and S2 to whihlifts of verties it is adjaent.4. For an edge, the Z_fiber and the adjaenies give all information required to on-strut instanes of type Surfae_ar_3.5. An isolated vertex in 3D is deteted and onstruted by heking whether there existsa Z_ell instane over a Del-vertex that is not adjaent to any Z_ell over edgessupported by of τ0,S1,S2 and inident to the vertex. It remains to onstrut properinstanes of type Surfae_point_3 using the available information.We remark, that there a subtleties to onsider. For example, a Surfae_point_3 in-stane for a lifted vertex should be omputed only one, espeially if several ars of inter-setions are adjaent to it.A areful reader might detet that this approah requires to ompute both A{S1}and A{S2}. Observe, that the output is not demanding for both surfaes at the sametime. It su�es to express the deomposition of a spae urve into points and ars only interms of the surfae with lower omplexity, for example, the degree of an algebrai surfae.Let S1 be the surfae with lower omplexity.We next show how to avoid the omputation of A{S2} and A{S1,S2}. However thisrequires to re�ne the SurfaeTraits_3 onept by an additional funtor alled Common_z. Itis expeted to provide the following operator:Z_at_xy_isolator operator()(Point_2 pt, Surfae_3 s1, Surfae_3 s2,Cell_info1 i1)In ontrast to Equal_z, whih only heks the equality for given intervals, Common_zonstruts a new instane of type Z_at_xy_isolator that represents the ommon interesting
z-oordinates of s1 and s2 along a vertial line de�ned by the given pt. Due to laking A{S2}and A{S1,S2}, we do not have aess to full knowledge about multipliities, regularities, and



250 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementsdegradations with respet to {S2} and {S1, S2} (olleted usually in ell-info instanes).Thus, Common_z has to deal without these information. It depends on the family of surfaes,how to ompute the desired isolator. For algebrai surfaes, we have seen that the rootsof the loal gd de�ne the required z-oordinates. Compare also with the implementationdetails of Equal_z in �5.4.2. However, there the degradation k is aessible from the planararrangement. In our urrent setting, we have to ompute it. We also need two adaptions.First, Algorithm 5.6 does not ompute A{S1,S2}, but only the overlay of A{S1} and Aτ0,S1,S2and traverses its edges and verties. Seond, we require a new algorithm to onstrut theZ_fiber, replaing the usual two-way merge:Algorithm 5.7. Compute Z_fiber for a Del-ell partiipating in τ0,S1,S2Input: p ∈ R2; surfaes S1, S2Output: Z_fiber for S1, S2 over p1. Construt Z_at_xy_isolator iso1 for S1 using Construt_isolator.2. Construt Z_at_xy_isolator iso12 for intersetions of S1 and S2 using Common_z.3. Re�ne intervals of isolator12 until eah is inluded in an interval of isolator1.4. Create Z_ell for eah interval of isolator1 and add S2 to a ell, if there is aninterval of iso12 that overlaps with an interval of isolator1.Observe that the surfae lifts of S2 in the omputed Z_ell instanes annot be enhanedwith a sheet number. Fortunately, this is also not needed, as Algorithm 5.6 only wants todetet ells where S2 exists, but its output is with respet to S1's sheet numbers only.We have implemented this output-sensitive strategy in a lass-template alled Curve_3.We onsider it as a basi implementation that an be used whenever spae urves areomputed by relying on their projetion into the xy-plane. In this light, this work an beseen as a prototypial implementation of a key ingredient for an upoming Curved_kernel_3in Cgal.5.5.4. Lower envelopeWe an also regard the surfaes in S as funtions in x and y that return for given p = (px, py)the smallest z-oordinate of the surfae's intersetions with ℓp; requiring Vi = ∅ is a goodassumption for this task. Taking for every point of the plane the set of surfaes thatattain the minimum of these funtions, we ompute the lower envelope of S; see alsoChapter 3, where we present a speialized version for quadris. Remember that Cgalprovides a generi divide-and-onquer approah to ompute lower envelopes [Mey06b℄; seealso Algorithm 3.1. One only has to provide a model of Cgal's EnvelopeTraits_3 onept,whih itself is a re�nement of Cgal's ArrangementTraits_2 onept; details on the tasksexpeted by the onept are given in [MWZ07℄ or �3.3. In this setion, we present ageneri implementation of suh a model, alled Surfae_3_envelope_traits, that is basedon Projetion_2 and attahed instanes of type Z_fiber provided by our new framework.Let Surfae_traits_3 be the given model of the SurfaeTraits_3 onept. The newSurfae_3_envelope_traits lass template is derived from Surfae_traits_3::Kernel_2 inorder to be a model of Cgal's ArrangementTraits_2 onept. We also have to de�ne spatialtypes:Surfae_3 and Xy_monotone_surfae_3 are expeted. The former is trivial, the latteris mapped to lifted Del-ells, that is, a pair onsisting of a Del-handle and an integer.



5.5. Appliations 251The integer orresponds to a sheet number. It an be assumed to be 0 if we only onsiderlower envelopes. For more sophistiated envelopes, other values are oneivable. TheEnvelopeTraits_3 onept expets to deompose an instane of type Surfae_3 into its
xy-monotone subsurfaes by a funtor Make_xy_monotone_3. Our generi implementationtraverses all Del-ells of the orresponding A{Si}. Faes with non-empty z-pattern arereported, while for edges and verties with non-empty z-pattern it �rst must be hekwhether no lift of an inident planar ell adjaent to the lowest lift over the edge andvertex, respetively, exists.Two funtors implement the required projetions.
• Construt_projeted_boundary_2Computes for a given xy-monotone subsurfae its projeted boundary. To providethis information for a subsurfae over a fae, we traverse the fae's boundaries anddistinguish whether the yle that ontains a boundary urve is oriented lokwiseor ounter-lokwise in order to deide to whih side the xy-monotone subsurfaeexists. Subsurfaes that orrespond to lifts of edges and verties do not require thistest. We simply report the adjoined geometri objet.
• Construt_projeted_intersetion_2Computes the projeted intersetion urves of two xy-monotone subsurfaes sup-ported by Si and Sj. If Si = Sj, we only have to return urves (points) if liftedfaes (edges) are adjaent to the same lifted edge (vertex). Otherwise, we ompute

A{Si,Sj} and traverse all edges (and isolated verties) in its ells that originate fromthe given Del-handles stored along with the subsurfaes. We disard those notpartiipating in τ0,Si,Sj
, those with an empty z-pattern, and those whose lowest z-ell does not ontain Si and Sj . The remaining edges and verties are returned. Theintersetions tests for isolated lifted edges and verties are similar.The onept also requires to implement funtors that ompare the relative alignmentof two Xy_monotone_surfae_3 instane in z-diretion over a point, over a urve, or overa fae inident to a projeted intersetion urve (i. e., a sub-fae of the projeted urveboundaries). Obviously, if their supporting surfaes Si and Sj are equal, the stored sheet-numbers enode the desired order. Otherwise the vertial alignment an be read froma z-pattern of an appropriate ell of A{Si,Sj}. We only have to pik the orret one,whih is simple for the implementation of Compare_z_at_xy_3: Depending on the operator,we an diretly take the Z_fiber for the given point, or take the one for the samplepoint of the given urve (or the single unbounded fae). Computing the Z_fiber forthe remaining funtors Compare_z_at_xy_below_3 and Compare_z_at_xy_above_3 redues toloate the sample point of the given urve in A{Si,Sj}. This task is diretly supported byCgal's Arrangement_2 pakage on whih we rely our framework.Remark. Using this generi model of the EnvelopeTraits_3 onept, omputing (lower) en-velopes for a family of surfaes boils down to provide a model of the SurfaeTraits_3onept for that lass of surfaes. We admit that a speialized model for lower envelopesmight be more e�ient, but obviously laks of the possibility to support other appliationsthat we introdued in this setion. The reason is, that we ompute more information onhow two surfaes interset than atually required for the lower envelope; ompare also



252 E�ient Strati�ation of Algebrai Surfaes with Planar Arrangementswith the onstrution of the Apollonius digram in �3.5, that is similarly �diret�. However,our implementation is the �rst that follows the exat geometri omputing paradigm toompute lower envelopes of algebrai surfaes.As in �3.5, we an think of modi�ations on the Surfae_3_envelope_traits, suh asto ompute upper envelopes, or sandwih regions. One should also hek various dualitiesthat allow to rewrite a geometri problem as a envelope omputation of surfaes; see, forexample, [dBvKOS00, �11.5℄.5.6. ResultsWe also run experiments to hek the e�ieny of our implementation(s). In the followingwe report on various tests that present di�erent aspets of the framework, but also showthe limits of pratiality. We distinguish between experiments on quadris and suh onalgebrai surfaes of any degree.5.6.1. QuadrisWe tested the performane of the framework instantiated with the Quadri_3_traitsmodelby omputing all z-�bers and all adjaenies for AS, where |S| inreases. We espeiallydistinguish between arbitrary quadris and ellipsoids. All experiments are exeuted ona Pentium IV CPU with 3.0 GHz lok-speed and 2 MB of ahe. The exeutables areompiled with gnu's C++-ompiler in version 3.3 with disabled debugging (-DNDEBUG) andenabled optimizations (-O2), and Cgal's Algebrai_urve_kernel_2 in wrapping modewith the exat number types of Leda. Table 5.1 lists example runs.
♯Surfaes ♯Del ♯z-ells t t/ell2 ellipsoids 13 12 0.1s 5.7ms4 ellipsoids 230 904 2.8s 3.4ms6 ellipsoids 877 5942 19.9s 3.7ms8 ellipsoids 2780 25220 171.9s 7.2ms10 ellipsoids 4952 52788 582.0s 11.5ms2 quadris 53 160 0.4 2.7ms4 quadris 1099 7172 19.7 3.0ms6 quadris 3946 39254 194.4 5.4ms8 quadris 9983 132352 2306.1 18.1msTable 5.1. Performane measures for sets of ellipsoids and arbitrary quadrisIt annot be hidden, that |S| seems quite small, but on the other hand, the size ofthe output grows rapidly. For 8 quadris we already have to ompute nearly 10.000 z-�bers ontaining more than 130.000 ells. However, these numbers math the analyzedomplexities of ΩS in �5.1. On the ontrary, the time spent per ell grows muh slower.In fat, we have to see an inreasing amount of time here, as by onstrution of the data,similar intervals along eah ℓp are interseted by a growing number of quadris, that is, itrequires additional time to isolate the ells against eah other. Anyhow, we an onludethat the implementation omputes for a non-trivial set of quadris, the orret strati�ationin reasonable time (per ell). Nevertheless, we reommend to use this in appliations that



5.6. Results 253typially involve only a small number of surfaes at a time. An example is the omputationof an arrangement on a referene quadri, as in �4.6.1: Besides the referene itself, we onlyhave a seond surfae in fous, namely, when deomposing their intersetion urve into(weakly) x-monotone ars and isolated points. We an remark now, that the deompositionof these spaes urves in the reported implementation and experiments are atually realizedusing the ideas presented in �5.5.3. Previously, in Table 4.3 we mainly ignored the olumndediated to the splitting time. However, this olumn atually shows the performaneof an aggregated spae urve onstrution keeping one surfae �xed. The required timesimply grows linear with the number of quadris interseting the referene grows. This issensible as we only onsider two quadris at a time.We are �nally able to ompare the new approah, that is, using the tools presented inthis thesis, with our former implementation [BFH+07℄. As example we hose inreasingsets of random ellipsoids. Figure 5.16 shows an overall improvement of about 30%. Forgeneral quadris the ratio is similar. Let us pik a onrete set: An arrangement induedby 400 ellipsoids interseting the referene ellipsoid onsists of about 38.000 verties and74.000 edges, whih is now possible to ompute in around 180s instead of 287s.
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Figure 5.16. Running times to ompute arrangements on an ellipsoid: We ompare theimplementation from [BFH+07℄ (2005) with the one based on ideas in this thesis (2008).5.6.2. Algebrai surfaesWe also run experiments on algebrai surfaes, that is, we ompute their deompositionas presented in �5.1. As input we have hosen well-known examples from algebrai geom-etry,53 random and interpolated instanes, and also a generi projetion of two quadrisin 4D. All experiments are exeuted on an AMD Dual-Core Opteron(tm) 8218 (1 GHz)multi-proessor platform. Eah proessor has an internal ahe of 1 MB and the totalmemory onsists of 32 GB. The system runs Debian Eth. We ompiled using g++-4.1.2with �ags -O2 -DNDEBUG and use the exat number types of Core [KLPY99℄. For planararrangements of algebrai urves, we relied on Cgal's internal Algebrai_urve_kernel_253Subsets of the tested example surfaes are provided ourtesy of INRIA by the AIM�SHAPE ShapeRepository, by www.singsurf.org, by www.freigeist., and by [PV07℄
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254 E�ient Strati�ation of Algebrai Surfaes with Planar ArrangementsSurfae S degx,y,z (#V,#E,#F) |ΩS | tsteiner-roman 2,2,2 (5,12,8) 28 0.73ayley-ubi 2,2,2 (3,10,8) 31 0.74dupin-ylide 4,4,4 (3,4,4) 10 0.19tangle-ube 4,4,4 (0,6,7) 28 0.61bohemian-dome 4,4,4 (7,20,14) 61 0.75hair 4,4,4 (4,9,7) 31 3.05hunt 6,6,6 (3,2,3) 15 1.21star 6,6,6 (1,1,2) 5 3.61spiky 6,9,6 (1,8,8) 13 1.43C8 8,8,8 (40,48,26) 496 30.95random-3 3,3,3 (2,3,3) 15 0.17random-4 4,4,4 (7,14,8) 64 4.50random-5 5,5,5 (16,24,10) 154 236.40interpolated-3 3,3,3 (4,6,3) 23 0.34interpolated-4 4,4,4 (12,18,9) 82 31.41projetion-4d 4,4,4 (4,12,9) 34 10.33Table 5.2. Complexity and running times (in seonds) for the strati�ation of a sele-tion of surfaes. De�ning polynomials are reported in Appendix A.in non-wrapping mode. Observe that our software urrently does not bene�t from hav-ing several proessors, although many steps of the algorithm are well-suited for parallelomputations, suh as the lifting or adjaeny omputation.Table 5.2 reports for a seletion of tested surfaes the size of the omputed (d,k)-arrangement A{S}, the total number of ells in ΩS, and the obtained running times(in seonds). It is also expeted, that (some) surfaes do not show any (d,k)-vertex(e. g.,tangle-ube), or (d,k)-edge (e. g., xy-funtional surfaes) at all. Conerning the run-ning times, we observed that about 90% is spent to onstrut A{S}. This is no surprise,as we have to analyze plane algebrai urves of degree up to D(D − 1). The remaining10% are onsummated for the omputation of the lifts and adjaenies. The suess of them-k-�lter depends on the surfae. For most of the tested surfaes, it fails in less than 10%of the non-square-free liftings, while for the highly-degenerate �C8� example no exeutionis suessfull. Conerning running time, if degz(f) is low (≤ 3), omputing the square-freepart with subresultants is not expensive. However, with inreasing degz(f), the m-k-�ltershows its power. A drasti example is the �star�-surfae that only requires two ritial lifts.For one, the �lter is suessful and only needs a fration of a seond. If swithing o� the�lter, the total running time inreases from less than 4 seonds to more than 25 seonds.We �nally an onlude that espeially the lifting and adjaeny steps bene�t from ho-sen approximative and ombinatorial methods, suh as the bitstream Desartes methodand its m-k-variant, interval arithmeti, propagations of available information, and a are-ful seletion of sample points required for the adjaeny omputations. A naive approahwould result in real root isolations along ℓp with a very bad separation, whih typiallyinreases running times tremendously.



5.7. Conlusion and outlook 2555.7. Conlusion and outlookAhievements: We presented a generi realization of surfae strati�ations with fulladjaeny information. Our C++-implementation is supported by Cgal's Arrangement_2pakage. Its design is kept simple, the interfae intuitive, and the approah taken does notenfore to assume generi position. We deoupled ombinatorial from geometri tasks. Anew family of surfaes an be used by implementing a small set of tasks de�ned by thenewly introdued SurfaeTraits_3 onept. We provide models for this onept: One foralgebrai surfaes of any degree, and one for quadris. This seond implements degree-spei� ombinatorial �lters.Our work demonstrates that surfae analysis is pratially feasible for moderate degrees.The experiments show promising results thanks to our irumspetly ell deompositionand the onsequent appliation of approximate methods. However, as the number of ellsin our deomposition still grows fast, we see the main appliation of this tool in providinginformation for a small set of surfaes, that is, to ompute the topology (and geometry) of asingle surfae, a single spae-urve, or to serve as a key ingredient for high-level algorithmslike the omputation of envelopes, or three-dimensional arrangements. Some of them arealready presented and implemented, others require further work.Future diretions: As a �rst step, we want to generalize further, that is, to removethe last algebrai terminology. In partiular, most of the tasks are already expressed inthe favored generi language. A strategy to ahieve this goal ould be to abstrat theonept while developing models for other kinds of surfaes, for example, Bézier pathes.A straightforward model that we have in mind, is to support rotated surfaes � similarto the ideas for onis in the plane; see [BCW07℄.We also want to elaborate further utilizations of the omputed data. For example,there is on-going work to extrat an isotopi triangulation from an enhaned ell deom-position [BKS℄. Another showase is the omputation of a single Voronoi ell of a setof planes, spheres, and ylinders. The urrent implementation provided by [HE08℄ relieson non-erti�ed analyses of low-degree algebrai surfaes (i. e., D ≤ 4). We onsider ourontribution as perfetly suited to easily ertify this subproblem, whih �nally results ina fully erti�ed algorithm � in C++. Additionally, it should be heked in how far ouranalyses of surfaes support, for a given set of algebrai surfaes, to ompute the Voronoiell for eah of them.We �nally onsider the provided deompositions as an important building blok forfull three-dimensional arrangements of algebrai surfaes, and boolean operations on theindued ells. Having this, we are able to robustly ompute instanes desribing theon�guration spae for a rotational robot whose movements are restrited by polygonalobstales [Lat93℄. This task is also known as the Piano Mover's problem; see [SSH87℄.If we �nally manage to ombine fast subdivision approahes with our exat and erti�edanalyses, the approah is expeted to be reasonable e�ient � knowing that the obtainedresult is ultimately orret.
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AList of Algebrai SurfaesThis appendix gives the de�ning polynomials of the example surfaes analyzed in �5.6.2,whih allows to rerun experiments or to play around with the surfaes.steiner-roman
f = (y2 + (x2)) · z2 + (((1) · x) · y) · z + ((x2) · y2)ayley-ubi
f = (5 · y + (5 · x)) · z2 + (5 · y2 + (−2) · y + (5 ·x2 + (−2) ·x)) · z + ((5 ·x) · y2 + (5 ·x2 + (−2) ·x) · y)dupin-yli
f = 447279 · z4 + (894558 · y2 + (894558 · x2 + (−1155200) ·x + 1155200)) · z2 + (447279 · y4 + (894558 ·x2 +
(−1155200) ·x+(−1155200)) · y2+(447279 ·x4+(−1155200) ·x3+(−1404800) ·x2+5120000 · x+(−2560000)))tangle-ube
f = z4 + (−5) · z2 + (y4 + (−5) · y2 + (x4 + (−5) · x2 + 10))bohemian-dome
f = z4 + (2 · y2 + ((−2) · x2)) · z2 + ((−1) · y4 + (2 ·x2 + (−4)) · y2 + (x4))hair f = 16 · z4 + (288 · y2 + (288 · x2 + (−600))) · z2 + ((−1280) · y2 + (1280 ·x2)) · z + (80 · y4 + ((−96) ·x2 +
(−600)) · y2 + (80 · x4 + (−600) ·x2 + 5125))hunt
f = 4 · z6+(12 · y2 +(12 ·x2 +276)) · z4+(12 · y4 +(24 · x2+(−528)) · y2+(12 ·x4+(−960) · x2+4620)) · z2+
(4 · y6 + (12 ·x2 + (−129)) · y4 + (12 ·x4 + (−150) · x2 + 1380) · y2 + (4 ·x6 + 87 ·x4 + 84 ·x2 + (−4900)))star
f = 100 · z6 +(300 · y2 +(300 ·x2 +(−300))) · z4 +(300 · y4 +(600 ·x2 +(−599)) · y2 +(300 ·x4 +(−599) ·x2 +
300)) · z2 + (100 · y6 + (300 ·x2 + (−300)) · y4 + (300 · x4 + (−599) ·x2 + 300) · y2 + (100 ·x6 + (−300) · x4 +
300 ·x2 + (−100)))spiky
f = z6+((−3) · y3+(3 ·x2)) · z4+(3 · y6+(21 ·x2) · y3+(3 · x4)) · z2+((−1) · y9+(3 ·x2) · y6+((−3) ·x4) · y3+
(x6))C8
f = 32 · z8 + (−64) · z6 + 40 · z4 + (−8) · z2 + (32 · y8 + (−64) · y6 + 40 · y4 + (−8) · y2 + (32 ·x8 + (−64) ·x6 +
40 ·x4 + (−8) · x2 + 1))



278 List of Algebrai Surfaes



279
Eidesstattlihe VersiherungHiermit versihere ih an Eides statt, dass ih die vorliegende Arbeit selbstständig undohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderenQuellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quellegekennzeihnet. Die Arbeit wurde bisher weder im In- noh im Ausland in gleiher oderähnliher Form in einem Verfahren zur Erlangung eines akademishen Grades vorgelegt.Saarbrüken,

Eri Berberih


	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Our contributions
	Related work
	Outline

	Algebraic Foundations, Geometric Programming, Arrangements
	Algebraic foundations
	Implementing geometric algorithms
	The arithmetic and algebraic tool kit
	Arrangements

	Lower Envelopes of Quadrics
	Envelopes
	Quadrics
	EnvelopeTraits_3 concept and the model for quadrics
	Results
	Variants

	Two-Dimensional Arrangements on Surfaces
	Setting and related work
	Sweeping and zoning on a surface
	Extending the ArrangementTraits_2 concept
	Maintaining a Dcel on a surface
	The ArrTopologyTraits_2 concept
	Examples
	Conclusion and outlook

	Efficient Stratification of Algebraic Surfaces with Planar Arrangements
	Problem
	Operating algebraic surfaces
	Implementation in a framework
	Models for algebraic surfaces
	Applications
	Results
	Conclusion and outlook

	Bibliography
	Links
	Index
	List of Algebraic Surfaces

