Robust and Efficient Software
for Problems in

2.5-Dimensional Non-Linear Geometry
Algorithms and Implementations

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultaten
der Universitat des Saarlandes

vorgelegt von

Eric Berberich

Saarbriicken
2008

Tag des Kolloquiums:
22. Dezember 2008

Dekan der Naturwissenschaftlich-Technischen Fakultat I
Prof. Dr. Joachim Weickert

Berichterstatter:

Prof. Dr. Kurt Mehlhorn
Prof. Dr. Stefan Schirra
Prof. Dr. Dan Halperin

Mitglieder des Priifungsausschusses:
Prof. Dr. Reinhard Wilhelm (Vorsitzender)
Universitit des Saarlandes, Saarbriicken, Deutschland
Prof. Dr. Kurt Mehlhorn
Max-Planck-Institut fiir Informatik, Saarbriicken, Deutschland
Prof. Dr. Stefan Schirra
Otto-von-Guericke-Universitat, Magdeburg, Deutschland
Prof. Dr. Dan Halperin
Tel-Aviv University, Tel-Aviv, Israel
Dr. Michael Sagraloff
Max-Planck-Institut fiir Informatik, Saarbriicken, Deutschland

Abstract

We discuss how to compute and implement three geometric problems dealing with non-
linear three-dimensional surfaces. As a main tool we rely on planar subdivisions induced
by algebraic curves, developed in CGAL (Computational Geometry Algorithm Library).

First, we achieve lower envelopes of quadrics using CGAL’s Envelope_3 package. Second,
we extend CGAL’s Arrangement_2 package to support two-dimensional arrangements on a
parametric reference surface. Two main examples are discussed: Arrangements induced by
algebraic surfaces on an elliptic quadric and on a ring Dupin cyclide. Third, we decompose a
set of quadrics or a set of algebraic surfaces into cells using projection. Our goal is to achieve
topological information for the surfaces, while preserving their geometric properties. We
maintain a special two-dimensional arrangement; the lifting to the third dimension benefits
from the recently presented bitstream Descartes method. The obtained cell decomposition
supports a set of other geometric applications on surfaces.

Our implementations follow the geometric programming paradigm. That is, we split
combinatorial tasks from geometric operations by generic programming techniques. It is
also ensured that each geometric predicate returns the mathematically correct result, even
if it internally exploits approximative methods to speed up the computation.

The thesis is written in English.

Zusammenfassung

Wir besprechen die Berechnung und Implementierung dreier Probleme aus der algorith-
mischen Geometrie, deren Eingabe aus gekriimmten Oberflichen besteht. Als Werkzeug
benutzen wir in CGAL (Computational Geometry Algorithm Library) entwickelte Zerle-
gungen der Ebene durch algebraische Kurven.

Zunichst berechnen wir die untere Einhiillende einer Menge von Quadriken. Danach
erweitern wir CGALS Arrangement_2 Paket, so dass zweidimensionale Zerlegungen auf para-
meterisierbaren Oberflichen berechnet werden kénnen, und fithren zwei konkrete Beispiele
aus: Zerlegungen induziert durch algebraische Oberflichen auf einer Quadrik und auf ei-
nem ringférmigen Zykliden nach Dupin. Zum Abschluss unterteilen wir eine Menge von
Quadriken bzw. algebraischen Oberflichen in disjunkte Untermannigfaltigkeiten mit Hilfe
einer Projektion. Die Hebung erfolgt mit einem kiirzlich vorgestellten approximativen Ver-
fahren zur Nullstellenisolation (bitstream Descartes). Ingesamt erhalten wir geometrische
Eigenschaften der Eingabe und erfahren mehr iiber deren topologische Zusammensetzung.
Die kombinatorische Ausgabe hilft bei der Berechnung anderer geometrischer Probleme
auf den Oberflichen.

Unsere Implementierungen trennen kombinatorische Aufgaben von geometrischen durch
Anwenden von generischen Programmiertechniken. Wir stellen auferdem sicher, dass Pré-
dikate stets das mathematisch korrekte Ergebnis ausgeben, auch wenn sie intern mit ap-
proximativen Methoden rechnen.

Die Arbeit ist in englischer Sprache verfasst.

Acknowledgments

First of all I want to thank Kurt Mehlhorn for giving me the great opportunity to work
in his group with the freedom to work on the research I wanted to zoom in. The bracing
atmosphere at the “Max-Planck-Institut fiir Informatik” is unique and catching. It is
a pleasure to work with so many interesting people. In particular, I appreciate all my
office-mates for a warm and relaxed atmosphere, and all my collaborators in the EXACUS-
project, especially Arno Eigenwillig, Michael Hemmer, Michael Kerber, Michael Sagraloff,
and Pavel Emeliyanenko. As a team we achieve wonderful results and software. My thanks
naturally continues towards the developers of CGAL and the members of its editorial board
for electing me to be among experienced “dinosaurs”.

I thank the reviewers of my work for very useful comments, good advice, and their
gradings — be it for submission at conferences or this thesis. I also appreciate all comments
that I received on preliminary versions of this thesis.

During my doctorate studies I had the wonderful chance to visit twice the lab of Dan
Halperin at Tel-Aviv University in Israel. I thank him and his team (especially Efi Fogel,
Ophir Setter, and Ron Wein) for giving me a warm and friendly welcome and for the very
fruitful collaboration that we started. I believe and know that this cooperation is still
growing.

A special thank goes to Ingrid Finkler-Paul, Christina Fries, and Petra Mayer who
always helped me perfectly with the small and big organizatorial tasks, such as travels.
Another helping hand is Joachim Reichel, who also provided me with his INTEX-template
for this thesis.

This work has been supported in part by the IST Programme of the EU as Shared-cost
RTD (FET Open) Project under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes). I enjoyed meeting many interesting people and also working with them.

My deep and final “thank you” goes to my family who gives me advice and supported
me in all circumstances. My special graditude is for my girlfriend Anne-Kathrin who never
stops believing in me.

Contents

ik f Aleorithmd 11

[1._Introduction 13
[L1_ Our contributiond 15
[2 Relatedworll 17
3 Outlind 19

[2. Aleebraic Foundations, Geometric Programming, Arrangements 21
.1, Algebraic foundafiond e e 22
.2 Tmplementing geometric algorithmd 46

4. Two-Dimensional Arrangements on Surfaced 113
W1, Setting and related worll 113
U2 Sweeping and zoning on asurface 116
W.3. Extending the ArrangementTraits 2conceptl 127
W.4. Maintaining a DCEL on asurfacd o o o 132

Bl _Problend o 192

[5.2. Operating aleebraic surfaced o . o 202
[5.3. Tmplementation in a frameworl o . oo 215

257

271

272

277

List of Figures

[L.1. Non-continuous function for point and alind 14

[L.2. Geometry induces combinatoricdo 14

R.1. Numbersonacurvd 40
B2 Shearingofacurvd 41
2.3__Geometric filtering by bounding boxed o6
.4 Analysis of asinele curvd 58
D.5. Analysis of a pair of curved 59
2.6. How to use the DCEL to represent a planar arrangement 69
.7 Nesting grapH o o oot 70
.8 Geometric constructions and predicates for the sweed 75
.9, Basic insertions into a planar arrangementl e 79
210 _Compare-zy via analyses of curved 86
[3.1. Developing the two arrangements on a reference quadrid 96
|3_2._]_g_ﬂ;j_ug the projected intersection onto the reference quadrid 97

B_A.Jlonsmﬁ_ug the projected boundary for a quadrid 100

[B.5. Constructing the projected intersection for pairs of quadried 101
B.6. Compare surfaces over a Cirvd v oo 102
B.7. Compare surfaces over apoinfl oo 103
3.8, Compare surfaces over the area below a curve o o o oo oo 104
B.9. TLower envelope of quadricd 105
|3 10. Running times for mmnuting_]mmma]mms_of_q;mdﬁcd 105
[3.11. Part of lower envelope of 400 quadried 107

U.1. Sweeping in parameter space and on a surfacd 117
KM.2. Arrangement of four infinite curved 118
U.3. Compare curve-ends near boundars 119
W4, The “croissant” surfacd oo v 122
U5 Comparisons near non-unbounded boundaried 123
U.6. Sweep line events are not DCEL-verticed« o v oo 124
U7 Events on the spherd 126
1.8, Refinement hierarchy of CGAL’S Arrangement [raits 2 conceptd 128

K10 Splitting a bounded facd 139

- onaspherd 140
K12 The tree-strategy on a cylinded 141
h_.l&lh&fomsﬁ;sﬁmtﬁg onacylinded 142
h_l&lh&foms_t;s_tmm@/ onaspherd 142
K15 Inserting a curve at an outer CCH 143

W18 Elliptic guadricd 161
U.19. Parameterization of paraboloid 164
ement on an ellipsoid 168

U.21. Performance of arrangements on quadried 168
1.22. Two examples of ring Dupin cyclided 171
K23 Curves in parameter space of cyelidd 175
- ical asymptoted 179

K25 Closing loops on acyelidd 181

.l._Computing the z-fiberl 195

5.2, Compute adjacency relation of incident z-fiberd 196
5.3, Check whether two z-fiber entries have equal z-coordinatd 198
5.4 Compute planar arrangementd 199
[5.5. Decompose § into a finite number of lifted celld 199
5.6, How to make cells of an arrangement simply connectedd 201
.7 Pronaga.i;_e_single—surface adiacencies to multi-surface fiberd 226
5.8, Steiner Roman surface with horizontal intersectiond 231
[5.9. Adjacencies from the plane and by transitivitd 236
5.10 Computing bucket-loyal points around a verteso 237
[5.11. Computing adjacencied 238
.12 Computing bucket-loyal points around a vertex of a vertical lind. 239
[5.13. Computine adjacencies at a vertical lind 241

[5.14. Adiacencies bv a. two-dimensional arran inded 242

List of Tables

[3.1. Running times for computing lower envelopes of quadried 105
[3.2. Complexity of example minimization diagramd 106
B3 T]] rolati ST =] 7 el 107
K. 1. Combinations of the parameter space’s boundaried 133

ements on quadricd 167
K3 Comparine planar and quadrical tonologj_ed 170
U4 Running times to constrict arrangements on a torud 183

k5 Running times to construct arrangements on a cyelidd 183
K6 Running times to construct and overlay arrangementd 184

b5.1._Performance measures for sets of ellipsoids and arbitrar*Lqu_a.d_Licd 252

10

11

List of Algorithms

.1 Computing ereatest common divisor with subresultantd 27

0.2 (“ommlting square-free part of a polvnomial using_s_u_b_r_mﬂ_ta.n_td 27

.3 Computing the number of distinct real roots using Sturm-Habicht. sequencd 28

0.4 (“ommlting square-free part of a polvnomial using Sturm-Habicht sequencd . 29

£.5. Compare two simple interval representationd 30
i i i i interval representatiod 31

Computing sign of a polynomial at algebraic interval representationd . . 32

0.8 Computing ereatest common divisor with specialized subresultantd 32
2.9, Real root isolation with hound on number of roofd 34
2.10._Computing number of distinct real roots (specialized polynomial) 36
R.11. Construct DCEL naivelsd o o o o 71
£.12. Sweeping line segmentd 73
0.13 Sweeping (weakly) z-monotone CUTVES . . e 74
.14 Incrementally inserting a weakly z-monotone curve 76

...................... 201
0.2._Construct clustered A gy with low-size intermediate arrangementd 207
5.3 Construct clustered Are ol © o o oo 209
[5.4. Compare entries of z-fibers of two surfaced 224
5.5 Compare entries of z-fibers of two surfaces, with filterd 225
[5.6. Decompose space curve into arcs and pointd 249

12

13

The world is not linear.

Introduction

Geometry is one of the oldest sciences on earth. Several thousand years ago, people had
already discovered principles about lengths, angles, areas, and volumes. Progress in under-
standing geometry was mainly driven by practical needs required in some crafts: surveying
the earth to create maps (e.g., to demarcate ownership), astronomy, and, of course, con-
structions of buildings and other infrastructure. More generally, geometryﬂ is a subfield
of mathematics that deals with the shapes of objects, their sizes and relative positions,
and with the properties of space. Euclid presented fundamental axioms of geometry in his
books. The field is also strongly coupled with numbers that represent geometric entities,
such as lengths and areas, and also coordinate systems that were introduced by Descartes.
Descartes also observed the connection between geometric objects and their algebraic de-
scriptions. Actually, the field of algebraic geometry, which defines objects by polynomial
equations, is a large and important subfield on its own. In particular, its low-dimensional
variant for real spaces are critical for many recent applications in the world of surveying,
motion planning, and construction. In these latter areas, the focus is on curved objects,
that is, objects defined by non-linear equations, such as circles, spheres, cones, tori, and
many others. Even the earth itself is an ellipsoidE Dealing with such curved objects is
often not solely for artistic purpose. In contrast, curved objects are essential for specific
design goals. For instance, car and plane manufacturers try to reduce the air drag coef-
ficient that saves fuel, or loudspeakers have a curved chassis to avoid undesired acoustic
reflections. Fields like computer-aided geometric design (CAGD), robotics, or molecular
biology can model their problems with algebraic equations, which provide accurate tech-
niques. Indeed, accuracy is a central goal in geometry as a slight displacement of an object
may result in a completely different combinatorial relation among the geometric shapes.
While the movement of a geometric object may still be continuous, that is, it can be per-
formed without jumps, the alignment of the object with respect to another one might be

!Based on Greek words geo for earth and metria for measurement.

2 Actually, the earth is a geoid whose shape is dependent on the local gravity. However, the ellipsoidal
shape is the state-of-the-art technique to model the surface, for example, for geographic information
systems.

14 Introduction

non-continuous. An example is the relative position of a point and an infinite line in the
plane; see Figure [L1 While moving the point, it can be uniquely determined whether

Figure 1.1. Non-continuous function for red point and blue (oriented) line: It is either
to the left of the line, on it, or to its right.

the point meets the line or on which of the two sides of the line it resides. The point’s
continuous movement is mapped to a three-valued status. Another example is illustrated
in Figure We see segments intersecting at a common point. Notice that the picture
also visualizes their combinatorial relation: It induces a graph whose nodes are endpoints
of segments and their intersections. An edge is added between two nodes if they are con-
nected by a piece of an input segment. If we slightly move one of the segments, as, for
instance, in Figure (b), the graph changes dramatically:

Figure 1.2. Geometry induces combinatorics

(a) Three segments intersect in a (b) A slight change in the geome-
single point. The induced graph try can have much impact on the
has 7 nodes and 6 edges. structure of the graph: It now has

9 nodes and 9 edges.

The number of nodes increases, and a non-empty bounded area surrounded and de-
fined by segments (shaded) appears. Note that the existence of this area can also be
modelled as a non-continuous function in terms of the position of the segments. Thus, we
emphasize that in our definition of geometry, dealing with geometric objects also involves
analyzing their combinatorial structure. The structure is determined by evaluations of a
number of non-continuous functions — that we also call predicates. This, indeed, opens
an algorithmic way to tackle geometric problems.

While dealing with non-continuous functions poses no problem in theory, the field of
geometric computing strives for an actual and robust algorithmic handling of geometric
problems on a computer. Doing so efficiently is also one of its important objectives. Ex-
amples are to compute convex hulls and Voronoi diagrams, to reconstruct surfaces from a

1.1. Our contributions 15

point cloud, or to compute the partitioning of a space induced by geometric objects as in
the recent example. Usually, each such task can be solved by a combinatorial algorithm
whose execution path is determined by geometric constructions and, as mentioned, eval-
uations of non-continuous functions. A central goal is to guarantee the termination and
the correctness of the output. This goal can be achieved if two principles are fulfilled:
First, the algorithmic design is guaranteed to deal with all possible cases. That is, it also
handles so-called degeneracies. Second, the evaluations of non-continuous functions have
to compute the correct values. If these goals cannot be fulfilled, a geometric computation
can quickly crash, loop forever, or simply produce incorrect results. It typically requires
extraordinary effort to meet the second requirement on a computer. The reason is that, as
mentioned, numbers play a key role in geometry, but standard hardware that carries out
arithmetic represents only finite sets of (solely the rational) numbers.

It is no secret that both problems have been successfully tackled, even in software,
when computing geometric problems with linear objects, such as line segments. Starting
in the 1990s, researchers have been providing more and more robust implementations for
various geometric tasks. Main examples of libraries collecting such software are LEDA,
the Library of Efficient Data structures and Algorithms, and CGAL, the Computational
Geometry Algorithms Library. It is exciting that their implementations are highly efficient
and even competitive with non-robust software fl However, there are also curved objects,
especially the mentioned ones that are defined algebraically. In three-dimensional space,
they are formed by the vanishing sets of uni-, bi-, and trivariate polynomials. Such became
more popular recently in several domains: Computer graphics, computer aided geometric
design, motion planning, and robotics. One way to approach such issues is to approxi-
mate each object with a corresponding set of linear objects, for example, connected line
segments for curves, or triangular meshes for surfaces. But approximation implies draw-
backs. First, it is hard to ensure that the function evaluations on approximations reflect
the exact version and thus subsequent computations actually output the correct answers.
Second, the number of linear objects required to reach this stage might be very large, if
possible at all. This may lead to an inefficient approach. On the other hand, it might
be advantageous to directly deal with curved objects, that is, non-linear algebraic ones
— although this objective is highly ambitious. Exploiting generic and symbolic computer
algebra systems seems to be the alternative. Cylindrical algebraic decomposition (cad) is
perhaps the most famous example. Unfortunately, such systems usually have extremely
long running times. However, in recent years, computational geometers have developed
robust and efficient software for curved objects, too. This work focusses on geometric and
topological properties. The key to success is to abstract combinatorial tasks from simple
predicates, and to replace their costly symbolic evaluations with approximative but certi-
fied computations as much as possible. But up to now, most work of that kind has been
restricted to curves embedded in the plane.

1.1. Our contributions

The main contents of this thesis are exactly cut from the same cloth. We aim for robust and
efficient software for geometric problems, but in “2.5 dimensions”. The fraction indicates,

3If the non-robust version computes “by accident” the correct result—in other cases, a comparison is
not meaningful.

16 Introduction

that the input is usually a set of surfaces in three-dimensional space, but either the output
is two-dimensional, or we reduce the problem to a two-dimensional one in order to compute
the desired three-dimensional output. In particular, we deal with the following challenges.
Each is a geometric problem whose input consists of surfaces in R3:

(a) Construct lower envelopes of quadrics
(b) Construct and maintain arrangements on two-dimensional parametric surfaces
(c) Stratify algebraic surfaces using planar arrangements

Figure 1.3. Examples of our contributions

L:—y ‘ /_> —>

(a) Lower envelope (b) Arrangement on a (c) Decompose set of
of three quadrics torus induced by ten surfaces into finitely
quadrics many lifted cells (and

compute adjacencies)

taken from presentation of [BKS08

Each of the main chapters is dedicated to one challenge. It turns out that the con-
struction of two-dimensional arrangements is a fundamental and essential tool for each.
For this purpose, we rely on CGAL’s matured Arrangement_2 package developed by Dan
Halperin’s group at Tel-Aviv University with main contributions by Ron Wein and Efi
Fogel. The problems we discuss mainly utilize this package, while (b) describes its new
generalization that we completed in collaboration with colleagues at Tel-Aviv University.
For each challenge, we show its relation to two-dimensional arrangements, and we also
identify which problem specific adaptations are required.

Computing lower envelopes of surfaces also exploits CGAL’s generic Envelope_3 pack-
age. In a remarkable amount of engineering work, Michal Meyerovitch from Tel-Aviv
University extended planar arrangements to provide this enhancement. In order to sup-
port a certain family of surfaces, the implementation expects a certain set of geometric
types, predicates, and constructions. In collaboration with Michal, we provide a proper
and runtime-efficient set for the case of quadrics.

For the other two challenges we develop new combinatorial frameworks that decouple
generic issues from surface-specific tasks. We also instantiate them with concrete imple-
mentations. That is, we learn how to compute arrangements on an elliptic quadric or a
ring Dupin cyclide (a generalization of a torus), both induced by algebraic surfaces in-
tersecting the reference surface. The latter is joint work with Michael Kerber from the
Max-Planck-Institut fiir Informatik. For the stratification of surfaces, we provide the re-
quired geometric operations for quadrics and for algebraic surfaces of any degree. These
results are based on joint work with Michael Kerber and Michael Sagraloff.

1.2. Related work 17

Besides two-dimensional arrangements, our three main objectives fundamentally rely
on a two-dimensional algebraic curve kernel that provides exact analysis of planar algebraic
curves and pairs of such curves. An important instance of such a kernel has mainly been
developed and is maintained by Michael Kerber. As our various implementations mostly
perform combinatorics on such planar analyses, it is no surprise that the final performance
measures we observe strongly depend on the efficiency of the supporting two-dimensional
algebraic kernel.

We remark that challenge (b) and (c) constitute major building blocks towards three-
dimensional arrangements of algebraic surfaces, or at least possibilities to support them.
While we decompose the input into zero-, one-, and two-dimensional cells, we are not able
yet to combine them into a coherent data structure that combinatorially represents the
induced partitioning of the space, including (maximal) connected three-dimensional cells.
The obtained accurate topological and geometric information of algebraic objects is crucial
for other interesting utilizations, such as computing substructures, good visualizations, and
for meaningful approximations by simpler objects (as triangles or splines).

Finally, it should be mentioned, that our achieved results match goals recorded in 2004
as part of a strategy report of the Exacus project [Exa04]. This project started in 2001
at the Max-Planck-Institut fiir Informatik in Saarbriicken, aiming for robust, efficient, and
complete software for non-linear curves and surfaces. Main parts of our software are now
contained in CGAL, as EXACUS is absorbed in CGAL.

1.2. Related work

Implementing robust and efficient algorithms for non-linear problems in computational
geometry has received a lot of attention in recent years, especially for algebraically defined
objects. A fundamental problem is the (real) root isolation of a univariate polynomial
that is often a key substep for more sophisticated algorithms. Several techniques exist,
each having advantages and disadvantages. Real root solving using continued fractions
has been considered in [TE08]|. A method relying on Descartes’ rule of signs with optimal
memory consumption and using multiprecision interval arithmetic is presented in [RZ03].
Its adaptation into a CGAL-like interface is shown in [LPT08]. Completely implemented in
CGAL are two real root solvers, both based on Descartes’s rule of sign [HLO7]. While one
deals with an exact representation of the coefficients, the other interfaces them as possibly
infinite bitstreams. This allows one to isolate real roots of polynomials whose coefficients
are algebraic or even transcendental [EKKT05]. A comparison of different approaches is

conducted in [EHKT0]].

In two dimensions, the prominent example is the exact computation of arrangement in-
duced by curved objects. A key contribution in terms of software is CGAL’S Arrangement _2
package developed by Dan Halperin’s group at Tel-Aviv University [WEZH(07a]. Besides
basic linear objects contained in the package and CGAL’s kernels, there exists support for
various families of curves (and arcs of them): Pion and Teillaud give a circular kernel that
enables the computation of arrangements of circles and line segments [PT07]. The same
goal is aimed at by work of Wein and Zukerman [WZ06]. Wein also presented how to com-
pute arrangements of conics [Wei(2]. In cooperation with Hanniel he developed an exact
implementation that allows to compute arrangements of Bézier curves [HW07]. There is
also a joint initiative to develop an “open curved kernel” [EKPT04].

18 Introduction

In parallel, the members of the EXACUS project also derived robust and efficient algo-
rithms (as software) to compute arrangements of non-linear curves and the corresponding
arcs of these curves. Berberich et al. developed the CONIX library. It allows one to consider
(arcs of) conic curves and polygons bordered by such curves [BEHT02]. Besides proper sup-
port for CGAL’s Arrangement_2 package, it has been shown how to extend LEDA’s sweep
line algorithm, which originally dealt only with line segments, to curved input. Later,
Eigenwillig et al. extended the set with cubic curves in the CUBIX library [EKSW06]. Re-
cently, Kerber et al. have been able to robustly implement the analyses of algebraic curves
of any degree [EKW07], [EK08al], which allows to compute arrangements of them using a
framework that interfaces the analyses into geometric predicates and constructions [BEQS].

The Arrangement_2 package itself is augmented with various interesting extensions, such
as observers that get notified about structural changes of an arrangement, the possibility to
overlay two arrangements, or various point location strategies; see [WEZHO7D|. In addition,
it is possible to compute lower envelopes of them [Wei()7al or to perform regularized boolean
set operations [FWZH(O7|. More details on planar arrangements appear in §4 They
are also utilized in CCGAL’s Envelope_3 package by Meyerovitch that allows to compute
(lower) envelopes of surfaces defined in three-dimensional space; see [Mey06a], [Mey06b],
and [MWZ07|. Her implementation applies a randomized divide-and-conquer-strategy and
makes use of (dis)continuity information of the surfaces and their intersections. Note that
the problem is two-and-a-half-dimensional: The input consists of objects in R3, while the
output decomposes a two-dimensional space.

When increasing the dimension from two to three, we are also aware of related results.
First, we mention ESOLID, a boundary evaluation system by Keyser et al. [KCFT04].
It can deal with low-degree curved solids (such as quadrics). However, it requires that
solids be in general position. Namely, it is not able to handle all degeneracies. Addi-
tionally, there exist three main specialized approaches for quadrics. The first sweeps a
plane through the scene of quadrics, maintaining a pseudo-trapezoidal decomposition on
the plane. This approach is due to Mourrain et al. [MTT05]; however, an implementation
is missing. The second technique uses a parameterization of the intersection curves by
Dupont et al. [DLLP0Sal, [DLLPOSD], [DLLPO8d|, which is based on Levin’s result [Lev79].
It has been used to successfully construct the adjacency graph of quadrics [DHPS07|. The
third approach by Berberich et al. [BHKT05| computes for a given reference quadric two
planar arrangements, one for its lower part and one for its upper part. In combination,
these arrangements encode the arrangement that is induced by other quadrics intersecting
the reference surface. While these approaches do not fully compute a three-dimensional
arrangement, CGAL provides the Nef_3 package which is a complete, robust, and efficient
implementation for three-dimensional Nef-Polyhedra [HKO7D], [HKMO7]. A d-dimensional
Nef-polyhedron is a point set P C R? generated from a finite number of open halfspaces by
set complement and set intersection operations [Nef78]. Union and (symmetric) difference
can be reduced to intersection and complement. The topological operations boundary, in-
terior, exterior, closure, and regularization can also be modelled with Nef-polyhedra. The
package is restricted to linear features.

This compiled list of results comprises general results obtained in the computational
geometry’s subarea of robust realizations for (non-linear) geometric problems. Further re-
sults specific to one of our three problems are postponed to the individual related chapters.
There, we first introduce the problems themselves in more details.

1.3. Outline 19

1.3. Outline

But first, in Chapter Bl we give a comprehensive review of concepts and tools required
throughout this thesis. This includes an introduction to algebraic foundations, a guide for
implementing robust geometric algorithms, the presentation of available arithmetic and
algebraic tools, and finally a detailed discussion of planar arrangements, as they are the
connecting entity of the main chapters.

Chapter B starts with a short introduction to (lower) envelopes and also remembers
how to robustly compute intersection curves induced on a quadric. In its main section we
discuss how to obtain required geometric types and predicates in order to compute lower
envelopes of quadrics. The chapter closes with experimental results and some variants.

Thereafter, in Chapter H, we present an extension to CGAL’s Arrangement_2 package
that allows to construct and maintain arrangements on two-dimensional orientable para-
metric surfaces. The chapter is organized as follows. We first introduce the setting followed
by a discussion of existing work. We then show in individual steps how we augment al-
gorithms and implementations for planar arrangements to finally support arrangements
on parametric surfaces. To do so, we abstract surface- and curve-specific geometric and
topological tasks from generic functionality. As a first step we show how to obtain a
unique order of events on the surface, even if some points have multiple pre-images in
the parameter space of the surface. As second step, we show how a new collection of
simple surface-specific functions can be used to consistently construct the DCEL (double-
connected-edge-list) that represents the induced arrangement. At the end of the chapter
we describe two example surfaces in detail. We consider arrangements on elliptic quadrics
induced by other quadrics, and arrangements on ring Dupin cyclides (containing the torus
as special case) that are induced by the intersection with algebraic surfaces of arbitrary
degree. We show that the geometric operations can be established by mostly combinatorial
recombinations of operations actually designed for algebraic plane curves. We conclude
the chapter with an outlook for future directions.

In Chapter Bl we show how to stratify a set of algebraic surfaces. We first abstractly
identify required tasks, and introduce a decomposition of the given surfaces into cells.
We then show that algebraic surfaces serve these needs. Our actual implementation is
split into two parts. The combinatorics are handled by a framework that defines a set of
tasks demanded by surfaces. We are able to implement these tasks for algebraic surfaces
of arbitrary degree, and a specialized version for quadrics that exploits their low degree.
We finally show utilizations that can be implemented in terms of the achieved output.
Results of experiments are reported before we conclude the chapter with directions for
future progress and research.

20

Introduction

21

Algebraic Foundations
Geometric Programming
Arrangements

The main parts of this thesis cover the area of curved geometry, that is, it deals with
objects beyond segments, triangles, planes, even beyond spheres. The role of this chapter
is to equip the reader with basic terminology and fundamental information on the objects,
basic tools and data structures we deal with in later chapters, namely with and towards
arrangements of algebraic objects in two and three dimensions.

The geometric objects we want to handle are defined algebraically. They form a class
of non-linear input, while their particularities pop up interesting cases to consider. §2.11
introduces very basic algebraic notation and main tools, like polynomials, sequences of
them, their roots, and how to isolate real roots. In §&TA we turn towards algebraic
curves, while LT H covers algebraic surfaces. Both are defined by multivariate polynomials.
A general ansatz for dealing with arbitrary polynomials in any dimension (actually for
quantifier elimination) is the cylindrical algebraic decomposition that we present in §ZT.6
We close the theoretical introduction by some terms of topology in §ZT.7

Implementing geometric algorithms is a highly non-trivial task, especially if the input
consists of curved objects. As we are not only interested in theoretical algorithm design,
but also aim for a state-of-the-art implementation of our algorithms, §2 surveys occurring
difficulties, introduces the geometric programming paradigm, and presents the geometric
libraries CGAL and EXACUS.

The development of geometric software from scratch is not necessary. A large number
of tools are available. §2.3 showcases the kit we use. It consists of number types, filter
techniques and algebraic kernels. Such kernels exist for the one- and the two-dimensional
case. We also give details on the interface of a special real root isolator.

We close the chapter with an introduction to a basic but very fundamental structure
in computational geometry in its own section, namely the arrangement. Arrangements
can be defined in any dimension, however in §£4] we focus on the cases where d = 3 and

22 Algebraic Foundations, Geometric Programming, Arrangements

for d = 2. Throughout the thesis, two-dimensional arrangements form the main build-
ing block. Thus, we shortly repeat how to construct and maintain planar arrangements,
followed by details of two-dimensional planar arrangements in CGAL. We finally present
in 4] a generic class that queries a so-called two-dimensional algebraic kernel with
analysis (see §233) in order to provide basic geometric types and operations required for
CGAL’s Arrangement_2 package. Depending on the algebraic kernel this triple enables a
user to compute arrangements of algebraic curves.

2.1. Algebraic foundations

A lot of geometric objects, even the very simple ones, are usually (piecewise) defined by
(semi-)algebraic sets. In particular, all objects we are dealing with in the main chapters
are algebraically defined. Thus, we sketch central algebraic concepts and considerations
which should already be known to an experienced reader. Most of this content is basic
and previously appears in standard textbooks like [vdWTT], [Lan02], [Bos06], [CLO9T],
[CLO0A)], or the comprehensive overview in [MPST]. This also implies that the tools we
introduce are well-known and proven, such that we are less comprehensive than any of the
given references. We refer to them for very basic concepts, generalizations of the results
that we state, and the proofs. In contrast, we try to formulate the tools as algorithmically
as possible, as our ultimate goal is also to provide a working implementation. It is above all
Chapter Hfor which we unreel some of the theory. The other chapters rely on combinatorial
information of algebraic curves by properly querying analyses provided by algebraic kernels.

2.1.1. Polynomials

The key expressions in our compiled list of algebraic concepts are polynomials.

Definition 2.1 (Polynomial). Let D be a factorial domain. An expression of the form
n .
f=) at €Dl
=0

is a polynomial over D with coefficients a,, # 0,a,_1,...,a9 € D. We may regard variable t
as a formal symbol of indeterminate meaning. D[t] denotes the ring of polynomials with
coefficients in D.

Properties of polynomials We start with very technical terms for a given polynomial f.
The degree of f, denoted by deg(f) is the greatest non-vanishing power of ¢, which is n
as we have a, # 0. If f =0, deg(f) = —oo. Another expression for the i-th coefficient a;
is coef;(f). We call a,, the leading coefficient of f and denote it lcf(f) = coef,,(f). With
fey = Zf:o a;t" we denote the k-th reductum of f.

With K we denote a field that contains ID. We usually refer to K = Q or K = C which
is already algebraically closed. We use the fraction field K = Q(uy, ..., ug) if the problems
depends on parameters uq,...,u;. Remember that D = Z (or D being a field) is factorial,
that is, 0 # r € D can be decomposed (up to order) into r =wu-ry- ... -ry with u being a
unit, ; € D, and all irreducible in D. Following Gauss’ theorem ([Bos06, §2.7]), it holds
D[t] is also factorial, which has several implications.

2.1. Algebraic foundations 23

First, for a;,a; € K, the ged(a;,a;) exists and is well-defined, and so for f,g € K[t].
The content of f is the ged of the coefficients, that is, cont(f) = ged(aq, ..., a,). We refer
to a primitive polynomial if cont(f) = 1, and to the primitive part of f for pp(f) := W

A polynomial g € K[t] is a factor of f if there exists a polynomial h € K[¢] with f = g - h.
Contrary, two polynomials f, g € K[t] are called coprime if ged(f,g) is a constant. We can
also define the factorization of f € K[t] (deg(f) > 0) by f = w-II", f; with u = lcf(f)
and f; being monic irreducible elements of K[¢] with positive degree. We call f square-free
if all f; are distinct. For a square-free f it holds that ged(f, f’) is a constant. On the

contrary, the square-free part f* of f can be obtained by f* = S Alternatively, one

ged(f,f7)
can also compute a finer granulation of f into square-free factors f;. We group the f; by

their number of occurrences which results in a square-free factorization f = u-H;?:l fj,

that is, fj € K[t] contains all f; that appear j times in the factorization of f. It is obvious
that & < n. Yun’s square-free factorization algorithm cleverly combines iterated gcds to
compute such fj; see [GCLI2, Algorithm 8.2| and [Yun76| for details. For our purposes
the weaker concept of the square-free factorization fulfills the needs.

Roots of polynomials

Definition 2.2 (Root). Let f(t) € D[t] be a polynomial. We call an element a with
f(a) =0 aroot of f.

Usually, the roots of f are not necessarily elements of). We mostly refer to the real
roots of a polynomial. Switching to the algebraic closure C of D allows to write f, with
deg(f) = n, as a product of linear factors

f) = w-TG (8 —)

with u being the leading coefficient of f and «; being the not necessarily distinct roots of
f over C, whose number is n.

Definition 2.3 (Multiplicity). Let f(¢) € D[¢] be a polynomial with root o € C. The
number of linear factors (¢t — «) in f(¢) defines the multiplicity m of « as root of f. Such

a root is called simple if m = 1, and multiple if m > 1. We also refer to the m-fold root
a of f.

It can be shown, that a square-free polynomial over D only contains simple roots, as
otherwise, some factor appears twice and thus, each root of such a component must be a
multiple of the polynomial.

Multivariate polynomials A polynomial ring D[¢] can serve as a domain again. This strat-
egy yields to multivariate polynomials whose ring is given by D[t1] ... [tq] = D[t1,. .., t4].
The order of adjunction can be chosen freely. Two views on a multivariate polynomial f
are common.

Hierarchical: f is univariate in a chosen outermost variable, say t4, that is, f € D[t4]
with D = D[tl, e ,td_l].

Flat: f is expressed as a sum of monomials ai1,...,’idtyil7 .. ,tild.

24 Algebraic Foundations, Geometric Programming, Arrangements

The total degree degy,.(f) of f is the highest sum of exponents i1 +. ..+ 4 among all
monomials in the flat view. The value deg,, is equal to deg(f) assuming f being univariate

in t;. A multivariate polynomial f € D[ty,...,tq] is t;-regular if it contains a monomial of
the form c-t?eg“’“a‘(f) with 0 # ¢ € D, which is equivalent to deg.(f) = deg, (f)-
In the hierarchical view, we can decompose a multivariate f € D[t,...,t4] into f =

conty, (f) - ppy,(f), where conty,(f) € D[t1,...,tq—1] and pp;,(f) € (D[t1,... ta—1])[tal.
We call a multivariate polynomial f square-free if conty,(f) and pp,(f), seen as univariate
polynomials in ¢4, are square-free. Mind a possible recursion for conty,(f). f being square-
free is equivalent to ged(f, f') = ¢ and also equivalent to: There is no non-trivial g €
D[ty,...,tq] with g?|f. Computing a square-free factorization of f reduces to compute one
for conty, (f), one for pp; (f), and to multiply factors of same multiplicity. The later step
is often omitted as conty,(f) has interesting properties with respect to the vanishing set of
f that we introduce in Definition Zl and used in §2T.4] (page BY ff) and §ZTH (page BA).

For numbers @ = (a1,...,04) € K¢ we can evaluate f either in full which results
in a scalar s € K, or with a subvector of @, which gives another polynomial over a ring
dependent on the domain of the «;. Actually, arbitrary evaluation is not expected often,

but the following set of homomorphisms is of interest. For a fixed k: D[tq,...,tq] —
K% *. Let @*) be a sequence (vector) of k numbers (aq,...,a;) from a field K and
fam = floa, ..., 0, tgg1, .- tq) € Kltgqt,. .., tq], that is, evaluating the d-dimensional

polynomial f with & < d numbers «; results in a (d — k)-dimensional polynomial over K.
We often have k = d — 1, which eventually leads to a univariate polynomial € K[t4].

Definition 2.4 (Vanishing set). Let f(¢1,...,tq) € D[t1,...,tq] be a polynomial and K be
a field. We call Vk(f) := {@¥ € K?| f = f(a1,...,a4) = 0} the vanishing set of f
over K¢.

The following proposition is essential for us and also easy to verify.

Proposition 2.5. Let f € K[t1,...,tq] with f = f1-fo and f1, fo € Klt1,...,t4]. Then
Vk(f) = Vk(f1) U Vk(f2). Direct implications are Vk(f) = Vk(c- f), with 0 # ¢ € K,
Vie(f) = Vie(fE£L), with k,1 € N, and if fy|f, then Vic(f1) C Vic(f) (similar for fz).

Our geometric applications mainly strive for objects defined by the vanishing sets of
(simple) integral polynomials in dimensions 1, 2 and 3 over R. However, as D = Z the ged
and the square-free factorization are only definable up to constant factor. That is, it is
possible to compute for f,g € Z[t] a polynomial g = ¢- ged(f, g), with ¢ € Z (and similar
for the other decompositions). The good news is, that, as stated in Proposition X5 such
a constant factor does not change the vanishing sets of the resulting polynomials in which
we are mainly interested in subsequent parts; see §&T.2 for real roots, §&T.4 for algebraic
curves, and §T.H for algebraic surfaces.

Polynomial sequences We next turn to more sophisticated algebraic tools, namely sub-
resultant and Sturm-Habicht sequences. They are well-studied in algebraic geometry, such
that we omit to unreel the full theoretical considerations, and refer to textbooks discussing
them in detail. We narrow their introduction to mention their existence and give results
relevant for our further considerations.

Definition 2.6 (Sylvester matrix, subresultant and sequences). Given f = Y7 a;t’ €

2.1. Algebraic foundations 25

D[t] and g = > 1", bit" € D[t] with n = deg(f) > deg(g) = m > 0.

e For k < m, the k-th Sylvester submatrix has dimension (m +n —2k) x (m+n —k),
build with (m — k) rows of coefficients of f and (n — k) rows of coefficients of g. It
has the following form:

an o e “e e ao

an o e “e e ao

Sylk(f7g): bm bO

S

These matrices occur when asking for (non)-zero polynomials u,v with deg(u) <
m — k and deg(v) < n — k and fulfilling uf + vg = 0. It corresponds to the linear
system of equations (u,v)Syl.(f,g) = 0, where u and v are identified with their
coefficient vector.

e For 0 < k < n, the k-th subresultant of f and g is defined as

S ME(f gt k<m—1

g k=m
Sresi(f,9) = 0 m+1<k<l1
f k=n

where MF(f, g) is the determinant of the matrix build with the first n +m — 2k — 1
and the (n +m — k — i)th column of Syl,(f, g)H

e The k-th principal subresultant coefficient, 0 < k < n, is given by

f(S 0<k
sresy(f, g) = {ioe k(Sresy(f, 9)) ' - n< n

e The k-th coprincipal subresultant coefficient, 1 < k < n, is given by coresg(f,g) :=
coefy_1(Sresi(f, g)).

e The subresultant sequence of f and g is given by Sres,(f,g),...,Sreso(f,g). Similar
sequences exists of sres and cores.

e It holds Sresy(f,g) = sreso(f,g) =: Res(f,g), where Res(f, g) states the resultant of
f and g. If g = f’, then we call Res(f, f') the discriminant of f.

e We also write Resy, (f, g), which especially makes sense, if D itself is a polynomial ring,
that is, we consider f and ¢ as univariate polynomials in some tg4, whose coefficients
can be themselves polynomials in other variables. Similar for Sres;, 1, sres;, 1, and
coresy, k.

“This definition of the subresultant is different from the standard literature (e.g., [BPR0G]). It is
presented in [Ker(6)].

26 Algebraic Foundations, Geometric Programming, Arrangements

We next state without proofs results relevant for our work, where f and g are polyno-
mials as in Definition Z0

Proposition 2.7. The resultant Res(f,g) € K is zero if and only if f and g have a non-
constant common factor, that is, for h = ged(f, g), it holds deg(h) > 0.
If K = C, Res(f,g) = 0 holds if and only if f and g have a common complex root.

For details on this proposition we refer to [Ber(4, Proposition 2.1.14]. Observe, that
in any case it holds Res(f,g) € K. Thus, the complexity of the problem has been re-
duced with respect to dimensionality. On the other hand, Res(f,g) is an expression of
complexity O(m-n). In particular, if Res(f,¢g) is a polynomial again: Consider, for exam-
ple, Resy, (f,9) € D[t1]. Then, it holds deg;, (Res,(f,g)) = n-m (with n = deg,,(f) and
m = deg,, (9)).

For the case that f,g € Klt1,...,t4], elimination theory paves a way to compute a
zero-dimensional solution for f = g = 0 by reduction of dimension. We first compute
a partial solution «,...,aq_1 which is being extended in a second step by all possi-
ble full solutions aq,...,aq. It is obvious that the method should be applied recur-
sively. The claim is, that the solutions to Res:,(f,g) constitute a set of partial solu-
tions that can be extended. However, this is broken if for such a solution ay,...,aq_1,
we have that lef;, (f)(ai1,...,aq-1) = 0 and lcfy,(9)(a1,...,aq—1) = 0. In this case,
Resy, (f,9)(aq,...,aq—1) vanishes ignoring the fact whether «;, ..., a4_1 is a partial solu-
tion or not. The reason is that the first column of the Sylvester matrix completely vanishes.
However, Res,(f,g)(a1,...,a4-1) = 0 is a necessary condition for aj,...,aq—; being an
extendible partial solution. The problem becomes handy if f or g is t4-regular.

Proposition 2.8. Let K be a field, and let f,g € K|[t1,...,tq] be non-zero polynomials.

Furthermore, let f be ty-regular. Then, for all (aq,...,aq-1) € K" the two conditions
1. ReStd(f, g)((ah o 7ad—1)) =0
2. There is ag € K such that f(oq,...,aq)) = g((a1,...,aq)) =0

are equivalent; see also [Ber()4, Proposition 2.1.13].

Cylindrical algebraic decomposition (see §ZT.0l on page Bl f) mainly uses terms intro-
duced in Definition and Propositions X1 and to project an algebraic problem to
an instance of lower dimensionality. In §ZT.4 and §23.3] the technique is used to analyze
algebraic curves, and in Chapter Bl we also rely on dimension reduction to analyze algebraic
surfaces.

There is a relation of the greatest common divisor and the subresultant sequence.

Proposition 2.9 ([BPR06, Prop. 10.14, Cor. 10.15]).

e deg(ged(f,g)) = min{k € {0,...,n} | sresg(f,g) # 0}
o Sres(f,9) ~ ged(f, 9)

(h1 ~ ho denotes that either hy = c¢-hg or ¢-hy = ha, for hy and hy polynomials over some
D and c€D.)

One can even show, that the subresultant sequences contains (up to associates) all
polynomials occurring during the Euclidean algorithm to compute the ged, but with less
complexity of the coefficients [BPR06, § 8.2]. Proposition implies the following two
algorithms on polynomials.

2.1. Algebraic foundations 27

Algorithm 2.1. Computing greatest common divisor with subresultants
INPUT: f, g € K[t] as in Definition
OutpuT: ged(f,g) € KJt]

o k0

e While (sign(sresi(f,9)) =0) Dok — k+1

e Return Sresg(f,g)

Algorithm 2.2. Computing square-free part of a polynomial using subresultants
INPUT: f € K[t] as in Definition
OutpuT: f* € KJt] that contains each distinct factor of f once.

e Compute h = ged(f, f) with Algorithm 1]

e Return f/h

The subresultant is robust with respect to ring homomorphisms ¢ : D — D’ that are
degree-preserving for f and g. Then, Vi : o(Syl;(f,9)) = Syl;(o(f),¢(g)), where ©(A)
means to apply ¢ to each entry of A (see, e.g., Algorithm ZZ7]). As the determinant is just
a sum of products, we have p(det(A)) = det(p(A)), which proves the following theorem
(see also [Yap00, §4.4, Lemma 4.9]).

Theorem 2.10 (Specialization property). Given a homomorphism of domains ¢ : D — I,
with lcf(f),1cf(g) & ker(p). Then, for 0 < i <mn, ¢(Sres;(f,g)) = Sres;(o(f), ¢(g))-

There is a main application which explains the name of the theorem. Think of D = D[t]
for some basic domain D, that is, D has the parameter ¢. There is a simple homomorphism
to D that specializes ¢ to some value a. Then, instead of Sres;(f|i=a, glt=a), it is possible
to access Sres;(f, g)|t=a. Actually, the number of parameters is free, and a homomorphism
can specialize all of them, or just a subset.

In Algorithm we set g = f'. It is easy to see, that applying this idea in general
to the given sequences, allows to obtain interesting information on the multiple factors of
a single polynomial f. The Sturm-Habicht sequence, that we introduce next, is another
sequence that derives even more information for such a f. Actually, the sequence can also
be defined for arbitrary g, from which we abstain, as we are aiming to only introduce the
tools relevant for subsequent chapters.

Definition 2.11 (Sturm-Habicht sequence [GVRLR]). Given f = >"" ja;t' € K[t] with
n = deg(f), and &, := (=1)**+D/2 For k € {0,...,n}, the k-th Sturm-Habicht polyno-
mial of f is defined as

StHa,(f) = f
StHa,_1(f) = f
StHay(f) = 0p_gx_1Sresi(f,f), k=0,...,n—2

We define sthay(f), the k-th principal Sturm-Habicht coefficient of f, as the coefficient
of t* in StHag(f).

In [BPRO6] the Sturm-Habicht sequence is introduced as signed subresultant sequence,
which reflects that the Sturm-Habicht sequence basically coincides with the subresultant

28 Algebraic Foundations, Geometric Programming, Arrangements

sequence, but whose members are possibly multiplied by —1. This slight difference has no
implication on the specialization property. That is, a Sturm-Habicht (coefficient) sequence
still behaves well under specialization. On the other side, the (possible) multiplication
by —1 makes a difference, as Sturm-Habicht sequences allow to compute the number m
of distinct real roots of f in a given interval [c,d] without actually actuating a real root
isolator (to be presented in §ZT.2). In fact, that section describes an isolator that decisively
relies on this information. The theoretical result that allows the compute m is stated with
a full proof in [GVN02|, while the version in [EKWI{7] is restricted to I = | — oo, 00l
Instead of the theorem, we give an algorithm.

Algorithm 2.3. Computing the number of distinct real roots using Sturm-Habicht sequence
INpPUT: f € R[t], with deg(f) =n >0
OuTpUT: The number m of distinct real roots of f

1. Compute the sequence S = sg,...,s, with s; := sign(stha;(f)). Observe, that

Sthal'(f) eR.
2. m<—20
3. For each subsequence S’ = (a, (0)o..k,b) of S with a # 0,b # 0 and k > 0 Do
o If k even, then m «— m + (—1)*/%sign(ab)
4. Return m

Besides the number of distinct real roots, we are also interested in multiple roots.
In that direction, Proposition states a fundamental result used in Algorithm] to
compute an important information, namely the degree k of ged(f, f'). By the definitions
of StHa; and stha;, it is easy to see, that Algorithm BTl still computes the correct k, if
sres; is replaced by stha; and Sres; by StHa;.

Remark. If both m and k are desired, it is recommended to first compute m with Algo-
rithm and then to reuse the sequence S = sq,..., s, in Algorithm Pl which gives k
as side-effect: Namely, when searching for the minimal k with sthay = 0. A clever com-
bination of the two algorithms allows to obtain & with no additional costs on top of the
expenses of Algorithm Z3

Computing ged(f, f') in the second part of modified Algorithm EZTlstill needs StHay, for
the given k, and computing f* needs the subsequent division in Algorithm 22 However,
the cofactors of the Sturm-Habicht polynomials already contain f* [BPR0O6, Prop. 8.38].

Proposition 2.12. For j < n, there exist polynomials u;,v; with deg(u;) < n —j — 2,
deg(vj) <n —j — 1 such that StHa;(f) = u;f + v; f’.

All cofactors u; and v; can be written as determinants of Sylvester-like matrices. The
square-free part f* of f is given by one of the v;’s [BPRO6, Prop. 10.14, Cor. 10.15].

Lemma 2.13. If k = deg(ged(f, f')) > 0, then f* = v_;.

2.1. Algebraic foundations 29

Algorithm 2.4. Computing square-free part of a polynomial using Sturm-Habicht sequence
INPUT: f € K[t] as in Definition
OutpuT: f* € KJt] that contains each distinct factor of f once.

e k—20

e While (sthag(f,g) =0) Dok — k+1

e Return v,_; as stated in Lemma

An algorithm to compute a Sturm-Habicht sequence with cofactors is [BPRO6L Alg.
8.22]. In addition, it is more efficient to prefer a polynomial remainder sequence [Loo82al
than computing the Sturm-Habicht sequence via determinantal expressions.

Subresultant and Sturm-Habicht sequences in combination with their specialization
property are key tools when analyzing algebraic objects of higher degree. We present fur-
ther basics on this in §&T.2 while §&T4 introduces algebraic curves and §2.T.4] algebraic
surfaces. Chapter [presents how to analyze algebraic surfaces in the spirit as previously
done for algebraic curves [EKW0O7|,[EEK08al. Both cases still require some exact computa-
tions, that is, launching algorithms that we presented in this section.

2.1.2. Algebraic numbers and real root isolation

Definition 2.14 ((Real) algebraic number). Let K be a field, and f(¢) € K[¢t]. We call an
element o with f(«) = 0, an algebraic number over K. It is called real algebraic number
if « € R. If f is irreducible over K (i.e., f cannot be expressed in the form f = f1fs, with
f1 #1and fy # 1), then we call f the minimal polynomial of a. The other roots @ # « of
the minimal polynomial are the conjugates of . The degree of « is defined by the degree
of the minimal polynomial. If f is reducible, there always exists a minimal polynomial
that is a factor of f, and defines the degree.

In our geometric applications, we focus on the case K = R. For proofs, we sometimes
also have to refer to the complex roots of a polynomial. An important property is, that the
roots of polynomial f with algebraic numbers as coefficients are also algebraic numbers.
In the remainder of this part we shortly discuss how to represent (real) algebraic numbers,
how to compare two of them, and how to isolate the real roots of a univariate polynomial.

Representation, comparison, evaluation

An algebraic number can be expressed in form of an algebraic expression E formed by a
directed acyclic graph whose leaves are integers, and whose inner nodes define operations on
their children. Allowed operations are +, —, -, /, Y/, and o. The expression (4, Eq, ..., Ep)

identifies the 1 < j < d root of the polynomial Z(ij:o val(E;)t!, where val(E) is the real
value given by the expression EE Each node knows an interval approximation of the exact
value defined by its subgraph, which can be refined by recursively approximating the values
with higher precision. An operation is applied by creating a new root node, connecting it to
the graph, and by computing a first approximation. The comparison of two such numbers
is reduced to the computation of the sign of a difference. If the approximation interval of
the difference does not contain zero, the answer is simple. Otherwise, a separation bound

®Note that ¢ actually subsumes all other operations.

30 Algebraic Foundations, Geometric Programming, Arrangements

is computed, that is, a value E with the property that val(E) # 0 = |val(E)| > E. This
means, that an expression F is either zero, or has a minimal absolute value. Thus, the
correct sign is achieved by refining the approximation until the absolute values of both ends
are smaller (or greater) than E, which allows to decide the sign. The theory on separation
bounds is wide-spreaded. We refer to [LY(1] and [BEM™01]| for further reading and to §831
(page [@7 ff) where we utilize corresponding number types. For the next representation we
need a term.

Definition 2.15 (Isolating interval). Let f be a univariate polynomial with a root o € R.
A closed interval [a,b] C R containing «, but no other root of f, is called an isolating
interval for o with respect to f. Containing means that either a = a=bor a < a < b.

This section contains a brief overview on algorithms that isolate all real roots of a
polynomial, while for now, we state without proofs, that for each real root, there exists
such an isolating interval, which even can be refined to arbitrary small length (if not
already degenerate) in a sequence of nested intervals. Such an interval is a key ingredient
to represent a real algebraic number a over K; see Definition ZT68 Usually, we have K = Z.
Observe that such a number is also algebraic over Q. So, we restrict to the integral case
for the following definition.

Definition 2.16 (Integral interval representation). Let « be a real algebraic number that
is a root of f € Z[t] having an isolating interval I = [a,b]. We call a=(f;I) an (integral)
interval representation of . The representation is simple, if « is a simple root of f.

Note that the representation uniquely identifies the root, though neither the polynomial
nor the interval is unique. Arithmetic on this representation is not directly supported, but
also not desired. Its main purpose is to represent, to refine, and to compare real algebraic
numbers. Definition EZTT gives a more generic representation for a certain set of algebraic
numbers over K = R. Some of our intended applications require them.

For the interval boundaries, one usually chooses a,b € Q, as Q is dense in R. However,
every set that is dense in R is possible. For a simple representation of a=(f;[a,b]), we
have f(a)f(b) < 0. This directly implies a bisection method to refine I: Namely, I is
replaced by I, = [a, “T*'b] or I, = [aT‘H’, b], depending on the sign of f(aT‘H’) This strategy
allows to refine an isolating interval with linear convergence. An alternative with quadratic
behavior is due to Abbot [Abb0O6|. Algorithm X3l gives a high-level description of a method

to compute the order of two such representations.

Algorithm 2.5. Compare two simple interval representations
INPUT: a1 =(f1;11); s =(f2; I2), both simple
OutruT: Order of a1 and as

e If I1 and I, are disjoint, we return the order and are done.

e Compute [=1 N1y = [a, b

e Check if I is isolating for a; and ag by determine the signs of fi(a), f1(b) and
fa(a), f2(b). If not, we refine I; and I, until they are disjoint, which gives the order.
Otherwise, compute g = ged(f1, f2) and check whether g(a) and g(b) have different
signs. If so, I is isolating for a common root of f; and fs, which gives a; = as.
If not, refine I; and I5 until they are disjoint, which gives the order.

2.1. Algebraic foundations 31

There are subtleties in the refinement and comparison that must be considered, for
example, an occurring zero sign (in some f;(a) or f;(b)). However, we omitted them for
simplicity. A similar algorithm is used to compute the sign of a polynomial at a given
interval representation.

Algorithm 2.6. Computing sign of a polynomial at simple interval representation
INPUT: g € Z[t], square-free; a =(f; I), simple with f € 7Z][t]
OUTPUT: sign(g(a))
e Compute h = ged(f,g) and check whether h(a) and h(b) have different signs. If so,
return 0.
e Compute J = [¢,d] = h(I) with interval arithmetic (see §31 on page B3).
e If sign(c) = sign(d), return sign(c).
e Otherwise, refine I to I’ and restart with the computation of a new .J.

There are further direct representations of real algebraic numbers, like Thom’s encod-
ing [BPRO6]. However, we do not go into the details. Usually, we make use of the isolating
interval representation.

Remember that the roots of a univariate polynomial with algebraic coefficients are
algebraic again. One way to obtain such a polynomial is to evaluate a d-variate polynomial
of rational coefficients with d — 1 algebraic numbers. For example, let a1,as be real
algebraic numbers, f € Q[t1,t2], g € Q[t1,t2,1t3], then fo,(t2) := f(ai,t2) € R[ta] and
Gar,a0(t3) = glou, an,t3) € Rts] are such polynomials. We introduce a more generic
representation for such real algebraic numbers over R.

Definition 2.17 (Algebraic interval representation). Let d > 1 be some dimension, f €
Zlty, ..., t4], primitive, and @9~V = (ay,...,aq_1) € R¥1, 8 € R, where a; is in interval
representation, while oy with ¢ > 1 is recursively defined with @®~1). Remember that
fa(d—l)(td) = f(al, ce, g1, td) € R[td].

If foa1(B) = 0and I = [a,b] C R is isolating for 3, we call B=(f;a=: 1) an
algebraic interval representation (of dimension d) of . Again, (is simple if it is a simple
root of fr-1).

Additional remarks:
e o; with 1 < ¢ < d is an algebraic interval representation of dimension i at ali=1)
namely o; =(fi; @ Y; 1))

e We call the collection of numbers @ a base point (of dimension (d—1)) and refer

to the polynomial of shape f. (1) (t4) as a lifting polynomial at the base point &(@=1).

(d-1)

We should mention that there are methods to convert an algebraic interval represen-
tation into an integral interval representation [Loo82al. Although this allows to directly
apply Algorithms and 20 we abstain for reasons of efficiency to deploy this strategy.

Instead, we pursue an indirect approach in order to compare two algebraic interval
representations or to compute the sign of a polynomial at an algebraic interval represen-
tation. In fact, it turns out that the sign determination is key when refining isolating
intervals. Recall that iterated refinements of the isolating intervals suffice to decide the
order of two non-equal numbers. Thus, before explaining how to decide equality for two
algebraic interval representations, we first consider how to refine the interval I of a given
ﬁé(f;a(dfl); I). Below, we present a methods to isolate the real roots of a square-free

32 Algebraic Foundations, Geometric Programming, Arrangements

polynomial based on Descartes’ rule of sign. It provide as by-product a possibility to refine
such intervals. The following is more direct, but also holds only if f 1) is square-free: De-
ploying the bisection approach in order to refine I reduces to compute three signs, namely
sign(fya-1) (1)), where r € {a, GTH’, b}. By defining g, € Zl[t1,...,ts_1] as the integralized
version of f(t1,...,tq—1,7) (mind that integralizing keeps roots and signs), the remaining
problem is to compute sign(g,(a, ..., aq—1). The following algorithm is a recursive version
of Algorithm exploiting the fact, that «; depends on @b,

Algorithm 2.7. Computing the sign of a polynomial at algebraic interval representations

INPUT: g € Z[t1,...,tg]; @% = (ay,...,aq), forming a sequence of algebraic interval
representations where ag =(f1;1;) and aié(fi;a(ifl);li) for 1 < i < d. Observe that
fi € Z[tl, ce ,ti], and I; = [ai,bi] CR
OurtpuT: sign(g(ai,...,aq))

o Let f:= fg. Compute h = ged(fya—1), gga-1))-

e Compute (recursively) the signs of h(aq) and h(bg). If they have different signs,
return 0.
Compute J = [¢,d| = h(I;) with interval arithmetic using all I;,1 < j <d.
If sign(c) = sign(d), return sign(c).
Otherwise, refine I; to I, and restart with the computation of a new J.

At two positions the recursion takes place, namely when determining the signs of h(ay)
and h(bg), and when refining I; to I. In addition, the algorithm makes an assumption
that we have not yet proposed a solution for. It assumes that ged(f5w-1), g5a-1)) can be
computed. Theoretically, using the standard Euclidean algorithm, this task does not pose a
problem. However, the demanded operations on such algebraic coefficients of large degree
are simply infeasible, in particular, for arbitrary polynomials. The solution we propose
relies on the fact, that both polynomials f_w-1) and g w-1) are lifting polynomials at the
same base point a(?1) . Algorithm enhances Algorithm Bl with the specialization
property to compute ged(foa-1), gga-1))-

Algorithm 2.8. Computing greatest common divisor with specialized subresultants
INPUT: f,g € Z[ty, ..., tg); @D e RI-1
OUTPUT: gcd(fa(d_l),ga(d_l)) S R[td]

o k0

e While (sign(sresy(f, g)(@ 1)) =0) Do k — k+1

e Return Sresy(f, g)zw-1 € R[t4]

We finally mention, that Algorithm is also launched when computing the ged in a
modified version of Algorithm in order to decide whether a =(f;7¥; 1), and 8 =(g;7;J)
are equal

While Definition ELTT is generic, we are restricted in this thesis to utilizations for di-
mensions 2 and 3 only. However, we still need to know how to compute the isolating
intervals for integral and algebraic interval approximations. The theory on real root iso-
lation is discussed next. Technical details on how to use algebraic interval representations

5The input now consists of two algebraic interval representations replacing the integral ones.

2.1. Algebraic foundations 33

of dimension 2 to represent y-coordinates of algebraic curves are later given in §Z33 and
§23 4 Chapter Bl discusses how to advance those ideas by one dimension such that we
are able to represent z-coordinates for points on an algebraic surfaces by algebraic interval
representations of dimension 3.

Real root isolation

Isolating the real roots of a univariate polynomial of arbitrary degree is a well-studied
problem in (computational) algebra. Although not at the heart of the thesis, its central
contributions rely on previous work in this field. In Chapter Bl we even face real root
isolation concretely, when computing algebraic interval representations of dimension 3. The
method that we rely on is the well-known Descartes method [CAT6]; there are variants
for inexact coefficients [EKKT05|, and a modification of it [EKWQT7|. The technique is
comprehensively discussed in [Eig08], to which we also refer for its encyclopedic description
of other root isolations, for example, numerical solvers, the method based on continued
fractions, and the subdivision scheme using Sturm sequences, as well as all their variants.
To discuss all of them lies beyond the scope of this thesis. Thus, we only extract important
information of the parts on the Descartes method from [Eig08], that also contains missing
details in the presentation.

Before getting deeper into it, we should mention that most approaches, as well as
the Descartes method, require the input polynomial to be square-free. If not, we have
two options. The first consists of computing f’s square-free part f* either using f* =
W or by deploying subresultants (as in Algorithm or Algorithm 7)) followed by
a subsequent restart. As second possibility, we square-free factorize, and apply the real
root isolator to each of the factors. In that approach, a subsequent sorting of the roots is
often expected, which requires comparisons. On the other hand, later computations may
benefit from the fact that defining polynomials are of smaller degree. Note that we do not
compute the minimal polynomial for an interval representation. However, it is possible to
interactively replace the defining polynomial by a simpler one, namely in the case that the
ged in Algorithm is non-trivial.

The basic idea of the Descartes methods is to consider initially an interval that contains
all roots and to repeatedly subdivide it until we are left with a situation where each interval
is guaranteed to contain either no or exactly one root.

Theorem 2.18 (Descartes’ rule of signs). Let f = > " ja;x* and V(f) be the number of
sign changes in (an,...,aq) (ignoring a; = 0). Let a1, ..., a, be the positive real roots of
f with multiplicities m1,...,m,. Let MT = > =0y

Then V(f) — M is non-negative and even.

For a proof we refer to [BPR(O6]. Using a Mdbius transformation Descartes’ rule of
signs also gives a bound on the number of real roots of the polynomial f within an interval
I. We denote this bound by V(f;I). More details appear in [RZ03]; a variant using the
Bernstein basis is presented in [HL93|]. This basis has advantages with respect to splitting
intervals. This splitting is essential in the following Algorithm for real root isolation.

34 Algebraic Foundations, Geometric Programming, Arrangements

Algorithm 2.9. Real root isolation with bound on number of roots
INPUT: f € Z[t], square-free
OutpuT: list of disjoint intervals, with as many real roots of f than intervals, each
containing exactly one real root of f
e Compute Iy containing all real roots, and initialize a container @) with Iy
e While @ is not empty,
— Pop an interval I from @, compute V (f;1).
— If V(f;I) > 1, subdivide I into I and Iyene and add them to Q.
— IfV(f;I)=1, return I.
If V(f;I) =0, remove I from Q

Remarks (on Algorithm [29).

e The algorithm works with any subroutine that correctly computes V(f;I). Using
Descartes’ Rule of Sign is our preferred method.

e Computing a good Iy is a problem on its own. Several bounds are known and we
refer to [Eig08], §2.4] for a collection of some.

e The algorithm simplifies, as it does not check whether the boundaries of intervals
are roots of f. However, for this introduction, we can assume, that no such root
exists. Algorithmically, it can be handled by either explicitly checking whether the
boundaries are roots. There also exists techniques, like random perturbations of the
polynomial’s coefficients, that still ensure the correctness of the computed isolating
intervals for the original real roots.

e The algorithmic description misses to give a strategy on how elements of @ are

popped, which actually does not play a role for the effectivity of the approach; but
maybe affects the efficiency.
More detailed, we can see Q) as a subdivision tree. If naively traversed with a depth-
first search strategy, its number of nodes (also measured in depth of the tree) can
exceed a value that is linear bounded by deg(f). The situation slightly improves
by firstly performing the Descartes test on a subdivided interval I’, and make it a
child of the tree (“put it into @”) only if V(f;I’') > 1. In contrast, a breadth-first
search ensures that the number of nodes in each depth of the tree is linear bounded
by deg(f). Breadth-first search is crucial if a depth-dependent counting argument
on the V(f;I) becomes another criterion. The m-k-variant that we present below
contains such a criterion.

Polynomials with inexact coefficients We require so far that the coefficients of f are
from a subring R C R which can be handled exactly, for example the rational numbers.
Thus, we refer to this approach as the exact Descartes method (EDM). The expectation on
coefficients to be given exact can be relaxed in some sense: The simple roots of a (square-
free) polynomial continuously depend on the polynomial’s coefficients. When perturbing
f’s coefficients by some (small) e, an implication is: If I is an isolating interval for a simple
root of f. then [is also isolating for a simple root of f, for sufficiently small €. This fact
opens the door for variants of algorithms for real root isolation: One alternative evaluates
the Descartes test for coefficients that are expressed by interval approximations (e.g.,
[CTK02], [RZ03], [MRRO5]). A generalization of this approach is given by the bitstream
Descartes method (BDM) [EKKT05]. It assumes that the coefficients of a polynomial f
are given as potentially infinite bit-streams, that is, coefficients are known to arbitrary

2.1. Algebraic foundations 35

precision, but, in general, never exactly. The coefficients are interfaced to the BDM by
repeatedly asking for more bits, that is, it is required to compute a binary representation
of a coefficient of arbitrary precision. We later give the technical interface in L34 As
long as a Descartes test fails to determine the correct number of sign changes for a certain
precision, the method demands for a better approximation, and restarts the test. A clever
combination of the subdivision and the evaluations ensures that each coefficient is not too
much over-approximated, which would directly lead to a slump in the overall performance.

A rather simple application of the adaptive precision is possible even for the exact
setting. In contrast to interfacing a (possible) lengthy exact representation, we only provide
an increasing number of initial bits, until the BDM is successful. Especially, for polynomials
with nice separations bound, the bitstream version of the test succeeds with using less bits
than for the exact version. But actually, the BDM exactly fits the needs for polynomials
whose coefficients might be transcendental or arbitrary algebraic numbers. A very suitable
example is the polynomial f_-1) introduced in Definition EZT7 Using interval arithmetic
(see §Z3Tl) and the refineable representation of each involved g, ..., aq_1, it is possible
to compute a refineable interval approximation of f_w-1)’s coefficients. Thus, the BDM
is a very elegant way of computing the isolating intervals for the real roots of f -1). A
usage for dimension 2 is given in §Z34 (page E2), while we augment this approach for
algebraic interval representations of dimension 3 in §6.4.2

Refining intervals with Descartes However, isolating the real roots of such a polynomial
is not the sole applicability of the (bitstream) Descartes method, or, actually, Descartes’
rule of signs. Consider a leaf of the (implicit) subdivision tree with V(f;I) = 1 for its
interval I. In order to refine I, it is only required to subdivide further, and keep the
half I’ for which Descartes’ rule of signs still reports V(f;I') = 1. Of course, an actual
implementation should avoid any further Mobius transformation of the polynomial to
compute V' (f; lert) or V(f; Liignt). These numbers are already known to be either 1 or 0
and sum up to 1. The O-interval is discarded for our desired refinement. The required
sign computation becomes more expensive with decreasing interval length, and more bits
from the streams are expected. On the other hand, this approach naturally enhances the
already required root isolation algorithm — in contrast to the pure bisection approach
presented for algebraic interval representations that relies on exact sign computations.
A nice interface for isolating and refining the reals roots of a (bitstream) polynomial is

presented in §2Z34 (page B64).

Remark. We remember again, that iterated refinements cannot decide the equality of two
such isolated roots. This goal still requires symbolic computations, as we exemplary pre-
sented for algebraic interval representations that use specialized subresultants; see Algo-
rithm

Not each polynomial is square-free Assume a polynomial f being not square-free, and
« being a multiple real root of f. It is easy to see, that the Descartes method in general,
and the bitstream Descartes method in particular, do not terminate when executed on
such an f. The reason is that the multiplicity of « is at least 2. Thus, for each interval I
containing « it holds V'(f;I) < 2, such that no (further) subdivision can lead to an I for
which one of the two termination conditions of Algorithm applies.

An important step into this direction has been made by the m-k-Descartes method

36 Algebraic Foundations, Geometric Programming, Arrangements

proposed by [EKWQT|. It allows to isolate the real roots of a polynomial f that contains
at most one multiple root, or, otherwise, reports the existence of more than one multiple
root. The variant actually runs a usual Descartes algorithm, and for simplicity we do not
distinguish the differences between the exact and the bitstream version in the following.
The method is oblivious of the fact, that if f has a multiple root, the container () never
becomes empty. However, it is fed with additional knowledge on f, namely the number
m of distinct real roots, and the degree k of ged(f, f'). We have presented in §ZT1] how
to compute these values. Utilizing these pieces of information, the m-k-variant interrupts
the execution of the running Descartes method if one of two conditions is satisfied:

1. There are exactly m — 1 intervals in @ indicating a simple root.
2. For all intervals I in @ it holds that V(f; 1) < k.

[EKW(7] state that the variant terminates with either of the two conditions. Intuitively,
if f has at most one multiple root the first condition is eventually satisfied. In this case,
the m-k-variant stops with success, while V'(f;I) for the single remaining interval I only
states an upper bound of the multiple root’s multiplicity with correct parity. Thus, the
odd case still can transform to a simple root. It depends on the inquiring application how
to deal with this restricted information. In case f has more than one (complex) multiple
root, none of their multiplicities can reach k. However, for a sufficiently small interval I
containing an r-fold root, it holds that V(f;I) = r [Eig07]. Thus, condition two is fulfilled
and the detection of more than one multiple root is reported by the algorithm.

Remark. Either conditions can be validated in case f contains exactly one real multiple
root and further imaginary ones. However, it is hard to predict whether the algorithm
terminates with success or not. It simply depends on the distribution of the roots and how
the algorithm explores sign variations on related (and subdivided) intervals.

It remains to mention how to compute m and k. For polynomials with integral or
rational coefficients, these values can be computed directly with the Sturm-Habicht se-
quence using Algorithm and the modified version of Algorithm If the coefficients
of f are arbitrary in R, the situation is, in general, not feasible. Again, there is a special
case that is important for us. Consider a situation as in Definition EZT7 with a polynomial
f € K[ty,...,tg] and a vector of real algebraic numbers @ with dimension d — 1. We aim
for the number of distinct real roots of fz € R[ty], which is not necessarily square-free.
The trick to compute m is afresh the specialization property that is deployed in the next
algorithm.

Algorithm 2.10. Computing number of distinct real roots of a specialized polynomial

INPUT: f € Z[ty,...,tq); @D = (aq,...,a4-1) € R, each a; in (recursive) algebraic
interval representation
OutpUT: The number of distinct real roots m of fqw-1
1. Compute the sequence S = sq, ..., s, with s; := sign(stha(f)5w-1). Observe, that
stha;(f)4@-1) € R. The sign computation is performed by Algorithm 7
2. Use S to proceed with Step 3 of Algorithm

Remark. In order to apply the specialization property, we assumed that deg(fgw-1)) =
deg; (f); otherwise a proper reductum of f must be considered. This modification relies
on Lemma,

2.1. Algebraic foundations 37

Lemma 2.19. Let d,, = deg,,(fzw-1). Then, for all j =0,...,d,, it holds that

StHa;(fz@-1) = StHa; (fa)l @y, 1, 1)=a@D
This obviously extends to stha.

Computing k is again free of cost using the known sequence S in the first step of the
Sturm-Habicht-version of Algorithm EX11

While the overall description is quite abstract, we mention that the m-k-Descartes
method in combination with Algorithm to compute m (and somehow k) has success-
fully applied when analyzing algebraic curves; see [EKW07]| and [EK0Ra]. These publica-
tions also discuss what to do when a multivariate f is, in contrast to our assumption, not
primitive. We also discuss this subtlety, when using the same ansatz to lift planar points
onto algebraic surfaces in order to analyze them; see Chapter Bl

Remark (Low degree polynomials). For the sake of completeness we finally want to mention
that there exists exact solution formulas for univariate polynomials of degree at most 4
by Cardano, Tartaglia, and del Ferro. Furthermore, it is possible to compute the isolating
intervals for such polynomials off-line and to model the comparison of such numbers as
a finite decision tree; see [ET03D| and [ET03a]. For the main parts of this thesis, the
polynomial often have degree larger than 4 and it is not analyzed in how far these methods
still work in combination with bitstream coefficients, that we also deploy a lot. Thus, we
decided to launch the general approaches. However, we encourage to cross check the
approaches for such low-degree polynomials. Depending on the resultsﬂ the specialized
methods can become the default for low degrees.

2.1.3. Implicit functions and delineability

When presenting next algebraic curves and surfaces, we want to make use of implicit
functions. Thus, we quickly introduce them and present the implicit function theorem.
Although the statement of the theorem is true in a more general setting, we restrict it to
a case, whose abstraction is still sufficient to cover its application for curves and surfaces.
The restriction matches also the conditions of delineability that we also introduce here.

Given a relation, our goal is to provide a tool that converts it into a function, that is,
the relation should be represented as the graph of a function. We do not aim for a single
function, but there may be one for a restriction of the relation’s domain.

Theorem 2.20 (Implicit Function Theorem). Let f : R! x R — R be a continuously
differentiable function and let (i, ..., 1q_1,0) € R~ x R with f(d1,...,4q_1,0) = 0. If
%(ﬂl, ..., lig_1,D) # 0, then there exist open sets U, with (i1, ...,1q-1) € U C R%! and
V CR, with v € V, and a unique continuously differentiable function G : U x V such that

{(u1,...,ug-1,G(u1,...,uq-1))} = {(u1,...,ug—1,v) | f(u1,...,uq-1,v) =0} NU xV,
that is, the graph of G is precisely the continuous set f|yxy = 0.

A proof can be found in [K6n93, §3.6], while [KP02] discusses various aspects of the
theorem in detail. It is advantageous, that no knowledge on the exact G is required.
The theorem only states about its existence. Very often, G cannot be solved with exact

"We consider running time and the stability of the specialized methods for bitstream coefficients.

38 Algebraic Foundations, Geometric Programming, Arrangements

formulas. Let us next establish a connection between implicit functions, multivariate
polynomials, and real algebraic numbers in algebraic interval representation: We introduce
a term that is well-known in cylindrical algebraic decomposition; see §ZT.0 for a short
introduction and [CJ98] for a detailed survey.

Definition 2.21 (Delineation). Let f € R[t1,...,t4], deg; (f) = n, A C R%"!. The roots

of f are delineable on A, and functions fi,..., f;, delineate the real roots of f on A if for
(a1,...,aq-1) € A we have

e m > 0 and there are integers wy,...,wy,, w; > 0 such that f(ay,...,aq-1,tq) has

m distinct real roots, with multiplicities w1, ..., Wy,.

o f1 < fo < ...fn are continuous functions from A to R.

o filay,...,aq_1) is aroot of f(aq,...,aq_1,tq) with multiplicity w;.

o If ,6 € R with f(al, oo ,Oédfl,ﬂ) = 0, then 91 <i<m with /8 = fi(al, ce ,Oédfl).

e >, w; = n, which implies lcf;,(f) # 0.

Observe that m is independent on the choice of (a1,...,a4-1) € A. As a result, for
a multivariate polynomial f € R[ty,...,t4], the not yet specified implicit function over a

condition fulfilling set U can be identified by f; if U is a delineable subset R"1. Even
more, as the image of an implicit function is connected, it suffices to compute one of its
values, that is, we need to describe 3 for a@1 = (a1,...,aq,) € A. If all elements
of a1 are given in algebraic interval representation, to compute the algebraic interval
representation of 3 requires to isolate the real roots of f_w-1)(tq), for example using the
bitstream Descartes method. This technique has already been used to analyze algebraic
curves, and we come back to this point when analyzing algebraic surfaces in Chapter B

2.1.4. Algebraic plane curves

When increasing the dimension to 2, the vanishing set of a polynomial does not define
a set of algebraic numbers, but it defines a curve. In this section we introduce algebraic
plane curves, explore their properties, and show which other objects it can define.

Definition 2.22 (Algebraic plane curve). Let K be a field, and f € K]z, y]. The algebraic
plane curve induced by f is the point set Vk(f). If K = R, it is named real, while for
K = C the set defines a complex curve.

First, we remark, that for the reason of intuition, we prefer the more descriptive variable
names z and y over the abstract ones ¢; and t5. Second, abusing notation, we often refer
to curve f while actually meaning the point set Vk(f) induced by f. If some p = (ps,py)
fulfills f(pg,py) = 0, that is p € Vk(f), we shortly say that p lies on f. If f factorizes,
(see §ZT]TI), each factor constitutes a component of a curve. For components of a curve
Proposition can be applied. An implication is, that the square-free part f* of f defines
the same curve as f. In real applications, it is usual to compute a (square-free) factorization
of f first, and then to handle each factor as its own curve.

An algebraic curve has a vertical line at a if f(«,y) = 0. The existence of a vertical line
in a curve complicates its analysis, while curves consisting of vertical lines only are almost
trivial to analyze. Fortunately, it can be shown that factorizing f = cont(f)-pp(f),
decomposes the curve into two components: The curve defined by cont(f) contains all
vertical line components, while pp(f) is free of them. Applying the presented multivariate

2.1. Algebraic foundations 39

square-free factorization without the subsequent multiplication (see §ZI.Tl), we can kill
two birds with one stone: We obtain the square-free factors of f, and each factor defines
a curve that consists either of vertical lines only, or it is free of such. In the following,
when presenting more details on algebraic curves, we exclude the simple vertical case, and
assume that a curve is primitive, that is, cont(f) is constant, and square-free. We identify
fz with %(p) and f, with g—;(p).

Definition 2.23 (Points on curves). Let p be a point on some curve f and consider
the gradient given by the vector (fz(p),fy(p))T. We call p singular if the gradient is
zero. Otherwise, p is regular and we define the tangent at p as the line through p and
perpendicular to the gradient. The point p is critical if f,(p) = 0. If p is a critical regular

point it is z-extreme, if the minimal index n with fén)(p) =0 is even. We call p an event
point if it is singular or z-extreme.

Remark. We finally aim to decompose algebraic curves into z-monotone subcurves with
special properties. This explains whty we call points with f,(p) = 0 critical. In case
splitting into y-monotone subcurves is desired, one would call points with f.(p) = 0
critical.

It can be shown with Bézout’s theorem that the number of points on f with f,(p) =0
is finite, and so for f,(p) = 0. This implies that the number of singular points, the number
of critical points and the number of extreme points is finite. The z-coordinates of critical
points are defined by the roots of Resy(f, f,). These roots c;, 0 < i < k, decompose the
x-axis into k + 1 (possible unbounded) open intervals I;, 0 <i < k.

Consider a non-critical point p = (ps,py) on f. By Theorem for d = 2 we have
that the curve defined by f is given locally around p by a function y = g(x), that is, for
a point p = (pz,py), we have p, = g(p). This holds in particular for all points p with
Pz € I;.

Splitting a curve f at critical points decomposes the curve into connected and open
sets of points. The points of each such sets meets the criteria of the implicit function
theorem. An implication is, that each such set is z-monotone and we call its closure an
arc of f. Arcs defined such are maximal sets respecting critical points. It can be shown
that the number of maximal arcs is finite.

We actually distinguish three kinds of arcs: A segment has two finite endpoints, a
ray has one finite endpoint and one unbounded end, and a branch has two unbounded
ends. For an unbounded end we can distinguish whether it either approaches a horizontal
asymptote, a vertical asymptote, or a tilted asymptote. The axis-aligned asymptotes of f
can be computed. We state the corresponding theorem without proof.

Theorem 2.24 (Vertical and horizontal asymptotes). Consider f € R|x, y] as a univariate
polynomial in y, with lcf, € R[x] being its leading coefficient. If x — o, o € R is a vertical
asymptote of f, it holds lcf, (o) = 0.

Consider f € Rz, y] as a univariate polynomial in x, with lcf, € R[y] being its leading
coefficient. If y — 3, # € R is a horizontal asymptote of f, it holds lcf,(3) = 0.

At finite ends, arcs are connected via critical points. An arc is incident to such a p either
from left or from right. The incidence numbers of p can be encoded as pair (¢,7), where ¢
is the number of arcs incident from left and r the corresponding number for the right side;

40 Algebraic Foundations, Geometric Programming, Arrangements

Figure 2.1. Important numbers for a single curve. The values next to the x-axis
encode the number of intersections of the curve with the vertical lines. Dashed for
critical events, dotted for intervals induced by the events’ z-coordinates.

1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
|
1
1
1

(a) Incidence numbers (b) Arc numbers

see also Figure 2] (a). The incidence numbers of a non-critical point are equal to (1,1).
For all incidence numbers (¢, r), it holds that £ +r mod 2 =0, and >, . i;ca(fp + 7p) is
finite. In §233 we present an interface to provide information on incidence numbers for
any point on a curve, especially the critical ones.

Definition 2.25 (Arc number). Let f be an algebraic curve, and a € R be an z-coordinate.
We define f, := f(a,y) € Rly]. Let Gy < ... < Br—1 be the r distinct real roots of f,.

We say that a point p = (pg,py) € R? is supported by « if p, = a and p, = 3, for
some 0 < j < 7. The value j is the arc number of p.

Figure Z11 (b) gives an illustration. Observe, that 3; meets the conditions for algebraic
interval representations of dimension 2. The isolating intervals can be computed with
the bitstream Descartes method, if f, is square-free, which holds for all a € I;, for each
valid i. If v is a root of Resy (f, fy), fa is not square-free. The m-k-variant of the bitstream
Descartes method terminates: If successful, f, has at most one multiple root. Otherwise,
it detects the existence of more than one multiple root. In the latter case, we can either
compute the square-free part of f, using Algorithm 4l or apply a shear; see Definition 2226l

By the implicit function theorem and the conditions on the incidence numbers, it can
be shown that the number of points supported by all a € I; for some 4, is constant.
As an implication it is easy to see, that all interior points of an arc carry the same arc
number. That is, to describe a (not necessarily maximal) arc it suffices to give an x—rangeﬁ
X = [Tmin, Tmax] and three arc numbers, namely one for xyi,, one for Tyax, and the one
that gives the constant arc number for the arc’s interior points.

¥We also allow for X the intervals | — 00, Zmax], [Zmin, +-00[, and] — oo, +00]

2.1. Algebraic foundations 41

In the setting we described so far, it can be, that critical points share common coor-
dinates. A technique to overcome this problem is a change of coordinates by applying a
shear, for example, of the y-axis. This is possible as the number of distinct bitangents of
a curve is finite.

Definition 2.26 (Shear). The shearing of a point p = (ps, py) with factor s is 8;(ps,py) =

(é i) (P2 Dy) = (D2 + 5Py, Dy)- It can also be applied to a point set P: 8,(P) = {8s(p) |
p € P}

The shearing of a curve uses the inverse S_g, that is, Ssf(z,y) = (f 0o 8_)(x,y) =
f(z —sy,y) and it follows f(p) =0 < S;f(8s(p)) = 0.

Shearing is often applied to simplify the analysis of a curve. A shearing preserves
the topological properties of the curve. However, it changes the geometry, except for y-
coordinates. Aiming for a geometrical-topological correct analysis, a back-shear has to be
applied, which is non-trivial due to algebraic numbers of high degree. We skip details, for
example discussed in [EKW0T|, and henceforth assume, w.l.o.g. the possibility to compute
incidence and arc numbers of a curve without shearing.

S

Figure 2.2. Shearing of a curve: (Left) The input. (Right) Its sheared version with
s = %. Observe, that covertical degeneracies vanish on the right, however, the number
of split points increased.

We next turn towards a pair of (coprime) curves f and g. A solution to detect their
(candidate) intersections is to merge the sequences of roots of Resy(f, fy), Resy(g, gy) and
Resy(f,g). For the resulting intervals J between such numbers, refinements of the roots
of f, and g, give the intersection scheme of f and g along the line x = r with r € J N Q.
No intersection of f and g takes place at such an r. It is more complicated if we consider
an « that is a root of Res,(f, g), as for it we can have an intersection of f and g along the
line z = a. A straightforward approach is to compute the square-free part of ged(fo, ga)
using the stha-versions of Algorithm EIland Algorithm Z41 A more sophisticated solution

using filter techniques (see §£3.2) is presented in [EK08a]| and [Ker].

For more detailed introductions to algebraic curves we recommend to read [Wals()]
and [Gib98], while [Ker(6] focusses on the goal to support their analyses via an algebraic
kernel; see also 233 (page BAl fF).

42 Algebraic Foundations, Geometric Programming, Arrangements

2.1.5. Algebraic surfaces

We next introduce algebraic surfaces. They form the central input for our algorithms in
Chapters Bl H, and Bl

Definition 2.27 (Algebraic surface). Let K be a field, and f € K[z,y, z]. The algebraic
surface induced by f is the point set Vk(f). If K = R, it is named real, while for K = C
the sets defines a complex surface.

Once again we prefer variable names that match to the coordinate axes, here of the
real affine space, as we do not discuss complex surfaces in this thesis. Surfaces are very
similar to curves, as both are supported by multivariate polynomials. Hence, we also
abuse notation and talk about the surface f instead of the surface induced by f. A point
p = (pz, Py, pz) € R3 lies on the surface if f(py,py,p.) = 0. The factors of f define
components of f. The square-free part f* of f defines the same surface, and usually, it is
recommended to compute a (square-free) factorization of f to handle each component of
f as a surface of its own.

A surface contains a z-vertical line at p = (pg,py) if f(Pz,Dy,2) = 0. We call a
surface z-vertical if for each point p = (pg,py,pz) € Vk(f) it holds f(py,py,2) = 0. If
the context talks about a surface we write vertical instead of z-vertical. As for curves,
decomposing a surface f = cont(f)-pp(f) partitions f into two surfaces, one that is
vertical, namely cont(f) and one that is not vertical, namely pp(f). The multivariate
square-free factorization (without post-processive multiplying) splits curves into square-
free vertical and non-vertical components. As vertical surfaces are easy to handle, we do
not trace them further, and assume that a surface is square-free and primitive. Nonetheless,
a primitive surface can still contain (isolated) vertical lines. We refer to Chapter B where
we discuss this problem in depth.

The gradient vector of a point p on f is given by (f.(p), f,(p), f-(p))T, where f, = %,
fy= g—g’j, and f, = %, which allows to classify points on f.

Definition 2.28 (Points on surfaces). Let p be a point on an algebraic surface f and
consider its gradient vector. We call p singular if the gradient is zero. Otherwise, p is
regular and we define the tangent at p as the plane through p and perpendicular to the
gradient. The point p is critical if f,(p) = 0.

Consider a non-critical point p = (pz, py,p-) on f, then Theorem for d = 3 means
that the surface defined by f is given locally around p by a function y = g(x,y), that is, for
a point p = (pz, Py, P=), we have p, = g(pz, py). In Chapter Bl we introduce a decomposition
of R? into delineable sets for which the implicit functions as described exists. For each set
we provide additional combinatorial data that helps to analyze the algebraic surface. We
also say that the surface is xy-functional over such a connected two-dimensional cell. The
closure of the function graph is called a sheet.

In contrast to curves, there is no left and right (zero-dimensional) end that together
describe the closure of such a sheet. Actually, it is a one-dimensional set of points. Such
a space curve models the connection of sheets. Definition formally introduces space
curves. There are also sheets that lop off towards z = —oo or z = +00 when approaching
their “boundary”. To compute how sheets are connected (or extend to infinity) is another
major goal that we are aiming for in Chapter Bl Besides the actual computation, we

2.1. Algebraic foundations 43

also discuss an interface to access this information. We next extend the definition of arc
numbers to surfaces.

Definition 2.29 (Sheet number). Let f be an algebraic surface, and «, 5 € R be an z- and
y-coordinate. We define f, 3 := f(a,3,2) € R[z]. Let 79 < ... < 7.—1 be the r distinct
real roots of f, 3.

We say that a point p = (pg,py,p:) € R3 is supported by o and f if p, = a, py =B
and p, = ~y; for some 0 < j < r. The value j is the sheet number of p.

As for curves, it is possible to apply a shear on a surface in order to remove degenerate
situations that are with respect to the choice of the coordinate system. That is, the topo-
logical properties of the surface are preserved, while its geometry changes (with constant
z-coordinates). This helps to analyze the topology of the surfaces. However, shearing
also has drawbacks. Applying a shear increases the bit-lengths of f’s coefficients and the
resulting polynomial is dense with respect to z. Both negatively influences the running
times of subsequent algorithms. In addition, obtaining geometric information with respect
to the original system is often expected, but regaining it is a highly non-trivial task. These

items are reason enough for us to abstain from shearing when analyzing algebraic surfaces
in Chapter B

In Chapter Blwe consider special examples of surfaces, namely such that are (rationally)
parameterizable.

Definition 2.30 (Parameterizable surface). A parametric surface S in R3 is given by a
parametric equation in two variables, that is, the surface is the image of ¢ : ® =U xV —
R3, (u,v) — (X (u,v),Y (u,v), Z(u,v)), where X,Y, Z are functions U x V — R.

Example 2.31 (Parameterizable surfaces).
e The graph of a bivariate function is parameterized with ¢(u,v) = (u,v, f(u,v)).
e A cylinder of radius r around the x-axis is given by ¢(u,v) = (u,r cos(v), r sin(v)),
with z € R, and v € [0, 27].
e The unit sphere’s parameterization is ¢(u,v) = (sin(u) cos(v), sin(u) sin(v), cos(u)),
with u € [0, 7] and v € [—m, 7.

It is easy to see, that the same surface admits several parameterizations. Furthermore,
if @ is bijective except for an at most one-dimensional set, there is another nice property.
This property is mandatory for rational surfaces.

Definition 2.32 (Rational surface). A surface S is said to be rational if

1. S is algebraic (i.e., defined by a polynomial f € Z|x,y, z]).

2. There exists a parameterization ¢(u,v) = (X(u,v),Y (u,v), Z(u,v)) of S by func-
tions X,Y,Z which are quotients of polynomials in v and v having rational coeffi-
cients.

3. (u,v) € U x V, where U and V are itself defined in a simple way by polynomial
inequalities in v and v and that, except for a few equally simple curves and points,
© is bijective.

We present in §L6.2 ring Dupin cyclides that are rational surfaces which generalize
tori.

44 Algebraic Foundations, Geometric Programming, Arrangements

The union of two vanishing sets of trivariate polynomials fi, fo can be modelled by
multiplying fi1- fo. The intersection of two sets defines a new geometric object.

Definition 2.33 (Algebraic space curve). Let f, g € K]z, y, z|, and coprime. The algebraic
space curve induced by f and g is the point set Vi (f)NVik(g9) = {(z,y,2) € K3 | (z,y,2) €
Vk(f) A (x,y,2) € Vk(g)} If K =R, it is named real, while for K = C the sets defines a
complex space curve.

An algebraic space curve induced by f and g is also referred to as the intersection
curve of f and g. A special space curve of our interest is the silhouette curve of a surface f
defined by the intersections of f and f,. The silhouette curve contains all critical points of
f. From elimination theory introduced in §&T.1] and especially Proposition (assuming
z-regularity), we remember that the vanishing set of Res,(f, f.) constitute extendible
solutions for the silhouette curve and Res,(f,g) constitute extendible solutions for the
intersection curve of f and g. It might be the case, that for a fixed solution there is no
such extension, a single one, or even more than one extension, which is also due to the fact
that algebraic curves are Zariski-closed A

2.1.6. Cylindrical algebraic decomposition (cad)

In this section, we shortly review cylindrical algebraic decompositions (cad) introduced
by Collins in his seminal work [Col75], which basically provides a general framework for
applied elimination theory. We do so, as basic steps in our work, especially in Chapter B,
adopt ideas that have already been supporting cylindrical algebraic decompositions. In
contrast to cad, that facilitates quantifier elimination and thus endorses various potential
applications in any dimension, we focus in this thesis on tools supporting low dimensional
geometric problems.

The input for a cad consists of a finite number of d-dimensional integral polynomials,
while the output is a subdivision of R? into cells, where each input polynomial is sign-
invariant within each computed cell — a cad. The algorithmic idea to compute it is a
repeated two-step approach: The first step, the projection, eliminates one variable, while
the second step, the lifting, constructs so called stacks based on information obtained in the
first step. Actually, the algorithm is recursive. The projection is stopped when univariate
polynomials remain, which decompose R into cells that are sign-invariant with respect
to the polynomials. Lifting is applied using sample points for each lower-dimensional
sign-invariant cell until the decomposition of R? is obtained. A lifting step constructs a
stack that is partitioned into cells that are sign-invariant. Cells that result in zeros in the
polynomials prior to the projection are called sections, while the open intervals between
(and semi-infinite intervals preceding and following all zeros) are called sectors. Each cell
of a d-dimensional cad has an index (ci,...,¢q), ¢; > 0. For example (4,2) is the second

9 In Algebraic Geometry, there exists a naturally induced topology, called the Zariski-topology. It is
defined by the assignement of a set to be open if and only if its complement is the vanishing set of an ideal.
Thus, a plane algebraic curve C'is always Zariski-closed as it is given as the vanishing set of a polynomial f,
that is, C = Vk(f). A more intuitive geometric consequence is that for each point p on C there exists
a neighborhood U such that C|y is either an isolated point or star-shaped whose center is p. Note that
in case of a non-singular point p, the curve C, restricted to U, is homeomorphic to a line segment. In
descriptive language we obtain the following: When “walking” on an algebraic curve (i.e., not isolated),
one never reaches a point where the curve has a dead-end. As an example, we mention that a line segment
does not constitute an algebraic curve; only the supporting line is one.

2.1. Algebraic foundations 45

cell (from bottom) constructed over the fourth cell (from left) in a cad of R2. Projection
and lifting heavily relies on delineability; see Definition 2211 in §Z. T3]

A crucial step of the cad is the projection. In the original work, a huge bunch of poly-
nomials are computed. In particular, as input all f; € Z[t1,...,tq_1][tq], all coefficients
of all f;, all principal subresultant coefficients of f; and f/, and all principal subresultant
coefficients of f; and f; with i # j are considered. It is assumed that the f; are t4-regular,
otherwise, proper reductums must be used when constructing the principal subresultant
coefficient. Computing all these polynomials needs a significant amount of time, while
the large number also leads to a very fine decomposition of R%~!. This, as a sequence,
results in the lifting of many cells, which again is time-consuming. The projection has
been improved by McCallum [McC| and Brown [BroOIb|. They show how to obtain an
order-invariant decomposition (compare the definition in [McC]). For such a decomposi-
tion, it suffices to only consider the leading coefficients and the discriminants of (possibly
reduced) polynomials to ensure delineability. We come back to this point when analyzing
algebraic surfaces in Chapter Bl Besides these computations of “projection polynomials”
other symbolic subalgorithms are required, for example, to compute multivariate greatest
common divisors, or, during lifting, to convert real numbers in algebraic interval represen-
tations into their integral interval representations. Notice that all operations are carried
out with pure symbolic computation, that require exact and efficient integral arithmetic.

Projections and liftings apparently result in a cad, which constitutes a decomposition
into connected sign-invariant cells. An additional adjacency step computes how cells are
interacting. It is said that two cells are adjacent if their union is also connected. There
exists approaches to compute the adjacencies for the two-dimensional case [ACMS84] and
for the three-dimensional case [ACMSS]. Adjacencies also open the door to join adjacent
cells with the identical sign-invariant to the same topological component. Arnon calls
such maximal sets clusters. Computing clusters reduces the number of liftings, as for
each cluster only one lift is demanded, and liftings are usually costly as they involved
algebraic numbers [Arn88||. Thus, clusterings enable possible time savings, but they must
be weighted against the time to compute the cluster. When analyzing algebraic surfaces in
Chapter B, we implicitly cluster the cells of the first projection (into the two-dimensional
plane) using CGAL’s planar arrangements; see §271

Cylindrical algebraic decompositions have various applications; a comprehensive list is
given in the introduction of [CJ98]. We exemplary mention the possibility to compute the
topology of semi-algebraic sets, to solve systems of polynomial equalities and inequalities,
and robot motion planning. The later considers given algebraic objects, some of them
movable, others not. We want to know whether the movable objects can be continuously
moved, collision-free, from an initial configuration to a final one. A configuration is given
as a point in a high-dimensional algebraic space, as each parameter describes position and
orientation of one object. A solution exists if the initial configuration can be connected
with the final one by a continuous path within a connected cluster of the high-dimensional
cad. For the decision it suffices to compute the cluster of the two configurations, while the
actual movements can then be produced from a collision-free path within the cluster, for
example, by constructing it with the help of cell-to-cell paths. More details can be found

in [SSR3], [SSHST), and [Laga3).

46 Algebraic Foundations, Geometric Programming, Arrangements

2.1.7. Topology and CW complex

We close the theoretical foundations with some information on topology. An k-simplex is
a topological space that is equivalent to a k-ball BF, that is, every k-simplex constitutes
a k-dimensional manifold with boundary. A k-cell is a space that is homeomorph to a
k-simplex. An open k-cell is homeomorph to the interior of B¥. We call k the dimension
of the cell. If the boundary of a topological k-space is the finite union of k’-spaces with
k' < k, we say that it has the boundary property.

A complex is a topological space constructed from simplexes which are wisely con-
nected. A complex allows to describe a complicated space in terms of connected simple
spaces. In general, topology decomposes objects into k-cells. We only mention two com-
plexes. The simplicial complex K for a set M is a subset of the power set K C P(M),
that is, a family of subsets that are closed under set intersections. Geometrically, a sim-
plicial complex K is a complex of simplexes such that the empty set and all boundaries of
simplexes are contained in K, and for s1,so € K it holds s; N so is a boundary of s; and
s9. Whitehead [Whi49)] introduced an even stronger complex.

Definition 2.34 (CW complex). A Hausdorff space@ X that decomposes into open cells
(I)ier is called cell-complex, or closure-finite weak-topology complex (CW complex), if
1. for each ¢; € X there is a characteristic continuous function f; : B¥ — X, such
that the interior of B* is mapped homeomorphically to ¢; and the boundary of B*
is mapped to a finite number of cells with dimension < k (boundary property) and
2. M C X is closed if and only if M N f;(B*) for all i is closed.

Decompositions of curves into arcs, see T4 and surfaces that we finally analyze in
Chapter Bl are CW complexes. A more basic introduction is given in [Haf02].

2.2. Implementing geometric algorithms

The description of geometric algorithms usually assumes the real RAM, that is, each
basic operation is to be considered as being exact and running in constant time [PS85].
These assumptions ease the theoretical considerations of an algorithm. But, not keeping its
practical limitations for a concrete implementation in mind, they quickly lead to disastrous
results: Code crashes, produces mathematically wrong results, or does not terminate. An
example is an incremental convex hull construction that constructs non-convex hulls. This
and other classroom examples are given more detailed in [Sch96], [KMPT04], or more
recently in [Sch08)].

In theory, life is also often simplified by the general position assumptions, that is, any
degenerate input with respect to the algorithm is precluded. For example, no three points
in the plane should lie on a common line. In contrast to theoretical expectations, degenerate
input is not rare in practical applications, as, for example, scanners and sensors only
have finite precision. Algebraic curves and surfaces also have degeneracies, for example,
singularities and tangential intersections. If aiming for an accurate result in the original
coordinate system, we have to deal with them.

In order to tackle these problems Kettner and Naher aimed for geometric programming,
which asks for geometric software that is correct, efficient, adaptable and extensible, and

0 Any two points can be "housed off" from each other by open sets.

2.2. Implementing geometric algorithms a7

easy to use [KNO4]. To fulfill such a task, the incorporation of two well-known paradigms
is beneficial, namely the generic programming paradigm and the exact geometric compu-
tation paradigm, which we discuss in the sequel.

2.2.1. Generic programming (GP)

In the definition of Musser et al. [MS8S8|, generic programming consists of the gradual
lifting of concrete algorithms that abstract over details, while preserving the algorithm’s
efficiency and semantics. Basic and well-known abstractions that a supported by various
programming languages are subroutines, data type abstraction, and inheritance, as object-
oriented code can provide.

However, generic programming is more powerful. In C++ it extensively makes use of
class- and function-templates. Such a template expects one (or several) parameters of
concrete classes (or functions) that exactly fulfill requirements positioned by the template.
So-called concepts define the abstract definition and requirements for data types, while
types (e.g., classes) that exactly fulfill such specifications are referred to as the models
of a concept. Models are allowed to implement more than one concept at the same time,
and such classes can also provide functionality beyond the expectations of a concept.
Concepts can also be organized hierarchically. We refer to the refinement of a concept if a
derived version has stronger expectations on a model. For example, a refinement expects
an additional type or function in order to model the stronger. An interesting sub-case of
models that describe behaviors of objects are called traits classes. The notation has been
introduced by Myers [Mye95]. His design allows to attach information to classes that are
not modifiable, such as poiters. In contrast, we usually refer to a different interpretation
of the name traits class. It provides basic types and operations on them. Instantiating
a templated data structure or algorithm with such a class determines the structure’s or
algorithm’s actual behavior; see the sorting example below.

Concepts and models are nothing specific to (generic) programming. Actually, math-
ematicians are very familar with such, for example in algebra. Several concepts exists:
Group, ring, field, vector space. A group is modelled by a set of (abstract) objects and a
binary operation “4” that has to fulfill the known conditions. Examples of groups are Z
with their addition as binary operation, or Z, with p = 2,3,5,7,11,... with addition
modulo p. A “traits class” is also reflected in algebra: Switching the “+” operation from
addition to multiplication leads to a multiplicative group. We remark further subtleties
as to restrict the elements. But observe that an implementation can use traits classes
to define certain groups. Refinements of concepts also exist in mathematics. A group is
called abelian, if the binary operation is also commutative. An abelian group forms a ring,
if there is a second binary and associative operation “-* and the distributive law holds.
Fields and vector spaces are other refinements of abelian groups.

Generic code splits into two parts:
1. the instructions that describe the algorithmic steps and
2. requirements that specify which properties its argument types must satisfy.

Example 2.35. A simple example is a sorting routine that relies on a less-based comparison
strategy on objects; like insertion sort. In the execution of the sorting algorithm it must
be decided whether one given objects is smaller than a second one. The instructions of
the algorithm are independent of the actual type of objects, while we demand objects to

48 Algebraic Foundations, Geometric Programming, Arrangements

be LessThanComparable. This way, an unexperienced user in sorting algorithms can still
deploy the implementation, by just knowing about the order of two objects.

More abstract, it suffices to implement a model for the intended type of objects in
order to benefit from generic implementations. This is usually much simpler than the full
implementation of an algorithm for these objects. Implementations that follow the generic
programming paradigm reuse code, and thus avoid copy-and-paste which is often a source
of error. Additionally, it implies less maintenance.

Generic programming also looses the drawbacks of object-oriented programming, such
as a strong inheritance relationship, with additional memory consumption for virtual mem-
bers and virtual-function table lookups. In contrast, it benefits from flexibility, type check-
ing at compile time, and no loss of efficiency. Full details of generic programming in its
various aspects can be found in the book by Austern [Aus99]. It also surveys the Stan-
dard Template Library (STL) [I5] whose various basic data structures and algorithms are
part of the C++ standard library since 1994. The Boost libraries [2] implement additional
software in the spirit of the STL and to work hand-in-hand with it. A very nice overview
is given in [Kar06]. The Library of Efficient Datastructures and Algorithms (LEDA) [10]
provides fundamental data structures and algorithms from various domains, and basic
objects for geometric computations. Fully focussed on geometric problems are the Com-
putational Geometry Algorithms Library (CGAL) [3], and the Libraries for Exact and
Efficient Algorithms for Curves and Surfaces (Exacus) [6]. We present both in detail

in 223 and 2.4

Generic programming for computational geometry makes perfect sense, as it allows to
decouple geometric constructions and predicates from topological considerations and com-
binatorial algorithms and data structures. Templating algorithmic frameworks or data
structures implements the desired abstraction. The instantiation of such a class with a
concrete traits inspires the skeleton with respect to the given geometric objects and oper-
ations on them. This way, a user with limited knowledge about the class-template, that
is, the geometric algorithm or data structure, can use it with his own geometric objects,
as long as he can provide a proper traits class. The expected operations usually imple-
ment geometric or algebraic computations. We detail this issue when discussing the exact
geometric computation paradigm next. Beforehand, we want to mention the important
objective for a concept to be minimal. A tight concept simplifies the development of a
new traits class drastically, as less (maybe only slightly) different operations must be im-
plemented. If they are too similar, it might be hard to crystallize their differences, and it
is also dangerous that the same (algebraic) value is computed several times.

The ability of generic programming to decouple combinatorics from geometric predi-
cates is also a very nice way to resign from the generic position assumption. That is, the
developer of a generic geometric structure can implement all particularities of an algo-
rithm from the literature with respect to degeneracies assuming that geometric predicates
implement the desired operation. He never has to care about the details how to provide
the correct answer. This is another task. Again, this consideration is cross-linked with
the exact geometric computation paradigm; see 22 Although this strategy is valid, it
should be taken with a pinch of salt: Checking a degeneracy is often costly, especially in
the EGC approach. However, it might be possible to modify an algorithm such that this
check and its (positive or negative) outcome is combinatorially deduced from (a set of)
less expensive predicates.

2.2. Implementing geometric algorithms 49

We want to mention that we illuminate as our major example of a templated geometric
data structure the details of CGAL’S Arrangement_2 class in §£4.3] Actually, to broaden the
applicability of the class with respect to other domains than the bounded plane, we discuss
an important change of its template parameters in Chapter Hl

2.2.2. Exact geometric computation (EGC)

The computational path of a geometric algorithm is influenced by two types of basic
operations: Constructions that create new geometric objects and predicates that determine
conditional steps in an algorithm. The splitting of these basic operations from the generic
algorithm can be established in terms of generic programming. From this abstraction, we
can conclude that different computational paths, that is, different evaluations of operations,
lead to different combinatorial structures and statuses. Although sometimes tolerable,
numerical errors (as they are typical for floating-point arithmetic) in such evaluations, can
quickly lead to an invalid or inconsistent status of an algorithm. In order to avoid such
problems, we have to ensure that predicate evaluations always compute the mathematical
correct result. This goal is expressed by Yap as the exact geometric computation
(EGC) paradigm. While we expected the real RAM to compute each operation in exact
fashion, this paradigm relaxes the exactness requirements with respect to computed results.
To explain this more precisely: In numerical stable settings an inexact, but fast, number
type can already suffice to compute the correct result of a geometric predicate. This is
usually the case in non-degenerate situations. However, this still requires techniques to
verify the correctness of the result. In more degenerate cases such an approach might fail,
and one has to fall back to an exact computation. In the spirit of the EGC paradigm
several techniques have been implemented to ensure exact predicate evaluations, such as
lazy-evaluation, adaptive computations, and floating points filters; see [Shed6], [BEPPIT],
ININT, §9.7], [FNI02] and §232

The example of a fully filtered geometry kernel is given in [KNO4]. Tt is also possible
to filter geometric constructions. If so, one first creates a non-expensive (approximative)
representation that serves non-critical needs, but which suffices to be converted to an exact
representation if needed, for example, in degenerate situations. One option is to represent
the intersection point of curves by a construction graph (i.e., its construction history)
along with a rough approximation of its coordinates. The work of Hanniel and Wein on
Bézier curves [HW(7] implements such a technique.

Combining these two paradigms in geometric programming leads to convenient code
that allows an easy switch to other number types, other computation techniques (maybe
with filters), or instantiate generic code with exactly those objects a user is demanding for.
All in all, it is usually just a minor change in the code. Often, it only requires to change
a few type definitions.

For the sake of completeness, we mention that controlled perturbation is another tech-
nique to attack the mentioned, not very practical, assumptions. It has been introduced
by Halperin and Shelton [HS98]. Its central idea is to perturb the input in a controlled
fashion, such that degeneracies vanish and finite precision suffices to implement consistent
and correct predicates for non-degenerate cases. The scheme usually adapts the perturba-
tion and the required precision in several rounds until a correct result for a slightly wrong
input is obtained. Controlled perturbation lead to fixed precision algorithms for numerous

50 Algebraic Foundations, Geometric Programming, Arrangements

geometric applications; see [HLO4], [EHO0S], [HS9]], [Raa99]. It also constitutes a simple
and generic framework [FKMS05],[MOSO6].

Despite of the success of controlled perturbation, this thesis does not pursue this ap-
proach any further, but focusses on the EGC paradigm. In this light, we want to mention
two software libraries that excellently show with some of their main contributions the
EGC’s right to exist.

2.2.3. The Computational Geometry Algorithms Library (CGAL)

CGAL - the Computational Geometry Algorithms Library has been started in 1997 founded
by academic sites in Europe and Israel. Its goal at that time (as today) is to promote
research in computational geometry to reliable and efficient software that serves both
academic and industrial users. Since a few years CGAL is available as an open-source
licence. For users who want to hide their developed code using CGAL from the public (be
they industrial or academic) GEOMETRYFACTORY [§] sells proper licences.

CaAL follows the generic programming (see [BKSVO8]) and the exact geometric com-
putation paradigms, which means that properly instantiated it always computes the correct
result and never fails. For a detailed explanation of this topic we refer to [3, “The CGAL
Philosophy”|.

Central part of the library are geometric kernels. A geometric kernel contains constant-
size non-modifiable basic geometric objects (e.g., in two-dimensional Cartesian coordi-
nates) and a large set of basic operations on them. In addition to the kernels, CGAL par-
titions its code with respect to a wide range of geometric problems or data structures into
packages. We exemplary mention convex hulls, triangulations, Voronoi diagrams, meshing
and subdivisions, geometric optimizations, kinetic data structures, and the Arrangement_2
package that we strip down in §£43 The main classes and algorithms of each package are
usually templated and expect traits classes that define the geometric objects considered
and the required operations on them. Of course, CGAL provides traits classes for well-
known and wide-spreaded objects, such as segments, lines, circles, triangles, meshes and
more. Very often, one of CGAL’s basic geometric kernels (2D, 3D, dD) already fulfills the
requirement to serve as a model for a templated algorithm or data structure.

The application programming interface (API) of the library and each package is imple-
mented in the spirit of the STL. This way, an easy and convenient connection of CGAL with
other software through iterators and functors (as, e.g., the BOOST libraries) is ensured.

The basis of CGAL is constituted by non-geometric support facilities, such a generators,
iterators, I/O-capabilities, visualization interfaces, and a tremendous support for number
types and algebraic structures, like polynomials. The later entities have been redesigned
in for CGAL’s current public release 3.3 with respect to the experience that the EXAcuUs-
project (see §2Z2Z4) gained in this area. It was a non-trivial task to exchange nearly
the full support by a much more powerful implementation, while still keeping backward
compatibility issues. The corresponding chapter [Hem(7a] of CGAL’s manual pages gives
a detailed introduction to that important part of the library. Main basic number type
that we deal with in this thesis are taken from LEDA and CORE, that is, we rely on their
exact implementation of integers, rationals, and bigfloats, as well as the interval type from
BoosT.

" CeAL’s Number_type package has also received non-trivial adaptions with the integration of Exacus.

2.2. Implementing geometric algorithms 51

CGAL is a living project, thus it is continuously improved and new geometric problems
are tackled every day by a large number of developers worldwide. Code quality is ensured
by CcAL’s Editorial Board that reviews new submissions of packages, and an exhaustive
testsuite. This quality is known in the academic community and also for a growing number
of industrial users, which states the success of CGAL. For all further details of the library
we refer to its website [3] or its comprehensive manual [CGAQT).

Ongoing work in CGAL that is touched and influenced by the aura of this thesis, but
beyond our actual contributions, is the design and the implementation of algebraic kernels,
mainly in one and two dimensions, whose details we present in §&33

2.2.4. Libraries for Exact Algorithms for Curves and Surfaces (Exacus)

The Exacus-project has been founded in 2001 at the Max-Planck-Institut fiir Informatik
in Saarbriicken in order to implement Efficient and Exact Algorithms for Curves and
Surfaces as a collection of C++-libraries. The focus of the project has always been to
tackle problems in computing with curved objects that are algebraically defined following
the exact geometric computation paradigm. These goals turned out to be also a demand-
ing source for missing basic machinery, as, for example, integrating implementations for
efficient and certified real root isolation.

While in the first years of its development it was advantageous to experiment with
design rationales. With growing maturation, the separation from CGAL has become dis-
advantageous, as CGAL also started to dig into the non-linear world. Therefore, the
Exacus-developers decided in 2005 to merge their libraries as new packages into the more
prestigious and popular CGAL. Thus, EXACUS is no longer on a release track, instead
class-by-class moves. This relocation is an on-going task, as first CGAL should not break
up, second demos in EXACUS are expected to work during their move to CGAL, and third
Exacus’ development process should smoothly migrate towards CGAL, too.

We shortly repeat in the following EXACUS’ main libraries with their content and their
status with respect to the move. Thus, although more detailed, the article published
in 2005 m turns out to be slightly outdated. The goal of our description of the
libraries is to give an overview, while terminology that we use is either taken from the
standard literature on this topic, or, if relevant for the thesis, given more detailed in §241

and .71

SupPPORT This library provided basic support for non-geometry-related objectives. It
used to contain memory allocation, I/O-methods, timers, basic enumerations and
the Handle_with_policy class that implements a (possibly hierarchical) reference-
counting scheme [Kef(6]. Actually, main parts were loan from CGAL. These days,
SUPPORT is not existing anymore. Classes that do not have an adequate alterna-
tive in CGAL or BOOST have been integrated in CGAL’s basic packages, such as the
mentioned Handle_with_policy.

NUMERIX The support for number types and algebraic structures developed in this li-
brary has been the successful prototype of CGAL’s new and current basis for this
business. Thus, this part has already moved completely to CGAL. Recently, the
ExAcus’ polynomials also have been integrated as Polynomial package of their own
in CGAL [Hem07d|. Parallel to it, various representations for real algebraic numbers

52 Algebraic Foundations, Geometric Programming, Arrangements

and a couple of real root isolators exists; see [EK08D] for relevant parts in CGAL’s
Algebraic_kernel_d package. The library also contains other smaller classes, whose
final role in CGAL is not determined yet. Some of them will move mostly unchanged,
others can be expressed in terms of a more sophisticated design chosen for classes
that already moved to CGAL. We omit details on this.

SWEEPX contains a generic sweep line algorithm [BOT9] (see also §ZZ2 for a review of
the algorithm) whose output is represented as LEDA-graph enhanced with geomet-
ric information. Actually, it is based on LEDA’s implementation for line segment
intersections [MINO(, §10.7]. The library also provides a generic implementation to
perform regularized boolean set operations on polygons whose boundaries are de-
scribed by curved arcs. We stopped to develop this code, as it is published under
a special restrictive licence and CGAL’S Arrangement_2 package offers much more
flexible and extendable counterparts.

In contrast, we already extracted and improved an important module from SWEEPX
as package in CGAL. A framework to represent points and arcs on curves that can be
analyzed is now available as CGAL’S Curved_kernel_via_analysis_2 package. This
package plays an important role for our work. We are using it instantiated with
algebraic curves. Its details are presented in §ZZA The corresponding visualiza-
tion [Eme(7] also has already found its way into CGAL, and can even be used to
render arrangements on a surface; see §£6.2

ConiX,CuBIX,ArLciX Each of these libraries implements the analysis of a single algebraic
curve and the analysis of pairs of them. CONIX has been implemented first and
supports curves of degree up to 2 (conics, M]), while CUBIX can deal with
curves of degree up to 3 (cubics, [EKSWO06]). ArciX is the newest library. Its
analyses does not have any restriction on the degree of the supported planar curves
see [EKWOT|, [EK(O8a]. §233 repeats its main achievements. Very recently, the
development of ALCIX has stopped, and its ingredients have been interfaced as
CGAL’s new Algebraic_curve_kernel_2; we refer to §33 for more details. The
other libraries might be integrated as filters (see §3.2) for low-degree curves. Further
classes, such as combinatorial representation in CONIX, will be integrated elsewhere
in CGAL.

QUADRIX The library currently still implements two approaches with respect to algebraic
surfaces of degree 2, so-called quadrics. One approach uses a parameterization of the
intersection curves [DHPS(O7], while the other approach projects them onto the xy-
plane. For the latter, a specialized planar curve (and pairs of them) can be analyzed
and lifted back [BHKT05]. In this thesis, we show how to box the approach using
CGAL’s new hierarchies.

For a short time, we added algebraic surfaces of arbitrary degree to this library.
Obviously, this addition was only temporarily as the whole library is planned to be
maintained as a new package in CGAL, that is, the surfaces already found their place
in CGAL’s new Algebraic_kernel_d package. Chapter B takes up the discussion of
algebraic surfaces.

12Theoretically. In practice, the required running time constitutes limits on reasonable algebraic degrees
of the curves.

2.3. The arithmetic and algebraic tool kit 53

Main contributors of EXACUS are the authors of [BEHT05] and Pavel Emeliyanenko,
Michael Kerber, and Sebastian Limbach who joined more recently. Both libraries, EXACUS
and CGAL, provide, besides other libraries, a large set of various classes and tools on which
we rely in this thesis. We continue to present our kit.

2.3. The arithmetic and algebraic tool kit

2.3.1. Arithmetic and number types

Geometric algorithms are closely coupled with arithmetic. As we learned in §&2 geometric
algorithms assume the real RAM, which is not modeled by computers. In contrast, the
hardware provides standardized fixed-size integers and IEEE 754 [[EES5| floating-point
arithmetic. Both have the drawback of limited precision, that is, it is not possible to model
arbitrary large or precise values. The hardware floating-point numbers (like double) model
only a finite and discretized subset of QQ C R, which implies rounding errors. Both facts
go against the conditions for the real RAM. In fact, also no software type exactly fulfills
these conditions.

Consider a bit-array of variable length, that models arbitrary-size integers. Here, the
variable length is a contradiction to the constant-time operations assumed. Similar for
rational numbers modeled as a pair of integers. Usually, rational numbers are considered
as the fundamental arithmetic type for geometric applications, as it allows to input ex-
act information, for example, the endpoints of a triangle. In terms of software, several
libraries are available to model arbitrary-size integer and rationals. Examples are GmP [9]
Mpr1 [II], MPFR [12], LEDA [T0], and CORE [4]. A special subset of rational numbers,
namely floating-point numbers whose precision can be determined at run-time, so-called
bigfloats, are also provided by some of the libraries.

But rational numbers are not the end of the road, as for certain geometric operations,
such as the computation of the intersection of objects, we quickly reach (real) algebraic
numbers of higher degree. So the dilemma is, how to deal with them, when only rational
arithmetic is effectively available. As presented in §ZT.2 various methods exist to model
algebraic numbers. The exact approach using algebraic expressions is implemented by
CORE’s Expr number type and LEDA’s real number type. On the other hand, CGAL
provides a generic type to represent real algebraic numbers using a square-free polynomial
and an isolating interval; see Definition ZT8l Being such generic allows to select both main
types: For the interval boundaries usually a rational number is chosen, while intervals of
bigfloats are also conductable. The type of the polynomial’s coefficients is also selectable.
Beyond integral coefficients, it is possible, for example, to represent roots of f € Q(v/2)[t].
A special subset of algebraic numbers (for example to represent such coefficients) are
field extensions by square-roots, for example, Q(v/2). CGAL provides a number type
Sqrt_extension that allows to represent one-root numbers « in the form a = a + b-+/c,
where usually a,b,c € Q. However, a nesting is also possible, that is, some cases require
that a,b,c are already of type Sqrt_extension. This nesting poses no problem for this
type. Example usages are: Rotating curves by algebraic angles [BCW0T], or representing
a parameterization of the intersection curve of two quadrics [LPPO6]. We give another
in Chapter Bl

All these libraries are freely available for open-source academic developing.

54 Algebraic Foundations, Geometric Programming, Arrangements

In order to combine related number types, CGAT defines an ArithmeticKernel concept.
Two models are available: One for the number types of LEDA and one for the number
types of CORE. Each class consists of type definitions for integers (Integer), rationals
(Rational), exact floating-point numbers (Exact_float_number), and algebraic numbers
using algebraic expressions (Field_with_kth_root). If not stated otherwise, we are using
the CORE-version (CORE_arithmetic_kernel).

Interval arithmetic

Performing arithmetic on exact algebraic numbers is costly. However, it is often the case,
that an approximative solution suffices to deduce the correct answer. Interval arithmetic
is one technique to achieve this goal. Instead of an exact value, we store an interval that
approximates the value from below and above, also called the inclusion property. Each
arithmetic operation preserves this property, that is, the exact result of the operation
is also contained in the resulting interval. Several variants of interval arithmetic exists.
Some of them try to minimize an intrinsic drawback of the method, namely the over-
estimation after an arithmetic operation. In our setting, we rely on BoosT’s [2] interval
arithmetic capabilities. Its implementation allows to choose the number type of the interval
boundaries, for which we typically choose rational numbers or LEDA’s bigfloats. Note that
CORE’s BigFloat type already implements an interval. Interval arithmetic is usually chosen
as a filter, for example, to detect whether an algebraic expression may be equal to 0.

2.3.2. Filters

In geometric predicates we are mainly interested in the sign of an algebraic expression.
Though, exact or multi-precision arithmetic produces correct results, their usage is quite
expensive compared to the unit-cost model of constant-precision floating-point arithmetic
in hardware, which often computes an almost correct result. The error propagation is
usually of small amount. A wrong sign happens to appear if the value of which the sign
is sough is (close to) 0. Geometrically, we can identify degenerate or near-degenerate
situation for such cases. In case the value is not (close) to 0, the computed sign is usually
correct. The solution to this dilemma is a method that combines approximative methods
with a correctness guarantee for the case it succeed. Before we dig into the details, let us
introduce the concept of a filter generically.

Definition 2.36 (Filter). A filter is a technique to compute a decision with an approxima-
tive method that also provides a certificate saying that the computed decision is identical
to the decision when computing it with an exact method.

If the certificate cannot guarantee the correctness of the decision computed by approx-
imated methods, we call it a filter failure. In this ineffective case, another method must
be used to compute the correct decision, for example, a filter with more precision, or the
exact method.

For a concrete application it has to be checked, whether a finally correct result is
required. In the EGC paradigm, that we follow, this is mandatory. When utilizing a
filter it is expected that it often succeeds, and the costs of the remaining exact fall-backs
(where no filter applies) will be amortized over many calls of a predicate. Finding the
optimal filter is non-trivial, and depends on various factors. The structure of operations

2.3. The arithmetic and algebraic tool kit 55

in a predicate and how each affects the computational error are such factors. On the other
side, the input data also influences the success of a certain filters, as it fails more often in
(almost) degenerate situations. Typically, a cascade of filters is a good idea. It first tries
the less precise and fastest one, and in case of failures it continues with more precise and
more expensive ones. We next present some filter techniques used in geometric algorithms.

Arithmetic filters We already mentioned in the introduction to filters that inexact arith-
metic computation often leads to correct result (e. g., in terms of a computed sign). Various
techniques exploiting this fact exist. One of the easiest one is interval arithmetic that we
already introduced in §23J1 Arithmetic expressions and polynomials can be evaluated
using interval arithmetic. It should be remarked, that a naive way may lead to unneces-
sarily bad results, or in other words: There exist evaluations schemes that minimize the
(expected) error.

Interval arithmetic is a very efficient way to check, whether an arithmetic expression
can evaluate to zero or not: If the resulting interval does not contain zero, the sign is
determined. It depends on the application, of which type the interval boundaries are. It
is very common to use hardware floating-point arithmetic for this purpose. However, we
mainly use rational arithmetic, as the boundaries of isolating intervals of real algebraic
numbers are usually represented as such. This enables to quickly check, whether a poly-
nomial at some algebraic a can be 0. For example, Algorithm can be enhanced with
such a filter, that is, before computing the costly ged. Anyhow, an even better filtering of
a gcd-computation can be established with modular arithmetic; see below.

Interval arithmetic is a dynamic filter, that is, no prior analysis of the arithmetic
expression is required. To its contrary, static filters apply an off-line analysis of possible
errors, and design the filter with respect to this analysis [FVI6]. As we are not using static
filters, we skip their discussion.

Modular arithmetic Modern computer algebra systems heavily rely on modular arith-
metic, which also holds for the algebraic computations that we are executing. Together
with the Chinese remainder theorem it speeds up several algebraic algorithms, like the ged
or the resultant computation; see, for example, [vzGG99). In addition, it can be used as
a very efficient filter. The reason it that it is often possible to exclude that some value is
zero by computing its modular correspondent with respect to one prime only. The modular
correspondent requires only a fixed number of bits, which is the crucial fact for the effi-
ciency of the filter. We want to mention that the vast majority of algebraic computations
conducted in this thesis are filtered with modular arithmetic in the actual implementation.

For details see [Hem(7b| and [HHOT7].

Geometric filtering Filters are not restricted to arithmetic expressions. An approximate
version of a geometric object also allows to derive a correct decision in some cases. A
well-known technique is to filter a routine that computes the intersections of two geometric
shapes. For that purpose each object can be enhanced with a bounding box. The rationale
of the intended filter is, that two such objects only intersect, if their bounding boxes
intersect. Figure lists the three possible cases. Such boxes can be represented with
rational or even fast floating-point arithmetic. If they are axis-aligned, their intersection
test reduces to a few comparisons.

56 Algebraic Foundations, Geometric Programming, Arrangements

Figure 2.3. Geometric filtering by bounding boxes

T~
—

(a) Bounding boxes (b) Bounding boxes (c) Bounding boxes
do not overlap, thus overlap, but no in- overlap, an intersec-
no intersection tersection contained tion is contained

We exemplary mention the intersection tests of two arcs on coprime conics. If their
bounding boxes do not intersect, the filter avoids to try to compute intersection points
whose coordinates are algebraic of degree up to 4. Other examples for applying bounding

box filters are given in [PTT06] and [Ker(§].

Combinatorial deduction We have already seen an example of combinatorial deduction,
namely the m-k-Descartes method, where additional information on a non-square-free poly-
nomial allows to lead the Descartes method to a termination.

The rationale of a combinatorial deduction is to use available combinatorial information
to simplify the problem, or to exclude a non-trivial set of solutions, similar to a branch-
and-cut strategy in combinatorial optimization. In what follows, we often use the degree of
a polynomial as a bound on the number of possible solutions. An example is a specialized
implementation to analyze algebraic surfaces of degree 2 as it is conducted in EXACUS’
ConiX library. We present another application in in §.4.2

2.3.3. Algebraic kernels

Most geometric predicates required in algorithms of computational geometry are expressed
in terms of algebraic computations. In order to be prepared for such computations CGAL
follows the generic programming paradigm to specify algebraic kernel concepts.

Concepts

In CGAL, there is no single algebraic kernel concept. In contrast, the project has introduced
a hierarchy of concepts that defines what computations are expected from different kinds
of algebraic kernels. The concepts have been designed by the author in collaboration
with Michael Hemmer, Menelaos Karavelas, and Monique Teillaud in the lifetime of the
Acs-project [T] and improved in a series of technical reports [BHKT06al, [BHKT07]. The
final review by Ron Wein [Fab07| lead to the current version [BHKTOS] that we sketch
next. The hierarchy consists of three layers. Each layer expects basic algebraic types and
operations on them.

AlgebraicKernel d 1
Types:

2.3. The arithmetic and algebraic tool kit 57

e Polynomial_1 for univariate polynomials

e Coefficient its coefficient type

e Algebraic_real_1 for real algebraic numbers (real roots of univariate polyno-
mials)

e Boundary is the type for the boundaries of isolating intervals

Operations:

e On polynomials, the following self-explaining basic operations are expected:
Is_square_free_1, Make_square_free_1, Square_free_factorize_1, and
Is_coprime_1, Make_coprime_1.

e Solve_1 is expected to implement a real root isolation, while Sign_at_1 com-
putes the sign of a polynomial at a given algebraic real.

e With Lower_boundary_1 and Upper_boundary_1 it is possible to approximate a
single algebraic real, while Refine_1 takes care to improve the approximation.

e Two real algebraic numbers can be compared with Compare_1, and if they are
not equal) Boundary_between_1 returns an intermediate value between them

AlgebraicKernel d 2
This concept refines the univariate concept, by adding bivariate types and operations.
Types:

e Polynomial_2 for bivariate polynomials (using Coefficient)
e Algebraic_real_2 for zero-dimensional solutions of equational systems defined
by bivariate polynomials

Operations:

e The polynomial operations naturally extend to the bivariate case:
Is_square_free_2, Make_square_free_2, Square_free_factorize_2, and
Is_coprime_2, Make_coprime_2.

e Central operations of the concept are to compute the zero-dimensional solu-
tions of bivariate systems with Solve_2 and to determine the sign of a bivariate
polynomial at a given Algebraic_real_2 with Sign_at_2.

e For a single solution, access to its individual coordinates is granted by Get_x/y_2
that returns instances of type Algebraic_real_1. The two coordinates can
be approximated independently as “interval” with Lower_boundary_x/y_2 and
Upper_boundary_x/y_2; a coordinate-specific approximation can be improved
with Refine_x/y_2.

e For possible performance tuning, specialized (lexicographic) comparisons on
two solutions are expected: Compare_x_2, Compare_xy_2, Compare_y_2. If a
coordinate is not equal, it is possible to compute a value between two with
Boundary_between_x/y_2.

AlgebraicKernelWithAnalysis d 2

This most refined concept expects two additional types that interpret bivariate poly-
nomials as real algebraic curves in the plane; see Definition 2222

e Curve_analysis_2 analyzes a curve in the spirit of a two-dimensional cylindri-
cal algebraic decomposition, that is, a y-per-z-view is established. To be more

58

Algebraic Foundations, Geometric Programming, Arrangements

0.(2,0)

(a) Bounded curve (b) Unbounded curve

Figure 2.4. The analysis of a single curve provides information on the curve at each z-
coordinate, in particular the critical ones, and for representative boundaries in the open
intervals induced by them. For each queried xz-coordinate a status-line is constructed
that stores how often the curve intersects the line, the arc number and incidence numbers
for each intersection and a geometric approximation (green box). The analysis also
provides access for information on possible vertical asymptotes of the curve; this case
is not exampled in the figure.

precise, for each z-coordinate xg € R it is possible to access a Status_line_ca_1
that provides information about the curve’s geometry and topology at xg: The
number of distinct intersections of the curve with the line x = x, their coordi-
nates, and how branches of the curve to the left and right are connected with
these intersections (also known as incidence numbers); see Figure 24 for exam-
ples of analysis of single curves and §2T.4] for basic terminology on (algebraic)
curves.

e Curve_pair_analysis_2 provides, in the same spirit, y-per-z-information for
pairs of coprime curves at each x-coordinate. For a given xy € R an instance of
Status_line_cpa_1 describes the pattern how the two curves intersect the line
x = xo. Figure gives an example of an analysis for a pair of curves.

The crucial fact is, that a given curve or pair of curves only has a finite number of
different local topologies. That is, if only the topological information is desired, it
suffices for a curve (or a pair of curves) to compute the status line instances at all
x-coordinates of the event points and at a (rational) representative x-coordinate for
each of the intervals that are induced by the events’ z-coordinates. Implementations
are recommended to take care of it and to benefit from this issue. Solely, the geomet-
ric information at a specially queried z-coordinate requires localized computations,
that is, to compute another status line at a non-representative point in an induced
open interval. In general, it is advised to compute status lines only on-demand, and
to cache them after they have been computed for the first time.

Models

Concepts for algebraic kernels should also be modelled. Some already have been published,
each implementing a different strategy.

2.3. The arithmetic and algebraic tool kit 59

R A e R

B e s GEE T T

[EERNEY EEEEp——

g q
g g f I g
/ g g

Figure 2.5. Analysis of a pair of curves f and g: For each critical z-coordinate and
for each induced open interval, we construct a status line that stores a string reflecting
the intersection pattern of the two curves in increasing y-order along the line. The
character 'I' in the string encodes an intersection of curves f and g.

e A purely univariate model has been proposed by Lazard et al. [LPT08], whose polyno-
mial’s coefficient type is GMP’s type for arbitrary-length integers, while the boundary
type uses MPFR. Real roots are isolated by using the interval Descartes method taken
from Rs [T4], [RZ03]. The refinement of their intervals applies quadratic refinement
by Abbot [ABBO6]. There is no choice of number types.

e The SYNAPS project [I6] also implements a univariate model for whose real root iso-
lation several approaches are available: Using Sturm sequences, using sleeves (i.e.,
lower and upper bounds on the polynomial), and several implementations for con-
tinued fractions [TE08| (some with enhanced support from the NTL [I3]). Again,
SYNAPS defines the number types.

e CGAL implements a univariate algebraic kernel class-template called

Algebraic_kernel_d_1< AlgebraicRealRep, RootIsolator >

See [HLOT| for details. It has its origin in Exacus’ NUMERIX library. Its flexibil-
ity consists of the parameters: The first allows to choose the representation of the
algebraic real type while the second determines the method for real root isolation.
From the first parameter it also deduces the type of the univariate polynomial, its
coefficient type, and the boundary type of the isolating intervals.

The authors provide different choices for each parameter: For algebraic reals there ex-
ist Algebraic_real_rep using rational boundaries and Algebraic_real_rep_bfi that
represents boundaries as intervals of bigfloats. Quadratic convergence for inter-
val refinements is enabled by using Algebraic_real_quadratic_refinement_rep_bfi;
see [ADbb(O6]. None of them is restricted to a certain number type to represent the
polynomial’s coefficients. Several valid choices exist in CORE, LEDA, and CGAL;
even CGAL’s Sqrt_extension type is conceivable.

60 Algebraic Foundations, Geometric Programming, Arrangements

To isolate roots, there is the choice between the Descartes method as proposed
in [CA76] and the bitstream Descartes method approximating the exact coefficients
with ever-growing precision; see [EKKT05] and [Eig08]. If not stated otherwise, we
select as default the bfi-version with Abbot’s refinement and the bitstream variant
for real root isolation.

The different models have been compared with each other on polynomials with different
characteristics (increasing bit-length of coefficient, increasing degree, Mignotte polynomi-
als, and more) m However, there is no superior implementation for every input.
We only want to remark that for large bit-lengths, the bitstream Descartes method scales
best; we expect remarkable bit-lengths in the applications that are presented in Chapter H
and Chapter B

Classes that model bivariate concepts are also available.

e CGAL’s Algebraic_kernel_for_circles_2_2 is a model of the AlgebraicKernel d 2
concept. It supports the algebraic computations that are demanded from CGAL’s
Circular_kernel_2. In particular, the types to represent polynomials are specialized
to circles, and the types for real algebraic solutions are limited in its degree by 2.
More details can be found in [BHKF06b| and [PT07]

e Very recently Michael Kerber has re-interfaced the ingredients of EXACUS” ALciX
library which now forms CGAL’s first model of the AlgebraicKernelWithAnalysis d 2
concept, called Algebraic_curve_kernel_2 (or ACK_2 for short in this thesis). It re-
fines a given univariate algebraic kernel. Central to this model are the analyses of
curves and of pairs of them. This is very advantageous in cases where the kernel
is mainly used because of these features. On other side, the resulting inevitable
y-per-z-view also has some drawbacks with respect to other functionality: Due to
this projection ansatz the representation of y-coordinates is not explicit but only
approximative. That is, a symbolic, usually costly, computation is required when
eventually accessing (Get_y_2) or comparing (Compare_y_2) arbitrary y-coordinates.
Thus, it is recommended to check whether the projected application actually craves
for these operations. Another example is the implementation of Solve_2 that first
analyzes two algebraic curves and then queries the corresponding pair to report the
zero-dimensional solutions. This might pose a computational overhead, and one
should carefully check whether it can amortize. As we mainly compute arrange-
ments, we are not suffering from these problems. All required predicates provided
by the Curved_kernel_via_analysis_2 fully rely on the analyses of curves directly,
using exhaustively the (combinatorial) y-per-z-information; see §ZZ741
It should be remarked, that implementing robust and efficient curve analyses is a
research topic on its own and we desist from going into full detail. However, below,
we review main results from this area of research and emphasize, in particular, high-
lights of CGAL’s new fully-fledged bivariate algebraic kernel. For more details on the
kernel’s design, we refer to [EKOSD.

e This reference actually describes a prequel of the previously described kernel. This
prequel is still available internally, which allows to cope with still existing analyses
of curves in EXAcus’s libraries: Technically, the Algebraic_curve_kernel_2 can be
compiled in wrapping mode. Then it expects, besides the parameter for the univari-
ate kernel, a second parameter: CurvePair 2. The parameter must be instantiated
with an EXACUS-type that analyzes a pair of curves. Note that this type comprises

2.3. The arithmetic and algebraic tool kit 61

as nested type EXACUS’ counterpart of the analysis of a single curve. In other words:
The Algebraic_curve_kernel_2in wrapping mode mainly rewrites the deprecated in-
terface of ExAcus-classes to fulfill the AlgebraicKernelWithAnalysis 2 concept. Four
such classes for pairs of curves exists:

— Conic_pair_2 taken from CONIX, for algebraic curves of degree at most 2;

see [BEHT02] and [Hem(2].

— Cubic_pair_2 taken from CUBIX, for algebraic curves of degree at most 3;
see [EKSW06]| and [Eig03].

— P_quadric_curve_pair_2 taken from QUADRIX, for algebraic curves that rep-
resent projected silhouettes and intersections of quadrics. Such curves do not
exceed a degree of 4; see [BHKT05] and [Ber(4].

— Algebraic_curve_pair_2 taken from ALcCIX, for algebraic curves of arbitrary
degree; see [EKW07| and [EKOSa]. These classes are not maintained anymore.
The code already has moved into the non-wrapping Algebraic_curve_kernel_2
of CGAL.

The wrapping allows to still use the specialized analyses, in particular, for conics, and,
as we see in Chapter Bl for projections of quadric intersection curves. Of course, the
long-term plans are to consider the low-degree analyses as possible filters for the non-
wrapping Algebraic_curve_kernel_2. However, this requires reliable performance
comparisons and some developing time.

e A kernel that can deal with rotations is currently in an experimental status. The
Rotated_algebraic_curve_kernel_2 allows to rotate algebraic curve around a given
point by angles o whose sin is a (nested) one-root number. For example, sin(45°) =
%\/5 To do so, the kernel uses as Coefficient type CGAL’S Sqrt_extension number
type. Further details can be found in [BCWQ7)| (for conics) and [Ker].

e Finally, there exists Filtered_algebraic_curve_kernel_2 fulfilling the most refined
AlgebraicKernelWithAnalysis 2 concept. It tries to prevent costly algebraic computa-
tions, like resultant computations, by upstream filters using approximative bounding
boxes. Details and results can be found in [Ker(].

Analyzing algebraic curves

The effectivity and efficiency of an exact bivariate kernel model can depend on the under-
lying analysis of algebraic curves. In particular, if there is no restriction on the degree,
the exact analysis of algebraic curves and computing the solutions of a bivariate zero-
dimensional polynomial systems are challenging tasks. The cad-approach, as presented
in §2.T.0l states a generic solution.

If only aiming for the analysis of a single curve, it is very popular to restrict the
computation to its topology; see [GVEKYI6), [GVNGZ|, [SW05)], and [MPST], §3.6]. It is
common that such approaches chose a generic coordinate system This avoids the handling
of degenerate situations with respect to the coordinate system (e.g., covertical z-extreme
points). Only some of them are available in software, and none of them fulfills the desired
AlgebraicKernelWithAnalysis 2 concept.

For more than one curve, most solutiond restrict the maximal allowed degree, for ex-

ample circles [DEMT02], [WZ06], conics [Weil2], [BEHT02], [EKPT04], cubics [EKSW06],

13Some of them actually do not focus on the analysis of curves, but have to do it somehow in order to
support arrangements of theses curves.

62 Algebraic Foundations, Geometric Programming, Arrangements

and projected intersections of quadrics [BHKT05]. There also exist solutions not restricted
in the degree, but specialize for a certain input, namely Bézier curves [HW(7| and non-
singular algebraic plane curves [KCMEKQ()], [Wol03]. As mentioned before, some of them
can be used to define a model of the AlgebraicKernelWithAnalysis 2 concept. However, there
are only two implementations, that pose no restriction on the input curves: SYNAPS [16]
claims to fulfill the the most powerful algebraic kernel concept; however, detailed informa-
tion and access to the implementation is missing. The choice of number types is fixed.

The second one is the matured implementation in CGAL’S Algebraic_curve_kernel_2.

This is the most generic implementation and full details are given in a sequence of publi-
cations [Ker(6], [EKW07|, [EK0O8a], [Ker]. The solutions has several advantages. It

o fulfills the AlgebraicKernelWithAnalysis 2 concept,

e has no restrictions on the input, that is, curves can have arbitrary degree, and con-
tain degeneracies, like singularities, covertical intersections, vertical asymptotes, and
isolated points, and

e is available in Caar.d

Thus, its key contributions consist in the exact topological and geometrical analysis of
single arbitrary real algebraic curves and pairs of them.

Its efficiency is established by several levers. One is an extensive caching strategy,
another reason is the lazy-evaluation scheme, that is, certain results are only computed
on demand and then stored for further queries. However, the main lever for efficiency
is a clever combination of (unavoidable) exact computations, like resultant and greatest
common divisor, with certified numerical (filter) methods, for real root solving. The chosen
approximative methods often replace usually costly symbolic computations, while still
guaranteeing the correctness of the overall result. The central approximative tool is the
bitstream Descartes method (see §234)) for the square-free case, and its m-k-variant for
non-square-free polynomials. It is used to compute the local topology of a curve at some
algebraic z-coordinates «, by mainly isolating the real roots of f, = f(a,y) € Ry,
where f is the defining bivariate polynomial of a curve. The value « is chosen among
the z-coordinates of the curve’s critical events which are usually of non-trivial degree,
and rational values in between. How to realize this technically is described in §Z34
However, there are still cases, where such approximate methods fail. For exact symbolic
computations, the Sturm-Habicht sequence (see §&1.1], also known as (signed) subresultant
sequence [BPRO6, §4]) is used. In fact, it is the computation of this sequence that mainly
limits the practicality of the approach for higher degrees. A key goal for the future is to
replace the resultant computation with a modular version, as it it already done for the
ged; see [Hem(8) §2.3]

An important information is, that the obtained analyses are expressed with respect
to the original coordinate system, that is, they do not expect the input curves to be in
general position. However, an internal change of coordinates (a shear; see §£T4) can be
applied, for example if the curves have vertical asymptotes or covertical critical points. A
subsequent back-shear step recovers the original geometric information from the sheared
version. Besides the polynomial sequences, it is the shear-and-back-shear approach that
has significant influence on the running time. Ideas to avoid the change of coordinates
more often might be implemented in a future version.

4 Contained in an internal release, but subject to be publicly available with one of the next official
releases of CGAL.

2.3. The arithmetic and algebraic tool kit 63

Our choice 1In our central chapters we are demanding for bivariate algebraic kernels with
analyses that handle curves of degree 4 and even more. For that purpose, we mostly
rely on CGAL’s new Algebraic_curve_kernel_2, especially in Chapters Bl and Bl while the
experiments in Chapter Blare still with respect to the quadric-specific analyses of projected
curves implemented in EXACUS” QUADRIX library.

The actual reason why we are demanding for such kernels is to compute arrangements of
algebraic curves. We discuss arrangements in §241 in particular two-dimensional ones. For
that purpose a set of geometric types and operations is required. A generic implementation
providing these is presented in 44 it relies on analyses of curves.

2.3.4. Interfaces for the bitstream Descartes method

We close our discussion of the algebraic tool kit with technical details on how to interface
the bitstream Descartes method. In fact, there are two muffs to couple. For both the
generic programming paradigm does a good job. The implementation of the bitstream
Descartes method (BDM) provided by Arno Eigenwillig maintains a subdivision tree whose
nodes and leaves represent intervals enhanced with sign variations. For a given polynomial,
the tree is explored by interfacing the polynomial’s inexact coefficients with an instance
of a model that fulfills the BitstreamDescartesRndlTreeTraits concept. We first present the
concept, followed by a list of available models. On the other side, a potential user is
expecting a very simple interface to get the isolating (and refineable) intervals of the real
roots for a queried polynomial with bitstream coefficients. We finally discuss solutions how
to interface these pieces of information.

The traits concept for the bitstream Descartes method

An instance of a traits class modelling a polynomial with bitstream coefficients and fulfilling
the BitstreamDescartesRndlTreeTraits concept is expected to provide the following types.

Coefficient The model-specific coefficient type supplied during construction.

Integer A type for infinite-precision integer arithmetic equipped with operator>>, and
operator<<. Examples are leda::integer or CORE: :BigInt.

Boundary Instances of this type are used to express computed interval boundaries. Exam-
ples are Exact_float_number< Integer >, leda::rational or CORE::BigRat).

It is also required to define a small set of functors related to the types which mainly
ensure that one can approximate a Coefficient c to any arbitrarily small absolute error
27P p € Z and to deliver that approximation scaled with 2P as an Integer i. Another ex-
pected functor is responsible to locate the leading 1-bit in the bitstream of the polynomial’s
leading coefficient.

The main functors are accessed only once for a single polynomial. This enables that
the providing instance can maintain an internal status, An example is to hide some non-
trivial approximation or evaluation process. This is sometimes the reason that enables the
isolation at all; below, we present such a model. Finally, there is also a functor to convert
the internal representation of the intervals’ boundaries using two Integer and one long, to
the user-supplied type Boundary.

64 Algebraic Foundations, Geometric Programming, Arrangements

Models

The first model that fulfills BitstreamDescartesRndlTree Traits actually wraps a polyno-
mial f, whose coefficients are integral and exactly known. At first glance, this strategy
seems weak-minded. Why do we not use all pieces of information that are available? The
answer is simply that not all information might be required. Remember that the isolation
counts the number of sign changes of a polynomial in order to determine a bound on the
number of real roots in an interval. But computing a sign only needs a large precision
if it is zero or close to zero. In numerically more stable situations less precision usually
suffices to compute the correct sign. Thus, the bitstream Descartes method first ask for a
rough approximation of the coefficients (each normalized to be contained in [—1,1]), and
demands for more bits only until it is able to decide the Descartes test. Only in degenerate
or near-degenerate cases, full precision is essential. For further details, we refer to [HLOT|
and mn, that also contain various sets of experiments, even in comparison with
other real root isolators.

The second model isolates the real roots of a polynomial with true non-rational coef-
ficients, namely f, := f(a,y) € Rly], where f € Z[z,y], and o € R in integral interval
representation a=(p;I). We identified this setting in §Z33 among the task to analyze
algebraic curves. Remember that [is refineable to arbitrary small length, which opens
the door to approximate f,’s coefficients to any precision using interval arithmetic. An
instance of such a traits is constructed from f and « and keeps the current approximation
of a as internal status. In addition, the traits instance maintains a map to cache already
computed approximations if needed for another coefficient. This is basically crucial, as it
is recommended to only provide the number of bits of a coefficient currently requested by
the bitstream Descartes method. Otherwise, too much precision can have a negative effect
on the method’s performance. Although the Descartes test definitely computes the correct
result, it will spend too much time due to overwhelming precision and second, computing
many bits is also a costly task on its own.

Very recently, a new generic model has been added: Bitstream_coefficient_kernel. It
implements all necessary functions in terms of two simple operations on the Coefficient:

e given a coefficient ¢, compute its approximation as interval of Bigfloat numbers of

a demanded precision

e check whether ¢ =0

Observe that the second actually contradicts the “bitstream” philosophy, but some-
times, it is possible (by filters or symbolic computations) to decide this test. In the case
that this test is available, the model is able to support the computation of a stronger start-
ing interval for the actual real root isolation. We remark that the previous two models
already rely on this wrapper.

In the spirit of the second model, we present in §5- 2.2 (page ff) another class that
models the BitstreamDescartesRndlTree Traits concept in order to isolate the real roots of a
trivariate integral polynomial whose z- and y-coordinates are substituted with algebraic
numbers.

Maintaining the subdivision tree

We have learned that the Descartes method can be modelled as a binary subdivision
tree whose correct traversal is essential in some cases, for example, in the m-k-variant.

2.4. Arrangements 65

Thus, besides the model of the BitstreamDescartesRndl Tree Traits concept, a class is required
that implements Algorithm or one of its variants. It is responsible to initialize the
subdivision tree and to update it with respect to the computed sign variations. That is,
for the standard approach, it applies breadth-first search until only intervals with sign
variation 0 or 1 are left, while for the m-k-variant it also has to check the additional
termination conditions; see LT A The polynomial itself is interfaced by the user with a
proper instance of a bitstream traits. He actually does not care about any internal tree
maintenance. In contrast, he is finally aiming for basic interests such as the number of
real roots, the left and right boundaries for the isolating intervals, and a lever to refine
each. For certain variants, for example, the m-k-method, an extended set of information
is expected. We exemplary mention to check whether an isolating interval surely contains
a simple or multiple root, or which interval contains the multiple root.

CGAL’s Bitstream_descartes class is a model of CGAL’s Rootlsolator concept, that
is, it can be used as a root isolator in the generic univariate algebraic kernel that we
introduced in 233 It extensively uses C++ derivations and virtual functions in order to
specialize with respect to some variants. For each variant (containing the standard and
the m-k-method) an individual constructor exists. Variant-specific base classes ensure the
maintenance of the subdivision tree with respect to the constructed instance.

Access to information is given by some self-explaining members: number_of _real_roots,
left_boundary(int i), right_boundary(int i), and refine_interval(int i). Internally,
virtual functions dispatch among the different variants, which ensures that (the correct leaf
of) the correct tree is accessed. Calls to the members is_certainly_simple_root(int i)
and is_certainly_multiple_root(int i) are only allowed in case the m-k-variant construc-
tor has been used. Otherwise, virtual functions look-ups indicate an error. The detection
of more than one multiple root by the m-k-variant triggers to throw a C++-exception. It
can be caught in order to trigger a different way, for example, using a shear.

As final note, we mention that for the analysis of an algebraic curve there exists a
special back-shear variant [Ker(6l]. In §6-22 we present a variant, that is actually abusing
the interface to merge various root isolators. But for now, we skip further details.

2.4. Arrangements

Arrangements are widely known in the field of computational geometry. They have been
studied since decades serving as key ingredients for many theoretical results and practical
applications.

Definition 2.37 (Arrangement). Given a d-dimensional connected space D and a finite
set of geometric objects O that reside in D. The arrangement A(O) is the subdivision of
D induced by O into a finite number of relatively open cells of dimension 0,1,...,d. A
d-dimensional cell in A(O) is a maximal connected subset of D that is not intersected by
any object in O.

The restriction to finite number of cells is quite natural, as otherwise, the description
of a subdivision with an unbounded number of cells can only be established if it has a
special structure, for example, a periodic behavior.

First research on arrangements concentrated on theoretical results especially on linear
arrangements [Ede87]. It turned towards the analysis and computation of arrangements

66 Algebraic Foundations, Geometric Programming, Arrangements

induced by curved objects; see [SAQS], [Hal04], [ASO0]. While most of these results con-
centrate on theoretical aspects, practicality issues also came to the fore of research in past
years. This comprises to strengthen robust implementations and to improve the usability
of arrangements. A detailed survey is given in [FHKT) Chapter 1] that we recommend for
further reading. Our contribution pursues the work on arrangements in this spirit, and
especially enlightens the specialty of two-dimensional arrangements in a three-dimensional
world.

Arrangements are a popular and important (sub)structure in various fields. Well-known
examples are computer vision, robot motion planing, geographic information systems, and
computer-aided biology; see for examples [HS94], [HS98], [FHO0O], [CLO7|. These and other
applications benefit from big advantages of an arrangement: It provides exact access to a
continuous problem in discretized chunks, that is, it models the decomposition of D into
a finite number of (open) cells, whose boundaries are described with a finite number of
elements. The representation is complete, that is, no detail for a given input is missing.
Often, problems can be reduced to operations on arrangements, for example, existence
decisions can be expressed in terms of point location. Or the theoretical complexity analysis
on arrangements can serve as a source of bounds, if one can formulate another problem
in terms of a special arrangement, or just one of its cells. One technique to transform a
problem into “arrangement’-lingo is duality, that is surveyed in [dBvKOS(O0, Chapter 8§].
We desist from collecting the wide range of theoretical results on arrangements in order to
concentrate on the aspects of algorithm engineering when aiming for a generic and efficient
implementation. Questions here are: How to cope with degeneracies? How to compute an
exact result?

Let us start with arrangements where D = R3.

Problem 2.38 (Three-dimensional arrangement). Given a set of surfaces S in R?, com-
pute the arrangement A(S) induced by S, that is, compute a representation of the sub-
division of R3 induced by S. The resulting cells of dimension 0, 1, 2, and 3 are called
vertices, edges, faces, and volumes.

We want to spot that the definition makes no assumptions on how surfaces are defined,
except that they induce a finite number of cells. In §TH we introduced algebraic surfaces
which form the central geometric input objects throughout this thesis. We are not aware
of robust code that implements Problem for such (generic) surfaces. We can restrict
to the linear case. An arrangement induced by the closure of half-spaces under boolean set
operations in constituted by CGAL’s Nef_3 package; see [HKMO7| and [Hac07|. Thus, the
implementation supports non-manifold situations, as for example tight-passages required
in robot motion planning. The basis of this implementation goes back to Nef’s seminal
book on polyhedra [Nef78]. In its representation, each vertex is surrounded by a so-
called sphere-map which encodes the local neighborhood around the vertex. Elements of
different neighborhoods are connected with respect to the topology induced by the given
half-spaces. These connections are stored in a structure called the Selective Nef Complex
(SNC). Although this idea is promising to work also for curved surfaces, we do not follow
this strategy in Chapter Bl but use elimination theory, which leads us to two-dimensional
arrangements.

Problem 2.39 (Two-dimensional arrangement). Given a set of curves C in D, with

2.4. Arrangements 67

dim(D) = 2, compute the arrangement A(S) induced by C, that is, compute a repre-
sentation of the subdivision of D induced by €. The resulting cells of dimension 0, 1,
and 2 are called vertices, edges, and faces.

In contrast to the three-dimensional case, we here let the choice of the actual domain
D open. For this background information we set D = R? and interpret it as the zy-plane,
a quite natural setting when considering arrangements. However, Chapter H interprets
D = R? only as a special case of a two-dimensional parametric surface; see Definition EZ30.
Similar to Problem 238, the type of curves is not specified, however they respect the usual
definitions.

Definition 2.40 (Curve). A curve is a function v : I — D with
1. I is an open, half-open, or closed interval with endpoints 0 and 1;
2. ~y is continuous and injective except for closed curves where we allow (0) = ~(1);
3. if 0 € D, that is, the curve has no start point, the curve starts at infinity or more
precise: lim; o4 |7(¢)| = co. We have a similar condition if 1 ¢ D;

The task at issue is to transform the continuous problem into a finite, discretized
representation by means of combinatorial algorithmic steps. As already learned in §Z2,
such steps are driven by evaluations of predicates, that is, by continuous functions whose
output is discrete. This simplification of the continuousness quickly opens the door to
wrong results, especially in numerically unstable situations. Before we present the two
main algorithmic (and combinatorial) approaches to compute A(C) in 42 we introduce
in 4T the data structure that is used to represent a two-dimensional arrangement.

2.4.1. The Doubly-Connected-Edge-List (DCEL)

A well-known data structure to represent two-dimensional subdivisions is the so-called
doubly-connected-edge-list, or DCEL for short [dBvKOSO0, §2.2]. This data structure
allows easy and convenient constructions, updates, and queries of subdivisions. We give a
short introduction to the DCEL, while [Ket(7] gives full details and references to similar
structures.

A DcCEL (mainly) consists of three types of kinds or records, namely vertices, halfedges,
and faces. It provides methods to insert and delete records, Euler operators, and iterators
to traverse the structure. All records of one type are stored independently from other
types in either double-connected lists or containers. Each single record can be accessed by
a handle (see for example [Hac(7)|). Each item also stores its own adjacency and incidence
relations with respect to other records. In addition, each vertex and each halfedge is
associated with geometric information.

Halfedge Central items to the structure are halfedges. A halfedge is directed and always
coexists with its twin halfedge of opposite direction. The two twins are connected
by pointers, and as a pair they represent a geometric curve that is not intersected in
its interior by any other curve stored along with halfedges in the DCEL-instance.

The directed halfedge points to a vertex. Is also has an implicit incident face to
its left which is usually referenced by a pointer. Both pointers are not required by
a minimal DCEL that optimizes storage. However, for reasons of convenience and
efficiency, it is recommended and usual to include them. In contrast, a pointer to the

68

Algebraic Foundations, Geometric Programming, Arrangements

next halfedge that has the same incident face is inevitable. It has to hold, that the
origin of the next halfedge is identical to this halfedge’s destination. In fact, the next
and the twin pointer are the only mandatory ones, all other pointers are optional —
though recommended.

Vertex A vertex represents a zero-dimensional feature of the decomposition, that is, it is

Face

associated with a geometric point, be it the end of a curve, the intersection of curves,
or even both.

A pointer stores an incident halfedge that directs to the vertex. All halfedges tar-
geting a vertex can be connected by a (bidirectional) circular linking. Although not
part of the original DCEL-design, we, that is, when using the DCEL for arrangements,
allow that no halfedge is incident to a vertex. In this case, the pointer is simply NULL.
However, such an isolated vertex is not slobbing around. A face pointer (which is
NULL otherwise) indicates the face that contains the isolated vertex.

A face represents a two-dimensional connected set implicitly, that is, no actual ge-
ometric object is associated with it. To obtain geometric information, a face is
surrounded by a circular list of halfedges that have the face to their left. The link-
ing is established with the help of the halfedges’ next pointers, or more precisely:
Each face is surrounded by halfedges that wind in counter-clockwise order along
the outer boundary of the face. We call it the outer connected component of the
boundary (OCCB). The face knows an occb-pointer to one these halfedges.

Nevertheless, this simple design actually allows to only represent decompositions
whose faces are simply connected. But in general, two-dimensional arrangements
can contain faces that are not simply connected; for an example we refer to the
already mentioned isolated vertices, or to Figure LB, where faces Fo and Fj are
completely inside Fj. Face Fy even surrounds all other faces.

Definition 2.41 (Hole). A connected set H is called a hole of face F if it makes F'
locally non-simply connected. That is, there is a simply connected subset of F' that
gets non-simply connected when we remove H from F.

Holes can be two-, one-, and zero-dimensional, and their number can be arbitrary,
but finite. In order to support the different cases, each face maintains two addi-
tional lists: One for isolated vertices and one for inner connected components of the
boundary (ICCB). An inner component of a face F' is similar to its outer counterpart,
namely a list of halfedges having F to their left. However, they wind in clockwise
order. This way, the cycle of twin edges describes a two- or even one-dimensional
set that is excluded from F. In the example of Figure 8], the inner CCB defined
by Es removes a two-dimensional set, while the inner CCB defined by FEj3 is only
one-dimensional.

Remarks.

Actually, there is no geometric way to distinguish outer and inner CCBs. By topo-
logical inversions each CCB could become outer.

However, for the plane, the common convention is to define the CCB as outer which
winds, as written, (once) counter-clockwisely around the normal-vector of the plane

2.4. Arrangements

69

Figure 2.6. How to use the DCEL to represent a planar arrangement (of interior-
disjoint line segments): The unbounded face Fj has a single connected component
that forms a hole in it. This hole is separated with a halfedge-cycle containing Fj,
a so-called inner CCB (connected component of the boundary) of Fj. The hole
itself comprises several faces, for example F;, whose outer CCB is the halfedge-
cycle defined by E;. Along this outer CCB, Ej is preceded by E,,, and succeeded
by Enext- The halfedge E; connects V] with V3, while together with its twin E]
it represents the line segments that connects the points associated with 1 and
V,. This segment separates F| from Fy. E| defines the outer CCB of Fy. Note
that, in contrast to Fy and E}, the edges F4 and E) do not separate different
faces. The face F; also has holes: The two-dimensional hole separated with Fy’s
inner CCB defined by Es, the one-dimensional hole separated with F's second
inner CCB defined by E3, and two isolated vertices V3 and Vj. All other faces
only have a single outer CCB.

70 Algebraic Foundations, Geometric Programming, Arrangements

located at an interior point of the face, that is, in the left area of the CCB (as the
halfedges have their incident face to the left).

e In Chapter Bl we use a DCEL for non-planar two-dimensional subdivisions. For such,
to characterize CCBs by windings makes less sense. Thus, we next introduce the
nesting graph in Definition 2242

e A general purpose halfedge data structure is presented in [Bro0Tal. It discusses these
and other aspects.

Definition 2.42 (Nesting graph). We construct the nesting graph of faces. Nodes of the
graph correspond to faces, while we add an oriented edge from node f£1 to node £2 if £2
is separated from f£1 by an inner CCB of f£1. That is, there is a twin of halfedges el
and e2 (with el->twin() == e2 and e2->twin() == el) such that ei->face() == f1 and
e2->face() == £2 and el belongs to an inner CCB of £1 (and e2 belongs to an outer CCB
of £2).

The DcCEL-representation for each decomposition of the plane with bounded curves
(and points) always has a face that has no outer CCB. This face corresponds to the plane
having holes in it. Thus, the nesting graph of such a decomposition is a tree, whose root is
the face without outer CCB, the outermost face. The root’s direct children are the faces
separated by the inner CCBs of the outermost face. Note that a single inner CCB can
result in more than one children; see Figure 271 Actually, one could extend the nesting
graph with special nodes for isolated points and one-dimensional holes. In fact, adding
them would complete the representation of the DCEL as graph. However, for our purposes,
they are irrelevant. We emphasize that the way CCBs are assigned to the list of outer and
inner CCBs of a face fully determine the nesting graph’s edges. As written, by topological
inversion we can make every face the root of the tree, though, this results in another
nesting graph (with other assignments of CCBs to the list of lower and outer CCBs of a

face).
(1)
(7)) ()
@ @®

Figure 2.7. Nesting graph (here: tree) for the DCEL of Figure 2.6

We already mentioned that curves stored in a DCEL are required not to pair-wisely
intersect in their interior. Consider a closed curve, for example p = v(0) = (1) that
would be embedded by a pair of halfedges. However, each halfedge forms a self-loop, that
is, it points to its originating vertex. This implies, that there must be a vertex, which
must be constructible on . Although self-loops are not forbidden by design, algorithms
constructing a DCEL avoid them, for example, as they require to split curves into z-
monotone sub-curves. Such a split implies that each connected component of a boundary
consists of at least two halfedges. We especially want to single out this fact for each
outer component and also for inner components that describe a one-dimensional set. We

2.4. Arrangements 71

also remark, that a face that does neither contain an inner CCB nor an isolated vertex
is simply connected. The DCEL, as described here, suffices to support an arrangement
that is embedded in an orientable surface which is homeomorphic to an (open) disc. For
arrangements on parametric surfaces, that we discuss in Chapter B, we have to extend the
DcEL further.

We also benefit from the DCEL’s advantages of easy traversals of its items and the possi-
bility to support their efficient overlay [dBvKOSO0), §2.3]. In general, the DCEL, also known
as Halfedge-Datastructure (HDS), is widely known and used in computational geometry
and inescapable, for example, in two- and three-dimensional triangulations. This also holds
for CGAL. However the Arrangement_2 package uses a specialized version. In order to unify
these difference the two implementations are currently in a redesign process [KCO8|. Its
goal is to provide an implementation that serves throughout all packages of CGAL that
require an HDS. The main improvement is the introduction of optional border-edges and
HalfedgeCycles. Halfcycles are intended to unify outer and inner connected components of
the boundary. In Chapter Bl we only touch these extensions in our discussion, as they are
not yet used productively. For three-dimensional regular complexe Bru and Teillaud
suggested another extension of CGAL’s HalfedgeDS, called cellular data structure [BT0S].

2.4.2. Computing planar arrangements

Unfortunately, the curves in the given input € are usually neither xz-monotone nor disjoint
in their interior, that is, the input typically consists of non-z-monotone (or even vertical)
curves that intersect or (partially) overlap. We wish to construct a DCEL that describes the
subdivision A(€) induced by € using only weakly z-monotone curves, see Definition ZZ43]

Definition 2.43 (Curve continued). We extend Definition
4. A curve 7 is called weakly x-monotone, if for t1 < to,t1,te € I it holds that y(t1) <jex
~(t2), where <jex denotes smaller in lexicographic zy-ordering. Observe that also
vertical curves are classified to be weakly z-monotone.

Such a decomposition has the advantage that maintenance is simplified, but also en-
ables us to easily extend the DCEL towards a vertical decomposition [dBvKOSO0]. Algo-
rithm EZTT] gives a naive construction for a DCEL.

Algorithm 2.11. Construct DCEL naively
INPUT: Set of curves € in R?
OutpuT: DCEL that represents A(S)
1. Split each non-z-monotone curve of C into weakly z-monotone sub-curves €.
2. Compute all intersections of curves in €’ and subdivide them such that they are
interior disjoint
3. Use Euler operators to modify the DCEL with respect to the split input. Optional
pointers might link to the originating curve(s) of C.

This approach, however, requires a quadratic number of intersection tests, and does
not exploit proximity of curves for intersection tests, or actually non-proximity to avoid

15 A three-dimensional regular complex is a finite decomposition R3, whose cells are pairwise interior
disjoint and the boundary of a cell consist of the union of other cells [ES94].

72 Algebraic Foundations, Geometric Programming, Arrangements

them. In practice, two other approaches are more common to construct a DCEL. Similar to
the naive approach, their first step consists in breaking the input into weakly z-monotone
curves. Thus, we henceforth assume that € consists of such curves.

The sweep line approach The basic idea goes back to Bentley and Ottmann [BOT9)
who gave an algorithm to count and compute the intersections of line segments. Luckily,
by observing the execution path of the algorithm it is possible to construct the induced
DcEL; we give more details below.

We give a sketch of the algorithm that works for line segments € = {s1,...,,} that
fulfill the general position assumption. More detailed descriptions, which also discuss the

degenerate cases, can be found in [dBvKOSO(, Chapter 2|, or [MNO0, §10.7].

The main idea is to sweep with a vertical line, the sweep line, from left to right over
the plane. At every position the sweep line is intersected by some segments of input in a
certain order. The crucial observation is that this order only changes at a finite number
of events, which are exactly the positions where the topology of the segments intersecting
the sweep line changes, and thus, also the topology of the induced arrangements: These
events are the minimal and maximal ends of segments and intersection points of segments.

The sweep line algorithm maintains two dynamic data structures. The status—h’ne{@ L
represents an intersection pattern of the input segments with the sweep line at its current
position. It is empty at the beginning of the sweep and also exhausted when the sweep
ends. Events are maintained in a priority queue that sorts its entries lexicographically by
coordinates. This event—queu Q is initialized with the minimal and maximal ends of
the input segments. The sweep of the line actually consists in extracting at any time the
next minimal event from the event-queue and to update the structure with respect to the
local situation at the event. The process keeps two invariants valid:

1. Events with smaller lexicographic coordinates than the current event (to the left of
the sweep line) have already been discovered and handled.

2. At least the following events are stored in the event-queue: (a) All endpoints of
input curves that have greater lexicographic coordinates than the current event (to
the right of the sweep line) and (b) the next intersection of two segments that are
currently adjacent in the status-line.

Observe that at the beginning of the algorithm, the invariants are fulfilled by how
we initialized the dynamic structures. Algorithm describes how to sweep over the
line segments, actually, its main loop discusses the (possible not required) updates of the
structures when sweeping over the current event.

169ome texts call the status-line also Y-structure.
'"The event-queue is also referred to as the X-structure.

2.4. Arrangements 73

Algorithm 2.12. Sweeping line segments

INPUT: Set of line segments € in R?

OuTPUT: Lexicographic processing of events and how they are connected with sub-curves
e Insert minimal and maximal point of each segment in € into Q
e While the @ is not empty

— Extract @’s current minimal event ev (and remove it).

— If ev is the minimal endpoint pyi, of some s;, we insert s; into L. This requires
to compute the relative vertical alignment of pn;, with the segments already
existing in L. We either hit a segment s; or pmi, is positioned in between
segments Spelow and Sapove (if existing). In the former case we have to compare
whether s; is below or above s; right after their intersection at ev = pyin, which
also defines now unique spelow and Sapove- Check if s; intersects to the right of
ev with Speow and if so, insert the next intersection into the). Do the same
for s; and s p0ve-

— If ev is a maximal endpoint ppax of some s;, then s; is located between spejow
and S,pove. We remove s; from L and check whether speiow and sapove intersect
lexicographically larger than ev. If so, we insert the next intersection into @ (if
not already existing).

— If ev is the intersection of some s; and s; (where their order in L is: spelow <
8; < 8j < Sabove), We exchange them in L. Then, s; is above s; and we check
next for a future intersection of spelow and s; and for a future intersection of s;
and Sypove. If such exist, we insert them into Q.

Remarks.

e Note, that in each step spelow and Sapove Mmight not exist. If so, the corresponding
cases can be ignored.

e The algorithm neither reports intersection points nor constructs a DCEL. However,
having a continuously look on the algorithm’s executional steps by some entity, this
entity can simply extract intersection points or construct the DCEL that emerges to
the left of the sweep line. Technically, the visitor design pattern [GHJIVI9)] describes
such entities. We refer to §22.3 that discusses details on how CGAL’S Sweep_line_2
class is combined with visitors for different purposes.

e The algorithm assumes general position of the segments. However, by carefully
extending individual steps it is possible to handle isolated points, vertical and/or
overlapping segments, more than two segments running through a common point,
or events that share a common z-coordinate (i.e., covertical events). LEDA’s and
CGAL’s implementation mind all these degeneracies.

e The running time of the algorithm is O((n + k)logn), where n is the number of
input segments and k the number of intersections. It requires space O(n + k), which
can be improved to O(n): We only have to revise) from future intersections of
segments that just lost their adjacency in L. When computing a DCEL, this strategy
is not advised as the output needs space O(n + k) anyhow, and the re-computations
of intersections and maintenance operations for the event-queue harm the practical
performance; see again [MNO0), §10.7].

Already Bentley and Ottmann experienced the fact that their idea is applicable to any
set of z-monotone curves, such as half-circles. A generalized description is given in [SH89).

74 Algebraic Foundations, Geometric Programming, Arrangements

In contrast to the linear case, some difficulties must be tackled:

Problem 2.44 (Sweeping non-linear curves).
e Two non-linear curves can intersect more than once.
e The order of two non-linear curves to the right of an intersection is not always the
reversed order the curves had to the left of the intersection.

However, solutions to both problems exist. For the first, it actually suffices to only
compute the next intersection. However, it is encouraged to augment the event-queue
with all future intersection points of two non-linear curves, if available, as soon as they
become adjacent in the status-line for the first time. Note that in the final DCEL all of
them pop up anyhow.

A naive solution for the reordering of ¢ curves passing an event (at point p) is a
comparison-based sorting. It consists of pair-wisely computing the order of y-coordinates
of two such curves slightly to the right of the common intersection. However, this results
in an algorithm with O({log /) running time, while each comparison is also a task of
non-trivial cost.

The reordering can be improved if one knows the multiplicity of intersection in the
point for two such curves. This is, for example, the case for input that is supported by
algebraic curves (see §ZT4)), if the intersection does not takes place at a singularity (which
can be excluded). The precise definition of this value is given in [MPST|. Intuitively,
the two curves change their relative vertical alignment when passing p, if the multiplicity
is odd, while their order is preserved if the multiplicity is even. This leads to an easy
combinatorial decision on how to update L. Based on these multiplicities there exists
an O(MY{) algorithm that reorders ¢ (algebraic) curves passing through p, where M is
the maximal multiplicity of intersection that occurs for two curves passing the point; see
[BEHT02| and [FHKT, Chapter 1] for a more detailed proof. Even better, it is possible
to remove M by constructing a multiplicity tree. The algorithm presented in [BKO7] only
requires time O(¥¢) relying on pair-wise multiplicities of intersections.

Abstracting from the curve-specific details, we can state a generic version of the sweep
line algorithm.

Algorithm 2.13. Sweeping (weakly) x-monotone curves

INPUT: Set of curves € in R?
OuTpruUT: Lexicographic processing of events and how they are connected with sub-curves
e Replace each curve ¢ € € by curves that represent a decomposition of ¢ into (weakly)
z-monotone curves
e Insert lexicographical minimal and maximal point of each (weakly) z-monotone curve
in € into Q
e While the @ is not empty
Extract minimal ev event from @
Remove all curves from L that end at ev
— Reorder all curves passing through ev
— Insert all curves into L that begin at ev, compute intersections for newly adja-
cent curves and insert them into @)

Having this generic sweep line algorithm, we next concentrate on the individual tasks

2.4. Arrangements 75

in each step, that is, we break down the approach into subtasks consisting of geometric
predicates and constructions. As already mention, we require to decompose arbitrary
one-dimensional input into (weakly) x-monotone pieces.

Make z-monotone Given a one-dimensional input object ¢, decompose it into weakly
xz-monotone curves. If other predicates expect stronger conditions than just weak
x-monotonicity, it is the responsibility of this geometric construction to ensure them
as well. We refer to such a split curve v as a sweepable curve.

We next describe the predicates that are required to maintain the event-queue and to
update the status-line when sweeping over an event.

Figure 2.8. Geometric constructions (a),(b),(c) and predicates (d),(e),(f) required for
the sweep line algorithm

min
»

-

min

(a) Make z-monotone (b) Min/max end (c) Intersections

(d) zy-order of points (e) Point-curve-relation (f) Compare-to-right

Minimal /maximal-end Given a weakly z-monotone curve ¢, the predicates returns its
lexicographical smallest (largest) point. They are used during initialization, to check
whether a curve starts or ends at an event, and to determine the location of a starting
curve in the status-line.

Compare-zy Given two points pi,ps, compare them lexicographically. We require this
predicate to keep the event-queue sorted, and to check whether a curve starts or ends
at an event.

Point-curve-relation Given an x-monotone curve ¢ and a point p in the z-range of ¢,
this predicate determines the relative vertical alignment of p and ¢, that is, whether
p lies below, on, or above ¢ at p’s z-coordinate. In case of a vertical ¢, it returns
whether p is below the minimal point of ¢, on ¢, or above the maximal point of ¢. In
the sweep line algorithm, this predicate is used to locate the position of a curve that

76 Algebraic Foundations, Geometric Programming, Arrangements

starts at an event in the status-line. To do so, the curve’s minimal end is compared
with the curves already stored in the status-line. Of course, no such comparison is
required if other curves end or pass the current event, as the algorithm remembers
their position in L. That is, it knows where to insert new curves. If there are passing
curves, the next predicate is required upon a starting curve.

Compare-to-right Given two weakly xz-monotone curves cy, co that intersect at p. This
predicate determines the relative vertical alignment of ¢; and ¢y after passing p, that
is immediately to the right of p. The predicate is called to determine the location
of a curve that starts at an event with passing curves, that is, we determine the
position of the new curve (whose minimal end lies on a curve in the status-line) in
the sequence of curves to the right of an event.

Intersections Given two weakly xz-monotone curves ¢y, co compute their intersections.
Usually the set of intersection is zero-dimensional, that is, it consists of a finite
number of points. It might be helpful to also obtain the corresponding multiplicities
of intersection (or at least their parities). In degenerate situations, the two curves
may overlap. In such a case the construction is requested to compute all overlapping
parts. Of course, the processing of an event resulting in proper updates of the
dynamic data structures, also has to deal with overlapping curves. We omit these
technicalities, as they are previously discussed elsewhere; see [MNO0, §10.7].

The incremental approach The aggregated construction using the sweep line approach
is very efficient, in particular when the number of intersection is relatively small, that is
k< 0(15;271)- A drawback of the approach is that all curves must be known in advance,
which some application do not provide, as new curves can arrive in an on-line fashion.
For such cases, an incremental (and local) update should be privileged. Algorithm T4
gives a method that inserts a weakly x-monotone curve c¢ into an existing (not necessarily
empty) arrangement A. Non-weakly-z-monotone curves are decomposed beforehand as in

the sweep line approach.

Algorithm 2.14. Incrementally inserting a weakly z-monotone curve ¢

INPUT: (non-empty) arrangement A; curve ¢
OUTPUT: refined A with inserted c

1. Split ¢ into (weakly) z-monotone curves. For the next steps we assume that ¢ has
this property.

2. Locate the minimal end of ¢ and either update the found vertex (locate position of
curve in its circular list of incident curves), or split the found halfedge-pair, or insert
a new vertex in the interior of the found face.

3. Traverse the zone of ¢, that is, all DCEL-items intersected by c¢. Whenever we detect
an intersection of ¢ with some vertex or some halfedge-pair, we split ¢ into two sub-
curves clefy and cright, update the vertex or the halfedge-pair accordingly, process
Cleft, and proceed with cyigpe until we reach ¢’s maximal end.

4. Locate ¢’s maximal end and proceed similar to what we did for ¢’s minimal end.

Special care is needed when ¢ overlaps with an existing curve in A, or ¢ completely lies in
a face of A. In the latter case, ¢ must be inserted as a new hole in that face.

The subtlety for incremental insertion is that it requires point location, that is, given

2.4. Arrangements 77

a point p determine the DCEL-item to which it belongs. We shortly discuss point location
in 43 The running time for incrementally inserting n weakly z-monotone segments is
O(n?). Thus, for dense arrangements, k > w(%), the incremental approach theoreti-
cally (and practically) beats the sweep line approach which requires O((n + k)logn) time.
However, the running time of the sweep line method is output sensitive. The proofs and
more details on the incremental construction of arrangements can be found in [dBvKOSQ0,

Chapter 8].

Needless to say, that both approaches can be combined. For example, the sweep line
method is used to construct the DCEL for an initial set of curves, while it is augmented
by curves arriving in an on-line fashion by applying the incremental algorithm. Or an
initial dense arrangement is constructed by the incremental method, while later a set of
curves that imply only a few new intersection are “swept” into the arrangement. Note that
sweeping an arrangement of non-intersecting curves is a much easier task, theoretically
and practically, as no intersection has to be computed and the event-queue is not altered
at any time. All this flexibility on two-dimensional arrangements is offered by CGAL’s
Arrangement_2 package that we present next. In its presentation, we also cater for how to
delete curves in an existing arrangement.

2.4.3. Arrangements in CGAL

We next introduce CGAL’s Arrangement_2 package with various details. It is developed
and maintained at Tel-Aviv University in the lab of Dan Halperin. During the package’s
lifetime, it always has been improved, while for CGAL version 3.2 a major redesign has
been applied, that was mainly driven by Dan Halperin’s students Ron Wein, Efi Fogel, and
Baruch Zukerman. The “changelog” is reported in a sequence of publications: [FHHT00],
[EWH], [WEZHOS], and [WEZHI7H).

In this section, we present the Arrangement_2 package of CGAL 3.2. that only supports
bounded curves in the plane: It maintains a single unbounded face that contains all input
objects, that themselves fit in the interior of a finite rectangular area. We show in Chapter @l
how newer extensions (CGAL 3.3) already enable unbounded curves, and how the restriction
of the embedding surface to be a plane is removed (upcoming version of CGAL).

The Arrangement_2 package implements the generic programming paradigm as ex-
plained in 2T This technique allows to separate the combinatorial and topological
algorithms and data structures from whatever geometric objects are at hand. Central to
the package are only a few classes. The main class-template is intended to represent a
planar embedding of weakly z-monotone curves that are pairwise disjoint in their interior.
It is instantiated with two parameters:

Arrangement_2< GeometryTraits_2, Dcel >

GeometryTraits_2 This is the main parameter for the package, as it defines the type of
geometric curves (and points) that induce an arrangement. It also implements basic
operations on the types to support the arrangement’s construction and maintenance.
As a positive side-effect of this distinction, a developer with less experience in com-
putational geometry, and arrangements in particular, can engage in the package with
all its functionality for its own curves, as long as he provides a proper geometric-
traits class for them. The list of required operations has been reduced over time

78 Algebraic Foundations, Geometric Programming, Arrangements

and finalized in the ArrangementTraits 2 concept of CGAL version 3.2 we present
details of the concept and available models below.

Dcel This parameter determines the type (and specialties) of the underlying topological
structure used to represent the planar subdivision. A default implementation is
contained in the package and if it should be used, one even can omit to specify the
argument to define the arrangement type. On the other side, a more experienced user
is able to replace it, for example, to attach user-specific data to the DCEL-records.

A valid two-dimensional arrangement (of bounded curves) has one unbounded face.
Each face, except the unbounded one, has an outer CCB (connected component of the
boundary). The non zero-dimensional holes within a face are represented by a number
of inner CCBs. The zero-dimensional holes (also known as isolated vertices) are stored
explicitly. The latter two entities are not required to exist. The hierarchical order of holes
and isolated vertices in a face is distinguished by graph- and edge-based structures.

The arrangement class-template provides all necessary capabilities to construct and
maintain the DCEL that is extended with geometric data. Basic functions are available to
access, to modify, or to traverse an arrangement. For example, all vertices, edges, and faces
can be visited by iterators, or the halfedges of a CCB and the incident edges of a vertex
can be circulated. The central modifiers are the basic insertion and deletion methods.
It is possible to insert points or weakly xz-monotone curves. For a new point, either a
vertex for it already exists, then nothing happens, or it lies on an existing halfedge-pair,
that is going to split, or it will be added as an isolated point in a face’s interior. When
adding a new weakly x-monotone curve, we distinguish four cases: Fither it is inserted in a
face’s interior, its minimal /maximal point hits a non-face, or both ends hit a non-face (two
possibilities). In every case the DCEL has to receive some modifications, for example, when
short-cutting an inner CCB, a new face is constructed, and some CCBs must be adapted.
Figure explains the various cases. Similar modifications are required when removing
an edge. The arrangement takes care of the correct order of modifications to transform
the DCEL from one valid state to a new valid state that represent the new situation. The
user who adds or removes the object does not even notice about all the details, at least
not directly. Note that these operations implicitly modify the nesting graph of the DCEL.

For the user’s information on changes of the arrangement’s structure, the package
implements the observer pattern [GHIV99]. An observer receives notifications from a
given arrangement-instance, for example, when a vertex is added or deleted, or a new
edge is inserted. A default observer class-template with empty implementations contained
in the package can serve as source class to derive models that execute special code on
such changes. An example application is a point location that relies on auxiliary data
(landmarks) which should be kept up-to-date upon structural changes of the arrangement
it is connected to. The numbers of observes attached to an arrangement is not limited.

The package is also equipped with a number of free@ insert functions, that allow to
insert curves into a given empty or non-empty arrangement. Depending on the case a single

180ne may wonder why the parameter is called GeometryTraits_2 and not ArrangementTraits_2.
The reason is that ArrangementTraits 2 is the most refined concept, but one can also use Arrangement_2
with weaker concepts (e.g., the input curves do not intersect). Thus, the more generic name. We usually
refer to the most refined version.

9Floating in namespace CGAL: : without coupling to a class.

2.4. Arrangements

79

Figure 2.9. Basic insertions into a planar arrangement of line segments

LY

(a) Insert in face interior: The (b) Insert from vertex: VJ ex-
arrangement creates two new ists, while V5 must be created,
vertices V4 and V] and con- as well as the halfedges F5 and
nects them with the halfedge- E!. Both extend in form of an
twins E; and Ej. Here: The antenna the CCB to which the
cycle (Eq, E}) forms a new in- given Es ey belongs. Here: Ej
ner CCB of Fj. and E!, extend an inner CCB.

(c) Inserting from two vertices: (d) Inserting from two vertices:
A new pair of halfedges E3 and The new pair of halfedges FE4
E% close a new face F. Holes and EJ connects two compo-
and isolated vertices of the old Fj nents, that is, it merges two
(e.g., for £}, and Ejp,) must be CCBs. Here: two inner CCBs are
checked whether to move to Fj,. merged into one.

Here: Hy moves to F{).

80 Algebraic Foundations, Geometric Programming, Arrangements

curve is incrementally added or a group of curves is inserted with the sweep line approach.
The free overlay function efficiently overlays two given arrangements. If a group of curves is
known not to intersect in their interior, special insert_non_intersecting_curves functions
are also available, that have impact on the efficiency and the required operations: These
methods are faster and only demand a reduced set of geometric operations. In particular,
the construction of intersections is avoided, which usually results in geometric objects with
an increased complexity. For example, bit-lengths for intersections of curves are usually
larger than for the originating objects.

The free insertion functions are internally implemented in terms of the visitor design
pattern. That is, the aggregated construction is based on the

Sweep_line_2< GeometryTraits_2, Visitor,...>

class-template that implements a generic sweep line algorithm as described in §&42 In
particular it can deal with any degeneracy that is possible, for example, vertical curves,
covertical events, more than two curves intersecting in a point, intersection at endpoints, or
overlapping curves. The GeometryTraits_2 parameter again refers to the geometry model
that should be used, while the given instance of type Visitor receives notifications about
the status of sweep line algorithm and can act with respect to these changes. With this
strategy the actual sweep line code is centralized, reusable, and easy to maintain. The
implementation of a sweep-based algorithm boils down to write the visitor that constructs
the desired output from the notifications. The package provides a number of visitor classes
for various purposes:

e construct the intersections of curves

e construct the arrangement as DCEL induced by curves

e insert a set of curves into an existing arrangement

e overlay two arrangements

e perform batched point locations
Other sweep-based algorithms can be realized by writing own visitors.

In the same spirit, the incremental insertion is realized by a model of the ZoneVisitor
concept that inserts the curve, while the generic zone computation, implemented by the
class-template

Arrangement_zone_2< Arrangement, ZoneVisitor, ...>

is executed. There is another visitor for the zone algorithm that just report intersections
along the zone. As before, writing own visitors allows to easily develop computations that
are based on the zoning.

Functionality

We want to highlight three capabilities provided with CGAL’s Arrangement_2 package that
are constantly applied through the main chapters of this thesis. It only represents a small
subset of the full functionality provided by the package.

Decorating The Arrangement_2 package provides several methods to attach additional
data to the geometry. For example, input curves can be enhanced with a user-specific type

2.4. Arrangements 81

(e.g., a color) that is even preserved when applying computations (e.g., a sweep line) on
them. The most sophisticated method to attach data consists of the class-template

Arr_extended_dcel< GeometryTraits_2, VertexData, HalfedgeData, FaceData,...>

that can be used when instantiating the Arrangement_2 template. Each type of DCEL-
records is then equipped with the corresponding type and the data of a given DCEL-record
(be it a vertex, a halfedge, or a face) can be accessed by a data() member.

Overlay As already mentioned there exists a free function
CGAL: :overlay(arrl, arr2, arr_ovl, ovl_traits)

that computes the overlay of arr1 and arr2 and stores the result in arr_ovl. Its correctness
and efficiency is ensured by instantiating the sweep line implementation with the

Arr_overlay_sl_visitor< OverlayTraits >

that is instantiated with a model of the OverlayTraits concept. If no user-specific data
is attached, the default Arr_default_overlay_traits suffices as argument for ovl_traits,
otherwise the necessary merging of attached data must be implemented by a case-specific
model. Such a class determines, for example, how to combine the data attached when
overlaying a face of arr1l with a face of arr2, and all other possible combinations. We
refer to the manual [WEZH(T7a| for further details, and mention only the simple example,
where a bool is attached to each DCEL-record, and the model of the OverlayTraits concept
implements a boolean operation (like and) on the attached boolean values.

Point location Having an arrangement instance at hand, a very common query consist
in the question where a query point ¢ is located, that is, to identify the DcCEL-record
to which ¢ belongs. For random points, the found object is usually a face, while for
degenerated queries the point can be located on an edge or even coincide with a vertex.
Again, the Arrangement_2 package relies on the generic programming paradigm capabilities
to implement various kinds of point-location strategies. In particular, a developer is invited
to write its own method, while a basic set of strategies comes out-of-the-box:

e The naive strategy exhaustively scans each DCEL-record until it successes.

e The simple approach uses some geometric filtering.

e A more sophisticated method walks along a vertical ray emanating from ¢ until it
hits an edge or vertex, or extends to infinity. Depending on this the corresponding
DCEL can be obtained.

e There is also a point location that relies on a set of landmarks stored for the ar-
rangement. The positions of landmarks are known. The query consists in an efficient
detection of the nearest landmark to ¢ and the traversal of the line that connects ¢
with this landmark. This method requires auxiliary data.

e Auxiliary data is also required by the point location strategy that utilizes a partial
vertical decomposition of the arrangement.

See CGAL’s manual pages for full details [WEZHOT7a.

Remember that the point-location strategy might not be a game of its own, as for

example, the incremental insertion of a curve using Algorithm T4 has to locate the

82 Algebraic Foundations, Geometric Programming, Arrangements

curve’s endpoint before starting the zone computation. This fact should be adhered, when
choosing the point-location strategy.

We skip further details on the impressive functionality of CGAL’s Arrangement_2 pack-
age, and refer to [WEZHO7D| and [WEZH(OT7a] for further reading. In addition, CGAL’s
manual pages also cover details to use the package for envelopes of curves [Weill7al,
Minkowski sums in two dimensions [Wei(l7h], or as basic support in regularized boolean

set operations [FWZHOT.

The ArrangementTraits 2 concept

The basis interface between the Arrangement_2 package and the geometric object is the
GeometryTraits_2 parameter, that fulfills the ArrangementTraits 2 concept or one of the
weaker versions: The concept is actually described hierarchically, as some algorithms and
maintenance operations only require very basic types and operations on them, while others
are expecting a larger set (of types or operations, or both). We omit to present the full
distinction of layers that enables a fine adjustment of available traits model and the desired
application. In fact, all models we know are implementing the full set of requirements. A
model of CGAL’s ArrangementTraits 2 concept is expected to provide three main types:

Curve_2 This type is used to store a general curve, howsoever it is represented. Its topology
might be very complex, for example, it can have self-intersection, or comprises several
components that even may be zero-dimensional. No further specific requirements are
demanded from this type, except from the fact that it can be decomposed. We refer
to Make_x_monotone_2 for further details.

X_monotone_curve_2 This type is used to represent a (weakly) z-monotone curve. All
geometric algorithms of the Arrangement_2 package are designed to rely on weakly
z-monotone curves.

Point_2 Objects of this type are used to represent (finite) ends of weakly z-monotone
curves, and their (finite) intersections.

Any model of the ArrangementTraits 2 concept is also expected to provide geometric
predicates and constructions as functors. For Curve_2 only one construction is expected.

Make_x_monotone_2 Decomposes a general Curve_2 into a finite number of (weakly) a-
monotone curves and (maybe) a finite number of isolated points. If the remaining
operations require more conditions on the curves, this functor also has to take care
to construct the sub-curves respecting these prerequisites.

All other operations involve only (weakly) x-monotone curves and points, and it is
no surprise that the following predicates and constructions fit the tasks that we already
identified as required for the sweep line algorithm. It turns out that the mentioned ones are
the most important, while the list collecting the missing ones after the following detailed
descriptions gives operations that are of more technical nature.

Compare_x_2, Compare_xy_2 Compare the z-coordinates of two points or, respectively, com-
pare the coordinates of two points lexicographically, that is first by z-coordinate, then
by y-coordinate.

2.4. Arrangements 83

Construct_min_vertex_2, Construct_max_vertex_2 Extracts the lexicographical smallest
(largest, respectively) endpoint of a weakly z-monotone curve.

Compare_y_at_x_2 Determines the relative vertical alignment of a point with respect to a
weakly xz-monotone curve.

Compare_y_at_x_right_2, (Compare_y_at_x_left_2) Determines the relative vertical align-
ment of two weakly x-monotone curve, immediately to the right of one of their in-
tersections.

Remark. Compare_y_at_x_left_2 is only expected when the tag Has_left_category
has been set to CGAL: : Tag_true, otherwise its expected outcome can also be deduced
from converting the problem into a “right”-case. We omit the technical details. Any-
how, only some algorithms really require this predicate.

Intersect_2 Computes the intersection of two weakly z-monotone curves, sorted in in-
creasing lexicographic order. If a Multiplicity of intersection is known, it is attached
to each intersection point. In case (parts of the) curves overlap, the overlapping por-
tions are returned as (weakly) x-monotone curves as well.

The following self-explanatory operations that are expected for weakly z-monotone
curves are of more technical nature: Equal_2, Is_vertical_2, Split_2, Are_mergeable_2,
Merge_2. The exact signatures for each construction and predicate is listed in CGAL’s

manual [WEZHOT7a.

Remark (Asymmetry). The asymmetry of the expected functors (for example, there is no
Compare_yx_2) is intended and results from the fact that we split curves into z-monotone
pieces and also assume that we sweep with a line from left to right. Any model fulfilling
is allowed to over-achieve the concept’s demands by further functors.

Available models CGAL’s Arrangement_2 package already contains several models of the
ArrangementTraits 2 concept, among them classes for line segments (with different caching
strategies), and one for polylines. Both require only exact rational arithmetic. There are
also classes for non-linear curves which are computationally more complex and require alge-
braic numbers of higher degree. The simplest is the one that handles segments and circular
arcs [WZ06)]. Circles are special algebraic curves of degree 2. The Arr_conic_traits_2class
handles arcs of arbitrary degree 2 curves [Wei(2], so-called conics. A model for arbitrary
algebraic curves of any degree is not part of the package. However, there are two special-
izations for any degree. The simpler one allows to compute and maintain arrangements
defined by rational functions [FHKT], §1.4.2], that is, an arc is defined by an interval

I := [¢,r] and by the graph of a function y = f(z) = % over I, with p,q € Q[z]. The
most sophisticated model contained in the package deals with Bézier curves of arbitrary
degree [HW07]. The efficiency of the later implementation results from a consistent appli-
cation of geometric filters, that is, most computations can be derived from the geometric
properties of Bézier arcs, namely their bounding polygons. Only in a few (near-)degenerate
cases, exact algebraic methods cannot be avoided.

There are also some “external” contributions of ArrangementTraits 2 models, that is,
they are not shipped with the Arrangement_2 package. CGAL’s Circular_kernel_2 ex-

tends a linear kernel with circles and a basic set of predicates and constructions. It also

84 Algebraic Foundations, Geometric Programming, Arrangements

provides a model of the ArrangementTraits 2 concept [PT(07]. The kernel has been used
to compute aggregated unions of circular polygons that occur in VLSI design [dCPT07].
Outside CGAL, Lazard et al. have developed a model that also realizes arcs of rational
functions [LPTO8]. It internally uses Rs for real root solving of the occurring univariate
polynomials.

The ExAcuUs-team also participated in the challenging task to provide models. In
contrast to the previous classes, the project does not have specialized models for different
curves, but maintains a generic implementation. The central idea is that all required
operations can be expressed in terms of the analysis of single curves and pairs of them. This
layer of abstraction has been implemented in ExXAcus’ SWEEPX library. Its name used
to be generic algebraic points and segments (GAPS). As mentioned, the EXAcUS libraries
are moving into CGAL. Thus, we desist from discussing the original implementation,
and refer to &4 where we present CGAL’s new Curved_kernel_via_analysis_2 package
that emerged from GAPS and even improved it. We only mention, that this way it is
possible to compute arrangements of conics [BEHT02|, cubics [EKSW06| (theoretically
improved by [CGV0S]), projected silhouettes and intersections of quadrics [BHKT 053], and
algebraic curves of arbitrary degree [EK(8a]. Caravantes and Gonzalez-Vega filled the gap
with arbitrary quartic curves [CGV(7], however, an implementation is missing. Using a
specialized algebraic kernel, it is also possible to compute arrangement of conics rotated
by angles whose sin and cos are (nested) one-root numbers; see [BCW07|. In an internal
version of CGAL, the same idea has already been applied to algebraic curves of arbitrary
degree.

We also mention that the Arrangement_2 package provides a set of wrapping traits
models, that is, a given model can be enhanced with additional properties. An example is
the Arr_counting_traits_2that counts how often each geometric operation has been called,
for example, when inserting curves with a sweep into an empty arrangement. The outcome
can help to improve an implementation. Another wrapper is the Arr_tracing_traits_2
class, that prints the input and output for each traits operation during an execution. This
is very helpful for debugging purposes.

Remark (Boundedness). We remember the fact that all presented algorithms are designed to
work for curves v with I = [0, 1], that is, all curves are bounded. The Arrangement_2 class-
template of CGAL version 3.2 only allows to have one unbounded face, and, as carefully
denoted, the types and operations expected from a model of the ArrangementTraits 2
concept also expect finite ends of curves.

However, Chapter Hl describes how the package has been extended to remove such re-
strictions. We antedate that all presented models for curves in the plane have been adapted
towards unboundedness, that is, their current version is already primed and outfitted with
the extended set of operations that we discuss in §EZT1

We conclude this introduction on arrangements by presenting a generic model of the
ArrangementTraits 2 concept that relies on analyses provided by a model similar to the
AlgebraicKernelWithAnalysis d 2 concept. It plays an important role throughout the the-
sis.

2.4. Arrangements 85

2.4.4. Curved_kernel_via_analysis_2

In this section we present CGAL’S new Curved_kernel_via_analysis_2 package that pro-
vides a generic kernel for curves than can be analyzed. The kernel is one of the main
achievements in terms of community service that we present. Its history goes back to
the Generic Algebraic Points and Segments (GAPS) module that used to be part of EX-
Acus’s SWEEPX-library. That module has been initiated in [EKSW06| to support points
and arcs of cubic curves. While this first version had some restriction with respect to
the generic position assumption, we removed them, and completed the implementation
for [BHKF05]. We skip further details on GAPS and present next what emerged from
that code, namely the Curved_kernel_via_analysis_2 class and its dependent classes. The
current, improved, design and the implementation results from joint work of the author
with Pavel Emeliyanenko. More details and the reference documentation can be found
in [BEDS).

The Curved_kernel_via_analysis_2 package is a layer between curves that can be an-
alyzed on one side and objects supported by such curves along with geometric predicates
and constructions on the other side. We already mentioned analyses of curves and pairs of
such in §233 The Curved_kernel_via_analysis_2 package heavily relies on exactly such
analyses. In contrast to the GAPS module, it does not assume curves to be algebraic. Thus,
the main Curved_kernel_via_analysis_2-class is templated in a more generic parameter

Curved_kernel_via_analysis_2< CurveKernel_2 >

We omit to discuss the more generic CurveKernel 2 concept in detail, as the differences
to the AlgebraicKernelWithAnalysis 2 are mainly names avoiding algebraic terminology.
Thus, we can assume, for simplicity of presentation in this thesis, that we instantiate
the Curved_kernel_via_analysis_2 class-template with a bivariate algebraic kernel with
analysis, for example ACK_2:

typedef Curved_kernel_via_analysis_2< ACK_2 > CKvA_2;

An important subtlety in this simplification step should be mentioned: We identify the
Xy_coordinate_2 type defined in the CurveKernel 2 concept with the Algebraic_real_2
defined in the ACK_2. This means, that we also assume a special internal representation
and constructor for an Algebraic_real_2, that is, its internal representation relies on a
curve-analysis; see Definition that gives the details. This choice enables an inte-
grated usage of the analyses, in both ACK_2 and CKvA_2, and additional computational
effort is avoided from the beginning. The strategy mainly supports the overall goal of
the Curved_kernel_via_analysis_2 to derive all geometric operations without the explicit
knowledge of y-coordinates, as this can be a costly task.

Definition 2.45 (Implicit y-coordinate). Each point p = (p,,p,) on a curve ¢, that can
be analyzed, can be uniquely represented as a triple (p,, ¢, a), where a denotes the index
that identifies p among the sorted distinct intersections of ¢ with the vertical line at p,,
where counting starts at 0.

Thus, the integrated handling of curve analyses is ensured by representing an instance
of type Xy_coordinate_2 (and thus, by assumption, an Algebraic_real_2) by such a triple
(x,¢,a). Of course, it is still possible to extract the exact y-coordinate. However, it is not

86 Algebraic Foundations, Geometric Programming, Arrangements

expected by the Curved_kernel_via_analysis_2. In any case, this choice has implications
on how to compare two instances of type Xy_coordinate_2 lexicographically.

Algorithm 2.15. Lexicographical comparison of two Xy_coordinate_2

INPUT: zyp := (21, c1,0a1); 2Y2 := (22, Co, a2)
OuTPUT: Lexicographic order of zy; and zys

o If 1 # x9, return their order.

e Else, if ¢; = co, return the order of a1 and as.

e Else, analyze pair of curves defined by ¢; and c¢3, and compute their status line at
x1(= x2). Locate aj-th “arc” of ¢; as index i1, and as-th “arc” of ¢y as index iy in
sequence of merged curves along the status line at 1. Return the order of 41 and is.

An illustration of this algorithm is given in Figure 2210

m:Rx{f,¢g} xN—>N
m(xy, f,0) =0
m(zy, f,1) =1
m xl:f72 =3
m(zy,g,0) =2
m(xzy, £,0) =0
m(xzy, f,1) =1
m Ilaf72 =2
m(zs,9,0) =1
X)
Figure 2.10. Compare-zy via analyses of curvess: Given p1 = (z1,f,1), pj =

(z1,£,2), ¢1 = (g,21,0) and po = (f,x2,1), g2 = (g, 22,1). All points with z = x;
are lexicographically smaller than points with @ = z5. Then, p; <jex p} as both lie on
fand ap, < ay. It also holds that p1 <iex q1, as m(z1, f,ap,) < m(z1,9,aq,) and
@1 <lex P}, as m(z1,9,aq,) < m(z1, f, apfl). Finally, po =iex q2, as m(z2, f,ap,) =
m(x%ga an).

The techniques used in Algorithm EZTH can be seen as blueprints for other geometric
operations implemented in the Curved_kernel_via_analysis_2; see below.

Basic types

In fact, the combinatorial information obtained from curve analyses is a central source
of knowledge within the Curved_kernel_via_analysis_2. While the Curve_analysis_2 and
Curve_pair_analysis_2 types are given through instantiation, three new types to represent
geometric objects are defined by the Curved_kernel_via_analysis_2 class.

2.4. Arrangements 87

Point_2 This is the simplest one among the three. A standard point is constructed from
a triple (z,c,a). Internally it holds a pointer to an Xy_coordinate_2 instance. In the
algebraic case, the z-coordinate can be a real algebraic number of any degree.

Although not handled until Chapter Bl we already remark that there are special
points to represent ends of non-bounded arcs. Such points, however, are not explicitly
constructible by the user.

Arc_2 Represents a one-dimensional connected and weakly z-monotone subset of a curve.
An Arc_2 arc is either vertical, or it has the property, that the arc number for all
points in its interior is constant.

Internally, it stores besides minimal and maximal endpoint pyin, Pmax, its supporting
curve ¢, and three arc number ap,, @, and anax- Note that the supporting curves
of Pmin and pmax do not have to match ¢, and similar their arc numbers do not have
to match amin and amax. However, amin, @, and amax must be chosen such, that the
represented arc is a connected subset of c.

Poly_arc_2 This type is only for the user’s convenience, as it allows to represent a non-
z-monotone connected subset of a curve ¢ by a chain of connected Arc_2 instances.
There are preconditions, that all these arcs must be supported by the same curve,
and all arcs are either vertical or non-vertical. There is the plan to provide a one-
dimensional object composed of arcs supported by different curves.

In order to simplify the subsequent discussion we assume that the considered support-
ing curves have a finite number of (self-)intersections. Of course, the implementation takes
care of such special cases, and simplifies in an on-line fashion (i. e., interactively during ex-
ecution of an operation) the internal representations of the Point_2 and Arc_2 respectively.
Simplification means to choose curves that only have a finite number of (self-)intersections,
and to adapt affected arc numbers, respectively.

Operations

In this part, we present the central operations of the kernel. Much more are implemented
and currently documented in [BEQS)].

Make_x_monotone_2 The main operator of this functor decomposes a given curve ¢ with the
help of a left-to-right traversal of ¢’s analysis into a finite number of Arc_2 instances
and isolated points of type Point_2.

Another operator unchains the linking of a Poly_arc_2.

There are two trivial operators for Arc_2 and Point_2 that just return the given
objects itself as it is already (weakly) z-monotone.

A final operator takes a CGAL::0bject that is allowed to encapsulate any of the
Curved_kernel_via_analysis_2’s geometric types. Depending on the type, one of
the previous four operators is applied and the proper decomposition is returned.

Compare_xy_2 For two instances of type Xy_coordinate_2 stored for the two given points,
the functor executes Algorithm to compare them lexicographically.

88 Algebraic Foundations, Geometric Programming, Arrangements

Compare_y_at_x_2 The functor compares the relative vertical alignment of a point p and
an arc arc. As precondition the point must lie in the z-range of arc. The result is
obtained from constructing a point pg.. on the arc at p’s x-coordinate, and then to
(lexicographically) compare p with pg.. Note that we can simply skip the comparison
of z-coordinates in this case.

Compare_y_at_x_right_2 Given two arcs and one of their intersection points. If the sup-
porting curves of the arcs are equal, we can just compare the two interior arc num-
bers. Otherwise, we compute a status line of the corresponding pair of curves slightly
to the right of the intersection (e.g., at a representative and rational r within the
open interval to the right of the intersection’s z-coordinate), and compare the rel-
ative vertical alignment of the arcs in the spirit of the y-comparisons of points in
Algorithm

Intersect_2 Given two arcs, compute all their zero- and one-dimensional intersections.
Note that the supporting curves are not equal and have a finite number of intersec-
tions. We first compute the common z-range of the two arcs. Then, we traverse the
analysis of the corresponding pair of supporting curves from the left end of the com-
mon range to the right end, detect in each status line of an event the intersections
of the two curves. This information, suffices to construct the intersection points. An
overlap is detected priorly, and requires a matching between the common supporting
curve(s) and the two curves supporting the input arcs.

Each of these operations also has some subtleties, for example with respect to the
handling of vertical arcs. We do not want to discuss the technical details in this overview.

The Curved_kernel_via_analysis_2 as ArrangementTraits 2 model

We aim to use an instantiated Curved_kernel_via_analysis_2 as the GeometryTraits_2
for CGAL’s Arrangement_2 package. Thus, it has to fulfill the ArrangementTraits 2 con-
cept. All necessary functors are already in place. It remains to define the required types.
Remember that the ArrangementTraits 2 concept expects three types. For the Point_2
we do not have a choice, and as the X_monotone_curve_2 only Arc_2 is sufficient. Some
flexibility is afforded with respect to the input type Curve_2. As the Make_x_monotone_2
functor can deal with all internal types, it is the user’s choice to typedef Curve_2 either
to Curve_analysis_2, Poly_arc_2, Arc_2, Point_2 or even CGAL::0bject that is most flex-
ible as it can encapsulate each of the former types. We recommend to choose among
Curve_analysis_2, Poly_arc_2, or CGAL: :0bject, as for the others no Make_x_monotone_2 is
required.

To summarize, we obtain a valid model of CGAL’s ArrangementTraits 2 concept for
algebraic curves to be used as GeometryTraits_2 in the Arrangement_2 package by instan-
tiating the Curved_kernel_via_analysis_2 with a bivariate algebraic kernel (e.g., direct
or wrapping version of Algebraic_curve_kernel_2). We henceforth use the shorter term
CKvA_2 when referring to such an instantiated instance.

In Chapter Blwe use Algebraic_curve_kernel_2 wrapping QUADRIX’S P_curve_pair_2,
while in Chapter B and Bl we mainly rely on the self-contained Algebraic_curve_kernel_2
in combination with the Curved_kernel_via_analysis_2. Typically, we only make use of
the Curved_kernel_via_analysis_2 as a mediating layer. However, in §£3] we show how it

2.4. Arrangements 89

must be extended to support unbounded curves, while in §£6 we even modify it noticeable
in order to compute arrangements on parametric surfaces. These modifications are possible
due to the chosen software design.

Software design The design of the Curved_kernel_via_analysis_2 is held flexible. An
intelligent combination of derivation and template meta programming allows to replace
the two basic types Point_2 and Arc_2. This way, the original class can be substituted by
derived versions that are enhanced with additional functionality, such as a construction
history. But not only the basic types can be exchanged, it is also possible to replace indi-
vidual functors, for example, with a filtered version. Contained in the package we already
provide a derived Filtered_curved_kernel_via_analysis_2 whose functors are equipped
with bounding box filtering in order to avoid analyses of pairs of curves; see [Ker(§]. The
current version is preliminary, that is, further improvements should be accomplishable.

Other derivations replace point and arc classes and some functors. Examples are
the Quadrical_kernel_via_analysis_2 for curves on a quadric (see §LG.I) and the new
Arr_surfaces_intersecting dupin_cyclide_traits_2 class that enables curves on a ring

Dupin cyclide (see §E6.2).

The kernel is also equipped with a robust visualization by Pavel Emeliyanenko for
points and arcs following the ideas of [Eme07]. The package and its visualization can also
be experienced in the web when computing arrangements of algebraic curves of arbitrary
degree in an interactive demo; see [7] and [EK08c]. We also rely on the planar visualization
when drawing an arrangement induced on a ring Dupin cyclide.

90

Algebraic Foundations, Geometric Programming, Arrangements

91

Lower Envelopes of Quadrics

Our journey between the three- and two-dimensional world starts with an important struc-
ture in computational geometry — lower envelopes. We present the computation of en-
velopes of a set of quadratic algebraic surfaces defined in R3 using CGAL’s Envelope_3
package. This package provides a generic and robust implementation of a divide-and-
conquer algorithm. In this chapter, we concentrate on the algebraic and combinatorial
tasks that occur for quadratic surfaces and their implementation. As the package follows
the generic programming paradigm, we have to provide a quadric-specific model of a cer-
tain concept. Both, the package and the model are exact and robust, thus the obtained
implementation follows the exact geometric computing paradigm. As we see at the end of
this chapter, the efficiency depends on three criteria.

Parts of this chapter also appear in [Mey06a], as we describe a joint work with Michal
Meyerovitch from Tel-Aviv University, Tel-Aviv, Israel. A short version of our results has
been presented 2007 [BMOT].

3.1. Envelopes

Lower envelopes are fundamental structures in computational geometry, which have many
applications like computing general Voronoi diagrams, or performing hidden surface re-
moval. Let 8§ = {S1,...,S,} be a set of n (hyper)surface patches in R?. We denote with
T1,...,q the axes of R?, and assume (for now) that each S; is monotone in (1, ..., zq_1),
namely every line parallel to the z4-axis intersects S; in at most one real point (without
counting multiple intersections). If we now consider each patch S; as a partially defined
(d — 1)-variate function R%~! — R, with x4 = S;(z1,...,24_1), we can define the lower
envelope.

Definition 3.1 (Envelope). The lower envelope Eg of 8§ is the point-wise minimum of these
functions: €g(x1,...,24-1) := min S;(z1,...,24_1), where the minimum is taken over all
functions defined at (x1,...,24-1).

92 Lower Envelopes of Quadrics

Instead of saying that a function S; is not defined at some point (Zy,...,Z4_1), we can
also assume that S;(Z1,...,T4_1) = oc.

Definition 3.2 (Minimization Diagram). The minimization diagram Mg of § is the sub-
division of R%! into maximal connected cells such that £g is attained by a fixed (possibly
empty) subset of functions over the interior of each cell.

Similarly, the upper envelope is defined as the point-wise maximum of the functions S;
which leads to their maximization diagram. However, until the end of the chapter we refer
for the sake of simplicity to lower envelopes only.

The complexity of an envelope is defined by the complexity of its minimization dia-
gram. Several analyses exists [HS94], [Sha94], [SA95]. Constructing an envelope for a set
of (hyper)surfaces is also well-studied. Observe that the minimization diagram of algebraic
(hyper)surfaces can be easily extracted from the proper cylindrical algebraic decomposi-
tion [Col75] (see also §ZTH). The cad only needs to be clustered with respect to the
minimization. However, the construction of a cad computes much more than needed, in
particular, it always adheres hidden features. Hidden means that it considers boundaries or
intersections of surfaces that finally do not show up in the minimization diagram. Several
more efficient algorithms have been developed for low-dimensional envelopes, especially
for d = 3. There exist output-sensitive algorithms for special cases [ABHOT94], [KOS9?],
[Mul89). A randomized incremental algorithm is due to Boissonnat and Dobrindt [BD96)].
It runs in time O(n?*¢), with ¢ > 0. The same time is needed by the divide-and-conquer
approach presented by Agarwal et al. [ASS96].

Meyerovitch presented the generic and exact implementation of a divide-and-conquer
algorithm for the three-dimensional case that decouples the combinatorial part from the
geometric predicates using the generic programming paradigm [Mey06b||. The implemen-
tation is contained in CGAL’s Envelope_3 package, that has been released with CGAL ver-
sion 3.3. It is based on and strongly coupled with CGAL’s Arrangement_2 package, which is
a well-taken choice, since the problem actually is two-and-a-half-dimensional: The input &
consists of objects in R3, while their minimization diagram is represented by an augmented
planar arrangement in R2, that is, each cell of the arrangement (vertex, edge, and face)
is labeled with the set of surfaces that attain the minimum over the cell. We typically
distinguish between an empty set, a singleton, or more than one surface. Algorithm Bl
describes how the labels are assigned using a divide-and-conquer approach.

Remarks (on Algorithm [31)).

e We observe that its output is with respect to the zy-monotone pieces g1, ..., g of
the S;. This actually poses no real problem, as each g; can store from which S; it
originates. In 83 we see an implicit storage strategy for quadrics.

e The splitting into §; and G is not specified. However, in practice, a randomized
partition obtains the best results. This has also been shown in theory by an analysis
of the expected running time [HSS0S].

e The descriptions of the algorithm contained in and cover more
details. In particular, they discuss subtleties that we skipped for the sake of sim-
plicity, they explain how to use CGAL’s Arrangement_2 package for the actual im-
plementation, and they also presents how to propagate continuity and discontinuity
information of the surfaces in order to significantly reduce the amount of geomet-
ric constructions and comparisons by combinatorial deductions. Such operations

3.1. Envelopes 93

Algorithm 3.1. Lower envelope with divide-and-conquer
INPUT: Set of surfaces § = {S1,...,S,}
OuTpPUT: Minimization diagram Mg representing the lower envelope €g of §

e Extract (weakly) xy-monotone pieces of each S; (each line parallel to the z-axis
intersects such a piece at most once, or S; is completely vertical). Let § be the set
collecting them.

o If § = {g}, compute Mg. This is done by first projecting the boundary of ¢ into
the xy-plane which induces faces. For each face it is decided whether it represents
a projection of g. There can be more than one such active face. In case of g being
vertical, no face is active. The decision is lead by a flag attached to each x-monotone
projected curve of the boundary indicating whether the projection of g is above,
below, or none of them; for an exact specification of these terms see Definition B4l

e If |G| > 1, we split G into two non-empty sets G; and Gy (of roughly the same
size), recursively construct Mg, and Mg,, and finally merge them into Mg with the
following steps (simplified):

1. Overlay the planar arrangements representing Mg, and Mg, resulting in O.
Store for each cell I' of O two pointers to I'’s originating cells I'y € Mg, and I'g €
Mg, .

2. Update the labeled set £. C G for each cell I' of O: Let ;1 C G1 and ¢y C Go
be the labeled set of surfaces attached to I'y and I's. We skip the trivial cases,
where at least one #1 = () or /5 = () holds. In the remaining non-trivial case the
envelope over I is the envelope of £1Ufs. Reduce the sets ¢1, {5 to representative
singletons ¢§ = {¢1} and ¢, = {g2}. Split I" (if not a vertex) with respect to
the projected intersection of g; and gp. For each resulting cell T,... T (k
can become large) determine whether either ¢}, ¢, or £} U/, forms its envelope.
Flush with re-replacing the representatives ¢}, ¢4 with ¢1, f2 in the labels of
each I'.

3. Clean up by removing edges whose two incident faces carry the same labeling
as the edge. Also delete vertices of degree 2 whose two incident edges carry the
the same labeling as the vertex and that can be merged geometrically (i.e., the
edges and the vertex originate from a single projected curve).

94 Lower Envelopes of Quadrics

are usually expensive, especially when following the exact geometric computation
paradigm.

The outline of Algorithm Bl already defines the tasks that must be provided in or-
der to support a certain class of surfaces. In particular, we detect (a) the extraction of
(weakly) zy-monotone pieces, (b) to construct the projected boundary (with side informa-
tion) for a single xy-monotone surface, (c) to construct the projected intersection of two
xy-monotone surfaces, (d) to overlay arrangements composed of such constructed curves,
and finally, (e) to determine the relative z-order of zy-monotone surfaces over a cell of a
planar arrangement.

CGAL’s Envelope_3 package implements the generic parts, as the maintenance of the
planar arrangement, or the overlay using the sweep-line algorithm. However, in order to
compute the lower envelope for a certain family of surfaces, the surface-specific geometric
types and operations must be provided. As usual for generic programming, this is done in
form of a traits class fulfilling a certain concept. The Envelope_3 package already contains
such traits classes for triangles, planes, and spheres. In §83] we present the details of the
concept, and show how to implement a proper model for quadrics.

3.2. Quadrics

Definition 3.3 (Quadric). A quadric is a real algebraic surface for whose defining polyno-
mial f € Z[z,y, 2| it holds deg.(f) = 2.

As collected in §L2 basically three approaches to computationally study quadrics
exist. Namely, (a) the sweep of a plane perpendicular to the z-axis, while keeping track of
topological changes, (b) the parametric approach, where intersection curves are represented
in the parameter space of the quadrics, and (c¢) the projection approach, which projects
curves of interest onto the xy-plane, analyzes them, and lifts them back to the third
dimension. We notice that especially the projection method turns out to be a fundamental
basis when computing envelopes. Let us briefly review the results of m, that is
basically motivated by the cylindrical algebraic decomposition method, see §ZT.6

Let Q := {qo,...,qn} be a set of n quadrics, among which we select one reference
quadric, w.l.0.g. gg. Abusing notation we identify with ¢; also the vanishing set of the
polynomial, that is, the surface itself. By resultant computations and Proposition the
intersection curves are projected onto the zy-plane. The resulting real algebraic plane
curves have degree at most 4 and are Zariski closed. We call them projected intersection.
The silhouette of qg, defined by the intersection of gy and %, partitions qg into a lower
and an upper part. We also project the silhouette onto the xy-plane. The corresponding
curve is also Zariski closed, has degree at most 2, and is called the projected silhouette. We
can combine a proper model of the AlgebraicKernelWithAnalysis 2 concept with CGAL’s
Curved_kernel_via_analysis_2 (CKvA_2) to compute the induced planar arrangements of
the projected curves as explained in 244 Two such models exist. One instantiates
the Algebraic_kernel_2 (in wrapping mode, see §233)) with quadric-specific analyses of
planar curves of degree 4. These analysis are taken from EXAcCUS’s QUADRIX library,
and presented in m The other is CGAL’s new Algebraic_curve_kernel_2 that
comprises the analysis of algebraic curves of arbitrary degree@ that also suffices for our

2Formerly known as Exacus’ ArcoiX library.

3.2. Quadrics 95

purpose. The ingredients are published in [EKW07| and [EK(0Ra]. These days, we prefer the
second approach, as its analyses keep shearing internally, while the analyses of the quadric-
specific analyses have preconditions on the choice of the three-dimensional coordinate
system.

For the plane sweep, curves get decomposed into maximal arcs with constant arc num-
ber in their interior; see T4 However, in the projection of the three-dimensional curves
onto the zy-plane the spatial information is lost. In order to recover it [BHKT05] uses
a stronger decomposition of projected intersection curves, such that each (maximal) sub-
curve can be uniquely assigned to the lower or upper part of ¢y. As before, the projection
of g¢’s intersection with some ¢; is split at its critical points, but also at its intersection
points with the projected silhouette of go; see, in particular, Figure Bl (c).

Note that this decomposition is conservative in the sense that the curve may be split at
projected points of gy N ¢; where the spatial counterpart only touches the silhouette of qo,
but does not cross it.

In the next step, each such sub-curve (and each existing isolated point) is checked
whether it belongs to the lower part of gy or the upper part of ¢g (or even both, which is
also possible) by finding the common intersection(s) of gp and ¢; with a z-vertical line. In
the generic case, the flip of intersections along two related lines with rational z- and y-
coordinate is detected to decide whether a curves lies on the lower or upper part of qq. Fig-
ure illustrates this case. In the other cases, we have to directly compare z-coordinates

of quadrics’ intersections with a vertical line. We discuss these intersections below. For
further details on the decomposition and the assignment we refer to [BHKT05] and [Ber(4].

We next concentrate on the intersections of a quadric with a vertical line ¢, at some
point p, which is important for the previous assignment. It is essential to compute the
relative z-order of two quadrics, expected by the concept we have to model to compute a
lower envelope of quadrics; see §3.31

Let ¢; be a quadric and consider a point p = (ps,p,) € R? with R;(p) :=={z € R |0 =
4i(Pz. Dy, 2) € R[z]}. As deg,(¢;) < 2, it holds that |R;(p)| < 2. That is, if any is existing,
¢; has either one or two intersections with ¢, and R;(p) exactly defines their z-coordinates;
see also Lemma BG4l Let us have a closer look at the algebraic degrees of R;(p)’s elements.

e If p is a rational point, then r € R;(p) is an algebraic number of degree at most 2.
Such a number can be represented in the form r = a + by/c, with a,b,c € Q, also
referred to as a one-root number. CGAL’s number type Sqrt_extension is able to
represent such one-root numbers, allows to compare them, and provides arithmetic
operators on them.

e Next, think of p lying on a projected silhouette of a quadric, with p, being rational.
Then, by deg,(Res.(gi, %)) < 2, p, is not worse than a one-root number. We
assume the worst, and thus conclude, that although r € R;(p) having algebraic
degree 4, it can be represented by a nested one-root number of depth 1: We can write
r = da +bV/ where a, b, ¢ are simple one-root numbers itself. CGAL’s Sqrt_extension
type allows such a nesting.

e Let now p be a singular point of a projected intersection curve of two quadrics. As
shown in [Wol02] (and used in [BHKT0H]), p’s - and y-coordinates can be repre-
sented as nested-one-root numbers of depth 1. Applying the previous idea again,
r € R;(p) is representable as nested one-root number of depth 2. Alternatively,
we can switch to numbers types representing algebraic expressions involving the <-

96 Lower Envelopes of Quadrics

Figure 3.1. Developing the two arrangements on a reference quadric

1,

(a) Red and green quadric are (b) The same situation on ¢
intersecting the gray reference
quadric ¢q

-

(c) The projection of the reference’s silhouette and the two intersec-
tion curves onto the zy-plane. The projected intersection curves must
be split and assigned to the lower and upper part of ¢q.

- I

(d) Arrangement on lower part of ¢ (e) Arrangement on upper part of g

3.3. EnvelopeTraits 3 concept and the model for quadrics 97

lower

o) ':")

Y

Figure 3.2. Lifting the intersections of the blue quadric with the red reference
quadric qo to qo's lower and upper part. In this generic case, it suffices to locate
the flip (dashed rectangles) along pairs of z-axis parallel lines with rational =y and ra-
tional 3;. The picture takes place in the plane x = xy. In degenerate cases, comparisons
of one-root numbers give the answer.

operator. Examples are leda::real or CORE: :Expr as stated in §2.3.11

e Such algebraic expressions constitute the default representation for z-coordinates of
£pNg;, for all other p. In particular, if p is an intersection of a projected silhouette and
a projected intersection. Its z-coordinate has algebraic degree up to 8, which implies
for its y-coordinate a degree of up to 16. Thus, r € R;(p) already has degree 32.

Of course, it is possible that algebraic expressions could also be used for all cases
replacing all (nested) one-root numbers. However, detecting the equality of two such
numbers 7 and 79 is more costly for algebraic expression, as |ro—r1| must be approximated
below the separation bound to derive a certified answer. On the other hand, checking
ro —r1 = 0 using (nested) one-root numbers reduces to repeated squaring of the expression
r9 — 71 until no square-root remains. This is usually the cheaper approach; see [Meh0T].

Remark. In Chapters Bl and B quadrics also play a fundamental role. Observe that the
intersection curves ggp N ¢;,1 < ¢ < n actually induce a two-dimensional arrangement
on the surface of gg. The software presented in [BHKT05| is only able to compute two
projected arrangements, that is, one for the lower part of ¢y and one for its upper part.
Their connections are missing. Chapter Bl describes a framework that can be used to
directly compute a sole two-dimensional arrangement for an elliptic ¢y. In Chapter B we
redesign the analysis of surfaces. The explicit representation for z-coordinates is replaced
by an approximated version relying on the output of the bitstream Descartes method.
We incorporate the idea for quadrics again, but also generalize to algebraic surfaces of
arbitrary degree.

3.3. EnvelopeTraits 3 concept and the model for quadrics

CGAL’s Envelope_3 package implements the generic programming paradigm, that is, in or-
der to compute lower envelopes for a certain family of surfaces, the algorithm template must
be instantiated with a traits class (see §Z20I) that encapsulates basic geometric objects
and operations on them. The requirements are also referred to as the concept that must

98 Lower Envelopes of Quadrics

be fulfilled. The Envelope_3 package expects a class that implements the EnvelopeTraits 3
concept. In this section, we present the details of the concept and how we provide an
implementation for quadrics. For the reason of readability, we simplify syntactical issues.
The interested reader is encouraged to read the reference documentation in [MWZ0T].

As the computation of lower envelopes is based on two-dimensional arrangements and
also employs their overlays, the EnvelopeTraits 3 concept is a direct refinement of CGAL’s
ArrangementTraits 2 concept. Thus, we automatically inherit types for planar points
(Point_2), planar curves (X_monotone_curve_2) and basic operations on them; see §ZA3l

For quadrics: Thus, we derive the new model from the CKvA_2 that is instantiated
with one of the two possible algebraic kernels as written in §821

The concept also expects spatial types and operations related to them. Two types are
expected, namely Surface_3 and Xy_monotone_surface_3.

For quadrics: We map both types to QUADRIX’S Quadric_3 class. This may be
surprising at first, since a quadric, in general, is not zy-monotone. However, it is only an
implementation detail to simplify matters. All subsequent operations that are expected to
work on an zy-monotone surface g consider only the lower part of the appropriate quadric.
If f € Z[x,y,z| defines a quadric, its lower part is separated from its upper part by its
intersection with the plane defined by %, the silhouette.

Due to this choice of types, the first expected operation@ is simple:

e Extract xy-monotone surfaces

Task: The function object Make_xy_monotone_3 is expected to decompose a given
surface S into its zy-monotone subsurfaces.

For quadrics: As both basic surface types use the same representation, we simply
return the given quadric itself as the sole output object.

For the other spatial functors, we first introduce some notation on planar curves.

Definition 3.4 (Points below and above a curve). Let ¢ be a planar non-vertical z-
monotone curve.
e We say that a point p = (pg,py) € c is below c if it lies in the a-range of ¢ and if
py < py, where p' = (p},,p,) € ¢ with p}, = p,. The analog case of above ¢ is met if
Py > Dl
e The vertical half-open line segment defined by Cp. := {(z,y) € R* | = p, Ap}, <
y < py} is called the critical segment between p and c. The critical segment for a
point above c is defined analogously.
e The set of all points p below ¢ define a half-stripe called area below ¢, while the set
of all points p above ¢ define its counterpart, called the area above c.
The notation of below and above is even used for a vertical ¢; but with exchanged
coordinates. Figure illustrates this definition.

Remark. Mind that we carefully distinguish notation here. The terms below and above
classify planar points related to a projected planar curve and a critical segment is located
in the xy-plane as well; see Definition Bi4l In contrast, over deals with intersections of a
surface (or two surfaces) with a line parallel to the z-axis going through a planar point p

“'Each operation is interfaced as function object (also known as functor).

3.3. EnvelopeTraits 3 concept and the model for quadrics

99

(or a representative point p. on a given projected curve c¢). In the latter case we mainly
compute a set R;(p) or compare entries of sets R;(p) and R;(p); see §82A for more details.

Figure 3.3. Points below and above curves

A A
above

G2 D,
1

S
[\

C
1
ép;
below
Y
(a) Points py and py are above
the non-vertical c;; points p;
and p3 are below it. The criti-
cal segment for py is intersected
by the red curve cs.

< o-----9 >

ps

---[*pr

above
below

- —®Ds

p>® - -

C3 Cy

< ® >
(b) Points p5 and pg are above the
vertical c3; points pg and p7 are be-
low it. The critical segment for p;
is intersected by the red curve c¢4.

The next two expected operations perform the projection of boundaries or intersections
into the plane of the minimization diagram. Their implementation for quadrics, benefits

from prior work that we repeated in §8.21

e Construct projected boundary

Task: The function object Construct_projected_boundary_2 computes for a given
(zy-monotone) surface g all planar (weakly) z-monotone curves (and possibly iso-
lated planar points) that form the projection of g’s boundary into the zy-plane. Note
that these objects are at most one-dimensional, that is, it is required to label induced
open two-dimensional sets (faces), whether the surface exists over them (i. e., coverti-
cal to the planar face). For that purpose each reported (weakly) z-monotone curve ¢
is enhanced with a flag whether the projection of g is (locally) below or above ¢. The
flag can actually also encode the third, degenerate, case, namely that ¢ is vertical
over the corresponding curve ¢ (i.e., g contains every line parallel to the z-axis, that
run through points on ¢). The flag is used to properly tag all faces. Observe that
the objective of this function object is to support the computation of My, that is,
the minimization diagram for a single surface as expected in Algorithm Bl

For quadrics: The projected silhouette of a quadric ¢ is easy decomposable into
(weakly) z-monotone curves and isolated points, using Make_x_monotone_2 supplied
by CKvA_2. The assignment to which side of some ¢ the non-vertical lower part of ¢
is projected is decided in two steps: First, we choose a rational point p = (pg,py)
below ¢, but close enough. This means that the critical segment between p and c is
not intersected by any another projected boundary of ¢. Second, we compute the

100 Lower Envelopes of Quadrics

Figure 3.4. Constructing the projected boundary for a quadric, three examples

<P <

(a) Quadric 1 (b) Quadric 2 (c) Quadric 3

cardinality m := |R(p)|. This value gives the number of real roots of ¢(p, z) € R[z],
or more geometrically, the number of distinct real intersection of ¢ with ¢,. If m > 0,
the projected quadric is below ¢ (by choice of point), otherwise it is above ¢. This
simple implication (i.e., the else-case) is allowed as (1) quadrics that only show a
single intersection over a non-boundary have no boundary at all and (2) if ¢ is vertical
this information is stored with ¢ itself. Thus a single cardinality suffices. We simply
save to check the cardinality over a second point above c¢ to decide verticality.

e Construct projected intersection

Task: The function object Construct_projected_intersection_2 computes the ob-
jects of the projected intersections of two xy-monotone surfaces g; and gs. If such an
object is an isolated point (Point_2) it is either the projected image of a degenerate
(isolated) intersection, or the projection of a vertical intersection curve. Otherwise,
an object can also be a one-dimensional (weakly) xz-monotone curve ¢, which is
equipped with an optional integral multiplicity. If this multiplicity is an odd value,
we know that the two surfaces intersect transversely over ¢, that is, they change their
relative z-order on either side of the spatial counterpart of ¢. An even multiplicity
indicates that the surfaces maintain their relative z-order. The divide-and-conquer
algorithm can derive the relative z-order of two surfaces on one side from their known
relative z-order on the other side. This avoids explicit tests incorporating one of the
remaining functors below, and thus, improves the overall performance of the algo-
rithm. If the multiplicity is set to 0, additional comparisons are unavoidable.

For quadrics: We mainly consider the projected intersection curve as presented
in 82 Remember that we decomposed it with respect to its critical points and
its intersections with the projected silhouette of a reference quadric. This time, we
partition it with respect to the projected silhouettes of both given quadrics. This
decomposition paves the way to assign (the interior of) sub-curves (and isolated
points) uniquely to the lower part of both involved quadrics: For each point and
each curve we check, using ray-shooting as in §82 to which part of the first quadric
it belongs, and to which part of the second quadric it belongs. We finally return all
sub-curves and points that have been assigned to the lower parts of both surfaces.

The remaining expected function objects compute the relative z-order of two xy-
monotone surfaces g; and go over projected cells of a planar arrangement. We distinguish

3.3. EnvelopeTraits 3 concept and the model for quadrics 101

L,

Figure 3.5. Constructing the projected intersection for pairs of quadrics

A
> $

2y i LL\ T

(a) Quadric 142 (b) Quadric 143 (c) Quadric 243

five cases, collected in three functors. For quadrics, all of them rely on computing and
comparing the minimal intersections of ¢i(= g¢1) and ¢2(= g¢2) with ¢, at some suitable
point p = (pg,py). It is easy to see that the relative z-order of the lower part of ¢
and the lower part of go over p is given by the order of r; := ¢1(p) = minR;(p) and
r9 := g2(p) = min R (p). That is, we mainly explain how to find a suitable point for each
desired comparison. Depending on the representation (algebraic degree) of the point, an
actual z-comparison is simply carried out by the comparisons of the corresponding number
types: either (nested) one-root numbers or algebraic expressions. We refer to §8.2 where
we discussed the different possibilities.

e Compare z over xy

Task: The function object Compare_z_at_xy_3 provides three operators. Each con-
siders as input two given non-vertical xy-monotone surfaces g; and go and a planar
geometric object.

1. The first determines the relative z-order of g1, g2 at a given planar point p =

(pz,py)- Both surfaces must be defined over p. The returned information is the
comparison result of g1 (p) and g2(p).

. The second determines the relative z-order of g1, go over the interior of a given

(weakly) x-monotone curve c. It has the precondition that c is fully contained in
the xy-definition range of both surfaces, and that c is not part of the projected
intersection of g; and go. The functor is expected to return the comparison
result of g1 (p’) and go(p’) for some point p’ in the interior of c.

. The last operator is only required if unbounded surfaces occur. Actually, the

surfaces must be defined over the entire zy-plane having no boundary and no in-
tersection at all. A simple example consists two planes parallel to the zy-plane.
The operator determines the relative z-order by (technically) choosing some
planar point p’ € R? and returning the comparison result of g;(p') and go(p').

For quadrics: We discuss the three operators in reversed order, as this reflects 1how
complicated each is.

For the third, we simply choose p = (0,0), compute one-root numbers r; and ry as
defined, and compare them.

For the second operator, we distinguish two cases, namely either

102

Lower Envelopes of Quadrics

Figure 3.6. Compare relative z-order of (lower parts of) of two quadrics over a
projected boundary curve (Example)

— c is part of a projected boundary of a quadric’s lower part or
— cis part of a projected intersection of surfaces ¢} and ¢, with {¢}, g5} # {91, 92}

We see that the algebraic degrees of the corresponding p’’s coordinates can be kept
quite small in both cases, which starts with choosing a rational number for p/, in ¢’s
x—range@ If ¢ is part of a projected boundary, p; is a one-root number, and thus
r1 and ro can be computed and compared as nested one-root numbers of depth 1.
Figure shows an example for such a comparison. In the other case, we benefit
from the fact that the projected intersection is not of the queried surfaces g; and go,
which implies that there is a two-dimensional connected (maybe open) subarea below
¢ whose points’ critical segments are not intersected by the projected intersection of
g1 and gs. Thus, a point from this subarea is a good candidate. However, we also need
to ensure that the topology of g1 and g» over such a point is identical to the topology
of the surface over points of c. We choose a rational point p’ in the subarea below
¢ whose critical segment between p’ and c¢ is not intersected by any of the following
curves: (1) The projected intersection of g; and go, (2) the curve that supports ¢
(the projected intersection of some ¢j and g¢}), and (3) the projected boundaries of
g1 and of go . The corresponding values r; and ro are one-root numbers.

It turns out that the comparison of the lower parts of two quadrics over a point
p is the most expensive one as p’s coordinates are often algebraic numbers of high
degree. In addition, there is no guarantee to find a nice point p’ (i.e., best with
rational coordinates) nearby where ¢; and ¢o have the same order. In fact, most of
the time such a nice point will just not exist, as the majority of usages of this method
by the lower envelope algorithm only occur in degenerate situations. An implication
is, that we are really forced to exactly compare the surfaces’ relative z-order over a
point with coordinates of higher algebraic degree. However, the list of possible cases
is not arbitrary. In fact, the generic divide-and-conquer implementation exploits
continuity and discontinuity information of the envelopes to carry a decision over
between incident cells. Bringing this into consideration, the comparison of surfaces
over a point can occur only in two special situations. They remain by checking all
the possible cases where a point is created in the merge step, and keeping only those
where the comparison method over a point is invoked: Either p is an isolated point

221f ¢ is vertical, think of swapped coordinates for the whole procedure.

. EnvelopeTraits 3 concept and the model for quadrics 103

Figure 3.7. Compare relative z-order of (lower parts of) of two quadrics over a
planar point (Example)

of a curve, or p lies on a projected boundary of an xy-monotone surface. In both
cases, the algebraic complexity is not the highest possible.

In most cases, we can compute and compare r; and 7o using (nested) one-root num-
bers. In particular, this holds for p being isolated, as an isolated point is singular
and the coordinates of singular points of projected intersections can be represented
as (nested) one-root numbers [BHKT05]; the singularity (if existing) of a projected
boundary is, due to the degree, even rational; see Figure BZ If p lies on a projected
boundary, we distinguish by the algebraic degree of p,. If it is at most 2, we still can
cope with nested one-root numbers. If if exceeds 2, we have no choice and switch
to algebraic expressions to represent r; and 79. This implies the costly usage of the
o-operator. However, the algebraic degree of p, is bounded by 8. Note that this case
forms the most expensive comparison in the algorithm, especially, if it eventually
holds that 1 = 5.

Summarizing, it is possible in all cases to compute the relative z-order of the lower
parts of two quadrics over a point or a curve. One can see, that due to the algebraic
degree of quadrics, we can always use (nested) one-root numbers as long as the
algebraic degree of the z-coordinate does not exceed two. Otherwise we have to
switch to the expensive ¢-operation. Note that, in general, the comparison over an
arbitrary algebraic point p is possible using the same techniques, in particular when
relying on algebraic expressions. However, this can be arbitrary costly (depending
on the degrees) and it is not expected during the execution of the divide-and-conquer
algorithm, because of the special care taken in designing the algorithm [Mey06b].

e Compare z over area below (or above) curve ¢

Task: The function object Compare_z_at_xy_below_3 computes the relative z-order
of the two given zy-monotone surfaces g; and go immediately over a point that is
below one of their projected intersection curves c. It has the precondition, that both
surfaces are defined below ¢, and their relative z-order is kept unchanged in some
small enough neighborhood of points below c.

For quadrics: To compute this information for quadrics, the strategy is similar
as the comparison over a projected intersection curve. We choose a rational point
below ¢ whose critical segment is not intersected by any of the following curves:
(1) the projected boundaries of ¢; and g2 and (2) the projected intersection curve of

104 Lower Envelopes of Quadrics

Figure 3.8. Compare relative z-order of (lower parts of) of two cylinders over a
point in the area below their projected intersection (Example)

g1 and go. This ensures that both surfaces are defined over p and, by a continuity
argument, that the z-order over p is the desired order.

We skip the symmetric discussion of the also required above-version.

Remark (Unbounded surfaces). CGAL’S Arrangement_2 package in version 3.2 can only deal
with curves having finite ends, which does not allow to store the projection of an un-
bounded xy-monotone surface. Its projection is simply not a compact set. In addition,
if all curve-ends are finite, the arrangement only has to deal with a single unbounded
face. This constitutes another problem, as it is insufficient to store the minimization di-
agram for a set of unbounded surfaces. There are simple examples (e.g., 8§ contains a
single infinite cylinder) where Mg may comprises more than one unbounded face, and
each such face stores an individual labeling. Both problems have been attacked by CGAL’s
Arrangement_on_surface_2 package, which generalizes two-dimensional arrangements. The
unbounded plane dealing with more than one unbounded face is the first surface that has

been tackled. We present full details on the generic Arrangement_on_surface_2 framework
in Chapter

3.4. Results

Using the model presented in §83, we can successfully construct lower envelopes (mini-
mization diagrams) of quadrics with Algorithm Bl by calling CGAL: : lower _envelope for a
set of input surfaces. Figure shows the final lower envelope of the surfaces introduced
in Figure Bl The actual implementation of the traits class for quadrics is still in EXACUS’
QUADRIX library. The whole library is going to move soon as a package of its own into
CGAL. Thus, a future public release of CGAL will not only contain two main strategies
to analyze quadrics and their intersections, but also comprise the computation of lower
envelopes of quadrics. In addition, some variants are available as well. We present them
at the end of this chapter; see 88

The performance of our traits class for quadrics used in CGAL’s divide-and-conquer
algorithm to compute lower envelopes has also been checked experimentally. For increas-
ing n we created five sets of random quadrics whose coefficients are ten-bit integers. We

3.4. Results 105

Figure 3.9. Lower envelope of quadrics

(a) Final lower envelope

(b) Look from z = —c0

600
Quadrics ——

No Ellipsoids --->¢---
550 - Only Ellipsoids -

Seconds

50 | | |
200 400 600 800 1000

Number of Quadrics

Figure 3.10. The running time required to compute the lower envelope of sets of
quadrics as a function of the number of input quadrics.

\ nof| 200] 400] 600] 800] 1000 |

quadrics || 114.4 | 225.3 | 353.0 | 460.5 | 589.2
non-Ellipsoids || 117.1 | 231.8 | 342.7 | 452.8 | 574.2
ellipsoids || 99.1 | 206.0 | 275.9 | 408.6 | 483.2

Table 3.1. Averaged running times (in seconds) required for computing the lower
envelope of instances of quadrics.

106 Lower Envelopes of Quadrics

Properties of Mg
1000 of || #5 | #V | #E | #F (unb.)
quadrics 8| 15| 22 8 (5)
non-ellipsoids 7| 16| 22 7 (5)
ellipsoids || 67 | 249 | 324 77 (1)

Table 3.2. The number of attained surfaces and the size of minimization diagrams for
a selected instance of 1000 quadrics of different kind.

used a version of CGAL’s Arrangement_2 package that is able to maintain several un-
bounded faces (see Chapter Bl where we discuss this extension in detail). This allowed us
to consider bounded and unbounded quadrics. Actually, we distinguish between ellipsoids,
non-ellipsoidal quadrics, and mixed sets. All experiments were executed on a 3 GHz Pen-
tium IV machine with 2 MB of cache. For exact arithmetic we used LEDA’s number types,
and relied for the analyses of projected (boundary and intersection) curves on QUADRIX’s
specialized approach [BHKT05]. The resulting times in Figure and Table B were
averaged over several runs on the instances of same size. The obtained running times seem
to (nearly) linear depend on the number of input surfaces. We emphasize that an exact re-
sult for 1000 arbitrary quadrics is computable in less than 10 minutes. As we can see from
Table Bl computing lower envelopes of bounded quadrics (ellipsoids) is even remarkably
faster. A reason is that ellipsoids are bounded and thus influence only a restricted compact
planar set. In contrast the area of possible intersections of an unbounded quadric is larger,
and thus modifications of the minimization diagram are more probable. In particular,
when computing the lower envelope, an unbounded quadric can simplify the minimization
diagram drastically. A single unbounded face can remain, while all previous (recursively
computed) diagrams become obsolete. For an ellipsoid this probability is smaller. This
fact is also reflected in the complexities of the final minimization diagrams. The number
of surfaces attained in the envelope (#5) and the number of faces (#F'), and thus for
vertices and edges, is smaller for unbounded surfaces as for bounded ones; see Table
for examples.

It is easy to see that the performance of the computation is mainly influenced by three
parameters. The first is the choice of the partitioning into subsets, which is beyond the
scope of this work and we refer to [HSS08] that discusses a randomized choice. The second
is the performance in two-dimensions itself, that is, how efficient are analyses of projected
curves and pairs of them. Our implementation relies on a planar algebraic kernel for
this task. The last factor is the amount of time spent to compute the relative z-orders
of surfaces. The model presented in this chapter relies on (nested) square-root numbers
provided by CGAL or algebraic expression from LEDA or CORE. In Chapter Bl we present
another technique to compute the intersection pattern of surface along a vertical line.

Besides these elementary factors, it is also the combinatorial deduction employed by
the algorithm itself that improves the general performance of the lower envelope compu-
tation. As explained the algorithms propagates continuity and discontinuity information
to decide the relative z-order of incident planar cells. To quantify this improvement, we
counted for example sets of 1000 surfaces the number of such savings. Table shows the
amount of finally executed comparisons compared with the number of actual comparisons
(in parentheses) when not using combinatorial deduction. As one can see, the computation

3.5. Variants 107

Number of comparisons over
above /below
1000 of Point Curve Curve
quadrics 0 (18315) | 2804 (31373) | 1273 (4638)
non-ellipsoids || 0 (18087) | 2386 (30777) | 1273 (4640)
ellipsoids 0 (22747) | 1292 (38172) | 1282 (3798)

Table 3.3. Amount of required calls to compute the relative z-order of two surfaces
during invocation of lower envelope algorithm for a set of 1000 arbitrary quadrics, 1000
non-ellipsoids, and 1000 ellipsoids. The number of operations when not propagating
information to neighbored cells is shown in parenthesis.

of the envelope significantly benefits from this propagation of continuity and discontinuity
information about the relative z-order of quadrics.

[FIT
File View Acti

ction Side Quadrics

Figure 3.11. Cutout of the lower envelope of 400 quadrics, hyperboloids and ellipsoids.
It consists of 30 faces, 4 of which are unbounded, 101 edges, and 76 vertices.

3.5. Variants

At the end of this chapter, we shortly want to mention some variants that can be extracted
by slight modifications of the model that we presented for quadrics in §83

Upper envelope Computing the upper envelope of a set of quadrics, requires only two
small adaptions of the traits class. The first change affects the computation of the projected
intersection of two xy-monotone parts of quadrics. Instead of returning the (weakly) a-
monotone curves (and isolated points) that can be assigned to the lower parts of the two
input quadrics, we only return the ones that can be assigned to the proper upper parts
of the quadrics; this task is directly supported by the work in [BHKT05] on which we
rely throughout this chapter. The other modification concerns the relative z-order over

108 Lower Envelopes of Quadrics

different projected geometric objects. Remember that we first compute a suitable point p,
then determine 1 := minR;(p) and r9 := minRa(p), and finally compare r; and 79 to
obtain the correct z-order. Once we store r1 and ry in a proper number type (which is
the second actual problem, besides computing p), we just generically call the comparison
operator on this number type. When now computing upper envelopes, it suffices to consider
r] := maxR;(p) and 7} := max Ry (p) instead of r; and re. Our analysis of the involved
algebraic degrees also holds for these values, and thus the same number types can be used.
It remains to call CGAL: :upper_envelope, that switches the algorithm to a status that takes
the topmost surface in the labeling step, instead of the bottommost one.

It is easy to see that the computational effort for lower and upper envelopes following
this strategy is identical, such that we abstain from reporting additional experiments for
upper envelopes.

Arbitrary directions Lower and upper envelopes are with respect to the z-parallel pro-
jection onto the xy-plane. However, the traits class can also be used to compute lower
and upper envelopes in arbitrary directions. To do so, if suffices to apply a rigid change of
coordinates R(x,y,z) that models a rotation. One can even think of more sophisticated
linear mappings.

Instead of thinking that a point has moved in space by a map, it is possible to change the
defining polynomials of input quadrics. That is, for a quadric ¢ we define R(q(z,y, 2)) :=
(o R71Y)(x,y, 2). Tt follows that ¢(p) = 0 & R(q(R(p))) = 0. Thus, in order to compute
the envelope in the direction of the rotated xy-plane (defined by R), we consider as input
the quadrics R(q1), ..., R(gn). A simple example is the upper envelope where R(x,y,z) =
(z,y,—2).

Again, the combinatorial effort keeps unchanged, while the way we handle the rotation
mainly influences the bit-lengths of the quadric’s coefficients and the denseness of their
defining polynomials. Thus, additional experiments could only reflect the efficiency of
the quadrics’ analyses with respect to these parameters. However, these consideration are
already discussed elsewhere; see

Voronoi Diagrams

Definition 3.5 (Voronoi Diagram). Let O := {o01,...,0,} be a set of n pairwise disjoint
convex objects in R? and § be a metric on R?. The Voronoi Diagram of O with respect to §
is a partition of R? into maximal connected cells, each of which consists of the points that
is closer to one particular object than to any other. A Voronoi cell of object o; is the set
{p € R | 5(p,0:;) < 8(p,0;) Vj # i}. The set of points B, j := {p € R? | 6(p,0;) = §(p, 0;)}
is called the bisector of 0; and o;.

As observed by Edelsbrunner and Seidel [ES86], every Voronoi diagram is exactly the
minimization diagram of a set of surfaces in R%T! that is, the projection of their lower
envelope, where the surfaces are given by the graphs of functions f; : R? — R defined by
fi(z) = 6(x, S;). More details on this duality can also be found in [dBvKOSO0, §11.5].

We restrict in the following to d = 2, which implies that every two-dimensional Voronoi
diagram can be computed by CGAL’s Envelope_3 package, provided that a proper traits
class is supplied. Its two-dimensional objects and operations are responsible to build the
planar subdivision of the diagram, the three-dimensional objects are supposed to model

3.5. Variants 109

the graph of the distance function for an object. Actually, the explicit storage of such a
surface is superfluous in an efficient model, as it suffices to represent them by the objects
o; themselves. Three facts justify this simplification.

e Observe that in unbounded domains and metrics (as R?), the graph of the distance
function has no projected boundary.

e The projected intersection of two sites is directly given by the bisector of the two
planar objects. If possible, as usual, there is no need to construct the bisector by
intersecting the distance surfaces.

e The desired relative z-orders of two sites can be directly encoded by comparing the
distances of a point p to the two involved objects.

Actually, there is work by Halperin, Setter, and Sharir, that discuss this idea more
detailed [HSSOS|. It presents a framework to apply the divide-and-conquer approach for
envelopes to compute various kinds of Voronoi diagrams and shows that through ran-
domization the expected running time is near-optional (in a worst-case sense). The work
also comprises a collection of robust and efficient traits classes to compute Voronoi dia-
grams, power diagrams, Apollonius diagrams in the plane. For some they rely on CGAL’s
new algebraic kernel and also the Curved_kernel_via_analysis_2 as modelling the pla-
nar ArrangementTraits 2 concept. Some of the diagrams can even be established on the
sphere using CGAL’s new Arrangement_on_surface_2 package whose details we present in

Chapter B see also [FHSOS].

As mentioned, the explicit storage is not needed, however, we want to conclude this
chapter with another modification of the EnvelopeTraits 3 model for quadrics. Our goal is
to use the modified version in CGAL’s divide-and-conquer algorithm to compute the Apol-
lonius diagram in two dimensions; see also CGAL’s Apollonius_graph_2 package [KY07].

Definition 3.6 (Apollonius diagram). Let A; = (p;,w;), 1 < i < n be a set of sites, where
p; € R? and w; is the weight of A;. The Apollonius diagram of the A; is the Voronoi
diagram of the p; with 6(x, p;) := ||z — p;|| — w;i, where || - || denotes the Euclidean norm.
The Apollonius diagram is also known as additively weighted Voronoi diagram.

If all w; are equal, the Apollonius diagram is identical to the standard Voronoi diagram.
Following Edelsbrunner and Seidel’s relation, the Voronoi diagram of {pi,...,p,} is the
vertical projection onto the xy-plane of the lower envelopes of a set of cones in R3. For
each p; we define a cone C; whose apex is p; itself. The cone’s axis is a line parallel to
the z-axis passing through p;, its angle is 45°, and p; is the cone’s point with minimal
z-coordinate.

For the Apollonius diagram, we have to consider the weights in this geometric setting.
For that reason the apex of C; is shifted in z-direction by a quantity equal to the weight
w; of A;. A site with positive weight corresponds to a cone whose apex is in the positive
z-halfspace, the apex of a site with negative weight is in the negative z-halfspace. Fig-
ure shows an example. The Apollonius diagram is attained by computing the vertical
projection onto the zy-plane of the lower envelope of the shifted cones, that is, the cones’
minimization diagram.

Remark (Shifted cones). First, observe that the Apollonius cell of a site A; can be empty,
which happens to be in the case, where A;’s shifted cone C; is hidden in some other cone
C; for site S}, j # i, that is, C; N C;j = (; see Figure B3 for an example.

110 Lower Envelopes of Quadrics

Figure 3.12. Cones that define the Apollonius diagram

(a) Weighted points are trans- (b) The cones seen from z =
formed into cones whose apices’ —00. The lower envelope repre-
z-coordinates corresponded to senting the Apollonius diagram
weights. can be guessed.

Figure 3.13. A hidden cone

(a) The input consists of three (b) ...and thus, it does not in-
weighted points, but one of the fluence their lower envelope.
corresponding cones is hidden

3.5. Variants 111

Second, as the projection of the lower envelope is z-axis parallel, the Apollonius diagram
keeps unchanged, if we translate all cones by the same amount in z-direction. Without
changing the algebraic complexity, we can move the apices of all cones into the positive
z-halfspace. Thus, w.l.0.g., we assume that all w; > 0, as it is the case in Figure BT
An implication of this fact is a geometric denotation: A site A; = (p;, w;) can be seen as
a circle centered at p; with radius w;. For more details on this, we refer to [KY{7].

We finally explain which steps are required to compute the Apollonius diagram using
our quadric traits. The key step is to construct the input surface for a site A = (p,w).
We refer to p, as p’s z-coordinate, and to p, as p’s y-coordinate. In contrast to the work
in [HSS0R], we use an explicit representation of the surface in R modelling A;’s distance
function. In our case, we have to model a cone whose apex is at (p, w) and opening with 45°
in positive z-direction. Unfortunately, there is no polynomial g € Z[z, z, y] whose vanishing
set V(q) defines such a cone. However, if we mirror and copy the cone at the horizontal
plane through its apex, we obtain a double-cone which can be defined algebraically, namely
by ¢ = 2 + y* — 2% = 2p,x — 2pyy + 2wz + (p + p; — w?). Observe that degyy(q) = 2.

Thus, we actually could directly run CGAL’s divide-and-conquer algorithm with our
traits class to compute the lower envelope of these quadrics. However, this would not
result in the minimization diagram denoting the Apollonius diagram of weighted points,
for which we are looking for. The problem is that the input consist of double cones, but we
actually want to compute the lower envelope of the cones’ upper parts. In order to achieve
this goal, we modify the implementation of our quadrical traits class at some positions.

e First of all, we return no projected boundary for a quadric. Actually, the projected
boundary of a double cone is an isolated point, that is, the projected version of the
double-cone’s (singular!) apex. We just skip it. This is fine, as the distance function
of a site is not bounded.

e When computing the projected intersections of quadrics, we change the code to only
return the projected z-monotone curves that can be assigned to the upper parts of
both double-cones. Observe that neither isolated points nor vertical curves occur in
the projected intersections of two double-cones. This is actually true for all Voronoi
diagrams, and should be incorporated when using a lower envelope algorithm for
Voronoi diagrams.

e Finally, we adapt the computation of the relative z-order of two quadrics (here
double-cones ¢; and g2) in the obvious way. Instead of comparing r1 := min Ry(p)
with 72 := min Rs(p), we now compare rj := max R (p) with r} := max Ry(p). In
fact, we neither have to consider the comparison over boundaries nor over isolated
points. This way, we are luckily left with the comparisons that can be determined
with a rational p.

As aresult, we can successfully compute Apollonius diagrams of (weighted) points using
our modified traits. We tested various examples taken from CGAL’s repository [KY{OT].
While all of them produced correct output, the performance numbers seen for these tests
are bad, which somehow is an intrinsic problem. There are mainly three reasons.

e We consider explicit representations of the surfaces modelling the distance function

(the shifted cones).

e The surfaces are more complicated than required, that is, we consider a double-
cone instead of a single cone. This also has implications on the computation of the
“bisector”, which is here given by parts of the projected intersection of two double-

112

Lower Envelopes of Quadrics

™ Apolonius graph2 T

FEile View About

lles@aarvmols [Hnsas v [&seselo

‘ 500 sites inserted. Insertion time: 0.299954 - Validating Apollonius graph... done!
x:—5.60167975053496 y=192.467025513738

(a) Output with xquadri

(b) Output with demo from CGAL's
Apollonius_graph_2 package

Figure 3.14. Apollonius diagram of 500 weighted points

cones. The algebraic degree of such a projected intersection is 4, while all bisectors
of weighted points in the plane are actually conics (i.e., curves of degree 2).

e Comparing the distances to two sites by checking the real relative z-order of two cones
using pure exact arithmetic is far too complicated. In most cases, we should be able
to derive the order of 6(x, p;) and d(x,p;) by certified numerical approximations, for

example using interval arithmetic.

For these reasons, we abstain from reporting extensive experiments on this naive ap-
proach, and refer to [HSS0O8| for a more sophisticated implementation of the problem using
CcAL’s divide-and-conquer algorithm for lower envelopes. However, it must be acknowl-
edged for our toy example that in terms of coding it is simple to modify the traits in order

to achieve results beyond pure envelopes.

In this chapter, we have seen how to come up with a model of CGAL’s EnvelopeTraits 3
concept for arbitrary quadrics. The model is based on a planar algebraic kernel which
provides analyses of curves and pairs of them. In addition, we have shown how tiny mod-
ifications of the model (in collaboration with constructing proper input) render possible
variants of envelopes, or even (naively) support another geometric problem, that is, the
computation of the Apollonius diagram for a set of weighted points.

113

Two-Dimensional Arrangements
on Surfaces

In this chapter we present a framework to compute arrangements of curves embedded on a
two-dimensional parametric surface. Its development is driven by maximizing code-reuse.
In particular, we generalize the sweep line algorithm and the zone algorithm to construct
arrangements on the desired surfaces. The main tool in this direction is again the generic
programming paradigm which allows to decouple the combinatorial representation from
the actual supporting surface and the curves embedded on it. The framework originally
extended CGAL’s Arrangement_2 package. For the upcoming CGAL 3.4 release it has been
renamed to Arrangement_on_surface_2.

The outline of the chapter is as follows. We first present the framework, and how we
have extended CGAL’s Arrangement_2 package to support various parametric surfaces as
the unbounded plane, spheres, cylinders, tori, and more. This part of the chapter is based
on results obtained in collaboration with Efi Fogel, Dan Halperin, and Ron Wein from
Tel-Aviv University, Tel-Aviv, Israel, and Kurt Mehlhorn from the Max-Planck-Institut
fiir Informatik, Saarbriicken, Germany. A short version previously appeared in [BEH07].
Support for several surfaces with different kinds of curves embedded on each already exists.
In the second part of the chapter we exemplary discuss two particular settings. As our
initial example, we present what is needed to use the framework to construct, maintain,
and overlay arrangements on an elliptic quadric. The curves embedded on such a surface
are defined by its intersections with arbitrary quadrics. As final example we consider
the case of a ring Dupin cyclide as the reference surface that is intersected by arbitrary
algebraic surfaces. This implementation is joint work with Michael Kerber from the Max-
Planck-Institut fiir Informatik, Saarbriicken, Germany. It has been presented in [BK0OS].

4.1. Setting and related work

We are given a parametric surface S in R? and a set of curves € embedded on S. The
curves C subdivide S into a finite number of cells of dimension 0 (vertices), 1 (edges), and

114 Two-Dimensional Arrangements on Surfaces

2 (faces). We refer to this subdivision as the arrangement induced by € on S and name
it Ag(€). Until recently, CGAL’s Arrangement_2 package was only capable of constructing
and maintaining arrangements induced by bounded planar curves; see 431 There is
not even native support for unbounded curves. Handling such curves requires to cheat on
the software with typically one of two options. The first solution is to clip the curves at
some rectangle (or some other shape that is homeomorphic to a circle). However, it is
the user’s responsibility to choose the rectangle such that no essential information is lost,
for example, a finite intersection point. In addition, the size of the rectangle also matters
when trying to overlay two such arrangements. It must be ensured that both are clipped
with respect to the same box, and if not, at least one must be recomputed, which is costly,
non-trivial, and annoying. Alternatively, one can introduce a symbolic representation for
a point at an unbounded end of a curve. Such a strategy has been formerly applied in
Exacus’s old GAPS module. Its generic model of CGAL’s ArrangementTraits 2 concept
was capable of dealing with unbounded curves. However, both solutions are somehow
faking, generically inconvenient, and still insufficient for some applications.

The reason is that both still maintain only one unbounded face. But remember that
CGAL uses planar arrangements to represent the minimization diagram Mg for a set of
surfaces 8, where each cell is labeled with the subset of surfaces that induce the lower en-
velope over that cell; see Chapter B and for details. As remarked, if considering
unbounded surfaces for lower envelopes, generally more than one unbounded face is ex-
pected in the representation of Mg. Actually, Mehlhorn and Seel [MS03] already proposed
the infimaximal frame for extending the sweep line algorithm to handle unbounded curves.
However, the design was intended for lines in the plane and it is unclear how it extends to
arbitrary curves, be they algebraic or not. More problematic is, that their technique does
not extend to parametric surfaces — a case that we especially want to include.

There already exist results that deal with arrangements on non-planar surfaces, for ex-
ample, Hachenberger and Kettner compute two-dimensional boolean operations of geodesic
arcs on a sphere [HK(7a|. Such arrangements represent sphere maps around vertices in a
three-dimensional Nef-like data structure [HKMUQ7|. The sphere is also covered by Andrade
and Stolfi [ASOT], Halperin and Shelton [HS9§|, and recently by Cazals and Loriot [CLOT].
Cazals and Loriot provide a software package that can sweep over a sphere constructing
exact arrangements of arbitrary circles on it. They also show applications in computa-
tional biology that frequently employ spherical arrangements in molecular modeling: each
sphere represents an atom of a molecule and the arrangement on the sphere represents
the intersection pattern with neighboring atoms. Their extension, so-called anisotropic
interactions of atoms, can be modeled using ellipsoids as primitive objects. The work by
Berberich et al. m constructs arrangements on quadrics, which include ellipsoids.
However, it considers two planar arrangements of projected intersection and silhouette
curves, one for the lower part of a quadric, and one for its upper part; see §8.2 for an in-
troduction. The approach requires as post-processing step the stitching of the two planar
arrangement; this part is unfortunately not available. Stitching of sub-arrangements is
also a key tool in work by Fogel and Halperin [EH(7]. They model the single arrangement
of arcs of great circles on a sphere with six arrangements of linear segments in the plane
that correspond to the six faces of a cube circumscribing the sphere.

None of the previous solutions tackles in a generic fashion all problems that can occur,
such as clipping, stitching, or the support for various curves. This justifies our goal to

4.1. Setting and related work 115

develop a framework that effectively and generically deals with all of them. We start with
the unbounded plane because this is a special case of a bijectively parametric surface. In
a second step, we generalize, and allow non-injectivity on the boundary of the parameter
space, which lead to the current implementation of the package.

Remember CGAL’s Arrangement_2 class-template as presented in §&4 It is parame-
terized in two arguments. First, it takes a GeometryTraits_ that basically defines the
curves to consider and operations on them. Once curves have been split into (weakly)
z-monotone curves in a pre-processing step, these operations are used to feed the internal
algorithms and data structures to construct, maintain, and overlay arrangements of them.
The second parameter is the Dcel type. Each arrangement internally maintains an instance
of this type. Its vertices are enhanced with geometric points and its edges carry (weakly)
x-monotone geometric curves. Each of the beforehand mentioned maintenance and con-
struction operations modify the combinatorial structure of the internal DCEL-instance, in
sync with updating the stored geometric objects. We listed in §Z743] basic insertions (and
respective deletions) that consistently modify the DCEL. Such consistent modifications
are called by the constructing visitor class for the two main algorithms that construct (or
overlay) arrangements, namely the sweep line algorithm, and the incremental insertion
using the zone algorithm. Actually, these algorithms only produce a canonical output and
it is the visitor that defines which basic insertions must be called. The canonical output of
an algorithm is defined by the execution path of the algorithm, which itself is controlled by
the outcome of geometric predicates and constructions provided by the given geometric-
traits class. We shortly repeat the internal flow of each algorithm in order to understand
for what we provide geometric operations.

e The sweep (of weakly z-monotone curves) involves the handling of events and the
maintenance of the status-line. Handling events comprises to maintain the sorted
event-queue, that is, new events must be inserted, while the minimal event at a
time is removed. In the planar case, events are endpoints of curves, or their (zero-
dimensional) intersections, while their order is given by the lexicographical com-
parison of points stored with events. The status-line is updated, whenever a curve
reaches its endpoints, a new curve starts, or the order of curves changes. In either
case, curves that become adjacent in the status-line are checked for intersections to
the right of the sweep line and any such intersection is inserted into the event-queue.

e The central operations for the zone algorithm are to locate the ends of a new curve,
and to compute the curve’s intersections with existing curves. That is, we require
geometric operations to locate points, and to intersect curves.

We want to generalize this existing work to two-dimensional parametric surfaces. The
geometry of S is captured by a parameterization as in Definition B30, that is, there is a
function g : ® = U xV — R3 whose image defines S. We allow intervals U = [tmin, Umax),
U = [tumin, +00), U = (=00, Umax], or U = (—00, +00), and similarly for V. Intervals that
are open at finite endpoints bring no additional power and we therefore do not discuss
them here. Curves on parametric surfaces are defined as in Definition 2240 here we have
D =® =U x V. What used to be z-monotonicity for bounded planar curves, is now
naturally extended: A curve 7 is called sweepable if it is (weakly) u-monotone, that is, if

2 Expects basically a model fulfilling the ArrangementTraits_ 2 concept, however, there is a hierarchy of
concepts, and each refinement level of the hierarchy is valid (for a certain goal).

116 Two-Dimensional Arrangements on Surfaces

t1 < to then y(t1) <jex (t2), where <jex now denotes lexicographic uwv-ordering. For the
internal arrangement tasks, we consider all curves to be sweepable. If an input curve does
not fulfill this property we apply, as before, a pre-processing step. The standard planar
sweep, for example, corresponds to U = V = (—o0,+o0), and pg(u,v) = (u,v,0), but
none of the input curves extends to infinity. Other instances are given in Example E23T],
or appear in the remainder of this chapter.

While the input processing turns to out to be relatively simple, we have to work harder
for the internal structures of the arrangement package. In particular, we expect answers
to the following raised questions:

1. How do we keep the general flow of the constructing algorithms mainly unchanged?
2. How do we ensure to properly construct and update a DCEL with respect to given
surface?

We do give the answers for both questions in several steps. In &2 we first discuss how
to ensure a canonical output for the sweep line and the zone algorithm. The discussion
starts with bijective parameterizations and then we remove injectivity on the boundary of
the parameter space. The actual construction of the DCEL is presented afterwards in §L41
As for some surface there often exist several valid encodings of an induced arrangement as
a DCEL. Our solution aims for this flexibility.

4.2. Sweeping and zoning on a surface

In this section we explain how to modify the two main algorithms such that they can
be executed for a parametric surface, to be prepared for the second task: An attached
visitor class should be able to correctly interpret the visiting pattern of the algorithm for
its purposes, namely to construct the DCEL. We mainly consider the sweep algorithm in
this section, and refer to the simpler zone algorithm shortly at the respective places.

Sweeping a parametric surface, in terms of the standard two-dimensional sweep algo-
rithm, should be correctly seen as taking place in the parameter space, that is, we sweep
with a vertical line u = us from Umin t0 Umax. However, for reasons of intuition, it can
be more convenient, to see it from a different angle, namely to sweep over S with the
curve on S defined by the moving image of the vertical line v = us under ¢g. Both views
are valid. The considerations of this section assume that the sweep (zone) takes place in
the rectangle defined by U and V. We switch to the surface-view in §&£4 when actually
constructing the DCEL on S.

Let us state an important remark with respect to the chosen parametric view.

Remark (Parameterization). We do not expect surfaces and curves to be given in parametric
form, but consider this tool for the definition of the problem, and for its realization of
the adapted algorithms. In §3] we learn that the algorithms still learn about surface,
curves, and points only through a well-defined set of geometric predicates provided by
an extended geometric-traits class. It is the choice of the traits’ implementer how to
compute these pieces of information. While the example of §L6.2 does really deploy the
parameterization, the example exercised in §E6.1] cleverly combines planar counterparts
to deduce the expected answers for the parameter space.

4.2. Sweeping and zoning on a surface 117

Figure 4.1. Sweeping a sphere: sweeping a line in parameter space from u = 0 to
u = 7 corresponds under pg to sweep a meridian from 0° to 360° around the sphere.

4.2.1. Bijective parameterizations

Our first generalization discusses surfaces whose parameterization is bijective. At first
sight, there seems to be simple solution to just incorporate the parameterization into the
geometric-traits class. This strategy is even fine and no further considerations must be
made — if only bounded curves occur. The true differentiation from the standard sweep
line algorithm emerges in the case, where curves are allowed to extend to infinity. Or in
other words, we can neither restrict U nor V to an interval [—M, M], for sufficiently large
M € R, such that the event queue (which contains ends of (weakly) u-monotone curves
and their intersections) only has to deal with finite points as event. If unbounded curves
are allowed, we face the problem that these curves do not have such finite endpoints.

Our solution to this problem is to extend the definition of an event. We basically
distinguish two kinds of event. The first kind, an interior event encapsulates (as before)
a finite point. For the second kind, we introduce the term of a curve-end. Each (weakly)
u-monotone curve 7 : D — (—00,00) X (—00,00) has two curve-ends, the lexicographical
minimal one, and the lexicographical maximal one (in wv-ordering). A curve-end may
either be a finite endpoint or represent an unbounded entity in case that the sequence of
points attained by -« towards the specified end approaches the boundary of the parameter
space: More precisely, we say that the curve-end (v, 0) approaches the left (right) boundary
if limy o4 y(t) = (—o00,v9) ((+00,v0), respectively), for some vy € RU {—o0, +00}, and
that it approaches the bottom (top) boundary if lim;_,g4 v(t) = (ug, £o0) for some ug € R.

Remark (Asymmetry). Observe the slight asymmetry in the definition. If a curve-end actu-
ally approaches one of the four cases (+00, £00), we subsume them belonging to the left
or right boundary. This simplifies the later discussion, and also reflects the asymmetry we
already noticed for predicates required for the (bounded planar) sweep line algorithm.

Following this notation, we can use the pre-processing step to associate an event with
each end of a (weakly) u-monotone curve: An interior event, associated with the finite
endpoint, is assigned if 0 € D (1 € D). A near-boundary event, associated with the
unbounded curve-end (,0) ({7,1)), is assigned if 0 ¢ D (1 &€ D).

118 Two-Dimensional Arrangements on Surfaces

Figure 4.2. Arrangement of four infinite curves that intersect in 5 finite points. To
sweep the curves, we have to define a lexicographic order that can handle with finite
points, but also with the 8 infinite curve-ends.

The order of events in the event queue of the standard sweep line procedure is simply
defined by the wuwv-lexicographic order of finite events. For our extended definition of
events we augment their comparison procedure. It is required to also handle those events
associated with unbounded curve-ends as well. This is done by subdividing the procedure
into separate cases.

First of all, two finite events are still ordered purely uwv-lexicographically. It remains
to define the order of two events where at least one is an unbounded curve-end. Most of
which can be handled in a straightforward manner. For example, it is clear that an event
on the left boundary is smaller than any event associated with a finite point, which is
smaller than any event on the right boundary. To compare two curve-ends approaching
the left (right) boundary, we consider the intersection of relevant curves with a vertical
line u = wp for small (large) enough wp and return the v-order of these points. “Small
enough” (“large enough”) means that the result does not depend on the choice of ug (or
vp), which is well-defined as curves are allowed to intersect only at finitely many points.
That is, we are interested in the relative vertical order of two curves immediately to the
right of the left (to the left of the right) boundary. There is the exception of overlapping
curves, which constitutes a special case on its own: The comparison of events representing
unbounded curve-ends of overlapping curves are allowed to return equal. Two cases are
left, namely to compute the relative horizontal (in w-direction) order of an interior event
with a near-boundary event for the bottom- or top-boundary, and to compute the same
order for two near-boundary events where both attached curve-ends approach the bottom-
or top-boundary. Note again that it suffices to only consider a situation close enough to
the boundary, that is, intuitively one can choose finite points close enough to the boundary
that reflect the correct order and return their relative horizontal order. An illustration of
the conceptual description of the required comparisons is given in Figure E3l Technically,
they are collected in an extended version of CGAL’s ArrangementTraits 2 concept that we
present in &3 As for each concept, it is not specified how to finally implement it.

Observe that we only enhance events and their order for the sweep line. The actual
sweep process remains mostly unchanged. In fact, some maintenance operations for the
status-line can even be established without executing any geometric comparison. Note

119

4.2. Sweeping and zoning on a surface

ming
®min;
iy @
ming T a C7 maxy
. ®maxy maxg

l Cy

miny mins ming

Figure 4.3. Compare curve-ends near boundary: The view is in parameter space.
Left boundary: min; <, miny <, mins. Right boundary: maxgs <, max; <, maxs.
Bottom and top boundary: max, <, max; <, ming =, maxy =, ming =, maxs <,
min; <, ming. The comparison functors that we present in §€31] are responsible
to ensure this order. But: The actual computation is not expected to elaborate the

parameterization.

120 Two-Dimensional Arrangements on Surfaces

that the first events in the event-queue tagged with on left boundary are already sorted in
correct increasing v-order. Thus, as long as the sweep extracts such near-boundary events,
we can simply put the corresponding curve(s) at the top of the status-line. Similarly, when
we proceed with the sweep line algorithm and handle a minimal event whose curve-end
approaches the bottom (top) boundary, we know that the curve must lie below (above) all
other curves currently maintained in the status-line. Thus, we can simply insert the curve
at the bottom (top) of the status-line without any additional geometric operation. As all
intersection points do not take place on the boundary of the parameter space, there is also
no need to modify the sweep in its intersection handling.

As a result, we centralize the handling of events near the boundary in the sweep line
algorithm itself, while keeping the geometric interface small. In addition, we obtain a
way to avoid some geometric comparisons in the maintenance of the status-line, which are
usually costly, especially if a model implements the exact geometric computation paradigm.
The output of the sweep still consists of a unique visitor pattern. By now, it is open how to
transform it into a DCEL-representation that stores the induced arrangement. We describe
this step in §EA4

The zone algorithm for a given curve ~ consists of two main steps, namely the localiza-
tion of 7’s ends and to compute ~’s intersections with existing curves in the arrangement.
Again, the intersections do not take place on the (unbounded) boundary of the parameter
space, and thus, no modifications are needed. In contrast to the localizations. For them
it is expected to return the cell of the existing arrangement to which the given end of ~
belongs. That is, we either obtain a face, an edge, or a vertex. Note that we have tagged
~’s ends with information whether each lies in the interior of the parameter space or which
boundary it approaches. This information is needed, but not sufficient. In fact, we do
need knowledge on how the arrangement (containing curves approaching the boundary
of the parameter space) is represented as DCEL. Only this allows to return the correct
DcEL-record. In §£4 we generalize the DCEL-representations for arrangements, and a part
of the task is the localization of curve-ends on the boundary.

4.2.2. Allowing non-injectivity on the boundaries

We just introduced events near the boundary of the parameter space, which we by now only
use to represent end of curves that extend to infinity. But what we describe also enables
an elegant generalization of the sweep line procedure for curves embedded on a parametric
surface in R?; see Definition and Example 3T for such surfaces. A parameterization
g is allowed to be non-bijective, that is, some points in .S may have multiple pre-images
in ®. In fact, we allow one-dimensional sets to do so, as it is the case for rational surfaces.

Let us exemplary remember the unit sphere, where we have pg(—m,v) = pg(+m,v)
for all v, while pg(u,—%) = (0,0,-1) and ¢s(u,5) = (0,0,1) for all u. The curve
v +— g(—m,v) is a meridian on the sphere, analogous to the international date line, and
the points (0,0,41) correspond to south and north pole, respectively. The non-injectivity
of g induces the date line, which implies that a closed curve on the sphere, for example the
equator, may be the image of a non-closed curve in parameter space. The poles also pose
another problem: They always lie on the sweep curve (i.e., the image of g for u = wy,
for up from upin t0 Umax) during the sweep.

The example of the unit sphere introduces two cases where we relax the requirements
for surface parameterization, in order to model a wider range of surfaces, as cylinders,

4.2. Sweeping and zoning on a surface 121

paraboloids, tori, and their homeomorphic counterparts. Central is that we require bi-
jectivity of wg only in the interior of ®, while non-injectivity is allowed on the boundary
of ®, denoted by 0®. More precisely, we demand that pg(ui,vi) = @g(us,vs) with
(u1,v1) # (u2,v2) implies (u1,v1) € 0P and (ug,v2) € 0P.

Before allowing non-injectivity in a controlled way, we precise the weak definition
from 271 for the location of a point in parameter space.

Definition 4.1 (Locations). Let p = (u,v) € ® = U x V. We say that p lies on the left
boundary if u = iy, or that p lies on the right boundary if u = upax. If p does neither
lie on the left nor on the right boundary, we say that p lies on the bottom boundary if
U = Umin, OF that p lies on the top boundary if v = vyax. If no such condition holds, we
say that p lies in the interior of ®.

This disjoint partitioning of ® implies four boundary sides 0;9,9,®,3,®,0;P of the
parameter space, and its relative interior ®. Observe again, that the left and right side are
defined (for the known reason) asymmetric to the bottom and top side.

For the four sides of 0® we allow two kinds of relaxations, given in Definitions
and 3.

Definition 4.2 (Contraction). A closed side 05® is called contracted if the image of 0,® is
a single point ps € S, that is, V(u,v) € 9;® it holds pg(u,v) = ps. We call ps a contraction
point.

In the running example of the sphere, we have that the bottom and the top boundary,
inducing the south and north pole, are contracted. That is, Yu € U we have g (u, Umin) =
(0,0,—1) and pg(u, vmax) = (0,0,1).

Definition 4.3 (ldentification). Two opposite closed sides of 9®, that is, either 9;® and
0,® or 9,® and 0;®, are called identified if they define the same curve vy on S. We call 77
the curve of identification. More precisely, identifying the left and right boundary means
that Vv € V, o5 (tmin, v) = ¢©5(Umax,v), while identifying the bottom and top boundary
implies Vu € U, 05 (U, Vimin) = @5 (U, Vmax)-

We detect an identification of the left and right boundary for the parameterized unit
sphere. Its curve of identification induces the international date line. Let us see what other
surfaces we can model using identification and contraction.

e A triangle with corners (ai,b), (az,b2), and (as,bs) is parameterizable via & =

[0,1]x[0, 1] with ¢g(u,v) = (a1+u(az—a1)+uv(az—az), b1 +u(ba—b1)+uv(bs—ba),0).
We observe that 9;® is contracted.

e An open or closed cylinder is modelled by identifying, for example, 9;® and 0,®,

while V' is an open or closed interval.

e A torus is modelled by identifying both opposite pairs of 0®; see also FLEA

e A paraboloid or cone is modelled by identifying 9;® and 0,®, and contracting J,®.

If the surface opens to infinity, 0;® should be tagged as unbounded.
For each of them, there exist other equivalent combinations with exchanged sides. However,
we explicitly forbid to combine contraction and identification on one boundary side. This
would allow to model a genus-one surface with a single pinch point by identifying both
opposite pairs, while one pair is also contracted. Although this surface would be sweepable
with our framework, we exclude it, as an embedded arrangement might not be representable

122 Two-Dimensional Arrangements on Surfaces

using a typical DCEL-structure. The reason is that the DCEL-vertex for the pinch point
can become incident to two different faces, which is not covered by DCEL-representations;
see Figure 24 for such a surface.

Figure 4.4. The “croissant”: a surface with one pinch point and whose parameteri-
zation would contain two identifications. One of these identifications must actually be
Contracted as We” © Herwig Hauser, wuw.freigeist.cc/gallery.html

At this point we switch to a rather generic sweep, that is, we are given a surface S
and (notationally) its parameterization ¢g. We know for each side of the parameter space
an explicit tag annotating its type, that is, either bordered, unbounded, contracted, or
identified. Bordered constitutes a finite curve of delimitation, as for the example in the
case of a triangle. An identification tag on one side of the boundary implies the same tag for
its opposite side. As input, we are also given a set of curves embedded in S. Conceptually,
we aim to sweep over the parameter space of S, that is, the rectangle defined by U x V
with special properties at its boundaries.

We come to the phases of the sweep, and start with pre-processing of input curves (in
parameter space) to feed the actual sweep. Sweepable curves are expected to meet two
criteria: First, as for the standard sweep, curves are expected to be (weakly) monotone in
the direction the sweep line moves. In our case, we split input curves into their (weakly) u-
monotone components. This splitting already partially fulfills the other criterion: A curve
that is not fully contained in 09 is expected to touch 0P only at its ends. This condition
implies that we split curves whose interior intersects with a contracted or identified side.
Note that due to achieved u-monotonicity, it only remains to check the bottom and top
boundary for this purpose. After this partitioning, the curves with their curve-ends can be
characterized. A first observation is that only non-closed curves in ® exist. The interior
of each such curve is either completely contained in some 0s® (maybe in its identified
counterpart, t0o), or it completely lies in ®. In the latter case, the two ends are allowed to
meet (not necessarily@) distinct boundary sides. As in §2.1] each such curve-end can be
uniquely annotated with one out of five locations: 9;®, 0, P, <i>, 0;®, and 9,P. Note that in
case of identification, actually two choices exists, but the connection to the interior of the
curve gives the desired one; see, for example, Figure (b). The two curves ¢; and cg cross
the identification in p. However, we split them to be u-monotone in the parameter space,
and obtain cft, ciight and ¢kt c;ight. The minimal ends of ¢l lie on the left boundary,
while the maximal ends of c?ght lie on the right boundary. All other ends exist in the

24Note that a u-monotone curve cannot start and end on O;®. The same holds for 0,®. There is no
such restriction for the bottom and top boundary.

4.2. Sweeping and zoning on a surface 123

interior of parameter space. Input fully embedded on a boundary is discussed below.

We next study how to sort the event-queue of the sweep. We can assume to execute
a sweep over the open surface attained by cps(&)), while handling ends of curves meeting
ps(0®) are handled following the strategy from §EZT. We are able to derive the correct
order of events using the explicit distinction between interior events that are associated
with points in @ and near-boundary events that occur for curve-ends approaching 0®.
Again, most comparisons of such events are straightforward, while all remaining can be
answered using exactly the same set of additional geometric predicates as introduced for
unbounded curves — assuming they take place in parameter space; see Figure We
compare curve-ends in an e-distance away from boundary (in the direction of <I>) to obtain
a unique order of different near-boundary events that do not have a trivial order. Note
that the e-environment is conceptual only, that is, how the actual comparison is achieved is
not determined, in particular, it is not enforced to compute in parameter space. Figure
presents two examples on surfaces. In §E6 we explain how to implement the comparisons
for elliptic quadrics and ring Dupin cyclides.

Figure 4.5. Two examples of comparisons near non-unbounded boundaries

(a) Compare u near top contrac-
o L ight
tion: ¢ <y 2 fication: ¢t <, ' and %" <,
right
)

With this strategy each curve-end finally meeting a boundary side gets its own event
for the sweep, that is, if we have k sweepable curves incident to a point on ¢g(0®) (namely
a contraction point or a point on the curve of identification), we handle k separate events
that relate to this point. An example is a set of longitudes on the sphere. The maximal
end of each longitude results in its own event, although eventually all longitudes meet in
the north pole; see the example depicted in Figure B8l Our current goal is only to obtain a
unique order for the sweep events. The sweep itself proceeds then exactly as the standard
sweep does; see Algorithm ZT3l In §&4 we explain how we tie all the loose ends left out by
the sweep procedure and construct a well-defined DCEL that represents an arrangement
of curves on S. Or more exemplary, how we obtain a single DCEL-vertex for the sphere’s

124 Two-Dimensional Arrangements on Surfaces

north pole.

Figure 4.6. Not each sweep line event (here blue nodes near contractions, i.e., poles)
are supposed to model a DCEL-vertex. In §&5 we discuss how to unify different but
related events, and how the vertices representing such contractions (north and south
pole) are created.

We are left with the completion of the sorting of events, that finally should also comprise
input that is fully contained in the image of some 0;,® For such points and ends of such
curves, we introduce boundary events. In the following we explain how such events are
ordered among each other, and in comparison to interior and near-boundary events.

We start with the simple case of a contracted side. Note that the only boundary event
that can occur relates to a single isolated point. We need to check whether a point lies on
such a contraction, and if so, we create the special event without any incident curve. The
handling of an isolated event during the sweep can be kept unchanged, however, we need
to determine the position of this isolated boundary event in the event queue in relation to
other events. The solution is to define that this special event is always the smallest event
that belongs to the corresponding side of the boundary. This choice already defines the
order with respect to every other near-boundary event, but also to interior events. See
event beg in the example depicted in Figure EE71

Bounded sides and identified sides are left. We again expect a possibility to check
whether a point or a curve is contained in such a side of the boundary; see §&3 for the
technical details. If an object is detected to lie on a left-right identification, we consider its
left pre-image, while we handle an object detected to lie on a bottom-top identification as
solely belonging to the bottom boundary. This handling is only internal, that is, in case of
an identification the user has not to care about these details; see our respective interface
in 371

We create a boundary event for each such isolated point (no incident curves), for
each minimal point, and for each maximal point of such a curve. We remark that the
minimal or maximal end of such a curve can be unbounded; for example in the case of an
infinite cylinder. Considering this fact, the order of boundary events on a single side of
the boundary is given by comparing their u- or v-coordinates, depending on the side in
focus. But this order is not sufficient if we also have to compare a boundary event with

4.2. Sweeping and zoning on a surface 125

near-boundary and interior events. For the sweep we define the following order among
different kinds of events at the same coordinate:
e There are some straightforward relations:

Bl <u Nl <u I <4 Ny <y By

with
B; := {belbe is a boundary event on 9;®}
N; := {ne|ne is near-boundary event related to 9;®}
I := {ielie is an interior event}
N, := {ne|ne is a near-boundary event related to 9,9}
B, := {be|be is a boundary event on 0,9}

Note that within each set the v-order must still be determined to know “<je”. We
expect corresponding comparisons; see §£31

e We are left with interior events and those related to 9,® and 9;®. We first order

them by u—coordinate

e If two of them share the same u-coordinate, the order of two events is given by the

following symbolic perturbation.
— The boundary event of an ending curve is smaller than a near-boundary event
of an ending curve.
— The near-boundary event of an ending curve is smaller than an isolated bound-
ary event or an interior event.
— An isolated@ bottom boundary event is smaller than an interior event which is
smaller than an isolated top boundary event.
— An isolated boundary or an interior event is smaller than a near-boundary event
of a starting curve.
— A near-boundary event of a starting curve is smaller than a boundary event of
a starting curve.
The order of near-boundary events again requires an external geometric predicate.
All other members of a set of equivalent events can be assumed to be equal.

We remark that most of this case-distinction is internal and thus serves code reuse. The
geometric-traits class is only expected to provide the mentioned, specialized, comparisons.
Among them, it is expected to compare u- or v-coordinates of (always finite) points on 0P.
In §4] we see another usage of comparisons of coordinates on a boundary.

Let us summarize what has been done in order to keep the sweep generic for a parame-
terized surface S. Instead of a single event type for finite points, we rely on three kinds of
events, namely interior events that correspond to points in <i>, near-boundary events that
encode ends of curves on d® whose interior is still contained in &), and boundary events for
isolated points on 9P and ends of curves that are fully contained in 0®. We define a unique
uv-lexicographic order of all events, described by large, but internal, case distinction, that

Z5Observe that u-coordinates of points and curve-ends on bordered and identified bottom- and top-
boundaries are available.
26We consider near-boundary events of vertical curves as “isolated” as well.

126

Two-Dimensional Arrangements on Surfaces

Figure 4.7. Events on the sphere for input that also comprises curves and points on 9®

(@) Input: Two curves
and one isolated point on
the identification, an isolated
point at the south pole, 4
curves meeting the identifica-
tion, 2 curves incident to the
north pole, one interior curve,
and one isolated vertex in the

interior.

be;

be.

be:

be;

be

neis neys

ieqy ieyp

o

ey

iegq

o ie13

neg iern .

O//\.?m, iers i€19
ner
i€19
ies

4 21
[m]

@icg

i}

bes
(b) Events: 6 boundary events
(be;), 6 near-boundary events
(nej), 11 interior events (iey).
The indices indicate the wwv-
lexicographical order, derived
using the locations of curve-
ends (and points) in ® and by
on-boundary-, near-boundary-,
or interior-comparisons.

ness
negy

4.3. Extending the ArrangementTraits 2 concept 127

relies on a small set of simple geometric comparisons. We give the full list in &3 Why do
we exert ourselves with this distinction? The reason is simple: We do not want the user to
do it. Most of these comparisons are straightforward and would appear repeated times for
each family of curves that are supported on a specific parametric surface. With the cho-
sen approach, we maximize code reuse. By splitting the annoying task into easy-to-solve
subtasks, we also reduce the expected level of expertise for someone who plans to provide
new curves. There is another reason: Theoretically, it is possible to already unify events,
for example, combining boundary and near-boundary events belonging to the same point
p on S. However, this reduces the flexibility to choose a certain DCEL-representation for
some parameterization. We learn in §L4] that is it beneficial to give the responsibility of
such a unification to another entity.

For the zone algorithm the situation is similar as for unbounded curves. We again
have to locate the DCEL-feature that is met by a curve’s minimal or maximal end. But
to provide this information, knowledge how DCEL-records encode bordered, unbounded,
contracted, or identified sides is expected. Thus, we postpone this problem to §&4

4.3. Extending the ArrangementTraits 2 concept

As explained in §Z4.3 the Arrangement_2 package is instantiated with a model of CGAL’s
ArrangementTraits 2 concept that provides types and geometric constructions and pred-
icates in order to support the arrangement construction and maintenance. The version
of the concept until CGAL 3.2 supports bounded curves, while implicitly assuming that
the embedding surface is the zy-plane. We refer to this version as the NoBoundaryTraits
refinement. This version also constitutes the root of a hierarchy of refined concepts that
we uncover in this section. The new Arrangement_on_surface_2 package, that replaces
the former Arrangement_2 package in an upcoming version of CGAL, is able to deal with
this hierarchy of geometric-traits concepts. An illustration of the hierarchy is given in
Figure

For each refinement we present which additional functors are expected, or said in
other words, we give the technical details of the various predicates that we only contoured
in 21 We distinguish abstract and concrete refinements. A concrete refinement defines
all specifications that are required in order to support some specific kind on a boundary
side of the parameter space. In contrast, an abstract refinement constitutes a common
ancestor for various concrete refinements. For a specific family of surfaces, it is possible,
and often required, to combine concrete refinements to support different kinds of boundary
sides; see Example E4] at the end of this section. Such a combined concept constitutes
the minimal requirements imposed by geometric algorithms in the package that operate
on arrangements for the desired family of surfaces. The hierarchical structure alleviates
the production of models (for curves on such a surface) and increases the usability of
the algorithms. Each refinement features a set of new expected functors. We mainly
distinguish functors that give location information and functors that compute a relative
order of two geometric objects.

Remark. We decided to stick with the traditional naming of variables chosen for CGAL’s
arrangement concepts, that is, in contrast to u and v for variables in the parameter space,
we refer to x and y. In addition, we simplify the structure to be exposed next: Some
refinements actually distinguish whether a certain kind of boundary appears for the z- or

128 Two-Dimensional Arrangements on Surfaces

y-coordinate. In such cases, we here only discuss the z-case. The analogue y-version is
always supposable and should be commemorated. In addition, we simplify the technical
presentation that not exactly meets the expected syntax of C++ (e.g., omitting const-
declarations, passing parameters by reference, et cetera).

| NoBoundary Traits |

!

| HasBoundaryTraits
\

| PomtOnBoundaryTra/ts CompareOnBoundaryTra/ts |

| UnboundedBoundaryTraits| / \ /| Ident:fledBoundaryTra/ts

| ContractedBoundaryTralts | BorderedBoundaryTralts

Figure 4.8. Refinement hierarchy of CGAL's ArrangementTraits 2 concepts for sur-
faces. The gray concepts are abstract, that is, they only collect functors required by
more than one concrete refinement. The “CombinedBoundaryTraits” is a placeholder for
various combinations, for example, a paraboloid refines all but BorderedBoundary Traits.
We remark that the drawing is simplified, as we are missing actual coordinate-specific
distinctions.

4.3.1. HasBoundaryTraits

Following Figure B8, the NoBoundaryTraits concept is refined by a single abstract con-
cept: HasBoundaryTraits. Tt lists additional predicates required to support any curves that
approach or even reach 0®. Before we give the expected functors, we need to generally in-
troduce some enumerations used in the interface in addition to CGAL’s Comparison_result
which distinguishes between SMALLER, EQUAL, and LARGER.

enum Arr_curve_end enum Arr_parameter_space
{ {
ARR_MIN_END, ARR_LEFT_BOUNDARY = O,
ARR_MAX_END ARR_RIGHT_BOUNDARY,
s ARR_BOTTOM_BOUNDARY,

ARR_TOP_BOUNDARY,
ARR_INTERIOR

};
Allows to select the minimal or maximal This enumeration categorizes the loca-
end of a curve. tion of a curve-end or an isolated point
in ®.

The first additional functor is very basic.

e Parameter_space_in_x_2

The functor is expected to provide the operator

4.3. Extending the ArrangementTraits 2 concept 129

Arr_parameter_space operator () (
X_monotone_curve_2 xcv,

Arr_curve_end ce

)

that returns the location of xcv’s curve-end defined by ce in parameter space in z-
direction. It can return ARR_LEFT_BOUNDARY, ARR_INTERIOR, or ARR_RIGHT_BOUNDARY.
Note that xcv is a (weakly) z-monotone curve whose interior lies in ®.

As mentioned, the similar version Parameter_space_in_y_2 also exists.

Remark. The concept does neither mention nor specify how the locations of curve-ends
are computed. However, it is encouraged to adapt Make_x_monotone_2 such that each
constructed (weakly) z-monotone curve is enhanced with these pieces of information. In
fact, Make_x_monotone_2 already has to do parts of this job, as it ensures to split curves
such that there are no zero-dimensional intersections of the interior of a curve with the
boundary of the parameter space. For that reason, a model of this refinement also needs
knowledge about the geometry of the surface.

The next two functors provide comparisons of curve-ends near the boundary. We
explicitly mention x- and y-case, as they are expected to provide operators with different
signatures.

e Compare_x_near_boundary_2
An instance of this functor is expected to provide two operators:

Comparison_result operator() (
Point_2 p,
X_monotone_curve_2 xcv, Arr_curve_end ce

)

which should return the relative xz-order of p’s x-coordinate (in parameter space) and
xcv’s curve-end defined by ce that approaches the bottom or top boundary.

Comparison_result operator() (
X_monotone_curve_2 xcvl, Arr_curve_end cel,

X_monotone_curve_2 xcv2, Arr_curve_end ce2

)

returns for two curve-ends approaching the bottom or top boundary the relative
order of their z-coordinates (in parameter space) near the boundary.

e Compare_y_near_boundary_2
The instance of this functor must provide a single operator, namely

Comparison_result operator()
X_monotone_curve_2 xcvl,
X_monotone_curve_2 xcv2,
Arr_curve_end ce

)

The expected output of this member is the relative y-alignment of the two curve-
ends slightly to the right of the left boundary if ce determines their minimal ends.

130 Two-Dimensional Arrangements on Surfaces

Otherwise, we compare slightly to the left of the right boundary. Both curves are
expected to approach (or reach) the referred boundary side, respectively.

Remark. We again mention that the comparisons functors are expected as to work in pa-
rameter space. However, a concrete implementation is not forced to compute the answer
this way. There might be other (more efficient) methods to obtain the same result. We see
a model that does not rely on the parameterization to give these answers in §L6.11 The
same remark propagates to other comparisons functors presented in this section.

As said, the concept is abstract, that is, a model of it does not suffice to compute an
arrangement on some surface. It remains to explicitly introduce functors for different kinds
of boundary side. We do so by concrete refinements.

4.3.2. UnboundedBoundaryTraits

The simplest next refinement is expected if a boundary side of the parameter space is
tagged as unbounded. In order to fulfill the concept, the following functor is required.

e Is_bounded_2
An instance of this functors should provide

bool operator () (
X_monotone_curve_2 xcv, Arr_curve_end ce

)

which returns true if the intended curve-end is finite, and false otherwise. If a curve-
end is finite it is allowed to access the according point by Construct_min_vertex_2
or Construct_max_vertex_2, respectively.

A model of this refinement allows to compute and maintain arrangements of curves
which can be unbounded, as explained in §EZT1

4.3.3. PointOnBoundaryTraits

This abstract refinement is rather tiny, as we only expect one additional operator for an
existing functor.

e Parameter_space_in_x_2
must additionally provide

Arr_parameter_space operator () (
Point_2 p
)

that is, we expect to locate a (finite) point in ®. In other words, it is possible that an
isolated point exists on 9P, which is detected by this functor. Again, the y-version
can also appear.

4.3. Extending the ArrangementTraits 2 concept 131

4.3.4. CompareOnBoundaryTraits

If a certain side is not labeled as unbounded, all points on that side are finite and can be
accessed by the mentioned constructions. This abstract refinement introduces a functor to
explicitly compare their relative order within the side. We exemplary mention

e Compare_x_on_boundary_2
An instance of this functor must provide
Comparison_result operator() (
Point_2 pi1,
Point_2 p2
)

that computes the relative z-order of two points. As a precondition each point must
lie on either the bottom or the top boundary.

The analogue y-version is also supposable.

4.3.5. ContractedBoundaryTraits

This concrete concept does not add further requirements to PointOnBoundaryTraits. How-
ever, we introduce it in order to explicitly distinguish the contraction case from the
BorderedBoundary Traits.

4.3.6. BorderedBoundaryTraits

As for the previous refinement, this one is artificial, that is, though concrete it is not a
true refinement, as no new requirements are lists. Its intention is to constitute a con-
crete concept for the case that a surface comprises a bordered boundary. It refines from
two abstract concepts, namely PointOnBoundaryTraits and CompareOnBoundaryTraits. We
introduce it, in order to distinguish from other concrete concepts.

4.3.7. IdentifiedBoundaryTraits

This concept is almost similar to the previous one, but there is a significant difference: It is
not a refinement of the PointOnBoundary Traits In contrast to the Parameter_space_in_x_2
for a point, it expects an additional functor whose utilization is more specific for an iden-
tification:

e Is_on_x_identification_2
An instance of this functor must provide two members, namely

bool operator () (
Point_2 p
)

and

bool operator () (
X_monotone_curve_2 Xcv

132 Two-Dimensional Arrangements on Surfaces

Each checks whether the designated geometric object is fully contained in the left-
right identification (i.e., in “z”-direction), or not. For a bottom-top identification,
the y-version is also conceivable.

Note that by this design of the interface, the model is not obliged to decide whether
a point or a curve lying on an identification is attained by the left or the right (bottom
or top) pre-image. It just returns that the point or the curve lies on the boundary. We
previously decided, how to deal with such objects internally; see §E2.2 for more details.

4.3.8. CombinedBoundaryTraits

Internally, a clever dispatching of tags (we omit the technical details) allows to combine
the previous concrete concepts. This enables to deduce a concept that fits for a certain
family of surfaces. That is, a model for a certain surface contains a set of tags that
reports which concepts it implements. The Arrangement_on_surface_2 package uses this
information to internally and automatically provide dummy implementations for the non-
expected functors. This simplifies the development of a concrete model for a certain
family of surfaces, as one only has to implement the functors that are really executed. The
compilation is ensured by the non-called dummy implementations. In fact a quite a large
number of combinations are possible; see Table BTl

Example 4.4 (Paraboloid). A geometric-traits class for curves embedded on the paraboloid
is expected to be a model of almost all concepts that we introduced in this section.
One side, for example 0;®, is contracted to model the paraboloid’s apex. Then, 0,®
must be unbounded in case the paraboloid opens to infinity, or bordered, in case the
paraboloid is finite. The remaining pair of opposite sides (9,® and 0;®) are identi-
fied. In the language of the herein introduced concepts, we expect the model to im-
plement the ContractedBoundaryTraits for 0;®, the UnboundedBoundaryTraits for 9,®, and
the IdentifiedBoundaryTraits for 0,® and 0,®.

4.4. Maintaining a DCEL on a surface

As already mentioned in 43 CGAL uses visitors to process the topological information
gathered in the course of the sweep (or the zoning) in order to construct (or modify) the
DcCEL that represents an arrangement of curves. That is, the canonical output of the sweep
consists in processing events, while maintaining the event-queue and the status-line. On
each combinatorial change a visitor is notified on the progress of the sweep process, for
example, which event is currently handled, and which sub-curves are emerging to its left.
Similar for the zone algorithm. It is the visitor’s implementation that decides the actual
and final output of the procedure. It varies from just reporting intersection points, or may
comprise a more sophisticated task such as to construct the arrangement of the processed
curves. Another variant inserts new curves into an existing arrangement, or overlays two
such. More information is given in §43 and [WEZH(7b]. In what comes next we mainly
concentrate on the construction of an arrangement. The other applications are similar or
straightforward; where needed we give additional details. A visitor that constructs the

4.4. Maintaining a DCFL on a surface 133

‘ # H Left Right ‘
1 || Bordered Bordered
2 || Bordered Contraction
3 || Bordered PlusInfinity
4 || Identification Identification
5 || Contraction Bordered
6 || Contraction Contraction
7 || Contraction PlusInfinity
8 || MinuslInfinity Bordered
9 || Minuslnfinity PlusInfinity

10 || Minuslnfinity ~ Contraction

Table 4.1. Combinations of possible conditions at 9;® and 0,®. The same list can
also be used for 9,® and 0;9.

It is possible to encode all cases of conditions on the boundaries of 0® as pair (LR, BT).
For example (1,1) defines a surface equivalent to a quadrangle, (4,6) a surface equiva-
lent to a sphere. The cases ({6,7,9,10},4) are, for example, formed by elliptic quadrics
that we discuss in 6.1l The double-identification (4,4) forms genus-one surfaces,
among which we discuss ring Dupin cyclides in 621 It is easy to also derive the pairs
(LR, BT) for triangles, fans, half-planes, discs, and many other surfaces. However, it
is unclear, whether for some combinations smooth surfaces exists, for example, (6,6),
(7,7), or (10,10).

arrangement of swept, or zoned, (weakly) z-monotone curve needs to keep track the
creation of new sub-curves. A new sub-curve is created whenever an intersection of more
than one curve or a maximal curve-end is processed, that is, the portions of the curve(s)
to the left of the event are inserted into the arrangement using one of the basic insertions
procedures. We already mentioned them in §ZZT1 Each creates or updates relevant DCEL-
features. The DCEL for bounded planar curves is unique and well-defined, in particular,
there is only a single unbounded face.

What we like to emphasize is that the actual construction by the visitor utilizes only
topological information available during the sweep (or zone) algorithm in order to perform
the basic insertions of sub-curves — without invoking any extra geometric information. In
contrast to perform a post-processing of the swept events, it is the on-line and interweaved
fashion of the construction that is worth to mention.

We aim for a similar strategy when constructing a DCEL for an arrangement induced on
a parametric surface whose parameter space may have special properties at its boundary
sides; see our introduction in §€2 Note that only special boundaries imply an elaborate
handling. An empty arrangement consists of a single face and if no curve approaches or
reaches the boundary, processing the curves is “isomorphic” to what we do for bounded
curves in the plane. That is, all curves lying in the interior of the parameter space can
already be handled with the existing tools. If no curves interacts with boundary, the
nesting graph is supposed to be still a tree. Special diligence is only needed when curves
meet the boundary of the parameter space. As a result, we scream for reusing existing

*"Observe that we stay with CGAL’s naming scheme, that is, we use z and y for the variables of the
parameter space.

134 Two-Dimensional Arrangements on Surfaces

machinery as much as possible. We only want to modify CGAL’s Arrangement_2 package
in its handling with respect to special boundaries.

By now, it is completely open how to transform the various kinds of boundaries into
an actual DCEL-representation, which is fine, as it turns out that various possibilities can
exist. As we will see, these choices also lead to different nesting graphs.

Several operations on arrangements are quite similar in all cases. As examples we
mention basic insertion and deletion procedures. It turns out that CGAL’s Arrangement_2
package already suites well to serve as a building block. Weld extended it to CGAL’s
Arrangement_on_surface_2 package which now serves as the centralized component that
collects surface- and curve-independent algorithms and structures for two-dimensional ar-
rangements on a wide range of surfaces and curves on them. The central class-template of
the package has two parameters:

Arrangement_on_surface_2< GeometryTraits_2, TopologyTraits_2 >

As known, it is the GeometryTraits_2 that provides the curve-specific components, and
we have learned in §&£2 and §3 how to extend it in order to support curves embed-
ded on a parametric surface with special kinds of boundaries. Remember that this class
must also be aware of the geometry of the embedding surface, for example, to implement
Make_x_monotone_2.

Similarly, all surface-specific procedures are expected from the new “external” com-
ponent. We call the corresponding parameter TopologyTraits_2. Such a class encap-
sulates the topology of the surface on which the arrangement is embedded, determines
the underlying DCEL representation, and supports its maintenance. It does so by defin-
ing nested types that are used in various arrangement-related operations. Additionally,
it provides predicates and operations dealing with curve-ends or points related to 0®
that are required to consistently modify or update the DCEL. In §3 we present the
full ArrTopologyTraits 2 concept that an instance of type TopologyTraits_2 must ful-
fill. Beforehand, we shortly review which tasks and components of the arrangement
class are actually surface-dependent. This helps to clarify some design rationales of the

ArrTopologyTraits 2 concept; see also [BEWZ(7].

As a first remark, we observe that the TopologyTraits_2 parameter has replaced the
Dcel parameter. Consequently, the new component must provide the DCEL-type. In-
ternally, the arrangement derives the Vertex-, Edge- and Face-type to equip them with an
interface that respects arrangement-specific goals. The actual interface of the arrangement
class can be partitioned into three groups:

Traversal methods provide information about the number of DCEL-records (as cells),
and the access to each valid one. We allow that a DCEL-record can be geometrically
invalid, that is, it does not carry relevant geometric information, but only serves to
encode some topological information. Such fictitious records should be filtered.

Basic insertions, deletions, and modifications are central operations on the DCEL;
see 42 We distinguish the insertion of an isolated point and an z-monotone
curve whose interior is disjoint from all existing vertices and edges of the current

28 Central ideas by Ron Wein, Efi Fogel, Dan Halperin, and the author. Main coding by Ron Wein;
significant contributions by Efi Fogel, Baruch Zukerman, and the author.

4.4. Maintaining a DCFL on a surface 135

arrangement, the deletion of an edge (or of an isolated vertex), the splitting of an
edge as prior operation for an insertion, and the merge of two edges as posterior
operation of an edge-deletion.

Global functions are used to construct arrangements from scratch, to insert curves into
an existing one, or to two overlay two instances. As learned, proper visitors can be
combined with the generic Sweep_line_2 template or the zone algorithm in order to
provide these operations. The zone algorithm additionally requires a point-location
strategy.

We are not going into the technical details for all of these interfaces. However, we
are already able to identify surface-specific tasks expected by them. An example is the
filtering of fictitious DCEL-records. Surface-specific are also specialized visitors used by the
global functions that are tailored to certain DCEL-representations: They deploy additional
knowledge which saves calls to geometrical and topological predicates in order to decide
which basic insertion functions must be called. Only the basic insertions and deletions re-
quire elaborate modifications. We explain such when discussing the handling of connected
components of a face’s boundaries (CCBs). Another example is the extended support for
the localization of points in the existence of a special property at a boundary side.

4.4.1. Choice of DCEL

An important fact is, that the generic arrangement class itself is no longer responsible to
determine the actual DCEL representation for the induced subdivision. A subtask is to
define how the DCEL of an empty arrangement on some S is encoded. It mainly must be
decided whether the initial face is unbounded (e.g., for a plane, a paraboloid, or an open
cylinder) or bounded (e.g., for a triangle, a sphere, a closed cylinder, or a torus). It is
more challenging to commit to a certain representation as DCEL for the boundary of the
parameter space as it is typical that several possibilities exists.

A tangible example is constituted by the unbounded plane. We aim to construct an
arrangement that may contain several unbounded faces. We already chose not to clip at
an explicit bounding rectangle. Instead, a possibility is to introduce an implicit bounding
rectangle embedded in the DCEL, that is, it consists of fictitious edges. Each such edge
does not represent any concrete planar curve; its sole purpose is to close the outer CCB
of an unbounded face. Or vice-versa: A face is unbounded, if its outer CCB contains a
fictitious edge. Actually, there is one special face that has no outer CCB, and its sole
inner CCB consists of fictitious edges only. However, this face is of pure technical nature.
The corners of the fictitious rectangle are given by special vertices V41, Vi1, Vir, and V.
As they do not actually belong to the arrangement they must be filtered for a traversal.
A curve-end that extends to infinity is represented as a fictitious vertex on this rectangle,
but never coincides with one of the four corner vertices. The insertion of an unbounded
curve implies a fictitious edge to split. Figure (a) gives an illustration of such a DCEL.
As it maintains a fictitious outermost face F, the nesting graph of this DCEL is a tree.

An alternative solution, as shown in Figure (b), is to use a single fictitious vertex
at infinity Viys and all curves extending to infinity are connected to this vertex. A face
is then considered to be unbounded, if its outer CCB includes Vi,¢. For this choice, no
split of a fictitious edge is required, but we need to determine the position of a new curve
in the circular list of existing curves around Vj,;. Note that there is no single outermost

136 Two-Dimensional Arrangements on Surfaces

Figure 4.9. Two possible DCEL-representations for the unbounded plane

Jou
eﬁ*’e@

(a) This DCEL uses fictitious edges (dashed) and four special vertices Wiy,
Vit, Vi, Vit that do not carry geometric information. The vertices Vp,..., V3
represent infinite curve-ends. The faces F1,. .., Fg are unbounded, as they are
incident to a fictitious edge. The face F is fictitious without any geometric
meaning. The nesting graph is a tree rooted at F.

1

@@@@@@%@@@

(b) This DCEL contains a single fictitious vertex Vi, to which all unbounded
curve-ends are incident. The unbounded faces Fi, ..., Fy are the ones that are
incident to this vertex; see, for example, the indicated outer CCB of F5. The
nesting graph of this DCEL is a forest.

4.4. Maintaining a DCFL on a surface 137

face: In particular, each unbounded face is a root in the nesting graph, and also a bounded
face that is not a hole@ of a another bounded face constitutes a root. That is, we obtain
several equitable outermost faces. Following the nesting graph is a forest. A root grows
to a tree, if it has at least one two-dimensional hole in it, such as F7.

Both representation are useful and legitimate, and none can be preferred over the other.
Actually, each can be more suitable than the other in different situations. In fact, even
mixed cases are conceivable, for example, we can have two fictitious vertices for curves
extending to x = +00 and sequences of fictitious halfedges connecting (at infinity) curves
that extend to y = +00. The relevance of such a representation is questionable, but we do
not judge on this. For CGAL 3.3, we decided to represent unbounded planar arrangements
with the implicit bounding rectangle. Other representations might be included in future
releases.

We next generalize the topological tasks beyond the unbounded plane, similar to the
generalization of the geometrical tasks. We basically have two strategies to represent
arrangements on parametric surfaces as DCEL.

Tree-strategy This strategy requires to agree upon a single outermost face. This is
typically done by choosing a reference point that is expected to be contained in
this closed face (i.e., its interior and its inner CCBs). We have to ensure that the
creation of new faces, and in particular the assignment of CCBs that pop up, aim
for a tree rooted at this outermost face. Below, we identify the tasks how to support
this decision in order to maintain a tree.

Forest-strategy In this strategy, several faces can be outermost, that is, they are eq-
uitable. Making faces equitable means to separate them by outer CCBs. For this
strategy it must be clear what outermost means for a specific surface. Once this
is fixed, any operation that requires an update of CCBs (e.g., the creation of a
new face) has to follow the chosen definition. The tasks we identify below help to
implement the chosen definition for an outermost face.

Remarks.

e In both strategies, the first root of the nesting graph has no outer CCB.

e Note that already in the bounded plane, we have some kind of equitable faces; see, for
example, faces F and F3 in Figure However, they are surrounded by a common
inner CCB; see in the example Es which determines that F> and F3 are children
of F. Equitable means that none makes the other locally non-simply connected; see
also Definition 241l Thus, they are separated by outer CCBs from each other and
none is a root, in contrast to the forest-strategy that already expects equitable roots.

We admit, that the strategies seems 1 abstract. On the other hand, the chosen strategy
has implications on the nesting graph. That is, by choosing a strategy, we are actually
asking for a consistent way of assigning CCBs to the lists of inner and outer CCBs of
faces. These assignments eventually define the nesting graph. Thus, we concentrate on
this classification when discussing CCBs below. There, we also extend our consideration
to surfaces with identifications. More technical details are given in §E5.0

29 A hole makes a face non-simply connected; see Definition EZZT1

138 Two-Dimensional Arrangements on Surfaces

4.4.2. Boundary tasks

In addition to the DCEL-decisions, we already have detected some surface-specific topo-
logical tasks:

e Remember that visitors (for sweep or zone) call the basic insertion functions to
modify the DCEL with respect to the insertion of a curve c. There are special cases
that the arrangement has to take care of. An example is that some curve-end of a
curve ¢ can coincide with an isolated vertex in a face, so the insertion is actually
from a vertex. This is already a solved problem for the bounded plane. However, in
our case the arrangement deals with boundaries of the parameter space. But it has
no chance to decide itself how to insert the relevant curve-end. Remember the two
ways (fictitious rectangle, fictitious vertex at infinity) to represent an unbounded
arrangement as DCEL. In both cases, the insertion is actually from a vertex at
infinity. Similar cases are conceivable for other topologies. Thus, our solution to this
problem consists in the arrangement’s query of the attached topology-traits class. It
returns a CGAL: :0bject comprising one of the following types:

— A handle for a fictitious halfedge, which means that the queried curve-end splits
the designated fictitious halfedge in its interior. The split-point becomes the
(fictitious) vertex representing the curve-end.

— A handle for a vertex to which the curve-end is incident.

— An empty object, which implies that it is required to create a new vertex rep-
resenting the curve-end. The curve itself is the sole incident curve to the vertex
that will be created.

If only one curve is incident to a vertex, the insertion from a vertex is simple,
otherwise, we refer to the next task.

Remark (lIsolated point). Remember that some topologies allow isolated points on
0®. Thus, the topology-traits class must also be able to compute the same piece of
information for such a point, instead of a curve-end.

e Find the position of a curve incident to a DCEL-vertex V' on d® in the circular order
of curves around V. This holds for both fictitious and non-fictitious vertices.

e Split a fictitious edge. The counterpart of this operation consists of the detection
and removal of a redundant vertex on the boundary.

We refer to L0 where we explain how these tasks are technically interfaced.

4.4.3. Faces

Note that faces of the subdivision (i. e., open connected point sets on the surface) are stored
implicitly, that is, not special geometric object is deposit in the DCEL. However, part of
the implicit representation is the correct assignment of connected components of the face’s
boundaries (CCBs). Each insertion or deletion of a curve can also imply a modification of
a face’s CCBs. In particular, a face can be split into two faces. For the different kinds of
boundaries, we have to consider specific possibilities.

Unbounded faces If an unbounded face is split by a bounded curve, it must be decided
by the topology-traits class which of the two resulting faces is unbounded.

4.4. Maintaining a DCFL on a surface 139

Figure 4.10. We consider an arrangement of line segments in a finite rectangle whose
boundary is modelled with fictitious edges. The insertion of cv results in a split of Fp.
The new face Fi has an outer CCB that is formed by Epyey, E1, and Efcs.

Bordered edges Consider a finite rectangle, which constitutes a compact surface whose
boundary consist of four bordered sides. We can represent these bordered sides with the
help of fictitious halfedges (as for the unbounded rectangle). In such a case, it is possible
that the insertion of a bounded curve from a single vertex splits a face, such that one does
not make the other locally non-simply connected; see the illustration in Figure EET0. It is
the topology-traits class that takes care of this decision.

CCBs, roots of the nesting graph — and identifications Remember the tree- and the
forest-strategy that we only introduced abstractly. We next discuss examples for them on
surfaces with a curve of identification. This helps us to detect the tasks that we require
from the topology-traits class for any kind of parametric surface we want to consider.

In the tree-strategy, the definition of the root face is simple. It is defined by picking a
reference point. On a sphere, we can choose, for example, the north pole. The following
example is also illustrated in Figure EETTE The initial DCEL consists of a single bounded
face Fy. It does not have any outer CCB. This contrasts with the planar case, where each
bounded face has an outer boundary. Next consider that we close the tropic of Cancer
(northern turning circle) and the tropic of Capricorn (southern turning circle). For the
first curve, the initial face is split into two. The face Fy now contains the north pole,
that is, the reference point. Thus, according to our strategy, it should obtain an inner
CCB (represented by Ei), that separates F¢ (containing the south pole and the equator)
from Fy. This ensures that F§ becomes a child of F. F{ itself gets a single outer CCB
(represented by E7). After adding the second tropic, there are now three faces Fn, Fpg,
and Fg. The latter two originate from the split of F§. Note that Fg gets a single outer
CCB (represented by E}) and is separated from Fg corresponding to the strategy by an
inner CCB (represented by Es) of Fg. Observe that we come to two decisions: Make Ej
the outer CCB of F§ (and not E;) and make Ej the outer CCB of Fg (and not Ey). A
respective twin defines an inner CCB for the proper originating face.

Similarly, we can pick a “reference point” on a cylinder C, even if it is unbounded. For
example, we choose as reference some point on C with z = 4+o00. This case is illustrated

140

Two-Dimensional Arrangements on Surfaces

Figure 4.11. The tree-strategy on a sphere

(a) Single bounded
face Fy with neither
outer CCB nor inner
CCB.

(b) Closing the north-
ern tropic by cvy re-
sults in two faces: Fly
gets a face separated
by an inner CCB that
is defined by F;. Face
F{ gets a single outer
CCB defined by Ej.

(c) Adding the south-
ern tropic cvy re-
sults in another split:
Fg inherits the outer
CCB defined by Ej,
while the new face Fg

is separated from it by
an inner CCB defined

by E5. The split face
Fg gets a single outer
CCB defined by FY.

in Figure Mind again, that two decisions help to define the the final DcEL: Make
EY the outer CCB of F; (and not Ej) and (again) make E} the outer CCB of Fy (and
not Fs).

Remarks (on the tree-strategy).

e The tree rooted at a reference face in ensured by defining which CCB becomes outer
of a newly created face. Let us keep this task in mind.

e Note that Fj in Figure is an unbounded leaf in the nesting graph. This may be
not very intuitive, but remember that this is due to the fact that the tree-strategy
simply defines an outermost face.

To avoid such unbounded leaves, we actually encourage to apply the forest-strategy in
the case of a cylinder. We again start with an example, illustrated in Figure EEI3t There
is the single unbounded face Fy. When adding cv; the face Fy splits into the faces Fy
and F;. As both are unbounded we do not want to make one nested below the other.
Thus, we decide to make them equitable on the cylinder. Consequently, each gets its own
outer CCB: E/ defines the one for Fy, while E; defines the outer CCB for F;. We next
insert cve. This separates Fy from Fy. Again, we do make Fy equitable to the other, that
is, 5 becomes a root. This time, the reason is that F5 should be nested below Fj and
below F5 at the same time. However, this would lead to a nesting graph, that is not a
forest. We do not want to exclude this possibility in general, but it is less intuitive, that a

4.4. Maintaining a DCEL on a surface

141

Figure 4.12. The tree-strategy on a cylinder

(a) Single unbounded
face Fy with neither
outer CCB nor inner
CCB.

sults in two faces. Fj
gets separated from
Fy by saying that F;
defines an inner CCB
of Fy. That is, by
strategy, F} is a child
of Fy in the nesting

graph.

Bl Bl oy R
;_’/
B ~T o

splits F again. Sim-
ilarly, Fy gets sepa-
rated from Iy by say-
ing that 5 defines an
inner CCB of Fj. We
make F5 a child of Fj.
In parallel F; becomes
a child of Fy as Ey

stays an inner CCB,
but now for F5.

set of points should be “somehow” a subset of two disjoint sets@ Thus, to make F5 a root
face is a nice and sensible solution. However, it is now surrounded by two outer CCBS
While Ef is already determined to be one of them, it must be decided that Ey defines the
second (and not EY). Following, EY, automatically defines an outer CCB for Fj.

Remarks (on the forest-strategy).

e We require a definition that specifies the properties of a root. In the example, we
choose “unboundedness” and “not a unique nesting”. However, these conditions are
not precise.

e Once root faces are decided, we need a test that determines whether a newly created
outer CCB belongs to the same root face as another (fixed) outer CCB. Let us also
keep this task in mind.

We remark that the forest-strategy also makes sense for bounded surfaces, for example,
as defining a reference point might not reflect the user’s wish. In particular, he maybe
wants to avoid an artificial hierarchy of faces. Using the forest-strategy is a way out of
this dilemma. As example, we mention the rectangle as in Figure EET0, or we refer to

Figure EL14]

Note that with these examples in mind, it makes sense to extend the DCEL: In addition

3%Note that a face is supposed to represent a connected subset, and all faces of a DcEL model a disjoint
decomposition of the input surface.

31The reason is that neither E} nor Fs can define an inner CCB, as this would model that Fb is nested
below another face.

142

Two-Dimensional Arrangements on Surfaces

Figure 4.13. The forest-strategy on a cylinder

(a) Single unbounded
face Fy with neither
outer CCB nor inner
CCB.

B R

sults in two faces:
Both have a single
outer CCB: Ej for Fy
and E1 for Fl.

(c) Adding cvy splits
Fy again. Fy still
has a single outer
CCB defined by EY.
We determine that
E5 forms the second
outer CCB of I, be-
sides the one defined
by E}. Thus, E} de-
fines an outer CCB for
Fp.

Figure 4.14. The forest-strategy on a sphere

(a) Single bounded
face Fy with neither
outer CCB nor inner
CCB.

(b) Closing the north-
ern tropic by cvy re-
sults in two faces:
Fy and F{ are eq-
uitable. Each gets
its own outer CCBs.
E defines the one for
Fn and Ej the one
for F§.

(c) Adding the south-
ern tropic cvy splits
F{ into Fg and Fgs.
Fg's outer CCB is de-
fined by E}, Fg gets
two outer CCBs. It
must be determined
that F/ is the second
besides E5. Fy then
gets the outer CCB
defined by Ej.

4.4. Maintaining a DCFL on a surface 143

to maintaining a list of inner CCBs, we are now confronted with cases, where a face can
have more than one outer CCBs. Thus, we require a DCEL-class that is able to store a list
containing more than one outer CCB for a face. Note that each list of CCBs can also be
empty.

We admit that our examples are chosen carefully to show which surface-specific topo-
logical tasks must be handled. The examples for the forest-strategy are even “restricted”.
That is, each of their faces is a root. However, there exist faces on such surfaces that
are surely none-roots. In order to precisely define what makes a face a root, we have to
reconsider the basic insertion of a curve at two vertices into a face F. Among the basic
functions modifying the DCEL, this is the only one that can construct a new face; see
Figure Z9 We know that F' models a connected set of points on an orientable surface
whose boundaries are described by the given CCBs of F. FEach CCB forms a cycle and the
intended face is to the left of the oriented edges contained in theses cycles. When inserting
a curve cv at two (non-isolated) vertices, we are given two predecessor edges, each lying
on some CCB of F. Remember that the interior of cv must completely lie in the face F'.
Following, both CCBs belong the F. Upon this insertion, we remove a one-dimensional
set of points from the face by adding edges for cv. These edges get somehow connected
in between the predecessor edges and their successors. It results in either merging two
CCBs into one, or we get two individual CCBs. We basically have to deal with 3 different
combinations:

Figure 4.15. Inserting a curve at an outer CCB

E
(a) Curve cv is added at two ver- (b) F’ is split from F, but it does
tices. Its predecessor edges lie on not make F' locally non-simply
the same outer CCB. connected. Thus, prevy still de-

fines F's outer CCB (with Ey),
while prev; (with Es) defines the
new face F”’s outer CCB.

Both predecessor edges belong to the same outer CCB: We can assume that the
CCBs of F only consist of this single outer CCB. Thus, the face is two-dimensional
and it looks in the neighborhood of cv like an open half-plane; see Figure (a).
Following, cv separates a two-dimensional set F’ from F. Even more: F’ cannot
make F locally non-simply connected. Thus, F’ models a new face and we obtain
two individual CCBs. One becomes the new outer CCB of F’, while the other stays
the outer CCB of F. That is, F’ is equitable to F’; see Figure (b). We call this
case an outer split.

In the nesting graph, the node for F' gets replaced by two nodes: One for F’ and one
for the remaining part of F. If F' was a child of some F', then F’ becomes a child of

144 Two-Dimensional Arrangements on Surfaces

F as well; consider, for example, faces Fy and Fj in Figure 228l More important is:
If F was a root, then I’ becomes a root face as well.

The predecessor edges belong to different CCBs There exist several combinations
and all have in common that the insertion of cv adds edges that merges the two
involved CCBs into a single CCB. That is, we merge two boundaries of a face. This
keeps the face connected. If one of the originating CCBs was outer, the merged CCB
also becomes outer. In case that both were inner, the merged also constitutes an
inner CCB. As no new face is constructed, these cases are simple and of no relevance
for our further objectives. Especially not with respect to changes on the nesting
graph upon face creations in the tree- or forest-strategy.

Both predecessor edges belong to the same inner CCB: This case requires a more
elaborate study. First of all, observe that the existing inner CCB separates a set of
points that is considered to be a child of F' in the nesting graph. This set is either
two- or one-dimensional. If it is two-dimensional the insertion is analog to the outer
split: Simply replace “outer” with “inner”. The inner CCB gets rerouted, while a new
outer CCB appears that separates the split set of points F’. The difference to the
outer split is that F' cannot be a root, and so F".

If the insertion of cv closes a one-dimensional set to a one-dimensional non-simply
connected loop, three possibilities exist. They are depending on the involved curves
and mainly on the surface that embeds the curves:

(1) F gets split into two disjoint two-dimensional sets, such that one makes the other
locally non-simply connected

(2) F gets split into two disjoint two-dimensional sets, where one does not make the
other locally non-simply connected

(3) the loop of curves describes a one-dimensional subset of F', but does not make
F locally non-simply connected

The examples in Figures 9 EETT] EET4] FET2], and show different situation where
we have to distinguish between case (1) and case (2). Case (3) is more special, as
it only occurs on surfaces with two identifications. Below we give further details on
this case; a concrete example is given in Figure that is included in 62 where
we discuss a family of surfaces whose parameterization comprises two identifications.
Note that the “inner split” that we described first can be seen as a variant of case (2).
Actually, the reduction can be established by contracting the two-dimensional set to
a one-dimensional.

Summing up, we detect that in most cases, the required modifications of the DCEL by
the basic insertion of a curve at two vertices are straightforward — except for the insertion
at two vertices that connect a common inner CCB. For this situation, we have identified
three different cases, that must be distinguished with the help of the topology-traits class.
Thus, we next concentrate on this task.

Notice that the former inner CCB splits into two CCBs, and we have to decide what
happens with them; compare also with the examples presented in this section. There are
basically four options, and we shortly see that the chosen strategy has implications on
which option gets launched.

4.4. Maintaining a DCFL on a surface 145

(a) Create a new face F” and nest it below F, that is, assign one of the resulting CCBs to

the list of inner CCBs of F, while the other becomes the outer CCB of F”.

(b) Create a new face F’ and make it equitable to F', that is, one CCB becomes outer for

F’, while the other CCB must be added to the list of outer CCBs of F.

(¢) No new face is created and the two resulting CCBs become inner for F', that is, there
is a one-dimensional “hole” surrounded by two inner CCBs.

(d) No new face is created and the two resulting CCBs become outer for F', that is, F' is
now surrounded by two outer CCBs.

It is obvious that options (a) and (b) must correspond to case (1) and (2), while
options (c) and (d) are related to case (3). The topology-traits implements either the tree-
or the forest-strategy. The strategy guides the basic insertion in the following way: For
case (1) both strategies chose option (a); this is straightforward. In contrast to case (2),
where the tree-strategy has again to trigger option (a), while the forest-strategy chooses
option (b). For the special case (3), option (c) is the choice for the tree-strategy, as this
ensures that there is always an outermost face not having an outer CcCBP? This face is
supposed to constitute the root of the tree. However, there can be an innermost face, that
is surrounded by two outer CCBs. As this face would be nested below two other faces,
we do not encourage the tree-strategy for a surface with two identifications. For such, we
recommended the forest-strategy that decides for option (d) in case (3). This ensures that
further splits of F' result in faces that are equitable, and thus can model different roots.

Observe that options (a) and (b) still need some more guidance from the topology-traits
class, as seen in the examples. In option (a), it is unclear which of the two CCBs becomes
outer for a newly created face. This must be decided surface-specifically. Actually, it is
advantageous to know for a loop of curves attached to a CCB whether it is contractible to
a point on S. Then, the answer can be derived as for bounded planar curves:

e Determine the direction of the predecessor halfedge at the lexicographica]@ smaller

vertex.

e If it is from left to righ this halfedge defines the outer CCB of the new face.

e Otherwise, the predecessor halfedge at the other vertex defines the outer CCB of the

new face.
Following, the open question is only of substantial nature if a loop of curves on S cannot
be contracted to a point. By how we parameterize surfaces, this is only possible if at
least one curve of identification exists; all other surfaces are homeomorphic to a disc. For
surfaces with identification the problem is more elaborate. The open question in option (b)
is: Which of the two CCBs gets assigned to the list of F’s outer CCBs? We shortly give
further details on realizing these “CCB-tasks” for surfaces with identifications.

Let us reconsider roots of the nesting graph. If the topology-traits class implements the
tree-strategy, we never create a new root: The initial root has no outer CCB, so no outer
split can happen. In addition, inner splits do not create new roots, and finally, option (b)
is never triggered, which constitutes the remaining possibility to create a new root.

In contrast, the forest-strategy creates new roots. Note that the first new one must
be triggered by option (b), as the initial face has no outer CCB. Further roots can appear
upon outer splits and constructions by option (b).

320bserve that otherwise the initial face is the candidate to get an outer CCB.
33Given in parameter space
34 Again in parameter space

146 Two-Dimensional Arrangements on Surfaces

Definition 4.5 (Root).
Tree-strategy: A root is a face without an outer CCB. Note that there is only one.

Forest-strategy: A face that makes another face locally non-simply connected cannot be
a root. Fach other face is a root.

This concludes the discussion on face creations and what to do with CCBs. The full
technical interface is given in 5.7 Observe that by this abstraction the full control on
the assignments of the CCBs is given to the topology-traits class. Thus, it constitutes the
entity that decides which strategy is implemented for its surface, and following whether the
nesting graph is a tree or a forest. This way, we conserve the possibility to represent the
subdivision of a surface with different strategies — depending on the user’s preferences.

Remark (Relocation of holes). Remember that the split of a face implies some queries:
Namely, we have to check for each isolated vertex and for each inner component in the
original face, whether it should be moved to the newly created split face. This task boils
down to determine the lexicographical (always finite) minimal point of such an object
and to let the topology-traits class check whether it is contained in a newly constructed
face. We have to incorporate the topology-traits class here, as the special boundaries, in
particular identified ones, do not allow to derive a surface-independent strategy. Note that
this also has implications on the nesting graph.

Remark (Removal). The arrangement also demands for basic removal functions. Among
them, it is the deletion of an edge that demands in some cases help from the topology-
traits class that provides surface-specific answer. The key question for this task is, whether
the deletion of a pair of twin halfedges, each lying on an outer CCB, cause the creation of
a new inner component; otherwise two incident faces should be merged.

We refer to 5.0 where we give technical details and the interface for all required
tasks of a topology-traits class. That is, we present CGAL’s new ArrTopologyTraits 2
concept. Concrete examples of models are then discussed in LB We illustrate details on
the implementation for two families of curved surfaces with identifications. Both models
exploit a technique that we present next.

Realizing a model for surfaces with identifications We previously identified in a high-
level description which tasks a model of the topology-traits class has to provide with
respect to faces and their CCBs. Several models exists in CGAL, out of which we discuss
two concrete examples for surfaces with identifications in §E6.1] and §E£6.20 To simplify
their presentation, we already recapitulate the tasks and give tools to realize each.

The tree-strategy expects the following decisions:
e How to detect case (3)?
e How to decide which CCB out of two gets outer for a new face in option (a)?

The forest-strategy expects an enhanced set of decisions:

e How to distinguish between case (1), (2), and (3)?

e How to decide which CCB out of two gets outer for a new face in option (a)?

e How to decide which CCB out of two gets also outer for a new face in option (b)?
Note that the tasks for the tree-strategy are a “subset” of the tasks for the forest-strategy.

4.4. Maintaining a DCFL on a surface 147

Surface has one curve of identification: Before we really turn to such surfaces, think
of any loop in a surface that is homeomorphic to an (open or closed) disc. As the
surface is simply connected such a loop is contractible to a single point. In general,
this does not hold for a loop on a surface with a curve of identification. In particular,
when also respecting possible contraction points. If we remove such points, each
surface with a single curve of identification is homeomorphic to an open or closed
cylinder. In what follows we assume w.l.o.g. that this cylinder’s parameterization
comprises a left-right identification.

We can distinguish two kinds of loops: Loops that are contractible to a point, and
loops that are not Let us have a closer look at properties of such loops: Assume
that a loop L does not cross the curve of identification. Then, it is contractible to
a single point, as the image of the parameter space’s interior is, by precondition,
bijective to an open disc. Moreover, consider a local continuous transformation of a
loop’s non-cyclic subpath such that this part now crosses (not touches) the curve of
identification twice. As the surface is orientable a local map exists that supports this
transformation. Vice versa, we can conclude that every loop that crosses a curve of
identification 2n times is contractible to a point, by the ‘reversed” transformation.
Now consider a loop that has exactly one crossing with the curve of identification.
It is easy to see, that there is no cover of maps homeomorphic to open discs such
that the loop can be contracted to a single point in their union. Thus, such a loop is
non-contractible. By the same argument as in the even case, we can locally transform
a non-cyclic subpath of the loop to cross a curve of identification 2n + 1-times. Still,
it is non-contractible

Definition 4.6 (Perimetric loop, CCB, and face). Let S be a parametric surface
with an identification excluding possible contraction points, and L be a loop on it.
We say that L is perimetric if it is non-contractible to a point. This property is
equivalent to L having an odd number of crossing with the curve of identification
on S. A CCB is called perimetric, if the attached curves form a perimetric loop on S.
We call a face F' on S perimetric if it has a perimetric CCB.

Example 4.7 (Perimetric loop). Examples of perimetric loops are curves (cvy,cv,) in
Figure ELTT] (b), curve (cvg) in Figure EETT] (¢) (and each also in Figure EET4) curve
(cv1) in Figure (b), curve (cve) in Figure (c) (and each also in Figure ELT3]),
curves (cvg, cv1, cvy) in Figure (a), and curves (cve, cva, cvg) in Figure (b).

Definition 4.8 (Directed loop). A directed loop T is a sorted sequence of curves
(cvg, ..., cux) that are traversed in a specified common direction: Let max(cv;) be the
maximal curve-end of cv; in the order of the traversal, and let ﬁ(cvi) be cv;’s corre-
sponding minimal curve-end. It holds V0 < i < k : max(cv;) = min(cv(i11) mod k) =
p;. We call p; th i-the connection point.

35The two sets are identical to the homotopy groups of the cylinder.

36Touching intersections and crossings in the corner can be “removed” by symbolically perturbing the
curve of identification: That is, if moving the curve of identification, a touching intersecting either vanishes
or crosses it twice in opposite directions. Following we can ignore it. Crossings in the corners can be handled
by moving them on 0® in clockwise direction symbolically by a tiny amount. Note that this is already
reflected by assigning a curve-end uniquely to one of the four boundary sides.

148 Two-Dimensional Arrangements on Surfaces

We consider two sources of directed loops:

e The insertion of a curve cv at two vertices that short-cuts an inner CCB with

g
given predecessor edges prevy and preve defines two directed loops L ey, =

—
1 1 — (2 2 1
(cvgy .- ycvp _yyev) and Lppey, = (cvg,...,cvp,_j,cv). The curves cv; are

those attached to the edge-range [prev2->next(), previ] (using ->next()). The
curves cv? are those attached to the edge-range [previ->next(), prev2] (using
->next ()). Note that the two directed loops traverse cv in opposite directions.
e A CCB defined by an edge E specifies a directed loop of curves T g- The

direction of E determines the direction of the curves’ traversal.

An important property is that no interior of a curve being part of a directed loop
intersects with the curve of identification. The reason is, that Make_x_monotone_2
splits curves at such intersection. Following, these intersections only take place at
the connection points of a directed loop.

Figure 4.16. Insertions on a surface with an identification

(a) Case (1): Adding (b) Case (2): Adding (c) Case (2): Adding
cv splits F' from F cv splits F' from F by cv splits F/ from F' by
by two non-perimetric two perimetric loops. a perimetric and a non-
loops. perimetric loop.

We next show that directed loops constitute a decisive tool which help to distinguish
between case (1) and case (2). Consider the directed loops fprevl and fprm emerg-
ing upon the insertion of cv on the “cylinder” (i.e., S without possible contraction
points). We have two possibilities:

e Each loop is contractible to a point, that is, non-perimetric. Then, they de-
fine a two-dimensional subface F’ from F' that makes I’ non-simply connected.
Following, we are in case (1); see Figure (a).

e At least one of the loops is perimetric. If exactly one is perimetric, the other
separates a subset F’ that does not make F' locally non-simply connected. This
situation is similar to an inner split; see Figure (c). However, we do not
know which one is perimetric, and in addition, both can be perimetric. This
case also results in a separation of some subset F’. But this time, it is along the
whole loop; an example is given in Figure (b). However, both situations
result in case (2).

4.4. Maintaining a DCFL on a surface 149

Definition 4.9 (Sign of a directed loop). Let I = (cvg, ..., cvg) be a directed loop
with connection points p;, and cv? the pre-image of cv; in the parameter space ®
of S. Remember that we assume 0, and 0;® to be identified. The other case is
symmetric.

The sign of T at p; is given by

+1 if max(cv?) € 9,® A ﬁ(cvgﬂ) mod k) € O1®
ﬁ .
sign(L ,i) := —1 if rTfa?((cv;I’) € 9P A ?I(CUEI;_H) mod k) € 0,d

0 in all other cases

More intuitively, the sign of a directed loop at connection point p; is +1 if the
pre-image of the loop approaches the right boundary of the parameter space, crosses
the left-right identification, and continuous emanating from the left boundary; the
analogy is similar for the negative caseF1

The sign of a directed loop is simply the sum of the signs:
— k —
sign(L) = Z sign(L ,1)
i=0

Observe that a loop with sign zero corresponds to an even number of crossing with
the identification, that is, this loop is non-perimetric. In contrast, a non-zero sign
implies its perimetricy. By how we defined the sign of a directed loop, we also obtain
some geometric interpretation with respect to the corners of the parameter space:

Definition 4.10 (Orientation). Let L= (cvg, ..., cv,) be a directed loop with con-

—
nection points p; and sign(L) # 0. That is, L is perimetric. Denote with cv? the
pre-image of cv; in the parameter space ® of S. Let w be a corner of the parameter
space .

—
We say that L turns to w if there is a cv; with the following conditions:

e pP ;= max(cvf) € 09.
e When traversing 9@ in counter-clockwise order starting in p we meet w before
hitting any other pg’.

—
Otherwise, we say that L abandons from w.

Combining Definitions and we get the following:

Corollary 4.11. A directed loop T with sign(f) =
—
and abandons from Wiy = (Umin, Umin). Ifsign(L) = —1, then it turns to wyi, and

abandons from wy,x.

1 turns to Wmax = (Umax, Umax)

The corollary’s proof is by constructing the different cases. For an example, see
Figure 14 (¢): Lo in the specified direction has positive sign and thus turns to wpax

37In case that some p? is identical to a corner of the parameter space, we again consider a consistent
symbolic perturbation in clockwise direction along 0.

150 Two-Dimensional Arrangements on Surfaces

and abandons from wy;,. Following, the area on S to the left of the directed loop
with positive sign must comprise ¢(wpax), While @(wnyin) is definitely not contained
in this area. The negative case is analog. The reason is that a perimetric loop on a
cylinder is separating, that is, it splits the “cylinder” .S into two disjoint sets.

We are left with the assignments of CCBs. If both fprevl and fpm,l are non-
perimetric, the answer which predecessor edge defines the outer CCB can be deter-
mined by the direction of the edge whose target is the leftmost curve-end of cv. In
the example of Figure (a) prevy is this edge and it is directed from left to right.
Thus, it defines the outer CCB of the new face F”.

— —
In the other cases, we rely on Sprey, = sign(L prey,) and Sprey, = sign(L prey,). Two
possibilities exist for option (a); see also Figure (b) and (c).

o If sprer, = 0, then prev; defines the outer CCB of the new F'. If $ppep, = 0,
then prevy defines the outer CCB of the new F’.

e Otherwise sprep; 7# 0 and Sprep, # 0. In addition, it must hold that s,pe,, #
Spreve- Thus, we only consider spe,,. For the tree-strategy, we have to ensure
that the nesting tree with respect to the reference point is ensured. The CCB
defined by some edge prev; is outer for the new face F” if fprevl abandons from
the reference point. We can sensibly assume w.l.o.g. that the reference point is
identical to wmax. Following, prev; defines the outer CCB of F' if sy, = —1.
In some cases, we may want to choose wp, as reference point. If so, prev;
defines the outer CCB of F” if spey, = 1. For the forest-strategy, this test
is only involved if F' originally has no outer CCB. But as we make F' and F’

equitable on .S, we can let any of prev; or prevy be defining for the outer CCB
of F'.

If we aim for the forest-strategy and F' originally has some perimetric outer CCB
defined by some edge Ey, then F’ is split from F' in the neighborhood of this CCB.
Thus, Fy defines the first outer CCB of F’. However, as F” is separated equitable
from F' it demands for a second one. It will be one of the edges E; (succeeding prev2)
or Fy (succeeding prevl) we added for cv. Note that E; and Ey define outer CCBs

by the forest-strategy. Both CCBs are perimetric and it holds 0 # sg, := sign(fEl),
—

0 # sg, := sign(L g,), and also sg, # sg,. The test which of the two forms the

desired second CCB can also be realized in terms of these signs:

e We know that 0 # sg, = sign(fEO). By Corollary EETT] and its implications,
the outer CCB defined by E; also points into F' if sg, # sg,. Similarly, the
outer CCB defined by Es belongs to F’ if sp, # sg,. Note that exactly one of
Sg, or sg, is expected to fulfill this property.

Surface has two curves of identification: We are left with the case that the para-
metric surface S comprises two curves of identification, that is, there is a left-right
identification and a bottom-top identification. Such a surface is homeomorphic to a
torus; as example, we discuss ring Dupin cyclides in 62 We basically want to ap-
ply the same ideas as for a surface with a single curve of identification. Fortunately,
this case can be simulated: Ideally, one would actually split S along some curve of
identification. This would be the simple solution. However, this “pre-processing”

4.4. Maintaining a DCFL on a surface 151

Figure 4.17. Removing a non-contractible loop L; from a surface with two identifica-
tions results in a subsurface S\ L; that can be parameterized with a single identification.
See red dashed lines in the “recombined” views of parameter space (on each right side).

o
Ly

(a) L1 crosses left-right identifica-
tion once

7
oY

(c) L; crosses left-right identifica-
tion once and bottom-top identifi-
cation once. The black loop Lo is a
perimetric loop in S\ Ly, and thus
also in S. If traversed in the spec-
ified direction is has positive sign
and thus turns to wpax and aban-
dons from wpin. Similar loops ex-
ists in Figure (a) and (b).

[

P
Ly

(b) Ly crosses left-right identifica-
tion once and bottom-top identifi-
cation twice

@

(d) Counter-example: L; crosses
left-right identification twice and
bottom-top identification twice.
This splits ® (and so S) into two
disjoint sets of points, in contrast
to Figures (a-c). In addition, each
loop in pg(®’) is contractible to a
point (e.g., L2)

152 Two-Dimensional Arrangements on Surfaces

contrasts with the on-line strategy of the visitor. Note that due to double identifi-
cation any first non-contractible loop Lq does not split the surface into two disjoint
components. In contrast, the surface “exists” to both sides of the loop, that is, S\ Ly
is homeomorphic to an open cylinder. We refer to Figure EETT for some examples of
such loops in parameter space. This property of L is also the reason why we have to
deal with case (3). Actually, the detection of this case is still undetermined. Notice
that a loop is non-contractible if it crosses a curve of identification an odd number
of times. That is, to decide (3) upon the insertion of a curve, we only have to test,
whether it triggers the first loop that crosses some identification an odd number of
times. Depending on the strategy we can then select option (c) or option (d). See
again Figure LI7 (a-c): The left-right identification is crossed an odd number of
times, while the number of bottom-top crossings varies. The parameter spaces can
be recombined such that a single identification remains, namely the one that has
been crossed by L; an odd number of times, and thus has been selected. If both
identifications are crossed by L1 an odd number of times, each can be chosen.

In fact, as L is formed by curves embedded on S no other loop on the surface can
cross this “curve of identification” Ly. Thus, everything we previously presented for
a surface with a single curve of identification now holds for S\ L;. We only have to
restrict signs of paths with respect to the one identification of S (out of two!) that
is selected by Lq.

4.5. The ArrTopologyTraits 2 concept

In the previous section we contoured which changes the Arrangement_2 package has un-
dergone during its transition to the Arrangement_on_surface_2 package, and we identified
tasks expected from an instance of the TopologyTraits_2 parameter. In this section we
tight the specifications and exactly define the ArrTopologyTraits 2 concept. In our pre-
sentation, we group tasks serving related (or similar) purposes. Although technical, we
omit details in our presentation that are usually expected by an actual reference manual.
In §L0] we shortly review available models for different surfaces, and deep the description
of implementation details for two selected families of surfaces.

4.5.1. Nested types

We expect that each model of the ArrTopologyTraits 2 concept is parameterized by a
suitable geometric-traits class, so each also knows the proper geometric type definitions.
As already noticed, the TopologyTraits_2 parameter replaces the Dcel parameter, so first
of all, a model is expected to provide the following type.

e Dcel — the DCEL-model that is used to represent the two-dimensional subdivision.
It must be a model of CGAL’s ArrangementDcel concept (see [WEZHOT7al). We here
only remember the non-standard extension for it, namely that a face can have no,
one, or several inner and outer CCBs (and isolated vertices). We also remark the
possibility to define a DCEL type that allows to extend its records by additional data;

see also 43

4.5. The ArrTopologyTraits 2 concept 153

As mentioned, visitors combined with CGAL’s generic Sweep_line_2 class-template en-
able to compute various output. As we are aiming to support a basic subset, each model
of the ArrTopologyTraits 2 concept has at least to provide the following visitors:

e Swyeep_line_construction_visitor — this visitor is expected to construct a new ar-
rangement from a set of input curves (or points). It is used by the global CGAL: : insert
function for aggregated insertion of curves into an arrangement, if it is empty. The
concept also expects the Sweep_line_non_intersecting_construction_visitor type,
which either implements a specialized version for non-intersecting curves, or it just
redefines the Sweep_line_construction_visitor, knowing that its Intersect_2 func-
tion object is never queried.

e Sweep_line_insertion_visitor — using this visitor while sweeping over an existing
arrangement inserts a set of new input curves into it. The Arrangement_on_surface_2
packages dispatches this visitor, when calling the global CGAL: : insert function when
aggregately inserting a set of curves in an arrangement which is not empty. Like
for the construction, the Sweep_line_non_intersecting_insertion_visitor type is
also expected. Again, either a specialized implementation takes advantages of the
non-intersection property, or the model redefines the Sweep_line_insertion_visitor
type knowing that Intersect_2 is never called.

e template <class ArrA, class ArrB, class OverlayTraits>
Sweep_line_overlay_visitor — this visitor is combined with the sweep line algo-
rithm in the global CGAL: :overlay function with the goal to compute the overlay of
two arrangements (of different types “A” and “B”, but with same geometry of curves
and same topology of the underlying surface). The recombination of attached data to
two DCEL-records into one is processed according to the given OverlayTraits type.

e template< class OutputIterator >
Sweep_line_batched_point_location_visitor — combining this visitor with the
sweep line algorithm enables to answer a batched point-localization, that is, to lo-
calize a set of points.

In order to simplify the development of visitors, there exists for each task a class-
template that can be specialized using small helper structures respecting the surface’s
topology. The template implements the surface-independent code for a certain objective
(constructing, inserting, overlaying, et cetera) while the helper “fills in” the missing surface-
specific details. Of course, it is allowed, though not encouraged, to develop each visitor
from scratch.

As for the sweep line algorithm, CGAL’s zone algorithm can also be combined with a
visitor instance in order to compute visitor-specific output during the zone computation.
For arrangements on surfaces, an ArrTopologyTraits 2 model is expected to support the
insertion of curves to an arrangement with the following visitor.

e Zone_insertion_visitor — the insertion of a single (weakly) x-monotone curve
into an existing, not necessarily empty, arrangement with the global CGAL::insert
function is internally performed by combining this visitor with the zone algorithm.

154 Two-Dimensional Arrangements on Surfaces

Besides this minimal set of visitors, each model can also provide visitors that enable
other applications. For example, there exists a class-template for a visitor that computes
the vertical decomposition of an arrangement while the sweep processes. As for the others,
we only have to provide the surface-specific helper class. Remember that the zone algorithm
expects the possibility to locate points (or curve-ends). In order to support this, the
following type is expected.

e Default_point_location_strategy_2 — this type must be a model of CGAL’s
ArrangementPointLocation concept. It supports point-location queries in an arrange-
ment. As not all point-location strategies work on all surfaces, a model of the
ArrTopologyTraits 2 concept has to define this type which specifies the default ap-
proach for point locations if no other strategy is provided by the user (e.g., for an
incremental insertion).

4.5.2. The boundary of the parameter space

In addition to the nested types, a model of CGAL’s ArrTopologyTraits 2 concept also has
to provide some member functions. We start with very basic ones. The first provides
information about what happens on the boundary of the parameter space.

e Arr_boundary_type boundary_type(
Arr_parameter_space ps
)
returns the boundary type for a given location on the boundary of the parameter

space: For given ARR_LEFT_BOUNDARY, ARR_RIGHT_BOUNDARY, ARR_BOTTOM_BOUNDARY, or
ARR_TOP_BOUNDARY it returns a value of the following enumeration.

enum Arr_boundary_type
{
ARR_BORDER = 0,
ARR_UNBOUNDED,
ARR_CONTRACTION,
ARR_IDENTIFICATION
s

4.5.3. Members for the DcCEL

The next members are related to the DCEL.

e Dcel& dcel()

returns a reference to the internal DCEL representation. This ensures referential
modifications of the DCEL by the Arrangement_on_surface_2 class-template for non-
boundary cases.

e void init_dcel()

initialize an empty DCEL structure for the specific topology of the surface.

e bool is_empty_dcel()

4.5. The ArrTopologyTraits 2 concept 155

returns true if the arrangement is empty, and false otherwise. An empty arrange-
ment is attained, if no curve or point induces a one- or zero-dimensional cell on S.
In particular, it returns true when called right after init_dcel().

Remember that we allow fictitious DCEL-records. Such records do not store geometric
information, but some topologies rely on them to model certain boundaries as DCEL. On
the other side, a user of an instantiated Arrangement_on_surface_2 class-template does not
want to care about such artificial objects. Thus, the arrangement in cooperation with the
topology-traits class filters unwanted records.

Definition 4.12 (Valid and concrete DCEL-records).

e A face is called valid if it represents an open two-dimensional subset of points on S.
See Figure (a): F; are valid for the unbounded plane, while F is invalid.

e A halfedge is called valid if it is incident to a valid face and represents an open one-
dimensional subset of points on S. The solid halfedges in Figure (a) are valid,
while the dashed ones are invalid.

o A vertex is called valid if it is incident to a valid halfedge. The vertices V; in
Figure (a) are valid, while Vi1, Vi1, Vi, and Vi, are invalid.

e A vertex is called concrete if is valid and has a finite point attached. All vertices
except V; and Vi, Vi1, Vir, and Vi, in Figure E9 (a) are concrete (i.e., the red ones).

To the user, the arrangement class filters non-concrete vertices, and non-valid halfedges
and faces. For this purpose the following members are expected. There are other filters
that also return valid vertices. These are required, for example, in case one wants to run
a graph algorithm on an arrangement.

e bool is_valid_face(
const face *f

)

checks whether a given face is valid.

e Size number_of_valid_faces()
returns the number of valid faces stored in the DCEL. Return type is Size which is

a nested type in Dcel.

e bool is_valid_halfedge(
const Halfedge x*he
)

checks whether a given halfedge is valid.

e Size number_of_valid_halfedges()
returns the number of valid vertices stored in the DCEL.
e bool is_valid_vertex(

const Vertex *v

)

checks whether a given vertex is valid.

156

Two-Dimensional Arrangements on Surfaces

Size number_of_valid_vertices()
returns the number of valid vertices stored in the DCEL.

bool is_concrete_vertex(
const Vertex *v

)

checks whether a given vertex is concrete.

Size number_of_concrete_vertices()

returns the number of concrete vertices stored in the DCEL.

4.5.4. Vertices and edges on the boundary

In §L4 we already detected that the arrangement class is able to handle DCEL-records
in the interior of the parameter space on its own, while for DCEL-records related to the
boundary of the space it relies on external and surface-specific query results. For this reason
it interacts with the following members of a model of the ArrTopologyTraits 2 concept.

CGAL: :0Object place_boundary_vertex(
Face *f,
X_monotone_curve_2 xcv,
Arr_curve_end ce,
Arr_parameter_space psx,
Arr_parameter_space psy

)

We are searching for the position of a vertex to be constructed that represents the
given curve-end. The location of the curve’s end is on the boundary, that is, exactly
one of psx or psy is equal to ARR_INTERIOR. The returned object may either be empty,
it may wrap a fictitious edge that is going to split for the vertex, or it comprises of
a vertex to which to curve’s halfedges will be connected.

void notify_on_boundary_vertex_creation(
Vertex *v,
X_monotone_curve_2 xcv,
Arr_curve_end ce,
Arr_parameter_space psx,
Arr_parameter_space psy

)

This member is called to notify the instance of the ArrTopologyTraits 2 model by
the arrangement on the creation of a new vertex on the boundary. This notification
helps to keep the internal structure of the model up to date, for example, to maintain
a sorted list of vertices for an identification. On the other side, the arrangement class
is still able to send notifications to observers upon structural changes of the DCEL.

4.5. The ArrTopologyTraits 2 concept 157

e void locate_curve_end(
X_monotone_curve_2 xcv,
Arr_curve_end ce,
Arr_parameter_space psx,
Arr_parameter_space psy

)

While place_boundary_vertex is called when information about the face containing
the curve-end is available (e.g., during the sweep), this member locates the DCEL
feature that contains a given curve-end, which must relate to the boundary of the
parameter space. It can either be an existing vertex, an existing edge, or an existing
face. The method forms a subtask demanded by a point location operation.

e Halfedge* locate_around_boundary_vertex(
Vertex *v,
X_monotone_curve_2 xcv,
Arr_curve_end ce,
Arr_parameter_space psx,
Arr_parameter_space psy

)

If a curve-end is detected to be incident to a vertex on the boundary, this function
locates the predecessor halfedge in the circular order of halfedges around the vertex.
The location on the boundary is encoded with psx and psy as for the other two
localizations members. If the vertex is isolated, it returns NULL.

e Halfedge* split_fictitious_edge(
Halfedge *he,
Vertex *v

)

On the other hand, the localization of a curve-end on the boundary might return a
fictitious edge. This member performs the split of the edge at the vertex that repre-
sent the new curve-end. It returns one of the newly incident halfedges to the vertex.
Note that the topology-traits class implements this function, as it is a modification
of the DCEL representing the boundary of the parameter space.

e bool are_equal(
Vertex *v,
X_monotone_curve_2 xcv,
Arr_curve_end ce,
Arr_parameter_space psx,
Arr_parameter_space psy

)

Checks if a given vertex on the boundary is associated with the given curve-end on
the boundary. Is used, for example, to distinguish whether the minimal or maximal
end of a curve is incident to the vertex.

The creation of boundary vertices is not the sole purpose of the traits. If deleting a
curve related to the boundary (or an isolated vertex on it) the DCEL also requires surface-
specific updates that are supported by the following two member functions.

158 Two-Dimensional Arrangements on Surfaces

e bool is_redundant(
const Vertex *v

)

Determines whether the given vertex on the boundary has become redundant. If so,
the arrangement triggers its deletion.

e Halfedge* erase_redundant_vertex(
const Vertex *v

)

Erases the given redundant vertex (e.g., by merging fictitious edges). The function
is not expected to free the vertex. It returns one of the merged twins of halfedges.

4.5.5. Faces and their boundaries

For the last set of members, we turn towards the designated faces of the arrangement. We
start with two simple predicates.

e bool is_unbounded(
const Face *f

)

Decides whether a given face is unbounded.

e bool is_in_face(
const Face *f,
Point_2 p,
const Vertex *v

)

Determines whether the given point lies in the interior of the given face, ignoring inner
components and isolated vertices contained in it. If the point is already associated
with a vertex, then v is not null and finite.

Finally, each model of the ArrTopologyTraits 2 concept must provide information re-
quired to correctly construct or delete faces in sync with proper update of relevant CCBs.

e std::pair<bool, bool> face_split_after_edge_insertion(
const Halfedge *prevl,
const Halfedge *prev2,
X_monotone_curve_2 xcv

)

This member is queried when the curve xcv is going to be inserted at the target
vertices of prevl and prev2. Both determine the position where to insert the new
pair of halfedges in the circular order of halfedges around the vertices. We also know
that both predecessor halfedges belong to the same inner CCB. The function has
to compute what happens when the insert is accomplished. To do so, it returns a
pair of boolean values. The first flag indicates whether the insertion will cause the
face to split. If yes, the second determines whether the split face will form a new
inner component nested below the original face. Otherwise, the split face becomes

4.5. The ArrTopologyTraits 2 concept 159

equitable to the originating one. If the first returns false, the second determines,
whether the two CCBs emerging from a non-simply connected loop on S should be
transformed into two outer CCBs (false) or two inner CCBs (true) We remark
that this function implements the topology-traits class’ decision which out of the four
options (a), (b), (c), or (d) presented in LA (on page [[38) should be triggered.

e bool hole_creation_after_edge_removal(
const Halfedge x*he
)

The function somehow constitutes the complement of the previous one. It determines
whether the removal of a given halfedge (and, of course, its twin) will cause the
creation of a hole. The function is only queried if both he and its twin lie on an outer
CCB, and both do not represent the tip of an antenna.

The remaining two members are related to assignments of the coBsfd

e bool is_on_new_face_boundary(
const Halfedge *previ,
const Halfedge *prev2,
X_monotone_curve_2 xcCv

)

The situation is similar as for face_split_after_edge_insertion, that is, the two
halfedges are predecessor edges of the same inner CCB that is perimetric. They are
used for the insertion of xcv which separates a new face. It must be decided whether
prevl will be incident to this new face or not. That is, it decides whether previ is
going to define the outer CCB of the new face. The split face can be perimetric or
not. The originating one stays perimetric in any case.

Consider as an example the closing of the northern tropic on a sphere in Fig-
ure EETT] (b), where Y ., is finally inside the new face Fg and thus Ej. Similar
situations are given in Figure ELT1] (c), Figure (b) and (c) and Figure (b).
In all these example the split face is perimetric. Figure (c) gives an input where

the split is non-perimetric.

e bool boundaries_of_same_face(
const Halfedge *hel,
const Halfedge *he2
)

The situation is as follows: a perimetric face has just split into two perimetric and
equitable faces. That is, no new inner CCB is constructed. Only two outer CCBs
appear. The halfedge hel defines an outer CCB of the original face, while he2 is an
outer CCB that just emerged along one of the two sides of the perimetric loop that
triggered the split. It must be determined, whether he2 points into the same face
as hel. The actual question is whether the two outer CCBs have different directions
with respect to the face defined by hel.

38This second case, it not yet realized in CcAL’s implementation.
39The current concepts expects is_on_new_perimetric_face_boundary(). However, its actual se-
mantics is not covered by this. Thus, for this presentation we chose to give a less restricted name.

160 Two-Dimensional Arrangements on Surfaces

For an example see Figure (c): Tt must be determined whether the CCB defined
by Es or the one defined by E) (both just emerged) belongs to the same face as Ej
does, namely to the new split face F5. Similar situations are given in Figure EET4 (b)
and (c), and Figure (b).

Let us give some final remarks.

Remarks.

e Remember that DCEL-records for objects in the interior of the parameter space are
created and maintained by the arrangement class itself, while the topology-traits
modifies those related to the boundary of the parameter space. This has impli-
cations on observers attached to an arrangement. Remember that an observer re-
ceives notifications about the arrangement’s structural changes. Our chosen design
still allows the arrangement to send such notifications, even if DCEL-records related
to the boundary of the parameter space are constructed or deleted. For example,
it sends before_split_fictitious_edge() prior to calling split_fictitious_edge(),
and after_split_fictitious_edge() after calling this topology-traits method. Other
examples are the creation and deletion of DCEL-vertices on the boundary.

e Models of the ArrTopologyTraits 2 concept can provide special surface-specific mem-
ber functions. An example is the access to a sorted sequence of DCEL-vertices along
identified boundary sides.

We have to admit, that the concept, although quite stable, is still under development.
The presented details correspond to its status at the date of thesis’s submission. Further
changes that improve or extend the interface are conceivable. In particular, it must be
checked what is missing to finally support isolated vertices on and curves fully contained
in the boundary of the parameter space. In addition, the interface with respect to CCBs
is serving all cases; however, it seems complicated. We hope to be able to simplify it.
However, the design is successful: This fact is emphasized by the variety of existing models.
In §E0] we first list available classes, followed by a detailed discussion of two models that
support important non-linear surfaces.

4.6. Examples

Combining the different possibilities for the four boundaries of the parameter space results
in a large list of feasible (and also some infeasible) topology-traits classes; see Table ETl
The combinations representing basic families of surfaces are already implemented, that is,
CGAL provides geometric-traits and topology-traits classes for them:

For the plane, we distinguish one topology-traits class for bounded curves, and one
for unbounded curves that implements the implicit rectangle of fictitious edges around
the scene; see L4 and [WEZH0O7a]. A set of geometric-traits classes for various kinds
of curves in the plane exists. We exemplary mention classes handling linear objects,
circles, conics, rational curves, and Bézier curves; see also I3 All of them fulfill
UnboundedBoundaryTraits concept at all four sides, that is, each supports curves that ex-
tend to infinity in any direction. The same holds for CGAL’s the generic model named
Curved_kernel_via_analysis_2 that we presented in §ZAA. It is used in [EK08a] to com-
pute arrangements of unbounded algebraic curves of any degree by instantiating the class-

4.6. Examples 161

template with a suited bivariate algebraic kernel. The authors of the article provide CGAL’s
adequate Algebraic_curve_kernel_2.

As first non-planar surface, CGAL provides a topology-traits class for the sphere, which
contracts bottom and top boundary and identifies left and right boundary. A geometric-
traits class for geodesic arcs on the unit-sphere is available. A geodesic arc is the shortest
connection between two points on a surface. Exact rational arithmetic suffices to provide
all relevant geometry-traits operations. The authors of [FHS0S| give details on the traits
classes, and also show various applications. An example is the overlay of maps on a
model of the earth, or to compute a Voronoi diagram of points on the sphere using CGAL’s
generic divide-and-conquer algorithm for lower envelopes. Another application is the exact
computation of Minkowski sums of convex polyhedra using Gaussian maps; see [BEHT07].
There is also a video [ESHOS]. Sébastian Loriot from INRIA (Sophia-Antipolis) is working
on a geometric-traits class that deals with arbitrary circles on a sphere. He adapts previous
work [CLO7] with respect to the design of CGAL’S Arrangement_on_surface_2 package. It
is worth to mention, that he is possible to use the existing topology-traits class for the
sphere. We do not discuss details on these workings.

In contrast, at the end of this chapter, we now focus on two sophisticated examples of
surfaces, namely elliptic quadrics and ring Dupin cyclides. The later constitute a gener-
alization of tori. We present details on both surface-specific topology-traits models whose
discussion comprises interesting aspects to consider with respect to the occurring iden-
tifications. For each surface we provide a juicy geometry-traits class. The remarkable
fact for both geometric-traits classes is, that they reduce the geometry on the surface to
a planar geometry. More detailed, each geometric-traits class inherits from the planar
Curved_kernel_via_analysis_2, and augments (modifies) it case-specifically in order to
model the appropriate “CombinedBoundaryTraits” concept required for the surface.

For each of the two examples in §L6.1 and §EEA we first give a short introduction,
followed by details on the geometry- and topology-traits classes, and conclude with results.

4.6.1. On a quadric

Figure 4.18. Elliptic quadrics

(a) ellipsoid (b) elliptic paraboloid (c) elliptic cyImder

Given a list of quadrics qo, q1, - - ., ¢n. Remember from Definition that a quadric is
an algebraic surface that is formed by the vanishing set of a trivariate polynomial of total
degree 2. We often abuse notation and refer to ¢; as the polynomial and the vanishing set,
depending on the context. We call gg the reference quadric, while ¢;, 1 < ¢ < n are sup-
posed to intersect with ¢g, constituting the intersecting set. We show how to compute the
arrangement on qg induced by the intersecting set using CGAL’s Arrangement_on_surface_2

162 Two-Dimensional Arrangements on Surfaces

package that is instantiated with a proper geometric-traits and topology-traits class. This
implementation is robust, that is, it handles all degeneraciesE and is exact, as all un-
derlying geometric operations follow the exact geometric computation paradigm. For this
example case, we restrict the choice of the reference quadric gg to be an z-elliptic one.

Definition 4.13 (Elliptic quadric). A quadric ¢ is x-elliptic, if the intersection of any plane
x = xo with ¢ is an ellipse (embedded in the given plane).

The set of z-elliptic quadrics comprises all ellipsoids, elliptic cylinders that are un-
bounded in z-direction, and paraboloids that are either unbounded towards x = —oo
or x = +o0o0. Figure collects the three cases. These quadrics have pretty proper-
ties: First, they consists of a single connected component and second, they allow a nice
geometric-traits class that we derive next.

Remarks.

e The techniques that we deploy next can be similarly applied to all other quadrics.
For references quadrics consisting of two connected components (e.g., hyperboloid
of two sheets) two individual arrangements must be constructed.

e There is no restriction on the choice of quadrics ¢1,...,q, in the intersecting set.
They can be arbitrary. In fact, in Chapter Bl we present techniques that enable us to
consider algebraic surfaces of any degree as intersecting set and still using the same
special constructed parameter space that we introduce here.

The geometry

The non-zy-functional elliptic quadric gg can be subdivided into two xy-functional surfaces
(z = f(=z,y)) by asingle curve. This silhouette is given by silhouette(qq) := V(qo)ﬂV(%).
It induces the lower and upper part of gy. For example, the equator splits the sphere into
the northern and into the southern hemisphere. Both hemispheres are zy-functional. The
projected silhouette of gy onto the zy-plane is algebraically defined by Res.(qo, %).

Consider the spatial intersection curve of gy with another quadric ¢;, that is, V(gp) N
V(¢;). The (Zariski-closed) projection of this set onto the zy-plane is a real algebraic plane
curve of total degree 4, defined by Res.(qo,q;). As in Chapter Bl we remember that such
a projected curve can be split at its critical points and its intersection with the projected
silhouette of qg, resulting in isolated points and (weakly) z-monotone curves. Each such
object can be assigned to the lower or upper part of ¢y (in some cases also to both parts);
see [BHKT05)] for details, or §52 for a rollback. In that original work, two individual
arrangements that constitute the subdivisions on the lower part and on the upper part,
respectively, are computed; to merge the two DCEL instances is missing.

In contrast, we here deploy the fact that an z-elliptic quadric qg is nicely param-
eterizable by ® = U x V = %r] x [0,27], with {,7 € R U {zxoo}, using ¢, (u,v) =
(u, y(u,v),r(u,y(u,v), —sinv)) B4 We define y(u,v) = yuymin + (510 §) (Yu,max — Yu,min)-
The interval [Yy min, Yu,max] denotes the y-range of the ellipse that gg induces on the plane

“0Though described in §EZ7 the implementation of the Arrangement_on_surface_2 package cur-
rently lacks support for isolated points and curves on the boundary of the parameter space. Thus, some
special input is not yet handled — in software.

! Actually, the interval U is open on the sides where [or r are infinite.

4.6. Examples 163

x = u. The function r(z,y, s) returns the minimal (s < 0) or maximal (s > 0) element of
Raowy = {2l a0(z,y,2) = 0}, [Reg | < 2.

However, this parameterization is stated only to show its existence. For our practical
realization, we make use of its properties only. Note that the sin-function divides the
parameter space “horizontically” into two parts, namely ®q := [l,r] x [0, 7] and &7 :=
[[,7] x (m,2m). These parts directly correspond to the (closed) lower part of gy and the
(open) upper part of go. As ¢g,(u,0) = @q,(u,27m), we detect a curve of identification
for this parameterization. This curve is a subset of ¢o’s silhouette. Depending on the
type of qo, if [(or r) is finite, we detect a contraction point (ellipsoid, bounded tip of
paraboloid) or an unbounded side (infinite end of paraboloid, cylinder). In Figure we
illustrate such a partitioning on the example of a paraboloid that is intersected by some
other quadrics.

The partitioning into two areas is the key tool to define our special geometry on the
reference quadric using as basic ingredient a planar geometry. Given a point wg = (ug, vp),
with po := @q, (w0, v0) = (Z0, Yo, 20) being its counterpart on qq, the level of py is £ € {0,1}
if wy € ®y,. We represent a point p; = (x;,;,2;) on qo as the combination of a planar
point p;(x;, y;) and its level ¢; € {0,1}. Given two points pi, p2, the uv-lexicographic order
of their counterparts wi,ws in parameter space is reflected by the order of 1 = uq and
X9 = ug, and if u; = ug we infer the v-order from (yi1,¢1) and (ya,%2): If {1 < {5 then
w1 <jex w2 (and thus p; <jex p2), else if /1 = 5 = 0, then wy and wy’s v-order is identical
to the y-order of p; and py. If, finally, /1 = f5 = 1, then w; and wy’s v-order is attained
by the opposite of p; and p,’s y-order.

A u-monotone arc cv on ¢q is represented by a projected arc ¢v that is enhanced by
three levels, namely #,;, at the minimal end of ¢v, f;,.x at the maximal end of ¢v and /¢
representing the level in the interior of ¢v.

Remarks.

e Note that the level in the interior of an arc is constant, as we split each projected
intersection curve also at its intersections with the projected silhouette.

e Remember that ®(is closed, which has the following implication: Consider an arc
with £ = 1 (lying on the upper part of ¢g). If one of its ends lies on gqy’s silhouette,
the level of this end is 0. This holds, in particular, if the end meets the curve of
identification.

Our goal is to reuse the Curved_kernel_via_analysis_2 (that is instantiated with
CGAL’s Algebraic_curve_kernel_2) in order to provide a geometric-traits model that re-
flects our defined lexicographic order in the constructed parameter space of gg. In par-
ticular, we developed the following steps for our model of the “CombinedBoundaryTraits”
concept.

1. Derived Quadric_point_2 from Point_2 and Quadric_arc_2 from Arc_2 that extend

the projected objects with one level (point) or three levels (arc).

2. Derived Quadrical_kernel_via_analysis_2 from Curved_kernel_via_analysis_2. In
this step we replace the point and the arc type by the quadrical derivations. This
requires some worth-to-mention sophisticated template programming. However, we
chose not to do, as these technical details do not serve the simplicity and elegance
of this approach and presentation.

3. Adapted Make_x_monotone_2 to partition the spatial intersection curve of ¢; with gg

164

Two-Dimensional Arrangements on Surfaces

Figure 4.19. |lllustration of simulation of a paraboloid’s parameterization: the dark-
shaded (orange) area represents @, the bright-shaded (yellow) area corresponds to ®;.

I J

Vo
@
"t

(a) On the paraboloid (b) Simulation in the plane
by inversion of upper part

into instances of type Quadric_arc_2 and Quadric_point_2 (for isolated points). Note
that the input type Curve_2 is a second quadric. The actual input is implicitly
defined by the reference quadric and any second. We finally store locations of
points and ends of curves with respect to the parameter space (ARR_INTERIOR or
ARR_[LEFT,RIGHT,TDP,BDTTUM]_BOUNDARY)

. Derived all geometric predicates that involve y-comparisons. The relevant func-

tors are Compare_xy_2, Compare_y_at_x_2, and Compare_y_at_x_right_2. We modified
them to reflect the special lexicographic order of our constructed parameter space.
More detailed, we return the opposite result of comparison of y-coordinates, if both
input objects have level 1.

. Derived and modified constructions with respect to levelling. Relevant functors are,

for example, Intersect_2 and Split_2.

. Derived and modified Compare_[x,y]_near_boundary_2 to reflect the order of curves

close to contracted and infinite boundaries (in “a”-direction) or close to the identifi-
cation (in “y’-direction).

We only discuss Compare_y_near_boundary_2 on the example of a comparison next to
a left contraction point: Given two minimal curve-ends of curves cv; =(¢vy,4;) and
cvy =(CUg, f2) approaching the left boundary (the contraction point). The levels at
their minimal ends must both be 0. If ¢; # ¢5 (the interior levels), the desired v-order
is simply the order of £1 and ¢5. If £; = {5, then both arcs lie on the lower part or both
on the upper part of ¢g. In the first case, the correct v-order is attained by the result
when the projected counterparts ¢v; and ¢vs intersecting at the minimal ends (due
to contraction) get compared slightly to the right of the projected contraction point.
This is established by calling the planar Compare_y_at_x_right_2 for ¢v; and ¢vy and

4.6. Examples 165

their common minimal point (i.e., the projection of the contraction). In case that
both curves lie on the upper part, the opposite of this result reflects the correct v-
order of cv; and cvg near the left contraction. In case of a right contraction point, we
have to use the planar Compare_y_at_x_left_2 and the corresponding maximal ends.
The others cases (unbounded, compare near x) similarly combine level comparisons
and planar predicates.

7. Implemented Compare_x_on_boundary_2 to interface the order of points along the
curve of identification. This predicates uses the planar Compare_x_2 for points. Note
that this is required to implement the IdentifiedBoundary Traits concept.

Conceptually, all these modification and extensions are simple recombinations of the
existing planar (much more sophisticated) counterparts. However, it is the straightfor-
wardness of the levelling that allows to simulate the constructed parameter space of the
elliptic quadric in terms of projection without explicitly knowing the actual parameteri-
zation. As the levels tests are purely combinatorial, we expect that the planar operations
mainly influence the performance of this geometric-traits.

Concerning the implementation, our well-designed derivation hierarchy based on tem-
plate programming allows the definition of the Quadrical_kernel_via_analysis_2 in its
various details. We can even use CGAL’S Filtered_curved_kernel_via_analysis_2 as the
planar oracle inside the Quadrical_kernel_via_analysis_2; see §£33 (page GBS ff).

The topology

The topology of the reference quadric g requires special handling. We next discuss details
of our topology-traits class (Arr_qdx_topology_traits_2) that combines the various cases
(ellipsoid, paraboloid, cylinder). Remember that the topology-traits classes mainly helps
to consistently construct a DCEL respecting the surface’s topology. We already remark
that our model realizes the tree-strategy for ellipsoids and paraboloids, while it applies the
forest-strategy for cylinders.

It starts with the initialization of the DCEL, which for our elliptic quadric gy requires
to construct a single face that has no outer CCBs and no inner CCBs. 1t is bounded, if
qo is an ellipsoid, and unbounded if qq is a paraboloid or a cylinder.

The topology-traits class also maintains special DCEL-vertices, namely those related to
the four sides of the parameter space. For the left and the right side, two special vertices
Vet and Viigng are designated. Such a vertex records the incidences of curves to either a
point of contraction, or an unbounded end depending on ¢q’s shape: For an ellipsoid both
vertices represent contraction points, for a cylinder both represent unbounded sides, and
the orientation of the paraboloid determines whether the left is a contraction and the right
is unbounded, or vice versa. Vertices on the identification of the bottom and top boundary
are maintained in a sorted sequence (std::map). The order of stored vertices is defined by
the order of attached points using the geometric-traits functor Compare_x_on_boundary_2.

The topology-traits class for quadrics also implements the localizations of curve-ends
with place_boundary_vertex (and the similar locate_curve_end). Actually, this is a feasible
task using a case-distinction on the given location in the parameter space. For curve-ends
related to the left (right) boundary, we simply check if Viegs (Viight) is NULL. If so, we return
NULL which triggers its construction, if not, we return the existing vertex. For the identi-
fication this process is preceded by a look-up in the sorted sequence, that is, we actually
check whether the topology-traits is already aware of a vertex on the identification at a cer-

166 Two-Dimensional Arrangements on Surfaces

tain x-coordinate. The update of the records after notify_on_boundary_vertex_creation
relies on the same case-distinction.

It is also expected that locate_around_boundary_vertex locates a curve in the circular
list of incidence curves around a vertex on the boundary. If the vertex equals Vieg or
V3iight our implementation relies on the geometric comparisons Compare_y_near_boundary_2.
For vertices on the identification, our code makes use of an internal functor of CGAL’s
Arrangement_2 package: Arr_traits_adaptor_2::Is_between_cw_2 checks whether a given
curve is in counter-clockwise order between two curves that are already incident to a
vertex. Its implementation is an elaborate combination of the Compare_y_at_x_right_2
and Compare_y_at_x_left_2 predicates.

Besides the localizations, the topology-traits must also provide information on the
consistent construction of faces, and CCBs, in particular, if identifications are existing.
The functions that must be implemented are listed in §£5H As illustrated in 43 each
of them can be implemented with the help of directed loops and the chosen strategy. Let
us start with face_split_after_edge_insertion that is called upon the insertion of a curve
whose predecessor edges belong to the same inner CCB. We have to decide two answers.
The first is whether a face splits. The answer is always true as our parameterization of
a quadric only involves a single curve of identification. Following, the special case (3)
that would require to return false cannot occur. It remains to decide whether the split
face should be nested below the originating one, or to become equitable to originating
one. If qg is an ellipsoid or a paraboloid, we decided to go for the tree-strategy, and,
thus, return true. That is, it gets nested. If ¢ is a cylinder, we follow t_}>1e forest—str_a}tegy
and thus evaluate the signs s,,ep; and Sppey, of the two directed loops L prep; and L prey,
that emerge upon the insertion of the curve cv in focus. If both are non-zero we return
true. This implies that the new split face gets nested below the originating. We trigger
option (a). Otherwise, at least one directed loop is perimetric and thus splits F' such that
no set of points makes the other locally non-simply connected. That is, we are in case (2)
and return false. This triggers option (b) (as we are in the forest-strategy). The split
face is then equitable to the originating one.

The required function is_on_new_face_boundary also exploits the non-zero values of
directed loops to provide their answer. We rely on Corollary EETT] for this purpose; see
also A3 A directed loop with positive sign turns to wmax, which corresponds to Viight-
Following, we decide that the CCB defined by prev; becomes the outer CCB of the new
face, if the sign(fprevl) # 1. These decisions imply that the face which contains g, (Wmax)
is considered to be outermost if we follow the tree-strategy, as we do for ellipsoids. This
invariant is also feasible for a paraboloid that opens towards x = +oo. Note that it
even avoids unbounded leaves in the nesting tree. To also avoid unbounded leaves for a
paraboloid that opens towards © = —oo, we revert the decision: The CCB defined by prev;
defines the outer CCB of the new face, if the sign(fprem) # —1. Following, for such a
paraboloid, the face which contains g, (wmin) forms the root of the nesting tree. For the
cylinder, where we implement the forest-strategy, we can go with any consistent turning
of directed loops towards some corner of ®. Thus, we implement for such a gy the same
decision as for an ellipsoid.

Lastly, the forest-strategy explicitly demands for boundaries_of_same_face that tests,
whether a queried perimetric and outer CCB defined by E’ belongs to the same face as
another given perimetric and outer CCB defined by £. We have seen that this is the

4.6. Examples 167

— —
case if sign(L gr) # sign(L g). Thus, for cylinders, the Arr_qdx_topology_traits_2 class
implements this comparison.

Remark. Tt is superfluous to discuss functions related to fictitious edges here, as the chosen
representation as DCEL goes without such. In addition, we also skip other straightforward
members of the topology-traits concept.

As mentioned in 571 the topology-traits is finally expected to provides some visitor
types. Fortunately, CGAL’s Arrangement_on_surface_2 package already provide generic
implementations for construction, insertion, and overlay utilizing its Sweep_line_2 class-
template. We have to provide the quadric-specific helper classes. The “constructive” helper
is responsible to pre-process events of the sweep line: Whenever an event on the boundary
is going to be considered next during the sweep process, the helper first checks whether the
attached topology-traits class already stores a corresponding DCEL-vertex for the event’s
point (or curve-end, in case of an event at infinity). If this is not the case, it simply
triggers its constructions. In any case, it stores with the event a pointer to the obtained
vertex. This later helps to correctly insert sub-curves into the DCEL that emerge to the
right of the current event. This helper is also responsible to maintain a list of sub-curves
that can see the top boundary of the parameter space. These sub-curves are candidates of
inner components that must be relocated into a newly created split face. We also provide
the helper classes that are required to insert curves into an existing arrangement, or to
overlay two arrangements. Their implementations are similar: Actually, for each involved
arrangement (one in the insertion case, the red and the blue arrangement in the overlay
case), they maintain a pointer to the currently topmost face. A face F' of an arrangement
is called currently topmost if there is a simply-connected path in F' from the current sweep
event to the image of the parameter space’s top boundary. In other words: If the current
event would result in an isolated vertex, then, this vertex would be isolated in F'. Both
helpers update the corresponding pointer(s) upon processing events, that is, each modifies
the pointer(s) when an event on the top boundary is “swept”.

Results

We instantiated CGAL’s Arrangement_on_surface_2 class-template with the two described
traits-classes, which results in a robust algorithm to compute an arrangement on an elliptic
quadric. Even if the arrangement is highly degenerated it is successfully constructed by
this piece of software, as the example in Figure shows.

Base Ellipsoid Cylinder Paraboloid

Data|| #V #E #F |t (s)|| #V #E #F|t (s)|| #V #E #F|t (s)
q50 5722 10442 4722 28.3|| 1714 3082 1370| 12.5|| 5992 10934 4944| 29.3
q200 || 79532 155176 75646|399.8 || 27849 54062 26214 |189.9|/ 82914 161788 78874 |418.3
e50 870 1526 658 | 7.2 1812 3252 1442| 144 666 1092 428| 6.6
€200 (| 10330 19742 9414| 74.6 (/24528 47396 22870|175.8|| 9172 17358 8189| 68.8

Table 4.2. Performance measures for arrangements induced on three base quadrics by
intersections with 50 or 200 quadrics (q), or ellipsoids (e).

To demonstrate efficiency we also measured the performance when computing the ar-
rangement on given base quadrics induced by intersections with other quadrics. As base

168

Two-Dimensional Arrangements on Surfaces

Figure 4.20. Degenerate arrangement on an ellipsoid induced by 23 other ellipsoids

intersecting it

Seconds

Ellipsoid (q) —e—
Cylinder (q) —=—
Paraboloid (q) —=—
Ellipsoid (e) —&-—
Cylinder (e) ——
Paraboloid (e) —&-—

100 200

Number of Quadrics

Figure 4.21. Performance measures for arrangements induced on three base quadrics
by intersections with quadrics and ellipsoids (in seconds).

4.6. Examples 169

quadrics we created a random ellipsoid, a random cylinder, and a random paraboloid.
These quadrics are intersected by two different families of random quadrics. The first
family consists of sets with up to 200 intersecting generic quadrics, sets of the other family
include up to 200 ellipsoids intersecting each of the base quadrics. The coefficients of all
quadrics are 10-bit integers. All performance checks are executed on a 3.0 GHz Pentium IV
machine with 2 MB of cache, with the exact arithmetic number types provided by LEDA
and using CGAL’S Algebraic_curve_kernel_2 in wrapping mode for analyses of curves in
the plane. That is, we rely on the curve analyses specialized to the quadrical case taken

from EXACUS; see also [BHKT05].

Table shows for selected instances the number of induced cells, as well as time
consumption in seconds required to construct the individual arrangements. Figure EE2T]
illustrates the average running time on up to 5 instances containing sets of ellipsoids (e)
and general quadrics (q) of different sizes intersecting different base quadrics. Growth is
super linear in the number of quadrics, as one expects for a sweep line approach.

Clearly, the more complex the arrangement, the more time is required to compute it.
To give a better feeling for the relative time consumption, we indicate the time spent for
each pair of half-edges in the DCEL of the computed arrangement. This time varies in the
narrow range between 2.5 ms and 6.0 ms. Other parameters have significant effect on the
running time as well, for example the bit-size of the coefficients of the intersection curves.

We next want to analyze the influence of the chosen topology-traits class. For these
experiments we intersect instances from [Hem(8|| containing 10,20,40, and 80 quadrics with
the three reference quadrics (ellipsoid, cylinder, and paraboloid). For each combination we
compute three arrangements. Two planar ones, as in m, that separately represent
the induced arrangement on the lower and upper of the reference quadric, and one directly
embedded on the surface using our new Arrangement_on_surface_2-framework with the
quadrical topology-traits class. The splitting step is identical in both cases, as we have to
assign arcs of planar curves to the lower and upper part of the reference. These experiments
were executed on an AMD Dual-Core Opteron(tm) 8218 multi-processor Debian Etch
platform, each core equipped with 1 MB internal cache and clocked at 1 GHz. The total
memory consists of 32 GB. As compiler we used g++ in version 4.1.2 with flags -02 -DNDEBUG.
For analyses of planar curves we rely on CGAL’S new Algebraic_curve_kernel_2 (in non-
wrapping mode).

Table gives the performance numbers of these computations. First of all, the
obtained results show that the quadrical topologies are almost as fast as the two planar
arrangements. However, they also compute slightly more: The two planar arrangements
are not yet connected and this step requires non-trivial further processing. In contrast,
the quadrical arrangement already correctly represents the reference’s subdivision into
cells of dimension 0, 1, and 2 induced by the intersecting quadrics. This also explains the
non-matching numbers of cells: Vertices lying on the silhouette of the reference quadric
are reported in each planar arrangement, but only once in the quadrical one. Further
more, the planar arrangements are not bounded by the projected silhouette. Thus, their
number of faces is typically smaller than for the on-surface arrangement. Besides saving a
post-processing step, there is one more thing: CGAL’S Arrangement_on_surface_2 package
is able to directly overlay two such arrangements. And one more: CGAL supports point
location queries on such arrangements. And more; see [WEZHO7H].

170

Two-Dimensional Arrangements on Surfaces

Reference: Ellipsoid

Split sweep two planar arrangements sweep ellipsoidal arrangement
Tt AV 7 I TG AV #6 #F] £
10| 2.36 2134217 295-+289 84+84 1.29 396 584 190 1.36
20 || 4.18 544+540 8444838 3024300 4.53 || 1038 1682 646 4.90
40 || 7.62 || 1831+1837 319243210 136341375 | 20.57|| 3568 6402 2836 21.50
80 || 15.47 || 7187+7191 13363+13379 6178+6190 | 97.66 || 14144 26742 12600 104.56

Reference: Cylinder

Split sweep two planar arrangements sweep cylindrical arrangement
t (&) 7V 7B FF] t ()| _#V __#E _FF] t ()
10 1.65 1914179 2604240 71464 1.17 344 500 158 1.23
20 3.38 5514509 8524780 3034273 4.74 1012 1632 622 5.00
40 6.76 || 1821+1755 316843040 1349+1287 | 21.28 3474 6208 2736 22.57
80 || 14.28 || 7086+6914 13179412831 6095+5919 | 100.91 || 13768 26010 12244 108.76

Reference: Paraboloid

Split sweep two planar arrangements sweep paraboloidal arrangement
7t AV 7 A O | A2 20
10]] 1.02 28416 37+13 11+2] o0.14 36 50 17 0.14
20| 1.86 124196 181+129 60+35| 0.93]] 196 310 116 0.96
10| 4.83(] 469+337 7871533 3211198 | b5.21|| 756 1320 566 5.38
80 || 9.87 | 130311267 230012272 1008+1006| 20.25| 2472 4580 2110 20.90

Table 4.3. Comparing planar and quadrical topologies: We report performance mea-
sures (in seconds) for random quadrics intersecting three reference quadrics and distin-
guish the computation of two planar arrangements and one quadrical arrangement.

4.6.2. On a (ring) Dupin cyclide

We come to our final example, namely to compute arrangements on a parameterized ring
Dupin cyclide Z. The family of Dupin cyclides contains regular tori as a special subset.
The arrangements that we consider are induced by intersection of the arbitrary algebraic
surfaces St, ..., S, with the given reference cyclide Z. This example is interesting for two
reasons. First, the reference surface has genus one. Secondly, the geometric-traits class
that we derive for this purpose is the first non-planar class that really makes use of a
surface’s (rational) parameterization. Remember that the quadrical class simulates the
parameter space by projection, while the one representing geodesic arcs on the unit sphere
relies on vectorial directions; see [FHSOS].

We first shortly introduce Dupin cyclides, along with a rational parameterization, then
show how we provide a suited geometric-traits class that does not assume generic position,
followed by details on how to consistently construct the DCEL with the help of a cyclidean
model of CGAL’s ArrTopologyTraits 2 concept. This finally leads to an implementation
of an algorithm to construct and overlay arrangements on a cyclide. We conclude with
experimental results.

Dupin cyclides have been introduced by Dupin as surfaces whose lines of curvature are
all circular [Dup22). Later, the usage of the term cyclide has switched for quartic surfaces
that contain a circle at infinity as double curve [Eorl2]. Since then, Dupin’s surfaces are
explicitly tagged with his name, namely Dupin cyclides. We only refer to the original
definition. Hence, and for short notation, we always simply refer to cyclides. One can

4.6. Examples 171

imagine a (ring) Dupin cyclide as a torus with variable, but positive@ tube radius. Dupin
cyclides are the generalization of the natural geometric surfaces like planes, cylinders,
cones, spheres, and tori. Due to this fact they are privileged for applications in solid

modeling; see, for example, [CDHS9)|, [Prad0], [Boed0], [Ioh93], [Prads].

The following parameterization already appears more detailed in [Biih95, §1], while
a quite intuitive construction of a (Dupin) cyclide is due to Maxwell, who we cite from

Boehm [Boe90):

“Let a sufficiently long string be fastened at one end to one focus of an
ellipse, let the string be kept always tight while sliding smoothly over the
ellipse, then the other end sweeps out the whole surface of a cyclide Z.”

Observe that a torus is yield if the ellipse is actually a regular circle. For simplicity of
presentation, we assume that a cyclide is in standard position and orientation, that is, the
chosen base ellipse is defined by

(x/a)® +(y/b)* =1, a>b>0

Figure 4.22. Two examples of ring Dupin cyclides

(@)a=2,b=2,pu=1 (b) a = 13, b = 12, p = 11.
We indicate outer circle, tube cir-
cle, and pole; see below.
All cyclide pictures are produced with xsurface that is based on CaaL’s planar curve renderer [Eme07|. The

author thanks Pavel Emeliyanenko for his contribution.

For our practical realization, below, we allow cyclides to be translated or even rotated
by a rational matrix. Three parameters uniquely define the cyclide in standard position: a
and b determine the base ellipse, while p helps to encode the length of the string given by
1 — a. However, choosing arbitrary values for these parameters, may also lead to cyclides
that contain self-intersections, that are currently beyond the scope of our work We
define ¢ = va? — b2, which represents the distance between the focus and the center of

*2If the radius would drop to zero at one position, we would get the disallowed croissant surface; see
Figure EE4

“3Self-intersections of surfaces are not (yet) handled by Ccar’ Arrangement_on_surface_2 frame-
work.

172 Two-Dimensional Arrangements on Surfaces

the ellipse. In combination with u it allows to distinguish three types of cyclides; see

also [Bez(7].

0 < p < ¢ In this case, the cyclide has two pinch points and is called horned cyclide. Such
a surface looks like a torus with two contractions (i.e., the union of two surfaces
topological equivalent to spheres, but touching at two isolated points; none is inside
the other).

¢ < i < a In this case, the cyclide looks like a squashed torus. Such a surface is free of
(real) pinch points. It is called ring cyclide. Its shape looks like a closed tubical loop
of variable radius; see Figure for two examples. We focus on such cyclides for
our work.

a < p This relation results in a spindle cyclide. The resulting surface contains again
two pinch points that connect two components that are topologically equivalent to
spheres. In contrast to a horned cyclide, one of these components is “in the interior”
of the other (except for the touching points).

i = ¢y, p = a These cases form intermediate degenerate cases (e.g., u = a is a surface with
a single pinch point) that are (currently) of no special interest for our objectives.

For more details on the classification of cyclides (there are, e. g., also parabolic cyclides),
we refer to [CDHRY| and, for a quick overview, to [I7].

Very important for us is that ring Dupin cyclides are rational surfaces; see Defini-
tion Z32 Several parameterizations exists. The following goes back to Forsyth [EorI2].
He proposed two alternative implicit equations of the regular cyclide (torus). The non-
torus case is a natural extension of the following.

(@ +y? +2° =+ 1) = dlax —cp)® + 407y (4.1)
(@ +y° +2° — > = 1) = d(cx —ap)® — 4727 (4.2)

It is easy to prove that the intersection of the cyclide with the plane y = 0 results in

two circles [Joh93]
(x+a?+22 = (u+e) (4.3)
(x—a)’+2" = (n—r¢)

and the intersection with z = 0 are the two circles

(z+c)?+y* = (a+p)’ (4.5)
(z—c?+y* = (a—p)? (4.6)

As we are considering the case of a ring cyclide, we always have that the interiors of
of @3) and () are disjoint, and that the circle (0] is fully contained in the interior

of (E3).

A (trigonometric) parameterization of the cyclide is given by

p(c—acos a cos B)4b2 cos a
a—ccos a cos 3
«Q b(a—p cos) sin v
—> _
5 a—ccos a cos (3
b(ccos a—p) sin 3
a—ccos a cos 3

4.6. Examples 173

with a, § € [—m, 7.

Special diligence is required for the boundaries of the parameter space.

Lemma 4.14. If « = 7 or (o« = —m) is fixed, the parameterization above yields the
circle (x +a)®> + 22 = (u+¢)?. If 3 = w (or B = —7) is fixed, it yields the circle
(v +¢)? +y? = (a + pu)?. We call these circles tube circle and outer circle, respectively.

Proof. Fix a = m, which yields to the parameterization

p(ctacos B)—b?
a+ccos 8
B 0
—b(c+p)sin g
a+ccos 8
Since the denominator does not vanish, this parameterizes a closed path in the plane
y = 0, so it must be one of the circles ([E3)) or (). By setting § = 7, we get the point
(—p—c—a,0,0), so it must be circle (3)). The same argument can be used for § =7. O

The point p := (—pu — ¢ — a,0,0) itself is special, as it is the intersection of the tube
circle and the outer circle. We refer to it as the pole of the cyclide.

By now, the parameterization is trigonometric. However, we aim for a rational pa-
rameterization that allows to represent the intersection of an algebraic surface with Z as
planar algebraic curve. We use the standard trick to get rid of the trigonometric func-
tions (compare [(Gal01]) using the following identities:

P 1 — tan? g 0 2tan g
CoOst) = ———— sinf = ——=—
1+tanzg 1+tan2g
8

If we now set u := tan § and v := tan 5, we obtain

P:R? — R3,

ple(1+u) (140%)—a(1=0?)(1—u?))+5* (1—u?) (1++%)
a(l4+u?)(1+v2)—c(1—u?)(1—v?)
(V) -

2u(a(1+v2)7u(171;)b

)

a(l+u?)(1+v2)—c(1 (1—v?)
2v(c(1—u?)—p(14+u?))b

a(l+u?)(1+v2)—c(1—u2)(1—02)

v

Observe, that the image of P is the cyclide without the tube circle and the outer circle.
To close this gap, we set a = 7 (or 8 = 7) and apply the same trick. This yields rational
parameterizations of the tube circle and of the outer circle. Alternatively, we also get these
circles by taking the limit of P when u — £o00 (v — +00), that is, we could consider an
(implicit) compactification of R? as U x V.

There is also a geometric intuition behind this parameterization. We can think of
cutting the cyclide along the outer circle and tube circle and “roll out” the surface to cover
the plane. Thus, we also refer to the outer circle and the tube circle of a cyclide as its
cut circles.

Note that there also exists other parameterizations of the cyclide that do not roll it out
to the whole plane, but only to a bounded space [Bez()7]. However, what follows does not
benefit from such a parameterization, in fact, we later re-interpret infinity which simplifies
matters.

174 Two-Dimensional Arrangements on Surfaces

Internally, we deal with a homogeneous parameterization of the cyclide, that is, the non-
zero denominator can be written as a separate variable. Define uy := 142, u_ := 1 —u?,

vy :=1+v*and v_ :=1— 02

plcuyvy —au_v_) +b?u_vy
porz_ps (V). 2u(avy — po_)b
R\ v 2v(cu— — pug)b
U4 U4 — CU_v_

Homogenization also applies for the outer circle

pleuy +au_) + b2u_
2u(a + p)b
0
auy + cu—

PO : R—P3, uw—

and the tube circle

p(cvy +av_) — vy
0
—2v(c+ p)b
avy + cv_

PT : R—>]P’H3§, V=

Finally, we also write the pole in homogeneous coordinates. Note that p indeed represents p,

since b2 = a? — 2.

—pla—c) b

3>
li
o

We eventually consider as parameterization of Z the function ¢z whose parameter
space ® is the compactified plane R2. The function ¢z is combined from]3, PAO, PT ,
and p. ® has interesting conditions on its boundaries. Namely, we detect identification
of both opposite pairs of boundaries. More precisely, Yo € V, @z (tumin, V) = ¢z (Umax, V)
and Yu € U, @z (u, Umin) = ©z(U, Vmax), so for each point on the outer- and the tube-
circle there exist two pre-images in parameter space. For the pole we even see four such.
We have to deal with these identifications. For example, when we sweep with a circle
of variable radius along the tube of the cyclide, that is, the image of the line u = wug
under pz. Two goals must be achieved: First, we require a unique order of events in the
parameter space. Second, for a point on the cyclide with multiple pre-images, we actually
want to construct only one DCEL-vertex. How to tackle these two problems has abstractly
been discussed previously. Practically, it is required to provide a suited geometric-traits
class and a suited topology-traits class. We next present both and start with details on
a geometric-traits class that allows to consider arrangements on a ring cyclide induced
by algebraic surfaces intersecting Z. Below, we continue with particularities on a proper
model of the ArrTopologyTraits 2 concept required for the cyclidean topology.

4.6. Examples 175

The geometry

Consider the reference cyclide Z and an algebraic surface S; intersecting it. We aim to
represent the induced curve Z N S; as algebraic curve in the two-dimensional parameter
space of Z. However, we have to deal with some peculiarities when interpreting a curve in
the parameter space as “existing on the cyclide”.

Let g; € Z[x,y, z] be the defining polynomial of surface S;, with total degree D;. We
denote with g; the homogenization of g;.

Lemma 4.15. The vanishing set of f; := §;(P(u,v)) € Z[u,v] parameterizes the intersec-
tion points of g; with the cyclide without those at the cut circles.

Proof. By definition, the vanishing set of g;(P(u,v)) in R? defines the intersection curve
of g; and P away from the cut circles. On the other hand, g;(P(u,v)) = 0 if and only if
fl' = g}(P(u,v)) = 0.]

Figure 4.23. Two cut-outs of an arrangement in the planar parameter space of a
cyclide. It is induced on the surface by 5 intersecting surfaces of degree 3 and consists
of 208 vertices, 314 edges, and 107 edges. rendered with [7]

|
.’
|
|
|
{

I

(a) Overview (b) Closeup view

That is, for a set of input surfaces gi,..., g, intersecting the cyclide, we obtain a
set of real algebraic curves in the parameter space of the cyclide defined by polynomials
fiy--+y fn € Z]u,v]. Figure shows an example of such curves. This way we reduced
the geometric part of the arrangement computation on the cyclide to a geometric part of an
arrangement computation in the plane. However, this still requires to compute an arrange-
ment of algebraic curves embedded in the real plane. The curves we have to consider have
a relative high degree. Correctly, they reach bidegree (2 deg(g;),2- deg(g;)). As we allow
the g; to have arbitrary degree, we require a model of CGAL’s ArrangementTraits 2 con-
cept that supports algebraic curves in R? of any degree in order to compute the induced
planar arrangements. Such a model is given by CGAL’S Curved_kernel_via_analysis_2
(see §ZZA), if instantiated with CGAL’s Algebraic_curve_kernel_2provided by Eigenwillig
and Kerber [EK08al; we call this planar traits Curved_kernel_via_analysis_2< ACK_2 >,
or CK_2 for short. Details about the efficiency of the used algebraic kernel are collected
in 331 We only remember, that the non-avoidable symbolic computations in the kernel
(computation of subresultant sequences), actually limits its usability for curves of higher

176 Two-Dimensional Arrangements on Surfaces

degree; and thus for surfaces intersecting the cyclide. The planar kernel assumes no con-
ditions on the input. Covertical events, vertical asymptotes, and singularities poses no
problem for the outcome of expected analyses of curves and pairs of them. Only running
time can be affected by such degeneracies. For example, some cases require a linear change
of coordinates (i.e., shear) with a subsequent back-shear step in order to report the results
with respect to the original coordinate system. Nevertheless, we can conclude that no
conditions on the algebraic surfaces g; intersecting the cyclide are imposed.

Remark. There might be other parameterizations of the cyclide that lead to curves f; of
smaller (bi-)degree, which would also show that P results in curves of non-optimal degree.
However, it is unknown whether such a parameterization (if existing) is applicable for our
purpose. In particular, it must be checked whether the chosen implementation still works,
and if so, which modification are expected.

Representation The CK_2 itself is a model of the UnboundedBoundaryTraits concept in
both variables; see hierarchy in Figure We have to adapt it with respect to the
cyclidean topology. We next show how to turn it into a model, called

Arr_surfaces_intersecting_dupin_cyclide_traits_2

and fulfilling the IdentifiedBoundaryTraits concept; again in both variables. For simplicity,
we refer to it as the Cyclide_geo_traits_2.

The Cyclide_geo_traits_2 is derived from CK_2. An instance is constructed from a
given reference cyclide, which is stored as the traits’ status. The first required modification
is the redefinition of the nested Curve_2 to Algebraic_surface_BE that is, the type of alge-
braic surfaces. This redefinition implies also an adaption of the model’s Make_x_monotone_2
functor@ which splits an instance of type Curve_2 into instances of type Point_2 and
X_monotone_curve_2. At this point, we mention that points and arcs on the cyclide are
represented with respect the cyclide’s parameter space. This also explains the deriva-
tion of Cyclide_geo_traits_2 from CK_2. Thus, the realization of Make_x_monotone_2 is
two-step. First, we apply for the given surface Lemma EETH This requires access to the
stored reference cyclide. Second, we decompose the resulting planar curve into (weakly)
z-monotone arcs and isolated points using CK_2’s version of Make_x_monotone_2. Observe,
that we do not need to derive specialized classes for Cyclide_geo_traits_2’s Point_2 and
X_monotone_curve_2 types. Even the assignment to the boundaries of the parameter space
keeps valid, with the difference that we now interpret the infinite boundaries as identifica-
tions.

Remark (Points and curves on cut circles). Actually, there is one subtlety in this interpre-
tation. Isolated points and curves fully embedded in one of the cut circles cannot be
represented with the CK_2’s point and curve type. Remember that such objects have
multiple pre-images in the cyclide’s parameter. CK_2 is not expected to represent such
objects at infinity, while Cyclide_geo_traits_2 re-interprets the compactification of R?
as being on the surface of the cyclide. However, although theoretically described how to
deal with events related to such special points and arcs (see §£2), the completion of the

44t‘.ypedef Algebraic_surface_3 Curve_2;
“5Observe for this part of the text that the geometric-traits class uses the variable names z and y, while
in our case we actually refer to u and v.

4.6. Examples 177

Arrangement_on_surface_2 package with respect to such objects is planned for the future.
Once this objective is reached, derived Cyclide_point_2 and Cyclide_x_monotone_curve_2
classes with specialized constructors become required.

Anyhow, let us mention that for a complete surface g;, the formal leading coefficients
of the resulting polynomial f; already encodes some special intersections with respect to
the cut circles of Z. Observe that deg. . (fi) < 4n, deg,(fi) < 2n and deg,(fi) < 2n.

Lemma 4.16. Let coef(f;, zp,7) € R[z1,...,24_1,Tp41, ..., Ty] denote the coefficient of f
in x}. Then, we have

PT(v)) = coef(fi,u,2D;)
Gi(PO(u)) = coef(fi,v,2D;)
3i(p) = coef(coef(f;,u,2D;),v,2D;).

Proof. The function coef(-,xp,r) is linear. Thus, it suffices to show the equality for the
case that § = z%y% 2% w is a monomial with d, + dy+d, +d, = D;. We show the first
part of the lemma, while the two remaining statements follow similar arguments.

Since for d,, > 0, §;(PT(v)) = 0, and also, deg, (f;) < 2D;, we can assume that d, = 0.
Let Py,..., Py denote the polynomials of P’s parameterization. Then, we have

coef(f,u,2D;) = (coef(Py,u,2))% (coef (Ps, u, 2))% (coef (Py, u, 2))%,
and comparing this with §;(PT(v)) yields the desired equality. O

Lemma, also has a geometric interpretation, namely it shows that isolated inter-
section points on the cut circles appear as real roots of coef(f;, u,2D;) or coef(f,v,2D;).
In addition, it is possible to detect special intersections with the cyclide.

Corollary 4.17.
e deg, (f;) < 2D; if and only if g; and Z intersect in the whole tube circle of Z.
e deg, (fi) < 2D; if and only if g; and Z intersect in the whole outer circle of Z.
o deg.1(fi) < 4D; if and only if g; and Z intersect in the pole of Z.

This information can be used in the future when constructing special representations
for points and arcs embedded in the cut circles. We remark that computing the degrees
is a cheap task, while the root isolation is performed anyway, namely when determining
the asymptotes of f; below. We already encourage to cache such information in an actual
implementation.

Predicates and constructions Besides the geometric representation, we also expect from
the Cyclide_geo_traits_2 class to provide geometric predicates and constructions. Not
any modification of the CK_2 is required to predicates that relate to the interior of the
parameter space. First, remember that the Arrangement_on_surface_2 package cleverly
combines the outcome of a set of comparisons of near (or on) the boundaries in order to
obtain a unique order for the sweep line events. In particular, the geometric-traits class
is asked for the horizontal or vertical alignment of two curve-ends infinitesimally away

178 Two-Dimensional Arrangements on Surfaces

from a boundary. In our case, the order of curve-ends approaching a cut circle is encoded
by the order of the corresponding curve-ends in parameter space approaching infinity.
Thus, we again only re-interpret CK_2’s existing functors Compare_x_near_boundary_2 and
Compare_y_near_boundary_2 that compare curve-ends approaching infinity in parameter
space as functors that compare curve-ends approaching a cut circle.

However, some functors have to explicitly care about the boundary of the parameter
space. The prominent among them are the ones demanded by the IdentifiedBoundary Traits
concept, in particular, Compare_x_on_boundary_2 and Compare_y_on_boundary_2. Both must
compare “points” that are lying at infinity in the parameter space. To simplify, we can
assume, that we consider curve-ends of unbounded arcs of a curve f;. There are two
representations for such an end:

e Either, the arc is asymptotic to a vertical line u = wug, that is, it approaches the
top- or bottom-boundary. Then, we know a symbolic endpoint (ug, f;, £00). By
Theorem we know that g is a root of lcf, (f;). The order of two such points on
the bottom-top-identification is given by the order of their u-values.

e Or, second, the arc approaches the left or right boundary, which means that its end
is represented by a symbolic point (£o0, f;,a;), where a; is the point’s arc number
on f;. However, this information is not sufficient to compute the v-order of two such
points, especially to detect their equality. Thus, we next show how to obtain more
information on the symbolic endpoint of arcs that extend to u = 4+oo. Such an
arc can have a horizontal asymptote v = vg. In this case it represents an arc on
the cyclide that intersects the interior of the tube circle at PT(vp) and thus lies on
the left or right boundary. Finally, it can also be unbounded in v as well. Then it
converges to one of the four corner points (£o00,+00) in parameter space. On the
cyclide, such an arc runs into the cyclide’s pole.

For the further considerations on this second case, we restrict to a single algebraic plane
curve f. In the actual realization of Compare_y_on_boundary_QE we apply the following
method to both curves currently in focus. It is well known, that an algebraic curve only
has a finite number of easily computable horizontal asymptotes. Their v-values are defined
as roots of the leading coefficient lcf,(f); see Theorem

This observation leads to an algorithm that assigns curve-arcs approaching v = 400 to
the finite number of possible symbolic endpoints (+oo,v;), l =0,...,k+1, where vg = —00
and v = +00, and v; < ... < v denote the sorted real roots of lef, (f)(v). We next
define k + 2 buckets (—00,qo0), (0,91), - -+, (qk—1,4k), (qk,00) With the help of computed
intermediate rational values qo,...,qr with v; < ¢ < vy4q for all I € {0,...,k}. Observe
that each bucket (g;,¢+1) contains exactly v;. The handling of the left and the right side
boundary are similar, thus, we restrict Algorithm ETl for simplicity to the left case.

46Observe the naming v = y.

4.6. Examples 179

Algorithm 4.1. Assign arc numbers of curve to non-vertical asymptotes

INPUT: Plane algebraic curve f

OuTPUT: Assignment which arcs number of f at u = —oo correspond to which non-vertical
asymptote of f.

1. Choose a (rational) value u, to the left of any critical x-coordinate of f (i.e., x-
coordinates of f’s singularities, f’s z-extreme points or f’s vertical asymptotes are
critical). The required u, is easy to compute, as f’s analysis is aware of all of its
critical z-coordinates.

2. Next, compute

Uleft ‘= min{uh lir(r)linkmin{,u | f(lu’? ql) = 0}}

geoo

by isolating the real roots of f(z,q).
3. Finally, isolate the real roots v},...,v; of f(wef,v), and determine with interval
refinements the bucket each vj falls into. This gives the desired assignment.

An illustration of Algorithm BTl is given in Figure 224l Theorem gives the cor-
rectness of the algorithm. In our implementation, we do not use the algebraic number
Ueft, but a rational value to its left. This choice still ensures the correct assignment.

Figure 4.24. Connecting arcs with non-vertical asymptotes taken from [BK08]

————--l —

| oo
e 1

(00, —00) & (Uleft I

(a) Symbolic endpoints for the (b) Roots of the curve for a wes

left ends of the curve, and the that is to the left of any bucket

buckets of the curve. change. Information about non-
vertical asymptotes can be read
off directly.

Theorem 4.18. Let the v] of f(uies,y) be in the bucket of vj. Then, the I-th arc of f with
u — —00 converges to (—o0,v;).

Proof. Since ujesy < Uy, vl’ lies on the [-th arc of f that goes to u = —oo. Moreover, et
is smaller than any root of f(z,qp), h =0,...,k. It follows that f does not intersect any
line x = g on the left of ug. Consequently, the I-th arc of f cannot change the bucket
anymore to the left of uje. So, (—o0,v;) is the only possible end of the arc. O

180 Two-Dimensional Arrangements on Surfaces

All other “planar” functors only need small wrappings in order to work “on the cy-
clide”. For example, each end of a curve is now finite, or Intersect_2 also has to report
intersections on the boundary, which again requires to detect whether two arcs have the
same asymptote. The computation of the vertical alignment of two curves right (left) of
an intersection point must also be adapted if the intersection lies on the boundary. Usu-
ally, a proper call of Cyclide_geo_traits_2’s functor Compare_y_near_boundary_2 gives the
answer, except for the pole that requires to use the information whether the arcs actually
approach the “bottom corner points” or “top corner points” of the parameter space.

The topology

As for a quadric, the topology of a cyclide requires special attention. We already remarked
on the existence of two identifications in its parameter space. Our cyclidean topology-traits
class (Arr_dupin_cyclide_topology_traits_2) is aware of these specialties with respect to
this surface of genus one.

The initial DCEL of an empty arrangement on a cyclide consists of a single bounded
face that has neither an inner nor an outer CCB. We are going to implement the forest-
strategy for this traits class. For each identification we maintain a sorted list of DCEL-
vertices, or more intuitively: One for each cut circle. Their order is determined by
Compare_x_on_boundary_2 and Compare_y_on_boundary_2 provided by our new cyclidean
geometric-traits class. The functors compare the parametric values of points on the cut
circles, that is, according to PO and PT. The localization of vertices on the boundary
(with the help of place_boundary_vertex and locate_curve_end) is again feasible. It only
requires to perform a binary search in the correct list. Either, a vertex is found and re-
ported, or NULL is returned. If so, the found position is used for the subsequent update
operation triggered by notify_on_boundary_vertex_creation. This way, the arrangement
itself is responsible to construct vertices, while the topology-traits class keeps the control
for DCEL-records on the boundary. This process forms an important part of the on-line
realization of the existing identifications. For the deletion of a vertex the process is similar.
Again, the localization of a curve in the circular list of incident curves around a vertex
is performed with the help of Arrangement_on_surface_2-internal functor Is_between_cw_2
that returns true if a curve is counter-clockwisely in between two curves meeting at the
same point.

An instance of Arr_dupin_cyclide_topology_traits_2 also monitors whether the in-
sertion or deletion of a curve implies a face split or a hole creation. We already dis-
cussed in §LA3 which cases can occur. We remember that we have to detect the first
perimetric loop L1 and to select which curve of identification is crossed by L; an odd
number of times. Upon this detection of L by face_split_after_edge_insertion, it re-
turns std::pair< false, false >. The value-pair triggers the special option (d) for the
basic insertion function, that is, the initial face gets now bounded by two outer CCBs.
Note that this exactly corresponds to what is expected by the forest-strategy. After Lq is
closed, the implementation of all further predicates with respect to faces and their CCBs
(face_split_after_edge_insertion, is_on_new_face_boundary, boundaries_of_same_face)
are identical to the cylinder case presented in LG22l That is, we are left with an implicit
single curve of identification, which we have to concentrate on when counting crossings of
further directed loops. An illustration of the two first steps is given in Figure EL20

4.6. Examples

181

Figure 4.25. Closing loops on a cyclide. We start in (a) with a single bounded face
Fy that has two inner CCBs defined by E prev (or Eiprev) and E5 prev (01 Eé’prev).
The views in parameter space (right) are schematic.

"tube circle"

(—o00, +0) (+00, +-00)
.=E=ﬂ
L B
Clq cUy Ey ‘fl.pm\' vy
F
(=00, —00) (400, =)

"outer circle"

u

(a) Adding cv; (and thus E; and EY) splits the inner CCB of Fj defined by
Ej prev into two outer CCBs (defined by E; and EY). There is no face-split,
due to the two identifications. However, Fj is now surrounded by the two
outer CCBs defined by Ej ey and Eé’prev.

"tube circle”

(—00, +00) (00, +00)
Fy
B prev £
cv, cvy E, Jiz_pm v
F
£
Ey
F
(=00, —0) (400, —00)

0

"outer circle

u

(b) Adding cv2 (and thus E; and E)) splits the inner CCB defined by E3 prey
into two outer CCBs (defined by E5 and E’). Now there are two perimetric
faces Fy and Fy. Each has two outer CCBs: Fj’s CCBs are defined by E;
and E), Fy's CCBs are given by Ey and Ej. The outer CCBs have different
directions and different non-zero signs. There are no more inner CCBs.

182 Two-Dimensional Arrangements on Surfaces

Remark. The remaining methods of Arr_dupin_cyclide_topology_traits_2 are either sim-
ple to implement or related to fictitious edges, that, again, do not occur for this topology.

The cyclidean topology-traits is also obliged to provide some nested types, namely
the visitor classes required for arrangement construction, insertion, and overlay via the
sweep line approach, a visitor class for the incremental construction, and the default point
location strategy. For most of them generic templates exists. As for quadrics, each must
only be adapted with a surface-specific helper classes: For example, the helper for the
construction via sweep line is responsible to pre-process events, namely to assign the correct
vertices to each, which finally helps to construct and insert curves that emanate to the
right of an event. In addition, it maintains a list of curves that only see the top boundary
above them. The relocation of holes after splitting a face relies on this information. The
remaining helpers and classes are very similar to the quadrical case; see §E6.11

Results

With the presented traits classes, we can successfully, robustly, and efficiently construct
arrangements on Dupin cyclide using CGAL’s Arrangement_on_surface_2 class-template.
An example is given in Figure

Figure 4.26. The shown arrangement on a cyclide is induced by 5 algebraic surfaces
of degree 3 intersecting the reference surface. It consists of 240 vertices, 314 edges,
and 74 faces. It is visualized with xsurface by Pavel Emeliyanenko.

We also run experiments to check that this approach does not lack efficiency. All test are
executed on an AMD Dual-Core Opteron(tm) 8218 multi-processor Debian Etch platform,

4.6. Examples 183

‘ Instance ‘ #S ‘ #V #E #F ‘ t (onCyclide) H t (onPlane) ‘

ipl-1 10| 119 190 71 0.14 0.14
ipl-1 20| 384 682 298 0.58 0.58
ipl-1 o0 | 1837 3363 1526 2.14 2.00
ipl-2 10| 358 575 217 1.07 1.25
ipl-2 20| 1211 2147 937 3.14 3.04
ipl-3 10| 542 847 305 4.84 4.62
ipl-3-6points | 10| 680 1092 412 32.43 31.17
ipl-3-2sing 10| 694 1062 368 5.82 5.57
ipl-4 10| 785 1204 419 50.42 49.97
ipl-4-6points | 10| 989 1529 540 461.74 450.54
ipl-4-2sing 10| 933 1471 538 53.01 52.78

Table 4.4. Running times (in seconds) to construct arrangements on Z; induced by
algebraic surfaces

‘ Instance ‘ #S ‘ #V #E #F ‘ t (onCyclide) H t (onPlane) ‘

ipl-1 10 169 280 111 0.53 0.46
ipl-1 20| 456 808 352 0.86 0.54
ipl-1 o0 | 3228 6084 2856 3.78 3.33
ipl-2 10| 450 710 260 1.22 1.21
ipl-2 2011323 2247 924 3.44 3.57
ipl-3 10| 474 682 208 5.24 5.36
ipl-4 10| 988 1406 418 50.93 52.43

Table 4.5. Running times (in seconds) to construct arrangements on Z5 induced by
algebraic surfaces

each core equipped with 1 MB internal cache and clocked at 1 GHz. The total memory
consists of 32 GB. As compiler we used g++ in version 4.1.2 with flags -02 -DNDEBUG. Two
results were obtained for each instance. First, we computed the arrangement using the
cyclidean topology (onCyclide). Second, we computed the two-dimensional arrangement
of the induced intersection curves in uv-parameter space, that is, with the topology of an
unbounded plane (onPlane).

Our implementation allows to transform a cyclide in standard position and orientation,
that is, to translate it by a vector and to rotate it with respect to a rotational matrix with
rational entries. In our tests, we used two different reference cyclides. First, the standard
torus Z1 with a = 2, b = 2, u = 1, centered at the origin with no applied rotation. Second,
a non-torical cyclide Zy with a = 13, b = 12 and u = 11, centered at (1,1,1) and a rotation
defined by the matrix

1 2 =2 1
3 2 1 -2
1 2 2

Our first class of test examples are surfaces of fixed degree which interpolate randomly
chosen points on a three-dimensional grid, having no or some degeneracies with respect
to Zi: the surfaces in “6points” instances share at least 6 common points on Zy, one of

184 Two-Dimensional Arrangements on Surfaces

‘ Instances ‘ #S ‘ #V , #E #F H t ‘
quadrics | 10| 428,646,219 1.59
degree-3 5 240,314,74 1.56
Overlay - | 942/1508,566 1.91

degree-3 | 10| 794,1218,424 6.25
degree-4 | 10| 325,418,93 13.36
Overlay - 11623,2644,1021 || 13.83
degree-4 | 10| 816,1188,372 || 50.86
degree-4 5) 325,418,93 13.52
Overlay - | 1581,2488,907 || 47.30

Table 4.6. Running times (in seconds) to construct arrangements induced by algebraic
surfaces of different degree on Zs, and to overlay them afterwards

them is the pole of Z;. The surfaces in the “2sing” instances induce (at least) two singular
intersections on 7.

Our obtained running times are listed in TablesEEAland Q. For such random examples,
our algorithm shows a good general behavior, even for higher degree surfaces. Degeneracies
with respect to the reference surface result in higher running times as the instance “6points”
shows. But this effect already appears in parameter space; we remark on the similar
running times in the onPlane-column. In general, it is observable and remarkable that in
all tested instances, the spent time on the cyclides is (almost) identical to the computation
of the curves in their parameter space. This allows to conclude two results:

1. The performance of our implementation is not harmed by the cyclidean topology-
traits class, that is, the cyclidean model is as efficient as the topology-traits class for
the unbounded plane.

2. The additionally required computation of horizontal asymptotes seems (as expected)
to be a cheap task. Most time is spent for geometric operations on algebraic curves.

Thus, we infer that the chosen approach strongly hinges on the efficiency of the underlying
implementation for arrangements of algebraic plane curves, in particular the (bivariate)
algebraic kernel, and conclude the parametric ansatz to be successful in its idea.

The cyclidean topology-traits also provides the visitor classes for various sweep line
construction, in particular the model that enables the Arrangement_on_surface_2’s overlay
mechanism. That is, we are able to overlay two arrangements on the same cyclide by
using the capabilities of generic programming. Therefore, we also generated instances of
random surfaces with degree up to 4 intersecting Zs, picked two of them, computed their
arrangement and finally overlaid them. A selection of such combinations along with the
sizes of the resulting arrangements and running times is presented in Table We remark,
that due to persistent caching, the times for the overlay are usually less than the sum of
the times required to create the two originating arrangements. The reason is simply that
during the overlay only some additional pairs of algebraic curves have to be newly created.

We should also mention that the localization of a point (given by its parametric coor-
dinates) in an arrangement on the cyclide is supported by the Arrangement_on_surface_2
package. We obtain the cell of the arrangement that contains the point. Again, the
dependency on the planar backup is expected to be the bottleneck.

4.7. Conclusion and outlook 185

Figure 4.27. Overlay of two arrangements: The red is induced by five surfaces of
degree 3 that induced degeneracies on the torus. The blue is induced by five other
surfaces of degree 2. Overlay intersections are shown in green.

4.7. Conclusion and outlook

Achievements We have seen how to construct and maintain two-dimensional arrange-
ments on parametric surfaces. We pay special attention to code reuse. In particular, we
revised the abstraction of main arrangement-related algorithms and data structures from
basic geometric operations and extracted new abstractions with respect to surface-specific
topological operations. This “parameterization” simplifies the development of traits classes
for handling new families of curves and new surface topologies in a straightforward manner.
Such extensions benefit from a highly efficient (and well-tested) code base for the main
arrangement-related classes.

Beyond a rough overview of existing traits classes, we discussed two concrete exam-
ples of surface families in their details, namely elliptic quadrics and ring Dupin cyclides.
For both we provide valid models of the new ArrTopologyTraits 2 concept. Their im-
plementations are family-specific, however they also share basic ideas. We also provide
geometric-traits classes that allow to compute arrangements on such reference surfaces,
induced by their intersections with other quadrics or even algebraic surfaces. Both classes
cleverly, but differently, modify a model that originally suites for planar algebraic curves
only. The enhancement “lifts” the planar curves on the reference surface itself. In both
cases, the applied changes do not significantly harm the efficiency of the approach, that
is, the performance of the traits classes for arrangements on quadrics and ring Dupin cy-
clides is mainly determined by the efficiency of the underlying algebraic kernel that already
supports the analyses of planar curves.

186 Two-Dimensional Arrangements on Surfaces

The chosen strategy also shows the power of generic programming. Developing, surface-
specific traits-classes is a comparably small task compared to an implementation from
scratch, not using the CGAL’s Arrangement_on_surface_2 framework and its algebraic ker-
nels. This results in faster development time and less code to debug. In addition we bene-
fit from advanced programming techniques applied to CCGAL’S Arrangement_on_surface_2
package [WEZHO7D]. In particular, there is immediate support for observers that notify
on structural changes of the arrangement, or the possibility to extend the DCEL with data.

Future work Beyond what we have presented on the geometric-traits classes, there is
room for further improvements. For example, it would be nice to allow algebraic surfaces
of arbitrary degree intersecting an elliptic quadric. It is the lifting onto the lower or upper
part that must be adapted. In fact, we present in Chapter B (in particular in §553)
the required tools, to compute such space curves. For the case of the cyclide, we also
believe that the performance could be further improved: We analyze the planar curves
used to represent intersection of the cyclide with algebraic surfaces without any beneficial
knowledge induced by the used parameterization. In particular, it is possible to simplify
the one resultant whose roots define a curve’s critical z-coordinates by a non-trivial factor.
That is, the real-root isolation can actually deal with a much simpler polynomial. In
addition, such planar curves often contain numerous vertically asymptotic arcs; see, for
example, Figure However, we use the strategy described in [EKW07]|, that is, to
shear and to shear-back such non-regular curves. This step is expensive, in particular,
if applied to a large fraction of the curves. A desirable goal is to develop a comparably
efficient alternative approach that avoids to shear curves of this sub-class.

It would also be nice to consider more families of surfaces, in particular, if they provide
a rational parameterization, as ring Dupin cyclides do. In principle, we can derive a similar
version of a geometric-traits class that explicitly elaborates the parameterization of such
surfaces. Of course a suitable model for the ArrTopologyTraits 2 concept is also expected.
However, in practice, the degrees of the algebraic curves in the parameter space constitutes
our current limit of practical usability of the parametric approach.

Concerning the framework itself, we already proposed in theory how to deal with iso-
lated points and curves fully embedded in the boundary of the parameter space. However,
the code has not yet been adapted with respect to these ideas. This step is planned for
the near future.

With introducing the ArrTopologyTraits 2 concept, we successfully abstracted topologi-
cal operations required to maintain a surface-specific DCEL from more generic arrangement-
classes. However, the topology-traits classes for elliptic quadrics and ring Dupin cyclides
(and even for the omitted one of the sphere) show some visible similarities. For example,
all maintain a sorted sequence of points on an identification, and the decision with respect
to face splits and their CCBs rely on similar information. As future direction, it should be
analyzed, in how far a unified model can be established. Such a model can be configured
with respect to various topologies, by constructing it, for example, by just naming what
happens on the boundaries of the parameter space.

In this work, we also restricted ourselves to the single domain case, that is ® =U x V.
Another future goal is to extend the framework to handle general orientable surfaces, which
can be conveniently represented by a collection of domains, each of which supported by
a rectangular parameter space. It is known which polygonal maps give rise to orientable

4.7. Conclusion and outlook 187

surfaces and each orientable surface has a normal form, which already includes surfaces
of higher genus. In addition, one might to consider surfaces with singularities (e.g., a
double cone), which requires to decompose them such that singularities only appear on
the boundary of parameter spaces. We give such a decomposition for algebraic surfaces in
ChapterBl Concerning the framework, the different individually obtained parameter spaces
are glued together according to the topology of the surface and therefore will naturally be
described in, and handled by, an extension of the ArrTopologyTraits 2 concept. However,
arrangements on surfaces with singularities cannot be represented with a usual DCEL. The
reason is that a vertex can be incident to two faces at the same time. An example is the
apex of a double-cone.

Arrangements on surfaces can also be a tool in other utilizations. For example, it
can serve as basic support to compute the adjacency graph that is induced by a set of
surfaces. This objective requires to identify equal vertices and edges on different surfaces.
How to do this for quadrics has been shown in [Hem08|. The chosen approach uses a
direct parameterization of the quadrics. However, the important subtask, namely the
identification of vertices and edges can be formulated almost abstractly. Then, it should
be possible to easily combine it with the Arrangement_on_surface_2 package in order to
compute adjacency graphs for all surfaces on which we can compute arrangements. It might
be required to add another geometric primitive that robustly determines the equality of two
vertices (and edges?) in the parameter spaces of two different surfaces. The construction
of a fully-fledged three-dimensional arrangement of surfaces is the ultimate objective.
Although it is beyond the scope of this thesis, we conclude that the (in combination
with the adjacency-graph to compute) our contributions constitute major building blocks
towards this goal.

188 Two-Dimensional Arrangements on Surfaces

189

Efficient Stratification
of Algebraic Surfaces
with Planar Arrangements

In this chapter, we increase the dimension by one and turn towards the topological and
geometrical analysis of algebraic surfaces combining three main tools: Planar arrangements
induced by algebraic curves, the bitstream Descartes method, and interval arithmetic.
Our concern is beyond the theoretical design of a new algorithm, but aiming for a clever
combination of existing tools to provide a robust and efficient implementation for the final
problem:

Given a finite set 8§ = {S1,...,S,} of square-free primitive, and coprime algebraic
surfaces in R3, defined by polynomials f; € Q[x,y,2], i < 1 < n, with D; = deg; (/)
and D := max;(D;). We are interested in the geometric and topological information to
describe 8. So, we aim for a cell decomposition of the surfaces with respect to 8§ into
cells of dimension 0, 1, and 2. The cells should form smooth subvarieties of some S;. We
are also interested in how the cells are connected. In addition, the cells should share the
boundary property, that is, the boundary of a single cell is formed by a union of other cells
in the decomposition. Such a decomposition is also known as stratification, while a single
cell is called stratum; see [BPRO6O, §5.5] and compare also with the CW complex that we
present in ZT7 The obtained decomposition is similar to a clustered cylindrical algebraic
decomposition of R3. Of course, we also allow that n = 1, which actually constitutes a
special case.

The approach consists of three steps:

1. First, we project the z-critical points of 8 to compute an unbounded planar arrange-
ment Ag with a finite number of relatively open cells. Each cell shares some invariant
properties for all of its points. In particular, they share the same z-pattern.

2. A z-pattern at some point p encodes the sequence of intersections of S; € § with the
vertical line ¢, at p and is computed for each cell during the lifting. It suffices to
compute a z-pattern only for a sample point of each cell of Ag. The lifting of the

190 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

sample points leads to our cell decomposition 2g.

3. As final step, we obtain the adjacency relation between the cells of Qg.

The approach is similar to Collins’ cylindrical algebraic decomposition (cad); see §ZT6 In
each of these steps, we exploit methods that try to replace costly symbolic computations by
combinatorial deductions and certified approximative solutions. We exemplary mention the
bitstream Descartes method with its m-k-extension for the non-square-free case; see §.1T.2
In any case, we guarantee to reflect the mathematical correct stratification, as expected
by the exact geometric computation paradigm (EGC); see §222 This is done by either
certifying that the approximative filters compute the desired result, or eventually switching
to an exact method. Our decomposition consists of O(n®D?) many cells. It is possible
to refine the decomposition into simply connected cells without compromising the final
complexity.

We remark that our approach is free of assumptions on the input surface. Algorith-
mically, we never change the spatial coordinate system in order to prevent degeneracies.
The (geometric) output is with respect to the original coordinate system. While this has
advantages, for example to enable arbitrary dense sampling of the decomposition, it also
means that degenerate situations must be handled, in particular vertical lines contained
in a surface. To satisfy the boundary property of the cells in the decomposition, such lines
must be decomposed further.

Our implementation is robust and efficient. To our knowledge it is the first EGC-
software for the topological analysis of algebraic surfaces, including singular ones. As
basic tool, we rely on arrangements of planar algebraic curves; see 33 43 and 44
The code follows the generic programming paradigm, which allows to tackle the problem
in two related parts: One constitutes a framework that extends a planar (unbounded)
arrangements in order to support the lifting into the third dimension. The framework
defines the new SurfaceTraits 3 concept, that is, it expects from surfaces some types and
operations. The concept breaks down the rather complex challenge into a small set of
simple tasks demanded on surfaces, like to compute approximations of S; N ¢, for some p.
It is the accountability of the framework to combine the output of these operations to
obtain the desired output.

We provide two models fulfilling the SurfaceTraits 3 concept that form the second part
of the implementation: One model for quadrics and one model for algebraic surfaces of
any degree. The first benefits from the low degree of quadrics, while the second requires a
more sophisticated handling to efficiently tackle the non-restricted input.

This way, the implementation decouples geometric operations and combinatorial in-
formation. The combinatorial output allows to consider various utilizations by other ge-
ometric algorithms, especially if restricting to such that only involve a small number of
surfaces at a time@ The reason is that the complexity of Qg is O(n’D?). We give a
basic set of well-known examples: The framework supports the analysis and meshing of
a single surface, the analysis and construction of a space curve defined by two surfaces,
or the computation of the lower envelope of surfaces. It can also serve in the future as a
key ingredient in a three-dimensional arrangement. Some of these applications are even
already available as software.

We present experiments that show good performance. However, it must be remarked
that the projection step of our approach defines a bound on the practical applicability

“TEither the task is defined such, or each substep of the focussed algorithm involves only some surfaces.

191

for high-degree surfaces. The reason is that we have to consider algebraic curves of de-
gree O(D?), where D is the largest degree that occurs. Compared to that effort, the lifting
only requires a fraction of the total running time.

The outline of the chapter is as follows: We next present related work. In §5.T1 we
introduce the problem theoretically and derive some conditions that surfaces are required
to fulfill and identify simple tasks. How to realize them with algebraic surfaces is explained
in 62 Then, §53 discusses the generic part of the implementation — the framework. We
also introduce the SurfaceTraits 3 concept. We continue in §54] with the details on our
models. Both rely on the same projection, but differ in the lifting and adjacency tasks.
Details on the individual handling of a vertical line possibly contained in an algebraic
surface is postponed to this part of the chapter. A set of possible algorithms utilizing
the framework is surveyed in §65 We conclude with experimental results in §5.6 and a
summary in §5.7 that also shows further directions.

Main parts of this chapter are based on results obtained in collaboration with Michael
Kerber and Michael Sagraloff from the Max-Planck-Institut fiir Informatik, Saarbriicken,

Germany. They previously appeared in [BS08] and [BKS0S].

Related work Our strategy for algebraic surfaces in general follows elimination the-
ory [BPRO6] and main ideas of the powerful cylindrical algebraic decomposition (cad);
see our introduction in §ZT.0l that presents the basic algorithm and also a series of im-
provements that reduce the number of considered polynomials. A collection of articles
emblazing different aspects of cad is given in [CJ98]. Some ideas of our algorithm already
appeared in those articles; for other problems, we propose novel alternatives. We dis-
cuss the similarities and differences with the appropriate references when we discuss the
algorithm in detail.

Many algorithms in computational geometry can be expressed in terms of a cad-
instance. A famous example is the Piano Mover’s problem that is extensively discussed
in [SSH8T|. Unfortunately, many implementations, if any, avoid this technique. We believe
for two reasons. The first is the quite high complexity of cad. The other is the algebraic fo-
cus, that usually requires good knowledge of the topic. Thus, with our framework we want
to close the gap, between cad-techniques and implementations of algorithms in computa-
tional geometry. Our goal is to provide an easy-to-use framework, with full power on the
analysis of surfaces, while always focusing towards applications in computational geometry.
As we decouple combinatorics from predicates, it depends on the model used, whether the
instantiated framework follows the exact computation paradigm [Yap04]. Note that most
generic implementations of geometric algorithms show an undetermined behavior or fail
to stop if instantiated with floating-point arithmetic. Thus, we strongly encourage to use
the framework with models relying on exact number types and to apply consistent and
certified filters for speed-ups. Our models do so.

If restricting to the three-dimensional case, we already mentioned earlier CGAL’s Nef_3
package that provides a robust and efficient implementation of three-dimensional Nef-
polyhedra; see [HKM07]| and [HK0O7D]. Its extension for quadrics is currently under devel-
opment [HLOS]| relying on the parameterization of the the quadrics’ intersections [DHPS0OT].
However, up to now, no complete implementation for arrangements of algebraic surfaces
is available (even not for low degrees). [MTT05] presented a method to compute arrange-
ments of quadrics using a space-sweep. An implementation is missing. For two quadrics,

192 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

a specialized projection approach is available as software m In contrast to that
work, the proposed framework can deal with more than two quadrics, allows more surfaces,
and does not pose any generic position assumptions. Thus, it can be interpreted as a key
step towards arrangements of surfaces.

Even if we restrict to one or two surfaces, our work constitutes an important step.
Principally, there are two approaches for the topology computation of an algebraic surface:
One considers level-curves of the surface for certain critical values and to connect the
components of these levels in order to obtain a topological description of the surface;
for example, Mourrain and Técourt [MT0U5] (see also [BCSMT]), Fortuna et al. [FGL04,
[FGPTO3| (for non-singular curves), and Alcézar et al. [ASSO7]| (with missing connection)
follow this idea. The other approach relies on a projection of the critical points of the
surface to the plane. The topology is then deduced by lifting the features induced by this
projection. Note that our work falls into this category; see also Cheng et al. [CGL0OS)] and
the mentioned relations to cad.

It should be remarked that all algorithms that compute a surface’s topology are similar,
that is, they require to analyze curves and have to detect critical points of the surface.
This typically involves resultant-calculus or Groebner bases. To simplify, most algorithms
apply a linear (topology-preserving) shear; for example, [MT05], [FGL04], [FGPT03], and
[CGLOY (for vertical lines). We abstain from this strategy, as we also want to preserve
geometric properties of the input. In addition, it seems not easy to derive a back-shear
algorithm, as it is established in the planar case; see [BKS08| and [EK0Ral.

Unfortunately, practical performances are not stated for any of these articles [MT05],
[FGLO4|, [FGPT03], [ASSO7], [CGLO5, if they provide an implementation at all. Practical
results are included only for special sub-classes, such as quadrics m and non-
singular surfaces [PV07|. All other carry out symbolic computations, or abstain from
reporting on implementations of certain substeps.

Recently, results on space curves that are defined by the intersection of two surfaces
have been published [Kah(8], [AS05], [GLMT05], and [DMROS8]. The special case of tori
that are intersected by natural quadrics has been analyzed by Reithmann [Rei0Sg].

In contrast to all the previous work, our results profit from certified approximative
methods that accelerate the algorithm significantly. We take this as the main reason of
the overall good practical performance of our algorithm.

5.1. Problem

Let 8§ = {S1,...,S,} be a set of surfaces, that is, two-dimensional manifolds in three-
dimensional FEuclidean space. We next introduce our objective formally, which allows to
split the problem into a set of subtasks. For p = (ps,p,) € R?, we denote with ¢, =
{(pz,py, 2) € R3} C R3 the vertical line through p. We denote V; := {p € R? | £, C S;}
the set of all points p € R? where S; contains the vertical line lp. Let V = Uln Vi

We tackle the following abstract problems, that is, we consider a surface as set of
points.

Problem 5.1 (Intersections with vertical line). Given a set of surfaces 8, compute for an
arbitrary point p € R? the ordered sequence of intersections of all S; € § with £, (or that
lyNS; =px R).

5.1. Problem 193

In order to encode the sequence of intersections of S; € 8, ¢ =1,...,n, with £, we use
an ordered sequence of subsets:

Definition 5.2 (z-pattern). We call the sequence W,s = wp1,...,wp) of subsets of
{1,...,n} a z-pattern with respect to p and 8. The pattern also comprises a subset

w;‘, ={ie{l,...,n}|pe€V;}. All subsets can be empty.

Intuitively, W), s describes how the surfaces behave along £,. Some of them are vertical
at p, the remaining ones have finite intersections with ¢,. Each w,; corresponds to a z-
coordinate z; where at least one such surface intersects £, that is, wy,; :== {i € {1,...,n} |

(p, Zl) c Sz}

Example 5.3. Consider 8§ = {57, S3} consisting of two unit spheres: Sy centered at the origin
and So centered at (0,0,—2). That is, the south pole of S intersects with the north pole
of Sy. This is the only intersection of the spheres. Let p; = (0,0), pa = (%,O), ps = (1,0),
and py = (2,0).

Then, Vh =1...4 we have wz‘,h = (). The other sequences are: W, s = {2},{1,2}, {1}.
Wio.s = {2}, {2}, {1}, {1}, W, s = {2}, {1}, while W, s is an empty sequence.

If we fix p, Problem Bl can be split into two, the consecutive Problems B4 and B221
Problem 5.4 (Compute z-pattern). Given a surface S; and a point p € R? compute Wy sy
We require the following condition.

Condition 5.5 (Finite number of vertical lines). For a given surface S; it holds |V;] is
finite. This implies that V also has finite size.

We introduce the following container.

Definition 5.6 (z-fiber). Let S; € 8, p = (ps,py) € R% A finite subset Z,; C {z € R |
(Pz, Py, 2) € Si} U {£oo} is called z-fiber of S; at p. We sort its m,,; + 2 elements in the
following way:

=00 = Zpi—1 < Zpi0 < - < Zpiimyi—1 < Zpism,,; = 00

Whereas the container is intended to encode the intersections of a surface S; with ¢, for
p ¢ Vi, its purpose for p € V; is to store interesting z-coordinates of \S;. Its actual content
with respect to p € Vj is specified in Definition and fixed by the Conditions B and
that define how surfaces are allowed to be connected.

We concentrate on the fact, that m,; denotes its number of finite elements. In general,
we cannot compute Z,; for all p € R2. Thus, we aim for a subdivision of the plane
into finitely many (relatively) open and connected cells of dimension 0, 1, and 2 with the
property that all points of a cell carry the same m-value. Such a finite subdivision can be
represented as a planar arrangement; see 4 More detailed, we aim for surfaces to fulfill
the following condition.

Condition 5.7 (Finite surface arrangement). Given a surface S; € §. An arrangement
Ays;y with the following properties exists:

194 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

e A(g,y consists of a finite number of cells and is induced by a finite number of con-
tinuous curves and a finite number of isolated points.
e A(g,) contains every point in V; as vertex.
e Each cell T' of Ayg,y is invariant with respect to m, that is, Vpi,p2 € I' : my, ; =
Mpg,i =2 MT 4-
Such an arrangement is called m;-invariant.

As a consequence, it suffices to only consider a sample point pr of a cell ', if one is
simply interested in m,; for any point p € I'. This piece of information is valid for the
whole cell. On the other hand, geometry is local to the point: In general, the entries of
Zp, i differ from Z,, ; if p1 # po, even if py,ps € I'. Anyhow, we denote, for convenience,
the z-fiber of I'’s sample point pr with Zr;. It is possible to lift I'":

Definition 5.8 (Lift). Let S; be a surface, and I' be an m;-invariant set. For each [=
0,...,mr,, the [-th lift of S; over I is given by

T = {(pa, Dy 2pig) €T X R | 241 € Zpi}

Lifts allow to decompose S; into open cells, which requires Condition B9 Below, we
introduction decompositions formally.

It is missing, how the entries of Zr, ; and Zr,;, for I';,I'y being cells of Ayg,), are
related, and, thus, encodes the adjacencies of lifts. Let us introduce a condition that helps
to precisely define this relation.

Condition 5.9 (Continuation). Let S; € 8, Ayg,} an m;-invariant arrangement, and I'y, 'y
being two cells of it with dim(I';) > 0. Then, S; is continuous in the following sense:

1. Let p; € I'1 be a sequence of points with a unique limit in I'y, that is, lim; ..o pr = p €
I'y. Let Zp, ; = {zph_l, . 7Zpt7i7ml“1,i}‘ Then, for any [€ {0,...,mp, ; — 1} we have
{limy o 2p,ip | pr € T with pp — py = 2,5 =5 2,5] = I

and limy—oo 2p, 50, < limyoo 2p, 00, for =1 <1y <lp <mrp, ;.

. with Zp,i,vli S Zpﬂ'

2. For p ¢ V; each interval [z .

—,z . +] consists of exactly one point, that is, z =
pvlvvl pvzvvl

D40

zZ . .
p727Ul+

Note that the number of intervals [zp7i7v;,zp7i7vl+]

This neighborhood-relation suffices to encode the connectivity of all lifted cells. We
remark that from the above conditions it follows that each cell I' € Agg,y \ V; is the
projection of mr; connected, disjoint cells of S; respectively. Note the similar notation of
delineation in §ZT3 For p € V; the intervals [z play an important role when

P Ppip
decomposing ¢, in Definition B.28

must be finite, as mr, ; is finite.

Whereas the z-fiber at a point p ¢ V; is determined precisely, its content at points
p € V; is only implicitly given by the chosen arrangement and Condition

Definition 5.10 (Content of z-fiber). For a surface S; € 8§ with my-invariant arrange-
ment Ag,y the entries of the z-fiber Z,; are defined as follows:
o Z,i:={2€R | (pg,py,2) € Si} U{too} for p & V;
o Zyi={z€R |3l € Aggy,l € {~1,...,mp;} such that z is an endpoint of some
IF,i,l} for pevV;

5.1. Problem 195

Problem 5.11 (Compute z-fiber). For given surface S; € 8§ and given point p € R?,
compute Zy,;, even if p € V;. For an illustration see Figure Bl

F@N

3£ 63

3]
]

s

v

Figure 5.1. Computing the z-fiber for a surface at given point: We aim to represent
finite entries as refineable intervals.

It remains to compute the connections between lifted cells which is encoded in terms
of connections between lifted sample points.

Problem 5.12 (Adjacency). Given Ays,y for a surface S; € 8. Let I'1,I'y denote incident
cells of Agg,y and p1,ps their respective planar sample points. Then, we are interested
in how an entry of Z; := Zr, ; is connected with the intervals defined by the entries of
Zy := Zp, ;. We are asking for a list L of pairs (a,b) € A x B, with A:={-1,...,mr ;}
and B := {—1,...,mp,;}. We distinguish 5 cases for a fixed ag € {0,...,mp, ; — 1}:

{b | (ap,b) € L} = 0: Indicates, that there exists no continuous path on S; whose closure
connects (p1, 2p, i,ap) With some (p2, zp, ;p),b € B.

{b] (ap,b) € L} ={bo} Nbo & {—1,mr,;}: The pair (ag,by) then denotes the existence of
a continuous path on S;, lying over I'y, whose closure connects (p1, 2p,,i,q,) With
(P2, 2ps.ibo)-

{b| (ap,b) € L} = {bo} ANby = —1 (or by = mr,;): The pair (ag, by) denotes the existence
of a continuous path, lying over I'y, whose closure connects (p1,2p,,iq,) With the
infinite “point” (pg2, —00) (or (p2,+00)), that is, S; has a vertical asymptote with
respect to z at po.

{(ap,b) € L}| = 2: Let (ag,bp) and (ag,b1) be these pairs. They denote the existence of
an infinite number of continuous paths on S;, lying over I'y, such that exactly all
points (p2, 2), 2 € [2ps.ibos Zpasipy) are connected with (p1, 2p, 4.4,) by considering the
closure of a path. In case that by = —1 or by = mr,;, the interval is meant to be
open at that end.

For an illustration we refer to Figure B2 The case distinction is analogue for fixed
bop € {0,...,mp,; — 1}. Note that we only compute adjacencies between zero-, one-, and
tow-dimensional cells. The adjacencies to three-dimensional open cells are given implicitly
by them and the projection technique.

196 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

| ,—,—| |
B (L)
— -

s
: ! ‘
= — |
) (N

O TS T
R
| -

Figure 5.2. Compute adjacency relation of incident z-fibers

We next turn to consider more than one surface and we already state the first condition
that characterizes the surfaces’ intersections. In what follows, let always S;,S; € § with

i 7.
Condition 5.13 (One-dimensional intersection). dim(S; N S;) < 1.

Similar to the single-surface case, we introduce an abstract container:

Definition 5.14 (Multi-surface z-fiber). Let § = {S;,...,S5,} be a set of surfaces and
p = (pz,py) € R Afinitesubset 2,5 C {z € R|Ji€ {1,...,n}: (ps,py, 2) € S;}U{F00}
is called multi-surface z-fiber of 8 at p. We sort the entries of 2, s:

—00 = Zp78771 < Zp7870 <...< vasymsfl < Zp787m8 = +OO

Its purpose is to store the intersections of § with ¢, if p ¢ V. In case that p € V, we
want to store interesting z-coordinates that decompose ¢, into a finite number of open
intervals. The value m, g denotes the number of finite entries of a multi-surface z-fiber.
In Definition we also introduce multi-surface lifts, which pose a central tool for our
intended cell decomposition. But before, we remark that such a fiber can be related to
single-surface z-fibers, in particular for two given surfaces:

Definition 5.15 (m,; ;). Let S;,S; € 8,4 # j and let p € R?\ (V; UV;). Then my,; ; :=
z€2,8|2z€Zyi N2z € H. connected set of points I is called m; j-invariant i
Zp, Zpi N Zpitl- A ted set of points I i lled m; j-i iant if

Mp, i = Mpyij for p1,pa € I' with p1 # pa. We define mr; ; := my; ; for some p € I'.

Again, we cannot compute multi-surface z-fibers for an infinite number of points. This
fact founds another condition on two surfaces (and thus on any number of surfaces). Similar
to the single-surface case, we want to group points into sets:

Condition 5.16 (Finite two-surface arrangement). Given surfaces 5;,5; € 8,7 # j. An
arrangement Agg, 5.y exists, with:

5.1. Problem 197

o Ays,s,y consists of a finite number of cells and is induced by a finite number of
continuous curves and a finite number of isolated points.
e Ays,,s,y contains every point of V; U Vj as a vertex.
e For each cell I' of Ayg, 5.3 \V;UVj, the following equations hold: Vpi,p2 € I' : my,, ; =
Mipgis Mipy,5 = Mpa,j5 Mpy,i,j = Mpajiyg-
Such an arrangement is called m; j-invariant.

Remark. Observe that Ag, 5.} is an m;- and mj-invariant arrangement.
(R laV]

Again, it suffices to choose a sample point pr, in case, one is only interested in the cell-
related information mp; ;. In addition, it holds that Vp1,p2 € I' : W, 5.3, = Wis, 5,12
Note that geometric information can be deduced from the individual fibers Z,; and Z, ;,
for any p € I, but typically we use p = pr.

Condition 5.17 (Continuation for two surfaces). Let § = {5, 5;}, A(s, s, an m; ;-
invariant arrangement and I'y, 'y being two cells of it with dim(I';) > 0.

1. Let p; € I'y be a sequence of points with lim; ..ops = p € I'y, and Z,, s =

Zpt7—17"'7zpt,87mr1,s}- For any [€ {0,...,mp, s — 1} we have {lim;_.oc 2p, s |
pr € Ty with pp — p} = [zpvsyvlf,zp’&vf] =: I, g with Zp st € Z,s. In addition,
lims o0 Zpe,8,l1 < limy_ o Zp,8,la for —1 <1 <y < mry,s-

2. For p ¢ V; UV each interval [Zp,S,vf’Zp,S,vl*] consists of exactly one point, that is,
“p,8w; — “p,S

Note again that the number of intervals [Zp,S,vf’Zp,S,vl*] must be finite, as mrp, g is
finite.

It is no surprise that we next want to define the actual content of a multi-surface z-
fiber, followed by some remarks on the adjacency computation. We can assume that 8
consists of two surfaces S; and S;. The extension to any number is straightforward.

An implication of Condition and Condition BT is that each non-vertical part
S; N Sj is expected to have a unique end-point (p,p.), even if p € V; U V;. In addition,
we have: If p ¢ V; then p, = z,; for some [; and if p ¢ V; then p, = Pl for some 1.
Following, (Z,,; U Zp ;) \ {£o0} comprises all z-coordinates of S; N.S; N ¢, for p & V; UV.
Thus, for such p we can define 2, s, 51 == Zp; U Zp j, which constitutes the easy case
of Definition B2l In contrast, if p € V; UV}, there is no such direct solution. We define
another set, which also implies a problem to solve:

Definition 5.18 (ZILM). Consider the setting as in Condition BI7, that is, § = {5;,5;}.

Let p € V;UVj. Then Zz‘m‘j ={z€eR|dl' € As,l € {—1,...,mp s} such that z is an
endpoint of some It g ;}.

Remark. Actually, it is valid to also define Z |

Dy5,J
doing so, as, by Condition B3, we have ZILM C ZpiUZp;.

for any p € R2. But nothing is won by

Problem 5.19 (Compute ZILZ.].). For given S;, S; with i # j, and p € V;UV}, compute ZI‘) i

198 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Definition 5.20 (Content of multi-surface z-fiber). Let § = {S1,...,S,} be a set of
surfaces and p € R2. Then

Zos=| U Zi|U U 2.,

i={1,...,n} peEV,UVj i)
is called the multi-surface z-fiber of § at p.
Problem 5.21 (Compute 2, g). For given 8§ and p € R?, compute Z, s.

Observe that the z-pattern for p € R?\ V can be defined in terms of Zps- We have
VO<I<mg—1:

wpy = {i€{l,...,n}| 281 €2ps:2psi € Zpi} (5.1)

The z-pattern for p € V requires to also consider Zzl),i,j' To actually compute 2, s in
both cases, for example, with a multi-way merge algorithm, we must be able to decide the

following problem:

Problem 5.22 (Compare entries of z-fibers). Let S;,S; € 8,7 # j. Given a point p and
Zp,il; € Zpaand zp 51, € Zp j decide whether zp 51, < 2p 51,5 2p,il; = 2p,ji;» OF Zpil; > Zp,jl;-
A similar comparison is required for z,;; € Z,; and ZLJ,J,J%W € ZI‘M"J” for ¢/ # j/. This
problem is illustrated in Figure

:]

f

Figure 5.3. Check whether two z-fiber entries have equal z-coordinate

Note that this constitutes a solution to Problem Bl Actually, we learn in §o.31] that
the equality decision is sufficient to compute the multi-surface z-fiber and the corresponding
z-pattern. The reason is that we represent each oo # z,;; € Zp; (and so the entries

of Zz‘mﬁj) with a refineable interval approximation. If sufficiently refined, it is easy to
decide < and >, while for = the refinement would never stop. Thus, we need to decide it

externally.

Let us finally collect the missing tasks. Note that Problem constitutes the central
objective of our work.

5.1. Problem 199

Problem 5.23 (Compute planar arrangements). For given surfaces S;,S; € 8,i # j,
compute A(gy, Ags;y, and Agg, 5.3. Figure Bl shows the different cases.

Figure 5.4. Compute planar arrangements

(a) Compute Agg,y and A(sy (b) Compute A, 5.3

Problem 5.24 (Compute Ag, compute z-fibers and their adjacency relation). Given a
set of surfaces § fulfilling the listed conditions. Compute a finite planar arrangement Ag
with the property that for each of its cells I' it holds: Vpy,po € I' : Wg ,, = Ws p,. In
addition, we want to solve Problem B.23], that is, to compute the adjacency relation of
entries of multi-surface z-fibers; see also Figure

Problem 5.25 (Multi-surface adjacency). Given Ag for a set of surface 8. Let I'1,T'y
denote incident cells of Ag and p1, po their respective planar sample points. Then, we are
interested in how an entry of Zp, g is connected with the intervals defined by the entries
of Zr, s. The output is identical to Problem

Figure 5.5. Decompose § into a finite number of lifted cells and compute their adja-
cency relation

It is clear that lifting the overlay of all arrangements Ayg,) and Ayg, s;} and computing
the adjacency relation of their lifts constitutes a solution to Problem B2l We claim that
the framework that we present in §8.3] implements this solution using subalgorithms for
Problems (planar arrangements), B.I1 and (z-fibers), (compare entries of z-
fibers), and (adjacency). The last is used to derive the desired connectivity of entries
of z-patters from the connectivities of z-fibers of single surfaces. Only in case that some
cell contains p € V we have to solve a special subcase of Problem as well.

200 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Cell decompositions

We next introduce decompositions of surfaces into connected cells of dimension 0, 1, and 2
using planar arrangements and z-fibers. However, one definition is missing for this purpose:

Definition 5.26 (Multi-surface lift). Let 8 be a set of surfaces, and I" be a set with constant
z-pattern Wr g for all points p € I'. For I = 0,...,mp g — 1, the [-th multi-surface lift of
S over I is given by

rs) .— {(Pe, Py 2ps1) ETXR | 2p51 € Zp s}t

Note that for fixed Iy it holds that TW0:8) = D) with [; € wr,, and that in case of
an intersection we have |wr | > 1. Multi-surface lifts are essential for our decomposition.
In addition, special diligence is required for vertical lines contained in a surface. But, we
start with a simple case:

Definition 5.27 (Cell decomposition of S; without vertical line). Let S; be a surface,
with V; = 0 and Ays,;y tulfilling Condition Bl Let ' € Ays;yy Zryi its z-fiber, and mp;
the number of finite elements in Zr ;. The cell decomposition {)¢g,y is defined as

sy = U U o«

FE‘A{SZ'} 1=0,....mpr—1

For given \S; and S, j # i, we can also use A(g, 5.1 (instead of Ag,3) to support g3,
as Agg, s,} also fulfills Condition B However, this typically results in a larger number of
cells.

We next extend Definition to give a cell decomposition for a surface S; that also
comprises vertical lines. Remember that the set of vertical lines is finite. The idea is to also
decompose each ¢, with p € V; into segments and rays respecting the intervals boundaries
arising from Condition

Definition 5.28 (Cell decomposition of S; with vertical line(s)). Let S; be a surface with
an arrangement Ayg fulfilling Condition 7 For p € V;, let w), denote the partition of ¢,
into elements of Z,; and their induced intervals of R. We define

Usy = U U T vl

reA¢s\Vi \I=0,...,mpr—1 peEV;

We turn to the case of multiple surfaces contained in a set 8. For this objective, we
base the definition of 2g on the planar arrangement Ag.

Definition 5.29 (Cell decomposition of §). Let § be a set of n surfaces and Ag as com-
puted by Problem B24l For p € V, let w, denote the partition of ¢, into elements of Z g
and their induced intervals of R.

Qg = U U {r¢$y1 | u U Wp

reAs\vV \I=0,..,mpr s—1 peV

5.1. Problem 201

In .27 we show that these decompositions constitutes stratifications of algebraic
surfaces and also state bounds on the stratifications’ complexities.

The cells of a decomposition €2 with respect to Definition B27, 28 and BE29 are,
by construction, connected. However, sometimes it might be advantageous to achieve
simply connected cells. Remember that a cell is simply connected if each cycle in a cell is
contractible to a point. Thus, we show how Q can be transformed into a decomposition
Q' consisting of simply connected cells only. Remember that in order to obtain Q we
homeomorphically lift a planar arrangement A. Thus, the main idea is Algorithm BT that
refines some arrangement A into an arrangement A’ of simply connected cells. We show
in Proposition B3 that A’ and has the same complexity as A. Notice that only cells of
dimension 1 and 2 of an arrangement A can be non-simply connected.

Algorithm 5.1. Refine A into simply connected cells
INPUT: Planar arrangement A
OuTpUT: A’ consisting of simply connected cells only
e Transform A into a planar graph § by mapping its zero-dimensional cells to nodes,
and its one-dimensional connected cells to edges.
e A one-dimensional circular edge is made simply connected by adding a new vertex;
see the squared vertices in the Figure
e We are left with non-simply connected faces. While G contains a bounded connected
component:
— Choose such a component and connect its y-minimal point downwards using a
vertical arc until it reaches another component of G (or if this does not happen,
the arc goes to —o0); see dashed lines in Figure GG

Figure 5.6. How to make cells of an arrangement A simply connected? Break one-
dimensional circles (squares) and add vertical arcs (dashed). Each resulting face is
simply connected.

Observe that each such arc either merges two connected components, or turns one of
them unbounded. Thus, it is clear that the algorithm terminates, and produces a graph
without bounded connected components. Some properties and results of the algorithm:

202 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Proposition 5.30. Each cell of A’ is simply connected.

Proof. Assume for a contradiction that there is a cell I" of A’ which is not simply connected.
Clearly, I' cannot be one-dimensional as we split all cycles. So assume that I' is a face.
Since it is not simply connected, there is a cycle C that is not contractible. Hence, its
interior contains a connected component, which must be bounded. That contradicts the
fact that there is no bounded connected component. O

Proposition 5.31. The complexity of A’ is the same as A.

Proof. Notice that for each connected component of G, we introduce at most one edge and
two vertices and split at most one face. The number of connected components is upper
bounded by the number of faces of A. We add at most 4 cells for each face of A. This
proves that we do not increase the complexity. O

Remarks.

e In the terminology of CGAL’S Arrangement_2 (see §243)), we introduce a finite num-
ber of new (vertical) edges that such each inner CCB gets connected to the outer
CCB of the face it belongs to. This means, that no face has an inner CCB and
only one outer CCB. In addition, each isolated vertex is also connected to the outer
CCB of the face that contains the point by a new (vertical) edge. An unbounded
face is connected with the implicit fictitious outer CCB (see Figure (a)). As a
result, each (non-fictitious) face has neither an inner CCB nor an isolated vertex. By
definition, such a face in a planar arrangement is simply connected.

e The computed graph induces a refined arrangement A’ of A. If the cells of A comprise
data, the newly added cells obviously inherit the attached data of the cell they are
included.

In what follows we only consider the single-surface case, as the multi-surface case is its
natural extension and the corresponding adaptions for multi-surface cell-decompositions
Q) are straightforward.

PR . , o ;o
. The arrange.rr%ent A s} implies a cell decomposition {2 (s} by lifting the cells of A (s}
similar to Definition B2

Proposition 5.32. Each cell of Q/{S} is simply connected.

Proof. Each cell w’ of Qf{) 18 the homeomorphic image of a (simply connected) cell T’
of Af{ sy 16 follows that «’ is simply connected as well. O

We mention that this refinement into simply connected cells has not yet been integrated
into our implementation that we present in §0.3

5.2. Operating algebraic surfaces

We next concentrate on algebraic surfaces. Such a surface S; is defined by a trivariate poly-
nomial f; € Q[z, z, y] of total degree D;. We refer to deg,(f;) as D, ;. We can assume that
fi is square-free and primitive, that is, S; contains no irreducible component twice, and has
no two-dimensional vertical component. In addition, each pair S;,S;, with ¢ # j is defined

5.2. Operating algebraic surfaces 203

by coprime polynomials. If the input does not fulfill these conditions, we can decompose
pairs of non-coprime surfaces into (up to three) coprime ones and apply a square-free fac-
torization as in LTI In other words: We treat vertical and multiple parts of each input
surface separately. The intersection of two surfaces is at most one-dimensional. Note that
for a fixed i we sometime use S; = V(fi) = Vr(ap, ,27=+,... 4, ap2?).

We first, as in §8.2.T] consider z-fibers of a single surface and remember algebraic
entities derived related to z-fibers that help to construct the desired planar arrangements
Ags,y and Agg, gy in §0.22 without the need to actually compute the fibers. But we
require them for the actual lifting. §5.2Z3 shows that the continuation conditions are
fulfilled, while §5 24 revives the cell decompositions from §51l for algebraic surfaces. We
also show that algebraic surfaces completely fulfill the conditions raised in §6.11 At the
end of this section we give a short link to semi-algebraic surfaces.

5.2.1. z-fibers

Definition 5.33. Let S; € 8 be an algebraic surface defined by the vanishing set of f;. The
z-fiber of a point p := (pz,py) € R\ V; is

Zpi =1z € R fi(pz,py,2) = 0}

Note that this definition omits to define z-fibers for p € V;, as for such points {z €
R | fi(pz,py,2) = 0} = R. This contrasts Definition that expects |Z, ;| to be finite.
To tackle this task, we below introduce three polynomials whose roots define the desired
entries. Thus, the formal specification of such a z-fiber is postponed to Definition B.61] on
page of 2 For now, we only rely on the fact that Z,; with p € V; decomposes ¢,
into a finite number of pieces.

To compute Z,; we require a method that is able to isolate the real roots of the
polynomial f;i(p) := fi(pz,Dy,2) € R[z], where p’s coordinates are algebraically defined,
which constitutes the first problem: f;(p) € R[z] has algebraic coefficients for many z-fibers
computed by our method. A second problem is that f;(p) might have multiple roots.

Theorem 5.34 (Complexity of z-fiber for p ¢ V;). Let S be an algebraic surface of degree
D and p ¢ V;. Then, |Z,;| < D.

Proof. fi(p) := fi(pz,py,2) € R[z] defines Z,; and deg(f;(p)) < D.; < D. O

Let us derive additional exact values on f;(p) in order to simplify the desired compu-
tation.

Definition 5.35 (Local degrees). Let p be as above. The local degree d,; is the degree of
fi(p) in z. We also say that p is d, ;-regular. In case that f;(p) =0, d,; = —oo. The local
ged degree ky ; is the degree of ged(fi(p), %fi (p)). We also say that p has degradation k.
The local real degree my,; is the number of distinct real roots of f;(p).

How to compute these values? We start with the local degree d,;. Remember that
fi= 5:23 aq(x,y)z®. If f; is z-regular, we are done. This can be checked by determining
whether deg, (f;) = D, that is, whether Vz,y € R we have ap_ ,(x,y) = ¢ # 0. Otherwise,
we compute d,,; = max{d | aq(py,py) # 0} by starting with d = D, ; and stopping as
soon as aq(psz,py) # 0. If even ag(psz,py) = 0, then p € V; (remember that we excluded
that S is completely vertical). In this case dp, ; := —oc.

204 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

For computing m,,; and k, ; we refer the reader to Algorithm on page Bf] that is a
specialized form of Algorithm 23 The algorithm relies on Sturm-Habicht sequences (see
Definition EZTT)) to obtain the number of real roots of f;(p). It is important to use a proper
reductum of f; if dy,; # D, ;; see also Lemma T3 Sturm-Habicht sequences are similar to
signed subresultants. Thus, we encourage to follow the remark and invitation on page
to benefit from computed sequences when aiming for £, ;; see also Lemma

It must be said, that the specialization property (see Theorem ZI0) is central to this
computation, as, in particular, we only know restricted information on p: We will know
refineable interval approximations p, and p, and we will be able to check whether p lies
on some planar curve. This is a perfect setting for the bitstream Descartes method.

We describe in detail how to use this method in combination with the computed values
in 8201 That part also discusses the missing case of how to compute the entries of Z,;
(and Z,g) for p € V;.

5.2.2. Planar arrangements

We next present (constructive) definitions for the desired arrangements Ag,) and Ayg, S;}
for algebraic surfaces S;,S; € 8,5; # S;. We do not only prove that such arrangements
exist, but also try to keep their sizes almost minimal with respect to the number of faces,
edges, and vertices.

Constructing Ayg,}

Remember the local degrees from Definition that give additional information on z-
fibers of a single surface S;. In this part we construct an arrangement Ayg,y, whose cells
have invariant d and k. Following §5.2.T] the points of a cell also share the same m. As an
arrangement consists of finitely many cells this construction shows that Condition B is
fulfilled for an algebraic surface .S;. Implicitly, we also show Condition B23 Consequently,
we are able to construct z-fibers over any point of the plane, since all algebraic information
(local degrees) can be stored along each cell of Ayg,y and is valid for each of the cell’s points.

Definition 5.36 ((d,k)-invariance). A connected set I' C R? is called (d,k)-invariant with
respect to a surface S; = V(f;) if the local degree dr; := dp,; and the local gcd degree
kr; = kp; of f; are invariant for all p € I'. A (d)k)-arrangement for .S; is a planar
arrangement whose vertices, edges, and faces are (d,k)-invariant with respect to S;.

The delineability (see Definition 2ZZ2TI) of f; on any (d,k)-invariant set has also been
shown by Collins in his seminal work on cylindrical algebraic decomposition [Col75]. Re-
member the implication: The (real) lift over the set is the union of m,,; disjoint function
graphs (also known as sheets; see §LT0)). A slightly weaker version is:

Theorem 5.37. Let I' be a (d,k)-invariant set for V(f;). Then, each p € I' has the same
local real degree mr ;. Even more: For each | = 0,...,mr; — 1, the [-th lift ¢ over T is
connected.

Proof. The number of distinct complex roots over a (d,k)-invariant set is constantly d — k.
The roots of f;(p) continuously depend on p, thus, in an open neighborhood of any point
on I' the imaginary roots stay imaginary. As the total number of roots is preserved and

5.2. Operating algebraic surfaces 205

imaginary roots only appear together with its complex conjugate, the real roots also remain
real; see [Col75, Theorem 1] for more details. O

The next construction also appears in Collins’ work [Col75, Theorem 4]:

Theorem 5.38 (Existence of (d,k)-invariant). For each algebraic surface S;, there exists
a (dk)-arrangement.

Proof. Our proof is constructive. Let p be an arbitrary point in the plane, and f; =
5228 ag(z,y)z% The local degree of f; at p simply depends on the coefficients ag. Re-
member from above:

dp,i = deg,(fi(p)) [= max D]

with D :={d=0,...,D,; | aq(p) # 0}. Note that in case dj,; = —o0, it holds D = (.
The same way, the local gcd degree depends on the principal Sturm-Habicht coefficients
sthag ((fi)(a,)) by

kpyi - degz(ng(fi(p)7 %fl(p))) [: min fK]

with K := {k = 0,...,dp; — 1| sthag((fi),))(p) # 0}. Note that in case k,; = —oc it
holds X = 0.

The coefficients a4 and sthag((f;)@) define algebraic plane curves aq = V(aq) and
oar = V(sthay((fi)@))), respectively, of degree at most D(D —1). Then, dp; and k;,; are
determined by the curves p is part of. Thus, the arrangement induced by ap,,,...,ao
and, foralld=1,...,D.;, 040,...,044 has only (d,k)-invariant cells. O

Note that the number of curves is finite, and as each curve induces a finite arrangement,
also the overlay consisting of all curves induces a finite arrangement. In addition, Ayg,)
subdivides R? into cells of points that have an invariant pattern of (multiple) roots of
fi(p)(z) for all p in a cell. This implies, that the z-pattern Wygy), can only change upon
switching to another cell. This shows Condition Bl In addition: As S; does not contain
two-dimensional vertical components, all a; intersect in finitely many points, which results
in an alternative definition of V; := {p € R? | ¥d = 0,...,D,; : a4q(pz,py) = 0}. This
shows Condition

The proof of Theorem gives a way to construct some (dk)-arrangement for a
surface. However, its number of cells might be larger than needed. We aim for a clustering
into few (d k)-cells.

Definition 5.39 (Projected silhouette). The projected silhouette g, of S; is defined by
sthag(f;) = Res.(f;, 22)

Lemma 5.40. For any point, (dpi, kp;) = (D, 0) if and only if p is not on 1g,. Conse-
quently, all edges and vertices of a (d,k)-arrangement not belonging to Ts, can be removed
and their incident cells can be merged to a larger (d,k)-invariant cell.

Proof. Following [BPRO6 Proposition 4.27], we have Res,(f;, %) = ap, ;Disc(f;) where
Disc(f;) denotes the discriminant of f;. It is clear that d),; = D, ; for a point p if and only
if ap, ;(p) # 0. From the definition of the discriminant, k,; = 0 for a regular point p if
and only if Disc(f;)(p) # 0. O

206 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

This opens the door to apply a combinatorial minimization of any (d k)-arrangement.
For what follows, we assume that each cell ' of a (d,k)-arrangement is equipped with
its local degrees dr; and kr; as data. As post-processing, one can remove all edges and
vertices away from 7g, and remove vertices on 7g that have exactly two adjacent edges, and
both edges have the same local degree and local ged degree as the vertex (and merge the
adjacent edges). A similar idea of clustering a cad has been proposed by Arnon [Arn&§|,
but, in contrast, (d,k)-invariance models a strictly weaker condition. Thus, it produces
larger cells.

As we are aiming for an actual implementation using CGAL’s Arrangement_2 package
to construct the (d,k)-arrangement, we present Algorithm that turns the actual post-
processing into a bottom-up construction of the (d,k)-arrangement, which lowers the size
of intermediate arrangements@ The main tool for Algorithm B2 is CGAL’s possibility to
overlay arrangements. Given arrangements A and As, the overlay is the union Ag of both
arrangements. In addition, we can ensure that each cell of A3z knows from which cells of
A1 and As it originates.

Remark (on Algorithm[2). There are two optimizations: First, to set the local ged degree
one only has to consider those degrees d that appear as the local degree of at least one cell.
Second, the inner iteration over the k’s is stopped as soon as all cells of degree d know
their local gcd degree.

Ays;y, as constructed with Algorithm B2, basically consists of the overlay of the leading
coefficient curve and the discriminant curve of f; (compare Lemma [A0). However, this
curve is subdivided by additional points in order to ensure (d,k)-invariance. We admit, that
the approach is in similar spirit as the improved projection operators in cad computation;
see the work of McCallum [McC] and the slight improvement by Brown [Bro01b]. Instead
of (d,k)-invariance, they introduce order-invariance and show that such cells also ensure
delineability. Consequently, the non-leading coefficients and the principal Sturm-Habicht
coefficients are superfluous for Theorem B3 However, the knowledge about the local
degree and the local ged degree in our (d k)-invariant decomposition enables fast methods
in the lifting step, as we learn in §6.331

We now consider a set 8 := {S1,...,S5,} of algebraic surfaces. The definition of local
degrees naturally extends:

Definition 5.41 (Local multi-regularity). Given a point p = (ps,p,) € R% We call it
(dy,...,dy)-regular with respect to 8 := {Si,...,S5,} if and only if p is d, ;-regular with
respect to S;. Note that having some d,,; = —oo is allowed.

We first concentrate on n = 2, that is, we restrict to two surfaces only. Afterwards
it is easy to define an arrangement for an arbitrary number of surfaces for our purposes.
Let S1,52 € & be two surfaces and A’ESLSQ} be the overlay of the arrangements Ag y
fmd A{SQ}. Then, for each cell of A?SLSQ} the regularity with respect to {S7,S3} stays
mvariant.

We next show that there exists a refinement Ayg, g,1 of A?SLSﬁ, such that on each
component I' € Ayg, s,) the z-patterns Wig 1y ,, Wis,y 5, and Wyg, g,y , stay the same. For
this purpose we have to introduce some further notation based on subresultant sequences.

8 Arrangements of large size are usually more costly to construct than such with a small number of cells.

5.2. Operating algebraic surfaces 207

Algorithm 5.2. Construct clustered Ag, with low-size intermediate arrangements

INPUT: Algebraic surface S of degree D
OUTPUT: Aygy with minimal number of (d,k)-invariant cells

1.

Computing the arrangement A induced by the projected silhouette 7g only. Re-
member that 7¢ may be not square-free. To handle this case, we typically apply a
square-free factorization (see §ZIT]) and compute A,, by overlaying individual ar-
rangements induced by the resulting square-free curves. In this case, each resulting
edge of A can be assigned with the multiplicity of the corresponding factor of 7g.

. Each face of A receives the values (D,,0) respecting Lemma

. Decompose A such that each resulting cell has invariant local degree by repeating

the following steps for d = D,,...,0:

e Compute the arrangement A; induced by ag; as above, we actually consider
the square-free factorization of ay.

e Overlay A with Ay, the result is A’

e Remove all vertices and edges of A’ that originate from a face of A.

e Remove also all vertices of A’ that originate from an edge of A whose local
degree has already been set.

e For each cell of A’ that originates from a face of A, and whose degree is not
set yet, assign its local degree to d.

e Set A «+ A’ and proceed with the next iteration.

Set the local degree of all cells which are not yet set to —oo, as .S must be vertical
above these cells (vertices).

. It remains to decompose A into (d,k)-invariant cells. The strategy is similar: It-

erate over the degrees and overlay with the corresponding principal Sturm-Habicht
coefficient curves o4 y. Thus, repeat for d = D, ..., 1: Repeat for k =0,...,d — 1:
e Compute the arrangement Agj induced by o4 1; as above, we actually consider
the square-free factorization of sthag(f(q))-
e Overlay A with Ag g, the result is A’
e Remove all vertices and edges of A’ that originate from a face of A.
e Remove all vertices of A’ that originate from an edge of A whose local gcd
degree has already been set, or whose local degree does not equal d.
e For each cell of A that lies on a face of Ay, whose local degree is d, and whose
local gcd degree is not yet set, assign the local ged degree to k.
e Set A «+ A’ and proceed with the next iteration.

208 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Definition 5.42 (Local multi-degradation). Let p = (p,,py) be a (di,d2)-regular point,
with d; # —oo and dy # —oo. We say that p has degradation k, ; » with respect to {57, S2}
if and only if

kpa,2 := deg,(ged(f1(p), f2(p))) — 1[= min Ky o]

with K19 := {k =0,...,min{dy,d2} — 1| sresg((f1)@a,)(®; 2), (f2) (o) (P; 2), 2) # 0}. Note
that if k, 12 = —0o we have K; o = 0.

Let T € A?SLSQ be a cell of regularity (dy,ds), then, there exist common minimal
degradations ki, ko for I'. If I is a face, kr .1 = kr2 = 0. Otherwise, kr; is defined and
> 0 if dr; # —oo. However, I' may not yet be invariant with respect to common roots
of f1(p,z) and fa(p,z). Remember from Proposition 7 that fi(p,z) and fa(p,z) only
have a common (complex) root, if Res,(f1, f2,z) vanishes. That is, the two surfaces may
only intersect above some p if k12 > 0. Following, p € Vr(Res.(f1, f2)) is a necessary
condition for having an intersection of the surfaces over p. Points having this condition
are given by the following curve:

Definition 5.43 (Projected intersection). The projected intersection 19 s, s, of {S1, 52}
is defined by sreso(f1, f2, 2) = Res.(f1, f2).

To overlay the (dj,ds)-regular arrangement A?SLSQ} with the projected intersection
is the main step in Algorithm B3 However, it still does not ensure that the obtained
cells are invariant with respect to z-patterns. p € Res,(f1, f2) only means that g, :=
ged(fi(p, 2), f2(p, 2)) is non-trivial. Only if g, has real roots then f; and f» have real inter-
sections over p. As before, the number and distribution of (complex) roots of polynomials
fi(p, z) and f2(p, z) continuously depend on p, and so the roots of g,. The distribution
of its roots (i.e., their number and multiplicities) changes only where the degrees or the
factorizations of f; or g alter; see Proposition in combination with Theorem and
Theorem (37 Fortunately, the subresultant sequence gives a (deliberate) algebraic in-
dication for a change in g,’s degree — and thus a possible change in the number of real
intersections.

We already considered the individual degradations of f; and fs. But, we still have to
refine the cells induced by 79 g, 5, with respect to further degradations, that is, with respect
to curves 73 g,.5, = VR(sresi(f1, f2,2). Note that if k1 2 = 0 implies that deg,(g(p)) = 1,
that is, there is one real intersection of S; and S over p (by degree there cannot be a
multiple or complex one). Remember that k), 1 2 constitutes an upper bound on the number
real intersections of S and Sy over p. These observations finally lead to Algorithm

Remark (on Algorithm[53). Observe that our construction of Ag, g,y is conservative in the
sense that it might keep cells having the same number (and order) of real intersection over
it as its neighbored cells. The reason is simply that the algebraic indication that we rely
on does not ignore complex roots.

However, by construction it is ensured that the local degrees for each individual surface
stays invariant in each cell, and the intersection pattern of two surfaces over a given cell also
cannot change. We admit, that at this point the local real degrees are not yet determined,
though they are theoretically fixed in terms of the others. Thus, Condition is also
fulfilled for algebraic surfaces.

Remark. As for a single surface, the construction is similar to what is done for a cylindrical

5.2. Operating algebraic surfaces 209

Algorithm 5.3. Construct clustered Ag, 5,1

INPUT: Algebraic surfaces S1, Sy of degree Dy, Do
OUTPUT: Ayg, s5,) With minimal number of invariant cells with respect to local degrees
and degradations

1.

. Overlay A?SI’SQ} with A

. Set kr12 = 0 for all cells I' that originate from vertices and edges in A

Compute overlay of Ag,} and A(g,y and call it A?Sl,SQ}'

Compute the arrangement A, 51,55 of 70,5,,5,- As above, remember that A, 5y,5, CALL
be composed of the overlay of 79 g, s,’s square-free factors. Thus, each of A
edges can be assigned with the multiplicity of the corresponding factor.

)
T0,51,80 S

T0,87,85 " The result is A{SLSQ}. However, kr 2 for I' €
A(s,,s,y is still unknown and some edges can even split further:

To.5. 5.0 and
9192
kr 1,2 = —oo for all other cells (meaning invalid).

If ' is such a special vertex or edge let dir and dor denote its local degrees with

respect to S7 and Ss.

. For such a vertex at point p we have to compute the correct (and maybe larger)

kp71,2. For1<k< min{dp,l, dp,Q}:
e Check whether p lies on 7412 (or one of its square-free factors, and note that
Tk,1,2 depends on dy, 1 and dp2). If so, continue, otherwise set k12 = k and
stop. Note that this point-on-curve test encodes whether sresi(f1, f2, 2)(p) = 0.

. For such an edge E two options are possible. Again, for 1 <k < min{dg,dg2}:

e Check if E is part of 74 1 2, by testing whether the polynomial defining the curve
that supports E has a common factor with sresy(f1, f2, 2). If so, set kg 12 =k
and continue with next k.

e Otherwise, check if E has a finite number of intersections with 75 12. Split E
at them which creates new vertices. For each such vertex at point p, assign
kp 1,2 = k and proceed with the described handling for vertices.

210 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

algebraic decomposition; see §&T.01 In contrast, we explicitly handle the projection as a
planar arrangement and benefit from the possibilities to combinatorially cluster cells and
to attach additional data, such as the multiplicities of 7 g, g, or degradations £ o.

The extension to more than two surfaces is natural:

Definition 5.44 (Ag). Let 8§ = {S1,...,S,} be algebraic surfaces and let Ags,5,30 1 F J
the arrangement as constructed with Algorithm Then, we define Ag to be the overlay
of all arrangements A(g, 5.y

By how we constructed A(g, 5.y it can be seen that Ag consists of cells I' € Ag such that
Ws p is identical for all p € I'. Thus, Ag is m-invariant for 1 <4 < n and m; j-invariant
forany 1 <4i,j <mn,i+#j.

5.2.3. Continuation

In this section we show that Condition is fulfilled for an algebraic surface S;. Addi-
tionally, we learn that a lifted face F' of some Ayg,y can be incident to a whole interval
along some ¢, for p € F and p € V;, which helps in §524 to decompose S; and to proof
the boundary property of the decomposition.

As we already know that Condition holds for p ¢ V;, Condition can be ver-
ified by the fact that the roots of a polynomial continuously depend on its coefficients:
Remember that in this case Z,; = {z € R | 0 = fi(pz,py,2) € R[2]}. Thus, for some
I' € Ags,y, p € OI' and the sequence of points p; € I' with lim¢ o pr = p, we must
get {limtﬁoo Zppi—1s -+ My oo Zpt,i,mr,i} C Zp; and limy_o0 2p, 50, < limy_oo 2p, 4,1, for
l1 <lz. The same argument applies to Condition EI7 for p ¢ V; UV} and Ayg, 5,3

The situation is different when we have p € V;. In what follows, it does not make a
difference whether we have A(g,y, A(g, 5.}, or even Ag. We only fix an arbitrary surface 5.
The process is identical for any other surface.

We assume that p is a vertex in Ag and for a neighborhood of p, none of the surfaces
S;, j # 1 contains a vertical line, except at p. Now we consider a sequence of points
p: € I' C Ag that converges against p. Then, we have to determine possible limits of their
I-th lifts (pe, 2p,.50) C Pt X Zp,i C pr X Zp, 5. If all pg lie on an edge E, then the limit is
uniquely given as endpoint (above p) of the I-th lift of E with respect to S;.

For a face F' € Ag, adjacent to p, it can happen that the limits of the I-th lifts of two
different sequences py, p; € F are distinct.

Theorem 5.45. Given a surface S; € 8§, I' € Ag, and two sequences p,p;, € I' with
p = limy oo pr = limy_.oop} and for some 0 < | < mp,; we have zy = lim; Zpy.ils
21 1= zy ;1. Then, for any 2* in between zy and 21 there exists a sequence p; € I' with
p = limy_, pf and z* = limy_, Zpz il

Proof. If zg = z; there is nothing to prove, thus we can assume zg < z;. We can further
assume that |p; — p| and |p; — p| are monotone. As Ag is expected to be m-invariant it
follows that there exists an gy such that U, NI is connected for all ¢ < ¢p and U, :=
{qg € R?: |q —p| < €}. Thus, we can assume that U; N T is connected, where U; := {q €

R?||q — p| < 2max{|p; — pl, |[p| — p|}}.

5.2. Operating algebraic surfaces 211

Now we consider a continuous path IT; C (I'NU;), that connects p; and p). As the roots
of fi(g,z) continuously depend on the point ¢ € T', for each 2; in between 2, ;; and z ;;

we can choose a pf € II; that lifts to zpy ;1 = 27. As 20 = limy—o0 2p, i1 and 21 := 2y 45
there exists a tg € N such that 2* € [z, i1, 2, ;] for all £ > to. Thus, we can choose 23 = 2*
from which it follows that p; € I' converges against p and fulfills 2* = limy_o0 2p7 5. U

Theorem shows that for any element I' € Ag, adjacent to p, and any [€
{0,...,mr;—1}, the set of limits lim;_. 2p,,i1 (p+ € I' a sequence that converge against p)
is an interval of Ir;; C R. Thus, algebraic surfaces fulfill Condition and following the
specifications for Z,,; constituted in Definition BT

Concerning Condition BT we can apply the same proof idea. Actually, Theorem
in combination with Condition show the desired result for algebraic surfaces. The
reason is that lifts of a face F' € Ag uniquely belong to a single surface.

However, it is not yet discussed, how to compute the entries of Z,; for p € V;, and
7

i for p € ViUV;. We give the details on this task in §5. 42 The construction described
there provides also the proofs for the following theorems. We require them to bound the
complexity of our cell decomposition that we introduce next in §5.2.41

Theorem 5.46 (Complexity of z-fiber for p € V;). Let S; be an algebraic surface of degree
D and p € V;. Then |Z,;| € O(D?).

Theorem 5.47 (Complexity of ZILZ.].
and p € V; UV;. Then |Z); ;| € O(D?).

). Let S;,S; be two algebraic surfaces of degree D

)

Corollary 5.48 (Complexity of multi-surface z-fiber for p ¢ V). Let 8§ be a set of n
algebraic surfaces with maximal degree D and p ¢ V. Then, |Z,s| € O(nD).

Proof. Remember the definition of Z, g for such p. Theorem B34 gives |Z,;| < D. There
are n surfaces. O

Corollary 5.49 (Complexity of multi-surface z-fiber for p € V). Let 8§ be a set of n
algebraic surfaces with maximal degree D and p € V. Then, |2, s| € O(n>D3).

Proof. Remember the definition of Z,, s. Theorem gives |Z,;| € O(D?). There are n

surfaces. Theorem BA7] gives ZIL i € O(D3). There are O(n?) different pairs of surfaces.
O

5.2.4. Stratifications and their complexities

We next show that the cell decompositions we introduced in §5.1] constitute stratifications
of algebraic surfaces.

Definition 5.50 (Stratification; see [BPR06, §5.5]). Let S; be a surface. A stratification
of S; is a decomposition of S; into cells such that
e cach cell is a smooth subvariety of S; of dimension 0, 1, or 2, and
e the boundary of a cell is given by the finite union of other cells; also known as the
boundary property.
The cells of a stratification are also called strata.

212 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Compare also the similar notion of a CW complex; see §ZT.7 and [Mas67], [Bredd).
In addition, we give complexity bounds for each of these decomposition in terms of the
number of surfaces and their algebraic degree.

As previously mentioned {2,y should fulfill the boundary property. An equivalent
statement is, that for any two cells My, My with dim(M;) < dim(Ms), we must have
My N My =0 or M; C M,. In the previous case, the two cells of S; are not related, while
in the latter case, we call them adjacent. To check whether M; is adjacent to Ms can be
expressed with respect to an arbitrary point p € My: Two cells are adjacent if and only if
p € M,. We first assume that V; = 0.

Theorem 5.51. Let My, M> € QSZ. with dim(Ml) < dim(Mg) and I'1,T'y € ‘A{Sz} their
corresponding projections onto the plane. IfT'y has local degree dr, ; # —oo and M; NM, #
@, then My = Ms N (Fl X R)

Proof. Let My be the lp-th lift of Ty and p = (p*,29) € My N (I'1 x R) an arbitrary
point, contained in a lift I‘gll’l) of I'1. For the lifts p*(l’i) of p* we choose a box neigh-

borhood B,« of p* and also disjoint boxes By,...,B lying above B« with B; =

y Zmry
By« x [p*(l’i) — 90, p*(l’i) + 6] and a 6 > 0. We can assume that B, and ¢ are chosen such

that the [-th lift of I'y N By« is contained in B;. For B, small enough, it follows that the
lo-th lift of By« NT'y is also contained in B;, as p € B, N M,. As a direct consequence
(B NT1) x R) N My is the l3-th lift of (Bp- NT'1). Now for any two points p} and pj on
I'; there exists a compact path IT on I'y, which connects them. Then, we consider an open
covering of II with local neighborhoods By, p’ € T, such that ((B, NTy) x R) N M, is the
ly-th lift of I'1. Then, from restricting to a finite partial covering it follows that I, = Iy

for all p/, thus T = W5 N (Ty x R). Now M; N My # 0 exactly if My = {9, 0

Theorem BE5Tl assumed that S; does not contain a vertical line. Thus, we turn to sur-
faces that include vertical lines and decompose them into cells according to Definition B.28
It also must be shown that this extended decomposition (g} is still a strafification, that
is, the boundary property is fulfilled. Remember that S; only contains a finite set of ver-
tical lines. Observe that not splitting vertical lines is insufficient as such an ¢, in general,
constitutes a superset of a boundary of a lifted face. However, (2;g,) as in Definition
splits £, according to the interval boundaries defined by the following implication of The-
orem .4

Corollary 5.52. Let S; contain the vertical line £, and F' € Ayg,y be a face, which is
adjacent to p. Then for any surface patch F9 there exists an interval I(F(l’i)) C R, such
that p x [(FU)) = FUi) 0 g,

Thus, the boundary property is ensured by how we constructed Z,; according to Con-
dition which is fulfilled by Corollary E52

The boundary property of g is given by the facts, that with respect to a single
surface S; the arrangement Ag is a refinement of Agy and a lift of any curve 7g; or
70,5;,5; for any j # i only splits a cell M of Qg,}. Note that M already has the boundary
property. If V; = (), the boundary property follows by Theorem ESTl applied to S; and Asg.
Otherwise, we have to consider the case that M can be adjacent to a vertical line at p with
I(M) being non-degenerate and that M is split by a lift of some Tg; O Tos;,8; for any

5.2. Operating algebraic surfaces 213

j # i into M7 and Ms. Note that by Condition BI1 the z-coordinate of the endpoint of
such a curve’s lift is included in 2, (g, 5.3 Thus, the way (g splits £, ensures that I(M;)
and I(My) are reflected by the decomposition and thus, the boundary property is fulfilled.

As promised we also analyze the complexities of the cell decompositions. Again, we
start with a single surface S; defined by f; having total degree D and its (d,k)-arrangement
Ays,y as constructed by Algorithm B2 We first show, that the complexity of Ayg,y is not
greater than that for 7g.

Theorem 5.53. The number of cells of Agg,y is O(D?).

Proof. First remark that D = D;. It suffices to count the number of vertices, as arrange-
ments form planar graphs. For such graphs, the number of edges and faces linearly depend
on them by the Euler formula. First observe that the projected silhouette 7g, is of degree
at most D?2. By Bézout’s theorem it has at most D? critical points. It remains to show
that its decomposition with respect to ag and o4 does not create more than D* new
vertices.

Consider the decomposition of 7g, into irreducible components v; with degree v;, and
fix one v = ~; of degree v. In the execution of the algorithm, we only introduced new
vertices for v (that are not removed in the same iteration) in two iteration steps:

First, when a coefficient curve ay does not contain the whole curve «. This introduces
at most v- D many vertices. All further coefficient curves ay_1,...,ay do not introduce
new vertices on -, since the local degree of all edges for v is set to d.

Second, new vertices are introduced when a Sturm-Habicht polynomial sthay(f(d))
does not contain the whole curve 5. This introduces at most v - D? many new vertices. All
further Sturm-Habicht curves sthag_1(f(a), - -,sthag(f(4) do not introduce new vertices
on -, since the local gcd degree of all edges for v is set to k.

Finally, each 7 gets at most O(v; - D?) many new vertices, and the v; sum up to D?. O

Corollary 5.54. For a surface S; without vertical line, the number of cells in Qyg,y is O(D?).

The proof is given by Theorem B34 and Theorem BEB3l An implication is that we
achieve a topological description of the surface using O(D®) many sample points. A cor-
responding cad consists of Q(D7) cells, due to its vertical decomposition strategy in the
plane. However, the advantage of having a small number of cells implies less topolog-
ical information, for example, to replace (lifted) edges by straight-lines requires further
processing. How to compute the adjacency relation of {154’s cells is presented in §6.42.2

The complexity of 2¢g,y with V; # () can also be stated. Note that we need to compute
Zpi for p € V. We learn in §5.472 that we actually compute a superset of Z,; that
is algebraically defined by the real roots of three polynomials. That is, for p € V;, it
holds that €2;g,1’s decomposition of /), is finer than technically required by Condition B3
However, Theorem still holds to finally proof that Qg stays with the known worst-
case complexity:

Theorem 5.55. The number of cells of Qyg,y is O(D®).

Proof. For lifts not related to p € V;, Corollary B34l still applies. It only remains to bound
the number of cells introduced for vertical lines by O(D®): Observe that deg(f;) < D
implies |V;| < D?. Tt remains to apply Theorem O

214 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

We turn to the case of multiple surfaces. Note that VD; : D; < D. We already learned
in §9.27 that Ag composed of all Ag, 5.y for two surfaces S;, Sj, i # j forms the basis for
Qg. In order to derive {2g’s complexity, we first have to proof a result on Ag’s complexity:

Theorem 5.56. The number of cells of Ag is O(n*D*).

Proof. Again, it suffices to count the number of vertices, for the same reason as in the
proof of Theorem B33l

We perform the counting in two steps: First, we consider the vertices of the individual
arrangements that occur. Second, we analyze how many vertices occur during overlays.

For a single surface S;, the complexity of Aygy is mainly driven by 7g,, that is, an
algebraic curve of degree at most D?. The arrangement has, following Theorem 553,
O(D*) vertices. When constructing Ays, ;1 for two surfaces S;, Sj, @ # j, we addi-
tionally consider 79 g, s;. This curve is also of degree at most D? and thus has at most
D* critical points. During the execution of Algorithm B3 70,5;,5; gets segmented by
some sresy(fi, fj,2) with & > 1. The maximal number of segmentation vertices occurs if
sreso(fi, fj, 2) gets segmented by sres (f;, f;,2). Bounding deg(sresi(f;, f;,2)) by D? is
sufficient (though not very tight) as is allows to conclude that the number of segmentation
vertices of 795, 5, is upper bounded by D*. Thus, both the refined 7g, and the refined
70,5;,5; have at most O(D*) critical points.

It remains to give a bound on the number of vertices that are introduced with respect
to overlays of arrangements. We only have to consider how often curves 7g, and 79 5, 5, can

intersect I Remember that deg(sreso(fi, %, z)) < D? and also deg(sreso(fi, fj,2)) < D%
Thus, two such curves intersect by Bézout’s theorem in at most D* points. There are n
projected silhouettes, and O(n?) projected intersection curves. As we overlay all of them,
we have to consider each pair and thus get up to O(n*D*) new intersection points.

In total, Ag has complexity O(nD*) + O(n?D*) + O(n*D*) = O(n*D?). O

The next corollaries are simple implications of Theorem (.56l Corollaries B.48 and B.4Y,
and the fact that |V| < nD?

Corollary 5.57. For a set § = {S1,...,S,} of algebraic surfaces of total degree D, the
number of cells in Qg is O(n°D®).

Corollary 5.58. For algebraic surfaces Sy, So of total degree D, the number of cells of
A(sy,s,} is O(D*) and the number of cells in Qg, g,y is O(D?).

Assume we replace Ag in Definition E2Zd by A that results from applying Algorithm Bl
on Ag. By Proposition we obtain a cell decomposition €25 consisting of simply con-
nected cells, whose complexity can also be bounded:

Corollary 5.59. For S; € 8, [Q4,| € O(D?) and || € O(n°D®).

5.2.5. Semi-algebraic surfaces

Let us also shortly refer to semi-algebraic surfaces, that constitute possible input. A
semi-algebraic surface S> is defined by a polynomial equation f = 0 that is refined by

“9Mind that the coefficients curves a; only segment T, .

5.3. Implementation in a framework 215

a sequence of polynomial inequalities g; > 0, with 1 < j < r for some . Such a semi-
algebraic surface is closed, and thus fulfills the conditions expected by the framework.
In particular, the arrangement Agvz (f) vi(g1),....Ve(g,)} COnstitutes an arrangement Agg.)
fulfilling Condition B for S>. However, this decomposition of the plane is far from being
optimal, as most of its cells are redundant due to the fact, that A r) ve(s),...ve(f1)}
considers the pair-wise combination of all involved surfaces defined by polynomials. As for
S> we are only interested in changes of the z-fiber of S = Vi(f) with respect to a single
inequality g;, the following incremental strategy is encouraged to construct Ayg_y. Start
with -A{VR(f)} and refine it with respect to the projected intersections of Vr(f) with Vr(g;)
for increasing j (mind local degrees and degradations). It is still possible to simplify the
obtained A(g. ;, for example, by merging neighboring cells that do not comprise a projected
point of S>, or by removing a projected intersections of Vr(f) and some Vg(g;) if it lies in
a face of Agyg(p)y and its incident higher-dimensional cells carry the same z-pattern. We
omit further details and refer in the further discussion only in exceptional cases again to
semi-algebraic surfaces.

5.3. Implementation in a framework

It is common, that algorithms in this area of research are lacking their implementation,
or that certain degeneracies are excluded, such as vertical lines or singularities. We do
not join this queue. In contrast, we provide a C++-implementation for the tasks listed
in 11 It is part of the software projects CGAL [B] and Exacus [6]; see also §223
and §22Z4 We admit that the implementation has become feasible by relying on existing
code of the projects. Our C++-implementation consists of two related components, that
split combinatorial parts from surface-specific geometric tasks using generic programming;

see 22T

The Framework maintains planar arrangements, computes sample points, executes the
efficient construction of (multi-surface) z-fibers (with filters), and is responsible to
store the adjacency relation of multi-surface z-fibers. In other words, it implements
the surface-independent tasks from §5.11; see also §5.3.2 and §5.33 In order to do so,
it defines a concept that expects basic geometric types (such as the one for a surface)
and basic operations on them; the concept is described in §.3.11

Additionally, the framework provides classes that rewrite or use the obtained com-
binatorial results to enable other geometric algorithms on surfaces; main examples

are given in §5.0l

Models provide concrete implementations for the concept. That is, the model for a
certain family of surfaces implements the surface-specific sets of tasks listed in §o.T1;
such as to provide surface related projected curves, to create single-surface z-fibers,
to detect the equality of their entries, or to obtain the single-surface adjacency.

This part of the thesis concentrates on the framework. In 6.4 we present two models for
algebraic surfaces. The framework implement in an experimental package of CGAL, that is
planned for future submission to the project’s editorial board. All framework-specific code
consists of about 10,000 lines of templated C++. This number is not counting required
basic classes of the libraries or CGAL’s matured Arrangement_2 package, on which the

216 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

framework’s implementation is mainly based. In particular, we rely on the Arrangement_2’s
capabilities to extend DCEL-cells with data and to overlay (such) arrangements; see §2.4.3]
and remember that in order to support a certain family of curves, a proper model of
ArrangementTraits 2 must be provided. This and other requirements are listed next, when
we present the SurfaceTraits 3 concept.

5.3.1. The SurfaceTraits 3 concept

The SurfaceTraits 3 concept specifies geometric types operations on them to finally support
the computation of Problem B24l As each concept, it is a collection of syntactic and
semantic premises. No assumptions on how to implement them are stated, as long as
the demanded functionality is ensured and supported by the formal parameters. We next
introduce the concept in its details and show in §832 and §533 how the framework
interacts with a model of the concept to reach the goal. As in §3land §€I the description
of the concept lacks the precision of a reference manual. The reason is that such we can
emphasize the simplicity of the tasks. In §5.4 we present concrete models fulfilling the
SurfaceTraits 3 concept.

A model of the SurfaceTraits 3 is supposed to provide the following types:

e Surface_3

An instance of this type should represent a surface S; € §. How an instance is
constructed is not specified. It depends on the surface the type represents.

e Boundary

A type to represent lower and upper approximations of coordinates.

o Kernel_2

This type determines the geometric properties of the planar arrangements we are go-
ing to construct. As we will rely on CGAL’s Arrangement_2 package for this purpose
Kernel_2 must be a model of CGAL’s ArrangementTraits 2 concept. Thus, it pro-
vides types Curve_2, X_monotone_curve_2, and Point_2 and the operations on them
as presented in §ZIF We use it to construct Ag,y and A(g, 5,1 and their over-
lays. It depends on the family of surfaces which model is sufficient. The embedded
type Curve_2 is used to represent the corresponding projected curves, that can be
decomposed into zero- and (weakly) xz-monotone one-dimensional components with

Make_x_monotone_2.

In addition to the ArrangementTraits 2 concept, we require more specific function-
ality with respect to the nested types:

— Construct_interior_vertex_2
An instance of this functor is expected to provide the following operator:
Point_2 operator() (
X_monotone_curve_2 XCV
)
which should return a point in the interior of xcv, best with coordinates con-
structed from type Boundary.

5.3. Implementation in a framework 217

— Lower_boundary_x_2

(and also: Upper_boundary_x_2, Lower_boundary_y_2, and Upper_boundary_y_2)
An instance of this functor is expected to provide the following operator:

Boundary operator() (

Point_2 pt

)
which should return a lower approximation of the pt’s x-coordinate as instance
of type Boundary; similar for the upper approximation of x, and analog also for
the point’s y-coordinate. Each approximation must be unequal to the actual
coordinate.

— Refine_x_2 (and also: Refine_y_2)
An instance of this functor is expected to provide the following operator:
void operator() (
Point_2 pt
)

whose purpose is to refine the interval defined by lower and upper approxima-
tions of pt’s z-coordinate (y-coordinate, respectively).

e Z_at_xy_isolator

An instance of this type computes, represents, and approximates the set Z, ; \ {00}

for a given surface S; at a given Point_2 p as refineable intervals. Similar for Z;Li j
and two surfaces. Its member size() gives their number, that is, encodes my, ;. The

values z = {+oo} are implicitly handled.

Refineable means that the z-coordinate with index 0 < 1 < size() might not
be known exactly, but at least a lower and an upper boundary is accessible by
lower_boundary(int 1) and upper_boundary(int 1). This approximation can be im-
proved by refine_interval(int 1). The type of such an interval-end is given by

Boundary.

Besides these types, the concept also demands for functors related to the projection as
presented in §5.Tk

e Construct_silhouette_2

This functor has to provide three operator ()s that compute different planar curves
emanating from a given surface S. The output is returned as std::pair< Curve_2,
unsigned int > through an OutputIterator (0I). The unsigned int defines the mul-
tiplicity of a curve, if possible to compute, else —1 is chosen. For example, bivariate
polynomials defining algebraic curves can be factorized by multiplicity; see §ZTT1

0I operator () (
Surface_3 s, 0I oi

)

This first operator returns all curves that belong to the projected silhouette of s.

0I operator() (

Surface_3 s, int d, 0I oi

218

Efficient Stratification of Algebraic Surfaces with Planar Arrangements

The second computes for given d all curves whose points can decrease the regularity
of a planar point with respect to s to d.

0I operator() (
Surface_3 s, int d, int k, 0I oi

)

This last operator computes for given regularity d and given 0 < k < d all curves
whose points can increase the degradation of a planar point of regularity d to k with
respect to the given surface s.

Construct_intersection_2

This functor is very similar to the previous one. Its output iterator relies on the
same value-type, but the signature of the two demanded operators now expects two
surfaces S7 and Ss.

0I operator() (
Surface_3 s1, Surface_3 s2, 0I oi

)

This first operator returns all curves belonging to the projected intersection of the
two surfaces. Note that we assumed surfaces to intersect at most one-dimensional.

0I operator () (
Surface_3 s1, Surface_3 s2, int d1, int d2, int k, 0I oi

)
This second operator returns for given regularities d; and dy and given 0 < k <
min{d1,d2} all curves whose points can increase the degradation of a planar point
with (d1, d2)-regularity to k with respect to the two surfaces.

Finally, the concept expects functors supporting the lifting and adjacency phase:

e Construct_isolator

An instance of this functor is expected to provide the following operator(s):

Z_at_xy_isolator_2 operator () (
Point_2 pt, Surface_3 s, Cell_infol ci
)

which constructs for given pt and S the correct instance of Z_at_xy_isolator type,
that is, it computes Zp;; for S; = S; even if S has a vertical line at pt. For an
illustration see Figure BTl

The given point is included in a cell I' of Ag,. To trigger a special or more efficient
implementation, the cell-info ci comprises integral values for dim(T"), dr, kr, and,
in case that dim(I') = 1 (i.e., I is an edge), the multiplicity of 7¢’s factor that
contains pt. In addition, it carries boolean values indicating whether S consists of a
two-dimensional vertical component, or whether S is vertical locally at pt.

Z_at_xy_isolator_2 operator () (
Point_2 pt, Surface_3 s1, Surface_3 s2,
Cell_infol cil, Cell_infol ci2, Cell_info2 cil2

5.3. Implementation in a framework 219

This operator is expected to compute Zzlo,i,j‘ As precondition we have that Sp
or Sy has a vertical line at pt. Similar to the previous operator the provided
Cell_infol containers give information for the cell of Asgy and Ayg,, that con-
tain pt. The Cell_info2 container collects information on Agg, g,3’s cell I'1 2 con-
taining pt: dim(I'12), Akr, ,,1,2, and, in case that dim(T'12) = 1 (i.e., I'1 2 is an edge),
the multiplicity of 79 s, s,’s factor that contains pt.

e Adjacency

An instance of this functor is expected to compute for a surface s the adjacency
relation of two incident cells of Aygy as depicted in Problem by the following
operator:

0I operator() (
Surface_3 s,
Point_2 ptl, Cell_infol cil, Z_at_xy_isolator isol,
Point_2 pt2, Cell_infol ci2, Z_at_xy_isolator iso2,
0T oi

)

The cells are interfaced in terms of their sample points pt1 and pt2. As before,
the Cell_info container collect information on these cells I'y and I'y of Aysy- The
interfaced instances of Z_at_xy_isolator represent Zy¢1 and Znto. The value-type of
the DutputIterator (0I) is std::pair< int, int >, reflecting an entry L as defined
in Problem LT see Figure for an illustration. For p € V, it also can be the case
that iso1 is identical to Z, s. But note that 2, s D Z,;, that is, we only consider a
finer decomposition of /,,.

e Equal_=z
An instance of this functor has to provide the following operator:

bool operator () (
Surface_3 s, Point_2 pt
Z_at_xy_isolator isol, int 11, Cell_infol cil,
Z_at_xy_isolator iso2, int 12, Cell_infol ci2,
Cell_info2 cil2,

)

It checks whether the 11’s entry of iso1 is supposed to be equal to 12’s entry of iso2.
Both isolators belong to pt. Remember that they are only required to store refineable
approximations of the entries. Even in simple cases this information is insufficient,
as their equality cannot be finally deduced from iterated refinements of the isolating
intervals. If the isolators have access to an exact representation the detection of
equality can just be forwarded. However, in general, we do not expect this case.
Thus, having this functor keeps the chance that the equality decision is achieved
less directly; for example, using information provided by the interfaced cell-info con-
tainers. In addition, such information may even improve Equal_z’s performance by
filters. Mind that Equal_z usually implements costly computations, for example,
unavoidable symbolic evaluations in some cases of algebraic surfaces; see §§. 422

However, the functor has not to deal with all cases. Before it is triggered, we apply a
set of filters; see Algorithm for details. In particular, we know, when called, that

220 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

all intervals of the two given isolators are already refined such, that each interval
overlaps with at most one interval of the other isolator. Thus, the set of overlaps
forms a candidate list of real intersections. It is the functors tasks to decide for the
queried (still undecided) candidate, whether there is really an intersection or whether
the isolating intervals will separate after a finite number of further refinements. An
example is given in Figure

This concludes the discussion of the SurfaceTraits 3 concept. It is our goal for the
future to further abstract the implementation from algebraic components. Finally, it is
strongly encouraged to deploy an extensive caching strategy when implementing these
functors to avoid unnecessary re-computations of usually costly tasks.

5.3.2. Planar arrangements and attached data

The central class of our framework is called Projection_2. It is a reference-counted ver-
sion [Ket(6] of CGAL’s Arrangement_2. We instantiate with Kernel_2 as geometric-traits
class, and the topology-traits for the unbounded plane, provided by CGAL 3.4. That is,
there is a special fictitious rectangle at infinity (as in Figure (a)) to distinguish several
several unbounded faces.

We enhance the arrangement’s DCEL by using CGAL’s Arr_extended_dcel to attach an
internal data class P_dcel_data to each vertex, each edge, and each face. An instance of
type P_dcel_data for a cell I' comprises the following data:

e the id of the Projected_2 instance it belongs to

e an enumeration reflecting dim(T")

e a CGAL::0bject that encapsulate a handle to access I'

e a list of surfaces whose projected silhouette or projected intersections are involved
inT
a list of surfaces with a two-dimensional vertical component over I’

e a list of surfaces that have a vertical line over I' (only if T' is a vertex)

e a map that assigns a surface S whose projected silhouette participates in I" to a
Cell_infol container. The container collects information such as the cell’s regularity,
degradation with respect to S or, if I' is an edge, the multiplicity of the factor of
the projected silhouette that supports I'. It also stores a DCEL-handle to the cell of
Ays,y from which I' might originate (after an overlay)

e a map that assigns pairs of surfaces S;, S; whose projected intersection participates
in I' to a Cell_info2 container. This container collects information such as kr; ;, a
DcEr-handle to the cell of A ¢ s; from which T might originate (after an overlay),
or, if I' is an edge, the multiplicity of 79 s, s,’s factor that supports the edge

e an instance of type Point_2, that is, a sample point in I'’s relative interior

e an instance of type Z_fiber (see §0.3.3) for details on this type)

The stored list of data helps in two directions: First, it provides the data expected by
the functors required by the SurfaceTraits 3 concept. Examples are Construct_isolator
or Equal_z. They can benefit from this data for good reasons: The global computation of
regularities and degradations for all cells of an arrangement saves repeated local computa-
tions within the functors. In addition, the best algorithm according to the given data can
be triggered directly in a functor. Second, the list constitutes combinatorial information
that enable to filter tasks; for examples see §6.33 or §5.0

5.3. Implementation in a framework 221

Public members of Projection_2 also provide access to the stored information for
potential users, such as the applications we present in §65 We exemplary mention
.has_silhouette(Dcel_handle h) and .has_intersection(Dcel_handle h), where the tem-
plate Dcel_handle corresponds to either a vertex-, an edge-, or a face-handle. In addition,
Projection_2 forwards iterators to traverse all vertices, edges, and faces. Unfortunately,
CGAL’s Arrangement _2 forces us to split curves into z-monotone pieces. Thus, these traver-
sal do not reflect if incident cell share the same attached data. For that reason, we provide
special traversals that reflect this property. Consider a single surface: We are able to com-
bine vertices and edges to maximal (d,k)-constant paths, that is, a vertex is filtered out if
its degree is 2 and the vertex and its two incident edges all share the same (d,k)-values.

Having this enhanced arrangement we are now able to tackle Problem and the
projection step of Problem in terms of software. The framework provides the functor
Construct_projection_2 that includes exactly three operators. Each is either constructing
a new arrangement or overlaying existing ones. We present implementation details, while
common subtasks are postponed.

° Projection_2 operator () (
Surface_3 s

)

constructs Ay for given s. It implements Algorithm B2 First construct A, , set
(d,k)-values for faces, and refine edges respect to other arrangements A,, , and Avy.an
by overlays. We introduce for each (refined) cell a map-entry from s to a new cell-
info container and update its information (regularity, degradation) accordingly. Of
course, we tuned the implementation not to run all iterations, but to stop as soon
as all cells know their d-k-values. This saves the costly construction of new arrange-
ments (and curve-analyses) and overlays with the existing ones. Note that all re-
quired curves are provided by the SurfaceTraits 3’s functor Construct_silhouette_2.
We finally fill missing fields in each cell’s P_dcel_data container: id of computed
Projection_2, handle to cell it belongs to, list of involved surfaces (just add s).

e Projection_2 operator() (

Surface_3 s1, Surface_3 s2

)

constructs Ay oy for given si # s2. It implements Algorithm First we over-
lay Asi and Age. Then, we construct Az, s1s2 and overlay it with the previous
overlay. Finally, refinements of edges with respect to A;, s1 2 to set the k-values
are performed. Similar, we introduce for each cell a map-entry from the pair s1,s2
to a new cell-info container and update its information (degradation) accordingly.
Again, the implementation stops further refinements, as soon as all k-values are
known. Note that all required curves are provided by the SurfaceTraits 3’s functor
Construct_intersection_2. Again, missing fields in each cell’s P_dcel_data container
are set at the end: id of computed Projection_2, handle to cell it belongs to, list of
involved surfaces (add s1 and s2).

(] template < class InputIterator >
Projection_2 operator () (

InputIterator begin, InputIterator end

222

Efficient Stratification of Algebraic Surfaces with Planar Arrangements

constructs Ag, where § is attained by the input range |[begin,end). The operator
implements an overlay of all pairs Agg, 5.3, ¢ # j. This is feasible by CGAL’s ar-
rangements. Concerning the attached data, note that the cell-info container for a
point with respect to a given surface (or a pair of surfaces) must be equal, even if
stored in different arrangements. As overlaying such arrangements only refines cells
(with attached data), it suffices to merge the originating key-value-pairs of proper
maps. The same holds for the list of involved surfaces and list of surfaces with ver-
tical components. At any point, no deletion of an entry in a list or map is required.
Finally, we again assign the id of the resulting arrangement and a cell handle to each
cell. As each Ayg,, appears up to n times, we remark that there is room for further
improvements, using a more direct overlay.

Remark. The functor exploits an internal caching strategy to avoid repeated constructions.
This means that for a given surface .5;, there will be exactly one Projected_2 instance
that represents Ayg,}, and for each pair S;, S;j,i # j, there will be exactly one Projected_2
instance that represents A(g, 5.3. Each such instance has a unique id in memory. The
functor, again, is responsible to correctly assign this id to each resulting DcEL-cell (for
later look-ups).

As promised, some remarks on subtasks:

e A first subtask is to compute an arrangement for a set of planar curves. Remember

that each curve reported by a projection-functor of the SurfaceTraits 3 concept, is
enhanced with a multiplicity. In this substep we split each curve into its isolated
points and (weakly) z-monotone curves, compute the induced arrangement, and
assign the corresponding multiplicity to each edge. Finally, these arrangements are
overlaid, while propagating the multiplicity information for edges.

This substep is used when computing A, from curves reported by the simplest op-
erator of Construct_silhouette_2 and ‘ATOZ7S7,‘,SJ' from curves reported by the simplest
operator of Construct_intersection_2. We already remark that A, is central in an
application that we present later in §6.5.3 on page ff.

As Kernel_2 is a model of CGAL’s ArrangementTraits 2 concept, the constructions
and overlays of arrangements can be handled by CGAL’s Arrangement_2 package; see

also §ZZ3

Although the refinements in Algorithm B2 and Algorithm B3 involve different values,
they share common abstract steps:

— compute an overlay of two arrangements

— detect the cells whose values gets set

— compute the value from the information available in the current iteration
— remove unnecessary cells

Our implementation exactly follows these generic steps, while code specializes for
the refinement of an arrangement with respect to multiplicities, regularities, and
degradations. Actually, the ultimate goal is to abstract further and to iteratively
compute the property (such as regularity or degradation) for each cell in a sequence
of overlays: Each overlay step adds a new attribute value (here, the existence of a
curve), while after each overlay, it is checked whether the property can already be

5.3. Implementation in a framework 223

computed from the the available attributes. However, this generalization is beyond
the scope of this thesis.

For the lifting of surfaces, a sample point for each cell is required. As a vertex of
an arrangement is zero-dimensional, there is no choice. The sample point of a vertex is
simply the attached Point_2. An edge is one-dimensional, so there is some choice. Note
that each edge stores an X_monotone_curve_2. A point in its interior can be computed by
Kernel_2::Construct_interior_vertex_2, even with a z- or y-coordinate of type Boundary.
To compute the sample point of face, remember that we can access an approximation of
a point that represents a rectangle. Thus, we choose a point p on a CCB of a face. Let B
be the rectangle defined by p’s approximation. Pick a point p’ on a part of B that is
intersected by the desired face. In case, the boundary of the rectangle does not intersect
with the face, we refine the point’s approximation until its boundary has an intersection
with the face. Note that following this strategy, the complexity of sample points for edges
and faces depends on the provided planar kernel. We actually try to compute such with
rational coordinates of low bit-size, if possible.

Consider now a cell that originates from the overlay of two arrangements. We can
simply compute a new sample point for this cell. However, as the sample point is also
the base of the lifting, which we explain next, we do not want to have too many different
sample points. Thus, it is first checked, whether one of the sample points of the originating
cells fits for the resulting cell. If so, this one is chosen.

5.3.3. Z_fiber

Once the planar arrangements enhanced with combinatorial data and sample points for
each cell are computed, we can lift them to the third dimension in order to achieve a cell
decomposition; see §o.Il Concerning the implementation we have to represent a z-pattern
for each cell along with geometric information on the surfaces’ z-coordinates. Thus, we
present the class Z_fiber that serves both goals.

In what follows we fix a single cell ' € Ag, where the case |§| = 1 is special and requires
only trivial processing. Let p € I'. For our purpose, we typically have p = pr where pr is
the sample point of I'. However, if desired, any point is selectable; we only detect changes
in the surfaces’ z-coordinates, when moving p within I". So, assume p = pr.

Let 8p = Sr,1,..., 51, be the set of surfaces involved in I". We know this information.
In particular, by available combinatorial information, we can even partition St into S'FLJ_rJSii

such that for S € SIF we have £, C S and for § € 8} we have £, ¢ S. Thus, an instance of
type Z_fiber maintains a list for surfaces being vertical over p. We are missing to achieve
geometric information for S € 8. Thus, for each such S we call Construct_isolator
interfacing the available cell-info as expected, which returns a Z_at_xy_isolator instance
providing the desired (approximative) z-coordinates for S at p. The Z_fiber maintains
a map that assigns S to its respective isolator. This completes the part of an Z_fiber
instance dealing with geometric information.

We next turn to compute the sequence W, g« = wp 1, ..., wp) representing (together

with SIF =: wyp) the z-pattern over I'. The Z_fiber class maintains a sorted list of surface-
sets. Each set is called a Z_cell and stores instances of std::pair< Surface_3, int >.
Such a pair denotes a surface lift over I'. Note that the int corresponds to the sheet

224 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

number of the Surface_3 instance at p; see also Definition 229 Observe that the Z_fiber
decouples the combinatorial z-pattern from the geometric information (i.e., Z,;). But as
a Z_cell can store a lift for each S € Sp, we are able to reassemble them: It is easy to
refine the intervals of the stored isolators such that all intervals belonging to one surface
lift are isolating with respect to the intervals belonging to surface lifts of the neighbored
(below/above) Z_cell, if existing. That is, their convex hulls are isolating to each other.
We remark, that cells for z = +o0o are not explicitly stored.

Theoretically, Equation (EJI) defines w,; and thus the entries of a Z_cell. In practice
we still have to determine each. In case that [Sp| = 1, this task is obvious. Computing
Wp sz with |ISp| > 1 is implemented via a multi-way merging. That is, for a set of z-
coordinates Z := {2p;;, | 1 < i < r} we have to compute Zyin := {i | 2, = min(Z2)}.
This requires to compare the z-coordinates as stated in Problem The isolators stored
for the surfaces do not provide sufficient information to determine Z,,;,, actually to deter-
mine if |Zyin| > 1. The reason is, that an isolator only provides refineable approximation
for all z,;;,. At this point, the SurfaceTraits_3’s functor Equal_z enters the stage. The
subsequent discussion assumes that |Sp| = 2; the extension to |Sp| > 2 is straightforward.

In order to enable a two-way merge, our task is to compute the order of z,1;, € Z,1
and 29, € Zp 2 for surfaces S; and Sp. The direct solution is given by Algorithm B4

Algorithm 5.4. Compare entries of z-fibers of two surfaces
INPUT: zp 1,0, € Zp1, 2p20s € Zp2
OutpuT: Their order
1. Refine intervals of isolators representing 7, 1 and Z, such that each interval overlaps
with at most one interval of the other isolator.
2. The overlapping intervals form a candidate list for possible intersections of S; and
Sy along ¢,. If no candidate is found, proceed with (&l).
3. Check if the intervals approximating z,1;, and 2,9, overlap. This can be done in
terms of indices I and l. If not, proceed with Bl
4. Call Equal_z for 2,1, and zp9,. If it returns true, return EQUAL.
5. Reaching here indicates that z,1;, and 2,2, are not equal, that is, their approxi-
mative intervals can be refined until they do not overlap any more, which gives the
correct order, that is, SMALLER or GREATER.

Algorithm B4 fully relies on the SurfaceTraits 3’s functor Equal_z to decide the equal-
ity. However, this strategy ignores available combinatorial information attached to I' and
continuations we expect from surfaces. Thus, we present Algorithm that exploits these
data in order to avoid, usually costly, calls to Equal_z. One of the filters (highlighted)
detects that 2,17, = 2p2,,, while most of them decide that 2,1, # 2p21,-

For reasons of efficiency, the filters are active by default. When we discuss algebraic
surfaces in 0.4, they help to avoid costly equality test, for example, at points with high
algebraic degrees. Note that the equality over vertices is only explicitly checked, if there
exists an isolated point (a degenerate case). However, the coordinates of vertices are
usually the ones with the highest algebraic degrees. Thus, it is beneficial to filter such
cases with combinatorics. For the future, we hope to develop further filters.

We want to remark, that the lifting follows the lazy evaluation scheme. This means
that sample points for DCEL-components and their z-fibers are only computed on de-
mand. Further requests for them are served by cached versions. Of course, Projection_2

5.3. Implementation in a framework 225

Algorithm 5.5. Compare entries of z-fibers of two surfaces, with filters

INPUT: 2100 € Zp1s 2p205 € Zp2
OutruT: Their order

1.
2.
3.

If dim(T") = 2 (face), proceed with (10).

If 70,5,,5, is not involved in I', proceed with (10).

Refine intervals of isolators representing Z, 1 and Z,, o such that each interval overlaps
with at most one interval of the other isolator.

. The overlapping intervals form a candidate list for possible intersections of S; and

Sy along /,,. If no candidate is found, proceed with 10.

. Check if the intervals approximating 2,1, and 2,2, overlap. This can be done in

terms of indices {1 and lp. If not, proceed with (10).

. If there is exactly one overlap, check if dim(I") = 1 (edge) and if it stores multiplicity 1

for 19,5, 5,. If so return EQUAL, if not, proceed with (10).

. If dim(T") = 0 (vertex), select incident edges of I' € Ayg, g,1 whose Z_fiber indicate

an intersection of S; and S;. Compute for each Z_cell containing an intersection
the adjacencies of S; and Sy towards given vertex (using SurfaceTraits 3 Adjacency
functor). For each we obtain a pair of indices. If one pair matches (l1,[3), return
EQUAL, which follows by Condition Otherwise proceed with (10).

. If dim(I") = 0 (vertex), check which 7g, and 7g, are involved in I'. If none, proceed

with (10), as only isolated points remain for possible intersections, but an isolated
point is indicated by the existence of a projected silhouette.

. Finally, call Equal_z for z,1,;, and 2,9,. If it returns true, return EQUAL.
10.

Reaching here indicates that z,1;, and 2,2, are not equal, that is, their approxi-
mative intervals can be refined until they do not overlap any more, which gives the
correct order, that is, SMALLER or GREATER.

226 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

offers public members to access sample points (.sample_point(Dcel_handle h) and z-fibers
(.z_fiber(Dcel_handle h) for given DCEL-handles. When merging attached data due to
an overlay, we already mentioned that our code always tries to reuse already computed
sample points. Obviously, the same idea is possible for Z_fiber instances attached to a
cell, especially for the stored isolators.

In general, we have seen how to efficiently construct the z-pattern for a cell I', that
also implicitly defines the multi-surface z-fiber of surfaces involved in I'. The computations
highly benefit from precomputed combinatorial data attached to I'.

Remark. In case that p € V, Algorithm B4l is also used to compute Z, s by merging the

entries of Z,,;, Z, ; and Zz‘m',j‘

As last step, it remains to connect Z_cell instances with respect to the adjacency
relation(s). For that reason, each such cell maintains a list storing handles to adjacent
cells. If 8§ consists of a single surface, the lists can directly be filled with information
provided by querying SurfaceTraits 3’s Adjacency functor for all pairs of incident cells of
Ag. In principle, the same idea is applicable if |§| > 1. The difference is now that the
indices of the z-pattern wr; are not identical to the surface lifts. To correctly maintain
the lists of adjacent Z_cell instances, we have to locate wr, ;; and wr, ;, that contains the
reported index-pairs L of z-fibers to link them; see also Equation Bl Problem and,
for an illustration, Figure B

Figure 5.7. Propagate single-surface adjacencies to multi-surface fibers

1 m

[l]

|

I el

—a- 1

i

Ll LH

° °

SRR
(@) What is the ad- (b) Compute (c) ... propagate
jacency relation be- single-surface them using sheet
tween cells of multi- adjacencies numbers.
surface fibers? and ...

Remark. Note that this propagation only works if none of the cells I'y, 'y contains a vertical
¢, of some surface. Otherwise, we have by Condition BI7 that more than one surface
influences the decomposition of £,. Let us assume that I'j = {p} with p € V. In this case
Zp,; must be replaced by Z, s and we compute the adjacency relation of each S; between
its lifts over I'y and all lifts of .S; over I's. Note that we only have to match correct indices
for lifts of I'y, while the indices for I'; are already reported with respect to Z, s.

5.4. Models for algebraic surfaces 227

5.4. Models for algebraic surfaces

In this section, we finally present details on two models that we provide for the new
SurfaceTraits 3 concept. Both deal with algebraic surfaces.

Quadric_3_traits Supports algebraic surfaces of degree at most 2. It was our initial model,
and allows combinatorial filters for the functors related to lifting.

Algebraic_surface_3_traits This model supports algebraic surfaces of any degree.

The models have in common, that none expects to shear the three-dimensional coor-
dinate system in order to avoid degeneracies. In the recent implementation, the quadrical
model is a refinement of the other. But let us present the details step by step. Algebraic
surfaces have already been touched in §62 Thus, we mainly concentrate on implementa-
tion details. We start with the basic types and switch in §64T] to the projection tasks.
Then, §8.47 covers the details on the lifting phase. There, we also give the missing com-
putation of Z,; and Zzlm‘,j

Algebraic surfaces are represented by the class template Algebraic_surface_3. It is
based on CGAL’S Polynomial class, but adds surface-specific functions. An object of this
type is constructed from a trivariate polynomial. We typedef Surface_3 to this type.

For our quadrical model, EXACUS’ class Quadric_3 derives from the Algebraic_surface_3
and adds constructors (e.g., from ten coefficients defining the quadric) and other specific
members: for example, to compute the quadric’s matrix representation, or the quadric’s
inertia (not required here). Both classes are templated by an Arithmetic_kernel that pro-
vides coherent types for integer, rational, and bigfloat numbers; see 3T We typedef
Boundary to Arithmetic_kernel::Rational

for algebraic surface S; and S;.

5.4.1. Projections for algebraic surfaces

As seen in §5. 27 the projection for algebraic surfaces requires to construct and overlay
arrangements of algebraic curves. Their degree is bounded by D?, where D is the maximum
(total) degree of any input surfaces. Thus, for quadrics we need a model of Kernel_2 that
can deal with algebraic curves of degree at most 4, while the any-degree model, requires a
model that supports algebraic curves without restrictions on their degree. Such a model
has become available recently with CGAL’S Curved_kernel_via_analysis_2 if instantiated
with CGAL’s bivariate Algebraic_curve_kernel_2; see §Z44 [BEDR], and §233) [EK0Ral,
[EKWOT| for more details. In fact, the Curved_kernel_via_analysis_2 also provides the
additional functors (interior vertex, approximations for points) as listed in §&311 Similar
to the geometric predicates and constructions expected by CGAL’s ArrangementTraits 2
concept, they are implemented relying on the provided algebraic kernel. Thus, we are able
to finally typedef Kernel_2 to CKvA_2< Algebraic_curve_kernel_2>. Note that we do not
specialize for quadrics.

The same holds for the functors related to the projection, that is, they serve both
models. For simplicity, we abuse notation and identify surface and defining polynomial.
Remember that f = Zgzo aqgz® and for Dy < D: fpo) = Zfi):‘)o agz®. We require
to decompose the polynomials Res,(f, %), aq, and sthag(f(4) into square-free factors

0Tn a future version, it is an objective to use Arithmetic_kernel: :Bigfloat as Boundary type.

228 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

and construct corresponding curve instances. We utilize CGAL’s Polynomial [Hem07d]
and Algebraic_kernel_d [BHKT(S| package, that provide all required operations, such as
square-free factorization, resultants and their sequences. It allows to provide a straight-
forward implementation of Construct_silhouette_2 and Construct_intersection_2. The
value-type of the functor’s QutputIterator is std::pair< Curve_2, int >, where Curve_2
is actually a Curve_analysis_2 provided by the Algebraic_curve_kernel_2. The reported
int represents the corresponding multiplicity of the square-free factor.

The functor Construct_silhouette_2 has to provide three operators for a given surface:
0I operator() (Surface_3 f, 0I oi)
we compute and report the square-free factorization of Res.(f, f.),
0I operator() (Surface_3 f, int d, 0I oi)
we compute and report the square-free factorization of ag with 0 < d < D
0I operator() (Surface_3 f, int d, int k, 0I oi)

we compute and report the square-free factorization of sthak(f(d), %f(d), z) with 0 < k <
d < D.

For the Construct_intersect_2 functor, exactly the same approach is taken, with the
difference that the desired polynomials are expressed with respect to two given surfaces.

0I operator() (Surface_3 f1, Surface_3 £f2, 0I oi)
we compute and report the square-free factorization of Res.(f1, f2)
0I operator() (Surface_3 f1, Surface_3 f2, int d1, int d2, int k, 0I oi)

we compute and report the square-free factorization of sresy((f1)d,), (f2)(dp)> 2), With
0<k< min(dl,dg) <D.

Remark. We compute Sturm-Habicht sequences with cofactors as given by [BPR0O6, Al-
gorithm 8.22|. This algorithm relies on polynomial remainder sequences [Loo82b|. In
practical setting this is more efficient than computing the Sturm-Habicht sequence via
determinantal expressions.

Note that the actual construction of the desired arrangements is implemented using
exactly the output of these functors; see §5.3.2 and Algorithms and B3

5.4.2. Lifting for algebraic surfaces

In the lifting phase, we have three tasks to achieve. Namely, to construct isolators rep-
resenting Z,; and Zzl),i,j’ to decide equality for two entries of such isolators for different
surfaces, and to compute the adjacency relation between the entries of two isolators be-
longing to the same surface. We first discuss these tasks for algebraic surfaces of any
degree, and finally present how to combinatorially filter the quadrical case.

5.4. Models for algebraic surfaces 229

Isolator

For all constructions of Z,; we rely on the bitstream Descartes method that has been
presented with its details in 34 Remember that the method isolates the real roots
of a polynomial whose coefficients are given as possible infinite bitstreams, that is, the
approximation of its coefficients can be improved to arbitrary precision. Thus, we typedef
Z_at_xy_isolator to CGAL’S type Bitstream_descartes

For our purposes, we require a new model fulfilling the BitstreamDescartesRnd|Tree Traits
concept, which we call the Bitstream_z_at_xy_traits. There are three constructors for
this traits:

square-free-construction
Bitstream_z_at_xy_traits(
Polynomial_3 f, Point_2 pt
)

which supports to isolate the roots of f(pt) := f(ps,py,2) = Yoo aa(pt)z? € R[2]
with the bitstream Descartes method. Remember that ap € Q[z,y]. The constructor
requires that f(pt) is square-free.

m-k-construction
Bitstream_z_at_xy_traits(
Polynomial_3 f, Point_2 pt,
int m, int k

)

which supports to isolate the roots of f(pt) := f(ps,py,2) = Do aa(pt)z? € R[2]
with the m-k-bitstream method, where m represent the local real degree of f(pt) and k the
local ged degree of f(pt). It is successful, if f(pt) has at most one multiple root, otherwise
an exception is thrown; see also §ZT.2

vertical-line-construction

template < class InputlIterator >

Bitstream_z_at_xy_traits(

InputIterator begin, InputIterator end
)
which supports a simulated isolation. It only forwards the input range [begin,end)

of handles to already isolated intervals, that is, to entries of isolators constructed with
the square-free or m-k-variant. We use it to represent the isolator for Z,; for p € V;, or

for Z;L i Below, we see that such sequences consists of links to roots of a small number

of polynomials.

The first two constructors rely on the possibility to refine pt’s coordinates to arbitrary
precision; see §8.3.11 and §5. 4Tl This directly supports the computation of the approxima-
tions as Bigfloat intervals as expected by the Bitstream_coefficient_kernel. Addition-
ally, for ¢ € Q[z,y] (as aq, or stha-coefficients) we can even determine sign(c(p,,py)) using
Algebraic_curve_kernel_2’s Sign_at_2 functor. It internally uses a clever combination of
analyses of curves and interval arithmetic. Note that this enables the zero-test that is
expected to obtain a better initial interval; see Bitstream_coefficient_kernel in §2.3.4l
Even more, the m-k-variant relies on the functor to compute a sequence of signs; see below.

230 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

The different variants (square-free-constructor, m-k-constructor, sequence-constructor)
are interfaced through the common Bitstream_descartes class; see also 34 This allows
that a user (as, e.g., Algorithm [.3)), is not aware of the various details required in each
variant. Its main objectives with respect to some isolator are:

e How many entries does some isolator have?

Give me an interval approximation of z,; for given .
Refine the interval approximation of z,; for given [.
Which [belongs to the multiple root? (Only for the m-k-variant!)

It remains to discuss how Construct_isolator combines the different traits construc-
tions in order to correctly provide the desired isolator for Z, ;. Note that the interface of
the functor receives via a cell-info the local degrees d,;, kpi, my; (see §o.2.11), and infor-
mation on whether I' € Agy with p € I' is a vertex, an edge, or a face. In case I' is an
edge, the multiplicity of 7g,’s factor that supports the edge is also provided.

We first consider the non-vertical case, that is p & V;. If k,; = 0, then f;(p) is square-
free; this triggers the standard construction of the Bitstream_z_at_xy_traits from f; and p
only. The traits itself ensures iterated and coherent refinements of interval approximations
for p, and p, to serve the actual isolation; actually it demands for them from the algebraic
kernel.

Otherwise, if k,; > 0, we first try to run the m-k-Bitstream Descartes method (see
also [EKWQT, Section 5]) on f;(p). This extension exploits our knowledge on the local real
degree and the local gcd degree, and isolates the real roots using numerical approximations
even if f;(p) has at most one multiple root. However, we are required to compute m. This
can be done, for example, using a modified version of Algorithm that can deal with
specialized polynomials. For computing the signs of stha; we rely on the algebraic kernel’s
functor Sign_at_2.

However, it is not ensured, that the m-k-variants exists with success. So we are left
with the case, that f;(p) has more than one multiple root. In this case, we compute the
square-free part f*(p) of f;(p) using Algorithm P24 and apply the Bitstream Descartes
method on f = f;(p)* using the first constructor. As f is square-free, termination is
ensured. Observe that in all cases, we simplify by ignoring oo being part of a z-fiber.

It is essential that the algebraic kernel models the planar points’ coordinates in algebraic
interval represention; see Definition ET7 Following, all obtained z-coordinates can be
expressed as algebraic interval representations of dimension 3.

However, it is open, and promised in §6 to compute the entries of Z,; if p € V;.
Remember from Definition how the entries of Z,; are characterized, namely as the
endpoints of intervals of lifted faces that are incident to p; see also Theorem and
Corollary B:52 The computation of a superset Z, for Z,; is shown in [BKSOS|. As we
are focussing on the algorithmic part of the objective, we only review its main ideas and
present the central result; for the (lengthy) proofs we refer to the original work.

Let F' € Ag,y be a face incident to p and let I(F9) be a non-degenerate adjacency
interval. Choose an arbitrary interior point (p,zy) € I(F"?), that is, 2o ¢ Zp,. It is an
implication of Theorem that the planar curve C,, = {(z,y) € R?|f;(z,y,20) = 0},
embedded into the arrangement Ajgy, contains at least one arc that leaves p and passes
face F'. Vice versa, each arc of (), starting in p corresponds uniquely to a lifted surface
patch above F' which is adjacent to (p, zg). This observation is the basis for the computation

5.4. Models for algebraic surfaces 231

of possible interval endpoints by a conceptual sweep along £,: We keep track of the special
arrangement Ayg,} ., that is induced by the overlay of A(g,;y and Ac, , while moving with
2o from —oo to +o0. It is the objective to detect possible topological changes of Ag,} -,
local to p. To be more precise: Compute all 2 € R where for any face F in Ayg,) the
number of arcs of C, leaving p and passing F' changes. Observe that for most zg, a slight
perturbation of zy deforms C, in such a way, that the local topology of Ayg,y ., at p is
preserved. Hence, an arc of (', contained in F' still lifts to the same F' (), In contrast,
perturbing an zq that belongs to an endpoint of an interval I(F¢?) results in either loosing
an arc that passes p or in an arc that switches to another face F’; see Figure where
loosing arcs happens at zg = :l:%, and switching arcs happen at zg = 0.

Figure 5.8. Steiner Roman surface with horizontal intersections at z =
%,%,%,%,—1‘3—0,% taken from [BKS08]

The following theorem from [BKS(OS| algebraically describes the non-generic z-values
that respect local topology changes of Ag; ., at p € V.

Theorem 5.60. Let S; be an algebraic surface without two-dimensional vertical component,
defined by f; € Qlx,y, z] being square-free and let p € V; as above. Let

r(x,z) = Resy(fi, 88—‘:);2) = (z — pg)"°7(x, 2),

t(x,z) = Resy(fi,Res.(fi, %)) = (z —pz)tof(x, z)

with the following definitions of exponents

0 = maX{T, : (ﬂf —px)rl|r($,z)}’
S = min{sl . %fi(pxapy, Z) §é 0}
to = max{t : (x —pm)t/|t($,z)}-

Then for 20 ¢ Z ;== {2|F(pz, 2) = 0\/% (pz, Dy, 2) = OVE(ps, 2) = 0} the local topology
of A1z, at p is preserved for any sufficiently small perturbation of zp. Additionally,
Zni CZLE..

) P,

By assumption C, is square-free and does not share a common component with g for all
but finitely many z € R. Such degenerate z-values are exactly given by Res,(f;, %—J;)(x, z) =

232 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

0 or Res, (fi, Res(fi, %)) = 0. An implication is that the factorization of r(x, z) and ¢(z, 2)
as well as sg is well defined. In particular for each zg € Z, ;, the curve C,, is square-free and
it neither contains the vertical line L := Vg(z — p,) C R? nor any component of Ts;. Note
that Z; ; defines a superset of Z,, ;. For the full proof and more details we refer to [BKS0S].
As an implication, we can precisely define the content of S;’s z-fiber for p € V;.

Definition 5.61 (z-fiber for p € V). Consider the polynomials

R(2) := 7(ps, 2) S(z) == a@y% i(Dzs Dy, 2) T(z):= f(pz,z)

contained in R[z]. We relax Definition EI0, and allow also a superset of the interval
boundaries as z-fiber. Thus, we now define

Zpi={2€R|R(z)=0VS(z) =0V T(z) =0}

To compute this set, we isolate the real roots of R(z), S(z), and T'(z) with the bitstream
Descartes method; remember that the polynomial’s coefficients are expressed with respect
to p’s coordinates, that are, in general, algebraic. However, we know, as in the non-
vertical case, approximations for them and how to refine them. Actually, we can obtain a
list of polynomials P;(z),..., Pj(z) representing the square-free and coprime counterparts
of R(z), S(z), and T'(z) using Algorithms 4] and (pages 29 and BZ)). This treatment
simplifies two steps: First, each polynomial is square-free. Thus, we can directly apply the
square-free-variant of the bitstream Descartes method. Second, as no two polynomials P, ,
P, with [; # [y share a common root, the merge of the obtained sequences of isolating
(and refineable) intervals is simple.

The actual implementation reduces the computation of such a Z, ; to curve- and curve-
pair analyses. This trick can be seen as keeping x a little bit longer indeterminate. In
addition, filters developed for planar curves do now apply also for this task, which are
not accessible in the direct approach as presented above. Doing it this way, also helps
to remove factors of (z — p,) from the original polynomials, as the bivariate polynomials
defining curves can be decomposed into “vertical lines” and “non-vertical curves”; see T4
Thus, we ignore the vertical lines, and only process three non-vertical curves at © = p,.

Finally, we just report the merged sequence of obtained isolating intervals as input
range to the third constructor of the bitstream traits model.

Remark. It is an open question, whether there is a more strict definition of Z,,;, best one
that tightly defines the boundaries of all I(F¢9). The conjecture is: For given z; € R, we
have S(zp) =0 = R(z9) = 0.

The desired O(D®) complexity of the cell-decomposition Qygy introduced in Defini-
tion is fulfilled as we now can give the missing proof of Theorem

Proof. (of Theorem BEA6) Observe that we only have to show that |Z,;| € O(D?) ac-
cording to Definition BBl of Z, ;. Consider the polynomials R(z), S(z),T(z) whose roots
define Z, ;. Each is of degree at most O(D?3). Thus, each can have up to O(D?) real roots,
which implies the desired bound for the union of them.]

Following Condition BT, Definition B8, and finally desired by Problem BT, we also

have to compute Z | for given p € V; UVj for two surfaces S;, Sj, © # j. That is, we have

Dyi,J

5.4. Models for algebraic surfaces 233

to explain how to implement the second operator expected by Construct_isolator. To
solve it, a strategy similar to the one that defines Z,, ; for p € V; can be used. Analogously,
we want to extract z-coordinates at which S; and S; induces intervals along ¢,. As in
Theorem B8, we use a local projection onto the yz-plane.

Theorem 5.62. Let S;, S; be algebraic surfaces without two-dimensional vertical compo-
nent, defined by f;, f; € Q[x,y, 2] being square-free, coprime and let p € V; UV} as above.
Let

ui(z,z) = Resy(fi,Res.(f;, %)) = (z —px)u‘()i)di(m,z)
ujle,z) = Res,(fy,Res.(fi,) = (& — o)z, 2)
vi(z,2z) = Resy(fi,Res.(fi, f;)) = (x —px)”(()i.)ﬁi(x,z)
vi(e,2) = Res,(fjReso(fisf3)) = (@ = o) 552, 2)

and the following definitions of the exponents

(4)

uy' = max{u' : (z—pe)" |ui(z,2)}
U(()j) = max{u : (x—px)“’]u](w,z)}
véi) = max{v : (x—pm)vl‘vi(x7z)}
v(()j) = max{v : (l“—pz)vl|vj($’z)}

Define Z),, . := Zp; U Zy; U Z,, U Z) U Z5, U Z5 with
P {z € Rlui(ps, 2) =0} ,ifpeVinTs,(p) =0
P T .
0 , otherwise

AT {Z € R‘ﬁl(p$az) = 0} ’ lfp € V’Z A TO,Si,Sj (p) =0
b 0 , otherwise

T / *
and similar for Zp’j and ZpJ-

Then for zg & le)’i’j the local topology of A(s, 5.} -, at p is preserved for any sufficiently
small perturbation of z.

Intuitively, Z;L,i, j decomposes £, into intervals such that each face F' of Ayg, ¢,y incident
to p is adjacent to exactly one such interval. This ensures the boundary property for
multi-surface z-lifts of a multi-surface arrangement. The proof of Theorem is analog
to Theorem To actually compute Zzl),i, ;j» we again rely on the bitstream Descartes
method for uy and v (as we previously did for 7, s, and ¢), while the final merging of sets
into Z,, (s, 5,1 is analog to the merge presented for Z,,; with p € V; using Algorithm 5y}
This construction also shows that Definition is well-chosen for algebraic surfaces. It
remains to proof the complexity of Z,, (g, 5.}

234 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Proof. (of Theorem BA4T7]) Observe that we only have to show that ‘Zzlm‘,j’ € O(D?)
according to Definition EI8. We already have |Z,;| € O(D?) and |Z, ;| € O(D3). The
remaining sets that define Z;L ;,j are determined by roots of polynomials whose degrees in z

are at most O(D?). Thus, each can have up to O(D?) real roots, which implies the desired
bound for the union of them. O

Choosing the bitstream Descartes method to compute the isolators is not an arbitrary
decision. First of all, the Descartes method is considered to be a practically efficient root
isolation method, and using numerical approximations of the coefficients is experienced
to speed up the computation further [Str(6], [CIK02], [Bro02]. Thus, our choice for the
Bitstream Descartes aims for practical efficiency, but it has another advantage: The algo-
rithm guarantees a successful real root isolation for the square-free case by a randomized
choice of subdivision points, and by its adaptive precision management — regardless of
the polynomial’s root separation. This implies, that we never have to switch to a symbolic
root isolator. The same guarantee is given for the m-k-variant. Only if the polynomial is
algebraically difficult, that is, it has several multiple roots, it must be made square-free
by symbolic computation; see Algorithm 4l However, the obtained square-free part can
again be tackled with the original version of the Bitstream Descartes method. In case
of the vertical-line “isolation”, our implementation relies on robust curve-analyses. For
our purpose, they can be considered as a sophisticated variant of the bitstream Descartes
method.

Remark (Semi-algebraic surface). If we consider a semi-algebraic surface, for example, a
sphere with a removed cap, the functor has to modify its report. In particular, the in-
equalities g; > 0 that restrict f = 0 also restrict Z,; for a given p. That is, we first
compute Z, ¢, but only report those z, ¢; that fulfill Vi : g;(p, 2. £1)) > 0.

Equality

We next discuss how to implement Equal_z that should decide the equality of 2,1, € Z,1
and 2,927, € Zp2. Remember that we already filtered some cases; see Algorithm B3l
However, sometimes we still need this external answer for algebraic surfaces. Our so-
lution is to compute the local ged g, := ged((f1)(a,,)(P), (f2)(,.)(P)) at p. This can
be done using Algorithm Even better, by Lemma LT3 we can directly set g, :=
Sresg,, 12 ((f1)(dp1)s (f2)(dy2)s 2)ps @8 kp12, dp1 and dp 2 are known and interfaced for the
cell I € Ayg, s,) that contains p.

To decide the equality, we only have to check whether the intervals for z, 1 ;, and 22,
are both isolating for g,. In case that g, only contains simple roots, this task can be
solved by evaluating g, at the boundaries of z, 1 ,,’s available approximation (and similar
for z,2,) and to check whether they have different signs. The local ged gj, is surely square-
free if kj 10 =1, orif k,1 = 0 or k, 2 = 0. Otherwise, we isolate g,’s roots by interpreting
gp = SI’eS]ﬁpng((fl)(dp,l)’(f2)(dp’2),2) as algebraic surface and call Construct_isolator.
Observe that this algebraically complex case (several intersections) implies that g, must
be made square-free using Algorithm 4]

Note that this functor is also used to decide equality of entries of Z, 1, Z,2 and ZIL,L2
when computing Z,, 1, 5,1 for p € V1 U Va.

5.4. Models for algebraic surfaces 235

Adjacency

The final task expected from an algebraic surface S; by the SurfaceTraits 3 concept is to
compute the adjacency relation of its z-patterns. As noticed, it suffices to compute it only
for z-fibers of incident cells in Ag,y. We next explain how to implement the Adjacency
functor. Remember that we are basically given Z,; and Z, . Each of its entries has an
index [; and ls. We are aiming for the list L of pairs of indices that define the adjacency
relation as in Problem BT We make a case-distinction over the dimensionality of the
planar cells.

Edge-face adjacencies: Let E be an edge of Ag,), and let F' denote an adjacent face.
The boundary property allows us to pick E’s sample point pg in its interior to
proceed. We assume that F is non-vertical and pg is chosen such that its z-coordinate
is rational If d,, = D; and p has been lifted with the m-k-variant, then all but
one roots of f;(pg) are simple. The cells over E to which these simple roots belong
have precisely one adjacent lift over F'. The remaining lifts over F' must be adjacent
to the possibly multiple root over E. This strategy to obtain adjacencies has already

been applied in [GYNOZ], [Ber(d], and [EKW0T.

Otherwise, the implementation is similar to the one in [ACMSS]. Determine ¢ =
(¢, qy) for F' with ¢, = ps, and gz, ¢y € Q and consider the planar curve fil,—p, =
f(pe,y,2) € Qly, 2]. The lp-th lift FUr?) of F is adjacent to the Ig-th lift E(2:) of
E if and only if there is an arc of the curve Vr(fi|z=p,) connecting the [p-th point
over g, with the lg-th point over p,. To compute the adjacencies of Vk(filz=p.)
we rely on CGAL’s Algebraic_curve_kernel_2; see also [EKW(7|. An illustration is
given in Figure B9

Adjacencies of a vertex Let p be the vertex V'’s point. Let us assume first, that p € V;.
We consider the other case separately below.

Note that the vertex has at least one incident face, and if there is more than one,
there are also incident edges. Let F' be such a face and F be such an edge. First
observe, that if p has been successfully lifted with the m-k-variant, the same idea as
for the edge-face-adjacencies applies for adjacencies between V and E and between V'
and F.

Second, due to Condition .9, the adjacencies between V' and some E can often be
derived by a transitivity argument: Let F; and F5 be the faces to both sides of E. If
every lift over V is adjacent to a lift over Fy or Fb, knowing the adjacencies between
V and F; and between F; and FE, or between V and Fy and between F5 and F,
directly gives the adjacencies between V and E as well; see also Figure L9

In case that f(p) has more than one multiple root, or some lift over V' is connected
to an isolated lift of an edge E (i.e., the lifted edge has no incident lifted face), we
implement the following bucketing strategy:

Choose rational values q_1,...,qm,;—1 such that 1 < 2,;; < ¢ for all [=
0,...,mp;—1. The mp;+1 many planes z = ¢; divide the real space in my, ; +2 many
buckets that separate the lifts over V: One for each entry of Z,;; even £o0o. The

S1Otherwise, pr’s y-coordinate is rational and we proceed analogously.

236

Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Dz

Figure 5.9. First: Edge-face adjacency is given by analyzing Vi (fi|z=p,). Sec-
ond: Vertex-face adjacencies and face-edge adjacencies are known (without ar-
rows). Thus, vertex-edge adjacency (with arrows) can be deduced by transitivity.

buckets help find points on incident faces and edges whose lifts uniquely determine
the adjacency relation.

Definition 5.63 (Bucket-loyal). Let I" € Ag be incident to V. We say that p’ € T
is bucket-loyal if there is a path II C T from p’ to p such that each lift TI(:) stays in
the [-th bucket.

Thus, finding a bucket-loyal point p’ for an incident DCEL-cell T" of V' gives a possi-
bility to compute the adjacency between Vs lifts and I''s lifts: If the l;,—th lift over p/

lies in the bucket of z,;;, then, the lifts V&) and T are adjacent. Lifts of I' that
belong to the bottom-most and top-most bucket are special: The z-coordinate of II’s
endpoint at p is 400 or —oo, that is, they belong to asymptotic lifts. If p &€ V;, Con-
dition implies that for each I' incident to V, there exists a bucket-loyal path II.
However, we have to compute the z-fiber of f; over p'. If p’ is too close to p, then
fi(p') has a bad root separation, which we want to avoid. Thus, we next propose a
strategy to find good bucket-loyal points for the cells incident to V.

e The first crucial observation is that p’ # p is bucket-loyal if and only if IT does
not intersect any of the bucket curves b; defined by fi(z,y,q) € Q[z,y]. As
¢, ¢ S; no bucket curve intersects p by construction. Following, we can define a
bucket box B around p such that it does not contain any of the bucket curves;
see the dashed red curves in Figure (a). We exploit interval arithmetic to
reach the goal: Approximate p’s - and y-coordinate as intervals [p,], [p,] and
use them to evaluate [; := f([pg), [py], @) for all I = —1,...,mp;. Aslong as
some resulting interval I; contains zero, refine p’s approximation and proceed.
The final approximation of p defines B. Each point on B’s boundary and inside
B is bucket-loyal; see Definition

e Next, we shrink B such that each incident cell of V' has a bucket-loyal point on
B’s boundary. This is done by choosing a sample point for each edge F incident

5.4. Models for algebraic surfaces 237

Figure 5.10. Computing bucket-local points around a vertex (schematic)

|
(a) Compute initial bucket (b) Refine B with respect
box B that does not inter- to sample points of incident
sect any bucket curve edges

(c) Compute intersections of B
with edges and determine bucket-loyal
points for edges and incident faces

238 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

to V and refine B such that these sample points are outside B E an illustration
is given in Figure (b).

e We finally compute all intersection points of Afg,) with B’s boundary. By
construction of B and Condition B, the bucket-loyal point p/y for an edge £
incident to V is given by the first intersection of E with B’s boundary, when
traversing E starting in p. Consider next the face F' that succeeds E in counter-
clockwise order on the boundary of B. The intersection points of A(g,, and B’s
boundary are also ordered counter-clockwisely. Let pl .., the intersection that
succeeds p. The desired point p is given by a point on B’s boundary between
P and pj . Note that by construction the path between p and p’ is bucket-
loyal. Figure (c) illustrates the two cases.

We have implemented this strategy, which gives us the desired adjacencies; see also
Figure BETTl which illustrates the bucketing in three dimensions. There is one missing
case for p € V;. Namely, the vertex V can be isolated in some F. In this case, we
choose p/ on the vertical line z = p, with pf» € F and having a rational y-coordinate.

-—.-
/\

- - - -

Figure 5.11. Computing adjacencies: here between vertex and edge

We admit, that the strategy exploits similar ideas as the local box algorithm by
Collins and McCallum [MC02] for cylindrical algebraic decompositions. The main
difference is that our bucket box construction only involves cheap interval arithmetic,
and thus is expected to be more efficient. In addition, their local box algorithms
requires to factorize polynomials, while we provide a purely geometric algorithm.
On the other side, this complicates the actual construction, as we have to deal with
incident cells that are not z-monotone.

Adjacencies for vertical line cells: We turn to the case that V is defined by a point p
with p € V;. In general, we proceed similar to the previous case. However, there

»2Note that we consider E to be a maximal d-k-path emanating V and not an z-monotone curve incident
to V actually maintained in the underlying arrangement of CaAL. Thus, E can be a self-loop.

239

5.4. Models for algebraic surfaces

Figure 5.12. Computing bucket-loyal points around a vertex of a vertical line

(schematic)

____________ \
C~ - \
~
N '
N \
A

(a) Compute initial bucket
box B such that no intersec-
tion of a bucket curve with
‘A{SZ} is inside B

(b) Refine B with respect
to sample points of incident
edges

(c) Locate points on bucket curves to
detect adjacency of a lifted face to a
vertical line; then, choose bucket-loyal
points for remaining edges and faces

240 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

is one complication here: If V' has an incident face F' that is adjacent to a non-
degenerate interval along /,, then, the corresponding bucket curve b; (with g; being
in the interior of the interval) intersects p in the plane. Following, we need a fix for
the construction of the bucket box, as interval arithmetic is not sufficient.

e To determine B’s initial size, we now compute the overlay of A(g,y ¢ with all
bucket curves. The initial B is chosen such around p that no intersection of B
and Agg,y s is contained in B, except the unavoidable intersections at p itself;
see Figure (a) for an illustration.

o As before, we refine B, such that the sample point pg of each incident edge E
is not contained in B anymore; see Figure (b).

e The corresponding bucket-loyal point p', is again given by traversing E starting
in p and choosing the first intersection of E with B. Lifting p/y reveals by
Condition and how we defined Z,; the desired adjacencies. Figure (c)
displays this step.

e The strategy for a face F' is different from the previous handling. We start
to detect lifts of faces that are adjacent to a line segment along ¢,. Each
such segment has to contain an intermediate bucket value ¢;. Following, the
lift of FUrd) that is adjacent to the interval results in an arc of the bucket
curve by that lies in F' (in A{Si}) and ends in p. To find them we propose the
following strategy: For each bucket curve b; that leaves p and lies in F', let ¢
be corresponding bucket value. Choose a sample point py, on b; but inside B
(see Figure (c)) and lift it. Note that its lifting corresponds to lifts of
F. Determine which F(F%) has the z-coordinate ¢; (by interval arithmetic).
Following Problem T2 we report the pairs (Ig, 1) and (IF,l+1); an illustration
in three dimensions is given in Figure

e Finally, we are left with the lifts of F' that are adjacent to a single point on £,.
We simply compute a bucket-loyal point p’ as in the p ¢ V; case and determine
the buckets of the remaining lifts analogously. This gives the full adjacency
relation. The face adjacencies are also presented in Figure (c).

Remark. Remember that we also have to compute special adjacencies between Z,, s and
Zp,.s With pg € V and p; € V for a given S;. The critical case is p; € F' € Ag with F
being incident to pg. Note that the ideas of the bucketing strategy also lead to a successful
computation. The difference is that the number of buckets defined over pg has increased
and we have to ignore other surfaces existing in the multi-surface z-fiber 2, s.

There is also the possibility of combinatorial filtering: We only have to consider those
buckets of 8, s that comprise z-coordinates in the finite z-range of Z,,, ;. This reduces the
number of bucket curves in the plane. On the other side, we have to maintain a mapping
between all and the selected buckets. If we are only interested in a single incident face F
to pp, we can even further restrict the z-range that must be considered by querying the
single-surface adjacency of lifts of py and p; first, which gives us I(FUr)) C £, for the
correct lp.

5.4. Models for algebraic surfaces 241

Figure 5.13. Computing adjacencies at a vertical line: a lifted face is incident to an
interval along ¢,

Alternative idea The adjacency relation of a lifted vertex with its lifted incident cells can
also be determined by analyzing a two-dimensional arrangement embedded on a vertical
cylinder C around ¢,. The radius of C is chosen such that ¢ := C|,—¢ fits in the box
defined by B as above and the center of ¢ should be equal to p — in theory. Below, we
show that we can actually perturb c’s center to rational coordinates.

Consider the arrangement on C induced by Vr(f) and all Vk(z = ¢;). The later induces
a set of horizontal circles around the cylinder that split C' again into buckets. Vg(f) also
induces curves on C.

Let £,; C C be parallel to £, that is, choose a point a point p’ on c. If p & V;, then, by
construction of C' the point p’ is bucket-loyal for the incident cell ' of V' with p’ € T". This
means, that along ¢, the curves Vr(f) and Vk(z = ¢;) do not intersect. The adjacency
relation between lifts of V' and lifts of I' can be determined by the order of Vr(f) and
Vr(z = q;) along ¢,; — the status line at p’. We only have to find p’ for all incident edges
and faces: Compute the intersections of ¢ with Agy. Think of ¢ being the boundary of B
and proceed as above.

An interesting phenomena can be seen for the lift of face F(F9 that is adjacent to an
interval of £,. In this case, there is a p’» on ¢ defined by the ¢’s intersection with a bucket
curve by, where Vr(f) intersects the circle defined by Vr(2 = ¢) along the line £, . The

value [determines to which interval along ¢, the lift F' (lr1) is adjacent. For all other faces
(and edges), we proceed as before.

By now, the approach is identical to the box idea, with the difference that we chose
a circle as planar base. But we can also analyze the arrangement on C itself which gives
further information. For simplicity, we assume that p = (0,0) and » = 1. Then, C can
be rationally parameterized by ¢c(t,z) = (L‘Lg, 1_2:1?2,2), for ¢,z € R. Homogenizing it,
allows to us compute the arrangement on C' with the help of a set of real algebraic plane

curves; in fact, the topology is similar to the one we introduced in 6T for quadrics, while

242 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Figure 5.14. Adjacencies by a two-dimensional arrangement on a cylinder

\p// 7
c B D,

P ;
(a) All points of ¢ are bucket- (b) Vr(f) crosses some
loyal. Thus, Vr(f) (black) on Vr(z = ¢). Thus, there is
C stays within one bucket a lift of a face FUr:) that is

adjacent to p X [2p.i.1, Zp.ii+1]-

5.4. Models for algebraic surfaces 243

concerning the geometry, we should adopt ideas similar to what we did for a Dupin cyclide
in @62 Special care is only required for ¢ = 400, that is, C’s curve of identification.
However, as Vg(z = p,) is not part of S; (by input assumption), the corresponding curve-
ends for ¢ = o0 have a unique limit. Or we simply consider p’ = (—1,0) as an additional
special case on the boundary. Let Ac be the arrangement on C' induced by Vi(f) and
Vr(z = qi). The critical t-coordinates of A are given by the t-extremal points of Vr(f)
and t-coordinates of Vr(f)’s intersections with some Vgr(z = ¢;) only appear if some lift
of an incident face is adjacent to an interval along ¢,. Note that neither V(2 = ¢;) nor
VR(f) have self-intersections on C. For Vgr(z = ¢;) this is clear by construction, for Vz(f)
this follows from how we choose the radius of ¢: No target point of an edge E that leaves
p is inside c¢. Observe that the t-critical points of A¢ correspond to points on ¢ where
edges E or bucket curves b; intersect ¢. This gives a more direct way to compute (bucket-
loyal) points for edges and faces. Computing the adjacencies now reduces to find all such
t-coordinates and to analyze the vertical lines of A¢ in the tz-plane for such coordinates.
We start with the intersections of b; with ¢, if existing, to detect face lifts adjacent to
vertical intervals. Then, we proceed with the t-extremal points of Vg(f), to determine
adjacencies for lifted incident edges and finally analyze the status line slightly to the right
of a t-extremal coordinate. This gives us the adjacencies for lifted incident faces that only
meet a point along £,,.

In terms of CGAL’s Arrangement_2 package, we can imagine a special visitor that only
reports the adjacencies while sweeping over a set of annotated curves (i.e., whether each
belongs to Vk(f) or Vk(z = ¢;)) on C.

In an actual implementation one would better choose a cylinder whose center line £¢ is
slightly perturbed away from p, such that pc has rational-coordinates. The perturbation
must be chosen such that C|,— still defines bucket-loyal points. Actually, every vertical
cylinder inside B x R that includes ¢, in its interior fulfills this condition.

5.4.3. Filters for lifting of quadrics

If we only consider quadrics, the functors related to lifting can benefit from combinatorial
filters. We next present the details.

Construct _isolator We first characterize the entries of some Z, ;.

Lemma 5.64. Let f; = apz? + a12' + apz® be a polynomial defining a quadric S;, that is,
degioral(f) < 2. Let p € R Then, f;(pz,py,2) € R[2] has either no real root, a double
real root, or two distinct real roots. If it has a double root, then Res,(f;, %)(parapy) =0.
Contrary if Res,(f;, %)(pz, py) = 0 then, the z-fiber at p contains at most one finite point.

Proof. The first assertion is rather trivial. If zg is a multiple root of f;(ps,py, 2) then it is
also a root of %fi(px,py,z), thus Res,(f;, %)(px,py) = 0. For as(p) =0 and p € V; the
backward direction is trivial as in this case f;(z,vy, 2) is a polynomial of degree one or less
in z for all (z,y). If as(p) # 0 and Res,(f;, %)(px,py) = 0 the polynomials f;(ps,py, 2)
and %(px,py, z) must share a common root zg, thus for p ¢ V;, the z-fiber Z,; is given
by {zp} U {£o0}. In case where S; contains a vertical line at p, we refer to the paragraph
about vertical lines below. O

244 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

Using Lemma we isolate with the Bitstream Descartes method the real roots of
fi(pz,py,2) in case ky; = 0 or of %(px,py,z) if k,; > 0. Observe that both polyno-
mials fulfill the demanded property of being square-free, while still determining the S;’s
intersection with £,,. Note that we are able to combinatorially avoid to call the m-k-variant.

Equal z Remember that we have to decide whether z,1;, € Z,1 and 2,2, € Z,2 are
equal. However, we can benefit from previous information: When Equal_z is called, each
Zp1 and Z, 5 has to contain a positive number of finite entries. As they correspond to real
roots of f1(p) and fa(p), Lemma B64 implies that we see one or two such. In addition, we
know that the approximations of Z,; and Z, have already been refined such that they
overlap with at most one interval of the other. As 7y g, 5, exists at p and Z,; and Z
contain finite entries, at least one of these candidates must correspond to a true equality;
see also Algorithm Thus, most cases are trivial to decide. Only if |Z, 1| = |Zp 2| = 2
we require further work. Two possibilities exists:
L. Both fi(p,2) = a2(p)z® + a1(p)z +ao(p) and fa(p, z) = ba(p)2* +b1(p)z + bo(p) have
two distinct real roots and they are both equal at the given p. That is, there exists
a constant ¢ € R\ {0} with fi1(p,z) = ¢- fa(p, z). This is exactly the case if the two

vectors

(a2(p), a1(p), ao(p))"

and
(b2(p), b1 (p), bo(p))"

are linear equivalent, which can be checked by

(a0b1 — albo)(p) = 0A
(aobg — agbo)(p) 0A
(a1b2 — albg)(p) =0

Note that
hO,l = (aObl - albO) € @[xayL degtotal(h01) S 3
hO,Z = (aObZ - aZbO) € @[xayL degtotal(hOQ) < 2
hia = (a1by —aibs) € Q[z,y], degia(hi2) <1

and even deg,i.(hij) < degoa(Resz(f1, f2)) holds. Thus, we check whether the
three conditions are fulfilled by interpreting h;; as low-degree planar curves, and
test whether p lies on them with the Sign_at_2 functor provided by CGAL’s planar
Algebraic_curve_kernel_2. This functor even exploits interval arithmetic to quickly
decide a non-zero sign. Note that the algebraic kernel is available anyhow, as we use
it for the projection. For each pair of quadrics only one such set of curves is required,
so we can cache them. Of course, we start testing with hy o as it has lowest degree.
We continue with the hgo only if the test result is successful. Similar for hgo and
ho,. If all three conditions hold, then two common roots exists (out of two possible).
Thus, return true. This case is illustrated in Figure BI5

2. Otherwise, two candidate overlaps remain for a single equality. We refine their
approximations in parallel, until only one overlap is left. If the given indices /; and
5 correspond to that overlap, return true, else return false.

5.4. Models for algebraic surfaces 245

Figure 5.15. lllustration of two covertical intersections (case 1)

Adjacency This functor is implemented mostly combinatorially. First observe that by
Lemma B.64], the adjacencies between lifted vertices and lifted edges, if existing, are fixed.
We always return (0,0) as the unique lifts all lie in the same plane defined by %. The
case that a vertex corresponds to a vertical line is discussed separately below.

Thus, we are left with edge-face-adjacencies. Let 0 < mpg < 1 be the number of finite
lifts of some F/, and 0 < mp < 2 be the number of finite lifts of an incident face. Note that
not both can be zero. If mg = 0, then mp = 1 and the F©) must be asymptotic when
“approaching” E. In this direction F(©) is monotonic increasing or decreasing, which can
be determined by computing the sign of %JZ evaluated at F’s sample point with interval
arithmetic. Otherwise, mr = 1 and we are left with two cases: mp = 1 implies to
return (0,0), while mp = 2 results in reporting (0,0) and (0,1) (by Lemma and
Condition B9).

Quadrics and vertical lines: A quadric S; contains a vertical line £, at p € R? exactly
if az(p) = 0 and p is an intersection point of the line L = Vr(ai1(p)) and the conic
C = Vr(ao(p)). Then, for each point p € L, there exists a unique lift (p,,py,2) € S; with

_GO(P)
ai(p)
each (of at most 2) intersection point p € L N C the quadric contains the vertical line £,,.

The arrangement Ag,, as defined in §8.2.2is quite simple in this situation: The projected
silhouette L divides R? into two half-planes, which are the faces F} and F, of Ags;y- The
intersection points L N C represents all vertices in Ag,y and they decompose L into at
most 3 edges. As these edges cannot be lifted onto 5;, no adjacencies between them and
vertices can be reported.

In the following steps we will show how to determine the fiber Z,; for the vertices
with p € V; and how to get the adjacency information between vertices and faces. In
Theorem we have already proven that for each face F' = F; or ' = F, there exists a
corresponding interval Ir such that for each z* € I, we have a sequence p; € F', converging
against p, with 2* = limy_,o 2p, = limy_. —%.

From an affine change of coordinates we can assume that L = Vg(y), that is, L is the
z-axis. Writing ag(z,y) = cox? + c1y? + coxy + 37 + c4y + ¢5 with variable coefficients
¢; € R, for the z-value of any (z,y, 2) € S; we have

z= . Furthermore, there exists no point on S; above any p € L\ (LN C) and for

cox? 4+ c1y? + coxy + c3x + cay + c5
Y

246 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

For a fixed y # 0 the set of z-values is given by a parabola (cy # 0), which has its unique
local extremum zpyax 4 at the point zyax with

2coxmax7y + eyt = 0

Thus, we get Tmax,y = _Ci’éf_o”y and

4eoes + dycoes — 2ycacs — c% + 4y200c1 — y2c§
4ycg

Zmax,y —

Now we distinguish three cases:

1. ¢¢ = 0: C' and L intersect in a unique point p = (—0—3,0). Now given an arbitrary

C.
z* € R, we have
f(2y,y,2%) =0 & xy(coy + c3) = y2* — c19y® — cdy — ¢
For y — 0 we get z, — —2—2, thus the conic C,~, which is implicitly given by the
equation x(coy + c3) = yz* — c1y? — cdy — 5 passes the point p and the face F. Tt
follows the existence of a sequence p; — p € Vr(ag) N Vr(a1) with z,, — z*.

2. |[Vr(ap) N Vr(a1)] = 0 or 2 and ¢y # 0 : For a fixed z* € R, the conic C,» =
Vr(f(z,y,z*)) has exactly two intersection points with L. Hence, C,« has only
ordinary intersections with L. Thus, C,~ contains an arc that passes Vg (ag) N Vr(a1)
and the face F. It follows the existence of a sequence p; — p € Vr(ap) N Vr(a1) with
2p, — 2.

3. |[Vr(ap) N Vr(a1)| = 1: In this case the quadratic polynomial ag(z,0) has a multiple

root and p = Vr(ag)NVr(a1) = (352,0). Hence, we get c3—4cscy = 0 and furthermore

. . Adycoes — 2ycacs + AyPcoer — Y3l
lim 2paxy = lim
y—0 ’ y—0 4yCO

260 Cq4 — C2C3

260
Now, the line L.y, implicitly given by 2cqx + coy + c¢g = 0 passes the point p and

contains a sequence of points p; — p with 2z, — 25005% =: zpo for t — oo.
In the next step we will show that for any other sequence p, — p we must get

Zp, — 2 > zpo or < z,0 depending on whether ¢y > 0 or ¢g < 0. W.l.o.g. we assume
that cg > 0. Then, for a fixed y the parabola cor® ey’ teptytestteaytes pag o global

y
minimum Zmaxy at Tmaxy. Thus, for any point p; = (z,y;) we must have z, =

, P
ao(x4,y1) >
— 2020 > o
ar(ztyy) =

max,y,- 1t follows that limy, .,z > limy ., 2maxy = 2p0-

In the two cases (1) and (2) we have shown that the unique lifts of the two faces F}
and F, are both adjacent to any point on the vertical line ¢, that is, for any (p, z*) € ¢,
there exist sequences pgl’i) € F; with (p§l7i),2p(l,i)) — (p,z*) for | = 1,2. Thus, it suffices
that Z,; = {£o0}, that is, Construct_isolatotr returns an empty instance and so Equal_z

is trivial. It is clear that Adjacency returns for an incident lifted face F(49) towards p the
pairs (0,—1) and (0, 0).

5.5. Applications 247

In the third case, for exactly all z* in between 2‘3003% and +oo (depending on

whether ¢y > 0 or ¢y < 0, respectively) there exists a sequence pgl’i) € F; with pgl’i) —p
and zp(l,,-)) — z*. As we can also pursue the affine coordinate transformation in case where
t

fi is given with arbitrary variable coefficients, it is possible to get formulas in terms of
these coefficients to decide in which case we are and to determine the single non-infinity
entry zp;o of Z,;. Observe that p = (pg,py) and 2, ;0 are all rational. Thus, Equal_z
can be implemented in terms of rational arithmetic. Adjacency returns for an incident
face towards the vertical line at p, either the pairs (0, —1), (0,0) or the pairs (0,0), (0, 1),
depending on the sign of ¢y and the face.

5.5. Applications

The proposed design and its implementation provides three-dimensional information on a
set of surfaces 8, that is, we compute a stratification {2g enhanced with geometric informa-
tion. The basic structure is a planar arrangement whose vertices, edges, and faces can be
queried to obtain the third dimension. The adjacencies of lifts also provide connectivities.
Although it is remarkable that the richness of computed information is rather complex, it
is also abstract. In addition, we have seen that the complexity of €2g is quite high due to
the projection and the lifting; even for relatively small D.

On the other hand, based on this decomposition, it is possible to rely on the framework
as a key ingredient when providing or supporting more concrete applications in geometric
computing. In this section, we present a list of such. For some, we only give basic ideas;
their details require further work. Other applications are illustrated more elaborate; for
example, the computation of space curves (§.0.3)) and lower envelopes (§5.5.7).

5.5.1. Analysis of a single surface

Stratification Given a single surface S. First of all, we can simply report the stratification
of S along with its full adjacency information. This, for example, supports the localization
of a query point in the stratification. That is, we return the cell to which a point on
S belongs. The cell decomposition can also be queried to detect three-dimensional cells
induced by S. In fact, we can use adjacency information to cluster them into maximal
sets. Note that this is a major steps towards the three-dimensional arrangements induced
by S. This also paves the way to locate any p € R3 with respect to S. However, we are
mainly missing a data structure to efficiently store these clusters.

Sampling A big advantage of our method is that geometric information is kept with re-
spect to the original coordinate system. Thus, we can sample S in arbitrary precision,
including its critical points. This possibility can be exploited, for example, in a visual-
ization: Once, Agy is computed, a dense grid of points is located and lifted using the
adaptive bitstream Descartes method. It only requires to specify the grid-width and the
maximal length of the intervals that approximate z-coordinates to define the desired pre-
cision of the sampling. The implementation consists in construction the grid and to refine
the liftings. Note that lifting is a perfect tasks for a parallelized computations as we should
usually have a much larger number of liftings than available processors. We mention this

248 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

possibility, as modern computers are usually equipped with multi-core architectures and
thus constitute an ideal platform for this objective.

Meshing A desirable goal is to compute a simplified representation for .S, for example,
in the form of a mesh. That is, we aim for a simplicial complex that is isotopic to S and
whose points are located on S. This complex cannot be directly extracted from {21g;. In
order to maintain the topology of S further decompositions are required. We refer to [BKS|
for on-going work of such a triangulation of an algebraic surface.

It should also be analyzed how many triangles are required to form a complex that
is isotopic to S, but whose vertices are not required to lie on S. There is a gap for
algebraic surfaces: A decomposition of S with degree D into non-singular cells requires
Q(D?) cells [Bru81]. In contrast, using a cylindrical algebraic decomposition (cad) results
in a complex with O(D7) cells. It is unknown where the true value is.

5.5.2. Analysis of two or more surface

Stratification As for a single surface, we also have seen how to compute the stratification
for a set of surfaces 8, that is, respecting their intersections, too. The localization of a
point in the set of strata is a task that is directly supported by the framework. Again,
the adjacency relation for any two cells is available, which enables similar to the single-
surface case, to identify induced three-dimensional cells, and to cluster them into maximal
connected sets. Although the boundary of such a cell can be described, this only constitutes
a restricted representation of the three-dimensional arrangement induced by 8. We omit
details on point localization, sampling, and meshing as they are similar to the single-surface
case.

Semi-algebraic sets We mentioned that the framework also supports semi-algebraic sur-
faces. But not only in their handling, but also for their representation: We can extract the
decomposition of such a surface S> defined by f = 0 and a set of polynomial inequalities
gi >0, 1 <14 < rinto connected zero-, one-, and two-dimensional cells having the bound-
ary property. Note that all points of a single lift of a cell in Ag.) share the same signs
with respect to all g;. We only have to select those cells whose signs are all non-negative
by choosing the stratum defined by the inequalities.

5.5.3. Space curves

The stratification of two surfaces also allows to extract the space curve defined by two
surfaces:

Definition 5.65 (Space curve). A space curve is the intersection set of two surfaces Sy, Sa,
if at most one-dimensional.

To represent a space curve, one usually decomposes it into its zero- and one-dimensional
parts, where zero-dimensional parts form isolated points, while the one-dimensional arcs
can have properties, like - or zy-monotonicity. Our implementation provides C++ class
templates called Surface_point_3 and Surface_arc_3. The representation of a point is or-
ganized as a tuple (Point_2, Surface_3, int), that is, a planar base point, a supporting
surface, and its lift index (also known as sheet number). x- and y-coordinate are given

5.5. Applications 249

explicitly by the planar point, the z-coordinate is encoded implicitly by the other two
types. A bounded one-dimensional arc in 3D is represented as a tuple (Surface_point_3,
Surface_point_3, X_monotone_curve_2, Surface_3, int, int, int), where the points en-
code the lexicographic smallest and largest point of the arc. The remaining entries lift the
planar curve onto the given surface. The int instances encode sheet numbers at the lexi-
cographic smallest and largest point, and in the interior of the arc, where the number must
be constant. Note that all three can even be equal or different. The supporting surfaces of
the arc and its minimal and maximal point are not required to be equal. Special construc-
tions for unbounded and vertical arcs are implemented, but omitted in this description.
Similar in Algorithm that computes the decomposition of the space-curve defined by
S1 and Sy into isolated vertices and one-dimensional arcs:

Algorithm 5.6. Decompose space curve into arcs and points
INPUT: Two surfaces Sp, Sy with dim(S; N S2) <1
OutpuT: The decomposition of S; N .S into arcs of dimension 1 and isolated points of
dimension 0.
1. Compute Ayg, s,) and extract vertices and edges belonging to 7o, s,
2. Obtain for each such vertex and each such edge its Z_fiber; identify their Z_cell
instances that define an intersection.
3. Compute for each lift of an edge that forms an intersection of S; and Sy to which
lifts of vertices it is adjacent.
4. For an edge, the Z_fiber and the adjacencies give all information required to con-
struct instances of type Surface_arc_3.
5. Anisolated vertex in 3D is detected and constructed by checking whether there exists
a Z_cell instance over a DCEL-vertex that is not adjacent to any Z_cell over edges
supported by of 79 5, 5, and incident to the vertex. It remains to construct proper
instances of type Surface_point_3 using the available information.

We remark, that there a subtleties to consider. For example, a Surface_point_3 in-
stance for a lifted vertex should be computed only once, especially if several arcs of inter-
sections are adjacent to it.

A careful reader might detect that this approach requires to compute both Agg
and Agg,;. Observe, that the output is not demanding for both surfaces at the same
time. It suffices to express the decomposition of a space curve into points and arcs only in
terms of the surface with lower complexity, for example, the degree of an algebraic surface.
Let S1 be the surface with lower complexity.

We next show how to avoid the computation of A(g,, and Ayg, g5,3. However this
requires to refine the SurfaceTraits 3 concept by an additional functor called Common_z. It
is expected to provide the following operator:

Z_at_xy_isolator operator() (
Point_2 pt, Surface_3 s1, Surface_3 s2,
Cell_infol cit

)

In contrast to Equal_z, which only checks the equality for given intervals, Common_z
constructs a new instance of type Z_at_xy_isolator that represents the common interesting
z-coordinates of s1 and s2 along a vertical line defined by the given pt. Due to lacking Ayg,}
and Agg, 5,1, we do not have access to full knowledge about multiplicities, regularities, and

250 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

degradations with respect to {S3} and {Si,S2} (collected usually in cell-info instances).
Thus, Common_z has to deal without these information. It depends on the family of surfaces,
how to compute the desired isolator. For algebraic surfaces, we have seen that the roots
of the local gcd define the required z-coordinates. Compare also with the implementation
details of Equal_z in §6. 421 However, there the degradation k is accessible from the planar
arrangement. In our current setting, we have to compute it. We also need two adaptions.
First, Algorithm does not compute Agg, s,1, but only the overlay of A(g,y and A, o o
and traverses its edges and vertices. Second, we require a new algorithm to construct the
Z_fiber, replacing the usual two-way merge:

Algorithm 5.7. Compute Z_fiber for a DCEL-cell participating in 79 s, s,

INPUT: p € R?; surfaces Sp, S
OUTPUT: Z_fiber for S1, S, over p

1. Construct Z_at_xy_isolator isol for S using Construct_isolator.

2. Construct Z_at_xy_isolator iso12 for intersections of S; and S using Common_z.

3. Refine intervals of isolator12 until each is included in an interval of isolatoril.

4. Create Z_cell for each interval of isolatorl and add S to a cell, if there is an

interval of iso12 that overlaps with an interval of isolatori.

Observe that the surface lifts of S5 in the computed Z_cell instances cannot be enhanced
with a sheet number. Fortunately, this is also not needed, as Algorithm only wants to
detect cells where Sy exists, but its output is with respect to S1’s sheet numbers only.

We have implemented this output-sensitive strategy in a class-template called Curve_3.
We consider it as a basic implementation that can be used whenever space curves are
computed by relying on their projection into the xy-plane. In this light, this work can be
seen as a prototypical implementation of a key ingredient for an upcoming Curved_kernel_3
in CGAL.

5.5.4. Lower envelope

We can also regard the surfaces in 8 as functions in 2 and y that return for given p = (p, py)
the smallest z-coordinate of the surface’s intersections with £,; requiring V; = () is a good
assumption for this task. Taking for every point of the plane the set of surfaces that
attain the minimum of these functions, we compute the lower envelope of §; see also
Chapter Bl where we present a specialized version for quadrics. Remember that CGAL
provides a generic divide-and-conquer approach to compute lower envelopes [Mey06b]; see
also Algorithm BXIl One only has to provide a model of CGAL’s EnvelopeTraits 3 concept,
which itself is a refinement of CGAL’s ArrangementTraits 2 concept; details on the tasks
expected by the concept are given in [MWZ07| or §83l In this section, we present a
generic implementation of such a model, called Surface_3_envelope_traits, that is based
on Projection_2 and attached instances of type Z_fiber provided by our new framework.

Let Surface_traits_3 be the given model of the SurfaceTraits 3 concept. The new
Surface_3_envelope_traits class template is derived from Surface_traits_3::Kernel_2in
order to be a model of CGAL’s ArrangementTraits 2 concept. We also have to define spatial
types:

Surface_3 and Xy_monotone_surface_3 are expected. The former is trivial, the latter
is mapped to lifted DCEL-cells, that is, a pair consisting of a DCEL-handle and an integer.

5.5. Applications 251

The integer corresponds to a sheet number. It can be assumed to be 0 if we only consider
lower envelopes. For more sophisticated envelopes, other values are conceivable. The
ENVELOPETRAITS 3 concept expects to decompose an instance of type Surface_3 into its
zy-monotone subsurfaces by a functor Make_xy_monotone_3. Our generic implementation
traverses all DCEL-cells of the corresponding Ayg,;. Faces with non-empty z-pattern are
reported, while for edges and vertices with non-empty z-pattern it first must be check
whether no lift of an incident planar cell adjacent to the lowest lift over the edge and
vertex, respectively, exists.

Two functors implement the required projections.

e Construct_projected_boundary_2

Computes for a given zy-monotone subsurface its projected boundary. To provide
this information for a subsurface over a face, we traverse the face’s boundaries and
distinguish whether the cycle that contains a boundary curve is oriented clockwise
or counter-clockwise in order to decide to which side the zy-monotone subsurface
exists. Subsurfaces that correspond to lifts of edges and vertices do not require this
test. We simply report the adjoined geometric object.

e Construct_projected_intersection_2

Computes the projected intersection curves of two zy-monotone subsurfaces sup-
ported by S; and S;. If S; = S, we only have to return curves (points) if lifted
faces (edges) are adjacent to the same lifted edge (vertex). Otherwise, we compute
Ays, s;1 and traverse all edges (and isolated vertices) in its cells that originate from
the given DCEL-handles stored along with the subsurfaces. We discard those not
participating in 7o, s;, those with an empty z-pattern, and those whose lowest z-
cell does not contain S; and S;. The remaining edges and vertices are returned. The
intersections tests for isolated lifted edges and vertices are similar.

The concept also requires to implement functors that compare the relative alignment
of two Xy_monotone_surface_3 instance in z-direction over a point, over a curve, or over
a face incident to a projected intersection curve (i.e., a sub-face of the projected curve
boundaries). Obviously, if their supporting surfaces S; and S; are equal, the stored sheet-
numbers encode the desired order. Otherwise the vertical alignment can be read from
a z-pattern of an appropriate cell of Ags,s,3- We only have to pick the correct one,
which is simple for the implementation of Compare_z_at_xy_3: Depending on the operator,
we can directly take the Z_fiber for the given point, or take the one for the sample
point of the given curve (or the single unbounded face). Computing the Z_fiber for
the remaining functors Compare_z_at_xy_below_3 and Compare_z_at_xy_above_3 reduces to
locate the sample point of the given curve in Ayg, g.3. This task is directly supported by
CGAL’s Arrangement_2 package on which we rely our framework.

Remark. Using this generic model of the EnvelopeTraits 3 concept, computing (lower) en-
velopes for a family of surfaces boils down to provide a model of the SurfaceTraits 3
concept for that class of surfaces. We admit that a specialized model for lower envelopes
might be more efficient, but obviously lacks of the possibility to support other applications
that we introduced in this section. The reason is, that we compute more information on
how two surfaces intersect than actually required for the lower envelope; compare also

252 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

with the construction of the Apollonius digram in §83 that is similarly “direct”. However,
our implementation is the first that follows the exact geometric computing paradigm to
compute lower envelopes of algebraic surfaces.

As in §37, we can think of modifications on the Surface_3_envelope_traits, such as
to compute upper envelopes, or sandwich regions. One should also check various dualities
that allow to rewrite a geometric problem as a envelope computation of surfaces; see, for
example, [dBvKOSO0, §11.5].

5.6. Results

We also run experiments to check the efficiency of our implementation(s). In the following
we report on various tests that present different aspects of the framework, but also show
the limits of practicality. We distinguish between experiments on quadrics and such on
algebraic surfaces of any degree.

5.6.1. Quadrics

We tested the performance of the framework instantiated with the Quadric_3_traitsmodel
by computing all z-fibers and all adjacencies for Ag, where |§| increases. We especially
distinguish between arbitrary quadrics and ellipsoids. All experiments are executed on
a Pentium IV CPU with 3.0 GHz clock-speed and 2 MB of cache. The executables are
compiled with gnu’s C++-compiler in version 3.3 with disabled debugging (-DNDEBUG) and
enabled optimizations (-02), and CGAL’s Algebraic_curve_kernel_2 in wrapping mode
with the exact number types of LEDA. Table Bl lists example runs.

#Surfaces | fDCEL fiz-cells t t/cell

2 ellipsoids 13 12 0.1s 5.7Tms
4 ellipsoids 230 904 2.8s 3.4ms
6 ellipsoids 877 5942| 19.9s 3.7ms
8 ellipsoids | 2780 25220| 171.9s 7.2ms
10 ellipsoids | 4952 52788 | 582.0s 11.5ms
2 quadrics 53 160 0.4 2.7ms
4 quadrics | 1099 7172 19.7 3.0ms
6 quadrics | 3946 39254 | 194.4 5.4ms
8 quadrics | 9983 132352 |2306.1 18.1ms

Table 5.1. Performance measures for sets of ellipsoids and arbitrary quadrics

It cannot be hidden, that |8| seems quite small, but on the other hand, the size of
the output grows rapidly. For 8 quadrics we already have to compute nearly 10.000 z-
fibers containing more than 130.000 cells. However, these numbers match the analyzed
complexities of g in §o.1. On the contrary, the time spent per cell grows much slower.
In fact, we have to see an increasing amount of time here, as by construction of the data,
similar intervals along each /¢, are intersected by a growing number of quadrics, that is, it
requires additional time to isolate the cells against each other. Anyhow, we can conclude
that the implementation computes for a non-trivial set of quadrics, the correct stratification
in reasonable time (per cell). Nevertheless, we recommend to use this in applications that

5.6. Results 253

typically involve only a small number of surfaces at a time. An example is the computation
of an arrangement on a reference quadric, as in §E6. Tk Besides the reference itself, we only
have a second surface in focus, namely, when decomposing their intersection curve into
(weakly) xz-monotone arcs and isolated points. We can remark now, that the decomposition
of these spaces curves in the reported implementation and experiments are actually realized
using the ideas presented in §o. 53 Previously, in Table we mainly ignored the column
dedicated to the splitting time. However, this column actually shows the performance
of an aggregated space curve construction keeping one surface fixed. The required time
simply grows linear with the number of quadrics intersecting the reference grows. This is
sensible as we only consider two quadrics at a time.

We are finally able to compare the new approach, that is, using the tools presented in
this thesis, with our former implementation m] As example we chose increasing
sets of random ellipsoids. Figure shows an overall improvement of about 30%. For
general quadrics the ratio is similar. Let us pick a concrete set: An arrangement induced
by 400 ellipsoids intersecting the reference ellipsoid consists of about 38.000 vertices and
74.000 edges, which is now possible to compute in around 180s instead of 287s.

300

250 ¢

200 r

150

Seconds

100

50

2550 100 200 400
Number of Ellipsoids

Figure 5.16. Running times to compute arrangements on an ellipsoid: We compare the
implementation from [BEHT07] (2005) with the one based on ideas in this thesis (2008).

5.6.2. Algebraic surfaces

We also run experiments on algebraic surfaces, that is, we compute their decomposition
as presented in §o.I1 As input we have chosen well-known examples from algebraic geom-
etryPq random and interpolated instances, and also a generic projection of two quadrics
in 4D. All experiments are executed on an AMD Dual-Core Opteron(tm) 8218 (1 GHz)
multi-processor platform. Fach processor has an internal cache of 1 MB and the total
memory consists of 32 GB. The system runs Debian Etch. We compiled using g++-4.1.2
with flags -02 -DNDEBUG and use the exact number types of COrE [KLPY99]. For planar
arrangements of algebraic curves, we relied on CGAL’s internal Algebraic_curve_kernel_2

*3Subsets of the tested example surfaces are provided courtesy of INRIA by the AIMQSHAPE Shape
Repository, by www.singsurf.org, by [www.freigeist.cc, and by [PV07]

www.singsurf.org
www.freigeist.cc

254 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

‘ Surface S ‘ deg, , . ‘ (#V ,#E,#F) ‘ Qs ‘ t
steiner-roman 2,2,2 (5,12,8) | 28| 0.73
cayley-cubic 2,2,2 (3,10,8) | 31 0.74
dupin-cyclide 4.4.4 (3,4,4)| 10 0.19
tangle-cube 4,44 (0,6,7)| 28] 0.61
bohemian-dome 444 (7,20,14) | 61 0.75
chair 4,4,4 49,7 31| 3.05
hunt 6,6,6 (323)] 15| 1.21
star 6,6,6 1,1,2)| 5| 3.61
spiky 6,9.6 188)| 13| 1.43
C8 8,8,8 (40,48,26) | 496 | 30.95
random-3 3.3,3 233)] 15] 0.17
random-4 4,44 (7,148)| 64 4.50
random-5 555 (16,24,10) | 154 | 236.40
interpolated-3 3,3,3 (4,6,3)| 23 0.34
interpolated-4 4,44 (12,18,9) | 82| 31.41
projection-4d 4.4.4 (4,12,9)| 34| 10.33

Table 5.2. Complexity and running times (in seconds) for the stratification of a selec-
tion of surfaces. Defining polynomials are reported in Appendix [Al

in non-wrapping mode. Observe that our software currently does not benefit from hav-
ing several processors, although many steps of the algorithm are well-suited for parallel
computations, such as the lifting or adjacency computation.

Table reports for a selection of tested surfaces the size of the computed (d,k)-
arrangement A;gy, the total number of cells in (g, and the obtained running times
(in seconds). It is also expected, that (some) surfaces do not show any (dk)-vertex
(e.g.,tangle-cube), or (dk)-edge (e.g., zy-functional surfaces) at all. Concerning the run-
ning times, we observed that about 90% is spent to construct Aysy. This is no surprise,
as we have to analyze plane algebraic curves of degree up to D(D — 1). The remaining
10% are consummated for the computation of the lifts and adjacencies. The success of the
m-k-filter depends on the surface. For most of the tested surfaces, it fails in less than 10%
of the non-square-free liftings, while for the highly-degenerate “C8” example no execution
is successfull. Concerning running time, if deg,(f) is low (< 3), computing the square-free
part with subresultants is not expensive. However, with increasing deg,(f), the m-k-filter
shows its power. A drastic example is the “star’-surface that only requires two critical lifts.
For one, the filter is successful and only needs a fraction of a second. If switching off the
filter, the total running time increases from less than 4 seconds to more than 25 seconds.

We finally can conclude that especially the lifting and adjacency steps benefit from cho-
sen approximative and combinatorial methods, such as the bitstream Descartes method
and its m-k-variant, interval arithmetic, propagations of available information, and a care-
ful selection of sample points required for the adjacency computations. A naive approach
would result in real root isolations along ¢, with a very bad separation, which typically
increases running times tremendously.

5.7. Conclusion and outlook 255

5.7. Conclusion and outlook

Achievements: We presented a generic realization of surface stratifications with full
adjacency information. Our C++-implementation is supported by CGAL’s Arrangement_2
package. Its design is kept simple, the interface intuitive, and the approach taken does not
enforce to assume generic position. We decoupled combinatorial from geometric tasks. A
new family of surfaces can be used by implementing a small set of tasks defined by the
newly introduced SurfaceTraits 3 concept. We provide models for this concept: One for
algebraic surfaces of any degree, and one for quadrics. This second implements degree-
specific combinatorial filters.

Our work demonstrates that surface analysis is practically feasible for moderate degrees.
The experiments show promising results thanks to our circumspectly cell decomposition
and the consequent application of approximate methods. However, as the number of cells
in our decomposition still grows fast, we see the main application of this tool in providing
information for a small set of surfaces, that is, to compute the topology (and geometry) of a
single surface, a single space-curve, or to serve as a key ingredient for high-level algorithms
like the computation of envelopes, or three-dimensional arrangements. Some of them are
already presented and implemented, others require further work.

Future directions: As a first step, we want to generalize further, that is, to remove
the last algebraic terminology. In particular, most of the tasks are already expressed in
the favored generic language. A strategy to achieve this goal could be to abstract the
concept while developing models for other kinds of surfaces, for example, Bézier patches.
A straightforward model that we have in mind, is to support rotated surfaces — similar
to the ideas for conics in the plane; see [BCW(T].

We also want to elaborate further utilizations of the computed data. For example,
there is on-going work to extract an isotopic triangulation from an enhanced cell decom-
position [BKS|. Another showcase is the computation of a single Voronoi cell of a set
of planes, spheres, and cylinders. The current implementation provided by [HEDS| relies
on non-certified analyses of low-degree algebraic surfaces (i.e., D < 4). We consider our
contribution as perfectly suited to easily certify this subproblem, which finally results in
a fully certified algorithm — in C++. Additionally, it should be checked in how far our
analyses of surfaces support, for a given set of algebraic surfaces, to compute the Voronoi
cell for each of them.

We finally consider the provided decompositions as an important building block for
full three-dimensional arrangements of algebraic surfaces, and boolean operations on the
induced cells. Having this, we are able to robustly compute instances describing the
configuration space for a rotational robot whose movements are restricted by polygonal
obstacles [Laf93]. This task is also known as the Piano Mover’s problem; see [SSHRT].
If we finally manage to combine fast subdivision approaches with our exact and certified
analyses, the approach is expected to be reasonable efficient — knowing that the obtained
result is ultimately correct.

256 Efficient Stratification of Algebraic Surfaces with Planar Arrangements

257

[Abb06]

[ACMS4]

[ACMSS]

[AHWO7]

[Arn88|

[AS00]

[AS01]

[AS05]

[ASS96|

[ASS07]

[Aus99]

[BCSMT]

[BCWO7]

[BDY6|

Bibliography

John Abbott. Quadratic Interval Refinement for Real Roots. Poster presented at
the 2006 International Symposium on Symbolic and Algebraic Computation (ISSAC
2006), 2006.

Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic
Decomposition II: An Adjacency Algorithm for the Plane. STAM Journal on Com-
puting, 13:878-889, 1984. Reprinted in [C.I9§|, pp. 152-165.

Dennis S. Arnon, George E. Collins, and Scott McCallum. An Adjacency Algorithm
for Cylindrical Algebraic Decompositions of Three-Dimensional Space. Journal of
Symbolic Computation, 5:163-187, 1988.

Lars Arge, Michael Hoffmann, and Emo Welzl, editors. Algorithms - ESA 2007,
15th Annual European Symposium on Algorithms, Eilat, Israel, October 8-10, 2007,
Proceedings, volume 4698 of LNCS. Springer, 2007.

Dennis S. Arnon. A Cluster-Based Cylindrical Algebraic Decomposition Algorithm.
Journal of Symbolic Computation, 5:189-212, 1988.

Pankaj K. Agarwal and Micha Sharir. Arrangements and Their Applications. In Jorg-
Riidiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry,
pages 49-119. Elsevier Science Publishers B.V., 2000.

Marcus Vinicius A. Andrade and Jorge Stolfi. Exact Algorithms for Circles on the
Sphere. Journal of Computational Geometry & Applications, 11(3):267-290, 2001.

Juan Gerardo Alcizar and Juan Rafael Sendra. Computation of the Topology of
Real Algebraic Space Curves. Journal of Symbolic Computation, 39:719-744, 2005.

Pankaj K. Agarwal, Otfried Schwarzkopf, and Micha Sharir. The Overlay of Lower
Envelopes and its Applications. Discrete Computational Geometry, 15:1-13, 1996.

Juan Gerardo Alcazar, Josef Schicho, and Juan Rafael Sendra. A Delineability-based
Method for Computing Critical Sets of Algebraic Surfaces. Journal of Symbolic
Computation, 42:678-691, 2007.

Matthew H. Austern. Generic Programming and the STL. Addison Wesley, 1999.

Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Giinter Rote, and
Gert Vegter. Meshing of Surfaces. In [BT06], pp. 181-229.

Eric Berberich, Manuel Caroli, and Nicola Wolpert. Exact Computation of Arrange-
ments of Rotated Conics. In Proceedings of 23rd European Workshop on Computa-
tional Geometry, pages 231-234, Graz, Austria, March 2007. Technische Universitit
Graz.

Jean-Daniel Boissonnat and Katrin T. G. Dobrindt. On-line Construction of the Up-
per Envelope of Triangles and Surface Patches in Three Dimensions. Computational
Geometry: Theory and Applications, 5(6):303-320, 1996.

258

Bibliography

[BEOS]

[BEH*02]

[BEHT05]

[BEPP97]

[Ber04]

[Bez07]

[BFH*07]

[BFM+01]

[BEWZ07]

[BHK*05]

[BHK*06a]

[BHK*06b]

[BHKTO07]

Eric Berberich and Pavel Emeliyanenko. CaaL’s Curved Kernel via Analysis. Tech-
nical Report of [I] with number ACS-TR-123203-04, Max-Planck-Institut fir Infor-
matik, Saarbriicken, Germany, 2008.

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn,
and Elmar Schomer. A Computational Basis for Conic Arcs and Boolean Operations
on Conic Polygons. In Proceedings of 10th European Symposium on Algorithms,
volume 2461 of Lecture Notes in Computer Science, pages 174—186. Springer-Verlag,
2002.

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Lutz Kettner, Kurt
Mehlhorn, Joachim Reichel, Susanne Schmitt, Elmar Schémer, and Nicola Wolpert.
Exacus: Efficient and Exact Algorithms for Curves and Surfaces. In Proceedings of
13th Annual European Symposium on Algorithms (ESA’05), volume 3669 of Lecture
Notes in Computer Science, pages 155-166, October 2005.

Hervé Bronnimann, Ioannis Z. Emiris, Victor Y. Pan, and Sylvain Pion. Computing
Exact Geometric Predicates Using Modular Arithmetic with Single Precision. In
Proceedings of 13th Symposium on Computational Geometry, pages 174-182, 1997.

Eric Berberich. Exact Arrangements of Quadric Intersection Curves. Universitit des
Saarlandes, Saarbriicken, Germany, 2004. Diplomarbeit.

Helmut E. Bez. Rational Maximal Parametrisations of Dupin Cyclides. In Ralph R.
Martin, Malcolm A. Sabin, and Joab R. Winkler, editors, Mathematics of Surfaces
XTI, volume 4647 of LNCS, pages 78-92. Springer, 2007.

Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Sweeping
and Maintaining Two-Dimensional Arrangements on Surfaces: A First Step. In Arge
et al. [AHWQOT], pages 645-656.

Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne
Schmitt. A Separation Bound for Real Algebraic Expressions. In Friedhelm Meyer
auf der Heide, editor, Algorithms - ESA 2001 (ESA-01) : Proceedings of the 9th
Annual European Symposium,, volume 2161 of Lecture Notes in Computer Science,
pages 254-265, Aarhus, Denmark, August 2001. Springer.

Eric Berberich, Efi Fogel, Ron Wein, and Baruch Zukerman. Sweeping Curves and
Maintaining 2D Arrangements on Surfaces. Unpublished manuscript, 2007.

Eric Berberich, Michael Hemmer, Lutz Kettner, Elmar Schomer, and Nicola Wolpert.
An Exact, Complete and Efficient Implementation for Computing Planar Maps of
Quadric Intersection Curves. In Proceedings of the 21st Annual Symposium on
Computational Geometry (SCG 2005), pages 99-106, 2005.

Eric Berberich, Michael Hemmer, Menelaos Karavelas, Sylvain Pion, Monique Teil-
laud, and Elias Tsigaridas. Interface Specification of Algebraic Kernel. Technical Re-
port of [I] with number ACS-TR-123101-01, INRIA Sophia-Antipolis, Max-Planck-
Institut fiir Informatik, National University of Athens, 2006.

Eric Berberich, Michael Hemmer, Menelaos Karavelas, Sylvain Pion, Monique Teil-
laud, and Elias Tsigaridas. Prototype Implementation of the Algebraic Kernel. Tech-
nical Report of [I] with number ACS-TR-121202-01, INRIA Sophia-Antipolis, Max-
Planck-Institut fiir Informatik, National University of Athens, 2006.

Eric Berberich, Michael Hemmer, Menelaos I. Karavelas, and Monique Teillaud.
Revision of the Interface Specification of Algebraic Kernel. Technical Report of [I]
with number ACS-TR-243301-01, INRIA Sophia-Antipolis, Max-Planck-Institut fiir
Informatik, National University of Athens, 2007.

Bibliography 259

[BHKTO08] Eric Berberich, Michael Hemmer, Menelaos I. Karavelas, and Monique Teillaud.
Algebraic_kernel d. In CGAL Editorial Board, editor, CGAL User and Reference
Manual. 3.4 edition, 2008. Internal Version.

[BKOT7] Eric Berberich and Lutz Kettner. Linear-Time Reordering in a Sweep-line Algorithm
for Algebraic Curves Intersecting in a Common Point. Research Report MPI-1-2007-
1-001, Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany, July 2007.

[BKOS] Eric Berberich and Michael Kerber. Exact Arrangements on Tori and Dupin Cyclides.
In Haines and McGuire [HMOS], pages 59-66.

[BKS] Eric Berberich, Michael Kerber, and Michael Sagraloff. An Efficient Algorithm for the
Stratification and Triangulation of an Algebraic Surface. Computational Geometry:
Theory and Applications. Submitted to special issue on SCG 2008.

[BKSO08] Eric Berberich, Michael Kerber, and Michael Sagraloff. Exact Geometric-Topological
Analysis of Algebraic Surfaces. In Monique Teillaud, editor, Proceedings of the 24th
Annual Symposium on Computational Geometry, College Park, MD, USA, June
9-11, 2008, pages 164-173. ACM, June 2008.

[BKSV98] Hervé Bronnimann, Lutz Kettner, Stefan Schirra, and Remco C. Veltkamp. Ap-
plications of the Generic Programming Paradigm in the Design of CGAL. In Mehdi
Jazayeri, Riidiger Loos, and David R. Musser, editors, Generic Programming, volume
1766 of Lecture Notes in Computer Science, pages 206—217. Springer, 1998.

[BMO7] Eric Berberich and Michal Meyerovitch. Computing Envelopes of Quadrics. In
Proceedings of 23rd European Workshop on Computational Geometry, pages 235—
238, Graz, Austria, March 2007. Technische Universitit Graz.

[BO79]| Jon Louis Bentley and Thomas Ottmann. Algorithms for Reporting and Counting
Geometric Intersections. TEEE Transactions on Computers, 28(9):643-647, 1979.

[Boe90] Wolfgang Boehm. On Cyclides in Geometric Modeling. Computer Aided Geometric
Design, 7:243-255, 1990.

[Bos06] Siegfried Bosch. Algebra. Springer Lehrbuch. Springer-Verlag, Berlin, Heidelberg,
sechste auflage edition, 2006.

[BPRO6] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in Real Al-
gebraic Geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer, 2nd edition, 2006.

[Bre95] Glen E. Bredon. Topology and geometry, volume 139 of Graduate Texts in Mathe-
matics. Springer, 1995.

[Bro01a] Hervé Bronnimann. Designing and Implementing a General Purpose Halfedge Data
Structure. In WAE ’01: Proceedings of the 5th International Workshop on Algorithm
Engineering, pages 51-66, London, UK, 2001. Springer-Verlag.

[BroO1b] Christopher W. Brown. Improved Projection for Cylindrical Algebraic Decomposi-
tion. Journal of Symbolic Computation, 32:447-465, 2001.

[Bro02] Christopher W. Brown. Constructing Cylindrical Algebraic Decompositions of the
Plane Quickly. Unpublished, 2002.

[Bru81] J. W. Bruce. An Upper Bound for the Number of Singularities on a Projective
Hypersurface. Bull. London Math. Soc., 13(1):47-50, 1981.

[BSO08] Eric Berberich and Michael Sagraloff. A generic and flexible framework for the

geometrical and topological analysis of (algebraic) surfaces. In Haines and McGuire
[HMOS|, pages 171-182.

260

Bibliography

[BT06]

[BTOS]

[Biih95]

[CA76]

[CDHSY]

[CGAOT]
[CGLO5]

[CGVO07]

[CGVOS]|

[CT98]

[CTK02]

[CLO7]

[CLO97]

[CLOO5]

[Col75]

[dBHO*94]

[dBvKOS00]

Jean-Daniel Boissonnat and Monique Teillaud, editors. Effective Computational
Geometry for Curves and Surfaces. Springer, 2006.

Antoine Bru and Monique Teillaud. Generic Implementation of a Data Structure for
3D Regular Complexes. In Abstracts of 24th European Workshop on Computational
Geometry, pages 95-98. LORIA, Nancy, France, 2008.

Katja Biihler. Rationale algebraische Kurven auf Dupinschen Zykliden. Master’s
thesis, Universitat Karlsruhe, August 1995. in German.

George E. Collins and Alkiviadis G. Akritas. Polynomial Real Root Isolation Using
Descartes’ Rule of Signs. In Richard D. Jenks, editor, SYMSAC, pages 272-275,
Yorktown Heights, NY, 1976. ACM Press.

Vijaya Chandru, Debasish Dutta, and Christoph M. Hoffmann. On the Geometry of
Dupin Cyclides. The Visual Computer, 5(5):277-290, 1989.

Editorial Board CGAL. CGAL User and Reference Manual, 3.3 edition, 2007.

Jin-San Cheng, Xiao-Shan Gao, and Ming Li. Determining the Topology of Real
Algebraic Surfaces. In Ralph Martin, Helmut Bez, and Malcolm Sabin, editors,
11. IMA Conference on the Mathematics of Surfaces, volume 3604 of LNCS, pages
121-146, 2005.

Jorge Caravantes and Laureano Gonzalez-Vega. Computing the Topology of an
Arrangement of Quartics. In Ralph R. Martin, Malcolm A. Sabin, and Joab R.
Winkler, editors, IMA Conference on the Mathematics of Surfaces, volume 4647 of
Lecture Notes in Computer Science, pages 104—120. Springer, 2007.

Jorge Caravantes and Laureano Gonzalez-Vega. Improving the Topology Computa-
tion of an Arrangement of Cubics. Computational Geometry, 41(3):206-218, 2008.

Bob F. Caviness and Jeremy R. Johnson, editors. Quantifier Elimination and Cylin-
drical Algebraic Decomposition, Texts and Monographs in Symbolic Computation.
Springer, 1998.

George E. Collins, Jeremy R. Johnson, and Werner Krandick. Interval Arithmetic in
Cylindrical Algebraic Decomposition. Journal of Symbolic Computation, 34(2):145—
157, 2002.

Frédéric Cazals and Sébastien Loriot. Computing the Exact Arrangement of Circles
on a Sphere, with Applications in Structural Biology. Technical Report 6049, INRIA
Sophia-Antipolis, 2007.

David A. Cox, John B. Little, and Donal O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer, 2nd edition, 1997.

David A. Cox, John B. Little, and Donal O’Shea. Using algebraic geometry, volume
185 of Undergraduate Texts in Mathematics. Springer, New York, NY, 2nd edition,
2005.

George E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In Second GI Conference on Automata Theory and Formal
Languages, volume 33 of LNCS, pages 134-183, 1975. Reprinted in [CI98]]|, pp. 85—
121.

Mark de Berg, Dan Halperin, Mark Overmars, Jack Snoeyink, and Mark van Kreveld.
Efficient Ray Shooting and Hidden Surface Removal. Algorithmica, 12:30-53, 1994.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer, Berlin, Germany, 2nd
edition, 2000.

Bibliography 261

[dCPT07] Pedro M. M. de Castro, Sylvain Pion, and Monique Teillaud. Exact and Efficient
Computations on Circles in CGAL and Applications to VLSI Design. Research
Report 6091, INRIA Sophia-Antipoli, 01 2007.

[DFMTO02] Olivier Devillers, Alexandra Fronville, Bernard Mourrain, and Monique Teillaud.
Algebraic Methods and Arithmetic Filtering for Exact Predicates on Circle Arcs.
Computational Geometry: Theory and Applications, 22:119-142, 2002.

[DHPS07] Laurent Dupont, Michael Hemmer, Sylvain Petitjean, and Elmar Schémer. Com-
plete, Exact and Efficient Implementation for Computing the Adjacency Graph of
an Arrangement of Quadrics. In Arge et al. [AHWQT|, pages 633—-644.

[DLLP08a] Laurent Dupont, Daniel Lazard, Sylvain Lazard, and Sylvain Petitjean. Near-optimal
Parameterization of the Intersection of Quadrics: I. The Generic Algorithm. J. Symb.
Comput., 43(3):168-191, 2008.

[DLLPO08b] Laurent Dupont, Daniel Lazard, Sylvain Lazard, and Sylvain Petitjean. Near-optimal
Parameterization of the Intersection of Quadrics: II. A Classification of Pencils. .J.
Symb. Comput., 43(3):192-215, 2008.

[DLLP08c] Laurent Dupont, Daniel Lazard, Sylvain Lazard, and Sylvain Petitjean. Near-optimal
Parameterization of the Intersection of Quadrics: III. Parameterizing Singular Inter-
sections. J. Symb. Comput., 43(3):216-232, 2008.

[DMROS8] Daouda Niang Diatta, Bernard Mourrain, and Olivier Ruatta. On the Computation
of the Topology of a Non-reduced Implicit Space Curve. In Juan Rafael Sendra and
Laureano Gonzéalez-Vega, editors, ISSAC, pages 47-54. ACM, 2008.

[Dup22] Charles Dupin. Applications de Géométrie et de Méchanique. Bachelier, Paris, 1822.

[Ede87] Herbert Edelsbrunner. Algorithmus in Combinational Geometry. EATCS Mono-
graphs on Theoretical Computer Science. Springer, Berlin - Heidelberg - New York,
1987.

[EHO5] Eran Eyal and Dan Halperin. Dynamic Maintenance of Molecular Surfaces under

Conformational Changes. In Proceedings of 21st Annual Symposium on Computa-
tional Geometry, pages 45-54, 2005.

[EHK'08] Ioannis Emiris, Michael Hemmer, Menelaos Karavelas, Michael Kerber, Bernard
Mourrain, Elias P. Tsigaridas, and Zafeirakis Zafeirakopoulos. Cross-benchmarks
of Univariate Algebraic Kernels. Technical Report of [I] with number ACS-TR-
363602-02, INRIA Sophia-Antipolis, Max-Planck-Institut fiir Informatik, National
University of Athens, 2008.

[Eig03] Arno Eigenwillig. Exact Arrangement Computation of Cubic Curves. Universitét
des Saarlandes, Saarbriicken, Germany, 2003. Diplomarbeit.

[Eig07] Arno Eigenwillig. On Multiple Roots in Descartes’ Rule and Their Distance to
Roots of Higher Derivatives’. Journal of Computational and Applied Mathematics,
200:226-230, 2007.

[Eig08] Arno Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Using
Descartes’ Rule of Signs. PhD thesis, Universitit des Saarlandes, Germany, 2008.

[EKO08a] Arno Eigenwillig and Michael Kerber. Exact and Efficient 2D-Arrangements of Ar-
bitrary Algebraic Curves. In Proceedings of the Nineteenth Annual ACM-STAM
Symposium on Discrete Algorithms (SODAO08), 2008. 122-131.

[EKO08D] Pavel Emeliyanenko and Michael Kerber. An Implementation for the 2D Alge-
braic Kernel. Technical Report of [I] with number ACS-TR-363602-01, Max-Planck-
Institut fiir Informatik, Saarbriicken, Germany, 2008.

262

Bibliography

[EK08c]

[EKK*05]

[EKP+04]

[EKSW06]

[EKWO07]

[Eme07]

[ES36]

[ES04]

[ET03a]

[ET03b]

[Exa04]

[Fab07]

[FGLOA]

[FGPTO03]

[FHOO|

Pavel Emeliyanenko and Michael Kerber. Visualizing and Exploring Planar Algebraic
Arrangements — a Web Application. Technical Report of [I] with number ACS-TR-
363608-02, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, 2008.

Arno Eigenwillig, Lutz Kettner, Werner Krandick, Kurt Mehlhorn, Susanne Schmitt,
and Nicola Wolpert. A Descartes Algorithm for Polynomials with Bit-Stream Coeffi-
cients. In 8th International Workshop on Computer Algebra in Scientific Computing
(CASC 2005), volume 3718 of LNCS, pages 138-149, 2005.

Toannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, and
Elias P. Tsigaridas. Towards an Open Curved Kernel. In Proceedings of the 20th
Annual Symposium on Computational Geometry (SCG 2004), pages 438-446. ACM,
2004.

Arno Eigenwillig, Lutz Kettner, Elmar Schomer, and Nicola Wolpert. Exact, Effi-
cient and Complete Arrangement Computation for Cubic Curves. Computational
Geometry: Theory and Applications, 35(1-2):36-73, August 2006.

Arno Eigenwillig, Michael Kerber, and Nicola Wolpert. Fast and Exact Geomet-
ric Analysis of Real Algebraic Plane Curves. In Christopher W. Brown, editor,
Proocedings of the 2007 International Symposium on Symbolic and Algebraic Com-
putation (ISSAC 2007), pages 151-158, 2007.

Pavel Emeliyanenko. Visualization of Points and Segments of Real Algebraic Plane
Curves. Master’s thesis, Universitéit des Saarlandes, February 2007.

Herbert Edelsbrunner and Raimund Seidel. Voronoi Diagrams and Arrangements.
Discrete & Computational Geometry, 1:25-44, 1986.

Herbert Edelsbrunner and Nimish R. Shah. Triangulating Topological Spaces. In
SCG ’94: Proceedings of the 10th Annual Symposium on Computational Geometry,
pages 285-292, New York, NY, USA, 1994. ACM.

Toannis Z. Emiris and Elias P. Tsigaridas. Comparison of Fourth-Degree Algebraic
Numbers and Applications to Geometric Predicates. Technical Report of [5] with
number ECG-TR~302206-03, National University of Athens, Athens, Greece, 2003.

Toannis Z. Emiris and Elias P. Tsigaridas. Methods to Compare Real Roots of Poly-
nomials of Small Degree. Technical Report of [3] with number ECG-TR-242200-01,
National University of Athens, Athens, Greece, 2003.

The Exacus Team. Exacus: Strategy 2004—2008, 2004. edited by Lutz Kettner and
Nicola Wolpert, for members:
http://www.mpi-inf.mpg.de/projects/EXACUS/Members/strategy.pdf.

Andreas Fabri. CGAL Editorial Board Review for Interface of the Algebraic Kernel.
Technical Report of [1] with number ACS-TR-363502-01, GeometryFactory, 2007.

Elisabetta Fortuna, Patrizia M. Gianni, and Domenico Luminati. Algorithmical
Determination of the Topology of a Real Algebraic Surface. Journal of Symbolic
Computation, 38:1551-1567, 2004.

Elisabetta Fortuna, Patrizia M. Gianni, Paola Parenti, and Carlo Traverso. Algo-
rithms to Compute the Topology of Orientable Real Algebraic Surfaces. Journal of
Symbolic Computation, 36:343-364, 2003.

Eyal Flato and Dan Halperin. Robust and Efficient Construction of Planar
Minkowski Sums. In Abstracts of 16th European Workshop on Computational Ge-
ometry, pages 85—88. Ben-Gurion University of the Negev, 2000.

Bibliography 263

[FHOT]| Efi Fogel and Dan Halperin. Exact and Efficient Construction of Minkowski Sums
of Convex Polyhedra with Applications. Computer-Aided Design, 39(11):929-940,
2007.

[FHHT00] Eyal Flato, Dan Halperin, Iddo Hanniel, Oren Nechushtan, and Eti Ezra. The Design
and Implementation of Planar Maps in CGAL. The ACM Journal of Experimental
Algorithmics, 5:1-23, 2000.

[FHK] Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, and Nicola
Wolpert. Arrangements. In [BT06|, pp. 1-66.

[FHSO08] Efi Fogel, Dan Halperin, and Ophir Setter. Exact Implementation of Arrangements
of Geodesic Arcs on the Sphere with Applications. In Abstracts of 24th European
Workshop on Computational Geometry, pages 83-86. LORIA, Nancy, France, 2008.

[FKMS05] Stefan Funke, Christian Klein, Kurt Mehlhorn, and Susanne Schmitt. Controlled
Perturbations for Delaunay Triangulations. In Proceedings of 16th ACM-SIAM Sym-
posisum on Discrete Algorithms (SODA), pages 1047-1056, 2005.

[FMO02] Stefan Funke and Kurt Mehlhorn. LOOK, a Lazy Object-Oriented Kernel for Geo-
metric Computations. Computational Geometry: Theory and Applications, 22:99—
118, 2002.

[For12] Andrew Russel Forsyth. Lectures on the Differential Geometry of Curves and Sur-

faces. Cambridge University Press, 1912.

[FSHOS]| Efi Fogel, Ophir Setter, and Dan Halperin. Arrangements of Geodesic Arcs on the
Sphere. In Monique Teillaud, editor, Proceedings of the 24th Annual Symposium on
Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 218-219.
ACM, 2008.

[FV96] Steven Fortune and Christopher J. Van Wyk. Static Analysis Yields Efficient Exact
Integer Arithmetic for Computational Geometry. ACM Transactions on Graphics,
15(3):223-248, July 1996.

[FWHO04| Efi Fogel, Ron Wein, and Dan Halperin. Code Flexibility and Program Efficiency
by Genericity: Improving CGAL’s Arrangements. In Proceedings of 12th Annual
European Symposium on Algorithms, pages 664—676. Springer-Verlag, 2004.

[FWZHO07] Efi Fogel, Ron Wein, Baruch Zukerman, and Dan Halperin. 2D Regularized Boolean
Set-Operations. In CGAL Editorial Board, editor, CGAL User and Reference Man-
ual. 3.3 edition, 2007.

[Gal01] Jean Gallier. Internet Supplement to ‘Geometric Methods and Applications for Com-
puter Science and Engineering’, Chapter 23: Rational Surfaces.
http://www.cis.upenn.edu/ ~jean/gbooks/geom2.html, 2001.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer
Algebra. Kluwer, 1992.

[GHIJV99] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Professional computing series. Addison-Wesley, Reading, Mass., second international
student edition repr. edition, 1999.

[Gib9g] Christopher G. Gibson. Elementary geometry of algebraic curves. Cambridge Uni-
versity Press, 1998.

[GLMTO05] G. Gatellier, A. Labrouzy, B. Mourrain, and J.-P. Técourt. Computing the Topology
of 3-dimensional Algebraic Curves. In Computational Methods for Algebraic Spline
Surfaces, pages 27—44. Springer, 2005.

264

Bibliography

[GVEK96]

[GVNO2]

[GVRLR]

[Hac07]

[Hal04]

[Hat02]
[HEOS]

[Hem02]

[HemO07a]

[HemO7b]

[Hem07c¢]

[HemO8]

[HHO7]

[HKO07a]

[HKO7b]

[HKMO7]

[HL93]

Laureano Gonzalez-Vega and M’hammed El Kahoui. An Improved Upper Complex-
ity Bound for the Topology Computation of a Real Algebraic Plane Curve. Journal
of Complexity, 12(4):527-544, 1996.

Laureano Gonzalez-Vega and Ioana Necula. Efficient Topology Determination of
Implicitly Defined Algebraic Plane Curves. Computer Aided Geometric Design,
19:719-743, 2002.

Laureano Gonzélez-Vega, Tomas Recio, Henri Lombardi, and Marie-Francgoise Roy.
Sturm-Habicht Sequences, Determinants and Real Roots of Univariate Polynomials.
In [CI98|, pp. 300-316.

Peter Hachenberger. Exact Minkowksi Sums of Polyhedra and Exact and Efficient
Decomposition of Polyhedra in Convex Pieces. In Arge et al. [AHW07|, pages 669
680.

Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 24, pages 529-562.
Chapman & Hall/CRC, 2nd edition, 2004.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.

Iddo Hanniel and Gershon Elber. Computing the Voronoi Cells of Planes, Spheres
and Cylinders in R?. In Haines and McGuire [HMO8], pages 47-58.

Michael Hemmer. Realiable Computation of Planar and Spatial Quadric Arrange-
ments. Universitit des Saarlandes, Saarbriicken, Germany, 2002. Diplomarbeit.

Michael Hemmer. Algebraic Foundations. In CGAL Editorial Board, editor, CGAL
User and Reference Manual. 3.3 edition, 2007.

Michael Hemmer. CGAL Package for Modular Arithmetic Operations. Technical
Report of [I] with number ACS-TR-243406-01, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany, 2007.

Michael Hemmer. Polynomial. In CGAL Editorial Board, editor, CGAL User and
Reference Manual. 3.4 (internal) edition, 2007.

Michael Hemmer. Exact Computation of the Adjacency Graph of an Arrangements
of Quadrics. PhD thesis, Johannes-Gutenberg-Universitit, Mainz, Germany, 2008.

Michael Hemmer and Dominik Hiilse. Traits Classes for Polynomial GCD Compu-
tation over Algebraic Extensions. Technical Report of [I] with number ACS-TR-
241405-03, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, 2007.

Peter Hachenberger and Lutz Kettner. 2D Boolean Operations on Nef Polygons Em-
bedded on the Sphere. In CGAL Editorial Board, editor, CGAL User and Reference
Manual. 3.3 edition, 2007.

Peter Hachenberger and Lutz Kettner. 3D Boolean Operations on Nef Polyhedra.
In CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.3 edition,
2007.

Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. Boolean Operations on 3D
Selective Nef Complexes: Data Structure, Algorithms, Optimized Implementation
and Experiments. Computational Geometry: Theory and Applications, 38(1-2):64—
99, 2007.

Josef Hoschek and Dieter Lasser. Fundations of Computer Aided Geometric Design.
A K. Peters, 1993.

Bibliography 265

[HLO4] Dan Halperin and Eran Leiserowitz. Controlled Perturbation for Arrangements of
Circles. International Journal of Computational Geometry and Applications, 14(4
& 5):277-310, 2004.

[HLOT7] Michael Hemmer and Sebastian Limbach. Benchmarks on a Generic Univariate
Algebraic Kernel. Technical Report of [I] with number ACS-TR-243306-03, Max-
Planck-Institut fiir Informatik, Saarbriicken, Germany, 2007.

[HLOS| Michael Hemmer and Sebastian Limbach. Arrangements of Quadrics in 3D: Con-
tinued Work on Experimental Implementation. Technical Report of [1] with num-
ber ACS-TR-363606-01, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany,

2008.

[HMOS] Eric Haines and Morgan McGuire, editors. Proceedings of the 2008 ACM Symposium
on Solid and Physical Modeling, Stony Brook, New York, USA, June 2-4, 2008. ACM,
2008.

[HS94] Dan Halperin and Micha Sharir. New Bounds for Lower Envelopes in Three Dimen-

sions, with Applications to Visibility in Terrains. Discrete Computational Geometry,
12:313-326, 1994.

[HS98] Dan Halperin and Christian R. Shelton. A Perturbation Scheme for Spherical Ar-
rangements with Application to Molecular Modeling. Computational Geometry:
Theory and Applications, 10:273-287, 1998.

[HSSO08] Dan Halperin, Ophir Setter, and Micha Sharir. Constructing Two-Dimensional
Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space. Technical Re-
port of [I] with number ACS-TR-361601-01, Tel-Aviv University, Tel-Aviv, Israel,
2008.

[HWO7] Iddo Hanniel and Ron Wein. An Exact, Complete and Efficient Computation of Ar-
rangements of Bézier Curves. In SPM ’07: Proceedings of the 2007 ACM Symposium
on Solid and Physical Modeling, pages 253-263, New York, NY, USA, 2007. ACM.

[IEE85] IEEE Standard for binary floating point arithmetic, ANSI/IEEE Std 754 — 1985.
New York, NY, 1985. Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

[Joh93] John K. Johnstone. A New Intersection Algorithm for Cyclides and Swept Surfaces
Using Cycle Decomposition. Computer Aided Geometric Design, 10:1-24, 1993.

[Kah08| Mhammed El Kahoui. Topology of Real Algebraic Space Curves. Journal of Symbolic
Computation, 43(4):235-258, 2008.

[Kar06] Bjorn Karlsson. Beyond the C++ Standard Library. Addison-Wesley, Upper Saddle
River, NJ [u.a.], 2006.

[KCO08] Lutz Kettner and Fernando Cacciola. Halfedge Data Structures. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 3.4 edition, 2008. Internal Version.

[KCF*T04] John Keyser, Tim Culver, Mark Foskey, Shankar Krishnan, and Dinesh Manocha.
ESOLID - a System for Exact Boundary Evaluation. Computer-Aided Design,
36(2):175-193, 2004.

[KCMKO00] John Keyser, Tim Culver, Dinesh Manocha, and Shankar Krishnan. Efficient and Ex-
act Manipulation of Algebraic Points and Curves. Computer-Aided Design, 32:649—

662, 2000.
[Ker] Michael Kerber. PhD thesis, Universitit des Saarlandes, Germany. In preparation.
[Ker06] Michael Kerber. Analysis of Real Algebraic Plane Curves. Universitét des Saarlandes,

Saarbriicken, Germany, 2006. Diplomarbeit.

266

Bibliography

[Ker08]

[Ket06]

[Ket07]

[KLPY99)

[KMP+04]

[KNO4]

[Kéno3|
[KOS92]

[KP02]

[KY07]

[Lan02]
[Lat93]

[Lev79]

[Loo82a]

[Loo82b]

[LPP06]

Michael Kerber. On Filter Methods in CGAL’s 2D Curved Kernel. Technical Re-
port of [I] with number ACS-TR-243404-03, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany, 2008.

Lutz Kettner. Reference Counting in Library Design—Optionally and with Union-
Find Optimization. In David Musser and Jeremy Siek, editors, Proceedings of the
First International Workshop on Library-Centric Software Design, LCSD’05, volume
06-12 of Technical Report, pages 34-43, San Diego, CA, USA, 2006. Rensselaer
Polytechnic Institute, Computer Science Department.

Lutz Kettner. Halfedge Data Structures. In CGAL Editorial Board, editor, CGAL
User and Reference Manual. 3.3 edition, 2007.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core Library for Robust
Numeric and Geometric Computation. In Proceedings of the 15th Annual ACM
Symposium of Computational Geometry (SCG), pages 351-359, 1999.

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng Yap.
Classroom Examples of Robustness Problems in Geometric Computations. In Su-
sanne Albers and Tomasz Radzik, editors, ESA, volume 3221 of Lecture Notes in
Computer Science, pages 702-713. Springer, 2004.

Lutz Kettner and Stefan N&her. Two Computational Geometry Libraries: LEDA and
CaAL. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 65, pages 1435-1463. CRC Press LLC, Boca
Raton, FL, second edition, 2004.

Konrad Konigsberger. Analysis 2. Springer, Berlin - New York, 1993.

Matthew J. Katz, Mark H. Overmars, and Micha Sharir. Efficient Hidden Surface
Removal for Objects With Small Union Size. Computational Geometry: Theory and
Applications, 2:223-234, 1992.

Steven George Krantz and Harold R.. Parks. The Implicit Function Theorem: History,
Theory, and Application. Birkh&user, 2002.

Menelaos Karavelas and Mariette Yvinec. 2D Apollonius Graphs (Delaunay Graphs
of Disks). In CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.3
edition, 2007.

Serge Lang. Algebra. Addison-Wesley, rev. 3. edition, 2002.

Jean-Claude Latombe. Robot Motion Planning, volume 0124; of Kluwer interna-
tional series in engineering and computer science; SECS. Kluwer, 1993.

Joshua Zev Levin. Mathematical Models for Determining the Intersections of Quadric
Surfaces. Compututer Graphics and Image Processing, 11:73-87, 1979.

Riidiger Loos. Computing in Algebraic Extensions. In Bruno Buchberger, George E.
Collins, and Riidiger Loos, editors, Computer Algebra — Symbolic and Algebraic
Computation, pages 173-188. Springer, 1982.

Riidiger Loos. Generalized Polynomial Remainder Sequences. In Bruno Buchberger,
George E. Collins, and Riidiger Loos, editors, Computer Algebra — Symbolic and
Algebraic Computation, pages 115-138. Springer, 1982.

Sylvain Lazard, Luis Mariano Pefiaranda, and Sylvain Petitjean. Intersecting
Quadrics: An Efficient and Exact Implementation. Computational Geometry, 35(1-
2):74-99, 2006.

Bibliography 267

[LPTOS] Sylvain Lazard, Luis Penaranda, and Elias Tsigaridas. A CcAr-Based Univariate
Algebraic Kernel and Applications to Arrangements. In Abstracts of 24th European
Workshop on Computational Geometry, pages 91-94. LORIA, Nancy, France, 2008.

[LYO01] Chen Li and Chee-Keng Yap. A New Constructive Root Bound for Algebraic Ex-
pressions. In SODA, pages 496-505, 2001.

[Mas67] William S. Massey. Algebraic Topology: An Introduction. Springer, 1967.

[MCO02] Scott McCallum and George E. Collins. Local Box Adjacency Algorithms for Cylin-
drical Algebraic Decompositions. Journal of Symbolic Computation, 33:321-342,
2002.

[McC] Scott McCallum. An Improved Projection Operation for Cylindrical Algebraic De-
composition. In [CI98]|, pp. 242-268.

[Meh01] Kurt Mehlhorn. Circle Points and Predicates on Circle Points. Lectures on November

15 and 20., 2001. Lecture Notes for “Effective Computational Geometry: Theory and
Practice of Implementing Geometric Algorithms” (WS 2001/02, Saarland University)
http://www.mpi-inf. mpg.de/ “mehlhorn/ECG/CirclePointsandPredicates.ps.

[Mey06a] Michal Meyerovitch. Robust, Generic and Efficient Construction of Envelopes of
Surfaces in Three-Dimensional Space. M.Sc. thesis, School of Computer Science,
Tel-Aviv University, Tel-Aviv, Israel, July 2006.

[Mey06b] Michal Meyerovitch. Robust, Generic and Efficient Construction of Envelopes of
Surfaces in Three-Dimensional Spaces. In Yossi Azar and Thomas Erlebach, editors,
ESA, volume 4168 of Lecture Notes in Computer Science, pages 792-803. Springer,
2006.

[MNOO] Kurt Mehlhorn and Stefan Ndher. LEDA: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, UK, 2000.

[MOS06] Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff. Reliable and Efficient Compu-
tational Geometry via Controlled Perturbation. In Michele Bugliesi, Bart Preneel,
Vladimir Sassone, and Ingo Wegener, editors, Automata, Languages and Program-
ming, 33rd International Colloquium, ICALP 2006, Part I, volume 4051 of Lecture
Notes in Computer Science, pages 299-310, Venice, Italy, 2006. Springer.

[MPST] Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsi-
garidas, and Nicola Wolpert. Algebraic Issues in Computational Geometry. In
[BTO6], pp.117-155.

[MRRO5] Bernard Mourrain, Fabrice Rouillier, and Marie-Francoise Roy. Bernstein’s Basis and
Real Root Isolation. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial
and Computational Geometry, Mathematical Sciences Research Institute Publica-
tions, pages 459-478. Cambridge University Press, 2005.

[MS88] David A. Musser and Alexander A. Steanov. Generic Programming. In Proceedings
of International Symposium on Symbolic and Algebraic Computation, LNCS 358,
pages 13-25. Springer-Verlag, 1988.

[MSO03] Kurt Mehlhorn and Michael Seel. Infimaximal Frames: A Technique for Making
Lines Look Like Segments. Journal of Computational Geometry & Applications,
13(3):241-255, 2003.

[MTO05] Bernard Mourrain and Jean-Pierre Técourt. Isotopic Meshing of a Real Algebraic
Surface. Technical Report 5508, INRIA Sophia-Antipolis, 2005.

[MTTO05] Bernard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. On the Computation
of an Arrangement of Quadrics in 3D. Computational Geometry, 30(2):145-164,
2005.

268

Bibliography

[Mul89]

[MWZ07]

[Mye95]

[Nef78]
[Prag0]

[Pra95]

[PS85]

[PTO7]

[PTTO6]

[PVO07]

[Raa99|

[Rei08]

[RZ03]

[SA95]

[Sch96|

[SchO8|

[SHS9]

[Shad4]

Ketan Mulmuley. An Efficient Algorithm for Hidden Surface Removal. In
Proceedings SIGGRAPH 1989, pages 379-388, New York, NY, USA, 1989. ACM
Press.

Michal Meyerovitch, Ron Wein, and Baruch Zukerman. 3D Envelopes. In CGAL Ed-
itorial Board, editor, CGAL User and Reference Manual. 3.3 edition, 2007.

Nathan C. Myers. Traits: A New and Useful Template Technique. C++ Report,
7(5):32-35, 1995.

Walter Nef. Beitridge zur Theorie der Polyeder. Herbert Lang, Bern, 1978.

Michael J. Pratt. Cyclides in Computer Aided Geometric Design. Computer Aided
Geometric Design, 7:221-242, 1990.

Michael J. Pratt. Cyclides in Computer Aided Geometric Design II. Computer
Aided Geometric Design, 12:131-152, 1995.

Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

Sylvain Pion and Monique Teillaud. 2D Circular Geometry Kernel. In CGAL Edi-
torial Board, editor, CGAL User and Reference Manual. 3.3 edition, 2007.

Sylvain Pion, Monique Teillaud, and Constantinos P. Tsirogiannis. Geometric Fil-
tering of Primitives on Circular Arcs. Technical Report of [I] with number ACS-TR-
121105-01, INRTA Sophia-Antipolis, France, 2006.

Simon Plantinga and Gert Vegter. Isotopic Meshing of Implicit Surfaces. The Visual
Computer, 23:45-58, 2007.

Sigal Raab. Controlled Perturbation for Arrangements of Polyhedral Surfaces with
Application to Swept Volumes. In Proceedings of 15th Annual Symposium on Com-
putational Geometry, pages 163172, 1999.

Tobias Reithmann. Topological Correct Intersection Curves of Tori and Natural
Quadrics. Technical Report of [I] with number ACS-TR-361502-01, Max-Planck-
Institut fiir Informatik, Saarbriicken, Germany, 2008.

Fabrice Rouillier and Paul Zimmermann. Efficient Isolation of a Polynomial’s Real
Roots. Journal of Computational and Applied Mathematics, 162(1):33-50, 2003.

Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and heir geo-
metric applications. Cambridge University Press, 1st ed. edition, 1995.

Stefan Schirra. Precision and Robustness in Geometric Computations. In Marc J. van
Kreveld, Jiirg Nievergelt, Thomas Roos, and Peter Widmayer, editors, Algorithmic
Foundations of Geographic Information Systems, volume 1340 of Lecture Notes in
Computer Science, pages 255—287. Springer, 1996.

Stefan Schirra. How Reliable Are Practical Point-in-Polygon Strategies? In Dan
Halperin and Kurt Mehlhorn, editors, Algorithms - ESA 2008, 16th Annual Euro-
pean Symposium on Algorithms, Karlsruhe, Deutschland, September 15-17, 2008,
Proceedings, volume 5193 of LNCS, pages 744-755. Springer, 2008.

Jack Snoeyink and John Hershberger. Sweeping Arrangements of Curves. In
Symposium on Computational Geometry, pages 354-363, 1989.

Micha Sharir. Almost Tight Upper Bounds for Lower Envelopes in Higher Dimen-
sions. Discrete Computational Geometry, 12:327-345, 1994.

Bibliography 269

[She96] Jonathan Richard Shewchuk. Adaptive Precision Floating Point Arithmetic and Fast
Robust Reometric Predicates. Technical Report CMU-CS-96-140, Carnegie Mellon
University, Pittsburgh, PA, 1996.

[SS83] Jacob T. Schwartz and Micha Sharir. On the Piano Mover’s Problem II: General
Techniques for Computing Topological Properties of Algebraic Manifolds. Advances
in Applied Mathematics, 4:298-351, 1983.

[SSHS&7] Jacob T. Schwartz, Micha Sharir, and John E. Hopcroft, editors. Planning, Geom-
etry, and Complexity of Robot Motion. Ablex series in artificial intelligence. Ablex

Publ., 1987.

[Str06] Adam W. Strzebonski. Cylindrical Algebraic Decomposition using Validated Numer-
ics. Journal of Symbolic Computation, 41:1021-1038, 2006.

[SWO05] Raimund Seidel and Nicola Wolpert. On the Exact Computation of the Topology of

Real Algebraic Curves. In Proceedings of the 21st Annual Symposium on Compu-
tational Geometry (SCG 2005), pages 107115, 2005.

[TEO08] Elias P. Tsigaridas and Ioannis Z. Emiris. On the Complexity of Real Root Isolation
Using Continued Fractions. Theoretical Computer Science, 392(1-3):158-173, 2008.

[vdWT1] Bartel L. van der Waerden. Algebra I [frither u.d.T.: Moderne Algebra|, volume 12
of Heidelberger Taschenbiicher. Springer, 8. auflage edition, 1971.

[vzGG99] Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 1999.

[Wal50] Robert J. Walker. Algebraic Curves. Princeton University Press, 1950.

[Wei02] Ron Wein. High-Level Filtering for Arrangements of Conic Arcs. In Proceedings of
the 10th European Symposium on Algorithms (ESA 02), pages 884-895, 2002.

[WeiOT7a] Ron Wein. 2D Envelopes. In CGAL Editorial Board, editor, CGAL User and
Reference Manual. 3.3 edition, 2007.

[Wei07h] Ron Wein. 2D Minkowski Sums. In CGAL Editorial Board, editor, CGAL User and
Reference Manual. 3.3 edition, 2007.

[WFZH05] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced Programming
Techniques Applied to CGAL’s Arrangements. In Proceedings of the First Inter-
national Workshop on Library-Centric Software Design (LCSD ’05), at the Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA) Confer-
ence., October 2005.

[WFZHO07a] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D Arrangements. In
CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.3 edition, 2007.

[WFZHO7b] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced Programming
Techniques Applied to CGAL’s Arrangement Package. Computational Geometry:
Theory and Applications, 38(1-2):37-63, 2007.

[Whi49] J. H. C. Whitehead. Combinatorial Homotopy. I. Bull. Amer. Math. Soc., 55(3):213—
245, 1949.

[Wol02] Nicola Wolpert. An Exact and Efficient Approach for Computing a Cell in an Ar-
rangement of Quadrics. PhD thesis, Universitit des Saarlandes, Saarbriicken, Ger-
many, 2002.

[Wol03] Nicola Wolpert. Jacobi Curves: Computing the Exact Topology of Arrangements of

Non-Singular Algebraic Curves. In Proceedings of the 11th Annual European Sym-
posium on Algorithms (ESA 2003), volume 2832 of LNCS, pages 532-543. Springer,
2003.

270

Bibliography

[WZ06]

[Yap00]

[Yap04]

[Yun76]

Ron Wein and Baruch Zukerman. Exact and Efficient Construction of Planar Ar-
rangements of Circular Arcs and Line Segments with Applications. Technical Report
of [1] with number ACS-TR~121200-01, Tel-Aviv University, Tel-Aviv, Israel, 2006.

Chee Keng Yap. Fundamental Problems in Algorithmic Algebra. Oxford University
Press, 2000.

Chee Yap. Robust Geometric Computation. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 41,
pages 927-952. Chapman & Hall/CRC, 2nd edition, 2004.

David Y.Y. Yun. On Square-free Decomposition Algorithms. In SYMSAC ’76:
Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation,
pages 26-35, New York, NY, USA, 1976. ACM.

All cyclide pictures are produced with xsurface that is based on CGAL’s planar curve
renderer [Eme(7]. The author thanks Pavel Emeliyanenko for his contribution.

Pictures:

Most figures in this thesis are created by the author using xfig [I8], or screen-

shots of EXAcUS-demos xquadri and xsurface. We give details on the copyright next to
each exception: Figure (c) on page[[B Figure BI4 on page [T Figure B4 on page (22,
Figure on page [[70, Figure on page [[T3 and Figure on page 2311

271

1]
2
13
4
B
]
17
]
9

10]

11]

12]

13]

14]

15]

16]

17]

[18]

Links

Acs, Algorithms for Complex Shapes with certified topology and numerics.
http://acs.cs.rug.nl/.

BoosT, C++ Libraries.
http://www.boost.org/.

CaaL, Computational Geometry Algorithms Library.
http://wuw.cgal.org/.

CORE Number Library.
http://cs.nyu.edu/exact/core_pages/.

Eca, Effective Computational Geometry for Curves and Surfaces.
http://www-sop.inria.fr/prisme/ECG/.

ExaAcus, Efficient and Exact Algorithms for Curves and Surfaces.
http://www.mpi-inf.mpg.de/projects/EXACUS.

Exacus Webdemo, Computing and Visualizing Arrangements of Algebraic Curves.
http://exacus.mpi-inf.mpg.de.

GEOMETRYFACTORY.
http://wuw.geometryfactory.com.

GwMmP, GNU Multiple Precision Arithmetic Library.
http://www.swox.com/gmp.

LEDA, Library for Efficient Data Types and Algorithms.
http://www.algorithmic-solutions.com/leda/index.htm.

MPFI, Multiple Precision Interval Arithmetic Library.
http://perso.ens-lyon.fr/nathalie.revol/software.html.

MPFR, Multiple-Precision Floating-Point Computations.
http://www.mpfr.org.

NTL, A Library for doing Number Theory.
http://www.shoup.net/ntl/.

Rs: Real roots of systems with a finite number of complex solutions.
http://fgbrs.1lip6.fr.

STL, C++ Standard Template Library.
http://www.sgi.com/tech/stl.

SYNAPS, A Library for Symbolic and Numeric Computation.
http://www-sop.inria.fr/galaad/logiciels/synaps.

Wolfram Mathworld. Cyclide.
http://mathworld.wolfram.com/Cyclide.html.

Xfig Drawing Program for the X Windows System.
http://wuw.xfig.org.

272

above,
ACK_2, see Algebraic_curve_kernel_2
Acs,
additively weighted Voronoi diagram,
adjacency, B3, [[93, M99 PT2 2T 235
adjacency graph, [[X1
ArciX, B2
algebraic closure,
algebraic expression, 29, @3 [0,
algebraic interval representation, Bl
algebraic kernel, Bol, [0 T84
algebraic number,
degree,
minimal polynomial,
real algebraic number,
algebraic plane curve, B8 B2 BT, B4l B4 62
73,
component,
algebraic real, Bl b1
algebraic real plane, B7]
algebraic space curve, B4l
algebraic surface, B2 B2 [[62 0 74, 90,
P2,
component,
vertical,
Algebraic_curve_kernel_2, B0, BT, B3] BS,
63, 73, 223
filtered version,
AlgebraicKernel d 1,
AlgebraicKernel _d 2,1
AlgebraicKernelWithAnalysis d 2,51,
algebraicreal, b7
Algebraic_surface_3_traits,
Apollonius diagram,

arc, b
arc number, B B7 7Y, 79
Arc_2,

arithmetic filter,
Arithmetic_kernel,

Index

ArithmeticKernel, B4l

arrangement, 211 B3, [[7, T3] T4, TRY],

Arrangement_2, [[7] [[34] M52,

Arrangement_on_surface_2, 13 [[34]

ArrangementTraits 2, B2, BY O 27, 5,
227, 250

Arr_qdx_topology_traits_2,

Arr_surfaces_intersecting_
dupin_cyclide_traits_2,

ArrTopology Traits 2, [[34]

asymptote, B9, 78]

base point, Bl

basic insertion, [[8] [34,

below,

Bentley-Ottmann sweep, B2

Bernstein basis,

Bézier curve, 62,

bisector, 08, 111

bitstream Descartes method, B4, 60 B3] @17,
[[S9, 2, 220

Bitstream_coefficient_kernel, [64]

BoosT, B3 B4

BorderedBoundary Traits, [31]

boundary, BE7

Boundary,

boundary property, Bl [[X9 90,

bounding box,

branch,

bucket, 78,

CCB, [[33, 38, a0, [E6,
inner, 68 [[R T35
outer, 68, [[], T34, 31,
cell,
open,
cell decomposition, X9 200,
cell-complex,
cellular data structure, [[1]

Index

273

certificate, B4l
CcAL, B8 BT1
change of coordinates, El
circle, b0, BT, K3], 6T
cluster,
code reuse, (25 27 T66
combinatorial deduction, B6l
CombinedBoundary Traits, [[32, [T61]
ComparePointOnBoundary Traits, [31]
complex,
computer-aided geometric design,
concept, BT, 2TH,
conic, B2 11, B3],
ConiX,
conjugate,
connected component of the boundary, see
CCB
Construct_intersection_2,
Construct_isolator, 21
Construct_silhouette_2,217
content,
continuation, [94]
continued fractions,
ContractedBoundary Traits, [31]
contraction, [21], [47 T63
controlled perturbation,
coprime, Bl B1
coprincipal subresultant coefficient,
CORE,
covertical,
critical, B9
critical segment,
cubic, B2, B1],
CuBIX,
curve, [0/
supporting,
curve analysis, B, 60, B3,
curve pair analysis, 68 B0 B3,
curve-end, [T,
Curve_2,
Curved_kernel_via_analysis_2, B2 B0, B3
([0, [T73,
filtered version, R
CurveKernel 2,
cut circle,
CW complex, B,
cyclide

Dupin, B3], B9, T3, [[50, [6T]
horned,

ring,
spindle,
cylindrical algebraic decomposition, B4l BE7,
(59, [0

Dcel,
DcEr, B4 T3, 32
incremental construction,
decorating,
degradation,
degree,
total,
delineation, B, B3, [[94],
Descartes method, B3]
bitstream, see bitstream Descartes method
exact, B4
interval variant,
m-k-variant, B4, Bo 0 b6 B2 B4, B3,
229,
Descartes’ rule of signs,
design pattern
observer,
visitor,
dimension,
directed loop, 47
sign, [49 50,
discriminant, B3,
(d,k)-arrangement,
(d-k)-invariance,
doubly-connected-edge-list, see DCEL

elimination theory, 26, B4
Equal_z, P19, P34
equitable, 37, [0, T50, [H9,
event,
boundary,
interior, [[17],
near-boundary, [[T47,
order,
event point,
event-queue, [2 [0, 20 23]
exact geometric computation, B9, 04, 20,
90
Exacus, B8, BTl B4

face, 67,

274 Index

factorization, 231 Bl Kernel_2, 216l
fictitious,
filter, leading coefficient,
arithmetic filter, LEDA, B3,
combinatorial deduction, lift, 94, PO
geometric filter, lifting, B, [0
modular filter, lifting polynomial, B1]
filter failure, B4 local degree,
forest-strategy, 34, local ged degree,
local real degree,
GAPs, locally simply connected,
Gaussian map, [[G1] location, 211
general position, B0, B2, [[2 lower envelope, 011 (T4, [[6T],
generic programming, 7 011 B2 B7 D13,
=4, 90, meshing,
geometric computing, [[4] m;-invariant, [94]
geometric filtering, m; j-invariant, [96], [97
geometric programming, minimization diagram, @2 08, [T4
GeometryTraits_2, [34 Minkowski sum, [[61]
GwmP, model, @1
gradient, B9, modular arithmetic,
Mébius transformation, B3]
halfedge, monomial,
halfedge data structure, [Tl MPFI,
handle, BTl MPFR,
HasBoundaryTraits, multiplicity,
hole, B8 multiplicity tree, [/
identification, 211 [[44] M43 [[47, 50, 052, Nef, [14 91
7mm7m Nef_3,
IdentifiedBoundary Traits, [[31], nesting graph, [[8, 34 37, [A2HIIH,
implementation, NoBoundary Traits,
implicit function theorem, B7] NTL,
incidence numbers, NUMERIX, B
inclusion property, B4
infimaximal frame, [T4] one-root number, @5, [[0T]
insert, order-invariance,
integral interval representation, B0, outer circle,
intersection curve, B4l outer split,
interval arithmetic, b4l B4 [[89, outermost face,
interval refinement, B3 B7 overlay, B, BT, [[33, 53], X2, R4, T[99,
quadratic convergence, Bl
isolated point, parameterization,
isolated vertex, parametric surface, B3 [T, T3]
isolating interval, Bl B4 B3, b1, perimetric, [IITHTA0, 50 [GE,
refinement, point location, [[6, BT, L33, 38 [53),

Point_2, 82
kernel, PointOnBoundary Traits, [30

Index

275

pole,
Poly_arc_2,
polygon,
polynomial, P2, BTl B4
inexact coefficients, B4
multivariate,
primitive,
primitive part,
principal Sturm-Habicht coefficient,
principal subresultant coefficient, 25,
projected intersection, @4
projected silhouette, [B4],
projection, @4l [IRY],
Projection_2,

Quadrical_kernel_via_analysis_2,
quadric, b2, 1), B2 B4, B9, (4, [T3), 61,
elliptic,
lower part, 4],
upper part, @4,
Quadric_3,
Quadric_3_traits, [22(
QUADRIX,
quartic,

rational function, B3]
rational surface, @3] 72,
ray,
real RAM,
real root isolation, B3l B4 £7 BY, B0,
reductum, 22 Bo],
reference counting, BTl
refinement, B

abstract,

concrete,
regular, BY,
regular complex, [[1]
regularity,
reordering, [[4]
resultant,
robot motion planning,
root, 23

multiple,

simple,
Rotated_algebraic_curve_kernel_ 2,
Rs, Y,

sampling,

segment,
separation bound, 29,
shear, B0, BT, B3], B2 B3] 76, T92
back-shear, ET],
factor, EHl
shearing of a curve, EI]
sheet,
sheet number, B3], 204 P23,
sign, b1
silhouette,
silhouette curve, B4l
simple, B0, BTl
simplex,
simplicial complex,
singularity, B9,
software design, B
space curve,
specialization property, BT,
square-free, 23, P41 B3, BA, Bol, EOHEA, B,
square-free factorization, 23, B4, B3 BY B2,
b7 P03, P03,
status line,
status-line, bS], [[2, 0TH, [TY]
STL,
stratification, XY,
stratum,
Sturm sequence, B3]
Sturm-Habicht sequence, 21, 62
subresultant, 25,
sequence,
SuppoRT, BT
surface,
reference,
Surface_3, 08, P16l
SurfaceTraits 3, 210, 2200
sweep line, [RO [T6 T20, [23HT2H 32,
35, 053
sweep line algorithm,
SWEEPX,
Sylvester matrix,
Synaps, b9,

topology-traits class, [38), 39, [44HT46] [0,
(60, 63, =30,

TopologyTraits_2,[34]

torus,

traits, 17,

276 Index

tree-strategy, [31, (63
tube circle, 73]

UnboundedBoundary Traits, [[30,
up to constant factor,
upper envelope, [[01

vanishing set,

vertex, 61,

vertical line, BR, B2, @3, 238,
intersection,

visitor,

visualization, B9,

Voronoi diagram, @], [0S, 6Tl
Voronoi cell,

weakly z-monotone, [[]]
wrapping mode,

X_monotone_curve_2,
zr-extreme,
Xy_monotone_surface_3,
xy-functional,

Zariski, @]

Z_at_xy_isolator , 217

Z_cell,

z-fiber, [[O3HTTY],

Z_fiber,

zone, [76, R0, ’T), [0, (27, (32, (T35, (53, (R
algorithm,

z-pattern, [[33]

277

List of Algebraic Surfaces

This appendix gives the defining polynomials of the example surfaces analyzed in §6.6.2
which allows to rerun experiments or to play around with the surfaces.

steiner-roman
f=@+@%)- 22+ (1) -2)-y)- 2+ (%) - y?)

cayley-cubic
f=06Gy+6-2)22+6 v+ (=2) y+ (527 +(=2)-2)) 2+ ((G-2) - y* + 522 + (=2) -2))

dupin-cyclic
f =447279 - 2% + (894558 - y2 4 (894558 - 22 + (—1155200) - = + 1155200)) - 22 + (447279 - y* + (894558 - 22 +
(—1155200) - z-+(—1155200)) - y2+(447279 - *+(—1155200) - 234 (—1404800) - £2-+5120000 - x+(—2560000)))

tangle-cube
f=214(=5) 22+ (y" + (=5) -y* + (z + (=5) - 2% +10))

bohemian-dome
F= 2t 2y + (-2)) 22 4 (1) yt o (2027 + () 7 o+ (@)

chair f = 16-2% + (288-y2 4 (28822 + (—600))) - 22 + ((—1280) - y2 + (1280-22)) -z + (80 -y* + ((—96) -z? +
(—600)) - y% + (80 - z* + (—600) - 2 + 5125))

hunt
f=4-264(12-y2+(12-224+276)) - 22 + (12 - y* + (24 - 22+ (—528)) - 42 + (12 - x* + (—960) - 2 +4620)) - 22 +
(4-9y8 4+ (12 22 4 (=129)) -y* + (12 - 2* + (—=150) - 22 + 1380) - y2 + (4 - 2% + 87 - 2% + 84 - 2 + (—4900)))

star
£ =100-254(300 - y2 + (300 - £2 + (—300))) - 24 + (300 - y* + (600 - £2 + (—599)) - y2 + (300 - z* + (—599) - 2 +
300)) - 22 + (100 - y5 + (300 - 22 4 (—300)) - y* + (300 - * + (—599) - 22 + 300) - y? + (100 - % + (—300) - z* +
300 - 22 + (—100)))

spiky
f=204((=3) y*+(3-2%) - 2" +(3 -y +(21-22) - 4> +(3-21)) - 2%+ ((—1) -y +(3-2%) - g0 +((=3) - 2*) -y +
(%))

Cs

f=232-284(-64)-26440-2% 4 (—8) - 224+ (3298 4+ (—64) - y8 +40-y* + (—8) - y% + (32 - 28 + (—64) - 26 +
40 -2 4+ (=8) - 22 + 1))

278 List of Algebraic Surfaces

279

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbststdndig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen oder indirekt iibernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
dhnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbriicken,

Eric Berberich

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Our contributions
	Related work
	Outline

	Algebraic Foundations, Geometric Programming, Arrangements
	Algebraic foundations
	Implementing geometric algorithms
	The arithmetic and algebraic tool kit
	Arrangements

	Lower Envelopes of Quadrics
	Envelopes
	Quadrics
	EnvelopeTraits_3 concept and the model for quadrics
	Results
	Variants

	Two-Dimensional Arrangements on Surfaces
	Setting and related work
	Sweeping and zoning on a surface
	Extending the ArrangementTraits_2 concept
	Maintaining a Dcel on a surface
	The ArrTopologyTraits_2 concept
	Examples
	Conclusion and outlook

	Efficient Stratification of Algebraic Surfaces with Planar Arrangements
	Problem
	Operating algebraic surfaces
	Implementation in a framework
	Models for algebraic surfaces
	Applications
	Results
	Conclusion and outlook

	Bibliography
	Links
	Index
	List of Algebraic Surfaces

