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3Abstra
tWe dis
uss how to 
ompute and implement three geometri
 problems dealing with non-linear three-dimensional surfa
es. As a main tool we rely on planar subdivisions indu
edby algebrai
 
urves, developed in Cgal (Computational Geometry Algorithm Library).First, we a
hieve lower envelopes of quadri
s using Cgal's Envelope_3 pa
kage. Se
ond,we extend Cgal's Arrangement_2 pa
kage to support two-dimensional arrangements on aparametri
 referen
e surfa
e. Two main examples are dis
ussed: Arrangements indu
ed byalgebrai
 surfa
es on an ellipti
 quadri
 and on a ring Dupin 
y
lide. Third, we de
ompose aset of quadri
s or a set of algebrai
 surfa
es into 
ells using proje
tion. Our goal is to a
hievetopologi
al information for the surfa
es, while preserving their geometri
 properties. Wemaintain a spe
ial two-dimensional arrangement; the lifting to the third dimension bene�tsfrom the re
ently presented bitstream Des
artes method. The obtained 
ell de
ompositionsupports a set of other geometri
 appli
ations on surfa
es.Our implementations follow the geometri
 programming paradigm. That is, we split
ombinatorial tasks from geometri
 operations by generi
 programming te
hniques. It isalso ensured that ea
h geometri
 predi
ate returns the mathemati
ally 
orre
t result, evenif it internally exploits approximative methods to speed up the 
omputation.The thesis is written in English.
ZusammenfassungWir bespre
hen die Bere
hnung und Implementierung dreier Probleme aus der algorith-mis
hen Geometrie, deren Eingabe aus gekrümmten Ober�ä
hen besteht. Als Werkzeugbenutzen wir in Cgal (Computational Geometry Algorithm Library) entwi
kelte Zerle-gungen der Ebene dur
h algebrais
he Kurven.Zunä
hst bere
hnen wir die untere Einhüllende einer Menge von Quadriken. Dana
herweitern wir Cgals Arrangement_2Paket, so dass zweidimensionale Zerlegungen auf para-meterisierbaren Ober�ä
hen bere
hnet werden können, und führen zwei konkrete Beispieleaus: Zerlegungen induziert dur
h algebrais
he Ober�ä
hen auf einer Quadrik und auf ei-nem ringförmigen Zykliden na
h Dupin. Zum Abs
hluss unterteilen wir eine Menge vonQuadriken bzw. algebrais
hen Ober�ä
hen in disjunkte Untermannigfaltigkeiten mit Hilfeeiner Projektion. Die Hebung erfolgt mit einem kürzli
h vorgestellten approximativen Ver-fahren zur Nullstellenisolation (bitstream Des
artes). Ingesamt erhalten wir geometris
heEigens
haften der Eingabe und erfahren mehr über deren topologis
he Zusammensetzung.Die kombinatoris
he Ausgabe hilft bei der Bere
hnung anderer geometris
her Problemeauf den Ober�ä
hen.Unsere Implementierungen trennen kombinatoris
he Aufgaben von geometris
hen dur
hAnwenden von generis
hen Programmierte
hniken. Wir stellen auÿerdem si
her, dass Prä-dikate stets das mathematis
h korrekte Ergebnis ausgeben, au
h wenn sie intern mit ap-proximativen Methoden re
hnen.Die Arbeit ist in englis
her Spra
he verfasst.
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13The world is not linear.

1Introdu
tionGeometry is one of the oldest s
ien
es on earth. Several thousand years ago, people hadalready dis
overed prin
iples about lengths, angles, areas, and volumes. Progress in under-standing geometry was mainly driven by pra
ti
al needs required in some 
rafts: surveyingthe earth to 
reate maps (e. g., to demar
ate ownership), astronomy, and, of 
ourse, 
on-stru
tions of buildings and other infrastru
ture. More generally, geometry1 is a sub�eldof mathemati
s that deals with the shapes of obje
ts, their sizes and relative positions,and with the properties of spa
e. Eu
lid presented fundamental axioms of geometry in hisbooks. The �eld is also strongly 
oupled with numbers that represent geometri
 entities,su
h as lengths and areas, and also 
oordinate systems that were introdu
ed by Des
artes.Des
artes also observed the 
onne
tion between geometri
 obje
ts and their algebrai
 de-s
riptions. A
tually, the �eld of algebrai
 geometry, whi
h de�nes obje
ts by polynomialequations, is a large and important sub�eld on its own. In parti
ular, its low-dimensionalvariant for real spa
es are 
riti
al for many re
ent appli
ations in the world of surveying,motion planning, and 
onstru
tion. In these latter areas, the fo
us is on 
urved obje
ts,that is, obje
ts de�ned by non-linear equations, su
h as 
ir
les, spheres, 
ones, tori, andmany others. Even the earth itself is an ellipsoid.2 Dealing with su
h 
urved obje
ts isoften not solely for artisti
 purpose. In 
ontrast, 
urved obje
ts are essential for spe
i�
design goals. For instan
e, 
ar and plane manufa
turers try to redu
e the air drag 
oef-�
ient that saves fuel, or loudspeakers have a 
urved 
hassis to avoid undesired a
ousti
re�e
tions. Fields like 
omputer-aided geometri
 design (CAGD), roboti
s, or mole
ularbiology 
an model their problems with algebrai
 equations, whi
h provide a

urate te
h-niques. Indeed, a

ura
y is a 
entral goal in geometry as a slight displa
ement of an obje
tmay result in a 
ompletely di�erent 
ombinatorial relation among the geometri
 shapes.While the movement of a geometri
 obje
t may still be 
ontinuous, that is, it 
an be per-formed without jumps, the alignment of the obje
t with respe
t to another one might be1Based on Greek words geo for earth and metria for measurement.2A
tually, the earth is a geoid whose shape is dependent on the lo
al gravity. However, the ellipsoidalshape is the state-of-the-art te
hnique to model the surfa
e, for example, for geographi
 informationsystems.



14 Introdu
tionnon-
ontinuous. An example is the relative position of a point and an in�nite line in theplane; see Figure 1.1. While moving the point, it 
an be uniquely determined whether
Figure 1.1. Non-
ontinuous fun
tion for red point and blue (oriented) line: It is eitherto the left of the line, on it, or to its right.the point meets the line or on whi
h of the two sides of the line it resides. The point's
ontinuous movement is mapped to a three-valued status. Another example is illustratedin Figure 1.2. We see segments interse
ting at a 
ommon point. Noti
e that the pi
turealso visualizes their 
ombinatorial relation: It indu
es a graph whose nodes are endpointsof segments and their interse
tions. An edge is added between two nodes if they are 
on-ne
ted by a pie
e of an input segment. If we slightly move one of the segments, as, forinstan
e, in Figure 1.2 (b), the graph 
hanges dramati
ally:Figure 1.2. Geometry indu
es 
ombinatori
s
(a) Three segments interse
t in asingle point. The indu
ed graphhas 7 nodes and 6 edges. (b) A slight 
hange in the geome-try 
an have mu
h impa
t on thestru
ture of the graph: It now has9 nodes and 9 edges.The number of nodes in
reases, and a non-empty bounded area surrounded and de-�ned by segments (shaded) appears. Note that the existen
e of this area 
an also bemodelled as a non-
ontinuous fun
tion in terms of the position of the segments. Thus, weemphasize that in our de�nition of geometry, dealing with geometri
 obje
ts also involvesanalyzing their 
ombinatorial stru
ture. The stru
ture is determined by evaluations of anumber of non-
ontinuous fun
tions � that we also 
all predi
ates. This, indeed, opensan algorithmi
 way to ta
kle geometri
 problems.While dealing with non-
ontinuous fun
tions poses no problem in theory, the �eld ofgeometri
 
omputing strives for an a
tual and robust algorithmi
 handling of geometri
problems on a 
omputer. Doing so e�
iently is also one of its important obje
tives. Ex-amples are to 
ompute 
onvex hulls and Voronoi diagrams, to re
onstru
t surfa
es from a



1.1. Our 
ontributions 15point 
loud, or to 
ompute the partitioning of a spa
e indu
ed by geometri
 obje
ts as inthe re
ent example. Usually, ea
h su
h task 
an be solved by a 
ombinatorial algorithmwhose exe
ution path is determined by geometri
 
onstru
tions and, as mentioned, eval-uations of non-
ontinuous fun
tions. A 
entral goal is to guarantee the termination andthe 
orre
tness of the output. This goal 
an be a
hieved if two prin
iples are ful�lled:First, the algorithmi
 design is guaranteed to deal with all possible 
ases. That is, it alsohandles so-
alled degenera
ies. Se
ond, the evaluations of non-
ontinuous fun
tions haveto 
ompute the 
orre
t values. If these goals 
annot be ful�lled, a geometri
 
omputation
an qui
kly 
rash, loop forever, or simply produ
e in
orre
t results. It typi
ally requiresextraordinary e�ort to meet the se
ond requirement on a 
omputer. The reason is that, asmentioned, numbers play a key role in geometry, but standard hardware that 
arries outarithmeti
 represents only �nite sets of (solely the rational) numbers.It is no se
ret that both problems have been su

essfully ta
kled, even in software,when 
omputing geometri
 problems with linear obje
ts, su
h as line segments. Startingin the 1990s, resear
hers have been providing more and more robust implementations forvarious geometri
 tasks. Main examples of libraries 
olle
ting su
h software are Leda,the Library of E�
ient Data stru
tures and Algorithms, and Cgal, the ComputationalGeometry Algorithms Library. It is ex
iting that their implementations are highly e�
ientand even 
ompetitive with non-robust software.3 However, there are also 
urved obje
ts,espe
ially the mentioned ones that are de�ned algebrai
ally. In three-dimensional spa
e,they are formed by the vanishing sets of uni-, bi-, and trivariate polynomials. Su
h be
amemore popular re
ently in several domains: Computer graphi
s, 
omputer aided geometri
design, motion planning, and roboti
s. One way to approa
h su
h issues is to approxi-mate ea
h obje
t with a 
orresponding set of linear obje
ts, for example, 
onne
ted linesegments for 
urves, or triangular meshes for surfa
es. But approximation implies draw-ba
ks. First, it is hard to ensure that the fun
tion evaluations on approximations re�e
tthe exa
t version and thus subsequent 
omputations a
tually output the 
orre
t answers.Se
ond, the number of linear obje
ts required to rea
h this stage might be very large, ifpossible at all. This may lead to an ine�
ient approa
h. On the other hand, it mightbe advantageous to dire
tly deal with 
urved obje
ts, that is, non-linear algebrai
 ones� although this obje
tive is highly ambitious. Exploiting generi
 and symboli
 
omputeralgebra systems seems to be the alternative. Cylindri
al algebrai
 de
omposition (
ad) isperhaps the most famous example. Unfortunately, su
h systems usually have extremelylong running times. However, in re
ent years, 
omputational geometers have developedrobust and e�
ient software for 
urved obje
ts, too. This work fo
usses on geometri
 andtopologi
al properties. The key to su

ess is to abstra
t 
ombinatorial tasks from simplepredi
ates, and to repla
e their 
ostly symboli
 evaluations with approximative but 
erti-�ed 
omputations as mu
h as possible. But up to now, most work of that kind has beenrestri
ted to 
urves embedded in the plane.1.1. Our 
ontributionsThe main 
ontents of this thesis are exa
tly 
ut from the same 
loth. We aim for robust ande�
ient software for geometri
 problems, but in �2.5 dimensions�. The fra
tion indi
ates,3If the non-robust version 
omputes �by a

ident� the 
orre
t result�in other 
ases, a 
omparison isnot meaningful.
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tionthat the input is usually a set of surfa
es in three-dimensional spa
e, but either the outputis two-dimensional, or we redu
e the problem to a two-dimensional one in order to 
omputethe desired three-dimensional output. In parti
ular, we deal with the following 
hallenges.Ea
h is a geometri
 problem whose input 
onsists of surfa
es in R3:(a) Constru
t lower envelopes of quadri
s(b) Constru
t and maintain arrangements on two-dimensional parametri
 surfa
es(
) Stratify algebrai
 surfa
es using planar arrangementsFigure 1.3. Examples of our 
ontributions
(a) Lower envelopeof three quadri
s (b) Arrangement on atorus indu
ed by tenquadri
s (
) De
ompose set ofsurfa
es into �nitelymany lifted 
ells (and
ompute adja
en
ies)taken from presentation of [BKS08℄Ea
h of the main 
hapters is dedi
ated to one 
hallenge. It turns out that the 
on-stru
tion of two-dimensional arrangements is a fundamental and essential tool for ea
h.For this purpose, we rely on Cgal's matured Arrangement_2 pa
kage developed by DanHalperin's group at Tel-Aviv University with main 
ontributions by Ron Wein and E�Fogel. The problems we dis
uss mainly utilize this pa
kage, while (b) des
ribes its newgeneralization that we 
ompleted in 
ollaboration with 
olleagues at Tel-Aviv University.For ea
h 
hallenge, we show its relation to two-dimensional arrangements, and we alsoidentify whi
h problem spe
i�
 adaptations are required.Computing lower envelopes of surfa
es also exploits Cgal's generi
 Envelope_3 pa
k-age. In a remarkable amount of engineering work, Mi
hal Meyerovit
h from Tel-AvivUniversity extended planar arrangements to provide this enhan
ement. In order to sup-port a 
ertain family of surfa
es, the implementation expe
ts a 
ertain set of geometri
types, predi
ates, and 
onstru
tions. In 
ollaboration with Mi
hal, we provide a properand runtime-e�
ient set for the 
ase of quadri
s.For the other two 
hallenges we develop new 
ombinatorial frameworks that de
ouplegeneri
 issues from surfa
e-spe
i�
 tasks. We also instantiate them with 
on
rete imple-mentations. That is, we learn how to 
ompute arrangements on an ellipti
 quadri
 or aring Dupin 
y
lide (a generalization of a torus), both indu
ed by algebrai
 surfa
es in-terse
ting the referen
e surfa
e. The latter is joint work with Mi
hael Kerber from theMax-Plan
k-Institut für Informatik. For the strati�
ation of surfa
es, we provide the re-quired geometri
 operations for quadri
s and for algebrai
 surfa
es of any degree. Theseresults are based on joint work with Mi
hael Kerber and Mi
hael Sagralo�.



1.2. Related work 17Besides two-dimensional arrangements, our three main obje
tives fundamentally relyon a two-dimensional algebrai
 
urve kernel that provides exa
t analysis of planar algebrai

urves and pairs of su
h 
urves. An important instan
e of su
h a kernel has mainly beendeveloped and is maintained by Mi
hael Kerber. As our various implementations mostlyperform 
ombinatori
s on su
h planar analyses, it is no surprise that the �nal performan
emeasures we observe strongly depend on the e�
ien
y of the supporting two-dimensionalalgebrai
 kernel.We remark that 
hallenge (b) and (
) 
onstitute major building blo
ks towards three-dimensional arrangements of algebrai
 surfa
es, or at least possibilities to support them.While we de
ompose the input into zero-, one-, and two-dimensional 
ells, we are not ableyet to 
ombine them into a 
oherent data stru
ture that 
ombinatorially represents theindu
ed partitioning of the spa
e, in
luding (maximal) 
onne
ted three-dimensional 
ells.The obtained a

urate topologi
al and geometri
 information of algebrai
 obje
ts is 
ru
ialfor other interesting utilizations, su
h as 
omputing substru
tures, good visualizations, andfor meaningful approximations by simpler obje
ts (as triangles or splines).Finally, it should be mentioned, that our a
hieved results mat
h goals re
orded in 2004as part of a strategy report of the Exa
us proje
t [Exa04℄. This proje
t started in 2001at the Max-Plan
k-Institut für Informatik in Saarbrü
ken, aiming for robust, e�
ient, and
omplete software for non-linear 
urves and surfa
es. Main parts of our software are now
ontained in Cgal, as Exa
us is absorbed in Cgal.1.2. Related workImplementing robust and e�
ient algorithms for non-linear problems in 
omputationalgeometry has re
eived a lot of attention in re
ent years, espe
ially for algebrai
ally de�nedobje
ts. A fundamental problem is the (real) root isolation of a univariate polynomialthat is often a key substep for more sophisti
ated algorithms. Several te
hniques exist,ea
h having advantages and disadvantages. Real root solving using 
ontinued fra
tionshas been 
onsidered in [TE08℄. A method relying on Des
artes' rule of signs with optimalmemory 
onsumption and using multipre
ision interval arithmeti
 is presented in [RZ03℄.Its adaptation into a Cgal-like interfa
e is shown in [LPT08℄. Completely implemented inCgal are two real root solvers, both based on Des
artes's rule of sign [HL07℄. While onedeals with an exa
t representation of the 
oe�
ients, the other interfa
es them as possiblyin�nite bitstreams. This allows one to isolate real roots of polynomials whose 
oe�
ientsare algebrai
 or even trans
endental [EKK+05℄. A 
omparison of di�erent approa
hes is
ondu
ted in [EHK+08℄.In two dimensions, the prominent example is the exa
t 
omputation of arrangement in-du
ed by 
urved obje
ts. A key 
ontribution in terms of software is Cgal's Arrangement_2pa
kage developed by Dan Halperin's group at Tel-Aviv University [WFZH07a℄. Besidesbasi
 linear obje
ts 
ontained in the pa
kage and Cgal's kernels, there exists support forvarious families of 
urves (and ar
s of them): Pion and Teillaud give a 
ir
ular kernel thatenables the 
omputation of arrangements of 
ir
les and line segments [PT07℄. The samegoal is aimed at by work of Wein and Zukerman [WZ06℄. Wein also presented how to 
om-pute arrangements of 
oni
s [Wei02℄. In 
ooperation with Hanniel he developed an exa
timplementation that allows to 
ompute arrangements of Bézier 
urves [HW07℄. There isalso a joint initiative to develop an �open 
urved kernel� [EKP+04℄.
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tionIn parallel, the members of the Exa
us proje
t also derived robust and e�
ient algo-rithms (as software) to 
ompute arrangements of non-linear 
urves and the 
orrespondingar
s of these 
urves. Berberi
h et al. developed the ConiX library. It allows one to 
onsider(ar
s of) 
oni
 
urves and polygons bordered by su
h 
urves [BEH+02℄. Besides proper sup-port for Cgal's Arrangement_2 pa
kage, it has been shown how to extend Leda's sweepline algorithm, whi
h originally dealt only with line segments, to 
urved input. Later,Eigenwillig et al. extended the set with 
ubi
 
urves in the CubiX library [EKSW06℄. Re-
ently, Kerber et al. have been able to robustly implement the analyses of algebrai
 
urvesof any degree [EKW07℄, [EK08a℄, whi
h allows to 
ompute arrangements of them using aframework that interfa
es the analyses into geometri
 predi
ates and 
onstru
tions [BE08℄.The Arrangement_2 pa
kage itself is augmented with various interesting extensions, su
has observers that get noti�ed about stru
tural 
hanges of an arrangement, the possibility tooverlay two arrangements, or various point lo
ation strategies; see [WFZH07b℄. In addition,it is possible to 
ompute lower envelopes of them [Wei07a℄ or to perform regularized booleanset operations [FWZH07℄. More details on planar arrangements appear in �2.4. Theyare also utilized in Cgal's Envelope_3 pa
kage by Meyerovit
h that allows to 
ompute(lower) envelopes of surfa
es de�ned in three-dimensional spa
e; see [Mey06a℄, [Mey06b℄,and [MWZ07℄. Her implementation applies a randomized divide-and-
onquer-strategy andmakes use of (dis)
ontinuity information of the surfa
es and their interse
tions. Note thatthe problem is two-and-a-half-dimensional: The input 
onsists of obje
ts in R3, while theoutput de
omposes a two-dimensional spa
e.When in
reasing the dimension from two to three, we are also aware of related results.First, we mention Esolid, a boundary evaluation system by Keyser et al. [KCF+04℄.It 
an deal with low-degree 
urved solids (su
h as quadri
s). However, it requires thatsolids be in general position. Namely, it is not able to handle all degenera
ies. Addi-tionally, there exist three main spe
ialized approa
hes for quadri
s. The �rst sweeps aplane through the s
ene of quadri
s, maintaining a pseudo-trapezoidal de
omposition onthe plane. This approa
h is due to Mourrain et al. [MTT05℄; however, an implementationis missing. The se
ond te
hnique uses a parameterization of the interse
tion 
urves byDupont et al. [DLLP08a, DLLP08b, DLLP08
℄, whi
h is based on Levin's result [Lev79℄.It has been used to su

essfully 
onstru
t the adja
en
y graph of quadri
s [DHPS07℄. Thethird approa
h by Berberi
h et al. [BHK+05℄ 
omputes for a given referen
e quadri
 twoplanar arrangements, one for its lower part and one for its upper part. In 
ombination,these arrangements en
ode the arrangement that is indu
ed by other quadri
s interse
tingthe referen
e surfa
e. While these approa
hes do not fully 
ompute a three-dimensionalarrangement, Cgal provides the Nef_3 pa
kage whi
h is a 
omplete, robust, and e�
ientimplementation for three-dimensional Nef-Polyhedra [HK07b℄, [HKM07℄. A d-dimensionalNef-polyhedron is a point set P ⊂ Rd generated from a �nite number of open halfspa
es byset 
omplement and set interse
tion operations [Nef78℄. Union and (symmetri
) di�eren
e
an be redu
ed to interse
tion and 
omplement. The topologi
al operations boundary, in-terior, exterior, 
losure, and regularization 
an also be modelled with Nef-polyhedra. Thepa
kage is restri
ted to linear features.This 
ompiled list of results 
omprises general results obtained in the 
omputationalgeometry's subarea of robust realizations for (non-linear) geometri
 problems. Further re-sults spe
i�
 to one of our three problems are postponed to the individual related 
hapters.There, we �rst introdu
e the problems themselves in more details.



1.3. Outline 191.3. OutlineBut �rst, in Chapter 2, we give a 
omprehensive review of 
on
epts and tools requiredthroughout this thesis. This in
ludes an introdu
tion to algebrai
 foundations, a guide forimplementing robust geometri
 algorithms, the presentation of available arithmeti
 andalgebrai
 tools, and �nally a detailed dis
ussion of planar arrangements, as they are the
onne
ting entity of the main 
hapters.Chapter 3 starts with a short introdu
tion to (lower) envelopes and also remembershow to robustly 
ompute interse
tion 
urves indu
ed on a quadri
. In its main se
tion wedis
uss how to obtain required geometri
 types and predi
ates in order to 
ompute lowerenvelopes of quadri
s. The 
hapter 
loses with experimental results and some variants.Thereafter, in Chapter 4, we present an extension to Cgal's Arrangement_2 pa
kagethat allows to 
onstru
t and maintain arrangements on two-dimensional orientable para-metri
 surfa
es. The 
hapter is organized as follows. We �rst introdu
e the setting followedby a dis
ussion of existing work. We then show in individual steps how we augment al-gorithms and implementations for planar arrangements to �nally support arrangementson parametri
 surfa
es. To do so, we abstra
t surfa
e- and 
urve-spe
i�
 geometri
 andtopologi
al tasks from generi
 fun
tionality. As a �rst step we show how to obtain aunique order of events on the surfa
e, even if some points have multiple pre-images inthe parameter spa
e of the surfa
e. As se
ond step, we show how a new 
olle
tion ofsimple surfa
e-spe
i�
 fun
tions 
an be used to 
onsistently 
onstru
t the D
el (double-
onne
ted-edge-list) that represents the indu
ed arrangement. At the end of the 
hapterwe des
ribe two example surfa
es in detail. We 
onsider arrangements on ellipti
 quadri
sindu
ed by other quadri
s, and arrangements on ring Dupin 
y
lides (
ontaining the torusas spe
ial 
ase) that are indu
ed by the interse
tion with algebrai
 surfa
es of arbitrarydegree. We show that the geometri
 operations 
an be established by mostly 
ombinatorialre
ombinations of operations a
tually designed for algebrai
 plane 
urves. We 
on
ludethe 
hapter with an outlook for future dire
tions.In Chapter 5 we show how to stratify a set of algebrai
 surfa
es. We �rst abstra
tlyidentify required tasks, and introdu
e a de
omposition of the given surfa
es into 
ells.We then show that algebrai
 surfa
es serve these needs. Our a
tual implementation issplit into two parts. The 
ombinatori
s are handled by a framework that de�nes a set oftasks demanded by surfa
es. We are able to implement these tasks for algebrai
 surfa
esof arbitrary degree, and a spe
ialized version for quadri
s that exploits their low degree.We �nally show utilizations that 
an be implemented in terms of the a
hieved output.Results of experiments are reported before we 
on
lude the 
hapter with dire
tions forfuture progress and resear
h.
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2Algebrai
 FoundationsGeometri
 ProgrammingArrangementsThe main parts of this thesis 
over the area of 
urved geometry, that is, it deals withobje
ts beyond segments, triangles, planes, even beyond spheres. The role of this 
hapteris to equip the reader with basi
 terminology and fundamental information on the obje
ts,basi
 tools and data stru
tures we deal with in later 
hapters, namely with and towardsarrangements of algebrai
 obje
ts in two and three dimensions.The geometri
 obje
ts we want to handle are de�ned algebrai
ally. They form a 
lassof non-linear input, while their parti
ularities pop up interesting 
ases to 
onsider. �2.1introdu
es very basi
 algebrai
 notation and main tools, like polynomials, sequen
es ofthem, their roots, and how to isolate real roots. In �2.1.4 we turn towards algebrai

urves, while �2.1.5 
overs algebrai
 surfa
es. Both are de�ned by multivariate polynomials.A general ansatz for dealing with arbitrary polynomials in any dimension (a
tually forquanti�er elimination) is the 
ylindri
al algebrai
 de
omposition that we present in �2.1.6.We 
lose the theoreti
al introdu
tion by some terms of topology in �2.1.7.Implementing geometri
 algorithms is a highly non-trivial task, espe
ially if the input
onsists of 
urved obje
ts. As we are not only interested in theoreti
al algorithm design,but also aim for a state-of-the-art implementation of our algorithms, �2.2 surveys o

urringdi�
ulties, introdu
es the geometri
 programming paradigm, and presents the geometri
libraries Cgal and Exa
us.The development of geometri
 software from s
rat
h is not ne
essary. A large numberof tools are available. �2.3 show
ases the kit we use. It 
onsists of number types, �lterte
hniques and algebrai
 kernels. Su
h kernels exist for the one- and the two-dimensional
ase. We also give details on the interfa
e of a spe
ial real root isolator.We 
lose the 
hapter with an introdu
tion to a basi
 but very fundamental stru
turein 
omputational geometry in its own se
tion, namely the arrangement. Arrangements
an be de�ned in any dimension, however in �2.4 we fo
us on the 
ases where d = 3 and



22 Algebrai
 Foundations, Geometri
 Programming, Arrangementsfor d = 2. Throughout the thesis, two-dimensional arrangements form the main build-ing blo
k. Thus, we shortly repeat how to 
onstru
t and maintain planar arrangements,followed by details of two-dimensional planar arrangements in Cgal. We �nally presentin �2.4.4 a generi
 
lass that queries a so-
alled two-dimensional algebrai
 kernel withanalysis (see �2.3.3) in order to provide basi
 geometri
 types and operations required forCgal's Arrangement_2 pa
kage. Depending on the algebrai
 kernel this triple enables auser to 
ompute arrangements of algebrai
 
urves.2.1. Algebrai
 foundationsA lot of geometri
 obje
ts, even the very simple ones, are usually (pie
ewise) de�ned by(semi-)algebrai
 sets. In parti
ular, all obje
ts we are dealing with in the main 
haptersare algebrai
ally de�ned. Thus, we sket
h 
entral algebrai
 
on
epts and 
onsiderationswhi
h should already be known to an experien
ed reader. Most of this 
ontent is basi
and previously appears in standard textbooks like [vdW71℄, [Lan02℄, [Bos06℄, [CLO97℄,[CLO05℄, or the 
omprehensive overview in [MPS+℄. This also implies that the tools weintrodu
e are well-known and proven, su
h that we are less 
omprehensive than any of thegiven referen
es. We refer to them for very basi
 
on
epts, generalizations of the resultsthat we state, and the proofs. In 
ontrast, we try to formulate the tools as algorithmi
allyas possible, as our ultimate goal is also to provide a working implementation. It is above allChapter 5 for whi
h we unreel some of the theory. The other 
hapters rely on 
ombinatorialinformation of algebrai
 
urves by properly querying analyses provided by algebrai
 kernels.2.1.1. PolynomialsThe key expressions in our 
ompiled list of algebrai
 
on
epts are polynomials.De�nition 2.1 (Polynomial). Let D be a fa
torial domain. An expression of the form
f =

n∑

i=0

ait
i ∈ D[t]is a polynomial over D with 
oe�
ients an 6= 0, an−1, . . . , a0 ∈ D. We may regard variable tas a formal symbol of indeterminate meaning. D[t] denotes the ring of polynomials with
oe�
ients in D.Properties of polynomials We start with very te
hni
al terms for a given polynomial f .The degree of f , denoted by deg(f) is the greatest non-vanishing power of t, whi
h is nas we have an 6= 0. If f ≡ 0, deg(f) = −∞. Another expression for the i-th 
oe�
ient aiis coef i(f). We 
all an the leading 
oe�
ient of f and denote it lcf(f) = coefn(f). With

f(k) :=
∑k

i=0 ait
i we denote the k-th redu
tum of f .With K we denote a �eld that 
ontains D. We usually refer to K = Q or K = C whi
his already algebrai
ally 
losed. We use the fra
tion �eld K = Q(u1, . . . , uk) if the problemsdepends on parameters u1, . . . , uk. Remember that D = Z (or D being a �eld) is fa
torial,that is, 0 6= r ∈ D 
an be de
omposed (up to order) into r = u · r1 · . . . · rℓ with u being aunit, ri ∈ D, and all irredu
ible in D. Following Gauss' theorem ([Bos06, �2.7℄), it holds

D[t] is also fa
torial, whi
h has several impli
ations.



2.1. Algebrai
 foundations 23First, for ai, aj ∈ K, the gcd(ai, aj) exists and is well-de�ned, and so for f, g ∈ K[t].The 
ontent of f is the gcd of the 
oe�
ients, that is, cont(f) = gcd(a1, . . . , an). We referto a primitive polynomial if cont(f) = 1, and to the primitive part of f for pp(f) := f
cont(f) .A polynomial g ∈ K[t] is a fa
tor of f if there exists a polynomial h ∈ K[t] with f = g ·h.Contrary, two polynomials f, g ∈ K[t] are 
alled 
oprime if gcd(f, g) is a 
onstant. We 
analso de�ne the fa
torization of f ∈ K[t] (deg(f) > 0) by f = u ·Πn

i=1fi with u = lcf(f)and fi being moni
 irredu
ible elements of K[t] with positive degree. We 
all f square-freeif all fi are distin
t. For a square-free f it holds that gcd(f, f ′) is a 
onstant. On the
ontrary, the square-free part f⋆ of f 
an be obtained by f⋆ = f
gcd(f,f ′) . Alternatively, one
an also 
ompute a �ner granulation of f into square-free fa
tors f̂j. We group the fi bytheir number of o

urren
es whi
h results in a square-free fa
torization f = u ·Πk

j=1f̂
j
j ,that is, f̂j ∈ K[t] 
ontains all fi that appear j times in the fa
torization of f . It is obviousthat k ≤ n. Yun's square-free fa
torization algorithm 
leverly 
ombines iterated gcds to
ompute su
h f̂j; see [GCL92, Algorithm 8.2℄ and [Yun76℄ for details. For our purposesthe weaker 
on
ept of the square-free fa
torization ful�lls the needs.Roots of polynomialsDe�nition 2.2 (Root). Let f(t) ∈ D[t] be a polynomial. We 
all an element α with

f(α) = 0 a root of f .Usually, the roots of f are not ne
essarily elements of D. We mostly refer to the realroots of a polynomial. Swit
hing to the algebrai
 
losure C of D allows to write f , with
deg(f) = n, as a produ
t of linear fa
tors

f(t) = u ·Πn
i=1(t− αi)with u being the leading 
oe�
ient of f and αi being the not ne
essarily distin
t roots of

f over C, whose number is n.De�nition 2.3 (Multipli
ity). Let f(t) ∈ D[t] be a polynomial with root α ∈ C. Thenumber of linear fa
tors (t− α) in f(t) de�nes the multipli
ity m of α as root of f . Su
ha root is 
alled simple if m = 1, and multiple if m > 1. We also refer to the m-fold root
α of f .It 
an be shown, that a square-free polynomial over D only 
ontains simple roots, asotherwise, some fa
tor appears twi
e and thus, ea
h root of su
h a 
omponent must be amultiple of the polynomial.Multivariate polynomials A polynomial ring D[t] 
an serve as a domain again. This strat-egy yields to multivariate polynomials whose ring is given by D[t1] . . . [td] = D[t1, . . . , td].The order of adjun
tion 
an be 
hosen freely. Two views on a multivariate polynomial fare 
ommon.Hierar
hi
al: f is univariate in a 
hosen outermost variable, say td, that is, f ∈ D[td]with D = D[t1, . . . , td−1].Flat: f is expressed as a sum of monomials ai1,...,idt

i1
1 , . . . , tidd .
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 Programming, ArrangementsThe total degree degtotal(f) of f is the highest sum of exponents i1 + . . .+ id among allmonomials in the �at view. The value degti is equal to deg(f) assuming f being univariatein ti. A multivariate polynomial f ∈ D[t1, . . . , td] is ti-regular if it 
ontains a monomial ofthe form c · tdegtotal(f)
i with 0 6= c ∈ D, whi
h is equivalent to degtotal(f) = degti(f).In the hierar
hi
al view, we 
an de
ompose a multivariate f ∈ D[t1, . . . , td] into f =

conttd(f) ·pptd
(f), where conttd(f) ∈ D[t1, . . . , td−1] and pptd

(f) ∈ (D[t1, . . . , td−1])[td].We 
all a multivariate polynomial f square-free if conttd(f) and pptd(f), seen as univariatepolynomials in td, are square-free. Mind a possible re
ursion for conttd(f). f being square-free is equivalent to gcd(f, f ′) = c and also equivalent to: There is no non-trivial g ∈
D[t1, . . . , td] with g2|f . Computing a square-free fa
torization of f redu
es to 
ompute onefor conttd(f), one for pptd

(f), and to multiply fa
tors of same multipli
ity. The later stepis often omitted as conttd(f) has interesting properties with respe
t to the vanishing set of
f that we introdu
e in De�nition 2.4 and used in �2.1.4 (page 38 �) and �2.1.5 (page 42 �).For numbers α = (α1, . . . , αd) ∈ Kd we 
an evaluate f either in full whi
h resultsin a s
alar s ∈ K, or with a subve
tor of α, whi
h gives another polynomial over a ringdependent on the domain of the αi. A
tually, arbitrary evaluation is not expe
ted often,but the following set of homomorphisms is of interest. For a �xed k: D[t1, . . . , td] →
Kd−k. Let α(k) be a sequen
e (ve
tor) of k numbers (α1, . . . , αk) from a �eld K and
fα(k) := f(α1, . . . , αk, tk+1, . . . , td) ∈ K[tk+1, . . . , td], that is, evaluating the d-dimensionalpolynomial f with k ≤ d numbers αi results in a (d− k)-dimensional polynomial over K.We often have k = d− 1, whi
h eventually leads to a univariate polynomial ∈ K[td].De�nition 2.4 (Vanishing set). Let f(t1, . . . , td) ∈ D[t1, . . . , td] be a polynomial and K bea �eld. We 
all VK(f) := {α(d) ∈ Kd | fα(d) = f(α1, . . . , αd) = 0} the vanishing set of fover Kd.The following proposition is essential for us and also easy to verify.Proposition 2.5. Let f ∈ K[t1, . . . , td] with f = f1 · f2 and f1, f2 ∈ K[t1, . . . , td]. Then
VK(f) = VK(f1) ∪ VK(f2). Dire
t impli
ations are VK(f) = VK(c · f), with 0 6= c ∈ K,
VK(f) = VK(fk

1 f ℓ
2), with k, l ∈ N, and if f1|f , then VK(f1) ⊂ VK(f) (similar for f2).Our geometri
 appli
ations mainly strive for obje
ts de�ned by the vanishing sets of(simple) integral polynomials in dimensions 1, 2 and 3 over R. However, as D = Z the gcdand the square-free fa
torization are only de�nable up to 
onstant fa
tor. That is, it ispossible to 
ompute for f, g ∈ Z[t] a polynomial g = c · gcd(f, g), with c ∈ Z (and similarfor the other de
ompositions). The good news is, that, as stated in Proposition 2.5, su
ha 
onstant fa
tor does not 
hange the vanishing sets of the resulting polynomials in whi
hwe are mainly interested in subsequent parts; see �2.1.2 for real roots, �2.1.4 for algebrai

urves, and �2.1.5 for algebrai
 surfa
es.Polynomial sequen
es We next turn to more sophisti
ated algebrai
 tools, namely sub-resultant and Sturm-Habi
ht sequen
es. They are well-studied in algebrai
 geometry, su
hthat we omit to unreel the full theoreti
al 
onsiderations, and refer to textbooks dis
ussingthem in detail. We narrow their introdu
tion to mention their existen
e and give resultsrelevant for our further 
onsiderations.De�nition 2.6 (Sylvester matrix, subresultant and sequen
es). Given f =

∑n
i=0 ait

i ∈
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D[t] and g =

∑m
i=0 bit

i ∈ D[t] with n = deg(f) ≥ deg(g) = m > 0.
• For k ≤ m, the k-th Sylvester submatrix has dimension (m + n− 2k)× (m + n− k),build with (m− k) rows of 
oe�
ients of f and (n − k) rows of 
oe�
ients of g. Ithas the following form:

Sylk(f, g) =





an · · · · · · a0. . . . . .
an · · · · · · a0

bm · · · · · · b0. . . . . .
bm · · · · · · b0



These matri
es o

ur when asking for (non)-zero polynomials u, v with deg(u) <
m − k and deg(v) < n − k and ful�lling uf + vg = 0. It 
orresponds to the linearsystem of equations (u, v)Sylk(f, g) = 0, where u and v are identi�ed with their
oe�
ient ve
tor.

• For 0 ≤ k ≤ n, the k-th subresultant of f and g is de�ned as
Sresk(f, g) :=






∑k
i=0 Mk

i (f, g)ti k ≤ m− 1

g k = m

0 m + 1 ≤ k < 1

f k = nwhere Mk
i (f, g) is the determinant of the matrix build with the �rst n + m− 2k− 1and the (n + m− k − i)th 
olumn of Sylk(f, g).4

• The k-th prin
ipal subresultant 
oe�
ient, 0 ≤ k ≤ n, is given by
sresk(f, g) :=

{
coefk(Sresk(f, g)) 0 ≤ k < n

1 k = n

• The k-th 
oprin
ipal subresultant 
oe�
ient, 1 ≤ k ≤ n, is given by coresk(f, g) :=
coefk−1(Sresk(f, g)).

• The subresultant sequen
e of f and g is given by Sresn(f, g), . . . ,Sres0(f, g). Similarsequen
es exists of sres and cores.
• It holds Sres0(f, g) = sres0(f, g) =: Res(f, g), where Res(f, g) states the resultant of

f and g. If g = f ′, then we 
all Res(f, f ′) the dis
riminant of f .
• We also write Restd(f, g), whi
h espe
ially makes sense, if D itself is a polynomial ring,that is, we 
onsider f and g as univariate polynomials in some td, whose 
oe�
ients
an be themselves polynomials in other variables. Similar for Srestd,k, srestd,k, and

corestd,k.4This de�nition of the subresultant is di�erent from the standard literature (e. g., [BPR06℄). It ispresented in [Ker06℄.
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 Programming, ArrangementsWe next state without proofs results relevant for our work, where f and g are polyno-mials as in De�nition 2.6.Proposition 2.7. The resultant Res(f, g) ∈ K is zero if and only if f and g have a non-
onstant 
ommon fa
tor, that is, for h = gcd(f, g), it holds deg(h) > 0.If K = C, Res(f, g) = 0 holds if and only if f and g have a 
ommon 
omplex root.For details on this proposition we refer to [Ber04, Proposition 2.1.14℄. Observe, thatin any 
ase it holds Res(f, g) ∈ K. Thus, the 
omplexity of the problem has been re-du
ed with respe
t to dimensionality. On the other hand, Res(f, g) is an expression of
omplexity O(m ·n). In parti
ular, if Res(f, g) is a polynomial again: Consider, for exam-ple, Rest2(f, g) ∈ D[t1]. Then, it holds degt1(Rest2(f, g)) = n ·m (with n = degt2(f) and
m = degt2(g)).For the 
ase that f, g ∈ K[t1, . . . , td], elimination theory paves a way to 
ompute azero-dimensional solution for f = g = 0 by redu
tion of dimension. We �rst 
omputea partial solution α1, . . . , αd−1 whi
h is being extended in a se
ond step by all possi-ble full solutions α1, . . . , αd. It is obvious that the method should be applied re
ur-sively. The 
laim is, that the solutions to Restd(f, g) 
onstitute a set of partial solu-tions that 
an be extended. However, this is broken if for su
h a solution α1, . . . , αd−1,we have that lcftd(f)(α1, . . . , αd−1) = 0 and lcf td(g)(α1, . . . , αd−1) = 0. In this 
ase,
Restd(f, g)(α1, . . . , αd−1) vanishes ignoring the fa
t whether α1, . . . , αd−1 is a partial solu-tion or not. The reason is that the �rst 
olumn of the Sylvester matrix 
ompletely vanishes.However, Restd(f, g)(α1, . . . , αd−1) = 0 is a ne
essary 
ondition for α1, . . . , αd−1 being anextendible partial solution. The problem be
omes handy if f or g is td-regular.Proposition 2.8. Let K be a �eld, and let f, g ∈ K[t1, . . . , td] be non-zero polynomials.Furthermore, let f be td-regular. Then, for all (α1, . . . , αd−1) ∈ K

d−1 the two 
onditions1. Restd(f, g)((α1, . . . , αd−1)) = 02. There is αd ∈ K su
h that f(α1, . . . , αd)) = g((α1, . . . , αd)) = 0are equivalent; see also [Ber04, Proposition 2.1.13℄.Cylindri
al algebrai
 de
omposition (see �2.1.6 on page 44 f) mainly uses terms intro-du
ed in De�nition 2.6 and Propositions 2.7 and 2.8 to proje
t an algebrai
 problem toan instan
e of lower dimensionality. In �2.1.4 and �2.3.3 the te
hnique is used to analyzealgebrai
 
urves, and in Chapter 5 we also rely on dimension redu
tion to analyze algebrai
surfa
es.There is a relation of the greatest 
ommon divisor and the subresultant sequen
e.Proposition 2.9 ([BPR06, Prop. 10.14, Cor. 10.15℄).
• deg(gcd(f, g)) = min{k ∈ {0, . . . , n} | sresk(f, g) 6= 0}
• Sresk(f, g) ∼ gcd(f, g)(h1 ∼ h2 denotes that either h1 = c ·h2 or c ·h1 = h2, for h1 and h2 polynomials over some

D and c ∈ D.)One 
an even show, that the subresultant sequen
es 
ontains (up to asso
iates) allpolynomials o

urring during the Eu
lidean algorithm to 
ompute the gcd, but with less
omplexity of the 
oe�
ients [BPR06, � 8.2℄. Proposition 2.9 implies the following twoalgorithms on polynomials.
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 foundations 27Algorithm 2.1. Computing greatest 
ommon divisor with subresultantsInput: f, g ∈ K[t] as in De�nition 2.6Output: gcd(f, g) ∈ K[t]
• k ← 0
• While (sign(sresk(f, g)) = 0) Do k ← k + 1
• Return Sresk(f, g)Algorithm 2.2. Computing square-free part of a polynomial using subresultantsInput: f ∈ K[t] as in De�nition 2.6Output: f⋆ ∈ K[t] that 
ontains ea
h distin
t fa
tor of f on
e.
• Compute h = gcd(f, f ′) with Algorithm 2.1
• Return f/hThe subresultant is robust with respe
t to ring homomorphisms ϕ : D → D′ that aredegree-preserving for f and g. Then, ∀i : ϕ(Syli(f, g)) = Syli(ϕ(f), ϕ(g)), where ϕ(A)means to apply ϕ to ea
h entry of A (see, e. g., Algorithm 2.4). As the determinant is justa sum of produ
ts, we have ϕ(det(A)) = det(ϕ(A)), whi
h proves the following theorem(see also [Yap00, �4.4, Lemma 4.9℄).Theorem 2.10 (Spe
ialization property). Given a homomorphism of domains ϕ : D→ D′,with lcf(f), lcf(g) 6∈ ker(ϕ). Then, for 0 ≤ i ≤ n, ϕ(Sresi(f, g)) = Sresi(ϕ(f), ϕ(g)).There is a main appli
ation whi
h explains the name of the theorem. Think of D = D[t]for some basi
 domain D, that is, D has the parameter t. There is a simple homomorphismto D that spe
ializes t to some value α. Then, instead of Sresi(f |t=α, g|t=α), it is possibleto a

ess Sresi(f, g)|t=α. A
tually, the number of parameters is free, and a homomorphism
an spe
ialize all of them, or just a subset.In Algorithm 2.2 we set g = f ′. It is easy to see, that applying this idea in generalto the given sequen
es, allows to obtain interesting information on the multiple fa
tors ofa single polynomial f . The Sturm-Habi
ht sequen
e, that we introdu
e next, is anothersequen
e that derives even more information for su
h a f . A
tually, the sequen
e 
an alsobe de�ned for arbitrary g, from whi
h we abstain, as we are aiming to only introdu
e thetools relevant for subsequent 
hapters.De�nition 2.11 (Sturm-Habi
ht sequen
e [GVRLR℄). Given f =

∑n
i=0 ait

i ∈ K[t] with
n = deg(f), and δk := (−1)k(k+1)/2. For k ∈ {0, . . . , n}, the k-th Sturm-Habi
ht polyno-mial of f is de�ned as

StHan(f) := f

StHan−1(f) := f ′

StHak(f) := δn−k−1Sresk(f, f ′), k = 0, . . . , n− 2We de�ne sthak(f), the k-th prin
ipal Sturm-Habi
ht 
oe�
ient of f , as the 
oe�
ientof tk in StHak(f).In [BPR06℄ the Sturm-Habi
ht sequen
e is introdu
ed as signed subresultant sequen
e,whi
h re�e
ts that the Sturm-Habi
ht sequen
e basi
ally 
oin
ides with the subresultant
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e, but whose members are possibly multiplied by −1. This slight di�eren
e has noimpli
ation on the spe
ialization property. That is, a Sturm-Habi
ht (
oe�
ient) sequen
estill behaves well under spe
ialization. On the other side, the (possible) multipli
ationby −1 makes a di�eren
e, as Sturm-Habi
ht sequen
es allow to 
ompute the number mof distin
t real roots of f in a given interval [c, d] without a
tually a
tuating a real rootisolator (to be presented in �2.1.2). In fa
t, that se
tion des
ribes an isolator that de
isivelyrelies on this information. The theoreti
al result that allows the 
ompute m is stated witha full proof in [GVN02℄, while the version in [EKW07℄ is restri
ted to I = ]−∞,∞[.Instead of the theorem, we give an algorithm.Algorithm 2.3. Computing the number of distin
t real roots using Sturm-Habi
ht sequen
eInput: f ∈ R[t], with deg(f) = n > 0Output: The number m of distin
t real roots of f1. Compute the sequen
e S = s0, . . . , sn with si := sign(sthai(f)). Observe, that
sthai(f) ∈ R.2. m← 03. For ea
h subsequen
e S′ = (a, (0)0...k, b) of S with a 6= 0, b 6= 0 and k ≥ 0 Do
• If k even, then m← m + (−1)k/2sign(ab)4. Return mBesides the number of distin
t real roots, we are also interested in multiple roots.In that dire
tion, Proposition 2.9 states a fundamental result used in Algorithm 2.1 to
ompute an important information, namely the degree k of gcd(f, f ′). By the de�nitionsof StHai and sthai, it is easy to see, that Algorithm 2.1 still 
omputes the 
orre
t k, if

sresi is repla
ed by sthai and Sresi by StHai.Remark. If both m and k are desired, it is re
ommended to �rst 
ompute m with Algo-rithm 2.3 and then to reuse the sequen
e S = s0, . . . , sn in Algorithm 2.1 whi
h gives kas side-e�e
t: Namely, when sear
hing for the minimal k with sthak = 0. A 
lever 
om-bination of the two algorithms allows to obtain k with no additional 
osts on top of theexpenses of Algorithm 2.3.Computing gcd(f, f ′) in the se
ond part of modi�ed Algorithm 2.1 still needs StHak forthe given k, and 
omputing f⋆ needs the subsequent division in Algorithm 2.2. However,the 
ofa
tors of the Sturm-Habi
ht polynomials already 
ontain f⋆ [BPR06, Prop. 8.38℄.Proposition 2.12. For j < n, there exist polynomials uj, vj with deg(uj) ≤ n − j − 2,
deg(vj) ≤ n− j − 1 su
h that StHaj(f) = ujf + vjf

′.All 
ofa
tors uj and vj 
an be written as determinants of Sylvester-like matri
es. Thesquare-free part f⋆ of f is given by one of the vj's [BPR06, Prop. 10.14, Cor. 10.15℄.Lemma 2.13. If k = deg(gcd(f, f ′)) > 0, then f⋆ = vk−1.
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 foundations 29Algorithm 2.4. Computing square-free part of a polynomial using Sturm-Habi
ht sequen
eInput: f ∈ K[t] as in De�nition 2.6Output: f⋆ ∈ K[t] that 
ontains ea
h distin
t fa
tor of f on
e.
• k ← 0
• While (sthak(f, g) = 0) Do k ← k + 1
• Return vk−1 as stated in Lemma 2.13An algorithm to 
ompute a Sturm-Habi
ht sequen
e with 
ofa
tors is [BPR06, Alg.8.22℄. In addition, it is more e�
ient to prefer a polynomial remainder sequen
e [Loo82a℄than 
omputing the Sturm-Habi
ht sequen
e via determinantal expressions.Subresultant and Sturm-Habi
ht sequen
es in 
ombination with their spe
ializationproperty are key tools when analyzing algebrai
 obje
ts of higher degree. We present fur-ther basi
s on this in �2.1.2, while �2.1.4 introdu
es algebrai
 
urves and �2.1.4 algebrai
surfa
es. Chapter 5 presents how to analyze algebrai
 surfa
es in the spirit as previouslydone for algebrai
 
urves [EKW07℄,[EK08a℄. Both 
ases still require some exa
t 
omputa-tions, that is, laun
hing algorithms that we presented in this se
tion.2.1.2. Algebrai
 numbers and real root isolationDe�nition 2.14 ((Real) algebrai
 number). Let K be a �eld, and f(t) ∈ K[t]. We 
all anelement α with f(α) = 0, an algebrai
 number over K. It is 
alled real algebrai
 numberif α ∈ R. If f is irredu
ible over K (i. e., f 
annot be expressed in the form f = f1f2, with

f1 6= 1 and f2 6= 1), then we 
all f the minimal polynomial of α. The other roots α 6= α ofthe minimal polynomial are the 
onjugates of α. The degree of α is de�ned by the degreeof the minimal polynomial. If f is redu
ible, there always exists a minimal polynomialthat is a fa
tor of f , and de�nes the degree.In our geometri
 appli
ations, we fo
us on the 
ase K = R. For proofs, we sometimesalso have to refer to the 
omplex roots of a polynomial. An important property is, that theroots of polynomial f with algebrai
 numbers as 
oe�
ients are also algebrai
 numbers.In the remainder of this part we shortly dis
uss how to represent (real) algebrai
 numbers,how to 
ompare two of them, and how to isolate the real roots of a univariate polynomial.Representation, 
omparison, evaluationAn algebrai
 number 
an be expressed in form of an algebrai
 expression E formed by adire
ted a
y
li
 graph whose leaves are integers, and whose inner nodes de�ne operations ontheir 
hildren. Allowed operations are +, −, · , /, k
√, and ⋄. The expression ⋄(j,Ed, . . . , E0)identi�es the 1 ≤ j ≤ d root of the polynomial ∑d

i=0 val(Ei)t
i, where val(E) is the realvalue given by the expression E.5 Ea
h node knows an interval approximation of the exa
tvalue de�ned by its subgraph, whi
h 
an be re�ned by re
ursively approximating the valueswith higher pre
ision. An operation is applied by 
reating a new root node, 
onne
ting it tothe graph, and by 
omputing a �rst approximation. The 
omparison of two su
h numbersis redu
ed to the 
omputation of the sign of a di�eren
e. If the approximation interval ofthe di�eren
e does not 
ontain zero, the answer is simple. Otherwise, a separation bound5Note that ⋄ a
tually subsumes all other operations.
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 Programming, Arrangementsis 
omputed, that is, a value E with the property that val(E) 6= 0 ⇒ |val(E)| ≥ E. Thismeans, that an expression E is either zero, or has a minimal absolute value. Thus, the
orre
t sign is a
hieved by re�ning the approximation until the absolute values of both endsare smaller (or greater) than E, whi
h allows to de
ide the sign. The theory on separationbounds is wide-spreaded. We refer to [LY01℄ and [BFM+01℄ for further reading and to �3.3(page 97 �) where we utilize 
orresponding number types. For the next representation weneed a term.De�nition 2.15 (Isolating interval). Let f be a univariate polynomial with a root α ∈ R.A 
losed interval [a, b] ⊂ R 
ontaining α, but no other root of f , is 
alled an isolatinginterval for α with respe
t to f . Containing means that either a = α = b or a < α < b.This se
tion 
ontains a brief overview on algorithms that isolate all real roots of apolynomial, while for now, we state without proofs, that for ea
h real root, there existssu
h an isolating interval, whi
h even 
an be re�ned to arbitrary small length (if notalready degenerate) in a sequen
e of nested intervals. Su
h an interval is a key ingredientto represent a real algebrai
 number α over K; see De�nition 2.16. Usually, we have K = Z.Observe that su
h a number is also algebrai
 over Q. So, we restri
t to the integral 
asefor the following de�nition.De�nition 2.16 (Integral interval representation). Let α be a real algebrai
 number thatis a root of f ∈ Z[t] having an isolating interval I = [a, b]. We 
all α =̂(f ; I) an (integral)interval representation of α. The representation is simple, if α is a simple root of f .Note that the representation uniquely identi�es the root, though neither the polynomialnor the interval is unique. Arithmeti
 on this representation is not dire
tly supported, butalso not desired. Its main purpose is to represent, to re�ne, and to 
ompare real algebrai
numbers. De�nition 2.17 gives a more generi
 representation for a 
ertain set of algebrai
numbers over K = R. Some of our intended appli
ations require them.For the interval boundaries, one usually 
hooses a, b ∈ Q, as Q is dense in R. However,every set that is dense in R is possible. For a simple representation of α =̂(f ; [a, b]), wehave f(a)f(b) < 0. This dire
tly implies a bise
tion method to re�ne I: Namely, I isrepla
ed by Iℓ = [a, a+b
2 ] or Ir = [a+b

2 , b], depending on the sign of f(a+b
2 ). This strategyallows to re�ne an isolating interval with linear 
onvergen
e. An alternative with quadrati
behavior is due to Abbot [Abb06℄. Algorithm 2.5 gives a high-level des
ription of a methodto 
ompute the order of two su
h representations.Algorithm 2.5. Compare two simple interval representationsInput: α1 =̂(f1; I1); α2 =̂(f2; I2), both simpleOutput: Order of α1 and α2

• If I1 and I2 are disjoint, we return the order and are done.
• Compute I = I1 ∩ I2 = [a, b]
• Che
k if I is isolating for α1 and α2 by determine the signs of f1(a), f1(b) and

f2(a), f2(b). If not, we re�ne I1 and I2 until they are disjoint, whi
h gives the order.
• Otherwise, 
ompute g = gcd(f1, f2) and 
he
k whether g(a) and g(b) have di�erentsigns. If so, I is isolating for a 
ommon root of f1 and f2, whi
h gives α1 = α2.
• If not, re�ne I1 and I2 until they are disjoint, whi
h gives the order.
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 foundations 31There are subtleties in the re�nement and 
omparison that must be 
onsidered, forexample, an o

urring zero sign (in some fi(a) or fi(b)). However, we omitted them forsimpli
ity. A similar algorithm is used to 
ompute the sign of a polynomial at a giveninterval representation.Algorithm 2.6. Computing sign of a polynomial at simple interval representationInput: g ∈ Z[t], square-free; α =̂(f ; I), simple with f ∈ Z[t]Output: sign(g(α))
• Compute h = gcd(f, g) and 
he
k whether h(a) and h(b) have di�erent signs. If so,return 0.
• Compute J = [c, d] = h(I) with interval arithmeti
 (see �2.3.1 on page 53).
• If sign(c) = sign(d), return sign(c).
• Otherwise, re�ne I to I ′ and restart with the 
omputation of a new J .There are further dire
t representations of real algebrai
 numbers, like Thom's en
od-ing [BPR06℄. However, we do not go into the details. Usually, we make use of the isolatinginterval representation.Remember that the roots of a univariate polynomial with algebrai
 
oe�
ients arealgebrai
 again. One way to obtain su
h a polynomial is to evaluate a d-variate polynomialof rational 
oe�
ients with d − 1 algebrai
 numbers. For example, let α1, α2 be realalgebrai
 numbers, f ∈ Q[t1, t2], g ∈ Q[t1, t2, t3], then fα1(t2) := f(α1, t2) ∈ R[t2] and

gα1,α2(t3) := g(α1, α2, t3) ∈ R[t3] are su
h polynomials. We introdu
e a more generi
representation for su
h real algebrai
 numbers over R.De�nition 2.17 (Algebrai
 interval representation). Let d > 1 be some dimension, f ∈
Z[t1, . . . , td], primitive, and α(d−1) = (α1, . . . , αd−1) ∈ Rd−1, β ∈ R, where α1 is in intervalrepresentation, while αi with i > 1 is re
ursively de�ned with α(i−1). Remember that
fα(d−1)(td) := f(α1, . . . , αd−1, td) ∈ R[td].If fα(d−1)(β) = 0 and I = [a, b] ⊂ R is isolating for β, we 
all β =̂(f ;α(d−1); I) analgebrai
 interval representation (of dimension d) of β. Again, β is simple if it is a simpleroot of fα(d−1) .Additional remarks:
• αi with 1 < i < d is an algebrai
 interval representation of dimension i at α(i−1),namely αi =̂(fi;α

(i−1); Ii)
• We 
all the 
olle
tion of numbers α(d−1) a base point (of dimension (d−1)) and referto the polynomial of shape fα(d−1)(td) as a lifting polynomial at the base point α(d−1).We should mention that there are methods to 
onvert an algebrai
 interval represen-tation into an integral interval representation [Loo82a℄. Although this allows to dire
tlyapply Algorithms 2.5 and 2.6, we abstain for reasons of e�
ien
y to deploy this strategy.Instead, we pursue an indire
t approa
h in order to 
ompare two algebrai
 intervalrepresentations or to 
ompute the sign of a polynomial at an algebrai
 interval represen-tation. In fa
t, it turns out that the sign determination is key when re�ning isolatingintervals. Re
all that iterated re�nements of the isolating intervals su�
e to de
ide theorder of two non-equal numbers. Thus, before explaining how to de
ide equality for twoalgebrai
 interval representations, we �rst 
onsider how to re�ne the interval I of a given

β =̂(f ;α(d−1); I). Below, we present a methods to isolate the real roots of a square-free
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artes' rule of sign. It provide as by-produ
t a possibility to re�nesu
h intervals. The following is more dire
t, but also holds only if fα(d−1) is square-free: De-ploying the bise
tion approa
h in order to re�ne I redu
es to 
ompute three signs, namely
sign(fα(d−1)(r)), where r ∈ {a, a+b

2 , b}. By de�ning gr ∈ Z[t1, . . . , td−1] as the integralizedversion of f(t1, . . . , td−1, r) (mind that integralizing keeps roots and signs), the remainingproblem is to 
ompute sign(gr(α1, . . . , αd−1). The following algorithm is a re
ursive versionof Algorithm 2.6 exploiting the fa
t, that αi depends on α(i−1).Algorithm 2.7. Computing the sign of a polynomial at algebrai
 interval representationsInput: g ∈ Z[t1, . . . , td]; α(d) = (α1, . . . , αd), forming a sequen
e of algebrai
 intervalrepresentations where α1 =̂(f1; I1) and αi =̂(fi;α
(i−1); Ii) for 1 < i ≤ d. Observe that

fi ∈ Z[t1, . . . , ti], and Ii = [ai, bi] ⊂ ROutput: sign(g(α1, . . . , αd))
• Let f := fd. Compute h = gcd(fα(d−1) , gα(d−1)).
• Compute (re
ursively) the signs of h(ad) and h(bd). If they have di�erent signs,return 0.
• Compute J = [c, d] = h(Id) with interval arithmeti
 using all Ij , 1 ≤ j ≤ d.
• If sign(c) = sign(d), return sign(c).
• Otherwise, re�ne Id to I ′d and restart with the 
omputation of a new J .At two positions the re
ursion takes pla
e, namely when determining the signs of h(ad)and h(bd), and when re�ning Id to I ′d. In addition, the algorithm makes an assumptionthat we have not yet proposed a solution for. It assumes that gcd(fα(d−1) , gα(d−1)) 
an be
omputed. Theoreti
ally, using the standard Eu
lidean algorithm, this task does not pose aproblem. However, the demanded operations on su
h algebrai
 
oe�
ients of large degreeare simply infeasible, in parti
ular, for arbitrary polynomials. The solution we proposerelies on the fa
t, that both polynomials fα(d−1) and gα(d−1) are lifting polynomials at thesame base point α(d−1). Algorithm 2.8 enhan
es Algorithm 2.1 with the spe
ializationproperty to 
ompute gcd(fα(d−1) , gα(d−1)).Algorithm 2.8. Computing greatest 
ommon divisor with spe
ialized subresultantsInput: f, g ∈ Z[t1, . . . , td]; α(d−1) ∈ Rd−1Output: gcd(fα(d−1) , gα(d−1)) ∈ R[td]
• k ← 0
• While (sign(sresk(f, g)(α(d−1))) = 0) Do k ← k + 1
• Return Sresk(f, g)α(d−1) ∈ R[td]We �nally mention, that Algorithm 2.8 is also laun
hed when 
omputing the gcd in amodi�ed version of Algorithm 2.5 in order to de
ide whether α =̂(f ; γ; I), and β =̂(g; γ;J)are equal.6While De�nition 2.17 is generi
, we are restri
ted in this thesis to utilizations for di-mensions 2 and 3 only. However, we still need to know how to 
ompute the isolatingintervals for integral and algebrai
 interval approximations. The theory on real root iso-lation is dis
ussed next. Te
hni
al details on how to use algebrai
 interval representations6The input now 
onsists of two algebrai
 interval representations repla
ing the integral ones.
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 foundations 33of dimension 2 to represent y-
oordinates of algebrai
 
urves are later given in �2.3.3 and�2.3.4. Chapter 5 dis
usses how to advan
e those ideas by one dimension su
h that weare able to represent z-
oordinates for points on an algebrai
 surfa
es by algebrai
 intervalrepresentations of dimension 3.Real root isolationIsolating the real roots of a univariate polynomial of arbitrary degree is a well-studiedproblem in (
omputational) algebra. Although not at the heart of the thesis, its 
entral
ontributions rely on previous work in this �eld. In Chapter 5 we even fa
e real rootisolation 
on
retely, when 
omputing algebrai
 interval representations of dimension 3. Themethod that we rely on is the well-known Des
artes method [CA76℄; there are variantsfor inexa
t 
oe�
ients [EKK+05℄, and a modi�
ation of it [EKW07℄. The te
hnique is
omprehensively dis
ussed in [Eig08℄, to whi
h we also refer for its en
y
lopedi
 des
riptionof other root isolations, for example, numeri
al solvers, the method based on 
ontinuedfra
tions, and the subdivision s
heme using Sturm sequen
es, as well as all their variants.To dis
uss all of them lies beyond the s
ope of this thesis. Thus, we only extra
t importantinformation of the parts on the Des
artes method from [Eig08℄, that also 
ontains missingdetails in the presentation.Before getting deeper into it, we should mention that most approa
hes, as well asthe Des
artes method, require the input polynomial to be square-free. If not, we havetwo options. The �rst 
onsists of 
omputing f 's square-free part f⋆ either using f⋆ =
f

gcd(f,f ′) or by deploying subresultants (as in Algorithm 2.2 or Algorithm 2.4) followed bya subsequent restart. As se
ond possibility, we square-free fa
torize, and apply the realroot isolator to ea
h of the fa
tors. In that approa
h, a subsequent sorting of the roots isoften expe
ted, whi
h requires 
omparisons. On the other hand, later 
omputations maybene�t from the fa
t that de�ning polynomials are of smaller degree. Note that we do not
ompute the minimal polynomial for an interval representation. However, it is possible tointera
tively repla
e the de�ning polynomial by a simpler one, namely in the 
ase that the
gcd in Algorithm 2.5 is non-trivial.The basi
 idea of the Des
artes methods is to 
onsider initially an interval that 
ontainsall roots and to repeatedly subdivide it until we are left with a situation where ea
h intervalis guaranteed to 
ontain either no or exa
tly one root.Theorem 2.18 (Des
artes' rule of signs). Let f =

∑n
i=0 aix

i and V (f) be the number ofsign 
hanges in (an, . . . , a0) (ignoring ai = 0). Let α1, . . . , αr be the positive real roots of
f with multipli
ities m1, . . . ,mr. Let M+ =

∑r
j=0 mj .Then V (f)−M+ is non-negative and even.For a proof we refer to [BPR06℄. Using a Möbius transformation Des
artes' rule ofsigns also gives a bound on the number of real roots of the polynomial f within an interval

I. We denote this bound by V (f ; I). More details appear in [RZ03℄; a variant using theBernstein basis is presented in [HL93℄. This basis has advantages with respe
t to splittingintervals. This splitting is essential in the following Algorithm 2.9 for real root isolation.
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 Programming, ArrangementsAlgorithm 2.9. Real root isolation with bound on number of rootsInput: f ∈ Z[t], square-freeOutput: list of disjoint intervals, with as many real roots of f than intervals, ea
h
ontaining exa
tly one real root of f
• Compute I0 
ontaining all real roots, and initialize a 
ontainer Q with I0

• While Q is not empty,� Pop an interval I from Q, 
ompute V (f ; I).� If V (f ; I) > 1, subdivide I into Ileft and Iright and add them to Q.� If V (f ; I) = 1, return I.� If V (f ; I) = 0, remove I from QRemarks (on Algorithm 2.9).
• The algorithm works with any subroutine that 
orre
tly 
omputes V (f ; I). UsingDes
artes' Rule of Sign is our preferred method.
• Computing a good I0 is a problem on its own. Several bounds are known and werefer to [Eig08, �2.4℄ for a 
olle
tion of some.
• The algorithm simpli�es, as it does not 
he
k whether the boundaries of intervalsare roots of f . However, for this introdu
tion, we 
an assume, that no su
h rootexists. Algorithmi
ally, it 
an be handled by either expli
itly 
he
king whether theboundaries are roots. There also exists te
hniques, like random perturbations of thepolynomial's 
oe�
ients, that still ensure the 
orre
tness of the 
omputed isolatingintervals for the original real roots.
• The algorithmi
 des
ription misses to give a strategy on how elements of Q arepopped, whi
h a
tually does not play a role for the e�e
tivity of the approa
h; butmaybe a�e
ts the e�
ien
y.More detailed, we 
an see Q as a subdivision tree. If naively traversed with a depth-�rst sear
h strategy, its number of nodes (also measured in depth of the tree) 
anex
eed a value that is linear bounded by deg(f). The situation slightly improvesby �rstly performing the Des
artes test on a subdivided interval I ′, and make it a
hild of the tree (�put it into Q�) only if V (f ; I ′) > 1. In 
ontrast, a breadth-�rstsear
h ensures that the number of nodes in ea
h depth of the tree is linear boundedby deg(f). Breadth-�rst sear
h is 
ru
ial if a depth-dependent 
ounting argumenton the V (f ; I) be
omes another 
riterion. The m-k-variant that we present below
ontains su
h a 
riterion.Polynomials with inexa
t 
oe�
ients We require so far that the 
oe�
ients of f arefrom a subring R ⊂ R whi
h 
an be handled exa
tly, for example the rational numbers.Thus, we refer to this approa
h as the exa
t Des
artes method (EDM). The expe
tation on
oe�
ients to be given exa
t 
an be relaxed in some sense: The simple roots of a (square-free) polynomial 
ontinuously depend on the polynomial's 
oe�
ients. When perturbing

f 's 
oe�
ients by some (small) ε, an impli
ation is: If I is an isolating interval for a simpleroot of fε then I is also isolating for a simple root of f , for su�
iently small ε. This fa
topens the door for variants of algorithms for real root isolation: One alternative evaluatesthe Des
artes test for 
oe�
ients that are expressed by interval approximations (e. g.,[CJK02℄, [RZ03℄, [MRR05℄). A generalization of this approa
h is given by the bitstreamDes
artes method (BDM) [EKK+05℄. It assumes that the 
oe�
ients of a polynomial fare given as potentially in�nite bit-streams, that is, 
oe�
ients are known to arbitrary
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ision, but, in general, never exa
tly. The 
oe�
ients are interfa
ed to the BDM byrepeatedly asking for more bits, that is, it is required to 
ompute a binary representationof a 
oe�
ient of arbitrary pre
ision. We later give the te
hni
al interfa
e in �2.3.4. Aslong as a Des
artes test fails to determine the 
orre
t number of sign 
hanges for a 
ertainpre
ision, the method demands for a better approximation, and restarts the test. A 
lever
ombination of the subdivision and the evaluations ensures that ea
h 
oe�
ient is not toomu
h over-approximated, whi
h would dire
tly lead to a slump in the overall performan
e.A rather simple appli
ation of the adaptive pre
ision is possible even for the exa
tsetting. In 
ontrast to interfa
ing a (possible) lengthy exa
t representation, we only providean in
reasing number of initial bits, until the BDM is su

essful. Espe
ially, for polynomialswith ni
e separations bound, the bitstream version of the test su

eeds with using less bitsthan for the exa
t version. But a
tually, the BDM exa
tly �ts the needs for polynomialswhose 
oe�
ients might be trans
endental or arbitrary algebrai
 numbers. A very suitableexample is the polynomial fα(d−1) introdu
ed in De�nition 2.17. Using interval arithmeti
(see �2.3.1) and the re�neable representation of ea
h involved α1, . . . , αd−1, it is possibleto 
ompute a re�neable interval approximation of fα(d−1) 's 
oe�
ients. Thus, the BDMis a very elegant way of 
omputing the isolating intervals for the real roots of fα(d−1) . Ausage for dimension 2 is given in �2.3.4 (page 64f), while we augment this approa
h foralgebrai
 interval representations of dimension 3 in �5.4.2.Re�ning intervals with Des
artes However, isolating the real roots of su
h a polynomialis not the sole appli
ability of the (bitstream) Des
artes method, or, a
tually, Des
artes'rule of signs. Consider a leaf of the (impli
it) subdivision tree with V (f ; I) = 1 for itsinterval I. In order to re�ne I, it is only required to subdivide further, and keep thehalf I ′ for whi
h Des
artes' rule of signs still reports V (f ; I ′) = 1. Of 
ourse, an a
tualimplementation should avoid any further Möbius transformation of the polynomial to
ompute V (f ; Ileft) or V (f ; Iright). These numbers are already known to be either 1 or 0and sum up to 1. The 0-interval is dis
arded for our desired re�nement. The requiredsign 
omputation be
omes more expensive with de
reasing interval length, and more bitsfrom the streams are expe
ted. On the other hand, this approa
h naturally enhan
es thealready required root isolation algorithm � in 
ontrast to the pure bise
tion approa
hpresented for algebrai
 interval representations that relies on exa
t sign 
omputations.A ni
e interfa
e for isolating and re�ning the reals roots of a (bitstream) polynomial ispresented in �2.3.4 (page 64).Remark. We remember again, that iterated re�nements 
annot de
ide the equality of twosu
h isolated roots. This goal still requires symboli
 
omputations, as we exemplary pre-sented for algebrai
 interval representations that use spe
ialized subresultants; see Algo-rithm 2.8.Not ea
h polynomial is square-free Assume a polynomial f being not square-free, and
α being a multiple real root of f . It is easy to see, that the Des
artes method in general,and the bitstream Des
artes method in parti
ular, do not terminate when exe
uted onsu
h an f . The reason is that the multipli
ity of α is at least 2. Thus, for ea
h interval I
ontaining α it holds V (f ; I) ≤ 2, su
h that no (further) subdivision 
an lead to an I forwhi
h one of the two termination 
onditions of Algorithm 2.9 applies.An important step into this dire
tion has been made by the m-k-Des
artes method
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 Programming, Arrangementsproposed by [EKW07℄. It allows to isolate the real roots of a polynomial f that 
ontainsat most one multiple root, or, otherwise, reports the existen
e of more than one multipleroot. The variant a
tually runs a usual Des
artes algorithm, and for simpli
ity we do notdistinguish the di�eren
es between the exa
t and the bitstream version in the following.The method is oblivious of the fa
t, that if f has a multiple root, the 
ontainer Q neverbe
omes empty. However, it is fed with additional knowledge on f , namely the number
m of distin
t real roots, and the degree k of gcd(f, f ′). We have presented in �2.1.1 howto 
ompute these values. Utilizing these pie
es of information, the m-k-variant interruptsthe exe
ution of the running Des
artes method if one of two 
onditions is satis�ed:1. There are exa
tly m− 1 intervals in Q indi
ating a simple root.2. For all intervals I in Q it holds that V (f ; I) ≤ k.[EKW07℄ state that the variant terminates with either of the two 
onditions. Intuitively,if f has at most one multiple root the �rst 
ondition is eventually satis�ed. In this 
ase,the m-k-variant stops with su

ess, while V (f ; I) for the single remaining interval I onlystates an upper bound of the multiple root's multipli
ity with 
orre
t parity. Thus, theodd 
ase still 
an transform to a simple root. It depends on the inquiring appli
ation howto deal with this restri
ted information. In 
ase f has more than one (
omplex) multipleroot, none of their multipli
ities 
an rea
h k. However, for a su�
iently small interval I
ontaining an r-fold root, it holds that V (f ; I) = r [Eig07℄. Thus, 
ondition two is ful�lledand the dete
tion of more than one multiple root is reported by the algorithm.Remark. Either 
onditions 
an be validated in 
ase f 
ontains exa
tly one real multipleroot and further imaginary ones. However, it is hard to predi
t whether the algorithmterminates with su

ess or not. It simply depends on the distribution of the roots and howthe algorithm explores sign variations on related (and subdivided) intervals.It remains to mention how to 
ompute m and k. For polynomials with integral orrational 
oe�
ients, these values 
an be 
omputed dire
tly with the Sturm-Habi
ht se-quen
e using Algorithm 2.3 and the modi�ed version of Algorithm 2.8. If the 
oe�
ientsof f are arbitrary in R, the situation is, in general, not feasible. Again, there is a spe
ial
ase that is important for us. Consider a situation as in De�nition 2.17, with a polynomial
f ∈ K[t1, . . . , td] and a ve
tor of real algebrai
 numbers α with dimension d − 1. We aimfor the number of distin
t real roots of fα ∈ R[td], whi
h is not ne
essarily square-free.The tri
k to 
ompute m is afresh the spe
ialization property that is deployed in the nextalgorithm.Algorithm 2.10. Computing number of distin
t real roots of a spe
ialized polynomialInput: f ∈ Z[t1, . . . , td]; α(d−1) = (α1, . . . , αd−1) ∈ R, ea
h αi in (re
ursive) algebrai
interval representationOutput: The number of distin
t real roots m of fα(d−1)1. Compute the sequen
e S = s0, . . . , sn with si := sign(stha(f)α(d−1)). Observe, that

sthai(f)α(d−1) ∈ R. The sign 
omputation is performed by Algorithm 2.7.2. Use S to pro
eed with Step 3 of Algorithm 2.3Remark. In order to apply the spe
ialization property, we assumed that deg(fα(d−1)) =
degtd

(f); otherwise a proper redu
tum of f must be 
onsidered. This modi�
ation relieson Lemma 2.19.
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 foundations 37Lemma 2.19. Let dα = degtd
(fα(d−1)). Then, for all j = 0, . . . , dα, it holds that

StHaj(fα(d−1)) = StHaj(f(dα))|(t1,...,td−1)=α(d−1)This obviously extends to stha.Computing k is again free of 
ost using the known sequen
e S in the �rst step of theSturm-Habi
ht-version of Algorithm 2.1.While the overall des
ription is quite abstra
t, we mention that the m-k-Des
artesmethod in 
ombination with Algorithm 2.10 to 
ompute m (and somehow k) has su

ess-fully applied when analyzing algebrai
 
urves; see [EKW07℄ and [EK08a℄. These publi
a-tions also dis
uss what to do when a multivariate f is, in 
ontrast to our assumption, notprimitive. We also dis
uss this subtlety, when using the same ansatz to lift planar pointsonto algebrai
 surfa
es in order to analyze them; see Chapter 5.Remark (Low degree polynomials). For the sake of 
ompleteness we �nally want to mentionthat there exists exa
t solution formulas for univariate polynomials of degree at most 4by Cardano, Tartaglia, and del Ferro. Furthermore, it is possible to 
ompute the isolatingintervals for su
h polynomials o�-line and to model the 
omparison of su
h numbers asa �nite de
ision tree; see [ET03b℄ and [ET03a℄. For the main parts of this thesis, thepolynomial often have degree larger than 4 and it is not analyzed in how far these methodsstill work in 
ombination with bitstream 
oe�
ients, that we also deploy a lot. Thus, wede
ided to laun
h the general approa
hes. However, we en
ourage to 
ross 
he
k theapproa
hes for su
h low-degree polynomials. Depending on the results,7 the spe
ializedmethods 
an be
ome the default for low degrees.2.1.3. Impli
it fun
tions and delineabilityWhen presenting next algebrai
 
urves and surfa
es, we want to make use of impli
itfun
tions. Thus, we qui
kly introdu
e them and present the impli
it fun
tion theorem.Although the statement of the theorem is true in a more general setting, we restri
t it toa 
ase, whose abstra
tion is still su�
ient to 
over its appli
ation for 
urves and surfa
es.The restri
tion mat
hes also the 
onditions of delineability that we also introdu
e here.Given a relation, our goal is to provide a tool that 
onverts it into a fun
tion, that is,the relation should be represented as the graph of a fun
tion. We do not aim for a singlefun
tion, but there may be one for a restri
tion of the relation's domain.Theorem 2.20 (Impli
it Fun
tion Theorem). Let f : Rd−1 × R → R be a 
ontinuouslydi�erentiable fun
tion and let (û1, . . . , ûd−1, v̂) ∈ Rd−1 ×R with f(û1, . . . , ûd−1, v̂) = 0. If
∂f
∂v (û1, . . . , ûd−1, v̂) 6= 0, then there exist open sets U , with (û1, . . . , ûd−1) ∈ U ⊆ Rd−1, and
V ⊆ R, with v̂ ∈ V , and a unique 
ontinuously di�erentiable fun
tion G : U ×V su
h that
{(u1, . . . , ud−1, G(u1, . . . , ud−1))} = {(u1, . . . , ud−1, v) | f(u1, . . . , ud−1, v) = 0} ∩ U × V ,that is, the graph of G is pre
isely the 
ontinuous set f |U×V = 0.A proof 
an be found in [Kön93, �3.6℄, while [KP02℄ dis
usses various aspe
ts of thetheorem in detail. It is advantageous, that no knowledge on the exa
t G is required.The theorem only states about its existen
e. Very often, G 
annot be solved with exa
t7We 
onsider running time and the stability of the spe
ialized methods for bitstream 
oe�
ients.
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 Programming, Arrangementsformulas. Let us next establish a 
onne
tion between impli
it fun
tions, multivariatepolynomials, and real algebrai
 numbers in algebrai
 interval representation: We introdu
ea term that is well-known in 
ylindri
al algebrai
 de
omposition; see �2.1.6 for a shortintrodu
tion and [CJ98℄ for a detailed survey.De�nition 2.21 (Delineation). Let f ∈ R[t1, . . . , td], degtd
(f) = n, A ⊂ Rd−1. The rootsof f are delineable on A, and fun
tions f1, . . . , fm delineate the real roots of f on A if for

(α1, . . . , αd−1) ∈ A we have
• m ≥ 0 and there are integers w1, . . . , wm, wi > 0 su
h that f(α1, . . . , αd−1, td) has

m distin
t real roots, with multipli
ities w1, . . . , wm.
• f1 < f2 < . . . fm are 
ontinuous fun
tions from A to R.
• fi(α1, . . . , αd−1) is a root of f(α1, . . . , αd−1, td) with multipli
ity wi.
• If β ∈ R with f(α1, . . . , αd−1, β) = 0, then ∃1 ≤ i ≤ m with β = fi(α1, . . . , αd−1).
• ∑m

i=1 wi = n, whi
h implies lcf td(f) 6= 0.Observe that m is independent on the 
hoi
e of (α1, . . . , αd−1) ∈ A. As a result, fora multivariate polynomial f ∈ R[t1, . . . , td], the not yet spe
i�ed impli
it fun
tion over a
ondition ful�lling set U 
an be identi�ed by fi if U is a delineable subset Rd−1. Evenmore, as the image of an impli
it fun
tion is 
onne
ted, it su�
es to 
ompute one of itsvalues, that is, we need to des
ribe β for α(d−1) = (α1, . . . , αd1) ∈ A. If all elementsof α(d−1) are given in algebrai
 interval representation, to 
ompute the algebrai
 intervalrepresentation of β requires to isolate the real roots of fα(d−1)(td), for example using thebitstream Des
artes method. This te
hnique has already been used to analyze algebrai

urves, and we 
ome ba
k to this point when analyzing algebrai
 surfa
es in Chapter 5.2.1.4. Algebrai
 plane 
urvesWhen in
reasing the dimension to 2, the vanishing set of a polynomial does not de�nea set of algebrai
 numbers, but it de�nes a 
urve. In this se
tion we introdu
e algebrai
plane 
urves, explore their properties, and show whi
h other obje
ts it 
an de�ne.De�nition 2.22 (Algebrai
 plane 
urve). Let K be a �eld, and f ∈ K[x, y]. The algebrai
plane 
urve indu
ed by f is the point set VK(f). If K = R, it is named real, while for
K = C the set de�nes a 
omplex 
urve.First, we remark, that for the reason of intuition, we prefer the more des
riptive variablenames x and y over the abstra
t ones t1 and t2. Se
ond, abusing notation, we often referto 
urve f while a
tually meaning the point set VK(f) indu
ed by f . If some p = (px, py)ful�lls f(px, py) = 0, that is p ∈ VK(f), we shortly say that p lies on f . If f fa
torizes,(see �2.1.1), ea
h fa
tor 
onstitutes a 
omponent of a 
urve. For 
omponents of a 
urveProposition 2.5 
an be applied. An impli
ation is, that the square-free part f⋆ of f de�nesthe same 
urve as f . In real appli
ations, it is usual to 
ompute a (square-free) fa
torizationof f �rst, and then to handle ea
h fa
tor as its own 
urve.An algebrai
 
urve has a verti
al line at α if f(α, y) ≡ 0. The existen
e of a verti
al linein a 
urve 
ompli
ates its analysis, while 
urves 
onsisting of verti
al lines only are almosttrivial to analyze. Fortunately, it 
an be shown that fa
torizing f = cont(f) · pp(f),de
omposes the 
urve into two 
omponents: The 
urve de�ned by cont(f) 
ontains allverti
al line 
omponents, while pp(f) is free of them. Applying the presented multivariate
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 foundations 39square-free fa
torization without the subsequent multipli
ation (see �2.1.1), we 
an killtwo birds with one stone: We obtain the square-free fa
tors of f , and ea
h fa
tor de�nesa 
urve that 
onsists either of verti
al lines only, or it is free of su
h. In the following,when presenting more details on algebrai
 
urves, we ex
lude the simple verti
al 
ase, andassume that a 
urve is primitive, that is, cont(f) is 
onstant, and square-free. We identify
fx with ∂f

∂x (p) and fy with ∂f
∂y (p).De�nition 2.23 (Points on 
urves). Let p be a point on some 
urve f and 
onsiderthe gradient given by the ve
tor (fx(p), fy(p))T . We 
all p singular if the gradient iszero. Otherwise, p is regular and we de�ne the tangent at p as the line through p andperpendi
ular to the gradient. The point p is 
riti
al if fy(p) = 0. If p is a 
riti
al regularpoint it is x-extreme, if the minimal index n with f

(n)
y (p) = 0 is even. We 
all p an eventpoint if it is singular or x-extreme.Remark. We �nally aim to de
ompose algebrai
 
urves into x-monotone sub
urves withspe
ial properties. This explains whty we 
all points with fy(p) = 0 
riti
al. In 
asesplitting into y-monotone sub
urves is desired, one would 
all points with fx(p) = 0
riti
al.It 
an be shown with Bézout's theorem that the number of points on f with fx(p) = 0is �nite, and so for fy(p) = 0. This implies that the number of singular points, the numberof 
riti
al points and the number of extreme points is �nite. The x-
oordinates of 
riti
alpoints are de�ned by the roots of Resy(f, fy). These roots αi, 0 ≤ i < k, de
ompose the

x-axis into k + 1 (possible unbounded) open intervals Ii, 0 ≤ i ≤ k.Consider a non-
riti
al point p = (px, py) on f . By Theorem 2.20 for d = 2 we havethat the 
urve de�ned by f is given lo
ally around p by a fun
tion y = g(x), that is, fora point p = (px, py), we have py = g(px). This holds in parti
ular for all points p with
px ∈ Ii.Splitting a 
urve f at 
riti
al points de
omposes the 
urve into 
onne
ted and opensets of points. The points of ea
h su
h sets meets the 
riteria of the impli
it fun
tiontheorem. An impli
ation is, that ea
h su
h set is x-monotone and we 
all its 
losure anar
 of f . Ar
s de�ned su
h are maximal sets respe
ting 
riti
al points. It 
an be shownthat the number of maximal ar
s is �nite.We a
tually distinguish three kinds of ar
s: A segment has two �nite endpoints, aray has one �nite endpoint and one unbounded end, and a bran
h has two unboundedends. For an unbounded end we 
an distinguish whether it either approa
hes a horizontalasymptote, a verti
al asymptote, or a tilted asymptote. The axis-aligned asymptotes of f
an be 
omputed. We state the 
orresponding theorem without proof.Theorem 2.24 (Verti
al and horizontal asymptotes). Consider f ∈ R[x, y] as a univariatepolynomial in y, with lcfy ∈ R[x] being its leading 
oe�
ient. If x−α, α ∈ R is a verti
alasymptote of f , it holds lcfy(α) = 0.Consider f ∈ R[x, y] as a univariate polynomial in x, with lcfx ∈ R[y] being its leading
oe�
ient. If y − β, β ∈ R is a horizontal asymptote of f , it holds lcfx(β) = 0.At �nite ends, ar
s are 
onne
ted via 
riti
al points. An ar
 is in
ident to su
h a p eitherfrom left or from right. The in
iden
e numbers of p 
an be en
oded as pair (ℓ, r), where ℓis the number of ar
s in
ident from left and r the 
orresponding number for the right side;
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 Foundations, Geometri
 Programming, ArrangementsFigure 2.1. Important numbers for a single 
urve. The values next to the x-axisen
ode the number of interse
tions of the 
urve with the verti
al lines. Dashed for
riti
al events, dotted for intervals indu
ed by the events' x-
oordinates.
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(b) Ar
 numberssee also Figure 2.1 (a). The in
iden
e numbers of a non-
riti
al point are equal to (1, 1).For all in
iden
e numbers (ℓ, r), it holds that ℓ + r mod 2 = 0, and ∑
p critical(ℓp + rp) is�nite. In �2.3.3 we present an interfa
e to provide information on in
iden
e numbers forany point on a 
urve, espe
ially the 
riti
al ones.De�nition 2.25 (Ar
 number). Let f be an algebrai
 
urve, and α ∈ R be an x-
oordinate.We de�ne fα := f(α, y) ∈ R[y]. Let β0 < . . . < βr−1 be the r distin
t real roots of fα.We say that a point p = (px, py) ∈ R2 is supported by α if px = α and py = βj forsome 0 ≤ j < r. The value j is the ar
 number of p.Figure 2.1 (b) gives an illustration. Observe, that βi meets the 
onditions for algebrai
interval representations of dimension 2. The isolating intervals 
an be 
omputed withthe bitstream Des
artes method, if fα is square-free, whi
h holds for all α ∈ Ii, for ea
hvalid i. If α is a root of Resy(f, fy), fα is not square-free. The m-k-variant of the bitstreamDes
artes method terminates: If su

essful, fα has at most one multiple root. Otherwise,it dete
ts the existen
e of more than one multiple root. In the latter 
ase, we 
an either
ompute the square-free part of fα using Algorithm 2.4 or apply a shear; see De�nition 2.26.By the impli
it fun
tion theorem and the 
onditions on the in
iden
e numbers, it 
anbe shown that the number of points supported by all α ∈ Ii for some i, is 
onstant.As an impli
ation it is easy to see, that all interior points of an ar
 
arry the same ar
number. That is, to des
ribe a (not ne
essarily maximal) ar
 it su�
es to give an x-range8

X = [xmin, xmax] and three ar
 numbers, namely one for xmin, one for xmax, and the onethat gives the 
onstant ar
 number for the ar
's interior points.8We also allow for X the intervals ] −∞, xmax], [xmin, +∞[, and ] −∞, +∞[
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 foundations 41In the setting we des
ribed so far, it 
an be, that 
riti
al points share 
ommon 
oor-dinates. A te
hnique to over
ome this problem is a 
hange of 
oordinates by applying ashear, for example, of the y-axis. This is possible as the number of distin
t bitangents ofa 
urve is �nite.De�nition 2.26 (Shear). The shearing of a point p = (px, py) with fa
tor s is Ss(px, py) =(
1 s
0 1

)
(px, py) = (px + spy, py). It 
an also be applied to a point set P : Ss(P ) = {Ss(p) |

p ∈ P}.The shearing of a 
urve uses the inverse S−s, that is, Ssf(x, y) = (f ◦ S−s)(x, y) =
f(x− sy, y) and it follows f(p) = 0⇔ Ssf(Ss(p)) = 0.Shearing is often applied to simplify the analysis of a 
urve. A shearing preservesthe topologi
al properties of the 
urve. However, it 
hanges the geometry, ex
ept for y-
oordinates. Aiming for a geometri
al-topologi
al 
orre
t analysis, a ba
k-shear has to beapplied, whi
h is non-trivial due to algebrai
 numbers of high degree. We skip details, forexample dis
ussed in [EKW07℄, and hen
eforth assume, w.l.o.g. the possibility to 
omputein
iden
e and ar
 numbers of a 
urve without shearing.

Figure 2.2. Shearing of a 
urve: (Left) The input. (Right) Its sheared version with
s = 8

7 . Observe, that 
overti
al degenera
ies vanish on the right, however, the numberof split points in
reased.We next turn towards a pair of (
oprime) 
urves f and g. A solution to dete
t their(
andidate) interse
tions is to merge the sequen
es of roots of Resy(f, fy), Resy(g, gy) and
Resy(f, g). For the resulting intervals J between su
h numbers, re�nements of the rootsof fr and gr give the interse
tion s
heme of f and g along the line x = r with r ∈ J ∩ Q.No interse
tion of f and g takes pla
e at su
h an r. It is more 
ompli
ated if we 
onsideran α that is a root of Resy(f, g), as for it we 
an have an interse
tion of f and g along theline x = α. A straightforward approa
h is to 
ompute the square-free part of gcd(fα, gα)using the stha-versions of Algorithm 2.1 and Algorithm 2.4. A more sophisti
ated solutionusing �lter te
hniques (see �2.3.2) is presented in [EK08a℄ and [Ker℄.For more detailed introdu
tions to algebrai
 
urves we re
ommend to read [Wal50℄and [Gib98℄, while [Ker06℄ fo
usses on the goal to support their analyses via an algebrai
kernel; see also �2.3.3 (page 56 �).
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 Foundations, Geometri
 Programming, Arrangements2.1.5. Algebrai
 surfa
esWe next introdu
e algebrai
 surfa
es. They form the 
entral input for our algorithms inChapters 3, 4, and 5.De�nition 2.27 (Algebrai
 surfa
e). Let K be a �eld, and f ∈ K[x, y, z]. The algebrai
surfa
e indu
ed by f is the point set VK(f). If K = R, it is named real, while for K = Cthe sets de�nes a 
omplex surfa
e.On
e again we prefer variable names that mat
h to the 
oordinate axes, here of thereal a�ne spa
e, as we do not dis
uss 
omplex surfa
es in this thesis. Surfa
es are verysimilar to 
urves, as both are supported by multivariate polynomials. Hen
e, we alsoabuse notation and talk about the surfa
e f instead of the surfa
e indu
ed by f . A point
p = (px, py, pz) ∈ R3 lies on the surfa
e if f(px, py, pz) = 0. The fa
tors of f de�ne
omponents of f . The square-free part f⋆ of f de�nes the same surfa
e, and usually, it isre
ommended to 
ompute a (square-free) fa
torization of f to handle ea
h 
omponent of
f as a surfa
e of its own.A surfa
e 
ontains a z-verti
al line at p = (px, py) if f(px, py, z) ≡ 0. We 
all asurfa
e z-verti
al if for ea
h point p = (px, py, pz) ∈ VK(f) it holds f(px, py, z) ≡ 0. Ifthe 
ontext talks about a surfa
e we write verti
al instead of z-verti
al. As for 
urves,de
omposing a surfa
e f = cont(f) ·pp(f) partitions f into two surfa
es, one that isverti
al, namely cont(f) and one that is not verti
al, namely pp(f). The multivariatesquare-free fa
torization (without post-pro
essive multiplying) splits 
urves into square-free verti
al and non-verti
al 
omponents. As verti
al surfa
es are easy to handle, we donot tra
e them further, and assume that a surfa
e is square-free and primitive. Nonetheless,a primitive surfa
e 
an still 
ontain (isolated) verti
al lines. We refer to Chapter 5 wherewe dis
uss this problem in depth.The gradient ve
tor of a point p on f is given by (fx(p), fy(p), fz(p))T , where fx = ∂f

∂x ,
fy = ∂f

∂y , and fz = ∂f
∂z , whi
h allows to 
lassify points on f .De�nition 2.28 (Points on surfa
es). Let p be a point on an algebrai
 surfa
e f and
onsider its gradient ve
tor. We 
all p singular if the gradient is zero. Otherwise, p isregular and we de�ne the tangent at p as the plane through p and perpendi
ular to thegradient. The point p is 
riti
al if fz(p) = 0.Consider a non-
riti
al point p = (px, py, pz) on f , then Theorem 2.20 for d = 3 meansthat the surfa
e de�ned by f is given lo
ally around p by a fun
tion y = g(x, y), that is, fora point p = (px, py, pz), we have pz = g(px, py). In Chapter 5 we introdu
e a de
ompositionof R2 into delineable sets for whi
h the impli
it fun
tions as des
ribed exists. For ea
h setwe provide additional 
ombinatorial data that helps to analyze the algebrai
 surfa
e. Wealso say that the surfa
e is xy-fun
tional over su
h a 
onne
ted two-dimensional 
ell. The
losure of the fun
tion graph is 
alled a sheet.In 
ontrast to 
urves, there is no left and right (zero-dimensional) end that togetherdes
ribe the 
losure of su
h a sheet. A
tually, it is a one-dimensional set of points. Su
ha spa
e 
urve models the 
onne
tion of sheets. De�nition 2.33 formally introdu
es spa
e
urves. There are also sheets that lop o� towards z = −∞ or z = +∞ when approa
hingtheir �boundary�. To 
ompute how sheets are 
onne
ted (or extend to in�nity) is anothermajor goal that we are aiming for in Chapter 5. Besides the a
tual 
omputation, we
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 foundations 43also dis
uss an interfa
e to a

ess this information. We next extend the de�nition of ar
numbers to surfa
es.De�nition 2.29 (Sheet number). Let f be an algebrai
 surfa
e, and α, β ∈ R be an x- and
y-
oordinate. We de�ne fα,β := f(α, β, z) ∈ R[z]. Let γ0 < . . . < γr−1 be the r distin
treal roots of fα,β.We say that a point p = (px, py, pz) ∈ R3 is supported by α and β if px = α, py = βand pz = γj for some 0 ≤ j < r. The value j is the sheet number of p.As for 
urves, it is possible to apply a shear on a surfa
e in order to remove degeneratesituations that are with respe
t to the 
hoi
e of the 
oordinate system. That is, the topo-logi
al properties of the surfa
e are preserved, while its geometry 
hanges (with 
onstant
z-
oordinates). This helps to analyze the topology of the surfa
es. However, shearingalso has drawba
ks. Applying a shear in
reases the bit-lengths of f 's 
oe�
ients and theresulting polynomial is dense with respe
t to z. Both negatively in�uen
es the runningtimes of subsequent algorithms. In addition, obtaining geometri
 information with respe
tto the original system is often expe
ted, but regaining it is a highly non-trivial task. Theseitems are reason enough for us to abstain from shearing when analyzing algebrai
 surfa
esin Chapter 5.In Chapter 4 we 
onsider spe
ial examples of surfa
es, namely su
h that are (rationally)parameterizable.De�nition 2.30 (Parameterizable surfa
e). A parametri
 surfa
e S in R3 is given by aparametri
 equation in two variables, that is, the surfa
e is the image of ϕ : Φ = U ×V →
R3, (u, v) 7→ (X(u, v), Y (u, v), Z(u, v)), where X,Y,Z are fun
tions U × V → R.Example 2.31 (Parameterizable surfa
es).
• The graph of a bivariate fun
tion is parameterized with ϕ(u, v) = (u, v, f(u, v)).
• A 
ylinder of radius r around the x-axis is given by ϕ(u, v) = (u, r cos(v), r sin(v)),with x ∈ R, and v ∈ [0, 2π].
• The unit sphere's parameterization is ϕ(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)),with u ∈ [0, π] and v ∈ [−π, π].It is easy to see, that the same surfa
e admits several parameterizations. Furthermore,if Φ is bije
tive ex
ept for an at most one-dimensional set, there is another ni
e property.This property is mandatory for rational surfa
es.De�nition 2.32 (Rational surfa
e). A surfa
e S is said to be rational if1. S is algebrai
 (i. e., de�ned by a polynomial f ∈ Z[x, y, z]).2. There exists a parameterization ϕ(u, v) = (X(u, v), Y (u, v), Z(u, v)) of S by fun
-tions X,Y,Z whi
h are quotients of polynomials in u and v having rational 
oe�-
ients.3. (u, v) ∈ U × V , where U and V are itself de�ned in a simple way by polynomialinequalities in u and v and that, ex
ept for a few equally simple 
urves and points,

ϕ is bije
tive.We present in �4.6.2 ring Dupin 
y
lides that are rational surfa
es whi
h generalizetori.
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 Foundations, Geometri
 Programming, ArrangementsThe union of two vanishing sets of trivariate polynomials f1, f2 
an be modelled bymultiplying f1 · f2. The interse
tion of two sets de�nes a new geometri
 obje
t.De�nition 2.33 (Algebrai
 spa
e 
urve). Let f, g ∈ K[x, y, z], and 
oprime. The algebrai
spa
e 
urve indu
ed by f and g is the point set VK(f)∩VK(g) = {(x, y, z) ∈ K3 | (x, y, z) ∈
VK(f) ∧ (x, y, z) ∈ VK(g)} If K = R, it is named real, while for K = C the sets de�nes a
omplex spa
e 
urve.An algebrai
 spa
e 
urve indu
ed by f and g is also referred to as the interse
tion
urve of f and g. A spe
ial spa
e 
urve of our interest is the silhouette 
urve of a surfa
e fde�ned by the interse
tions of f and fz. The silhouette 
urve 
ontains all 
riti
al points of
f . From elimination theory introdu
ed in �2.1.1 and espe
ially Proposition 2.8 (assuming
z-regularity), we remember that the vanishing set of Resz(f, fz) 
onstitute extendiblesolutions for the silhouette 
urve and Resz(f, g) 
onstitute extendible solutions for theinterse
tion 
urve of f and g. It might be the 
ase, that for a �xed solution there is nosu
h extension, a single one, or even more than one extension, whi
h is also due to the fa
tthat algebrai
 
urves are Zariski-
losed.92.1.6. Cylindri
al algebrai
 de
omposition (
ad)In this se
tion, we shortly review 
ylindri
al algebrai
 de
ompositions (
ad) introdu
edby Collins in his seminal work [Col75℄, whi
h basi
ally provides a general framework forapplied elimination theory. We do so, as basi
 steps in our work, espe
ially in Chapter 5,adopt ideas that have already been supporting 
ylindri
al algebrai
 de
ompositions. In
ontrast to 
ad, that fa
ilitates quanti�er elimination and thus endorses various potentialappli
ations in any dimension, we fo
us in this thesis on tools supporting low dimensionalgeometri
 problems.The input for a 
ad 
onsists of a �nite number of d-dimensional integral polynomials,while the output is a subdivision of Rd into 
ells, where ea
h input polynomial is sign-invariant within ea
h 
omputed 
ell � a 
ad. The algorithmi
 idea to 
ompute it is arepeated two-step approa
h: The �rst step, the proje
tion, eliminates one variable, whilethe se
ond step, the lifting , 
onstru
ts so 
alled sta
ks based on information obtained in the�rst step. A
tually, the algorithm is re
ursive. The proje
tion is stopped when univariatepolynomials remain, whi
h de
ompose R into 
ells that are sign-invariant with respe
tto the polynomials. Lifting is applied using sample points for ea
h lower-dimensionalsign-invariant 
ell until the de
omposition of Rd is obtained. A lifting step 
onstru
ts asta
k that is partitioned into 
ells that are sign-invariant. Cells that result in zeros in thepolynomials prior to the proje
tion are 
alled se
tions, while the open intervals between(and semi-in�nite intervals pre
eding and following all zeros) are 
alled se
tors. Ea
h 
ellof a d-dimensional 
ad has an index (c1, . . . , cd), ci > 0. For example (4, 2) is the se
ond9 In Algebrai
 Geometry, there exists a naturally indu
ed topology, 
alled the Zariski-topology. It isde�ned by the assignement of a set to be open if and only if its 
omplement is the vanishing set of an ideal.Thus, a plane algebrai
 
urve C is always Zariski-
losed as it is given as the vanishing set of a polynomial f ,that is, C = VK(f). A more intuitive geometri
 
onsequen
e is that for ea
h point p on C there existsa neighborhood U su
h that C|U is either an isolated point or star-shaped whose 
enter is p. Note thatin 
ase of a non-singular point p, the 
urve C, restri
ted to U , is homeomorphi
 to a line segment. Indes
riptive language we obtain the following: When �walking� on an algebrai
 
urve (i. e., not isolated),one never rea
hes a point where the 
urve has a dead-end. As an example, we mention that a line segmentdoes not 
onstitute an algebrai
 
urve; only the supporting line is one.
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ell (from bottom) 
onstru
ted over the fourth 
ell (from left) in a 
ad of R2. Proje
tionand lifting heavily relies on delineability; see De�nition 2.21 in �2.1.3.A 
ru
ial step of the 
ad is the proje
tion. In the original work, a huge bun
h of poly-nomials are 
omputed. In parti
ular, as input all fi ∈ Z[t1, . . . , td−1][td], all 
oe�
ientsof all fi, all prin
ipal subresultant 
oe�
ients of fi and f ′
i , and all prin
ipal subresultant
oe�
ients of fi and fj with i 6= j are 
onsidered. It is assumed that the fi are td-regular,otherwise, proper redu
tums must be used when 
onstru
ting the prin
ipal subresultant
oe�
ient. Computing all these polynomials needs a signi�
ant amount of time, whilethe large number also leads to a very �ne de
omposition of Rd−1. This, as a sequen
e,results in the lifting of many 
ells, whi
h again is time-
onsuming. The proje
tion hasbeen improved by M
Callum [M
C℄ and Brown [Bro01b℄. They show how to obtain anorder-invariant de
omposition (
ompare the de�nition in [M
C℄). For su
h a de
omposi-tion, it su�
es to only 
onsider the leading 
oe�
ients and the dis
riminants of (possiblyredu
ed) polynomials to ensure delineability. We 
ome ba
k to this point when analyzingalgebrai
 surfa
es in Chapter 5. Besides these 
omputations of �proje
tion polynomials�other symboli
 subalgorithms are required, for example, to 
ompute multivariate greatest
ommon divisors, or, during lifting, to 
onvert real numbers in algebrai
 interval represen-tations into their integral interval representations. Noti
e that all operations are 
arriedout with pure symboli
 
omputation, that require exa
t and e�
ient integral arithmeti
.Proje
tions and liftings apparently result in a 
ad, whi
h 
onstitutes a de
ompositioninto 
onne
ted sign-invariant 
ells. An additional adja
en
y step 
omputes how 
ells areintera
ting. It is said that two 
ells are adja
ent if their union is also 
onne
ted. Thereexists approa
hes to 
ompute the adja
en
ies for the two-dimensional 
ase [ACM84℄ andfor the three-dimensional 
ase [ACM88℄. Adja
en
ies also open the door to join adja
ent
ells with the identi
al sign-invariant to the same topologi
al 
omponent. Arnon 
allssu
h maximal sets 
lusters. Computing 
lusters redu
es the number of liftings, as forea
h 
luster only one lift is demanded, and liftings are usually 
ostly as they involvedalgebrai
 numbers [Arn88℄. Thus, 
lusterings enable possible time savings, but they mustbe weighted against the time to 
ompute the 
luster. When analyzing algebrai
 surfa
es inChapter 5, we impli
itly 
luster the 
ells of the �rst proje
tion (into the two-dimensionalplane) using Cgal's planar arrangements; see �2.4.Cylindri
al algebrai
 de
ompositions have various appli
ations; a 
omprehensive list isgiven in the introdu
tion of [CJ98℄. We exemplary mention the possibility to 
ompute thetopology of semi-algebrai
 sets, to solve systems of polynomial equalities and inequalities,and robot motion planning. The later 
onsiders given algebrai
 obje
ts, some of themmovable, others not. We want to know whether the movable obje
ts 
an be 
ontinuouslymoved, 
ollision-free, from an initial 
on�guration to a �nal one. A 
on�guration is givenas a point in a high-dimensional algebrai
 spa
e, as ea
h parameter des
ribes position andorientation of one obje
t. A solution exists if the initial 
on�guration 
an be 
onne
tedwith the �nal one by a 
ontinuous path within a 
onne
ted 
luster of the high-dimensional
ad. For the de
ision it su�
es to 
ompute the 
luster of the two 
on�gurations, while thea
tual movements 
an then be produ
ed from a 
ollision-free path within the 
luster, forexample, by 
onstru
ting it with the help of 
ell-to-
ell paths. More details 
an be foundin [SS83℄, [SSH87℄, and [Lat93℄.
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 Programming, Arrangements2.1.7. Topology and CW 
omplexWe 
lose the theoreti
al foundations with some information on topology. An k-simplex isa topologi
al spa
e that is equivalent to a k-ball Bk, that is, every k-simplex 
onstitutesa k-dimensional manifold with boundary. A k-
ell is a spa
e that is homeomorph to a
k-simplex. An open k-
ell is homeomorph to the interior of Bk. We 
all k the dimensionof the 
ell. If the boundary of a topologi
al k-spa
e is the �nite union of k′-spa
es with
k′ < k, we say that it has the boundary property.A 
omplex is a topologi
al spa
e 
onstru
ted from simplexes whi
h are wisely 
on-ne
ted. A 
omplex allows to des
ribe a 
ompli
ated spa
e in terms of 
onne
ted simplespa
es. In general, topology de
omposes obje
ts into k-
ells. We only mention two 
om-plexes. The simpli
ial 
omplex K for a set M is a subset of the power set K ⊆ P(M),that is, a family of subsets that are 
losed under set interse
tions. Geometri
ally, a sim-pli
ial 
omplex K is a 
omplex of simplexes su
h that the empty set and all boundaries ofsimplexes are 
ontained in K, and for s1, s2 ∈ K it holds s1 ∩ s2 is a boundary of s1 and
s2. Whitehead [Whi49℄ introdu
ed an even stronger 
omplex.De�nition 2.34 (CW 
omplex). A Hausdor� spa
e10 X that de
omposes into open 
ells
(I)i∈I is 
alled 
ell-
omplex, or 
losure-�nite weak-topology 
omplex (CW 
omplex), if1. for ea
h ci ∈ X there is a 
hara
teristi
 
ontinuous fun
tion fi : Bk → X, su
hthat the interior of Bk is mapped homeomorphi
ally to ci and the boundary of Bkis mapped to a �nite number of 
ells with dimension < k (boundary property) and2. M ⊆ X is 
losed if and only if M ∩ fi(B

k) for all i is 
losed.De
ompositions of 
urves into ar
s, see �2.1.4, and surfa
es that we �nally analyze inChapter 5 are CW 
omplexes. A more basi
 introdu
tion is given in [Hat02℄.2.2. Implementing geometri
 algorithmsThe des
ription of geometri
 algorithms usually assumes the real RAM , that is, ea
hbasi
 operation is to be 
onsidered as being exa
t and running in 
onstant time [PS85℄.These assumptions ease the theoreti
al 
onsiderations of an algorithm. But, not keeping itspra
ti
al limitations for a 
on
rete implementation in mind, they qui
kly lead to disastrousresults: Code 
rashes, produ
es mathemati
ally wrong results, or does not terminate. Anexample is an in
remental 
onvex hull 
onstru
tion that 
onstru
ts non-
onvex hulls. Thisand other 
lassroom examples are given more detailed in [S
h96℄, [KMP+04℄, or morere
ently in [S
h08℄.In theory, life is also often simpli�ed by the general position assumptions, that is, anydegenerate input with respe
t to the algorithm is pre
luded. For example, no three pointsin the plane should lie on a 
ommon line. In 
ontrast to theoreti
al expe
tations, degenerateinput is not rare in pra
ti
al appli
ations, as, for example, s
anners and sensors onlyhave �nite pre
ision. Algebrai
 
urves and surfa
es also have degenera
ies, for example,singularities and tangential interse
tions. If aiming for an a

urate result in the original
oordinate system, we have to deal with them.In order to ta
kle these problems Kettner and Näher aimed for geometri
 programming ,whi
h asks for geometri
 software that is 
orre
t, e�
ient, adaptable and extensible, and10Any two points 
an be "housed o�" from ea
h other by open sets.



2.2. Implementing geometri
 algorithms 47easy to use [KN04℄. To ful�ll su
h a task, the in
orporation of two well-known paradigmsis bene�
ial, namely the generi
 programming paradigm and the exa
t geometri
 
ompu-tation paradigm, whi
h we dis
uss in the sequel.2.2.1. Generi
 programming (GP)In the de�nition of Musser et al. [MS88℄, generi
 programming 
onsists of the graduallifting of 
on
rete algorithms that abstra
t over details, while preserving the algorithm'se�
ien
y and semanti
s. Basi
 and well-known abstra
tions that a supported by variousprogramming languages are subroutines, data type abstra
tion, and inheritan
e, as obje
t-oriented 
ode 
an provide.However, generi
 programming is more powerful. In C++ it extensively makes use of
lass- and fun
tion-templates. Su
h a template expe
ts one (or several) parameters of
on
rete 
lasses (or fun
tions) that exa
tly ful�ll requirements positioned by the template.So-
alled 
on
epts de�ne the abstra
t de�nition and requirements for data types, whiletypes (e. g., 
lasses) that exa
tly ful�ll su
h spe
i�
ations are referred to as the modelsof a 
on
ept. Models are allowed to implement more than one 
on
ept at the same time,and su
h 
lasses 
an also provide fun
tionality beyond the expe
tations of a 
on
ept.Con
epts 
an also be organized hierar
hi
ally. We refer to the re�nement of a 
on
ept if aderived version has stronger expe
tations on a model. For example, a re�nement expe
tsan additional type or fun
tion in order to model the stronger. An interesting sub-
ase ofmodels that des
ribe behaviors of obje
ts are 
alled traits 
lasses. The notation has beenintrodu
ed by Myers [Mye95℄. His design allows to atta
h information to 
lasses that arenot modi�able, su
h as poiters. In 
ontrast, we usually refer to a di�erent interpretationof the name traits 
lass. It provides basi
 types and operations on them. Instantiatinga templated data stru
ture or algorithm with su
h a 
lass determines the stru
ture's oralgorithm's a
tual behavior; see the sorting example below.Con
epts and models are nothing spe
i�
 to (generi
) programming. A
tually, math-emati
ians are very familar with su
h, for example in algebra. Several 
on
epts exists:Group, ring, �eld, ve
tor spa
e. A group is modelled by a set of (abstra
t) obje
ts and abinary operation �+� that has to ful�ll the known 
onditions. Examples of groups are Zwith their addition as binary operation, or Zp with p = 2, 3, 5, 7, 11, . . . with additionmodulo p. A �traits 
lass� is also re�e
ted in algebra: Swit
hing the �+� operation fromaddition to multipli
ation leads to a multipli
ative group. We remark further subtletiesas to restri
t the elements. But observe that an implementation 
an use traits 
lassesto de�ne 
ertain groups. Re�nements of 
on
epts also exist in mathemati
s. A group is
alled abelian, if the binary operation is also 
ommutative. An abelian group forms a ring,if there is a se
ond binary and asso
iative operation � · � and the distributive law holds.Fields and ve
tor spa
es are other re�nements of abelian groups.Generi
 
ode splits into two parts:1. the instru
tions that des
ribe the algorithmi
 steps and2. requirements that spe
ify whi
h properties its argument types must satisfy.Example 2.35. A simple example is a sorting routine that relies on a less-based 
omparisonstrategy on obje
ts; like insertion sort. In the exe
ution of the sorting algorithm it mustbe de
ided whether one given obje
ts is smaller than a se
ond one. The instru
tions ofthe algorithm are independent of the a
tual type of obje
ts, while we demand obje
ts to
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 Programming, Arrangementsbe LessThanComparable. This way, an unexperien
ed user in sorting algorithms 
an stilldeploy the implementation, by just knowing about the order of two obje
ts.More abstra
t, it su�
es to implement a model for the intended type of obje
ts inorder to bene�t from generi
 implementations. This is usually mu
h simpler than the fullimplementation of an algorithm for these obje
ts. Implementations that follow the generi
programming paradigm reuse 
ode, and thus avoid 
opy-and-paste whi
h is often a sour
eof error. Additionally, it implies less maintenan
e.Generi
 programming also looses the drawba
ks of obje
t-oriented programming, su
has a strong inheritan
e relationship, with additional memory 
onsumption for virtual mem-bers and virtual-fun
tion table lookups. In 
ontrast, it bene�ts from �exibility, type 
he
k-ing at 
ompile time, and no loss of e�
ien
y. Full details of generi
 programming in itsvarious aspe
ts 
an be found in the book by Austern [Aus99℄. It also surveys the Stan-dard Template Library (Stl) [15℄ whose various basi
 data stru
tures and algorithms arepart of the C++ standard library sin
e 1994. The Boost libraries [2℄ implement additionalsoftware in the spirit of the STL and to work hand-in-hand with it. A very ni
e overviewis given in [Kar06℄. The Library of E�
ient Datastru
tures and Algorithms (Leda) [10℄provides fundamental data stru
tures and algorithms from various domains, and basi
obje
ts for geometri
 
omputations. Fully fo
ussed on geometri
 problems are the Com-putational Geometry Algorithms Library (Cgal) [3℄, and the Libraries for Exa
t andE�
ient Algorithms for Curves and Surfa
es (Exa
us) [6℄. We present both in detailin �2.2.3 and �2.2.4.Generi
 programming for 
omputational geometry makes perfe
t sense, as it allows tode
ouple geometri
 
onstru
tions and predi
ates from topologi
al 
onsiderations and 
om-binatorial algorithms and data stru
tures. Templating algorithmi
 frameworks or datastru
tures implements the desired abstra
tion. The instantiation of su
h a 
lass with a
on
rete traits inspires the skeleton with respe
t to the given geometri
 obje
ts and oper-ations on them. This way, a user with limited knowledge about the 
lass-template, thatis, the geometri
 algorithm or data stru
ture, 
an use it with his own geometri
 obje
ts,as long as he 
an provide a proper traits 
lass. The expe
ted operations usually imple-ment geometri
 or algebrai
 
omputations. We detail this issue when dis
ussing the exa
tgeometri
 
omputation paradigm next. Beforehand, we want to mention the importantobje
tive for a 
on
ept to be minimal. A tight 
on
ept simpli�es the development of anew traits 
lass drasti
ally, as less (maybe only slightly) di�erent operations must be im-plemented. If they are too similar, it might be hard to 
rystallize their di�eren
es, and itis also dangerous that the same (algebrai
) value is 
omputed several times.The ability of generi
 programming to de
ouple 
ombinatori
s from geometri
 predi-
ates is also a very ni
e way to resign from the generi
 position assumption. That is, thedeveloper of a generi
 geometri
 stru
ture 
an implement all parti
ularities of an algo-rithm from the literature with respe
t to degenera
ies assuming that geometri
 predi
atesimplement the desired operation. He never has to 
are about the details how to providethe 
orre
t answer. This is another task. Again, this 
onsideration is 
ross-linked withthe exa
t geometri
 
omputation paradigm; see �2.2.2. Although this strategy is valid, itshould be taken with a pin
h of salt: Che
king a degenera
y is often 
ostly, espe
ially inthe EGC approa
h. However, it might be possible to modify an algorithm su
h that this
he
k and its (positive or negative) out
ome is 
ombinatorially dedu
ed from (a set of)less expensive predi
ates.



2.2. Implementing geometri
 algorithms 49We want to mention that we illuminate as our major example of a templated geometri
data stru
ture the details of Cgal's Arrangement_2 
lass in �2.4.3 A
tually, to broaden theappli
ability of the 
lass with respe
t to other domains than the bounded plane, we dis
ussan important 
hange of its template parameters in Chapter 4.2.2.2. Exa
t geometri
 
omputation (EGC)The 
omputational path of a geometri
 algorithm is in�uen
ed by two types of basi
operations: Constru
tions that 
reate new geometri
 obje
ts and predi
ates that determine
onditional steps in an algorithm. The splitting of these basi
 operations from the generi
algorithm 
an be established in terms of generi
 programming. From this abstra
tion, we
an 
on
lude that di�erent 
omputational paths, that is, di�erent evaluations of operations,lead to di�erent 
ombinatorial stru
tures and statuses. Although sometimes tolerable,numeri
al errors (as they are typi
al for �oating-point arithmeti
) in su
h evaluations, 
anqui
kly lead to an invalid or in
onsistent status of an algorithm. In order to avoid su
hproblems, we have to ensure that predi
ate evaluations always 
ompute the mathemati
al
orre
t result. This goal is expressed by Yap [Yap04℄ as the exa
t geometri
 
omputation(EGC) paradigm. While we expe
ted the real RAM to 
ompute ea
h operation in exa
tfashion, this paradigm relaxes the exa
tness requirements with respe
t to 
omputed results.To explain this more pre
isely: In numeri
al stable settings an inexa
t, but fast, numbertype 
an already su�
e to 
ompute the 
orre
t result of a geometri
 predi
ate. This isusually the 
ase in non-degenerate situations. However, this still requires te
hniques toverify the 
orre
tness of the result. In more degenerate 
ases su
h an approa
h might fail,and one has to fall ba
k to an exa
t 
omputation. In the spirit of the EGC paradigmseveral te
hniques have been implemented to ensure exa
t predi
ate evaluations, su
h aslazy-evaluation, adaptive 
omputations, and �oating points �lters; see [She96℄, [BEPP97℄,[MN00, �9.7℄, [FM02℄ and �2.3.2.The example of a fully �ltered geometry kernel is given in [KN04℄. It is also possibleto �lter geometri
 
onstru
tions. If so, one �rst 
reates a non-expensive (approximative)representation that serves non-
riti
al needs, but whi
h su�
es to be 
onverted to an exa
trepresentation if needed, for example, in degenerate situations. One option is to representthe interse
tion point of 
urves by a 
onstru
tion graph (i. e., its 
onstru
tion history)along with a rough approximation of its 
oordinates. The work of Hanniel and Wein onBézier 
urves [HW07℄ implements su
h a te
hnique.Combining these two paradigms in geometri
 programming leads to 
onvenient 
odethat allows an easy swit
h to other number types, other 
omputation te
hniques (maybewith �lters), or instantiate generi
 
ode with exa
tly those obje
ts a user is demanding for.All in all, it is usually just a minor 
hange in the 
ode. Often, it only requires to 
hangea few type de�nitions.For the sake of 
ompleteness, we mention that 
ontrolled perturbation is another te
h-nique to atta
k the mentioned, not very pra
ti
al, assumptions. It has been introdu
edby Halperin and Shelton [HS98℄. Its 
entral idea is to perturb the input in a 
ontrolledfashion, su
h that degenera
ies vanish and �nite pre
ision su�
es to implement 
onsistentand 
orre
t predi
ates for non-degenerate 
ases. The s
heme usually adapts the perturba-tion and the required pre
ision in several rounds until a 
orre
t result for a slightly wronginput is obtained. Controlled perturbation lead to �xed pre
ision algorithms for numerous
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 Programming, Arrangementsgeometri
 appli
ations; see [HL04℄, [EH05℄, [HS98℄, [Raa99℄. It also 
onstitutes a simpleand generi
 framework [FKMS05℄,[MOS06℄.Despite of the su

ess of 
ontrolled perturbation, this thesis does not pursue this ap-proa
h any further, but fo
usses on the EGC paradigm. In this light, we want to mentiontwo software libraries that ex
ellently show with some of their main 
ontributions theEGC's right to exist.2.2.3. The Computational Geometry Algorithms Library (Cgal)Cgal - the Computational Geometry Algorithms Library has been started in 1997 foundedby a
ademi
 sites in Europe and Israel. Its goal at that time (as today) is to promoteresear
h in 
omputational geometry to reliable and e�
ient software that serves botha
ademi
 and industrial users. Sin
e a few years Cgal is available as an open-sour
eli
en
e. For users who want to hide their developed 
ode using Cgal from the publi
 (bethey industrial or a
ademi
) GeometryFa
tory [8℄ sells proper li
en
es.Cgal follows the generi
 programming (see [BKSV98℄) and the exa
t geometri
 
om-putation paradigms, whi
h means that properly instantiated it always 
omputes the 
orre
tresult and never fails. For a detailed explanation of this topi
 we refer to [3, �The CgalPhilosophy�℄.Central part of the library are geometri
 kernels. A geometri
 kernel 
ontains 
onstant-size non-modi�able basi
 geometri
 obje
ts (e. g., in two-dimensional Cartesian 
oordi-nates) and a large set of basi
 operations on them. In addition to the kernels, Cgal par-titions its 
ode with respe
t to a wide range of geometri
 problems or data stru
tures intopa
kages. We exemplary mention 
onvex hulls, triangulations, Voronoi diagrams, meshingand subdivisions, geometri
 optimizations, kineti
 data stru
tures, and the Arrangement_2pa
kage that we strip down in �2.4.3. The main 
lasses and algorithms of ea
h pa
kage areusually templated and expe
t traits 
lasses that de�ne the geometri
 obje
ts 
onsideredand the required operations on them. Of 
ourse, Cgal provides traits 
lasses for well-known and wide-spreaded obje
ts, su
h as segments, lines, 
ir
les, triangles, meshes andmore. Very often, one of Cgal's basi
 geometri
 kernels (2D, 3D, dD) already ful�lls therequirement to serve as a model for a templated algorithm or data stru
ture.The appli
ation programming interfa
e (API) of the library and ea
h pa
kage is imple-mented in the spirit of the Stl. This way, an easy and 
onvenient 
onne
tion of Cgal withother software through iterators and fun
tors (as, e. g., the Boost libraries) is ensured.The basis of Cgal is 
onstituted by non-geometri
 support fa
ilities, su
h a generators,iterators, I/O-
apabilities, visualization interfa
es, and a tremendous support for numbertypes and algebrai
 stru
tures, like polynomials. The later entities have been redesignedin for Cgal's 
urrent publi
 release 3.3 with respe
t to the experien
e that the Exa
us-proje
t (see �2.2.4) gained in this area. It was a non-trivial task to ex
hange nearlythe full support by a mu
h more powerful implementation, while still keeping ba
kward
ompatibility issues. The 
orresponding 
hapter [Hem07a℄ of Cgal's manual pages givesa detailed introdu
tion to that important part of the library. Main basi
 number types11that we deal with in this thesis are taken from Leda and Core, that is, we rely on theirexa
t implementation of integers, rationals, and big�oats, as well as the interval type fromBoost.11Cgal's Number_type pa
kage has also re
eived non-trivial adaptions with the integration of Exa
us.
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 algorithms 51Cgal is a living proje
t, thus it is 
ontinuously improved and new geometri
 problemsare ta
kled every day by a large number of developers worldwide. Code quality is ensuredby Cgal's Editorial Board that reviews new submissions of pa
kages, and an exhaustivetestsuite. This quality is known in the a
ademi
 
ommunity and also for a growing numberof industrial users, whi
h states the su

ess of Cgal. For all further details of the librarywe refer to its website [3℄ or its 
omprehensive manual [CGA07℄.Ongoing work in Cgal that is tou
hed and in�uen
ed by the aura of this thesis, butbeyond our a
tual 
ontributions, is the design and the implementation of algebrai
 kernels,mainly in one and two dimensions, whose details we present in �2.3.3.2.2.4. Libraries for Exa
t Algorithms for Curves and Surfa
es (Exa
us)The Exa
us-proje
t has been founded in 2001 at the Max-Plan
k-Institut für Informatikin Saarbrü
ken in order to implement E�
ient and Exa
t Algorithms for Curves andSurfa
es as a 
olle
tion of C++-libraries. The fo
us of the proje
t has always been tota
kle problems in 
omputing with 
urved obje
ts that are algebrai
ally de�ned followingthe exa
t geometri
 
omputation paradigm. These goals turned out to be also a demand-ing sour
e for missing basi
 ma
hinery, as, for example, integrating implementations fore�
ient and 
erti�ed real root isolation.While in the �rst years of its development it was advantageous to experiment withdesign rationales. With growing maturation, the separation from Cgal has be
ome dis-advantageous, as Cgal also started to dig into the non-linear world. Therefore, theExa
us-developers de
ided in 2005 to merge their libraries as new pa
kages into the moreprestigious and popular Cgal. Thus, Exa
us is no longer on a release tra
k, instead
lass-by-
lass moves. This relo
ation is an on-going task, as �rst Cgal should not breakup, se
ond demos in Exa
us are expe
ted to work during their move to Cgal, and thirdExa
us' development pro
ess should smoothly migrate towards Cgal, too.We shortly repeat in the following Exa
us' main libraries with their 
ontent and theirstatus with respe
t to the move. Thus, although more detailed, the arti
le publishedin 2005 [BEH+05℄ turns out to be slightly outdated. The goal of our des
ription of thelibraries is to give an overview, while terminology that we use is either taken from thestandard literature on this topi
, or, if relevant for the thesis, given more detailed in �2.4and �2.1.Support This library provided basi
 support for non-geometry-related obje
tives. Itused to 
ontain memory allo
ation, I/O-methods, timers, basi
 enumerations andthe Handle_with_poli
y 
lass that implements a (possibly hierar
hi
al) referen
e-
ounting s
heme [Ket06℄. A
tually, main parts were loan from Cgal. These days,Support is not existing anymore. Classes that do not have an adequate alterna-tive in Cgal or Boost have been integrated in Cgal's basi
 pa
kages, su
h as thementioned Handle_with_poli
y.NumeriX The support for number types and algebrai
 stru
tures developed in this li-brary has been the su

essful prototype of Cgal's new and 
urrent basis for thisbusiness. Thus, this part has already moved 
ompletely to Cgal. Re
ently, theExa
us' polynomials also have been integrated as Polynomial pa
kage of their ownin Cgal [Hem07
℄. Parallel to it, various representations for real algebrai
 numbers
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 Programming, Arrangementsand a 
ouple of real root isolators exists; see [EK08b℄ for relevant parts in Cgal'sAlgebrai
_kernel_d pa
kage. The library also 
ontains other smaller 
lasses, whose�nal role in Cgal is not determined yet. Some of them will move mostly un
hanged,others 
an be expressed in terms of a more sophisti
ated design 
hosen for 
lassesthat already moved to Cgal. We omit details on this.SweepX 
ontains a generi
 sweep line algorithm [BO79℄ (see also �2.4.2 for a review ofthe algorithm) whose output is represented as Leda-graph enhan
ed with geomet-ri
 information. A
tually, it is based on Leda's implementation for line segmentinterse
tions [MN00, �10.7℄. The library also provides a generi
 implementation toperform regularized boolean set operations on polygons whose boundaries are de-s
ribed by 
urved ar
s. We stopped to develop this 
ode, as it is published undera spe
ial restri
tive li
en
e and Cgal's Arrangement_2 pa
kage o�ers mu
h more�exible and extendable 
ounterparts.In 
ontrast, we already extra
ted and improved an important module from SweepXas pa
kage in Cgal. A framework to represent points and ar
s on 
urves that 
an beanalyzed is now available as Cgal's Curved_kernel_via_analysis_2 pa
kage. Thispa
kage plays an important role for our work. We are using it instantiated withalgebrai
 
urves. Its details are presented in �2.4.4. The 
orresponding visualiza-tion [Eme07℄ also has already found its way into Cgal, and 
an even be used torender arrangements on a surfa
e; see �4.6.2.ConiX,CubiX,Al
iX Ea
h of these libraries implements the analysis of a single algebrai

urve and the analysis of pairs of them. ConiX has been implemented �rst andsupports 
urves of degree up to 2 (
oni
s, [BEH+02℄), while CubiX 
an deal with
urves of degree up to 3 (
ubi
s, [EKSW06℄). Al
iX is the newest library. Itsanalyses does not have any restri
tion on the degree of the supported planar 
urves;12see [EKW07℄, [EK08a℄. �2.3.3 repeats its main a
hievements. Very re
ently, thedevelopment of Al
iX has stopped, and its ingredients have been interfa
ed asCgal's new Algebrai
_
urve_kernel_2; we refer to �2.3.3 for more details. Theother libraries might be integrated as �lters (see �2.3.2) for low-degree 
urves. Further
lasses, su
h as 
ombinatorial representation in ConiX, will be integrated elsewherein Cgal.QuadriX The library 
urrently still implements two approa
hes with respe
t to algebrai
surfa
es of degree 2, so-
alled quadri
s. One approa
h uses a parameterization of theinterse
tion 
urves [DHPS07℄, while the other approa
h proje
ts them onto the xy-plane. For the latter, a spe
ialized planar 
urve (and pairs of them) 
an be analyzedand lifted ba
k [BHK+05℄. In this thesis, we show how to box the approa
h usingCgal's new hierar
hies.For a short time, we added algebrai
 surfa
es of arbitrary degree to this library.Obviously, this addition was only temporarily as the whole library is planned to bemaintained as a new pa
kage in Cgal, that is, the surfa
es already found their pla
ein Cgal's new Algebrai
_kernel_d pa
kage. Chapter 5 takes up the dis
ussion ofalgebrai
 surfa
es.12Theoreti
ally. In pra
ti
e, the required running time 
onstitutes limits on reasonable algebrai
 degreesof the 
urves.
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 and algebrai
 tool kit 53Main 
ontributors of Exa
us are the authors of [BEH+05℄ and Pavel Emeliyanenko,Mi
hael Kerber, and Sebastian Limba
h who joined more re
ently. Both libraries, Exa
usand Cgal, provide, besides other libraries, a large set of various 
lasses and tools on whi
hwe rely in this thesis. We 
ontinue to present our kit.2.3. The arithmeti
 and algebrai
 tool kit2.3.1. Arithmeti
 and number typesGeometri
 algorithms are 
losely 
oupled with arithmeti
. As we learned in �2.2, geometri
algorithms assume the real RAM, whi
h is not modeled by 
omputers. In 
ontrast, thehardware provides standardized �xed-size integers and IEEE 754 [IEE85℄ �oating-pointarithmeti
. Both have the drawba
k of limited pre
ision, that is, it is not possible to modelarbitrary large or pre
ise values. The hardware �oating-point numbers (like double) modelonly a �nite and dis
retized subset of Q ⊂ R, whi
h implies rounding errors. Both fa
tsgo against the 
onditions for the real RAM. In fa
t, also no software type exa
tly ful�llsthese 
onditions.Consider a bit-array of variable length, that models arbitrary-size integers. Here, thevariable length is a 
ontradi
tion to the 
onstant-time operations assumed. Similar forrational numbers modeled as a pair of integers. Usually, rational numbers are 
onsideredas the fundamental arithmeti
 type for geometri
 appli
ations, as it allows to input ex-a
t information, for example, the endpoints of a triangle. In terms of software, severallibraries are available to model arbitrary-size integer and rationals. Examples are Gmp [9℄Mpfi [11℄, Mpfr [12℄, Leda [10℄, and Core [4℄. A spe
ial subset of rational numbers,namely �oating-point numbers whose pre
ision 
an be determined at run-time, so-
alledbig�oats, are also provided by some of the libraries.But rational numbers are not the end of the road, as for 
ertain geometri
 operations,su
h as the 
omputation of the interse
tion of obje
ts, we qui
kly rea
h (real) algebrai
numbers of higher degree. So the dilemma is, how to deal with them, when only rationalarithmeti
 is e�e
tively available. As presented in �2.1.2 various methods exist to modelalgebrai
 numbers. The exa
t approa
h using algebrai
 expressions is implemented byCore's Expr number type and Leda's real number type. On the other hand, Cgalprovides a generi
 type to represent real algebrai
 numbers using a square-free polynomialand an isolating interval; see De�nition 2.16. Being su
h generi
 allows to sele
t both maintypes: For the interval boundaries usually a rational number is 
hosen, while intervals ofbig�oats are also 
ondu
table. The type of the polynomial's 
oe�
ients is also sele
table.Beyond integral 
oe�
ients, it is possible, for example, to represent roots of f ∈ Q(
√

2)[t].A spe
ial subset of algebrai
 numbers (for example to represent su
h 
oe�
ients) are�eld extensions by square-roots, for example, Q(
√

2). Cgal provides a number typeSqrt_extension that allows to represent one-root numbers α in the form α = a + b ·√c,where usually a, b, c ∈ Q. However, a nesting is also possible, that is, some 
ases requirethat a, b, c are already of type Sqrt_extension. This nesting poses no problem for thistype. Example usages are: Rotating 
urves by algebrai
 angles [BCW07℄, or representinga parameterization of the interse
tion 
urve of two quadri
s [LPP06℄. We give anotherin Chapter 3.All these libraries are freely available for open-sour
e a
ademi
 developing.
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 Programming, ArrangementsIn order to 
ombine related number types, Cgal de�nes an Arithmeti
Kernel 
on
ept.Two models are available: One for the number types of Leda and one for the numbertypes of Core. Ea
h 
lass 
onsists of type de�nitions for integers (Integer), rationals(Rational), exa
t �oating-point numbers (Exa
t_float_number), and algebrai
 numbersusing algebrai
 expressions (Field_with_kth_root). If not stated otherwise, we are usingthe Core-version (CORE_arithmeti
_kernel).Interval arithmeti
Performing arithmeti
 on exa
t algebrai
 numbers is 
ostly. However, it is often the 
ase,that an approximative solution su�
es to dedu
e the 
orre
t answer. Interval arithmeti
is one te
hnique to a
hieve this goal. Instead of an exa
t value, we store an interval thatapproximates the value from below and above, also 
alled the in
lusion property. Ea
harithmeti
 operation preserves this property, that is, the exa
t result of the operationis also 
ontained in the resulting interval. Several variants of interval arithmeti
 exists.Some of them try to minimize an intrinsi
 drawba
k of the method, namely the over-estimation after an arithmeti
 operation. In our setting, we rely on Boost's [2℄ intervalarithmeti
 
apabilities. Its implementation allows to 
hoose the number type of the intervalboundaries, for whi
h we typi
ally 
hoose rational numbers or Leda's big�oats. Note thatCore's BigFloat type already implements an interval. Interval arithmeti
 is usually 
hosenas a �lter, for example, to dete
t whether an algebrai
 expression may be equal to 0.2.3.2. FiltersIn geometri
 predi
ates we are mainly interested in the sign of an algebrai
 expression.Though, exa
t or multi-pre
ision arithmeti
 produ
es 
orre
t results, their usage is quiteexpensive 
ompared to the unit-
ost model of 
onstant-pre
ision �oating-point arithmeti
in hardware, whi
h often 
omputes an almost 
orre
t result. The error propagation isusually of small amount. A wrong sign happens to appear if the value of whi
h the signis sough is (
lose to) 0. Geometri
ally, we 
an identify degenerate or near-degeneratesituation for su
h 
ases. In 
ase the value is not (
lose) to 0, the 
omputed sign is usually
orre
t. The solution to this dilemma is a method that 
ombines approximative methodswith a 
orre
tness guarantee for the 
ase it su

eed. Before we dig into the details, let usintrodu
e the 
on
ept of a �lter generi
ally.De�nition 2.36 (Filter). A �lter is a te
hnique to 
ompute a de
ision with an approxima-tive method that also provides a 
erti�
ate saying that the 
omputed de
ision is identi
alto the de
ision when 
omputing it with an exa
t method.If the 
erti�
ate 
annot guarantee the 
orre
tness of the de
ision 
omputed by approx-imated methods, we 
all it a �lter failure. In this ine�e
tive 
ase, another method mustbe used to 
ompute the 
orre
t de
ision, for example, a �lter with more pre
ision, or theexa
t method.For a 
on
rete appli
ation it has to be 
he
ked, whether a �nally 
orre
t result isrequired. In the EGC paradigm, that we follow, this is mandatory. When utilizing a�lter it is expe
ted that it often su

eeds, and the 
osts of the remaining exa
t fall-ba
ks(where no �lter applies) will be amortized over many 
alls of a predi
ate. Finding theoptimal �lter is non-trivial, and depends on various fa
tors. The stru
ture of operations
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ate and how ea
h a�e
ts the 
omputational error are su
h fa
tors. On the otherside, the input data also in�uen
es the su

ess of a 
ertain �lters, as it fails more often in(almost) degenerate situations. Typi
ally, a 
as
ade of �lters is a good idea. It �rst triesthe less pre
ise and fastest one, and in 
ase of failures it 
ontinues with more pre
ise andmore expensive ones. We next present some �lter te
hniques used in geometri
 algorithms.Arithmeti
 �lters We already mentioned in the introdu
tion to �lters that inexa
t arith-meti
 
omputation often leads to 
orre
t result (e. g., in terms of a 
omputed sign). Variouste
hniques exploiting this fa
t exist. One of the easiest one is interval arithmeti
 that wealready introdu
ed in �2.3.1. Arithmeti
 expressions and polynomials 
an be evaluatedusing interval arithmeti
. It should be remarked, that a naive way may lead to unne
es-sarily bad results, or in other words: There exist evaluations s
hemes that minimize the(expe
ted) error.Interval arithmeti
 is a very e�
ient way to 
he
k, whether an arithmeti
 expression
an evaluate to zero or not: If the resulting interval does not 
ontain zero, the sign isdetermined. It depends on the appli
ation, of whi
h type the interval boundaries are. Itis very 
ommon to use hardware �oating-point arithmeti
 for this purpose. However, wemainly use rational arithmeti
, as the boundaries of isolating intervals of real algebrai
numbers are usually represented as su
h. This enables to qui
kly 
he
k, whether a poly-nomial at some algebrai
 α 
an be 0. For example, Algorithm 2.6 
an be enhan
ed withsu
h a �lter, that is, before 
omputing the 
ostly gcd. Anyhow, an even better �ltering ofa gcd-
omputation 
an be established with modular arithmeti
; see below.Interval arithmeti
 is a dynami
 �lter, that is, no prior analysis of the arithmeti
expression is required. To its 
ontrary, stati
 �lters apply an o�-line analysis of possibleerrors, and design the �lter with respe
t to this analysis [FV96℄. As we are not using stati
�lters, we skip their dis
ussion.Modular arithmeti
 Modern 
omputer algebra systems heavily rely on modular arith-meti
, whi
h also holds for the algebrai
 
omputations that we are exe
uting. Togetherwith the Chinese remainder theorem it speeds up several algebrai
 algorithms, like the g
dor the resultant 
omputation; see, for example, [vzGG99℄. In addition, it 
an be used asa very e�
ient �lter. The reason it that it is often possible to ex
lude that some value iszero by 
omputing its modular 
orrespondent with respe
t to one prime only. The modular
orrespondent requires only a �xed number of bits, whi
h is the 
ru
ial fa
t for the e�-
ien
y of the �lter. We want to mention that the vast majority of algebrai
 
omputations
ondu
ted in this thesis are �ltered with modular arithmeti
 in the a
tual implementation.For details see [Hem07b℄ and [HH07℄.Geometri
 �ltering Filters are not restri
ted to arithmeti
 expressions. An approximateversion of a geometri
 obje
t also allows to derive a 
orre
t de
ision in some 
ases. Awell-known te
hnique is to �lter a routine that 
omputes the interse
tions of two geometri
shapes. For that purpose ea
h obje
t 
an be enhan
ed with a bounding box. The rationaleof the intended �lter is, that two su
h obje
ts only interse
t, if their bounding boxesinterse
t. Figure 2.3 lists the three possible 
ases. Su
h boxes 
an be represented withrational or even fast �oating-point arithmeti
. If they are axis-aligned, their interse
tiontest redu
es to a few 
omparisons.
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 �ltering by bounding boxes
(a) Bounding boxesdo not overlap, thusno interse
tion (b) Bounding boxesoverlap, but no in-terse
tion 
ontained (
) Bounding boxesoverlap, an interse
-tion is 
ontainedWe exemplary mention the interse
tion tests of two ar
s on 
oprime 
oni
s. If theirbounding boxes do not interse
t, the �lter avoids to try to 
ompute interse
tion pointswhose 
oordinates are algebrai
 of degree up to 4. Other examples for applying boundingbox �lters are given in [PTT06℄ and [Ker08℄.Combinatorial dedu
tion We have already seen an example of 
ombinatorial dedu
tion,namely the m-k-Des
artes method, where additional information on a non-square-free poly-nomial allows to lead the Des
artes method to a termination.The rationale of a 
ombinatorial dedu
tion is to use available 
ombinatorial informationto simplify the problem, or to ex
lude a non-trivial set of solutions, similar to a bran
h-and-
ut strategy in 
ombinatorial optimization. In what follows, we often use the degree ofa polynomial as a bound on the number of possible solutions. An example is a spe
ializedimplementation to analyze algebrai
 surfa
es of degree 2 as it is 
ondu
ted in Exa
us'ConiX library. We present another appli
ation in in �5.4.2.2.3.3. Algebrai
 kernelsMost geometri
 predi
ates required in algorithms of 
omputational geometry are expressedin terms of algebrai
 
omputations. In order to be prepared for su
h 
omputations Cgalfollows the generi
 programming paradigm to spe
ify algebrai
 kernel 
on
epts.Con
eptsInCgal, there is no single algebrai
 kernel 
on
ept. In 
ontrast, the proje
t has introdu
eda hierar
hy of 
on
epts that de�nes what 
omputations are expe
ted from di�erent kindsof algebrai
 kernels. The 
on
epts have been designed by the author in 
ollaborationwith Mi
hael Hemmer, Menelaos Karavelas, and Monique Teillaud in the lifetime of theA
s-proje
t [1℄ and improved in a series of te
hni
al reports [BHK+06a℄, [BHKT07℄. The�nal review by Ron Wein [Fab07℄ lead to the 
urrent version [BHKT08℄ that we sket
hnext. The hierar
hy 
onsists of three layers. Ea
h layer expe
ts basi
 algebrai
 types andoperations on them.Algebrai
Kernel_d_1Types:
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• Polynomial_1 for univariate polynomials
• Coeffi
ient its 
oe�
ient type
• Algebrai
_real_1 for real algebrai
 numbers (real roots of univariate polyno-mials)
• Boundary is the type for the boundaries of isolating intervalsOperations:
• On polynomials, the following self-explaining basi
 operations are expe
ted:Is_square_free_1, Make_square_free_1, Square_free_fa
torize_1, andIs_
oprime_1, Make_
oprime_1.
• Solve_1 is expe
ted to implement a real root isolation, while Sign_at_1 
om-putes the sign of a polynomial at a given algebrai
 real.
• With Lower_boundary_1 and Upper_boundary_1 it is possible to approximate asingle algebrai
 real, while Refine_1 takes 
are to improve the approximation.
• Two real algebrai
 numbers 
an be 
ompared with Compare_1, and if they arenot equal) Boundary_between_1 returns an intermediate value between themAlgebrai
Kernel_d_2This 
on
ept re�nes the univariate 
on
ept, by adding bivariate types and operations.Types:
• Polynomial_2 for bivariate polynomials (using Coeffi
ient)
• Algebrai
_real_2 for zero-dimensional solutions of equational systems de�nedby bivariate polynomialsOperations:
• The polynomial operations naturally extend to the bivariate 
ase:Is_square_free_2, Make_square_free_2, Square_free_fa
torize_2, andIs_
oprime_2, Make_
oprime_2.
• Central operations of the 
on
ept are to 
ompute the zero-dimensional solu-tions of bivariate systems with Solve_2 and to determine the sign of a bivariatepolynomial at a given Algebrai
_real_2 with Sign_at_2.
• For a single solution, a

ess to its individual 
oordinates is granted by Get_x/y_2that returns instan
es of type Algebrai
_real_1. The two 
oordinates 
anbe approximated independently as �interval� with Lower_boundary_x/y_2 andUpper_boundary_x/y_2; a 
oordinate-spe
i�
 approximation 
an be improvedwith Refine_x/y_2.
• For possible performan
e tuning, spe
ialized (lexi
ographi
) 
omparisons ontwo solutions are expe
ted: Compare_x_2, Compare_xy_2, Compare_y_2. If a
oordinate is not equal, it is possible to 
ompute a value between two withBoundary_between_x/y_2.Algebrai
KernelWithAnalysis_d_2This most re�ned 
on
ept expe
ts two additional types that interpret bivariate poly-nomials as real algebrai
 
urves in the plane; see De�nition 2.22.
• Curve_analysis_2 analyzes a 
urve in the spirit of a two-dimensional 
ylindri-
al algebrai
 de
omposition, that is, a y-per-x-view is established. To be more
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(b) Unbounded 
urveFigure 2.4. The analysis of a single 
urve provides information on the 
urve at ea
h x-
oordinate, in parti
ular the 
riti
al ones, and for representative boundaries in the openintervals indu
ed by them. For ea
h queried x-
oordinate a status-line is 
onstru
tedthat stores how often the 
urve interse
ts the line, the ar
 number and in
iden
e numbersfor ea
h interse
tion and a geometri
 approximation (green box). The analysis alsoprovides a

ess for information on possible verti
al asymptotes of the 
urve; this 
aseis not exampled in the �gure.pre
ise, for ea
h x-
oordinate x0 ∈ R it is possible to a

ess a Status_line_
a_1that provides information about the 
urve's geometry and topology at x0: Thenumber of distin
t interse
tions of the 
urve with the line x = x0, their 
oordi-nates, and how bran
hes of the 
urve to the left and right are 
onne
ted withthese interse
tions (also known as in
iden
e numbers); see Figure 2.4 for exam-ples of analysis of single 
urves and �2.1.4 for basi
 terminology on (algebrai
)
urves.
• Curve_pair_analysis_2 provides, in the same spirit, y-per-x-information forpairs of 
oprime 
urves at ea
h x-
oordinate. For a given x0 ∈ R an instan
e ofStatus_line_
pa_1 des
ribes the pattern how the two 
urves interse
t the line

x = x0. Figure 2.5 gives an example of an analysis for a pair of 
urves.The 
ru
ial fa
t is, that a given 
urve or pair of 
urves only has a �nite number ofdi�erent lo
al topologies. That is, if only the topologi
al information is desired, itsu�
es for a 
urve (or a pair of 
urves) to 
ompute the status line instan
es at all
x-
oordinates of the event points and at a (rational) representative x-
oordinate forea
h of the intervals that are indu
ed by the events' x-
oordinates. Implementationsare re
ommended to take 
are of it and to bene�t from this issue. Solely, the geomet-ri
 information at a spe
ially queried x-
oordinate requires lo
alized 
omputations,that is, to 
ompute another status line at a non-representative point in an indu
edopen interval. In general, it is advised to 
ompute status lines only on-demand, andto 
a
he them after they have been 
omputed for the �rst time.ModelsCon
epts for algebrai
 kernels should also be modelled. Some already have been published,ea
h implementing a di�erent strategy.
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gFigure 2.5. Analysis of a pair of 
urves f and g: For ea
h 
riti
al x-
oordinate andfor ea
h indu
ed open interval, we 
onstru
t a status line that stores a string re�e
tingthe interse
tion pattern of the two 
urves in in
reasing y-order along the line. The
hara
ter 'I' in the string en
odes an interse
tion of 
urves f and g.
• A purely univariate model has been proposed by Lazard et al. [LPT08℄, whose polyno-mial's 
oe�
ient type isGmp's type for arbitrary-length integers, while the boundarytype usesMpfr. Real roots are isolated by using the interval Des
artes method takenfrom Rs [14℄, [RZ03℄. The re�nement of their intervals applies quadrati
 re�nementby Abbot [Abb06℄. There is no 
hoi
e of number types.
• The Synaps proje
t [16℄ also implements a univariate model for whose real root iso-lation several approa
hes are available: Using Sturm sequen
es, using sleeves (i. e.,lower and upper bounds on the polynomial), and several implementations for 
on-tinued fra
tions [TE08℄ (some with enhan
ed support from the Ntl [13℄). Again,Synaps de�nes the number types.
• Cgal implements a univariate algebrai
 kernel 
lass-template 
alledAlgebrai
_kernel_d_1< Algebrai
RealRep, RootIsolator >See [HL07℄ for details. It has its origin in Exa
us' NumeriX library. Its �exibil-ity 
onsists of the parameters: The �rst allows to 
hoose the representation of thealgebrai
 real type while the se
ond determines the method for real root isolation.From the �rst parameter it also dedu
es the type of the univariate polynomial, its
oe�
ient type, and the boundary type of the isolating intervals.The authors provide di�erent 
hoi
es for ea
h parameter: For algebrai
 reals there ex-ist Algebrai
_real_rep using rational boundaries and Algebrai
_real_rep_bfi thatrepresents boundaries as intervals of big�oats. Quadrati
 
onvergen
e for inter-val re�nements is enabled by using Algebrai
_real_quadrati
_refinement_rep_bfi;see [Abb06℄. None of them is restri
ted to a 
ertain number type to represent thepolynomial's 
oe�
ients. Several valid 
hoi
es exist in Core, Leda, and Cgal;even Cgal's Sqrt_extension type is 
on
eivable.
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hoi
e between the Des
artes method as proposedin [CA76℄ and the bitstream Des
artes method approximating the exa
t 
oe�
ientswith ever-growing pre
ision; see [EKK+05℄ and [Eig08℄. If not stated otherwise, wesele
t as default the b�-version with Abbot's re�nement and the bitstream variantfor real root isolation.The di�erent models have been 
ompared with ea
h other on polynomials with di�erent
hara
teristi
s (in
reasing bit-length of 
oe�
ient, in
reasing degree, Mignotte polynomi-als, and more) [EHK+08℄. However, there is no superior implementation for every input.We only want to remark that for large bit-lengths, the bitstream Des
artes method s
alesbest; we expe
t remarkable bit-lengths in the appli
ations that are presented in Chapter 4and Chapter 5.Classes that model bivariate 
on
epts are also available.
• Cgal's Algebrai
_kernel_for_
ir
les_2_2 is a model of the Algebrai
Kernel_d_2
on
ept. It supports the algebrai
 
omputations that are demanded from Cgal'sCir
ular_kernel_2. In parti
ular, the types to represent polynomials are spe
ializedto 
ir
les, and the types for real algebrai
 solutions are limited in its degree by 2.More details 
an be found in [BHK+06b℄ and [PT07℄
• Very re
ently Mi
hael Kerber has re-interfa
ed the ingredients of Exa
us' Al
iXlibrary whi
h now forms Cgal's �rst model of the Algebrai
KernelWithAnalysis_d_2
on
ept, 
alled Algebrai
_
urve_kernel_2 (or ACK_2 for short in this thesis). It re-�nes a given univariate algebrai
 kernel. Central to this model are the analyses of
urves and of pairs of them. This is very advantageous in 
ases where the kernelis mainly used be
ause of these features. On other side, the resulting inevitable

y-per-x-view also has some drawba
ks with respe
t to other fun
tionality: Due tothis proje
tion ansatz the representation of y-
oordinates is not expli
it but onlyapproximative. That is, a symboli
, usually 
ostly, 
omputation is required wheneventually a

essing (Get_y_2) or 
omparing (Compare_y_2) arbitrary y-
oordinates.Thus, it is re
ommended to 
he
k whether the proje
ted appli
ation a
tually 
ravesfor these operations. Another example is the implementation of Solve_2 that �rstanalyzes two algebrai
 
urves and then queries the 
orresponding pair to report thezero-dimensional solutions. This might pose a 
omputational overhead, and oneshould 
arefully 
he
k whether it 
an amortize. As we mainly 
ompute arrange-ments, we are not su�ering from these problems. All required predi
ates providedby the Curved_kernel_via_analysis_2 fully rely on the analyses of 
urves dire
tly,using exhaustively the (
ombinatorial) y-per-x-information; see �2.4.4.It should be remarked, that implementing robust and e�
ient 
urve analyses is aresear
h topi
 on its own and we desist from going into full detail. However, below,we review main results from this area of resear
h and emphasize, in parti
ular, high-lights of Cgal's new fully-�edged bivariate algebrai
 kernel. For more details on thekernel's design, we refer to [EK08b℄.
• This referen
e a
tually des
ribes a prequel of the previously des
ribed kernel. Thisprequel is still available internally, whi
h allows to 
ope with still existing analysesof 
urves in Exa
us's libraries: Te
hni
ally, the Algebrai
_
urve_kernel_2 
an be
ompiled in wrapping mode. Then it expe
ts, besides the parameter for the univari-ate kernel, a se
ond parameter: CurvePair_2. The parameter must be instantiatedwith an Exa
us-type that analyzes a pair of 
urves. Note that this type 
omprises
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us' 
ounterpart of the analysis of a single 
urve. In other words:The Algebrai
_
urve_kernel_2 in wrapping mode mainly rewrites the depre
ated in-terfa
e of Exa
us-
lasses to ful�ll the Algebrai
KernelWithAnalysis_2 
on
ept. Foursu
h 
lasses for pairs of 
urves exists:� Coni
_pair_2 taken from ConiX, for algebrai
 
urves of degree at most 2;see [BEH+02℄ and [Hem02℄.� Cubi
_pair_2 taken from CubiX, for algebrai
 
urves of degree at most 3;see [EKSW06℄ and [Eig03℄.� P_quadri
_
urve_pair_2 taken from QuadriX, for algebrai
 
urves that rep-resent proje
ted silhouettes and interse
tions of quadri
s. Su
h 
urves do notex
eed a degree of 4; see [BHK+05℄ and [Ber04℄.� Algebrai
_
urve_pair_2 taken from Al
iX, for algebrai
 
urves of arbitrarydegree; see [EKW07℄ and [EK08a℄. These 
lasses are not maintained anymore.The 
ode already has moved into the non-wrapping Algebrai
_
urve_kernel_2of Cgal.The wrapping allows to still use the spe
ialized analyses, in parti
ular, for 
oni
s, and,as we see in Chapter 3, for proje
tions of quadri
 interse
tion 
urves. Of 
ourse, thelong-term plans are to 
onsider the low-degree analyses as possible �lters for the non-wrapping Algebrai
_
urve_kernel_2. However, this requires reliable performan
e
omparisons and some developing time.
• A kernel that 
an deal with rotations is 
urrently in an experimental status. TheRotated_algebrai
_
urve_kernel_2 allows to rotate algebrai
 
urve around a givenpoint by angles α whose sin is a (nested) one-root number. For example, sin(45◦) =

1
2

√
2. To do so, the kernel uses as Coeffi
ient type Cgal's Sqrt_extension numbertype. Further details 
an be found in [BCW07℄ (for 
oni
s) and [Ker℄.

• Finally, there exists Filtered_algebrai
_
urve_kernel_2 ful�lling the most re�nedAlgebrai
KernelWithAnalysis_2 
on
ept. It tries to prevent 
ostly algebrai
 
omputa-tions, like resultant 
omputations, by upstream �lters using approximative boundingboxes. Details and results 
an be found in [Ker08℄.Analyzing algebrai
 
urvesThe e�e
tivity and e�
ien
y of an exa
t bivariate kernel model 
an depend on the under-lying analysis of algebrai
 
urves. In parti
ular, if there is no restri
tion on the degree,the exa
t analysis of algebrai
 
urves and 
omputing the solutions of a bivariate zero-dimensional polynomial systems are 
hallenging tasks. The 
ad-approa
h, as presentedin �2.1.6, states a generi
 solution.If only aiming for the analysis of a single 
urve, it is very popular to restri
t the
omputation to its topology; see [GVEK96℄, [GVN02℄, [SW05℄, and [MPS+, �3.6℄. It is
ommon that su
h approa
hes 
hose a generi
 
oordinate system This avoids the handlingof degenerate situations with respe
t to the 
oordinate system (e. g., 
overti
al x-extremepoints). Only some of them are available in software, and none of them ful�lls the desiredAlgebrai
KernelWithAnalysis_2 
on
ept.For more than one 
urve, most solutions13 restri
t the maximal allowed degree, for ex-ample 
ir
les [DFMT02℄, [WZ06℄, 
oni
s [Wei02℄, [BEH+02℄, [EKP+04℄, 
ubi
s [EKSW06℄,13Some of them a
tually do not fo
us on the analysis of 
urves, but have to do it somehow in order tosupport arrangements of theses 
urves.
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ted interse
tions of quadri
s [BHK+05℄. There also exist solutions not restri
tedin the degree, but spe
ialize for a 
ertain input, namely Bézier 
urves [HW07℄ and non-singular algebrai
 plane 
urves [KCMK00℄, [Wol03℄. As mentioned before, some of them
an be used to de�ne a model of the Algebrai
KernelWithAnalysis_2 
on
ept. However, thereare only two implementations, that pose no restri
tion on the input 
urves: Synaps [16℄
laims to ful�ll the the most powerful algebrai
 kernel 
on
ept; however, detailed informa-tion and a

ess to the implementation is missing. The 
hoi
e of number types is �xed.The se
ond one is the matured implementation in Cgal's Algebrai
_
urve_kernel_2.This is the most generi
 implementation and full details are given in a sequen
e of publi-
ations [Ker06℄, [EKW07℄, [EK08a℄, [Ker℄. The solutions has several advantages. It
• ful�lls the Algebrai
KernelWithAnalysis_2 
on
ept,
• has no restri
tions on the input, that is, 
urves 
an have arbitrary degree, and 
on-tain degenera
ies, like singularities, 
overti
al interse
tions, verti
al asymptotes, andisolated points, and
• is available in Cgal.14Thus, its key 
ontributions 
onsist in the exa
t topologi
al and geometri
al analysis ofsingle arbitrary real algebrai
 
urves and pairs of them.Its e�
ien
y is established by several levers. One is an extensive 
a
hing strategy,another reason is the lazy-evaluation s
heme, that is, 
ertain results are only 
omputedon demand and then stored for further queries. However, the main lever for e�
ien
yis a 
lever 
ombination of (unavoidable) exa
t 
omputations, like resultant and greatest
ommon divisor, with 
erti�ed numeri
al (�lter) methods, for real root solving. The 
hosenapproximative methods often repla
e usually 
ostly symboli
 
omputations, while stillguaranteeing the 
orre
tness of the overall result. The 
entral approximative tool is thebitstream Des
artes method (see �2.3.4) for the square-free 
ase, and its m-k-variant fornon-square-free polynomials. It is used to 
ompute the lo
al topology of a 
urve at somealgebrai
 x-
oordinates α, by mainly isolating the real roots of fα := f(α, y) ∈ R[y],where f is the de�ning bivariate polynomial of a 
urve. The value α is 
hosen amongthe x-
oordinates of the 
urve's 
riti
al events whi
h are usually of non-trivial degree,and rational values in between. How to realize this te
hni
ally is des
ribed in �2.3.4.However, there are still 
ases, where su
h approximate methods fail. For exa
t symboli

omputations, the Sturm-Habi
ht sequen
e (see �2.1.1, also known as (signed) subresultantsequen
e [BPR06, �4℄) is used. In fa
t, it is the 
omputation of this sequen
e that mainlylimits the pra
ti
ality of the approa
h for higher degrees. A key goal for the future is torepla
e the resultant 
omputation with a modular version, as it it already done for the

gcd; see [Hem08, �2.3℄An important information is, that the obtained analyses are expressed with respe
tto the original 
oordinate system, that is, they do not expe
t the input 
urves to be ingeneral position. However, an internal 
hange of 
oordinates (a shear; see �2.1.4) 
an beapplied, for example if the 
urves have verti
al asymptotes or 
overti
al 
riti
al points. Asubsequent ba
k-shear step re
overs the original geometri
 information from the shearedversion. Besides the polynomial sequen
es, it is the shear-and-ba
k-shear approa
h thathas signi�
ant in�uen
e on the running time. Ideas to avoid the 
hange of 
oordinatesmore often might be implemented in a future version.14Contained in an internal release, but subje
t to be publi
ly available with one of the next o�
ialreleases of Cgal.
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 and algebrai
 tool kit 63Our 
hoi
e In our 
entral 
hapters we are demanding for bivariate algebrai
 kernels withanalyses that handle 
urves of degree 4 and even more. For that purpose, we mostlyrely on Cgal's new Algebrai
_
urve_kernel_2, espe
ially in Chapters 4 and 5, while theexperiments in Chapter 3 are still with respe
t to the quadri
-spe
i�
 analyses of proje
ted
urves implemented in Exa
us' QuadriX library.The a
tual reason why we are demanding for su
h kernels is to 
ompute arrangements ofalgebrai
 
urves. We dis
uss arrangements in �2.4, in parti
ular two-dimensional ones. Forthat purpose a set of geometri
 types and operations is required. A generi
 implementationproviding these is presented in �2.4.4; it relies on analyses of 
urves.2.3.4. Interfa
es for the bitstream Des
artes methodWe 
lose our dis
ussion of the algebrai
 tool kit with te
hni
al details on how to interfa
ethe bitstream Des
artes method. In fa
t, there are two mu�s to 
ouple. For both thegeneri
 programming paradigm does a good job. The implementation of the bitstreamDes
artes method (BDM) provided by Arno Eigenwillig maintains a subdivision tree whosenodes and leaves represent intervals enhan
ed with sign variations. For a given polynomial,the tree is explored by interfa
ing the polynomial's inexa
t 
oe�
ients with an instan
eof a model that ful�lls the BitstreamDes
artesRndlTreeTraits 
on
ept. We �rst present the
on
ept, followed by a list of available models. On the other side, a potential user isexpe
ting a very simple interfa
e to get the isolating (and re�neable) intervals of the realroots for a queried polynomial with bitstream 
oe�
ients. We �nally dis
uss solutions howto interfa
e these pie
es of information.The traits 
on
ept for the bitstream Des
artes methodAn instan
e of a traits 
lass modelling a polynomial with bitstream 
oe�
ients and ful�llingthe BitstreamDes
artesRndlTreeTraits 
on
ept is expe
ted to provide the following types.Coeffi
ient The model-spe
i�
 
oe�
ient type supplied during 
onstru
tion.Integer A type for in�nite-pre
ision integer arithmeti
 equipped with operator>>, andoperator<<. Examples are leda::integer or CORE::BigInt.Boundary Instan
es of this type are used to express 
omputed interval boundaries. Exam-ples are Exa
t_float_number< Integer >, leda::rational or CORE::BigRat).It is also required to de�ne a small set of fun
tors related to the types whi
h mainlyensure that one 
an approximate a Coeffi
ient 
 to any arbitrarily small absolute error
2−p, p ∈ Z and to deliver that approximation s
aled with 2p as an Integer i. Another ex-pe
ted fun
tor is responsible to lo
ate the leading 1-bit in the bitstream of the polynomial'sleading 
oe�
ient.The main fun
tors are a

essed only on
e for a single polynomial. This enables thatthe providing instan
e 
an maintain an internal status, An example is to hide some non-trivial approximation or evaluation pro
ess. This is sometimes the reason that enables theisolation at all; below, we present su
h a model. Finally, there is also a fun
tor to 
onvertthe internal representation of the intervals' boundaries using two Integer and one long, tothe user-supplied type Boundary.



64 Algebrai
 Foundations, Geometri
 Programming, ArrangementsModelsThe �rst model that ful�lls BitstreamDes
artesRndlTreeTraits a
tually wraps a polyno-mial f , whose 
oe�
ients are integral and exa
tly known. At �rst glan
e, this strategyseems weak-minded. Why do we not use all pie
es of information that are available? Theanswer is simply that not all information might be required. Remember that the isolation
ounts the number of sign 
hanges of a polynomial in order to determine a bound on thenumber of real roots in an interval. But 
omputing a sign only needs a large pre
isionif it is zero or 
lose to zero. In numeri
ally more stable situations less pre
ision usuallysu�
es to 
ompute the 
orre
t sign. Thus, the bitstream Des
artes method �rst ask for arough approximation of the 
oe�
ients (ea
h normalized to be 
ontained in [−1, 1]), anddemands for more bits only until it is able to de
ide the Des
artes test. Only in degenerateor near-degenerate 
ases, full pre
ision is essential. For further details, we refer to [HL07℄and [EHK+08℄, that also 
ontain various sets of experiments, even in 
omparison withother real root isolators.The se
ond model isolates the real roots of a polynomial with true non-rational 
oef-�
ients, namely fα := f(α, y) ∈ R[y], where f ∈ Z[x, y], and α ∈ R in integral intervalrepresentation α =̂(p; I). We identi�ed this setting in �2.3.3 among the task to analyzealgebrai
 
urves. Remember that I is re�neable to arbitrary small length, whi
h opensthe door to approximate fα's 
oe�
ients to any pre
ision using interval arithmeti
. Aninstan
e of su
h a traits is 
onstru
ted from f and α and keeps the 
urrent approximationof α as internal status. In addition, the traits instan
e maintains a map to 
a
he already
omputed approximations if needed for another 
oe�
ient. This is basi
ally 
ru
ial, as itis re
ommended to only provide the number of bits of a 
oe�
ient 
urrently requested bythe bitstream Des
artes method. Otherwise, too mu
h pre
ision 
an have a negative e�e
ton the method's performan
e. Although the Des
artes test de�nitely 
omputes the 
orre
tresult, it will spend too mu
h time due to overwhelming pre
ision and se
ond, 
omputingmany bits is also a 
ostly task on its own.Very re
ently, a new generi
 model has been added: Bitstream_
oeffi
ient_kernel. Itimplements all ne
essary fun
tions in terms of two simple operations on the Coeffi
ient:
• given a 
oe�
ient c, 
ompute its approximation as interval of Bigfloat numbers ofa demanded pre
ision
• 
he
k whether c = 0Observe that the se
ond a
tually 
ontradi
ts the �bitstream� philosophy, but some-times, it is possible (by �lters or symboli
 
omputations) to de
ide this test. In the 
asethat this test is available, the model is able to support the 
omputation of a stronger start-ing interval for the a
tual real root isolation. We remark that the previous two modelsalready rely on this wrapper.In the spirit of the se
ond model, we present in �5.4.2 (page 228 �) another 
lass thatmodels the BitstreamDes
artesRndlTreeTraits 
on
ept in order to isolate the real roots of atrivariate integral polynomial whose x- and y-
oordinates are substituted with algebrai
numbers.Maintaining the subdivision treeWe have learned that the Des
artes method 
an be modelled as a binary subdivisiontree whose 
orre
t traversal is essential in some 
ases, for example, in the m-k-variant.



2.4. Arrangements 65Thus, besides the model of the BitstreamDes
artesRndlTreeTraits 
on
ept, a 
lass is requiredthat implements Algorithm 2.9 or one of its variants. It is responsible to initialize thesubdivision tree and to update it with respe
t to the 
omputed sign variations. That is,for the standard approa
h, it applies breadth-�rst sear
h until only intervals with signvariation 0 or 1 are left, while for the m-k-variant it also has to 
he
k the additionaltermination 
onditions; see �2.1.2. The polynomial itself is interfa
ed by the user with aproper instan
e of a bitstream traits. He a
tually does not 
are about any internal treemaintenan
e. In 
ontrast, he is �nally aiming for basi
 interests su
h as the number ofreal roots, the left and right boundaries for the isolating intervals, and a lever to re�neea
h. For 
ertain variants, for example, the m-k-method, an extended set of informationis expe
ted. We exemplary mention to 
he
k whether an isolating interval surely 
ontainsa simple or multiple root, or whi
h interval 
ontains the multiple root.Cgal's Bitstream_des
artes 
lass is a model of Cgal's RootIsolator 
on
ept, thatis, it 
an be used as a root isolator in the generi
 univariate algebrai
 kernel that weintrodu
ed in �2.3.3. It extensively uses C++ derivations and virtual fun
tions in order tospe
ialize with respe
t to some variants. For ea
h variant (
ontaining the standard andthe m-k-method) an individual 
onstru
tor exists. Variant-spe
i�
 base 
lasses ensure themaintenan
e of the subdivision tree with respe
t to the 
onstru
ted instan
e.A

ess to information is given by some self-explaining members: number_of_real_roots,left_boundary(int i), right_boundary(int i), and refine_interval(int i). Internally,virtual fun
tions dispat
h among the di�erent variants, whi
h ensures that (the 
orre
t leafof) the 
orre
t tree is a

essed. Calls to the members is_
ertainly_simple_root(int i)and is_
ertainly_multiple_root(int i) are only allowed in 
ase the m-k-variant 
onstru
-tor has been used. Otherwise, virtual fun
tions look-ups indi
ate an error. The dete
tionof more than one multiple root by the m-k-variant triggers to throw a C++-ex
eption. It
an be 
aught in order to trigger a di�erent way, for example, using a shear.As �nal note, we mention that for the analysis of an algebrai
 
urve there exists aspe
ial ba
k-shear variant [Ker06℄. In �5.4.2 we present a variant, that is a
tually abusingthe interfa
e to merge various root isolators. But for now, we skip further details.2.4. ArrangementsArrangements are widely known in the �eld of 
omputational geometry. They have beenstudied sin
e de
ades serving as key ingredients for many theoreti
al results and pra
ti
alappli
ations.De�nition 2.37 (Arrangement). Given a d-dimensional 
onne
ted spa
e D and a �niteset of geometri
 obje
ts O that reside in D. The arrangement A(O) is the subdivision of
D indu
ed by O into a �nite number of relatively open 
ells of dimension 0, 1, . . . , d. A
d-dimensional 
ell in A(O) is a maximal 
onne
ted subset of D that is not interse
ted byany obje
t in O.The restri
tion to �nite number of 
ells is quite natural, as otherwise, the des
riptionof a subdivision with an unbounded number of 
ells 
an only be established if it has aspe
ial stru
ture, for example, a periodi
 behavior.First resear
h on arrangements 
on
entrated on theoreti
al results espe
ially on lineararrangements [Ede87℄. It turned towards the analysis and 
omputation of arrangements
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ed by 
urved obje
ts; see [SA95℄, [Hal04℄, [AS00℄. While most of these results 
on-
entrate on theoreti
al aspe
ts, pra
ti
ality issues also 
ame to the fore of resear
h in pastyears. This 
omprises to strengthen robust implementations and to improve the usabilityof arrangements. A detailed survey is given in [FHK+, Chapter 1℄ that we re
ommend forfurther reading. Our 
ontribution pursues the work on arrangements in this spirit, andespe
ially enlightens the spe
ialty of two-dimensional arrangements in a three-dimensionalworld.Arrangements are a popular and important (sub)stru
ture in various �elds. Well-knownexamples are 
omputer vision, robot motion planing, geographi
 information systems, and
omputer-aided biology; see for examples [HS94℄, [HS98℄, [FH00℄, [CL07℄. These and otherappli
ations bene�t from big advantages of an arrangement: It provides exa
t a

ess to a
ontinuous problem in dis
retized 
hunks, that is, it models the de
omposition of D intoa �nite number of (open) 
ells, whose boundaries are des
ribed with a �nite number ofelements. The representation is 
omplete, that is, no detail for a given input is missing.Often, problems 
an be redu
ed to operations on arrangements, for example, existen
ede
isions 
an be expressed in terms of point lo
ation. Or the theoreti
al 
omplexity analysison arrangements 
an serve as a sour
e of bounds, if one 
an formulate another problemin terms of a spe
ial arrangement, or just one of its 
ells. One te
hnique to transform aproblem into �arrangement�-lingo is duality, that is surveyed in [dBvKOS00, Chapter 8℄.We desist from 
olle
ting the wide range of theoreti
al results on arrangements in order to
on
entrate on the aspe
ts of algorithm engineering when aiming for a generi
 and e�
ientimplementation. Questions here are: How to 
ope with degenera
ies? How to 
ompute anexa
t result?Let us start with arrangements where D = R3.Problem 2.38 (Three-dimensional arrangement). Given a set of surfa
es S in R3, 
om-pute the arrangement A(S) indu
ed by S, that is, 
ompute a representation of the sub-division of R3 indu
ed by S. The resulting 
ells of dimension 0, 1, 2, and 3 are 
alledverti
es, edges, fa
es, and volumes.We want to spot that the de�nition makes no assumptions on how surfa
es are de�ned,ex
ept that they indu
e a �nite number of 
ells. In �2.1.5 we introdu
ed algebrai
 surfa
eswhi
h form the 
entral geometri
 input obje
ts throughout this thesis. We are not awareof robust 
ode that implements Problem 2.38 for su
h (generi
) surfa
es. We 
an restri
tto the linear 
ase. An arrangement indu
ed by the 
losure of half-spa
es under boolean setoperations in 
onstituted by Cgal's Nef_3 pa
kage; see [HKM07℄ and [Ha
07℄. Thus, theimplementation supports non-manifold situations, as for example tight-passages requiredin robot motion planning. The basis of this implementation goes ba
k to Nef's seminalbook on polyhedra [Nef78℄. In its representation, ea
h vertex is surrounded by a so-
alled sphere-map whi
h en
odes the lo
al neighborhood around the vertex. Elements ofdi�erent neighborhoods are 
onne
ted with respe
t to the topology indu
ed by the givenhalf-spa
es. These 
onne
tions are stored in a stru
ture 
alled the Sele
tive Nef Complex(SNC). Although this idea is promising to work also for 
urved surfa
es, we do not followthis strategy in Chapter 5, but use elimination theory, whi
h leads us to two-dimensionalarrangements.Problem 2.39 (Two-dimensional arrangement). Given a set of 
urves C in D, with
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dim(D) = 2, 
ompute the arrangement A(S) indu
ed by C, that is, 
ompute a repre-sentation of the subdivision of D indu
ed by C. The resulting 
ells of dimension 0, 1,and 2 are 
alled verti
es, edges, and fa
es.In 
ontrast to the three-dimensional 
ase, we here let the 
hoi
e of the a
tual domain
D open. For this ba
kground information we set D = R2 and interpret it as the xy-plane,a quite natural setting when 
onsidering arrangements. However, Chapter 4 interprets
D = R2 only as a spe
ial 
ase of a two-dimensional parametri
 surfa
e; see De�nition 2.30.Similar to Problem 2.38, the type of 
urves is not spe
i�ed, however they respe
t the usualde�nitions.De�nition 2.40 (Curve). A 
urve is a fun
tion γ : I → D with1. I is an open, half-open, or 
losed interval with endpoints 0 and 1;2. γ is 
ontinuous and inje
tive ex
ept for 
losed 
urves where we allow γ(0) = γ(1);3. if 0 6∈ D, that is, the 
urve has no start point, the 
urve starts at in�nity or morepre
ise: limt→0+ |γ(t)| =∞. We have a similar 
ondition if 1 6∈ D;The task at issue is to transform the 
ontinuous problem into a �nite, dis
retizedrepresentation by means of 
ombinatorial algorithmi
 steps. As already learned in �2.2,su
h steps are driven by evaluations of predi
ates, that is, by 
ontinuous fun
tions whoseoutput is dis
rete. This simpli�
ation of the 
ontinuousness qui
kly opens the door towrong results, espe
ially in numeri
ally unstable situations. Before we present the twomain algorithmi
 (and 
ombinatorial) approa
hes to 
ompute A(C) in �2.4.2, we introdu
ein �2.4.1 the data stru
ture that is used to represent a two-dimensional arrangement.2.4.1. The Doubly-Conne
ted-Edge-List (D
el)A well-known data stru
ture to represent two-dimensional subdivisions is the so-
alleddoubly-
onne
ted-edge-list, or D
el for short [dBvKOS00, �2.2℄. This data stru
tureallows easy and 
onvenient 
onstru
tions, updates, and queries of subdivisions. We give ashort introdu
tion to the D
el, while [Ket07℄ gives full details and referen
es to similarstru
tures.A D
el (mainly) 
onsists of three types of kinds or re
ords, namely verti
es, halfedges,and fa
es. It provides methods to insert and delete re
ords, Euler operators, and iteratorsto traverse the stru
ture. All re
ords of one type are stored independently from othertypes in either double-
onne
ted lists or 
ontainers. Ea
h single re
ord 
an be a

essed bya handle (see for example [Ha
07℄). Ea
h item also stores its own adja
en
y and in
iden
erelations with respe
t to other re
ords. In addition, ea
h vertex and ea
h halfedge isasso
iated with geometri
 information.Halfedge Central items to the stru
ture are halfedges. A halfedge is dire
ted and always
oexists with its twin halfedge of opposite dire
tion. The two twins are 
onne
tedby pointers, and as a pair they represent a geometri
 
urve that is not interse
ted inits interior by any other 
urve stored along with halfedges in the D
el-instan
e.The dire
ted halfedge points to a vertex. Is also has an impli
it in
ident fa
e toits left whi
h is usually referen
ed by a pointer. Both pointers are not required bya minimal D
el that optimizes storage. However, for reasons of 
onvenien
e ande�
ien
y, it is re
ommended and usual to in
lude them. In 
ontrast, a pointer to the
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ident fa
e is inevitable. It has to hold, that theorigin of the next halfedge is identi
al to this halfedge's destination. In fa
t, the nextand the twin pointer are the only mandatory ones, all other pointers are optional �though re
ommended.Vertex A vertex represents a zero-dimensional feature of the de
omposition, that is, it isasso
iated with a geometri
 point, be it the end of a 
urve, the interse
tion of 
urves,or even both.A pointer stores an in
ident halfedge that dire
ts to the vertex. All halfedges tar-geting a vertex 
an be 
onne
ted by a (bidire
tional) 
ir
ular linking. Although notpart of the original D
el-design, we, that is, when using the D
el for arrangements,allow that no halfedge is in
ident to a vertex. In this 
ase, the pointer is simply NULL.However, su
h an isolated vertex is not slobbing around. A fa
e pointer (whi
h isNULL otherwise) indi
ates the fa
e that 
ontains the isolated vertex.Fa
e A fa
e represents a two-dimensional 
onne
ted set impli
itly, that is, no a
tual ge-ometri
 obje
t is asso
iated with it. To obtain geometri
 information, a fa
e issurrounded by a 
ir
ular list of halfedges that have the fa
e to their left. The link-ing is established with the help of the halfedges' next pointers, or more pre
isely:Ea
h fa
e is surrounded by halfedges that wind in 
ounter-
lo
kwise order alongthe outer boundary of the fa
e. We 
all it the outer 
onne
ted 
omponent of theboundary (OCCB). The fa
e knows an o

b-pointer to one these halfedges.Nevertheless, this simple design a
tually allows to only represent de
ompositionswhose fa
es are simply 
onne
ted. But in general, two-dimensional arrangements
an 
ontain fa
es that are not simply 
onne
ted; for an example we refer to thealready mentioned isolated verti
es, or to Figure 2.6, where fa
es F2 and F3 are
ompletely inside F1. Fa
e F0 even surrounds all other fa
es.De�nition 2.41 (Hole). A 
onne
ted set H is 
alled a hole of fa
e F if it makes Flo
ally non-simply 
onne
ted. That is, there is a simply 
onne
ted subset of F thatgets non-simply 
onne
ted when we remove H from F .Holes 
an be two-, one-, and zero-dimensional, and their number 
an be arbitrary,but �nite. In order to support the di�erent 
ases, ea
h fa
e maintains two addi-tional lists: One for isolated verti
es and one for inner 
onne
ted 
omponents of theboundary (ICCB). An inner 
omponent of a fa
e F is similar to its outer 
ounterpart,namely a list of halfedges having F to their left. However, they wind in 
lo
kwiseorder. This way, the 
y
le of twin edges des
ribes a two- or even one-dimensionalset that is ex
luded from F . In the example of Figure 2.6, the inner CCB de�nedby E2 removes a two-dimensional set, while the inner CCB de�ned by E3 is onlyone-dimensional.Remarks.
• A
tually, there is no geometri
 way to distinguish outer and inner CCBs. By topo-logi
al inversions ea
h CCB 
ould be
ome outer.
• However, for the plane, the 
ommon 
onvention is to de�ne the CCB as outer whi
hwinds, as written, (on
e) 
ounter-
lo
kwisely around the normal-ve
tor of the plane
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E1
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E0

V3 V1

F6

Enext

E2

Figure 2.6. How to use the D
el to represent a planar arrangement (of interior-disjoint line segments): The unbounded fa
e F0 has a single 
onne
ted 
omponentthat forms a hole in it. This hole is separated with a halfedge-
y
le 
ontaining E0,a so-
alled inner CCB (
onne
ted 
omponent of the boundary) of F0. The holeitself 
omprises several fa
es, for example F1, whose outer CCB is the halfedge-
y
le de�ned by E1. Along this outer CCB, E1 is pre
eded by Eprev and su

eededby Enext. The halfedge E1 
onne
ts V1 with V2, while together with its twin E′
1it represents the line segments that 
onne
ts the points asso
iated with V1 and

V2. This segment separates F1 from F4. E′
1 de�nes the outer CCB of F4. Notethat, in 
ontrast to E1 and E′

1, the edges E4 and E′
4 do not separate di�erentfa
es. The fa
e F1 also has holes: The two-dimensional hole separated with F1'sinner CCB de�ned by E2, the one-dimensional hole separated with F1's se
ondinner CCB de�ned by E3, and two isolated verti
es V3 and V4. All other fa
esonly have a single outer CCB.
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ated at an interior point of the fa
e, that is, in the left area of the CCB (as thehalfedges have their in
ident fa
e to the left).
• In Chapter 4 we use a D
el for non-planar two-dimensional subdivisions. For su
h,to 
hara
terize CCBs by windings makes less sense. Thus, we next introdu
e thenesting graph in De�nition 2.42.
• A general purpose halfedge data stru
ture is presented in [Brö01a℄. It dis
usses theseand other aspe
ts.De�nition 2.42 (Nesting graph). We 
onstru
t the nesting graph of fa
es. Nodes of thegraph 
orrespond to fa
es, while we add an oriented edge from node f1 to node f2 if f2is separated from f1 by an inner CCB of f1. That is, there is a twin of halfedges e1and e2 (with e1->twin() == e2 and e2->twin() == e1) su
h that e1->fa
e() == f1 ande2->fa
e() == f2 and e1 belongs to an inner CCB of f1 (and e2 belongs to an outer CCBof f2).The D
el-representation for ea
h de
omposition of the plane with bounded 
urves(and points) always has a fa
e that has no outer CCB. This fa
e 
orresponds to the planehaving holes in it. Thus, the nesting graph of su
h a de
omposition is a tree, whose root isthe fa
e without outer CCB, the outermost fa
e. The root's dire
t 
hildren are the fa
esseparated by the inner CCBs of the outermost fa
e. Note that a single inner CCB 
anresult in more than one 
hildren; see Figure 2.7. A
tually, one 
ould extend the nestinggraph with spe
ial nodes for isolated points and one-dimensional holes. In fa
t, addingthem would 
omplete the representation of the D
el as graph. However, for our purposes,they are irrelevant. We emphasize that the way CCBs are assigned to the list of outer andinner CCBs of a fa
e fully determine the nesting graph's edges. As written, by topologi
alinversion we 
an make every fa
e the root of the tree, though, this results in anothernesting graph (with other assignments of CCBs to the list of lower and outer CCBs of afa
e).

F0

F1 F4 F5 F6

F2 F3Figure 2.7. Nesting graph (here: tree) for the D
el of Figure 2.6We already mentioned that 
urves stored in a D
el are required not to pair-wiselyinterse
t in their interior. Consider a 
losed 
urve, for example p = γ(0) = γ(1) thatwould be embedded by a pair of halfedges. However, ea
h halfedge forms a self-loop, thatis, it points to its originating vertex. This implies, that there must be a vertex, whi
hmust be 
onstru
tible on γ. Although self-loops are not forbidden by design, algorithms
onstru
ting a D
el avoid them, for example, as they require to split 
urves into x-monotone sub-
urves. Su
h a split implies that ea
h 
onne
ted 
omponent of a boundary
onsists of at least two halfedges. We espe
ially want to single out this fa
t for ea
houter 
omponent and also for inner 
omponents that des
ribe a one-dimensional set. We
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e that does neither 
ontain an inner CCB nor an isolated vertexis simply 
onne
ted. The D
el, as des
ribed here, su�
es to support an arrangementthat is embedded in an orientable surfa
e whi
h is homeomorphi
 to an (open) dis
. Forarrangements on parametri
 surfa
es, that we dis
uss in Chapter 4, we have to extend theD
el further.We also bene�t from the D
el's advantages of easy traversals of its items and the possi-bility to support their e�
ient overlay [dBvKOS00, �2.3℄. In general, the D
el, also knownas Halfedge-Datastru
ture (HDS), is widely known and used in 
omputational geometryand ines
apable, for example, in two- and three-dimensional triangulations. This also holdsfor Cgal. However the Arrangement_2 pa
kage uses a spe
ialized version. In order to unifythese di�eren
e the two implementations are 
urrently in a redesign pro
ess [KC08℄. Itsgoal is to provide an implementation that serves throughout all pa
kages of Cgal thatrequire an HDS. The main improvement is the introdu
tion of optional border-edges andHalfedgeCy
les. Half
y
les are intended to unify outer and inner 
onne
ted 
omponents ofthe boundary. In Chapter 4 we only tou
h these extensions in our dis
ussion, as they arenot yet used produ
tively. For three-dimensional regular 
omplexes15 Bru and Teillaudsuggested another extension of Cgal's HalfedgeDS, 
alled 
ellular data stru
ture [BT08℄.2.4.2. Computing planar arrangementsUnfortunately, the 
urves in the given input C are usually neither x-monotone nor disjointin their interior, that is, the input typi
ally 
onsists of non-x-monotone (or even verti
al)
urves that interse
t or (partially) overlap. We wish to 
onstru
t a D
el that des
ribes thesubdivision A(C) indu
ed by C using only weakly x-monotone 
urves, see De�nition 2.43.De�nition 2.43 (Curve 
ontinued). We extend De�nition 2.40.4. A 
urve γ is 
alled weakly x-monotone, if for t1 < t2, t1, t2 ∈ I it holds that γ(t1) <lex

γ(t2), where <lex denotes smaller in lexi
ographi
 xy-ordering. Observe that alsoverti
al 
urves are 
lassi�ed to be weakly x-monotone.Su
h a de
omposition has the advantage that maintenan
e is simpli�ed, but also en-ables us to easily extend the D
el towards a verti
al de
omposition [dBvKOS00℄. Algo-rithm 2.11 gives a naive 
onstru
tion for a D
el.Algorithm 2.11. Constru
t D
el naivelyInput: Set of 
urves C in R2Output: D
el that represents A(S)1. Split ea
h non-x-monotone 
urve of C into weakly x-monotone sub-
urves C′.2. Compute all interse
tions of 
urves in C′ and subdivide them su
h that they areinterior disjoint3. Use Euler operators to modify the D
el with respe
t to the split input. Optionalpointers might link to the originating 
urve(s) of C.This approa
h, however, requires a quadrati
 number of interse
tion tests, and doesnot exploit proximity of 
urves for interse
tion tests, or a
tually non-proximity to avoid15A three-dimensional regular 
omplex is a �nite de
omposition R
3, whose 
ells are pairwise interiordisjoint and the boundary of a 
ell 
onsist of the union of other 
ells [ES94℄.
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ti
e, two other approa
hes are more 
ommon to 
onstru
t a D
el. Similar tothe naive approa
h, their �rst step 
onsists in breaking the input into weakly x-monotone
urves. Thus, we hen
eforth assume that C 
onsists of su
h 
urves.
The sweep line approa
h The basi
 idea goes ba
k to Bentley and Ottmann [BO79℄who gave an algorithm to 
ount and 
ompute the interse
tions of line segments. Lu
kily,by observing the exe
ution path of the algorithm it is possible to 
onstru
t the indu
edD
el; we give more details below.We give a sket
h of the algorithm that works for line segments C = {s1, . . . , sn} thatful�ll the general position assumption. More detailed des
riptions, whi
h also dis
uss thedegenerate 
ases, 
an be found in [dBvKOS00, Chapter 2℄, or [MN00, �10.7℄.The main idea is to sweep with a verti
al line, the sweep line, from left to right overthe plane. At every position the sweep line is interse
ted by some segments of input in a
ertain order. The 
ru
ial observation is that this order only 
hanges at a �nite numberof events, whi
h are exa
tly the positions where the topology of the segments interse
tingthe sweep line 
hanges, and thus, also the topology of the indu
ed arrangements: Theseevents are the minimal and maximal ends of segments and interse
tion points of segments.The sweep line algorithm maintains two dynami
 data stru
tures. The status-line16 Lrepresents an interse
tion pattern of the input segments with the sweep line at its 
urrentposition. It is empty at the beginning of the sweep and also exhausted when the sweepends. Events are maintained in a priority queue that sorts its entries lexi
ographi
ally by
oordinates. This event-queue17 Q is initialized with the minimal and maximal ends ofthe input segments. The sweep of the line a
tually 
onsists in extra
ting at any time thenext minimal event from the event-queue and to update the stru
ture with respe
t to thelo
al situation at the event. The pro
ess keeps two invariants valid:1. Events with smaller lexi
ographi
 
oordinates than the 
urrent event (to the left ofthe sweep line) have already been dis
overed and handled.2. At least the following events are stored in the event-queue: (a) All endpoints ofinput 
urves that have greater lexi
ographi
 
oordinates than the 
urrent event (tothe right of the sweep line) and (b) the next interse
tion of two segments that are
urrently adja
ent in the status-line.Observe that at the beginning of the algorithm, the invariants are ful�lled by howwe initialized the dynami
 stru
tures. Algorithm 2.12 des
ribes how to sweep over theline segments, a
tually, its main loop dis
usses the (possible not required) updates of thestru
tures when sweeping over the 
urrent event.16Some texts 
all the status-line also Y-stru
ture.17The event-queue is also referred to as the X-stru
ture.



2.4. Arrangements 73Algorithm 2.12. Sweeping line segmentsInput: Set of line segments C in R2Output: Lexi
ographi
 pro
essing of events and how they are 
onne
ted with sub-
urves
• Insert minimal and maximal point of ea
h segment in C into Q
• While the Q is not empty� Extra
t Q's 
urrent minimal event ev (and remove it).� If ev is the minimal endpoint pmin of some si, we insert si into L. This requiresto 
ompute the relative verti
al alignment of pmin with the segments alreadyexisting in L. We either hit a segment sj or pmin is positioned in betweensegments sbelow and sabove (if existing). In the former 
ase we have to 
omparewhether si is below or above sj right after their interse
tion at ev = pmin, whi
halso de�nes now unique sbelow and sabove. Che
k if si interse
ts to the right of

ev with sbelow and if so, insert the next interse
tion into the Q. Do the samefor si and sabove.� If ev is a maximal endpoint pmax of some si, then si is lo
ated between sbelowand sabove. We remove si from L and 
he
k whether sbelow and sabove interse
tlexi
ographi
ally larger than ev. If so, we insert the next interse
tion into Q (ifnot already existing).� If ev is the interse
tion of some si and sj (where their order in L is: sbelow <
si < sj < sabove), we ex
hange them in L. Then, sj is above si and we 
he
knext for a future interse
tion of sbelow and sj and for a future interse
tion of siand sabove. If su
h exist, we insert them into Q.Remarks.

• Note, that in ea
h step sbelow and sabove might not exist. If so, the 
orresponding
ases 
an be ignored.
• The algorithm neither reports interse
tion points nor 
onstru
ts a D
el. However,having a 
ontinuously look on the algorithm's exe
utional steps by some entity, thisentity 
an simply extra
t interse
tion points or 
onstru
t the D
el that emerges tothe left of the sweep line. Te
hni
ally, the visitor design pattern [GHJV99℄ des
ribessu
h entities. We refer to �2.2.3 that dis
usses details on how Cgal's Sweep_line_2
lass is 
ombined with visitors for di�erent purposes.
• The algorithm assumes general position of the segments. However, by 
arefullyextending individual steps it is possible to handle isolated points, verti
al and/oroverlapping segments, more than two segments running through a 
ommon point,or events that share a 
ommon x-
oordinate (i. e., 
overti
al events). Leda's andCgal's implementation mind all these degenera
ies.
• The running time of the algorithm is O((n + k) log n), where n is the number ofinput segments and k the number of interse
tions. It requires spa
e O(n + k), whi
h
an be improved to O(n): We only have to revise Q from future interse
tions ofsegments that just lost their adja
en
y in L. When 
omputing a D
el, this strategyis not advised as the output needs spa
e O(n + k) anyhow, and the re-
omputationsof interse
tions and maintenan
e operations for the event-queue harm the pra
ti
alperforman
e; see again [MN00, �10.7℄.Already Bentley and Ottmann experien
ed the fa
t that their idea is appli
able to anyset of x-monotone 
urves, su
h as half-
ir
les. A generalized des
ription is given in [SH89℄.
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ontrast to the linear 
ase, some di�
ulties must be ta
kled:Problem 2.44 (Sweeping non-linear 
urves).
• Two non-linear 
urves 
an interse
t more than on
e.
• The order of two non-linear 
urves to the right of an interse
tion is not always thereversed order the 
urves had to the left of the interse
tion.However, solutions to both problems exist. For the �rst, it a
tually su�
es to only
ompute the next interse
tion. However, it is en
ouraged to augment the event-queuewith all future interse
tion points of two non-linear 
urves, if available, as soon as theybe
ome adja
ent in the status-line for the �rst time. Note that in the �nal D
el all ofthem pop up anyhow.A naive solution for the reordering of ℓ 
urves passing an event (at point p) is a
omparison-based sorting. It 
onsists of pair-wisely 
omputing the order of y-
oordinatesof two su
h 
urves slightly to the right of the 
ommon interse
tion. However, this resultsin an algorithm with O(ℓ log ℓ) running time, while ea
h 
omparison is also a task ofnon-trivial 
ost.The reordering 
an be improved if one knows the multipli
ity of interse
tion in thepoint for two su
h 
urves. This is, for example, the 
ase for input that is supported byalgebrai
 
urves (see �2.1.4), if the interse
tion does not takes pla
e at a singularity (whi
h
an be ex
luded). The pre
ise de�nition of this value is given in [MPS+℄. Intuitively,the two 
urves 
hange their relative verti
al alignment when passing p, if the multipli
ityis odd, while their order is preserved if the multipli
ity is even. This leads to an easy
ombinatorial de
ision on how to update L. Based on these multipli
ities there existsan O(Mℓ) algorithm that reorders ℓ (algebrai
) 
urves passing through p, where M isthe maximal multipli
ity of interse
tion that o

urs for two 
urves passing the point; see[BEH+02℄ and [FHK+, Chapter 1℄ for a more detailed proof. Even better, it is possibleto remove M by 
onstru
ting a multipli
ity tree. The algorithm presented in [BK07℄ onlyrequires time O(ℓ) relying on pair-wise multipli
ities of interse
tions.Abstra
ting from the 
urve-spe
i�
 details, we 
an state a generi
 version of the sweepline algorithm.Algorithm 2.13. Sweeping (weakly) x-monotone 
urvesInput: Set of 
urves C in R2Output: Lexi
ographi
 pro
essing of events and how they are 
onne
ted with sub-
urves
• Repla
e ea
h 
urve c ∈ C by 
urves that represent a de
omposition of c into (weakly)

x-monotone 
urves
• Insert lexi
ographi
al minimal and maximal point of ea
h (weakly) x-monotone 
urvein C into Q
• While the Q is not empty� Extra
t minimal ev event from Q� Remove all 
urves from L that end at ev� Reorder all 
urves passing through ev� Insert all 
urves into L that begin at ev, 
ompute interse
tions for newly adja-
ent 
urves and insert them into QHaving this generi
 sweep line algorithm, we next 
on
entrate on the individual tasks
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h step, that is, we break down the approa
h into subtasks 
onsisting of geometri
predi
ates and 
onstru
tions. As already mention, we require to de
ompose arbitraryone-dimensional input into (weakly) x-monotone pie
es.Make x-monotone Given a one-dimensional input obje
t c, de
ompose it into weakly
x-monotone 
urves. If other predi
ates expe
t stronger 
onditions than just weak
x-monotoni
ity, it is the responsibility of this geometri
 
onstru
tion to ensure themas well. We refer to su
h a split 
urve γ as a sweepable 
urve.We next des
ribe the predi
ates that are required to maintain the event-queue and toupdate the status-line when sweeping over an event.Figure 2.8. Geometri
 
onstru
tions (a),(b),(
) and predi
ates (d),(e),(f) required forthe sweep line algorithm

(a) Make x-monotone min

min max

max

(b) Min/max end (
) Interse
tions
(d) xy-order of points (e) Point-
urve-relation (f) Compare-to-rightMinimal/maximal-end Given a weakly x-monotone 
urve c, the predi
ates returns itslexi
ographi
al smallest (largest) point. They are used during initialization, to 
he
kwhether a 
urve starts or ends at an event, and to determine the lo
ation of a starting
urve in the status-line.Compare-xy Given two points p1, p2, 
ompare them lexi
ographi
ally. We require thispredi
ate to keep the event-queue sorted, and to 
he
k whether a 
urve starts or endsat an event.Point-
urve-relation Given an x-monotone 
urve c and a point p in the x-range of c,this predi
ate determines the relative verti
al alignment of p and c, that is, whether

p lies below, on, or above c at p's x-
oordinate. In 
ase of a verti
al c, it returnswhether p is below the minimal point of c, on c, or above the maximal point of c. Inthe sweep line algorithm, this predi
ate is used to lo
ate the position of a 
urve that
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urve's minimal end is 
omparedwith the 
urves already stored in the status-line. Of 
ourse, no su
h 
omparison isrequired if other 
urves end or pass the 
urrent event, as the algorithm rememberstheir position in L. That is, it knows where to insert new 
urves. If there are passing
urves, the next predi
ate is required upon a starting 
urve.Compare-to-right Given two weakly x-monotone 
urves c1, c2 that interse
t at p. Thispredi
ate determines the relative verti
al alignment of c1 and c2 after passing p, thatis immediately to the right of p. The predi
ate is 
alled to determine the lo
ationof a 
urve that starts at an event with passing 
urves, that is, we determine theposition of the new 
urve (whose minimal end lies on a 
urve in the status-line) inthe sequen
e of 
urves to the right of an event.Interse
tions Given two weakly x-monotone 
urves c1, c2 
ompute their interse
tions.Usually the set of interse
tion is zero-dimensional, that is, it 
onsists of a �nitenumber of points. It might be helpful to also obtain the 
orresponding multipli
itiesof interse
tion (or at least their parities). In degenerate situations, the two 
urvesmay overlap. In su
h a 
ase the 
onstru
tion is requested to 
ompute all overlappingparts. Of 
ourse, the pro
essing of an event resulting in proper updates of thedynami
 data stru
tures, also has to deal with overlapping 
urves. We omit thesete
hni
alities, as they are previously dis
ussed elsewhere; see [MN00, �10.7℄.The in
remental approa
h The aggregated 
onstru
tion using the sweep line approa
his very e�
ient, in parti
ular when the number of interse
tion is relatively small, that is
k < O( n2

log n). A drawba
k of the approa
h is that all 
urves must be known in advan
e,whi
h some appli
ation do not provide, as new 
urves 
an arrive in an on-line fashion.For su
h 
ases, an in
remental (and lo
al) update should be privileged. Algorithm 2.14gives a method that inserts a weakly x-monotone 
urve c into an existing (not ne
essarilyempty) arrangement A. Non-weakly-x-monotone 
urves are de
omposed beforehand as inthe sweep line approa
h.Algorithm 2.14. In
rementally inserting a weakly x-monotone 
urve cInput: (non-empty) arrangement A; 
urve cOutput: re�ned A with inserted c1. Split c into (weakly) x-monotone 
urves. For the next steps we assume that c hasthis property.2. Lo
ate the minimal end of c and either update the found vertex (lo
ate position of
urve in its 
ir
ular list of in
ident 
urves), or split the found halfedge-pair, or inserta new vertex in the interior of the found fa
e.3. Traverse the zone of c, that is, all D
el-items interse
ted by c. Whenever we dete
tan interse
tion of c with some vertex or some halfedge-pair, we split c into two sub-
urves cleft and cright, update the vertex or the halfedge-pair a

ordingly, pro
ess
cleft, and pro
eed with cright until we rea
h c's maximal end.4. Lo
ate c's maximal end and pro
eed similar to what we did for c's minimal end.Spe
ial 
are is needed when c overlaps with an existing 
urve in A, or c 
ompletely lies ina fa
e of A. In the latter 
ase, c must be inserted as a new hole in that fa
e.The subtlety for in
remental insertion is that it requires point lo
ation, that is, given
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el-item to whi
h it belongs. We shortly dis
uss point lo
ationin �2.4.3. The running time for in
rementally inserting n weakly x-monotone segments is
O(n2). Thus, for dense arrangements, k ≥ ω( n2

log n), the in
remental approa
h theoreti-
ally (and pra
ti
ally) beats the sweep line approa
h whi
h requires O((n + k) log n) time.However, the running time of the sweep line method is output sensitive. The proofs andmore details on the in
remental 
onstru
tion of arrangements 
an be found in [dBvKOS00,Chapter 8℄.Needless to say, that both approa
hes 
an be 
ombined. For example, the sweep linemethod is used to 
onstru
t the D
el for an initial set of 
urves, while it is augmentedby 
urves arriving in an on-line fashion by applying the in
remental algorithm. Or aninitial dense arrangement is 
onstru
ted by the in
remental method, while later a set of
urves that imply only a few new interse
tion are �swept� into the arrangement. Note thatsweeping an arrangement of non-interse
ting 
urves is a mu
h easier task, theoreti
allyand pra
ti
ally, as no interse
tion has to be 
omputed and the event-queue is not alteredat any time. All this �exibility on two-dimensional arrangements is o�ered by Cgal'sArrangement_2 pa
kage that we present next. In its presentation, we also 
ater for how todelete 
urves in an existing arrangement.2.4.3. Arrangements in CgalWe next introdu
e Cgal's Arrangement_2 pa
kage with various details. It is developedand maintained at Tel-Aviv University in the lab of Dan Halperin. During the pa
kage'slifetime, it always has been improved, while for Cgal version 3.2 a major redesign hasbeen applied, that was mainly driven by Dan Halperin's students Ron Wein, E� Fogel, andBaru
h Zukerman. The �
hangelog� is reported in a sequen
e of publi
ations: [FHH+00℄,[FWH04℄, [WFZH05℄, and [WFZH07b℄.In this se
tion, we present the Arrangement_2 pa
kage of Cgal 3.2. that only supportsbounded 
urves in the plane: It maintains a single unbounded fa
e that 
ontains all inputobje
ts, that themselves �t in the interior of a �nite re
tangular area. We show in Chapter 4how newer extensions (Cgal 3.3) already enable unbounded 
urves, and how the restri
tionof the embedding surfa
e to be a plane is removed (up
oming version of Cgal).The Arrangement_2 pa
kage implements the generi
 programming paradigm as ex-plained in �2.2.1. This te
hnique allows to separate the 
ombinatorial and topologi
alalgorithms and data stru
tures from whatever geometri
 obje
ts are at hand. Central tothe pa
kage are only a few 
lasses. The main 
lass-template is intended to represent aplanar embedding of weakly x-monotone 
urves that are pairwise disjoint in their interior.It is instantiated with two parameters:Arrangement_2< GeometryTraits_2, D
el >GeometryTraits_2 This is the main parameter for the pa
kage, as it de�nes the type ofgeometri
 
urves (and points) that indu
e an arrangement. It also implements basi
operations on the types to support the arrangement's 
onstru
tion and maintenan
e.As a positive side-e�e
t of this distin
tion, a developer with less experien
e in 
om-putational geometry, and arrangements in parti
ular, 
an engage in the pa
kage withall its fun
tionality for its own 
urves, as long as he provides a proper geometri
-traits 
lass for them. The list of required operations has been redu
ed over time
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ept of Cgal version 3.2.18 We presentdetails of the 
on
ept and available models below.D
el This parameter determines the type (and spe
ialties) of the underlying topologi
alstru
ture used to represent the planar subdivision. A default implementation is
ontained in the pa
kage and if it should be used, one even 
an omit to spe
ify theargument to de�ne the arrangement type. On the other side, a more experien
ed useris able to repla
e it, for example, to atta
h user-spe
i�
 data to the D
el-re
ords.A valid two-dimensional arrangement (of bounded 
urves) has one unbounded fa
e.Ea
h fa
e, ex
ept the unbounded one, has an outer CCB (
onne
ted 
omponent of theboundary). The non zero-dimensional holes within a fa
e are represented by a numberof inner CCBs. The zero-dimensional holes (also known as isolated verti
es) are storedexpli
itly. The latter two entities are not required to exist. The hierar
hi
al order of holesand isolated verti
es in a fa
e is distinguished by graph- and edge-based stru
tures.The arrangement 
lass-template provides all ne
essary 
apabilities to 
onstru
t andmaintain the D
el that is extended with geometri
 data. Basi
 fun
tions are available toa

ess, to modify, or to traverse an arrangement. For example, all verti
es, edges, and fa
es
an be visited by iterators, or the halfedges of a CCB and the in
ident edges of a vertex
an be 
ir
ulated. The 
entral modi�ers are the basi
 insertion and deletion methods.It is possible to insert points or weakly x-monotone 
urves. For a new point, either avertex for it already exists, then nothing happens, or it lies on an existing halfedge-pair,that is going to split, or it will be added as an isolated point in a fa
e's interior. Whenadding a new weakly x-monotone 
urve, we distinguish four 
ases: Either it is inserted in afa
e's interior, its minimal/maximal point hits a non-fa
e, or both ends hit a non-fa
e (twopossibilities). In every 
ase the D
el has to re
eive some modi�
ations, for example, whenshort-
utting an inner CCB, a new fa
e is 
onstru
ted, and some CCBs must be adapted.Figure 2.9 explains the various 
ases. Similar modi�
ations are required when removingan edge. The arrangement takes 
are of the 
orre
t order of modi�
ations to transformthe D
el from one valid state to a new valid state that represent the new situation. Theuser who adds or removes the obje
t does not even noti
e about all the details, at leastnot dire
tly. Note that these operations impli
itly modify the nesting graph of the D
el.For the user's information on 
hanges of the arrangement's stru
ture, the pa
kageimplements the observer pattern [GHJV99℄. An observer re
eives noti�
ations from agiven arrangement-instan
e, for example, when a vertex is added or deleted, or a newedge is inserted. A default observer 
lass-template with empty implementations 
ontainedin the pa
kage 
an serve as sour
e 
lass to derive models that exe
ute spe
ial 
ode onsu
h 
hanges. An example appli
ation is a point lo
ation that relies on auxiliary data(landmarks) whi
h should be kept up-to-date upon stru
tural 
hanges of the arrangementit is 
onne
ted to. The numbers of observes atta
hed to an arrangement is not limited.The pa
kage is also equipped with a number of free19 insert fun
tions, that allow toinsert 
urves into a given empty or non-empty arrangement. Depending on the 
ase a single18One may wonder why the parameter is 
alled GeometryTraits_2 and not ArrangementTraits_2.The reason is that ArrangementTraits_2 is the most re�ned 
on
ept, but one 
an also use Arrangement_2with weaker 
on
epts (e. g., the input 
urves do not interse
t). Thus, the more generi
 name. We usuallyrefer to the most re�ned version.19Floating in namespa
e CGAL:: without 
oupling to a 
lass.
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Figure 2.9. Basi
 insertions into a planar arrangement of line segments
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V ′1

E′1

E1(a) Insert in fa
e interior: Thearrangement 
reates two newverti
es V1 and V ′
1 and 
on-ne
ts them with the halfedge-twins E1 and E′

1. Here: The
y
le (E1, E
′
1) forms a new in-ner CCB of F1.
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E′2

E2,prev

E2

V2V ′2(b) Insert from vertex: V ′
2 ex-ists, while V2 must be 
reated,as well as the halfedges E2 and

E′
2. Both extend in form of anantenna the CCB to whi
h thegiven E2,prev belongs. Here: E2and E′

2 extend an inner CCB.
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(
) Inserting from two verti
es:A new pair of halfedges E3 and
E′

3 
lose a new fa
e F ′
0. Holesand isolated verti
es of the old F0(e. g., for Eh2 and Eh3) must be
he
ked whether to move to F ′

0.Here: H2 moves to F ′
0.

E′4

V4

E′4,prev
E4,prev
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V ′4

E4(d) Inserting from two verti
es:The new pair of halfedges E4and E′
4 
onne
ts two 
ompo-nents, that is, it merges twoCCBs. Here: two inner CCBs aremerged into one.
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urve is in
rementally added or a group of 
urves is inserted with the sweep line approa
h.The free overlay fun
tion e�
iently overlays two given arrangements. If a group of 
urves isknown not to interse
t in their interior, spe
ial insert_non_interse
ting_
urves fun
tionsare also available, that have impa
t on the e�
ien
y and the required operations: Thesemethods are faster and only demand a redu
ed set of geometri
 operations. In parti
ular,the 
onstru
tion of interse
tions is avoided, whi
h usually results in geometri
 obje
ts withan in
reased 
omplexity. For example, bit-lengths for interse
tions of 
urves are usuallylarger than for the originating obje
ts.The free insertion fun
tions are internally implemented in terms of the visitor designpattern. That is, the aggregated 
onstru
tion is based on theSweep_line_2< GeometryTraits_2, Visitor,...>
lass-template that implements a generi
 sweep line algorithm as des
ribed in �2.4.2. Inparti
ular it 
an deal with any degenera
y that is possible, for example, verti
al 
urves,
overti
al events, more than two 
urves interse
ting in a point, interse
tion at endpoints, oroverlapping 
urves. The GeometryTraits_2 parameter again refers to the geometry modelthat should be used, while the given instan
e of type Visitor re
eives noti�
ations aboutthe status of sweep line algorithm and 
an a
t with respe
t to these 
hanges. With thisstrategy the a
tual sweep line 
ode is 
entralized, reusable, and easy to maintain. Theimplementation of a sweep-based algorithm boils down to write the visitor that 
onstru
tsthe desired output from the noti�
ations. The pa
kage provides a number of visitor 
lassesfor various purposes:
• 
onstru
t the interse
tions of 
urves
• 
onstru
t the arrangement as D
el indu
ed by 
urves
• insert a set of 
urves into an existing arrangement
• overlay two arrangements
• perform bat
hed point lo
ationsOther sweep-based algorithms 
an be realized by writing own visitors.In the same spirit, the in
remental insertion is realized by a model of the ZoneVisitor
on
ept that inserts the 
urve, while the generi
 zone 
omputation, implemented by the
lass-template Arrangement_zone_2< Arrangement, ZoneVisitor, ...>is exe
uted. There is another visitor for the zone algorithm that just report interse
tionsalong the zone. As before, writing own visitors allows to easily develop 
omputations thatare based on the zoning.Fun
tionalityWe want to highlight three 
apabilities provided with Cgal's Arrangement_2 pa
kage thatare 
onstantly applied through the main 
hapters of this thesis. It only represents a smallsubset of the full fun
tionality provided by the pa
kage.De
orating The Arrangement_2 pa
kage provides several methods to atta
h additionaldata to the geometry. For example, input 
urves 
an be enhan
ed with a user-spe
i�
 type
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olor) that is even preserved when applying 
omputations (e. g., a sweep line) onthem. The most sophisti
ated method to atta
h data 
onsists of the 
lass-templateArr_extended_d
el< GeometryTraits_2, VertexData, HalfedgeData, Fa
eData,...>that 
an be used when instantiating the Arrangement_2 template. Ea
h type of D
el-re
ords is then equipped with the 
orresponding type and the data of a given D
el-re
ord(be it a vertex, a halfedge, or a fa
e) 
an be a

essed by a data() member.Overlay As already mentioned there exists a free fun
tionCGAL::overlay(arr1, arr2, arr_ovl, ovl_traits)that 
omputes the overlay of arr1 and arr2 and stores the result in arr_ovl. Its 
orre
tnessand e�
ien
y is ensured by instantiating the sweep line implementation with theArr_overlay_sl_visitor< OverlayTraits >that is instantiated with a model of the OverlayTraits 
on
ept. If no user-spe
i�
 datais atta
hed, the default Arr_default_overlay_traits su�
es as argument for ovl_traits,otherwise the ne
essary merging of atta
hed data must be implemented by a 
ase-spe
i�
model. Su
h a 
lass determines, for example, how to 
ombine the data atta
hed whenoverlaying a fa
e of arr1 with a fa
e of arr2, and all other possible 
ombinations. Werefer to the manual [WFZH07a℄ for further details, and mention only the simple example,where a bool is atta
hed to ea
h D
el-re
ord, and the model of the OverlayTraits 
on
eptimplements a boolean operation (like and) on the atta
hed boolean values.Point lo
ation Having an arrangement instan
e at hand, a very 
ommon query 
onsistin the question where a query point q is lo
ated, that is, to identify the D
el-re
ordto whi
h q belongs. For random points, the found obje
t is usually a fa
e, while fordegenerated queries the point 
an be lo
ated on an edge or even 
oin
ide with a vertex.Again, the Arrangement_2 pa
kage relies on the generi
 programming paradigm 
apabilitiesto implement various kinds of point-lo
ation strategies. In parti
ular, a developer is invitedto write its own method, while a basi
 set of strategies 
omes out-of-the-box:
• The naive strategy exhaustively s
ans ea
h D
el-re
ord until it su

esses.
• The simple approa
h uses some geometri
 �ltering.
• A more sophisti
ated method walks along a verti
al ray emanating from q until ithits an edge or vertex, or extends to in�nity. Depending on this the 
orrespondingD
el 
an be obtained.
• There is also a point lo
ation that relies on a set of landmarks stored for the ar-rangement. The positions of landmarks are known. The query 
onsists in an e�
ientdete
tion of the nearest landmark to q and the traversal of the line that 
onne
ts qwith this landmark. This method requires auxiliary data.
• Auxiliary data is also required by the point lo
ation strategy that utilizes a partialverti
al de
omposition of the arrangement.See Cgal's manual pages for full details [WFZH07a℄.Remember that the point-lo
ation strategy might not be a game of its own, as forexample, the in
remental insertion of a 
urve using Algorithm 2.14 has to lo
ate the
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urve's endpoint before starting the zone 
omputation. This fa
t should be adhered, when
hoosing the point-lo
ation strategy.We skip further details on the impressive fun
tionality of Cgal's Arrangement_2 pa
k-age, and refer to [WFZH07b℄ and [WFZH07a℄ for further reading. In addition, Cgal'smanual pages also 
over details to use the pa
kage for envelopes of 
urves [Wei07a℄,Minkowski sums in two dimensions [Wei07b℄, or as basi
 support in regularized booleanset operations [FWZH07℄.The ArrangementTraits_2 
on
eptThe basis interfa
e between the Arrangement_2 pa
kage and the geometri
 obje
t is theGeometryTraits_2 parameter, that ful�lls the ArrangementTraits_2 
on
ept or one of theweaker versions: The 
on
ept is a
tually des
ribed hierar
hi
ally, as some algorithms andmaintenan
e operations only require very basi
 types and operations on them, while othersare expe
ting a larger set (of types or operations, or both). We omit to present the fulldistin
tion of layers that enables a �ne adjustment of available traits model and the desiredappli
ation. In fa
t, all models we know are implementing the full set of requirements. Amodel of Cgal's ArrangementTraits_2 
on
ept is expe
ted to provide three main types:Curve_2 This type is used to store a general 
urve, howsoever it is represented. Its topologymight be very 
omplex, for example, it 
an have self-interse
tion, or 
omprises several
omponents that even may be zero-dimensional. No further spe
i�
 requirements aredemanded from this type, ex
ept from the fa
t that it 
an be de
omposed. We referto Make_x_monotone_2 for further details.X_monotone_
urve_2 This type is used to represent a (weakly) x-monotone 
urve. Allgeometri
 algorithms of the Arrangement_2 pa
kage are designed to rely on weakly
x-monotone 
urves.Point_2 Obje
ts of this type are used to represent (�nite) ends of weakly x-monotone
urves, and their (�nite) interse
tions.Any model of the ArrangementTraits_2 
on
ept is also expe
ted to provide geometri
predi
ates and 
onstru
tions as fun
tors. For Curve_2 only one 
onstru
tion is expe
ted.Make_x_monotone_2 De
omposes a general Curve_2 into a �nite number of (weakly) x-monotone 
urves and (maybe) a �nite number of isolated points. If the remainingoperations require more 
onditions on the 
urves, this fun
tor also has to take 
areto 
onstru
t the sub-
urves respe
ting these prerequisites.All other operations involve only (weakly) x-monotone 
urves and points, and it isno surprise that the following predi
ates and 
onstru
tions �t the tasks that we alreadyidenti�ed as required for the sweep line algorithm. It turns out that the mentioned ones arethe most important, while the list 
olle
ting the missing ones after the following detaileddes
riptions gives operations that are of more te
hni
al nature.Compare_x_2, Compare_xy_2 Compare the x-
oordinates of two points or, respe
tively, 
om-pare the 
oordinates of two points lexi
ographi
ally, that is �rst by x-
oordinate, thenby y-
oordinate.
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t_min_vertex_2, Constru
t_max_vertex_2 Extra
ts the lexi
ographi
al smallest(largest, respe
tively) endpoint of a weakly x-monotone 
urve.Compare_y_at_x_2 Determines the relative verti
al alignment of a point with respe
t to aweakly x-monotone 
urve.Compare_y_at_x_right_2, (Compare_y_at_x_left_2) Determines the relative verti
al align-ment of two weakly x-monotone 
urve, immediately to the right of one of their in-terse
tions.Remark. Compare_y_at_x_left_2 is only expe
ted when the tag Has_left_
ategoryhas been set to CGAL::Tag_true, otherwise its expe
ted out
ome 
an also be dedu
edfrom 
onverting the problem into a �right�-
ase. We omit the te
hni
al details. Any-how, only some algorithms really require this predi
ate.Interse
t_2 Computes the interse
tion of two weakly x-monotone 
urves, sorted in in-
reasing lexi
ographi
 order. If a Multipli
ity of interse
tion is known, it is atta
hedto ea
h interse
tion point. In 
ase (parts of the) 
urves overlap, the overlapping por-tions are returned as (weakly) x-monotone 
urves as well.The following self-explanatory operations that are expe
ted for weakly x-monotone
urves are of more te
hni
al nature: Equal_2, Is_verti
al_2, Split_2, Are_mergeable_2,Merge_2. The exa
t signatures for ea
h 
onstru
tion and predi
ate is listed in Cgal'smanual [WFZH07a℄.Remark (Asymmetry). The asymmetry of the expe
ted fun
tors (for example, there is noCompare_yx_2) is intended and results from the fa
t that we split 
urves into x-monotonepie
es and also assume that we sweep with a line from left to right. Any model ful�llingis allowed to over-a
hieve the 
on
ept's demands by further fun
tors.Available models Cgal's Arrangement_2 pa
kage already 
ontains several models of theArrangementTraits_2 
on
ept, among them 
lasses for line segments (with di�erent 
a
hingstrategies), and one for polylines. Both require only exa
t rational arithmeti
. There arealso 
lasses for non-linear 
urves whi
h are 
omputationally more 
omplex and require alge-brai
 numbers of higher degree. The simplest is the one that handles segments and 
ir
ularar
s [WZ06℄. Cir
les are spe
ial algebrai
 
urves of degree 2. The Arr_
oni
_traits_2 
lasshandles ar
s of arbitrary degree 2 
urves [Wei02℄, so-
alled 
oni
s. A model for arbitraryalgebrai
 
urves of any degree is not part of the pa
kage. However, there are two spe
ial-izations for any degree. The simpler one allows to 
ompute and maintain arrangementsde�ned by rational fun
tions [FHK+, �1.4.2℄, that is, an ar
 is de�ned by an interval
I := [ℓ, r] and by the graph of a fun
tion y = f(x) = p(x)

q(x) over I, with p, q ∈ Q[x]. Themost sophisti
ated model 
ontained in the pa
kage deals with Bézier 
urves of arbitrarydegree [HW07℄. The e�
ien
y of the later implementation results from a 
onsistent appli-
ation of geometri
 �lters, that is, most 
omputations 
an be derived from the geometri
properties of Bézier ar
s, namely their bounding polygons. Only in a few (near-)degenerate
ases, exa
t algebrai
 methods 
annot be avoided.There are also some �external� 
ontributions of ArrangementTraits_2 models, that is,they are not shipped with the Arrangement_2 pa
kage. Cgal's Cir
ular_kernel_2 ex-tends a linear kernel with 
ir
les and a basi
 set of predi
ates and 
onstru
tions. It also
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on
ept [PT07℄. The kernel has been usedto 
ompute aggregated unions of 
ir
ular polygons that o

ur in VLSI design [dCPT07℄.Outside Cgal, Lazard et al. have developed a model that also realizes ar
s of rationalfun
tions [LPT08℄. It internally uses Rs for real root solving of the o

urring univariatepolynomials.The Exa
us-team also parti
ipated in the 
hallenging task to provide models. In
ontrast to the previous 
lasses, the proje
t does not have spe
ialized models for di�erent
urves, but maintains a generi
 implementation. The 
entral idea is that all requiredoperations 
an be expressed in terms of the analysis of single 
urves and pairs of them. Thislayer of abstra
tion has been implemented in Exa
us' SweepX library. Its name usedto be generi
 algebrai
 points and segments (Gaps). As mentioned, the Exa
us librariesare moving into Cgal. Thus, we desist from dis
ussing the original implementation,and refer to �2.4.4 where we present Cgal's new Curved_kernel_via_analysis_2 pa
kagethat emerged from Gaps and even improved it. We only mention, that this way it ispossible to 
ompute arrangements of 
oni
s [BEH+02℄, 
ubi
s [EKSW06℄ (theoreti
allyimproved by [CGV08℄), proje
ted silhouettes and interse
tions of quadri
s [BHK+05℄, andalgebrai
 
urves of arbitrary degree [EK08a℄. Caravantes and González-Vega �lled the gapwith arbitrary quarti
 
urves [CGV07℄, however, an implementation is missing. Using aspe
ialized algebrai
 kernel, it is also possible to 
ompute arrangement of 
oni
s rotatedby angles whose sin and cos are (nested) one-root numbers; see [BCW07℄. In an internalversion of Cgal, the same idea has already been applied to algebrai
 
urves of arbitrarydegree.We also mention that the Arrangement_2 pa
kage provides a set of wrapping traitsmodels, that is, a given model 
an be enhan
ed with additional properties. An example isthe Arr_
ounting_traits_2 that 
ounts how often ea
h geometri
 operation has been 
alled,for example, when inserting 
urves with a sweep into an empty arrangement. The out
ome
an help to improve an implementation. Another wrapper is the Arr_tra
ing_traits_2
lass, that prints the input and output for ea
h traits operation during an exe
ution. Thisis very helpful for debugging purposes.Remark (Boundedness). We remember the fa
t that all presented algorithms are designed towork for 
urves γ with I = [0, 1], that is, all 
urves are bounded. The Arrangement_2 
lass-template of Cgal version 3.2 only allows to have one unbounded fa
e, and, as 
arefullydenoted, the types and operations expe
ted from a model of the ArrangementTraits_2
on
ept also expe
t �nite ends of 
urves.However, Chapter 4 des
ribes how the pa
kage has been extended to remove su
h re-stri
tions. We antedate that all presented models for 
urves in the plane have been adaptedtowards unboundedness, that is, their 
urrent version is already primed and out�tted withthe extended set of operations that we dis
uss in �4.2.1.We 
on
lude this introdu
tion on arrangements by presenting a generi
 model of theArrangementTraits_2 
on
ept that relies on analyses provided by a model similar to theAlgebrai
KernelWithAnalysis_d_2 
on
ept. It plays an important role throughout the the-sis.
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tion we present Cgal's new Curved_kernel_via_analysis_2 pa
kage that pro-vides a generi
 kernel for 
urves than 
an be analyzed. The kernel is one of the maina
hievements in terms of 
ommunity servi
e that we present. Its history goes ba
k tothe Generi
 Algebrai
 Points and Segments (Gaps) module that used to be part of Ex-a
us's SweepX-library. That module has been initiated in [EKSW06℄ to support pointsand ar
s of 
ubi
 
urves. While this �rst version had some restri
tion with respe
t tothe generi
 position assumption, we removed them, and 
ompleted the implementationfor [BHK+05℄. We skip further details on Gaps and present next what emerged fromthat 
ode, namely the Curved_kernel_via_analysis_2 
lass and its dependent 
lasses. The
urrent, improved, design and the implementation results from joint work of the authorwith Pavel Emeliyanenko. More details and the referen
e do
umentation 
an be foundin [BE08℄.The Curved_kernel_via_analysis_2 pa
kage is a layer between 
urves that 
an be an-alyzed on one side and obje
ts supported by su
h 
urves along with geometri
 predi
atesand 
onstru
tions on the other side. We already mentioned analyses of 
urves and pairs ofsu
h in �2.3.3. The Curved_kernel_via_analysis_2 pa
kage heavily relies on exa
tly su
hanalyses. In 
ontrast to the Gaps module, it does not assume 
urves to be algebrai
. Thus,the main Curved_kernel_via_analysis_2-
lass is templated in a more generi
 parameterCurved_kernel_via_analysis_2< CurveKernel_2 >We omit to dis
uss the more generi
 CurveKernel_2 
on
ept in detail, as the di�eren
esto the Algebrai
KernelWithAnalysis_2 are mainly names avoiding algebrai
 terminology.Thus, we 
an assume, for simpli
ity of presentation in this thesis, that we instantiatethe Curved_kernel_via_analysis_2 
lass-template with a bivariate algebrai
 kernel withanalysis, for example ACK_2:typedef Curved_kernel_via_analysis_2< ACK_2 > CKvA_2;An important subtlety in this simpli�
ation step should be mentioned: We identify theXy_
oordinate_2 type de�ned in the CurveKernel_2 
on
ept with the Algebrai
_real_2de�ned in the ACK_2. This means, that we also assume a spe
ial internal representationand 
onstru
tor for an Algebrai
_real_2, that is, its internal representation relies on a
urve-analysis; see De�nition 2.45 that gives the details. This 
hoi
e enables an inte-grated usage of the analyses, in both ACK_2 and CKvA_2, and additional 
omputationale�ort is avoided from the beginning. The strategy mainly supports the overall goal ofthe Curved_kernel_via_analysis_2 to derive all geometri
 operations without the expli
itknowledge of y-
oordinates, as this 
an be a 
ostly task.De�nition 2.45 (Impli
it y-
oordinate). Ea
h point p = (px, py) on a 
urve c, that 
anbe analyzed, 
an be uniquely represented as a triple (px, c, a), where a denotes the indexthat identi�es p among the sorted distin
t interse
tions of c with the verti
al line at px,where 
ounting starts at 0.Thus, the integrated handling of 
urve analyses is ensured by representing an instan
eof type Xy_
oordinate_2 (and thus, by assumption, an Algebrai
_real_2) by su
h a triple
(x, c, a). Of 
ourse, it is still possible to extra
t the exa
t y-
oordinate. However, it is not
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ted by the Curved_kernel_via_analysis_2. In any 
ase, this 
hoi
e has impli
ationson how to 
ompare two instan
es of type Xy_
oordinate_2 lexi
ographi
ally.Algorithm 2.15. Lexi
ographi
al 
omparison of two Xy_
oordinate_2Input: xy1 := (x1, c1, a1); xy2 := (x2, c2, a2)Output: Lexi
ographi
 order of xy1 and xy2

• If x1 6= x2, return their order.
• Else, if c1 = c2, return the order of a1 and a2.
• Else, analyze pair of 
urves de�ned by c1 and c2, and 
ompute their status line at

x1(= x2). Lo
ate a1-th �ar
� of c1 as index i1, and a2-th �ar
� of c2 as index i2 insequen
e of merged 
urves along the status line at x1. Return the order of i1 and i2.An illustration of this algorithm is given in Figure 2.10.
m(x1, f, 0) = 0
m(x1, f, 1) = 1
m(x1, f, 2) = 3
m(x1, g, 0) = 2

m(x2, f, 0) = 0
m(x2, f, 1) = 1
m(x1, f, 2) = 2
m(x2, g, 0) = 1

g

f

q1

0

1

2

3

0

1

2

x1 x2

p1

p′1

p2

q2

m : R× {f, g} × N→ N

Figure 2.10. Compare-xy via analyses of 
urvess: Given p1 = (x1, f, 1), p′1 =
(x1, f, 2), q1 = (g, x1, 0) and p2 = (f, x2, 1), q2 = (g, x2, 1). All points with x = x1are lexi
ographi
ally smaller than points with x = x2. Then, p1 <lex p′1 as both lie on
f and ap1 < ap′1

. It also holds that p1 <lex q1, as m(x1, f, ap1) < m(x1, g, aq1) and
q1 <lex p′1, as m(x1, g, aq1) < m(x1, f, ap′1

). Finally, p2 =lex q2, as m(x2, f, ap2) =
m(x2, g, aq2).The te
hniques used in Algorithm 2.15 
an be seen as blueprints for other geometri
operations implemented in the Curved_kernel_via_analysis_2; see below.Basi
 typesIn fa
t, the 
ombinatorial information obtained from 
urve analyses is a 
entral sour
eof knowledge within the Curved_kernel_via_analysis_2. While the Curve_analysis_2 andCurve_pair_analysis_2 types are given through instantiation, three new types to representgeometri
 obje
ts are de�ned by the Curved_kernel_via_analysis_2 
lass.



2.4. Arrangements 87Point_2 This is the simplest one among the three. A standard point is 
onstru
ted froma triple (x, c, a). Internally it holds a pointer to an Xy_
oordinate_2 instan
e. In thealgebrai
 
ase, the x-
oordinate 
an be a real algebrai
 number of any degree.Although not handled until Chapter 4, we already remark that there are spe
ialpoints to represent ends of non-bounded ar
s. Su
h points, however, are not expli
itly
onstru
tible by the user.Ar
_2 Represents a one-dimensional 
onne
ted and weakly x-monotone subset of a 
urve.An Ar
_2 arc is either verti
al, or it has the property, that the ar
 number for allpoints in its interior is 
onstant.Internally, it stores besides minimal and maximal endpoint pmin, pmax, its supporting
urve c, and three ar
 number amin, a, and amax. Note that the supporting 
urvesof pmin and pmax do not have to mat
h c, and similar their ar
 numbers do not haveto mat
h amin and amax. However, amin, a, and amax must be 
hosen su
h, that therepresented ar
 is a 
onne
ted subset of c.Poly_ar
_2 This type is only for the user's 
onvenien
e, as it allows to represent a non-
x-monotone 
onne
ted subset of a 
urve c by a 
hain of 
onne
ted Ar
_2 instan
es.There are pre
onditions, that all these ar
s must be supported by the same 
urve,and all ar
s are either verti
al or non-verti
al. There is the plan to provide a one-dimensional obje
t 
omposed of ar
s supported by di�erent 
urves.In order to simplify the subsequent dis
ussion we assume that the 
onsidered support-ing 
urves have a �nite number of (self-)interse
tions. Of 
ourse, the implementation takes
are of su
h spe
ial 
ases, and simpli�es in an on-line fashion (i. e., intera
tively during ex-e
ution of an operation) the internal representations of the Point_2 and Ar
_2 respe
tively.Simpli�
ation means to 
hoose 
urves that only have a �nite number of (self-)interse
tions,and to adapt a�e
ted ar
 numbers, respe
tively.OperationsIn this part, we present the 
entral operations of the kernel. Mu
h more are implementedand 
urrently do
umented in [BE08℄.Make_x_monotone_2 The main operator of this fun
tor de
omposes a given 
urve c with thehelp of a left-to-right traversal of c's analysis into a �nite number of Ar
_2 instan
esand isolated points of type Point_2.Another operator un
hains the linking of a Poly_ar
_2.There are two trivial operators for Ar
_2 and Point_2 that just return the givenobje
ts itself as it is already (weakly) x-monotone.A �nal operator takes a CGAL::Obje
t that is allowed to en
apsulate any of theCurved_kernel_via_analysis_2's geometri
 types. Depending on the type, one ofthe previous four operators is applied and the proper de
omposition is returned.Compare_xy_2 For two instan
es of type Xy_
oordinate_2 stored for the two given points,the fun
tor exe
utes Algorithm 2.15 to 
ompare them lexi
ographi
ally.
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tor 
ompares the relative verti
al alignment of a point p andan ar
 arc. As pre
ondition the point must lie in the x-range of arc. The result isobtained from 
onstru
ting a point parc on the ar
 at p's x-
oordinate, and then to(lexi
ographi
ally) 
ompare p with parc. Note that we 
an simply skip the 
omparisonof x-
oordinates in this 
ase.Compare_y_at_x_right_2 Given two ar
s and one of their interse
tion points. If the sup-porting 
urves of the ar
s are equal, we 
an just 
ompare the two interior ar
 num-bers. Otherwise, we 
ompute a status line of the 
orresponding pair of 
urves slightlyto the right of the interse
tion (e. g., at a representative and rational r within theopen interval to the right of the interse
tion's x-
oordinate), and 
ompare the rel-ative verti
al alignment of the ar
s in the spirit of the y-
omparisons of points inAlgorithm 2.15.Interse
t_2 Given two ar
s, 
ompute all their zero- and one-dimensional interse
tions.Note that the supporting 
urves are not equal and have a �nite number of interse
-tions. We �rst 
ompute the 
ommon x-range of the two ar
s. Then, we traverse theanalysis of the 
orresponding pair of supporting 
urves from the left end of the 
om-mon range to the right end, dete
t in ea
h status line of an event the interse
tionsof the two 
urves. This information, su�
es to 
onstru
t the interse
tion points. Anoverlap is dete
ted priorly, and requires a mat
hing between the 
ommon supporting
urve(s) and the two 
urves supporting the input ar
s.Ea
h of these operations also has some subtleties, for example with respe
t to thehandling of verti
al ar
s. We do not want to dis
uss the te
hni
al details in this overview.The Curved_kernel_via_analysis_2 as ArrangementTraits_2 modelWe aim to use an instantiated Curved_kernel_via_analysis_2 as the GeometryTraits_2for Cgal's Arrangement_2 pa
kage. Thus, it has to ful�ll the ArrangementTraits_2 
on-
ept. All ne
essary fun
tors are already in pla
e. It remains to de�ne the required types.Remember that the ArrangementTraits_2 
on
ept expe
ts three types. For the Point_2we do not have a 
hoi
e, and as the X_monotone_
urve_2 only Ar
_2 is su�
ient. Some�exibility is a�orded with respe
t to the input type Curve_2. As the Make_x_monotone_2fun
tor 
an deal with all internal types, it is the user's 
hoi
e to typedef Curve_2 eitherto Curve_analysis_2, Poly_ar
_2, Ar
_2, Point_2 or even CGAL::Obje
t that is most �ex-ible as it 
an en
apsulate ea
h of the former types. We re
ommend to 
hoose amongCurve_analysis_2, Poly_ar
_2, or CGAL::Obje
t, as for the others no Make_x_monotone_2 isrequired.To summarize, we obtain a valid model of Cgal's ArrangementTraits_2 
on
ept foralgebrai
 
urves to be used as GeometryTraits_2 in the Arrangement_2 pa
kage by instan-tiating the Curved_kernel_via_analysis_2 with a bivariate algebrai
 kernel (e. g., dire
tor wrapping version of Algebrai
_
urve_kernel_2). We hen
eforth use the shorter termCKvA_2 when referring to su
h an instantiated instan
e.In Chapter 3 we use Algebrai
_
urve_kernel_2wrapping QuadriX's P_
urve_pair_2,while in Chapter 4 and 5 we mainly rely on the self-
ontained Algebrai
_
urve_kernel_2in 
ombination with the Curved_kernel_via_analysis_2. Typi
ally, we only make use ofthe Curved_kernel_via_analysis_2 as a mediating layer. However, in �4.3 we show how it
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urves, while in �4.6 we even modify it noti
eablein order to 
ompute arrangements on parametri
 surfa
es. These modi�
ations are possibledue to the 
hosen software design.Software design The design of the Curved_kernel_via_analysis_2 is held �exible. Anintelligent 
ombination of derivation and template meta programming allows to repla
ethe two basi
 types Point_2 and Ar
_2. This way, the original 
lass 
an be substituted byderived versions that are enhan
ed with additional fun
tionality, su
h as a 
onstru
tionhistory. But not only the basi
 types 
an be ex
hanged, it is also possible to repla
e indi-vidual fun
tors, for example, with a �ltered version. Contained in the pa
kage we alreadyprovide a derived Filtered_
urved_kernel_via_analysis_2 whose fun
tors are equippedwith bounding box �ltering in order to avoid analyses of pairs of 
urves; see [Ker08℄. The
urrent version is preliminary, that is, further improvements should be a

omplishable.Other derivations repla
e point and ar
 
lasses and some fun
tors. Examples arethe Quadri
al_kernel_via_analysis_2 for 
urves on a quadri
 (see �4.6.1) and the newArr_surfa
es_interse
ting_dupin_
y
lide_traits_2 
lass that enables 
urves on a ringDupin 
y
lide (see �4.6.2).The kernel is also equipped with a robust visualization by Pavel Emeliyanenko forpoints and ar
s following the ideas of [Eme07℄. The pa
kage and its visualization 
an alsobe experien
ed in the web when 
omputing arrangements of algebrai
 
urves of arbitrarydegree in an intera
tive demo; see [7℄ and [EK08
℄. We also rely on the planar visualizationwhen drawing an arrangement indu
ed on a ring Dupin 
y
lide.
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3Lower Envelopes of Quadri
sOur journey between the three- and two-dimensional world starts with an important stru
-ture in 
omputational geometry � lower envelopes. We present the 
omputation of en-velopes of a set of quadrati
 algebrai
 surfa
es de�ned in R3 using Cgal's Envelope_3pa
kage. This pa
kage provides a generi
 and robust implementation of a divide-and-
onquer algorithm. In this 
hapter, we 
on
entrate on the algebrai
 and 
ombinatorialtasks that o

ur for quadrati
 surfa
es and their implementation. As the pa
kage followsthe generi
 programming paradigm, we have to provide a quadri
-spe
i�
 model of a 
er-tain 
on
ept. Both, the pa
kage and the model are exa
t and robust, thus the obtainedimplementation follows the exa
t geometri
 
omputing paradigm. As we see at the end ofthis 
hapter, the e�
ien
y depends on three 
riteria.Parts of this 
hapter also appear in [Mey06a℄, as we des
ribe a joint work with Mi
halMeyerovit
h from Tel-Aviv University, Tel-Aviv, Israel. A short version of our results hasbeen presented 2007 [BM07℄.3.1. EnvelopesLower envelopes are fundamental stru
tures in 
omputational geometry, whi
h have manyappli
ations like 
omputing general Voronoi diagrams, or performing hidden surfa
e re-moval. Let S = {S1, . . . , Sn} be a set of n (hyper)surfa
e pat
hes in Rd. We denote with
x1, . . . , xd the axes of Rd, and assume (for now) that ea
h Si is monotone in (x1, . . . , xd−1),namely every line parallel to the xd-axis interse
ts Si in at most one real point (without
ounting multiple interse
tions). If we now 
onsider ea
h pat
h Si as a partially de�ned
(d − 1)-variate fun
tion Rd−1 → R, with xd = Si(x1, . . . , xd−1), we 
an de�ne the lowerenvelope.De�nition 3.1 (Envelope). The lower envelope ES of S is the point-wise minimum of thesefun
tions: ES(x1, . . . , xd−1) := minSi(x1, . . . , xd−1), where the minimum is taken over allfun
tions de�ned at (x1, . . . , xd−1).
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sInstead of saying that a fun
tion Si is not de�ned at some point (x1, . . . , xd−1), we 
analso assume that Si(x1, . . . , xd−1) =∞.De�nition 3.2 (Minimization Diagram). The minimization diagram MS of S is the sub-division of Rd−1 into maximal 
onne
ted 
ells su
h that ES is attained by a �xed (possiblyempty) subset of fun
tions over the interior of ea
h 
ell.Similarly, the upper envelope is de�ned as the point-wise maximum of the fun
tions Siwhi
h leads to their maximization diagram. However, until the end of the 
hapter we referfor the sake of simpli
ity to lower envelopes only.The 
omplexity of an envelope is de�ned by the 
omplexity of its minimization dia-gram. Several analyses exists [HS94℄, [Sha94℄, [SA95℄. Constru
ting an envelope for a setof (hyper)surfa
es is also well-studied. Observe that the minimization diagram of algebrai
(hyper)surfa
es 
an be easily extra
ted from the proper 
ylindri
al algebrai
 de
omposi-tion [Col75℄ (see also �2.1.6). The 
ad only needs to be 
lustered with respe
t to theminimization. However, the 
onstru
tion of a 
ad 
omputes mu
h more than needed, inparti
ular, it always adheres hidden features. Hidden means that it 
onsiders boundaries orinterse
tions of surfa
es that �nally do not show up in the minimization diagram. Severalmore e�
ient algorithms have been developed for low-dimensional envelopes, espe
iallyfor d = 3. There exist output-sensitive algorithms for spe
ial 
ases [dBHO+94℄, [KOS92℄,[Mul89℄. A randomized in
remental algorithm is due to Boissonnat and Dobrindt [BD96℄.It runs in time O(n2+ε), with ε > 0. The same time is needed by the divide-and-
onquerapproa
h presented by Agarwal et al. [ASS96℄.Meyerovit
h presented the generi
 and exa
t implementation of a divide-and-
onqueralgorithm for the three-dimensional 
ase that de
ouples the 
ombinatorial part from thegeometri
 predi
ates using the generi
 programming paradigm [Mey06b℄. The implemen-tation is 
ontained in Cgal's Envelope_3 pa
kage, that has been released with Cgal ver-sion 3.3. It is based on and strongly 
oupled with Cgal's Arrangement_2 pa
kage, whi
h isa well-taken 
hoi
e, sin
e the problem a
tually is two-and-a-half-dimensional: The input S
onsists of obje
ts in R3, while their minimization diagram is represented by an augmentedplanar arrangement in R2, that is, ea
h 
ell of the arrangement (vertex, edge, and fa
e)is labeled with the set of surfa
es that attain the minimum over the 
ell. We typi
allydistinguish between an empty set, a singleton, or more than one surfa
e. Algorithm 3.1des
ribes how the labels are assigned using a divide-and-
onquer approa
h.Remarks (on Algorithm 3.1).
• We observe that its output is with respe
t to the xy-monotone pie
es g1, . . . , gk ofthe Si. This a
tually poses no real problem, as ea
h gj 
an store from whi
h Si itoriginates. In �3.3 we see an impli
it storage strategy for quadri
s.
• The splitting into G1 and G2 is not spe
i�ed. However, in pra
ti
e, a randomizedpartition obtains the best results. This has also been shown in theory by an analysisof the expe
ted running time [HSS08℄.
• The des
riptions of the algorithm 
ontained in [Mey06a℄ and [Mey06b℄ 
over moredetails. In parti
ular, they dis
uss subtleties that we skipped for the sake of sim-pli
ity, they explain how to use Cgal's Arrangement_2 pa
kage for the a
tual im-plementation, and they also presents how to propagate 
ontinuity and dis
ontinuityinformation of the surfa
es in order to signi�
antly redu
e the amount of geomet-ri
 
onstru
tions and 
omparisons by 
ombinatorial dedu
tions. Su
h operations
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Algorithm 3.1. Lower envelope with divide-and-
onquerInput: Set of surfa
es S = {S1, . . . , Sn}Output: Minimization diagram MS representing the lower envelope ES of S

• Extra
t (weakly) xy-monotone pie
es of ea
h Si (ea
h line parallel to the z-axisinterse
ts su
h a pie
e at most on
e, or Si is 
ompletely verti
al). Let G be the set
olle
ting them.
• If G = {g}, 
ompute MG. This is done by �rst proje
ting the boundary of g intothe xy-plane whi
h indu
es fa
es. For ea
h fa
e it is de
ided whether it representsa proje
tion of g. There 
an be more than one su
h a
tive fa
e. In 
ase of g beingverti
al, no fa
e is a
tive. The de
ision is lead by a �ag atta
hed to ea
h x-monotoneproje
ted 
urve of the boundary indi
ating whether the proje
tion of g is above,below, or none of them; for an exa
t spe
i�
ation of these terms see De�nition 3.4.
• If |G| > 1, we split G into two non-empty sets G1 and G2 (of roughly the samesize), re
ursively 
onstru
t MG1 and MG2 , and �nally merge them into MG with thefollowing steps (simpli�ed):1. Overlay the planar arrangements representing MG1 and MG2 resulting in O.Store for ea
h 
ell Γ of O two pointers to Γ's originating 
ells Γ1 ∈MG1

and Γ2 ∈
MG2

.2. Update the labeled set ℓc ⊆ G for ea
h 
ell Γ of O: Let ℓ1 ⊆ G1 and ℓ2 ⊆ G2be the labeled set of surfa
es atta
hed to Γ1 and Γ2. We skip the trivial 
ases,where at least one ℓ1 = ∅ or ℓ2 = ∅ holds. In the remaining non-trivial 
ase theenvelope over Γ is the envelope of ℓ1∪ℓ2. Redu
e the sets ℓ1, ℓ2 to representativesingletons ℓ′1 = {g1} and ℓ′2 = {g2}. Split Γ (if not a vertex) with respe
t tothe proje
ted interse
tion of g1 and g2. For ea
h resulting 
ell Γ′
1, . . . ,Γ

′
k (k
an be
ome large) determine whether either ℓ′1, ℓ′2, or ℓ′1∪ ℓ′2 forms its envelope.Flush with re-repla
ing the representatives ℓ′1, ℓ′2 with ℓ1, ℓ2 in the labels ofea
h Γ′

i.3. Clean up by removing edges whose two in
ident fa
es 
arry the same labelingas the edge. Also delete verti
es of degree 2 whose two in
ident edges 
arry thethe same labeling as the vertex and that 
an be merged geometri
ally (i. e., theedges and the vertex originate from a single proje
ted 
urve).
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sare usually expensive, espe
ially when following the exa
t geometri
 
omputationparadigm.The outline of Algorithm 3.1 already de�nes the tasks that must be provided in or-der to support a 
ertain 
lass of surfa
es. In parti
ular, we dete
t (a) the extra
tion of(weakly) xy-monotone pie
es, (b) to 
onstru
t the proje
ted boundary (with side informa-tion) for a single xy-monotone surfa
e, (
) to 
onstru
t the proje
ted interse
tion of two
xy-monotone surfa
es, (d) to overlay arrangements 
omposed of su
h 
onstru
ted 
urves,and �nally, (e) to determine the relative z-order of xy-monotone surfa
es over a 
ell of aplanar arrangement.Cgal's Envelope_3 pa
kage implements the generi
 parts, as the maintenan
e of theplanar arrangement, or the overlay using the sweep-line algorithm. However, in order to
ompute the lower envelope for a 
ertain family of surfa
es, the surfa
e-spe
i�
 geometri
types and operations must be provided. As usual for generi
 programming, this is done inform of a traits 
lass ful�lling a 
ertain 
on
ept. The Envelope_3 pa
kage already 
ontainssu
h traits 
lasses for triangles, planes, and spheres. In �3.3 we present the details of the
on
ept, and show how to implement a proper model for quadri
s.3.2. Quadri
sDe�nition 3.3 (Quadri
). A quadri
 is a real algebrai
 surfa
e for whose de�ning polyno-mial f ∈ Z[x, y, z] it holds degtotal(f) = 2.As 
olle
ted in �1.2, basi
ally three approa
hes to 
omputationally study quadri
sexist. Namely, (a) the sweep of a plane perpendi
ular to the x-axis, while keeping tra
k oftopologi
al 
hanges, (b) the parametri
 approa
h, where interse
tion 
urves are representedin the parameter spa
e of the quadri
s, and (
) the proje
tion approa
h, whi
h proje
ts
urves of interest onto the xy-plane, analyzes them, and lifts them ba
k to the thirddimension. We noti
e that espe
ially the proje
tion method turns out to be a fundamentalbasis when 
omputing envelopes. Let us brie�y review the results of [BHK+05℄, that isbasi
ally motivated by the 
ylindri
al algebrai
 de
omposition method, see �2.1.6.Let Q := {q0, . . . , qn} be a set of n quadri
s, among whi
h we sele
t one referen
equadri
, w. l. o. g. q0. Abusing notation we identify with qi also the vanishing set of thepolynomial, that is, the surfa
e itself. By resultant 
omputations and Proposition 2.8 theinterse
tion 
urves are proje
ted onto the xy-plane. The resulting real algebrai
 plane
urves have degree at most 4 and are Zariski 
losed. We 
all them proje
ted interse
tion.The silhouette of q0, de�ned by the interse
tion of q0 and ∂q0

∂z , partitions q0 into a lowerand an upper part. We also proje
t the silhouette onto the xy-plane. The 
orresponding
urve is also Zariski 
losed, has degree at most 2, and is 
alled the proje
ted silhouette. We
an 
ombine a proper model of the Algebrai
KernelWithAnalysis_2 
on
ept with Cgal'sCurved_kernel_via_analysis_2 (CKvA_2) to 
ompute the indu
ed planar arrangements ofthe proje
ted 
urves as explained in �2.4.4. Two su
h models exist. One instantiatesthe Algebrai
_kernel_2 (in wrapping mode, see �2.3.3) with quadri
-spe
i�
 analyses ofplanar 
urves of degree 4. These analysis are taken from Exa
us's QuadriX library,and presented in [BHK+05℄. The other is Cgal's new Algebrai
_
urve_kernel_2 that
omprises the analysis of algebrai
 
urves of arbitrary degree,20 that also su�
es for our20Formerly known as Exa
us' Al
iX library.
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s 95purpose. The ingredients are published in [EKW07℄ and [EK08a℄. These days, we prefer these
ond approa
h, as its analyses keep shearing internally, while the analyses of the quadri
-spe
i�
 analyses have pre
onditions on the 
hoi
e of the three-dimensional 
oordinatesystem.For the plane sweep, 
urves get de
omposed into maximal ar
s with 
onstant ar
 num-ber in their interior; see �2.1.4. However, in the proje
tion of the three-dimensional 
urvesonto the xy-plane the spatial information is lost. In order to re
over it [BHK+05℄ usesa stronger de
omposition of proje
ted interse
tion 
urves, su
h that ea
h (maximal) sub-
urve 
an be uniquely assigned to the lower or upper part of q0. As before, the proje
tionof q0's interse
tion with some qi is split at its 
riti
al points, but also at its interse
tionpoints with the proje
ted silhouette of q0; see, in parti
ular, Figure 3.1 (
).Note that this de
omposition is 
onservative in the sense that the 
urve may be split atproje
ted points of q0 ∩ qi where the spatial 
ounterpart only tou
hes the silhouette of q0,but does not 
ross it.In the next step, ea
h su
h sub-
urve (and ea
h existing isolated point) is 
he
kedwhether it belongs to the lower part of q0 or the upper part of q0 (or even both, whi
h isalso possible) by �nding the 
ommon interse
tion(s) of q0 and qi with a z-verti
al line. Inthe generi
 
ase, the �ip of interse
tions along two related lines with rational x- and y-
oordinate is dete
ted to de
ide whether a 
urves lies on the lower or upper part of q0. Fig-ure 3.2 illustrates this 
ase. In the other 
ases, we have to dire
tly 
ompare z-
oordinatesof quadri
s' interse
tions with a verti
al line. We dis
uss these interse
tions below. Forfurther details on the de
omposition and the assignment we refer to [BHK+05℄ and [Ber04℄.We next 
on
entrate on the interse
tions of a quadri
 with a verti
al line ℓp at somepoint p, whi
h is important for the previous assignment. It is essential to 
ompute therelative z-order of two quadri
s, expe
ted by the 
on
ept we have to model to 
ompute alower envelope of quadri
s; see �3.3.Let qi be a quadri
 and 
onsider a point p = (px, py) ∈ R2 with Ri(p) := {z ∈ R | 0 =
qi(px, py, z) ∈ R[z]}. As degz(qi) ≤ 2, it holds that |Ri(p)| ≤ 2. That is, if any is existing,
qi has either one or two interse
tions with ℓp and Ri(p) exa
tly de�nes their z-
oordinates;see also Lemma 5.64. Let us have a 
loser look at the algebrai
 degrees of Ri(p)'s elements.
• If p is a rational point, then r ∈ Ri(p) is an algebrai
 number of degree at most 2.Su
h a number 
an be represented in the form r = a + b

√
c, with a, b, c ∈ Q, alsoreferred to as a one-root number. Cgal's number type Sqrt_extension is able torepresent su
h one-root numbers, allows to 
ompare them, and provides arithmeti
operators on them.

• Next, think of p lying on a proje
ted silhouette of a quadri
, with px being rational.Then, by degy(Resz(qi,
∂qi

∂z )) ≤ 2, py is not worse than a one-root number. Weassume the worst, and thus 
on
lude, that although r ∈ Ri(p) having algebrai
degree 4, it 
an be represented by a nested one-root number of depth 1: We 
an write
r = a′+b′

√
c′ where a, b, c are simple one-root numbers itself. Cgal's Sqrt_extensiontype allows su
h a nesting.

• Let now p be a singular point of a proje
ted interse
tion 
urve of two quadri
s. Asshown in [Wol02℄ (and used in [BHK+05℄), p's x- and y-
oordinates 
an be repre-sented as nested-one-root numbers of depth 1. Applying the previous idea again,
r ∈ Ri(p) is representable as nested one-root number of depth 2. Alternatively,we 
an swit
h to numbers types representing algebrai
 expressions involving the ⋄-
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Figure 3.1. Developing the two arrangements on a referen
e quadri

(a) Red and green quadri
 areinterse
ting the gray referen
equadri
 q0

(b) The same situation on q0

(
) The proje
tion of the referen
e's silhouette and the two interse
-tion 
urves onto the xy-plane. The proje
ted interse
tion 
urves mustbe split and assigned to the lower and upper part of q0.
(d) Arrangement on lower part of q0 (e) Arrangement on upper part of q0
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q0

lower

y1 y2 y3 y4

upper

Figure 3.2. Lifting the interse
tions of the blue quadri
 with the red referen
equadri
 q0 to q0's lower and upper part. In this generi
 
ase, it su�
es to lo
atethe �ip (dashed re
tangles) along pairs of z-axis parallel lines with rational x0 and ra-tional yi. The pi
ture takes pla
e in the plane x = x0. In degenerate 
ases, 
omparisonsof one-root numbers give the answer.operator. Examples are leda::real or CORE::Expr as stated in �2.3.1.
• Su
h algebrai
 expressions 
onstitute the default representation for z-
oordinates of

ℓp∩qi, for all other p. In parti
ular, if p is an interse
tion of a proje
ted silhouette anda proje
ted interse
tion. Its x-
oordinate has algebrai
 degree up to 8, whi
h impliesfor its y-
oordinate a degree of up to 16. Thus, r ∈ Ri(p) already has degree 32.Of 
ourse, it is possible that algebrai
 expressions 
ould also be used for all 
asesrepla
ing all (nested) one-root numbers. However, dete
ting the equality of two su
hnumbers r1 and r2 is more 
ostly for algebrai
 expression, as |r2−r1| must be approximatedbelow the separation bound to derive a 
erti�ed answer. On the other hand, 
he
king
r2−r1 = 0 using (nested) one-root numbers redu
es to repeated squaring of the expression
r2 − r1 until no square-root remains. This is usually the 
heaper approa
h; see [Meh01℄.Remark. In Chapters 4 and 5 quadri
s also play a fundamental role. Observe that theinterse
tion 
urves q0 ∩ qi, 1 ≤ i ≤ n a
tually indu
e a two-dimensional arrangementon the surfa
e of q0. The software presented in [BHK+05℄ is only able to 
ompute twoproje
ted arrangements, that is, one for the lower part of q0 and one for its upper part.Their 
onne
tions are missing. Chapter 4 des
ribes a framework that 
an be used todire
tly 
ompute a sole two-dimensional arrangement for an ellipti
 q0. In Chapter 5 weredesign the analysis of surfa
es. The expli
it representation for z-
oordinates is repla
edby an approximated version relying on the output of the bitstream Des
artes method.We in
orporate the idea for quadri
s again, but also generalize to algebrai
 surfa
es ofarbitrary degree.3.3. EnvelopeTraits_3 
on
ept and the model for quadri
sCgal's Envelope_3 pa
kage implements the generi
 programming paradigm, that is, in or-der to 
ompute lower envelopes for a 
ertain family of surfa
es, the algorithm template mustbe instantiated with a traits 
lass (see �2.2.1) that en
apsulates basi
 geometri
 obje
tsand operations on them. The requirements are also referred to as the 
on
ept that must
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sbe ful�lled. The Envelope_3 pa
kage expe
ts a 
lass that implements the EnvelopeTraits_3
on
ept. In this se
tion, we present the details of the 
on
ept and how we provide animplementation for quadri
s. For the reason of readability, we simplify synta
ti
al issues.The interested reader is en
ouraged to read the referen
e do
umentation in [MWZ07℄.As the 
omputation of lower envelopes is based on two-dimensional arrangements andalso employs their overlays, the EnvelopeTraits_3 
on
ept is a dire
t re�nement of Cgal'sArrangementTraits_2 
on
ept. Thus, we automati
ally inherit types for planar points(Point_2), planar 
urves (X_monotone_
urve_2) and basi
 operations on them; see �2.4.3.For quadri
s: Thus, we derive the new model from the CKvA_2 that is instantiatedwith one of the two possible algebrai
 kernels as written in �3.2.The 
on
ept also expe
ts spatial types and operations related to them. Two types areexpe
ted, namely Surfa
e_3 and Xy_monotone_surfa
e_3.For quadri
s: We map both types to QuadriX's Quadri
_3 
lass. This may besurprising at �rst, sin
e a quadri
, in general, is not xy-monotone. However, it is only animplementation detail to simplify matters. All subsequent operations that are expe
ted towork on an xy-monotone surfa
e g 
onsider only the lower part of the appropriate quadri
.If f ∈ Z[x, y, z] de�nes a quadri
, its lower part is separated from its upper part by itsinterse
tion with the plane de�ned by ∂f
∂z , the silhouette.Due to this 
hoi
e of types, the �rst expe
ted operation21 is simple:

• Extra
t xy-monotone surfa
esTask: The fun
tion obje
t Make_xy_monotone_3 is expe
ted to de
ompose a givensurfa
e S into its xy-monotone subsurfa
es.For quadri
s: As both basi
 surfa
e types use the same representation, we simplyreturn the given quadri
 itself as the sole output obje
t.For the other spatial fun
tors, we �rst introdu
e some notation on planar 
urves.De�nition 3.4 (Points below and above a 
urve). Let c be a planar non-verti
al x-monotone 
urve.
• We say that a point p = (px, py) 6∈ c is below c if it lies in the x-range of c and if

py < p′y, where p′ = (p′x, p′y) ∈ c with p′x = px. The analog 
ase of above c is met if
py > p′y.

• The verti
al half-open line segment de�ned by Cp,c := {(x, y) ∈ R2 | x = px ∧ p′y <
y ≤ py} is 
alled the 
riti
al segment between p and c. The 
riti
al segment for apoint above c is de�ned analogously.

• The set of all points p below c de�ne a half-stripe 
alled area below c, while the setof all points p above c de�ne its 
ounterpart, 
alled the area above c.The notation of below and above is even used for a verti
al c; but with ex
hanged
oordinates. Figure 3.3 illustrates this de�nition.Remark. Mind that we 
arefully distinguish notation here. The terms below and above
lassify planar points related to a proje
ted planar 
urve and a 
riti
al segment is lo
atedin the xy-plane as well; see De�nition 3.4. In 
ontrast, over deals with interse
tions of asurfa
e (or two surfa
es) with a line parallel to the z-axis going through a planar point p21Ea
h operation is interfa
ed as fun
tion obje
t (also known as fun
tor).
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s 99(or a representative point pc on a given proje
ted 
urve c). In the latter 
ase we mainly
ompute a set Ri(p) or 
ompare entries of sets Ri(p) and Rj(p); see �3.2 for more details.Figure 3.3. Points below and above 
urves
above

below
p1

p3

p2

p4

c1

c2

(a) Points p2 and p4 are abovethe non-verti
al c1; points p1and p3 are below it. The 
riti-
al segment for p4 is interse
tedby the red 
urve c2.
belowabove

p7

c3

p8

p6

p5

c4(b) Points p5 and p8 are above theverti
al c3; points p6 and p7 are be-low it. The 
riti
al segment for p7is interse
ted by the red 
urve c4.The next two expe
ted operations perform the proje
tion of boundaries or interse
tionsinto the plane of the minimization diagram. Their implementation for quadri
s, bene�tsfrom prior work that we repeated in �3.2.
• Constru
t proje
ted boundaryTask: The fun
tion obje
t Constru
t_proje
ted_boundary_2 
omputes for a given(xy-monotone) surfa
e g all planar (weakly) x-monotone 
urves (and possibly iso-lated planar points) that form the proje
tion of g's boundary into the xy-plane. Notethat these obje
ts are at most one-dimensional, that is, it is required to label indu
edopen two-dimensional sets (fa
es), whether the surfa
e exists over them (i. e., 
overti-
al to the planar fa
e). For that purpose ea
h reported (weakly) x-monotone 
urve cis enhan
ed with a �ag whether the proje
tion of g is (lo
ally) below or above c. The�ag 
an a
tually also en
ode the third, degenerate, 
ase, namely that g is verti
alover the 
orresponding 
urve c (i. e., g 
ontains every line parallel to the z-axis, thatrun through points on c). The �ag is used to properly tag all fa
es. Observe thatthe obje
tive of this fun
tion obje
t is to support the 
omputation of M{g}, that is,the minimization diagram for a single surfa
e as expe
ted in Algorithm 3.1.For quadri
s: The proje
ted silhouette of a quadri
 q is easy de
omposable into(weakly) x-monotone 
urves and isolated points, using Make_x_monotone_2 suppliedby CKvA_2. The assignment to whi
h side of some c the non-verti
al lower part of qis proje
ted is de
ided in two steps: First, we 
hoose a rational point p = (px, py)below c, but 
lose enough. This means that the 
riti
al segment between p and c isnot interse
ted by any another proje
ted boundary of q. Se
ond, we 
ompute the
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sFigure 3.4. Constru
ting the proje
ted boundary for a quadri
, three examples
(a) Quadri
 1 (b) Quadri
 2 (
) Quadri
 3
ardinality m := |R(p)|. This value gives the number of real roots of q(p, z) ∈ R[z],or more geometri
ally, the number of distin
t real interse
tion of q with ℓp. If m > 0,the proje
ted quadri
 is below c (by 
hoi
e of point), otherwise it is above c. Thissimple impli
ation (i. e., the else-
ase) is allowed as (1) quadri
s that only show asingle interse
tion over a non-boundary have no boundary at all and (2) if q is verti
althis information is stored with q itself. Thus a single 
ardinality su�
es. We simplysave to 
he
k the 
ardinality over a se
ond point above c to de
ide verti
ality.
• Constru
t proje
ted interse
tionTask: The fun
tion obje
t Constru
t_proje
ted_interse
tion_2 
omputes the ob-je
ts of the proje
ted interse
tions of two xy-monotone surfa
es g1 and g2. If su
h anobje
t is an isolated point (Point_2) it is either the proje
ted image of a degenerate(isolated) interse
tion, or the proje
tion of a verti
al interse
tion 
urve. Otherwise,an obje
t 
an also be a one-dimensional (weakly) x-monotone 
urve c, whi
h isequipped with an optional integral multipli
ity. If this multipli
ity is an odd value,we know that the two surfa
es interse
t transversely over c, that is, they 
hange theirrelative z-order on either side of the spatial 
ounterpart of c. An even multipli
ityindi
ates that the surfa
es maintain their relative z-order. The divide-and-
onqueralgorithm 
an derive the relative z-order of two surfa
es on one side from their knownrelative z-order on the other side. This avoids expli
it tests in
orporating one of theremaining fun
tors below, and thus, improves the overall performan
e of the algo-rithm. If the multipli
ity is set to 0, additional 
omparisons are unavoidable.For quadri
s: We mainly 
onsider the proje
ted interse
tion 
urve as presentedin �3.2. Remember that we de
omposed it with respe
t to its 
riti
al points andits interse
tions with the proje
ted silhouette of a referen
e quadri
. This time, wepartition it with respe
t to the proje
ted silhouettes of both given quadri
s. Thisde
omposition paves the way to assign (the interior of) sub-
urves (and isolatedpoints) uniquely to the lower part of both involved quadri
s: For ea
h point andea
h 
urve we 
he
k, using ray-shooting as in �3.2, to whi
h part of the �rst quadri
it belongs, and to whi
h part of the se
ond quadri
 it belongs. We �nally return allsub-
urves and points that have been assigned to the lower parts of both surfa
es.The remaining expe
ted fun
tion obje
ts 
ompute the relative z-order of two xy-monotone surfa
es g1 and g2 over proje
ted 
ells of a planar arrangement. We distinguish
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ting the proje
ted interse
tion for pairs of quadri
s
(a) Quadri
 1+2 (b) Quadri
 1+3 (
) Quadri
 2+3�ve 
ases, 
olle
ted in three fun
tors. For quadri
s, all of them rely on 
omputing and
omparing the minimal interse
tions of q1(= g1) and q2(= g2) with ℓp at some suitablepoint p = (px, py). It is easy to see that the relative z-order of the lower part of q1and the lower part of q2 over p is given by the order of r1 := g1(p) = min R1(p) and

r2 := g2(p) = min R2(p). That is, we mainly explain how to �nd a suitable point for ea
hdesired 
omparison. Depending on the representation (algebrai
 degree) of the point, ana
tual z-
omparison is simply 
arried out by the 
omparisons of the 
orresponding numbertypes: either (nested) one-root numbers or algebrai
 expressions. We refer to �3.2 wherewe dis
ussed the di�erent possibilities.
• Compare z over xyTask: The fun
tion obje
t Compare_z_at_xy_3 provides three operators. Ea
h 
on-siders as input two given non-verti
al xy-monotone surfa
es g1 and g2 and a planargeometri
 obje
t.1. The �rst determines the relative z-order of g1, g2 at a given planar point p =

(px, py). Both surfa
es must be de�ned over p. The returned information is the
omparison result of g1(p) and g2(p).2. The se
ond determines the relative z-order of g1, g2 over the interior of a given(weakly) x-monotone 
urve c. It has the pre
ondition that c is fully 
ontained inthe xy-de�nition range of both surfa
es, and that c is not part of the proje
tedinterse
tion of g1 and g2. The fun
tor is expe
ted to return the 
omparisonresult of g1(p
′) and g2(p

′) for some point p′ in the interior of c.3. The last operator is only required if unbounded surfa
es o

ur. A
tually, thesurfa
es must be de�ned over the entire xy-plane having no boundary and no in-terse
tion at all. A simple example 
onsists two planes parallel to the xy-plane.The operator determines the relative z-order by (te
hni
ally) 
hoosing someplanar point p′ ∈ R2 and returning the 
omparison result of g1(p
′) and g2(p

′).For quadri
s: We dis
uss the three operators in reversed order, as this re�e
ts 1how
ompli
ated ea
h is.For the third, we simply 
hoose p = (0, 0), 
ompute one-root numbers r1 and r2 asde�ned, and 
ompare them.For the se
ond operator, we distinguish two 
ases, namely either
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Figure 3.6. Compare relative z-order of (lower parts of) of two quadri
s over aproje
ted boundary 
urve (Example)� c is part of a proje
ted boundary of a quadri
's lower part or� c is part of a proje
ted interse
tion of surfa
es g′1 and g′2, with {g′1, g′2} 6= {g1, g2}.We see that the algebrai
 degrees of the 
orresponding p′'s 
oordinates 
an be keptquite small in both 
ases, whi
h starts with 
hoosing a rational number for p′x in c's
x-range.22 If c is part of a proje
ted boundary, p′y is a one-root number, and thus
r1 and r2 
an be 
omputed and 
ompared as nested one-root numbers of depth 1.Figure 3.6 shows an example for su
h a 
omparison. In the other 
ase, we bene�tfrom the fa
t that the proje
ted interse
tion is not of the queried surfa
es g1 and g2,whi
h implies that there is a two-dimensional 
onne
ted (maybe open) subarea below
c whose points' 
riti
al segments are not interse
ted by the proje
ted interse
tion of
g1 and g2. Thus, a point from this subarea is a good 
andidate. However, we also needto ensure that the topology of g1 and g2 over su
h a point is identi
al to the topologyof the surfa
e over points of c. We 
hoose a rational point p′ in the subarea below
c whose 
riti
al segment between p′ and c is not interse
ted by any of the following
urves: (1) The proje
ted interse
tion of g1 and g2, (2) the 
urve that supports c(the proje
ted interse
tion of some g′1 and g′2), and (3) the proje
ted boundaries of
g1 and of g2 . The 
orresponding values r1 and r2 are one-root numbers.It turns out that the 
omparison of the lower parts of two quadri
s over a point
p is the most expensive one as p's 
oordinates are often algebrai
 numbers of highdegree. In addition, there is no guarantee to �nd a ni
e point p′ (i. e., best withrational 
oordinates) nearby where q1 and q2 have the same order. In fa
t, most ofthe time su
h a ni
e point will just not exist, as the majority of usages of this methodby the lower envelope algorithm only o

ur in degenerate situations. An impli
ationis, that we are really for
ed to exa
tly 
ompare the surfa
es' relative z-order over apoint with 
oordinates of higher algebrai
 degree. However, the list of possible 
asesis not arbitrary. In fa
t, the generi
 divide-and-
onquer implementation exploits
ontinuity and dis
ontinuity information of the envelopes to 
arry a de
ision overbetween in
ident 
ells. Bringing this into 
onsideration, the 
omparison of surfa
esover a point 
an o

ur only in two spe
ial situations. They remain by 
he
king allthe possible 
ases where a point is 
reated in the merge step, and keeping only thosewhere the 
omparison method over a point is invoked: Either p is an isolated point22If c is verti
al, think of swapped 
oordinates for the whole pro
edure.
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Figure 3.7. Compare relative z-order of (lower parts of) of two quadri
s over aplanar point (Example)of a 
urve, or p lies on a proje
ted boundary of an xy-monotone surfa
e. In both
ases, the algebrai
 
omplexity is not the highest possible.In most 
ases, we 
an 
ompute and 
ompare r1 and r2 using (nested) one-root num-bers. In parti
ular, this holds for p being isolated, as an isolated point is singularand the 
oordinates of singular points of proje
ted interse
tions 
an be representedas (nested) one-root numbers [BHK+05℄; the singularity (if existing) of a proje
tedboundary is, due to the degree, even rational; see Figure 3.7. If p lies on a proje
tedboundary, we distinguish by the algebrai
 degree of px. If it is at most 2, we still 
an
ope with nested one-root numbers. If if ex
eeds 2, we have no 
hoi
e and swit
hto algebrai
 expressions to represent r1 and r2. This implies the 
ostly usage of the
⋄-operator. However, the algebrai
 degree of px is bounded by 8. Note that this 
aseforms the most expensive 
omparison in the algorithm, espe
ially, if it eventuallyholds that r1 = r2.Summarizing, it is possible in all 
ases to 
ompute the relative z-order of the lowerparts of two quadri
s over a point or a 
urve. One 
an see, that due to the algebrai
degree of quadri
s, we 
an always use (nested) one-root numbers as long as thealgebrai
 degree of the x-
oordinate does not ex
eed two. Otherwise we have toswit
h to the expensive ⋄-operation. Note that, in general, the 
omparison over anarbitrary algebrai
 point p is possible using the same te
hniques, in parti
ular whenrelying on algebrai
 expressions. However, this 
an be arbitrary 
ostly (dependingon the degrees) and it is not expe
ted during the exe
ution of the divide-and-
onqueralgorithm, be
ause of the spe
ial 
are taken in designing the algorithm [Mey06b℄.

• Compare z over area below (or above) 
urve cTask: The fun
tion obje
t Compare_z_at_xy_below_3 
omputes the relative z-orderof the two given xy-monotone surfa
es g1 and g2 immediately over a point that isbelow one of their proje
ted interse
tion 
urves c. It has the pre
ondition, that bothsurfa
es are de�ned below c, and their relative z-order is kept un
hanged in somesmall enough neighborhood of points below c.For quadri
s: To 
ompute this information for quadri
s, the strategy is similaras the 
omparison over a proje
ted interse
tion 
urve. We 
hoose a rational pointbelow c whose 
riti
al segment is not interse
ted by any of the following 
urves:(1) the proje
ted boundaries of q1 and q2 and (2) the proje
ted interse
tion 
urve of
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Figure 3.8. Compare relative z-order of (lower parts of) of two 
ylinders over apoint in the area below their proje
ted interse
tion (Example)
q1 and q2. This ensures that both surfa
es are de�ned over p and, by a 
ontinuityargument, that the z-order over p is the desired order.We skip the symmetri
 dis
ussion of the also required above-version.Remark (Unbounded surfa
es). Cgal's Arrangement_2 pa
kage in version 3.2 
an only dealwith 
urves having �nite ends, whi
h does not allow to store the proje
tion of an un-bounded xy-monotone surfa
e. Its proje
tion is simply not a 
ompa
t set. In addition,if all 
urve-ends are �nite, the arrangement only has to deal with a single unboundedfa
e. This 
onstitutes another problem, as it is insu�
ient to store the minimization di-agram for a set of unbounded surfa
es. There are simple examples (e. g., S 
ontains asingle in�nite 
ylinder) where MS may 
omprises more than one unbounded fa
e, andea
h su
h fa
e stores an individual labeling. Both problems have been atta
ked by Cgal'sArrangement_on_surfa
e_2 pa
kage, whi
h generalizes two-dimensional arrangements. Theunbounded plane dealing with more than one unbounded fa
e is the �rst surfa
e that hasbeen ta
kled. We present full details on the generi
 Arrangement_on_surfa
e_2 frameworkin Chapter 4.3.4. ResultsUsing the model presented in �3.3, we 
an su

essfully 
onstru
t lower envelopes (mini-mization diagrams) of quadri
s with Algorithm 3.1 by 
alling CGAL::lower_envelope for aset of input surfa
es. Figure 3.9 shows the �nal lower envelope of the surfa
es introdu
edin Figure 3.1. The a
tual implementation of the traits 
lass for quadri
s is still in Exa
us'QuadriX library. The whole library is going to move soon as a pa
kage of its own intoCgal. Thus, a future publi
 release of Cgal will not only 
ontain two main strategiesto analyze quadri
s and their interse
tions, but also 
omprise the 
omputation of lowerenvelopes of quadri
s. In addition, some variants are available as well. We present themat the end of this 
hapter; see �3.5.The performan
e of our traits 
lass for quadri
s used in Cgal's divide-and-
onqueralgorithm to 
ompute lower envelopes has also been 
he
ked experimentally. For in
reas-ing n we 
reated �ve sets of random quadri
s whose 
oe�
ients are ten-bit integers. We
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(a) Final lower envelope (b) Look from z = −∞
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Figure 3.10. The running time required to 
ompute the lower envelope of sets ofquadri
s as a fun
tion of the number of input quadri
s.
n of 200 400 600 800 1000quadri
s 114.4 225.3 353.0 460.5 589.2non-Ellipsoids 117.1 231.8 342.7 452.8 574.2ellipsoids 99.1 206.0 275.9 408.6 483.2Table 3.1. Averaged running times (in se
onds) required for 
omputing the lowerenvelope of instan
es of quadri
s.
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sProperties of MS1000 of #S #V #E #F (unb.)quadri
s 8 15 22 8 (5)non-ellipsoids 7 16 22 7 (5)ellipsoids 67 249 324 77 (1)Table 3.2. The number of attained surfa
es and the size of minimization diagrams fora sele
ted instan
e of 1000 quadri
s of di�erent kind.used a version of Cgal's Arrangement_2 pa
kage that is able to maintain several un-bounded fa
es (see Chapter 4, where we dis
uss this extension in detail). This allowed usto 
onsider bounded and unbounded quadri
s. A
tually, we distinguish between ellipsoids,non-ellipsoidal quadri
s, and mixed sets. All experiments were exe
uted on a 3 GHz Pen-tium IV ma
hine with 2 MB of 
a
he. For exa
t arithmeti
 we used Leda's number types,and relied for the analyses of proje
ted (boundary and interse
tion) 
urves on QuadriX'sspe
ialized approa
h [BHK+05℄. The resulting times in Figure 3.10 and Table 3.1 wereaveraged over several runs on the instan
es of same size. The obtained running times seemto (nearly) linear depend on the number of input surfa
es. We emphasize that an exa
t re-sult for 1000 arbitrary quadri
s is 
omputable in less than 10 minutes. As we 
an see fromTable 3.1, 
omputing lower envelopes of bounded quadri
s (ellipsoids) is even remarkablyfaster. A reason is that ellipsoids are bounded and thus in�uen
e only a restri
ted 
ompa
tplanar set. In 
ontrast the area of possible interse
tions of an unbounded quadri
 is larger,and thus modi�
ations of the minimization diagram are more probable. In parti
ular,when 
omputing the lower envelope, an unbounded quadri
 
an simplify the minimizationdiagram drasti
ally. A single unbounded fa
e 
an remain, while all previous (re
ursively
omputed) diagrams be
ome obsolete. For an ellipsoid this probability is smaller. Thisfa
t is also re�e
ted in the 
omplexities of the �nal minimization diagrams. The numberof surfa
es attained in the envelope (#S) and the number of fa
es (#F ), and thus forverti
es and edges, is smaller for unbounded surfa
es as for bounded ones; see Table 3.2for examples.It is easy to see that the performan
e of the 
omputation is mainly in�uen
ed by threeparameters. The �rst is the 
hoi
e of the partitioning into subsets, whi
h is beyond thes
ope of this work and we refer to [HSS08℄ that dis
usses a randomized 
hoi
e. The se
ondis the performan
e in two-dimensions itself, that is, how e�
ient are analyses of proje
ted
urves and pairs of them. Our implementation relies on a planar algebrai
 kernel forthis task. The last fa
tor is the amount of time spent to 
ompute the relative z-ordersof surfa
es. The model presented in this 
hapter relies on (nested) square-root numbersprovided by Cgal or algebrai
 expression from Leda or Core. In Chapter 5 we presentanother te
hnique to 
ompute the interse
tion pattern of surfa
e along a verti
al line.Besides these elementary fa
tors, it is also the 
ombinatorial dedu
tion employed bythe algorithm itself that improves the general performan
e of the lower envelope 
ompu-tation. As explained the algorithms propagates 
ontinuity and dis
ontinuity informationto de
ide the relative z-order of in
ident planar 
ells. To quantify this improvement, we
ounted for example sets of 1000 surfa
es the number of su
h savings. Table 3.3 shows theamount of �nally exe
uted 
omparisons 
ompared with the number of a
tual 
omparisons(in parentheses) when not using 
ombinatorial dedu
tion. As one 
an see, the 
omputation



3.5. Variants 107Number of 
omparisons overabove/below1000 of Point Curve Curvequadri
s 0 (18315) 2804 (31373) 1273 (4638)non-ellipsoids 0 (18087) 2386 (30777) 1273 (4640)ellipsoids 0 (22747) 1292 (38172) 1282 (3798)Table 3.3. Amount of required 
alls to 
ompute the relative z-order of two surfa
esduring invo
ation of lower envelope algorithm for a set of 1000 arbitrary quadri
s, 1000non-ellipsoids, and 1000 ellipsoids. The number of operations when not propagatinginformation to neighbored 
ells is shown in parenthesis.of the envelope signi�
antly bene�ts from this propagation of 
ontinuity and dis
ontinuityinformation about the relative z-order of quadri
s.

Figure 3.11. Cutout of the lower envelope of 400 quadri
s, hyperboloids and ellipsoids.It 
onsists of 30 fa
es, 4 of whi
h are unbounded, 101 edges, and 76 verti
es.3.5. VariantsAt the end of this 
hapter, we shortly want to mention some variants that 
an be extra
tedby slight modi�
ations of the model that we presented for quadri
s in �3.3.Upper envelope Computing the upper envelope of a set of quadri
s, requires only twosmall adaptions of the traits 
lass. The �rst 
hange a�e
ts the 
omputation of the proje
tedinterse
tion of two xy-monotone parts of quadri
s. Instead of returning the (weakly) x-monotone 
urves (and isolated points) that 
an be assigned to the lower parts of the twoinput quadri
s, we only return the ones that 
an be assigned to the proper upper partsof the quadri
s; this task is dire
tly supported by the work in [BHK+05℄ on whi
h werely throughout this 
hapter. The other modi�
ation 
on
erns the relative z-order over
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sdi�erent proje
ted geometri
 obje
ts. Remember that we �rst 
ompute a suitable point p,then determine r1 := min R1(p) and r2 := minR2(p), and �nally 
ompare r1 and r2 toobtain the 
orre
t z-order. On
e we store r1 and r2 in a proper number type (whi
h isthe se
ond a
tual problem, besides 
omputing p), we just generi
ally 
all the 
omparisonoperator on this number type. When now 
omputing upper envelopes, it su�
es to 
onsider
r′1 := maxR1(p) and r′2 := maxR2(p) instead of r1 and r2. Our analysis of the involvedalgebrai
 degrees also holds for these values, and thus the same number types 
an be used.It remains to 
all CGAL::upper_envelope, that swit
hes the algorithm to a status that takesthe topmost surfa
e in the labeling step, instead of the bottommost one.It is easy to see that the 
omputational e�ort for lower and upper envelopes followingthis strategy is identi
al, su
h that we abstain from reporting additional experiments forupper envelopes.Arbitrary dire
tions Lower and upper envelopes are with respe
t to the z-parallel pro-je
tion onto the xy-plane. However, the traits 
lass 
an also be used to 
ompute lowerand upper envelopes in arbitrary dire
tions. To do so, if su�
es to apply a rigid 
hange of
oordinates R(x, y, z) that models a rotation. One 
an even think of more sophisti
atedlinear mappings.Instead of thinking that a point has moved in spa
e by a map, it is possible to 
hange thede�ning polynomials of input quadri
s. That is, for a quadri
 q we de�ne R(q(x, y, z)) :=
(q ◦ R−1)(x, y, z). It follows that q(p) = 0 ⇔ R(q(R(p))) = 0. Thus, in order to 
omputethe envelope in the dire
tion of the rotated xy-plane (de�ned by R), we 
onsider as inputthe quadri
s R(q1), . . . , R(qn). A simple example is the upper envelope where R(x, y, z) =
(x, y,−z).Again, the 
ombinatorial e�ort keeps un
hanged, while the way we handle the rotationmainly in�uen
es the bit-lengths of the quadri
's 
oe�
ients and the denseness of theirde�ning polynomials. Thus, additional experiments 
ould only re�e
t the e�
ien
y ofthe quadri
s' analyses with respe
t to these parameters. However, these 
onsideration arealready dis
ussed elsewhere; see [BHK+05℄.Voronoi DiagramsDe�nition 3.5 (Voronoi Diagram). Let O := {o1, . . . , on} be a set of n pairwise disjoint
onvex obje
ts in Rd and δ be a metri
 on Rd. The Voronoi Diagram of O with respe
t to δis a partition of Rd into maximal 
onne
ted 
ells, ea
h of whi
h 
onsists of the points thatis 
loser to one parti
ular obje
t than to any other. A Voronoi 
ell of obje
t oi is the set
{p ∈ Rd | δ(p, oi) < δ(p, oj) ∀j 6= i}. The set of points Bi,j := {p ∈ Rd | δ(p, oi) = δ(p, oj)}is 
alled the bise
tor of oi and oj .As observed by Edelsbrunner and Seidel [ES86℄, every Voronoi diagram is exa
tly theminimization diagram of a set of surfa
es in Rd+1, that is, the proje
tion of their lowerenvelope, where the surfa
es are given by the graphs of fun
tions fi : Rd → R de�ned by
fi(x) = δ(x, Si). More details on this duality 
an also be found in [dBvKOS00, �11.5℄.We restri
t in the following to d = 2, whi
h implies that every two-dimensional Voronoidiagram 
an be 
omputed by Cgal's Envelope_3 pa
kage, provided that a proper traits
lass is supplied. Its two-dimensional obje
ts and operations are responsible to build theplanar subdivision of the diagram, the three-dimensional obje
ts are supposed to model



3.5. Variants 109the graph of the distan
e fun
tion for an obje
t. A
tually, the expli
it storage of su
h asurfa
e is super�uous in an e�
ient model, as it su�
es to represent them by the obje
ts
oi themselves. Three fa
ts justify this simpli�
ation.
• Observe that in unbounded domains and metri
s (as R2), the graph of the distan
efun
tion has no proje
ted boundary.
• The proje
ted interse
tion of two sites is dire
tly given by the bise
tor of the twoplanar obje
ts. If possible, as usual, there is no need to 
onstru
t the bise
tor byinterse
ting the distan
e surfa
es.
• The desired relative z-orders of two sites 
an be dire
tly en
oded by 
omparing thedistan
es of a point p to the two involved obje
ts.A
tually, there is work by Halperin, Setter, and Sharir, that dis
uss this idea moredetailed [HSS08℄. It presents a framework to apply the divide-and-
onquer approa
h forenvelopes to 
ompute various kinds of Voronoi diagrams and shows that through ran-domization the expe
ted running time is near-optional (in a worst-
ase sense). The workalso 
omprises a 
olle
tion of robust and e�
ient traits 
lasses to 
ompute Voronoi dia-grams, power diagrams, Apollonius diagrams in the plane. For some they rely on Cgal'snew algebrai
 kernel and also the Curved_kernel_via_analysis_2 as modelling the pla-nar ArrangementTraits_2 
on
ept. Some of the diagrams 
an even be established on thesphere using Cgal's new Arrangement_on_surfa
e_2 pa
kage whose details we present inChapter 4; see also [FHS08℄.As mentioned, the expli
it storage is not needed, however, we want to 
on
lude this
hapter with another modi�
ation of the EnvelopeTraits_3 model for quadri
s. Our goal isto use the modi�ed version in Cgal's divide-and-
onquer algorithm to 
ompute the Apol-lonius diagram in two dimensions; see also Cgal's Apollonius_graph_2 pa
kage [KY07℄.De�nition 3.6 (Apollonius diagram). Let Ai = (pi, wi), 1 ≤ i ≤ n be a set of sites, where

pi ∈ R2 and wi is the weight of Ai. The Apollonius diagram of the Ai is the Voronoidiagram of the pi with δ(x, pi) := ||x− pi|| − wi, where || · || denotes the Eu
lidean norm.The Apollonius diagram is also known as additively weighted Voronoi diagram.If all wi are equal, the Apollonius diagram is identi
al to the standard Voronoi diagram.Following Edelsbrunner and Seidel's relation, the Voronoi diagram of {p1, . . . , pn} is theverti
al proje
tion onto the xy-plane of the lower envelopes of a set of 
ones in R3. Forea
h pi we de�ne a 
one Ci whose apex is pi itself. The 
one's axis is a line parallel tothe z-axis passing through pi, its angle is 45◦, and pi is the 
one's point with minimal
z-
oordinate.For the Apollonius diagram, we have to 
onsider the weights in this geometri
 setting.For that reason the apex of Ci is shifted in z-dire
tion by a quantity equal to the weight
wi of Ai. A site with positive weight 
orresponds to a 
one whose apex is in the positive
z-halfspa
e, the apex of a site with negative weight is in the negative z-halfspa
e. Fig-ure 3.12 shows an example. The Apollonius diagram is attained by 
omputing the verti
alproje
tion onto the xy-plane of the lower envelope of the shifted 
ones, that is, the 
ones'minimization diagram.Remark (Shifted 
ones). First, observe that the Apollonius 
ell of a site Ai 
an be empty,whi
h happens to be in the 
ase, where Ai's shifted 
one Ci is hidden in some other 
one
Cj for site Sj, j 6= i, that is, Ci ∩ Cj = ∅; see Figure 3.13 for an example.
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Figure 3.12. Cones that de�ne the Apollonius diagram

(a) Weighted points are trans-formed into 
ones whose api
es'
z-
oordinates 
orresponded toweights. (b) The 
ones seen from z =

−∞. The lower envelope repre-senting the Apollonius diagram
an be guessed.

Figure 3.13. A hidden 
one
(a) The input 
onsists of threeweighted points, but one of the
orresponding 
ones is hidden. . . (b) . . . and thus, it does not in-�uen
e their lower envelope.
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ond, as the proje
tion of the lower envelope is z-axis parallel, the Apollonius diagramkeeps un
hanged, if we translate all 
ones by the same amount in z-dire
tion. Without
hanging the algebrai
 
omplexity, we 
an move the api
es of all 
ones into the positive
z-halfspa
e. Thus, w. l. o. g., we assume that all wi > 0, as it is the 
ase in Figure 3.12.An impli
ation of this fa
t is a geometri
 denotation: A site Ai = (pi, wi) 
an be seen asa 
ir
le 
entered at pi with radius wi. For more details on this, we refer to [KY07℄.We �nally explain whi
h steps are required to 
ompute the Apollonius diagram usingour quadri
 traits. The key step is to 
onstru
t the input surfa
e for a site A = (p,w).We refer to px as p's x-
oordinate, and to py as p's y-
oordinate. In 
ontrast to the workin [HSS08℄, we use an expli
it representation of the surfa
e in R3 modelling Ai's distan
efun
tion. In our 
ase, we have to model a 
one whose apex is at (p,w) and opening with 45◦in positive z-dire
tion. Unfortunately, there is no polynomial q ∈ Z[x, z, y] whose vanishingset V (q) de�nes su
h a 
one. However, if we mirror and 
opy the 
one at the horizontalplane through its apex, we obtain a double-
one whi
h 
an be de�ned algebrai
ally, namelyby q = x2 + y2 − z2 − 2pxx− 2pyy + 2wz + (p2

x + p2
y − w2). Observe that degtotal(q) = 2.Thus, we a
tually 
ould dire
tly run Cgal's divide-and-
onquer algorithm with ourtraits 
lass to 
ompute the lower envelope of these quadri
s. However, this would notresult in the minimization diagram denoting the Apollonius diagram of weighted points,for whi
h we are looking for. The problem is that the input 
onsist of double 
ones, but wea
tually want to 
ompute the lower envelope of the 
ones' upper parts. In order to a
hievethis goal, we modify the implementation of our quadri
al traits 
lass at some positions.

• First of all, we return no proje
ted boundary for a quadri
. A
tually, the proje
tedboundary of a double 
one is an isolated point, that is, the proje
ted version of thedouble-
one's (singular!) apex. We just skip it. This is �ne, as the distan
e fun
tionof a site is not bounded.
• When 
omputing the proje
ted interse
tions of quadri
s, we 
hange the 
ode to onlyreturn the proje
ted x-monotone 
urves that 
an be assigned to the upper parts ofboth double-
ones. Observe that neither isolated points nor verti
al 
urves o

ur inthe proje
ted interse
tions of two double-
ones. This is a
tually true for all Voronoidiagrams, and should be in
orporated when using a lower envelope algorithm forVoronoi diagrams.
• Finally, we adapt the 
omputation of the relative z-order of two quadri
s (heredouble-
ones q1 and q2) in the obvious way. Instead of 
omparing r1 := min R1(p)with r2 := min R2(p), we now 
ompare r′1 := maxR1(p) with r′2 := maxR2(p). Infa
t, we neither have to 
onsider the 
omparison over boundaries nor over isolatedpoints. This way, we are lu
kily left with the 
omparisons that 
an be determinedwith a rational p.As a result, we 
an su

essfully 
ompute Apollonius diagrams of (weighted) points usingour modi�ed traits. We tested various examples taken from Cgal's repository [KY07℄.While all of them produ
ed 
orre
t output, the performan
e numbers seen for these testsare bad, whi
h somehow is an intrinsi
 problem. There are mainly three reasons.
• We 
onsider expli
it representations of the surfa
es modelling the distan
e fun
tion(the shifted 
ones).
• The surfa
es are more 
ompli
ated than required, that is, we 
onsider a double-
one instead of a single 
one. This also has impli
ations on the 
omputation of the�bise
tor�, whi
h is here given by parts of the proje
ted interse
tion of two double-
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(a) Output with xquadri (b) Output with demo fromCgal'sApollonius_graph_2 pa
kageFigure 3.14. Apollonius diagram of 500 weighted points
ones. The algebrai
 degree of su
h a proje
ted interse
tion is 4, while all bise
torsof weighted points in the plane are a
tually 
oni
s (i. e., 
urves of degree 2).
• Comparing the distan
es to two sites by 
he
king the real relative z-order of two 
onesusing pure exa
t arithmeti
 is far too 
ompli
ated. In most 
ases, we should be ableto derive the order of δ(x, pi) and δ(x, pj) by 
erti�ed numeri
al approximations, forexample using interval arithmeti
.For these reasons, we abstain from reporting extensive experiments on this naive ap-proa
h, and refer to [HSS08℄ for a more sophisti
ated implementation of the problem usingCgal's divide-and-
onquer algorithm for lower envelopes. However, it must be a
knowl-edged for our toy example that in terms of 
oding it is simple to modify the traits in orderto a
hieve results beyond pure envelopes.In this 
hapter, we have seen how to 
ome up with a model of Cgal's EnvelopeTraits_3
on
ept for arbitrary quadri
s. The model is based on a planar algebrai
 kernel whi
hprovides analyses of 
urves and pairs of them. In addition, we have shown how tiny mod-i�
ations of the model (in 
ollaboration with 
onstru
ting proper input) render possiblevariants of envelopes, or even (naively) support another geometri
 problem, that is, the
omputation of the Apollonius diagram for a set of weighted points.
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4Two-Dimensional Arrangementson Surfa
esIn this 
hapter we present a framework to 
ompute arrangements of 
urves embedded on atwo-dimensional parametri
 surfa
e. Its development is driven by maximizing 
ode-reuse.In parti
ular, we generalize the sweep line algorithm and the zone algorithm to 
onstru
tarrangements on the desired surfa
es. The main tool in this dire
tion is again the generi
programming paradigm whi
h allows to de
ouple the 
ombinatorial representation fromthe a
tual supporting surfa
e and the 
urves embedded on it. The framework originallyextended Cgal's Arrangement_2 pa
kage. For the up
oming Cgal 3.4 release it has beenrenamed to Arrangement_on_surfa
e_2.The outline of the 
hapter is as follows. We �rst present the framework, and how wehave extended Cgal's Arrangement_2 pa
kage to support various parametri
 surfa
es asthe unbounded plane, spheres, 
ylinders, tori, and more. This part of the 
hapter is basedon results obtained in 
ollaboration with E� Fogel, Dan Halperin, and Ron Wein fromTel-Aviv University, Tel-Aviv, Israel, and Kurt Mehlhorn from the Max-Plan
k-Institutfür Informatik, Saarbrü
ken, Germany. A short version previously appeared in [BFH+07℄.Support for several surfa
es with di�erent kinds of 
urves embedded on ea
h already exists.In the se
ond part of the 
hapter we exemplary dis
uss two parti
ular settings. As ourinitial example, we present what is needed to use the framework to 
onstru
t, maintain,and overlay arrangements on an ellipti
 quadri
. The 
urves embedded on su
h a surfa
eare de�ned by its interse
tions with arbitrary quadri
s. As �nal example we 
onsiderthe 
ase of a ring Dupin 
y
lide as the referen
e surfa
e that is interse
ted by arbitraryalgebrai
 surfa
es. This implementation is joint work with Mi
hael Kerber from the Max-Plan
k-Institut für Informatik, Saarbrü
ken, Germany. It has been presented in [BK08℄.4.1. Setting and related workWe are given a parametri
 surfa
e S in R3 and a set of 
urves C embedded on S. The
urves C subdivide S into a �nite number of 
ells of dimension 0 (verti
es), 1 (edges), and
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2 (fa
es). We refer to this subdivision as the arrangement indu
ed by C on S and nameit AS(C). Until re
ently, Cgal's Arrangement_2 pa
kage was only 
apable of 
onstru
tingand maintaining arrangements indu
ed by bounded planar 
urves; see �2.4.3. There isnot even native support for unbounded 
urves. Handling su
h 
urves requires to 
heat onthe software with typi
ally one of two options. The �rst solution is to 
lip the 
urves atsome re
tangle (or some other shape that is homeomorphi
 to a 
ir
le). However, it isthe user's responsibility to 
hoose the re
tangle su
h that no essential information is lost,for example, a �nite interse
tion point. In addition, the size of the re
tangle also matterswhen trying to overlay two su
h arrangements. It must be ensured that both are 
lippedwith respe
t to the same box, and if not, at least one must be re
omputed, whi
h is 
ostly,non-trivial, and annoying. Alternatively, one 
an introdu
e a symboli
 representation fora point at an unbounded end of a 
urve. Su
h a strategy has been formerly applied inExa
us's old Gaps module. Its generi
 model of Cgal's ArrangementTraits_2 
on
eptwas 
apable of dealing with unbounded 
urves. However, both solutions are somehowfaking, generi
ally in
onvenient, and still insu�
ient for some appli
ations.The reason is that both still maintain only one unbounded fa
e. But remember thatCgal uses planar arrangements to represent the minimization diagram MS for a set ofsurfa
es S, where ea
h 
ell is labeled with the subset of surfa
es that indu
e the lower en-velope over that 
ell; see Chapter 3 and [Mey06a℄ for details. As remarked, if 
onsideringunbounded surfa
es for lower envelopes, generally more than one unbounded fa
e is ex-pe
ted in the representation of MS. A
tually, Mehlhorn and Seel [MS03℄ already proposedthe in�maximal frame for extending the sweep line algorithm to handle unbounded 
urves.However, the design was intended for lines in the plane and it is un
lear how it extends toarbitrary 
urves, be they algebrai
 or not. More problemati
 is, that their te
hnique doesnot extend to parametri
 surfa
es � a 
ase that we espe
ially want to in
lude.There already exist results that deal with arrangements on non-planar surfa
es, for ex-ample, Ha
henberger and Kettner 
ompute two-dimensional boolean operations of geodesi
ar
s on a sphere [HK07a℄. Su
h arrangements represent sphere maps around verti
es in athree-dimensional Nef-like data stru
ture [HKM07℄. The sphere is also 
overed by Andradeand Stol� [AS01℄, Halperin and Shelton [HS98℄, and re
ently by Cazals and Loriot [CL07℄.Cazals and Loriot provide a software pa
kage that 
an sweep over a sphere 
onstru
tingexa
t arrangements of arbitrary 
ir
les on it. They also show appli
ations in 
omputa-tional biology that frequently employ spheri
al arrangements in mole
ular modeling: ea
hsphere represents an atom of a mole
ule and the arrangement on the sphere representsthe interse
tion pattern with neighboring atoms. Their extension, so-
alled anisotropi
intera
tions of atoms, 
an be modeled using ellipsoids as primitive obje
ts. The work byBerberi
h et al. [BHK+05℄ 
onstru
ts arrangements on quadri
s, whi
h in
lude ellipsoids.However, it 
onsiders two planar arrangements of proje
ted interse
tion and silhouette
urves, one for the lower part of a quadri
, and one for its upper part; see �3.2 for an in-trodu
tion. The approa
h requires as post-pro
essing step the stit
hing of the two planararrangement; this part is unfortunately not available. Stit
hing of sub-arrangements isalso a key tool in work by Fogel and Halperin [FH07℄. They model the single arrangementof ar
s of great 
ir
les on a sphere with six arrangements of linear segments in the planethat 
orrespond to the six fa
es of a 
ube 
ir
ums
ribing the sphere.None of the previous solutions ta
kles in a generi
 fashion all problems that 
an o

ur,su
h as 
lipping, stit
hing, or the support for various 
urves. This justi�es our goal to



4.1. Setting and related work 115develop a framework that e�e
tively and generi
ally deals with all of them. We start withthe unbounded plane be
ause this is a spe
ial 
ase of a bije
tively parametri
 surfa
e. Ina se
ond step, we generalize, and allow non-inje
tivity on the boundary of the parameterspa
e, whi
h lead to the 
urrent implementation of the pa
kage.Remember Cgal's Arrangement_2 
lass-template as presented in �2.4. It is parame-terized in two arguments. First, it takes a GeometryTraits_223 that basi
ally de�nes the
urves to 
onsider and operations on them. On
e 
urves have been split into (weakly)
x-monotone 
urves in a pre-pro
essing step, these operations are used to feed the internalalgorithms and data stru
tures to 
onstru
t, maintain, and overlay arrangements of them.The se
ond parameter is the D
el type. Ea
h arrangement internally maintains an instan
eof this type. Its verti
es are enhan
ed with geometri
 points and its edges 
arry (weakly)
x-monotone geometri
 
urves. Ea
h of the beforehand mentioned maintenan
e and 
on-stru
tion operations modify the 
ombinatorial stru
ture of the internal D
el-instan
e, insyn
 with updating the stored geometri
 obje
ts. We listed in �2.4.3 basi
 insertions (andrespe
tive deletions) that 
onsistently modify the D
el. Su
h 
onsistent modi�
ationsare 
alled by the 
onstru
ting visitor 
lass for the two main algorithms that 
onstru
t (oroverlay) arrangements, namely the sweep line algorithm, and the in
remental insertionusing the zone algorithm. A
tually, these algorithms only produ
e a 
anoni
al output andit is the visitor that de�nes whi
h basi
 insertions must be 
alled. The 
anoni
al output ofan algorithm is de�ned by the exe
ution path of the algorithm, whi
h itself is 
ontrolled bythe out
ome of geometri
 predi
ates and 
onstru
tions provided by the given geometri
-traits 
lass. We shortly repeat the internal �ow of ea
h algorithm in order to understandfor what we provide geometri
 operations.
• The sweep (of weakly x-monotone 
urves) involves the handling of events and themaintenan
e of the status-line. Handling events 
omprises to maintain the sortedevent-queue, that is, new events must be inserted, while the minimal event at atime is removed. In the planar 
ase, events are endpoints of 
urves, or their (zero-dimensional) interse
tions, while their order is given by the lexi
ographi
al 
om-parison of points stored with events. The status-line is updated, whenever a 
urverea
hes its endpoints, a new 
urve starts, or the order of 
urves 
hanges. In either
ase, 
urves that be
ome adja
ent in the status-line are 
he
ked for interse
tions tothe right of the sweep line and any su
h interse
tion is inserted into the event-queue.
• The 
entral operations for the zone algorithm are to lo
ate the ends of a new 
urve,and to 
ompute the 
urve's interse
tions with existing 
urves. That is, we requiregeometri
 operations to lo
ate points, and to interse
t 
urves.We want to generalize this existing work to two-dimensional parametri
 surfa
es. Thegeometry of S is 
aptured by a parameterization as in De�nition 2.30, that is, there is afun
tion ϕS : Φ = U×V → R3 whose image de�nes S. We allow intervals U = [umin, umax],

U = [umin,+∞), U = (−∞, umax], or U = (−∞,+∞), and similarly for V . Intervals thatare open at �nite endpoints bring no additional power and we therefore do not dis
ussthem here. Curves on parametri
 surfa
es are de�ned as in De�nition 2.40; here we have
D = Φ = U × V . What used to be x-monotoni
ity for bounded planar 
urves, is nownaturally extended: A 
urve γ is 
alled sweepable if it is (weakly) u-monotone, that is, if23Expe
ts basi
ally a model ful�lling the ArrangementTraits_2 
on
ept, however, there is a hierar
hy of
on
epts, and ea
h re�nement level of the hierar
hy is valid (for a 
ertain goal).
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t1 < t2 then γ(t1) <lex γ(t2), where <lex now denotes lexi
ographi
 uv-ordering. For theinternal arrangement tasks, we 
onsider all 
urves to be sweepable. If an input 
urve doesnot ful�ll this property we apply, as before, a pre-pro
essing step. The standard planarsweep, for example, 
orresponds to U = V = (−∞,+∞), and ϕS(u, v) = (u, v, 0), butnone of the input 
urves extends to in�nity. Other instan
es are given in Example 2.31,or appear in the remainder of this 
hapter.While the input pro
essing turns to out to be relatively simple, we have to work harderfor the internal stru
tures of the arrangement pa
kage. In parti
ular, we expe
t answersto the following raised questions:1. How do we keep the general �ow of the 
onstru
ting algorithms mainly un
hanged?2. How do we ensure to properly 
onstru
t and update a D
el with respe
t to givensurfa
e?We do give the answers for both questions in several steps. In �4.2 we �rst dis
uss howto ensure a 
anoni
al output for the sweep line and the zone algorithm. The dis
ussionstarts with bije
tive parameterizations and then we remove inje
tivity on the boundary ofthe parameter spa
e. The a
tual 
onstru
tion of the D
el is presented afterwards in �4.4.As for some surfa
e there often exist several valid en
odings of an indu
ed arrangement asa D
el. Our solution aims for this �exibility.4.2. Sweeping and zoning on a surfa
eIn this se
tion we explain how to modify the two main algorithms su
h that they 
anbe exe
uted for a parametri
 surfa
e, to be prepared for the se
ond task: An atta
hedvisitor 
lass should be able to 
orre
tly interpret the visiting pattern of the algorithm forits purposes, namely to 
onstru
t the D
el. We mainly 
onsider the sweep algorithm inthis se
tion, and refer to the simpler zone algorithm shortly at the respe
tive pla
es.Sweeping a parametri
 surfa
e, in terms of the standard two-dimensional sweep algo-rithm, should be 
orre
tly seen as taking pla
e in the parameter spa
e, that is, we sweepwith a verti
al line u = us from umin to umax. However, for reasons of intuition, it 
anbe more 
onvenient, to see it from a di�erent angle, namely to sweep over S with the
urve on S de�ned by the moving image of the verti
al line u = us under ϕS . Both viewsare valid. The 
onsiderations of this se
tion assume that the sweep (zone) takes pla
e inthe re
tangle de�ned by U and V . We swit
h to the surfa
e-view in �4.4, when a
tually
onstru
ting the D
el on S.Let us state an important remark with respe
t to the 
hosen parametri
 view.Remark (Parameterization). We do not expe
t surfa
es and 
urves to be given in parametri
form, but 
onsider this tool for the de�nition of the problem, and for its realization ofthe adapted algorithms. In �4.3 we learn that the algorithms still learn about surfa
e,
urves, and points only through a well-de�ned set of geometri
 predi
ates provided byan extended geometri
-traits 
lass. It is the 
hoi
e of the traits' implementer how to
ompute these pie
es of information. While the example of �4.6.2 does really deploy theparameterization, the example exer
ised in �4.6.1 
leverly 
ombines planar 
ounterpartsto dedu
e the expe
ted answers for the parameter spa
e.
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ϕS(ℓsweep)

−π
0 π

π

Figure 4.1. Sweeping a sphere: sweeping a line in parameter spa
e from u = 0 to
u = π 
orresponds under ϕS to sweep a meridian from 0◦ to 360◦ around the sphere.4.2.1. Bije
tive parameterizationsOur �rst generalization dis
usses surfa
es whose parameterization is bije
tive. At �rstsight, there seems to be simple solution to just in
orporate the parameterization into thegeometri
-traits 
lass. This strategy is even �ne and no further 
onsiderations must bemade � if only bounded 
urves o

ur. The true di�erentiation from the standard sweepline algorithm emerges in the 
ase, where 
urves are allowed to extend to in�nity. Or inother words, we 
an neither restri
t U nor V to an interval [−M,M ], for su�
iently large

M ∈ R, su
h that the event queue (whi
h 
ontains ends of (weakly) u-monotone 
urvesand their interse
tions) only has to deal with �nite points as event. If unbounded 
urvesare allowed, we fa
e the problem that these 
urves do not have su
h �nite endpoints.Our solution to this problem is to extend the de�nition of an event. We basi
allydistinguish two kinds of event. The �rst kind, an interior event en
apsulates (as before)a �nite point. For the se
ond kind, we introdu
e the term of a 
urve-end. Ea
h (weakly)
u-monotone 
urve γ : D → (−∞,∞) × (−∞,∞) has two 
urve-ends, the lexi
ographi
alminimal one, and the lexi
ographi
al maximal one (in uv-ordering). A 
urve-end mayeither be a �nite endpoint or represent an unbounded entity in 
ase that the sequen
e ofpoints attained by γ towards the spe
i�ed end approa
hes the boundary of the parameterspa
e: More pre
isely, we say that the 
urve-end 〈γ, 0〉 approa
hes the left (right) boundaryif limt→0+ γ(t) = (−∞, v0) ((+∞, v0), respe
tively), for some v0 ∈ R ∪ {−∞,+∞}, andthat it approa
hes the bottom (top) boundary if limt→0+ γ(t) = (u0,±∞) for some u0 ∈ R.Remark (Asymmetry). Observe the slight asymmetry in the de�nition. If a 
urve-end a
tu-ally approa
hes one of the four 
ases (±∞,±∞), we subsume them belonging to the leftor right boundary. This simpli�es the later dis
ussion, and also re�e
ts the asymmetry wealready noti
ed for predi
ates required for the (bounded planar) sweep line algorithm.Following this notation, we 
an use the pre-pro
essing step to asso
iate an event withea
h end of a (weakly) u-monotone 
urve: An interior event, asso
iated with the �niteendpoint, is assigned if 0 ∈ D (1 ∈ D). A near-boundary event, asso
iated with theunbounded 
urve-end 〈γ, 0〉 (〈γ, 1〉), is assigned if 0 6∈ D (1 6∈ D).
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Figure 4.2. Arrangement of four in�nite 
urves that interse
t in 5 �nite points. Tosweep the 
urves, we have to de�ne a lexi
ographi
 order that 
an handle with �nitepoints, but also with the 8 in�nite 
urve-ends.The order of events in the event queue of the standard sweep line pro
edure is simplyde�ned by the uv-lexi
ographi
 order of �nite events. For our extended de�nition ofevents we augment their 
omparison pro
edure. It is required to also handle those eventsasso
iated with unbounded 
urve-ends as well. This is done by subdividing the pro
edureinto separate 
ases.First of all, two �nite events are still ordered purely uv-lexi
ographi
ally. It remainsto de�ne the order of two events where at least one is an unbounded 
urve-end. Most ofwhi
h 
an be handled in a straightforward manner. For example, it is 
lear that an eventon the left boundary is smaller than any event asso
iated with a �nite point, whi
h issmaller than any event on the right boundary. To 
ompare two 
urve-ends approa
hingthe left (right) boundary, we 
onsider the interse
tion of relevant 
urves with a verti
alline u = u0 for small (large) enough u0 and return the v-order of these points. �Smallenough� (�large enough�) means that the result does not depend on the 
hoi
e of u0 (or
v0), whi
h is well-de�ned as 
urves are allowed to interse
t only at �nitely many points.That is, we are interested in the relative verti
al order of two 
urves immediately to theright of the left (to the left of the right) boundary. There is the ex
eption of overlapping
urves, whi
h 
onstitutes a spe
ial 
ase on its own: The 
omparison of events representingunbounded 
urve-ends of overlapping 
urves are allowed to return equal. Two 
ases areleft, namely to 
ompute the relative horizontal (in u-dire
tion) order of an interior eventwith a near-boundary event for the bottom- or top-boundary, and to 
ompute the sameorder for two near-boundary events where both atta
hed 
urve-ends approa
h the bottom-or top-boundary. Note again that it su�
es to only 
onsider a situation 
lose enough tothe boundary, that is, intuitively one 
an 
hoose �nite points 
lose enough to the boundarythat re�e
t the 
orre
t order and return their relative horizontal order. An illustration ofthe 
on
eptual des
ription of the required 
omparisons is given in Figure 4.3. Te
hni
ally,they are 
olle
ted in an extended version of Cgal's ArrangementTraits_2 
on
ept that wepresent in �4.3. As for ea
h 
on
ept, it is not spe
i�ed how to �nally implement it.Observe that we only enhan
e events and their order for the sweep line. The a
tualsweep pro
ess remains mostly un
hanged. In fa
t, some maintenan
e operations for thestatus-line 
an even be established without exe
uting any geometri
 
omparison. Note
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Figure 4.3. Compare 
urve-ends near boundary: The view is in parameter spa
e.Left boundary: min1 <y min2 <y min3. Right boundary: max6 <y max7 <y max3.Bottom and top boundary: max2 <x max1 <x min4 =x max4 =x min5 =x max5 <x

min7 <x min6. The 
omparison fun
tors that we present in �4.3.1 are responsibleto ensure this order. But: The a
tual 
omputation is not expe
ted to elaborate theparameterization.
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esthat the �rst events in the event-queue tagged with on left boundary are already sorted in
orre
t in
reasing v-order. Thus, as long as the sweep extra
ts su
h near-boundary events,we 
an simply put the 
orresponding 
urve(s) at the top of the status-line. Similarly, whenwe pro
eed with the sweep line algorithm and handle a minimal event whose 
urve-endapproa
hes the bottom (top) boundary, we know that the 
urve must lie below (above) allother 
urves 
urrently maintained in the status-line. Thus, we 
an simply insert the 
urveat the bottom (top) of the status-line without any additional geometri
 operation. As allinterse
tion points do not take pla
e on the boundary of the parameter spa
e, there is alsono need to modify the sweep in its interse
tion handling.As a result, we 
entralize the handling of events near the boundary in the sweep linealgorithm itself, while keeping the geometri
 interfa
e small. In addition, we obtain away to avoid some geometri
 
omparisons in the maintenan
e of the status-line, whi
h areusually 
ostly, espe
ially if a model implements the exa
t geometri
 
omputation paradigm.The output of the sweep still 
onsists of a unique visitor pattern. By now, it is open how totransform it into a D
el-representation that stores the indu
ed arrangement. We des
ribethis step in �4.4.The zone algorithm for a given 
urve γ 
onsists of two main steps, namely the lo
aliza-tion of γ's ends and to 
ompute γ's interse
tions with existing 
urves in the arrangement.Again, the interse
tions do not take pla
e on the (unbounded) boundary of the parameterspa
e, and thus, no modi�
ations are needed. In 
ontrast to the lo
alizations. For themit is expe
ted to return the 
ell of the existing arrangement to whi
h the given end of γbelongs. That is, we either obtain a fa
e, an edge, or a vertex. Note that we have tagged
γ's ends with information whether ea
h lies in the interior of the parameter spa
e or whi
hboundary it approa
hes. This information is needed, but not su�
ient. In fa
t, we doneed knowledge on how the arrangement (
ontaining 
urves approa
hing the boundaryof the parameter spa
e) is represented as D
el. Only this allows to return the 
orre
tD
el-re
ord. In �4.4 we generalize the D
el-representations for arrangements, and a partof the task is the lo
alization of 
urve-ends on the boundary.4.2.2. Allowing non-inje
tivity on the boundariesWe just introdu
ed events near the boundary of the parameter spa
e, whi
h we by now onlyuse to represent end of 
urves that extend to in�nity. But what we des
ribe also enablesan elegant generalization of the sweep line pro
edure for 
urves embedded on a parametri
surfa
e in R3; see De�nition 2.30 and Example 2.31 for su
h surfa
es. A parameterization
ϕS is allowed to be non-bije
tive, that is, some points in S may have multiple pre-imagesin Φ. In fa
t, we allow one-dimensional sets to do so, as it is the 
ase for rational surfa
es.Let us exemplary remember the unit sphere, where we have ϕS(−π, v) = ϕS(+π, v)for all v, while ϕS(u,−π

2 ) = (0, 0,−1) and ϕS(u, π
2 ) = (0, 0, 1) for all u. The 
urve

v 7→ ϕS(−π, v) is a meridian on the sphere, analogous to the international date line, andthe points (0, 0,±1) 
orrespond to south and north pole, respe
tively. The non-inje
tivityof ϕS indu
es the date line, whi
h implies that a 
losed 
urve on the sphere, for example theequator, may be the image of a non-
losed 
urve in parameter spa
e. The poles also poseanother problem: They always lie on the sweep 
urve (i. e., the image of ϕS for u = u0,for u0 from umin to umax) during the sweep.The example of the unit sphere introdu
es two 
ases where we relax the requirementsfor surfa
e parameterization, in order to model a wider range of surfa
es, as 
ylinders,
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e 121paraboloids, tori, and their homeomorphi
 
ounterparts. Central is that we require bi-je
tivity of ϕS only in the interior of Φ, while non-inje
tivity is allowed on the boundaryof Φ, denoted by ∂Φ. More pre
isely, we demand that ϕS(u1, v1) = ϕS(u2, v2) with
(u1, v1) 6= (u2, v2) implies (u1, v1) ∈ ∂Φ and (u2, v2) ∈ ∂Φ.Before allowing non-inje
tivity in a 
ontrolled way, we pre
ise the weak de�nitionfrom �4.2.1 for the lo
ation of a point in parameter spa
e.De�nition 4.1 (Lo
ations). Let p = (u, v) ∈ Φ = U × V . We say that p lies on the leftboundary if u = umin, or that p lies on the right boundary if u = umax. If p does neitherlie on the left nor on the right boundary, we say that p lies on the bottom boundary if
v = vmin, or that p lies on the top boundary if v = vmax. If no su
h 
ondition holds, wesay that p lies in the interior of Φ.This disjoint partitioning of Φ implies four boundary sides ∂lΦ, ∂rΦ, ∂bΦ, ∂tΦ of theparameter spa
e, and its relative interior Φ̊. Observe again, that the left and right side arede�ned (for the known reason) asymmetri
 to the bottom and top side.For the four sides of ∂Φ we allow two kinds of relaxations, given in De�nitions 4.2and 4.3.De�nition 4.2 (Contra
tion). A 
losed side ∂sΦ is 
alled 
ontra
ted if the image of ∂sΦ isa single point ps ∈ S, that is, ∀(u, v) ∈ ∂sΦ it holds ϕS(u, v) = ps. We 
all ps a 
ontra
tionpoint.In the running example of the sphere, we have that the bottom and the top boundary,indu
ing the south and north pole, are 
ontra
ted. That is, ∀u ∈ Ů we have ϕS(u, vmin) =
(0, 0,−1) and ϕS(u, vmax) = (0, 0, 1).De�nition 4.3 (Identi�
ation). Two opposite 
losed sides of ∂Φ, that is, either ∂lΦ and
∂rΦ or ∂bΦ and ∂tΦ, are 
alled identi�ed if they de�ne the same 
urve γI on S. We 
all γIthe 
urve of identi�
ation. More pre
isely, identifying the left and right boundary meansthat ∀v ∈ V,ϕS(umin, v) = ϕS(umax, v), while identifying the bottom and top boundaryimplies ∀u ∈ Ů , ϕS(u, vmin) = ϕS(u, vmax).We dete
t an identi�
ation of the left and right boundary for the parameterized unitsphere. Its 
urve of identi�
ation indu
es the international date line. Let us see what othersurfa
es we 
an model using identi�
ation and 
ontra
tion.
• A triangle with 
orners (a1, b1), (a2, b2), and (a3, b3) is parameterizable via Φ =

[0, 1]×[0, 1] with ϕS(u, v) = (a1+u(a2−a1)+uv(a3−a2), b1+u(b2−b1)+uv(b3−b2), 0).We observe that ∂lΦ is 
ontra
ted.
• An open or 
losed 
ylinder is modelled by identifying, for example, ∂lΦ and ∂rΦ,while V is an open or 
losed interval.
• A torus is modelled by identifying both opposite pairs of ∂Φ; see also �4.6.2.
• A paraboloid or 
one is modelled by identifying ∂lΦ and ∂rΦ, and 
ontra
ting ∂bΦ.If the surfa
e opens to in�nity, ∂tΦ should be tagged as unbounded.For ea
h of them, there exist other equivalent 
ombinations with ex
hanged sides. However,we expli
itly forbid to 
ombine 
ontra
tion and identi�
ation on one boundary side. Thiswould allow to model a genus-one surfa
e with a single pin
h point by identifying bothopposite pairs, while one pair is also 
ontra
ted. Although this surfa
e would be sweepablewith our framework, we ex
lude it, as an embedded arrangement might not be representable
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esusing a typi
al D
el-stru
ture. The reason is that the D
el-vertex for the pin
h point
an be
ome in
ident to two di�erent fa
es, whi
h is not 
overed by D
el-representations;see Figure 4.4 for su
h a surfa
e.

Figure 4.4. The �
roissant�: a surfa
e with one pin
h point and whose parameteri-zation would 
ontain two identi�
ations. One of these identi�
ations must a
tually be
ontra
ted as well. 
© Herwig Hauser, www.freigeist.

/gallery.htmlAt this point we swit
h to a rather generi
 sweep, that is, we are given a surfa
e Sand (notationally) its parameterization ϕS . We know for ea
h side of the parameter spa
ean expli
it tag annotating its type, that is, either bordered, unbounded, 
ontra
ted, oridenti�ed. Bordered 
onstitutes a �nite 
urve of delimitation, as for the example in the
ase of a triangle. An identi�
ation tag on one side of the boundary implies the same tag forits opposite side. As input, we are also given a set of 
urves embedded in S. Con
eptually,we aim to sweep over the parameter spa
e of S, that is, the re
tangle de�ned by U × Vwith spe
ial properties at its boundaries.We 
ome to the phases of the sweep, and start with pre-pro
essing of input 
urves (inparameter spa
e) to feed the a
tual sweep. Sweepable 
urves are expe
ted to meet two
riteria: First, as for the standard sweep, 
urves are expe
ted to be (weakly) monotone inthe dire
tion the sweep line moves. In our 
ase, we split input 
urves into their (weakly) u-monotone 
omponents. This splitting already partially ful�lls the other 
riterion: A 
urvethat is not fully 
ontained in ∂Φ is expe
ted to tou
h ∂Φ only at its ends. This 
onditionimplies that we split 
urves whose interior interse
ts with a 
ontra
ted or identi�ed side.Note that due to a
hieved u-monotoni
ity, it only remains to 
he
k the bottom and topboundary for this purpose. After this partitioning, the 
urves with their 
urve-ends 
an be
hara
terized. A �rst observation is that only non-
losed 
urves in Φ exist. The interiorof ea
h su
h 
urve is either 
ompletely 
ontained in some ∂sΦ (maybe in its identi�ed
ounterpart, too), or it 
ompletely lies in Φ̊. In the latter 
ase, the two ends are allowed tomeet (not ne
essarily24) distin
t boundary sides. As in �4.2.1 ea
h su
h 
urve-end 
an beuniquely annotated with one out of �ve lo
ations: ∂lΦ, ∂bΦ, Φ̊, ∂tΦ, and ∂rΦ. Note that in
ase of identi�
ation, a
tually two 
hoi
es exists, but the 
onne
tion to the interior of the
urve gives the desired one; see, for example, Figure 4.5 (b). The two 
urves c1 and c2 
rossthe identi�
ation in p. However, we split them to be u-monotone in the parameter spa
e,and obtain cleft
1 , cright

1 and cleft
2 , cright

2 . The minimal ends of cleft
i lie on the left boundary,while the maximal ends of cright

i lie on the right boundary. All other ends exist in the24Note that a u-monotone 
urve 
annot start and end on ∂lΦ. The same holds for ∂rΦ. There is nosu
h restri
tion for the bottom and top boundary.
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e 123interior of parameter spa
e. Input fully embedded on a boundary is dis
ussed below.We next study how to sort the event-queue of the sweep. We 
an assume to exe
utea sweep over the open surfa
e attained by ϕS(Φ̊), while handling ends of 
urves meeting
ϕS(∂Φ) are handled following the strategy from �4.2.1. We are able to derive the 
orre
torder of events using the expli
it distin
tion between interior events that are asso
iatedwith points in Φ̊ and near-boundary events that o

ur for 
urve-ends approa
hing ∂Φ.Again, most 
omparisons of su
h events are straightforward, while all remaining 
an beanswered using exa
tly the same set of additional geometri
 predi
ates as introdu
ed forunbounded 
urves � assuming they take pla
e in parameter spa
e; see Figure 4.3. We
ompare 
urve-ends in an ε-distan
e away from boundary (in the dire
tion of Φ̊) to obtaina unique order of di�erent near-boundary events that do not have a trivial order. Notethat the ε-environment is 
on
eptual only, that is, how the a
tual 
omparison is a
hieved isnot determined, in parti
ular, it is not enfor
ed to 
ompute in parameter spa
e. Figure 4.5presents two examples on surfa
es. In �4.6 we explain how to implement the 
omparisonsfor ellipti
 quadri
s and ring Dupin 
y
lides.Figure 4.5. Two examples of 
omparisons near non-unbounded boundaries
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(b) Compare v near left-right identi-�
ation: cleft
2 <v cleft

1 and cright
1 <v

cright
2With this strategy ea
h 
urve-end �nally meeting a boundary side gets its own eventfor the sweep, that is, if we have k sweepable 
urves in
ident to a point on ϕS(∂Φ) (namelya 
ontra
tion point or a point on the 
urve of identi�
ation), we handle k separate eventsthat relate to this point. An example is a set of longitudes on the sphere. The maximalend of ea
h longitude results in its own event, although eventually all longitudes meet inthe north pole; see the example depi
ted in Figure 4.6. Our 
urrent goal is only to obtain aunique order for the sweep events. The sweep itself pro
eeds then exa
tly as the standardsweep does; see Algorithm 2.13. In �4.4 we explain how we tie all the loose ends left out bythe sweep pro
edure and 
onstru
t a well-de�ned D
el that represents an arrangementof 
urves on S. Or more exemplary, how we obtain a single D
el-vertex for the sphere's
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Figure 4.6. Not ea
h sweep line event (here blue nodes near 
ontra
tions, i. e., poles)are supposed to model a D
el-vertex. In �4.5 we dis
uss how to unify di�erent butrelated events, and how the verti
es representing su
h 
ontra
tions (north and southpole) are 
reated.We are left with the 
ompletion of the sorting of events, that �nally should also 
ompriseinput that is fully 
ontained in the image of some ∂sΦ For su
h points and ends of su
h
urves, we introdu
e boundary events. In the following we explain how su
h events areordered among ea
h other, and in 
omparison to interior and near-boundary events.We start with the simple 
ase of a 
ontra
ted side. Note that the only boundary eventthat 
an o

ur relates to a single isolated point. We need to 
he
k whether a point lies onsu
h a 
ontra
tion, and if so, we 
reate the spe
ial event without any in
ident 
urve. Thehandling of an isolated event during the sweep 
an be kept un
hanged, however, we needto determine the position of this isolated boundary event in the event queue in relation toother events. The solution is to de�ne that this spe
ial event is always the smallest eventthat belongs to the 
orresponding side of the boundary. This 
hoi
e already de�nes theorder with respe
t to every other near-boundary event, but also to interior events. Seeevent be6 in the example depi
ted in Figure 4.7.Bounded sides and identi�ed sides are left. We again expe
t a possibility to 
he
kwhether a point or a 
urve is 
ontained in su
h a side of the boundary; see �4.3 for thete
hni
al details. If an obje
t is dete
ted to lie on a left-right identi�
ation, we 
onsider itsleft pre-image, while we handle an obje
t dete
ted to lie on a bottom-top identi�
ation assolely belonging to the bottom boundary. This handling is only internal, that is, in 
ase ofan identi�
ation the user has not to 
are about these details; see our respe
tive interfa
ein �4.3.7.We 
reate a boundary event for ea
h su
h isolated point (no in
ident 
urves), forea
h minimal point, and for ea
h maximal point of su
h a 
urve. We remark that theminimal or maximal end of su
h a 
urve 
an be unbounded; for example in the 
ase of anin�nite 
ylinder. Considering this fa
t, the order of boundary events on a single side ofthe boundary is given by 
omparing their u- or v-
oordinates, depending on the side info
us. But this order is not su�
ient if we also have to 
ompare a boundary event with
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e 125near-boundary and interior events. For the sweep we de�ne the following order amongdi�erent kinds of events at the same 
oordinate:
• There are some straightforward relations:

Bl <u Nl <u I <u Nr <u Brwith
Bl := {be|be is a boundary event on ∂lΦ}
Nl := {ne|ne is near-boundary event related to ∂lΦ}
I := {ie|ie is an interior event}

Nr := {ne|ne is a near-boundary event related to ∂rΦ}
Br := {be|be is a boundary event on ∂rΦ}Note that within ea
h set the v-order must still be determined to know �<lex�. Weexpe
t 
orresponding 
omparisons; see �4.3.

• We are left with interior events and those related to ∂bΦ and ∂tΦ. We �rst orderthem by u-
oordinate.25
• If two of them share the same u-
oordinate, the order of two events is given by thefollowing symboli
 perturbation.� The boundary event of an ending 
urve is smaller than a near-boundary eventof an ending 
urve.� The near-boundary event of an ending 
urve is smaller than an isolated bound-ary event or an interior event.� An isolated26 bottom boundary event is smaller than an interior event whi
h issmaller than an isolated top boundary event.� An isolated boundary or an interior event is smaller than a near-boundary eventof a starting 
urve.� A near-boundary event of a starting 
urve is smaller than a boundary event ofa starting 
urve.The order of near-boundary events again requires an external geometri
 predi
ate.All other members of a set of equivalent events 
an be assumed to be equal.We remark that most of this 
ase-distin
tion is internal and thus serves 
ode reuse. Thegeometri
-traits 
lass is only expe
ted to provide the mentioned, spe
ialized, 
omparisons.Among them, it is expe
ted to 
ompare u- or v-
oordinates of (always �nite) points on ∂Φ.In �4.4 we see another usage of 
omparisons of 
oordinates on a boundary.Let us summarize what has been done in order to keep the sweep generi
 for a parame-terized surfa
e S. Instead of a single event type for �nite points, we rely on three kinds ofevents, namely interior events that 
orrespond to points in Φ̊, near-boundary events thaten
ode ends of 
urves on ∂Φ whose interior is still 
ontained in Φ̊, and boundary events forisolated points on ∂Φ and ends of 
urves that are fully 
ontained in ∂Φ. We de�ne a unique

uv-lexi
ographi
 order of all events, des
ribed by large, but internal, 
ase distin
tion, that25Observe that u-
oordinates of points and 
urve-ends on bordered and identi�ed bottom- and top-boundaries are available.26We 
onsider near-boundary events of verti
al 
urves as �isolated� as well.
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Figure 4.7. Events on the sphere for input that also 
omprises 
urves and points on ∂Φ

(a) Input: Two 
urvesand one isolated point onthe identi�
ation, an isolatedpoint at the south pole, 4
urves meeting the identi�
a-tion, 2 
urves in
ident to thenorth pole, one interior 
urve,and one isolated vertex in theinterior.
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(b) Events: 6 boundary events(bei), 6 near-boundary events(nej), 11 interior events (iek).The indi
es indi
ate the uv-lexi
ographi
al order, derivedusing the lo
ations of 
urve-ends (and points) in Φ and byon-boundary-, near-boundary-,or interior-
omparisons.
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on
ept 127relies on a small set of simple geometri
 
omparisons. We give the full list in �4.3. Why dowe exert ourselves with this distin
tion? The reason is simple: We do not want the user todo it. Most of these 
omparisons are straightforward and would appear repeated times forea
h family of 
urves that are supported on a spe
i�
 parametri
 surfa
e. With the 
ho-sen approa
h, we maximize 
ode reuse. By splitting the annoying task into easy-to-solvesubtasks, we also redu
e the expe
ted level of expertise for someone who plans to providenew 
urves. There is another reason: Theoreti
ally, it is possible to already unify events,for example, 
ombining boundary and near-boundary events belonging to the same point
p on S. However, this redu
es the �exibility to 
hoose a 
ertain D
el-representation forsome parameterization. We learn in �4.4 that is it bene�
ial to give the responsibility ofsu
h a uni�
ation to another entity.For the zone algorithm the situation is similar as for unbounded 
urves. We againhave to lo
ate the D
el-feature that is met by a 
urve's minimal or maximal end. Butto provide this information, knowledge how D
el-re
ords en
ode bordered, unbounded,
ontra
ted, or identi�ed sides is expe
ted. Thus, we postpone this problem to �4.4.4.3. Extending the ArrangementTraits_2 
on
eptAs explained in �2.4.3 the Arrangement_2 pa
kage is instantiated with a model of Cgal'sArrangementTraits_2 
on
ept that provides types and geometri
 
onstru
tions and pred-i
ates in order to support the arrangement 
onstru
tion and maintenan
e. The versionof the 
on
ept until Cgal 3.2 supports bounded 
urves, while impli
itly assuming thatthe embedding surfa
e is the xy-plane. We refer to this version as the NoBoundaryTraitsre�nement. This version also 
onstitutes the root of a hierar
hy of re�ned 
on
epts thatwe un
over in this se
tion. The new Arrangement_on_surfa
e_2 pa
kage, that repla
esthe former Arrangement_2 pa
kage in an up
oming version of Cgal, is able to deal withthis hierar
hy of geometri
-traits 
on
epts. An illustration of the hierar
hy is given inFigure 4.8.For ea
h re�nement we present whi
h additional fun
tors are expe
ted, or said inother words, we give the te
hni
al details of the various predi
ates that we only 
ontouredin �4.2. We distinguish abstra
t and 
on
rete re�nements. A 
on
rete re�nement de�nesall spe
i�
ations that are required in order to support some spe
i�
 kind on a boundaryside of the parameter spa
e. In 
ontrast, an abstra
t re�nement 
onstitutes a 
ommonan
estor for various 
on
rete re�nements. For a spe
i�
 family of surfa
es, it is possible,and often required, to 
ombine 
on
rete re�nements to support di�erent kinds of boundarysides; see Example 4.4 at the end of this se
tion. Su
h a 
ombined 
on
ept 
onstitutesthe minimal requirements imposed by geometri
 algorithms in the pa
kage that operateon arrangements for the desired family of surfa
es. The hierar
hi
al stru
ture alleviatesthe produ
tion of models (for 
urves on su
h a surfa
e) and in
reases the usability ofthe algorithms. Ea
h re�nement features a set of new expe
ted fun
tors. We mainlydistinguish fun
tors that give lo
ation information and fun
tors that 
ompute a relativeorder of two geometri
 obje
ts.Remark. We de
ided to sti
k with the traditional naming of variables 
hosen for Cgal'sarrangement 
on
epts, that is, in 
ontrast to u and v for variables in the parameter spa
e,we refer to x and y. In addition, we simplify the stru
ture to be exposed next: Somere�nements a
tually distinguish whether a 
ertain kind of boundary appears for the x- or
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y-
oordinate. In su
h 
ases, we here only dis
uss the x-
ase. The analogue y-version isalways supposable and should be 
ommemorated. In addition, we simplify the te
hni
alpresentation that not exa
tly meets the expe
ted syntax of C++ (e. g., omitting 
onst-de
larations, passing parameters by referen
e, et 
etera).NoBoundaryTraitsHasBoundaryTraitsUnboundedBoundaryTraits �CombinedBoundaryTraits� Identi�edBoundaryTraitsPointOnBoundaryTraits CompareOnBoundaryTraitsBorderedBoundaryTraitsContra
tedBoundaryTraitsFigure 4.8. Re�nement hierar
hy of Cgal's ArrangementTraits_2 
on
epts for sur-fa
es. The gray 
on
epts are abstra
t, that is, they only 
olle
t fun
tors required bymore than one 
on
rete re�nement. The �CombinedBoundaryTraits� is a pla
eholder forvarious 
ombinations, for example, a paraboloid re�nes all but BorderedBoundaryTraits.We remark that the drawing is simpli�ed, as we are missing a
tual 
oordinate-spe
i�
distin
tions.4.3.1. HasBoundaryTraitsFollowing Figure 4.8, the NoBoundaryTraits 
on
ept is re�ned by a single abstra
t 
on-
ept: HasBoundaryTraits. It lists additional predi
ates required to support any 
urves thatapproa
h or even rea
h ∂Φ. Before we give the expe
ted fun
tors, we need to generally in-trodu
e some enumerations used in the interfa
e in addition to Cgal's Comparison_resultwhi
h distinguishes between SMALLER, EQUAL, and LARGER.enum Arr_
urve_end{ ARR_MIN_END,ARR_MAX_END};

Allows to sele
t the minimal or maximalend of a 
urve.
enum Arr_parameter_spa
e{ ARR_LEFT_BOUNDARY = 0,ARR_RIGHT_BOUNDARY,ARR_BOTTOM_BOUNDARY,ARR_TOP_BOUNDARY,ARR_INTERIOR};This enumeration 
ategorizes the lo
a-tion of a 
urve-end or an isolated pointin Φ.The �rst additional fun
tor is very basi
.

• Parameter_spa
e_in_x_2The fun
tor is expe
ted to provide the operator
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on
ept 129Arr_parameter_spa
e operator()(X_monotone_
urve_2 x
v,Arr_
urve_end 
e)that returns the lo
ation of x
v's 
urve-end de�ned by 
e in parameter spa
e in x-dire
tion. It 
an return ARR_LEFT_BOUNDARY, ARR_INTERIOR, or ARR_RIGHT_BOUNDARY.Note that x
v is a (weakly) x-monotone 
urve whose interior lies in Φ̊.As mentioned, the similar version Parameter_spa
e_in_y_2 also exists.Remark. The 
on
ept does neither mention nor spe
ify how the lo
ations of 
urve-endsare 
omputed. However, it is en
ouraged to adapt Make_x_monotone_2 su
h that ea
h
onstru
ted (weakly) x-monotone 
urve is enhan
ed with these pie
es of information. Infa
t, Make_x_monotone_2 already has to do parts of this job, as it ensures to split 
urvessu
h that there are no zero-dimensional interse
tions of the interior of a 
urve with theboundary of the parameter spa
e. For that reason, a model of this re�nement also needsknowledge about the geometry of the surfa
e.The next two fun
tors provide 
omparisons of 
urve-ends near the boundary. Weexpli
itly mention x- and y-
ase, as they are expe
ted to provide operators with di�erentsignatures.
• Compare_x_near_boundary_2An instan
e of this fun
tor is expe
ted to provide two operators:Comparison_result operator()(Point_2 p,X_monotone_
urve_2 x
v, Arr_
urve_end 
e)whi
h should return the relative x-order of p's x-
oordinate (in parameter spa
e) andx
v's 
urve-end de�ned by 
e that approa
hes the bottom or top boundary.Comparison_result operator()(X_monotone_
urve_2 x
v1, Arr_
urve_end 
e1,X_monotone_
urve_2 x
v2, Arr_
urve_end 
e2)returns for two 
urve-ends approa
hing the bottom or top boundary the relativeorder of their x-
oordinates (in parameter spa
e) near the boundary.
• Compare_y_near_boundary_2The instan
e of this fun
tor must provide a single operator, namelyComparison_result operator()X_monotone_
urve_2 x
v1,X_monotone_
urve_2 x
v2,Arr_
urve_end 
e)The expe
ted output of this member is the relative y-alignment of the two 
urve-ends slightly to the right of the left boundary if 
e determines their minimal ends.
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esOtherwise, we 
ompare slightly to the left of the right boundary. Both 
urves areexpe
ted to approa
h (or rea
h) the referred boundary side, respe
tively.Remark. We again mention that the 
omparisons fun
tors are expe
ted as to work in pa-rameter spa
e. However, a 
on
rete implementation is not for
ed to 
ompute the answerthis way. There might be other (more e�
ient) methods to obtain the same result. We seea model that does not rely on the parameterization to give these answers in �4.6.1. Thesame remark propagates to other 
omparisons fun
tors presented in this se
tion.As said, the 
on
ept is abstra
t, that is, a model of it does not su�
e to 
ompute anarrangement on some surfa
e. It remains to expli
itly introdu
e fun
tors for di�erent kindsof boundary side. We do so by 
on
rete re�nements.4.3.2. UnboundedBoundaryTraitsThe simplest next re�nement is expe
ted if a boundary side of the parameter spa
e istagged as unbounded. In order to ful�ll the 
on
ept, the following fun
tor is required.
• Is_bounded_2An instan
e of this fun
tors should providebool operator()(X_monotone_
urve_2 x
v, Arr_
urve_end 
e)whi
h returns true if the intended 
urve-end is �nite, and false otherwise. If a 
urve-end is �nite it is allowed to a

ess the a

ording point by Constru
t_min_vertex_2or Constru
t_max_vertex_2, respe
tively.A model of this re�nement allows to 
ompute and maintain arrangements of 
urveswhi
h 
an be unbounded, as explained in �4.2.1.4.3.3. PointOnBoundaryTraitsThis abstra
t re�nement is rather tiny, as we only expe
t one additional operator for anexisting fun
tor.
• Parameter_spa
e_in_x_2must additionally provideArr_parameter_spa
e operator()(Point_2 p)that is, we expe
t to lo
ate a (�nite) point in Φ. In other words, it is possible that anisolated point exists on ∂Φ, whi
h is dete
ted by this fun
tor. Again, the y-version
an also appear.
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on
ept 1314.3.4. CompareOnBoundaryTraitsIf a 
ertain side is not labeled as unbounded, all points on that side are �nite and 
an bea

essed by the mentioned 
onstru
tions. This abstra
t re�nement introdu
es a fun
tor toexpli
itly 
ompare their relative order within the side. We exemplary mention
• Compare_x_on_boundary_2An instan
e of this fun
tor must provideComparison_result operator()(Point_2 p1,Point_2 p2)that 
omputes the relative x-order of two points. As a pre
ondition ea
h point mustlie on either the bottom or the top boundary.The analogue y-version is also supposable.4.3.5. Contra
tedBoundaryTraitsThis 
on
rete 
on
ept does not add further requirements to PointOnBoundaryTraits. How-ever, we introdu
e it in order to expli
itly distinguish the 
ontra
tion 
ase from theBorderedBoundaryTraits.4.3.6. BorderedBoundaryTraitsAs for the previous re�nement, this one is arti�
ial, that is, though 
on
rete it is not atrue re�nement, as no new requirements are lists. Its intention is to 
onstitute a 
on-
rete 
on
ept for the 
ase that a surfa
e 
omprises a bordered boundary. It re�nes fromtwo abstra
t 
on
epts, namely PointOnBoundaryTraits and CompareOnBoundaryTraits. Weintrodu
e it, in order to distinguish from other 
on
rete 
on
epts.4.3.7. Identi�edBoundaryTraitsThis 
on
ept is almost similar to the previous one, but there is a signi�
ant di�eren
e: It isnot a re�nement of the PointOnBoundaryTraits In 
ontrast to the Parameter_spa
e_in_x_2for a point, it expe
ts an additional fun
tor whose utilization is more spe
i�
 for an iden-ti�
ation:
• Is_on_x_identifi
ation_2An instan
e of this fun
tor must provide two members, namelybool operator()(Point_2 p)andbool operator()(X_monotone_
urve_2 x
v)
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esEa
h 
he
ks whether the designated geometri
 obje
t is fully 
ontained in the left-right identi�
ation (i. e., in �x�-dire
tion), or not. For a bottom-top identi�
ation,the y-version is also 
on
eivable.Note that by this design of the interfa
e, the model is not obliged to de
ide whethera point or a 
urve lying on an identi�
ation is attained by the left or the right (bottomor top) pre-image. It just returns that the point or the 
urve lies on the boundary. Wepreviously de
ided, how to deal with su
h obje
ts internally; see �4.2.2 for more details.4.3.8. CombinedBoundaryTraitsInternally, a 
lever dispat
hing of tags (we omit the te
hni
al details) allows to 
ombinethe previous 
on
rete 
on
epts. This enables to dedu
e a 
on
ept that �ts for a 
ertainfamily of surfa
es. That is, a model for a 
ertain surfa
e 
ontains a set of tags thatreports whi
h 
on
epts it implements. The Arrangement_on_surfa
e_2 pa
kage uses thisinformation to internally and automati
ally provide dummy implementations for the non-expe
ted fun
tors. This simpli�es the development of a 
on
rete model for a 
ertainfamily of surfa
es, as one only has to implement the fun
tors that are really exe
uted. The
ompilation is ensured by the non-
alled dummy implementations. In fa
t a quite a largenumber of 
ombinations are possible; see Table 4.1.Example 4.4 (Paraboloid). A geometri
-traits 
lass for 
urves embedded on the paraboloidis expe
ted to be a model of almost all 
on
epts that we introdu
ed in this se
tion.One side, for example ∂lΦ, is 
ontra
ted to model the paraboloid's apex. Then, ∂rΦmust be unbounded in 
ase the paraboloid opens to in�nity, or bordered, in 
ase theparaboloid is �nite. The remaining pair of opposite sides (∂bΦ and ∂tΦ) are identi-�ed. In the language of the herein introdu
ed 
on
epts, we expe
t the model to im-plement the Contra
tedBoundaryTraits for ∂lΦ, the UnboundedBoundaryTraits for ∂rΦ, andthe Identi�edBoundaryTraits for ∂bΦ and ∂tΦ.4.4. Maintaining a D
el on a surfa
eAs already mentioned in �2.4.3, Cgal uses visitors to pro
ess the topologi
al informationgathered in the 
ourse of the sweep (or the zoning) in order to 
onstru
t (or modify) theD
el that represents an arrangement of 
urves. That is, the 
anoni
al output of the sweep
onsists in pro
essing events, while maintaining the event-queue and the status-line. Onea
h 
ombinatorial 
hange a visitor is noti�ed on the progress of the sweep pro
ess, forexample, whi
h event is 
urrently handled, and whi
h sub-
urves are emerging to its left.Similar for the zone algorithm. It is the visitor's implementation that de
ides the a
tualand �nal output of the pro
edure. It varies from just reporting interse
tion points, or may
omprise a more sophisti
ated task su
h as to 
onstru
t the arrangement of the pro
essed
urves. Another variant inserts new 
urves into an existing arrangement, or overlays twosu
h. More information is given in �2.4.3 and [WFZH07b℄. In what 
omes next we mainly
on
entrate on the 
onstru
tion of an arrangement. The other appli
ations are similar orstraightforward; where needed we give additional details. A visitor that 
onstru
ts the
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el on a surfa
e 133# Left Right1 Bordered Bordered2 Bordered Contra
tion3 Bordered PlusIn�nity4 Identi�
ation Identi�
ation5 Contra
tion Bordered6 Contra
tion Contra
tion7 Contra
tion PlusIn�nity8 MinusIn�nity Bordered9 MinusIn�nity PlusIn�nity10 MinusIn�nity Contra
tionTable 4.1. Combinations of possible 
onditions at ∂lΦ and ∂rΦ. The same list 
analso be used for ∂bΦ and ∂tΦ.It is possible to en
ode all 
ases of 
onditions on the boundaries of ∂Φ as pair (LR,BT ).For example (1, 1) de�nes a surfa
e equivalent to a quadrangle, (4, 6) a surfa
e equiva-lent to a sphere. The 
ases ({6, 7, 9, 10}, 4) are, for example, formed by ellipti
 quadri
sthat we dis
uss in �4.6.1. The double-identi�
ation (4, 4) forms genus-one surfa
es,among whi
h we dis
uss ring Dupin 
y
lides in �4.6.2. It is easy to also derive the pairs
(LR,BT ) for triangles, fans, half-planes, dis
s, and many other surfa
es. However, itis un
lear, whether for some 
ombinations smooth surfa
es exists, for example, (6, 6),
(7, 7), or (10, 10).arrangement of swept, or zoned, (weakly) x-monotone 
urves27 needs to keep tra
k the
reation of new sub-
urves. A new sub-
urve is 
reated whenever an interse
tion of morethan one 
urve or a maximal 
urve-end is pro
essed, that is, the portions of the 
urve(s)to the left of the event are inserted into the arrangement using one of the basi
 insertionspro
edures. We already mentioned them in �2.4.1. Ea
h 
reates or updates relevant D
el-features. The D
el for bounded planar 
urves is unique and well-de�ned, in parti
ular,there is only a single unbounded fa
e.What we like to emphasize is that the a
tual 
onstru
tion by the visitor utilizes onlytopologi
al information available during the sweep (or zone) algorithm in order to performthe basi
 insertions of sub-
urves � without invoking any extra geometri
 information. In
ontrast to perform a post-pro
essing of the swept events, it is the on-line and interweavedfashion of the 
onstru
tion that is worth to mention.We aim for a similar strategy when 
onstru
ting a D
el for an arrangement indu
ed ona parametri
 surfa
e whose parameter spa
e may have spe
ial properties at its boundarysides; see our introdu
tion in �4.2. Note that only spe
ial boundaries imply an elaboratehandling. An empty arrangement 
onsists of a single fa
e and if no 
urve approa
hes orrea
hes the boundary, pro
essing the 
urves is �isomorphi
� to what we do for bounded
urves in the plane. That is, all 
urves lying in the interior of the parameter spa
e 
analready be handled with the existing tools. If no 
urves intera
ts with boundary, thenesting graph is supposed to be still a tree. Spe
ial diligen
e is only needed when 
urvesmeet the boundary of the parameter spa
e. As a result, we s
ream for reusing existing27Observe that we stay with Cgal's naming s
heme, that is, we use x and y for the variables of theparameter spa
e.
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esma
hinery as mu
h as possible. We only want to modify Cgal's Arrangement_2 pa
kagein its handling with respe
t to spe
ial boundaries.By now, it is 
ompletely open how to transform the various kinds of boundaries intoan a
tual D
el-representation, whi
h is �ne, as it turns out that various possibilities 
anexist. As we will see, these 
hoi
es also lead to di�erent nesting graphs.Several operations on arrangements are quite similar in all 
ases. As examples wemention basi
 insertion and deletion pro
edures. It turns out that Cgal's Arrangement_2pa
kage already suites well to serve as a building blo
k. We28 extended it to Cgal'sArrangement_on_surfa
e_2 pa
kage whi
h now serves as the 
entralized 
omponent that
olle
ts surfa
e- and 
urve-independent algorithms and stru
tures for two-dimensional ar-rangements on a wide range of surfa
es and 
urves on them. The 
entral 
lass-template ofthe pa
kage has two parameters:Arrangement_on_surfa
e_2< GeometryTraits_2, TopologyTraits_2 >As known, it is the GeometryTraits_2 that provides the 
urve-spe
i�
 
omponents, andwe have learned in �4.2 and �4.3 how to extend it in order to support 
urves embed-ded on a parametri
 surfa
e with spe
ial kinds of boundaries. Remember that this 
lassmust also be aware of the geometry of the embedding surfa
e, for example, to implementMake_x_monotone_2.Similarly, all surfa
e-spe
i�
 pro
edures are expe
ted from the new �external� 
om-ponent. We 
all the 
orresponding parameter TopologyTraits_2. Su
h a 
lass en
ap-sulates the topology of the surfa
e on whi
h the arrangement is embedded, determinesthe underlying D
el representation, and supports its maintenan
e. It does so by de�n-ing nested types that are used in various arrangement-related operations. Additionally,it provides predi
ates and operations dealing with 
urve-ends or points related to ∂Φthat are required to 
onsistently modify or update the D
el. In �4.5 we present thefull ArrTopologyTraits_2 
on
ept that an instan
e of type TopologyTraits_2 must ful-�ll. Beforehand, we shortly review whi
h tasks and 
omponents of the arrangement
lass are a
tually surfa
e-dependent. This helps to 
larify some design rationales of theArrTopologyTraits_2 
on
ept; see also [BFWZ07℄.As a �rst remark, we observe that the TopologyTraits_2 parameter has repla
ed theD
el parameter. Consequently, the new 
omponent must provide the D
el-type. In-ternally, the arrangement derives the Vertex-, Edge- and Fa
e-type to equip them with aninterfa
e that respe
ts arrangement-spe
i�
 goals. The a
tual interfa
e of the arrangement
lass 
an be partitioned into three groups:Traversal methods provide information about the number of D
el-re
ords (as 
ells),and the a

ess to ea
h valid one. We allow that a D
el-re
ord 
an be geometri
allyinvalid, that is, it does not 
arry relevant geometri
 information, but only serves toen
ode some topologi
al information. Su
h �
titious re
ords should be �ltered.Basi
 insertions, deletions, and modi�
ations are 
entral operations on the D
el;see �2.4.2. We distinguish the insertion of an isolated point and an x-monotone
urve whose interior is disjoint from all existing verti
es and edges of the 
urrent28Central ideas by Ron Wein, E� Fogel, Dan Halperin, and the author. Main 
oding by Ron Wein;signi�
ant 
ontributions by E� Fogel, Baru
h Zukerman, and the author.
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el on a surfa
e 135arrangement, the deletion of an edge (or of an isolated vertex), the splitting of anedge as prior operation for an insertion, and the merge of two edges as posterioroperation of an edge-deletion.Global fun
tions are used to 
onstru
t arrangements from s
rat
h, to insert 
urves intoan existing one, or to two overlay two instan
es. As learned, proper visitors 
an be
ombined with the generi
 Sweep_line_2 template or the zone algorithm in order toprovide these operations. The zone algorithm additionally requires a point-lo
ationstrategy.We are not going into the te
hni
al details for all of these interfa
es. However, weare already able to identify surfa
e-spe
i�
 tasks expe
ted by them. An example is the�ltering of �
titious D
el-re
ords. Surfa
e-spe
i�
 are also spe
ialized visitors used by theglobal fun
tions that are tailored to 
ertain D
el-representations: They deploy additionalknowledge whi
h saves 
alls to geometri
al and topologi
al predi
ates in order to de
idewhi
h basi
 insertion fun
tions must be 
alled. Only the basi
 insertions and deletions re-quire elaborate modi�
ations. We explain su
h when dis
ussing the handling of 
onne
ted
omponents of a fa
e's boundaries (CCBs). Another example is the extended support forthe lo
alization of points in the existen
e of a spe
ial property at a boundary side.4.4.1. Choi
e of D
elAn important fa
t is, that the generi
 arrangement 
lass itself is no longer responsible todetermine the a
tual D
el representation for the indu
ed subdivision. A subtask is tode�ne how the D
el of an empty arrangement on some S is en
oded. It mainly must bede
ided whether the initial fa
e is unbounded (e. g., for a plane, a paraboloid, or an open
ylinder) or bounded (e. g., for a triangle, a sphere, a 
losed 
ylinder, or a torus). It ismore 
hallenging to 
ommit to a 
ertain representation as D
el for the boundary of theparameter spa
e as it is typi
al that several possibilities exists.A tangible example is 
onstituted by the unbounded plane. We aim to 
onstru
t anarrangement that may 
ontain several unbounded fa
es. We already 
hose not to 
lip atan expli
it bounding re
tangle. Instead, a possibility is to introdu
e an impli
it boundingre
tangle embedded in the D
el, that is, it 
onsists of �
titious edges. Ea
h su
h edgedoes not represent any 
on
rete planar 
urve; its sole purpose is to 
lose the outer CCBof an unbounded fa
e. Or vi
e-versa: A fa
e is unbounded, if its outer CCB 
ontains a�
titious edge. A
tually, there is one spe
ial fa
e that has no outer CCB, and its soleinner CCB 
onsists of �
titious edges only. However, this fa
e is of pure te
hni
al nature.The 
orners of the �
titious re
tangle are given by spe
ial verti
es Vbl, Vtl, Vbr, and Vtr.As they do not a
tually belong to the arrangement they must be �ltered for a traversal.A 
urve-end that extends to in�nity is represented as a �
titious vertex on this re
tangle,but never 
oin
ides with one of the four 
orner verti
es. The insertion of an unbounded
urve implies a �
titious edge to split. Figure 4.9 (a) gives an illustration of su
h a D
el.As it maintains a �
titious outermost fa
e F , the nesting graph of this D
el is a tree.An alternative solution, as shown in Figure 4.9 (b), is to use a single �
titious vertexat in�nity Vinf and all 
urves extending to in�nity are 
onne
ted to this vertex. A fa
eis then 
onsidered to be unbounded, if its outer CCB in
ludes Vinf . For this 
hoi
e, nosplit of a �
titious edge is required, but we need to determine the position of a new 
urvein the 
ir
ular list of existing 
urves around Vinf . Note that there is no single outermost
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es
Figure 4.9. Two possible D
el-representations for the unbounded plane

V3
F3 F4

Vlt V4 V5

V7

Vrt

F1

F5

F6

F8

F2

V6

F

F9

F7

V1

V2

Vlb V8 Vrb

F10

F11

F

F11F10F1 F8F2 F3 F4 F5 F6 F7

F9(a) This D
el uses �
titious edges (dashed) and four spe
ial verti
es Vlb,
Vlt, Vrb, Vrt that do not 
arry geometri
 information. The verti
es V1, . . . , V8represent in�nite 
urve-ends. The fa
es F1, . . . , F8 are unbounded, as they arein
ident to a �
titious edge. The fa
e F is �
titious without any geometri
meaning. The nesting graph is a tree rooted at F .

F9

F3 F4

F1

F5

F8

F2

F6

Vinf

F7

F10

F11

F1 F2 F3 F4 F5 F6 F7 F8 F10 F11

F9(b) This D
el 
ontains a single �
titious vertex Vinf to whi
h all unbounded
urve-ends are in
ident. The unbounded fa
es F1, . . . , F8 are the ones that arein
ident to this vertex; see, for example, the indi
ated outer CCB of F3. Thenesting graph of this D
el is a forest.
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e: In parti
ular, ea
h unbounded fa
e is a root in the nesting graph, and also a boundedfa
e that is not a hole29 of a another bounded fa
e 
onstitutes a root. That is, we obtainseveral equitable outermost fa
es. Following the nesting graph is a forest. A root growsto a tree, if it has at least one two-dimensional hole in it, su
h as F7.Both representation are useful and legitimate, and none 
an be preferred over the other.A
tually, ea
h 
an be more suitable than the other in di�erent situations. In fa
t, evenmixed 
ases are 
on
eivable, for example, we 
an have two �
titious verti
es for 
urvesextending to x = ±∞ and sequen
es of �
titious halfedges 
onne
ting (at in�nity) 
urvesthat extend to y = ±∞. The relevan
e of su
h a representation is questionable, but we donot judge on this. For Cgal 3.3, we de
ided to represent unbounded planar arrangementswith the impli
it bounding re
tangle. Other representations might be in
luded in futurereleases.We next generalize the topologi
al tasks beyond the unbounded plane, similar to thegeneralization of the geometri
al tasks. We basi
ally have two strategies to representarrangements on parametri
 surfa
es as D
el.Tree-strategy This strategy requires to agree upon a single outermost fa
e. This istypi
ally done by 
hoosing a referen
e point that is expe
ted to be 
ontained inthis 
losed fa
e (i. e., its interior and its inner CCBs). We have to ensure that the
reation of new fa
es, and in parti
ular the assignment of CCBs that pop up, aimfor a tree rooted at this outermost fa
e. Below, we identify the tasks how to supportthis de
ision in order to maintain a tree.Forest-strategy In this strategy, several fa
es 
an be outermost, that is, they are eq-uitable. Making fa
es equitable means to separate them by outer CCBs. For thisstrategy it must be 
lear what outermost means for a spe
i�
 surfa
e. On
e thisis �xed, any operation that requires an update of CCBs (e. g., the 
reation of anew fa
e) has to follow the 
hosen de�nition. The tasks we identify below help toimplement the 
hosen de�nition for an outermost fa
e.Remarks.
• In both strategies, the �rst root of the nesting graph has no outer CCB.
• Note that already in the bounded plane, we have some kind of equitable fa
es; see, forexample, fa
es F2 and F3 in Figure 2.6. However, they are surrounded by a 
ommoninner CCB; see in the example E2 whi
h determines that F2 and F3 are 
hildrenof F1. Equitable means that none makes the other lo
ally non-simply 
onne
ted; seealso De�nition 2.41. Thus, they are separated by outer CCBs from ea
h other andnone is a root, in 
ontrast to the forest-strategy that already expe
ts equitable roots.We admit, that the strategies seems 1 abstra
t. On the other hand, the 
hosen strategyhas impli
ations on the nesting graph. That is, by 
hoosing a strategy, we are a
tuallyasking for a 
onsistent way of assigning CCBs to the lists of inner and outer CCBs offa
es. These assignments eventually de�ne the nesting graph. Thus, we 
on
entrate onthis 
lassi�
ation when dis
ussing CCBs below. There, we also extend our 
onsiderationto surfa
es with identi�
ations. More te
hni
al details are given in �4.5.5.29A hole makes a fa
e non-simply 
onne
ted; see De�nition 2.41.
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es4.4.2. Boundary tasksIn addition to the D
el-de
isions, we already have dete
ted some surfa
e-spe
i�
 topo-logi
al tasks:
• Remember that visitors (for sweep or zone) 
all the basi
 insertion fun
tions tomodify the D
el with respe
t to the insertion of a 
urve c. There are spe
ial 
asesthat the arrangement has to take 
are of. An example is that some 
urve-end of a
urve c 
an 
oin
ide with an isolated vertex in a fa
e, so the insertion is a
tuallyfrom a vertex. This is already a solved problem for the bounded plane. However, inour 
ase the arrangement deals with boundaries of the parameter spa
e. But it hasno 
han
e to de
ide itself how to insert the relevant 
urve-end. Remember the twoways (�
titious re
tangle, �
titious vertex at in�nity) to represent an unboundedarrangement as D
el. In both 
ases, the insertion is a
tually from a vertex atin�nity. Similar 
ases are 
on
eivable for other topologies. Thus, our solution to thisproblem 
onsists in the arrangement's query of the atta
hed topology-traits 
lass. Itreturns a CGAL::Obje
t 
omprising one of the following types:� A handle for a �
titious halfedge, whi
h means that the queried 
urve-end splitsthe designated �
titious halfedge in its interior. The split-point be
omes the(�
titious) vertex representing the 
urve-end.� A handle for a vertex to whi
h the 
urve-end is in
ident.� An empty obje
t, whi
h implies that it is required to 
reate a new vertex rep-resenting the 
urve-end. The 
urve itself is the sole in
ident 
urve to the vertexthat will be 
reated.If only one 
urve is in
ident to a vertex, the insertion from a vertex is simple,otherwise, we refer to the next task.Remark (Isolated point). Remember that some topologies allow isolated points on

∂Φ. Thus, the topology-traits 
lass must also be able to 
ompute the same pie
e ofinformation for su
h a point, instead of a 
urve-end.
• Find the position of a 
urve in
ident to a D
el-vertex V on ∂Φ in the 
ir
ular orderof 
urves around V . This holds for both �
titious and non-�
titious verti
es.
• Split a �
titious edge. The 
ounterpart of this operation 
onsists of the dete
tionand removal of a redundant vertex on the boundary.We refer to �4.5 where we explain how these tasks are te
hni
ally interfa
ed.4.4.3. Fa
esNote that fa
es of the subdivision (i. e., open 
onne
ted point sets on the surfa
e) are storedimpli
itly, that is, not spe
ial geometri
 obje
t is deposit in the D
el. However, part ofthe impli
it representation is the 
orre
t assignment of 
onne
ted 
omponents of the fa
e'sboundaries (CCBs). Ea
h insertion or deletion of a 
urve 
an also imply a modi�
ation ofa fa
e's CCBs. In parti
ular, a fa
e 
an be split into two fa
es. For the di�erent kinds ofboundaries, we have to 
onsider spe
i�
 possibilities.Unbounded fa
es If an unbounded fa
e is split by a bounded 
urve, it must be de
idedby the topology-traits 
lass whi
h of the two resulting fa
es is unbounded.
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cv

EprevF1

E′1
E1

F0

Efict

Figure 4.10. We 
onsider an arrangement of line segments in a �nite re
tangle whoseboundary is modelled with �
titious edges. The insertion of cv results in a split of F0.The new fa
e F1 has an outer CCB that is formed by Eprev, E1, and Efict.Bordered edges Consider a �nite re
tangle, whi
h 
onstitutes a 
ompa
t surfa
e whoseboundary 
onsist of four bordered sides. We 
an represent these bordered sides with thehelp of �
titious halfedges (as for the unbounded re
tangle). In su
h a 
ase, it is possiblethat the insertion of a bounded 
urve from a single vertex splits a fa
e, su
h that one doesnot make the other lo
ally non-simply 
onne
ted; see the illustration in Figure 4.10. It isthe topology-traits 
lass that takes 
are of this de
ision.CCBs, roots of the nesting graph � and identi�
ations Remember the tree- and theforest-strategy that we only introdu
ed abstra
tly. We next dis
uss examples for them onsurfa
es with a 
urve of identi�
ation. This helps us to dete
t the tasks that we requirefrom the topology-traits 
lass for any kind of parametri
 surfa
e we want to 
onsider.In the tree-strategy, the de�nition of the root fa
e is simple. It is de�ned by pi
king areferen
e point. On a sphere, we 
an 
hoose, for example, the north pole. The followingexample is also illustrated in Figure 4.11: The initial D
el 
onsists of a single boundedfa
e F0. It does not have any outer CCB. This 
ontrasts with the planar 
ase, where ea
hbounded fa
e has an outer boundary. Next 
onsider that we 
lose the tropi
 of Can
er(northern turning 
ir
le) and the tropi
 of Capri
orn (southern turning 
ir
le). For the�rst 
urve, the initial fa
e is split into two. The fa
e FN now 
ontains the north pole,that is, the referen
e point. Thus, a

ording to our strategy, it should obtain an innerCCB (represented by E1), that separates F ′
S (
ontaining the south pole and the equator)from FN . This ensures that F ′

S be
omes a 
hild of FN . F ′
S itself gets a single outer CCB(represented by E′

1). After adding the se
ond tropi
, there are now three fa
es FN , FE ,and FS . The latter two originate from the split of F ′
S . Note that FS gets a single outerCCB (represented by E′

2) and is separated from FE 
orresponding to the strategy by aninner CCB (represented by E2) of FE . Observe that we 
ome to two de
isions: Make E′
1the outer CCB of F ′

S (and not E1) and make E′
2 the outer CCB of FS (and not E2). Arespe
tive twin de�nes an inner CCB for the proper originating fa
e.Similarly, we 
an pi
k a �referen
e point� on a 
ylinder C, even if it is unbounded. Forexample, we 
hoose as referen
e some point on C with z = +∞. This 
ase is illustrated
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esFigure 4.11. The tree-strategy on a sphere
F0

(a) Single boundedfa
e F0 with neitherouter CCB nor innerCCB.

FN

E1

E ′1
F ′S

cv1
cva

E1,prev

E ′1,prev

(b) Closing the north-ern tropi
 by cv1 re-sults in two fa
es: FNgets a fa
e separatedby an inner CCB thatis de�ned by E1. Fa
e
F ′

S gets a single outerCCB de�ned by E′
1.

FN

FS

E2

E1

E′
1

FE

E′
2

cv2(
) Adding the south-ern tropi
 cv2 re-sults in another split:
FE inherits the outerCCB de�ned by E′

0,while the new fa
e FSis separated from it byan inner CCB de�nedby E2. The split fa
e
FS gets a single outerCCB de�ned by E′

2.in Figure 4.12. Mind again, that two de
isions help to de�ne the the �nal D
el: Make
E′

1 the outer CCB of F1 (and not E1) and (again) make E′
2 the outer CCB of F2 (andnot E2).Remarks (on the tree-strategy).

• The tree rooted at a referen
e fa
e in ensured by de�ning whi
h CCB be
omes outerof a newly 
reated fa
e. Let us keep this task in mind.
• Note that F1 in Figure 4.12 is an unbounded leaf in the nesting graph. This may benot very intuitive, but remember that this is due to the fa
t that the tree-strategysimply de�nes an outermost fa
e.To avoid su
h unbounded leaves, we a
tually en
ourage to apply the forest-strategy inthe 
ase of a 
ylinder. We again start with an example, illustrated in Figure 4.13: Thereis the single unbounded fa
e F0. When adding cv1 the fa
e F0 splits into the fa
es F0and F1. As both are unbounded we do not want to make one nested below the other.Thus, we de
ide to make them equitable on the 
ylinder. Consequently, ea
h gets its ownouter CCB: E′

1 de�nes the one for F0, while E1 de�nes the outer CCB for F1. We nextinsert cv2. This separates F2 from F0. Again, we do make F2 equitable to the other, thatis, F2 be
omes a root. This time, the reason is that F2 should be nested below F0 andbelow F2 at the same time. However, this would lead to a nesting graph, that is not aforest. We do not want to ex
lude this possibility in general, but it is less intuitive, that a
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el on a surfa
e 141Figure 4.12. The tree-strategy on a 
ylinder
F0

(a) Single unboundedfa
e F0 with neitherouter CCB nor innerCCB.
F0

E1

F1

cv1

E ′
1(b) Adding cv1 re-sults in two fa
es. F0gets separated from

F1 by saying that E1de�nes an inner CCBof F0. That is, bystrategy, F1 is a 
hildof F0 in the nestinggraph.

F0

F2

F1

E2

E1

cv2

E ′
2

E ′
1(
) Adding cv2 nowsplits F0 again. Sim-ilarly, F0 gets sepa-rated from F2 by say-ing that E2 de�nes aninner CCB of F0. Wemake F2 a 
hild of F0.In parallel F1 be
omesa 
hild of F2 as E1stays an inner CCB,but now for F2.set of points should be �somehow� a subset of two disjoint sets.30 Thus, to make F2 a rootfa
e is a ni
e and sensible solution. However, it is now surrounded by two outer CCBs.31While E′

1 is already determined to be one of them, it must be de
ided that E2 de�nes these
ond (and not E′
2). Following, E′

2 automati
ally de�nes an outer CCB for F0.Remarks (on the forest-strategy).
• We require a de�nition that spe
i�es the properties of a root. In the example, we
hoose �unboundedness� and �not a unique nesting�. However, these 
onditions arenot pre
ise.
• On
e root fa
es are de
ided, we need a test that determines whether a newly 
reatedouter CCB belongs to the same root fa
e as another (�xed) outer CCB. Let us alsokeep this task in mind.We remark that the forest-strategy also makes sense for bounded surfa
es, for example,as de�ning a referen
e point might not re�e
t the user's wish. In parti
ular, he maybewants to avoid an arti�
ial hierar
hy of fa
es. Using the forest-strategy is a way out ofthis dilemma. As example, we mention the re
tangle as in Figure 4.10, or we refer toFigure 4.14Note that with these examples in mind, it makes sense to extend the D
el: In addition30Note that a fa
e is supposed to represent a 
onne
ted subset, and all fa
es of a D
el model a disjointde
omposition of the input surfa
e.31The reason is that neither E′

1 nor E2 
an de�ne an inner CCB, as this would model that F2 is nestedbelow another fa
e.
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esFigure 4.13. The forest-strategy on a 
ylinder
F0

(a) Single unboundedfa
e F0 with neitherouter CCB nor innerCCB.
F0

E ′
1

F1

cv1

E1(b) Adding cv1 re-sults in two fa
es:Both have a singleouter CCB: E′
1 for F0and E1 for F1.

F0

F2

F1

E ′
2

E ′
1

cv2

E2

E1(
) Adding cv2 splits
F0 again. F0 stillhas a single outerCCB de�ned by E′

2.We determine that
E2 forms the se
ondouter CCB of F2, be-sides the one de�nedby E′

1. Thus, E′
2 de-�nes an outer CCB for

F0.Figure 4.14. The forest-strategy on a sphere
F0

(a) Single boundedfa
e F0 with neitherouter CCB nor innerCCB.

FN

E1

E ′1
F ′S

cv1
cva

E1,prev

E ′1,prev

(b) Closing the north-ern tropi
 by cv1 re-sults in two fa
es:
FN and F ′

S are eq-uitable. Ea
h getsits own outer CCBs.
E1 de�nes the one for
FN and E′

1 the onefor F ′
S .

FN

FS

E2

E1

E′
1

FE

E′
2

cv2(
) Adding the south-ern tropi
 cv2 splits
F ′

S into FE and FS .
FS 's outer CCB is de-�ned by E′

2, FE getstwo outer CCBs. Itmust be determinedthat E′
1 is the se
ondbesides E2. FN thengets the outer CCBde�ned by E1.
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el on a surfa
e 143to maintaining a list of inner CCBs, we are now 
onfronted with 
ases, where a fa
e 
anhave more than one outer CCBs. Thus, we require a D
el-
lass that is able to store a list
ontaining more than one outer CCB for a fa
e. Note that ea
h list of CCBs 
an also beempty.We admit that our examples are 
hosen 
arefully to show whi
h surfa
e-spe
i�
 topo-logi
al tasks must be handled. The examples for the forest-strategy are even �restri
ted�.That is, ea
h of their fa
es is a root. However, there exist fa
es on su
h surfa
es thatare surely none-roots. In order to pre
isely de�ne what makes a fa
e a root, we have tore
onsider the basi
 insertion of a 
urve at two verti
es into a fa
e F . Among the basi
fun
tions modifying the D
el, this is the only one that 
an 
onstru
t a new fa
e; seeFigure 2.9. We know that F models a 
onne
ted set of points on an orientable surfa
ewhose boundaries are des
ribed by the given CCBs of F . Ea
h CCB forms a 
y
le and theintended fa
e is to the left of the oriented edges 
ontained in theses 
y
les. When insertinga 
urve cv at two (non-isolated) verti
es, we are given two prede
essor edges, ea
h lyingon some CCB of F . Remember that the interior of cv must 
ompletely lie in the fa
e F .Following, both CCBs belong the F . Upon this insertion, we remove a one-dimensionalset of points from the fa
e by adding edges for cv. These edges get somehow 
onne
tedin between the prede
essor edges and their su

essors. It results in either merging twoCCBs into one, or we get two individual CCBs. We basi
ally have to deal with 3 di�erent
ombinations: Figure 4.15. Inserting a 
urve at an outer CCB
E1

F

prev1

E2

prev2

cv(a) Curve cv is added at two ver-ti
es. Its prede
essor edges lie onthe same outer CCB. E1

F

prev1

E2

prev2F ′(b) F ′ is split from F , but it doesnot make F lo
ally non-simply
onne
ted. Thus, prev2 still de-�nes F 's outer CCB (with E1),while prev1 (with E2) de�nes thenew fa
e F ′'s outer CCB.Both prede
essor edges belong to the same outer CCB: We 
an assume that theCCBs of F only 
onsist of this single outer CCB. Thus, the fa
e is two-dimensionaland it looks in the neighborhood of cv like an open half-plane; see Figure 4.15 (a).Following, cv separates a two-dimensional set F ′ from F . Even more: F ′ 
annotmake F lo
ally non-simply 
onne
ted. Thus, F ′ models a new fa
e and we obtaintwo individual CCBs. One be
omes the new outer CCB of F ′, while the other staysthe outer CCB of F . That is, F ′ is equitable to F ; see Figure 4.15 (b). We 
all this
ase an outer split.In the nesting graph, the node for F gets repla
ed by two nodes: One for F ′ and onefor the remaining part of F . If F was a 
hild of some F̂ , then F ′ be
omes a 
hild of
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es
F̂ as well; 
onsider, for example, fa
es F2 and F3 in Figure 2.6. More important is:If F was a root, then F ′ be
omes a root fa
e as well.The prede
essor edges belong to di�erent CCBs There exist several 
ombinationsand all have in 
ommon that the insertion of cv adds edges that merges the twoinvolved CCBs into a single CCB. That is, we merge two boundaries of a fa
e. Thiskeeps the fa
e 
onne
ted. If one of the originating CCBs was outer, the merged CCBalso be
omes outer. In 
ase that both were inner, the merged also 
onstitutes aninner CCB. As no new fa
e is 
onstru
ted, these 
ases are simple and of no relevan
efor our further obje
tives. Espe
ially not with respe
t to 
hanges on the nestinggraph upon fa
e 
reations in the tree- or forest-strategy.Both prede
essor edges belong to the same inner CCB: This 
ase requires a moreelaborate study. First of all, observe that the existing inner CCB separates a set ofpoints that is 
onsidered to be a 
hild of F in the nesting graph. This set is eithertwo- or one-dimensional. If it is two-dimensional the insertion is analog to the outersplit: Simply repla
e �outer� with �inner�. The inner CCB gets rerouted, while a newouter CCB appears that separates the split set of points F ′. The di�eren
e to theouter split is that F 
annot be a root, and so F ′.If the insertion of cv 
loses a one-dimensional set to a one-dimensional non-simply
onne
ted loop, three possibilities exist. They are depending on the involved 
urvesand mainly on the surfa
e that embeds the 
urves:(1) F gets split into two disjoint two-dimensional sets, su
h that one makes the otherlo
ally non-simply 
onne
ted(2) F gets split into two disjoint two-dimensional sets, where one does not make theother lo
ally non-simply 
onne
ted(3) the loop of 
urves des
ribes a one-dimensional subset of F , but does not make

F lo
ally non-simply 
onne
tedThe examples in Figures 4.9, 4.11, 4.14, 4.12, and 4.13 show di�erent situation wherewe have to distinguish between 
ase (1) and 
ase (2). Case (3) is more spe
ial, asit only o

urs on surfa
es with two identi�
ations. Below we give further details onthis 
ase; a 
on
rete example is given in Figure 4.25 that is in
luded in �4.6.2, wherewe dis
uss a family of surfa
es whose parameterization 
omprises two identi�
ations.Note that the �inner split� that we des
ribed �rst 
an be seen as a variant of 
ase (2).A
tually, the redu
tion 
an be established by 
ontra
ting the two-dimensional set toa one-dimensional.Summing up, we dete
t that in most 
ases, the required modi�
ations of the D
el bythe basi
 insertion of a 
urve at two verti
es are straightforward � ex
ept for the insertionat two verti
es that 
onne
t a 
ommon inner CCB. For this situation, we have identi�edthree di�erent 
ases, that must be distinguished with the help of the topology-traits 
lass.Thus, we next 
on
entrate on this task.Noti
e that the former inner CCB splits into two CCBs, and we have to de
ide whathappens with them; 
ompare also with the examples presented in this se
tion. There arebasi
ally four options, and we shortly see that the 
hosen strategy has impli
ations onwhi
h option gets laun
hed.
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el on a surfa
e 145(a) Create a new fa
e F ′ and nest it below F , that is, assign one of the resulting CCBs tothe list of inner CCBs of F , while the other be
omes the outer CCB of F ′.(b) Create a new fa
e F ′ and make it equitable to F , that is, one CCB be
omes outer for
F ′, while the other CCB must be added to the list of outer CCBs of F .(
) No new fa
e is 
reated and the two resulting CCBs be
ome inner for F , that is, thereis a one-dimensional �hole� surrounded by two inner CCBs.(d) No new fa
e is 
reated and the two resulting CCBs be
ome outer for F , that is, F isnow surrounded by two outer CCBs.It is obvious that options (a) and (b) must 
orrespond to 
ase (1) and (2), whileoptions (
) and (d) are related to 
ase (3). The topology-traits implements either the tree-or the forest-strategy. The strategy guides the basi
 insertion in the following way: For
ase (1) both strategies 
hose option (a); this is straightforward. In 
ontrast to 
ase (2),where the tree-strategy has again to trigger option (a), while the forest-strategy 
hoosesoption (b). For the spe
ial 
ase (3), option (
) is the 
hoi
e for the tree-strategy, as thisensures that there is always an outermost fa
e not having an outer CCB.32 This fa
e issupposed to 
onstitute the root of the tree. However, there 
an be an innermost fa
e, thatis surrounded by two outer CCBs. As this fa
e would be nested below two other fa
es,we do not en
ourage the tree-strategy for a surfa
e with two identi�
ations. For su
h, were
ommended the forest-strategy that de
ides for option (d) in 
ase (3). This ensures thatfurther splits of F result in fa
es that are equitable, and thus 
an model di�erent roots.Observe that options (a) and (b) still need some more guidan
e from the topology-traits
lass, as seen in the examples. In option (a), it is un
lear whi
h of the two CCBs be
omesouter for a newly 
reated fa
e. This must be de
ided surfa
e-spe
i�
ally. A
tually, it isadvantageous to know for a loop of 
urves atta
hed to a CCB whether it is 
ontra
tible toa point on S. Then, the answer 
an be derived as for bounded planar 
urves:
• Determine the dire
tion of the prede
essor halfedge at the lexi
ographi
al33 smallervertex.
• If it is from left to right34 this halfedge de�nes the outer CCB of the new fa
e.
• Otherwise, the prede
essor halfedge at the other vertex de�nes the outer CCB of thenew fa
e.Following, the open question is only of substantial nature if a loop of 
urves on S 
annotbe 
ontra
ted to a point. By how we parameterize surfa
es, this is only possible if atleast one 
urve of identi�
ation exists; all other surfa
es are homeomorphi
 to a dis
. Forsurfa
es with identi�
ation the problem is more elaborate. The open question in option (b)is: Whi
h of the two CCBs gets assigned to the list of F 's outer CCBs? We shortly givefurther details on realizing these �CCB-tasks� for surfa
es with identi�
ations.Let us re
onsider roots of the nesting graph. If the topology-traits 
lass implements thetree-strategy, we never 
reate a new root: The initial root has no outer CCB, so no outersplit 
an happen. In addition, inner splits do not 
reate new roots, and �nally, option (b)is never triggered, whi
h 
onstitutes the remaining possibility to 
reate a new root.In 
ontrast, the forest-strategy 
reates new roots. Note that the �rst new one mustbe triggered by option (b), as the initial fa
e has no outer CCB. Further roots 
an appearupon outer splits and 
onstru
tions by option (b).32Observe that otherwise the initial fa
e is the 
andidate to get an outer CCB.33Given in parameter spa
e34Again in parameter spa
e
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esDe�nition 4.5 (Root).Tree-strategy: A root is a fa
e without an outer CCB. Note that there is only one.Forest-strategy: A fa
e that makes another fa
e lo
ally non-simply 
onne
ted 
annot bea root. Ea
h other fa
e is a root.This 
on
ludes the dis
ussion on fa
e 
reations and what to do with CCBs. The fullte
hni
al interfa
e is given in �4.5.5. Observe that by this abstra
tion the full 
ontrol onthe assignments of the CCBs is given to the topology-traits 
lass. Thus, it 
onstitutes theentity that de
ides whi
h strategy is implemented for its surfa
e, and following whether thenesting graph is a tree or a forest. This way, we 
onserve the possibility to represent thesubdivision of a surfa
e with di�erent strategies � depending on the user's preferen
es.Remark (Relo
ation of holes). Remember that the split of a fa
e implies some queries:Namely, we have to 
he
k for ea
h isolated vertex and for ea
h inner 
omponent in theoriginal fa
e, whether it should be moved to the newly 
reated split fa
e. This task boilsdown to determine the lexi
ographi
al (always �nite) minimal point of su
h an obje
tand to let the topology-traits 
lass 
he
k whether it is 
ontained in a newly 
onstru
tedfa
e. We have to in
orporate the topology-traits 
lass here, as the spe
ial boundaries, inparti
ular identi�ed ones, do not allow to derive a surfa
e-independent strategy. Note thatthis also has impli
ations on the nesting graph.Remark (Removal). The arrangement also demands for basi
 removal fun
tions. Amongthem, it is the deletion of an edge that demands in some 
ases help from the topology-traits 
lass that provides surfa
e-spe
i�
 answer. The key question for this task is, whetherthe deletion of a pair of twin halfedges, ea
h lying on an outer CCB, 
ause the 
reation ofa new inner 
omponent; otherwise two in
ident fa
es should be merged.We refer to �4.5.5 where we give te
hni
al details and the interfa
e for all requiredtasks of a topology-traits 
lass. That is, we present Cgal's new ArrTopologyTraits_2
on
ept. Con
rete examples of models are then dis
ussed in �4.6. We illustrate details onthe implementation for two families of 
urved surfa
es with identi�
ations. Both modelsexploit a te
hnique that we present next.Realizing a model for surfa
es with identi�
ations We previously identi�ed in a high-level des
ription whi
h tasks a model of the topology-traits 
lass has to provide withrespe
t to fa
es and their CCBs. Several models exists in Cgal, out of whi
h we dis
usstwo 
on
rete examples for surfa
es with identi�
ations in �4.6.1 and �4.6.2. To simplifytheir presentation, we already re
apitulate the tasks and give tools to realize ea
h.The tree-strategy expe
ts the following de
isions:
• How to dete
t 
ase (3)?
• How to de
ide whi
h CCB out of two gets outer for a new fa
e in option (a)?The forest-strategy expe
ts an enhan
ed set of de
isions:
• How to distinguish between 
ase (1), (2), and (3)?
• How to de
ide whi
h CCB out of two gets outer for a new fa
e in option (a)?
• How to de
ide whi
h CCB out of two gets also outer for a new fa
e in option (b)?Note that the tasks for the tree-strategy are a �subset� of the tasks for the forest-strategy.
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el on a surfa
e 147Surfa
e has one 
urve of identi�
ation: Before we really turn to su
h surfa
es, thinkof any loop in a surfa
e that is homeomorphi
 to an (open or 
losed) dis
. As thesurfa
e is simply 
onne
ted su
h a loop is 
ontra
tible to a single point. In general,this does not hold for a loop on a surfa
e with a 
urve of identi�
ation. In parti
ular,when also respe
ting possible 
ontra
tion points. If we remove su
h points, ea
hsurfa
e with a single 
urve of identi�
ation is homeomorphi
 to an open or 
losed
ylinder. In what follows we assume w.l.o.g. that this 
ylinder's parameterization
omprises a left-right identi�
ation.We 
an distinguish two kinds of loops: Loops that are 
ontra
tible to a point, andloops that are not.35 Let us have a 
loser look at properties of su
h loops: Assumethat a loop L does not 
ross the 
urve of identi�
ation. Then, it is 
ontra
tible toa single point, as the image of the parameter spa
e's interior is, by pre
ondition,bije
tive to an open dis
. Moreover, 
onsider a lo
al 
ontinuous transformation of aloop's non-
y
li
 subpath su
h that this part now 
rosses (not tou
hes) the 
urve ofidenti�
ation twi
e. As the surfa
e is orientable a lo
al map exists that supports thistransformation. Vi
e versa, we 
an 
on
lude that every loop that 
rosses a 
urve ofidenti�
ation 2n times is 
ontra
tible to a point, by the �reversed� transformation.Now 
onsider a loop that has exa
tly one 
rossing with the 
urve of identi�
ation.It is easy to see, that there is no 
over of maps homeomorphi
 to open dis
s su
hthat the loop 
an be 
ontra
ted to a single point in their union. Thus, su
h a loop isnon-
ontra
tible. By the same argument as in the even 
ase, we 
an lo
ally transforma non-
y
li
 subpath of the loop to 
ross a 
urve of identi�
ation 2n + 1-times. Still,it is non-
ontra
tible.36De�nition 4.6 (Perimetri
 loop, CCB, and fa
e). Let S be a parametri
 surfa
ewith an identi�
ation ex
luding possible 
ontra
tion points, and L be a loop on it.We say that L is perimetri
 if it is non-
ontra
tible to a point. This property isequivalent to L having an odd number of 
rossing with the 
urve of identi�
ationon S. A CCB is 
alled perimetri
, if the atta
hed 
urves form a perimetri
 loop on S.We 
all a fa
e F on S perimetri
 if it has a perimetri
 CCB.Example 4.7 (Perimetri
 loop). Examples of perimetri
 loops are 
urves (cv1, cva) inFigure 4.11 (b), 
urve (cv2) in Figure 4.11 (
) (and ea
h also in Figure 4.14) 
urve
(cv1) in Figure 4.12 (b), 
urve (cv2) in Figure 4.12 (
) (and ea
h also in Figure 4.13),
urves (cva, cv1, cvb) in Figure 4.25 (a), and 
urves (cvc, cv2, cvd) in Figure 4.25 (b).De�nition 4.8 (Dire
ted loop). A dire
ted loop −→L is a sorted sequen
e of 
urves
(cv0, . . . , cvk) that are traversed in a spe
i�ed 
ommon dire
tion: Let −−→max(cvi) be themaximal 
urve-end of cvi in the order of the traversal, and let −−→min(cvi) be cvi's 
orre-sponding minimal 
urve-end. It holds ∀0 ≤ i ≤ k : −−→max(cvi) =

−−→
min(cv(i+1) mod k) =:

pi. We 
all pi th i-the 
onne
tion point.35The two sets are identi
al to the homotopy groups of the 
ylinder.36Tou
hing interse
tions and 
rossings in the 
orner 
an be �removed� by symboli
ally perturbing the
urve of identi�
ation: That is, if moving the 
urve of identi�
ation, a tou
hing interse
ting either vanishesor 
rosses it twi
e in opposite dire
tions. Following we 
an ignore it. Crossings in the 
orners 
an be handledby moving them on ∂Φ in 
lo
kwise dire
tion symboli
ally by a tiny amount. Note that this is alreadyre�e
ted by assigning a 
urve-end uniquely to one of the four boundary sides.
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esWe 
onsider two sour
es of dire
ted loops:
• The insertion of a 
urve cv at two verti
es that short-
uts an inner CCB withgiven prede
essor edges prev1 and prev2 de�nes two dire
ted loops −→L prev1 =

(cv1
0 , . . . , cv1

k1−1, cv) and −→L prev2 = (cv2
0 , . . . , cv

2
k2−1, cv). The 
urves cv1

i arethose atta
hed to the edge-range [prev2->next(), prev1] (using ->next()). The
urves cv2
i are those atta
hed to the edge-range [prev1->next(), prev2] (using->next()). Note that the two dire
ted loops traverse cv in opposite dire
tions.

• A CCB de�ned by an edge E spe
i�es a dire
ted loop of 
urves −→L E. Thedire
tion of E determines the dire
tion of the 
urves' traversal.An important property is that no interior of a 
urve being part of a dire
ted loopinterse
ts with the 
urve of identi�
ation. The reason is, that Make_x_monotone_2splits 
urves at su
h interse
tion. Following, these interse
tions only take pla
e atthe 
onne
tion points of a dire
ted loop.Figure 4.16. Insertions on a surfa
e with an identi�
ation
cv

E1

E2F ′

prev2

prev1

F

(a) Case (1): Adding
cv splits F ′ from Fby two non-perimetri
loops.

cv
F ′

F

E2

E1

prev1

prev2(b) Case (2): Adding
cv splits F ′ from F bytwo perimetri
 loops.

F
prev1

F ′

E2

E1

prev2

cv

(
) Case (2): Adding
cv splits F ′ from F bya perimetri
 and a non-perimetri
 loop.We next show that dire
ted loops 
onstitute a de
isive tool whi
h help to distinguishbetween 
ase (1) and 
ase (2). Consider the dire
ted loops −→L prev1 and −→L prev2 emerg-ing upon the insertion of cv on the �
ylinder� (i. e., S without possible 
ontra
tionpoints). We have two possibilities:

• Ea
h loop is 
ontra
tible to a point, that is, non-perimetri
. Then, they de-�ne a two-dimensional subfa
e F ′ from F that makes F non-simply 
onne
ted.Following, we are in 
ase (1); see Figure 4.16 (a).
• At least one of the loops is perimetri
. If exa
tly one is perimetri
, the otherseparates a subset F ′ that does not make F lo
ally non-simply 
onne
ted. Thissituation is similar to an inner split; see Figure 4.16 (
). However, we do notknow whi
h one is perimetri
, and in addition, both 
an be perimetri
. This
ase also results in a separation of some subset F ′. But this time, it is along thewhole loop; an example is given in Figure 4.16 (b). However, both situationsresult in 
ase (2).
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el on a surfa
e 149De�nition 4.9 (Sign of a dire
ted loop). Let −→L = (cv0, . . . , cvk) be a dire
ted loopwith 
onne
tion points pi, and cvΦ
i the pre-image of cvi in the parameter spa
e Φof S. Remember that we assume ∂rΦ and ∂lΦ to be identi�ed. The other 
ase issymmetri
.The sign of −→L at pi is given by

sign(
−→
L , i) :=






+1 if −−→max(cvΦ
i ) ∈ ∂rΦ ∧

−−→
min(cvΦ

(i+1) mod k) ∈ ∂lΦ

−1 if −−→max(cvΦ
i ) ∈ ∂lΦ ∧

−−→
min(cvΦ

(i+1) mod k) ∈ ∂rΦ

0 in all other 
ases 


More intuitively, the sign of a dire
ted loop at 
onne
tion point pi is +1 if thepre-image of the loop approa
hes the right boundary of the parameter spa
e, 
rossesthe left-right identi�
ation, and 
ontinuous emanating from the left boundary; theanalogy is similar for the negative 
ase.37The sign of a dire
ted loop is simply the sum of the signs:
sign(

−→
L ) =

k∑

i=0

sign(
−→
L , i)Observe that a loop with sign zero 
orresponds to an even number of 
rossing withthe identi�
ation, that is, this loop is non-perimetri
. In 
ontrast, a non-zero signimplies its perimetri
y. By how we de�ned the sign of a dire
ted loop, we also obtainsome geometri
 interpretation with respe
t to the 
orners of the parameter spa
e:De�nition 4.10 (Orientation). Let −→L = (cv0, . . . , cvk) be a dire
ted loop with 
on-ne
tion points pi and sign(

−→
L ) 6= 0. That is, −→L is perimetri
. Denote with cvΦ

i thepre-image of cvi in the parameter spa
e Φ of S. Let w be a 
orner of the parameterspa
e Φ.We say that −→L turns to w if there is a cvi with the following 
onditions:
• pΦ

i := −−→max(cvΦ
i ) ∈ ∂Φ.

• When traversing ∂Φ in 
ounter-
lo
kwise order starting in pΦ
i we meet w beforehitting any other pΦ

j .Otherwise, we say that −→L abandons from w.Combining De�nitions 4.9 and 4.10 we get the following:Corollary 4.11. A dire
ted loop −→L with sign(
−→
L ) = 1 turns to wmax = (umax, vmax)and abandons from wmin = (umin, vmin). If sign(
−→
L ) = −1, then it turns to wmin andabandons from wmax.The 
orollary's proof is by 
onstru
ting the di�erent 
ases. For an example, seeFigure 4.17 (
): L2 in the spe
i�ed dire
tion has positive sign and thus turns to wmax37In 
ase that some pΦ

i is identi
al to a 
orner of the parameter spa
e, we again 
onsider a 
onsistentsymboli
 perturbation in 
lo
kwise dire
tion along ∂Φ.
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esand abandons from wmin. Following, the area on S to the left of the dire
ted loopwith positive sign must 
omprise ϕ(wmax), while ϕ(wmin) is de�nitely not 
ontainedin this area. The negative 
ase is analog. The reason is that a perimetri
 loop on a
ylinder is separating, that is, it splits the �
ylinder� S into two disjoint sets.We are left with the assignments of CCBs. If both −→L prev1 and −→L prev1 are non-perimetri
, the answer whi
h prede
essor edge de�nes the outer CCB 
an be deter-mined by the dire
tion of the edge whose target is the leftmost 
urve-end of cv. Inthe example of Figure 4.16 (a) prev1 is this edge and it is dire
ted from left to right.Thus, it de�nes the outer CCB of the new fa
e F ′.In the other 
ases, we rely on sprev1 := sign(
−→
L prev1) and sprev2 := sign(

−→
L prev2). Twopossibilities exist for option (a); see also Figure 4.16 (b) and (
).

• If sprev1 = 0, then prev1 de�nes the outer CCB of the new F ′. If sprev2 = 0,then prev2 de�nes the outer CCB of the new F ′.
• Otherwise sprev1 6= 0 and sprev2 6= 0. In addition, it must hold that sprev1 6=

sprev2 . Thus, we only 
onsider sprev1 . For the tree-strategy, we have to ensurethat the nesting tree with respe
t to the referen
e point is ensured. The CCBde�ned by some edge prev1 is outer for the new fa
e F ′ if −→L prev1 abandons fromthe referen
e point. We 
an sensibly assume w.l.o.g. that the referen
e point isidenti
al to wmax. Following, prev1 de�nes the outer CCB of F ′ if sprev1 = −1.In some 
ases, we may want to 
hoose wmin as referen
e point. If so, prev1de�nes the outer CCB of F ′ if sprev1 = 1. For the forest-strategy, this testis only involved if F originally has no outer CCB. But as we make F and F ′equitable on S, we 
an let any of prev1 or prev2 be de�ning for the outer CCBof F ′.If we aim for the forest-strategy and F originally has some perimetri
 outer CCBde�ned by some edge E0, then F ′ is split from F in the neighborhood of this CCB.Thus, E0 de�nes the �rst outer CCB of F ′. However, as F ′ is separated equitablefrom F it demands for a se
ond one. It will be one of the edges E1 (su

eeding prev2)or E2 (su

eeding prev1) we added for cv. Note that E1 and E2 de�ne outer CCBsby the forest-strategy. Both CCBs are perimetri
 and it holds 0 6= sE1 := sign(
−→
L E1),

0 6= sE2 := sign(
−→
L E2), and also sE1 6= sE2 . The test whi
h of the two forms thedesired se
ond CCB 
an also be realized in terms of these signs:

• We know that 0 6= sE0 := sign(
−→
L E0). By Corollary 4.11 and its impli
ations,the outer CCB de�ned by E1 also points into F ′ if sE1 6= sE0 . Similarly, theouter CCB de�ned by E2 belongs to F ′ if sE2 6= sE0 . Note that exa
tly one of

sE1 or sE2 is expe
ted to ful�ll this property.Surfa
e has two 
urves of identi�
ation: We are left with the 
ase that the para-metri
 surfa
e S 
omprises two 
urves of identi�
ation, that is, there is a left-rightidenti�
ation and a bottom-top identi�
ation. Su
h a surfa
e is homeomorphi
 to atorus; as example, we dis
uss ring Dupin 
y
lides in �4.6.2. We basi
ally want to ap-ply the same ideas as for a surfa
e with a single 
urve of identi�
ation. Fortunately,this 
ase 
an be simulated: Ideally, one would a
tually split S along some 
urve ofidenti�
ation. This would be the simple solution. However, this �pre-pro
essing�
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Figure 4.17. Removing a non-
ontra
tible loop L1 from a surfa
e with two identi�
a-tions results in a subsurfa
e S\L1 that 
an be parameterized with a single identi�
ation.See red dashed lines in the �re
ombined� views of parameter spa
e (on ea
h right side).
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(a) L1 
rosses left-right identi�
a-tion on
e
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(b) L1 
rosses left-right identi�
a-tion on
e and bottom-top identi�-
ation twi
e
LΦ

1

LΦ
2

wmax

wmin

Φ

(
) L1 
rosses left-right identi�
a-tion on
e and bottom-top identi�-
ation on
e. The bla
k loop L2 is aperimetri
 loop in S \L1, and thusalso in S. If traversed in the spe
-i�ed dire
tion is has positive signand thus turns to wmax and aban-dons from wmin. Similar loops ex-ists in Figure (a) and (b).

LΦ
1

LΦ
2

Φ

Φ′

Φ \ Φ′

(d) Counter-example: L1 
rossesleft-right identi�
ation twi
e andbottom-top identi�
ation twi
e.This splits Φ (and so S) into twodisjoint sets of points, in 
ontrastto Figures (a-
). In addition, ea
hloop in ϕS(Φ′) is 
ontra
tible to apoint (e. g., L2)
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ontrasts with the on-line strategy of the visitor. Note that due to double identi�-
ation any �rst non-
ontra
tible loop L1 does not split the surfa
e into two disjoint
omponents. In 
ontrast, the surfa
e �exists� to both sides of the loop, that is, S \L1is homeomorphi
 to an open 
ylinder. We refer to Figure 4.17 for some examples ofsu
h loops in parameter spa
e. This property of L1 is also the reason why we have todeal with 
ase (3). A
tually, the dete
tion of this 
ase is still undetermined. Noti
ethat a loop is non-
ontra
tible if it 
rosses a 
urve of identi�
ation an odd numberof times. That is, to de
ide (3) upon the insertion of a 
urve, we only have to test,whether it triggers the �rst loop that 
rosses some identi�
ation an odd number oftimes. Depending on the strategy we 
an then sele
t option (
) or option (d). Seeagain Figure 4.17 (a-
): The left-right identi�
ation is 
rossed an odd number oftimes, while the number of bottom-top 
rossings varies. The parameter spa
es 
anbe re
ombined su
h that a single identi�
ation remains, namely the one that hasbeen 
rossed by L1 an odd number of times, and thus has been sele
ted. If bothidenti�
ations are 
rossed by L1 an odd number of times, ea
h 
an be 
hosen.In fa
t, as L1 is formed by 
urves embedded on S no other loop on the surfa
e 
an
ross this �
urve of identi�
ation� L1. Thus, everything we previously presented fora surfa
e with a single 
urve of identi�
ation now holds for S \L1. We only have torestri
t signs of paths with respe
t to the one identi�
ation of S (out of two!) thatis sele
ted by L1.4.5. The ArrTopologyTraits_2 
on
eptIn the previous se
tion we 
ontoured whi
h 
hanges the Arrangement_2 pa
kage has un-dergone during its transition to the Arrangement_on_surfa
e_2 pa
kage, and we identi�edtasks expe
ted from an instan
e of the TopologyTraits_2 parameter. In this se
tion wetight the spe
i�
ations and exa
tly de�ne the ArrTopologyTraits_2 
on
ept. In our pre-sentation, we group tasks serving related (or similar) purposes. Although te
hni
al, weomit details in our presentation that are usually expe
ted by an a
tual referen
e manual.In �4.6 we shortly review available models for di�erent surfa
es, and deep the des
riptionof implementation details for two sele
ted families of surfa
es.4.5.1. Nested typesWe expe
t that ea
h model of the ArrTopologyTraits_2 
on
ept is parameterized by asuitable geometri
-traits 
lass, so ea
h also knows the proper geometri
 type de�nitions.As already noti
ed, the TopologyTraits_2 parameter repla
es the D
el parameter, so �rstof all, a model is expe
ted to provide the following type.
• D
el � the D
el-model that is used to represent the two-dimensional subdivision.It must be a model of Cgal's ArrangementD
el 
on
ept (see [WFZH07a℄). We hereonly remember the non-standard extension for it, namely that a fa
e 
an have no,one, or several inner and outer CCBs (and isolated verti
es). We also remark thepossibility to de�ne a D
el type that allows to extend its re
ords by additional data;see also �2.4.3.
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ept 153As mentioned, visitors 
ombined with Cgal's generi
 Sweep_line_2 
lass-template en-able to 
ompute various output. As we are aiming to support a basi
 subset, ea
h modelof the ArrTopologyTraits_2 
on
ept has at least to provide the following visitors:
• Sweep_line_
onstru
tion_visitor� this visitor is expe
ted to 
onstru
t a new ar-rangement from a set of input 
urves (or points). It is used by the global CGAL::insertfun
tion for aggregated insertion of 
urves into an arrangement, if it is empty. The
on
ept also expe
ts the Sweep_line_non_interse
ting_
onstru
tion_visitor type,whi
h either implements a spe
ialized version for non-interse
ting 
urves, or it justrede�nes the Sweep_line_
onstru
tion_visitor, knowing that its Interse
t_2 fun
-tion obje
t is never queried.
• Sweep_line_insertion_visitor�using this visitor while sweeping over an existingarrangement inserts a set of new input 
urves into it. The Arrangement_on_surfa
e_2pa
kages dispat
hes this visitor, when 
alling the global CGAL::insert fun
tion whenaggregately inserting a set of 
urves in an arrangement whi
h is not empty. Likefor the 
onstru
tion, the Sweep_line_non_interse
ting_insertion_visitor type isalso expe
ted. Again, either a spe
ialized implementation takes advantages of thenon-interse
tion property, or the model rede�nes the Sweep_line_insertion_visitortype knowing that Interse
t_2 is never 
alled.
• template <
lass ArrA, 
lass ArrB, 
lass OverlayTraits>Sweep_line_overlay_visitor � this visitor is 
ombined with the sweep line algo-rithm in the global CGAL::overlay fun
tion with the goal to 
ompute the overlay oftwo arrangements (of di�erent types �A� and �B�, but with same geometry of 
urvesand same topology of the underlying surfa
e). The re
ombination of atta
hed data totwo D
el-re
ords into one is pro
essed a

ording to the given OverlayTraits type.
• template< 
lass OutputIterator >Sweep_line_bat
hed_point_lo
ation_visitor � 
ombining this visitor with thesweep line algorithm enables to answer a bat
hed point-lo
alization, that is, to lo-
alize a set of points.In order to simplify the development of visitors, there exists for ea
h task a 
lass-template that 
an be spe
ialized using small helper stru
tures respe
ting the surfa
e'stopology. The template implements the surfa
e-independent 
ode for a 
ertain obje
tive(
onstru
ting, inserting, overlaying, et 
etera) while the helper ��lls in� the missing surfa
e-spe
i�
 details. Of 
ourse, it is allowed, though not en
ouraged, to develop ea
h visitorfrom s
rat
h.As for the sweep line algorithm, Cgal's zone algorithm 
an also be 
ombined with avisitor instan
e in order to 
ompute visitor-spe
i�
 output during the zone 
omputation.For arrangements on surfa
es, an ArrTopologyTraits_2 model is expe
ted to support theinsertion of 
urves to an arrangement with the following visitor.
• Zone_insertion_visitor � the insertion of a single (weakly) x-monotone 
urveinto an existing, not ne
essarily empty, arrangement with the global CGAL::insertfun
tion is internally performed by 
ombining this visitor with the zone algorithm.
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esBesides this minimal set of visitors, ea
h model 
an also provide visitors that enableother appli
ations. For example, there exists a 
lass-template for a visitor that 
omputesthe verti
al de
omposition of an arrangement while the sweep pro
esses. As for the others,we only have to provide the surfa
e-spe
i�
 helper 
lass. Remember that the zone algorithmexpe
ts the possibility to lo
ate points (or 
urve-ends). In order to support this, thefollowing type is expe
ted.
• Default_point_lo
ation_strategy_2 � this type must be a model of Cgal'sArrangementPointLo
ation 
on
ept. It supports point-lo
ation queries in an arrange-ment. As not all point-lo
ation strategies work on all surfa
es, a model of theArrTopologyTraits_2 
on
ept has to de�ne this type whi
h spe
i�es the default ap-proa
h for point lo
ations if no other strategy is provided by the user (e. g., for anin
remental insertion).4.5.2. The boundary of the parameter spa
eIn addition to the nested types, a model of Cgal's ArrTopologyTraits_2 
on
ept also hasto provide some member fun
tions. We start with very basi
 ones. The �rst providesinformation about what happens on the boundary of the parameter spa
e.
• Arr_boundary_type boundary_type(Arr_parameter_spa
e ps)returns the boundary type for a given lo
ation on the boundary of the parameterspa
e: For given ARR_LEFT_BOUNDARY, ARR_RIGHT_BOUNDARY, ARR_BOTTOM_BOUNDARY, orARR_TOP_BOUNDARY it returns a value of the following enumeration.enum Arr_boundary_type{ ARR_BORDER = 0,ARR_UNBOUNDED,ARR_CONTRACTION,ARR_IDENTIFICATION};4.5.3. Members for the D
elThe next members are related to the D
el.
• D
el& d
el()returns a referen
e to the internal D
el representation. This ensures referentialmodi�
ations of the D
el by the Arrangement_on_surfa
e_2 
lass-template for non-boundary 
ases.
• void init_d
el()initialize an empty D
el stru
ture for the spe
i�
 topology of the surfa
e.
• bool is_empty_d
el()
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ept 155returns true if the arrangement is empty, and false otherwise. An empty arrange-ment is attained, if no 
urve or point indu
es a one- or zero-dimensional 
ell on S.In parti
ular, it returns true when 
alled right after init_d
el().Remember that we allow �
titious D
el-re
ords. Su
h re
ords do not store geometri
information, but some topologies rely on them to model 
ertain boundaries as D
el. Onthe other side, a user of an instantiated Arrangement_on_surfa
e_2 
lass-template does notwant to 
are about su
h arti�
ial obje
ts. Thus, the arrangement in 
ooperation with thetopology-traits 
lass �lters unwanted re
ords.De�nition 4.12 (Valid and 
on
rete D
el-re
ords).
• A fa
e is 
alled valid if it represents an open two-dimensional subset of points on S.See Figure 4.9 (a): Fi are valid for the unbounded plane, while F is invalid.
• A halfedge is 
alled valid if it is in
ident to a valid fa
e and represents an open one-dimensional subset of points on S. The solid halfedges in Figure 4.9 (a) are valid,while the dashed ones are invalid.
• A vertex is 
alled valid if it is in
ident to a valid halfedge. The verti
es Vi inFigure 4.9 (a) are valid, while Vbl, Vtl, Vbr, and Vtr are invalid.
• A vertex is 
alled 
on
rete if is valid and has a �nite point atta
hed. All verti
esex
ept Vi and Vbl, Vtl, Vbr, and Vtr in Figure 4.9 (a) are 
on
rete (i. e., the red ones).To the user, the arrangement 
lass �lters non-
on
rete verti
es, and non-valid halfedgesand fa
es. For this purpose the following members are expe
ted. There are other �ltersthat also return valid verti
es. These are required, for example, in 
ase one wants to runa graph algorithm on an arrangement.
• bool is_valid_fa
e(
onst fa
e *f)
he
ks whether a given fa
e is valid.
• Size number_of_valid_fa
es()returns the number of valid fa
es stored in the D
el. Return type is Size whi
h isa nested type in D
el.
• bool is_valid_halfedge(
onst Halfedge *he)
he
ks whether a given halfedge is valid.
• Size number_of_valid_halfedges()returns the number of valid verti
es stored in the D
el.
• bool is_valid_vertex(
onst Vertex *v)
he
ks whether a given vertex is valid.
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• Size number_of_valid_verti
es()returns the number of valid verti
es stored in the D
el.
• bool is_
on
rete_vertex(
onst Vertex *v)
he
ks whether a given vertex is 
on
rete.
• Size number_of_
on
rete_verti
es()returns the number of 
on
rete verti
es stored in the D
el.4.5.4. Verti
es and edges on the boundaryIn �4.4 we already dete
ted that the arrangement 
lass is able to handle D
el-re
ordsin the interior of the parameter spa
e on its own, while for D
el-re
ords related to theboundary of the spa
e it relies on external and surfa
e-spe
i�
 query results. For this reasonit intera
ts with the following members of a model of the ArrTopologyTraits_2 
on
ept.
• CGAL::Obje
t pla
e_boundary_vertex(Fa
e *f,X_monotone_
urve_2 x
v,Arr_
urve_end 
e,Arr_parameter_spa
e psx,Arr_parameter_spa
e psy)We are sear
hing for the position of a vertex to be 
onstru
ted that represents thegiven 
urve-end. The lo
ation of the 
urve's end is on the boundary, that is, exa
tlyone of psx or psy is equal to ARR_INTERIOR. The returned obje
t may either be empty,it may wrap a �
titious edge that is going to split for the vertex, or it 
omprises ofa vertex to whi
h to 
urve's halfedges will be 
onne
ted.
• void notify_on_boundary_vertex_
reation(Vertex *v,X_monotone_
urve_2 x
v,Arr_
urve_end 
e,Arr_parameter_spa
e psx,Arr_parameter_spa
e psy)This member is 
alled to notify the instan
e of the ArrTopologyTraits_2 model bythe arrangement on the 
reation of a new vertex on the boundary. This noti�
ationhelps to keep the internal stru
ture of the model up to date, for example, to maintaina sorted list of verti
es for an identi�
ation. On the other side, the arrangement 
lassis still able to send noti�
ations to observers upon stru
tural 
hanges of the D
el.
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• void lo
ate_
urve_end(X_monotone_
urve_2 x
v,Arr_
urve_end 
e,Arr_parameter_spa
e psx,Arr_parameter_spa
e psy)While pla
e_boundary_vertex is 
alled when information about the fa
e 
ontainingthe 
urve-end is available (e. g., during the sweep), this member lo
ates the D
elfeature that 
ontains a given 
urve-end, whi
h must relate to the boundary of theparameter spa
e. It 
an either be an existing vertex, an existing edge, or an existingfa
e. The method forms a subtask demanded by a point lo
ation operation.
• Halfedge* lo
ate_around_boundary_vertex(Vertex *v,X_monotone_
urve_2 x
v,Arr_
urve_end 
e,Arr_parameter_spa
e psx,Arr_parameter_spa
e psy)If a 
urve-end is dete
ted to be in
ident to a vertex on the boundary, this fun
tionlo
ates the prede
essor halfedge in the 
ir
ular order of halfedges around the vertex.The lo
ation on the boundary is en
oded with psx and psy as for the other twolo
alizations members. If the vertex is isolated, it returns NULL.
• Halfedge* split_fi
titious_edge(Halfedge *he,Vertex *v)On the other hand, the lo
alization of a 
urve-end on the boundary might return a�
titious edge. This member performs the split of the edge at the vertex that repre-sent the new 
urve-end. It returns one of the newly in
ident halfedges to the vertex.Note that the topology-traits 
lass implements this fun
tion, as it is a modi�
ationof the D
el representing the boundary of the parameter spa
e.
• bool are_equal(Vertex *v,X_monotone_
urve_2 x
v,Arr_
urve_end 
e,Arr_parameter_spa
e psx,Arr_parameter_spa
e psy)Che
ks if a given vertex on the boundary is asso
iated with the given 
urve-end onthe boundary. Is used, for example, to distinguish whether the minimal or maximalend of a 
urve is in
ident to the vertex.The 
reation of boundary verti
es is not the sole purpose of the traits. If deleting a
urve related to the boundary (or an isolated vertex on it) the D
el also requires surfa
e-spe
i�
 updates that are supported by the following two member fun
tions.
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• bool is_redundant(
onst Vertex *v)Determines whether the given vertex on the boundary has be
ome redundant. If so,the arrangement triggers its deletion.
• Halfedge* erase_redundant_vertex(
onst Vertex *v)Erases the given redundant vertex (e. g., by merging �
titious edges). The fun
tionis not expe
ted to free the vertex. It returns one of the merged twins of halfedges.4.5.5. Fa
es and their boundariesFor the last set of members, we turn towards the designated fa
es of the arrangement. Westart with two simple predi
ates.
• bool is_unbounded(
onst Fa
e *f)De
ides whether a given fa
e is unbounded.
• bool is_in_fa
e(
onst Fa
e *f,Point_2 p,
onst Vertex *v)Determines whether the given point lies in the interior of the given fa
e, ignoring inner
omponents and isolated verti
es 
ontained in it. If the point is already asso
iatedwith a vertex, then v is not null and �nite.Finally, ea
h model of the ArrTopologyTraits_2 
on
ept must provide information re-quired to 
orre
tly 
onstru
t or delete fa
es in syn
 with proper update of relevant CCBs.
• std::pair<bool, bool> fa
e_split_after_edge_insertion(
onst Halfedge *prev1,
onst Halfedge *prev2,X_monotone_
urve_2 x
v)This member is queried when the 
urve x
v is going to be inserted at the targetverti
es of prev1 and prev2. Both determine the position where to insert the newpair of halfedges in the 
ir
ular order of halfedges around the verti
es. We also knowthat both prede
essor halfedges belong to the same inner CCB. The fun
tion hasto 
ompute what happens when the insert is a

omplished. To do so, it returns apair of boolean values. The �rst �ag indi
ates whether the insertion will 
ause thefa
e to split. If yes, the se
ond determines whether the split fa
e will form a newinner 
omponent nested below the original fa
e. Otherwise, the split fa
e be
omes
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ept 159equitable to the originating one. If the �rst returns false, the se
ond determines,whether the two CCBs emerging from a non-simply 
onne
ted loop on S should betransformed into two outer CCBs (false) or two inner CCBs (true).38 We remarkthat this fun
tion implements the topology-traits 
lass' de
ision whi
h out of the fouroptions (a), (b), (
), or (d) presented in �4.4.3 (on page 138) should be triggered.
• bool hole_
reation_after_edge_removal(
onst Halfedge *he)The fun
tion somehow 
onstitutes the 
omplement of the previous one. It determineswhether the removal of a given halfedge (and, of 
ourse, its twin) will 
ause the
reation of a hole. The fun
tion is only queried if both he and its twin lie on an outerCCB, and both do not represent the tip of an antenna.The remaining two members are related to assignments of the CCBs:39
• bool is_on_new_fa
e_boundary(
onst Halfedge *prev1,
onst Halfedge *prev2,X_monotone_
urve_2 x
v)The situation is similar as for fa
e_split_after_edge_insertion, that is, the twohalfedges are prede
essor edges of the same inner CCB that is perimetri
. They areused for the insertion of x
v whi
h separates a new fa
e. It must be de
ided whetherprev1 will be in
ident to this new fa
e or not. That is, it de
ides whether prev1 isgoing to de�ne the outer CCB of the new fa
e. The split fa
e 
an be perimetri
 ornot. The originating one stays perimetri
 in any 
ase.Consider as an example the 
losing of the northern tropi
 on a sphere in Fig-ure 4.11 (b), where E′

1,prev is �nally inside the new fa
e F ′
S and thus E′

1. Similarsituations are given in Figure 4.11 (
), Figure 4.12 (b) and (
) and Figure 4.16 (b).In all these example the split fa
e is perimetri
. Figure 4.16 (
) gives an input wherethe split is non-perimetri
.
• bool boundaries_of_same_fa
e(
onst Halfedge *he1,
onst Halfedge *he2)The situation is as follows: a perimetri
 fa
e has just split into two perimetri
 andequitable fa
es. That is, no new inner CCB is 
onstru
ted. Only two outer CCBsappear. The halfedge he1 de�nes an outer CCB of the original fa
e, while he2 is anouter CCB that just emerged along one of the two sides of the perimetri
 loop thattriggered the split. It must be determined, whether he2 points into the same fa
eas he1. The a
tual question is whether the two outer CCBs have di�erent dire
tionswith respe
t to the fa
e de�ned by he1.38This se
ond 
ase, it not yet realized in Cgal's implementation.39The 
urrent 
on
epts expe
ts is_on_new_perimetri
_fa
e_boundary(). However, its a
tual se-manti
s is not 
overed by this. Thus, for this presentation we 
hose to give a less restri
ted name.
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esFor an example see Figure 4.13 (
): It must be determined whether the CCB de�nedby E2 or the one de�ned by E′
2 (both just emerged) belongs to the same fa
e as E′

1does, namely to the new split fa
e F2. Similar situations are given in Figure 4.14 (b)and (
), and Figure 4.25 (b).Let us give some �nal remarks.Remarks.
• Remember that D
el-re
ords for obje
ts in the interior of the parameter spa
e are
reated and maintained by the arrangement 
lass itself, while the topology-traitsmodi�es those related to the boundary of the parameter spa
e. This has impli-
ations on observers atta
hed to an arrangement. Remember that an observer re-
eives noti�
ations about the arrangement's stru
tural 
hanges. Our 
hosen designstill allows the arrangement to send su
h noti�
ations, even if D
el-re
ords relatedto the boundary of the parameter spa
e are 
onstru
ted or deleted. For example,it sends before_split_fi
titious_edge() prior to 
alling split_fi
titious_edge(),and after_split_fi
titious_edge() after 
alling this topology-traits method. Otherexamples are the 
reation and deletion of D
el-verti
es on the boundary.
• Models of the ArrTopologyTraits_2 
on
ept 
an provide spe
ial surfa
e-spe
i�
 mem-ber fun
tions. An example is the a

ess to a sorted sequen
e of D
el-verti
es alongidenti�ed boundary sides.We have to admit, that the 
on
ept, although quite stable, is still under development.The presented details 
orrespond to its status at the date of thesis's submission. Further
hanges that improve or extend the interfa
e are 
on
eivable. In parti
ular, it must be
he
ked what is missing to �nally support isolated verti
es on and 
urves fully 
ontainedin the boundary of the parameter spa
e. In addition, the interfa
e with respe
t to CCBsis serving all 
ases; however, it seems 
ompli
ated. We hope to be able to simplify it.However, the design is su

essful: This fa
t is emphasized by the variety of existing models.In �4.6, we �rst list available 
lasses, followed by a detailed dis
ussion of two models thatsupport important non-linear surfa
es.4.6. ExamplesCombining the di�erent possibilities for the four boundaries of the parameter spa
e resultsin a large list of feasible (and also some infeasible) topology-traits 
lasses; see Table 4.1.The 
ombinations representing basi
 families of surfa
es are already implemented, that is,Cgal provides geometri
-traits and topology-traits 
lasses for them:For the plane, we distinguish one topology-traits 
lass for bounded 
urves, and onefor unbounded 
urves that implements the impli
it re
tangle of �
titious edges aroundthe s
ene; see �4.4 and [WFZH07a℄. A set of geometri
-traits 
lasses for various kindsof 
urves in the plane exists. We exemplary mention 
lasses handling linear obje
ts,
ir
les, 
oni
s, rational 
urves, and Bézier 
urves; see also �2.4.3. All of them ful�llUnboundedBoundaryTraits 
on
ept at all four sides, that is, ea
h supports 
urves that ex-tend to in�nity in any dire
tion. The same holds for Cgal's the generi
 model namedCurved_kernel_via_analysis_2 that we presented in �2.4.4. It is used in [EK08a℄ to 
om-pute arrangements of unbounded algebrai
 
urves of any degree by instantiating the 
lass-



4.6. Examples 161template with a suited bivariate algebrai
 kernel. The authors of the arti
le provide Cgal'sadequate Algebrai
_
urve_kernel_2.As �rst non-planar surfa
e, Cgal provides a topology-traits 
lass for the sphere, whi
h
ontra
ts bottom and top boundary and identi�es left and right boundary. A geometri
-traits 
lass for geodesi
 ar
s on the unit-sphere is available. A geodesi
 ar
 is the shortest
onne
tion between two points on a surfa
e. Exa
t rational arithmeti
 su�
es to provideall relevant geometry-traits operations. The authors of [FHS08℄ give details on the traits
lasses, and also show various appli
ations. An example is the overlay of maps on amodel of the earth, or to 
ompute a Voronoi diagram of points on the sphere using Cgal'sgeneri
 divide-and-
onquer algorithm for lower envelopes. Another appli
ation is the exa
t
omputation of Minkowski sums of 
onvex polyhedra using Gaussian maps; see [BFH+07℄.There is also a video [FSH08℄. Sébastian Loriot from INRIA (Sophia-Antipolis) is workingon a geometri
-traits 
lass that deals with arbitrary 
ir
les on a sphere. He adapts previouswork [CL07℄ with respe
t to the design of Cgal's Arrangement_on_surfa
e_2 pa
kage. Itis worth to mention, that he is possible to use the existing topology-traits 
lass for thesphere. We do not dis
uss details on these workings.In 
ontrast, at the end of this 
hapter, we now fo
us on two sophisti
ated examples ofsurfa
es, namely ellipti
 quadri
s and ring Dupin 
y
lides. The later 
onstitute a gener-alization of tori. We present details on both surfa
e-spe
i�
 topology-traits models whosedis
ussion 
omprises interesting aspe
ts to 
onsider with respe
t to the o

urring iden-ti�
ations. For ea
h surfa
e we provide a jui
y geometry-traits 
lass. The remarkablefa
t for both geometri
-traits 
lasses is, that they redu
e the geometry on the surfa
e toa planar geometry. More detailed, ea
h geometri
-traits 
lass inherits from the planarCurved_kernel_via_analysis_2, and augments (modi�es) it 
ase-spe
i�
ally in order tomodel the appropriate �CombinedBoundaryTraits� 
on
ept required for the surfa
e.For ea
h of the two examples in �4.6.1 and �4.6.2 we �rst give a short introdu
tion,followed by details on the geometry- and topology-traits 
lasses, and 
on
lude with results.4.6.1. On a quadri
 Figure 4.18. Ellipti
 quadri
s
(a) ellipsoid (b) ellipti
 paraboloid (
) ellipti
 
ylinderGiven a list of quadri
s q0, q1, . . . , qn. Remember from De�nition 3.3 that a quadri
 isan algebrai
 surfa
e that is formed by the vanishing set of a trivariate polynomial of totaldegree 2. We often abuse notation and refer to qi as the polynomial and the vanishing set,depending on the 
ontext. We 
all q0 the referen
e quadri
, while qi, 1 ≤ i ≤ n are sup-posed to interse
t with q0, 
onstituting the interse
ting set. We show how to 
ompute thearrangement on q0 indu
ed by the interse
ting set using Cgal's Arrangement_on_surfa
e_2
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espa
kage that is instantiated with a proper geometri
-traits and topology-traits 
lass. Thisimplementation is robust, that is, it handles all degenera
ies,40 and is exa
t, as all un-derlying geometri
 operations follow the exa
t geometri
 
omputation paradigm. For thisexample 
ase, we restri
t the 
hoi
e of the referen
e quadri
 q0 to be an x-ellipti
 one.De�nition 4.13 (Ellipti
 quadri
). A quadri
 q is x-ellipti
, if the interse
tion of any plane
x = x0 with q is an ellipse (embedded in the given plane).The set of x-ellipti
 quadri
s 
omprises all ellipsoids, ellipti
 
ylinders that are un-bounded in x-dire
tion, and paraboloids that are either unbounded towards x = −∞or x = +∞. Figure 4.18 
olle
ts the three 
ases. These quadri
s have pretty proper-ties: First, they 
onsists of a single 
onne
ted 
omponent and se
ond, they allow a ni
egeometri
-traits 
lass that we derive next.Remarks.
• The te
hniques that we deploy next 
an be similarly applied to all other quadri
s.For referen
es quadri
s 
onsisting of two 
onne
ted 
omponents (e. g., hyperboloidof two sheets) two individual arrangements must be 
onstru
ted.
• There is no restri
tion on the 
hoi
e of quadri
s q1, . . . , qn in the interse
ting set.They 
an be arbitrary. In fa
t, in Chapter 5 we present te
hniques that enable us to
onsider algebrai
 surfa
es of any degree as interse
ting set and still using the samespe
ial 
onstru
ted parameter spa
e that we introdu
e here.The geometryThe non-xy-fun
tional ellipti
 quadri
 q0 
an be subdivided into two xy-fun
tional surfa
es(z = f(x, y)) by a single 
urve. This silhouette is given by silhouette(q0) := V (q0)∩V (∂q0

∂z ).It indu
es the lower and upper part of q0. For example, the equator splits the sphere intothe northern and into the southern hemisphere. Both hemispheres are xy-fun
tional. Theproje
ted silhouette of q0 onto the xy-plane is algebrai
ally de�ned by Resz(q0,
∂q0

∂z ).Consider the spatial interse
tion 
urve of q0 with another quadri
 qi, that is, V (q0) ∩
V (qi). The (Zariski-
losed) proje
tion of this set onto the xy-plane is a real algebrai
 plane
urve of total degree 4, de�ned by Resz(q0, qi). As in Chapter 3 we remember that su
ha proje
ted 
urve 
an be split at its 
riti
al points and its interse
tion with the proje
tedsilhouette of q0, resulting in isolated points and (weakly) x-monotone 
urves. Ea
h su
hobje
t 
an be assigned to the lower or upper part of q0 (in some 
ases also to both parts);see [BHK+05℄ for details, or �3.2 for a rollba
k. In that original work, two individualarrangements that 
onstitute the subdivisions on the lower part and on the upper part,respe
tively, are 
omputed; to merge the two D
el instan
es is missing.In 
ontrast, we here deploy the fa
t that an x-ellipti
 quadri
 q0 is ni
ely param-eterizable by Φ = U × V = [l, r] × [0, 2π], with l, r ∈ R ∪ {±∞}, using ϕq0(u, v) =
(u, y(u, v), r(u, y(u, v),− sin v)).41 We de�ne y(u, v) = yu,min + (sin v

2 )(yu,max − yu,min).The interval [yu,min, yu,max] denotes the y-range of the ellipse that q0 indu
es on the plane40Though des
ribed in �4.2.2, the implementation of the Arrangement_on_surfa
e_2 pa
kage 
ur-rently la
ks support for isolated points and 
urves on the boundary of the parameter spa
e. Thus, somespe
ial input is not yet handled � in software.41A
tually, the interval U is open on the sides where l or r are in�nite.
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x = u. The fun
tion r(x, y, s) returns the minimal (s ≤ 0) or maximal (s > 0) element of
Rq0,x,y := {z | q0(x, y, z) = 0}, |Rq0,x,y| ≤ 2.However, this parameterization is stated only to show its existen
e. For our pra
ti
alrealization, we make use of its properties only. Note that the sin-fun
tion divides theparameter spa
e �horizonti
ally� into two parts, namely Φ0 := [l, r] × [0, π] and Φ1 :=
[l, r] × (π, 2π). These parts dire
tly 
orrespond to the (
losed) lower part of q0 and the(open) upper part of q0. As ϕq0(u, 0) = ϕq0(u, 2π), we dete
t a 
urve of identi�
ationfor this parameterization. This 
urve is a subset of q0's silhouette. Depending on thetype of q0, if l (or r) is �nite, we dete
t a 
ontra
tion point (ellipsoid, bounded tip ofparaboloid) or an unbounded side (in�nite end of paraboloid, 
ylinder). In Figure 4.19 weillustrate su
h a partitioning on the example of a paraboloid that is interse
ted by someother quadri
s.The partitioning into two areas is the key tool to de�ne our spe
ial geometry on thereferen
e quadri
 using as basi
 ingredient a planar geometry. Given a point w0 = (u0, v0),with p0 := ϕq0(u0, v0) = (x0, y0, z0) being its 
ounterpart on q0, the level of p0 is ℓ ∈ {0, 1}if w0 ∈ Φℓ. We represent a point pi = (xi, yi, zi) on q0 as the 
ombination of a planarpoint pi(xi, yi) and its level ℓi ∈ {0, 1}. Given two points p1, p2, the uv-lexi
ographi
 orderof their 
ounterparts w1, w2 in parameter spa
e is re�e
ted by the order of x1 = u1 and
x2 = u2, and if u1 = u2 we infer the v-order from (y1, ℓ1) and (y2, ℓ2): If ℓ1 < ℓ2 then
w1 <lex w2 (and thus p1 <lex p2), else if ℓ1 = ℓ2 = 0, then w1 and w2's v-order is identi
alto the y-order of p1 and p2. If, �nally, ℓ1 = ℓ2 = 1, then w1 and w2's v-order is attainedby the opposite of p1 and p2's y-order.A u-monotone ar
 cv on q0 is represented by a proje
ted ar
 cv that is enhan
ed bythree levels, namely ℓmin at the minimal end of cv, ℓmax at the maximal end of cv and ℓrepresenting the level in the interior of cv.Remarks.
• Note that the level in the interior of an ar
 is 
onstant, as we split ea
h proje
tedinterse
tion 
urve also at its interse
tions with the proje
ted silhouette.
• Remember that Φ0 is 
losed, whi
h has the following impli
ation: Consider an ar
with ℓ = 1 (lying on the upper part of q0). If one of its ends lies on q0's silhouette,the level of this end is 0. This holds, in parti
ular, if the end meets the 
urve ofidenti�
ation.Our goal is to reuse the Curved_kernel_via_analysis_2 (that is instantiated withCgal's Algebrai
_
urve_kernel_2) in order to provide a geometri
-traits model that re-�e
ts our de�ned lexi
ographi
 order in the 
onstru
ted parameter spa
e of q0. In par-ti
ular, we developed the following steps for our model of the �CombinedBoundaryTraits�
on
ept.1. Derived Quadri
_point_2 from Point_2 and Quadri
_ar
_2 from Ar
_2 that extendthe proje
ted obje
ts with one level (point) or three levels (ar
).2. Derived Quadri
al_kernel_via_analysis_2 from Curved_kernel_via_analysis_2. Inthis step we repla
e the point and the ar
 type by the quadri
al derivations. Thisrequires some worth-to-mention sophisti
ated template programming. However, we
hose not to do, as these te
hni
al details do not serve the simpli
ity and elegan
eof this approa
h and presentation.3. Adapted Make_x_monotone_2 to partition the spatial interse
tion 
urve of qi with q0
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esFigure 4.19. Illustration of simulation of a paraboloid's parameterization: the dark-shaded (orange) area represents Φ0, the bright-shaded (yellow) area 
orresponds to Φ1.
vu ℓ = 1

ℓ = 0

(a) On the paraboloid
ℓ = 1

ℓ = 0
v

u(b) Simulation in the planeby inversion of upper partinto instan
es of type Quadri
_ar
_2 and Quadri
_point_2 (for isolated points). Notethat the input type Curve_2 is a se
ond quadri
. The a
tual input is impli
itlyde�ned by the referen
e quadri
 and any se
ond. We �nally store lo
ations ofpoints and ends of 
urves with respe
t to the parameter spa
e (ARR_INTERIOR orARR_[LEFT,RIGHT,TOP,BOTTOM℄_BOUNDARY).4. Derived all geometri
 predi
ates that involve y-
omparisons. The relevant fun
-tors are Compare_xy_2, Compare_y_at_x_2, and Compare_y_at_x_right_2. We modi�edthem to re�e
t the spe
ial lexi
ographi
 order of our 
onstru
ted parameter spa
e.More detailed, we return the opposite result of 
omparison of y-
oordinates, if bothinput obje
ts have level 1.5. Derived and modi�ed 
onstru
tions with respe
t to levelling. Relevant fun
tors are,for example, Interse
t_2 and Split_2.6. Derived and modi�ed Compare_[x,y℄_near_boundary_2 to re�e
t the order of 
urves
lose to 
ontra
ted and in�nite boundaries (in �x�-dire
tion) or 
lose to the identi�-
ation (in �y�-dire
tion).We only dis
uss Compare_y_near_boundary_2 on the example of a 
omparison next toa left 
ontra
tion point: Given two minimal 
urve-ends of 
urves cv1 =̂(cv1, ℓ1) and
cv2 =̂(cv2, ℓ2) approa
hing the left boundary (the 
ontra
tion point). The levels attheir minimal ends must both be 0. If ℓ1 6= ℓ2 (the interior levels), the desired v-orderis simply the order of ℓ1 and ℓ2. If ℓ1 = ℓ2, then both ar
s lie on the lower part or bothon the upper part of q0. In the �rst 
ase, the 
orre
t v-order is attained by the resultwhen the proje
ted 
ounterparts cv1 and cv2 interse
ting at the minimal ends (dueto 
ontra
tion) get 
ompared slightly to the right of the proje
ted 
ontra
tion point.This is established by 
alling the planar Compare_y_at_x_right_2 for cv1 and cv2 and
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ommon minimal point (i. e., the proje
tion of the 
ontra
tion). In 
ase thatboth 
urves lie on the upper part, the opposite of this result re�e
ts the 
orre
t v-order of cv1 and cv2 near the left 
ontra
tion. In 
ase of a right 
ontra
tion point, wehave to use the planar Compare_y_at_x_left_2 and the 
orresponding maximal ends.The others 
ases (unbounded, 
ompare near x) similarly 
ombine level 
omparisonsand planar predi
ates.7. Implemented Compare_x_on_boundary_2 to interfa
e the order of points along the
urve of identi�
ation. This predi
ates uses the planar Compare_x_2 for points. Notethat this is required to implement the Identi�edBoundaryTraits 
on
ept.Con
eptually, all these modi�
ation and extensions are simple re
ombinations of theexisting planar (mu
h more sophisti
ated) 
ounterparts. However, it is the straightfor-wardness of the levelling that allows to simulate the 
onstru
ted parameter spa
e of theellipti
 quadri
 in terms of proje
tion without expli
itly knowing the a
tual parameteri-zation. As the levels tests are purely 
ombinatorial, we expe
t that the planar operationsmainly in�uen
e the performan
e of this geometri
-traits.Con
erning the implementation, our well-designed derivation hierar
hy based on tem-plate programming allows the de�nition of the Quadri
al_kernel_via_analysis_2 in itsvarious details. We 
an even use Cgal's Filtered_
urved_kernel_via_analysis_2 as theplanar ora
le inside the Quadri
al_kernel_via_analysis_2; see �2.3.3 (page 58 �).The topologyThe topology of the referen
e quadri
 q0 requires spe
ial handling. We next dis
uss detailsof our topology-traits 
lass (Arr_qdx_topology_traits_2) that 
ombines the various 
ases(ellipsoid, paraboloid, 
ylinder). Remember that the topology-traits 
lasses mainly helpsto 
onsistently 
onstru
t a D
el respe
ting the surfa
e's topology. We already remarkthat our model realizes the tree-strategy for ellipsoids and paraboloids, while it applies theforest-strategy for 
ylinders.It starts with the initialization of the D
el, whi
h for our ellipti
 quadri
 q0 requiresto 
onstru
t a single fa
e that has no outer CCBs and no inner CCBs. It is bounded, if
q0 is an ellipsoid, and unbounded if q0 is a paraboloid or a 
ylinder.The topology-traits 
lass also maintains spe
ial D
el-verti
es, namely those related tothe four sides of the parameter spa
e. For the left and the right side, two spe
ial verti
es
Vleft and Vright are designated. Su
h a vertex re
ords the in
iden
es of 
urves to either apoint of 
ontra
tion, or an unbounded end depending on q0's shape: For an ellipsoid bothverti
es represent 
ontra
tion points, for a 
ylinder both represent unbounded sides, andthe orientation of the paraboloid determines whether the left is a 
ontra
tion and the rightis unbounded, or vi
e versa. Verti
es on the identi�
ation of the bottom and top boundaryare maintained in a sorted sequen
e (std::map). The order of stored verti
es is de�ned bythe order of atta
hed points using the geometri
-traits fun
tor Compare_x_on_boundary_2.The topology-traits 
lass for quadri
s also implements the lo
alizations of 
urve-endswith pla
e_boundary_vertex (and the similar lo
ate_
urve_end). A
tually, this is a feasibletask using a 
ase-distin
tion on the given lo
ation in the parameter spa
e. For 
urve-endsrelated to the left (right) boundary, we simply 
he
k if Vleft (Vright) is NULL. If so, we returnNULL whi
h triggers its 
onstru
tion, if not, we return the existing vertex. For the identi-�
ation this pro
ess is pre
eded by a look-up in the sorted sequen
e, that is, we a
tually
he
k whether the topology-traits is already aware of a vertex on the identi�
ation at a 
er-
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estain x-
oordinate. The update of the re
ords after notify_on_boundary_vertex_
reationrelies on the same 
ase-distin
tion.It is also expe
ted that lo
ate_around_boundary_vertex lo
ates a 
urve in the 
ir
ularlist of in
iden
e 
urves around a vertex on the boundary. If the vertex equals Vleft or
Vright our implementation relies on the geometri
 
omparisons Compare_y_near_boundary_2.For verti
es on the identi�
ation, our 
ode makes use of an internal fun
tor of Cgal'sArrangement_2 pa
kage: Arr_traits_adaptor_2::Is_between_
w_2 
he
ks whether a given
urve is in 
ounter-
lo
kwise order between two 
urves that are already in
ident to avertex. Its implementation is an elaborate 
ombination of the Compare_y_at_x_right_2and Compare_y_at_x_left_2 predi
ates.Besides the lo
alizations, the topology-traits must also provide information on the
onsistent 
onstru
tion of fa
es, and CCBs, in parti
ular, if identi�
ations are existing.The fun
tions that must be implemented are listed in �4.5.5. As illustrated in �4.4.3 ea
hof them 
an be implemented with the help of dire
ted loops and the 
hosen strategy. Letus start with fa
e_split_after_edge_insertion that is 
alled upon the insertion of a 
urvewhose prede
essor edges belong to the same inner CCB. We have to de
ide two answers.The �rst is whether a fa
e splits. The answer is always true as our parameterization ofa quadri
 only involves a single 
urve of identi�
ation. Following, the spe
ial 
ase (3)that would require to return false 
annot o

ur. It remains to de
ide whether the splitfa
e should be nested below the originating one, or to be
ome equitable to originatingone. If q0 is an ellipsoid or a paraboloid, we de
ided to go for the tree-strategy, and,thus, return true. That is, it gets nested. If q0 is a 
ylinder, we follow the forest-strategyand thus evaluate the signs sprev1 and sprev2 of the two dire
ted loops −→L prev1 and −→L prev2that emerge upon the insertion of the 
urve cv in fo
us. If both are non-zero we returntrue. This implies that the new split fa
e gets nested below the originating. We triggeroption (a). Otherwise, at least one dire
ted loop is perimetri
 and thus splits F su
h thatno set of points makes the other lo
ally non-simply 
onne
ted. That is, we are in 
ase (2)and return false. This triggers option (b) (as we are in the forest-strategy). The splitfa
e is then equitable to the originating one.The required fun
tion is_on_new_fa
e_boundary also exploits the non-zero values ofdire
ted loops to provide their answer. We rely on Corollary 4.11 for this purpose; seealso �4.4.3. A dire
ted loop with positive sign turns to wmax, whi
h 
orresponds to Vright.Following, we de
ide that the CCB de�ned by prev1 be
omes the outer CCB of the newfa
e, if the sign(

−→
L prev1) 6= 1. These de
isions imply that the fa
e whi
h 
ontains ϕq0(wmax)is 
onsidered to be outermost if we follow the tree-strategy, as we do for ellipsoids. Thisinvariant is also feasible for a paraboloid that opens towards x = +∞. Note that iteven avoids unbounded leaves in the nesting tree. To also avoid unbounded leaves for aparaboloid that opens towards x = −∞, we revert the de
ision: The CCB de�ned by prev1de�nes the outer CCB of the new fa
e, if the sign(

−→
L prev2) 6= −1. Following, for su
h aparaboloid, the fa
e whi
h 
ontains ϕq0(wmin) forms the root of the nesting tree. For the
ylinder, where we implement the forest-strategy, we 
an go with any 
onsistent turningof dire
ted loops towards some 
orner of Φ. Thus, we implement for su
h a q0 the samede
ision as for an ellipsoid.Lastly, the forest-strategy expli
itly demands for boundaries_of_same_fa
e that tests,whether a queried perimetri
 and outer CCB de�ned by E′ belongs to the same fa
e asanother given perimetri
 and outer CCB de�ned by E. We have seen that this is the
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ase if sign(
−→
L E′) 6= sign(

−→
L E). Thus, for 
ylinders, the Arr_qdx_topology_traits_2 
lassimplements this 
omparison.Remark. It is super�uous to dis
uss fun
tions related to �
titious edges here, as the 
hosenrepresentation as D
el goes without su
h. In addition, we also skip other straightforwardmembers of the topology-traits 
on
ept.As mentioned in �4.5.1, the topology-traits is �nally expe
ted to provides some visitortypes. Fortunately, Cgal's Arrangement_on_surfa
e_2 pa
kage already provide generi
implementations for 
onstru
tion, insertion, and overlay utilizing its Sweep_line_2 
lass-template. We have to provide the quadri
-spe
i�
 helper 
lasses. The �
onstru
tive� helperis responsible to pre-pro
ess events of the sweep line: Whenever an event on the boundaryis going to be 
onsidered next during the sweep pro
ess, the helper �rst 
he
ks whether theatta
hed topology-traits 
lass already stores a 
orresponding D
el-vertex for the event'spoint (or 
urve-end, in 
ase of an event at in�nity). If this is not the 
ase, it simplytriggers its 
onstru
tions. In any 
ase, it stores with the event a pointer to the obtainedvertex. This later helps to 
orre
tly insert sub-
urves into the D
el that emerge to theright of the 
urrent event. This helper is also responsible to maintain a list of sub-
urvesthat 
an see the top boundary of the parameter spa
e. These sub-
urves are 
andidates ofinner 
omponents that must be relo
ated into a newly 
reated split fa
e. We also providethe helper 
lasses that are required to insert 
urves into an existing arrangement, or tooverlay two arrangements. Their implementations are similar: A
tually, for ea
h involvedarrangement (one in the insertion 
ase, the red and the blue arrangement in the overlay
ase), they maintain a pointer to the 
urrently topmost fa
e. A fa
e F of an arrangementis 
alled 
urrently topmost if there is a simply-
onne
ted path in F from the 
urrent sweepevent to the image of the parameter spa
e's top boundary. In other words: If the 
urrentevent would result in an isolated vertex, then, this vertex would be isolated in F . Bothhelpers update the 
orresponding pointer(s) upon pro
essing events, that is, ea
h modi�esthe pointer(s) when an event on the top boundary is �swept�.ResultsWe instantiated Cgal's Arrangement_on_surfa
e_2 
lass-template with the two des
ribedtraits-
lasses, whi
h results in a robust algorithm to 
ompute an arrangement on an ellipti
quadri
. Even if the arrangement is highly degenerated it is su

essfully 
onstru
ted bythis pie
e of software, as the example in Figure 4.20 shows.Base Ellipsoid Cylinder ParaboloidData #V #E #F t (s) #V #E #F t (s) #V #E #F t (s)q50 5722 10442 4722 28.3 1714 3082 1370 12.5 5992 10934 4944 29.3q200 79532 155176 75646 399.8 27849 54062 26214 189.9 82914 161788 78874 418.3e50 870 1526 658 7.2 1812 3252 1442 14.4 666 1092 428 6.6e200 10330 19742 9414 74.6 24528 47396 22870 175.8 9172 17358 8189 68.8Table 4.2. Performan
e measures for arrangements indu
ed on three base quadri
s byinterse
tions with 50 or 200 quadri
s (q), or ellipsoids (e).To demonstrate e�
ien
y we also measured the performan
e when 
omputing the ar-rangement on given base quadri
s indu
ed by interse
tions with other quadri
s. As base



168 Two-Dimensional Arrangements on Surfa
es

Figure 4.20. Degenerate arrangement on an ellipsoid indu
ed by 23 other ellipsoidsinterse
ting it
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Figure 4.21. Performan
e measures for arrangements indu
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sby interse
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onds).
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s we 
reated a random ellipsoid, a random 
ylinder, and a random paraboloid.These quadri
s are interse
ted by two di�erent families of random quadri
s. The �rstfamily 
onsists of sets with up to 200 interse
ting generi
 quadri
s, sets of the other familyin
lude up to 200 ellipsoids interse
ting ea
h of the base quadri
s. The 
oe�
ients of allquadri
s are 10-bit integers. All performan
e 
he
ks are exe
uted on a 3.0 GHz Pentium IVma
hine with 2 MB of 
a
he, with the exa
t arithmeti
 number types provided by Ledaand using Cgal's Algebrai
_
urve_kernel_2 in wrapping mode for analyses of 
urves inthe plane. That is, we rely on the 
urve analyses spe
ialized to the quadri
al 
ase takenfrom Exa
us; see also [BHK+05℄.Table 4.2 shows for sele
ted instan
es the number of indu
ed 
ells, as well as time
onsumption in se
onds required to 
onstru
t the individual arrangements. Figure 4.21illustrates the average running time on up to 5 instan
es 
ontaining sets of ellipsoids (e)and general quadri
s (q) of di�erent sizes interse
ting di�erent base quadri
s. Growth issuper linear in the number of quadri
s, as one expe
ts for a sweep line approa
h.Clearly, the more 
omplex the arrangement, the more time is required to 
ompute it.To give a better feeling for the relative time 
onsumption, we indi
ate the time spent forea
h pair of half-edges in the D
el of the 
omputed arrangement. This time varies in thenarrow range between 2.5 ms and 6.0 ms. Other parameters have signi�
ant e�e
t on therunning time as well, for example the bit-size of the 
oe�
ients of the interse
tion 
urves.We next want to analyze the in�uen
e of the 
hosen topology-traits 
lass. For theseexperiments we interse
t instan
es from [Hem08℄ 
ontaining 10,20,40, and 80 quadri
s withthe three referen
e quadri
s (ellipsoid, 
ylinder, and paraboloid). For ea
h 
ombination we
ompute three arrangements. Two planar ones, as in [BHK+05℄, that separately representthe indu
ed arrangement on the lower and upper of the referen
e quadri
, and one dire
tlyembedded on the surfa
e using our new Arrangement_on_surfa
e_2-framework with thequadri
al topology-traits 
lass. The splitting step is identi
al in both 
ases, as we have toassign ar
s of planar 
urves to the lower and upper part of the referen
e. These experimentswere exe
uted on an AMD Dual-Core Opteron(tm) 8218 multi-pro
essor Debian Et
hplatform, ea
h 
ore equipped with 1 MB internal 
a
he and 
lo
ked at 1 GHz. The totalmemory 
onsists of 32 GB. As 
ompiler we used g++ in version 4.1.2 with �ags -O2 -DNDEBUG.For analyses of planar 
urves we rely on Cgal's new Algebrai
_
urve_kernel_2 (in non-wrapping mode).Table 4.3 gives the performan
e numbers of these 
omputations. First of all, theobtained results show that the quadri
al topologies are almost as fast as the two planararrangements. However, they also 
ompute slightly more: The two planar arrangementsare not yet 
onne
ted and this step requires non-trivial further pro
essing. In 
ontrast,the quadri
al arrangement already 
orre
tly represents the referen
e's subdivision into
ells of dimension 0, 1, and 2 indu
ed by the interse
ting quadri
s. This also explains thenon-mat
hing numbers of 
ells: Verti
es lying on the silhouette of the referen
e quadri
are reported in ea
h planar arrangement, but only on
e in the quadri
al one. Furthermore, the planar arrangements are not bounded by the proje
ted silhouette. Thus, theirnumber of fa
es is typi
ally smaller than for the on-surfa
e arrangement. Besides saving apost-pro
essing step, there is one more thing: Cgal's Arrangement_on_surfa
e_2 pa
kageis able to dire
tly overlay two su
h arrangements. And one more: Cgal supports pointlo
ation queries on su
h arrangements. And more; see [WFZH07b℄.



170 Two-Dimensional Arrangements on Surfa
esReferen
e: EllipsoidSplit sweep two planar arrangements sweep ellipsoidal arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 2.36 213+217 295+289 84+84 1.29 396 584 190 1.3620 4.18 544+540 844+838 302+300 4.53 1038 1682 646 4.9040 7.62 1831+1837 3192+3210 1363+1375 20.57 3568 6402 2836 21.5080 15.47 7187+7191 13363+13379 6178+6190 97.66 14144 26742 12600 104.56Referen
e: CylinderSplit sweep two planar arrangements sweep 
ylindri
al arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 1.65 191+179 260+240 71+64 1.17 344 500 158 1.2320 3.38 551+509 852+780 303+273 4.74 1012 1632 622 5.0040 6.76 1821+1755 3168+3040 1349+1287 21.28 3474 6208 2736 22.5780 14.28 7086+6914 13179+12831 6095+5919 100.91 13768 26010 12244 108.76Referen
e: ParaboloidSplit sweep two planar arrangements sweep paraboloidal arrangement# t (s) #V #E #F t (s) #V #E #F t (s)10 1.02 28+16 37+13 11+2 0.14 36 50 17 0.1420 1.86 124+96 181+129 60+35 0.93 196 310 116 0.9640 4.83 469+337 787+533 321+198 5.21 756 1320 566 5.3880 9.87 1303+1267 2309+2272 1008+1006 20.25 2472 4580 2110 20.90Table 4.3. Comparing planar and quadri
al topologies: We report performan
e mea-sures (in se
onds) for random quadri
s interse
ting three referen
e quadri
s and distin-guish the 
omputation of two planar arrangements and one quadri
al arrangement.4.6.2. On a (ring) Dupin 
y
lideWe 
ome to our �nal example, namely to 
ompute arrangements on a parameterized ringDupin 
y
lide Z. The family of Dupin 
y
lides 
ontains regular tori as a spe
ial subset.The arrangements that we 
onsider are indu
ed by interse
tion of the arbitrary algebrai
surfa
es S1, . . . , Sn with the given referen
e 
y
lide Z. This example is interesting for tworeasons. First, the referen
e surfa
e has genus one. Se
ondly, the geometri
-traits 
lassthat we derive for this purpose is the �rst non-planar 
lass that really makes use of asurfa
e's (rational) parameterization. Remember that the quadri
al 
lass simulates theparameter spa
e by proje
tion, while the one representing geodesi
 ar
s on the unit sphererelies on ve
torial dire
tions; see [FHS08℄.We �rst shortly introdu
e Dupin 
y
lides, along with a rational parameterization, thenshow how we provide a suited geometri
-traits 
lass that does not assume generi
 position,followed by details on how to 
onsistently 
onstru
t the D
el with the help of a 
y
lideanmodel of Cgal's ArrTopologyTraits_2 
on
ept. This �nally leads to an implementationof an algorithm to 
onstru
t and overlay arrangements on a 
y
lide. We 
on
lude withexperimental results.Dupin 
y
lides have been introdu
ed by Dupin as surfa
es whose lines of 
urvature areall 
ir
ular [Dup22℄. Later, the usage of the term 
y
lide has swit
hed for quarti
 surfa
esthat 
ontain a 
ir
le at in�nity as double 
urve [For12℄. Sin
e then, Dupin's surfa
es areexpli
itly tagged with his name, namely Dupin 
y
lides. We only refer to the originalde�nition. Hen
e, and for short notation, we always simply refer to 
y
lides. One 
an



4.6. Examples 171imagine a (ring) Dupin 
y
lide as a torus with variable, but positive,42 tube radius. Dupin
y
lides are the generalization of the natural geometri
 surfa
es like planes, 
ylinders,
ones, spheres, and tori. Due to this fa
t they are privileged for appli
ations in solidmodeling; see, for example, [CDH89℄, [Pra90℄, [Boe90℄, [Joh93℄, [Pra95℄.The following parameterization already appears more detailed in [Büh95, �1℄, whilea quite intuitive 
onstru
tion of a (Dupin) 
y
lide is due to Maxwell, who we 
ite fromBoehm [Boe90℄:�Let a su�
iently long string be fastened at one end to one fo
us of anellipse, let the string be kept always tight while sliding smoothly over theellipse, then the other end sweeps out the whole surfa
e of a 
y
lide Z.�Observe that a torus is yield if the ellipse is a
tually a regular 
ir
le. For simpli
ity ofpresentation, we assume that a 
y
lide is in standard position and orientation, that is, the
hosen base ellipse is de�ned by
(x/a)2 + (y/b)2 = 1, a ≥ b > 0Figure 4.22. Two examples of ring Dupin 
y
lides

(a) a = 2, b = 2, µ = 1 (b) a = 13, b = 12, µ = 11.We indi
ate outer 
ir
le, tube 
ir-
le, and pole; see below.All 
y
lide pi
tures are produ
ed with xsurfa
e that is based on Cgal's planar 
urve renderer [Eme07℄. Theauthor thanks Pavel Emeliyanenko for his 
ontribution.For our pra
ti
al realization, below, we allow 
y
lides to be translated or even rotatedby a rational matrix. Three parameters uniquely de�ne the 
y
lide in standard position: aand b determine the base ellipse, while µ helps to en
ode the length of the string given by
µ− a. However, 
hoosing arbitrary values for these parameters, may also lead to 
y
lidesthat 
ontain self-interse
tions, that are 
urrently beyond the s
ope of our work.43 Wede�ne c =

√
a2 − b2, whi
h represents the distan
e between the fo
us and the 
enter of42If the radius would drop to zero at one position, we would get the disallowed 
roissant surfa
e; seeFigure 4.4.43Self-interse
tions of surfa
es are not (yet) handled by Cgal' Arrangement_on_surfa
e_2 frame-work.
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esthe ellipse. In 
ombination with µ it allows to distinguish three types of 
y
lides; seealso [Bez07℄.
0 < µ < c In this 
ase, the 
y
lide has two pin
h points and is 
alled horned 
y
lide. Su
ha surfa
e looks like a torus with two 
ontra
tions (i. e., the union of two surfa
estopologi
al equivalent to spheres, but tou
hing at two isolated points; none is insidethe other).
c < µ < a In this 
ase, the 
y
lide looks like a squashed torus. Su
h a surfa
e is free of(real) pin
h points. It is 
alled ring 
y
lide. Its shape looks like a 
losed tubi
al loopof variable radius; see Figure 4.22 for two examples. We fo
us on su
h 
y
lides forour work.
a < µ This relation results in a spindle 
y
lide. The resulting surfa
e 
ontains againtwo pin
h points that 
onne
t two 
omponents that are topologi
ally equivalent tospheres. In 
ontrast to a horned 
y
lide, one of these 
omponents is �in the interior�of the other (ex
ept for the tou
hing points).
µ = c, µ = a These 
ases form intermediate degenerate 
ases (e. g., µ = a is a surfa
e witha single pin
h point) that are (
urrently) of no spe
ial interest for our obje
tives.For more details on the 
lassi�
ation of 
y
lides (there are, e. g., also paraboli
 
y
lides),we refer to [CDH89℄ and, for a qui
k overview, to [17℄.Very important for us is that ring Dupin 
y
lides are rational surfa
es; see De�ni-tion 2.32. Several parameterizations exists. The following goes ba
k to Forsyth [For12℄.He proposed two alternative impli
it equations of the regular 
y
lide (torus). The non-torus 
ase is a natural extension of the following.

(x2 + y2 + z2 − µ2 + b2)2 = 4(ax− cµ)2 + 4b2y2 (4.1)
(x2 + y2 + z2 − µ2 − b2)2 = 4(cx− aµ)2 − 4b2z2 (4.2)It is easy to prove that the interse
tion of the 
y
lide with the plane y = 0 results intwo 
ir
les [Joh93℄

(x + a)2 + z2 = (µ + c)2 (4.3)
(x− a)2 + z2 = (µ− c)2 (4.4)and the interse
tion with z = 0 are the two 
ir
les
(x + c)2 + y2 = (a + µ)2 (4.5)
(x− c)2 + y2 = (a− µ)2 (4.6)As we are 
onsidering the 
ase of a ring 
y
lide, we always have that the interiors ofof (4.3) and (4.4) are disjoint, and that the 
ir
le (4.6) is fully 
ontained in the interiorof (4.5).A (trigonometri
) parameterization of the 
y
lide is given by

(
α
β

)
7→





µ(c−a cos α cos β)+b2 cos α
a−c cos α cos β

b(a−µ cos β) sin α
a−c cos α cos β

b(c cos α−µ) sinβ
a−c cos α cos β







4.6. Examples 173with α, β ∈ [−π, π].Spe
ial diligen
e is required for the boundaries of the parameter spa
e.Lemma 4.14. If α = π or (α = −π) is �xed, the parameterization above yields the
ir
le (x + a)2 + z2 = (µ + c)2. If β = π (or β = −π) is �xed, it yields the 
ir
le
(x + c)2 + y2 = (a + µ)2. We 
all these 
ir
les tube 
ir
le and outer 
ir
le, respe
tively.Proof. Fix α = π, whi
h yields to the parameterization

β 7→





µ(c+a cos β)−b2

a+c cos β

0
−b(c+µ) sin β

a+c cos β



Sin
e the denominator does not vanish, this parameterizes a 
losed path in the plane
y = 0, so it must be one of the 
ir
les (4.3) or (4.4). By setting β = π, we get the point
(−µ−c−a, 0, 0), so it must be 
ir
le (4.3). The same argument 
an be used for β = π.The point p := (−µ − c − a, 0, 0) itself is spe
ial, as it is the interse
tion of the tube
ir
le and the outer 
ir
le. We refer to it as the pole of the 
y
lide.By now, the parameterization is trigonometri
. However, we aim for a rational pa-rameterization that allows to represent the interse
tion of an algebrai
 surfa
e with Z asplanar algebrai
 
urve. We use the standard tri
k to get rid of the trigonometri
 fun
-tions (
ompare [Gal01℄) using the following identities:

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2If we now set u := tan α

2 and v := tan β
2 , we obtain

P̊ : R2 → R3,

(
u
v

)
7→





µ(c(1+u2)(1+v2)−a(1−v2)(1−u2))+b2(1−u2)(1+v2)
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2u(a(1+v2)−µ(1−v2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2v(c(1−u2)−µ(1+u2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)



Observe, that the image of P̊ is the 
y
lide without the tube 
ir
le and the outer 
ir
le.To 
lose this gap, we set α = π (or β = π) and apply the same tri
k. This yields rationalparameterizations of the tube 
ir
le and of the outer 
ir
le. Alternatively, we also get these
ir
les by taking the limit of P̊ when u → ±∞ (v → ±∞), that is, we 
ould 
onsider an(impli
it) 
ompa
ti�
ation of R2 as U × V .There is also a geometri
 intuition behind this parameterization. We 
an think of
utting the 
y
lide along the outer 
ir
le and tube 
ir
le and �roll out� the surfa
e to 
overthe plane. Thus, we also refer to the outer 
ir
le and the tube 
ir
le of a 
y
lide as its
ut 
ir
les.Note that there also exists other parameterizations of the 
y
lide that do not roll it outto the whole plane, but only to a bounded spa
e [Bez07℄. However, what follows does notbene�t from su
h a parameterization, in fa
t, we later re-interpret in�nity whi
h simpli�esmatters.
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esInternally, we deal with a homogeneous parameterization of the 
y
lide, that is, the non-zero denominator 
an be written as a separate variable. De�ne u+ := 1+u2, u− := 1−u2,
v+ := 1 + v2 and v− := 1− v2:

P̂ : R2 → P3
R
,

(
u
v

)
7→





µ(cu+v+ − au−v−) + b2u−v+

2u(av+ − µv−)b
2v(cu− − µu+)b
au+v+ − cu−v−



Homogenization also applies for the outer 
ir
le
P̂O : R→ P3

R
, u 7→





µ(cu+ + au−) + b2u−

2u(a + µ)b
0

au+ + cu−



and the tube 
ir
le
P̂ T : R→ P3

R
, v 7→





µ(cv+ + av−)− b2v+

0
−2v(c + µ)b
av+ + cv−



Finally, we also write the pole in homogeneous 
oordinates. Note that p̂ indeed represents p,sin
e b2 = a2 − c2.
p̂ :=





−µ(a− c)− b2

0
0

a− c



We eventually 
onsider as parameterization of Z the fun
tion ϕZ whose parameterspa
e Φ is the 
ompa
ti�ed plane R2. The fun
tion ϕZ is 
ombined from P̂ , P̂O, P̂ T ,and p̂. Φ has interesting 
onditions on its boundaries. Namely, we dete
t identi�
ationof both opposite pairs of boundaries. More pre
isely, ∀v ∈ V,ϕZ(umin, v) = ϕZ(umax, v)and ∀u ∈ U,ϕZ(u, vmin) = ϕZ(u, vmax), so for ea
h point on the outer- and the tube-
ir
le there exist two pre-images in parameter spa
e. For the pole we even see four su
h.We have to deal with these identi�
ations. For example, when we sweep with a 
ir
leof variable radius along the tube of the 
y
lide, that is, the image of the line u = usunder ϕZ . Two goals must be a
hieved: First, we require a unique order of events in theparameter spa
e. Se
ond, for a point on the 
y
lide with multiple pre-images, we a
tuallywant to 
onstru
t only one D
el-vertex. How to ta
kle these two problems has abstra
tlybeen dis
ussed previously. Pra
ti
ally, it is required to provide a suited geometri
-traits
lass and a suited topology-traits 
lass. We next present both and start with details ona geometri
-traits 
lass that allows to 
onsider arrangements on a ring 
y
lide indu
edby algebrai
 surfa
es interse
ting Z. Below, we 
ontinue with parti
ularities on a propermodel of the ArrTopologyTraits_2 
on
ept required for the 
y
lidean topology.



4.6. Examples 175The geometryConsider the referen
e 
y
lide Z and an algebrai
 surfa
e Si interse
ting it. We aim torepresent the indu
ed 
urve Z ∩ Si as algebrai
 
urve in the two-dimensional parameterspa
e of Z. However, we have to deal with some pe
uliarities when interpreting a 
urve inthe parameter spa
e as �existing on the 
y
lide�.Let gi ∈ Z[x, y, z] be the de�ning polynomial of surfa
e Si, with total degree Di. Wedenote with ĝi the homogenization of gi.Lemma 4.15. The vanishing set of fi := ĝi(P̂ (u, v)) ∈ Z[u, v] parameterizes the interse
-tion points of gi with the 
y
lide without those at the 
ut 
ir
les.Proof. By de�nition, the vanishing set of gi(P̊ (u, v)) in R2 de�nes the interse
tion 
urveof gi and P̊ away from the 
ut 
ir
les. On the other hand, gi(P̊ (u, v)) = 0 if and only if
fi = ĝi(P̂ (u, v)) = 0.Figure 4.23. Two 
ut-outs of an arrangement in the planar parameter spa
e of a
y
lide. It is indu
ed on the surfa
e by 5 interse
ting surfa
es of degree 3 and 
onsistsof 208 verti
es, 314 edges, and 107 edges. rendered with [7℄

(a) Overview (b) Closeup viewThat is, for a set of input surfa
es g1, . . . , gn interse
ting the 
y
lide, we obtain aset of real algebrai
 
urves in the parameter spa
e of the 
y
lide de�ned by polynomials
f1, . . . , fn ∈ Z[u, v]. Figure 4.23 shows an example of su
h 
urves. This way we redu
edthe geometri
 part of the arrangement 
omputation on the 
y
lide to a geometri
 part of anarrangement 
omputation in the plane. However, this still requires to 
ompute an arrange-ment of algebrai
 
urves embedded in the real plane. The 
urves we have to 
onsider havea relative high degree. Corre
tly, they rea
h bidegree (2 · deg(gi), 2 · deg(gi)). As we allowthe gi to have arbitrary degree, we require a model of Cgal's ArrangementTraits_2 
on-
ept that supports algebrai
 
urves in R2 of any degree in order to 
ompute the indu
edplanar arrangements. Su
h a model is given by Cgal's Curved_kernel_via_analysis_2(see �2.4.4), if instantiated with Cgal's Algebrai
_
urve_kernel_2provided by Eigenwilligand Kerber [EK08a℄; we 
all this planar traits Curved_kernel_via_analysis_2< ACK_2 >,or CK_2 for short. Details about the e�
ien
y of the used algebrai
 kernel are 
olle
tedin �2.3.3. We only remember, that the non-avoidable symboli
 
omputations in the kernel(
omputation of subresultant sequen
es), a
tually limits its usability for 
urves of higher
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esdegree; and thus for surfa
es interse
ting the 
y
lide. The planar kernel assumes no 
on-ditions on the input. Coverti
al events, verti
al asymptotes, and singularities poses noproblem for the out
ome of expe
ted analyses of 
urves and pairs of them. Only runningtime 
an be a�e
ted by su
h degenera
ies. For example, some 
ases require a linear 
hangeof 
oordinates (i. e., shear) with a subsequent ba
k-shear step in order to report the resultswith respe
t to the original 
oordinate system. Nevertheless, we 
an 
on
lude that no
onditions on the algebrai
 surfa
es gi interse
ting the 
y
lide are imposed.Remark. There might be other parameterizations of the 
y
lide that lead to 
urves fi ofsmaller (bi-)degree, whi
h would also show that P̂ results in 
urves of non-optimal degree.However, it is unknown whether su
h a parameterization (if existing) is appli
able for ourpurpose. In parti
ular, it must be 
he
ked whether the 
hosen implementation still works,and if so, whi
h modi�
ation are expe
ted.Representation The CK_2 itself is a model of the UnboundedBoundaryTraits 
on
ept inboth variables; see hierar
hy in Figure 4.8. We have to adapt it with respe
t to the
y
lidean topology. We next show how to turn it into a model, 
alledArr_surfa
es_interse
ting_dupin_
y
lide_traits_2and ful�lling the Identi�edBoundaryTraits 
on
ept; again in both variables. For simpli
ity,we refer to it as the Cy
lide_geo_traits_2.The Cy
lide_geo_traits_2 is derived from CK_2. An instan
e is 
onstru
ted from agiven referen
e 
y
lide, whi
h is stored as the traits' status. The �rst required modi�
ationis the rede�nition of the nested Curve_2 to Algebrai
_surfa
e_3,44 that is, the type of alge-brai
 surfa
es. This rede�nition implies also an adaption of the model's Make_x_monotone_2fun
tor,45 whi
h splits an instan
e of type Curve_2 into instan
es of type Point_2 andX_monotone_
urve_2. At this point, we mention that points and ar
s on the 
y
lide arerepresented with respe
t the 
y
lide's parameter spa
e. This also explains the deriva-tion of Cy
lide_geo_traits_2 from CK_2. Thus, the realization of Make_x_monotone_2 istwo-step. First, we apply for the given surfa
e Lemma 4.15. This requires a

ess to thestored referen
e 
y
lide. Se
ond, we de
ompose the resulting planar 
urve into (weakly)
x-monotone ar
s and isolated points using CK_2's version of Make_x_monotone_2. Observe,that we do not need to derive spe
ialized 
lasses for Cy
lide_geo_traits_2's Point_2 andX_monotone_
urve_2 types. Even the assignment to the boundaries of the parameter spa
ekeeps valid, with the di�eren
e that we now interpret the in�nite boundaries as identi�
a-tions.Remark (Points and 
urves on 
ut 
ir
les). A
tually, there is one subtlety in this interpre-tation. Isolated points and 
urves fully embedded in one of the 
ut 
ir
les 
annot berepresented with the CK_2's point and 
urve type. Remember that su
h obje
ts havemultiple pre-images in the 
y
lide's parameter. CK_2 is not expe
ted to represent su
hobje
ts at in�nity, while Cy
lide_geo_traits_2 re-interprets the 
ompa
ti�
ation of R2as being on the surfa
e of the 
y
lide. However, although theoreti
ally des
ribed how todeal with events related to su
h spe
ial points and ar
s (see �4.2), the 
ompletion of the44typedef Algebrai
_surfa
e_3 Curve_2;45Observe for this part of the text that the geometri
-traits 
lass uses the variable names x and y, whilein our 
ase we a
tually refer to u and v.



4.6. Examples 177Arrangement_on_surfa
e_2 pa
kage with respe
t to su
h obje
ts is planned for the future.On
e this obje
tive is rea
hed, derived Cy
lide_point_2 and Cy
lide_x_monotone_
urve_2
lasses with spe
ialized 
onstru
tors be
ome required.Anyhow, let us mention that for a 
omplete surfa
e gi, the formal leading 
oe�
ientsof the resulting polynomial fi already en
odes some spe
ial interse
tions with respe
t tothe 
ut 
ir
les of Z. Observe that degtotal(fi) ≤ 4n, degu(fi) ≤ 2n and degv(fi) ≤ 2n.Lemma 4.16. Let coef(fi, xh, r) ∈ R[x1, . . . , xh−1, xh+1, . . . , xn] denote the 
oe�
ient of fin xr
h. Then, we have

ĝi(P̂ T (v)) = coef(fi, u, 2Di)

ĝi(P̂O(u)) = coef(fi, v, 2Di)

ĝi(p̂) = coef(coef(fi, u, 2Di), v, 2Di).Proof. The fun
tion coef( · , xh, r) is linear. Thus, it su�
es to show the equality for the
ase that ĝ = xdxydyzdzwdw is a monomial with dx + dy + dz + dw = Di. We show the �rstpart of the lemma, while the two remaining statements follow similar arguments.Sin
e for dy > 0, ĝi(P̂ T (v)) = 0, and also, degu(fi) < 2Di, we 
an assume that dy = 0.Let P̂1, . . . , P̂4 denote the polynomials of P̂ 's parameterization. Then, we have
coef(f, u, 2Di) = (coef(P̂1, u, 2))dx (coef(P̂3, u, 2))dz (coef(P̂4, u, 2))dz ,and 
omparing this with ĝi(P̂ T (v)) yields the desired equality.Lemma 4.16 also has a geometri
 interpretation, namely it shows that isolated inter-se
tion points on the 
ut 
ir
les appear as real roots of coef(fi, u, 2Di) or coef(f, v, 2Di).In addition, it is possible to dete
t spe
ial interse
tions with the 
y
lide.Corollary 4.17.

• degu(fi) < 2Di if and only if gi and Z interse
t in the whole tube 
ir
le of Z.
• degv(fi) < 2Di if and only if gi and Z interse
t in the whole outer 
ir
le of Z.
• degtotal(fi) < 4Di if and only if gi and Z interse
t in the pole of Z.This information 
an be used in the future when 
onstru
ting spe
ial representationsfor points and ar
s embedded in the 
ut 
ir
les. We remark that 
omputing the degreesis a 
heap task, while the root isolation is performed anyway, namely when determiningthe asymptotes of fi below. We already en
ourage to 
a
he su
h information in an a
tualimplementation.Predi
ates and 
onstru
tions Besides the geometri
 representation, we also expe
t fromthe Cy
lide_geo_traits_2 
lass to provide geometri
 predi
ates and 
onstru
tions. Notany modi�
ation of the CK_2 is required to predi
ates that relate to the interior of theparameter spa
e. First, remember that the Arrangement_on_surfa
e_2 pa
kage 
leverly
ombines the out
ome of a set of 
omparisons of near (or on) the boundaries in order toobtain a unique order for the sweep line events. In parti
ular, the geometri
-traits 
lassis asked for the horizontal or verti
al alignment of two 
urve-ends in�nitesimally away
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esfrom a boundary. In our 
ase, the order of 
urve-ends approa
hing a 
ut 
ir
le is en
odedby the order of the 
orresponding 
urve-ends in parameter spa
e approa
hing in�nity.Thus, we again only re-interpret CK_2's existing fun
tors Compare_x_near_boundary_2 andCompare_y_near_boundary_2 that 
ompare 
urve-ends approa
hing in�nity in parameterspa
e as fun
tors that 
ompare 
urve-ends approa
hing a 
ut 
ir
le.However, some fun
tors have to expli
itly 
are about the boundary of the parameterspa
e. The prominent among them are the ones demanded by the Identi�edBoundaryTraits
on
ept, in parti
ular, Compare_x_on_boundary_2and Compare_y_on_boundary_2. Both must
ompare �points� that are lying at in�nity in the parameter spa
e. To simplify, we 
anassume, that we 
onsider 
urve-ends of unbounded ar
s of a 
urve fi. There are tworepresentations for su
h an end:
• Either, the ar
 is asymptoti
 to a verti
al line u = u0, that is, it approa
hes thetop- or bottom-boundary. Then, we know a symboli
 endpoint (u0, fi,±∞). ByTheorem 2.24 we know that u0 is a root of lcfy(fi). The order of two su
h points onthe bottom-top-identi�
ation is given by the order of their u-values.
• Or, se
ond, the ar
 approa
hes the left or right boundary, whi
h means that its endis represented by a symboli
 point (±∞, fi, ai), where ai is the point's ar
 numberon fi. However, this information is not su�
ient to 
ompute the v-order of two su
hpoints, espe
ially to dete
t their equality. Thus, we next show how to obtain moreinformation on the symboli
 endpoint of ar
s that extend to u = ±∞. Su
h anar
 
an have a horizontal asymptote v = v0. In this 
ase it represents an ar
 onthe 
y
lide that interse
ts the interior of the tube 
ir
le at PT (v0) and thus lies onthe left or right boundary. Finally, it 
an also be unbounded in v as well. Then it
onverges to one of the four 
orner points (±∞,±∞) in parameter spa
e. On the
y
lide, su
h an ar
 runs into the 
y
lide's pole.For the further 
onsiderations on this se
ond 
ase, we restri
t to a single algebrai
 plane
urve f . In the a
tual realization of Compare_y_on_boundary_2,46 we apply the followingmethod to both 
urves 
urrently in fo
us. It is well known, that an algebrai
 
urve onlyhas a �nite number of easily 
omputable horizontal asymptotes. Their v-values are de�nedas roots of the leading 
oe�
ient lcfu(f); see Theorem 2.24.This observation leads to an algorithm that assigns 
urve-ar
s approa
hing u = ±∞ tothe �nite number of possible symboli
 endpoints (±∞, vl), l = 0, . . . , k+1, where v0 = −∞and vk+1 = +∞, and v1 < . . . < vk denote the sorted real roots of lcfu(f)(v). We nextde�ne k + 2 bu
kets (−∞, q0), (q0, q1), . . ., (qk−1, qk), (qk,∞) with the help of 
omputedintermediate rational values q0, . . . , qk with vl < ql < vl+1 for all l ∈ {0, . . . , k}. Observethat ea
h bu
ket (ql, ql+1) 
ontains exa
tly vl. The handling of the left and the right sideboundary are similar, thus, we restri
t Algorithm 4.1 for simpli
ity to the left 
ase.

46Observe the naming v ≡ y.
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 numbers of 
urve to non-verti
al asymptotesInput: Plane algebrai
 
urve fOutput: Assignment whi
h ar
s number of f at u = −∞ 
orrespond to whi
h non-verti
alasymptote of f .1. Choose a (rational) value ur to the left of any 
riti
al x-
oordinate of f (i. e., x-
oordinates of f 's singularities, f 's x-extreme points or f 's verti
al asymptotes are
riti
al). The required ur is easy to 
ompute, as f 's analysis is aware of all of its
riti
al x-
oordinates.2. Next, 
ompute
uleft := min{ur, min

l=0,...,k
min{µ | f(µ, ql) = 0}}by isolating the real roots of f(x, ql).3. Finally, isolate the real roots v′1, . . . , v

′
k of f(uleft, v), and determine with intervalre�nements the bu
ket ea
h v′l falls into. This gives the desired assignment.An illustration of Algorithm 4.1 is given in Figure 4.24. Theorem 4.18 gives the 
or-re
tness of the algorithm. In our implementation, we do not use the algebrai
 number

uleft, but a rational value to its left. This 
hoi
e still ensures the 
orre
t assignment.Figure 4.24. Conne
ting ar
s with non-verti
al asymptotes taken from [BK08℄
−∞4

−∞3

−∞2

−∞1

(−∞, +∞)

(−∞, v4)

(−∞, v3)

(−∞, v2)

(−∞, v1)

(−∞,−∞)(a) Symboli
 endpoints for theleft ends of the 
urve, and thebu
kets of the 
urve.

−∞4

−∞3

−∞2

−∞1

(−∞,−∞)

(−∞, v1)

(−∞, v2)

(−∞, v3)

(−∞, v4)

(−∞, +∞)

uleft(b) Roots of the 
urve for a uleftthat is to the left of any bu
ket
hange. Information about non-verti
al asymptotes 
an be reado� dire
tly.Theorem 4.18. Let the v′l of f(uleft, y) be in the bu
ket of vj . Then, the l-th ar
 of f with
u→ −∞ 
onverges to (−∞, vj).Proof. Sin
e uleft < ur, v′l lies on the l-th ar
 of f that goes to u = −∞. Moreover, uleftis smaller than any root of f(x, qh), h = 0, . . . , k. It follows that f does not interse
t anyline x = qh on the left of uleft. Consequently, the l-th ar
 of f 
annot 
hange the bu
ketanymore to the left of uleft. So, (−∞, vj) is the only possible end of the ar
.
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esAll other �planar� fun
tors only need small wrappings in order to work �on the 
y-
lide�. For example, ea
h end of a 
urve is now �nite, or Interse
t_2 also has to reportinterse
tions on the boundary, whi
h again requires to dete
t whether two ar
s have thesame asymptote. The 
omputation of the verti
al alignment of two 
urves right (left) ofan interse
tion point must also be adapted if the interse
tion lies on the boundary. Usu-ally, a proper 
all of Cy
lide_geo_traits_2's fun
tor Compare_y_near_boundary_2 gives theanswer, ex
ept for the pole that requires to use the information whether the ar
s a
tuallyapproa
h the �bottom 
orner points� or �top 
orner points� of the parameter spa
e.The topologyAs for a quadri
, the topology of a 
y
lide requires spe
ial attention. We already remarkedon the existen
e of two identi�
ations in its parameter spa
e. Our 
y
lidean topology-traits
lass (Arr_dupin_
y
lide_topology_traits_2) is aware of these spe
ialties with respe
t tothis surfa
e of genus one.The initial D
el of an empty arrangement on a 
y
lide 
onsists of a single boundedfa
e that has neither an inner nor an outer CCB. We are going to implement the forest-strategy for this traits 
lass. For ea
h identi�
ation we maintain a sorted list of D
el-verti
es, or more intuitively: One for ea
h 
ut 
ir
le. Their order is determined byCompare_x_on_boundary_2 and Compare_y_on_boundary_2 provided by our new 
y
lideangeometri
-traits 
lass. The fun
tors 
ompare the parametri
 values of points on the 
ut
ir
les, that is, a

ording to P̂O and P̂ T . The lo
alization of verti
es on the boundary(with the help of pla
e_boundary_vertex and lo
ate_
urve_end) is again feasible. It onlyrequires to perform a binary sear
h in the 
orre
t list. Either, a vertex is found and re-ported, or NULL is returned. If so, the found position is used for the subsequent updateoperation triggered by notify_on_boundary_vertex_
reation. This way, the arrangementitself is responsible to 
onstru
t verti
es, while the topology-traits 
lass keeps the 
ontrolfor D
el-re
ords on the boundary. This pro
ess forms an important part of the on-linerealization of the existing identi�
ations. For the deletion of a vertex the pro
ess is similar.Again, the lo
alization of a 
urve in the 
ir
ular list of in
ident 
urves around a vertexis performed with the help of Arrangement_on_surfa
e_2-internal fun
tor Is_between_
w_2that returns true if a 
urve is 
ounter-
lo
kwisely in between two 
urves meeting at thesame point.An instan
e of Arr_dupin_
y
lide_topology_traits_2 also monitors whether the in-sertion or deletion of a 
urve implies a fa
e split or a hole 
reation. We already dis-
ussed in �4.4.3 whi
h 
ases 
an o

ur. We remember that we have to dete
t the �rstperimetri
 loop L1 and to sele
t whi
h 
urve of identi�
ation is 
rossed by L1 an oddnumber of times. Upon this dete
tion of L1 by fa
e_split_after_edge_insertion, it re-turns std::pair< false, false >. The value-pair triggers the spe
ial option (d) for thebasi
 insertion fun
tion, that is, the initial fa
e gets now bounded by two outer CCBs.Note that this exa
tly 
orresponds to what is expe
ted by the forest-strategy. After L1 is
losed, the implementation of all further predi
ates with respe
t to fa
es and their CCBs(fa
e_split_after_edge_insertion, is_on_new_fa
e_boundary, boundaries_of_same_fa
e)are identi
al to the 
ylinder 
ase presented in �4.6.2. That is, we are left with an impli
itsingle 
urve of identi�
ation, whi
h we have to 
on
entrate on when 
ounting 
rossings offurther dire
ted loops. An illustration of the two �rst steps is given in Figure 4.25.
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Figure 4.25. Closing loops on a 
y
lide. We start in (a) with a single bounded fa
e
F0 that has two inner CCBs de�ned by E1,prev (or E′

1,prev) and E2,prev (or E′
2,prev).The views in parameter spa
e (right) are s
hemati
.
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le" u

v

(+∞, +∞)

(−∞,−∞) (+∞,−∞)

E ′1E ′1,prev

F0

cv1 cvbcva E1 E1,prev(a) Adding cv1 (and thus E1 and E′
1) splits the inner CCB of F0 de�ned by

E1,prev into two outer CCBs (de�ned by E1 and E′
1). There is no fa
e-split,due to the two identi�
ations. However, F0 is now surrounded by the twoouter CCBs de�ned by E1,prev and E′

2,prev.
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(b) Adding cv2 (and thus E2 and E′
2) splits the inner CCB de�ned by E2,previnto two outer CCBs (de�ned by E2 and E′

2). Now there are two perimetri
fa
es F0 and F1. Ea
h has two outer CCBs: F0's CCBs are de�ned by E1and E′
2, F1's CCBs are given by E2 and E′

1. The outer CCBs have di�erentdire
tions and di�erent non-zero signs. There are no more inner CCBs.
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esRemark. The remaining methods of Arr_dupin_
y
lide_topology_traits_2 are either sim-ple to implement or related to �
titious edges, that, again, do not o

ur for this topology.The 
y
lidean topology-traits is also obliged to provide some nested types, namelythe visitor 
lasses required for arrangement 
onstru
tion, insertion, and overlay via thesweep line approa
h, a visitor 
lass for the in
remental 
onstru
tion, and the default pointlo
ation strategy. For most of them generi
 templates exists. As for quadri
s, ea
h mustonly be adapted with a surfa
e-spe
i�
 helper 
lasses: For example, the helper for the
onstru
tion via sweep line is responsible to pre-pro
ess events, namely to assign the 
orre
tverti
es to ea
h, whi
h �nally helps to 
onstru
t and insert 
urves that emanate to theright of an event. In addition, it maintains a list of 
urves that only see the top boundaryabove them. The relo
ation of holes after splitting a fa
e relies on this information. Theremaining helpers and 
lasses are very similar to the quadri
al 
ase; see �4.6.1.ResultsWith the presented traits 
lasses, we 
an su

essfully, robustly, and e�
iently 
onstru
tarrangements on Dupin 
y
lide using Cgal's Arrangement_on_surfa
e_2 
lass-template.An example is given in Figure 4.26.

Figure 4.26. The shown arrangement on a 
y
lide is indu
ed by 5 algebrai
 surfa
esof degree 3 interse
ting the referen
e surfa
e. It 
onsists of 240 verti
es, 314 edges,and 74 fa
es. It is visualized with xsurfa
e by Pavel Emeliyanenko.We also run experiments to 
he
k that this approa
h does not la
k e�
ien
y. All test areexe
uted on an AMD Dual-Core Opteron(tm) 8218 multi-pro
essor Debian Et
h platform,
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e #S #V #E #F t (onCy
lide) t (onPlane)ipl-1 10 119 190 71 0.14 0.14ipl-1 20 384 682 298 0.58 0.58ipl-1 50 1837 3363 1526 2.14 2.00ipl-2 10 358 575 217 1.07 1.25ipl-2 20 1211 2147 937 3.14 3.04ipl-3 10 542 847 305 4.84 4.62ipl-3-6points 10 680 1092 412 32.43 31.17ipl-3-2sing 10 694 1062 368 5.82 5.57ipl-4 10 785 1204 419 50.42 49.97ipl-4-6points 10 989 1529 540 461.74 450.54ipl-4-2sing 10 933 1471 538 53.01 52.78Table 4.4. Running times (in se
onds) to 
onstru
t arrangements on Z1 indu
ed byalgebrai
 surfa
esInstan
e #S #V #E #F t (onCy
lide) t (onPlane)ipl-1 10 169 280 111 0.53 0.46ipl-1 20 456 808 352 0.86 0.54ipl-1 50 3228 6084 2856 3.78 3.33ipl-2 10 450 710 260 1.22 1.21ipl-2 20 1323 2247 924 3.44 3.57ipl-3 10 474 682 208 5.24 5.36ipl-4 10 988 1406 418 50.93 52.43Table 4.5. Running times (in se
onds) to 
onstru
t arrangements on Z2 indu
ed byalgebrai
 surfa
esea
h 
ore equipped with 1 MB internal 
a
he and 
lo
ked at 1 GHz. The total memory
onsists of 32 GB. As 
ompiler we used g++ in version 4.1.2 with �ags -O2 -DNDEBUG. Tworesults were obtained for ea
h instan
e. First, we 
omputed the arrangement using the
y
lidean topology (onCy
lide). Se
ond, we 
omputed the two-dimensional arrangementof the indu
ed interse
tion 
urves in uv-parameter spa
e, that is, with the topology of anunbounded plane (onPlane).Our implementation allows to transform a 
y
lide in standard position and orientation,that is, to translate it by a ve
tor and to rotate it with respe
t to a rotational matrix withrational entries. In our tests, we used two di�erent referen
e 
y
lides. First, the standardtorus Z1 with a = 2, b = 2, µ = 1, 
entered at the origin with no applied rotation. Se
ond,a non-tori
al 
y
lide Z2 with a = 13, b = 12 and µ = 11, 
entered at (1, 1, 1) and a rotationde�ned by the matrix
1

3




2 −2 1
2 1 −2
1 2 2



Our �rst 
lass of test examples are surfa
es of �xed degree whi
h interpolate randomly
hosen points on a three-dimensional grid, having no or some degenera
ies with respe
tto Z1: the surfa
es in �6points� instan
es share at least 6 
ommon points on Z1, one of



184 Two-Dimensional Arrangements on Surfa
esInstan
es #S #V,#E,#F tquadri
s 10 428,646,219 1.59degree-3 5 240,314,74 1.56Overlay - 942,1508,566 1.91degree-3 10 794,1218,424 6.25degree-4 10 325,418,93 13.36Overlay - 1623,2644,1021 13.83degree-4 10 816,1188,372 50.86degree-4 5 325,418,93 13.52Overlay - 1581,2488,907 47.30Table 4.6. Running times (in se
onds) to 
onstru
t arrangements indu
ed by algebrai
surfa
es of di�erent degree on Z2, and to overlay them afterwardsthem is the pole of Z1. The surfa
es in the �2sing� instan
es indu
e (at least) two singularinterse
tions on Z1.Our obtained running times are listed in Tables 4.4 and 4.5. For su
h random examples,our algorithm shows a good general behavior, even for higher degree surfa
es. Degenera
ieswith respe
t to the referen
e surfa
e result in higher running times as the instan
e �6points�shows. But this e�e
t already appears in parameter spa
e; we remark on the similarrunning times in the onPlane-
olumn. In general, it is observable and remarkable that inall tested instan
es, the spent time on the 
y
lides is (almost) identi
al to the 
omputationof the 
urves in their parameter spa
e. This allows to 
on
lude two results:1. The performan
e of our implementation is not harmed by the 
y
lidean topology-traits 
lass, that is, the 
y
lidean model is as e�
ient as the topology-traits 
lass forthe unbounded plane.2. The additionally required 
omputation of horizontal asymptotes seems (as expe
ted)to be a 
heap task. Most time is spent for geometri
 operations on algebrai
 
urves.Thus, we infer that the 
hosen approa
h strongly hinges on the e�
ien
y of the underlyingimplementation for arrangements of algebrai
 plane 
urves, in parti
ular the (bivariate)algebrai
 kernel, and 
on
lude the parametri
 ansatz to be su

essful in its idea.The 
y
lidean topology-traits also provides the visitor 
lasses for various sweep line
onstru
tion, in parti
ular the model that enables the Arrangement_on_surfa
e_2's overlayme
hanism. That is, we are able to overlay two arrangements on the same 
y
lide byusing the 
apabilities of generi
 programming. Therefore, we also generated instan
es ofrandom surfa
es with degree up to 4 interse
ting Z2, pi
ked two of them, 
omputed theirarrangement and �nally overlaid them. A sele
tion of su
h 
ombinations along with thesizes of the resulting arrangements and running times is presented in Table 4.6. We remark,that due to persistent 
a
hing, the times for the overlay are usually less than the sum ofthe times required to 
reate the two originating arrangements. The reason is simply thatduring the overlay only some additional pairs of algebrai
 
urves have to be newly 
reated.We should also mention that the lo
alization of a point (given by its parametri
 
oor-dinates) in an arrangement on the 
y
lide is supported by the Arrangement_on_surfa
e_2pa
kage. We obtain the 
ell of the arrangement that 
ontains the point. Again, thedependen
y on the planar ba
kup is expe
ted to be the bottlene
k.
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Figure 4.27. Overlay of two arrangements: The red is indu
ed by �ve surfa
es ofdegree 3 that indu
ed degenera
ies on the torus. The blue is indu
ed by �ve othersurfa
es of degree 2. Overlay interse
tions are shown in green.4.7. Con
lusion and outlookA
hievements We have seen how to 
onstru
t and maintain two-dimensional arrange-ments on parametri
 surfa
es. We pay spe
ial attention to 
ode reuse. In parti
ular, werevised the abstra
tion of main arrangement-related algorithms and data stru
tures frombasi
 geometri
 operations and extra
ted new abstra
tions with respe
t to surfa
e-spe
i�
topologi
al operations. This �parameterization� simpli�es the development of traits 
lassesfor handling new families of 
urves and new surfa
e topologies in a straightforward manner.Su
h extensions bene�t from a highly e�
ient (and well-tested) 
ode base for the mainarrangement-related 
lasses.Beyond a rough overview of existing traits 
lasses, we dis
ussed two 
on
rete exam-ples of surfa
e families in their details, namely ellipti
 quadri
s and ring Dupin 
y
lides.For both we provide valid models of the new ArrTopologyTraits_2 
on
ept. Their im-plementations are family-spe
i�
, however they also share basi
 ideas. We also providegeometri
-traits 
lasses that allow to 
ompute arrangements on su
h referen
e surfa
es,indu
ed by their interse
tions with other quadri
s or even algebrai
 surfa
es. Both 
lasses
leverly, but di�erently, modify a model that originally suites for planar algebrai
 
urvesonly. The enhan
ement �lifts� the planar 
urves on the referen
e surfa
e itself. In both
ases, the applied 
hanges do not signi�
antly harm the e�
ien
y of the approa
h, thatis, the performan
e of the traits 
lasses for arrangements on quadri
s and ring Dupin 
y-
lides is mainly determined by the e�
ien
y of the underlying algebrai
 kernel that alreadysupports the analyses of planar 
urves.
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esThe 
hosen strategy also shows the power of generi
 programming. Developing, surfa
e-spe
i�
 traits-
lasses is a 
omparably small task 
ompared to an implementation froms
rat
h, not using the Cgal's Arrangement_on_surfa
e_2 framework and its algebrai
 ker-nels. This results in faster development time and less 
ode to debug. In addition we bene-�t from advan
ed programming te
hniques applied to Cgal's Arrangement_on_surfa
e_2pa
kage [WFZH07b℄. In parti
ular, there is immediate support for observers that notifyon stru
tural 
hanges of the arrangement, or the possibility to extend the D
el with data.Future work Beyond what we have presented on the geometri
-traits 
lasses, there isroom for further improvements. For example, it would be ni
e to allow algebrai
 surfa
esof arbitrary degree interse
ting an ellipti
 quadri
. It is the lifting onto the lower or upperpart that must be adapted. In fa
t, we present in Chapter 5 (in parti
ular in �5.5.3)the required tools, to 
ompute su
h spa
e 
urves. For the 
ase of the 
y
lide, we alsobelieve that the performan
e 
ould be further improved: We analyze the planar 
urvesused to represent interse
tion of the 
y
lide with algebrai
 surfa
es without any bene�
ialknowledge indu
ed by the used parameterization. In parti
ular, it is possible to simplifythe one resultant whose roots de�ne a 
urve's 
riti
al x-
oordinates by a non-trivial fa
tor.That is, the real-root isolation 
an a
tually deal with a mu
h simpler polynomial. Inaddition, su
h planar 
urves often 
ontain numerous verti
ally asymptoti
 ar
s; see, forexample, Figure 4.23. However, we use the strategy des
ribed in [EKW07℄, that is, toshear and to shear-ba
k su
h non-regular 
urves. This step is expensive, in parti
ular,if applied to a large fra
tion of the 
urves. A desirable goal is to develop a 
omparablye�
ient alternative approa
h that avoids to shear 
urves of this sub-
lass.It would also be ni
e to 
onsider more families of surfa
es, in parti
ular, if they providea rational parameterization, as ring Dupin 
y
lides do. In prin
iple, we 
an derive a similarversion of a geometri
-traits 
lass that expli
itly elaborates the parameterization of su
hsurfa
es. Of 
ourse a suitable model for the ArrTopologyTraits_2 
on
ept is also expe
ted.However, in pra
ti
e, the degrees of the algebrai
 
urves in the parameter spa
e 
onstitutesour 
urrent limit of pra
ti
al usability of the parametri
 approa
h.Con
erning the framework itself, we already proposed in theory how to deal with iso-lated points and 
urves fully embedded in the boundary of the parameter spa
e. However,the 
ode has not yet been adapted with respe
t to these ideas. This step is planned forthe near future.With introdu
ing the ArrTopologyTraits_2 
on
ept, we su

essfully abstra
ted topologi-
al operations required to maintain a surfa
e-spe
i�
D
el from more generi
 arrangement-
lasses. However, the topology-traits 
lasses for ellipti
 quadri
s and ring Dupin 
y
lides(and even for the omitted one of the sphere) show some visible similarities. For example,all maintain a sorted sequen
e of points on an identi�
ation, and the de
ision with respe
tto fa
e splits and their CCBs rely on similar information. As future dire
tion, it should beanalyzed, in how far a uni�ed model 
an be established. Su
h a model 
an be 
on�guredwith respe
t to various topologies, by 
onstru
ting it, for example, by just naming whathappens on the boundaries of the parameter spa
e.In this work, we also restri
ted ourselves to the single domain 
ase, that is Φ = U ×V .Another future goal is to extend the framework to handle general orientable surfa
es, whi
h
an be 
onveniently represented by a 
olle
tion of domains, ea
h of whi
h supported bya re
tangular parameter spa
e. It is known whi
h polygonal maps give rise to orientable
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es and ea
h orientable surfa
e has a normal form, whi
h already in
ludes surfa
esof higher genus. In addition, one might to 
onsider surfa
es with singularities (e. g., adouble 
one), whi
h requires to de
ompose them su
h that singularities only appear onthe boundary of parameter spa
es. We give su
h a de
omposition for algebrai
 surfa
es inChapter 5. Con
erning the framework, the di�erent individually obtained parameter spa
esare glued together a

ording to the topology of the surfa
e and therefore will naturally bedes
ribed in, and handled by, an extension of the ArrTopologyTraits_2 
on
ept. However,arrangements on surfa
es with singularities 
annot be represented with a usual D
el. Thereason is that a vertex 
an be in
ident to two fa
es at the same time. An example is theapex of a double-
one.Arrangements on surfa
es 
an also be a tool in other utilizations. For example, it
an serve as basi
 support to 
ompute the adja
en
y graph that is indu
ed by a set ofsurfa
es. This obje
tive requires to identify equal verti
es and edges on di�erent surfa
es.How to do this for quadri
s has been shown in [Hem08℄. The 
hosen approa
h uses adire
t parameterization of the quadri
s. However, the important subtask, namely theidenti�
ation of verti
es and edges 
an be formulated almost abstra
tly. Then, it shouldbe possible to easily 
ombine it with the Arrangement_on_surfa
e_2 pa
kage in order to
ompute adja
en
y graphs for all surfa
es on whi
h we 
an 
ompute arrangements. It mightbe required to add another geometri
 primitive that robustly determines the equality of twoverti
es (and edges?) in the parameter spa
es of two di�erent surfa
es. The 
onstru
tionof a fully-�edged three-dimensional arrangement of surfa
es is the ultimate obje
tive.Although it is beyond the s
ope of this thesis, we 
on
lude that the (in 
ombinationwith the adja
en
y-graph to 
ompute) our 
ontributions 
onstitute major building blo
kstowards this goal.
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5E�
ient Strati�
ationof Algebrai
 Surfa
eswith Planar ArrangementsIn this 
hapter, we in
rease the dimension by one and turn towards the topologi
al andgeometri
al analysis of algebrai
 surfa
es 
ombining three main tools: Planar arrangementsindu
ed by algebrai
 
urves, the bitstream Des
artes method, and interval arithmeti
.Our 
on
ern is beyond the theoreti
al design of a new algorithm, but aiming for a 
lever
ombination of existing tools to provide a robust and e�
ient implementation for the �nalproblem:Given a �nite set S = {S1, . . . , Sn} of square-free primitive, and 
oprime algebrai
surfa
es in R3, de�ned by polynomials fi ∈ Q[x, y, z], i ≤ 1 ≤ n, with Di = degtotal(fi)and D := maxi(Di). We are interested in the geometri
 and topologi
al information todes
ribe S. So, we aim for a 
ell de
omposition of the surfa
es with respe
t to S into
ells of dimension 0, 1, and 2. The 
ells should form smooth subvarieties of some Si. Weare also interested in how the 
ells are 
onne
ted. In addition, the 
ells should share theboundary property, that is, the boundary of a single 
ell is formed by a union of other 
ellsin the de
omposition. Su
h a de
omposition is also known as strati�
ation, while a single
ell is 
alled stratum; see [BPR06, �5.5℄ and 
ompare also with the CW 
omplex that wepresent in �2.1.7. The obtained de
omposition is similar to a 
lustered 
ylindri
al algebrai
de
omposition of R3. Of 
ourse, we also allow that n = 1, whi
h a
tually 
onstitutes aspe
ial 
ase.The approa
h 
onsists of three steps:1. First, we proje
t the z-
riti
al points of S to 
ompute an unbounded planar arrange-ment AS with a �nite number of relatively open 
ells. Ea
h 
ell shares some invariantproperties for all of its points. In parti
ular, they share the same z-pattern.2. A z-pattern at some point p en
odes the sequen
e of interse
tions of Si ∈ S with theverti
al line ℓp at p and is 
omputed for ea
h 
ell during the lifting . It su�
es to
ompute a z-pattern only for a sample point of ea
h 
ell of AS. The lifting of the
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 Surfa
es with Planar Arrangementssample points leads to our 
ell de
omposition ΩS.3. As �nal step, we obtain the adja
en
y relation between the 
ells of ΩS.The approa
h is similar to Collins' 
ylindri
al algebrai
 de
omposition (
ad); see �2.1.6. Inea
h of these steps, we exploit methods that try to repla
e 
ostly symboli
 
omputations by
ombinatorial dedu
tions and 
erti�ed approximative solutions. We exemplary mention thebitstream Des
artes method with its m-k-extension for the non-square-free 
ase; see �2.1.2.In any 
ase, we guarantee to re�e
t the mathemati
al 
orre
t strati�
ation, as expe
tedby the exa
t geometri
 
omputation paradigm (EGC); see �2.2.2. This is done by either
ertifying that the approximative �lters 
ompute the desired result, or eventually swit
hingto an exa
t method. Our de
omposition 
onsists of O(n5D5) many 
ells. It is possibleto re�ne the de
omposition into simply 
onne
ted 
ells without 
ompromising the �nal
omplexity.We remark that our approa
h is free of assumptions on the input surfa
e. Algorith-mi
ally, we never 
hange the spatial 
oordinate system in order to prevent degenera
ies.The (geometri
) output is with respe
t to the original 
oordinate system. While this hasadvantages, for example to enable arbitrary dense sampling of the de
omposition, it alsomeans that degenerate situations must be handled, in parti
ular verti
al lines 
ontainedin a surfa
e. To satisfy the boundary property of the 
ells in the de
omposition, su
h linesmust be de
omposed further.Our implementation is robust and e�
ient. To our knowledge it is the �rst EGC-software for the topologi
al analysis of algebrai
 surfa
es, in
luding singular ones. Asbasi
 tool, we rely on arrangements of planar algebrai
 
urves; see �2.3.3, �2.4.3, and �2.4.4.The 
ode follows the generi
 programming paradigm, whi
h allows to ta
kle the problemin two related parts: One 
onstitutes a framework that extends a planar (unbounded)arrangements in order to support the lifting into the third dimension. The frameworkde�nes the new Surfa
eTraits_3 
on
ept, that is, it expe
ts from surfa
es some types andoperations. The 
on
ept breaks down the rather 
omplex 
hallenge into a small set ofsimple tasks demanded on surfa
es, like to 
ompute approximations of Si ∩ ℓp for some p.It is the a

ountability of the framework to 
ombine the output of these operations toobtain the desired output.We provide two models ful�lling the Surfa
eTraits_3 
on
ept that form the se
ond partof the implementation: One model for quadri
s and one model for algebrai
 surfa
es ofany degree. The �rst bene�ts from the low degree of quadri
s, while the se
ond requires amore sophisti
ated handling to e�
iently ta
kle the non-restri
ted input.This way, the implementation de
ouples geometri
 operations and 
ombinatorial in-formation. The 
ombinatorial output allows to 
onsider various utilizations by other ge-ometri
 algorithms, espe
ially if restri
ting to su
h that only involve a small number ofsurfa
es at a time.47 The reason is that the 
omplexity of ΩS is O(n5D5). We give abasi
 set of well-known examples: The framework supports the analysis and meshing ofa single surfa
e, the analysis and 
onstru
tion of a spa
e 
urve de�ned by two surfa
es,or the 
omputation of the lower envelope of surfa
es. It 
an also serve in the future as akey ingredient in a three-dimensional arrangement. Some of these appli
ations are evenalready available as software.We present experiments that show good performan
e. However, it must be remarkedthat the proje
tion step of our approa
h de�nes a bound on the pra
ti
al appli
ability47Either the task is de�ned su
h, or ea
h substep of the fo
ussed algorithm involves only some surfa
es.



191for high-degree surfa
es. The reason is that we have to 
onsider algebrai
 
urves of de-gree O(D2), where D is the largest degree that o

urs. Compared to that e�ort, the liftingonly requires a fra
tion of the total running time.The outline of the 
hapter is as follows: We next present related work. In �5.1 weintrodu
e the problem theoreti
ally and derive some 
onditions that surfa
es are requiredto ful�ll and identify simple tasks. How to realize them with algebrai
 surfa
es is explainedin �5.2. Then, �5.3 dis
usses the generi
 part of the implementation � the framework. Wealso introdu
e the Surfa
eTraits_3 
on
ept. We 
ontinue in �5.4 with the details on ourmodels. Both rely on the same proje
tion, but di�er in the lifting and adja
en
y tasks.Details on the individual handling of a verti
al line possibly 
ontained in an algebrai
surfa
e is postponed to this part of the 
hapter. A set of possible algorithms utilizingthe framework is surveyed in �5.5. We 
on
lude with experimental results in �5.6 and asummary in �5.7 that also shows further dire
tions.Main parts of this 
hapter are based on results obtained in 
ollaboration with Mi
haelKerber and Mi
hael Sagralo� from the Max-Plan
k-Institut für Informatik, Saarbrü
ken,Germany. They previously appeared in [BS08℄ and [BKS08℄.Related work Our strategy for algebrai
 surfa
es in general follows elimination the-ory [BPR06℄ and main ideas of the powerful 
ylindri
al algebrai
 de
omposition (
ad);see our introdu
tion in �2.1.6 that presents the basi
 algorithm and also a series of im-provements that redu
e the number of 
onsidered polynomials. A 
olle
tion of arti
lesemblazing di�erent aspe
ts of 
ad is given in [CJ98℄. Some ideas of our algorithm alreadyappeared in those arti
les; for other problems, we propose novel alternatives. We dis-
uss the similarities and di�eren
es with the appropriate referen
es when we dis
uss thealgorithm in detail.Many algorithms in 
omputational geometry 
an be expressed in terms of a 
ad-instan
e. A famous example is the Piano Mover's problem that is extensively dis
ussedin [SSH87℄. Unfortunately, many implementations, if any, avoid this te
hnique. We believefor two reasons. The �rst is the quite high 
omplexity of 
ad. The other is the algebrai
 fo-
us, that usually requires good knowledge of the topi
. Thus, with our framework we wantto 
lose the gap, between 
ad-te
hniques and implementations of algorithms in 
omputa-tional geometry. Our goal is to provide an easy-to-use framework, with full power on theanalysis of surfa
es, while always fo
using towards appli
ations in 
omputational geometry.As we de
ouple 
ombinatori
s from predi
ates, it depends on the model used, whether theinstantiated framework follows the exa
t 
omputation paradigm [Yap04℄. Note that mostgeneri
 implementations of geometri
 algorithms show an undetermined behavior or failto stop if instantiated with �oating-point arithmeti
. Thus, we strongly en
ourage to usethe framework with models relying on exa
t number types and to apply 
onsistent and
erti�ed �lters for speed-ups. Our models do so.If restri
ting to the three-dimensional 
ase, we already mentioned earlier Cgal's Nef_3pa
kage that provides a robust and e�
ient implementation of three-dimensional Nef-polyhedra; see [HKM07℄ and [HK07b℄. Its extension for quadri
s is 
urrently under devel-opment [HL08℄ relying on the parameterization of the the quadri
s' interse
tions [DHPS07℄.However, up to now, no 
omplete implementation for arrangements of algebrai
 surfa
esis available (even not for low degrees). [MTT05℄ presented a method to 
ompute arrange-ments of quadri
s using a spa
e-sweep. An implementation is missing. For two quadri
s,
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ation of Algebrai
 Surfa
es with Planar Arrangementsa spe
ialized proje
tion approa
h is available as software [BHK+05℄. In 
ontrast to thatwork, the proposed framework 
an deal with more than two quadri
s, allows more surfa
es,and does not pose any generi
 position assumptions. Thus, it 
an be interpreted as a keystep towards arrangements of surfa
es.Even if we restri
t to one or two surfa
es, our work 
onstitutes an important step.Prin
ipally, there are two approa
hes for the topology 
omputation of an algebrai
 surfa
e:One 
onsiders level-
urves of the surfa
e for 
ertain 
riti
al values and to 
onne
t the
omponents of these levels in order to obtain a topologi
al des
ription of the surfa
e;for example, Mourrain and Té
ourt [MT05℄ (see also [BCSM+℄), Fortuna et al. [FGL04℄,[FGPT03℄ (for non-singular 
urves), and Al
ázar et al. [ASS07℄ (with missing 
onne
tion)follow this idea. The other approa
h relies on a proje
tion of the 
riti
al points of thesurfa
e to the plane. The topology is then dedu
ed by lifting the features indu
ed by thisproje
tion. Note that our work falls into this 
ategory; see also Cheng et al. [CGL05℄ andthe mentioned relations to 
ad.It should be remarked that all algorithms that 
ompute a surfa
e's topology are similar,that is, they require to analyze 
urves and have to dete
t 
riti
al points of the surfa
e.This typi
ally involves resultant-
al
ulus or Groebner bases. To simplify, most algorithmsapply a linear (topology-preserving) shear; for example, [MT05℄, [FGL04℄, [FGPT03℄, and[CGL05℄ (for verti
al lines). We abstain from this strategy, as we also want to preservegeometri
 properties of the input. In addition, it seems not easy to derive a ba
k-shearalgorithm, as it is established in the planar 
ase; see [BKS08℄ and [EK08a℄.Unfortunately, pra
ti
al performan
es are not stated for any of these arti
les [MT05℄,[FGL04℄, [FGPT03℄, [ASS07℄, [CGL05℄, if they provide an implementation at all. Pra
ti
alresults are in
luded only for spe
ial sub-
lasses, su
h as quadri
s [BHK+05℄ and non-singular surfa
es [PV07℄. All other 
arry out symboli
 
omputations, or abstain fromreporting on implementations of 
ertain substeps.Re
ently, results on spa
e 
urves that are de�ned by the interse
tion of two surfa
eshave been published [Kah08℄, [AS05℄, [GLMT05℄, and [DMR08℄. The spe
ial 
ase of torithat are interse
ted by natural quadri
s has been analyzed by Reithmann [Rei08℄.In 
ontrast to all the previous work, our results pro�t from 
erti�ed approximativemethods that a

elerate the algorithm signi�
antly. We take this as the main reason ofthe overall good pra
ti
al performan
e of our algorithm.5.1. ProblemLet S = {S1, . . . , Sn} be a set of surfa
es, that is, two-dimensional manifolds in three-dimensional Eu
lidean spa
e. We next introdu
e our obje
tive formally, whi
h allows tosplit the problem into a set of subtasks. For p = (px, py) ∈ R2, we denote with ℓp =
{(px, py, z) ∈ R3} ⊂ R3 the verti
al line through p. We denote Vi := {p ∈ R2 | ℓp ⊂ Si}the set of all points p ∈ R2 where Si 
ontains the verti
al line ℓp. Let V =

⋃
1,...,n Vi.We ta
kle the following abstra
t problems, that is, we 
onsider a surfa
e as set ofpoints.Problem 5.1 (Interse
tions with verti
al line). Given a set of surfa
es S, 
ompute for anarbitrary point p ∈ R2 the ordered sequen
e of interse
tions of all Si ∈ S with ℓp (or that

ℓp ∩ Si = p×R).
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ode the sequen
e of interse
tions of Si ∈ S, i = 1, . . . , n, with ℓp we usean ordered sequen
e of subsets:De�nition 5.2 (z-pattern). We 
all the sequen
e Wp,S = wp,1, . . . , wp,k of subsets of
{1, . . . , n} a z-pattern with respe
t to p and S. The pattern also 
omprises a subset
w

|
p := {i ∈ {1, . . . , n} | p ∈ Vi}. All subsets 
an be empty.Intuitively, Wp,S des
ribes how the surfa
es behave along ℓp. Some of them are verti
alat p, the remaining ones have �nite interse
tions with ℓp. Ea
h wp,l 
orresponds to a z-
oordinate zl where at least one su
h surfa
e interse
ts ℓp, that is, wp,l := {i ∈ {1, . . . , n} |

(p, zl) ∈ Si}.Example 5.3. Consider S = {S1, S2} 
onsisting of two unit spheres: S1 
entered at the originand S2 
entered at (0, 0,−2). That is, the south pole of S1 interse
ts with the north poleof S2. This is the only interse
tion of the spheres. Let p1 = (0, 0), p2 = (1
2 , 0), p3 = (1, 0),and p4 = (2, 0).Then, ∀h = 1 . . . 4 we have w

|
ph

= ∅. The other sequen
es are: Wp1,S = {2}, {1, 2}, {1}.
Wp2,S = {2}, {2}, {1}, {1}, Wp3,S = {2}, {1}, while Wp4,S is an empty sequen
e.If we �x p, Problem 5.1 
an be split into two, the 
onse
utive Problems 5.4 and 5.22.Problem 5.4 (Compute z-pattern). Given a surfa
e Si and a point p ∈ R2 
ompute Wp,{Si}.We require the following 
ondition.Condition 5.5 (Finite number of verti
al lines). For a given surfa
e Si it holds |Vi| is�nite. This implies that V also has �nite size.We introdu
e the following 
ontainer.De�nition 5.6 (z-�ber). Let Si ∈ S, p = (px, py) ∈ R2. A �nite subset Zp,i ⊂ {z ∈ R |
(px, py, z) ∈ Si} ∪ {±∞} is 
alled z-�ber of Si at p. We sort its mp,i + 2 elements in thefollowing way:

−∞ = zp,i,−1 < zp,i,0 < . . . < zp,i,mp,i−1 < zp,i,mp,i
= +∞Whereas the 
ontainer is intended to en
ode the interse
tions of a surfa
e Si with ℓp for

p /∈ Vi, its purpose for p ∈ Vi is to store interesting z-
oordinates of Si. Its a
tual 
ontentwith respe
t to p ∈ Vi is spe
i�ed in De�nition 5.10 and �xed by the Conditions 5.7 and 5.9that de�ne how surfa
es are allowed to be 
onne
ted.We 
on
entrate on the fa
t, that mp,i denotes its number of �nite elements. In general,we 
annot 
ompute Zp,i for all p ∈ R2. Thus, we aim for a subdivision of the planeinto �nitely many (relatively) open and 
onne
ted 
ells of dimension 0, 1, and 2 with theproperty that all points of a 
ell 
arry the same m-value. Su
h a �nite subdivision 
an berepresented as a planar arrangement; see �2.4. More detailed, we aim for surfa
es to ful�llthe following 
ondition.Condition 5.7 (Finite surfa
e arrangement). Given a surfa
e Si ∈ S. An arrangement
A{Si} with the following properties exists:
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• A{Si} 
onsists of a �nite number of 
ells and is indu
ed by a �nite number of 
on-tinuous 
urves and a �nite number of isolated points.
• A{Si} 
ontains every point in Vi as vertex.
• Ea
h 
ell Γ of A{Si} is invariant with respe
t to m, that is, ∀p1, p2 ∈ Γ : mp1,i =

mp2,i =: mΓ,i.Su
h an arrangement is 
alled mi-invariant.As a 
onsequen
e, it su�
es to only 
onsider a sample point pΓ of a 
ell Γ, if one issimply interested in mp,i for any point p ∈ Γ. This pie
e of information is valid for thewhole 
ell. On the other hand, geometry is lo
al to the point: In general, the entries of
Zp1,i di�er from Zp2,i if p1 6= p2, even if p1, p2 ∈ Γ. Anyhow, we denote, for 
onvenien
e,the z-�ber of Γ's sample point pΓ with ZΓ,i. It is possible to lift Γ:De�nition 5.8 (Lift). Let Si be a surfa
e, and Γ be an mi-invariant set. For ea
h l =
0, . . . ,mΓ,i, the l-th lift of Si over Γ is given by

Γ(l,i) := {(px, py, zp,i,l) ∈ Γ× R | zp,i,l ∈ Zp,i}Lifts allow to de
ompose Si into open 
ells, whi
h requires Condition 5.9. Below, weintrodu
tion de
ompositions formally.It is missing, how the entries of ZΓ1,i and ZΓ2,i, for Γ1,Γ2 being 
ells of A{Si}, arerelated, and, thus, en
odes the adja
en
ies of lifts. Let us introdu
e a 
ondition that helpsto pre
isely de�ne this relation.Condition 5.9 (Continuation). Let Si ∈ S, A{Si} an mi-invariant arrangement, and Γ1,Γ2being two 
ells of it with dim(Γ1) > 0. Then, Si is 
ontinuous in the following sense:1. Let pt ∈ Γ1 be a sequen
e of points with a unique limit in Γ2, that is, limt→∞ pt = p ∈
Γ2. Let Zpt,i =

{
zpt,−1, . . . , zpt,i,mΓ1,i

}. Then, for any l ∈ {0, . . . ,mΓ1,i − 1} we have
{limt→∞ zpt,i,l | pt ∈ Γ1 with pt → p} = [zp,i,v−

l
, zp,i,v+

l
] =: Ip,i,l with zp,i,v±

l
∈ Zp,iand limt→∞ zpt,i,l1 ≤ limt→∞ zpt,i,l2 for −1 ≤ l1 < l2 ≤ mΓ1,i.2. For p 6∈ Vi ea
h interval [zp,i,v−l

, zp,i,v+
l
] 
onsists of exa
tly one point, that is, zp,i,v−l

=
zp,i,v+

l
.Note that the number of intervals [zp,i,v−

l
, zp,i,v+

l
] must be �nite, as mΓ1,i is �nite.This neighborhood-relation su�
es to en
ode the 
onne
tivity of all lifted 
ells. Weremark that from the above 
onditions it follows that ea
h 
ell Γ ∈ A{Si} \ Vi is theproje
tion of mΓ,i 
onne
ted, disjoint 
ells of Si respe
tively. Note the similar notation ofdelineation in �2.1.3. For p ∈ Vi the intervals [zp,i,v−

l
, zp,i,v+

l
] play an important role whende
omposing ℓp in De�nition 5.28.Whereas the z-�ber at a point p /∈ Vi is determined pre
isely, its 
ontent at points

p ∈ Vi is only impli
itly given by the 
hosen arrangement and Condition 5.9:De�nition 5.10 (Content of z-�ber). For a surfa
e Si ∈ S with mi-invariant arrange-ment A{Si} the entries of the z-�ber Zp,i are de�ned as follows:
• Zp,i := {z ∈ R | (px, py, z) ∈ Si} ∪ {±∞} for p 6∈ Vi

• Zp,i := {z ∈ R | ∃Γ ∈ A{Si}, l ∈ {−1, . . . ,mΓ,i} su
h that z is an endpoint of some
IΓ,i,l} for p ∈ Vi



5.1. Problem 195Problem 5.11 (Compute z-�ber). For given surfa
e Si ∈ S and given point p ∈ R2,
ompute Zp,i, even if p ∈ Vi. For an illustration see Figure 5.1.

p

ℓp

Figure 5.1. Computing the z-�ber for a surfa
e at given point: We aim to represent�nite entries as re�neable intervals.It remains to 
ompute the 
onne
tions between lifted 
ells whi
h is en
oded in termsof 
onne
tions between lifted sample points.Problem 5.12 (Adja
en
y). Given A{Si} for a surfa
e Si ∈ S. Let Γ1,Γ2 denote in
ident
ells of A{Si} and p1, p2 their respe
tive planar sample points. Then, we are interestedin how an entry of Z1 := ZΓ1,i is 
onne
ted with the intervals de�ned by the entries of
Z2 := ZΓ2,i. We are asking for a list L of pairs (a, b) ∈ A× B, with A := {−1, . . . ,mΓ1,i}and B := {−1, . . . ,mΓ2,i}. We distinguish 5 
ases for a �xed a0 ∈ {0, . . . ,mΓ1,i − 1}:
{b | (a0, b) ∈ L} = ∅: Indi
ates, that there exists no 
ontinuous path on Si whose 
losure
onne
ts (p1, zp1,i,a0) with some (p2, zp2,i,b), b ∈ B.
{b | (a0, b) ∈ L} = {b0} ∧ b0 6∈ {−1,mΓ2,i}: The pair (a0, b0) then denotes the existen
e ofa 
ontinuous path on Si, lying over Γ1, whose 
losure 
onne
ts (p1, zp1,i,a0) with

(p2, zp2,i,b0).
{b | (a0, b) ∈ L} = {b0} ∧ b0 = −1 (or b0 = mΓ2,i): The pair (a0, b0) denotes the existen
eof a 
ontinuous path, lying over Γ1, whose 
losure 
onne
ts (p1, zp1,i,a0) with thein�nite �point� (p2,−∞) (or (p2,+∞)), that is, Si has a verti
al asymptote withrespe
t to z at p2.
|{(a0, b) ∈ L}| = 2: Let (a0, b0) and (a0, b1) be these pairs. They denote the existen
e ofan in�nite number of 
ontinuous paths on Si, lying over Γ1, su
h that exa
tly allpoints (p2, z), z ∈ [zp2,i,b0, zp2,i,b1 ] are 
onne
ted with (p1, zp1,i,a0) by 
onsidering the
losure of a path. In 
ase that b0 = −1 or b1 = mΓ2,i, the interval is meant to beopen at that end.For an illustration we refer to Figure 5.2. The 
ase distin
tion is analogue for �xed
b0 ∈ {0, . . . ,mΓ2,i − 1}. Note that we only 
ompute adja
en
ies between zero-, one-, andtow-dimensional 
ells. The adja
en
ies to three-dimensional open 
ells are given impli
itlyby them and the proje
tion te
hnique.
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(1, 0)

(0, 0)

Figure 5.2. Compute adja
en
y relation of in
ident z-�bersWe next turn to 
onsider more than one surfa
e and we already state the �rst 
onditionthat 
hara
terizes the surfa
es' interse
tions. In what follows, let always Si, Sj ∈ S with
i 6= j.Condition 5.13 (One-dimensional interse
tion). dim(Si ∩ Sj) ≤ 1.Similar to the single-surfa
e 
ase, we introdu
e an abstra
t 
ontainer:De�nition 5.14 (Multi-surfa
e z-�ber). Let S = {S1, . . . , Sn} be a set of surfa
es and
p = (px, py) ∈ R2. A �nite subset Zp,S ⊂ {z ∈ R | ∃i ∈ {1, . . . , n} : (px, py, z) ∈ Si}∪{±∞}is 
alled multi-surfa
e z-�ber of S at p. We sort the entries of Zp,S:

−∞ = zp,S,−1 < zp,S,0 < . . . < zp,S,mS−1 < zp,S,mS
= +∞Its purpose is to store the interse
tions of S with ℓp if p 6∈ V. In 
ase that p ∈ V, wewant to store interesting z-
oordinates that de
ompose ℓp into a �nite number of openintervals. The value mp,S denotes the number of �nite entries of a multi-surfa
e z-�ber.In De�nition 5.26 we also introdu
e multi-surfa
e lifts, whi
h pose a 
entral tool for ourintended 
ell de
omposition. But before, we remark that su
h a �ber 
an be related tosingle-surfa
e z-�bers, in parti
ular for two given surfa
es:De�nition 5.15 (mp,i,j). Let Si, Sj ∈ S, i 6= j and let p ∈ R2 \ (Vi ∪ Vj). Then mp,i,j :=

|{z ∈ Zp,S | z ∈ Zp,i ∧ z ∈ Zp,j}|. A 
onne
ted set of points Γ is 
alled mi,j-invariant if
mp1,i,j = mp2,i,j for p1, p2 ∈ Γ with p1 6= p2. We de�ne mΓ,i,j := mp,i,j for some p ∈ Γ.Again, we 
annot 
ompute multi-surfa
e z-�bers for an in�nite number of points. Thisfa
t founds another 
ondition on two surfa
es (and thus on any number of surfa
es). Similarto the single-surfa
e 
ase, we want to group points into sets:Condition 5.16 (Finite two-surfa
e arrangement). Given surfa
es Si, Sj ∈ S, i 6= j. Anarrangement A{Si,Sj} exists, with:
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• A{Si,Sj} 
onsists of a �nite number of 
ells and is indu
ed by a �nite number of
ontinuous 
urves and a �nite number of isolated points.
• A{Si,Sj} 
ontains every point of Vi ∪ Vj as a vertex.
• For ea
h 
ell Γ of A{Si,Sj}\Vi∪Vj, the following equations hold: ∀p1, p2 ∈ Γ : mp1,i =

mp2,i,mp1,j = mp2,j,mp1,i,j = mp2,i,j.Su
h an arrangement is 
alled mi,j-invariant.Remark. Observe that A{Si,Sj} is an mi- and mj-invariant arrangement.Again, it su�
es to 
hoose a sample point pΓ, in 
ase, one is only interested in the 
ell-related information mΓ,i,j. In addition, it holds that ∀p1, p2 ∈ Γ : W{Si,Sj},p1
= W{Si,Sj},p2

.Note that geometri
 information 
an be dedu
ed from the individual �bers Zp,i and Zp,j,for any p ∈ Γ, but typi
ally we use p = pΓ.Condition 5.17 (Continuation for two surfa
es). Let S = {Si, Sj}, A{Si,Sj} an mi,j-invariant arrangement and Γ1,Γ2 being two 
ells of it with dim(Γ1) > 0.1. Let pt ∈ Γ1 be a sequen
e of points with limt→∞ pt = p ∈ Γ2, and Zpt,S ={
zpt,−1, . . . , zpt,S,mΓ1,S

}. For any l ∈
{
0, . . . ,mΓ1,S − 1

} we have {limt→∞ zpt,S,l |
pt ∈ Γ1 with pt → p} = [zp,S,v−

l
, zp,S,v+

l
] =: Ip,S,l with zp,S,v±

l
∈ Zp,S. In addition,

limt→∞ zpt,S,l1 ≤ limt→∞ zpt,S,l2 for −1 ≤ l1 < l2 ≤ mΓ1,S.2. For p 6∈ Vi ∪ Vj ea
h interval [zp,S,v−l
, zp,S,v+

l
] 
onsists of exa
tly one point, that is,

zp,S,v−l
= zp,S,v+

l
.Note again that the number of intervals [zp,S,v−l

, zp,S,v+
l
] must be �nite, as mΓ1,S is�nite.It is no surprise that we next want to de�ne the a
tual 
ontent of a multi-surfa
e z-�ber, followed by some remarks on the adja
en
y 
omputation. We 
an assume that S
onsists of two surfa
es Si and Sj. The extension to any number is straightforward.An impli
ation of Condition 5.13 and Condition 5.17 is that ea
h non-verti
al part

Si ∩ Sj is expe
ted to have a unique end-point (p, pz), even if p ∈ Vi ∪ Vj . In addition,we have: If p 6∈ Vi then pz = zp,i,l′i
for some l′i and if p 6∈ Vj then pz = zp,j,l′j

for some l′j .Following, (Zp,i ∪ Zp,j) \ {±∞} 
omprises all z-
oordinates of Si ∩ Sj ∩ ℓp for p 6∈ Vi ∪ Vj .Thus, for su
h p we 
an de�ne Zp,{Si,Sj} := Zp,i ∪ Zp,j, whi
h 
onstitutes the easy 
aseof De�nition 5.20. In 
ontrast, if p ∈ Vi ∪ Vj , there is no su
h dire
t solution. We de�neanother set, whi
h also implies a problem to solve:De�nition 5.18 (Z |
p,i,j). Consider the setting as in Condition 5.17, that is, S = {Si, Sj}.Let p ∈ Vi ∪ Vj . Then Z

|
p,i,j := {z ∈ R | ∃Γ ∈ AS, l ∈ {−1, . . . ,mΓ,S} su
h that z is anendpoint of some IΓ,S,l}.Remark. A
tually, it is valid to also de�ne Z

|
p,i,j for any p ∈ R2. But nothing is won bydoing so, as, by Condition 5.9, we have Z

|
p,i,j ⊂ Zp,i ∪ Zp,j.Problem 5.19 (Compute Z

|
p,i,j). For given Si, Sj with i 6= j, and p ∈ Vi∪Vj, 
ompute Z

|
p,i,j.
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ation of Algebrai
 Surfa
es with Planar ArrangementsDe�nition 5.20 (Content of multi-surfa
e z-�ber). Let S = {S1, . . . , Sn} be a set ofsurfa
es and p ∈ R2. Then
Zp,S =




⋃

i={1,...,n}

Zp,i



 ∪




⋃

p∈Vi∪Vj ,i6=j

Z
|
p,i,j



is 
alled the multi-surfa
e z-�ber of S at p.Problem 5.21 (Compute Zp,S). For given S and p ∈ R2, 
ompute Zp,S.Observe that the z-pattern for p ∈ R2 \ V 
an be de�ned in terms of Zp,S. We have
∀0 ≤ l ≤ mS − 1 :

wp,l := {i ∈ {1, . . . , n} | zp,S,l ∈ Zp,S : zp,S,l ∈ Zp,i} (5.1)The z-pattern for p ∈ V requires to also 
onsider Z
|
p,i,j. To a
tually 
ompute Zp,S inboth 
ases, for example, with a multi-way merge algorithm, we must be able to de
ide thefollowing problem:Problem 5.22 (Compare entries of z-�bers). Let Si, Sj ∈ S, i 6= j. Given a point p and

zp,i,li ∈ Zp,i and zp,j,lj ∈ Zp,j de
ide whether zp,i,li < zp,j,lj , zp,i,li = zp,j,lj , or zp,i,li > zp,j,lj .A similar 
omparison is required for zp,i,li ∈ Zp,i and z
|
p,i′,j′,li′,j′

∈ Z
|
p,i′,j′, for i′ 6= j′. Thisproblem is illustrated in Figure 5.3.

=
?

Figure 5.3. Che
k whether two z-�ber entries have equal z-
oordinateNote that this 
onstitutes a solution to Problem 5.1. A
tually, we learn in �5.3.1 thatthe equality de
ision is su�
ient to 
ompute the multi-surfa
e z-�ber and the 
orresponding
z-pattern. The reason is that we represent ea
h ±∞ 6= zp,i,l ∈ Zp,i (and so the entriesof Z

|
p,i,j) with a re�neable interval approximation. If su�
iently re�ned, it is easy tode
ide < and >, while for = the re�nement would never stop. Thus, we need to de
ide itexternally.Let us �nally 
olle
t the missing tasks. Note that Problem 5.24 
onstitutes the 
entralobje
tive of our work.



5.1. Problem 199Problem 5.23 (Compute planar arrangements). For given surfa
es Si, Sj ∈ S, i 6= j,
ompute A{Si}, A{Sj}, and A{Si,Sj}. Figure 5.4 shows the di�erent 
ases.Figure 5.4. Compute planar arrangements
(a) Compute A{Si} and A{Sj} (b) Compute A{Si,Sj}Problem 5.24 (Compute AS, 
ompute z-�bers and their adja
en
y relation). Given aset of surfa
es S ful�lling the listed 
onditions. Compute a �nite planar arrangement ASwith the property that for ea
h of its 
ells Γ it holds: ∀p1, p2 ∈ Γ : WS,p1

= WS,p2
. Inaddition, we want to solve Problem 5.25, that is, to 
ompute the adja
en
y relation ofentries of multi-surfa
e z-�bers; see also Figure 5.5.Problem 5.25 (Multi-surfa
e adja
en
y). Given AS for a set of surfa
e S. Let Γ1,Γ2denote in
ident 
ells of AS and p1, p2 their respe
tive planar sample points. Then, we areinterested in how an entry of ZΓ1,S is 
onne
ted with the intervals de�ned by the entriesof ZΓ2,S. The output is identi
al to Problem 5.12.

Figure 5.5. De
ompose S into a �nite number of lifted 
ells and 
ompute their adja-
en
y relationIt is 
lear that lifting the overlay of all arrangements A{Si} and A{Si,Sj} and 
omputingthe adja
en
y relation of their lifts 
onstitutes a solution to Problem 5.24. We 
laim thatthe framework that we present in �5.3 implements this solution using subalgorithms forProblems 5.23 (planar arrangements), 5.11 and 5.19 (z-�bers), 5.22 (
ompare entries of z-�bers), and 5.12 (adja
en
y). The last is used to derive the desired 
onne
tivity of entriesof z-patters from the 
onne
tivities of z-�bers of single surfa
es. Only in 
ase that some
ell 
ontains p ∈ V we have to solve a spe
ial sub
ase of Problem 5.25 as well.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsCell de
ompositionsWe next introdu
e de
ompositions of surfa
es into 
onne
ted 
ells of dimension 0, 1, and 2using planar arrangements and z-�bers. However, one de�nition is missing for this purpose:De�nition 5.26 (Multi-surfa
e lift). Let S be a set of surfa
es, and Γ be a set with 
onstant
z-pattern WΓ,S for all points p ∈ Γ. For l = 0, . . . ,mΓ,S − 1, the l-th multi-surfa
e lift of
S over Γ is given by

Γ(l,S) := {(px, py, zp,S,l) ∈ Γ× R | zp,S,l ∈ Zp,S}Note that for �xed l0 it holds that Γ(l0,S) = Γ(li,i) with li ∈ wΓ,l0 and that in 
ase ofan interse
tion we have |wΓ,l0 | > 1. Multi-surfa
e lifts are essential for our de
omposition.In addition, spe
ial diligen
e is required for verti
al lines 
ontained in a surfa
e. But, westart with a simple 
ase:De�nition 5.27 (Cell de
omposition of Si without verti
al line). Let Si be a surfa
e,with Vi = ∅ and A{Si} ful�lling Condition 5.7. Let Γ ∈ A{Si}, ZΓ,i its z-�ber, and mΓ,ithe number of �nite elements in ZΓ,i. The 
ell de
omposition Ω{Si} is de�ned as
Ω{Si} :=

⋃

Γ∈A{Si}




⋃

l=0,...,mΓ−1

{Γ(l,i)}



For given Si and Sj, j 6= i, we 
an also use A{Si,Sj} (instead of A{Si}) to support Ω{Si},as A{Si,Sj} also ful�lls Condition 5.7. However, this typi
ally results in a larger number of
ells.We next extend De�nition 5.27 to give a 
ell de
omposition for a surfa
e Si that also
omprises verti
al lines. Remember that the set of verti
al lines is �nite. The idea is to alsode
ompose ea
h ℓp with p ∈ Vi into segments and rays respe
ting the intervals boundariesarising from Condition 5.9.De�nition 5.28 (Cell de
omposition of Si with verti
al line(s)). Let Si be a surfa
e withan arrangement A{Si} ful�lling Condition 5.7. For p ∈ Vi, let ωp denote the partition of ℓpinto elements of Zp,i and their indu
ed intervals of R. We de�ne
Ω{Si} :=

⋃

Γ∈A{Si}
\Vi




⋃

l=0,...,mΓ−1

{Γ(l,i)}



 ∪
⋃

p∈Vi

ωpWe turn to the 
ase of multiple surfa
es 
ontained in a set S. For this obje
tive, webase the de�nition of ΩS on the planar arrangement AS.De�nition 5.29 (Cell de
omposition of S). Let S be a set of n surfa
es and AS as 
om-puted by Problem 5.24. For p ∈ V, let ωp denote the partition of ℓp into elements of Zp,Sand their indu
ed intervals of R.
ΩS :=

⋃

Γ∈AS\V




⋃

l=0,...,mΓ,S−1

{Γ(l,S)}



 ∪
⋃

p∈V

ωp



5.1. Problem 201In �5.2.4 we show that these de
ompositions 
onstitutes strati�
ations of algebrai
surfa
es and also state bounds on the strati�
ations' 
omplexities.The 
ells of a de
omposition Ω with respe
t to De�nition 5.27, 5.28, and 5.29 are,by 
onstru
tion, 
onne
ted. However, sometimes it might be advantageous to a
hievesimply 
onne
ted 
ells. Remember that a 
ell is simply 
onne
ted if ea
h 
y
le in a 
ell is
ontra
tible to a point. Thus, we show how Ω 
an be transformed into a de
omposition
Ω′ 
onsisting of simply 
onne
ted 
ells only. Remember that in order to obtain Ω wehomeomorphi
ally lift a planar arrangement A. Thus, the main idea is Algorithm 5.1 thatre�nes some arrangement A into an arrangement A′ of simply 
onne
ted 
ells. We showin Proposition 5.31 that A′ and has the same 
omplexity as A. Noti
e that only 
ells ofdimension 1 and 2 of an arrangement A 
an be non-simply 
onne
ted.Algorithm 5.1. Re�ne A into simply 
onne
ted 
ellsInput: Planar arrangement AOutput: A′ 
onsisting of simply 
onne
ted 
ells only
• Transform A into a planar graph G by mapping its zero-dimensional 
ells to nodes,and its one-dimensional 
onne
ted 
ells to edges.
• A one-dimensional 
ir
ular edge is made simply 
onne
ted by adding a new vertex;see the squared verti
es in the Figure 5.6.
• We are left with non-simply 
onne
ted fa
es. While G 
ontains a bounded 
onne
ted
omponent:� Choose su
h a 
omponent and 
onne
t its y-minimal point downwards using averti
al ar
 until it rea
hes another 
omponent of G (or if this does not happen,the ar
 goes to −∞); see dashed lines in Figure 5.6.

Figure 5.6. How to make 
ells of an arrangement A simply 
onne
ted? Break one-dimensional 
ir
les (squares) and add verti
al ar
s (dashed). Ea
h resulting fa
e issimply 
onne
ted.Observe that ea
h su
h ar
 either merges two 
onne
ted 
omponents, or turns one ofthem unbounded. Thus, it is 
lear that the algorithm terminates, and produ
es a graphwithout bounded 
onne
ted 
omponents. Some properties and results of the algorithm:
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsProposition 5.30. Ea
h 
ell of A′ is simply 
onne
ted.Proof. Assume for a 
ontradi
tion that there is a 
ell Γ of A′ whi
h is not simply 
onne
ted.Clearly, Γ 
annot be one-dimensional as we split all 
y
les. So assume that Γ is a fa
e.Sin
e it is not simply 
onne
ted, there is a 
y
le C that is not 
ontra
tible. Hen
e, itsinterior 
ontains a 
onne
ted 
omponent, whi
h must be bounded. That 
ontradi
ts thefa
t that there is no bounded 
onne
ted 
omponent.Proposition 5.31. The 
omplexity of A′ is the same as A.Proof. Noti
e that for ea
h 
onne
ted 
omponent of G, we introdu
e at most one edge andtwo verti
es and split at most one fa
e. The number of 
onne
ted 
omponents is upperbounded by the number of fa
es of A. We add at most 4 
ells for ea
h fa
e of A. Thisproves that we do not in
rease the 
omplexity.Remarks.
• In the terminology of Cgal's Arrangement_2 (see �2.4.3), we introdu
e a �nite num-ber of new (verti
al) edges that su
h ea
h inner CCB gets 
onne
ted to the outerCCB of the fa
e it belongs to. This means, that no fa
e has an inner CCB andonly one outer CCB. In addition, ea
h isolated vertex is also 
onne
ted to the outerCCB of the fa
e that 
ontains the point by a new (verti
al) edge. An unboundedfa
e is 
onne
ted with the impli
it �
titious outer CCB (see Figure 4.9 (a)). As aresult, ea
h (non-�
titious) fa
e has neither an inner CCB nor an isolated vertex. Byde�nition, su
h a fa
e in a planar arrangement is simply 
onne
ted.
• The 
omputed graph indu
es a re�ned arrangement A′ of A. If the 
ells of A 
omprisedata, the newly added 
ells obviously inherit the atta
hed data of the 
ell they arein
luded.In what follows we only 
onsider the single-surfa
e 
ase, as the multi-surfa
e 
ase is itsnatural extension and the 
orresponding adaptions for multi-surfa
e 
ell-de
ompositions

Ω are straightforward.The arrangement A′
{S} implies a 
ell de
omposition Ω′

{S} by lifting the 
ells of A′
{S};similar to De�nition 5.27.Proposition 5.32. Ea
h 
ell of Ω′

{S} is simply 
onne
ted.Proof. Ea
h 
ell ω′ of Ω′
{S} is the homeomorphi
 image of a (simply 
onne
ted) 
ell Γ′of A′

{S}. It follows that ω′ is simply 
onne
ted as well.We mention that this re�nement into simply 
onne
ted 
ells has not yet been integratedinto our implementation that we present in �5.3.5.2. Operating algebrai
 surfa
esWe next 
on
entrate on algebrai
 surfa
es. Su
h a surfa
e Si is de�ned by a trivariate poly-nomial fi ∈ Q[x, z, y] of total degree Di. We refer to degz(fi) as Dz,i. We 
an assume that
fi is square-free and primitive, that is, Si 
ontains no irredu
ible 
omponent twi
e, and hasno two-dimensional verti
al 
omponent. In addition, ea
h pair Si, Sj, with i 6= j is de�ned
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 surfa
es 203by 
oprime polynomials. If the input does not ful�ll these 
onditions, we 
an de
omposepairs of non-
oprime surfa
es into (up to three) 
oprime ones and apply a square-free fa
-torization as in �2.1.1. In other words: We treat verti
al and multiple parts of ea
h inputsurfa
e separately. The interse
tion of two surfa
es is at most one-dimensional. Note thatfor a �xed i we sometime use Si = VR(fi) = VR(aDz,i
zDz,i+, . . . +, a0z

0).We �rst, as in �5.2.1, 
onsider z-�bers of a single surfa
e and remember algebrai
entities derived related to z-�bers that help to 
onstru
t the desired planar arrangements
A{Si} and A{Si,Sj} in �5.2.2 without the need to a
tually 
ompute the �bers. But werequire them for the a
tual lifting. �5.2.3 shows that the 
ontinuation 
onditions areful�lled, while �5.2.4 revives the 
ell de
ompositions from �5.1 for algebrai
 surfa
es. Wealso show that algebrai
 surfa
es 
ompletely ful�ll the 
onditions raised in �5.1. At theend of this se
tion we give a short link to semi-algebrai
 surfa
es.5.2.1. z-�bersDe�nition 5.33. Let Si ∈ S be an algebrai
 surfa
e de�ned by the vanishing set of fi. The
z-�ber of a point p := (px, py) ∈ R2 \ Vi is

Zp,i := {z ∈ R | fi(px, py, z) = 0}Note that this de�nition omits to de�ne z-�bers for p ∈ Vi, as for su
h points {z ∈
R | fi(px, py, z) = 0} = R. This 
ontrasts De�nition 5.6 that expe
ts |Zp,i| to be �nite.To ta
kle this task, we below introdu
e three polynomials whose roots de�ne the desiredentries. Thus, the formal spe
i�
ation of su
h a z-�ber is postponed to De�nition 5.61 onpage 232 of �5.4.2. For now, we only rely on the fa
t that Zp,i with p ∈ Vi de
omposes ℓpinto a �nite number of pie
es.To 
ompute Zp,i we require a method that is able to isolate the real roots of thepolynomial fi(p) := fi(px, py, z) ∈ R[z], where p's 
oordinates are algebrai
ally de�ned,whi
h 
onstitutes the �rst problem: fi(p) ∈ R[z] has algebrai
 
oe�
ients for many z-�bers
omputed by our method. A se
ond problem is that fi(p) might have multiple roots.Theorem 5.34 (Complexity of z-�ber for p 6∈ Vi). Let S be an algebrai
 surfa
e of degree
D and p 6∈ Vi. Then, |Zp,i| ≤ D.Proof. fi(p) := fi(px, py, z) ∈ R[z] de�nes Zp,i and deg(fi(p)) ≤ Dz,i ≤ D.Let us derive additional exa
t values on fi(p) in order to simplify the desired 
ompu-tation.De�nition 5.35 (Lo
al degrees). Let p be as above. The lo
al degree dp,i is the degree of
fi(p) in z. We also say that p is dp,i-regular. In 
ase that fi(p) ≡ 0, dp,i = −∞. The lo
alg
d degree kp,i is the degree of gcd(fi(p), ∂

∂zfi(p)). We also say that p has degradation kp,i.The lo
al real degree mp,i is the number of distin
t real roots of fi(p).How to 
ompute these values? We start with the lo
al degree dp,i. Remember that
fi =

∑Dz,i

d=0 ad(x, y)zd. If fi is z-regular, we are done. This 
an be 
he
ked by determiningwhether degz(fi) = D, that is, whether ∀x, y ∈ R we have aDz,i
(x, y) = c 6= 0. Otherwise,we 
ompute dp,i := max{d | ad(px, py) 6= 0} by starting with d = Dz,i and stopping assoon as ad(px, py) 6= 0. If even a0(px, py) = 0, then p ∈ Vi (remember that we ex
ludedthat S is 
ompletely verti
al). In this 
ase dp,i := −∞.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsFor 
omputing mp,i and kp,i we refer the reader to Algorithm 2.10 on page 36 that is aspe
ialized form of Algorithm 2.3. The algorithm relies on Sturm-Habi
ht sequen
es (seeDe�nition 2.11) to obtain the number of real roots of fi(p). It is important to use a properredu
tum of fi if dp,i 6= Dz,i; see also Lemma 2.19. Sturm-Habi
ht sequen
es are similar tosigned subresultants. Thus, we en
ourage to follow the remark and invitation on page 28to bene�t from 
omputed sequen
es when aiming for kp,i; see also Lemma 2.13.It must be said, that the spe
ialization property (see Theorem 2.10) is 
entral to this
omputation, as, in parti
ular, we only know restri
ted information on p: We will knowre�neable interval approximations px and py and we will be able to 
he
k whether p lieson some planar 
urve. This is a perfe
t setting for the bitstream Des
artes method.We des
ribe in detail how to use this method in 
ombination with the 
omputed valuesin �5.2.1. That part also dis
usses the missing 
ase of how to 
ompute the entries of Zp,i(and Zp,S) for p ∈ Vi.5.2.2. Planar arrangementsWe next present (
onstru
tive) de�nitions for the desired arrangements A{Si} and A{Si,Sj}for algebrai
 surfa
es Si, Sj ∈ S, Si 6= Sj. We do not only prove that su
h arrangementsexist, but also try to keep their sizes almost minimal with respe
t to the number of fa
es,edges, and verti
es.Constru
ting A{Si}Remember the lo
al degrees from De�nition 5.35 that give additional information on z-�bers of a single surfa
e Si. In this part we 
onstru
t an arrangement A{Si}, whose 
ellshave invariant d and k. Following �5.2.1 the points of a 
ell also share the same m. As anarrangement 
onsists of �nitely many 
ells this 
onstru
tion shows that Condition 5.7 isful�lled for an algebrai
 surfa
e Si. Impli
itly, we also show Condition 5.5. Consequently,we are able to 
onstru
t z-�bers over any point of the plane, sin
e all algebrai
 information(lo
al degrees) 
an be stored along ea
h 
ell of A{Si} and is valid for ea
h of the 
ell's points.De�nition 5.36 ((d,k)-invarian
e). A 
onne
ted set Γ ⊂ R2 is 
alled (d,k)-invariant withrespe
t to a surfa
e Si = V (fi) if the lo
al degree dΓ,i := dp,i and the lo
al g
d degree
kΓ,i := kp,i of fi are invariant for all p ∈ Γ. A (d,k)-arrangement for Si is a planararrangement whose verti
es, edges, and fa
es are (d,k)-invariant with respe
t to Si.The delineability (see De�nition 2.21) of fi on any (d,k)-invariant set has also beenshown by Collins in his seminal work on 
ylindri
al algebrai
 de
omposition [Col75℄. Re-member the impli
ation: The (real) lift over the set is the union of mp,i disjoint fun
tiongraphs (also known as sheets; see �2.1.5). A slightly weaker version is:Theorem 5.37. Let Γ be a (d,k)-invariant set for V (fi). Then, ea
h p ∈ Γ has the samelo
al real degree mΓ,i. Even more: For ea
h l = 0, . . . ,mΓ,i− 1, the l-th lift Γ(l,i) over Γ is
onne
ted.Proof. The number of distin
t 
omplex roots over a (d,k)-invariant set is 
onstantly d− k.The roots of fi(p) 
ontinuously depend on p, thus, in an open neighborhood of any pointon Γ the imaginary roots stay imaginary. As the total number of roots is preserved and
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 surfa
es 205imaginary roots only appear together with its 
omplex 
onjugate, the real roots also remainreal; see [Col75, Theorem 1℄ for more details.The next 
onstru
tion also appears in Collins' work [Col75, Theorem 4℄:Theorem 5.38 (Existen
e of (d,k)-invariant). For ea
h algebrai
 surfa
e Si, there existsa (d,k)-arrangement.Proof. Our proof is 
onstru
tive. Let p be an arbitrary point in the plane, and fi =∑Dz,i

d=0 ad(x, y)zd. The lo
al degree of fi at p simply depends on the 
oe�
ients ad. Re-member from above:
dp,i = degz(fi(p)) [= max D]with D := {d = 0, . . . ,Dz,i | ad(p) 6= 0}. Note that in 
ase dp,i = −∞, it holds D = ∅.The same way, the lo
al g
d degree depends on the prin
ipal Sturm-Habi
ht 
oe�
ients

sthak((fi)(dp)) by
kp,i = degz(gcd(fi(p), ∂

∂z fi(p))) [= min K]with K := {k = 0, . . . , dp,i − 1 | sthak((fi)(dp))(p) 6= 0}. Note that in 
ase kp,i = −∞ itholds K = ∅.The 
oe�
ients ad and sthak((fi)(d) de�ne algebrai
 plane 
urves αd = V (ad) and
σd,k = V (sthak((fi)(d))), respe
tively, of degree at most D(D − 1). Then, dp,i and kp,i aredetermined by the 
urves p is part of. Thus, the arrangement indu
ed by αDz,i

, . . . , α0and, for all d = 1, . . . ,Dz,i, σd,0, . . . , σd,d has only (d,k)-invariant 
ells.Note that the number of 
urves is �nite, and as ea
h 
urve indu
es a �nite arrangement,also the overlay 
onsisting of all 
urves indu
es a �nite arrangement. In addition, A{Si}subdivides R2 into 
ells of points that have an invariant pattern of (multiple) roots of
fi(p)(z) for all p in a 
ell. This implies, that the z-pattern W{S},p 
an only 
hange uponswit
hing to another 
ell. This shows Condition 5.7. In addition: As Si does not 
ontaintwo-dimensional verti
al 
omponents, all αi interse
t in �nitely many points, whi
h resultsin an alternative de�nition of Vi := {p ∈ R2 | ∀d = 0, . . . ,Dz,i : ad(px, py) = 0}. Thisshows Condition 5.5.The proof of Theorem 5.38 gives a way to 
onstru
t some (d,k)-arrangement for asurfa
e. However, its number of 
ells might be larger than needed. We aim for a 
lusteringinto few (d,k)-
ells.De�nition 5.39 (Proje
ted silhouette). The proje
ted silhouette τSi

of Si is de�ned by
stha0(fi) = Resz(fi,

∂fi

∂z )Lemma 5.40. For any point, (dp,i, kp,i) = (Dz,i, 0) if and only if p is not on τSi
. Conse-quently, all edges and verti
es of a (d,k)-arrangement not belonging to τSi


an be removedand their in
ident 
ells 
an be merged to a larger (d,k)-invariant 
ell.Proof. Following [BPR06, Proposition 4.27℄, we have Resz(fi,
∂fi

∂z ) = aDz,i
Disc(fi) where

Disc(fi) denotes the dis
riminant of fi. It is 
lear that dp,i = Dz,i for a point p if and onlyif aDz,i
(p) 6= 0. From the de�nition of the dis
riminant, kp,i = 0 for a regular point p ifand only if Disc(fi)(p) 6= 0.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsThis opens the door to apply a 
ombinatorial minimization of any (d,k)-arrangement.For what follows, we assume that ea
h 
ell Γ of a (d,k)-arrangement is equipped withits lo
al degrees dΓ,i and kΓ,i as data. As post-pro
essing, one 
an remove all edges andverti
es away from τS , and remove verti
es on τS that have exa
tly two adja
ent edges, andboth edges have the same lo
al degree and lo
al g
d degree as the vertex (and merge theadja
ent edges). A similar idea of 
lustering a 
ad has been proposed by Arnon [Arn88℄,but, in 
ontrast, (d, k)-invarian
e models a stri
tly weaker 
ondition. Thus, it produ
eslarger 
ells.As we are aiming for an a
tual implementation using Cgal's Arrangement_2 pa
kageto 
onstru
t the (d,k)-arrangement, we present Algorithm 5.2 that turns the a
tual post-pro
essing into a bottom-up 
onstru
tion of the (d,k)-arrangement, whi
h lowers the sizeof intermediate arrangements.48 The main tool for Algorithm 5.2 is Cgal's possibility tooverlay arrangements. Given arrangements A1 and A2, the overlay is the union A3 of botharrangements. In addition, we 
an ensure that ea
h 
ell of A3 knows from whi
h 
ells of
A1 and A2 it originates.Remark (on Algorithm 5.2). There are two optimizations: First, to set the lo
al g
d degreeone only has to 
onsider those degrees d that appear as the lo
al degree of at least one 
ell.Se
ond, the inner iteration over the k's is stopped as soon as all 
ells of degree d knowtheir lo
al g
d degree.

A{Si}, as 
onstru
ted with Algorithm 5.2, basi
ally 
onsists of the overlay of the leading
oe�
ient 
urve and the dis
riminant 
urve of fi (
ompare Lemma 5.40). However, this
urve is subdivided by additional points in order to ensure (d,k)-invarian
e. We admit, thatthe approa
h is in similar spirit as the improved proje
tion operators in 
ad 
omputation;see the work of M
Callum [M
C℄ and the slight improvement by Brown [Bro01b℄. Insteadof (d,k)-invarian
e, they introdu
e order-invarian
e and show that su
h 
ells also ensuredelineability. Consequently, the non-leading 
oe�
ients and the prin
ipal Sturm-Habi
ht
oe�
ients are super�uous for Theorem 5.37. However, the knowledge about the lo
aldegree and the lo
al g
d degree in our (d,k)-invariant de
omposition enables fast methodsin the lifting step, as we learn in �5.3.3.We now 
onsider a set S := {S1, . . . , Sn} of algebrai
 surfa
es. The de�nition of lo
aldegrees naturally extends:De�nition 5.41 (Lo
al multi-regularity). Given a point p = (px, py) ∈ R2. We 
all it
(d1, . . . , dn)-regular with respe
t to S := {S1, . . . , Sn} if and only if p is dp,i-regular withrespe
t to Si. Note that having some dp,i = −∞ is allowed.We �rst 
on
entrate on n = 2, that is, we restri
t to two surfa
es only. Afterwardsit is easy to de�ne an arrangement for an arbitrary number of surfa
es for our purposes.Let S1, S2 ∈ S be two surfa
es and A∗

{S1,S2}
be the overlay of the arrangements A{S1}and A{S2}. Then, for ea
h 
ell of A∗

{S1,S2}
the regularity with respe
t to {S1, S2} staysinvariant.We next show that there exists a re�nement A{S1,S2} of A∗

{S1,S2}
, su
h that on ea
h
omponent Γ ∈ A{S1,S2} the z-patterns W{S1},p, W{S2},p, and W{S1,S2},p stay the same. Forthis purpose we have to introdu
e some further notation based on subresultant sequen
es.48Arrangements of large size are usually more 
ostly to 
onstru
t than su
h with a small number of 
ells.
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Algorithm 5.2. Constru
t 
lustered A{S} with low-size intermediate arrangementsInput: Algebrai
 surfa
e S of degree DOutput: A{S} with minimal number of (d,k)-invariant 
ells1. Computing the arrangement A indu
ed by the proje
ted silhouette τS only. Re-member that τS may be not square-free. To handle this 
ase, we typi
ally apply asquare-free fa
torization (see �2.1.1) and 
ompute AτS

by overlaying individual ar-rangements indu
ed by the resulting square-free 
urves. In this 
ase, ea
h resultingedge of A 
an be assigned with the multipli
ity of the 
orresponding fa
tor of τS.2. Ea
h fa
e of A re
eives the values (Dz , 0) respe
ting Lemma 5.40.3. De
ompose A su
h that ea
h resulting 
ell has invariant lo
al degree by repeatingthe following steps for d = Dz, . . . , 0:
• Compute the arrangement Ad indu
ed by αd; as above, we a
tually 
onsiderthe square-free fa
torization of ad.
• Overlay A with Ad, the result is A′.
• Remove all verti
es and edges of A′ that originate from a fa
e of A.
• Remove also all verti
es of A′ that originate from an edge of A whose lo
aldegree has already been set.
• For ea
h 
ell of A′ that originates from a fa
e of Ad, and whose degree is notset yet, assign its lo
al degree to d.
• Set A← A′ and pro
eed with the next iteration.4. Set the lo
al degree of all 
ells whi
h are not yet set to −∞, as S must be verti
alabove these 
ells (verti
es).5. It remains to de
ompose A into (d,k)-invariant 
ells. The strategy is similar: It-erate over the degrees and overlay with the 
orresponding prin
ipal Sturm-Habi
ht
oe�
ient 
urves σd,k. Thus, repeat for d = Dz, . . . , 1: Repeat for k = 0, . . . , d− 1:
• Compute the arrangement Ad,k indu
ed by σd,k; as above, we a
tually 
onsiderthe square-free fa
torization of sthak(f(d)).
• Overlay A with Ad,k, the result is A′.
• Remove all verti
es and edges of A′ that originate from a fa
e of A.
• Remove all verti
es of A′ that originate from an edge of A whose lo
al g
ddegree has already been set, or whose lo
al degree does not equal d.
• For ea
h 
ell of A that lies on a fa
e of Ad,k, whose lo
al degree is d, and whoselo
al g
d degree is not yet set, assign the lo
al g
d degree to k.
• Set A← A′ and pro
eed with the next iteration.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsDe�nition 5.42 (Lo
al multi-degradation). Let p = (px, py) be a (d1, d2)-regular point,with d1 6= −∞ and d2 6= −∞. We say that p has degradation kp,1,2 with respe
t to {S1, S2}if and only if
kp,1,2 := degz(gcd(f1(p), f2(p)))− 1 [= min K1,2]with K1,2 := {k = 0, . . . ,min{d1, d2} − 1 | sresk((f1)(d1)(p, z), (f2)(d2)(p, z), z) 6= 0}. Notethat if kp,1,2 = −∞ we have K1,2 = ∅.Let Γ ∈ A∗

{S1,S2}
be a 
ell of regularity (d1, d2), then, there exist 
ommon minimaldegradations k1,Γ, k2,Γ for Γ. If Γ is a fa
e, kΓ,1 = kΓ,2 = 0. Otherwise, kΓ,i is de�ned and

≥ 0 if dΓ,i 6= −∞. However, Γ may not yet be invariant with respe
t to 
ommon rootsof f1(p, z) and f2(p, z). Remember from Proposition 2.7 that f1(p, z) and f2(p, z) onlyhave a 
ommon (
omplex) root, if Resz(f1, f2, z) vanishes. That is, the two surfa
es mayonly interse
t above some p if kp,1,2 ≥ 0. Following, p ∈ VR(Resz(f1, f2)) is a ne
essary
ondition for having an interse
tion of the surfa
es over p. Points having this 
onditionare given by the following 
urve:De�nition 5.43 (Proje
ted interse
tion). The proje
ted interse
tion τ0,S1,S2 of {S1, S2}is de�ned by sres0(f1, f2, z) = Resz(f1, f2).To overlay the (d1, d2)-regular arrangement A∗
{S1,S2}

with the proje
ted interse
tionis the main step in Algorithm 5.3. However, it still does not ensure that the obtained
ells are invariant with respe
t to z-patterns. p ∈ Resz(f1, f2) only means that gp :=
gcd(f1(p, z), f2(p, z)) is non-trivial. Only if gp has real roots then f1 and f2 have real inter-se
tions over p. As before, the number and distribution of (
omplex) roots of polynomials
f1(p, z) and f2(p, z) 
ontinuously depend on p, and so the roots of gp. The distributionof its roots (i. e., their number and multipli
ities) 
hanges only where the degrees or thefa
torizations of fi or g alter; see Proposition 2.9 in 
ombination with Theorem 2.10 andTheorem 5.37. Fortunately, the subresultant sequen
e gives a (deliberate) algebrai
 in-di
ation for a 
hange in gp's degree � and thus a possible 
hange in the number of realinterse
tions.We already 
onsidered the individual degradations of f1 and f2. But, we still have tore�ne the 
ells indu
ed by τ0,S1,S2 with respe
t to further degradations, that is, with respe
tto 
urves τk,S1,S2 = VR(sresk(f1, f2, z). Note that if kp,1,2 = 0 implies that degz(g(p)) = 1,that is, there is one real interse
tion of S1 and S2 over p (by degree there 
annot be amultiple or 
omplex one). Remember that kp,1,2 
onstitutes an upper bound on the numberreal interse
tions of S1 and S2 over p. These observations �nally lead to Algorithm 5.3.Remark (on Algorithm 5.3). Observe that our 
onstru
tion of A{S1,S2} is 
onservative in thesense that it might keep 
ells having the same number (and order) of real interse
tion overit as its neighbored 
ells. The reason is simply that the algebrai
 indi
ation that we relyon does not ignore 
omplex roots.However, by 
onstru
tion it is ensured that the lo
al degrees for ea
h individual surfa
estays invariant in ea
h 
ell, and the interse
tion pattern of two surfa
es over a given 
ell also
annot 
hange. We admit, that at this point the lo
al real degrees are not yet determined,though they are theoreti
ally �xed in terms of the others. Thus, Condition 5.16 is alsoful�lled for algebrai
 surfa
es.Remark. As for a single surfa
e, the 
onstru
tion is similar to what is done for a 
ylindri
al
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Algorithm 5.3. Constru
t 
lustered A{S1,S2}Input: Algebrai
 surfa
es S1, S2 of degree D1,D2Output: A{S1,S2} with minimal number of invariant 
ells with respe
t to lo
al degreesand degradations1. Compute overlay of A{S1} and A{S2} and 
all it A∗

{S1,S2}
.2. Compute the arrangement Aτ0,S1,S2

of τ0,S1,S2 . As above, remember that Aτ0,S1,S2

anbe 
omposed of the overlay of τ0,S1,S2 's square-free fa
tors. Thus, ea
h of Aτ0,S1,S2
'sedges 
an be assigned with the multipli
ity of the 
orresponding fa
tor.3. Overlay A∗

{S1,S2}
with Aτ0,S1,S2

. The result is A{S1,S2}. However, kΓ,1,2 for Γ ∈
A{S1,S2} is still unknown and some edges 
an even split further:4. Set kΓ,1,2 = 0 for all 
ells Γ that originate from verti
es and edges in Aτ0,S1,S2

, and
kΓ,1,2 = −∞ for all other 
ells (meaning invalid).If Γ is su
h a spe
ial vertex or edge let d1,Γ and d2,Γ denote its lo
al degrees withrespe
t to S1 and S2.5. For su
h a vertex at point p we have to 
ompute the 
orre
t (and maybe larger)
kp,1,2. For 1 ≤ k < min{dp,1, dp,2}:
• Che
k whether p lies on τk,1,2 (or one of its square-free fa
tors, and note that

τk,1,2 depends on dp,1 and dp,2). If so, 
ontinue, otherwise set kp,1,2 = k andstop. Note that this point-on-
urve test en
odes whether sresk(f1, f2, z)(p) = 0.6. For su
h an edge E two options are possible. Again, for 1 ≤ k < min{dE,1, dE,2}:
• Che
k if E is part of τk,1,2, by testing whether the polynomial de�ning the 
urvethat supports E has a 
ommon fa
tor with sresk(f1, f2, z). If so, set kE,1,2 = kand 
ontinue with next k.
• Otherwise, 
he
k if E has a �nite number of interse
tions with τk,1,2. Split Eat them whi
h 
reates new verti
es. For ea
h su
h vertex at point p, assign

kp,1,2 = k and pro
eed with the des
ribed handling for verti
es.
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 Surfa
es with Planar Arrangementsalgebrai
 de
omposition; see �2.1.6. In 
ontrast, we expli
itly handle the proje
tion as aplanar arrangement and bene�t from the possibilities to 
ombinatorially 
luster 
ells andto atta
h additional data, su
h as the multipli
ities of τ0,S1,S2 or degradations k1,2.The extension to more than two surfa
es is natural:De�nition 5.44 (AS). Let S = {S1, . . . , Sn} be algebrai
 surfa
es and let A{Si,Sj}, i 6= jthe arrangement as 
onstru
ted with Algorithm 5.3. Then, we de�ne AS to be the overlayof all arrangements A{Si,Sj}.By how we 
onstru
ted A{Si,Sj} it 
an be seen that AS 
onsists of 
ells Γ ∈ AS su
h that
WS,p is identi
al for all p ∈ Γ. Thus, AS is mi-invariant for 1 ≤ i ≤ n and mi,j-invariantfor any 1 ≤ i, j ≤ n, i 6= j.5.2.3. ContinuationIn this se
tion we show that Condition 5.9 is ful�lled for an algebrai
 surfa
e Si. Addi-tionally, we learn that a lifted fa
e F of some A{Si} 
an be in
ident to a whole intervalalong some ℓp for p ∈ F and p ∈ Vi, whi
h helps in �5.2.4 to de
ompose Si and to proofthe boundary property of the de
omposition.As we already know that Condition 5.16 holds for p 6∈ Vi, Condition 5.9 
an be ver-i�ed by the fa
t that the roots of a polynomial 
ontinuously depend on its 
oe�
ients:Remember that in this 
ase Zp,i = {z ∈ R | 0 = fi(px, py, z) ∈ R[z]}. Thus, for some
Γ ∈ A{Si}, p ∈ ∂Γ and the sequen
e of points pt ∈ Γ with limt→∞ pt = p, we mustget {

limt→∞ zpt,i,−1, . . . , limt→∞ zpt,i,mΓ,i

}
⊂ Zp,i and limt→∞ zpt,i,l1 ≤ limt→∞ zpt,i,l2 for

l1 < l2. The same argument applies to Condition 5.17 for p 6∈ Vi ∪ Vj and A{Si,Sj}.The situation is di�erent when we have p ∈ Vi. In what follows, it does not make adi�eren
e whether we have A{Si}, A{Si,Sj}, or even AS. We only �x an arbitrary surfa
e Si.The pro
ess is identi
al for any other surfa
e.We assume that p is a vertex in AS and for a neighborhood of p, none of the surfa
es
Sj, j 6= i 
ontains a verti
al line, ex
ept at p. Now we 
onsider a sequen
e of points
pt ∈ Γ ⊂ AS that 
onverges against p. Then, we have to determine possible limits of their
l-th lifts (pt, zpt,i,l) ⊂ pt × Zpt,i ⊂ pt × Zpt,S. If all pt lie on an edge E, then the limit isuniquely given as endpoint (above p) of the l-th lift of E with respe
t to Si.For a fa
e F ∈ AS, adja
ent to p, it 
an happen that the limits of the l-th lifts of twodi�erent sequen
es pt, p

′
t ∈ F are distin
t.Theorem 5.45. Given a surfa
e Si ∈ S, Γ ∈ AS, and two sequen
es pt, p

′
t ∈ Γ with

p = limt→∞ pt = limt→∞ p′t and for some 0 ≤ l < mΓ,i we have z0 = limt→∞ zpt,i,l,
z1 := zp′t,i,l

. Then, for any z∗ in between z0 and z1 there exists a sequen
e p∗t ∈ Γ with
p = limt→∞ p∗t and z∗ = limt→∞ zp∗t ,i,l.Proof. If z0 = z1 there is nothing to prove, thus we 
an assume z0 < z1. We 
an furtherassume that |pt − p| and |p′t − p| are monotone. As AS is expe
ted to be mi-invariant itfollows that there exists an ε0 su
h that Uε ∩ Γ is 
onne
ted for all ε < ε0 and Uε :=
{q ∈ R2 : |q − p| ≤ ε}. Thus, we 
an assume that Ut ∩ Γ is 
onne
ted, where Ut := {q ∈
R2| |q − p| ≤ 2max{|pt − p| , |p′t − p|}}.
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es 211Now we 
onsider a 
ontinuous path Πt ⊂ (Γ∩Ut), that 
onne
ts pt and p′t. As the rootsof fi(q, z) 
ontinuously depend on the point q ∈ Γ, for ea
h z∗t in between zpt,i,l and zp′t,i,lwe 
an 
hoose a p∗t ∈ Πt that lifts to zp∗t ,i,l = z∗t . As z0 = limt→∞ zpt,i,l and z1 := zp′t,i,lthere exists a t0 ∈ N su
h that z∗ ∈ [zpt,i,l, zp′t,i,l
] for all t > t0. Thus, we 
an 
hoose z∗t = z∗from whi
h it follows that p∗t ∈ Γ 
onverges against p and ful�lls z∗ = limt→∞ zp∗t ,i,l.Theorem 5.45 shows that for any element Γ ∈ AS, adja
ent to p, and any l ∈

{0, . . . ,mΓ,i−1}, the set of limits limt→∞ zpt,i,l (pt ∈ Γ a sequen
e that 
onverge against p)is an interval of IΓ,i,l ⊂ R. Thus, algebrai
 surfa
es ful�ll Condition 5.9 and following thespe
i�
ations for Zp,i 
onstituted in De�nition 5.10.Con
erning Condition 5.17, we 
an apply the same proof idea. A
tually, Theorem 5.45in 
ombination with Condition 5.13 show the desired result for algebrai
 surfa
es. Thereason is that lifts of a fa
e F ∈ AS uniquely belong to a single surfa
e.However, it is not yet dis
ussed, how to 
ompute the entries of Zp,i for p ∈ Vi, and
Z

|
p,i,j for p ∈ Vi∪Vj . We give the details on this task in �5.4.2. The 
onstru
tion des
ribedthere provides also the proofs for the following theorems. We require them to bound the
omplexity of our 
ell de
omposition that we introdu
e next in �5.2.4.Theorem 5.46 (Complexity of z-�ber for p ∈ Vi). Let Si be an algebrai
 surfa
e of degree

D and p ∈ Vi. Then |Zp,i| ∈ O(D3).Theorem 5.47 (Complexity of Z
|
p,i,j). Let Si, Sj be two algebrai
 surfa
es of degree Dand p ∈ Vi ∪ Vj. Then |Z |

p,i,j| ∈ O(D3).Corollary 5.48 (Complexity of multi-surfa
e z-�ber for p 6∈ V). Let S be a set of nalgebrai
 surfa
es with maximal degree D and p 6∈ V. Then, |Zp,S| ∈ O(nD).Proof. Remember the de�nition of Zp,S for su
h p. Theorem 5.34 gives |Zp,i| ≤ D. Thereare n surfa
es.Corollary 5.49 (Complexity of multi-surfa
e z-�ber for p ∈ V). Let S be a set of nalgebrai
 surfa
es with maximal degree D and p ∈ V. Then, |Zp,S| ∈ O(n2D3).Proof. Remember the de�nition of Zp,S. Theorem 5.46 gives |Zp,i| ∈ O(D3). There are nsurfa
es. Theorem 5.47 gives Z
|
p,i,j ∈ O(D3). There are O(n2) di�erent pairs of surfa
es.5.2.4. Strati�
ations and their 
omplexitiesWe next show that the 
ell de
ompositions we introdu
ed in �5.1 
onstitute strati�
ationsof algebrai
 surfa
es.De�nition 5.50 (Strati�
ation; see [BPR06, �5.5℄). Let Si be a surfa
e. A strati�
ationof Si is a de
omposition of Si into 
ells su
h that

• ea
h 
ell is a smooth subvariety of Si of dimension 0, 1, or 2, and
• the boundary of a 
ell is given by the �nite union of other 
ells; also known as theboundary property.The 
ells of a strati�
ation are also 
alled strata.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsCompare also the similar notion of a CW 
omplex; see �2.1.7 and [Mas67℄, [Bre95℄.In addition, we give 
omplexity bounds for ea
h of these de
omposition in terms of thenumber of surfa
es and their algebrai
 degree.As previously mentioned Ω{Si} should ful�ll the boundary property. An equivalentstatement is, that for any two 
ells M1,M2 with dim(M1) < dim(M2), we must have
M1 ∩M2 = ∅ or M1 ⊂M2. In the previous 
ase, the two 
ells of Si are not related, whilein the latter 
ase, we 
all them adja
ent. To 
he
k whether M1 is adja
ent to M2 
an beexpressed with respe
t to an arbitrary point p ∈M1: Two 
ells are adja
ent if and only if
p ∈M2. We �rst assume that Vi = ∅.Theorem 5.51. Let M1,M2 ∈ ΩSi

with dim(M1) < dim(M2) and Γ1,Γ2 ∈ A{Si} their
orresponding proje
tions onto the plane. If Γ1 has lo
al degree dΓ1,i 6= −∞ and M1∩M2 6=
∅, then M1 = M2 ∩ (Γ1 × R).Proof. Let M2 be the l2-th lift of Γ2 and p = (p∗, z0) ∈ M2 ∩ (Γ1 × R) an arbitrarypoint, 
ontained in a lift Γ

(l1,i)
1 of Γ1. For the lifts p∗(l,i) of p∗ we 
hoose a box neigh-borhood Bp∗ of p∗ and also disjoint boxes B1, . . . , BmΓ1,1

lying above Bp∗ with Bi =

Bp∗ ×
[
p∗(l,i) − δ, p∗(l,i) + δ

] and a δ > 0. We 
an assume that Bp∗ and δ are 
hosen su
hthat the l-th lift of Γ1 ∩Bp∗ is 
ontained in Bl. For Bp∗ small enough, it follows that the
l2-th lift of Bp∗ ∩ Γ2 is also 
ontained in Bl1 as p ∈ Bl1 ∩M2. As a dire
t 
onsequen
e
((Bp∗ ∩ Γ1)×R)∩M2 is the l1-th lift of (Bp∗ ∩ Γ1). Now for any two points p∗1 and p∗2 on
Γ1 there exists a 
ompa
t path Π on Γ1, whi
h 
onne
ts them. Then, we 
onsider an open
overing of Π with lo
al neighborhoods Bp′ , p′ ∈ Γ, su
h that ((Bp′ ∩Γ1)×R)∩M2 is the
lp′-th lift of Γ1. Then, from restri
ting to a �nite partial 
overing it follows that lp′ = l1for all p′, thus Γ

(l1),i
1 = M2 ∩ (Γ1 × R). Now M1 ∩M2 6= ∅ exa
tly if M1 = Γ

(l1,i)
1 .Theorem 5.51 assumed that Si does not 
ontain a verti
al line. Thus, we turn to sur-fa
es that in
lude verti
al lines and de
ompose them into 
ells a

ording to De�nition 5.28.It also must be shown that this extended de
omposition Ω{Si} is still a strati�
ation, thatis, the boundary property is ful�lled. Remember that Si only 
ontains a �nite set of ver-ti
al lines. Observe that not splitting verti
al lines is insu�
ient as su
h an ℓp, in general,
onstitutes a superset of a boundary of a lifted fa
e. However, Ω{Si} as in De�nition 5.28splits ℓp a

ording to the interval boundaries de�ned by the following impli
ation of The-orem 5.45:Corollary 5.52. Let Si 
ontain the verti
al line ℓp and F ∈ A{Si} be a fa
e, whi
h isadja
ent to p. Then for any surfa
e pat
h F (l,i) there exists an interval I(F (l,i)) ⊂ R, su
hthat p× I(F (l,i)) = F (l,i) ∩ ℓp.Thus, the boundary property is ensured by how we 
onstru
ted Zp,i a

ording to Con-dition 5.9 whi
h is ful�lled by Corollary 5.52.The boundary property of ΩS is given by the fa
ts, that with respe
t to a singlesurfa
e Si the arrangement AS is a re�nement of A{Si} and a lift of any 
urve τSj

or
τ0,Si,Sj

for any j 6= i only splits a 
ell M of Ω{Si}. Note that M already has the boundaryproperty. If Vi = ∅, the boundary property follows by Theorem 5.51 applied to Si and AS.Otherwise, we have to 
onsider the 
ase that M 
an be adja
ent to a verti
al line at p with
I(M) being non-degenerate and that M is split by a lift of some τSj

or τ0,Si,Sj
for any
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j 6= i into M1 and M2. Note that by Condition 5.17 the z-
oordinate of the endpoint ofsu
h a 
urve's lift is in
luded in Zp,{Si,Sj}. Thus, the way ΩS splits ℓp ensures that I(M1)and I(M2) are re�e
ted by the de
omposition and thus, the boundary property is ful�lled.As promised we also analyze the 
omplexities of the 
ell de
ompositions. Again, westart with a single surfa
e Si de�ned by fi having total degree D and its (d,k)-arrangement
A{Si} as 
onstru
ted by Algorithm 5.2. We �rst show, that the 
omplexity of A{Si} is notgreater than that for τS .Theorem 5.53. The number of 
ells of A{Si} is O(D4).Proof. First remark that D = Di. It su�
es to 
ount the number of verti
es, as arrange-ments form planar graphs. For su
h graphs, the number of edges and fa
es linearly dependon them by the Euler formula. First observe that the proje
ted silhouette τSi

is of degreeat most D2. By Bézout's theorem it has at most D4 
riti
al points. It remains to showthat its de
omposition with respe
t to αd and σd,k does not 
reate more than D4 newverti
es.Consider the de
omposition of τSi
into irredu
ible 
omponents γj with degree νj , and�x one γ = γj of degree ν. In the exe
ution of the algorithm, we only introdu
ed newverti
es for γ (that are not removed in the same iteration) in two iteration steps:First, when a 
oe�
ient 
urve αd does not 
ontain the whole 
urve γ. This introdu
esat most ν ·D many verti
es. All further 
oe�
ient 
urves αd−1, . . . , α0 do not introdu
enew verti
es on γ, sin
e the lo
al degree of all edges for γ is set to d.Se
ond, new verti
es are introdu
ed when a Sturm-Habi
ht polynomial sthak(f(d))does not 
ontain the whole 
urve γ. This introdu
es at most ν ·D2 many new verti
es. Allfurther Sturm-Habi
ht 
urves sthak−1(f(d), . . . , stha0(f(d)) do not introdu
e new verti
eson γ, sin
e the lo
al g
d degree of all edges for γ is set to k.Finally, ea
h γ gets at most O(νj ·D2) many new verti
es, and the νj sum up to D2.Corollary 5.54. For a surfa
e Si without verti
al line, the number of 
ells in Ω{Si} is O(D5).The proof is given by Theorem 5.34 and Theorem 5.53. An impli
ation is that wea
hieve a topologi
al des
ription of the surfa
e using O(D5) many sample points. A 
or-responding 
ad 
onsists of Ω(D7) 
ells, due to its verti
al de
omposition strategy in theplane. However, the advantage of having a small number of 
ells implies less topolog-i
al information, for example, to repla
e (lifted) edges by straight-lines requires furtherpro
essing. How to 
ompute the adja
en
y relation of Ω{Si}'s 
ells is presented in �5.4.2.The 
omplexity of Ω{Si} with Vi 6= ∅ 
an also be stated. Note that we need to 
ompute

Zp,i for p ∈ V . We learn in �5.4.2 that we a
tually 
ompute a superset of Zp,i thatis algebrai
ally de�ned by the real roots of three polynomials. That is, for p ∈ Vi, itholds that Ω{Si}'s de
omposition of ℓp is �ner than te
hni
ally required by Condition 5.9.However, Theorem 5.46 still holds to �nally proof that Ω{Si} stays with the known worst-
ase 
omplexity:Theorem 5.55. The number of 
ells of Ω{Si} is O(D5).Proof. For lifts not related to p ∈ Vi, Corollary 5.54 still applies. It only remains to boundthe number of 
ells introdu
ed for verti
al lines by O(D5): Observe that deg(fi) ≤ Dimplies |Vi| ≤ D2. It remains to apply Theorem 5.46.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsWe turn to the 
ase of multiple surfa
es. Note that ∀Di : Di ≤ D. We already learnedin �5.2.2 that AS 
omposed of all A{Si,Sj} for two surfa
es Si, Sj, i 6= j forms the basis for
ΩS. In order to derive ΩS's 
omplexity, we �rst have to proof a result on AS's 
omplexity:Theorem 5.56. The number of 
ells of AS is O(n4D4).Proof. Again, it su�
es to 
ount the number of verti
es, for the same reason as in theproof of Theorem 5.53.We perform the 
ounting in two steps: First, we 
onsider the verti
es of the individualarrangements that o

ur. Se
ond, we analyze how many verti
es o

ur during overlays.For a single surfa
e Si, the 
omplexity of A{Si} is mainly driven by τSi

, that is, analgebrai
 
urve of degree at most D2. The arrangement has, following Theorem 5.53,
O(D4) verti
es. When 
onstru
ting A{Si,Sj} for two surfa
es Si, Sj , i 6= j, we addi-tionally 
onsider τ0,Si,Sj

. This 
urve is also of degree at most D2 and thus has at most
D4 
riti
al points. During the exe
ution of Algorithm 5.3, τ0,Si,Sj

gets segmented bysome sresk(fi, fj , z) with k ≥ 1. The maximal number of segmentation verti
es o

urs if
sres0(fi, fj , z) gets segmented by sres1(fi, fj, z). Bounding deg(sres1(fi, fj , z)) by D2 issu�
ient (though not very tight) as is allows to 
on
lude that the number of segmentationverti
es of τ0,Si,Sj

is upper bounded by D4. Thus, both the re�ned τSi
and the re�ned

τ0,Si,Sj
have at most O(D4) 
riti
al points.It remains to give a bound on the number of verti
es that are introdu
ed with respe
tto overlays of arrangements. We only have to 
onsider how often 
urves τSi

and τ0,Si,Sj

aninterse
t.49 Remember that deg(sres0(fi,

∂fi

∂z , z)) ≤ D2 and also deg(sres0(fi, fj , z)) ≤ D2.Thus, two su
h 
urves interse
t by Bézout's theorem in at most D4 points. There are nproje
ted silhouettes, and O(n2) proje
ted interse
tion 
urves. As we overlay all of them,we have to 
onsider ea
h pair and thus get up to O(n4D4) new interse
tion points.In total, AS has 
omplexity O(nD4) + O(n2D4) + O(n4D4) = O(n4D4).The next 
orollaries are simple impli
ations of Theorem 5.56, Corollaries 5.48 and 5.49,and the fa
t that |V| ≤ nD2.Corollary 5.57. For a set S = {S1, . . . , Sn} of algebrai
 surfa
es of total degree D, thenumber of 
ells in ΩS is O(n5D5).Corollary 5.58. For algebrai
 surfa
es S1, S2 of total degree D, the number of 
ells of
A{S1,S2} is O(D4) and the number of 
ells in Ω{S1,S2} is O(D5).Assume we repla
e AS in De�nition 5.29 by A′

S that results from applying Algorithm 5.1on AS. By Proposition 5.32 we obtain a 
ell de
omposition Ω′
S 
onsisting of simply 
on-ne
ted 
ells, whose 
omplexity 
an also be bounded:Corollary 5.59. For Si ∈ S, |Ω′

{Si}
| ∈ O(D5) and |Ω′

S| ∈ O(n5D5).5.2.5. Semi-algebrai
 surfa
esLet us also shortly refer to semi-algebrai
 surfa
es, that 
onstitute possible input. Asemi-algebrai
 surfa
e S≥ is de�ned by a polynomial equation f = 0 that is re�ned by49Mind that the 
oe�
ients 
urves αl only segment τSi
.
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e of polynomial inequalities gj ≥ 0, with 1 ≤ j ≤ r for some r. Su
h a semi-algebrai
 surfa
e is 
losed, and thus ful�lls the 
onditions expe
ted by the framework.In parti
ular, the arrangement A{VR(f),VR(g1),...,VR(gr)} 
onstitutes an arrangement A{S≥}ful�lling Condition 5.7 for S≥. However, this de
omposition of the plane is far from beingoptimal, as most of its 
ells are redundant due to the fa
t, that A{VR(f),VR(f1),...,VR(fk)}
onsiders the pair-wise 
ombination of all involved surfa
es de�ned by polynomials. As for
S≥ we are only interested in 
hanges of the z-�ber of S = VR(f) with respe
t to a singleinequality gj , the following in
remental strategy is en
ouraged to 
onstru
t A{S≥}. Startwith A{VR(f)} and re�ne it with respe
t to the proje
ted interse
tions of VR(f) with VR(gj)for in
reasing j (mind lo
al degrees and degradations). It is still possible to simplify theobtained A{S≥}, for example, by merging neighboring 
ells that do not 
omprise a proje
tedpoint of S≥, or by removing a proje
ted interse
tions of VR(f) and some VR(gj) if it lies ina fa
e of A{VR(f)} and its in
ident higher-dimensional 
ells 
arry the same z-pattern. Weomit further details and refer in the further dis
ussion only in ex
eptional 
ases again tosemi-algebrai
 surfa
es.5.3. Implementation in a frameworkIt is 
ommon, that algorithms in this area of resear
h are la
king their implementation,or that 
ertain degenera
ies are ex
luded, su
h as verti
al lines or singularities. We donot join this queue. In 
ontrast, we provide a C++-implementation for the tasks listedin �5.1. It is part of the software proje
ts Cgal [3℄ and Exa
us [6℄; see also �2.2.3and �2.2.4. We admit that the implementation has be
ome feasible by relying on existing
ode of the proje
ts. Our C++-implementation 
onsists of two related 
omponents, thatsplit 
ombinatorial parts from surfa
e-spe
i�
 geometri
 tasks using generi
 programming;see �2.2.1.The Framework maintains planar arrangements, 
omputes sample points, exe
utes thee�
ient 
onstru
tion of (multi-surfa
e) z-�bers (with �lters), and is responsible tostore the adja
en
y relation of multi-surfa
e z-�bers. In other words, it implementsthe surfa
e-independent tasks from �5.1; see also �5.3.2 and �5.3.3. In order to do so,it de�nes a 
on
ept that expe
ts basi
 geometri
 types (su
h as the one for a surfa
e)and basi
 operations on them; the 
on
ept is des
ribed in �5.3.1.Additionally, the framework provides 
lasses that rewrite or use the obtained 
om-binatorial results to enable other geometri
 algorithms on surfa
es; main examplesare given in �5.5.Models provide 
on
rete implementations for the 
on
ept. That is, the model for a
ertain family of surfa
es implements the surfa
e-spe
i�
 sets of tasks listed in �5.1;su
h as to provide surfa
e related proje
ted 
urves, to 
reate single-surfa
e z-�bers,to dete
t the equality of their entries, or to obtain the single-surfa
e adja
en
y.This part of the thesis 
on
entrates on the framework. In �5.4 we present two models foralgebrai
 surfa
es. The framework implement in an experimental pa
kage of Cgal, that isplanned for future submission to the proje
t's editorial board. All framework-spe
i�
 
ode
onsists of about 10,000 lines of templated C++. This number is not 
ounting requiredbasi
 
lasses of the libraries or Cgal's matured Arrangement_2 pa
kage, on whi
h the
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ient Strati�
ation of Algebrai
 Surfa
es with Planar Arrangementsframework's implementation is mainly based. In parti
ular, we rely on the Arrangement_2's
apabilities to extend D
el-
ells with data and to overlay (su
h) arrangements; see �2.4.3and remember that in order to support a 
ertain family of 
urves, a proper model ofArrangementTraits_2 must be provided. This and other requirements are listed next, whenwe present the Surfa
eTraits_3 
on
ept.5.3.1. The Surfa
eTraits_3 
on
eptThe Surfa
eTraits_3 
on
ept spe
i�es geometri
 types operations on them to �nally supportthe 
omputation of Problem 5.24. As ea
h 
on
ept, it is a 
olle
tion of synta
ti
 andsemanti
 premises. No assumptions on how to implement them are stated, as long asthe demanded fun
tionality is ensured and supported by the formal parameters. We nextintrodu
e the 
on
ept in its details and show in �5.3.2 and �5.3.3 how the frameworkintera
ts with a model of the 
on
ept to rea
h the goal. As in �4.3 and �4.5, the des
riptionof the 
on
ept la
ks the pre
ision of a referen
e manual. The reason is that su
h we 
anemphasize the simpli
ity of the tasks. In �5.4 we present 
on
rete models ful�lling theSurfa
eTraits_3 
on
ept.A model of the Surfa
eTraits_3 is supposed to provide the following types:
• Surfa
e_3An instan
e of this type should represent a surfa
e Si ∈ S. How an instan
e is
onstru
ted is not spe
i�ed. It depends on the surfa
e the type represents.
• BoundaryA type to represent lower and upper approximations of 
oordinates.
• Kernel_2This type determines the geometri
 properties of the planar arrangements we are go-ing to 
onstru
t. As we will rely on Cgal's Arrangement_2 pa
kage for this purposeKernel_2 must be a model of Cgal's ArrangementTraits_2 
on
ept. Thus, it pro-vides types Curve_2, X_monotone_
urve_2, and Point_2 and the operations on themas presented in �2.4.3. We use it to 
onstru
t A{Si} and A{Si,Sj} and their over-lays. It depends on the family of surfa
es whi
h model is su�
ient. The embeddedtype Curve_2 is used to represent the 
orresponding proje
ted 
urves, that 
an bede
omposed into zero- and (weakly) x-monotone one-dimensional 
omponents withMake_x_monotone_2.In addition to the ArrangementTraits_2 
on
ept, we require more spe
i�
 fun
tion-ality with respe
t to the nested types:� Constru
t_interior_vertex_2An instan
e of this fun
tor is expe
ted to provide the following operator:Point_2 operator()(X_monotone_
urve_2 x
v)whi
h should return a point in the interior of x
v, best with 
oordinates 
on-stru
ted from type Boundary.



5.3. Implementation in a framework 217� Lower_boundary_x_2(and also: Upper_boundary_x_2, Lower_boundary_y_2, and Upper_boundary_y_2)An instan
e of this fun
tor is expe
ted to provide the following operator:Boundary operator()(Point_2 pt)whi
h should return a lower approximation of the pt's x-
oordinate as instan
eof type Boundary; similar for the upper approximation of x, and analog also forthe point's y-
oordinate. Ea
h approximation must be unequal to the a
tual
oordinate.� Refine_x_2 (and also: Refine_y_2)An instan
e of this fun
tor is expe
ted to provide the following operator:void operator()(Point_2 pt)whose purpose is to re�ne the interval de�ned by lower and upper approxima-tions of pt's x-
oordinate (y-
oordinate, respe
tively).
• Z_at_xy_isolatorAn instan
e of this type 
omputes, represents, and approximates the set Zp,i \{±∞}for a given surfa
e Si at a given Point_2 p as re�neable intervals. Similar for Z

|
p,i,jand two surfa
es. Its member size() gives their number, that is, en
odes mp,i. Thevalues z = {±∞} are impli
itly handled.Re�neable means that the z-
oordinate with index 0 ≤ l < size() might notbe known exa
tly, but at least a lower and an upper boundary is a

essible bylower_boundary(int l) and upper_boundary(int l). This approximation 
an be im-proved by refine_interval(int l). The type of su
h an interval-end is given byBoundary.Besides these types, the 
on
ept also demands for fun
tors related to the proje
tion aspresented in �5.1:

• Constru
t_silhouette_2This fun
tor has to provide three operator()s that 
ompute di�erent planar 
urvesemanating from a given surfa
e S. The output is returned as std::pair< Curve_2,unsigned int > through an OutputIterator (OI). The unsigned int de�nes the mul-tipli
ity of a 
urve, if possible to 
ompute, else −1 is 
hosen. For example, bivariatepolynomials de�ning algebrai
 
urves 
an be fa
torized by multipli
ity; see �2.1.1.OI operator()(Surfa
e_3 s, OI oi)This �rst operator returns all 
urves that belong to the proje
ted silhouette of s.OI operator()(Surfa
e_3 s, int d, OI oi)
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 Surfa
es with Planar ArrangementsThe se
ond 
omputes for given d all 
urves whose points 
an de
rease the regularityof a planar point with respe
t to s to d.OI operator()(Surfa
e_3 s, int d, int k, OI oi)This last operator 
omputes for given regularity d and given 0 ≤ k < d all 
urveswhose points 
an in
rease the degradation of a planar point of regularity d to k withrespe
t to the given surfa
e s.
• Constru
t_interse
tion_2This fun
tor is very similar to the previous one. Its output iterator relies on thesame value-type, but the signature of the two demanded operators now expe
ts twosurfa
es S1 and S2.OI operator()(Surfa
e_3 s1, Surfa
e_3 s2, OI oi)This �rst operator returns all 
urves belonging to the proje
ted interse
tion of thetwo surfa
es. Note that we assumed surfa
es to interse
t at most one-dimensional.OI operator()(Surfa
e_3 s1, Surfa
e_3 s2, int d1, int d2, int k, OI oi)This se
ond operator returns for given regularities d1 and d2 and given 0 ≤ k <

min{d1, d2} all 
urves whose points 
an in
rease the degradation of a planar pointwith (d1, d2)-regularity to k with respe
t to the two surfa
es.Finally, the 
on
ept expe
ts fun
tors supporting the lifting and adja
en
y phase:
• Constru
t_isolatorAn instan
e of this fun
tor is expe
ted to provide the following operator(s):Z_at_xy_isolator_2 operator()(Point_2 pt, Surfa
e_3 s, Cell_info1 
i)whi
h 
onstru
ts for given pt and S the 
orre
t instan
e of Z_at_xy_isolator type,that is, it 
omputes Zpt,i for Si = S; even if S has a verti
al line at pt. For anillustration see Figure 5.1.The given point is in
luded in a 
ell Γ of A{S}. To trigger a spe
ial or more e�
ientimplementation, the 
ell-info 
i 
omprises integral values for dim(Γ), dΓ, kΓ, and,in 
ase that dim(Γ) = 1 (i. e., Γ is an edge), the multipli
ity of τS 's fa
tor that
ontains pt. In addition, it 
arries boolean values indi
ating whether S 
onsists of atwo-dimensional verti
al 
omponent, or whether S is verti
al lo
ally at pt.Z_at_xy_isolator_2 operator()(Point_2 pt, Surfa
e_3 s1, Surfa
e_3 s2,Cell_info1 
i1, Cell_info1 
i2, Cell_info2 
i12)
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ted to 
ompute Z
|
p,i,j. As pre
ondition we have that S1or S2 has a verti
al line at pt. Similar to the previous operator the providedCell_info1 
ontainers give information for the 
ell of A{S1} and A{S2} that 
on-tain pt. The Cell_info2 
ontainer 
olle
ts information on A{S1,S2}'s 
ell Γ1,2 
on-taining pt: dim(Γ1,2), kΓ1,2,1,2, and, in 
ase that dim(Γ1,2) = 1 (i. e., Γ1,2 is an edge),the multipli
ity of τ0,S1,S2 's fa
tor that 
ontains pt.

• Adja
en
yAn instan
e of this fun
tor is expe
ted to 
ompute for a surfa
e s the adja
en
yrelation of two in
ident 
ells of A{S} as depi
ted in Problem 5.12 by the followingoperator:OI operator()(Surfa
e_3 s,Point_2 pt1, Cell_info1 
i1, Z_at_xy_isolator iso1,Point_2 pt2, Cell_info1 
i2, Z_at_xy_isolator iso2,OI oi)The 
ells are interfa
ed in terms of their sample points pt1 and pt2. As before,the Cell_info 
ontainer 
olle
t information on these 
ells Γ1 and Γ2 of A{S}. Theinterfa
ed instan
es of Z_at_xy_isolator represent Zpt1 and Zpt2. The value-type ofthe OutputIterator (OI) is std::pair< int, int >, re�e
ting an entry L as de�nedin Problem 5.12; see Figure 5.2 for an illustration. For p ∈ V, it also 
an be the 
asethat iso1 is identi
al to Zp,S. But note that Zp,S ⊃ Zp,i, that is, we only 
onsider a�ner de
omposition of ℓp.
• Equal_zAn instan
e of this fun
tor has to provide the following operator:bool operator()(Surfa
e_3 s, Point_2 ptZ_at_xy_isolator iso1, int l1, Cell_info1 
i1,Z_at_xy_isolator iso2, int l2, Cell_info1 
i2,Cell_info2 
i12,)It 
he
ks whether the l1's entry of iso1 is supposed to be equal to l2's entry of iso2.Both isolators belong to pt. Remember that they are only required to store re�neableapproximations of the entries. Even in simple 
ases this information is insu�
ient,as their equality 
annot be �nally dedu
ed from iterated re�nements of the isolatingintervals. If the isolators have a

ess to an exa
t representation the dete
tion ofequality 
an just be forwarded. However, in general, we do not expe
t this 
ase.Thus, having this fun
tor keeps the 
han
e that the equality de
ision is a
hievedless dire
tly; for example, using information provided by the interfa
ed 
ell-info 
on-tainers. In addition, su
h information may even improve Equal_z's performan
e by�lters. Mind that Equal_z usually implements 
ostly 
omputations, for example,unavoidable symboli
 evaluations in some 
ases of algebrai
 surfa
es; see �5.4.2.However, the fun
tor has not to deal with all 
ases. Before it is triggered, we apply aset of �lters; see Algorithm 5.5 for details. In parti
ular, we know, when 
alled, that
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es with Planar Arrangementsall intervals of the two given isolators are already re�ned su
h, that ea
h intervaloverlaps with at most one interval of the other isolator. Thus, the set of overlapsforms a 
andidate list of real interse
tions. It is the fun
tors tasks to de
ide for thequeried (still unde
ided) 
andidate, whether there is really an interse
tion or whetherthe isolating intervals will separate after a �nite number of further re�nements. Anexample is given in Figure 5.3.This 
on
ludes the dis
ussion of the Surfa
eTraits_3 
on
ept. It is our goal for thefuture to further abstra
t the implementation from algebrai
 
omponents. Finally, it isstrongly en
ouraged to deploy an extensive 
a
hing strategy when implementing thesefun
tors to avoid unne
essary re-
omputations of usually 
ostly tasks.5.3.2. Planar arrangements and atta
hed dataThe 
entral 
lass of our framework is 
alled Proje
tion_2. It is a referen
e-
ounted ver-sion [Ket06℄ of Cgal's Arrangement_2. We instantiate with Kernel_2 as geometri
-traits
lass, and the topology-traits for the unbounded plane, provided by Cgal 3.4. That is,there is a spe
ial �
titious re
tangle at in�nity (as in Figure 4.9 (a)) to distinguish severalseveral unbounded fa
es.We enhan
e the arrangement's D
el by using Cgal's Arr_extended_d
el to atta
h aninternal data 
lass P_d
el_data to ea
h vertex, ea
h edge, and ea
h fa
e. An instan
e oftype P_d
el_data for a 
ell Γ 
omprises the following data:
• the id of the Proje
ted_2 instan
e it belongs to
• an enumeration re�e
ting dim(Γ)
• a CGAL::Obje
t that en
apsulate a handle to a

ess Γ
• a list of surfa
es whose proje
ted silhouette or proje
ted interse
tions are involvedin Γ
• a list of surfa
es with a two-dimensional verti
al 
omponent over Γ
• a list of surfa
es that have a verti
al line over Γ (only if Γ is a vertex)
• a map that assigns a surfa
e S whose proje
ted silhouette parti
ipates in Γ to aCell_info1 
ontainer. The 
ontainer 
olle
ts information su
h as the 
ell's regularity,degradation with respe
t to S or, if Γ is an edge, the multipli
ity of the fa
tor ofthe proje
ted silhouette that supports Γ. It also stores a D
el-handle to the 
ell of

A{Si} from whi
h Γ might originate (after an overlay)
• a map that assigns pairs of surfa
es Si, Sj whose proje
ted interse
tion parti
ipatesin Γ to a Cell_info2 
ontainer. This 
ontainer 
olle
ts information su
h as kΓ,i,j, aD
el-handle to the 
ell of Aτ0,Si,Sj

from whi
h Γ might originate (after an overlay),or, if Γ is an edge, the multipli
ity of τ0,Si,Sj
's fa
tor that supports the edge

• an instan
e of type Point_2, that is, a sample point in Γ's relative interior
• an instan
e of type Z_fiber (see �5.3.3 for details on this type)The stored list of data helps in two dire
tions: First, it provides the data expe
ted bythe fun
tors required by the Surfa
eTraits_3 
on
ept. Examples are Constru
t_isolatoror Equal_z. They 
an bene�t from this data for good reasons: The global 
omputation ofregularities and degradations for all 
ells of an arrangement saves repeated lo
al 
omputa-tions within the fun
tors. In addition, the best algorithm a

ording to the given data 
anbe triggered dire
tly in a fun
tor. Se
ond, the list 
onstitutes 
ombinatorial informationthat enable to �lter tasks; for examples see �5.3.3 or �5.5.
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 members of Proje
tion_2 also provide a

ess to the stored information forpotential users, su
h as the appli
ations we present in �5.5. We exemplary mention.has_silhouette(D
el_handle h) and .has_interse
tion(D
el_handle h), where the tem-plate D
el_handle 
orresponds to either a vertex-, an edge-, or a fa
e-handle. In addition,Proje
tion_2 forwards iterators to traverse all verti
es, edges, and fa
es. Unfortunately,Cgal's Arrangement_2 for
es us to split 
urves into x-monotone pie
es. Thus, these traver-sal do not re�e
t if in
ident 
ell share the same atta
hed data. For that reason, we providespe
ial traversals that re�e
t this property. Consider a single surfa
e: We are able to 
om-bine verti
es and edges to maximal (d,k)-
onstant paths, that is, a vertex is �ltered out ifits degree is 2 and the vertex and its two in
ident edges all share the same (d,k)-values.Having this enhan
ed arrangement we are now able to ta
kle Problem 5.23 and theproje
tion step of Problem 5.24 in terms of software. The framework provides the fun
torConstru
t_proje
tion_2 that in
ludes exa
tly three operators. Ea
h is either 
onstru
tinga new arrangement or overlaying existing ones. We present implementation details, while
ommon subtasks are postponed.
• Proje
tion_2 operator()(Surfa
e_3 s)
onstru
ts A{s} for given s. It implements Algorithm 5.2: First 
onstru
t Aτs , set(d,k)-values for fa
es, and re�ne edges respe
t to other arrangements Aαs,d and Aσs,d,kby overlays. We introdu
e for ea
h (re�ned) 
ell a map-entry from s to a new 
ell-info 
ontainer and update its information (regularity, degradation) a

ordingly. Of
ourse, we tuned the implementation not to run all iterations, but to stop as soonas all 
ells know their d-k-values. This saves the 
ostly 
onstru
tion of new arrange-ments (and 
urve-analyses) and overlays with the existing ones. Note that all re-quired 
urves are provided by the Surfa
eTraits_3's fun
tor Constru
t_silhouette_2.We �nally �ll missing �elds in ea
h 
ell's P_d
el_data 
ontainer: id of 
omputedProje
tion_2, handle to 
ell it belongs to, list of involved surfa
es (just add s).
• Proje
tion_2 operator()(Surfa
e_3 s1, Surfa
e_3 s2)
onstru
ts A{s1,s2} for given s1 6= s2. It implements Algorithm 5.3: First we over-lay As1 and As2. Then, we 
onstru
t Aτ0,s1,s2 and overlay it with the previousoverlay. Finally, re�nements of edges with respe
t to Aτk,s1,s2 to set the k-valuesare performed. Similar, we introdu
e for ea
h 
ell a map-entry from the pair s1,s2to a new 
ell-info 
ontainer and update its information (degradation) a

ordingly.Again, the implementation stops further re�nements, as soon as all k-values areknown. Note that all required 
urves are provided by the Surfa
eTraits_3's fun
torConstru
t_interse
tion_2. Again, missing �elds in ea
h 
ell's P_d
el_data 
ontainerare set at the end: id of 
omputed Proje
tion_2, handle to 
ell it belongs to, list ofinvolved surfa
es (add s1 and s2).
• template < 
lass InputIterator >Proje
tion_2 operator()(InputIterator begin, InputIterator end)
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onstru
ts AS, where S is attained by the input range [begin,end). The operatorimplements an overlay of all pairs A{Si,Sj}, i 6= j. This is feasible by Cgal's ar-rangements. Con
erning the atta
hed data, note that the 
ell-info 
ontainer for apoint with respe
t to a given surfa
e (or a pair of surfa
es) must be equal, even ifstored in di�erent arrangements. As overlaying su
h arrangements only re�nes 
ells(with atta
hed data), it su�
es to merge the originating key-value-pairs of propermaps. The same holds for the list of involved surfa
es and list of surfa
es with ver-ti
al 
omponents. At any point, no deletion of an entry in a list or map is required.Finally, we again assign the id of the resulting arrangement and a 
ell handle to ea
h
ell. As ea
h A{Si} appears up to n times, we remark that there is room for furtherimprovements, using a more dire
t overlay.Remark. The fun
tor exploits an internal 
a
hing strategy to avoid repeated 
onstru
tions.This means that for a given surfa
e Si, there will be exa
tly one Proje
ted_2 instan
ethat represents A{Si}, and for ea
h pair Si, Sj , i 6= j, there will be exa
tly one Proje
ted_2instan
e that represents A{Si,Sj}. Ea
h su
h instan
e has a unique id in memory. Thefun
tor, again, is responsible to 
orre
tly assign this id to ea
h resulting D
el-
ell (forlater look-ups).As promised, some remarks on subtasks:
• A �rst subtask is to 
ompute an arrangement for a set of planar 
urves. Rememberthat ea
h 
urve reported by a proje
tion-fun
tor of the Surfa
eTraits_3 
on
ept, isenhan
ed with a multipli
ity. In this substep we split ea
h 
urve into its isolatedpoints and (weakly) x-monotone 
urves, 
ompute the indu
ed arrangement, andassign the 
orresponding multipli
ity to ea
h edge. Finally, these arrangements areoverlaid, while propagating the multipli
ity information for edges.This substep is used when 
omputing AτSi

from 
urves reported by the simplest op-erator of Constru
t_silhouette_2 and Aτ0,Si,Sj
from 
urves reported by the simplestoperator of Constru
t_interse
tion_2. We already remark that AτS

is 
entral in anappli
ation that we present later in �5.5.3 on page 248 �.As Kernel_2 is a model of Cgal's ArrangementTraits_2 
on
ept, the 
onstru
tionsand overlays of arrangements 
an be handled by Cgal's Arrangement_2 pa
kage; seealso �2.4.3.
• Although the re�nements in Algorithm 5.2 and Algorithm 5.3 involve di�erent values,they share 
ommon abstra
t steps:� 
ompute an overlay of two arrangements� dete
t the 
ells whose values gets set� 
ompute the value from the information available in the 
urrent iteration� remove unne
essary 
ellsOur implementation exa
tly follows these generi
 steps, while 
ode spe
ializes forthe re�nement of an arrangement with respe
t to multipli
ities, regularities, anddegradations. A
tually, the ultimate goal is to abstra
t further and to iteratively
ompute the property (su
h as regularity or degradation) for ea
h 
ell in a sequen
eof overlays: Ea
h overlay step adds a new attribute value (here, the existen
e of a
urve), while after ea
h overlay, it is 
he
ked whether the property 
an already be
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omputed from the the available attributes. However, this generalization is beyondthe s
ope of this thesis.For the lifting of surfa
es, a sample point for ea
h 
ell is required. As a vertex ofan arrangement is zero-dimensional, there is no 
hoi
e. The sample point of a vertex issimply the atta
hed Point_2. An edge is one-dimensional, so there is some 
hoi
e. Notethat ea
h edge stores an X_monotone_
urve_2. A point in its interior 
an be 
omputed byKernel_2::Constru
t_interior_vertex_2, even with a x- or y-
oordinate of type Boundary.To 
ompute the sample point of fa
e, remember that we 
an a

ess an approximation ofa point that represents a re
tangle. Thus, we 
hoose a point p on a CCB of a fa
e. Let Bbe the re
tangle de�ned by p's approximation. Pi
k a point p′ on a part of B that isinterse
ted by the desired fa
e. In 
ase, the boundary of the re
tangle does not interse
twith the fa
e, we re�ne the point's approximation until its boundary has an interse
tionwith the fa
e. Note that following this strategy, the 
omplexity of sample points for edgesand fa
es depends on the provided planar kernel. We a
tually try to 
ompute su
h withrational 
oordinates of low bit-size, if possible.Consider now a 
ell that originates from the overlay of two arrangements. We 
ansimply 
ompute a new sample point for this 
ell. However, as the sample point is alsothe base of the lifting, whi
h we explain next, we do not want to have too many di�erentsample points. Thus, it is �rst 
he
ked, whether one of the sample points of the originating
ells �ts for the resulting 
ell. If so, this one is 
hosen.5.3.3. Z_fiberOn
e the planar arrangements enhan
ed with 
ombinatorial data and sample points forea
h 
ell are 
omputed, we 
an lift them to the third dimension in order to a
hieve a 
ellde
omposition; see �5.1. Con
erning the implementation we have to represent a z-patternfor ea
h 
ell along with geometri
 information on the surfa
es' z-
oordinates. Thus, wepresent the 
lass Z_fiber that serves both goals.In what follows we �x a single 
ell Γ ∈ AS, where the 
ase |S| = 1 is spe
ial and requiresonly trivial pro
essing. Let p ∈ Γ. For our purpose, we typi
ally have p = pΓ where pΓ isthe sample point of Γ. However, if desired, any point is sele
table; we only dete
t 
hangesin the surfa
es' z-
oordinates, when moving p within Γ. So, assume p = pΓ.Let SΓ = SΓ,1, . . . , SΓ,r be the set of surfa
es involved in Γ. We know this information.In parti
ular, by available 
ombinatorial information, we 
an even partition SΓ into S
|
Γ⊎S∗Γsu
h that for S ∈ S

|
Γ we have ℓp ⊂ S and for S ∈ S∗Γ we have ℓp 6⊂ S. Thus, an instan
e oftype Z_fiber maintains a list for surfa
es being verti
al over p. We are missing to a
hievegeometri
 information for S ∈ S∗Γ. Thus, for ea
h su
h S we 
all Constru
t_isolatorinterfa
ing the available 
ell-info as expe
ted, whi
h returns a Z_at_xy_isolator instan
eproviding the desired (approximative) z-
oordinates for S at p. The Z_fiber maintainsa map that assigns S to its respe
tive isolator. This 
ompletes the part of an Z_fiberinstan
e dealing with geometri
 information.We next turn to 
ompute the sequen
e Wp,S∗

Γ
= wp,1, . . . , wp,k representing (togetherwith S

|
Γ =: w

|
p) the z-pattern over Γ. The Z_fiber 
lass maintains a sorted list of surfa
e-sets. Ea
h set is 
alled a Z_
ell and stores instan
es of std::pair< Surfa
e_3, int >.Su
h a pair denotes a surfa
e lift over Γ. Note that the int 
orresponds to the sheet
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es with Planar Arrangementsnumber of the Surfa
e_3 instan
e at p; see also De�nition 2.29. Observe that the Z_fiberde
ouples the 
ombinatorial z-pattern from the geometri
 information (i. e., Zp,i). But asa Z_
ell 
an store a lift for ea
h S ∈ SΓ, we are able to reassemble them: It is easy tore�ne the intervals of the stored isolators su
h that all intervals belonging to one surfa
elift are isolating with respe
t to the intervals belonging to surfa
e lifts of the neighbored(below/above) Z_
ell, if existing. That is, their 
onvex hulls are isolating to ea
h other.We remark, that 
ells for z = ±∞ are not expli
itly stored.Theoreti
ally, Equation (5.1) de�nes wp,l and thus the entries of a Z_
ell. In pra
ti
ewe still have to determine ea
h. In 
ase that |SΓ| = 1, this task is obvious. Computing
Wp,S∗

Γ
with |SΓ| > 1 is implemented via a multi-way merging. That is, for a set of z-
oordinates Z := {zp,i,li | 1 ≤ i ≤ r} we have to 
ompute Zmin := {i | zp,i,li = min(Z)}.This requires to 
ompare the z-
oordinates as stated in Problem 5.22. The isolators storedfor the surfa
es do not provide su�
ient information to determine Zmin, a
tually to deter-mine if |Zmin| > 1. The reason is, that an isolator only provides re�neable approximationfor all zp,i,li . At this point, the Surfa
eTraits_3's fun
tor Equal_z enters the stage. Thesubsequent dis
ussion assumes that |SΓ| = 2; the extension to |SΓ| > 2 is straightforward.In order to enable a two-way merge, our task is to 
ompute the order of zp,1,l1 ∈ Zp,1and zp,2,l2 ∈ Zp,2 for surfa
es S1 and S2. The dire
t solution is given by Algorithm 5.4.Algorithm 5.4. Compare entries of z-�bers of two surfa
esInput: zp,1,l1 ∈ Zp,1, zp,2,l2 ∈ Zp,2Output: Their order1. Re�ne intervals of isolators representing Zp,1 and Zp,2 su
h that ea
h interval overlapswith at most one interval of the other isolator.2. The overlapping intervals form a 
andidate list for possible interse
tions of S1 and

S2 along ℓp. If no 
andidate is found, pro
eed with (5).3. Che
k if the intervals approximating zp,1,l1 and zp,2,l2 overlap. This 
an be done interms of indi
es l1 and l2. If not, pro
eed with 5.4. Call Equal_z for zp,1,l1 and zp,2,l2 . If it returns true, return EQUAL.5. Rea
hing here indi
ates that zp,1,l1 and zp,2,l2 are not equal, that is, their approxi-mative intervals 
an be re�ned until they do not overlap any more, whi
h gives the
orre
t order, that is, SMALLER or GREATER.Algorithm 5.4 fully relies on the Surfa
eTraits_3's fun
tor Equal_z to de
ide the equal-ity. However, this strategy ignores available 
ombinatorial information atta
hed to Γ and
ontinuations we expe
t from surfa
es. Thus, we present Algorithm 5.5 that exploits thesedata in order to avoid, usually 
ostly, 
alls to Equal_z. One of the �lters (highlighted)dete
ts that zp,1,l1 = zp,2,l2 , while most of them de
ide that zp,1,l1 6= zp,2,l2 .For reasons of e�
ien
y, the �lters are a
tive by default. When we dis
uss algebrai
surfa
es in �5.4, they help to avoid 
ostly equality test, for example, at points with highalgebrai
 degrees. Note that the equality over verti
es is only expli
itly 
he
ked, if thereexists an isolated point (a degenerate 
ase). However, the 
oordinates of verti
es areusually the ones with the highest algebrai
 degrees. Thus, it is bene�
ial to �lter su
h
ases with 
ombinatori
s. For the future, we hope to develop further �lters.We want to remark, that the lifting follows the lazy evaluation s
heme. This meansthat sample points for D
el-
omponents and their z-�bers are only 
omputed on de-mand. Further requests for them are served by 
a
hed versions. Of 
ourse, Proje
tion_2
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Algorithm 5.5. Compare entries of z-�bers of two surfa
es, with �ltersInput: zp,1,l1 ∈ Zp,1, zp,2,l2 ∈ Zp,2Output: Their order1. If dim(Γ) = 2 (fa
e), pro
eed with (10).2. If τ0,S1,S2 is not involved in Γ, pro
eed with (10).3. Re�ne intervals of isolators representing Zp,1 and Zp,2 su
h that ea
h interval overlapswith at most one interval of the other isolator.4. The overlapping intervals form a 
andidate list for possible interse
tions of S1 and
S2 along ℓp. If no 
andidate is found, pro
eed with 10.5. Che
k if the intervals approximating zp,1,l1 and zp,2,l2 overlap. This 
an be done interms of indi
es l1 and l2. If not, pro
eed with (10).6. If there is exa
tly one overlap, 
he
k if dim(Γ) = 1 (edge) and if it stores multipli
ity 1for τ0,S1,S2 . If so return EQUAL, if not, pro
eed with (10).7. If dim(Γ) = 0 (vertex), sele
t in
ident edges of Γ ∈ A{S1,S2} whose Z_fiber indi
atean interse
tion of S1 and S2. Compute for ea
h Z_
ell 
ontaining an interse
tionthe adja
en
ies of S1 and S2 towards given vertex (using Surfa
eTraits_3 Adja
en
yfun
tor). For ea
h we obtain a pair of indi
es. If one pair mat
hes (l1, l2), returnEQUAL, whi
h follows by Condition 5.9. Otherwise pro
eed with (10).8. If dim(Γ) = 0 (vertex), 
he
k whi
h τS1 and τS2 are involved in Γ. If none, pro
eedwith (10), as only isolated points remain for possible interse
tions, but an isolatedpoint is indi
ated by the existen
e of a proje
ted silhouette.9. Finally, 
all Equal_z for zp,1,l1 and zp,2,l2 . If it returns true, return EQUAL.10. Rea
hing here indi
ates that zp,1,l1 and zp,2,l2 are not equal, that is, their approxi-mative intervals 
an be re�ned until they do not overlap any more, whi
h gives the
orre
t order, that is, SMALLER or GREATER.



226 E�
ient Strati�
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 Surfa
es with Planar Arrangementso�ers publi
 members to a

ess sample points (.sample_point(D
el_handle h) and z-�bers(.z_fiber(D
el_handle h) for given D
el-handles. When merging atta
hed data due toan overlay, we already mentioned that our 
ode always tries to reuse already 
omputedsample points. Obviously, the same idea is possible for Z_fiber instan
es atta
hed to a
ell, espe
ially for the stored isolators.In general, we have seen how to e�
iently 
onstru
t the z-pattern for a 
ell Γ, thatalso impli
itly de�nes the multi-surfa
e z-�ber of surfa
es involved in Γ. The 
omputationshighly bene�t from pre
omputed 
ombinatorial data atta
hed to Γ.Remark. In 
ase that p ∈ V, Algorithm 5.4 is also used to 
ompute Zp,S by merging theentries of Zp,i, Zp,j and Z
|
p,i,j.As last step, it remains to 
onne
t Z_
ell instan
es with respe
t to the adja
en
yrelation(s). For that reason, ea
h su
h 
ell maintains a list storing handles to adja
ent
ells. If S 
onsists of a single surfa
e, the lists 
an dire
tly be �lled with informationprovided by querying Surfa
eTraits_3's Adja
en
y fun
tor for all pairs of in
ident 
ells of

AS. In prin
iple, the same idea is appli
able if |S| > 1. The di�eren
e is now that theindi
es of the z-pattern wΓ,l are not identi
al to the surfa
e lifts. To 
orre
tly maintainthe lists of adja
ent Z_
ell instan
es, we have to lo
ate wΓ1,l1 and wΓ2,l2 that 
ontains thereported index-pairs L of z-�bers to link them; see also Equation 5.1, Problem 5.12 and,for an illustration, Figure 5.7.Figure 5.7. Propagate single-surfa
e adja
en
ies to multi-surfa
e �bers
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��
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?
?

?
?

?
?

?

����(a) What is the ad-ja
en
y relation be-tween 
ells of multi-surfa
e �bers?
��������

���
���
���
���

��
��
��
��

(b) Computesingle-surfa
eadja
en
iesand . . .
��
��
��
��

������(
) . . . propagatethem using sheetnumbers.Remark. Note that this propagation only works if none of the 
ells Γ1, Γ2 
ontains a verti
al
ℓp of some surfa
e. Otherwise, we have by Condition 5.17 that more than one surfa
ein�uen
es the de
omposition of ℓp. Let us assume that Γ1 = {p} with p ∈ V. In this 
ase
Zp,i must be repla
ed by Zp,S and we 
ompute the adja
en
y relation of ea
h Si betweenits lifts over Γ1 and all lifts of Si over Γ2. Note that we only have to mat
h 
orre
t indi
esfor lifts of Γ2, while the indi
es for Γ1 are already reported with respe
t to Zp,S.
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 surfa
es 2275.4. Models for algebrai
 surfa
esIn this se
tion, we �nally present details on two models that we provide for the newSurfa
eTraits_3 
on
ept. Both deal with algebrai
 surfa
es.Quadri
_3_traits Supports algebrai
 surfa
es of degree at most 2. It was our initial model,and allows 
ombinatorial �lters for the fun
tors related to lifting.Algebrai
_surfa
e_3_traits This model supports algebrai
 surfa
es of any degree.The models have in 
ommon, that none expe
ts to shear the three-dimensional 
oor-dinate system in order to avoid degenera
ies. In the re
ent implementation, the quadri
almodel is a re�nement of the other. But let us present the details step by step. Algebrai
surfa
es have already been tou
hed in �5.2. Thus, we mainly 
on
entrate on implementa-tion details. We start with the basi
 types and swit
h in �5.4.1 to the proje
tion tasks.Then, �5.4.2 
overs the details on the lifting phase. There, we also give the missing 
om-putation of Zp,i and Z
|
p,i,j for algebrai
 surfa
e Si and Sj .Algebrai
 surfa
es are represented by the 
lass template Algebrai
_surfa
e_3. It isbased on Cgal's Polynomial 
lass, but adds surfa
e-spe
i�
 fun
tions. An obje
t of thistype is 
onstru
ted from a trivariate polynomial. We typedef Surfa
e_3 to this type.For our quadri
al model, Exa
us' 
lass Quadri
_3 derives from the Algebrai
_surfa
e_3and adds 
onstru
tors (e. g., from ten 
oe�
ients de�ning the quadri
) and other spe
i�
members: for example, to 
ompute the quadri
's matrix representation, or the quadri
'sinertia (not required here). Both 
lasses are templated by an Arithmeti
_kernel that pro-vides 
oherent types for integer, rational, and big�oat numbers; see �2.3.1. We typedefBoundary to Arithmeti
_kernel::Rational.505.4.1. Proje
tions for algebrai
 surfa
esAs seen in �5.2.2, the proje
tion for algebrai
 surfa
es requires to 
onstru
t and overlayarrangements of algebrai
 
urves. Their degree is bounded by D2, where D is the maximum(total) degree of any input surfa
es. Thus, for quadri
s we need a model of Kernel_2 that
an deal with algebrai
 
urves of degree at most 4, while the any-degree model, requires amodel that supports algebrai
 
urves without restri
tions on their degree. Su
h a modelhas be
ome available re
ently with Cgal's Curved_kernel_via_analysis_2 if instantiatedwith Cgal's bivariate Algebrai
_
urve_kernel_2; see �2.4.4, [BE08℄, and �2.3.3, [EK08a℄,[EKW07℄ for more details. In fa
t, the Curved_kernel_via_analysis_2 also provides theadditional fun
tors (interior vertex, approximations for points) as listed in �5.3.1. Similarto the geometri
 predi
ates and 
onstru
tions expe
ted by Cgal's ArrangementTraits_2
on
ept, they are implemented relying on the provided algebrai
 kernel. Thus, we are ableto �nally typedef Kernel_2 to CKvA_2< Algebrai
_
urve_kernel_2>. Note that we do notspe
ialize for quadri
s.The same holds for the fun
tors related to the proje
tion, that is, they serve bothmodels. For simpli
ity, we abuse notation and identify surfa
e and de�ning polynomial.Remember that f =
∑D

d=0 adz
d and for D0 < D: f(D0) :=

∑D0
d=0 adz

d. We requireto de
ompose the polynomials Resz(f, ∂f
∂z ), ad, and sthak(f(d)) into square-free fa
tors50In a future version, it is an obje
tive to use Arithmeti
_kernel::Bigfloat as Boundary type.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar Arrangementsand 
onstru
t 
orresponding 
urve instan
es. We utilize Cgal's Polynomial [Hem07
℄and Algebrai
_kernel_d [BHKT08℄ pa
kage, that provide all required operations, su
h assquare-free fa
torization, resultants and their sequen
es. It allows to provide a straight-forward implementation of Constru
t_silhouette_2 and Constru
t_interse
tion_2. Thevalue-type of the fun
tor's OutputIterator is std::pair< Curve_2, int >, where Curve_2is a
tually a Curve_analysis_2 provided by the Algebrai
_
urve_kernel_2. The reportedint represents the 
orresponding multipli
ity of the square-free fa
tor.The fun
tor Constru
t_silhouette_2 has to provide three operators for a given surfa
e:OI operator()(Surfa
e_3 f, OI oi)we 
ompute and report the square-free fa
torization of Resz(f, fz),OI operator()(Surfa
e_3 f, int d, OI oi)we 
ompute and report the square-free fa
torization of ad with 0 ≤ d ≤ DOI operator()(Surfa
e_3 f, int d, int k, OI oi)we 
ompute and report the square-free fa
torization of sthak(f(d),
∂
∂zf(d), z) with 0 ≤ k <

d ≤ D.For the Constru
t_interse
t_2 fun
tor, exa
tly the same approa
h is taken, with thedi�eren
e that the desired polynomials are expressed with respe
t to two given surfa
es.OI operator()(Surfa
e_3 f1, Surfa
e_3 f2, OI oi)we 
ompute and report the square-free fa
torization of Resz(f1, f2)OI operator()(Surfa
e_3 f1, Surfa
e_3 f2, int d1, int d2, int k, OI oi)we 
ompute and report the square-free fa
torization of sresk((f1)(d1), (f2)(d2), z), with
0 ≤ k < min(d1, d2) ≤ D.Remark. We 
ompute Sturm-Habi
ht sequen
es with 
ofa
tors as given by [BPR06, Al-gorithm 8.22℄. This algorithm relies on polynomial remainder sequen
es [Loo82b℄. Inpra
ti
al setting this is more e�
ient than 
omputing the Sturm-Habi
ht sequen
e viadeterminantal expressions.Note that the a
tual 
onstru
tion of the desired arrangements is implemented usingexa
tly the output of these fun
tors; see �5.3.2 and Algorithms 5.2 and 5.3.5.4.2. Lifting for algebrai
 surfa
esIn the lifting phase, we have three tasks to a
hieve. Namely, to 
onstru
t isolators rep-resenting Zp,i and Z

|
p,i,j, to de
ide equality for two entries of su
h isolators for di�erentsurfa
es, and to 
ompute the adja
en
y relation between the entries of two isolators be-longing to the same surfa
e. We �rst dis
uss these tasks for algebrai
 surfa
es of anydegree, and �nally present how to 
ombinatorially �lter the quadri
al 
ase.
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 surfa
es 229IsolatorFor all 
onstru
tions of Zp,i we rely on the bitstream Des
artes method that has beenpresented with its details in �2.3.4. Remember that the method isolates the real rootsof a polynomial whose 
oe�
ients are given as possible in�nite bitstreams, that is, theapproximation of its 
oe�
ients 
an be improved to arbitrary pre
ision. Thus, we typedefZ_at_xy_isolator to Cgal's type Bitstream_des
artes.For our purposes, we require a new model ful�lling the BitstreamDes
artesRndlTreeTraits
on
ept, whi
h we 
all the Bitstream_z_at_xy_traits. There are three 
onstru
tors forthis traits:square-free-
onstru
tionBitstream_z_at_xy_traits(Polynomial_3 f, Point_2 pt)whi
h supports to isolate the roots of f(pt) := f(px, py, z) =
∑D

d=0 ad(pt)zd ∈ R[z]with the bitstream Des
artes method. Remember that ak ∈ Q[x, y]. The 
onstru
torrequires that f(pt) is square-free.m-k-
onstru
tionBitstream_z_at_xy_traits(Polynomial_3 f, Point_2 pt,int m, int k)whi
h supports to isolate the roots of f(pt) := f(px, py, z) =
∑D

d=0 ad(pt)zd ∈ R[z]with the m-k-bitstream method, where m represent the lo
al real degree of f(pt) and k thelo
al g
d degree of f(pt). It is su

essful, if f(pt) has at most one multiple root, otherwisean ex
eption is thrown; see also �2.1.2.verti
al-line-
onstru
tiontemplate < 
lass InputIterator >Bitstream_z_at_xy_traits(InputIterator begin, InputIterator end)whi
h supports a simulated isolation. It only forwards the input range [begin,end)of handles to already isolated intervals, that is, to entries of isolators 
onstru
ted withthe square-free or m-k-variant. We use it to represent the isolator for Zp,i for p ∈ Vi, orfor Z
|
p,i,j. Below, we see that su
h sequen
es 
onsists of links to roots of a small numberof polynomials.The �rst two 
onstru
tors rely on the possibility to re�ne pt's 
oordinates to arbitrarypre
ision; see �5.3.1 and �5.4.1. This dire
tly supports the 
omputation of the approxima-tions as Bigfloat intervals as expe
ted by the Bitstream_
oeffi
ient_kernel. Addition-ally, for c ∈ Q[x, y] (as ad, or stha-
oe�
ients) we 
an even determine sign(c(px, py)) usingAlgebrai
_
urve_kernel_2's Sign_at_2 fun
tor. It internally uses a 
lever 
ombination ofanalyses of 
urves and interval arithmeti
. Note that this enables the zero-test that isexpe
ted to obtain a better initial interval; see Bitstream_
oeffi
ient_kernel in �2.3.4.Even more, the m-k-variant relies on the fun
tor to 
ompute a sequen
e of signs; see below.
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsThe di�erent variants (square-free-
onstru
tor, m-k-
onstru
tor, sequen
e-
onstru
tor)are interfa
ed through the 
ommon Bitstream_des
artes 
lass; see also �2.3.4. This allowsthat a user (as, e. g., Algorithm 5.5), is not aware of the various details required in ea
hvariant. Its main obje
tives with respe
t to some isolator are:
• How many entries does some isolator have?
• Give me an interval approximation of zp,l for given l.
• Re�ne the interval approximation of zp,l for given l.
• Whi
h l belongs to the multiple root? (Only for the m-k-variant!)It remains to dis
uss how Constru
t_isolator 
ombines the di�erent traits 
onstru
-tions in order to 
orre
tly provide the desired isolator for Zp,i. Note that the interfa
e ofthe fun
tor re
eives via a 
ell-info the lo
al degrees dp,i, kp,i, mp,i (see �5.2.1), and infor-mation on whether Γ ∈ A{Si} with p ∈ Γ is a vertex, an edge, or a fa
e. In 
ase Γ is anedge, the multipli
ity of τSi

's fa
tor that supports the edge is also provided.We �rst 
onsider the non-verti
al 
ase, that is p 6∈ Vi. If kp,i = 0, then fi(p) is square-free; this triggers the standard 
onstru
tion of the Bitstream_z_at_xy_traits from fi and ponly. The traits itself ensures iterated and 
oherent re�nements of interval approximationsfor px and py to serve the a
tual isolation; a
tually it demands for them from the algebrai
kernel.Otherwise, if kp,i > 0, we �rst try to run the m-k-Bitstream Des
artes method (seealso [EKW07, Se
tion 5℄) on fi(p). This extension exploits our knowledge on the lo
al realdegree and the lo
al g
d degree, and isolates the real roots using numeri
al approximationseven if fi(p) has at most one multiple root. However, we are required to 
ompute m. This
an be done, for example, using a modi�ed version of Algorithm 2.3 that 
an deal withspe
ialized polynomials. For 
omputing the signs of sthai we rely on the algebrai
 kernel'sfun
tor Sign_at_2.However, it is not ensured, that the m-k-variants exists with su

ess. So we are leftwith the 
ase, that fi(p) has more than one multiple root. In this 
ase, we 
ompute thesquare-free part f∗
i (p) of fi(p) using Algorithm 2.4 and apply the Bitstream Des
artesmethod on f = fi(p)∗ using the �rst 
onstru
tor. As f is square-free, termination isensured. Observe that in all 
ases, we simplify by ignoring ±∞ being part of a z-�ber.It is essential that the algebrai
 kernel models the planar points' 
oordinates in algebrai
interval represention; see De�nition 2.17. Following, all obtained z-
oordinates 
an beexpressed as algebrai
 interval representations of dimension 3.However, it is open, and promised in �5.2, to 
ompute the entries of Zp,i if p ∈ Vi.Remember from De�nition 5.10 how the entries of Zp,i are 
hara
terized, namely as theendpoints of intervals of lifted fa
es that are in
ident to p; see also Theorem 5.45 andCorollary 5.52. The 
omputation of a superset Z∗

p,i for Zp,i is shown in [BKS08℄. As weare fo
ussing on the algorithmi
 part of the obje
tive, we only review its main ideas andpresent the 
entral result; for the (lengthy) proofs we refer to the original work.Let F ∈ A{Si} be a fa
e in
ident to p and let I(F (l,i)) be a non-degenerate adja
en
yinterval. Choose an arbitrary interior point (p, z0) ∈ I(F (l,i)), that is, z0 /∈ Zp,i. It is animpli
ation of Theorem 5.45 that the planar 
urve Cz0 = {(x, y) ∈ R2|fi(x, y, z0) = 0},embedded into the arrangement A{Si}, 
ontains at least one ar
 that leaves p and passesfa
e F . Vi
e versa, ea
h ar
 of Cz0 starting in p 
orresponds uniquely to a lifted surfa
epat
h above F whi
h is adja
ent to (p, z0). This observation is the basis for the 
omputation
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 surfa
es 231of possible interval endpoints by a 
on
eptual sweep along ℓp: We keep tra
k of the spe
ialarrangement A{Si},z0
that is indu
ed by the overlay of A{Si} and ACz0

, while moving with
z0 from −∞ to +∞. It is the obje
tive to dete
t possible topologi
al 
hanges of A{Si},z0lo
al to p. To be more pre
ise: Compute all z ∈ R where for any fa
e F in A{Si} thenumber of ar
s of Cz leaving p and passing F 
hanges. Observe that for most z0, a slightperturbation of z0 deforms Cz0 in su
h a way, that the lo
al topology of A{Si},z0

at p ispreserved. Hen
e, an ar
 of Cz0 
ontained in F still lifts to the same F (l,i). In 
ontrast,perturbing an z0 that belongs to an endpoint of an interval I(F (l,i)) results in either loosingan ar
 that passes p or in an ar
 that swit
hes to another fa
e F ′; see Figure 5.8 whereloosing ar
s happens at z0 = ±1
2 , and swit
hing ar
s happen at z0 = 0.

Figure 5.8. Steiner Roman surfa
e with horizontal interse
tions at z =
1
2 , 2

5 , 3
10 , 1

10 ,− 3
10 , 2

5 taken from [BKS08℄The following theorem from [BKS08℄ algebrai
ally des
ribes the non-generi
 z-valuesthat respe
t lo
al topology 
hanges of A{Si},z0
at p ∈ Vi.Theorem 5.60. Let Si be an algebrai
 surfa
e without two-dimensional verti
al 
omponent,de�ned by fi ∈ Q[x, y, z] being square-free and let p ∈ Vi as above. Let

r(x, z) := Resy(fi,
∂fi

∂y
) = (x− px)

r0 r̃(x, z),

t(x, z) := Resy(fi,Resz(fi,
∂fi

∂z
)) = (x− px)t0 t̃(x, z)with the following de�nitions of exponents

r0 := max{r′ : (x− px)
r′ |r(x, z)},

s0 := min{s′ : ∂s′

∂ys′
fi(px, py, z) 6≡ 0}

t0 := max{t′ : (x− px)t
′ |t(x, z)}.Then for z0 6∈ Z∗

p,i := {z|r̃(px, z) = 0∨ ∂s0

∂ys0 fi(px, py, z) = 0∨t̃(px, z) = 0} the lo
al topologyof A{Si},z0
at p is preserved for any su�
iently small perturbation of z0. Additionally,

Zp,i ⊂ Z∗
p,i.By assumption Cz is square-free and does not share a 
ommon 
omponent with τS for allbut �nitely many z ∈ R. Su
h degenerate z-values are exa
tly given by Resy(fi,

∂fi

∂y )(x, z) ≡
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es with Planar Arrangements
0 or Resy(fi,Resz(fi,

∂fi

∂z )) ≡ 0. An impli
ation is that the fa
torization of r(x, z) and t(x, z)as well as s0 is well de�ned. In parti
ular for ea
h z0 ∈ Zp,i, the 
urve Cz0 is square-free andit neither 
ontains the verti
al line L := VR(x− px) ⊂ R2 nor any 
omponent of τSi
. Notethat Z∗

p,i de�nes a superset of Zp,i. For the full proof and more details we refer to [BKS08℄.As an impli
ation, we 
an pre
isely de�ne the 
ontent of Si's z-�ber for p ∈ Vi.De�nition 5.61 (z-�ber for p ∈ V ). Consider the polynomials
R(z) := r̃(px, z) S(z) := ∂s0

∂ys0
fi(px, py, z) T (z) := t̃(px, z)
ontained in R[z]. We relax De�nition 5.10, and allow also a superset of the intervalboundaries as z-�ber. Thus, we now de�ne

Zp,i := {z ∈ R | R(z) = 0 ∨ S(z) = 0 ∨ T (z) = 0}To 
ompute this set, we isolate the real roots of R(z), S(z), and T (z) with the bitstreamDes
artes method; remember that the polynomial's 
oe�
ients are expressed with respe
tto p's 
oordinates, that are, in general, algebrai
. However, we know, as in the non-verti
al 
ase, approximations for them and how to re�ne them. A
tually, we 
an obtain alist of polynomials P1(z), . . . , Pl(z) representing the square-free and 
oprime 
ounterpartsof R(z), S(z), and T (z) using Algorithms 2.4 and 2.8 (pages 29 and 32). This treatmentsimpli�es two steps: First, ea
h polynomial is square-free. Thus, we 
an dire
tly apply thesquare-free-variant of the bitstream Des
artes method. Se
ond, as no two polynomials Pl1 ,
Pl2 with l1 6= l2 share a 
ommon root, the merge of the obtained sequen
es of isolating(and re�neable) intervals is simple.The a
tual implementation redu
es the 
omputation of su
h a Zp,i to 
urve- and 
urve-pair analyses. This tri
k 
an be seen as keeping x a little bit longer indeterminate. Inaddition, �lters developed for planar 
urves do now apply also for this task, whi
h arenot a

essible in the dire
t approa
h as presented above. Doing it this way, also helpsto remove fa
tors of (x − px) from the original polynomials, as the bivariate polynomialsde�ning 
urves 
an be de
omposed into �verti
al lines� and �non-verti
al 
urves�; see �2.1.4.Thus, we ignore the verti
al lines, and only pro
ess three non-verti
al 
urves at x = px.Finally, we just report the merged sequen
e of obtained isolating intervals as inputrange to the third 
onstru
tor of the bitstream traits model.Remark. It is an open question, whether there is a more stri
t de�nition of Zp,i, best onethat tightly de�nes the boundaries of all I(F (l,i)). The 
onje
ture is: For given z0 ∈ R, wehave S(z0) = 0⇒ R(z0) = 0.The desired O(D5) 
omplexity of the 
ell-de
omposition Ω{S} introdu
ed in De�ni-tion 5.28 is ful�lled as we now 
an give the missing proof of Theorem 5.46.Proof. (of Theorem 5.46) Observe that we only have to show that |Zp,i| ∈ O(D3) a
-
ording to De�nition 5.61 of Zp,i. Consider the polynomials R(z), S(z), T (z) whose rootsde�ne Zp,i. Ea
h is of degree at most O(D3). Thus, ea
h 
an have up to O(D3) real roots,whi
h implies the desired bound for the union of them.Following Condition 5.17, De�nition 5.18, and �nally desired by Problem 5.19, we alsohave to 
ompute Z

|
p,i,j for given p ∈ Vi ∪Vj for two surfa
es Si, Sj , i 6= j. That is, we have
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 surfa
es 233to explain how to implement the se
ond operator expe
ted by Constru
t_isolator. Tosolve it, a strategy similar to the one that de�nes Zp,i for p ∈ Vi 
an be used. Analogously,we want to extra
t z-
oordinates at whi
h Si and Sj indu
es intervals along ℓp. As inTheorem 5.60, we use a lo
al proje
tion onto the yz-plane.Theorem 5.62. Let Si, Sj be algebrai
 surfa
es without two-dimensional verti
al 
ompo-nent, de�ned by fi, fj ∈ Q[x, y, z] being square-free, 
oprime and let p ∈ Vi ∪ Vj as above.Let
ui(x, z) := Resy(fi,Resz(fj,

∂fj

∂z
)) = (x− px)u

(i)
0 ũi(x, z)

uj(x, z) := Resy(fj ,Resz(fi,
∂fi

∂z
)) = (x− px)

u
(j)
0 ũj(x, z)

vi(x, z) := Resy(fi,Resz(fi, fj)) = (x− px)v
(i)
0 ṽi(x, z)

vj(x, z) := Resy(fj ,Resz(fi, fj)) = (x− px)
v
(j)
0 ṽj(x, z)and the following de�nitions of the exponents

u
(i)
0 := max{u′ : (x− px)

u′ |ui(x, z)}
u

(j)
0 := max{u′ : (x− px)

u′ |uj(x, z)}
v
(i)
0 := max{v′ : (x− px)v

′ |vi(x, z)}
v
(j)
0 := max{v′ : (x− px)v

′ |vj(x, z)}De�ne Z
|
p,i,j := Zp,i ∪ Zp,j ∪ Z ′

p,i ∪ Z ′
p,j ∪ Z∗

p,i ∪ Z∗
p,j with

Z ′
p,i :=

{
{z ∈ R|ũi(px, z) = 0} , if p ∈ Vi ∧ τSj

(p) = 0

∅ , otherwise
Z∗

p,i :=

{
{z ∈ R|ṽi(px, z) = 0} , if p ∈ Vi ∧ τ0,Si,Sj

(p) = 0

∅ , otherwiseand similar for Z ′
p,j and Z∗

p,jThen for z0 6∈ Z
|
p,i,j the lo
al topology of A{Si,Sj},z0

at p is preserved for any su�
ientlysmall perturbation of z0.Intuitively, Z
|
p,i,j de
omposes ℓp into intervals su
h that ea
h fa
e F of A{Si,Sj} in
identto p is adja
ent to exa
tly one su
h interval. This ensures the boundary property formulti-surfa
e z-lifts of a multi-surfa
e arrangement. The proof of Theorem 5.62 is analogto Theorem 5.60. To a
tually 
ompute Z

|
p,i,j, we again rely on the bitstream Des
artesmethod for uk and vk (as we previously did for r, s, and t), while the �nal merging of setsinto Zp,{Si,Sj} is analog to the merge presented for Zp,i with p ∈ Vi using Algorithm 5.4.This 
onstru
tion also shows that De�nition 5.20 is well-
hosen for algebrai
 surfa
es. Itremains to proof the 
omplexity of Zp,{Si,Sj}
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 Surfa
es with Planar ArrangementsProof. (of Theorem 5.47) Observe that we only have to show that |Z |
p,i,j| ∈ O(D3)a

ording to De�nition 5.18. We already have |Zp,i| ∈ O(D3) and |Zp,j| ∈ O(D3). Theremaining sets that de�ne Z

|
p,i,j are determined by roots of polynomials whose degrees in zare at most O(D3). Thus, ea
h 
an have up to O(D3) real roots, whi
h implies the desiredbound for the union of them.Choosing the bitstream Des
artes method to 
ompute the isolators is not an arbitraryde
ision. First of all, the Des
artes method is 
onsidered to be a pra
ti
ally e�
ient rootisolation method, and using numeri
al approximations of the 
oe�
ients is experien
edto speed up the 
omputation further [Str06℄, [CJK02℄, [Bro02℄. Thus, our 
hoi
e for theBitstream Des
artes aims for pra
ti
al e�
ien
y, but it has another advantage: The algo-rithm guarantees a su

essful real root isolation for the square-free 
ase by a randomized
hoi
e of subdivision points, and by its adaptive pre
ision management � regardless ofthe polynomial's root separation. This implies, that we never have to swit
h to a symboli
root isolator. The same guarantee is given for the m-k-variant. Only if the polynomial isalgebrai
ally di�
ult, that is, it has several multiple roots, it must be made square-freeby symboli
 
omputation; see Algorithm 2.4. However, the obtained square-free part 
anagain be ta
kled with the original version of the Bitstream Des
artes method. In 
aseof the verti
al-line �isolation�, our implementation relies on robust 
urve-analyses. Forour purpose, they 
an be 
onsidered as a sophisti
ated variant of the bitstream Des
artesmethod.Remark (Semi-algebrai
 surfa
e). If we 
onsider a semi-algebrai
 surfa
e, for example, asphere with a removed 
ap, the fun
tor has to modify its report. In parti
ular, the in-equalities gi ≥ 0 that restri
t f = 0 also restri
t Zp,i for a given p. That is, we �rst
ompute Zp,f , but only report those zp,f,l that ful�ll ∀i : gi(p, zp,f,l)) ≥ 0.EqualityWe next dis
uss how to implement Equal_z that should de
ide the equality of zp,1,l1 ∈ Zp,1and zp,2,l2 ∈ Zp,2. Remember that we already �ltered some 
ases; see Algorithm 5.5.However, sometimes we still need this external answer for algebrai
 surfa
es. Our so-lution is to 
ompute the lo
al g
d gp := gcd((f1)(dp,1)(p), (f2)(dp,2)(p)) at p. This 
anbe done using Algorithm 2.8. Even better, by Lemma 2.13, we 
an dire
tly set gp :=

Sreskp,1,2((f1)(dp,1), (f2)(dp,2), z)p, as kp,1,2, dp,1 and dp,2 are known and interfa
ed for the
ell Γ ∈ A{S1,S2} that 
ontains p.To de
ide the equality, we only have to 
he
k whether the intervals for zp,1,l1 and zp,2,l2are both isolating for gp. In 
ase that gp only 
ontains simple roots, this task 
an besolved by evaluating gp at the boundaries of zp,1,l1 's available approximation (and similarfor zp,2,l2) and to 
he
k whether they have di�erent signs. The lo
al g
d gp is surely square-free if kp,1,2 = 1, or if kp,1 = 0 or kp,2 = 0. Otherwise, we isolate gp's roots by interpreting
gp := Sreskp,1,2((f1)(dp,1), (f2)(dp,2), z) as algebrai
 surfa
e and 
all Constru
t_isolator.Observe that this algebrai
ally 
omplex 
ase (several interse
tions) implies that gp mustbe made square-free using Algorithm 2.4.Note that this fun
tor is also used to de
ide equality of entries of Zp,1, Zp,2 and Z

|
p,1,2when 
omputing Zp,{S1,S2} for p ∈ V1 ∪ V2.
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en
yThe �nal task expe
ted from an algebrai
 surfa
e Si by the Surfa
eTraits_3 
on
ept is to
ompute the adja
en
y relation of its z-patterns. As noti
ed, it su�
es to 
ompute it onlyfor z-�bers of in
ident 
ells in A{Si}. We next explain how to implement the Adja
en
yfun
tor. Remember that we are basi
ally given Zp,1 and Zp,2. Ea
h of its entries has anindex l1 and l2. We are aiming for the list L of pairs of indi
es that de�ne the adja
en
yrelation as in Problem 5.12. We make a 
ase-distin
tion over the dimensionality of theplanar 
ells.Edge-fa
e adja
en
ies: Let E be an edge of A{Si}, and let F denote an adja
ent fa
e.The boundary property allows us to pi
k E's sample point pE in its interior topro
eed. We assume that E is non-verti
al and pE is 
hosen su
h that its x-
oordinateis rational.51 If dpE
= Di and p has been lifted with the m-k-variant, then all butone roots of fi(pE) are simple. The 
ells over E to whi
h these simple roots belonghave pre
isely one adja
ent lift over F . The remaining lifts over F must be adja
entto the possibly multiple root over E. This strategy to obtain adja
en
ies has alreadybeen applied in [GVN02℄, [Ber04℄, and [EKW07℄.Otherwise, the implementation is similar to the one in [ACM88℄. Determine q =

(qx, qy) for F with qx = px, and qx, qy ∈ Q and 
onsider the planar 
urve fi|x=px :=
f(px, y, z) ∈ Q[y, z]. The lF -th lift F (lF ,i) of F is adja
ent to the lE-th lift E(lE ,i) of
E if and only if there is an ar
 of the 
urve VR(fi|x=px) 
onne
ting the lF -th pointover qy with the lE-th point over py. To 
ompute the adja
en
ies of VR(fi|x=px)we rely on Cgal's Algebrai
_
urve_kernel_2; see also [EKW07℄. An illustration isgiven in Figure 5.9.Adja
en
ies of a vertex Let p be the vertex V 's point. Let us assume �rst, that p 6∈ Vi.We 
onsider the other 
ase separately below.Note that the vertex has at least one in
ident fa
e, and if there is more than one,there are also in
ident edges. Let F be su
h a fa
e and E be su
h an edge. Firstobserve, that if p has been su

essfully lifted with the m-k-variant, the same idea asfor the edge-fa
e-adja
en
ies applies for adja
en
ies between V and E and between Vand F .Se
ond, due to Condition 5.9, the adja
en
ies between V and some E 
an often bederived by a transitivity argument: Let F1 and F2 be the fa
es to both sides of E. Ifevery lift over V is adja
ent to a lift over F1 or F2, knowing the adja
en
ies between
V and F1 and between F1 and E, or between V and F2 and between F2 and E,dire
tly gives the adja
en
ies between V and E as well; see also Figure 5.9.In 
ase that f(p) has more than one multiple root, or some lift over V is 
onne
tedto an isolated lift of an edge E (i. e., the lifted edge has no in
ident lifted fa
e), weimplement the following bu
keting strategy:Choose rational values q−1, . . . , qmp,i−1 su
h that ql−1 < zp,i,l < ql for all l =
0, . . . ,mp,i−1. The mp,i+1 many planes z = ql divide the real spa
e in mp,i+2 manybu
kets that separate the lifts over V : One for ea
h entry of Zp,i; even ±∞. The51Otherwise, pE's y-
oordinate is rational and we pro
eed analogously.
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pxFigure 5.9. First: Edge-fa
e adja
en
y is given by analyzing VR(fi|x=px). Se
-ond: Vertex-fa
e adja
en
ies and fa
e-edge adja
en
ies are known (without ar-rows). Thus, vertex-edge adja
en
y (with arrows) 
an be dedu
ed by transitivity.bu
kets help �nd points on in
ident fa
es and edges whose lifts uniquely determinethe adja
en
y relation.De�nition 5.63 (Bu
ket-loyal). Let Γ ∈ AS be in
ident to V . We say that p′ ∈ Γis bu
ket-loyal if there is a path Π ⊂ Γ from p′ to p su
h that ea
h lift Π(l,i) stays inthe l-th bu
ket.Thus, �nding a bu
ket-loyal point p′ for an in
ident D
el-
ell Γ of V gives a possi-bility to 
ompute the adja
en
y between V 's lifts and Γ's lifts: If the l′p-th lift over p′lies in the bu
ket of zp,i,l, then, the lifts V (l,i) and Γ(l′p,i) are adja
ent. Lifts of Γ thatbelong to the bottom-most and top-most bu
ket are spe
ial: The z-
oordinate of Π'sendpoint at p is +∞ or −∞, that is, they belong to asymptoti
 lifts. If p 6∈ Vi, Con-dition 5.9 implies that for ea
h Γ in
ident to V , there exists a bu
ket-loyal path Π.However, we have to 
ompute the z-�ber of fi over p′. If p′ is too 
lose to p, then
fi(p

′) has a bad root separation, whi
h we want to avoid. Thus, we next propose astrategy to �nd good bu
ket-loyal points for the 
ells in
ident to V .
• The �rst 
ru
ial observation is that p′ 6= p is bu
ket-loyal if and only if Π doesnot interse
t any of the bu
ket 
urves bl de�ned by fi(x, y, ql) ∈ Q[x, y]. As

ℓp 6⊂ Si no bu
ket 
urve interse
ts p by 
onstru
tion. Following, we 
an de�ne abu
ket box B around p su
h that it does not 
ontain any of the bu
ket 
urves;see the dashed red 
urves in Figure 5.10 (a). We exploit interval arithmeti
 torea
h the goal: Approximate p's x- and y-
oordinate as intervals [px], [py] anduse them to evaluate Il := f([px], [py], ql) for all l = −1, . . . ,mp,i. As long assome resulting interval Il 
ontains zero, re�ne p's approximation and pro
eed.The �nal approximation of p de�nes B. Ea
h point on B's boundary and inside
B is bu
ket-loyal; see De�nition 5.63.

• Next, we shrink B su
h that ea
h in
ident 
ell of V has a bu
ket-loyal point on
B's boundary. This is done by 
hoosing a sample point for ea
h edge E in
ident
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Figure 5.10. Computing bu
ket-lo
al points around a vertex (s
hemati
)

p

(a) Compute initial bu
ketbox B that does not inter-se
t any bu
ket 
urve
p

(b) Re�ne B with respe
tto sample points of in
identedges
F

p′E

p′F

p

E

(
) Compute interse
tions of Bwith edges and determine bu
ket-loyalpoints for edges and in
ident fa
es
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h that these sample points are outside B;52 an illustrationis given in Figure 5.10 (b).
• We �nally 
ompute all interse
tion points of A{Si} with B's boundary. By
onstru
tion of B and Condition 5.9, the bu
ket-loyal point p′E for an edge Ein
ident to V is given by the �rst interse
tion of E with B's boundary, whentraversing E starting in p. Consider next the fa
e F that su

eeds E in 
ounter-
lo
kwise order on the boundary of B. The interse
tion points of A{Si} and B'sboundary are also ordered 
ounter-
lo
kwisely. Let p′next the interse
tion thatsu

eeds p′E. The desired point p′F is given by a point on B's boundary between

p′E and p′next. Note that by 
onstru
tion the path between p and p′F is bu
ket-loyal. Figure 5.10 (
) illustrates the two 
ases.We have implemented this strategy, whi
h gives us the desired adja
en
ies; see alsoFigure 5.11 whi
h illustrates the bu
keting in three dimensions. There is one missing
ase for p 6∈ Vi. Namely, the vertex V 
an be isolated in some F . In this 
ase, we
hoose p′F on the verti
al line x = px with p′F ∈ F and having a rational y-
oordinate.

p

E p′F
p′E

B

F

Figure 5.11. Computing adja
en
ies: here between vertex and edgeWe admit, that the strategy exploits similar ideas as the lo
al box algorithm byCollins and M
Callum [MC02℄ for 
ylindri
al algebrai
 de
ompositions. The maindi�eren
e is that our bu
ket box 
onstru
tion only involves 
heap interval arithmeti
,and thus is expe
ted to be more e�
ient. In addition, their lo
al box algorithmsrequires to fa
torize polynomials, while we provide a purely geometri
 algorithm.On the other side, this 
ompli
ates the a
tual 
onstru
tion, as we have to deal within
ident 
ells that are not x-monotone.Adja
en
ies for verti
al line 
ells: We turn to the 
ase that V is de�ned by a point pwith p ∈ Vi. In general, we pro
eed similar to the previous 
ase. However, there52Note that we 
onsider E to be a maximal d-k-path emanating V and not an x-monotone 
urve in
identto V a
tually maintained in the underlying arrangement of Cgal. Thus, E 
an be a self-loop.
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Figure 5.12. Computing bu
ket-loyal points around a vertex of a verti
al line(s
hemati
)

p

(a) Compute initial bu
ketbox B su
h that no interse
-tion of a bu
ket 
urve with
A{Si} is inside B

p

(b) Re�ne B with respe
tto sample points of in
identedges
E

p′Fv

p′Ep

p′Fn

Fv

Fn

(
) Lo
ate points on bu
ket 
urves todete
t adja
en
y of a lifted fa
e to averti
al line; then, 
hoose bu
ket-loyalpoints for remaining edges and fa
es
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ompli
ation here: If V has an in
ident fa
e F that is adja
ent to a non-degenerate interval along ℓp, then, the 
orresponding bu
ket 
urve bl (with ql beingin the interior of the interval) interse
ts p in the plane. Following, we need a �x forthe 
onstru
tion of the bu
ket box, as interval arithmeti
 is not su�
ient.
• To determine B's initial size, we now 
ompute the overlay of A{Si},B with allbu
ket 
urves. The initial B is 
hosen su
h around p that no interse
tion of Band A{Si},B is 
ontained in B, ex
ept the unavoidable interse
tions at p itself;see Figure 5.12 (a) for an illustration.
• As before, we re�ne B, su
h that the sample point pE of ea
h in
ident edge Eis not 
ontained in B anymore; see Figure 5.12 (b).
• The 
orresponding bu
ket-loyal point p′E is again given by traversing E startingin p and 
hoosing the �rst interse
tion of E with B. Lifting p′E reveals byCondition 5.9 and how we de�ned Zp,i the desired adja
en
ies. Figure 5.12 (
)displays this step.
• The strategy for a fa
e F is di�erent from the previous handling. We startto dete
t lifts of fa
es that are adja
ent to a line segment along ℓp. Ea
hsu
h segment has to 
ontain an intermediate bu
ket value ql. Following, thelift of F (lF ,i) that is adja
ent to the interval results in an ar
 of the bu
ket
urve bl that lies in F (in A{Si}) and ends in p. To �nd them we propose thefollowing strategy: For ea
h bu
ket 
urve bl that leaves p and lies in F , let qlbe 
orresponding bu
ket value. Choose a sample point pbl

on bl but inside B(see Figure 5.12 (
)) and lift it. Note that its lifting 
orresponds to lifts of
F . Determine whi
h F (lF ,i) has the z-
oordinate ql (by interval arithmeti
).Following Problem 5.12, we report the pairs (lF , l) and (lF , l+1); an illustrationin three dimensions is given in Figure 5.13.

• Finally, we are left with the lifts of F that are adja
ent to a single point on ℓp.We simply 
ompute a bu
ket-loyal point p′F as in the p 6∈ Vi 
ase and determinethe bu
kets of the remaining lifts analogously. This gives the full adja
en
yrelation. The fa
e adja
en
ies are also presented in Figure 5.12 (
).Remark. Remember that we also have to 
ompute spe
ial adja
en
ies between Zp0,S and
Zp1,S with p0 ∈ V and p1 6∈ V for a given Si. The 
riti
al 
ase is p1 ∈ F ∈ AS with Fbeing in
ident to p0. Note that the ideas of the bu
keting strategy also lead to a su

essful
omputation. The di�eren
e is that the number of bu
kets de�ned over p0 has in
reasedand we have to ignore other surfa
es existing in the multi-surfa
e z-�ber Zp1,S.There is also the possibility of 
ombinatorial �ltering: We only have to 
onsider thosebu
kets of Sp0,S that 
omprise z-
oordinates in the �nite z-range of Zp0,i. This redu
es thenumber of bu
ket 
urves in the plane. On the other side, we have to maintain a mappingbetween all and the sele
ted bu
kets. If we are only interested in a single in
ident fa
e Fto p0, we 
an even further restri
t the z-range that must be 
onsidered by querying thesingle-surfa
e adja
en
y of lifts of p0 and p1 �rst, whi
h gives us I(F (lF )) ⊂ ℓp0 for the
orre
t lF .
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p

B

F
p′F

Figure 5.13. Computing adja
en
ies at a verti
al line: a lifted fa
e is in
ident to aninterval along ℓpAlternative idea The adja
en
y relation of a lifted vertex with its lifted in
ident 
ells 
analso be determined by analyzing a two-dimensional arrangement embedded on a verti
al
ylinder C around ℓp. The radius of C is 
hosen su
h that c := C|z=0 �ts in the boxde�ned by B as above and the 
enter of c should be equal to p � in theory. Below, weshow that we 
an a
tually perturb c's 
enter to rational 
oordinates.Consider the arrangement on C indu
ed by VR(f) and all VR(z = ql). The later indu
esa set of horizontal 
ir
les around the 
ylinder that split C again into bu
kets. VR(f) alsoindu
es 
urves on C.Let ℓp′ ⊂ C be parallel to ℓp, that is, 
hoose a point a point p′ on c. If p 6∈ Vi, then, by
onstru
tion of C the point p′ is bu
ket-loyal for the in
ident 
ell Γ of V with p′ ∈ Γ. Thismeans, that along ℓp′ the 
urves VR(f) and VR(z = ql) do not interse
t. The adja
en
yrelation between lifts of V and lifts of Γ 
an be determined by the order of VR(f) and
VR(z = ql) along ℓp′ � the status line at p′. We only have to �nd p′ for all in
ident edgesand fa
es: Compute the interse
tions of c with A{S}. Think of c being the boundary of Band pro
eed as above.An interesting phenomena 
an be seen for the lift of fa
e F (lF ,i) that is adja
ent to aninterval of ℓp. In this 
ase, there is a p′F on c de�ned by the c's interse
tion with a bu
ket
urve bl, where VR(f) interse
ts the 
ir
le de�ned by VR(z = ql) along the line ℓp′F

. Thevalue l determines to whi
h interval along ℓp the lift F (lF ,i) is adja
ent. For all other fa
es(and edges), we pro
eed as before.By now, the approa
h is identi
al to the box idea, with the di�eren
e that we 
hosea 
ir
le as planar base. But we 
an also analyze the arrangement on C itself whi
h givesfurther information. For simpli
ity, we assume that p = (0, 0) and r = 1. Then, C 
anbe rationally parameterized by ϕC(t, z) = (1−t2

1+t2
, 2t

1+t2
, z), for t, z ∈ R. Homogenizing it,allows to us 
ompute the arrangement on C with the help of a set of real algebrai
 plane
urves; in fa
t, the topology is similar to the one we introdu
ed in �4.6.1 for quadri
s, while
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Figure 5.14. Adja
en
ies by a two-dimensional arrangement on a 
ylinder
ℓp

p

c p′F(a) All points of c are bu
ket-loyal. Thus, VR(f) (bla
k) on
C stays within one bu
ket

ℓp

+∞

p

c p′Fv(b) VR(f) 
rosses some
VR(z = ql). Thus, there isa lift of a fa
e F (lF ,i) that isadja
ent to p×[zp,i,l, zp,i,l+1].
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on
erning the geometry, we should adopt ideas similar to what we did for a Dupin 
y
lidein �4.6.2. Spe
ial 
are is only required for t = ±∞, that is, C's 
urve of identi�
ation.However, as VR(x = px) is not part of Si (by input assumption), the 
orresponding 
urve-ends for t = ±∞ have a unique limit. Or we simply 
onsider p′ = (−1, 0) as an additionalspe
ial 
ase on the boundary. Let AC be the arrangement on C indu
ed by VR(f) and
VR(z = ql). The 
riti
al t-
oordinates of AC are given by the t-extremal points of VR(f)and t-
oordinates of VR(f)'s interse
tions with some VR(z = ql) only appear if some liftof an in
ident fa
e is adja
ent to an interval along ℓp. Note that neither VR(z = ql) nor
VR(f) have self-interse
tions on C. For VR(z = ql) this is 
lear by 
onstru
tion, for VR(f)this follows from how we 
hoose the radius of c: No target point of an edge E that leaves
p is inside c. Observe that the t-
riti
al points of AC 
orrespond to points on c whereedges E or bu
ket 
urves bl interse
t c. This gives a more dire
t way to 
ompute (bu
ket-loyal) points for edges and fa
es. Computing the adja
en
ies now redu
es to �nd all su
h
t-
oordinates and to analyze the verti
al lines of AC in the tz-plane for su
h 
oordinates.We start with the interse
tions of bl with c, if existing, to dete
t fa
e lifts adja
ent toverti
al intervals. Then, we pro
eed with the t-extremal points of VR(f), to determineadja
en
ies for lifted in
ident edges and �nally analyze the status line slightly to the rightof a t-extremal 
oordinate. This gives us the adja
en
ies for lifted in
ident fa
es that onlymeet a point along ℓp.In terms of Cgal's Arrangement_2 pa
kage, we 
an imagine a spe
ial visitor that onlyreports the adja
en
ies while sweeping over a set of annotated 
urves (i. e., whether ea
hbelongs to VR(f) or VR(z = ql)) on C.In an a
tual implementation one would better 
hoose a 
ylinder whose 
enter line ℓC isslightly perturbed away from p, su
h that pC has rational-
oordinates. The perturbationmust be 
hosen su
h that C|z=0 still de�nes bu
ket-loyal points. A
tually, every verti
al
ylinder inside B × R that in
ludes ℓp in its interior ful�lls this 
ondition.5.4.3. Filters for lifting of quadri
sIf we only 
onsider quadri
s, the fun
tors related to lifting 
an bene�t from 
ombinatorial�lters. We next present the details.Constru
t_isolator We �rst 
hara
terize the entries of some Zp,i.Lemma 5.64. Let fi = a2z

2 + a1z
1 + a0z

0 be a polynomial de�ning a quadri
 Si, that is,
degtotal(f) ≤ 2. Let p ∈ R2. Then, fi(px, py, z) ∈ R[z] has either no real root, a doublereal root, or two distin
t real roots. If it has a double root, then Resz(fi,

∂fi

∂z )(px, py) = 0.Contrary if Resz(fi,
∂fi

∂z )(px, py) = 0 then, the z-�ber at p 
ontains at most one �nite point.Proof. The �rst assertion is rather trivial. If z0 is a multiple root of fi(px, py, z) then it isalso a root of ∂
∂zfi(px, py, z), thus Resz(fi,

∂fi

∂z )(px, py) = 0. For a2(p) = 0 and p 6∈ Vi theba
kward dire
tion is trivial as in this 
ase fi(x, y, z) is a polynomial of degree one or lessin z for all (x, y). If a2(p) 6= 0 and Resz(fi,
∂fi

∂z )(px, py) = 0 the polynomials fi(px, py, z)and ∂fi

∂z (px, py, z) must share a 
ommon root z0, thus for p 6∈ Vi, the z-�ber Zp,i is givenby {z0} ∪ {±∞}. In 
ase where Si 
ontains a verti
al line at p, we refer to the paragraphabout verti
al lines below.



244 E�
ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsUsing Lemma 5.64 we isolate with the Bitstream Des
artes method the real roots of
fi(px, py, z) in 
ase kp,i = 0 or of ∂fi

∂z (px, py, z) if kp,i > 0. Observe that both polyno-mials ful�ll the demanded property of being square-free, while still determining the Si'sinterse
tion with ℓp. Note that we are able to 
ombinatorially avoid to 
all the m-k-variant.Equal_z Remember that we have to de
ide whether zp,1,l1 ∈ Zp,1 and zp,2,l2 ∈ Zp,2 areequal. However, we 
an bene�t from previous information: When Equal_z is 
alled, ea
h
Zp,1 and Zp,2 has to 
ontain a positive number of �nite entries. As they 
orrespond to realroots of f1(p) and f2(p), Lemma 5.64 implies that we see one or two su
h. In addition, weknow that the approximations of Zp,1 and Zp,2 have already been re�ned su
h that theyoverlap with at most one interval of the other. As τ0,S1,S2 exists at p and Zp,1 and Zp,2
ontain �nite entries, at least one of these 
andidates must 
orrespond to a true equality;see also Algorithm 5.5. Thus, most 
ases are trivial to de
ide. Only if |Zp,1| = |Zp,2| = 2we require further work. Two possibilities exists:1. Both f1(p, z) = a2(p)z2 + a1(p)z + a0(p) and f2(p, z) = b2(p)z2 + b1(p)z + b0(p) havetwo distin
t real roots and they are both equal at the given p. That is, there existsa 
onstant c ∈ R \ {0} with f1(p, z) = c · f2(p, z). This is exa
tly the 
ase if the twove
tors

(a2(p), a1(p), a0(p))Tand
(b2(p), b1(p), b0(p))Tare linear equivalent, whi
h 
an be 
he
ked by

(a0b1 − a1b0)(p) = 0 ∧
(a0b2 − a2b0)(p) = 0 ∧
(a1b2 − a1b2)(p) = 0Note that

h0,1 := (a0b1 − a1b0) ∈ Q[x, y], degtotal(h01) ≤ 3

h0,2 := (a0b2 − a2b0) ∈ Q[x, y], degtotal(h02) ≤ 2

h1,2 := (a1b2 − a1b2) ∈ Q[x, y], degtotal(h12) ≤ 1and even degtotal(hi,j) < degtotal(Resz(f1, f2)) holds. Thus, we 
he
k whether thethree 
onditions are ful�lled by interpreting hi,j as low-degree planar 
urves, andtest whether p lies on them with the Sign_at_2 fun
tor provided by Cgal's planarAlgebrai
_
urve_kernel_2. This fun
tor even exploits interval arithmeti
 to qui
klyde
ide a non-zero sign. Note that the algebrai
 kernel is available anyhow, as we useit for the proje
tion. For ea
h pair of quadri
s only one su
h set of 
urves is required,so we 
an 
a
he them. Of 
ourse, we start testing with h1,2 as it has lowest degree.We 
ontinue with the h0,2 only if the test result is su

essful. Similar for h0,2 and
h0,1. If all three 
onditions hold, then two 
ommon roots exists (out of two possible).Thus, return true. This 
ase is illustrated in Figure 5.15.2. Otherwise, two 
andidate overlaps remain for a single equality. We re�ne theirapproximations in parallel, until only one overlap is left. If the given indi
es l1 and
l2 
orrespond to that overlap, return true, else return false.
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Figure 5.15. Illustration of two 
overti
al interse
tions (
ase 1)Adja
en
y This fun
tor is implemented mostly 
ombinatorially. First observe that byLemma 5.64, the adja
en
ies between lifted verti
es and lifted edges, if existing, are �xed.We always return (0, 0) as the unique lifts all lie in the same plane de�ned by ∂f
∂z . The
ase that a vertex 
orresponds to a verti
al line is dis
ussed separately below.Thus, we are left with edge-fa
e-adja
en
ies. Let 0 ≤ mE ≤ 1 be the number of �nitelifts of some E, and 0 ≤ mF ≤ 2 be the number of �nite lifts of an in
ident fa
e. Note thatnot both 
an be zero. If mE = 0, then mF = 1 and the F (0) must be asymptoti
 when�approa
hing� E. In this dire
tion F (0) is monotoni
 in
reasing or de
reasing, whi
h 
anbe determined by 
omputing the sign of ∂fi

∂z evaluated at F 's sample point with intervalarithmeti
. Otherwise, mE = 1 and we are left with two 
ases: mF = 1 implies toreturn (0, 0), while mF = 2 results in reporting (0, 0) and (0, 1) (by Lemma 5.64 andCondition 5.9).Quadri
s and verti
al lines: A quadri
 Si 
ontains a verti
al line ℓp at p ∈ R2 exa
tlyif a2(p) = 0 and p is an interse
tion point of the line L = VR(a1(p)) and the 
oni

C = VR(a0(p)). Then, for ea
h point p 6∈ L, there exists a unique lift (px, py, z) ∈ Si with
z = −a0(p)

a1(p) . Furthermore, there exists no point on Si above any p ∈ L \ (L ∩ C) and forea
h (of at most 2) interse
tion point p ∈ L ∩ C the quadri
 
ontains the verti
al line ℓp.The arrangement A{Si} as de�ned in �5.2.2 is quite simple in this situation: The proje
tedsilhouette L divides R2 into two half-planes, whi
h are the fa
es F1 and F2 of A{Si}. Theinterse
tion points L ∩ C represents all verti
es in A{Si} and they de
ompose L into atmost 3 edges. As these edges 
annot be lifted onto Si, no adja
en
ies between them andverti
es 
an be reported.In the following steps we will show how to determine the �ber Zp,i for the verti
eswith p ∈ Vi and how to get the adja
en
y information between verti
es and fa
es. InTheorem 5.45 we have already proven that for ea
h fa
e F = F1 or F = F2 there exists a
orresponding interval IF su
h that for ea
h z∗ ∈ Iv we have a sequen
e pt ∈ F , 
onvergingagainst p, with z∗ = limt→∞ zpt = limt→∞−a0(pt)
a1(pt)

.From an a�ne 
hange of 
oordinates we 
an assume that L = VR(y), that is, L is the
x-axis. Writing a0(x, y) = c0x

2 + c1y
2 + c2xy + c3x + c4y + c5 with variable 
oe�
ients

ci ∈ R, for the z-value of any (x, y, z) ∈ Si we have
z =

c0x
2 + c1y

2 + c2xy + c3x + c4y + c5

y
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsFor a �xed y 6= 0 the set of z-values is given by a parabola (c0 6= 0), whi
h has its uniquelo
al extremum zmax,y at the point xmax with
2c0xmax,y + c2y + c3 = 0Thus, we get xmax,y = −c3−c2y

2c0
and

zmax,y =
4c0c5 + 4yc0c4 − 2yc2c3 − c2

3 + 4y2c0c1 − y2c2
2

4yc0Now we distinguish three 
ases:1. c0 = 0: C and L interse
t in a unique point p = (− c5
c3

, 0). Now given an arbitrary
z∗ ∈ R, we have

f(xy, y, z∗) = 0⇔ xy(c2y + c3) = yz∗ − c1y
2 − c4y − c5For y → 0 we get xy → − c5

c3
, thus the 
oni
 Cz∗ , whi
h is impli
itly given by theequation x(c2y + c3) = yz∗ − c1y

2 − c4y − c5 passes the point p and the fa
e F . Itfollows the existen
e of a sequen
e pt → p ∈ VR(a0) ∩ VR(a1) with zpt → z∗.2. |VR(a0) ∩ VR(a1)| = 0 or 2 and c0 6= 0 : For a �xed z∗ ∈ R, the 
oni
 Cz∗ =
VR(f(x, y, z∗)) has exa
tly two interse
tion points with L. Hen
e, Cz∗ has onlyordinary interse
tions with L. Thus, Cz∗ 
ontains an ar
 that passes VR(a0)∩VR(a1)and the fa
e F . It follows the existen
e of a sequen
e pt → p ∈ VR(a0)∩VR(a1) with
zpt → z∗.3. |VR(a0) ∩ VR(a1)| = 1 : In this 
ase the quadrati
 polynomial a0(x, 0) has a multipleroot and p = VR(a0)∩VR(a1) = (−c3

2c0
, 0). Hen
e, we get c2

3−4c5c0 = 0 and furthermore
lim
y→0

zmax,y = lim
y→0

4yc0c4 − 2yc2c3 + 4y2c0c1 − y2c2
2

4yc0

=
2c0c4 − c2c3

2c0Now, the line Lmax, impli
itly given by 2c0x + c2y + c3 = 0 passes the point p and
ontains a sequen
e of points pt → p with zpt → 2c0c4−c2c3
2c0

=: zp,0 for t → ∞.In the next step we will show that for any other sequen
e p′t → p we must get
zpt → z′ ≥ zp,0 or ≤ zp,0 depending on whether c0 > 0 or c0 < 0. W.l.o.g. we assumethat c0 > 0. Then, for a �xed y the parabola c0x2+c1y2+c2xy+c3x+c4y+c5

y has a globalminimum zmax,y at xmax,y. Thus, for any point p′t = (x′
t, y

′
t) we must have zp′t

=

−a0(x′
t,y

′
t)

a1(x′
t,y

′
t)
≥ zmax,y′

t
. It follows that limp′t→p zp′t

≥ limp′t→p zmax,y′
t
= zp,0.In the two 
ases (1) and (2) we have shown that the unique lifts of the two fa
es F1and F2 are both adja
ent to any point on the verti
al line ℓp, that is, for any (p, z∗) ∈ ℓpthere exist sequen
es p

(l,i)
t ∈ Fj with (p

(l,i)
t , z

p
(l,i)
t

) → (p, z∗) for l = 1, 2. Thus, it su�
esthat Zp,i = {±∞}, that is, Constru
t_isolator returns an empty instan
e and so Equal_zis trivial. It is 
lear that Adja
en
y returns for an in
ident lifted fa
e F (l,i) towards p thepairs (0,−1) and (0, 0).
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ations 247In the third 
ase, for exa
tly all z∗ in between 2c0c4−c2c3
2c0

and ±∞ (depending onwhether c0 > 0 or c0 < 0, respe
tively) there exists a sequen
e p
(l,i)
t ∈ Fj with p

(l,i)
t → pand z

p
(l,i)
t

)→ z∗. As we 
an also pursue the a�ne 
oordinate transformation in 
ase where
fi is given with arbitrary variable 
oe�
ients, it is possible to get formulas in terms ofthese 
oe�
ients to de
ide in whi
h 
ase we are and to determine the single non-in�nityentry zp,i,0 of Zp,i. Observe that p = (px, py) and zp,i,0 are all rational. Thus, Equal_z
an be implemented in terms of rational arithmeti
. Adja
en
y returns for an in
identfa
e towards the verti
al line at p, either the pairs (0,−1), (0, 0) or the pairs (0, 0), (0, 1),depending on the sign of c0 and the fa
e.5.5. Appli
ationsThe proposed design and its implementation provides three-dimensional information on aset of surfa
es S, that is, we 
ompute a strati�
ation ΩS enhan
ed with geometri
 informa-tion. The basi
 stru
ture is a planar arrangement whose verti
es, edges, and fa
es 
an bequeried to obtain the third dimension. The adja
en
ies of lifts also provide 
onne
tivities.Although it is remarkable that the ri
hness of 
omputed information is rather 
omplex, itis also abstra
t. In addition, we have seen that the 
omplexity of ΩS is quite high due tothe proje
tion and the lifting; even for relatively small D.On the other hand, based on this de
omposition, it is possible to rely on the frameworkas a key ingredient when providing or supporting more 
on
rete appli
ations in geometri

omputing. In this se
tion, we present a list of su
h. For some, we only give basi
 ideas;their details require further work. Other appli
ations are illustrated more elaborate; forexample, the 
omputation of spa
e 
urves (�5.5.3) and lower envelopes (�5.5.4).5.5.1. Analysis of a single surfa
eStrati�
ation Given a single surfa
e S. First of all, we 
an simply report the strati�
ationof S along with its full adja
en
y information. This, for example, supports the lo
alizationof a query point in the strati�
ation. That is, we return the 
ell to whi
h a point on
S belongs. The 
ell de
omposition 
an also be queried to dete
t three-dimensional 
ellsindu
ed by S. In fa
t, we 
an use adja
en
y information to 
luster them into maximalsets. Note that this is a major steps towards the three-dimensional arrangements indu
edby S. This also paves the way to lo
ate any p ∈ R3 with respe
t to S. However, we aremainly missing a data stru
ture to e�
iently store these 
lusters.Sampling A big advantage of our method is that geometri
 information is kept with re-spe
t to the original 
oordinate system. Thus, we 
an sample S in arbitrary pre
ision,in
luding its 
riti
al points. This possibility 
an be exploited, for example, in a visual-ization: On
e, A{S} is 
omputed, a dense grid of points is lo
ated and lifted using theadaptive bitstream Des
artes method. It only requires to spe
ify the grid-width and themaximal length of the intervals that approximate z-
oordinates to de�ne the desired pre-
ision of the sampling. The implementation 
onsists in 
onstru
tion the grid and to re�nethe liftings. Note that lifting is a perfe
t tasks for a parallelized 
omputations as we shouldusually have a mu
h larger number of liftings than available pro
essors. We mention this
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ient Strati�
ation of Algebrai
 Surfa
es with Planar Arrangementspossibility, as modern 
omputers are usually equipped with multi-
ore ar
hite
tures andthus 
onstitute an ideal platform for this obje
tive.Meshing A desirable goal is to 
ompute a simpli�ed representation for S, for example,in the form of a mesh. That is, we aim for a simpli
ial 
omplex that is isotopi
 to S andwhose points are lo
ated on S. This 
omplex 
annot be dire
tly extra
ted from Ω{S}. Inorder to maintain the topology of S further de
ompositions are required. We refer to [BKS℄for on-going work of su
h a triangulation of an algebrai
 surfa
e.It should also be analyzed how many triangles are required to form a 
omplex thatis isotopi
 to S, but whose verti
es are not required to lie on S. There is a gap foralgebrai
 surfa
es: A de
omposition of S with degree D into non-singular 
ells requires
Ω(D3) 
ells [Bru81℄. In 
ontrast, using a 
ylindri
al algebrai
 de
omposition (
ad) resultsin a 
omplex with O(D7) 
ells. It is unknown where the true value is.5.5.2. Analysis of two or more surfa
eStrati�
ation As for a single surfa
e, we also have seen how to 
ompute the strati�
ationfor a set of surfa
es S, that is, respe
ting their interse
tions, too. The lo
alization of apoint in the set of strata is a task that is dire
tly supported by the framework. Again,the adja
en
y relation for any two 
ells is available, whi
h enables similar to the single-surfa
e 
ase, to identify indu
ed three-dimensional 
ells, and to 
luster them into maximal
onne
ted sets. Although the boundary of su
h a 
ell 
an be des
ribed, this only 
onstitutesa restri
ted representation of the three-dimensional arrangement indu
ed by S. We omitdetails on point lo
alization, sampling, and meshing as they are similar to the single-surfa
e
ase.Semi-algebrai
 sets We mentioned that the framework also supports semi-algebrai
 sur-fa
es. But not only in their handling, but also for their representation: We 
an extra
t thede
omposition of su
h a surfa
e S≥ de�ned by f = 0 and a set of polynomial inequalities
gi ≥ 0, 1 ≤ i ≤ r into 
onne
ted zero-, one-, and two-dimensional 
ells having the bound-ary property. Note that all points of a single lift of a 
ell in A{S≥} share the same signswith respe
t to all gi. We only have to sele
t those 
ells whose signs are all non-negativeby 
hoosing the stratum de�ned by the inequalities.5.5.3. Spa
e 
urvesThe strati�
ation of two surfa
es also allows to extra
t the spa
e 
urve de�ned by twosurfa
es:De�nition 5.65 (Spa
e 
urve). A spa
e 
urve is the interse
tion set of two surfa
es S1, S2,if at most one-dimensional.To represent a spa
e 
urve, one usually de
omposes it into its zero- and one-dimensionalparts, where zero-dimensional parts form isolated points, while the one-dimensional ar
s
an have properties, like x- or xy-monotoni
ity. Our implementation provides C++ 
lasstemplates 
alled Surfa
e_point_3 and Surfa
e_ar
_3. The representation of a point is or-ganized as a tuple (Point_2, Surfa
e_3, int), that is, a planar base point, a supportingsurfa
e, and its lift index (also known as sheet number). x- and y-
oordinate are given
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ations 249expli
itly by the planar point, the z-
oordinate is en
oded impli
itly by the other twotypes. A bounded one-dimensional ar
 in 3D is represented as a tuple (Surfa
e_point_3,Surfa
e_point_3, X_monotone_
urve_2, Surfa
e_3, int, int, int), where the points en-
ode the lexi
ographi
 smallest and largest point of the ar
. The remaining entries lift theplanar 
urve onto the given surfa
e. The int instan
es en
ode sheet numbers at the lexi-
ographi
 smallest and largest point, and in the interior of the ar
, where the number mustbe 
onstant. Note that all three 
an even be equal or di�erent. The supporting surfa
es ofthe ar
 and its minimal and maximal point are not required to be equal. Spe
ial 
onstru
-tions for unbounded and verti
al ar
s are implemented, but omitted in this des
ription.Similar in Algorithm 5.6 that 
omputes the de
omposition of the spa
e-
urve de�ned by
S1 and S2 into isolated verti
es and one-dimensional ar
s:Algorithm 5.6. De
ompose spa
e 
urve into ar
s and pointsInput: Two surfa
es S1, S2 with dim(S1 ∩ S2) ≤ 1Output: The de
omposition of S1 ∩ S2 into ar
s of dimension 1 and isolated points ofdimension 0.1. Compute A{S1,S2} and extra
t verti
es and edges belonging to τ0,S1,S2 .2. Obtain for ea
h su
h vertex and ea
h su
h edge its Z_fiber; identify their Z_
ellinstan
es that de�ne an interse
tion.3. Compute for ea
h lift of an edge that forms an interse
tion of S1 and S2 to whi
hlifts of verti
es it is adja
ent.4. For an edge, the Z_fiber and the adja
en
ies give all information required to 
on-stru
t instan
es of type Surfa
e_ar
_3.5. An isolated vertex in 3D is dete
ted and 
onstru
ted by 
he
king whether there existsa Z_
ell instan
e over a D
el-vertex that is not adja
ent to any Z_
ell over edgessupported by of τ0,S1,S2 and in
ident to the vertex. It remains to 
onstru
t properinstan
es of type Surfa
e_point_3 using the available information.We remark, that there a subtleties to 
onsider. For example, a Surfa
e_point_3 in-stan
e for a lifted vertex should be 
omputed only on
e, espe
ially if several ar
s of inter-se
tions are adja
ent to it.A 
areful reader might dete
t that this approa
h requires to 
ompute both A{S1}and A{S2}. Observe, that the output is not demanding for both surfa
es at the sametime. It su�
es to express the de
omposition of a spa
e 
urve into points and ar
s only interms of the surfa
e with lower 
omplexity, for example, the degree of an algebrai
 surfa
e.Let S1 be the surfa
e with lower 
omplexity.We next show how to avoid the 
omputation of A{S2} and A{S1,S2}. However thisrequires to re�ne the Surfa
eTraits_3 
on
ept by an additional fun
tor 
alled Common_z. Itis expe
ted to provide the following operator:Z_at_xy_isolator operator()(Point_2 pt, Surfa
e_3 s1, Surfa
e_3 s2,Cell_info1 
i1)In 
ontrast to Equal_z, whi
h only 
he
ks the equality for given intervals, Common_z
onstru
ts a new instan
e of type Z_at_xy_isolator that represents the 
ommon interesting
z-
oordinates of s1 and s2 along a verti
al line de�ned by the given pt. Due to la
king A{S2}and A{S1,S2}, we do not have a

ess to full knowledge about multipli
ities, regularities, and
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ient Strati�
ation of Algebrai
 Surfa
es with Planar Arrangementsdegradations with respe
t to {S2} and {S1, S2} (
olle
ted usually in 
ell-info instan
es).Thus, Common_z has to deal without these information. It depends on the family of surfa
es,how to 
ompute the desired isolator. For algebrai
 surfa
es, we have seen that the rootsof the lo
al g
d de�ne the required z-
oordinates. Compare also with the implementationdetails of Equal_z in �5.4.2. However, there the degradation k is a

essible from the planararrangement. In our 
urrent setting, we have to 
ompute it. We also need two adaptions.First, Algorithm 5.6 does not 
ompute A{S1,S2}, but only the overlay of A{S1} and Aτ0,S1,S2and traverses its edges and verti
es. Se
ond, we require a new algorithm to 
onstru
t theZ_fiber, repla
ing the usual two-way merge:Algorithm 5.7. Compute Z_fiber for a D
el-
ell parti
ipating in τ0,S1,S2Input: p ∈ R2; surfa
es S1, S2Output: Z_fiber for S1, S2 over p1. Constru
t Z_at_xy_isolator iso1 for S1 using Constru
t_isolator.2. Constru
t Z_at_xy_isolator iso12 for interse
tions of S1 and S2 using Common_z.3. Re�ne intervals of isolator12 until ea
h is in
luded in an interval of isolator1.4. Create Z_
ell for ea
h interval of isolator1 and add S2 to a 
ell, if there is aninterval of iso12 that overlaps with an interval of isolator1.Observe that the surfa
e lifts of S2 in the 
omputed Z_
ell instan
es 
annot be enhan
edwith a sheet number. Fortunately, this is also not needed, as Algorithm 5.6 only wants todete
t 
ells where S2 exists, but its output is with respe
t to S1's sheet numbers only.We have implemented this output-sensitive strategy in a 
lass-template 
alled Curve_3.We 
onsider it as a basi
 implementation that 
an be used whenever spa
e 
urves are
omputed by relying on their proje
tion into the xy-plane. In this light, this work 
an beseen as a prototypi
al implementation of a key ingredient for an up
oming Curved_kernel_3in Cgal.5.5.4. Lower envelopeWe 
an also regard the surfa
es in S as fun
tions in x and y that return for given p = (px, py)the smallest z-
oordinate of the surfa
e's interse
tions with ℓp; requiring Vi = ∅ is a goodassumption for this task. Taking for every point of the plane the set of surfa
es thatattain the minimum of these fun
tions, we 
ompute the lower envelope of S; see alsoChapter 3, where we present a spe
ialized version for quadri
s. Remember that Cgalprovides a generi
 divide-and-
onquer approa
h to 
ompute lower envelopes [Mey06b℄; seealso Algorithm 3.1. One only has to provide a model of Cgal's EnvelopeTraits_3 
on
ept,whi
h itself is a re�nement of Cgal's ArrangementTraits_2 
on
ept; details on the tasksexpe
ted by the 
on
ept are given in [MWZ07℄ or �3.3. In this se
tion, we present ageneri
 implementation of su
h a model, 
alled Surfa
e_3_envelope_traits, that is basedon Proje
tion_2 and atta
hed instan
es of type Z_fiber provided by our new framework.Let Surfa
e_traits_3 be the given model of the Surfa
eTraits_3 
on
ept. The newSurfa
e_3_envelope_traits 
lass template is derived from Surfa
e_traits_3::Kernel_2 inorder to be a model of Cgal's ArrangementTraits_2 
on
ept. We also have to de�ne spatialtypes:Surfa
e_3 and Xy_monotone_surfa
e_3 are expe
ted. The former is trivial, the latteris mapped to lifted D
el-
ells, that is, a pair 
onsisting of a D
el-handle and an integer.
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ations 251The integer 
orresponds to a sheet number. It 
an be assumed to be 0 if we only 
onsiderlower envelopes. For more sophisti
ated envelopes, other values are 
on
eivable. TheEnvelopeTraits_3 
on
ept expe
ts to de
ompose an instan
e of type Surfa
e_3 into its
xy-monotone subsurfa
es by a fun
tor Make_xy_monotone_3. Our generi
 implementationtraverses all D
el-
ells of the 
orresponding A{Si}. Fa
es with non-empty z-pattern arereported, while for edges and verti
es with non-empty z-pattern it �rst must be 
he
kwhether no lift of an in
ident planar 
ell adja
ent to the lowest lift over the edge andvertex, respe
tively, exists.Two fun
tors implement the required proje
tions.
• Constru
t_proje
ted_boundary_2Computes for a given xy-monotone subsurfa
e its proje
ted boundary. To providethis information for a subsurfa
e over a fa
e, we traverse the fa
e's boundaries anddistinguish whether the 
y
le that 
ontains a boundary 
urve is oriented 
lo
kwiseor 
ounter-
lo
kwise in order to de
ide to whi
h side the xy-monotone subsurfa
eexists. Subsurfa
es that 
orrespond to lifts of edges and verti
es do not require thistest. We simply report the adjoined geometri
 obje
t.
• Constru
t_proje
ted_interse
tion_2Computes the proje
ted interse
tion 
urves of two xy-monotone subsurfa
es sup-ported by Si and Sj. If Si = Sj, we only have to return 
urves (points) if liftedfa
es (edges) are adja
ent to the same lifted edge (vertex). Otherwise, we 
ompute

A{Si,Sj} and traverse all edges (and isolated verti
es) in its 
ells that originate fromthe given D
el-handles stored along with the subsurfa
es. We dis
ard those notparti
ipating in τ0,Si,Sj
, those with an empty z-pattern, and those whose lowest z-
ell does not 
ontain Si and Sj . The remaining edges and verti
es are returned. Theinterse
tions tests for isolated lifted edges and verti
es are similar.The 
on
ept also requires to implement fun
tors that 
ompare the relative alignmentof two Xy_monotone_surfa
e_3 instan
e in z-dire
tion over a point, over a 
urve, or overa fa
e in
ident to a proje
ted interse
tion 
urve (i. e., a sub-fa
e of the proje
ted 
urveboundaries). Obviously, if their supporting surfa
es Si and Sj are equal, the stored sheet-numbers en
ode the desired order. Otherwise the verti
al alignment 
an be read froma z-pattern of an appropriate 
ell of A{Si,Sj}. We only have to pi
k the 
orre
t one,whi
h is simple for the implementation of Compare_z_at_xy_3: Depending on the operator,we 
an dire
tly take the Z_fiber for the given point, or take the one for the samplepoint of the given 
urve (or the single unbounded fa
e). Computing the Z_fiber forthe remaining fun
tors Compare_z_at_xy_below_3 and Compare_z_at_xy_above_3 redu
es tolo
ate the sample point of the given 
urve in A{Si,Sj}. This task is dire
tly supported byCgal's Arrangement_2 pa
kage on whi
h we rely our framework.Remark. Using this generi
 model of the EnvelopeTraits_3 
on
ept, 
omputing (lower) en-velopes for a family of surfa
es boils down to provide a model of the Surfa
eTraits_3
on
ept for that 
lass of surfa
es. We admit that a spe
ialized model for lower envelopesmight be more e�
ient, but obviously la
ks of the possibility to support other appli
ationsthat we introdu
ed in this se
tion. The reason is, that we 
ompute more information onhow two surfa
es interse
t than a
tually required for the lower envelope; 
ompare also
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ient Strati�
ation of Algebrai
 Surfa
es with Planar Arrangementswith the 
onstru
tion of the Apollonius digram in �3.5, that is similarly �dire
t�. However,our implementation is the �rst that follows the exa
t geometri
 
omputing paradigm to
ompute lower envelopes of algebrai
 surfa
es.As in �3.5, we 
an think of modi�
ations on the Surfa
e_3_envelope_traits, su
h asto 
ompute upper envelopes, or sandwi
h regions. One should also 
he
k various dualitiesthat allow to rewrite a geometri
 problem as a envelope 
omputation of surfa
es; see, forexample, [dBvKOS00, �11.5℄.5.6. ResultsWe also run experiments to 
he
k the e�
ien
y of our implementation(s). In the followingwe report on various tests that present di�erent aspe
ts of the framework, but also showthe limits of pra
ti
ality. We distinguish between experiments on quadri
s and su
h onalgebrai
 surfa
es of any degree.5.6.1. Quadri
sWe tested the performan
e of the framework instantiated with the Quadri
_3_traitsmodelby 
omputing all z-�bers and all adja
en
ies for AS, where |S| in
reases. We espe
iallydistinguish between arbitrary quadri
s and ellipsoids. All experiments are exe
uted ona Pentium IV CPU with 3.0 GHz 
lo
k-speed and 2 MB of 
a
he. The exe
utables are
ompiled with gnu's C++-
ompiler in version 3.3 with disabled debugging (-DNDEBUG) andenabled optimizations (-O2), and Cgal's Algebrai
_
urve_kernel_2 in wrapping modewith the exa
t number types of Leda. Table 5.1 lists example runs.
♯Surfa
es ♯D
el ♯z-
ells t t/
ell2 ellipsoids 13 12 0.1s 5.7ms4 ellipsoids 230 904 2.8s 3.4ms6 ellipsoids 877 5942 19.9s 3.7ms8 ellipsoids 2780 25220 171.9s 7.2ms10 ellipsoids 4952 52788 582.0s 11.5ms2 quadri
s 53 160 0.4 2.7ms4 quadri
s 1099 7172 19.7 3.0ms6 quadri
s 3946 39254 194.4 5.4ms8 quadri
s 9983 132352 2306.1 18.1msTable 5.1. Performan
e measures for sets of ellipsoids and arbitrary quadri
sIt 
annot be hidden, that |S| seems quite small, but on the other hand, the size ofthe output grows rapidly. For 8 quadri
s we already have to 
ompute nearly 10.000 z-�bers 
ontaining more than 130.000 
ells. However, these numbers mat
h the analyzed
omplexities of ΩS in �5.1. On the 
ontrary, the time spent per 
ell grows mu
h slower.In fa
t, we have to see an in
reasing amount of time here, as by 
onstru
tion of the data,similar intervals along ea
h ℓp are interse
ted by a growing number of quadri
s, that is, itrequires additional time to isolate the 
ells against ea
h other. Anyhow, we 
an 
on
ludethat the implementation 
omputes for a non-trivial set of quadri
s, the 
orre
t strati�
ationin reasonable time (per 
ell). Nevertheless, we re
ommend to use this in appli
ations that
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ally involve only a small number of surfa
es at a time. An example is the 
omputationof an arrangement on a referen
e quadri
, as in �4.6.1: Besides the referen
e itself, we onlyhave a se
ond surfa
e in fo
us, namely, when de
omposing their interse
tion 
urve into(weakly) x-monotone ar
s and isolated points. We 
an remark now, that the de
ompositionof these spa
es 
urves in the reported implementation and experiments are a
tually realizedusing the ideas presented in �5.5.3. Previously, in Table 4.3 we mainly ignored the 
olumndedi
ated to the splitting time. However, this 
olumn a
tually shows the performan
eof an aggregated spa
e 
urve 
onstru
tion keeping one surfa
e �xed. The required timesimply grows linear with the number of quadri
s interse
ting the referen
e grows. This issensible as we only 
onsider two quadri
s at a time.We are �nally able to 
ompare the new approa
h, that is, using the tools presented inthis thesis, with our former implementation [BFH+07℄. As example we 
hose in
reasingsets of random ellipsoids. Figure 5.16 shows an overall improvement of about 30%. Forgeneral quadri
s the ratio is similar. Let us pi
k a 
on
rete set: An arrangement indu
edby 400 ellipsoids interse
ting the referen
e ellipsoid 
onsists of about 38.000 verti
es and74.000 edges, whi
h is now possible to 
ompute in around 180s instead of 287s.
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Figure 5.16. Running times to 
ompute arrangements on an ellipsoid: We 
ompare theimplementation from [BFH+07℄ (2005) with the one based on ideas in this thesis (2008).5.6.2. Algebrai
 surfa
esWe also run experiments on algebrai
 surfa
es, that is, we 
ompute their de
ompositionas presented in �5.1. As input we have 
hosen well-known examples from algebrai
 geom-etry,53 random and interpolated instan
es, and also a generi
 proje
tion of two quadri
sin 4D. All experiments are exe
uted on an AMD Dual-Core Opteron(tm) 8218 (1 GHz)multi-pro
essor platform. Ea
h pro
essor has an internal 
a
he of 1 MB and the totalmemory 
onsists of 32 GB. The system runs Debian Et
h. We 
ompiled using g++-4.1.2with �ags -O2 -DNDEBUG and use the exa
t number types of Core [KLPY99℄. For planararrangements of algebrai
 
urves, we relied on Cgal's internal Algebrai
_
urve_kernel_253Subsets of the tested example surfa
es are provided 
ourtesy of INRIA by the AIM�SHAPE ShapeRepository, by www.singsurf.org, by www.freigeist.

, and by [PV07℄

www.singsurf.org
www.freigeist.cc
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ient Strati�
ation of Algebrai
 Surfa
es with Planar ArrangementsSurfa
e S degx,y,z (#V,#E,#F) |ΩS | tsteiner-roman 2,2,2 (5,12,8) 28 0.73
ayley-
ubi
 2,2,2 (3,10,8) 31 0.74dupin-
y
lide 4,4,4 (3,4,4) 10 0.19tangle-
ube 4,4,4 (0,6,7) 28 0.61bohemian-dome 4,4,4 (7,20,14) 61 0.75
hair 4,4,4 (4,9,7) 31 3.05hunt 6,6,6 (3,2,3) 15 1.21star 6,6,6 (1,1,2) 5 3.61spiky 6,9,6 (1,8,8) 13 1.43C8 8,8,8 (40,48,26) 496 30.95random-3 3,3,3 (2,3,3) 15 0.17random-4 4,4,4 (7,14,8) 64 4.50random-5 5,5,5 (16,24,10) 154 236.40interpolated-3 3,3,3 (4,6,3) 23 0.34interpolated-4 4,4,4 (12,18,9) 82 31.41proje
tion-4d 4,4,4 (4,12,9) 34 10.33Table 5.2. Complexity and running times (in se
onds) for the strati�
ation of a sele
-tion of surfa
es. De�ning polynomials are reported in Appendix A.in non-wrapping mode. Observe that our software 
urrently does not bene�t from hav-ing several pro
essors, although many steps of the algorithm are well-suited for parallel
omputations, su
h as the lifting or adja
en
y 
omputation.Table 5.2 reports for a sele
tion of tested surfa
es the size of the 
omputed (d,k)-arrangement A{S}, the total number of 
ells in ΩS, and the obtained running times(in se
onds). It is also expe
ted, that (some) surfa
es do not show any (d,k)-vertex(e. g.,tangle-
ube), or (d,k)-edge (e. g., xy-fun
tional surfa
es) at all. Con
erning the run-ning times, we observed that about 90% is spent to 
onstru
t A{S}. This is no surprise,as we have to analyze plane algebrai
 
urves of degree up to D(D − 1). The remaining10% are 
onsummated for the 
omputation of the lifts and adja
en
ies. The su

ess of them-k-�lter depends on the surfa
e. For most of the tested surfa
es, it fails in less than 10%of the non-square-free liftings, while for the highly-degenerate �C8� example no exe
utionis su

essfull. Con
erning running time, if degz(f) is low (≤ 3), 
omputing the square-freepart with subresultants is not expensive. However, with in
reasing degz(f), the m-k-�ltershows its power. A drasti
 example is the �star�-surfa
e that only requires two 
riti
al lifts.For one, the �lter is su

essful and only needs a fra
tion of a se
ond. If swit
hing o� the�lter, the total running time in
reases from less than 4 se
onds to more than 25 se
onds.We �nally 
an 
on
lude that espe
ially the lifting and adja
en
y steps bene�t from 
ho-sen approximative and 
ombinatorial methods, su
h as the bitstream Des
artes methodand its m-k-variant, interval arithmeti
, propagations of available information, and a 
are-ful sele
tion of sample points required for the adja
en
y 
omputations. A naive approa
hwould result in real root isolations along ℓp with a very bad separation, whi
h typi
allyin
reases running times tremendously.



5.7. Con
lusion and outlook 2555.7. Con
lusion and outlookA
hievements: We presented a generi
 realization of surfa
e strati�
ations with fulladja
en
y information. Our C++-implementation is supported by Cgal's Arrangement_2pa
kage. Its design is kept simple, the interfa
e intuitive, and the approa
h taken does notenfor
e to assume generi
 position. We de
oupled 
ombinatorial from geometri
 tasks. Anew family of surfa
es 
an be used by implementing a small set of tasks de�ned by thenewly introdu
ed Surfa
eTraits_3 
on
ept. We provide models for this 
on
ept: One foralgebrai
 surfa
es of any degree, and one for quadri
s. This se
ond implements degree-spe
i�
 
ombinatorial �lters.Our work demonstrates that surfa
e analysis is pra
ti
ally feasible for moderate degrees.The experiments show promising results thanks to our 
ir
umspe
tly 
ell de
ompositionand the 
onsequent appli
ation of approximate methods. However, as the number of 
ellsin our de
omposition still grows fast, we see the main appli
ation of this tool in providinginformation for a small set of surfa
es, that is, to 
ompute the topology (and geometry) of asingle surfa
e, a single spa
e-
urve, or to serve as a key ingredient for high-level algorithmslike the 
omputation of envelopes, or three-dimensional arrangements. Some of them arealready presented and implemented, others require further work.Future dire
tions: As a �rst step, we want to generalize further, that is, to removethe last algebrai
 terminology. In parti
ular, most of the tasks are already expressed inthe favored generi
 language. A strategy to a
hieve this goal 
ould be to abstra
t the
on
ept while developing models for other kinds of surfa
es, for example, Bézier pat
hes.A straightforward model that we have in mind, is to support rotated surfa
es � similarto the ideas for 
oni
s in the plane; see [BCW07℄.We also want to elaborate further utilizations of the 
omputed data. For example,there is on-going work to extra
t an isotopi
 triangulation from an enhan
ed 
ell de
om-position [BKS℄. Another show
ase is the 
omputation of a single Voronoi 
ell of a setof planes, spheres, and 
ylinders. The 
urrent implementation provided by [HE08℄ relieson non-
erti�ed analyses of low-degree algebrai
 surfa
es (i. e., D ≤ 4). We 
onsider our
ontribution as perfe
tly suited to easily 
ertify this subproblem, whi
h �nally results ina fully 
erti�ed algorithm � in C++. Additionally, it should be 
he
ked in how far ouranalyses of surfa
es support, for a given set of algebrai
 surfa
es, to 
ompute the Voronoi
ell for ea
h of them.We �nally 
onsider the provided de
ompositions as an important building blo
k forfull three-dimensional arrangements of algebrai
 surfa
es, and boolean operations on theindu
ed 
ells. Having this, we are able to robustly 
ompute instan
es des
ribing the
on�guration spa
e for a rotational robot whose movements are restri
ted by polygonalobsta
les [Lat93℄. This task is also known as the Piano Mover's problem; see [SSH87℄.If we �nally manage to 
ombine fast subdivision approa
hes with our exa
t and 
erti�edanalyses, the approa
h is expe
ted to be reasonable e�
ient � knowing that the obtainedresult is ultimately 
orre
t.
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AList of Algebrai
 Surfa
esThis appendix gives the de�ning polynomials of the example surfa
es analyzed in �5.6.2,whi
h allows to rerun experiments or to play around with the surfa
es.steiner-roman
f = (y2 + (x2)) · z2 + (((1) · x) · y) · z + ((x2) · y2)
ayley-
ubi

f = (5 · y + (5 · x)) · z2 + (5 · y2 + (−2) · y + (5 ·x2 + (−2) ·x)) · z + ((5 ·x) · y2 + (5 ·x2 + (−2) ·x) · y)dupin-
y
li

f = 447279 · z4 + (894558 · y2 + (894558 · x2 + (−1155200) ·x + 1155200)) · z2 + (447279 · y4 + (894558 ·x2 +
(−1155200) ·x+(−1155200)) · y2+(447279 ·x4+(−1155200) ·x3+(−1404800) ·x2+5120000 · x+(−2560000)))tangle-
ube
f = z4 + (−5) · z2 + (y4 + (−5) · y2 + (x4 + (−5) · x2 + 10))bohemian-dome
f = z4 + (2 · y2 + ((−2) · x2)) · z2 + ((−1) · y4 + (2 ·x2 + (−4)) · y2 + (x4))
hair f = 16 · z4 + (288 · y2 + (288 · x2 + (−600))) · z2 + ((−1280) · y2 + (1280 ·x2)) · z + (80 · y4 + ((−96) ·x2 +
(−600)) · y2 + (80 · x4 + (−600) ·x2 + 5125))hunt
f = 4 · z6+(12 · y2 +(12 ·x2 +276)) · z4+(12 · y4 +(24 · x2+(−528)) · y2+(12 ·x4+(−960) · x2+4620)) · z2+
(4 · y6 + (12 ·x2 + (−129)) · y4 + (12 ·x4 + (−150) · x2 + 1380) · y2 + (4 ·x6 + 87 ·x4 + 84 ·x2 + (−4900)))star
f = 100 · z6 +(300 · y2 +(300 ·x2 +(−300))) · z4 +(300 · y4 +(600 ·x2 +(−599)) · y2 +(300 ·x4 +(−599) ·x2 +
300)) · z2 + (100 · y6 + (300 ·x2 + (−300)) · y4 + (300 · x4 + (−599) ·x2 + 300) · y2 + (100 ·x6 + (−300) · x4 +
300 ·x2 + (−100)))spiky
f = z6+((−3) · y3+(3 ·x2)) · z4+(3 · y6+(21 ·x2) · y3+(3 · x4)) · z2+((−1) · y9+(3 ·x2) · y6+((−3) ·x4) · y3+
(x6))C8
f = 32 · z8 + (−64) · z6 + 40 · z4 + (−8) · z2 + (32 · y8 + (−64) · y6 + 40 · y4 + (−8) · y2 + (32 ·x8 + (−64) ·x6 +
40 ·x4 + (−8) · x2 + 1))
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