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Abstract
An effective visual representation of dynamical flow behavior is still a challeng-
ing problem of modern flow visualization. Path-lines are important characteristic
curves of dynamical flow fields. In this thesis, we focus on the visual analysis of
path-line behaviors and uncover the dynamical nature of a flow field. We propose
a topological segmentation of periodic 2D time-dependent vector fields based on
asymptotic path-line behaviors. A flow domain is classified into different areas
based on the converging or diverging path-line behaviors relating to the identified
critical path-lines. We also offer an alternative algorithm to extract the separation
surfaces of the path-line oriented topological structure. For the interactive visual
analysis of fluid motion, we propose an information visualization based approach
to explore the dynamical flow behaviors. Attributes associated with path-lines are
identified and analyzed and the interesting features or structures are extracted and
visualized with human interaction. We also investigate the property transport phe-
nomenon and propose an approach to visualize the finite-time transport structures
of property advection which is similar to carry out a line integral convolution over
physical properties along path-lines. We demonstrate our approaches on a number
of applications and present some interesting results.
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Chapter 1

Introduction

The insight into a complex physical phenomenon is always improved if a pattern
produced by or related to this phenomenon can be observed by visual inspection.
Insights from different viewpoints present different information, thus contribute
different understandings of the complex phenomenon. In fluid analysis, it is crit-
ically important to see the patterns underlying a flow process. With the develop-
ment of flow visualization technologies, new features and patterns become visible
which significantly expands the vision to the complex fluid phenomenon.

Flow visualization is an important subfield of scientific visualization. Many promis-
ing techniques have been developed recently to illustrate a flowing fluid phe-
nomenon. However, when dealing with a dynamical flow fields, the increasing
size, complexity as well as the dimensionality of the underlying space-time do-
main makes the analysis and the visual representation challenging and partially
unsolved. In particular, it has still proved to be inherently difficult to actually
comprehend the important characteristics of the time-dependent fluid flow pro-
cess. An effective visual analysis of dynamical flow field is still a challenging
problem in scientific visualization.

Path-lines are important characteristic curves of dynamical flow fields which natu-
rally describe the paths of fluid elements over time in the flow. Hence, the analysis
of the dynamic behavior of flow fields is strongly related to the analysis of the be-
havior of the path-lines. Path-line oriented features or patterns deliver significant
different information from classical methods and contribute a new and deep un-
derstanding of the dynamic nature of unsteady flow phenomenon.

In this thesis, we focus on the visualization of dynamical flow fields and present
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a set of path-line oriented flow visualization algorithms to visually explore the
dynamical behavior of a flow process. We try to integrate our works into the
framework of classical fluid analysis and organize this thesis in the follow struc-
ture:

Chapter 2 recalls the background of general fluid analysis and discusses some
common concepts of fluid phenomena, which are used throughout this thesis. The
methodologies of fluid analysis and their relations are also discussed.

Chapter 3 goes through the well-applied flow visualization techniques from the
viewpoints of fluid analysis. Special attention is payed on the visualization tech-
niques for dynamical flow field are especially .

Chapter 4 presents a work of path-line oriented topology based on the assump-
tion of periodic 2D time-dependent vector fields. The topological structures of
asymptotic behavior of path-lines is introduced. The further solution of sep-
aration surface extraction is also discussed. These works have been published
in [STW∗06, STW∗07].

Chapter 5 introduces an information visualization based algorithm to visually an-
alyze path-line behaviors. A number of local and global attributes of path-lines
are discussed and analyzed by the state-of-the-art information visualization ap-
proaches in the sense of a set of linked views. The interactive exploration of intri-
cate 4D flow structures is proposed. This work has been published in [STH∗07].

Chapter 6 investigates the fluid transport phenomenon and proposes an approach
to visualize the finite-time transport structures through applying a transport filter
on correlated physical property fields. For advection behavior, the transport fil-
ter is equivalent to a path-line integral convolution. The transport structures for
fluid advection is visualized through applying the advection filter, i. e. convoluting
the property field along path-lines. This work has been published in [STW∗08a,
STW∗08b].

Chapter 7 draws conclusions and discusses the future works of the path-line ori-
ented flow visualization techniques.



Chapter 2

Background of Fluid Analysis

Fluid analysis is an classical field of scientific and engineering research. It covers
a rich variety of applications such as in automotive industry, aerodynamics, turbo-
machinery design, weather simulation, climate modeling or medical applications.
With the experimental support, theoretical fluid analysis has achieved enormous
success during last centuries. Meanwhile, the experimental methodology has also
been improved significantly.

With the evolving of computer technology, the fluid analysis is no longer restricted
to thinking and experiments. Computational fluid dynamics (CFD) has extended
the abilities of scientists and engineers by creating simulations of dynamic behav-
ior of fluid flows under a wide range of conditions. The result of this analysis
is usually a 2D or 3D grid of data, which may be uniformly or non-uniformly
spaced. The goal is then to analyze this flow data field to identify features such
as topologies, vortices, turbulence, and other forms of structure. Computer aided
flow visualization is a highlight in fluid analysis which has equipped the fluid an-
alysts with extra powerful eyes, especially when dealing with the simulated data.
The insights into complex fluid phenomena have become deeper and deeper.

2.1 Fluid Description

Theoretical fluid analysis has been one of the major topics of physics, applied
mathematics and engineering over the last hundred years. Starting with the ex-
planations of aerofoil theory, the study of fluids continues today with looking at
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how internal and surface waves, shock waves, turbulent fluid flow and the occur-
rence of chaos can be described mathematically. At the same time, it is critically
important for engineers to understand fluid phenomena properly. However it is
not always easy to comprehend these complex phenomena. There are many terms
and mathematical methods which are different from normal physics. Although the
basic concepts of velocity, mass, linear momentum, forces, etc., are the ground el-
ements, the slippery nature of fluids means that applying those basic concepts
sometimes may be special. So for the accurate analysis of a fluid behavior, it is
necessary to have a precise description. Some of this will be discussed here.

2.1.1 Flow properties

In order to describe fluid flows, we need to be able to deal with characteristic fluid
properties which are different at different locations and times [Oer02]. Mathe-
matically it is modeled with variables that describe the physical state of a fluid
usually as functions of spatial-temporal position. The mathematical model built
in fluid dynamics is based on the continuum hypothesis: in a spatial-temporal do-
main D⊂ IR3× IR, fluid properties assigned to any spatial-temporal position (x, t)
vary continuously and may be taken as constant across sufficiently small volumes.
The continuum hypothesis implies that fluid properties are differentiable and fluid
dynamics can be formulated as a classical field theory. The fluid properties are
represented in either scalar-valued or vector-valued fields.

• Density of a fluid is the amount of mass per unit volume. For a given posi-
tion x and t, it can be defined as

ρ(x, t) = lim
ΔV→0

Δm
ΔV

where Δm is the mass of the small volume ΔV .

• Velocity of a fluid is a vector which specifies the flow motion for a fluid
element at a given point x and time t. The main task of fluid dynamics is
to identify the fluid velocity v(x, t) from the equations of fluid motion for
known forces.

• Pressure of a fluid is a force per unit area in the normal direction. In general,
fluids exert forces in both normal and tangential directions on surfaces with
which they are in contact. Pressure of a fluid consider the forces only in
normal direction. For a given position x and t, it can be defined as

p(x, t) = lim
ΔA→0

ΔFn

ΔA
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where Fn is the force in the normal direction n on a small surface ΔA.

• Temperature is a measure of the internal energy of the fluid, i.e., the energy
associated with the thermal motions of the molecules making up the fluid.

The above discussed properties are typical physical properties of a fluid. More
physical properties can be also identified from combination of these properties.
For fluids, there exist also transport properties such as viscosity (see section 2.3.2)
which distinguish the motion characteristics of flowing fluids.

2.1.2 Lagrangian and Eulerian perspective

In the study of fluid motion there are two ways to describe what is happening. The
first is known as the Lagrangian perspective which follows the history of individ-
ual fluid particles. The alternative is the Eulerian perspective which concentrates
on the flow behavior at a fixed spatial point.

Eulerian perspective

In the Eulerian perspective a fixed reference frame is employed relative to which a
fluid is in motion. Time and spatial position in this reference frame (x, t) are used
as independent variables. The fluid properties such as mass density, pressure and
flow velocity which describe the physical state of the fluid flow in question are
dependent variables, they are functions of the independent variables. Thus their
derivatives are partial with respect to (x, t). For example, the flow velocity at a
spatial position x and time t is given by v(x, t) and the corresponding acceleration
at this position and time is then

a =
∂v(x, t)

∂ t

∣∣∣∣
x

(2.1)

where the time derivative is for the same position.

Lagrangian perspective

In the Lagrangian perspective the fluid is described in terms of its constituent fluid
elements. Different fluid elements have different labels, e.g. their spatial positions
at a certain fixed time t0 are x0. The independent variables are thus (x0, t0) and
the particle position x(x0, t) is a dependent variable. One can then ask about the
rate of change in time in a reference frame co-moving with the fluid element, and
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this then depends on time and particle label, i.e. which particular fluid element is
being followed.

For example, if a fluid element has some velocity v(x0, t), then the acceleration it
feels will be

a =
Dv(x0, t)

Dt

∣∣∣∣
x0

(2.2)

where the notation signifies that x0 is kept constant, i.e. the time derivative is
for the same fluid element. D/Dt emphasize the fact that the derivative is taken
following a fluid element.

The Lagrangian and Eulerian reference frames are related by the substantial deriva-
tive. For any fluid property f (x, t) in a flow field with velocity v, the substantial
derivative is given by

D f
Dt

=
∂ f
∂ t

+v ·∇ f (2.3)

2.1.3 Steady and unsteady flow

Steady and unsteady flow is one of the most important distinctions which is often
easy to recognize. If the fluid parameters are functions of space but not functions
of time, then the flow is taken as steady. Mathematically this is expressed by
partial derivatives with respect to time of any fluid parameter vanishes. Otherwise,
it is called unsteady. Whether a particular flow is steady or unsteady, may depend
on the chosen frame of reference. For instance, laminar flow over a sphere is
steady in the frame of reference that is stationary with respect to the sphere while
in other reference frames, it is unsteady.

Real physical flows always exhibit some degree of unsteadiness. But in many
situations the time dependence may be sufficiently weak to justify a steady-state
analysis.

2.1.4 Compressibility

In fluid analysis, compressibility is a measure of the relative volume change of
a fluid as a response to a pressure or temperature change. All fluids are com-
pressible to some extent, that is changes in pressure or temperature will result
in changes in density. However, in many situations the changes in pressure and
temperature are sufficiently small that the changes in density are negligible. In
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this case the flow can be modeled as an incompressible flow. Otherwise the more
general compressible flow equations must be used.

In Lagrangian perspective, an incompressible flow follows

Dρ
Dt

= 0 (2.4)

After substituting in the Equation 2.3 and applying the continuity equation (Equa-
tion 2.14), this can be derived to the following form

∇ ·v = 0 (2.5)

which is the incompressibility condition and it is widely applicable to fluids.

2.2 Fluid Kinematics

The kinematics of a flow describe the motion of the fluid without taking into
account of the forces that cause this motion. The motion of a fluid can be described
by a velocity field which is a vector field v on some open set D ⊂ IRm × IR. It is
a function that associates a vector v(x, t) to each point in spatial-temporal domain
D

v : D −→ IRn

For 2D vector field, it is expressed as

v(x, t) =
{

u(x,y, t)
v(x,y, t)

And for 3D vector field, it is expressed as

v(x, t) =

⎧⎨
⎩

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

2.2.1 Characteristic curves

Classical observations of fluid motion are characterized by some characteristic
curves. Specified fluid elements of a fluid are swept along with the mean flow and
their trajectories sketch the characteristic curves of the fluid motion. Streamline,
path-line and streak-line are three important characteristic curves of flow visual-
ization.
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Streamline

Streamlines are curves tangential to the instantaneous direction of the flow veloc-
ity in all points of the flow field. For a given flow, at an instant of time tc, there is at
every point x = (x,y,z) a velocity vector v(x, tc) = (u,v,w). Let ds = (dx,dy,dz)
be an element of arc length along a streamline, then by definition

dx
u

=
dy
v

=
dz
w

(2.6)

along the streamline. Streamlines can’t cross and no fluid is flowing across a
streamline at the instant considered. Streamlines display a snapshot of the entire
flow field at a single instant. For a time-dependent flow, the streamline pattern
changes with time. Streamlines can be visualized by seeding the fluid with small
particles (see section 2.4) and photographing the flow field with an appropriate
and known exposure time, so that each particle appears as a streak in the picture.
The magnitude and direction of velocity in selected points of the flow field can be
obtained and the streamlines can be found by drawing the curves tangential to the
particle streaks.

Path-line

A path-line of a given flow, is the curve that an individual fluid element traverses
in the flow field as a function of time. Mathematically, a path-line p(t) can be
written in the following form,

dp(t)
dt

= v(p(t), t) (2.7)

A path-line contains the integrated time history of the motion of one single fluid
element. It can be visualized if one takes a long-time exposure record of the
motion of one foreign particle, which has been introduced into the flow.

Streak-line

A streak-line is the locus of all fluid elements that have previously passed through
a particular, fixed point of the flow field. It can be visualized by continuously
injecting dye, or smoke, or another appropriate material into the flow from se-
lected positions. Compared with path-lines, streak-lines corresponds to continu-
ous injection of material particles and instantaneous observation of them, whereas
path-lines are formed by instantaneous injection and continuous observation.
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(a) (b)

(c) (d)

Figure 2.1: Characteristic curves of a Von Kármán vortex street [Oer02]:(a)
Streamlines with observer at rest; (b) Streamlines with with observer; (c) Path-
lines; (d) Streak-lines

For steady fluid, these three characteristic curves coincide. But in a flow, which
explicitly depends on time, the three types of curves are different from one an-
other. Figure 2.1 shows an example of these characteristic curves of an unsteady
flow, which is named as Von Kármán vortex street [Oer02].

Besides, material line element is another concept often used in fluid analysis. It is
a small line element marked in the fluid, i.e., made up of fluid elements, moving
with the flow.

2.2.2 Flow topology

The analysis of the topology of a flow serves to provide an understanding of the
critical points, or singularities that are produced by the velocity vector field and
their relations to each other [Oer02]. In a critical point the magnitude of the ve-
locity vanishes and in these points no direction is associated with the streamlines
according to equation 2.6. There are various types of critical points, which can be
characterized according to the behavior of nearby streamlines. Figure 2.2 shows
an example of three typical critical points of a fluid flow, which are called source,
sink and center. For a vector field, which can be approximated by a series of ex-
pansion about a critical point, closer investigation of the surrounding space of the
critical point is carried out to classify the behavior.

Consider a steady 2D velocity vector field v, which is assumed to be continuous
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(a) (b) (c)

Figure 2.2: An example of critical points of particles and the flow from lecture
notes http://web.mit.edu/8.02t/www/: (a) Source; (b) Sink; (c) Center.

and differentiable. Then the partial derivatives of v can be written as

vx(x,y) =
( ux(x,y)

vx(x,y)

)
; vy(x,y) =

( uy(x,y)
vy(x,y)

)

The Jacobian matrix Jv is a 2× 2 matrix which is defined in every point of the
domain of the vector field by

Jv(x,y) =
( ux(x,y) uy(x,y)

vx(x,y) vy(x,y)

)

The determinant of Jv is called Jacobian of v.

A critical point xo in the vector field v is called a first order critical point if and
only if the Jacobian does not vanish in xo; otherwise the critical point is called
higher order critical point.

For first order critical point, it can be classified by the eigenvalues of the Jacobian
matrix [HH89].

Figure 2.3 shows how the eigenvalues classify a critical point as an attracting node,
a repelling node, an attracting focus, a repelling focus, a center or a saddle, where
R1 and R2 denote the real parts of the eigenvalues of the Jacobian matrix; I1 and
I2 denote the corresponding imaginary parts. A positive or negative real part of an
eigenvalue indicates an attracting or repelling nature; respectively, the imaginary
part denotes circulation around the critical point.

Among these points, the saddle points are distinct, in which only four streamlines
actually end at the point itself. At the saddle point, these curves are tangent to the
two eigenvectors of the Jacobian matrix, which act as the separatrices of the sad-
dle point. The outgoing and incoming separatrices are parallel to the eigenvectors
with positive and negative eigenvalues respectively.

http://web.mit.edu/8.02t/www/
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Figure 2.3: First order classification criteria for critical points [HH89, PVH∗03].

2.2.3 Vortex kinematics

Vortex is a classical topic in fluid analysis, however an accepted definition of vor-
tex is still lacking [JH95]. A spinning flow with circular streamlines is known as a
vortex as shown in Figure 2.4. The fluid pressure in a vortex is lowest in the center
where the speed is greatest, and rises progressively with distance from the center.
Vortices contain a lot of energy in the circular motion of the fluid. In an ideal fluid
this energy can never be dissipated and the vortex would persist forever. However,
real fluids exhibit viscosity and this dissipates energy very slowly from the core
of the vortex.

Vorticity is a mathematical concept used in fluid analysis. It can be related to the
local angular rate of rotation in a fluid. It is a vector-valued function of position
and time defined as

ω = ∇×v (2.8)

The vorticity at a point is a measure of the local rotation. For the large scale
rotational properties of a flow, the concept circulation is introduced. The circula-
tion Γ around a closed contour C is defined as the line integral of the tangential
component of the velocity

Γ =
∮

C
v ·dl (2.9)
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Figure 2.4: A vortex in water. WL| Delft Hydraulics [PVH∗03].

From the Stokes’ integral theorem [KC04], the circulation becomes

Γ =
∫∫

S
(∇×v) ·dA =

∫∫
S

ω ·dA (2.10)

where S is an arbitrary surface entirely in the fluid that spans C.

A vortex line is a curve in the fluid such that its tangent at any point parallels to
the local vorticity [Bat67]. The core of every vortex can be considered to contain
a certain vortex line, and every fluid element in the vortex can be considered to be
circulating around the vortex line. Vortex lines passing through any closed curve
form a tubular surface, which is called a vortex tube.

There are two basic vortex flows. One is rotational vortex, whose tangential ve-
locity is

vθ =
1
2

ωr (2.11)

The vorticity of an element is everywhere equal to ω and it rotates as a solid body
with no shear. The other type is irrotational vortex, whose tangential velocity is

vθ =
Γ

2πr
(2.12)

For irrotational vortex, the vorticity is 0 everywhere except at the origin where the
vorticity is infinite.

In an inviscid, barotropic flow with conservative body forces, the circulation
around a closed curve moving with the fluids remains constant with time. Barotropic
here means that the fluid density is a function of pressure alone such as incom-
pressible or isentropic. This statement is known as Kelvin’s Circulation Theorem.
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Kelvin’s theorem essentially states that irrotational flows remain irrotational at
all times. With the same conditions, Helmholtz Vortex Theorem made the further
statements

• Vortex lines are material lines moving with the fluid.

• The strength of a vortex tube, which is the circulation, is constant along its
length

• A vortex line can not end within the fluid. It must either end at a solid
boundary or form a closed loop (a vortex ring).

• Strength of a vortex tube remains constant in time

2.3 Fluid Dynamics

Fluid dynamics presents the basic development of fluid principles and their appli-
cations in solving problems concerning of fluid motion. It carries out a systematic
study of the theoretical, empirical and semi-empirical laws, derived from funda-
mental physics and flow measurement. The solution of a fluid dynamics problem
typically involves calculation of various properties of the fluid as functions of
space and time.

2.3.1 Fundamental principles

Within the continuum framework (see section 2.1.1), classical physical theories
can be applied to fluid analysis. The foundational principles of fluid dynamics are
the conservation laws [KC04], i.e. conservation of mass, momentum and energy.

The mathematical expressions of these fundamental principles can be stated in
either differential form or integral form and both forms can be derived from each
other.

Conservation of mass

Consider a volume V fixed in space as shown in Figure 2.5, the rate of increase of
mass inside the volume must equal to the rate through the boundary A, therefore,

∫
V

∂ρ
∂ t

dV = −
∫

A
ρv ·dA (2.13)
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Figure 2.5: Mass conservation of a volume fixed in space.

By means of the divergence theorem [KC04], the surface integral can be trans-
formed to a volume integral and the divergence form is obtained as follows,

∂ρ
∂ t

+∇ · (ρv) = 0 (2.14)

which is called continuity equation.

Conservation of momentum

The study of fluid motion is determined by the Newton’s Second Law of Motion
which relates the acceleration of the motion of a fluid to the forces that are gener-
ating the motion. The idea is the physical principle that the linear momentum of
any particular fluid element is conserved.

For any deformable continuous medium the stress tensor τi j encodes the transfer
rate of linear momentum across contact surfaces between neighboring volume
elements which is due to molecular motions within the medium. One example on
the surface with normal n1 is shown on Figure 2.6a.

Consider the motion of a infinitesimal fluid element shown in Figure 2.6b, New-
ton’s law requires that the force on the element must equal mass times the accel-
eration of the element. With ρgi as the body force per unit volume, the Newton’s
law gives

ρ
Dvi

Dt
= ρgi +

∂τi j

∂x j
(2.15)
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(a) (b)

Figure 2.6: (a)Stress tensor on one surface of an element;(b) Surface stresses on
an element moving with the flow, only stresses in the x1 direction are labeled.

This is the equation of motion relating acceleration to the net force at a point
and describes how linear momentum is transferred between neighboring volume
elements. It is usually called Cauchy’s Equation of Motion.

Conservation of energy

In physics, the conservation of energy states that the total amount of energy in any
isolated system remains constant but can’t be recreated, although it may change
forms. The equation for the kinetic energy of a fluid can be obtained from the
momentum equation,

ρ
D
Dt

(
1
2

v2
i ) = ρgivi + vi

∂τi j

∂x j
(2.16)

which is not a sperate principle. In flows with temperature variations, an indepen-
dent equation needs to be considered. Let q be the heat flux vector per unit area
and e the internal energy per unit mass, the First Law of Thermodynamics states
that the rate of change of stored energy equals the sum of rate of work done and
rate of heat addition to a material volume, that is,

ρ
D
Dt

(e+
1
2

v2
i ) = ρgivi +

∂ (τi jvi)
∂x j

− ∂qi

∂xi
(2.17)

Besides the first law of thermodynamics, the Second Law of Thermodynamics
states that the real phenomena can only proceed in a direction in which the ”dis-
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order” of an isolated system increases. Disorder of a system is measured of the
degree of uniformity of macroscopic properties in the system and it is usually
called entropy.

2.3.2 Viscous effects

The characteristic that distinguishes a fluid from a solid is its continually deforms
under an applied shear stress. For a fluid, the transport of momentum consti-
tutes internal friction, and the fluid exhibiting internal friction is said to be vis-
cous [Bat67]. Viscosity is a measure of the resistance of a fluid to being deformed
by shear stress.

The Newton’s Law of Friction states that the magnitude of the shear stress τ along
a surface element is proportional to the velocity gradient across the element

τ = μ
dv
dy

(2.18)

where the constant of proportionality μ is known as dynamic viscosity, which is
a strong function of temperature T . In many situations, the ratio of the viscous
force to the inertial force is concerned. The inertial force is characterized by the
fluid density ρ and the ratio is defined as follows

ν =
μ
ρ

(2.19)

which is called kinematic viscosity. Fluids, either liquids or gases, which satisfy
Newton’s Law of Friction are known as Newtonian fluids. Non-Newtonian fluids
exhibit a more complicated relationship between shear stress and velocity gra-
dient than simple linearity. For ideal fluids, they support no shearing stress and
flow without energy dissipation. Fluids without viscous effects are called inviscid
fluids.

2.3.3 Navier-Stokes Equation

The relation between the stress and deformation in a fluid is called a constitutive
equation. Without body force, a stress tensor is symmetric and can always be
resolved into the sum of two symmetric tensors. One is a hydrostatic stress tensor
which involves only tension and compression and the other is a deviatoric stress
tensor which involves shear stress [KC04]. In the case of a fluid, Pascal’s Law
shows that the hydrostatic stress is the same in all directions and can be expressed
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by the scalar property pressure p. The deviatoric stress tensor is related to velocity
gradients ∂vi/∂x j and for an incompressible fluid, the constitutive equation can
be expressed as following

τi j = −pδi j + μ(
∂vi

∂x j
+

∂v j

∂xi
) (2.20)

where p here is only interpreted as the mean pressure. For a compressible fluid, a
thermodynamic pressure need to be derived and the constitutive equation becomes

τi j = −(p+
2
3

μ∇ ·v)δi j + μ(
∂vi

∂x j
+

∂v j

∂xi
) (2.21)

The equation of motion for a Newtonian fluid is obtained by substituting the con-
stitutive equation (Equation 2.20) into Cauchy’s equation (Equation 2.15) to ob-
tain

ρ
Dvi

Dt
= − ∂ p

∂xi
+ρgi +

∂
∂x j

[
μ(

∂vi

∂x j
+

∂v j

∂xi
)− 2

3
μ(∇ ·v)δi j

]
(2.22)

which is a general form of the Navier-Stokes Equation. For incompressible fluids
∇ ·v = 0 and using vector notation, the Navier-Stokes Equation reduces to

ρ
Dv
Dt

= −∇p+ρg+ μ∇2v (2.23)

For inviscid fluid, we obtain the Euler Equation

ρ
Dv
Dt

= −∇p+ρg (2.24)

2.3.4 Similarity and dimensionless parameter

Two flows having different values of length scales, flow speeds, or fluid properties
can apparently be different but still share some similarity. This have been widely
used in experimental fluid mechanics. There are generally three kinds of similar-
ity, the geometric similarity, the kinematic similarity and the dynamic similarity.
Dimensional analysis is used to check the similarities [KC04]. According to the
Buckingham π-theorem of dimensional analysis, the functional dependence be-
tween n variables can be reduced to n− r independent dimensionless variables,
where r is the rank of the dimensional matrix. For the experiment purposes, dif-
ferent systems which share the same description by dimensionless quantity are
equivalent. Dimensionless parameters are important to characterize the dynamic
similarity and are essential in fluid dynamics analysis. Several significant com-
mon dimensionless parameters are sketched here.
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Reynolds Number

The Reynolds Number is the ratio of inertia force to viscous force:

Re =
Ul
ν

(2.25)

where U is the mean fluid velocity and l is the characteristic length.

Reynolds Number is used to identify and predict different flow regimes, such as
laminar or turbulent flow. Laminar flow occurs at low Reynolds numbers, where
viscous forces are dominant, and is characterized by smooth, constant fluid mo-
tion, while turbulent flow, on the other hand, occurs at high Reynolds numbers and
is dominated by inertial forces, which tend to produce random eddies, vortices and
other flow fluctuations.

Mach Number

The Mach Number is the ratio of inertia force to compressibility force:

M =
U
c

(2.26)

where c is the speed of sound.

Mach Number is a requirement for the dynamic similarity of compressible flows.
Compressibility effects can be neglected if M < 0.3. Flows in which M < 1 are
called subsonic, whereas flows in which M > 1 are called supersonic.

Pressure Coefficient

The Pressure Coefficient is the ratio of pressure force to inertial force:

Cp =
p− p∞
1
2ρv2

∞
(2.27)

where p is the pressure at the point of measure, p∞ is the free-stream pressure
which is remote from any disturbance, and v∞ is the free-stream fluid velocity or
the velocity of the body through the fluid. Cp = 0 indicates the pressure is the
same as the free stream pressure while Cp = 1 indicates the pressure is stagnation
pressure and the point is a stagnation point. In the fluid flow field around a body
there will be points having positive pressure coefficients up to one, and negative
pressure coefficients, including coefficients less than minus one, but nowhere will
the coefficient exceed plus one because the highest pressure that can be achieved
is the stagnation pressure.
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Drag Coefficient

Drag Coefficient is a dimensionless quantity that describes the aerodynamic drag
caused by fluid flow. For a specified object, the Drag Coefficient Cd can be derived
by integrating the distribution of corresponding Pressure Coefficients:

Cd =
1
2

∫ 2π

0
Cp(θ)cosθdθ (2.28)

Drag Coefficient is widely applied in aerodynamics, the drag force of an object
can be calculated in the following way,

F =
1
2
Cdρv2A (2.29)

where A is the projected frontal area.

2.3.5 Laminar and turbulent flow

(a) (b)

Figure 2.7: Laminar and turbulent flow in a pipe [Oer02]: (a) Steady laminar; (b)
Turbulent.

The distinction between laminar and turbulent is one of the most important points
for the analysis of fluids. Figure 2.7 shows the fluid flowing through a pipe with
a dye injected at the inlet. The dye filament is straight and smooth in Figure 2.7a
for low speeds and it breaks off and disperse almost uniformly in Figure 2.7b
when the flow speed is high enough. The first case is laminar flow which oc-
curs when a fluid flows in parallel layers, with no disruption between the layers
while the second case is turbulent flow which is dominated by recirculation, ed-
dies, and apparent randomness. In fluid dynamics, laminar flow is a flow regime
characterized by high momentum diffusion, low momentum convection, pressure
and velocity independent from time and turbulent flow is fluid characterized by
irregular, chaotic movements of fluid particles. This includes low momentum dif-
fusion, high momentum convection, and rapid variation of pressure and velocity
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in space and time. The Reynolds Number characterizes whether flow conditions
lead to laminar or turbulent flow (see section 2.3.4).

The transport properties of turbulence are dominated by the advection of infinites-
imal fluid elements, it is natural to resort to the Lagrangian viewpoint, following
the motion of the fluid elements [Oer02]. Turbulence have a well-documented
tendency to form coherent structures. The remarkable feature of the coherent
structures observed in both numerical and experimental work is their long life-
times. Much energy has been put into identifying coherence in vortical structures,
determining their stability properties, and analyzing the dynamics of vortex inter-
actions including merging.

2.4 Experimental Fluid Analysis

Experimental analysis is one fundamental way to understand the complex fluid
phenomena, which serves as foundation of theoretical fluid analysis. They are
usually carried out in wind pipes, tanks, tunnels and so on. Fluid motion can be
measured and then analyzed manually or with computer support (see section 2.5).
One intuitive way is to directly visualize the fluid motion during the experiments.

2.4.1 Experimental visualization techniques

A proper visualization technique is usually the determinant factor for the experi-
mental fluid analysis. During the development of fluid analysis there has been ev-
idence of a rapidly growing interest in the methods of flow visualization [Mer74].
To getting insights into a fluid phenomenon, it is essentially important to under-
standing the dynamical features, which appear as special patterns during the fluid
transport. However, most fluids are transparent, thus their flow patterns are in-
visible to human perception. Flow visualization is the art of making underlying
patterns in liquids and gases visible. The study dates back at least to the Renais-
sance, when Leonardo Da Vinci sketched images of fine particles of sand and
wood shavings which had been dropped into flowing liquids. Since then, labo-
ratory flow visualization has become more and more exact, with careful control
of the particulate size and distribution. Advances in photography has also helped
extend the understanding of how fluids flow under various circumstances.

Generally, experimental fluid visualization can be distinguished into the following
three basic groups of methods [Mer74, Dyk82].
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(a) (b) (c)

Figure 2.8: Experimental flow visualization techniques, three examples: (a)
Smoke lines around a road vehicle in a full-scale wind tunnel [Huc94]; (b)
Shadow graph of an airplane model in free flight at M = 1.1 [Dyk82]; (c) Lam-
inar flow around a metallic profile. The model is placed between two rod elec-
trodes [Mer74].

Foreign material methods: This group comprises all techniques by which
a foreign material is added to the flowing fluid and makes the particle, path or
surface visible. Dye, smoke, or tufts is injected into liquids or gases to visualize
flow dynamics. A problem with injecting material is that the injection process
and the injected material may influence the flow. Using electrolytic techniques for
generating hydrogen bubbles within the flow decreases these problems to a certain
extent. Also photochemical methods are used, for instance, generating dye within
the flow using a laser beam. The foreign material methods give excellent results in
stationary flows, but the errors can be enormous for unsteady flows. The methods
also fail to give precise results, if thermodynamic state of the fluid varies in such
as compressible fluid. An example of the foreign material method can be seen in
Figure 2.8a, where the air flow around full-scale vehicle has been visualized by
means of smoke.

Optical methods: The refractive index of a fluid medium is a function of the
fluid density. Compressible flows can be made visible by means of certain optical
methods that are sensitive to changes of the index of refraction in the field under
investigation. For the group of optical flow visualization methods, a light beam
transmitted through a flow field with varying density is affected with respect to
its optical phase and its intensity remains unchanged. An optical device behind
the flow field provides in a recording plane a nonuniform illumination due to the
phase changes. From the pattern in the recording plane, one can concludes the
corresponding density variation in the flow field. Optical methods achieves less
disturbance of the original flow. An example of the optical method can be seen in
Figure 2.8b, where shadows in the image denote shock waves during the flight of
the airplane model.
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Energy methods: Energy in the form of either heat or electric discharge are
introduced into the flowing fluid as foreign substance. Heat can be applied to
flows to artificially increase the density variation. Electrons shooting into the
flow volume is used to excite gas molecules. The investigated fluid elements are
marked by their increased energy level and they can be discriminated from the rest
of the fluid directly or by an optical visualization method. These methods are often
applied to flow with low average density level and the density changes can be too
weak to be detected by an optical method. This group of visualization methods is
suitable for rarefied or low-density gas flows, which one often distinguishes from
the ordinary incompressible and compressible flows. It is not a nondisturbing
method either, since it affects, more or less, the original flow according to the
amount of released energy. An example of the energy method can be seen in
Figure 2.8c, where a metallic model is placed between two rod electrodes and the
velocity profile is visualized by spark tracer techniques [Mer74].

Although experimental methods have advantages, they influence the flow them-
selves. They are usually time consuming and very expensive and only a limited
set of flow properties can be visualized using experimental techniques.

2.5 Computer Aided Fluid Analysis

As the evolving of computer technology, the field of fluid analysis is extending.
With high computation power and efficient algorithms, the fluid phenomena can
be simulated. The visual depth of the complex phenomena has also been increased
with high-performance computer graphical techniques.

2.5.1 Computational fluid dynamics

Computational fluid dynamics (CFD) is a science that uses numerical methods and
algorithms to produce quantitative predictions of fluid-flow phenomena based on
those conservation laws governing fluid motion. These predictions normally occur
under those conditions defined in terms of flow geometry, the physical properties
of a fluid, and the boundary and initial conditions of a flow field. The prediction
generally concerns sets of values of the flow properties, for example, velocity,
pressure, or temperature at selected points in spatial-temporal domain. It may also
evaluate the overall behavior of the flow, such as the flow rate or the hydrodynamic
force acting on an object in the flow. However, even with simplified equations and
high-speed supercomputers, only approximate solutions can be achieved in many
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(a) (b) (c)

Figure 2.9: A CFD example for the Red Bull Sauber C-20 F1 racing car using
CFD software Fluent [Flu02]: (a) A model of the car; (b) The surface mesh in the
cockpit area; (c) Path lines around the vehicle.

cases. Techniques for accurate and quick simulation of complex scenarios such as
transonic or turbulent flows are an ongoing area of research [And95].

The basis of CFD problems are partial differential equations (PDE) which repre-
sent conservation laws for the mass, momentum and energy, i. e. the Navier-Stokes
equations for single-phase fluid flow. CFD is the art of replacing such PDE sys-
tems by a set of algebraic equations which can be solved using digital computers.

In order to study the behavior of certain object under a fluid flow environment,
a model with geometrical similarity to the original object are constructed using
computer graphics techniques. Figure 2.9a shows a geometrical model of the
Red Bull Sauber C-20 F1 racing car [Flu02]. Material properties and boundary
conditions are necessary to be specified before applying the CFD approaches.

The fundamental consideration in CFD is how to treat a continuous fluid in a dis-
crete environment on a computer. One method is to discretize the spatial domain
into small cells to form a volume mesh or grid, and then apply a suitable algo-
rithm to solve the equations of motion. The cells can be either irregular or regular
and the distinguishing characteristic of the former is that each cell must be stored
separately in memory. Figure 2.9b shows an example of surface mesh of the rac-
ing car on the driver’s helmet and cockpit area. From the surface meshes, the
volume can be divided further into prismatic cells. After meshing the investigat-
ing space, the governing equations are discretized correspondingly and solved for
each elements. Finite difference, finite element and finite volume are three com-
mon discretization methods for CFD computation. The stability of the chosen
discretization is generally established numerically rather than analytically as with
simple linear problems.

Laminar flows can be directly solved by the Navier-Stokes equations. It is also
possible to solve turbulent flows directly when all of the relevant length scales can
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be resolved by the cell. In general however, the range of length scales appropriate
to the problem is larger than even today’s massively parallel computers can model.
In these cases, turbulent flow simulations require the introduction of a turbulence
model. This means that it is required for a turbulent flow regime to take this into
account by modifying the Navier-Stokes equations. In many instances, other equa-
tions are solved simultaneously with the Navier-Stokes equations. These other
equations can include those describing species concentration, chemical reactions,
heat transfer, etc. More advanced codes allow the simulation of more complex
cases involving multi-phase flows, non-Newtonian fluids, or chemically reacting
flows.

It is also necessary to do the validation after the CFD process to ensure that the
CFD code produces reasonable results for a certain range of flow problems. It is
usually done by comparing the results with available experimental data to check
if the reality is represented accurately enough. Sensitivity analysis and a paramet-
ric study are carried out to assess the inherent uncertainty due to the insufficient
understanding of physical processes.

2.5.2 Computer graphics flow visualization

Visualization is an important subfield of research and development in computer
science. As the development of CFD and measurement technology, a complex
fluid phenomenon can be recorded as a set of data. Flow visualization is no longer
restricted in experiments. Computer graphics flow visualization has become one
important topic for fluid analysis. The heart of this process is the translation of
physical to visual variables. Computer graphics flow visualization is not satisfied
with only visualizing standard patterns of experimental flow visualization. Impor-
tant patterns or features, which is of great concern in fluid mechanics but difficult
for the implementation of experimental visualization, can be also visualized using
computer graphics techniques. Even more, new vision of fluid phenomena pushes
the development of theoretical fluid analysis. One example using computer graph-
ics flow visualization can be seen in Figure 2.9c, where selected path-lines around
the car are rendered.

Figure 2.10 shows the pipeline for the process of computer graphics flow visual-
ization [PvW93, The01].
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Figure 2.10: A pipeline model of the visualization process.

Data collecting

The data of computer graphics flow visualization are collected from the fluid pro-
duction by measurement or numerical simulations. The measurement can be car-
ried out directly, or can be derived from analysis of images obtained with ex-
perimental visualization techniques, using image processing techniques [Yan89].
Numerical flow simulations often produce velocity fields, sometimes combined
with scalar data such as pressure, temperature, or density. The collecting data are
usually raw data and most data sets we considered here comes from CFD simula-
tions.

Data preprocessing

The data preprocessing includes modification or selection of the data, to reduce
the amount or improve the information content of the data. Examples are domain
transformations, sectioning, thinning, interpolation, sampling, and noise filtering.
After data preparing, the data are available for the further processing of visu-
alization approaches. The following enumerates several typical data preparing
techniques.

Filtering: Measured data usually contain noise which may disturb visualiza-
tion. The collected data can be viewed as a sampling from a continuous signal.
In terms of signal processing, the source signal may contain too many high fre-
quency components, caused by measurement noise and peaks. Filtering can be
applied to remove these spurious high frequencies.

Data reduction: It is necessary to reduce the amount of data to be visualized,
and to concentrate on the most interesting parts or features of the data. Sub-
sampling is usually applied to reduce the data amount. Also, a part may be cut out
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by clipping the data against a given volume. More sophisticated reduction can be
done by calculating some interesting properties for each cell, and only visualizing
cells with a high value of this property. Measures for this may be local extreme
values of a quantity, or large gradients, such as sudden changes in velocity. The
computed gradients can be treated as a scalar field, and volume rendering may
be applied for visualization. A group of reduction techniques is the extraction
of specific flow features or patterns, such as flow field topology or vortex cores
which will be discussed in chapter 3

Interpolation: Flow quantities are usually given only at discrete points and for
other points values must be obtained by interpolation. Interpolations may be of
zero, first, or higher order, depending on the accuracy required.

(a) (b)

Figure 2.11: Interpolation: (a) Piecewise trilinear interpolation for regular grids;
(b) 2D barycentric interpolation.

For data defined on regular grids, the piecewise trilinear (bilinear) interpolation
algorithm is popular for the calculation of the values of non-grid points in 3D
(2D) space. For given regular orthogonal grids in 3D space, each grid point xi, j,k =
(x,y,z)i, j,k is specified with a fluid quantity Qi, j,k in either scalar, vector or tensor
form, where (i, j,k) is the integer indices of the grid points. Any point p in the
computational space can be calculated by the quantity values of the eight neighbor
grid points surrounding it as shown in Figure 2.11a with the following formula,

Qp = (1−α)(1−β )(1− γ)Qi, j,k +αβγQi+1, j+1,k+1 +
α(1−β )(1− γ)Qi+1, j,k +(1−α)βγQi, j+1,k+1 +
(1−α)β (1− γ)Qi, j+1,k +α(1−β )γQi+1, j,k+1 +
(1−α)(1−β )γQi, j,k+1 +αβ (1− γ)Qi+1, j+1,k (2.30)



2.5 Computer Aided Fluid Analysis 27

where α = (xp − xi, j,k)/(xi+1, j,k − xi, j,k), β = (yp − yi, j,k)/(yi, j+1,k − yi, j,k) and
γ = (zp − zi, j,k)/(zi, j,k+1− zi, j,k).

For irregular grid points, Delaunay triangulation is applied to divide a 2D (3D)
space into triangle (tetrahedron) cells [CLRS01]. 2D (3D) barycentric interpo-
lation is carried out within each cell. For a 2D triangle mesh after Delaunay
triangulation, each node xi is specified with a fluid quantity Qi in either scalar,
vector or tensor form, where i is the integer index of the nodes. Any point p in the
computational space can be calculated by the quantity values of the three neighbor
nodes surrounding it as shown in Figure 2.11b with the following formula,

Qp =
QiS�pxi+2xi+1 +Qi+1S�pxi+2xi +Qi+2S�pxixi+1

S�xixi+1xi+2

(2.31)

Mapping

The mapping processing translates the physical data to suitable visual primitives
and attributes. This is the central part of the computer graphics flow visualization
process. The conceptual mapping involves the art of a visualization: to determine
what we want to see, and how to visualize it. Abstract physical quantities are cast
into a visual domain of shapes, light, color, and other optical properties. Some
classical visualization mappings of flow data will be discussed in chapter 3.

Rendering

The geometric primitives have to be painted onto the 2D screen. This issue is
not a specific problem in visualization. Instead, standard approaches of Computer
Graphics can be applied here [FvDFH96]. The resulting images or videos can
now be visually analyzed by the scientists. Typical operations here are viewing
transformations, lighting calculations, hidden surface removal, scan conversion,
and filtering (anti-aliasing and motion blur).

The visualization process is an iterative process as shown in Figure 2.10. Analyz-
ing the resulting images or videos, the fluid scientists may decide to go back in
the visualization pipeline and change parameters in one of the upper steps. This
way the new visualization may give better results to the analyst who can repeat
these iterative steps as often as necessary. Of course, iterations to higher levels
are possible at virtually every step of the visualization pipeline.
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2.6 Conclusion
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Figure 2.12: Methodology of fluid analysis.

Fluid analysis is one important topic for modern scientific and engineering re-
search. For most of last few centuries there were two approaches to the study of
fluid motion: theoretical and experimental. Many contributions to our understand-
ing of fluid behavior were made by both of these methods. But today, because of
the power of modern digital computers, there is yet a third way to study fluid be-
haviors: computational fluid dynamics as well as computer graphics flow visual-
ization. In modern industrial practice computer aided fluid analysis has been used
more for fluid flow analysis than either theoretical or experimental ones. Most
of what can be done theoretically has already been done, and experiments are
generally difficult and expensive. The computer aided fluid analysis has made a
revolution of the methodology of fluid analysis as shown in Figure 2.12. It broads
the vision of fluid research and pushes the development of fluid mechanics. As
computing costs have continued to decrease, computer aided fluid analysis has
also moved to the forefront in engineering analysis of fluid flow. Through out this
thesis, we will focus on the computer graphics flow visualization which serves as
a bridge between CFD and classical fluid analysis and enhances the understand-
ing of the complex fluid phenomena. For simplification, the terminology ”flow
visualization” in the following chapters only refers to ”computer graphics flow
visualization”.



Chapter 3

Flow Visualization Techniques

Flow visualization is an important topic in scientific visualization and has been an
active research field for many years. It has significantly different characteristics
for different data and different user goals. From its very beginning, flow visual-
ization had to face the problem of treating large and complex data. A variety of
techniques have been developed for computing expressive visual representations
for flow fields.

Flow visualization techniques can be classified in different ways. It can be classi-
fied into steady flow oriented techniques and time-dependent flow oriented tech-
niques. It can be distinguished as 2D and 3D methods based on the spatial char-
acteristics of flow data. By the involving scope of computation, flow visualization
techniques can be categorized into elementary methods, local methods and global
methods. Elementary methods show the properties of selected points while lo-
cal methods show properties of the flow field around certain selected points. The
global methods show global properties of the flow field. One classification scheme
distinguishes flow visualization techniques into point-based, characteristic curve
based and feature based groups by the relationship between a flow field and its
associated visual representations [HJ05]. The categorization of direct flow visual-
ization, texture-based flow visualization, geometric flow visualization and feature
based flow visualization is also one popular classification for flow visualization
techniques [PVH∗03].

In this chapter, we will go through the common flow visualization techniques from
the perspective of fluid analysis. Ordinary methods visualize the flow properties
and patterns which are well explored in experimental flow visualization. Fur-
ther techniques such as feature based techniques, information visualization based
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techniques utilize the computation and analysis abilities of modern information
technology. We will also pay special attentions to the visualization techniques of
dynamic flow fields.

3.1 Ordinary Flow Visualization Methods

Flow visualization rooted from the experimental flow analysis techniques. On
early days of flow visualization, people use computer techniques to generate the
pictures similar to laboratory experiments. The properties or curves, which are
well explored in experiments, contribute one part of important materials of mod-
ern flow visualization. The improvement and development of these algorithms are
still an active field of flow visualization research.

3.1.1 Fluid property visualization

Fluid flow can be described by many different properties. Scientists and engineers
usually concern the properties either scalars or vectors of certain locations or the
distribution of such properties.

Figure 3.1: Local flow probe [dLvW93].

Local properties can be directly represented by icons or glyphs. One approach
represents local flow properties derived from the Jacobian matrix by a local flow
probe [dLvW93]. Direction, orientation, velocity, acceleration, curvature, rota-
tion, shear, and convergence/divergence of the flow near a special state of interest
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are mapped to distinct geometrical properties of a rather complex glyph as shown
in Figure 3.1. Advanced visualization techniques on the basis of icons are pre-
sented in [PWPS95].

(a) (b)

Figure 3.2: Fluid property visualization of a 2D flow past a cylinder by André
Bakker (http://www.bakker.org): (a) Vector plot of velocity field; (b) A color
coding of pressure distribution.

The distribution of local properties can be visualized by arrow plots for vector
properties and color coding or volume rendering for scalar properties [HLD∗02].
Arrow plots give a natural vector visualization which map a arrow glyph to each
sample point in the field. Usually a regular placement of arrows is used. Fig-
ure 3.2a shows an arrow plot visualization of velocity field of a 2D flow past a
circular cylinder. Color coding is a common flow visualization technique to map
scalar attributes such as velocity magnitude, pressure or temperature to color. The
color scale which is used for mapping must be chosen carefully with respect to
perceptual differentiation. Figure 3.2b shows a color coding of the corresponding
pressure field of the 2D cylinder flow. Volume rendering is a natural extension
of color coding to 3D. Special rendering techniques need to be carried out due to
occlusion problems [FvDFH96].

3.1.2 Characteristic curve visualization

Characteristic curves are a group of standard characteristics for fluid analysis (see
subsection 2.2.1). They are widely applied in fluid experiments and developed as
an important topic in flow visualization.

Characteristic curves can be directly visualized through the curve geometries by
integrating the corresponding velocity vector fields [HLD∗02, SML98]. For an
steady flow field, if flow vectors are integrated for a very short time, streamlets

http://www.bakker.org
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are generated. Even though short, streamlets already communicate temporal evo-
lution along the flow. If longer integration is performed streamlines are generated.
For an unsteady flow field, a path-line is visualized by tracing a particle in the
fluid flow while a streak-line is visualized by tracing a set of particles that have
previously passed through a unique point in the domain. A time-line can be also
visualized by joining the positions of particles released at the same instant time
from different insertion points [NHM97].

One important topic of characteristic curve visualization is the optimization of
curve distribution. Evenly distributed seed points do not result in evenly spaced
characteristic curves. Special strategies need to be considered for the seed loca-
tions. Iteratively methods are usually taken to incrementally optimize the curve
placements [TB96, VKP00]. Initial collections can be created by placing the
characteristic curves either on a regular grid or in some random fashion. The
initial placements are optimized gradually by applying several modification such
as moving, inserting, deleting, lengthening, shortening, combining on the dis-
tributed curves. Certain energy functions based either on space uniformity or flow
features are defined to control the modification process. The iterative procedure
terminates either when the energy reaches a threshold or when available changes
become rare. The final results usually appear to be independent the initialization
methods and converge to the desiring placements of the characteristic curves.

3.1.3 Texture based techniques

Figure 3.3: Field lines of a magnetic field shown by iron filings around a bar of
permanent magnet [BD14].

Characteristic curves are usually invisible to human perceptions. In physics, field
lines of a magnetic field are visualized by sprinkling iron scraps into the field
as shown in Figure 3.3. It is natural to extend this technique to flow visualiza-
tion. Textures are filtered along flow fields and characteristic curves are visualized
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through the filtered results [LHD∗04]. Line Integral Convolution (LIC) [CL93]
and spot noise [vW91] are techniques which map a fluid velocity field into a
scalar field which emphasizes the recognition of the behaviors of characteristic
curves. They provide full spatial coverage of the vector field and show as many
characteristic curves as possible without overlaying them.

The idea of spot noise is to transform a distribution of intensity functions, or spots,
in the vector field, into the direction of the flow. Each spot represents a particle
moving over a short period of time and results in a streak in the direction of the
flow at the position of the spot. One example of spot noise method can be seen in
Figure 3.5a.

iinnppuut tt teexxttuurree

vveeccttoor fr fiieelldd

LLIIC iC immaaggee

LLIICC AAllggoorriitthhmm

Figure 3.4: The procedure of LIC algorithm.

LIC is one standard technique in flow visualization [CL93]. It imitates the mo-
tion blur of substance advection in a fluid whose results describe the substance
concentration due to transport behavior of the fluid [SJM96]. LIC uses a noisy
input texture and convolutes this into the flow direction. This way the resulting
texture changes its color only slightly in flow direction while rapid changes ap-
pear in the direction perpendicular to the flow. The procedure is illustrated in
Figure 3.4. Given a streamline s(l), LIC consists of calculating the intensity I for
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a pixel located at x0 = s(0) by:

I(x0) =
∫ L/2

−L/2
k(l) f (s(l)) dl (3.1)

where f (x) stands for an input noise texture, k denotes the filter kernel, l is an arc
length used to parameterize the streamline curve and L represents the filter kernel
length. As proposed already by Cabral and Leedom [CL93], a suitable choice for
the convolution kernel is usually a Gaussian type kernel. Although the LIC result
may look rather blurry, it gives a good impression of the behavior of the vector
field. One example of LIC method of a flow past a box can be seen in Figure 3.5b.

Fast LIC algorithms [SH95a] are introduced to speed up the computation signifi-
cantly. It uses the fact that most of the information computed to obtain the color
of a certain point in the vector field can be reused to compute the color of the adja-
cent points into flow direction. To do this, it applies convolution on all pixels on a
particular streamline and stores all pixels for which convolution is carried out. For
untouched pixels, it starts a new streamline from there. Thus fast LIC minimizes
the computation of redundant streamlines presented in the original method.

(a) (b)

Figure 3.5: Visualization of flow past a box [LHD∗04]: (a) Spot noise method; (b)
LIC method.

The difficulty for the extension of LIC to 3D is the efficiency. An efficient 3D
LIC algorithm is introduced in [RSHTE99]. The use of transfer functions and
geometric clipping objects are essentially important for the perceptual problems
associated with 3D. Interactive transfer functions and efficient clipping mecha-
nisms are carried out to substitute the calculation of LIC based on sparse noise
textures and display the convenient visual access of interior structures.
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3.1.4 PDE based methods

LIC integrates the ordinary differential equation (Equation 2.6) forward and back-
ward in parameterized time at every pixel in the domain. The appropriately Gaus-
sian type kernel is known as the fundamental solution of a heat equation. Thus,
line integral convolution is equivalent to solving the heat equation in 1D on a
streamline parameterized with respect to arc length. It can be regarded as a dis-
cretized streamline diffusion process. For a well posed continuous diffusion prob-
lem with similar properties, it leads to some anisotropic diffusion which is con-
trolled by a suitable diffusion matrix.

Anisotropic diffusion is one popular method in image processing [Wei98]. It is
also applied to flow visualization to enhance the field line structures along the flow
transport [PR99b, BPR00].

For a given vector field v(x, t), two kinds of diffusion are considered. One is linear
diffusion in the direction of the vector field and the other is a Perona Malik type
diffusion orthogonal to the field. Then there exists a family of continuous orthog-
onal mappings B(v) : Ω → SO(n) such that B(v)v = e0, where {ei}i=0,··· ,n−1 is
the standard base in IRn. A diffusion matrix A = A(v,∇ρε) is defined as follows:

A(v,d) = B(v)T
(

α(‖v‖)
G(d)

)
B(v)

where α : IR+ → IR+ controls the linear diffusion in vector field direction, i.e.
along streamlines and edge enhancing diffusion coefficient G(·) acts in the orthog-
onal directions. Some random noise of an appropriate frequency range is chosen
as initial data ρ0. A visualization of a complex vector field can be achieved by
solving the nonlinear parabolic partial differential equation

∂
∂ t

ρ −div(A(v,∇ρε)∇ρ) = f (ρ)

ρ(0, ·) = ρ0 (3.2)

This obtains a series of images representing the vector field in an intuitive way.

It is expected an almost-everywhere convergence to ρ(∞, ·) ∈ {0,1} due to the
choice of the contrast enhancing function f (·).

3.2 Feature Based Flow Visualization Methods

Flow features such as topology, vortex are important characteristics for fluid anal-
ysis. For classical flow visualization, feature detection is left to fluid analysts by
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investigating the visualization results. Thus it is difficult to treat large and complex
data. Feature based flow visualization techniques are promising approaches be-
cause of their potential capability to dramatically reduce the complexity of a flow
field and extract the important information for fluid analysis [TS03, PVH∗03].
Features, such as topologies, vortex structures and shock waves are well extracted
and visualized in modern fluid analysis.

3.2.1 Topological methods

(a) (b)

Figure 3.6: The topological skeleton of a random vector field: (a) A LIC visual-
ization of original field; (b) The corresponding topological skeleton.

Fluid topology are important feature of fluid kinematics (see section 2.2.2). Over
the last decade, topological methods have become one standard tool in flow vi-
sualization [HH89]. The main idea behind topological methods is to segment a
flow field into areas of similar asymptotic behavior. This means to classify each
point x in the domain with respect to the asymptotic behavior of the characteris-
tic curve through it, i.e., a forward and backward integration starting from x with
an integration time converging to infinity is considered [PVH∗03]. Usually, this
integration does not have to be carried out for every point but only for a certain
number of starting points of separatrices. The topological segmentation of a flow
field is constructed by a topological skeleton, which consists of critical points and
separatrices. The separatrices are streamlines distinguishing areas of different
flow behavior around a critical point. The topological skeleton is computed in the
following step:

• Extracting critical points of a given vector field;
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• Classifying the extracted critical points;

• Integrating the separatrices from the saddle critical points.

One example of topological skeleton can be seen in Figure 3.6. Note that in this
thesis, a red/ blue/ green/ yellow color coding is used to represent an outflow/
inflow/ center/ saddle flow behavior.

(a) (b) (c)

Figure 3.7: Classification of sectors around a critical point [The01]: (a) A
parabolic sector; (b) A hyperbolic sector; (c) An elliptic sector.

Critical points except center and focus have more than one streamline converg-
ing to them. The neighborhood separated by two separatrices at a critical point is
called a sector. All streamlines within the same sector have the same flow behav-
ior. The sectors can be characterized into the following type:

Parabolic sector, shown in Figure 3.7a, where all streamlines originate from the
critical point or all streamlines end in the critical point.

Hyperbolic sector, shown in Figure 3.7b, where all streamlines sweep past the
critical point, except for two streamlines making the boundaries of the sector. One
of these two streamlines ends in the critical point while the other one originates
from it.

Elliptic sector, shown in Figure 3.7c, where all streamlines following the arrows
begin and end at the critical point.

For 3D vector fields, the topological skeleton contains a number of stream sur-
faces. These stream surfaces tend to hide each other as well as other topologi-
cal features and make complex 3D topology visualizations hardly interpretable.
Saddle connectors are one solution of the occlusion problem [TWHS03]. They
represent the separation surfaces as a finite number of stream lines. These stream
lines are the intersection curves of the separation surfaces. Saddle connectors start
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and end in saddle points of the vector field. Figure 3.8 shows an example of 3D
topological skeleton with saddle connectors compared with separation surfaces.

(a) (b)

Figure 3.8: Topological representations of a benzene data set with 184 critical
points [TWHS03]: (a) Topological skeleton with separation surfaces; (b) Topo-
logical skeleton with saddle connectors.

Topological methods can be also applied to higher order critical points. For 2D
vector fields, the procedure is similar. Separatrices start at points with negative
index and these points are called higher-order saddles [SHK∗97]. For nonlinear
behavior, piecewise linear or bilinear interpolation destroys the topology. Clifford
algebra is used to compute polynomial approximations in areas with nonlinear
behavior [SKMR98]. Topological structures are usually complicated for com-
plex data. A simplification can be made either by discarding small-scale struc-
tures [dLvL99] or merging critical points within a prescribed radius into higher
order critical points [TSH00].

For 3D higher order critical points, the complete 3D classification of them into
areas of similar flow behavior is equivalent to extracting the topological skeleton
of an appropriate 2D vector field on a closed convex surface s, if each critical
point is equipped with an additional bit of information [WTS∗05]. An icon is
used to replace the topological structures inside s. Different levels of topologi-
cal visualization can be achieved through this simplification. One example can
be seen in Figure 3.9 with two different levels of abstraction of the topological
representation.
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(a) (b)

Figure 3.9: Topological representations of a benzene data set [WTS∗05]: (a) High
level abstraction of topological representation; (b) Low level abstraction of topo-
logical representation.

3.2.2 Vortex extraction method

Among the features of interest, vortices are the most prominent. They play a major
role in many research areas due to their wanted or unwanted effects on the flow.

Vortex detection schemes can be classified in two major categories: vortex region
detection and vortex core line extraction [PR99a, PVH∗03].

Vortex region detection is based on scalar vortex region quantities that are used
to define a vortex as a spatial region where the quantity exhibits a certain value
range. The natural method is to find regions with high vorticity (see section 2.2.3).
Although a vortex may have a high vorticity magnitude, the converse is not al-
ways true [ZBP∗91]. Helicity is an alternative quantity for vortex region detec-
tion [LDS90]. It projects the vorticity onto the velocity ω · v, which can elim-
inate the component of vorticity perpendicular to the velocity. Low pressure
is another criterion for vortex region detection while swirling flow often swirls
around areas of low pressure [Rob91]. λ2 criterion is one popular technique in
vortex region detection [JH95]. Vortex is defined as a region where two eigen-
values of the symmetric matrix S2 + Ω2 are negative, where S = 1

2(∇v + ∇T v)
and Ω = 1

2(∇v−∇T v). S and Ω are symmetric and antisymmetric parts of the
Jacobian of the vector field. Despite the convincing physical interpretation, the
vortex region quantities are of limited applicability in some settings. Isosurfaces
or volume rendering are common approaches for visualizing these quantities.

Vortex core line extraction aims at finding line type features that are regarded as
centers of vortices. Different approaches exist. One method uses the vortex lines
of the vorticity field (see section 2.2.3). Vortex core lines are extracted by seeding
vortex lines at critical points with a correction to the pressure minimum in the
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plane perpendicular to the vortex core [BS95]. Vortex core line can be also found
where vorticity is parallel to velocity and the streamlines of zero torsion [RP96]
however in most data sets it does not give the expected features. [SH95b, RP96]
consider lines where the flow exhibits a swirling motion around them. They sug-
gest that, in linear vector fields, a vortex core line is located where the Jacobian
has one real-valued eigenvector, and this eigenvector is parallel to the flow. While
those methods depend on the reference frame, recently a vortex core line extrac-
tion method was proposed, which is Galilean invariant, by extracting extremum
lines of scalar region quantities [SWH05a], i.e., this method is invariant under
adding constant flow fields.

3.2.3 Shock wave extraction method

Shock waves are important features in high speed aerodynamics. Shock waves
are characterized by discontinuities in physical flow properties such as pressure,
density and velocity. Therefore, shock detection is comparable to edge detection,
and similar principles could be used as in image processing [PVH∗03, MRV96].
Though physical shocks are very sharp, in numerical simulations, the disconti-
nuities are often smeared over several grid cells, due to errors in the numerical
approximation of the fluid dynamics equations. Determining the exact location
and structure of shock waves in computed flow solutions is surprisingly difficult.

Shocks are abrupt changes in flow field properties. In particular, the velocity
component normal to the shock wave jumps from supersonic to subsonic as flow
passes through the shock. Mach Number (see section 2.3.4) is a natural criterion
for the detecting of shock waves. All points, where the Mach Number equals
one in the flow, are connected. However these results in the sonic surface and
does not represent a shock. This can be solved by approximating the density
gradient as the shock normal and extracting isosurfaces, whose surface normals
corresponds to the density gradient and whose normal Mach Number is equal to
one [MRV96, LH99].

Density gradients in the direction of local flow velocity can be used to determine
shock locations [PS93]. The first and second derivatives of the density in the
direction of the velocity are computed. Zero-level isosurfaces are constructed of
the second derivative to find the extrema in the density gradient. Finally, the first
derivative is used to select only the maxima, which correspond to shock waves,
and discard the minima, which represent expansion waves. This can be done by
selecting only positive values of the first derivative. However, a difficulty of this
approach is that the second directional derivative equals to one does not necessary
mean the shock area and the second derivative also vanishes in smooth regions
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with few disturbances, which causes erroneous shock detection. These regions can
be excluded by discarding all points where the first derivative is below a certain
threshold. The determinant threshold is still difficult for proper visualization of
shock waves. An adapted version of this algorithm is presented [MRV96], which
uses the normal Mach number to do the exclusion of erroneous shock detection.

3.3 Information Visualization Based Flow
Visualization Methods

Information visualization is the art to make the abstract information visible to
human perception with the support of computer technologies. The investigated
information are mapped to certain geometrical objects and visualized. Practical
application of information visualization in computer programs involves select-
ing, transforming and representing abstract data in a form that facilitates human
interaction for exploration and understanding. Important aspects of information
visualization are the interactivity and dynamics of visual representation.

The idea of connecting information visualization and scientific visualization ap-
proaches is considered to be one of the ”hot topics” in visualization [Joh04, Hau04,
Hau06]. The amount of information available to fluid analysts from large-scale
simulations, experiments, and data collection is expanded and the variety of in-
formation can be overwhelming. The increasing amount and dimensionality of
fluid data has made traditional flow visualization methods not well suited for the
treatment. It is usually not possible to fully comprehend all the contents of a fluid
data set just by looking at one visualization. More advanced analysis technology
is necessary so that the full potential of physical information indeed is exploited.
With the ability to deal with high-dimensional information, information visualiza-
tion techniques has become one opportunity for flow visualization.

The highlight of information visualization based flow visualization is the interac-
tive visual analysis which utilizes human-computer interaction to reveal interest-
ing features in the data, based on the interests of the visualization user [DGH03].
Users can interactively specify selected features in the data according to their
interests. The brushing mechanism enables the users to interactively mark up in-
teresting data subsets directly in the views. Through this mechanism it is possible
that the user can focus on data subsets of special interest. A smooth brush allows
for a gradual selection of data subsets so that a smooth transition between selected
and not selected data subsets is possible [DH02]. In many cases, users formulate
their interest in terms of more than just one attribute. In views which depict the
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Figure 3.10: Interactive feature specification and refinement of the simulation
data of a catalytic converter [DGH03]: First step: (a) Defining back flow region
in a catalytic converter in a scatter plot view with the selection of negative x-
flow values; (b) Direct linking view of a second scatter plot view for the selected
subset; (c) The 3D view. Second step: (e) AND-refinement with a new selection
in the second scatter plot view; (d) Back linking of the interaction via feedback
visualization to the first scatter plot view; (f) 3D view of the selected back flow
region, that exhibits general velocity above a specified threshold.

relations between two or more data attributes, e.g., a scatter plot or the like, also
interactive brushing leads to subsetting in relation to the visualized dimensions.
Combinations of several brushes through different boolean operations (AND, OR,
SUB) in different views are also necessary to capture a specific phenomenon in
the flow.

After selecting the interesting subset, a focus+context visualization schema in-
cludes both the selected and unselected subset into the visualization pipeline while
two different representation forms are applied for the two subsets [Hau04]. The
unselected subsets are usually expressed in a reduced visual form, e.g., without
being colored and rather transparent. Thereby, it becomes easy to visually relate
the selected data subsets to their context. View linking is also of great impor-
tance, when brushing is used in conjunction with multiple views. Once a spe-
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cific data subset is marked with a brush in one view, all other views of the same
data need to be updated instantly. Thereby, visual consistency is maintained be-
tween the views. The great potential of this approach is that through the use of
multiple linked views, interactive brushing, and focus+context visualization, an
explorative analysis of multi-variate features within simulation data is enabled.
Figure 3.10 shows an example of focus+context analysis of the simulation data
of a catalytic converter [DGH03]. As a first step (first row), all parts of the data,
that exhibit back flow, have been selected, defining a feature that spans over two
distinct regions in the spatial domain. In the refinement step (second row) a log-
ical AND-combination of the first feature specification with a new selection in a
second scatter plot view of the same data is performed. Thereby only those back-
flow regions of the data are put into focus, which exhibit a general velocity above
a specified threshold.

The focus+context analysis can be also extended to time-varying data [DMG∗05].
Streamline predicate [SS05] is another information visualization based approach
which define, whether a streamline has a given property or not. All streamlines
fulfill a streamline predicate are collected in the characteristic set of this predi-
cate.

3.4 Flow Visualization Methods for Dynamical
Flow Fields

Due to the complex behavior and particular characteristics of dynamical flow
fields, visualization techniques for dynamical flow have achieved special atten-
tion within the visualization community. An effective visual analysis of the dy-
namical behavior of time-dependent flow fields is still a challenging problem in
scientific visualization. Although a number of promising approaches has been
introduced in recent years, the complexity of dynamical data makes the analysis
and the visual representation difficult and partially unsolved. In particular, it also
proves to be inherently difficult to actually comprehend the important characteris-
tics of dynamical flow data. Part of the visualization techniques mentioned before
in this chapter can be extended to deal with dynamical flow directly. However,
special considerations need to be taken for a number of techniques when deal-
ing with time-dependent data set. Particularly, some visualization techniques are
specialized only at the dynamical flow behavior. We will discuss some of these
algorithms here.
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3.4.1 Textured based methods

The wide application of texture based methods comes naturally the demand of
an extension to unsteady flow fields. Many approaches have been developed to
densely illustrate a dynamical flow field.

An extension of the LIC technique has been contributed to the visualization of
unsteady flow fields [FC95]. In contrast with convolving streamlines in the steady
flow field, the algorithm convolves forward and backward path-lines originated
from each pixel at every time step. An unsteady flow LIC (UFLIC) is proposed to
efficiently and accurately model the unsteady flow advection [SK97]. A time-
accurate value depositing scheme is carried out to accurately model the flow
advection, and a successive feed-forward method is applied to maintain the co-
herence between animation frames. By progressively updating the visualization
results in time, UFLIC can produce highly coherent animation frames and accu-
rately trace the dynamic flow movement.

Lagrangian-Eulerian advection (LEA) [JEH01, JEH02] is a hybrid approach which
combines the advantages of Lagrangian and Eulerian perspectives. In Lagrangian
approach, the trajectory of each particle is computed separately and the time
evolution of a collection of particles is displayed by rendering each particle by
a glyph, while in Eulerian approach, the property advection equation (see sec-
tion 6.1) is solved directly and the particle property is viewed as a field which is
known for all time at any spatial coordinate. The LEA approach update the coor-
dinates of a dense collection of particles between two successive time steps with
a Lagrangian scheme whereas the advection of the particle property is achieved
with an Eulerian method. At the beginning of each iteration, a new dense col-
lection of particles is chosen and assigned the property (texture) computed at the
end of the previous iteration. LEA does not change the properties of particles
along their paths and the particle transport is computed using first order Euler ap-
proximation. Weiskopf et al. presented a hardware-based LEA approach which
locates the mapping and rendering components of the corresponding visualization
pipeline on graphics hardware [WEHE02]. One example of LEA for a shock data
set is shown in Figure 3.11a.

Image based flow visualization (IBFV) [vW02, vW03] is another popular exten-
sion of texture-based methods to unsteady flow fields. It shows streak-lines of
particles injected at various points according to the input structure. IBFV is based
on the advection and decay of textures in image space. Each frame of the vi-
sualization is defined as a blend between the previous image, warped according
to the flow direction, and a number of background images composed of filtered
white noise textures. This approach can be mapped directly to standard graph-
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ics operations, leading to a fast algorithm. IBFV has also been applied to the
visualization of 3D flow [TvW03]. In addition to the noise of original IBFV,
empty holes of noise are injected into the 3D fields in order to achieve sparseness
and a threshold value is defined to eliminate all close-to-transparent texel values.
Weiskopf et at. expanded the range of velocity values of 3D IBFV and advected
texel property more than one slice along the z axis of the volume in one animation
frame [WE04].

(a) (b) (c)

Figure 3.11: Visualization of a shock data set [WEE03] (a) LEA; (b) UFAC with
velocity masking; (c) UFAC without masking.

Laramee et al. presented an approach which generates dense representations of un-
steady flow fields on surfaces based on both the LEA and IBFV algorithms [LJH03].
Weiskopf et al. introduced unsteady flow advection-convolution (UFAC) as a generic
texture-based framework for visualizing 2D time-dependent vector fields [WEE03].
It performs time evolution governed by path-lines, but builds spatial correlation
according to instantaneous streamlines whose spatial extent is controlled by the
flow unsteadiness. It can be mapped to the SIMD architecture of graphics hard-
ware for an efficient implementation. Space-time coherent dense representations
are achieved by a two-step process: construction of continuous trajectories in
space-time for temporal coherence, and convolution along another set of paths
through the above space-time for spatially correlated patterns. This approach
can reproduce other techniques such as LEA, IBFV and UFLIC. One example
of UFAC for a shock data set is shown in Figure 3.11b and c.

3.4.2 Streamline oriented topological methods

The main motivation behind topological methods is to segment a vector field into
areas of similar flow behavior which is determined by observing the behavior
of certain characteristic curves. For time-dependent vector fields, two important
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classes of curves exist: streamlines and path-lines. Hence, two different kinds
of topologies can be considered: a streamline oriented topology where areas are
segmented which show a similar behavior of streamlines, and a path-line oriented
topology which does so for path-lines [TWHS04]. Streamline oriented topology
of dynamical flow fields can be achieved by tracking the topologies over time,
detecting the events and visualizing the evolution of the topologies [TS03].

Critical points are important topological features of a steady vector field. Tracking
their locations over time is necessary for capturing the topological behavior of the
flow field. To do so, one can either extract and connect the zeros on the faces of an
underlying prism cell grid [TSH01, TWSH02], or a feature flow field integration
from a number of seed critical points [TS03]. The feature flow field for tracking
critical points is a 3D vector field f which points into the direction where both
the direction and magnitude of the vector field remain unchanged. For 2D time-
dependent vector field, the feature flow field is defined as follows:

f =

⎛
⎝ det(vy,vt)

det(vt,vx)
det(vx,vy)

⎞
⎠ (3.3)

The streamline integration of feature flow field starting from a critical point ex-
tracts a critical line, which does not depend on the underlying grid.

(a) (b)

Figure 3.12: Topological visualization of a simple 2D time-dependent vector field
consisting of sink, source, saddle, fold and Hopf bifurcation [TWHS04]: (a) Criti-
cal lines and LIC plane through a Hopf bifurcation; (b) Separation surfaces created
by the moving saddle.

For the tracked critical points, the local bifurcations are detected here. A fold bi-
furcation appears if at a certain time t a critical point appears and in the same mo-
ment splits up to a saddle and source/ sink/ center or vice versa [Bak91]. Another
important class of local bifurcations are Hopf bifurcations which denote locations
where a sink becomes a source or vice versa. Thus, they denote the location of
a center, i.e. a critical point with a vanishing divergence and a positive Jacobian.
Figure 3.12a shows a simple example of the critical lines and the fold and Hopf
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bifurcations. The Hopf bifurcation is shown as a small green sphere and the fold
bifurcations are shown as gray sphere.

Note that in all figures throughout this thesis the coordinate system is shown as
follows: red/ green/ blue coordinate axes denote the (x,y,z) domain, specially, the
blue axis also shows the temporal domain for 2D time-dependent fields.

Part of the topological skeleton of a vector field are the separation curves starting
from saddle points. While the saddle moves over time, their sweepings form 4
stream surfaces dividing s into areas of different flow behavior. Figure 3.12b
show an example of separation surfaces of a saddle type critical line.

Critical point tracking can be also extended to deal with 3D time-dependent vector
field [TS03, GTS04].

(a) (b) (c)

Figure 3.13: Saddle connection bifurcation [TWHS04]: (a) Shortly before; (b)
The event; (c) Shortly after.

Saddle connections are global bifurcations which appear when two separatrices
starting from saddle points collapse, i.e. when a separatrix of one saddle ends
in another saddle [TWHS04]. Figure 3.13 illustrates an example. A special case
of saddle connections is the so-called periodic blue sky bifurcation [AS92] where
two separatrices of the same saddle collapse. Saddle connections of 2D time-
dependent vector fields can be extracted by making an adaption of the saddle con-
nectors approach [TWHS03] which are the intersection curves of the separation
surfaces of a 3D vector field starting in the outflow and inflow planes of the saddle
points. The basic idea is to numerically integrate two separation surfaces until an
intersection is found. After some refinement, a streamline is integrated from the
intersection point both in forward and backward direction.

Closed streamlines are another global topological features which evolve over time.
Several types can occur: a closed streamline may appear or disappear, or two
closed streamlines may collapse and disappear. The last case is called cyclic fold
bifurcation and is illustrated in Figure 3.14. Closed streamlines can be extracted
in different time levels, and corresponding streamlines in adjacent time levels are
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Figure 3.14: Cyclic fold bifurcation [TWHS04]: (a),(b) Two closed streamlines
move towards each other; (c) Merge; (d) Disappear.

connected [TSH01]. Following the idea of feature flow fields, closed streamlines
can be also tracked by an modification of saddle connector approach [TWHS04].

3.4.3 Path-line oriented topological methods

Constructing a path-line oriented topology means to segment path-lines into re-
gions of different flow behaviors. A path-line oriented segmentation of the flow
domain is made based on local properties of path-lines [TWHS04].

(a) (b) (c)

Figure 3.15: Behavior of path-line starting on a circle k around x0 [TWHS04]: (a)
Attracting; (b) Repelling; (c) Saddle-like.

A 3D auxiliary vector field p = (u,v,1)T is constructed by adding one additional
component 1 and the local properties of p are exploited to get a segmentation of
p. The streamlines of p correspond to the path-lines of original time-dependent
vector field v. Pure directional properties of the streamlines of p are considered
since the topological skeleton depends only on the directions of the streamlines.
Thus, the domain can be segmented into areas of attracting, repelling, or saddle
like behavior of the streamlines of p. Consider a point x0 with its corresponding
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vector p(x0) defining a streamline l0 in p starting at x0. Considering a small
circle k0 around x0 in the plane perpendicular to p(x0), there are three possible
stable cases for all streamlines l in p starting in k0, concerning their convergence/
divergence behavior towards l0:

• All l converge towards l0 under forward integration.

• All l move away from l0 under forward integration.

• Streamlines with both converging and diverging behavior exist (saddle-like
behavior).

Figure 3.15 illustrates these three cases.

Contrary to the streamline oriented topology, the path-line oriented topology is
not invariant under scalings of v. The path-lines of two vector fields v(x, t) and
c · v(x, t) with c > 0 and c �= 1 differ. The factor c influences the impact of the
temporal changes with respect to the spatial changes. For large c, the flow is
dominated by the spatial changes. For c → +∞, the streamlines of p converge to
the streamlines of v.

The path-line oriented topology introduced above uses the concept of topology in
a slightly different way than usually done. The classical understanding of topol-
ogy is to observe how streamlines behave under an integration until infinity, while
this method only considers local properties of the path-lines.

3.4.4 Lagrangian coherent structure

Lagrangian coherent structure (LCS) is one highlight in dynamical flow analysis.
It depicts the transport barriers of the underlying flow processes. Early works fo-
cuse on the study of uniformly hyperbolic path-lines [PH99]. Haller has pioneered
the introduction of the FTLE field to characterize LCS [Hal00, HY00, Hal01]. He
also proposed to characterize LCSs with the quantities of particle trajectories, i. e.
path-lines [Hal01, Hal02]. A finite-time Lyapunov exponent field (FTLE), which
is a scalar attribute field of finite-time path-lines, contains information about how
much particles separate after a given interval of time. LCSs are extracted from the
ridges of the FTLE fields. These structures typically represent separatrices which
divide the flow into dynamically distinct regions.

The traditional Lyapunov exponent quantifies the asymptotic behavior of infinites-
imally close particles in a dynamical system [Lia66]. The Lyapunov exponent of
a finite-time path-line is a finite-time average of the maximum expansion rate for
a pair of particles advected in the flow. Consider a perturbed point x′0 = x +δx0
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Figure 3.16: Lyapunov exponent of finite-time path-line.

as shown in Fig. 3.16, where δx0 is infinitesimal. After a time interval t, this
perturbation becomes δx0px0,t0(t) = px′0,t0(t)− px0,t0(t). A linear flow map A =
∇x0px0,t0(t) is computed to characterize the stretching gradient of the perturba-
tion. The Maximum stretching occurs when δx0 is chosen such that it is aligned
with the eigenvector associated with the maximum eigenvalue of AT A. The maxi-
mum stretching is correspondingly the largest eigenvalue of AT A. Through loga-
rithm and normalization with the absolute advection time t, the definition of FTLE
comes to

δ t
0(x) =

log(
√

λmax(AT A))
t

(3.4)

A FTLE field of a dynamical flow provides an effective tool for characterizing
LCSs. Large FTLE values for forward advection correspond to unstable manifolds
while large FTLE values for backward advection correspond to stable manifolds.
For a FTLE field δ t

t0(x), LCSs are defined as ridges of the field [Hal00]. [SLM05]
provided a formal discussion of the theory of FTLE fields and LCSs. [GLT∗07]
used graphics hardware for the direct visualization of FTLE and [SP07a, GGTH07]
have proposed efficient algorithms to compute LCSs. [SP07b] compared the LCSs
with the traditional vector field topologies.

3.5 Conclusion

In this chapter, we recalled the common flow visualization techniques from the
perspective of fluid analysis. Ordinary methods visualize the flow properties and
patterns which are well explored in experimental flow visualization. Feature based
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techniques extract the important features for fluid analysts while the information
visualization based approaches utilize the expertise support to explore the inter-
esting features. Special attentions were payed to the visualization techniques of
dynamic flow fields.
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Chapter 4

Path-line Oriented Topological
Visualization

The main idea behind topological methods is to segment a vector field into areas
of similar asymptotic behavior. This means to classify each point x in the do-
main with respect to the asymptotic behavior of the characteristic curve through
it, i.e., a forward and backward integration starting from x with an integration
time converging to infinity is considered. Usually, this integration does not have
to be carried out for every point but only for a certain number of starting points of
separatrices.

For time-dependent vector fields there exists a number of relevant characteris-
tic curves, such as streamlines, path-lines, streak-lines (see section 2.2.1). Among
them, streamlines and path-lines have the uniqueness property: through each point
in the space-time domain there is exactly one streamline and one path-line pass-
ing through. This gives that two different kinds of topologies can be considered: a
streamline oriented topology segmenting areas of similar streamline behavior, and
a path-line oriented topology which does so for path-lines. Extracting a stream-
line oriented topology ends up in tracking critical points and considering certain
bifurcations. A number of approaches for this exist (see section 3.4.2).

Path-lines are important characteristic curves in time-dependent vector fields be-
cause they describe the path of massless particles in a flow. Hence, a path-line
oriented segmentation gives a different kind of insight into the vector field data
with the streamlines. Unfortunately, path-line oriented topological methods rarely
exist because a strong restriction applies: since path-lines move constantly for-
ward in time and real life data sets are usually given only in a fixed time interval,
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a path-line integration until infinity cannot be carried out: the integration stops
when the maximal time of the given data set is reached. Therefore, a topologi-
cal segmentation based on the asymptotic behavior of path-lines usually does not
exist. The approach in section 3.4.3 [TWHS04] avoid this problem by consid-
ering local topological behavior. There, instead of the asymptotic behaviors of
path-lines, only their local behavior was considered for segmentation. This seg-
mentation delivers regions of locally attracting, repelling or saddle-like behaviors
of path-lines. However, it is not a topological one in the classical sense because it
does not incorporate any asymptotic behaviors of path-lines.

In this chapter, we will present an approach to topologically analyzing and vi-
sualizing the asymptotic behavior of path-lines [STW∗06]. We achieve this by
restricting ourselves to periodic time-dependent vector fields. We think that this
class of vector fields deserves special consideration since many numerical flow
simulations are actually periodic (or pseudo-periodic) flows. Examples of the vi-
sual analysis of periodic flow fields (but not a topological analysis of path-lines)
can be found in [TWHS04, TSW∗05].

For periodic vector fields, the time-domain is not restricted to a certain interval
but can be extended to any time by periodically repeating the given field. Hence,
an analysis of the asymptotic behavior of path-lines becomes possible.

4.1 Streamline and Path-line Oriented
Topology

Here, we restrict our consideration to 2D time-dependent flow fields. In sec-
tion 3.4, the streamline and path-line oriented topology are discussed. We define
these problems in a more formalized way for our application in 2D unsteady flow
fields. Given is a 2D time-dependent velocity field v(x, t) in the spacial-temporal
domain D = [xmin,xmax]× [ymin,ymax]× [tmin, tmax]. Then x describes the spatial
component and t is the temporal component. In order to distinguish streamlines
and path-lines, we derive two 3D vector fields s and p by adding a constant com-
ponent to v (see also section 3.4.3):

s(x, t) =
(

v(x, t)
0

)
, p(x, t) =

(
v(x, t)

1

)
. (4.1)

This way the streamlines of s correspond to the streamlines of v, while the stream-
lines of p correspond to the path-lines of v. Therefore, a path-line oriented topo-
logical segmentation of v corresponds to a segmentation of the streamlines of
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p. Unfortunately, such a segmentation of p cannot be made by applying con-
ventional topological methods of 3D vector fields because an asymptotic analysis
of a streamline in p is impossible: every streamline integration in p is guaran-
teed to leave the spatial-temporal domain D after a while, making it impossible to
consider the asymptotic behavior. This restriction does not hold any more when
moving forward to periodic vector fields.

4.2 Periodic Vector Fields

If v is a periodic-in-time vector field, it is sufficient to consider one period which
can be repeated as often as necessary. We assume that v describes one period,
which means that v(x, tmin) = v(x, tmax). Then we can assume v to be defined in
the whole spatial-temporal domain D by setting

v(x, t) = v(x, t + k Δ t)

where Δ t = (tmax−tmin) and k is an integer chosen such that tmin ≤ t + k Δ t < tmax.
In a similar way, p is defined over D.

xx

yy

tt

ttmmiinn

ttmmaxax

tt

yy

xx

ttmmiinn

ttmmaxax

(a) (b)

Figure 4.1: Two equivalent approaches of a streamline integration in a periodic
field p: (a) In the unbounded time-domain; (b) Periodically continued in the time-
domain [tmin, tmax].

In order to integrate a streamline in the periodic field p (which corresponds to a
path-line of v), two equivalent strategies can be applied:
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• The integration is done over the unbounded time-domain as illustrated in
figure 4.1a.

• If the integration approaches a point (x, tmax), it is mapped to (x, tmin). From
there, the integration is continued until tmax is reached again. Figure 4.1b
illustrates this.

Our approach to do a topological segmentation of path-lines starts with picking
a certain reference time τ with tmin ≤ τ < tmax. We aim at a segmentation of the
asymptotic behavior of all path-lines starting at the time τ . To do so, two 2D maps
mτ(x) and m̄τ(x) are constructed. For mτ(x), we start a forward integration of p
from (x,τ) until one of the following cases occurs:

1. The integration reaches the time level τ +Δ t, i.e. comes to a certain point
(x f ,τ +Δ t). Then we set mτ(x) = x f .

2. The integration leaves the spatial domain before reaching the level τ +Δ t.
In this case we mark mτ(x) as undefined.

In a similar way we compute m̄τ(x) by starting a backward integration of p from
(x,τ) until the time level τ −Δ t is reached at a point (xb,τ −Δ t), or until the
integration leaves the spatial domain. In the first case, we set m̄τ(x) = xb, in the
second case m̄τ(x) is undefined. Figure 4.2a illustrates the definition of mτ(x)
and m̄τ(x).

Instead of the definition of the maps mτ(x) and m̄τ(x) described above, we can
also use a vector-oriented description of the map:

qτ(x) = mτ(x)−x , q̄τ(x) = m̄τ(x)−x (4.2)

Since mτ(x) and qτ(x) can be easily transformed into each other, we will switch
between both formulations in order to simplify the notation of our approach. Note
that in general q̄τ �= −qτ .

The maps mτ and m̄τ can be interpreted as 2D Poincaré maps [LKG98]. In order
to analyze the asymptotic behavior of a path-line starting from (x,τ) in forward
direction, we do not have to integrate p any more but can restrict ourselves to a
sequence of maps of mτ(x):

x0 = x , xi+1 = mτ(xi) (4.3)

and considering the asymptotic behavior for i → ∞. Figure 4.2b illustrates this. A
similar statement holds for the backward integration of p and a sequence of maps
of m̄τ . Note that Equation 4.3 is equivalent to a numerical Euler integration of qτ
with the step size 1: xi+1 = xi +1 qτ(xi).
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Figure 4.2: (a) The definition of mτ(x) and m̄τ(x); (b) A continuous forward
integration of p corresponds to a discrete integration of mτ(x).

Both Poincaré maps mτ and m̄τ can be considered as discrete invertible dynamical
systems: there are no two distinct points which are mapped to the same point by
mτ or m̄τ . In other words: mτ and m̄τ are inverse to each other:

m̄τ(mτ(x)) = mτ(m̄τ(x)) = x (4.4)

for every x where both mτ and m̄τ are defined.

A special role in the further analysis of the path-lines play isolated fix points of
mτ and m̄τ , i.e., points x with mτ(x) = m̄τ(x) = x. (This is equivalent to critical
points in qτ , q̄τ .) The fix points of mτ and m̄τ correspond to certain path-lines
which we call critical path-lines because they have a well-defined asymptotic
behavior: they repeat the same spatial cycle in every time period. Figure 4.3a
gives an illustration.

The critical path-lines will be the basis of our topological segmentation: we clas-
sify path-lines whether they converge to a critical path-line in forward or back-
ward integration respectively. Similar to critical points of a vector field, critical
path-lines can act as sources, sinks, or saddles.

Note that more critical path-lines may occur when considering two or more time
periods. Such a critical path-line over n time periods corresponds to a fix point
of the map mτ

n. Figure 4.3b illustrates an example for n = 2. However, in our
applications we only considered simple (one period) critical path-lines.
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Figure 4.3: (a) A critical path-line corresponds to fix points in mτ , m̄τ . (b) Critical
path-line over two time periods.

4.3 Topological Segmentation of 2D Poincaré
Maps

The segmentation of areas of similar path-line behavior corresponds to the topo-
logical segmentation of the 2D Poincaré maps mτ and m̄τ respectively. Critical
path-lines in p correspond to fix points in mτ and m̄τ . They may act as sources,
sinks or saddle path-lines building α- and ω-basins in D. In this section we show
how to find this segmentation by a topological analysis of mτ and m̄τ . Since mτ
and m̄τ can be considered as discrete dynamical systems, classical topological
vector field approaches fail to give the correct segmentation because they reflect
continuous dynamical systems. In particular, the following points apply:

1. Although p is continuous, both mτ and m̄τ may have pseudo-discontinuities,
this will be discussed further in section 4.4.1.

2. The classification of the fix points of mτ and m̄τ in sources, sinks and sad-
dles can be obtained by an eigen-analysis of the Jabobians of mτ and m̄τ
but differers from the classification for smooth vector fields [Tso92, Löf98].

3. The separating structures of the basins are generally not streamlines of the
vector fields qτ and q̄τ . Because of this, they can intersect in non-critical
points of qτ and q̄τ .

Critical points of discrete non-invertible dynamical systems and their correspond-
ing basins have been extracted and visualized in [BMH01, HMBG01], ending up
in non-connected or even fractal-shaped basins. However, for our purposes the
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approach simplifies because mτ and m̄τ are invertible.

4.3.1 Classifying critical points

The classification of a first order critical point in a discrete dynamical system is
well-understood [Tso92, Löf98] and differs from the classification of a continuous
system. Given a first order approximation of mτ

mτ(x) = J x (4.5)

where J is the 2× 2 Jacobian matrix, mτ has a fix point at (0,0). To capture
the asymptotic converging/diverging behavior of the sequence of Equation 4.3 for
i → ∞ in a vicinity of (0,0), we consider the eigenvales λ1, λ2 and the corre-
sponding eigenvectors e1, e2 of J. Based on the eigenvalues, we get the following
classification

‖λ j‖ > 1 → repelling behavior

‖λ j‖ < 1 → attracting behavior

Im(λ j) �= 0 → rotating behavior

Im(λ j) = 0 , Re(λ j) < 0 → alternating behavior

Im(λ j) = 0 , Re(λ j) > 0 → non-alternating behavior

for j = 1,2. Figure 4.4 illustrates some examples of sources and sinks of mτ .
There, in order to describe the linear approximation mτ , we show three points
and their assigned vectors qτ : the fix point x0, and two more points x1, x2 in
the direction of the two eigenvectors of J. The circles around the fix points denote
whether the map moves closer or further away from the fix point: if the two arrows
of qτ point inside the circle, an attracting behavior of qτ is present.

If mτ is linear as given in Equation 4.5, then m̄τ is linear as well:

m̄τ(x) = J−1 x. (4.6)

Since the eigenvalues/eigenvectors of J−1 are 1/λ j, e j for j = 1,2, there are the
following correlations between mτ and m̄τ :

behavior of mτ behavior of m̄τ
repelling attracting
attracting repelling
saddle saddle
alternating alternating
non-alternating non-alternating
rotating rotating
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Figure 4.4: Classification of sources/ sinks of mτ : (a) repelling/ alternating; (b) at-
tracting/ alternating; (c) attracting/ non-alternating (d) repelling/ non-alternating;
(e) attracting/ rotating; (f) repelling/ rotating.

4.3.2 Getting the topological sectors

For continuous dynamical systems, the different basins are separated by stream-
lines starting from saddle points. However, such a streamline integration does
not exist for the discrete systems mτ and m̄τ . Therefore we apply a point-wise
approach: for every point x in the spatial domain, we integrate mτ using Equa-
tion 4.3 until one of the following conditions is fulfilled:

• xi comes close to a fix point of mτ ;

• xi leaves the spatial domain;

• i exceeds a certain threshold of maximal iterations.

In the first case we assume x to be part of the basin of the fix point. This means
that the path-line starting at (x,τ) converges to a critical path-line under forward
integration. In the second case, the path-line is known to leaving the domain under
forward integration. In the last case, x is marked as unknown because we could
not get a statement about the asymptotic behavior of the path-line starting from
(x, t).
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4.4 Topological Separation Surface Extraction

The above mentioned topological segmentation classify every point in the spatial-
temporal domain according to the asymptotic behavior of path-lines. Sometimes,
people are interested in the topological structures of the whole domain. It is time-
consuming for the computation of every considered time. The separation surfaces
of the general path-line oriented topological structure are desired in these situa-
tions.

4.4.1 Difficulties of separation surface extraction

It is not so easy to generate the separation surfaces for the topological structures of
periodic 2D time-dependent vector fields. The discrete integration and the pseudo
discontinuity of a Poincaré map are two key problems for classical topological
method when extracting separation surfaces.

Discrete dynamic systems

Both Poincaré maps mτ and m̄τ can be considered as discrete invertible dynam-
ical systems (see also section 4.3). As shown in Equation 4.3, the integration of
Poincaré maps is equivalent to a numerical Euler integration of qτ with step size
1: xi+1 = xi +1 qτ(xi).

For discrete dynamical systems, classical topological vector field approaches fail
to give the correct segmentation because they reflect continuous dynamical sys-
tems. For continuous dynamical systems, the different basins are separated by
streamlines starting from saddle points. However, such a streamline integration
does not exist for the discrete systems mτ and m̄τ .

Note that the topology of discrete dynamical systems can get a lot more compli-
cated, even for lower dimensions, when compared to the continuous case.

Pseudo discontinuity

Although v is continuous, both mτ and m̄τ may have pseudo discontinuities,
which means that mτ and m̄τ are still continuous mathematically, but they may
have areas with tremendous large gradient, which appear as discontinuities for dis-
crete treatment. To see this point, we consider the example of a steady 2D vector
field v(x) = v(x, t) which can also be considered as as periodic time-depending
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Figure 4.5: Pseudo discontinuities in mτ : (a) If x1 and x2 are close but at different
sides of a separatrix of v(x)= v(x, t), mτ has too large changes that it is impossible
for discrete numerical method to deal with it though it is still continuous; (b) The
pseudo discontinuity in corresponding Poincaré map.

vector field. Setting a certain time Δ t as period, mτ(x) is obtained by a streamline
integration of v at x over a time Δ t. If v consists of saddles, its separatrices may
induce tremendous changes in mτ so that it appears as discontinuities for normal
discrete numerical programs. Figure 4.5 illustrates this.

4.4.2 Image analysis based surface extraction strategy

If we integrate the edges of the segmentation basins obtained from point based
method either in forward or backward directions, we could get the separation sur-
faces for the asymptotic behavior of corresponding path-lines.

For a given periodic 2D time-dependent vector field v, suppose we have extracted
the separation surface S and at time τ , we have obtained the basin segmentation
using point based method. λτ is the intersection curve of S and plane t = τ . It is
obvious that λτ exactly coincides with the edges of the segmentation basins in τ
and λτ exactly coincides with λτ+Δt . For any point x in λτ , if we integrate a path-
line P(x), we can conclude that P(x) coincides in S within the domain and mτ(x)
coincides λτ+Δt after a period at time τ +Δt if mτ(x) does not leave the domain.
Thus, the integration surface of λτ coincides with S. Otherwise, mτ(x) would end
up either in basin1 or basin2, then x must also be classified either basin1 or basin2
since it asymptotically converges to critical path-lines either in basin1 or basin2,
which results in a contradiction. Note that mτ(x) does not necessary equal to x,
though it must locate in λτ . Figure 4.6 illustrates this relation.



4.4 Topological Separation Surface Extraction 63

x
y

t

�

���t

C1

m X�( )

C
ritical

p
ath

lin
e

C
ri

ti
ca

l
p
at

h
li

n
e

C2

basin1

basin2

S

����t

P X( )

��

X

Figure 4.6: The relation between the basin edges and the separation surfaces for
asymptotical path-line behavior.

Here the problem of extraction of separation surface turns to the detection of basin
edges as seeding curves and the integration of these seeding curves to surfaces.

Seeding curve detection

Here we apply an image analysis approach to detect the basin edges. The basin
edges are step discontinuities where the image intensity abruptly changes from
one value to another. Many algorithms [GW92, JKS95] have been developed
to detect such edges. Wallisch applied an extended marching cube approach to
extracting the basin boundaries of 3D dynamical systems [Wal00]. Since we aim
at a special problem, we apply one simple algorithm here.

Suppose the basin image is f (x,y) in domain F = [xmin,xmax]× [ymin,ymax], where
f (x,y) is the id values for different basins. The gradient at location (x,y) is defined
as follows:

∇ f =
(

Gx

Gy

)
=

(
∂ f
∂x
∂ f
∂y

)
(4.7)

the magnitude of the gradient vector is denoted g(x,y) where

g(x,y) = |∇ f | =
√

Gx
2 +Gy

2 (4.8)

Let α(x,y) represent the direction angle of the gradient vector with respect to the
x−axis.

α(x,y) = arctan(
Gy

Gx
) (4.9)
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Figure 4.7: Sobel Operator.

The direction of an edge at (x,y) is perpendicular to the direction of the gradient
vector. Here, for the discrete case, we use the Sobel operator to calculate the
gradient vector as shown in Figure 4.7 [GW92].

We analyze the characteristics of pixels in a small neighborhood (say, 3×3 or 5×
5) about every point (x,y) in the basin image. Thus an edge pixel with coordinates
(x0,y0) in the predefined neighborhood of (x,y) is similar in magnitude to the pixel
at (x,y) if

|g(x,y)−g(x0,y0)| ≤ E (4.10)

where E is a nonnegative threshold. Similarly (x0,y0) has similar direction as
(x,y) if

|α(x,y)−α(x0,y0)| ≤ A (4.11)

where A is a nonnegative threshold.

A point in the predefined neighborhood of (x,y) is linked to the pixel at (x,y)
if both magnitude and direction similarity criteria are satisfied. This process is
repeated at every location in the basin image and finally we obtain the edges of
the basins.

Step advancing integration with super sampling adjustment

With the detected seeding curve, the classical stream surface integration method is
applied to generate the separation surface. However the pseudo discontinuity (see
section 4.4.1) makes the integration quite unstable: a small error in the seeding
curve may cause large error in the integration.

Here we apply step advancing integration in both forward and backward direction
until they meet each other. In each integration step we use super sampling to
adjust the result position. Figure 4.8 illustrates this. We divide period Δt into
small steps δ t, and integrate the surface step by step. For a seeding point x in
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Figure 4.8: (a) The integration of seeding curves with super sampling in both
forward and backward direction until they meet each other; (b) The polar stratified
super sampling: n× n subdivide the circular neighborhood in both radius and
angle direction, for each subdivided grid, randomly select a point as sample point.

the seeding curve λ , we consider a small circular neighborhood around it and use
polar stratified sampling (as shown in Figure 4.8b) to select the sample points,
we integrate all these sample points for δ t, and compare the end positions of
them to collect the adjusted sampling result x1. Two strategies can be used to
collect the adjusted result: (1) closest point to the neighbor adjusted result; (2)
the average of sample end points in the most frequent area. In practice we haven’t
found significant differences between these two sample collection strategies. With
the adjusted sampling result, we can integrate step by step further until the final
surface is obtained.

4.5 The Algorithm

In this section we formulate our algorithm to get the path-line oriented topological
segmentation of a periodic 2D vector field v(x, t):

1. Pick a time τ with tmin ≤ τ < tmax for which we compute the topological
segmentation.

2. Compute the Poincaré maps mτ and m̄τ , or equivalently, the vector fields
qτ and q̄τ .

3. Extract the fix points of mτ and m̄τ .

4. Classify the fix points of mτ and m̄τ .
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5. Assign an unique color to each sink of mτ and m̄τ .

6. For each x in the spatial domain: repeatedly apply mτ using Equation 4.3
starting from x and color code the result:

• convergence to a sink → assigned color of the sink

• leaving the spatial domain → color code leaving the domain

• exceed maximal number of iterations → color code unknown converg-
ing behavior

7. Similar to 6 for m̄τ .

8. Overlay of the color coding schemes of 6 and 7 gives the complete classifi-
cation of the asymptotic path-line behavior at the time τ .

9. Alternative to 8, extract the edges of the segmentation basins as seeding
curves and integrate them step by step until the separation surfaces of asymp-
totic path-line behavior for a whole period is obtained.

This algorithm needs some remarks:

To 2 Since mτ and m̄τ are known to have discontinuities, we sampled them in a
rather high resolution and represented them as piecewise bilinear fields.

To 3 To extract the fix points of mτ and m̄τ , standard methods for piecewise bi-
linear fields are applied. However, from the set of extracted fix points we have
to remove the ones which are located close to lines of discontinuities of mτ and
m̄τ . We do so by choosing a small enough neighborhood in which we assume the
vector field around the critical point to be continuous. Then we can compute the
eigenvalues and eigenvectors of the critical point by sampling inside the neigh-
borhood. With these eigenvalues and eigenvectors, we estimate the vector field
inside the neighborhood and compare it with the original vector field. If the es-
timation error exceeds some threshold, it means there is no continuity inside the
neighborhood, and the critical point is invalid.

To 4 Inside a cell, the bilinear interpolation of mτ and m̄τ gives the Jacobian of a
fix point.

To 5 We used a scheme of random isoluminant colors.

To 6 and 7 The resolution of the sampling for the color coding should not be less
than the resolution of mτ and m̄τ , in order to deal with the discontinuities of mτ
and m̄τ .

To 9, The extracted edges may have small jags, before integrating the separation
surfaces, we must smooth them. Here we apply the Gaussian filter to smooth the
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edges.

4.6 Applications

In this section we apply our technique to a number of test data sets.

A random data set

(a) (b) (c)

Figure 4.9: A random data set: (a) The vector field p; (b) qτ at τ = tmin; (c) q̄τ at
τ = tmin.

Figures 4.9–4.11 illustrate our technique at a random vector field. We use random
fields as a proof-of-concept because they contain a maximal amount of topological
information. The vector field is piecewise trilinear over a 7×7×7 grid where the
time i-th and the 6− ith time slices coincide for i = 0, ..,2. Figure 4.9a shows
the visualization of p using LIC planes at three different time slices as well as a
number of illuminated streamlines. Figure 4.9b and c show the 2D vector fields qτ
and q̄τ which correspond to the Poincaré maps mτ and m̄τ for τ = tmin. The LIC
images reveal the pseudo discontinuities in the Poincaré maps. However, the LIC
images also present information about the streamlines of qτ and q̄τ . Since only a
discrete integration is carried out, streamlines of qτ and q̄τ do not have a physical
interpretation. Figure 4.10a shows the basins of the sinks of mτ and Figure 4.10b
does so for the basins of m̄τ .

Figure 4.11a shows the detected 7 sink behavior critical path-lines and their cor-
responding extracted separation surfaces. These critical path-lines are sinks in
forward integration of v (marked with blue points), and all the path-lines in the
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(a) (b)

Figure 4.10: A random data set: (a) Basins of qτ at τ = tmin; (b) Basins of q̄τ at
τ = tmin.

area between the critical path-line and the surrounding separation surface asymp-
totically converge to the critical path-line when integrated forward. Figure 4.11b
shows the detected 4 source behavior critical path-lines and their corresponding
extracted separation surfaces. These critical path-lines are sinks in backward in-
tegration of v (marked with red points), and all the path-lines in the area between
the critical path-line and the surrounding separation surface asymptotically con-
verge to the critical path-line when integrate backward. The computing time for

(a) (b)

Figure 4.11: A random data set: (a) The forward converge separation surfaces and
the corresponding sink critical path-lines; (b) The backward converge separation
surfaces and the corresponding source critical path-lines.

this data set was 10 minutes for the basin generation, several seconds for seeding
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curve extraction and 30 minutes for the separation surface integration with 50 in-
tegration steps and 8×8 polar stratified super sampling on a Pentium 4 with 3.40
GHz.

ABC flow

(a)

(b) (c)

Figure 4.12: The ABC flow: (a) The vector field; (b) Critical path-lines and basins
for forward integration; (c) Critical path-lines and basins for backward integration.

Figures 4.12–4.13 visualize parts of the so-called ABC (Arnold-Beltrami-Childress)
flow which is given by

u(x) = Asinz+C cosy,

v(x) = Bsinx+Acosz, (4.12)

w(x) = C siny+Bcosx,
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where we set A =
√

3, B =
√

2 and C = 1. For our purpose, we considered a cut
through the (x,y)-plane and interpret the z-coordinate as the time dimension:

p(x, t) =

⎛
⎝

√
3sint + cosy√

2sinx+
√

3cos t
1

⎞
⎠ (4.13)

(a) (b)

Figure 4.13: The ABC flow: (a) qτ at τ = tmin; (b) q̄τ at τ = tmin.

The field is periodic in x,y- and t direction with a period of 2π each. We visualize
the behavior of the path-lines in the domain [0,10π]× [0,10π]× [0,2π]. Figure
4.12a shows the LIC plane and the path-lines. We detected 45 critical path-lines
as illustrated in figures 4.12b and c. Figure 4.13 shows the LIC images of qτ and
q̄τ : the classification gives that all critical points are weak sinks in qτ . The norm
of the eigenvalues is only slightly smaller than 1, and the basins are computed
using 1000 integration steps. For q̄τ , all critical points are weak sinks as well,
giving very similarly shaped basins as qτ (figure 4.12c). Since this contradicts
to the property mentioned in section 4.3.1 (a sink in qτ is a source in q̄τ ), we
conclude that critical points have an unstable center-like behavior: path-lines in a
certain neighborhood (color coded in Figures 4.12b and c) asymptotically remain
in this neighborhood without converging/ diverging to/ from the critical path-line.
Between these neighborhood regions there are regions where the path-lines leave
the domain (white areas in Figures 4.12b and c). The computing time for this
data set was 10 minutes for the Poincaré maps in a 1000×1000 resolution, and 1
minutes for the basins in a 1000×1000 resolution.
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2D cavity flow

Figures 4.14–4.15 show the visualization of a vector field describing the flow at a
2D cavity. This data set was kindly provided by Mo Samimy and Edgar Caraballo
(both Ohio State University) [CSJ] as well as Bernd R. Noack (TU Berlin). 1000

(a)

(b) (c)

Figure 4.14: The cavity flow: (a) Streamline oriented topology [TWHS05]; (b)
The vector field p; (c) Critical path-lines.

time steps have been simulated using the compressible Navier-Stokes equations.
The topological behavior of the streamlines of this data set has been analyzed in
[TWHS05]. For this data set it turned out that the period appears every 79 time
steps. Figure 4.14b shows p is one time period by two LIC planes and illuminated
streamlines. Figure 4.14a (from [TWHS05]) shows the streamline oriented topo-
logical skeleton. This skeleton has a moderate complexity manifested in a number
of moving critical points (represented by the colored lines) and bifurcations. The
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topological skeleton of our path-line oriented topology looks more simple: we
detected four critical path-lines which are shown in figure 4.14c. One of them is

(a)

(b)

(c)

Figure 4.15: The cavity flow: (a) qτ at τ = tmin; (b) q̄τ at τ = tmin; (c) Critical
points and basins of q̄τ .

located inside the cavity, while the others are outside. Three critical path-lines
are sinks under forward integration and sources under backward integration, the
remaining one is a saddle. The total absence of any sinks in forward direction
gives the main result of the topological analysis of his data set: every particle (ex-
cept the ones starting on the critical path-lines) is going to leave the cavity after
a certain time. Also, it is possible to show the regions from which a backward
integration of p converges to the critical path-line: they are shown as colored ar-
eas in figure 4.15c. This figure clearly shows that the basins can have a rather
disconnected structure. The computing time for the cavity data set was 30 min-
utes for the 3650×1000 Poincaré map, and 5 minutes for the basins in the same
resolution. The LIC images of qτ and q̄τ in Figures 4.15a and b illustrate this.
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Electrostatic static field of benzene molecule

Figure 4.16 and figure 4.17 visualize the path-line oriented topology of the elec-
trostatic field around a benzene molecule. This data set was calculated on a 1013

regular grid using the fractional charges method described in [SS96] (discussed
also in section 3.2.1). Originally this is a 3D steady gradient field describing the
force of the electrostatic potential upon a positive point charge given in a certain
location. If such a point charge is situated very close to the molecule, the clos-
est atom will exert the highest force on it, i.e., attract or repel it. The influence
of a single atom decreases the farther the point charge is located from the whole
molecule. Instead, all atoms have nearly the same influence. One might say that
the molecule as a whole is exerting force on a somewhat far located point charge.
Thus, it is possible to distinguish between a near and a far field.

(a)

(b) (c)

Figure 4.16: The periodic benzene data set: (a) The visualization of the periodic
benzene force field, the benzene molecule and the corresponding path-lines; (b)
Basins of qτ at τ = tmin; (c) Basins of q̄τ at τ = tmin.

Since the behavior of this field is rather complex [TWHS03, WTS∗05], we ap-
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plied our method to find a simplified visual representation by neglecting the w-
component of the field and interpreting the z-axis as time. This yields inside
into the forces induced by the distribution of the atoms in the main plane of the
molecule: as one moves away from the molecule, the influence of a single atom
decreases and therefore the influence of the atom distribution decreases as well.
The field can now be interpreted as a 2D periodic vector field, since the 2D forces
are the same on both sides of the molecule.

Figure 4.16a elucidates the influence of atom distribution: the trajectories change
radically close to the molecule (high influence in near field) while in other areas
they are nearly straight (low influence in far field). To get insight into the attract-
ing and repelling behavior, we computed the basins for forward and backward
integration (figure 4.16b and c) as well as their corresponding critical path-lines
(figures 4.17).

(a) (b)

Figure 4.17: The periodic benzene data set: (a) The forward converge separation
surfaces and the corresponding sink critical path-lines for the benzene data set; (b)
The backward converge separation surfaces and the corresponding source critical
path-lines for the benzene data set.

Figure 4.17a shows the 18 sink behavior critical path-lines and their correspond-
ing extracted separation surfaces for periodic benzene force field. All the point
charges in the area between the critical path-line and the surrounding separation
surface asymptotically converge to the critical path-line as time goes. Similarly
figure 4.17b shows the 13 sink behavior critical path-lines and their correspond-
ing extracted separation surfaces. All the point charges in the area between the
critical path-line and the surrounding separation surface asymptotically converge
to the critical path-line for backward integration. The computing time for ben-
zene data set was 15 minutes for the basin generation, several seconds for seeding
curve extraction and 100 minutes for the separation surface integration with 80
integration steps and 8×8 polar stratified super sampling.
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4.7 Conclusion

In this chapter, we presented the following works:

• We introduced an approach to analyzing the asymptotic behavior of path-
lines in periodic time-dependent vector fields.

• We defined, extracted, and classified critical path-lines.

• We computed the basins from which the path-lines converge to the critical
path-lines in forward or backward integration.

• We presented an image analysis based approach to extracting the separation
surfaces from the computed basins.

Our examples show that the path-line oriented topology gives significantly differ-
ent topological information than the streamline oriented one. The main disadvan-
tage of our approach is that it is limited to periodic vector fields only. In fact,
we do not see a way to straightforwardly extend it to non-periodic vector fields.
However, we think that due to the number of periodic vector fields obtained from
time-dependent numerical flow simulations, this class of vector field data deserves
the special consideration.
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Chapter 5

Path-line Oriented Information
Visualization Approach

In this chapter, we describe an approach to visually analyzing the dynamic be-
havior of 3D time-dependent flow fields by considering the behavior of the path-
lines. Information visualization is an important methodology in modern scientific
and engineering research. The integration of flow visualization with information
visualization has provided fluid analysts an opportunity to interactively identify
the patterns or features of interest (see also section 3.3). The complexity of 3D
dynamical flow as well as the dimensionality of the underlying space-time domain
makes the classical fluid analysis and flow visualization challenging and partially
unsolved. In particular, it inherently difficult to actually comprehend the important
characteristics of 3D time-dependent flow data. Interactive analysis with expert
support offers an alternative solution for complex dynamical fluid analysis, which
is convenient for fluid analysts.

Feature based approaches extract a variety of different features such as topologi-
cal features, vortical structures, or shock waves (see also section 3.2). They reflect
different properties of the flow and therefore focus on the representation of dif-
ferent inherent structures. In fact, not all features may give useful information
for every flow data set, and the selection of the relevant features is often left to
users in an unsupported way. Moreover, among the features there may be correla-
tions which are either general due to their definition, or they occur in certain areas
of particular flows and give relevant information about the behavior of the flow.
Therefore we believe that not only the introduction and visualization of new fea-
tures leads to a deeper understanding of the dynamic behavior of the flow field, but
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also an effective analysis of the relations between the features and the applications
of these results for a visual representation. We make one step along the recently
challenging path towards a better understanding of 3D unsteady flow fields.

Our approach starts with the extraction of a number of properties (scalar values,
and time series) at each point of a regular sampling of the 4D space-time do-
main. Since path-lines are important characteristic curves for unsteady flow fields
(see also section 2.2.1) and the analysis of the dynamic behavior of flow fields is
strongly related to the analysis of path-lines. We focus on properties describing
the behavior of the path-lines, being either classical and well-established values in
vector algebra, or properties newly proposed in this chapter. The result of this step
is a path-line attribute data set: a four-dimensional multivariate data set collecting
all computed path-line properties.

The visual analysis of multidimensional multivariate data is a well-researched
topic in information visualization. A variety of techniques have been developed
to visualizing such data sets making inherent correlations visible. Because of this
we attempt to use information visualization approaches to analyzing the path-line
attributes data set. The results of this analysis (i.e., selections of path-lines with
certain combinations of properties) are then used for a focus+context visualization
of either the selected path-lines or the interesting properties. This way the user is
able to do a simultaneous exploration in the 4D space-time domain of the flow and
in the abstract path-line attribute space. We show that this can give new insight
into characteristic substructures of the flow which leads to a better understanding
of time-dependent flow fields.

The work closest to ours is the SimVis approach [DGH03, DMG∗05] (see sec-
tion 3.3) which uses approaches of information visualization to analyzing vari-
ous kinds of simulation data. The main difference to our approach is that SimVis
works on multiple scalar data describing certain properties of the simulation. Con-
trary to this, our approach works on dynamic flow data, focusing on local and
global properties of path-lines, i.e. on a multi-variate properties data set, derived
from a 3D unsteady flow field. We apply our method to a number of flow data
sets and describe how path-line attributes are used for describing characteristic
features of these flows.

5.1 Path-line Attributes

Given a 3D time-dependent vector field v(x, t), x describes the 3D domain and
t is the temporal component. Streamlines and path-lines are generally different
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classes of curves (see section 2.2.1). Given a point (x0, t0) in the 3D space-time
domain, the streamline starting at (x0, t0) can be written in a parametric form

sx0,t0(t) = x0 +
∫ t

0
v(sx0,t0(τ), t0) dτ (5.1)

while the path-line starting at (x, t) has the parametric form

px0,t0(t) = x0 +
∫ t

0
v(px0,t0(τ),τ + t0) dτ. (5.2)

To characterize path-lines, we consider two kinds of information: scalar value
that describes local or global properties of a path-line, and time series that collects
information along a path-line.

5.1.1 Scalar attributes

For scalar attributes, we compute a number of scalar properties of the path-line
starting at a given point (x0, t0) which reflect either local or global properties of the
path-lines. In the latter case, the value depends on the considered integration time.
Since we are interested in the global behavior of the path-lines, the integration
time can be chosen rather large (relative to the time interval in which v is defined).
In particular, we compute the following scalar values:

Id Description
distSE Relative start end distance
nonStraightV Non straight velocity
avDir Average direction
avParticleV Average particle velocity
lyapunov Lyapunov exponent
wind Winding Angle
lad Local acceleration displacement
curvDiff Curvature difference
div Local divergence

We will explain these properties as follows:

• Relative distance between start point and end point distSE is the 3D Eu-
clidean distance between the start point and the end point of a path-line
relative to the integration time T .

distSE =
|px0,t0(T )−x0|

T
(5.3)



80 Chapter 5: Path-line Oriented Information Visualization Approach

A small distSE can be expected to be an indicator of a swirling behavior of a
path-line (while rotating back the path-line accumulates less distance from
its start point).

• Non straight velocity nonStraightV is the difference arc length between the
length of real particle path and the distance from start point to end point
relative to the integration time T .

nonStraightV =
∫ T

0 ‖v(px0,t0(τ),τ + t0)‖ dτ −|px0,t0(T )−x0|
T

(5.4)

nonStraightV is an important measure of the non straight behavior of a path-
line. A small nonStraightV indicates straight behavior of a path-line. Par-
ticularly, if nonStraightV = 0, the corresponding path-line is a straight line
between start point and end point. Large nonStraightV usually indicates
swirling behavior.

• Average direction avDir depicts the general trend of a path-line movement.
It can be computed as the difference of end and start point of a path-line.
Here we map all the tangent vectors along a path-line to a unit sphere and
then calculate the average of these mapped vectors as shown in Figure 5.1.

avDir =
px0,t0(T )−x0

‖px0,t0(T )−x0‖ (5.5)

avDir contains three scalar components separately as scalar property for our
analysis.

• Average particle velocity avParticleV is computed as the arc length of a
path-line relative to the integration time T :

avParticleV =
∫ T

0 ‖v(px0,t0(τ),τ + t0)‖ dτ
T

(5.6)

• Lyapunov exponent lyapunov is a popular quantity to describe the stability
of a dynamical system. Here we consider the largest finite-time Lyapunov
exponent (see section 3.4.4) [Hal01]. The linear flow map A = ∇xpx0,t0(T )
of the 3D time-dependent vector field is computed, then the largest eigen-
value λmax is computed and normalized by the integration time T .

lyapunov =
log(

√
λmax(AT A))

T
(5.7)
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Figure 5.1: Mapping the direction vectors along a path-line to a unit sphere and
calculating the bounding box approximation of the opening cone.

• Winding angle wind is a measure of how strong a path-line differs from
being a straight line. We define it in a discrete form, i.e., on a polygonal
approximation (p0,p1, ...,pn) of a path-line obtained from a numerical in-
tegration. We consider the angles of the adjacent edges of the polygon:

wind =
n−2

∑
i=0

∠( (pi+1 −pi),(pi+2−pi+1) ). (5.8)

Figure 5.2a gives an illustration. Note that this measure depends both on
the shape and on the parametrization of the path-lines. A larger wind can be
expected to indicate a swirling behavior.
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Figure 5.2: (a) Winding angle along a path-line; (b) Curvature difference between
the path-line and streamline pass through a specified point.

• Local acceleration displacement lad is a global measure of how strong stream-
lines and path-lines differ: we observe the streamline and the path-line
starting at the same location over some time and consider the Euclidean
distances of the end points of the trajectories:

lad = ‖px0,t0(T )− sx0,t0(T )‖ (5.9)
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Figure 5.3a gives an illustration. A small lad denotes quasi-stationary parts
of the flow, since there streamlines and path-lines coincide.

• Curvature difference between path-line and streamline curvDiff: Given a
point (x0, t0), there is exactly one streamline and one path-line passing
through it. Both curves coincide in the tangent direction but generally differ
in their curvature. The (squared) differences of the curvatures is a measure
of how strong streamlines and path-lines differ locally. Given a path-line
px0,t0(t) in its parametric form (Equation 5.2), we can compute its deriva-
tives as [The98]

δ px0,t0

δ t
(0) = ṗ = v(x0, t0) ,

δ 2 px0,t0

δ t2 (0) = p̈ = ∇v ·v+
δv
δ t

. (5.10)

For a streamline sx0,t0(t) in parametric form (Equation 5.1), the derivatives
are

δ sx0,t0

δ t
(0) = ṡ = v(x0, t0) ,

δ 2 sx0,t0

δ t2 (0) = s̈ = ∇v ·v. (5.11)

Then the local curvatures of path-lines and streamlines are

κp =
‖ṗ× p̈‖
‖ṗ‖3 , κs =

‖ṡ× s̈‖
‖ṡ‖3 (5.12)

and

curvDiff = (κs−κp)2. (5.13)

Figure 5.2b gives an illustration. curvDiff is a local geometric measure of
how stationary the flow is.

• Local divergence div denotes the classical operator in vector algebra which
coincides for considering streamlines and path-lines [TWHS04]:

div = div(v). (5.14)

5.1.2 Time series attributes

For time series we have investigated the following attributes:
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Figure 5.3: (a) LAD that records the Euclidean distance between the point of
a path-line the corresponding streamline at the same time t; (b) ArcLAD that
records the Euclidean distance between the point of a path-line and the corre-
sponding streamline at the same arc length α from the start point.

Id Description
DistEu Euclidean distance to start
LAD Local acceleration displacement
ArcLAD Arc local acceleration displacement
Dir Direction vector
OpeningCone Opening cone
Curvature Path-line curvature
Velocity Velocity magnitude

We will explain these properties as follows:

• Euclidean distance to start point DistEu is the non-relative time series ex-
tension of the distSE. It records the Euclidean distance from the seed point
to every point along a path-line.

DistEu(t) = ‖px0,t0(t)−x0‖ (5.15)

• Local acceleration displacement LAD is the time series extension of the sin-
gle scalar LAD. It observes the Euclidean distance between the streamline
and the path-line over the same integration time as shown in Figure 5.3a.

LAD(t) = ‖px0,t0(t)− sx0,t0(t)‖ (5.16)

• Arc local acceleration displacement ArcLAD is the arc length adaption of lo-
cal acceleration displacement. The local acceleration displacement defined
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above depends on the flow velocity: in areas of higher velocity, streamlines
and path-lines have a bigger chance to move away from each other in a cer-
tain time. Therefore, in areas of higher velocity the LAD tends to be large.
To get a geometric measure of how strong a streamline and a path-line dif-
fer, we compare the Euclidean distances of the points with the same arc
length from the start point. Figure 5.3b illustrates this.

• Direction vector Dir records the direction vector at every time along a path-
line. Three components of direction vector forms three corresponding time
series.

• Opening cone OpeningCone records the opening cone at every time along
a path-line. Here we use the bounding box approximation to expedite the
calculation without sacrifice the monotonic property of the opening cone
series, as shown in Figure 5.1. At each time, we record the volume of
the bounding box which covers all the points on the unit sphere where the
direction vector maps to [SAE93].

• Path-line curvature Curvature records the curvature of a path-line at every
time along the integration.

• Velocity magnitude Velocity is the velocity magnitude time series consider-
ing every time along a path-line.

5.2 System overview
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Figure 5.4: Pipeline for analyzing path-line attributes.

Fig. 5.4 shows the pipeline of our path-line attribute analysis approach. We start
with a 3D time-dependent flow field v to be analyzed. As a first step, we apply
a sampling of the space-time domain to obtain the points for which we compute
the path-line attributes. Note that since the data lives in a 4D domain, even a
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rather small sampling density may give a high amount of sample points. There-
fore, the sampling density should be a compromise between the spatio-temporal
accuracy of the analysis and the available computing resources. If the analysis
delivers interesting features in certain smaller regions of the domain, this region
can be analyzed using a higher sampling density to make sure the sampling rate
is above the Nyquist frequency. At this state of the approach we also have to set
the integration time for the path-lines. Also this setting is a tradeoff between the
fact that we want to have the path-lines to be analyzed as long as possible and
the property that most of the path-lines should be integrated over the same time
without leaving the domain.

The next step of the approach is the integration of the streamlines and path-lines
starting from the sampled points over the set integration time. For our examples
we have used a 4th order Runge-Kutta integration. From these integrations we
compute all path-line attributes introduced in section 5.1.

The set of all path-line attributes is the input of our information visualization core
module which will be described in section 5.2.1 in more detail. Interactive visual
analysis on the basis of state-of-the-art information visualization techniques and
brushing in linked views is used to extract relevant correlations, interesting feature
combinations, or general properties of the data. The result of this analysis is used
to steering the visualization of the path-lines and their attributes. If the interactive
visual analysis delivers interesting features in a certain scalar path-line attribute,
we can visualize it using standard volume rendering techniques like direct volume
rendering or slicing. Furthermore, the interactive visual analysis delivers a selec-
tion of interesting path-lines having a certain combination of properties. They are
visualized as 3D line structures with a color coded time component.

Our implementations of the visualization of the selected path-lines and the se-
lected attributes are based on Amira [SWH05b], whereas our information visu-
alization analysis is based on the ComVis system which is described in section
5.2.1.

5.2.1 The ComVis system

ComVis is an interactive visualization tool. It supports conventional information
visualization views such as 2D and 3D scatter plots, parallel coordinates, his-
tograms, as well as a special curves view which is used for displaying function
graphs (see section 3.3). This combination of views makes it possible to analyze
a wide variety of data where in the same row of a multi-variate table some values
are scalar (just as it is usual) and others correspond to a function graph (common
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in various kinds of scientific data)[MJJ∗05]. The tool offers multiple linked views
parallel to each other. Each view can be of any of the above mentioned view
type. ComVis pays great attention to interaction. Due to advanced brushing and
linking proved to be very powerful analytical tool. Users can brush the visual-
ized data in any view, all linked views reflect the data selections by appropriate
focus+context visualization. Furthermore, the user can use a simple, yet powerful
line brush in the curves view. The line brush selects all curves which intersect the
line. All brushes can be scaled and moved interactively. The multiple brush mode
makes it possible to flexibly combine various brushes. The user selects brushes
and boolean operations between them. AND, OR, and SUB are supported. Fur-
thermore, the tool creates a composite brush in an iterative manner. This means
that the user selects a current operation (AND, OR, or SUB) and draws a brush.
The previous brushing state is combined with the new brush accordingly. The new
state is computed, and it is used when the user draws another brush. In this way
the user immediately gets visual feedback, and can very easily broaden the selec-
tion (using OR), or can further restrict the selection (using AND or SUB). Once
the user is satisfied with a selection (or in the meantime), a tabular representation
of the selected data can be shown and exported to file on demand.

5.3 Applications

We applied our approach to a number of data sets. Not surprisingly, not all at-
tributes are interesting in all data sets, and different path-line attributes turn out to
be important for different data set. However, we can also identify several interest-
ing coherence between different path-line attributes which seem to hold even for
different data sets. Accordingly, we are optimistic that the here described analysis
indeed provides a useful basis for future generalization of this approach.

3D time-dependent cylinder flow

Figures 5.5 and 5.6 present some results of analyzing a 3D time-dependent flow
behind a circular cylinder. The cylinder is put in the origin with radius 0.5 and
height 8.0, while the data set domain D is [3.15,19.74]×[−2.06,2.06]×[0.09,1.89]×
[0,2π]. This data set was kindly provided by Gerd Mutschke (FZ Rossendorf)
and Bernd R. Noack (TU Berlin). We considered path-lines at a 28×14×7×6
(191MB attribute file to ComVis) sampling and used an integration time of 1.5π
(for the data set given in a 2π time slab). Figure 5.5a shows the direct volume
rendering of one of the attribute fields lyapunov. In figure 5.5b, all path-lines in-
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Figure 5.5: Flow behind a cylinder: a) Direct volume rendering of the lyapunov
attribute field at time 0; b) All considered path-lines.

tegrated from the sampled points are displayed. As we can see from figure 5.5a,
there are certain patterns in the lyapunov attribute field. Low lyapunov values
indicate stability of the path-line. We use the information visualization approach
to select the area with low lyapunov, as shown in the upper left of figure 5.6a. The
visualization of the selected path-lines is shown in figure 5.6b. Figure 5.6c shows
the seed area of the selected path-lines at the time 0.

When investigating the visualized result, we can see that there are further different
patterns in the low lyapunov path-lines. It is obvious when we investigate the
ComVis result of time series LAD, after choosing the cluster as shown in the
upper right of figure 5.6d. We get the path-line cluster whose LAD time series
have small values at the end of the integration time. Figure 5.6e and 5.6f present
the visualization of the selected path-lines and their seed areas. We notice that
they stay in the middle of the domain and along the flow direction directly behind
the cylinder.

Hurricane Isabel

Figures 5.7– 5.9 show a visual analysis of the hurricane Isabel data set, which has
been previously analyzed in a number of papers [GJ04, DMH04]. We sample the
domain with path-lines at a resolution of 24×24×6×6 (253MB attribute file to
ComVis), and set the maximum integration time to 30 hours (the whole data set
covers 48 hours). Figure 5.7a shows the visualization of all considered path-lines.
Figure 5.7b show a direct volume rendering of nonStraightV at time 0 (the starting
time of the simulation).

For this data set, we start the information visualization analysis, with the observa-
tion of the avParticleV vs. distSE scatter plot (upper right of Figure 5.8a), show-
ing a number of points on the diagonal but also a number scatter points clearly
above it. We expect the points on the diagonal to represent path-lines with a rather
straight-line-like behavior, whereas the locations of the points above the diagonal



88 Chapter 5: Path-line Oriented Information Visualization Approach

llaadd

LLAADD((tt))

llaadd

LLAADD((tt))

(a) (d)

00..00 22�� 00..00 22��

(b) (e)

(c) (f)

Figure 5.6: Feature low lyapunov and LAD: a) Selecting low lyapunov area in
ComVis; b) Visualization of selected path-lines with low lyapunov; c) Visual-
ization of the seeding area of the selected low lyapunov path-lines at time 0; d)
Selecting low lyapunov and parabola LAD area in ComVis; e) Visualization of se-
lected path-lines with low lyapunov and low LAD; f) Visualization of the seeding
area of the selected low lyapunov and low LAD path-lines at time 0.

may indicate a swirling behavior. Since nonStraightV is equivalent avParticleV
vs. distSE, we selected all points above the diagonal, by considering points with a
rather high nonStraightV (upper left of Figure 5.8a). The parallel coordinate rep-
resentation (lower right of Figure 5.8a) shows that the selected path-lines have a
rather low curvDiff. This indicates that in these regions streamlines and path-lines
are locally rather similar. The curvature plot of the selected path-lines doesn’t
have extreme values (lower left of Figure 5.8a). The selected path-lines are vi-
sualized in Figure 5.8b, clearly showing that we have selected the ones swirling
around the moving eye of the hurricane. Figure 5.8c shows the areas where the
selected path-lines originate at time t = 0, while Figure 5.8d shows the starting
areas of the selected path-lines for all time steps.

In a second analysis attempt, we select all path-lines with a high value in the
curvature plot (upper left of Figure 5.9a). The selected path-lines are shown in
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Figure 5.7: Hurricane Isabel data: (a)All considered path lines; (b) Direct volume
rendering of the nonStraightV attribute field at time 0.

Figure 5.9b. All of them are rather short and have a rather irregular behavior and
they indicate some part of the flow where the velocity is quite small.

Airfoil

Figures 5.3 - 5.12 show a comparative visual analysis of 8 different data sets of
a flow around an airfoil. The difference between these 8 data sets are the air
injection frequency. The injection frequencies are 0(base), 0.2, 0.44, 0.6, 0.88,
1.0, 1.5 and 2.0. The goal of our analysis is to find the best air injection frequency
which contributes the best lift power. It is known that abnormal vortex structures
reduce the lift of the airfoil. Therefore, our visual analysis focuses on the areas
with vortices where the probability of abnormal flow is high. We reduce our
consideration to a small area around the areas with vortices.

We sample the interesting area with path-lines at a resolution of 36×12×8×10
for each data set, and set the maximum integration time to 30 seconds (the whole
data set covers different time domains for different frequencies and the path-line
integration will usually leave the domain within 30 seconds for each frequency).
Figure 5.3 shows the LIC visualization at starting time for different frequencies
and Figure 5.11 shows the visualization of all considered path-lines for different
frequencies. We observe that most path-lines behave well showing a rather straight
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Figure 5.8: Hurricane Isabel data: (a) Selecting the area with high nonStraightV
in ComVis; (b) Path-lines of the selected high nonStraightV; (c) The seeding area
of the selected path-lines at time 0; (d) The seeding area of the selected path-lines
at all time steps.
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Figure 5.9: Hurricane Isabel data: a) Selecting the area with peaks in curvature
plot; b) Selected path-lines of curvature plot peaks.
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Figure 5.10: The visualization of airfoil flow field at time 0 for different air
injection frequency with LIC plane.

behavior. The abnormal flows correspond to those non straight path-lines. As our
experience on these attributes, the nonStraightV is a good attribute to reflect the
characteristics of straightness of path-lines. So we compare this attribute com-
puted at same location and same time for different frequency data sets in ComVis.
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Figure 5.11: The path-lines started from the focus area of the airfoil flow field for
different air injection frequency.

Figure 5.12 shows the comparative result of the analysis of the nonStraightV for
these 8 different frequencies. Relative analysis is popular in airfoil analysis since
the relative flow behavior for different parts of an airfoil determines the lift power.
We apply a relative selection here and select those path-lines for each data set
with 70 percent highest nonStraightV attributes. Those selected path-lines and
the corresponding seeding areas are visualized. We can see that these selected
non straight path-lines are closed to the area with vortices. And we can clearly
observe that for a frequency 0.6, there are fewest non straight path-lines and the
non straight seeding areas are the smallest. So we find that for frequency 0.6, the
probability of abnormal flow is less compared to others. We have tested several
other percentage of the highest nonStraightV. All the results present the equivalent
information. We conclude that 0.6 is the best air injection frequency among the 8
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Figure 5.12: The comparative analysis result for the attribute nonStraightV of of
the airfoil flow field for different air injection frequency. The pictures in the first
column depict the selections of 70 percent highest nonStraightV for different fre-
quencies in ComVis. The pictures in the second column depict the corresponding
selected path-lines for the first column. The pictures in the third column are the
corresponding seeding area for the selections in the first column.
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tests. The experience from the industry partner confirms this result successfully.

5.4 Conclusion

To getting insights into dynamic behaviors of path-lines of 3D time-dependent
flow fields is still a challenging problem for the visualization community. Path-
lines elude a straightforward extension from streamline based methods because
path-lines can be integrated only over a finite time, and they may intersect each
other (at least when only considering their 3D reference locations). This chapter
discusses an approach to getting insights into behaviors of path-lines by applying
an approach from information visualization. In particular, the following work is
done:

• We identified a number of local and global attributes of path-lines which we
expect to contain relevant information about the path-line behavior.

• We interactively analyzed these attributes by using an approach from in-
formation visualization. The results were used to steering a 3D path-line
visualization.

• We applied our approach to a number of data sets, in order to get new insight
into the path-line behavior.

During our analysis it turned out that not all path-line attributes gave useful re-
sults for all data sets. However, inherent and data independent correlations in the
attribute data set can be expected, making a reduction of the attribute set possible.
In particular, we have the impression that the investigation of path-line attributes
can indeed lead to a useful and practicable way of accessing/segmenting interest-
ing flow features in time-dependent data sets, including swirling/vortical/rotating
flow subsets, (e.g., via attributes wind and nonStraightV) , quasi-steady flow struc-
tures, (e.g., via attributes LAD and ArcLAD, etc.), etc. We are optimistic with
respect to these expectations, not at the least because it was, for example, fairly
straight forward and quite easy to accomplish to extract the rotating main vortex
of hurricane Isabel, which – to the best of our knowledge – cannot so easily be
accomplished with any of the previously published vortex extraction methods.
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Chapter 6

Finite-time Transport Structures

Transport is an important phenomenon underlying a flow process. Any substance
or property such as dye, momentum or heat can be transported in a fluid [KC04].
Modern experimental and computational fluid mechanics are increasingly con-
cerned with the structure nature of fluid transport. Many promising approaches
have been developed to depict the dynamical transport behavior of flow fields.
However, it has still proved to be inherently difficult to actually comprehend the
important characteristics of this complex dynamical phenomenon. Particularly,
the property nature of a flow transport phenomenon is usually unclear and hard to
interpret. An effective visual analysis of flow transport is still a challenging prob-
lem in scientific visualization. In this chapter, we focus on the transport character-
istics of physical properties and propose an approach to visualize the finite-time
transport structures of the properties.

Classical approaches of dynamical flow analysis tend to extract the transport fea-
tures in Eulerian perspective and to track these features along time (see sec-
tion 3.4). Though these approaches generate promising results, the extracted fea-
tures depend strongly on each instant step and they are not natural for dynamical
analysis. Lagrangian coherent structure (LCS) is one highlight in flow transport
analysis which identifies the transport barriers during flow advection (see sec-
tion 3.4.4). In contrast to traditional approaches, LCS gives a different and natural
insight into the dynamical processes of fluid transport. However, some important
physical properties are not considered and the transport characteristics of these
properties are still not clear. To get a better understanding of intrinsic flow trans-
port, the visual analysis of physical property transport for a flow field is necessary.
For this analysis, it is not enough to investigate only the fluid motion. The corre-
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sponding physical properties need to be included.

One way to visualize the dynamical behavior of fluid transport is to integrate the
history of the fluid transport for a certain time-interval. A transport filter is de-
scribed here to convolute the corresponding physical property field over time and
compress the relevant transport information of these properties to a investigating
point. The corresponding transport structures can be visualized through the con-
voluted results. Advection, diffusion and radiation are common transport modes
in nature. In a fluid, advection describes the transport by the macroscopic motion
of currents in contrast to others. It is generally the major transport mode which
characterizes a fluid phenomenon. For an advection process, a fluid is described
mathematically as a vector field (see section 2.2). In flow visualization, Line in-
tegral convolution (LIC) is one standard technique to access the flow advection
nature (see section 3.1.3). It is similar to advect a noise texture field along flow
transport trajectories and generate the motion blur of the processing texture field.
This texture motion blur reflects the underling substance concentration which fig-
ures out the geometrical distribution of the corresponding trajectories.

In this chapter, we focus on the visualization of the advection behavior of a flow
field. We propose a transport filter for fluid advection, i. e. an advection filter,
which is similar to applying LIC along path-lines. Instead of a noise texture, the
advection filter convolutes a correlated physical property field. This is similar
to investigate the physical properties along flow transport and record the advec-
tion blur of these properties. The result field of the convolution is different from
the original physical property field, since it senses the dynamical behavior of the
transport and it distinguishes from the traditional LIC result while it captures the
property characteristics of the flow field.

6.1 Fluid Transport

Transport is one dominant phenomenon during a flow process. The transport phe-
nomenon considered in fluid dynamics is macroscopic and a fluid is regarded as
a continuous medium (see also section 2.1) [Lea07]. Any substance, or property
can be transported in a fluid. The conservative transport of the substances or prop-
erties can be described with the continuity equations (Equation 2.14). Reynolds
transport theorem is a fundamental theorem used in formulating the basic laws of
fluid dynamics [Kre00]. For a system with a control volume and a control surface.
Reynolds’ transport theorem states that the rate of change of an extensive property
Φ within the system is equal to the rate of change of Φ within the control volume
and the net rate of change of Φ through the control surface. For a given flow field
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v(x, t) and a specified property Φ, the transport process can be written in a partial
differential form as follows:

∂Φ
∂ t

+∇ ·J(t,x,Φ,v,∇Φ) = g(t,x,Φ) (6.1)

where J represents the flux of the property transport and g specifies the source
of the flow. Consider the momentum as the transported property, with the addi-
tional assumption Newton’s viscosity law, the Navier-Stokes momentum equation
(see section 2.3.3) can be derived from Equation 6.1. Further, various transport
phenomena underlying a flow process can be expressed by a series of partial dif-
ferential equations (PDE).

6.1.1 Advection and diffusion

(a) (b)

Figure 6.1: Transport phenomena: (a) Advection; (b) Diffusion.

Advection and diffusion are two common transport modes during a fluid trans-
port [Lea07]. Advection describes the transport by the macroscopic motion of
currents as shown in Figure 6.1a. For a pure advection phenomenon without ad-
ditional source, Equation 6.1 can be modified as follows:

∂Φ
∂ t

+∇ · (Φv) = 0 (6.2)

For incompressible flow (see section 2.1.4), the advection equation can be simpli-
fied as

∂Φ
∂ t

+v ·∇Φ = 0 (6.3)

In contrast to advection, diffusion is the spontaneous transport of properties from
an area of high concentration to an area of low concentration in a given volume
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of fluid down the concentration gradient as shown in Figure 6.1b. For an isotropic
diffusion process, Equation 6.1 can be modified as follows:

∂Φ
∂ t

= c∇2Φ (6.4)

where c is the diffusion coefficient to characterize the diffusion process. Diffusion
is a statical process of random motion and describes the natural tendency to the
equilibrium of property distribution.

Note that in the illustration of this chapter, the small particles are abstract distri-
butions of the transporting substances or properties. They are not necessary real
particles.

6.2 Transport Filter

Though the physical mechanism of the property transport is clearly revealed through
the PDEs in the former section, the PDEs themselves are expressed in Eulerian
perspective (see section 2.1.2) and their physical pictures are still not clear. An
intuitive visualization of the effects of these PDEs on the transporting properties is
helpful to the understanding of the complex phenomenon. To do so, it is critically
important to see the patterns concerned with the phenomenon. And it is natural
to tracking the property transport to uncover these patterns, i. e. by Lagrangian
approaches.

Structure information is essentially important during fluid analysis. However,
most flow patterns are invisible to human perception. The art of flow visualization
is to make these underlying patterns visible. A common way is to identify some
visible distribution field related to the phenomenon and visualize the specified
patterns through the corresponding distribution fields. The distribution fields are
normally scalar fields either in 2D or 3D, which could be visualized with classical
visualization approaches.

Then the problem comes to the identification of such a distribution field which
captures the transport behavior. To reflect the dynamical transport behavior, the
history of the transport process needs to be represented properly. For a given
spatial-temporal point (x0, t0), all the information relevant to the transport behav-
ior happened at the investigating point over a certain time interval needs to be
collected. Convolution is a powerful tool to identify the relevant information in
a specified domain and to increase the visual depth into a complex phenomenon.
Here we apply convolution in spatial-temporal domain as shown in Figure 6.2a.
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(a) (b)

Figure 6.2: An illustration of transport filter for 2D unsteady flow fields: (a) Gen-
eral transport filter; (b) Transport filter for advection.

A transport filter is introduced here to identify the neighborhood in the spatial-
temporal domain relevant to the transport behavior for a certain time interval at
the investigating point and to record all the information within this neighborhood
to that point based on the transport mechanism, which is illustrated in Figure 6.2a.
The transport mechanisms are based on the theories of theoretical fluid dynamics,
which are usually expressed in PDEs. For an isotropic diffusion process described
with Equation 6.4, the transport filter can be directly solved through the corre-
sponding PDE, which is expressed as a Gaussian type filter in spatial-temporal
domain. The scale of a transport filter is related to the time interval of the inves-
tigation and can be specified by the user interests. A transport filter integrates the
information of transport history and the results can be interpreted as motion blur
of the property transport.

A transport filter integrates the information of transport history and the results can
be interpreted as motion blur of the property transport.

6.2.1 Advection filter

Advection is generally the major transport mode underlying a flow process. It de-
scribes the transport with the motion of a fluid, which is one fundamental topic in
fluid dynamics. Under the advection mode, the transport mechanism is interpreted
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as following along the trajectories of fluid elements, i. e. path-lines. This means
we use path-lines to design the transport filter for the advection.

As discussed in section 3.1.3, LIC is one standard technique in flow visualiza-
tion. It imitates the motion blur of substance advection in a fluid and the results
describe the substance concentration due to transport behavior of the fluid. Clas-
sical LIC puts noise textures into a flow field and advects these textures along the
flow currents. A visualization of the streamline structures can be obtained by ob-
serving the blurred result of the texture advection, which depicts the geometrical
distribution of the advection trajectories.

Similarly, convolution along path-lines (Path-line LIC) tracks the transport evo-
lution in time and provides an effective approach to uncover the dynamical in-
formation of flow advection [SJM96]. It is natural to extend the Path-line LIC
to property advection phenomenon and the transport filter for advection, i. e. an
advection filter, is equivalent to the convolution along path-lines, which is illus-
trated in Figure 6.2b. Applying to the properties under investigation, an advection
filter integrates the history information along the fluid currents and generates the
motion blur underlying the advection mechanism.

Given a time-dependent vector field v(x, t), Equation 5.2 defines a path-line px0,t0(t)
starting at (x0, t0) in the parametric form. A path-line is a function of time. It de-
pends on the initial position x0, the initial time t0 and the integration time t. A
path-line integration can be carried out in both forward and backward direction.
In real applications, flow data is usually given in a fixed spatial and temporal do-
main, which means that we could only integrate path-lines for a finite-time. A
path-line starting from (x0, t0) can be also parameterized in the form of px0,t0(s)
with a specific arc length s.

Given a scalar property field, an advection filter consists of calculating an intensity
value I by convoluting it along path-lines either for a fixed time:

I(x0, t0) =
∫ T2

−T1

k(τ) f (px0,t0(τ),τ) dτ (6.5)

or for a fixed length:

I(x0, t0) =
∫ S2

−S1

k(τ) f (px0,t0(l), t(px0,t0(l))) dl (6.6)

where k denotes a filter kernel. T1 > 0 and T2 > 0 are the kernel lengths which
specify the forward integration time and backward integration time. The integra-
tion could be restricted to one direction by simply setting the other parameter to
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0. Similarly, S1 > 0 and S2 > 0 specify the integration arc length in forward and
backward direction.

Note, in real applications, usually the resulting intensity is normalized by dividing
either the total integration time or the integration arc length.

6.3 Finite-time Transport Structure
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Figure 6.3: Visualization of a steady water flow between parallel plates: (a) Flow
configuration; (b) Classical LIC visualization for U = 0; (c) Path-line LIC over
kinetic energy field for U = 0; (d) Classical LIC visualization for U = 8m/s; (e)
Path-line LIC over kinetic energy field for U = 8m/s .

To visualize intrinsic structures of property advection for flow fields, we also try
to identify certain distribution fields concerning of flow advection. Through ap-
plying advection filter over certain field, we record the advection concentration of
this field. A key step for advection filter is to select proper property field for con-
volution. Classical approaches convolute noise textures to generate a motion blur
field for visualization. However, this blurred result field after advection records
only the information of geometrical distributions of either streamlines or path-
lines. Some characteristic physical information is not well explored during the
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convolution. Instead of noise textures, we advect physical properties of interest
along flow fields and observe the advection concentration of the corresponding
properties, which reveals structure nature of property advection.

A simple example is illustrated in Figure 6.3 which describes an analysis over a
well developed 2D water flow between two parallel plates. One plate is moving
forward with certain velocity and the pressure gradient is constant for the flow
(Figure 6.3a). This is a simple steady flow which can be well solved in flow
dynamics [KC04]. Figure 6.3b and d show a visualization using classical LIC
approach for two cases with different plate moving velocities. We can see that
the results are nearly the same. Geometrical distributions of transport trajectories
are not enough to identify the full view of a dynamical behavior. The dynamical
information, especially the structure nature of property transport, is also important
during flow analysis. Instead of noise texture, we convolute the corresponding
kinetic energy along path-lines and visualize the result distribution in Figure 6.3c
and d. High values of this field indicate strong kinetic energy advections. This
distribution uncovers the structures of the kinetic energy transport of this plate
flow. The asymmetry of plate moving is clearly distinguished here.

(a) (b) (c)

(d) (e) (f)

Figure 6.4: (Visualization of a dipole flow, the first row m = 0.0628, the second
row m = 0.628: (a,d) Classical LIC visualization; (b,e) Color coding of kinetic
energy field; (c,f) Path-line LIC over kinetic energy field.

Note that for steady flow, path-lines coincide with streamlines. We consider sim-
ple 2D steady flow in this section to illustrate some basic ideas.

An extension of LIC by color coding local properties is used to supplement prop-
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erty information during flow transport [LHD∗04]. However, it still records the
local information instead of the dynamical transport nature. Figure 6.4 and 6.5
show an analysis of two dipole flow of different volume flow rate per unit depth
m [KC04]. The first two columns of Figure 6.4 show the comparison of the LIC
visualization and color coding of local kinetic energy. Structurally, the visual-
ization between the two dipoles are the same. The dynamical transport nature
is not fully uncovered with either LIC or local property visualization. We apply
advection filter over local kinetic energy field and visualize the result distribution
in Figure 6.4c and f. The values of the convoluted field indicate the advection
magnitude and the high values point out the concentration trend of the underlying
flow advection. Here, high values correspond to the sink area. These distributions
reveal the advection nature of kinetic energy under the flow process. The inherent
asymmetry is clearly observed in these kinetic energy transport structures. People
can distinguish the two dipoles through the difference of the kinetic energy trans-
port structures. Figure 6.5 show the FTLE fields of corresponding dipoles which
present the corresponding LCS (see section 3.4.4). It not surprising that the ki-
netic energy advection structures of dipole follows generally with LCS appearing
in the corresponding FTLE fields, since LCS describes purely the barriers of fluid
advection.

(a) (b)

Figure 6.5: FTLE field the dipole flow, (a) m = 0.0628; (b) m = 0.628.

6.3.1 Physical properties for investigation

Underlying a fluid phenomenon, there are various interactions and transports of
different physical properties. The application of transport filter depends strongly
on the investigated physical properties. These properties may be either conserva-
tive or not. With the application on different physical properties, the results of
transport filter reflect different insights to the dynamical nature of fluid transport.
For this chapter, we investigate several common physical properties and identify
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some interesting structures on applications. General kinematic properties such as
kinetic energy (KE), momentum, acceleration and local shear rate (LSRate)

LSRate = Det[
1
2
(∇v+∇vT )]

which is determinant of the local shear rate tensor [KC04], are widely explored
here. For the behaviors relating to vortexes, the properties such as vorticity

Vorticity = ∇×v

and divergence

Div = ∇ ·v
are analyzed. The popular Q-criteria and λ2-critieria are also considered here.
They are closely related to the Navier Stokes equations and reflect the amount of
strain and vortical motions in the vector field. Due to this fact those quantities
are the most popular among fluid mechanicists. Let ∇v denote the gradient of the
vector field. Then the strain tensor S is defined as its symmetric part S = 1

2(∇v+
∇vT ). The antisymmetric part Ω = ∇v−∇vT ) is closely related to vorticity. Then
the Q-criterion defined by [Hun87], also known as the Okubo-Weiss criterion, is
defined by

Q =
1
2
(‖Ω‖2−‖S‖2)

Q has a direct physical interpretation. Where Q > 0, vorticity dominates strain,
so Hunt identified vortex regions with Q > 0. Note that Q < 0 indicates that the
vector field is dominated by strain, making this criterion valuable in vector fields
with distinct areas of strong vortical motions and areas of high strain. λ2, derived
by [JH95], is closely related to Q. Consider the three real eigenvalues λ1 ≤ λ2 ≤
λ3 of the symmetric matrix S2 + Ω2. In [JH95] it is deduced from the Navier
Stokes equations that for a local pressure minimum two negative eigenvalues of
this matrix are necessary. They define a vortex region where λ2 < 0. In their
work they show that Q = . 1

2(λ1 +λ2 +λ3). Despite of this strong link they show
that the λ2-criterion detects vortex regions more reliably especially under a strong
external strain. Nevertheless, the l2- criterion, unlike the Q-criterion, lacks a direct
interpretation for regions where λ2 > 0.

Based on our experience, there are no criteria to assess these properties. The se-
lection of the properties currently depends on the interests of users. For reference,
we compare the results of the advection filters with the corresponding LCS and
observe the coherence and differences between them.
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6.3.2 The Algorithm

Here we formulate the algorithm to visualize the finite-time transport structures
of advection for flow fields.

1. Identify the physical properties of interest for investigation.

2. Pick up a certain time of interest and make a sampling in spatial domain.

3. Integrate path-lines from the sampling points in either forward or backward
directions over a fixed time T .

4. Specify a convolution kernel and convolute the selected physical property
field along path-lines.

5. Visualize the result field of the convolution and characterize the correspond-
ing flow transport structures.

This algorithm needs some remarks:

To 1, this is the most important and flexible part of our approach. We currently
select those properties which have been well applied in flow analysis. It can also
be extended in future applications. There are no unique criteria for the selection,
since different analysis in different applications may require different property
fields. We provide users an interface for further exploration.

To 2, we try to make the sampling resolution as high as possible to above the
Nyquist frequency, however we need to balance our computation power. During
our analysis, we use an adaptive mechanism, if we find some interesting areas, we
will zoom into that area with a higher sampling resolution.

To 3, in our approach, we consider only finite-time path-lines. The path-line in-
tegration is carried out in one direction within a fixed time T . We use T > 0 for
the forward integration and T < 0 for the backward integration. Our approach
shares the same problem as other finite-time approaches on the setting of integra-
tion time for path-lines. It is a tradeoff between the fact that we want to have the
path-lines to be analyzed as long as possible and the property that most of the
path-lines should be integrated over the same time without leaving the domain.
We have carefully set the integration time during our applications. However, to
the best of our knowledge, there is still no guarantee of the optimization of the in-
tegration time setting. We use 4th order Runge-Kutta integration for the path-line
integration.

To 4, we currently consider a simple box kernel [SJM96] in our applications and
restrict the analysis on the advection phenomenon of property transport. Diffusion
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or radiation analysis may be added by modifying the convolution kernel.

To 5, typical scalar visualization techniques can be chosen for the visualization
of convolution result fields. In this chapter, standard direct volume rendering and
color coding are applied.

((aa))

((bb))

((cc))

Figure 6.6: ABC flow: (a) Path-lines of steady ABC flow with integration time
T = 10; (b) Path-lines of an unsteady ABC flow starting at t = 0 with integration
time T = 8; (c) FTLE field of steady ABC flow [Hal01].

6.4 Applications

We applied our approach to a number of data sets. In our current applications, we
consider only the physical properties mentioned above for convolution. Neverthe-
less, we can also identify several interesting flow transport structures from these
properties which seem to hold even for different data sets.

Throughout this chapter, we use a temperature color coding to characterize the
time information along path-lines.

ABC Flow

Figures 6.6 - 6.12 present results of analyzing two ABC flow fields (see sec-
tion 4.6, Equation 4.12), which are solutions of Euler equation (Equation 2.24).
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They are incompressible and inviscid. Here we set A =
√

3,B =
√

2,C = 1 for

Figure 6.7: Steady ABC flow: the first and the third rows visualize the original
property fields; the second and the fourth rows visualize the corresponding results
of advection filter with integration time T = 10.

steady case and A =
√

3 + 0.5t sin(2πt),B =
√

2,C = 1 for unsteady case. We
consider the spatial domain D = [0,2π]3 and used a sampling of 128×128×128.
Since this field is also defined outside the domain, we can integrate every path-line
for a full time, even though it leaves the domain.

Figure 6.6a shows some integrated path-lines for the steady ABC field with the
integration time T = 10 while Figure 6.6b shows some integrated path-lines for
the unsteady ABC field with the integration time T = 8. Figure 6.6c is one visual-
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Figure 6.8: Steady ABC flow: Scatter plots of the advection filter convoluted
fields of different physical properties and the corresponding FTLE fields.

Figure 6.9: Steady ABC flow: select an area at slice z = 2π , the upper subfigures
visualize the fields on that area; The lower subfigures visualize scatter plots of
these fields and the corresponding FTLE on that area.
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ization of the distribution of the FTLE fields of the steady ABC flow [Hal01]. The
corresponding LCS of the steady ABC flow can be visualized through this FTLE
field.

Figure 6.10: Steady ABC flow: select an area at slice y = 2π , the upper subfigures
visualize the fields on that area; The lower subfigures visualize scatter plots of
these fields and the corresponding FTLE on that area.

The upper left of Figure 6.7 visualizes the local momentum field. We apply advec-
tion filter over momentum and visualize the distribution in the right of the second
row of Figure 6.7. It is obvious to see that the advection structures presented in
the convoluted momentum field follows strictly with the LCS. We observe that
the local maximums in FTLE field corresponds to the local minimums in the con-
voluted momentum field. It is reasonable that near LCS there is generally weak
momentum advection. Similarly, the middle of the first row of Figure 6.7 shows
the local kinetic energy field and the middle of the second row of Figure 6.7 shows
the convoluted kinetic energy field after applying advection filter. We can observe
the strong similarity again between the kinetic energy advection structure and the
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LCS.

For the analysis of the correspondence, we make scatter plots of these correspond-
ing fields in Figure 6.8. The upper left shows a scatter plot between the FTLE field
and the advection filtered momentum field. Although the relations of these two
fields can not be described using simple global functions, we can still see the
general inverse mapping between FTLE and convoluted momentum field. Further
more, we can see that this mapping is formed with several bundle structures which
may indicate local correlations.

Figure 6.11: Unsteady ABC Flow: The left of the first two rows visualize the
FTLE fields while the others visualize the advection filter convoluted results of
different properties; Row 1 and 3 start at t = 0 with integration time T = 8; Row
2 and 4 start at t = 8 with integration time T = −8.

For the further analysis of these local correlations, we select some areas with
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simple obvious patterns and observe the scatter plot of these two fields on the re-
stricted area. Figure6.9 selects an area on an XY slice. From the upper left of the
scatter plots in Figure 6.9, we can see clearly that the two fields on the selected
areas have strong inverse correlations, though they are not linearly related. In Fig-
ure 6.10, an area on an XZ slice is selected. For the selection on Figure 6.10, we
can see clearly two types of mappings, which correspond to the two different types
of similarities between the momentum advection structure and the LCS on the se-
lected area. As for the case of kinetic energy, we can see the same correlations for
the two selected areas.
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Figure 6.12: Advection filter over generic fields. For each group, the upper vi-
sualizes the original field and the lower visualizes the corresponding convoluted
result. Group a and b test two random noise field; Group c-f test a normal function
field g(x,y,z) of different frequencies f .
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Similar analyses of other physical properties (local shear rate, vorticity, λ2-criteria,
Q-criteria) are illustrated in the remaining subfigures of Figure 6.7-6.9. We can
see again the similarities between the advection structures and the LCS. Though
the relations of these similarities behave differently, the local correlations between
the patterns are clear, which agree with the visual observations between the corre-
sponding fields.

In Figure 6.11 we apply our approach to the unsteady ABC field and compared
them with the classical FTLE fields. The left of the first two rows of Figure 6.11
visualize FTLE fields computed at time t = 0 and t = 8 in forward and backward
direction with the convolution time T = 8 and T = −8. LCS can be visualized
through these FTLE fields.

We investigated the following properties, momentum, kinetic energy, local shear
rate, vorticity, λ2-criteria, Q-criteria. The corresponding distributions of advec-
tion filter over the physical properties are visualized in the rest of Figure 6.11.
The transport structures uncovered by these distributions present the same strong
similarity with the corresponding LCS as the steady case.

We can see for both steady and unsteady ABC flow, either momentum or kinetic
energy transport structures have significant similarity with the LCS. It is reason-
able that in this ABC case, the fluids are inviscid and there is no dissipation during
the flow advection. Thus the fluid transport is well behaved and structurally there
is no difference between material transport, momentum transport or kinetic energy
transport.

We observe that for any properties of the ABC flow, either for steady or the un-
steady case, the advection structures present significant similarities to the LCS
structure. It is interesting that we carry out further analysis for the advection filter
over general properties. If we apply our advection filter over generic fields, we
may also approach to the structures which have some similarity to LCS. Though
they have no obvious physical meaning, they still reveal some intrinsic structures
behind the ideal flow. In Figure 6.12, we apply our approach to different generic
fields. Figure 6.12a and b compare the results of advection filter over two ran-
dom noise fields while Figure 6.12c-f compare the results of advection filter over
g(x,y,z) = sin2( f x)sin2( f y)sin2( f z) with different frequency f .

The LCS look-like structures appear when the dominant frequency of the generic
fields approaching to the inherent frequency of ABC flow. It turns out that the
concentration of generic substance advection tends to approaching to the intrinsic
structures of flow transport and the more correlation between a flow field and a
property field, the better for Path-line LIC to uncover these intrinsic structures.
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2D Time-dependent Cylinder Flow

(a)

(b)

Figure 6.13: 2D dynamical cylinder flow: (a) Path-lines starting at t = 0 with
integration time T = 5; (b) FTLE field.

Figure 6.13 and 6.14 present some results of analyzing a 2D time-dependent ver-
sion of the flow behind a circular cylinder (see section 5.3). This is an incom-
pressible laminar viscous flow [TWHS05]. The spatial domain of the data set is
[−9,49.5]× [−11,11] and it is temporal periodic flow with one period [0,32]. We
focus the consideration on the area behind the cylinder ([0,28]× [−3.5,3.5]) and
make a sampling of 1000× 250. For the result in the figures, we set an integra-
tion time T = 5. Figure 6.13a shows a visualization of some integrated path-lines
starting at t = 0. Figure 6.13b shows a color coding of the corresponding FTLE
field which visualizes the underlying LCS.

For the advection filter, we also consider the physical properties mentioned above,
momentum, kinetic energy, local shear rate, vorticity, λ2-criteria, Q-criteria. We
apply our advection filter over them along path-lines and visualize them using
color coding in rows 2, 4 and 6 of Figure 6.14. The upper left shows the origi-
nal momentum field and the left of the second row visualizes the corresponding
result after applying advection filter. We can see that the transport structures are
significantly different from local structures. The low values of the result field of
advection filter indicate weak flow advections. We can observe that the center
area behind the cylinder has strong momentum advection at the beginning while
it turns to weak advection as the flow moves forward. Here we note that the mo-
mentum advection structures presented in the result fields of advection filter have
some similarities with the LCS at the areas near the location of the circular cylin-
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der. The similarity decreases when the flow travels forward. This flow is viscous
and there exists momentum dissipation during the transport. For the case of ki-
netic energy, we can see obviously the same similarities as for the momentum
case, while for the other properties, the correlations are not so obvious.

Figure 6.14: 2D dynamical cylinder flow: Rows 1, 3 and 5 visualize the local
property fields; Rows 2, 4 and 6 visualize the corresponding advection filter con-
volution results.

This means that the momentum and kinetic energy advection have similar trans-
port behavior with the material advection at the early stage and these property
transport structures diffuse gradually as the increasing of dissipation effects dur-
ing the flow transport. Compared the two property transport structures, we can
also see that the momentum transport structures diffuse slower than the kinetic
energy transport structures. It is interesting that these two properties are conser-
vative transport properties and their structures appear strong similarities to the
LCS for this cylinder flow.

For the analysis of the similarities, we pick up an area with strong similarity and
make the scatter plots in Figure 6.15. We can see again the clear mapping bundles
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for momentum and kinetic energy from the scatter plots during the local analysis,
while for other properties, the correlations are not so obvious. It doesn’t mean that
either momentum or kinetic energy is better than other properties. The comparing
with LCS is only a reference for our structures, which are not necessarily corre-
lated to LCS. The choosing the properties still depends the interests of the users
and an assessment criteria is still leaves for future works. However, it is interesting
to compare the similarity or difference of various flow transport structures which
contributes better understanding of the complex dynamical phenomena behind a
flow.

Figure 6.15: 2D dynamical cylinder flow: select an area on slice t = 0, the upper
subfigures visualize the fields on the selected area; The lower subfigures visualize
scatter plots of these fields and the corresponding FTLE on that area.
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(a) (b)

Figure 6.16: Path-lines of five jet flow starting at: (a) t = 0.018s; (b) t = 0.024s.

Five Jet Flow

Figure 6.16 and 6.17 show an application of our approach on a 3D time-dependent
flow which simulates five jets flying through a domain [FMA05]. The spatial
domain of the data set is [0,3.81m]3 and the temporal domain is [0,0.06s]. The
inflow velocity is 100m/s. This data set is a compressible flow data for which
the FTLE fields are not available for LCS. We focus our consideration on the
center area ([0.8m,3.01m]3) where the jets fly through and make a sampling of
100× 100× 100. The following result show two analysis starting at t = 0.018s
and t = 0.024s with the integration time T = 0.018s and T = 0.024s. Figure 6.16
a and b show some integrated path-lines with the integration time T = 0.024s.

The first column of Figure 6.17 shows an application of our approach on the den-
sity field starting at t = 0.018s. The left visualizes the local density field at the
starting time. The middle and right visualize the result fields of advection filter
with the integration time T = 0.018s and T = 0.024s. The structures appeared in
the convoluted density result show the structure nature of the mass advection in the
flow. The high value area of the result field indicates the region with strong mass
advection which describes the trend of mass concentration while the low value
area of the result field indicates the region of weak mass advection and the possi-
ble separation of mass advection. We can see that these mass transport structures
present significant different information than the original local property field and
depend little on the integration time when it is integrated long enough to uncover
the structure. It is notable that even in a symmetric local setting, the underlying
mass transport may behave asymmetrically [KC04, LL87]. Similarly the second
column show a advection filter analysis of the density field starting at t = 0.024s.
We can see again that the mass transport structures differ significantly from local
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Figure 6.17: Five jet flow: The left visualizes local density field at starting time;
The middle visualizes the corresponding result of advection filter with T = 0.018s;
The right visualizes the corresponding result of advection filter with T = 0.024s.
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property structures and depend little on the integration time. The asymmetry turns
out again during the underlying mass advection. We can also observe some co-
herency between the two groups of transport structures and these structures reflect
the intrinsic transport behavior of the underlying mass advection.

In the third and fourth column of Figure 6.17, we apply our advection filter ap-
proach to the corresponding energy field of the five jet data set. The structures
appearing in the convoluted result field of advection filter figure out the underly-
ing energy transport behavior. The high value area of the result field indicates the
trend of energy concentration while the low value area of the result field indicates
weak energy advection and the possible separation of the underlying energy ad-
vection. These energy transport structures are inherently asymmetric though the
local field is symmetric. They have some coherency and depend weakly on the
integration time. Through these structures, we can observe the intrinsic transport
behavior of the underlying energy advection.

It is interesting to observe the difference between the mass transport structures
and the corresponding energy transport structures. The visualization and compar-
ison of different transport structures significantly improve the understanding of
the complex phenomena of dynamical flow transport.

6.5 Conclusion

To getting insights into the dynamical transport behavior of a flow processes is still
a challenging problem. Either property or motion provides separate view points
towards the dynamical nature. Our approach did a trial to combine the property
analysis and the motion analysis, and offers a higher level structure view of the
dynamical behaviors underlying flow transport. This combination is constructed
by applying certain transport filter over physical property fields. For advection,
this transport filter is equivalent to line integral convolution along path-lines. In
particular, we contribute the following work:

• We proposed an approach to identify the finite-time flow transport structures
for physical properties through transport filters.

• We formulated the transport filter for advection behavior as convoluting a
correlated physical property field along finite-time path-lines.

• We applied our approach to a number of data sets and present some new
insights into the dynamical behaviors.
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However, we are not able to achieve accuracy in both the static information space
and the dynamic information space. The observation of dynamical transport be-
haviors may come to the reduction of static details or even loss of some infor-
mation. Nevertheless, this dynamical transport information presents different in-
trinsic view into the transport phenomenon and contributes significantly to visual
understanding of fluid dynamics. Besides, in this chapter, we only focus on the
visual analysis of the underlying transport structures, the theoretical analysis or
proof is beyond our scope. For the future work, we could consider the variant
of convolution kernels to include the analysis of non advection transport behav-
iors. It is also worth to implement the general transport filters directly from partial
differential equations. For our computation, we haven’t considered any acceler-
ation algorithm for the convolution. It is desired to do a further acceleration for
interactive application.
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Chapter 7

Conclusions and Future Works

A new picture of a fluid process delivers new information about the complex phe-
nomenon. Path-line oriented visualization techniques provide significantly dif-
ferent insights into the dynamical nature of a flow field and contribute a natural
understanding of the important characteristics of fluid motion.

7.1 Conclusions

In this thesis we presented several novel flow visualization approaches for dy-
namical flow fields. We focused on the behavior of path-lines and developed
algorithms to identify new features and structures relating to them. The following
points summarize the main results and contributions of this thesis:

1. We introduced a topological approach to analyzing the asymptotic behavior
of path-lines by considering a periodic time-dependent vector fields. Criti-
cal path-lines are defined, extracted and classified and the basins from which
the path-lines converge to the critical path-lines are computed in forward or
backward integration.

2. We offered an alternative solution to extract the separation surfaces of the
path-line oriented topology. An image analysis method is applied to extract
the seeding curves and the separation surfaces are integrated from these
seeding curves with step advancing super sampling adjustment.

3. We introduced an information visualization based approach to analyze the
behaviors of path-lines. A number of local and global attributes of path-
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lines, which we expect to contain relevant information about the path-line
behaviors, are identified. These attributes are interactively analyzed by us-
ing an approach from information visualization and the results are used to
steering a 3D path-line visualization. Particularly, we offered a flexible in-
terface for interactive visual analysis of dynamical flow behaviors.

4. We investigated the transport phenomenon underlying a flow process and
proposed an approach to visualize the finite-time transport structures of
physical properties. A transport filter is introduced to integrate the trans-
port history of the corresponding properties. For advection behavior, the
transport filter is constructed as a path-line integral convolution with the
correlated physical property fields. The finite-time transport structures of
property advection is identified from the convoluted results of advection
filters.

5. We applied our approaches to a number of data sets and proved that these
path-line oriented visualization results present significantly different infor-
mation of the dynamical flow behavior and contribute new insights into the
complex nature of unsteady flow fields.

7.2 Future Works

The research described in this thesis raised several questions which would wait
for further research. We sketch several ideas for future works:

1. The current topological method based on asymptotic path-line behavior is
limited only to periodic flow fields. A general asymptotic topological seg-
mentation based on path-line for non-periodic flow fields is still a difficult
topic. Besides, our current segmentation is only specified for periodic 2D
time-dependent vector fields, it is also an open topic to extend this to 3D
time-dependent vector fields.

2. The image analysis approach for current separation surface extraction is
limited to the regular basin structures. If the basins are quite irregular and
discontinuous, the seeding curve extraction will fail. A robust surface ex-
traction algorithm is desired for further research. Also the efficiency needs
to be improved for the separation surface integration.

3. We only proposed an interactive interface for visual analysis of path-lines
behaviors. In practice, not all path-line attributes gives useful information.
It is still difficult to identify proper path-line attributes for the visualization
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of different data sets. More attributes need to be identified for real appli-
cation. Besides, the information visualization techniques still needs to be
assessed for different attribute sets. Which needs more practical support for
this approach.

4. We only focus on the visual analysis of the underlying transport structures,
the theoretical analysis or proof of these transport structures are still left
for theoretical fluid analysis. Our current approach only consider advection
transport behavior. The variant of convolution kernels needs to be consid-
ered to include non advection transport behaviors. Also it is worth to doing
a further acceleration for interactive application.

5. An implementation of general transport filter directly from the partial differ-
ent equations is desired. A flexible analysis of fluid transport with different
mechanisms may contribute a better understanding of the complex dynam-
ical phenomena underlying a flow process.
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Strömungsmechanik zur Fahrzeugtechnik. Springer, 1994.

[Hun87] HUNT J.: Vorticity and vortex dynamics in complex turbulent flows.
Proc CANCAM, Trans. Can. Soc. Mec. Engrs 11 (1987), 21.

[HY00] HALLER G., YUAN G.: Lagrangian coherent structures and mixing
in two-dimensional turbulence. Physica D 147, 3-4 (2000), 352–370.

[JEH01] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.: Lagrangian-
eulerian advection for unsteady flow visualization. In Proceedings of
the Conference on Visualization 2001 (VIS-01) (Piscataway, NJ, Oct.
21–26 2001), Ertl T., Joy K., Varshney A., (Eds.), IEEE Computer
Society, pp. 53–60.

[JEH02] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.: Lagrangian-
eulerian advection of noise and dye textures for unsteady flow visual-
ization. IEEE Transactions on Visualization and Computer Graphics
8, 3 (2002), 211–222.

[JH95] JEONG J., HUSSAIN F.: On the identification of a vortex. J. Fluid
Mechanics 285 (1995), 69–94.

[JKS95] JAIN R. C., KASTURI R., SCHUNCK B. G.: Machine Vision.
McGraw-Hill, 1995.

[Joh04] JOHNSON C.: Top scientific visualization research problems. IEEE
Comput. Graph. Appl. 24, 4 (2004), 13–17.

[KC04] KUNDU P. K., COHEN I. M.: Fluid Mechanics. Academic Press,
2004.

[Kre00] KREITH F.: Fluid Mechanics. CRC Press, 2000.

[LDS90] LEVY Y., DEGANI D., SEGINER A.: Graphical visualization of
vortical flows by means of helicity. AIAA Journal 28, 8 (1990),
1347–1352.

[Lea07] LEAL L. G.: Advanced Transport Phenomena: Fluid Mechanics
and Convective Transport Processes. Cambridge University Press,
2007.



BIBLIOGRAPHY 129

[LH99] LOVELY D., HAIMES R.: Shock detection from computational fluid
dynamics results, 1999.

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H., VROLIJK B., POST

F. H., WEISKOPF D.: The state of the art in flow visualization:
Dense and texture-based techniques. Comput. Graph. Forum 23, 2
(2004), 203–222.

[Lia66] LIAPUNOV A. M.: Stability of Motion. Academic Press, New York,
1966.

[LJH03] LARAMEE R. S., JOBARD B., HAUSER H.: Image space based
visualization of unsteady flow on surfaces. In IEEE Visualization
(2003), Turk G., van Wijk J. J., II R. J. M., (Eds.), IEEE Computer
Society, pp. 131–138.
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ROCKWOOD A.: Visualization of higher order singularities in vec-
tor fields. In Proc. IEEE Visualization ’97 (1997), Yagel R., Hagen
H., (Eds.), pp. 67–74.

[SJM96] SHEN H.-W., JOHNSON C. R., MA K.-L.: Visualizing vector fields
using line integral convolution and dye advection. In Proc. Sympo-
sium on Volume Visualization (New York, Oct. 1996), ACM Press,
pp. 63–70.

[SK97] SHEN H., KAO D.: Uflic - a line integral convolution algorithm for
visualizing unsteady flows. In Proc. IEEE Visualization ’97 (1997),
Yagel R., Hagen H., (Eds.), pp. 317–323.
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