Interactive Volume Ray Tracing

Gerd Marmitt

Computer Graphics Group
Saarland University
Saarbriicken, Germany

Dissertation zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultédten
der Universitat des Saarlandes

Betreuender Hochschullehrer / Supervisor:

Prof. Dr.-Ing. Philipp Slusallek, Universitdt des Saarlandes,
Saarbriicken, Germany

Gutachter / Reviewers:

Prof. Dr.-Ing. Philipp Slusallek, Universitdt des Saarlandes,
Saarbriicken, Germany

Prof. Dr. rer. nat. Elmar Schémer, Johannes Gutenberg Universitiit,
Mainz, Germany

Dekan / Dean:

Prof. Dr. rer. nat. Joachim Weickert

Eingereicht am / Thesis submitted:
26. Juni 2008 / June 26th 2008

Datum des Kolloquiums / Date of defense:
18. Dezember 2008 / December 18th 2008

Priifungskommission / Committee:

Prof. Dr. rer. nat. Sebastian Hack, Universitidt des Saarlandes

Prof. Dr.-Ing. Philipp Slusallek, Universitit des Saarlandes

Prof. Dr. rer. nat. Elmar Schémer, Johannes Gutenberg Universitét
Dr. Andreas Hildebrandt, Universitit des Saarlandes

Gerd Marmitt

Lehrstuhl fiir Computergraphik, Campus E 1 1
Universitiat des Saarlandes

66123 Saarbriicken

marmitt@graphics.cs.uni-sb.de

iii

Abstract

Volume rendering is one of the most demanding and interesting topics among
scientific visualization. Applications include medical examinations, simula-
tion of physical processes, and visual art. Most of these applications de-
mand interactivity with respect to the viewing and visualization parameters.
The ray tracing algorithm, although inherently simulating light interaction
with participating media, was always considered too slow. Instead, most re-
searchers followed object-order algorithms better suited for graphics adapters,
although such approaches often suffer either from low quality or lack of flex-
ibility.

Another alternative is to speed up the ray tracing algorithm to make it
competitive for volumetric visualization tasks. Since the advent of modern
graphic adapters, research in this area had somehow ceased, although some
limitations of GPUs, e.g. limited graphics board memory and tedious pro-
gramming model, are still a problem. The two methods discussed in this
thesis are therefore purely software-based since it is believed that software
implementations allow for a far better optimization process before porting
algorithms to hardware. The first method is called implicit kd-tree, which is a
hierarchical spatial acceleration structure originally developed for iso-surface
rendering of regular data sets that now supports semi-transparent rendering,
time-dependent data visualization, and is even used in non volume-rendering
applications. The second algorithm uses so-called Pliicker coordinates, pro-
viding a fast incremental traversal for data sets consisting of tetrahedral
or hexahedral primitives. Both algorithms are highly optimized to support
interactive rendering of volumetric data sets and are therefore major contri-
butions towards a flexible and interactive volume ray tracing framework.

v

Kurzfassung

Die Visualisierung von volumetrischen Daten ist eine der interessantesten,
aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissen-
schaftlichen Visualisierung. Im Gegensatz zu Oberflaichenmodellen, reprasen-
tieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwen-
dungen reichen von medizinischen Untersuchungen, Simulation physikalischer
Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen
Interaktivitdt hinsichtlich Darstellungs- und Visualisierungsparameter. Der
Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhéa-
rent die Interaktion mit einem solchen Medium simulieren kann, immer als
zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf
Rasterisierungsansétze, da diese besser fiir Grafikkarten geeignet sind. Dabei
leiden diese Anséitze entweder unter einer ungeniigenden Qualitéit respektive
Flexibilitat.

Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu
beschleunigen, dass er sinnvoll fiir Visualisierungsanwendungen benutzt wer-
den kann. Seit der Verfiigbarkeit moderner Grafikkarten hat die Forschung
auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch
Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder
das umsténdliche Programmiermodell, enthalten. Die beiden in dieser Ar-
beit vorgestellten Methoden sind deshalb vollstdndig softwarebasiert, da es
sinnvoller erscheint, moglichst viele Optimierungen in Software zu realisieren,
bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impli-
ziter Kd-Baum genannt, eine hierarchische und rdumliche Beschleunigungs-
truktur, die urspriinglich fiir die Generierung von Isoflachen reguldre Git-
terdatensétze entwickelt wurde. In der Zwischenzeit unterstiitzt sie auch die
semi-transparente Darstellung, die Darstellung von zeitabhéngigen Daten-
sitzen und wurde erfolgreich fiir andere Anwendungen eingesetzt. Der zweite
Algorithmus benutzt so genannte Pliicker-Koordinaten, welche die Implemen-
tierung eines schnellen inkrementellen Traversierers fiir Datensétze erlauben,
deren Primitive Tetraeder beziechungsweise Hexaeder sind. Beide Algorithmen
wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetri-
scher Daten zu ermoglichen und stellen deshalb einen wichtigen Beitrag hin
zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.

for Angela

vil

Acknowledgments

It is unquestionable that many students, colleagues, relatives, and friends
have contributed significantly in many ways to make this thesis finally hap-
pen. During my work in the Computer Graphics Group at the Saarland
University, I advised Jens-Michael Weber, Andreas Kleer, Heiko Friedrich,
Javor Kalojanov, and Roman Brauchle in their Bachelor or Master Theses.
Most of their work was used in several publications within the last four years
and became therefore also part of this thesis. Besides programming essential
parts of the entire framework, discussions were fruitful for both sides.

The same can be said about my former colleagues Andreas Dietrich,
Heiko Friedrich (again), Andreas Pomi, Jorg Schmittler, and Sven Woop,
who helped me understand many issues in the computer graphics area. A
special thanks goes to Heiko Friedrich since most research projects were re-
alized with his help.

Devoting years to education is in my point of view extremely difficult with-
out having relatives and family for support. Most support came from my par-
ents and three sisters, but I also would like to thank my friends Tanja Warken,
Matthias Buchmann, Lars Baldes, Marc Schmidt, and Carsten Spyra. Spe-
cial thanks goes to Benedikt Fries, since he gave me the chance to see Japan
right before I started writing this thesis.

Contents

1 Introduction

2 Ray Tracing & Volume Graphics

2.1 Ray Tracing o
2.2 Volume Graphics,
2.2.1 Transport of Light
2.2.2 Volume Rendering Integral
2.2.3 Types of Volumetric Data
2.2.3.1 Regular Data Sets

2.2.3.2 Curvilinear Data Sets

2.2.3.3 Unstructured Data Sets

2.2.4 Reconstructing a Continuous Volume Signal
2.2.5 Volume Rendering Techniques
2.2.5.1 Semi-Transparent Rendering

2.2.5.2 Maximum-Intensity-Projection (MIP)

2.2.5.3 Iso-Surface Rendering
2.2.5.4 Decomposition
2.2.6 Volume Rendering Pipeline
23 Conclusion Lo

3 Alternative (object-order) Approaches

3.1 Cell Projection

3.1.1 Parallel Cell Projection
3.2 Hybrid Algorithms
3.3 Object-Order Ray Casting Algorithms
3.4 Vertex Projection (Splatting)
3.5 Texture Mapping
3.6 Shear-Warp
3.7 Custom Hardware
3.8 Conclusion

11
12
16
19
21
22
22
23
25
25
25
26
27
27
28

CONTENTS

4 Static Regular Data Sets 45
4.1 Related Work oo 46
4.1.1 CPU and GPU Hardware Acceleration 47
4.1.2 Non-hierarchical Acceleration Structures 49
4.1.3 Hierarchical Acceleration Structures. 50

4.2 Backgroundo 51
421 Kd-Trees. 51
4.2.2 Coherent Ray Tracing 53

4.3 Static Iso-surface Rendering 54
4.3.1 The Implicit Kd-tree 54
4.3.1.1 Tree Building 56

4.3.1.2 Tree Traversal a7

4.3.1.3 Parallel SIMD Implementation 58

4.3.2 Optimizations 0oL 59
4.3.2.1 Reducing Node Storage 60

4.3.2.2 Reducing the Number of Nodes 61

4.3.2.3 Relaxing the power-of-two Constraint 61

4.3.2.4 Discretizing min/max values 63

4.3.2.5 Re-using the Parent’s Min and Max Values . 65

4.3.2.6 Comparison of Performance 65

4.3.3 Iso-Surface Cell Intersection 67
4.3.3.1 Approximate Methods 68

4.3.3.2 Accurate Methods 71

4.3.3.3 Parallel SIMD Implementation 75

4.3.3.4 Comparison of Performance 76

4.3.3.5 Higher-Order Intersection Tests 7

4.3.4 Shading and Gradient Calculation 78
435 Results. 80

4.4 Massive Iso-surface Rendering 83
4.4.1 'Treelet Construction and Traversal 84
442 Results. 86

4.5 Static Semi-transparent Rendering 86
4.5.1 Adapting and Extending the Implicit Kd-tree 87
452 Results.o 88

4.6 Conclusion 90
4.7 Contributions 92

4.8

Future Work 92

CONTENTS

xi

5 Dynamics and Other Applications

5.1

Time-dependent Volume Rendering

5.1.1 Related Worko
5.1.2 Concurrent Tree Update
5.1.2.1 Replacing the recursive Implementation . . .

5.1.2.2 Multithreading

5.1.2.3 Update Performance Speedup

5.1.2.4 Synchronization Mechanisms

5.1.3 The 4D kd-Tree
5.1.3.1 Extending Tree Building and Traversal

5.1.3.2 Optimizing the Order of Splitting Planes . . .

5.1.4 Comparison of Performance
5.1.5 Results.o

5.2 Other Applications I: Terrain Rendering
5.2.1 Wang-Tiling Scheme
5.2.2 Ground Terrain Traversal
523 Results.o

5.3 Other Applications II: Dynamic Rendering
5.3.1 Update and Traversal Process
532 Results. oo

54 Conclusions
5.5 Contributions oo
5.6 Future Work

Irregular Data Sets
6.1 Related Worko
6.2 Theoretical Background
6.2.1 Pliicker Coordinates
6.2.2 Bilinear Patches00
6.3 Tetrahedral Meshes
6.3.1 Finding the Initial Tetrahedron
6.3.2 Mesh Traversal in Pliicker Space
6.3.3 Iso-Surface Cell Intersection
6.3.4 Gradient Computation
6.3.5 Memory Requirements
6.3.6 Scalability Measurements
6.4 Hexahedral Grids
6.4.1 Finding the Initial Hexahedron
6.4.2 Grid Traversal
6.4.2.1 Pliicker Space
6.4.2.2 Bilinear Patch Extension.

CONTENTS

6.4.3 Iso-Surface Cell Intersection 149

6.4.4 Gradient Computation 152

6.4.5 Memory Requirements 153

6.4.6 Scalability and Comparison Measurements 154

6.5 Results. 156
6.6 Conclusion 159
6.7 Contributions L 161
6.8 Future Work 161

7 Final Summary 165

Bibliography 177

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

A Generic Ray Tracing Scheme 10
Interaction Between Light and Participating Media 13
Approximating the Volume Rendering Integral 18
Regular Volumes and Cells 21
Anisotropic and Rectilinear Volumes 21
Curvilinear Volumes with Hexahedral Cells 22
Unstructured Volumes with Tetrahedral Cells 23
Tri-linear Interpolation within a Cube 24
Different Volume Rendering Techniques 30
Cell Projection Principle 32
Vertex Projection (Splatting) Principle 38
Shear-Warp Factorization 41
Tree and Associated Range for a 2D KD-Tree 52
Volume Grid versus Volume Tree Traversal 55
Volumes Rendered with Multiple Iso-Surfaces 56
Traversal Cases for the KD-Tree 58
Structure of a Large KD-Tree node 60
Structure of a Small KD-Tree Node 61
Virtual Nodes Relaxes the Power-of-Two Constraint 62
MRbrain and Male-Torso Iso-Surface Rendering 63
Multiple Iso-Surface Intersection Scenario. 67
Midpoint Cell Intersection 68
Linearly Interpolated Cell Intersection 69
Repeated Linearly Interpolated Cell Intersection 71
Iterative Root Finding Cell Intersection 74
Scalability Chart of the Implicit Kd-Tree 81
Several Rendered Images of the Visible Female 82
Several Renderings Richtmyer-Meshkov Instability 83

Massive Volume Rendering Pre-Processing 84

xXiv

LIST OF FIGURES

4.18 Massive Data Set Renderings
4.19 Semi-Transparent Rendering with Different Thresholds

5.1 A Two-step Iterative KD-Tree Update Procedure
5.2 Multi-threaded (i.e., distributed) Iterative Tree Update
5.3 Overview of the Synchronization Mechanism
5.4 Synchronization of Threads for Updating The KD-Tree
5.5 Individual Time Steps of Tested Time-Dependent Data Sets

5.6 Sample Time-Dependent Rendering Series
5.7 Puget Sound Area Panorama View
5.8 Wang Tiling Scheme with 18 Tiles.
5.9 Top-level Terrain KD-Tree Traversal
5.10 Elevation Fitting of Sub-scene Plants
5.11 Construction a Bounded Kd-tree
5.12 Bounded Kd-tree Traversal Cases
5.13 Dynamic Polygonal Scenes from the FPGA Renderer
5.14 Award-Winning Close-up View of the Puget Sound Area . . .

6.1 Hexahedron Decomposition into Five Tetrahedra
6.2 Geometric Representation of the Pliicker Test
6.3 Irregular Volume Boundary Examples
6.4 Ray-Triangle test using Pliicker Coordinates
6.5 Naive versus optimized Pliicker-Tetrahedron test
6.6 Possible Results of an Iso-Surface within a Tetrahedron
6.7 Blunt Rendered with Different Volume Rendering Techniques .
6.8 Quality Comparison of different Gradient Computations

6.9 Data Structure for the Pliicker Traversal Algorithm
6.10 Irregular Data Set Rendering Examples
6.11 Exit face determination for a hexahedral cell
6.12 Handling Concave Hexahedra
6.13 Ray intersecting a Hexahedral Face
6.14 Curvilinear Grid Rendering Artifacts
6.15 Combustion Chamber Rendered with Different Techniques
6.16 Mixing Different Volumetric Organizations

7.1 Seamless Integration of Polygonal and Volumetric Objects
7.2 Nahtlose Integration von polyg. und volum. Objekten

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Summary of Volume Data Organizations 29
Single and Packet Ray Traversal Step Comparison 59
Performance Impact of Discretizing the Min/Max Values . . . 64
Large and Small Variant Memory Consumption 65
Large and Small Variant Performance Comparison 66
Cell Intersection Performance for Single Ray 76
Cell Intersection Performance for Packet Ray 7
Performance Measurements of the Original Implementation . . 81
Performance Measurements of the Massive Renderer 86
RMS-Error and Speedup for the Engine Data Set 90
Update performance for Iso-Surface Rendering 101
Update performance for Semi-Transparent Rendering 102
4d Kd-Tree and Static Kd-Tree Performance Comparison . . . 105
Single Ray Performance using Different Frameworks 107
Packet Ray Performance using Different Frameworks 108
Concurrent Tree Update Single and Packet Ray Performance . 110
Rendering Performance of the Plant Populated Terrain 117
SaarCOR, RPU, and OpenRT Performance Comparison . . . 120
Cycles and Frame Rates of the Dynamic Polygonal Renderer . 122
Naive and Optimized Pliicker Performance Comparison 137
Tetrahedra Processed per Second Using the Pliicker Tests . . . 142
Iso-Surface Rendering Performance of Tetrahedral Data 144
Semi-Transparent Rendering Performance of Tetrahedral Data 145
Hexahedra Processed per Second for both Approaches 151
[so-Surface Rendering Performance of Hexahedral Data 155
Semi-Transparent Rendering Performance of Hexahedral Data 155
Unstructured and Semi-structured Data Sets 156

Volume Rendering Performance of Tetrahedral Data 157

xvi LIST OF TABLES

6.10 Volume Rendering Performance of Hexahedral Data 158

Chapter 1
Introduction

Chapter 1: Introduction

Im Lichte bereits erlangter Erkenntnis erscheint
das gliicklich Erreichte fast wie selbstverstindlich,
und jeder intelligente Student erfafit es ohne
zu groffe Mihe. Aber das ahnungsvolle, Jahre
wdahrende Suchen im Dunkeln mit seiner ges-
pannten Sehnsucht, seiner Abwechslung von Zu-
versicht und Ermattung und seinem endlichen
Durchbrechen zur Wahrheit, das kennt nur, wer
es selbst erlebt hat.

Albert Einstein

Scientific visualization is an important research areas within the computer
graphics community and covers a large variety of methods and applications.
However, such applications usually demand processing and inspection of par-
ticipating media. Rendering participating media is called volume graphics
or volume rendering and is one of the most interesting (and difficult) topics,
since it provides a detailed exploration of material in the context of physical,
medical, and biological research.

Volumes are generally described as participating media in a 3D field,
which takes light interaction into account. Such a 3D field may represent
density, temperature, pressure, higher dimensional data like acceleration and
velocity vectors, or even a combination of these properties. The remainder of
this thesis will, however, be restricted to scalar fields since multi-dimensional
fields are beyond the scope of this work.

Sources for 3D scalar fields are either measurement devices or computer
simulations. Typical devices used for this task include computer tomogra-
phy (CT) and magnetic resonance imaging (MRI), which are familiar to the
general public. For example, a CT scanner produce images similar to x-rays
from various orientations offering doctors a better diagnostic tool for their
patients. Until now, physician often relied on 2D images, since 3D imaging
tools were either too costly or lacked display quality. There can be, how-
ever, no doubt that 3D imaging offers far better examination capabilities
and analysis which will lead to a growing demand in the near future.

Another field of application lies in simulation of computational fluid dy-
namics (CFD) or finite element methods (FEM). Both applications require
3D scalar fields for a proper representation of physical processes, e.g. temper-
ature and pressure distribution in a combustion chamber over time. Usually,
supercomputers are employed for such simulations since the underlying phys-
ical model requires complex calculations. Scientific visualization aids in the
understanding of these physical processes.

A third community which has started using volume rendering very re-
cently is visual artists. More and more artists are impressed by the expres-
siveness and possibilities of volume rendering. In computer games and other
areas of visual art, volumetric rendering effects can be used for describing

non-solid objects, e.g. fluids, gases, and natural phenomena like fog, clouds,
and fire. Volume rendering is used here to add visual clues to virtual realities
as a supplement to traditional surface models.

Computer games rely completely on graphics boards for rendering, which
do not directly support rendering of volumetric data. Due to their limited
flexibility, which only changed recently, most proposed algorithms are fast but
restricted to the rasterization of surfaces. All primitives are projected onto
the screen before applying visibility sorting. Volumetric primitives, however,
require a sampling and sorting within the primitive for a proper visualization.
Ray tracing naturally supports this, since it imitates the physical model of
light transport directly and can therefore be used in a more general way, i.e.
supporting a variety of visualization tasks with only minor modifications of
the basic algorithm. Yet, due to the lack of ray tracing hardware, it was
always considered as too slow for interactive purposes.

The OpenRT project [Wald02a, Dietrich03] showed that this is no longer
true in the case of polygonal data. This ray tracing engine consists of an
efficient combination of processor-specific command sets, i.e. SIMD, highly
optimized acceleration structures and the ability to cluster several consumer
PCs together for rendering the final image. The latter results directly from its
image-based rendering approach, i.e. the main loop runs over the image pixels
and not scene objects. This allows for nearly linear scalability with respect
to computational power. Since all pixels can be computed independently,
doubling the number of (equally powerful) processors halves the time for
computing the same image. For the same reason, ray tracing can profit
directly from multi-core processors.

Once the basic ray tracing algorithm is implemented, it is easy to add
varying types of shading models, e.g. Lambertian [Gouraud71] and Phong
[Phong75] shading. More complex ray generation and shooting allows for
global illumination with soft shadows and caustics (e.g. [Jensen96]). Addi-
tionally, ray tracing handles any kind of primitive (triangles, quads, nurbs,
etc.) along the ray and returns the hit position of the first opaque object.

The entire framework was restricted to surface models consisting of tri-
angles and could hence not handle volumetric data. The main focus of this
thesis is therefore to add this functionality to the OpenRT rendering sys-
tem by exploring two interesting concepts recently proposed in the area of
volume rendering: implicit kd-trees [Wald05, Marmitt05, Marmitt08] and
Pliicker-based volume traversal [Marmitt05, Marmitt06b, Marmitt08]. It is
worth noting that the presented algorithms can be implemented in any ray
tracing-based rendering system.

However, also practical issues are discussed. It is of major importance
to distinguish first between different types of volumetric data, i.e. regular

Chapter 1: Introduction

and curvilinear grids as well as unstructured meshes. Since all data sets
offer only a discrete signal, the reconstruction of a continuous signal by using
interpolation is briefly discussed. The section continues with an overview
of typical volume rendering techniques, i.e. iso-surface rendering, maximum-
intensity projection, and semi-transparent rendering. It will be closed with a
short overview of a generic volume rendering pipeline used by most volume
renderers.

Chapter 3 describes different types of object-order approaches for volume
rendering. They are considered as alternative rendering methods throughout
this thesis. In essence, these alternative methods can be distinguished in cell-
projection, vertex-projection, and texture-mapping. Their main advantage
is rendering performance, since it is easier to implement them on graphics
adapters. An exception is certainly the shear-warp algorithm, which is a
fast software implementation for regular grids. It is not frequently used,
however, due to its algorithm-inherent shortcomings, i.e. rendering artifacts
from 45 degree viewpoints, memory consumption, etc. The chapter ends with
a brief discussion of custom hardware implementations. Most, however, are
not developed further due to their costly research and limited extensibility
with respect to rapid advancements in that area.

Chapter 4 extensively discusses the first technique for allowing interactive
volume ray tracing of regular grids. The implicit kd-tree is described and
optimized for rendering iso-surfaces of static volume data sets first. Recent
advancements enable a fast introspection even of massive volumetric data
sets. As the following section shows, hierarchical semi-transparent rendering
can be added with only minor modifications. Conclusions and future work
close this chapter.

As Chapter 5 shows, the implicit kd-tree can also be used for rendering
time-dependent data. The first alternative introduces a concurrent update
mechanism using a shared-memory system and is therefore well-suited for
small data sets. Larger data sets can be rendered by the newly developed
4D kd-tree, although this acceleration structure is not competitive in its cur-
rent state. Two special sections cover the usage of the implicit kd-tree in
non-volume rendering areas. In a first example, a terrain rendering system
consisting of 90 trillion triangles is described where the implicit kd-tree de-
termines which tiles are pierced by a ray from the elevation map. The entire
system achieves near-interactive frame rates on a shared-memory system with
16 cores. The second example uses the idea of the implicit kd-tree to sup-
port dynamic rendering of polygonal data. This is made possible using the
bounded kd-tree.

Chapter 6 describes an incremental traversal algorithm for curvilinear and
unstructured data sets. In contrast to the previously discussed hierarchical

acceleration structure, this incremental traverser supports all volume render-
ing techniques with only minor modifications, i.e. semi-transparent rendering
is supported directly. Care has to be taken to allow for an interactive per-
formance since this is the main goal of all algorithms proposed here. This
goal is made possible using the concept of Pliicker coordinates and bilinear
patches. While Pliicker coordinates solely suffice to render unstructured, i.e.
tetrahedralized, data efficiently, a hybrid approach of Plicker coordinates
and bilinear patch intersections for curvilinear grids consisting of hexahedral
primitives offers both a better quality and a higher performance. Of course
this chapter also closes with results, drawn conclusions and future work.

Finally Chapter 7 briefly summarizes all achievements made towards an
interactive and flexible volume ray tracing system. It also suggests how such
a system might look and states crucial components.

Chapter 1: Introduction

Chapter 2
Ray Tracing & Volume Graphics

Chapter 2: Ray Tracing & Volume Graphics

The rules of the game are laid down. We all have
to play, buddy!

"Brazil”

This chapter covers main concepts of volume rendering as used throughout
this thesis. It starts with Section 2.1, which provides an overview of the well-
known ray tracing algorithm. As will later be shown, this global, image-space
rendering approach has a variety of advantages compared to rasterization.
While this fact is in general not questioned, the performance for rendering
images with ray tracing is often cited as its largest drawback.

However, rendering polygonal data with ray tracing at interactive frame
rates has been established for several years. Research groups in Utah (USA)
and Saarbriicken (Germany) demonstrated interactive ray tracing for super-
computers (*-ray) [Parker99a] and a cluster of commodity PC’s (OpenRT)
[Wald02a, Wald04a]. The latter was more successful since a cluster of con-
sumer PC’s is less expensive compared to a high-end supercomputer, such
as an SGI Reality Monster. Furthermore OpenRT was extended in a variety
of ways, including global illumination [Wald02b, Giinther04], video-textures
for mixed-reality applications [Pomi03], and free-form surfaces [Benthin04].
As a pure software implementation, it can also be used for displaying highly
complex models [Wald01b, Wald04b] such as, CAD data [Dietrich05b], or
natural plant scenes [DietrichO5a, Dietrich06]. Additionally, the ray trac-
ing algorithm was successfully ported to several hardware prototypes. Using
FPGAs as a platform allows for an efficient development while still keeping
close to custom chip design issues, i.e. ASICs. While the first implemen-
tation offered only a limited number of features [Schmittler02], the latest
developments include freely programmable shaders [Woop05] as well as effi-
cient handling of dynamic scenes [Woop06].

However, all of these implementations consider surface (polygonal) data
only. Evaluating light transfer at surfaces only does not take into account
interaction with an atmosphere or the interior of objects. In contrast, volume
rendering describes a wide range of techniques for generating images from a
3D (scalar) field. It seems therefore only plausible to extend the existing in-
teractive ray tracing system to handle volumetric data. The following section
introduces the key components and advantages of a ray tracing system first,
while Section 2.2 discusses the theoretical background and practical issues
for handling volumetric data. It will be shown that ray tracing naturally
supports volumetric data and allows for easy integration into the ray tracing
system.

2.1 Ray Tracing

2.1 Ray Tracing

Ray tracing is a well-known technique for producing realistic images by sim-
ulating the transport of light [Appel68, Kay79, Whitted80]. In contrast to
rasterization, the visible objects in a given scene are determined at the pixel
level, i.e. this algorithm works in image-order. The final image is rendered
pixel-wise by searching for the nearest visible object from the eye point.
Pixel-wise processing makes the algorithm relatively slow compared to ras-
terization, especially for objects covering large regions in screen space. On
the other hand, implementing a generic ray tracer is rather straightforward.
Shadows and point light sources can be easily added, and for reflection and
refraction, it is sufficient to implement the corresponding physical equations
for ray shooting, e.g. Bears law, Snell’s law, or Fresnel equation, into the
system.

Algorithm 1 A Generic Ray Tracing Algorithm.
for p = 0..#Pizels do
Compute viewing ray
for o = 0..#0bjects do
if o is hit at ray parameter t and ¢ < t;;; then

hit .= true
Opit = O
lhit =1
end if
end for

if hit = true then
Set pixel color to op;; color
else
Set pixel color to background color
end if
end for

As can be seen from Algorithm 1, a basic ray tracing engine consists of
two nested loops running over all pixels (outer loop) and over all objects
(inner loop).! The inner loop enumerates all objects, calculates the distance
from the eye point for each object, and returns the object closest to the eye
point.2 The pixel color is either set to the color of the returned object or the
background color, respectively, if no object was found.

'In fact, swapping inner and outer loops results in a basic rasterization algorithm.
2The visibility sorting applied here is known as the painters algorithm [de Berg00].

10

Chapter 2: Ray Tracing & Volume Graphics

Eye point

Refractionrays

Object

Figure 2.1: In ray tracing, rays are shot from the eye point through each
pizel of the image plane. To account for shadow or material properties like
reflection and refraction, secondary rays are traced recursively in the scene.

So far, this algorithm considers primary (or viewing) rays only, which is
usually referred as to ray casting. To add more visual cues, it is necessary
to continue shooting rays. For example, shooting rays from the intersection
point to all light sources determine whether this part of an object lies in a
shadow. This is achieved by checking whether another primitive is located
between the light source and the object currently intersected. Reflection and
refraction might also be added by applying the corresponding physical laws
to the incoming ray and continue shooting. It is obvious that ray shooting
can continue from that point until no further objects are intersected or the
material properties of the intersected primitive do not request shooting of
further rays. All subsequent rays are called secondary (or higher-order) rays.
Figure 2.1 illustrates the ray tracing algorithm. In general, a ray is only
traced until a pre-defined level of recursion, referred to as depth, is reached,
since the contribution to the final pixel color diminishes with each level.
Instead pre-defining the level of recursion, recursion may also stop if the
contribution is too small.

Another extension towards more realistic images is to shoot more than
one ray per ray depth. For example, image quality can be improved using
super-sampling, i.e. shooting rays 'in-between’ pixels according to a certain
pattern, since this avoids aliasing (staircase) artifacts. More natural appear-
ing soft shadows can be computed by implementing area light sources and
sampling the light source area instead of a single boolean shadow test. Global
illumination effects like color bleeding can be achieved by sampling the hemi-
sphere from each intersection point with several rays and accumulating their

2.2 Volume Graphics

11

contributions. Of course, all these effects lead to an exponential growth of
rays and reduces the rendering performance. The challenge is here to achieve
a realistic looking image with a minimal number of rays.

Applying the basic principles to volume graphics, the problem is shifted
one level deeper. At first, efficient algorithms for shooting rays through vol-
umetric data need to be investigated before applying advanced illumination
effects. Traversing a volume means computing the light interaction with a
participating medium. Basic types of interaction are emission (i.e. increasing
radiance), absorption (i.e. decreasing radiance), and scattering (i.e. radiance
leaves in directions other than the light ray and therefore increases (i.e. out-
scattering) and decreases (i.e. in-scattering) energy at the same time). This
interaction must to be evaluated at all positions in the 3D volume. Gaseous
materials are the most common example. Volume visualization is therefore
more computationally demanding compared to polygonal rendering. The fol-
lowing section will therefore not only provide a theoretical background but
will also discuss practical issues. As it will turn out, ray tracing provides an
easily implemented solution for volume graphics.

2.2 Volume Graphics

For volume graphics, a participating medium needs to be modeled along
with the actual light-transport mechanism. While photo-realistic rendering
requires a physically accurate description of the participating medium, sci-
entific visualization tasks aim at emphasizing certain information implicitly
encoded in the medium.

In other words, the goal of direct volume visualization is the visual ex-
traction of information from a 3D scalar field®, which can be interpreted as
a mapping;:

¢:R* >R,

i.e. from a 3D space to a single-component value. This 3D scalar field orig-
inates either from measurements (e.g. CT, MRT) or simulations (e.g. CFD,
FEM). The following paragraphs discuss the fundamental equations for light
transfer and follows closely in its development of the volume rendering inte-
gral [Engel06, Hege93]. The usage of the complete volume rendering integral
is unfortunately only of limited use for interactive applications. It is there-
fore necessary to discuss a simplified and discrete version afterwards so that
numerical methods can be used (see Section 2.2.2). Finally it is then possible

3Be reminded, that multi-dimensional fields are not a topic of this thesis.

12

Chapter 2: Ray Tracing & Volume Graphics

to put all discussed parts together for a generic volume rendering pipeline
(see Section 2.2.6).

2.2.1 Transport of Light

For this model it is assumed that light propagates along straight lines in space
as long as it does not interact with a participating medium, i.e. relativistic
effects are generally not considered. Typically, the following three types of
interactions are distinguished [Engel06]:

Emission. The participating medium actively emits light, i.e. the radiated
energy is increased. Hot gas converting heat into radiative energy is an
example.

Absorption. Here, the light is absorbed by converting radiated energy into
heat. Sun collectors converting sun light into hot water are an example.

Scattering. Essentially, scattering can be interpreted as changing the di-
rection of light propagation. It can be further distinguished in elastic
scattering (wavelength energy of photons is not a affected) and inelastic
scattering (wavelength energy of photons changes).

Each of these three types of interaction affect the amount of radiated
energy along a light ray. This light energy is usually described by its radiance
L.* This term can be derived by combining radiant power ¢, irradiance E,
and the solid angle €:

N _ dof W
(b_E[W_ s] b= dA {mQ]’ 21)

which leads to the power arriving at or leaving from a surface per solid angle
and per unit projected area, radiance L is defined as

dQ w
L= dA | dQdt [m2 : sr] ' (22)

In other words, L is characterized as radiance energy () per unit area
A, solid angle 2, and time t. dA, = dAcosf where 6 denotes the angle
between the surface normal and the incoming light ray. Hence, the subscript
1 indicates that the area is measured as projected along the light direction.

4In [Engel06] the symbol I is used for radiance despite the fact that Glass-
ner [Glassner95] uses L for radiance, since this would lead to confusion with the intensity
term. The Glassner notation is used in the following.

2.2 Volume Graphics

Physically, radiance is stated in watts per steradian per square metre. The
unit of the solid angle is dimensionless. The physical units will be omitted
from here on to make the equations more readable.’

| f

(a) emission (b) absorption (c) in—scattering (d) out—scatterir

Figure 2.2: A light ray traversing a participating medium interacts with it
in several ways. While emission increases the radiance for each ray (a),
absorption has the opposite effect (b). Scattering may either increase the
outgoing radiance (c), or decrease the outgoing radiance (d).

To begin, consider the effect of a medium on the radiative energy along a
ray. Except for a vacuum, a medium generally affects the radiance energy in
different ways. As illustrated in Figure 2.2, emission increases the light en-
ergy, while absorption reduces the light energy. Scattering effects are further
distinguished in in-scattering, where additional energy is redirected into the
ray direction, and out-scattering, where the outgoing ray energy is reduced
since light is scattered in different directions. Note that this is independent
from elastic and inelastic scattering. The latter concerns only changes of the
underlying wavelength and is therefore not further considered here. Combin-
ing the effects for emission, absorption and scattering results in the following
equation for light transfer:

w- V. L(z,w) = —xL(z.w) +n. (2.3)

The term w - VL denotes the dot product between light direction w
and the gradient V = (%, a%, %) of the radiance L at position x, i.e. the
directional derivative taken along the light direction. y represents the total
absorption coefficient defining the rate of light attenuation with respect to
the medium and is therefore dependent on the radiance energy at point x. A
second term, 7 needs to be added representing the emission (i.e. describing
the extent to which radiative energy is increased through the participating
medium). The quantities y and 7 refer to the total absorption and emission

quantities (both measured in m™"!) respectively:

5For a comprehensive explanation of physical quantities and light measurements, refer
to Glassner’s two-volume book, Principles of digital image synthesis [Glassner95].

Chapter 2: Ray Tracing & Volume Graphics

X = K+o (2.4)
n o= q+j (2:5)

The first equation states that the total absorption coefficient x consists
of a true (or thermal) absorption coefficient x and a scattering coefficient o
representing the energy loss from out-scattering. The second equation shows
that the total emission 7 is defined as the sum of a source (or thermal)
term ¢ representing emission and an in-scattering term j. It is important
to distinguish between thermal emission and absorption, since they increase
respectively, or decrease, the beam energy. Scattering causes photon interac-
tion with a scattering center and hence energy results in moving in different
directions with (in the case of inelastic scattering) different frequencies.

Note that all six quantities depend on the position in space x. This
parameter is omitted to make the equations more readable. Except for the
emissive scattering part j, the other three quantities depend solely on the
optical material properties which are either assigned by a transfer function
or given by the underlying (gaseous) model. For j, all possible contributions
from incoming light directions must be considered. The basic idea is to
accumulate all incident light by integrating over all directions w’:

1
Jj(z,w) = E/h o(z, ")p(z,w' w)L(z,w")dY. (2.6)
sphere

This equation defines the accumulation of incident light L(z,w’) by in-
tegrating over all directions w’. All contributions are not only weighted by
the scattering coefficient o, but also by the phase function p. This func-
tion basically represents the angle dependency of scattering and is therefore
an important optical property. Assuming a normalized phase function, it is
possible to rewrite Equation 2.3 including all types of interaction. It com-
bines the previously derived terms for emission, absorption, in-scattering,
and out-scattering:®

w-V.L(z,w) = —(k(z,w)+o(z,w))Ll(r,w)+q(z,w)

1
- o(z, ")p(z,w w)L(x,)dY. (2.7)
T

sphere

6The similarities with the rendering equation [Kajiya86, Glassner95] are obvious and
of course not surprising since this equation is just a special case of the volume rendering
equation restricted to surfaces.

2.2 Volume Graphics

15

The goal of direct volume rendering is now to determine the radiance L
from Equation 2.7 for the light transfer. It is common to implement only a
subset of the equation above minimizing the cost of its evaluation. For this
purpose one or more terms are removed resulting in the following principle
models [Engel06]):

Absorption Only. In this case the volume represents a perfectly black ma-
terial that may absorb incident light.

Emission Only. The volume consists of a gas that is completely transparent
but emits light.

Emission-Absorption Model. This model is commonly used and simu-
lates a participating medium which can emit light and absorb incident
light at the same time. Indirect lighting and scattering are, however,
not modeled.

Single Scattering and Shadowing. Here, light coming from an external
source is scattered. In the same way, shadows are produced by consid-
ering the attenuation of light incident from an external source.

Multiple Scattering. This means the complete evaluation of Equation 2.7,
i.e. including emission, absorption, and scattering effects.

In practice, however, most volume renderers implement the emission-
absorption model since it offers the best tradeoff between generality and
efficiency. Getting rid of scattering terms, i.e. considering the thermal ab-
sorption x and (thermal) emission ¢ only, Equation 2.7 can be written as

w- V. L(z,w) = —k(z,w)L(z,w) + q(z,w), (2.8)

which is termed the differential volume rendering equation, since the light
transport is described by the differential change in radiance. If only a single
ray is considered, parameterized by arc length s, w-V,I can be rewritten as
the derivative % leading to

dL(s)
ds
In other words, the positions and solid angles are simply substituted by
the length parameter s. Using this volume rendering equation, the volume
rendering integral can be derived by integrating radiance L. This is explained
in the next section.

= —r(s)L(s) +q(s) (2.9)

16

Chapter 2: Ray Tracing & Volume Graphics

2.2.2 Volume Rendering Integral

The volume rendering integral is derived by integrating Equation 2.9 along
the direction of light flow with starting point sq and endpoint s,:

L(sn) = Loe~Jso "9 1 / q(s)e” " w0t g, (2.10)
50

In this equation Ly denotes the light entering the volume from the back-
ground at position s = sg, while L(s,) denotes the radiance leaving the
volume at position s = s, and finally reaching the eye point. In other words,
the first term of the equation describes the light measured at the background
and is hence omitted if there is no background attenuation by the volume.
The second term is the main part since it represents the integral contribu-
tion of the source term attenuated by the participating medium along the

remaining distances to the eye point.
Background attenuation Ly and volume emission ¢ need to be multiplied
by a transparency factor. To compute this factor, the optical depth must be
computed first. Between the positions s; and sy, optical depth is defined as

(51, 8) = / e, (2.11)

S1
which is basically a measure indicating how long the light travels before
it is absorbed. Small values make the volume transparent while large values
of 7 make the volume more opaque. The corresponding transparency can be
computed by plugging in the e-function:

T(s1,52) = e~ mlons2) — o= [7 K(t)dt, (2.12)

leading to a more readable version of the volume rendering integral:

L(s,) = LoT(s0, 5,) + / " ()T (s, 52)ds. (2.13)

S0

In general, however, it is not possible to solve this integral analytically,
and hence it is approximated by numerical methods. From the fact that
points of the underlying 3D scalar field are not continuous but at discrete
positions in space, it follows that the integration domain should be split
into a number of smaller subsets where limits are given by the locations
So < 81 < ... < Sp_1 < Sy, i.e. the ith segment is determined by the interval
[si_1,8;]. The starting position is set to s = so and the endpoint of the
interval s = s,,. Note that these intervals generally do not have equal length.
Using Equation 2.13 it is possible to compute the radiance at location s; and
the interval [s;_1, s;] using:

2.2 Volume Graphics

17

L(s;) = L(si-1)T(si-1, 8;) + /8 q(s)T'(s, s;)ds. (2.14)

By setting:
T, = T(Si_l, Si), and C; = / Q(S)T(S7 Si)d87

one can write L(s,) as the product of the sum of all ¢;s and the product
of all Tj’s

Liso)=> o [[T with ¢ = L(sg). (2.15)
i=0 j=i+1

Note that the transparency 7; is often replaced by its opacity, i.e. setting
a; =1 —T;. What is now left to solve the (approximated) volume rendering
integral is the computation of the transparency T; and color ¢; of the given
intervals. One possible solution is to approximate the volume rendering inte-
gral by a Riemann sum over n equidistant segments of length dx = @ As
illustrated in Figure 2.3, this is a piecewise-constant function. Each segment
of the integral is approximated by its corresponding rectangle. This is defined
by the function value at the sampling point and the sampling width given by
the intervals. Alternatively, the segment can be approximated by assuming
a linear interpolation between two discrete points (see Figure 2.3). The ith
segment transparency 7T; and color contribution ¢; can be approximated as
follows

T, o e rs)AT and ci = q(s;)Ax. (2.16)

Unfortunately, uniform sampling may result in artifacts since a homoge-
neous material is assumed. As an alternative, adaptive sampling provides
a better quality since non-homogeneous regions are sampled more densely
compared to homogeneous regions. Another possibility is the Monte-Carlo
approach, which avoids uniform sampling. Pre-integrated volume render-
ing [Engel01] allows for a faster evaluation, since it pre-computes all possible
results from the integral and stores them in a table for lookup.

Since the volume integral along a ray is evaluated step by step, it is often
referred to as compositing. In computer graphics, compositing means com-
puting a weighted sum of two or more elements. The summations and multi-
plications in Equation 2.15 are split into several simple operations executed
sequentially. The two basic approaches are front-to-back and back-to-front
compositing. Setting & = 1 — 7' (i.e. opacity) and letting C' represent the

18

Chapter 2: Ray Tracing & Volume Graphics

Af(s)

Yo

S 5 S s s s

Figure 2.3: Approximating the volume rendering integral can be solved in sev-
eral ways. Left: Approximation using a Riemann sum. Instead of evaluating
the integral, the area of the rectangles is summed as an approzimation. Right:
FEvaluating the integral at discrete points and assuming a linear interpolation
in between. Higher-order interpolation schemes are also possible. Note that
Ax was chosen to be extremely large for this demonstration to visualize the
difference between the methods.

color, i.e. both the newly contributed radiance ¢ and the accumulated ra-
diance L are covered by this term, the front-to-back-operation is defined as
follows:

Odst — Odst + (]- - adst)osrc (2]—7)

Qgst < Qgst T (1 - Oédst)as?’c (218)

where subscript src is interpreted as source or input from the optical prop-
erties of the data set and subscript dst is the destination or output quantity.
Hence, the output color Cy; is computed by adding the new input color Cs,..,
weighted by the current opacity value agy. The term gy is similarly com-
puted. Applying Equation 2.17 and 2.18 iteratively while marching through
the volume updates opacity and color. Obviously, there is no contribution
if the opacity reaches a; = 1. In this case the iterative marching can be
stopped, which is commonly referred to as early ray termination.

Reversing the traversal direction leads directly to the back-to-front com-
positing scheme:

Cdst — (1 - asrc)cdst + Osrc (219)

Since no accumulated opacity is needed, its iterative update is not nec-
essary when determining the color contribution. Hence the compositing is
easier but does not allow for early ray termination. Generally, back-to-front
rendering does not work with regard to perspective ray tracing and ray cast-
ing and will therefore not be discussed further.

2.2 Volume Graphics

19

Instead, this paragraph closes with briefly applying alternative approaches
to this scheme. For example, maximum intensity projection (MIP) is often
used in medical applications. The goal here is to find the maximum value
found along a (light) ray path. This can be achieved by setting:

Cdst — max(Cdsta Csrc) (22())

Obviously, the order of the iteration does not matter, allowing for random
access of all values, and thus enabling the use of acceleration structures.

When rendering iso-surfaces, i.e. implicit surfaces defined by a certain
value, the basic operations are a little different. Here, it is basically a boolean
decision whether there exists a contribution C' along the ray that is equal to
the searched value. If so, an iso-surface was found, otherwise, it was not.
Since the first intersection with the iso-surface C' defined by Cj,, is wanted,
the order of traversal is important:

c— { true Cigo = Cype

false otherwise (2.21)

An alternative interpretation is to look at iso-surface rendering as a special
case of a transfer function, i.e. a function which results in exactly one non-
zero solution.

As Engel et al. [Engel06] point out, the color C' can be interpreted as
radiance values for a consistent and physically correct description of light
transport. If fixed camera parameters as well as a linear response to the
camera is assumed, the strength of the recorded color values is proportional
to the incident radiance. The final radiance C' can therefore be seen as a
measure for RGB values.”

2.2.3 Types of Volumetric Data

This paragraph discusses practical issues of volume rendering with the fo-
cus on ray tracing. In the volume rendering pipeline, data traversal is the
first step, and is largely dependent on the underlying topological organiza-
tion. Typical topological volume organizations are regular, curvilinear, and
unstructured sets of 3D points in space. Since each organization necessarily
consists of discrete points in space, the signal must be reconstructed using
filter operations as described in Section 2.2.4.

Different types of volume organization result from different data sources
and volume acquisition techniques. A typical field for scalar volume data
is medical imaging, where the data is acquired by some kind of scanning

"The fact that this is not true for intermediate values is often neglected.

20

Chapter 2: Ray Tracing & Volume Graphics

device. One of the most frequently used devices is computerized tomography
(CT) where the physical scanning process is based on x-rays. In a tube the
radiation is sent from one side to an opposite detector array while traversing
the patient’s body in between. Different materials, like skin and bone, result
in different attenuation of the radiation recorded. The emitter and detector
are then rotated around the patient’s body resulting in a collection of 2D
radiation 'images’. Back-projection is often used for reconstruction and works
easiest with regular 3D grids.

Another device is magnetic resonance imaging (MRI) where nuclear mag-
netic resonance is used to identify different materials in a 3D spatial context.
A rather strong magnetic field is used to align the spins of atomic nuclei.
A much weaker, second magnetic field sends an excitation pulse to perturb
the aligned spins. If these spins realign, radiation is emitted and recorded.
Different materials in space are located using a magnetic gradient field. As
for the CT and most other types of medical devices (e.g. ultrasound, positron
emission tomography), the volume data set is reconstructed from the detected
feedback. Both devices use scanlines and produces therefore rectilinear grids.

Semi-structured or unstructured data sets sometimes produced by Ul-
trasound but result more often from simulations, like computational fluid
dynamics (CFD), finite element methods (FEM). The simulated data points
are distributed in space to form a best fits to the applied physical simulation,
i.e. adapted to the physical phenomena investigated. Besides the simulation
of physics, fire and explosion simulations for special effects are also possible.
As a last example, consider the case of converting the surface representation
of a 3D object into a set of voxels, which is termed voxelization. It should
be noted that such irregular samples often resampled in a 3D grid.

As already mentioned, each element of this field represents a scalar value.
In most cases, this datatype is a 16 bit® integer value or a 32 bit floating point
value. The following paragraphs describe three major types, their properties,
as well as their decomposition into primitives.

Note that using radial basis functions do not require a topology at all,
since their value only depends on the distance from the origin or some other
center point. Ray tracing, however, requires in general a topology for an
efficient traversal making the following discussion worthwhile.

8Data obtained from CT or MRI scanners usually use only the lower 12 bits, allowing
the representation of values between 0 and 4095. Such measurements are expressed in
Hounsfield units stating the radio density of a material. The radio-density of distilled
water at standard pressure and temperature is defined as 0 (see [Hounsfield80] for more
details).

2.2 Volume Graphics

21

2.2.3.1 Regular Data Sets

This is the most structured way of representing a volume. All scalar values
within the field are arranged in a three-dimensional grid with equal spacing
in each dimension, i.e. it is a uniform grid. Due to the organization in a 3D
regular grid, these values are usually referred as voxels (a portmanteau of the
words volumetric and pixel). Due to their inherent organization, such data
is usually stored in an array. All voxel positions in space are implicitly given
due to the regular (i.e. equidistant) organization of the grid.

Figure 2.4: Regular Data Sets (right) contains samples organized as cubes
(left). Each cube is defined by its eight corner vozels. Note that the position
in space is equidistant and therefore implicitly given.

Anisotropic Regular and Rectilinear Data Sets If the spacing between
the voxels is equidistant within each dimension but different for each dimen-
sion, the grid is called anisotropic reqular. Instead of cubes, cuboids have
to be handled. If this property is not given either, the grid is called recti-
linear (see Figure 2.5), i.e. the spacing varies within the voxels in the same
dimension.

Figure 2.5: Left: The spacing varies between the dimensions but not within
each dimension. Right: Rectilinear data sets with different spacing.

22

Chapter 2: Ray Tracing & Volume Graphics

2.2.3.2 Curvilinear Data Sets

In so-called semi-structured grids, all values are arranged in an array, i.e.
there is still adjacency information, and hence some topology implicitly en-
coded in the grid structure.

Figure 2.6: Like reqular cells, curvilinear cells consist of eight neighboring
values. The position of each value within a cell is arbitrary, as long as no
overlapping between two cells is introduced.

The grid is, however, warped by some function which makes it necessary to
store with each value a three-dimensional vector representing the position in
space. Decomposing this volume into primitives still results in cells with eight
corner values (see Figure 2.6). A cell, usually referred to as an hexahedral
(cell), is not necessarily convex.

2.2.3.3 Unstructured Data Sets

Unstructured data sets consist of a set of points distributed in space with
no adjacency information at all. It is just a list of spacial coordinates with
an attached scalar value, or in short, a list of values. Since unorganized
data is hard to traverse, a topological structure is often added requiring
additional storage costs. This structure could be built upon an arbitrary
primitive, but in most cases, a tetrahedral mesh is constructed from such a
point cloud by applying, e.g. a Delaunay tetrahedralization [Choi02]. Hence
the corresponding primitives are tetrahedra consisting of four values at their
corners (see Figure 2.7). It is common to add further restrictions to the mesh,
i.e. allowing neither holes nor overlaps of adjacent cell faces.

Tetrahedra belongs to a topological class class called simplices or simpli-
cial cells. A simplex, or more precisely, a n-simplex is defined as the convex
hull of (n + 1) affinely independent points in Euclidian space of a dimension
equal to or greater then n. In this way, a tetrahedron is a three-simplex (see
Figure 2.7), and can be used to build a triangulation of an 3D domain.

2.2 Volume Graphics

23

Figure 2.7: Unstructured volume data sets consist of point clouds only and
therefore have no adjacency information. Since this information is needed,
e.g. for interpolation, it is common to apply a Delaunay tetrahedraliza-
tion [Choi02], i.e. each cell is now a tetrahedra (left) with four values. All
connected tetrahedra construct a tetrahedral mesh.

2.2.4 Reconstructing a Continuous Volume Signal

Many types of volumes share the problem that there exists only a finite set
of discrete values from which a continuous signal has to be reconstructed.
This is a well-known problem of signal theory (refer to Oppenheim and
Schafer [Oppenheim75] for a thorough discussion).

Here it will suffice to say that a linear interpolation delivers reasonably
good results compared to the ideal sinc-function for reconstructing a contin-
uous signal. For simplicity, a regular grid with unit lengths in all three cell
dimensions is assumed. This can be easily achieved by applying a scaling
factor resulting in normalized coordinates. Linear interpolation can then be
computed by:

f(p) = (1 ==)f(a) +zf(b), (2.22)

where f(a) and f(b) are sample points at the spatial coordinates a and b
respectively. This scheme can be easily extended to higher dimensions by
applying a tensor product-like reconstruction, which is inherently supported
when using regular grids. As depicted in Figure 2.8, this is achieved by sepa-
rating the interpolation across the dimensions, i.e. by applying a sequence of
linear interpolations. This can be extended to the 2D case by first interpolat-
ing between a and b, then between ¢ and d, followed by a third interpolation
between both interpolated values

f) =1 =) f(pa) + yf (Pea), (2.23)

assuming that the sampled points in the y-dimension are given by ¢ and d.
In the same way, it is possible to add the last dimension for the 3D case

24

Chapter 2: Ray Tracing & Volume Graphics

p-@® g
P . -
° o ==
p I’a ".e"i - 7 £
a ® b a b a b
x 1-x X 1-x X 1-x

Figure 2.8: From left to right: Linear interpolation between points a and b.
Interpolating between points ¢ and d and applying one subsequent interpo-
lation results in a bilinear interpolation (middle image). Based on similar
ideas, a tri-linear interpolation can be derived from the points a - h (right
image).

f) = (1= 2) f(Pavea) + 2f (Pesn), (2.24)

which results in a total of seven linear interpolations. Using substitution,
this leads to a rather large equation [Shirley05]. It is also clear that this
trilinear interpolation involves terms up to cubic order which makes tri-linear
interpolation non-linear with respect of the polynomial to be solved. In
Section 4.3.3 it will be shown that this is an important fact for recovering an
implicit function (see Section 2.2.5).

Due to the irregular structure of the more general hexahedral, it is tedious
to derive a cubic polynomial here, but still possible [Pascucci00, McDonnell04].
An alternative approach will be discussed in Section 6.4.4 using a combina-
tion of bilinear patch intersections and a linear interpolation.

On the other hand, with a three-simplex (i.e. tetrahedron) this interpola-
tion is rather easy to compute. The well-known 2D barycentric coordinates
(see [Shirley05]) can be extended to 3D barycentric coordinates. Instead
of putting three triangular sub-areas into a relation, four tetrahedral sub-
volumes are related to each other:

f(p) = (1_5_7_5)*f(‘/qbcd)—i_ﬁ*f(‘/;]acd)+
¥ * f (Vaaba) + 6 f(Vgave), (2.25)

if Viped, Viacd, Viavd, and Vg are four (partial) volumes of the tetrahedron
defined by the vertices a, b, ¢, and d and a point ¢ = (x,y, z). The hit point
is within the tetrahedron if and only if 5 > 0,y > 0,6 > 0, and S+~v+4d < 1.

2.2 Volume Graphics

25

2.2.5 Volume Rendering Techniques

It is now time to discuss semi-transparent rendering, maximum intensity pro-
jection, and iso-surface rendering from the perspective of an actual ray casting
implementation. For the theoretical implications, refer to Section 2.2.2.

2.2.5.1 Semi-Transparent Rendering

This is a direct implementation of the volume rendering integral taking emis-
sion and absorption into account but ignores scattering. Neglecting scattering
provides a good tradeoff between generality and efficiency of computation.
The contribution along a ray is computed by solving the volume rendering
integral (see Equation 2.7), which is implemented iteratively either back-to-
front or front-to-back. For ray tracing, the usual way is a front-to-back im-
plementation since rays traverse the volume in this order. The corresponding
pseudo-code and illustration for an approximation is stated below in Algo-
rithm 2.

Algorithm 2 Semi-Transparent Rendering.

for ;. =1..N do E(i)lnoz?I
color := color + (1 — alpha) * p;
alpha := alpha + (1 — alpha) * o Ray 02— 03— 07— 0.9
end for — >

return color 02 Sar?w'élevajgé 02

In this pseudo-code, alpha and color are accumulated values of opacity
and color. In contrast to back-to-front rendering, the opacity must be tracked
independently. Intensity p; (simply speaking the intermediate color value) is
directly obtained from the volume, i.e. by reconstructing a continuous signal
(see Section 2.2.4) using interpolation and mapping. The opacity value is set
toa:=1—eP (ie. (1—=T)) or simply @« = —D (neglecting the e-function
for small D), with D as distance between two adjacent samples along the
ray. It is also possible to apply early ray termination, i.e. the loop stops
after alpha = 1.0 respectively alpha = 1.0 — € is reached (not shown in
pseudo-code).

2.2.5.2 Maximum-Intensity-Projection (MIP)

Here, the volume is traversed as previously described. Instead of accumulat-
ing values, however, only the maximum value is of interest. This method is
often used for Magnetic Resonance Angiograms where thin structures, e.g.
blood vessels etc. must be rendered accurately.

26

Chapter 2: Ray Tracing & Volume Graphics

Algorithm 3 Maximum-Intensity Rendering.

. Final
fori=1..N do color
color = MAX(color, p;)
end for Ray 02— 02— 04— 0.4
—>
return color 02 o1 oz o2
Sample values

No opacity or any other value needs to be tracked (see Algorithm 3). It is
possible to accelerate the search for the maximum value by using appropriate
structures. Parker et al. [Parker99b] store the maximum values in a multi-
level grid and creates a priority queue for each ray traversing the volumetric
grid. Regions with a lower maximum value compared to the highest value in
the priority queue can be efficiently skipped. A similar acceleration structure
can be used for the next method, called iso-surface rendering.

2.2.5.3 lIso-Surface Rendering

This techniques aims at rendering a surface which is defined by some func-
tion f(x,y,z) = p. While p is a (user-defined) iso-value, f(z,y, z) is usually
derived from the reconstruction. For example, using a tensor-product like
interpolation for regular grid (see Section 2.2.4), it would be a cubic poly-
nomial. A particularly important application for this rendering method is
virtual endoscopy.

Algorithm 4 Iso-surface Rendering.

fori=1..N do

. iso—value = 0.1 Final
if p; = piso then color
return true ,—f
end if Ray F > T — - — -
—>
end for 02 01 04 02
return f alse Sample values

Algorithm 4 assumes that the value can be find among the number of
samples N. The user-defined value p;,, is compared with each value p; along
the ray. In practice, it is necessary to reconstruct a continuous signal, e.g.
using an interpolation scheme. It suffice to check the ray at intervals defined
by the underlying primitives (cubes, hexahedra, or tetrahedra). Only those
intervals have to be investigated further, where p;s, lies between the cell’s
minimum and maximum values (see Section 4.3.3).

2.2 Volume Graphics

27

2.2.5.4 Decomposition

Such methods visualize certain subsets of the scalar field, i.e. slices, particular
points, or small geometric objects [Theisel01]. For example, a slice could be
represented as a height field by interpreting the scalar values as a vector
perpendicular to the slice [Nielson90]. Since the usage of such methods is
limited, it will not be considered further, but is mentioned for the sake of
completeness.

2.2.6 Volume Rendering Pipeline

Although the suggested approaches for volume rendering differs with respect
to hardware usage and traversal order (object or image) the underlying ren-
dering process is often implemented as a pipeline. It is common to distinguish
between six stages (see [Engel06]): data traversal, interpolation, gradient
computation, classification, shading and illumination, and compositing. The
following provides a brief description of all stages, as well as references to
upcoming chapters where specific stages will be further discussed.

Data Traversal. This is an essential first step for volume rendering. Travers-
ing the volume data depends strongly on the underlying organization of
the 3D scalar field (see Section 2.2.3). The samples found along a light
ray are the basis for discretization of the continuous volume rendering
integral. Chapters 4, 5 and 6 will mainly discuss how these different
topologies can be efficiently traversed. However, the light rays do not
hit the points within the discretized field directly, which leads to next
step.

Interpolation. Since the sampling positions usually differs from the points
in the 3D scalar field, the values on the light ray need to be interpolated
using given scalar values close to the actual sampling position. More on
this can be found when discussing reconstruction methods in general
(Section 2.2.4) and reconstructing the iso-surface within a regular grid
(see Section 4.3.3) or irregular grid (see Section 6.3.3 and 6.4.3).

Gradient Computation. Computing the gradient of the scalar field at
sample positions increases the rendering quality by adding visual cues.
This allows the use of directional light or Phong shading [Phong75]
but also advanced rendering effects like global illumination. Typically,
the gradient is approximated by computing central differences (see Sec-
tion 4.3.4).

Chapter 2: Ray Tracing & Volume Graphics

Classification. The properties of the traversed data set is mapped to the
optical properties of the volume rendering integral. The interpolated
scalar values are usually mapped using a transfer function, i.e. different
materials with certain ranges of scalar values are assigned parameters
in the volume rendering equation, e.g. different colors. See Section 4.5
for more information about transfer functions.

Shading and Illumination. It is possible to add an illumination term to
the emissive term of the volume rendering integral, i.e. light from an
external light source is considered for single-scattering effects. More
common is the shading computation of an implicit surface, the so-called
iso-surface (see Section 2.2.5.3). This is a special transfer function
which evaluates for exactly one (discrete) input value to one and zero
for all others. Once this intersection point is found and the gradient
is computed, all kinds of shading effects can be applied, e.g. Phong
shading [Phong75] with several light sources or even global illumination.

Compositing. This step is necessary whenever multiple contributions need
to be combined, i.e. it is only required for semi-transparent rendering.
The previous section already covered two basic approaches depending
on the traversal order: front-to-back and back-to-front compositing.

Some parts of this pipeline work as local operators and appear therefore
not necessarily in this order: interpolation, gradient computation, shading,
and classification. These stages will be covered only briefly, while more at-
tention will be given to data traversal.

2.3 Conclusion

This chapter discussed essential concepts of ray tracing and volume graphics.
Ray tracing is an image-order algorithm that selects for each screen pixel the
nearest object as perceived from the viewer’s eye point. It was shown that
a basic implementation is rather easy and the concept is powerful enough to
be extended with advanced shading and lighting effects.

The subsequent section first described the transport of light and how
a participating medium interacts with a light beam leading to the volume
rendering equation from which the volume rendering integral can be derived.
The most commonly used model is based on emission and absorption only.

Depending on the origin of the data (devices, physical simulations, etc.),
structured, semi-structured, and unstructured data have to be distinguished,
as the next section showed. No matter how a 3D scalar field is organized,

2.3 Conclusion

29

Property Regular / Curvilinear Tetrahedralized
Rectilinear
(structured) (semi-structured) (unstructured)
Adjacency implicit implicit explicit
Primitive | Cube / Cuboid Hexahedron Tetrahedron
Interpolation tri-linear tri-linear barycentric /
linear
Storage scalars scalars + positions | scalars + positions
+ topology

Table 2.1: This table summarizes some properties of the most often used
volume data organization with respect to adjacency, primitive, interpolation
and storage.

it always consists of discrete values in space, from which a continuous signal
must be reconstructed to solve the volume rendering integral. Table 2.1
summarizes the most important properties for each of the discussed types,
including the applicable interpolation scheme.

As demonstrated with pseudo-code examples in the following section, ray
tracing is well-suited for the three most common volume visualization tech-
niques. Figure 2.9 shows sample renderings of the engine data set (regular
grid) using semi-transparent rendering, maximum intensity projection, and
iso-surface rendering. The last section gave a brief overview of the volume
rendering pipeline in which traversal was identified as a first and crucial step
for volume graphics.

The next chapter will discuss a variety of alternative rendering approaches,
such as cell projection, slice projection, splatting (vertex projection), and
shear-warp. All of these methods work in so-called object-order. Such algo-
rithms iterate over all primitives in the scene and accumulate each contribu-
tion. This process can be seen as the inverted approach to image-order algo-
rithms. The following chapter will give an overview over major approaches
for object-order algorithms and explain their shortcomings compared to the
image-order ray-tracing algorithm.

Before going into details here, it is worth mentioning that a third class
of algorithms restricted to iso-surface rendering exists. A popular example is
the Marching Cube algorithm proposed by Lorensen and Cline [Lorensen87].
Considering binary iso-values only leads to 256 possible iso-surface alignments
for the eight corner values of a cell. However, most possibilities differ only
in cell rotation leading to fifteen generic types with respect to the iso-value
distribution. Based upon this distribution, polygonal surfaces are placed into

30

Chapter 2: Ray Tracing & Volume Graphics

Figure 2.9: The engine is a small data set based on regular grids with an 8 Bit
scalar value. From Left to Right: Semi-transparent rendering of the density
distribution, maximum intensity projection, and rendering of the iso-surface
at piso = 118.

each cell before 'marching’ to the next one. In other words, the iso-surface for
a specific value is extracted and can be rendered by using a rasterization algo-
rithm implemented in graphics hardware. The main disadvantage is that this
extraction step is costly and must be repeated whenever the iso-value changes.
Though the algorithm was extended in many ways [Bhaniramka73, Banks03,
Nielson03, Nielson04] and also adapted to tetrahedral meshes [Cignoni96].
Modern GPUs, on the other hand, allow porting more and more parts of the
algorithm to the GPU [Pascucci04, Klein04], but some problems still remain.
For example, the number of triangles can tremendously increase to more than
one billion for large data sets, which is challenging even for today’s GPUs.

Chapter 3

Alternative (object-order)
Approaches

32

Chapter 3: Alternative (object-order) Approaches

’I understand HOW. I do not understand WHY.

71984

This chapter will briefly cover the most relevant object-order approaches
in the area of volume rendering. Projection is one of the most often im-
plemented object-order algorithms and can be further categorized into cell-
projection, vertex-projection (splatting), and texture-mapping. Software as
well as hardware implementations exist for this approach. Since graphics
hardware is becoming more and more flexible, recent implementations even
rely completely on the GPU. Sometimes, even a combination of object-order
and image-order algorithms can be found. The chapter will close with the
shear-warp factorization and custom hardware implementations.

3.1 Cell Projection

In cell projection, the volumetric primitives, either cubes/cubiods, hexahedra
or tetrahedra, are projected onto the image plane (see Figure 3.1). Except for
maximum intensity projection (see Section 2.2.5.2), this implies an additional
sorting step providing the correct visibility order of primitives as observed
from the eye point.

Image plane

Figure 3.1: Using projection, all primitives are projected onto the image
plane before processing. In this example, a tetrahedron is projected onto the
image plane resulting in the loss of depth information if the z-value is not
maintained otherwise.

Despite the large restrictions in the first years of dedicated graphics hard-
ware, one of the first algorithms for projecting cells of unstructured grids

3.1 Cell Projection

33

was proposed as early as 1990 by Shirley and Tuchman [Shirley90]. In this
approach, all tetrahedra are sorted front-to-back first with respect to the eye-
point. After projecting each tetrahedron onto the image plane, its outline
is decomposed into one to four triangles determined by the crossings of the
edges of the projected tetrahedron. For example, the tetrahedron shown in
Figure 3.1 would be decomposed into three triangles. Ray integration occurs
by computing opacity and color (i.e. intensity contribution) at the thickest
point for each tetrahedron, followed by a linear interpolation between the
triangle faces pierced by the ray. A final back-to-front accumulation using
the painter’s algorithm [de Berg00] provides the rendered image. Rendering
times were several seconds, even for small data sets and viewport sizes.

Rottger et al. [Rottger00] additionally store color and opacity in a 3D tex-
ture map computed during pre-processing. This enables the concurrent use
of transfer functions since they can be directly encoded in the texture map.
By using back-to-front compositing, each vertex of each projected tetrahe-
dron can be assigned all associated triangles and can blend them into the
frame-buffer. However, the use of 3D textures is memory-consuming; there-
fore the approach has also been adapted for 2D texture maps. To this end,
all dependencies of the volume rendering integral with respect to the length
between two sample points are approximated in linear terms and stored in
the first 2D texture map. The remaining parts of the integral depend only
on the sample values and can thus be organized in another 2D texture map.
Interactive rendering times were achieved on an SGI Octane MXE with up to
5 fps. This algorithm was extended in many ways, e.g. Guthe et al. [Guthe(2]
added hardware-accelerated pre-integration [Engel01].

3.1.1 Parallel Cell Projection

An early and straightforward parallel implementation of a projection-based
algorithm was suggested by Lucas [Lucas92]. He described a pure software
system that renders volumes in two passes. The system can handle all major
types of topologies (see Section 2.2.3). The first pass takes care of per-vertex
calculations, e.g. point and normal transformation, lighting, and avoidance
of multiple processing of shared vertices. This part is parallelized by parti-
tioning the object space.

During the second pass, which is parallelized in screen space, all primitives
are scan-converted using the transformed and lit vertices from the first pass.
This scan-conversion is implemented as a z-buffer algorithm (i.e. reverse of the
painter’s algorithm, see [de Berg00]). For volume rendering, each primitive
is decomposed into its faces, which are then sorted back-to-front (in contrast
to Shirley and Tuchman [Shirley90], which sort the primitives themselves).

34

Chapter 3: Alternative (object-order) Approaches

Each face of this sorted list contains the linearly interpolated vertex color,
opacity, and depth value for each pixel in the projection. Lucas used only
the centroids of each face as a sorting criterion which may sometimes lead
to the incorrect sorting. Lucas reported no rendering times for his volume
renderer but showed at least that his surface renderer can be implemented
with linear speed-up with respect to the number of processors.

Wilhelms et al. [Wilhelms96] use scan conversion too for their software
renderer. The volumetric primitives are decomposed into triangles depending
on the grid type, e.g. twelve triangles for a hexahedra. The scan-line conver-
sion uses y- and x-bucket lists which consist of the triangles first appearing on
the scan-line and allow the use of coherence between adjacent pixels as well
as scan-lines. These lists are accumulated front-to-back for color and opacity.
Vertex transforming and bucket sorting can both be parallelized. Addition-
ally a simple hierarchical scheme based on kd-trees was introduced, which
merges a certain number of polygons based upon a user-defined threshold.
This approximation is used for distant views, while the original data is tra-
versed for close views. As a second advantage, the kd-tree also culls invisible
regions from the current viewpoint. Rendering images with a 5122 viewport
nevertheless takes up to one minute and more on the SGI Onyx with four
Processors.

Later, Williams et al. [Williams98] developed a rather sophisticated soft-
ware volume renderer based on cell projection. Although graphics hardware
was used for acceleration, their system was not intended for interactive pur-
poses but to produce high-quality images in batch mode. Their HIAC sys-
tem is able to handle any unstructured data set whose cells are tetrahedra,
bricks, prisms, pyramids, or a combination of these primitives. Meshes may
be non-convex or even disconnected. The goal was to present a benchmark
system for comparison for which all mathematical operations are described
in detail. Bennet et al. [BennettO1] later parallelized the HIAC system by
distributing the sorting step of the visibility ordering among several nodes.
Kd-partitioning ensures load balancing of the volumetric data set. Still, this
improved system needs over two seconds even when employing all 128 pro-
cessors of the SGI Onyx2.

Ma and Crockett [Ma97] also distribute the data for load balancing and
use MPI for distributed rendering. In contrast to the previously discussed
approaches, adjacent tetrahedra are not clustered together in the same parti-
tion, but rather scattered over all available nodes. The idea is to allow good
load balancing even for close views. A global kd-tree restores the ordering
during rendering. Each node clusters all cells traversed by the assigned rays
before sending them back to the render nodes. Scan-lines are interleaved
among the rendering nodes to improve load balancing.

3.2 Hybrid Algorithms

35

3.2 Hybrid Algorithms

It is also possible to project irregular meshes onto screen space first, but
then process them in image-order using conventional ray casting. Bunyk et
al. [Bunyk97] proposed such a method for irregular grids. In a preprocessing
step each volumetric primitive, i.e. a tetrahedron (see Section 2.2.3), is de-
composed into its faces (triangles). All triangles are subsequently projected
onto screen, allowing for the determination of the visibility order in screen
space. Casting a ray through those triangles results in a depth-sorted list.
Since each triangle is associated with a tetrahedron, all traversed tetrahedra
along a ray can be fetched by stepping through all triangles. This is neces-
sary for obtaining the scalar values. Assuming a linear opacity and intensity
contribution for each tetrahedron makes volume rendering possible by just
linearly interpolating between adjacent faces. The main advantage of this
approach is that the intersection test is reduced to a 2D problem which can
be efficiently solved. However, the list of triangles per pixel needs to be up-
dated whenever the viewpoint changes. The SGI Power Challenge machine
needed eleven seconds for a 2562 and up to 100 seconds for a 10242 viewport
rendering. The sorting step on each viewpoint change is around two seconds,
which is negligible even for larger resolutions (greater than 512%).

Hong and Kaufman [Hong98] also suggested a projection-based ray-casting
algorithm for curvilinear grids. The first face along the ray observed from
the viewpoint is found by scan converting all boundary faces onto the image
plane before depth-sorting along the given viewing ray. All faces of a hexa-
hedron are decomposed on the fly into twelve triangles. To traverse the cells,
all twelve faces are projected onto the image plane for intersection calcula-
tion. The interpolated scalar values along a ray can be computed together
with the depth as a part of the ray-triangle intersection test. In the original
approach, the remaining eleven triangles (one is already known when a ray
enters the hexahedron) were tested sequentially until another intersected tri-
angle, and hence the face where the ray exits the hexahedron, was found. In
a follow-up paper, Hong and Kaufman [Hong99] suggested to group these re-
maining eleven triangles and project them onto the image plane. The exiting
triangle can then be found by applying a ray-crossing technique [Haines94].
Accordingly, a point P is inside a 2D polygon if and only if the horizontal
ray starting from P and shooting infinitely to the right crosses the polygon
edges an odd number of times. By checking how many times this horizon-
tal ray crosses the edges of tested triangles, the exiting triangle, and hence
the exiting face, can be determined. This new algorithm is twice as fast as
the original implementation, but still needs 3.45 seconds for a 300% viewport
rendering of the Blunt-fin data set (SGI Octane, 198 MHz MIPS processors).

36

Chapter 3: Alternative (object-order) Approaches

Another hybrid approach was suggested by Weiler et al. [Weiler03]. They
implemented an efficient ray-caster for tetrahedral meshes on a consumer
graphics card. The first tetrahedron along the ray is found by rasteriz-
ing the extracted boundary faces of a given model. For their ray-casting
approach, a ray-plane intersection is used [Garrity90] to determine the ex-
iting face of the currently processed tetrahedron. The ray integration re-
lies on pre-integration, as described in [Engel01]. All of these computations
are performed in the fragment program. Due to the limited flexibility of
graphic boards, it is impossible to trace a ray completely trough the volume.
Instead, multiple rendering passes are necessary, one for each tetrahedron
along the ray. The pre-computation leads to a total memory requirement
of 160 bytes per tetrahedron, and hence the size of the model is restricted
to 600,000 tetrahedra on the card used (ATI Radeon 9700, 128 MB RAM).
Additionally, a convexification needs to be applied as suggested by Williams
et al. [Williams92|, which further increases the number of tetrahedra of the
data set. Interactive rendering of mid-sized models is possible with 2 to 5 fps.
A more compact data set representation taking advantage of implicit neigh-
bors [Weiler04] achieves similar performance with less memory consumption.

3.3 Object-Order Ray Casting Algorithms

Object-order ray casting restricted to regular grids was also developed by
several researchers. Mora et al. [Mora02] suggested a software implemen-
tation enabling interactive frame rates for mid-sized data sets (e.g. bonsai,
engine, etc.). Since they use an orthogonal projection, they can take advan-
tage of the fact, that every cell projection corresponds to the same hexagon
template except for the translation. Pre-computed min/max octrees are used
for skipping empty (transparent) regions within the volume. Sub-volumes of
m? voxels are then projected onto the image plane. The implemented iso-
surface renderer uses hierarchical occlusion maps [Zhang97], i.e. images of
different sizes indicating whether a ray have to be traversed or the previously
computed value can be re-used respectively.

Hong et al. [Hong05] adapted a simular approach to current graphics
hardware. Fragments are generated corresponding to the rays intersecting
that cell. The correct order between sub-volumes is implicitly given by the
min/max octree. Dividing each sub-volume into pre-computed layers further
reduces the visibility ordering.

Another iso-surface rendering algorithm also based on object-order ray
casting was proposed by Neubauer et al. [Neubauer02]. The entire data set
is subdivided into macro-cells of size m? where m is usually between four

3.4 Vertex Projection (Splatting)

37

and ten. These macro-cells are then used to build a min/max octree similar
to [Wilhelms92]. For each pixel on the image plane that has not yet been
processed, the octree is traversed and at each traversal step, the min/max
values are checked for whether boundary cells (i.e. cells possibly containing
the iso-surface) are in the sub-tree or not. At a leaf node, the boundaries
of the macro-cell are projected and rasterized onto the image plane yielding
a hexagonal footprint. For each pixel in this hexagon, local rays are then
used to traverse the macro-cell grid. This reduces the number of traversal
steps for the octree structure since all pixels that are covered by the hexagon
would perform the same traversal steps. For the macro-cell traversal, the
method of Amanatides and Woo [Amanatides87] is used. If a boundary cell
is encountered, an intersection test is performed with the iso-surface and if
true, normal and shading calculations are performed.

3.4 Vertex Projection (Splatting)

Splatting is a forward mapping algorithm, i.e. the contribution of each voxel
to the final image is calculated independently. The contribution of a voxel in
object space that is projected on the image plane is called a footprint. Hence,
this footprint is in fact the reconstruction kernel that represents the original
signal determined by the voxel in object space. All footprints along a ray are
accumulated to obtain the final pixel color either in front-to-back or back-to-
front order. Splatting was first described by Westover [Westover90|, which
concerned rendering regular grids on a CPU. He proved that this footprint
does not depend on the actual position of the voxel in space, enabling the
use of look-up tables for an approximation.

Besides the previously described compositing of all splats, there also exists
the so-called sheet-buffer method [Miiller98|. Here, the splats are organized in
cache-sheets that are aligned parallel to the volume face most closely parallel
to the image plane. Each sheet-buffer is first composited into a cache image
by traversing the volume back-to-front, i.e. the voxel contributions are added
slice-by-slice. To avoid popping artifacts, which occur when the orientation
of the sheets suddenly change, the sheet-buffer is always arranged parallel
to the image plane [Miiller98|. Since this new buffer does not correspond
to the voxel positions in space, the new positions must be computed using
interpolation so that they lie on the slice again. Whenever a sheet buffer has
received all contributions, it is composited with the current image and the
next slice is processed.

This approach works best for orthographic views since it requires in this
case only a single footprint table and reconstruction kernel, which is constant

38

Chapter 3: Alternative (object-order) Approaches

Image plane

Figure 3.2: Vertex projection interprets the scalar values (illustrated here
as varying point sizes) as a spatial extent (i.e. footprint) projected onto the
image plane. Accumulating these footprints per pizel yields the final color.

except for the screen space offset for every voxel. Miiller and Yagel [Miiller96]
therefore suggested a hybrid method. The voxel contributions are partly pre-
computed by splatting in object space. However, pixel accumulation occur
by shooting rays intersecting the splats in space, similar to ray casting. This
enables at the same time other optimization techniques used for ray tracing,
e.g. space leaping, adaptive screen sampling or spatial acceleration structures.
Performance was stated with 30 seconds for the MRbrain data set rendered
with a 260% viewport on an SGI Indigo with 200 MHz.

Zwicker et al. [Zwicker01] addressed the problem of aliasing effects caused
by incorrect visibility determination during back-to-front compositing, since
the reconstruction kernels are assumed to be non-overlapping. Note, that
these kernels must overlap to avoid rendering artifacts. Such aliasing effects
can be reduced by adapting Heckberts elliptical weighted average (EWA) re-
sampling filter [Heckbert89] for volume splatting. The footprint function is
replaced with a re-sampling filter. Each footprint function is now separately
band-limited and hence respecting the Nyquist frequency of the rasterized
image. They chose an elliptical Gaussian kernel as basis functions and a low-
pass filter for anti-aliasing. These quality enhancements lead to a rendering
time of eleven seconds for the Skull data set on a system equipped with a
866 MHz Pentium-III.

Unfortunately this makes the computation of the footprint rather ex-
pensive, leading to the idea to simplify this computation in an adaptive

3.5 Texture Mapping

39

way [Chen04]. The key observation is that rays diverge if the volume data is
far from the viewpoint, thus making the sampling rate of these rays fall below
the sampling rate of the volume data set. In this case, the low-pass filter is
the dominant component, while for close range volume data, the reconstruc-
tion filter dominates. By classifying and processing each volume particle with
respect to the previous scheme, the computation of the footprint is acceler-
ated without reducing the quality of EWA splatting. Additional performance
is gained from a GPU implementation allowing for interactive frame-rates of
mid-sized data sets.

Performance was also the main focus of recent implementations. For
example, Jang et al. [Jang04] added an octree to locate the rational basis
functions (RBFs) intersecting the cache-sheets. For each sheet plane pixel, a
fragment program evaluates the exponential Gaussian function of the RBFs.
Frame rates vary largely, for example 7 to 70 fps for the Blunt-fin render-
ing with a 400? resolution, which is caused by the large variation of the
RBFs. The testing system was equipped with a 2.8 GHz Pentium-IV and
an nVidia GeForce FX 5900. Recently, Neophuytou et al. [Neophytou06]
used the floating-point rasterization facilities of the latest graphics hardware
to avoid invoking expensive fragment programs. Both approaches works on
irregular data. Near-interactive frame rates (1.6 fps for the Blunt-fin) were
achieved on a Pentium-IV with 3.6 GHz and an nVidia QuadroFX 3400.

3.5 Texture Mapping

Cabral et al. [Cabral94] was one of the first to show that texture capabilities
of graphic boards can be used directly for rendering volumetric data sets.
It can be seen as a hybrid approach of backward and forward projection.
In a first step, slices are generated parallel to the image plane by trilinearly
interpolating the sample values on each slice (i.e. backward projection). After
a slice has been processed, the result is blended into the frame buffer (i.e.
forward projection). A final attenuation handles the case of off-center pixels,
where the path length differs.

Engel et al. [Engel01] improved rendering quality using pre-integrated vol-
ume rendering. The ideas presented in [Rottger00] are extended and im-
proved upon for regular grids. Pre-integrated classification overcomes the
problem of high Nyquist frequencies resulting from non-linear transfer func-
tions. Instead of applying higher-order interpolations or adaptive sampling,
the idea is to split the numerical integration into two parts. One handles the
continuous scalar field and the other handles the transfer function. In the
first step, the scalar field is sampled along the viewing ray. This sampling

40

Chapter 3: Alternative (object-order) Approaches

has its own Nyquist frequency that is independent of the transfer function.
Since this integration is approximated by a Riemann sum (see Section 2.2.2),
the sampled values define a one-dimensional piecewise linear scalar field.

Storing these values in a table reduces the integration step to a table
lookup, with the (interpolated) scalar values, as well as the length at the
start and end of the associated ray segment. Since the transfer function is
directly encoded in this lookup table, the table needs to be refreshed whenever
this function is modified by the user. Assuming constant ray segment lengths
and local updates of the transfer function improves the performance. Using
a 200 MHz CPU together with an nVidia GeForce3 produces a performance
of 4 fps for a 2562 viewport. Rottger et al. [Rottger03] later combined this
approach with volumetric clipping and advanced lighting effects.

The approaches discussed so far compute all scalar values of the grid for
rendering the volume, regardless of their visibility. Li et al. [Li03] proposed
therefore to partition the volume into smaller sub-volumes with similar prop-
erties. These properties depend on the transfer function, i.e. scalar values
within a certain range are grouped together. A kd-tree is used to render
this partitioned volume with correct visibility order, where each node in the
tree is associated with a sub-volume. Each sub-volume is culled and clipped
against an opacity map. This opacity map corresponds to a region of the
frame buffer and stores the minimum opacity of the frame buffer pixels found
within that region. They reported 10 fps for the Engine data set using a 2.5
GHz Pentium-IV and a nVidia GeForce4 graphics adapter.

3.6 Shear-Warp

Shear-warp [Lacroute94] is still one of the fastest software implementations
for volume rendering. In contrast to the algorithm presented by Drebin et
al. [Drebin88|, the number of resampling passes is reduced from three to
two. The basic idea is to factorize the projection matrix into a 3D shear
and 2D warp. Shearing transforms the data set into sheared object space.
In this space, all viewing rays are parallel to one of the orthogonal axis.
The volume is considered as a stack of 2D slices. The 2D slices are then
aligned and re-sampled such that they are all perpendicular to the viewing
direction which simplifies the traversal of the volume significantly. Finally,
this intermediate image is then warped to the image plane (see Figure 3.3)
to correct the shearing. Perspective Rendering requires individual scaling of
each slice during re-sampling. This original implementation needs one second
for orthographic projection and three seconds for perspective projection on
an SGI Indigo R4000 rendering a 2562 viewport.

3.7 Custom Hardware

41

image plane image plane
Figure 3.3: Instead of shooting rays from the view plane, the volume slices
are sheared so that all rays are perpendicular to the slices, which simplifies
the traversal tremendously. This sheared image must be warped in a second
step allowing for a correct display of the rendered volume. For Perspective
rendering, each slice needs an individual scaling factor for re-sampling.

Rendered images are prone to show stair-casing artifacts near a 45° view-
ing angle. Intermediate slices lying halfway between two adjacent volume
slices partly avoid this problem. Furthermore, images may blur during a
zoom-in since the re-sampling of the warp matrix is not adaptive. An en-
hanced version, solving these problems can be found in [Sweeney02], but at
an increased computational cost. Although the warping step significantly
limits the image quality, especially for perspective rendering, it is still used
today, e.g. for the VolumePro [Pfister99] described in the upcoming section.

3.7 Custom Hardware

The need for custom graphics hardware arose with the demand for real-time
volume rendering systems. Neither GPUs nor CPUs were fast enough at
that time to achieve this goal. Most systems have been developed for ren-
dering regular data, e.g. Cube [Kreeger99], Vizard [Knittel97], and Volume-
Pro [Pfister99]. Due to the highly regular computation, all of them achieved
real-time or at least interactive frame rates.

Cube [Kreeger99] implements a hybrid algorithm using Shear-Warp; how-
ever, it was designed to compute only the shear-step on-board and let the
graphics board warp and render the image. Eight identical rendering pipelines
are able to render a 256% volume at 30 fps. Never commercially realized,
Cube [Kreeger99] was the predecessor of the VolumePro board [Pfister99].

42

Chapter 3: Alternative (object-order) Approaches

Although the scalability was enhanced, perspective rendering was still not
possible. The latest generation consists of separate sample and voxel pro-
cessing pipelines. Voxel processors traverse data slice-by-slice in memory
order and store them in on-chip buffers. These buffers are traversed by sam-
ple processors responsible for illumination, filtering, and compositing. More
interestingly, perspective rendering is now possible [Wu03].

Vizard [Knittel97] and Vizard II [Meissner00] were both based on an
image-order algorithm offering full ray casting including early ray termina-
tion. Phong shading [Phong75] was implemented using lookup tables. The
performance is not comparable to VolumePro due to the FPGA implementa-
tion. The system is therefore more flexible but lacks in rendering performance
(10 fps for 256% viewport).

Changing or extending custom hardware, however, is tedious and costly.
Another disadvantage which custom hardware shares with GPUs is limited
memory. Out-of-core solutions are not, in general, an alternative due to the
high bandwidth needed.

3.8 Conclusion

The methods discussed in this chapter all provide fast and reliable volume
rendering. Parallelization is possible in almost all approaches, which works fa-
vorably in conjunction with modern GPUs. As it will be shown in Section 4.1,
however, the flexibility of modern graphic boards allow the implementation
of ray casting directly. This significantly improves the image quality while
preserving speed. Previous generations of graphic boards supported only cell
projection directly, which requires a visibility sorting of primitives whenever
the viewpoint changes. This is also true for hybrid approaches. Splatting is
fast and memory efficient, but slow for perspective rendering and prone to
rendering artifacts. Using texture mapping, the data set size is restricted to
the limited on-board texture memory. Shear-Warp is also not well-suited for
perspective projection, prone to rendering artifacts, and not very memory ef-
ficient since each volume needs to be stored three times (one per dimension).
Custom hardware is fast and delivers high quality images, but offers limited
flexibility.

Scientific visualization, however, demands both high quality and flexibil-
ity. Ray tracing offers both but is still considered too slow for interactive
purposes'. The following chapters will show that this is no longer true. In
fact, there exist a large variety of approaches especially for regular grids.

'The obvious idea of rendering with ray tracing only those parts of the image inspected
by the user fails due to the unpredictable behavior of humans eye movements [Marmitt02].

3.8 Conclusion

43

This is true even for modern graphic boards allowing for a ray casting imple-
mentation. After discussing previous work at the beginning of each chapter,
the main part of each chapter will focus on two specific implementations.
Regular grids, implicit kd-trees and their usage for iso-surface rendering, as
well as some extensions, will be discussed throughout Chapters 4 and 5, while
in Chapter 6 a new incremental traverser based on Pliicker coordinates and
suitable for both unstructured and semi-structured grids will be explained.

44

Chapter 3: Alternative (object-order) Approaches

Chapter 4
Static Regular Data Sets

46

Chapter 4: Static Regular Data Sets

The most exciting phrase to hear in science, the
one that heralds new discoveries, is not 'Eurekal’,
but 'That’s funny

Isaac Asimov

Regular data sets consist of equidistantly distributed scalar values in space
which can be organized in a grid (see Section 2.2.3 for further details on data
set organizations). This type of organization is very efficient with respect to
storage and data traversal. Interactive rendering times using software ray
tracing were therefore demonstrated as early as 1998 [Parker99b]. While
this was achieved using a supercomputer, later implementations relied on a
cluster of consumer PCs or even a single PC [Wald05]. Since regular data
sets can be easily stored in texture memory of graphics boards, ray casting
implementations exist even for GPUs [Kriiger03, Hadwiger05, Stegmaier(05].

The major part of this chapter will, however, cover interactive rendering
of volumetric data using implicit kd-trees. This was first introduced for iso-
surface rendering allowing for several frames per second (fps), e.g. rendering
the Visible Female data set [VHP| without any approximations [Wald05].
The latest improvement accelerated loading and rendering of massive data
sets [Friedrich07] is covered in Section 4.4. A subsequent section shows, that
this approach is not necessarily limited to iso-surfaces. Kd-trees may also
be employed to accumulate values along the viewing ray allowing for semi-
transparent rendering [MarmittO6a]. Advantages are achieved by skipping
empty and homogeneous regions on high tree levels (see Section 4.5).

This chapter will then be closed with conclusions (Section 4.6), contri-
butions (Section 4.7), and future work (Section 4.8) before extending im-
plicit kd-trees for time-dependent rendering or applying it to other areas in
Chapter 5. Before discussing the implicit kd-tree and its optimization, the
following section continues first with an overview of other ray tracing imple-
mentations.

4.1 Related Work

The most obvious way for rendering regular volume data is an incremen-
tal grid traverser [Amanatides87], i.e. all cells along a ray are investigated
whether they contribute to the final image or not. This brute force approach
can be optimized in many ways as the following section will show. The next
Section 4.1.2 covers non-hierarchical acceleration structures, e.g. shell struc-
tures and prozimity clouds. Afterwards, hierarchical acceleration structures
like octrees or multi-level grids are discussed (Section 4.1.3) before continuing
with a discussion of the properties of kd-trees.

4.1 Related Work

47

4.1.1 CPU and GPU Hardware Acceleration

The simplest scheme is the skipping of pixels. In that way Levoy [Levoy90b]
traverses the initial image with interleaved pixels and interpolates in between.
Subsequent images are adaptively refined. Lakare and Kaufman [Lakare04]
shoot sample (called detector) rays into the scene not only accumulating
the interpolated scalar values along the ray, but also tracking the first non-
empty cell. Leap rays start from this position and traverse the volume.
Lakare and Kaufman report a performance gain of up to 65% for various
data sets. Interactive frame rates are restricted to a viewport of 2562. It
should be noted, that this approach does not work correctly in all cases.
If the volume distance from the eye point exceeds a certain amount, rays
begin to diverge too much, especially when using perspective rendering. Also,
sampling artifacts may occur due to missed volumetric features.

Knittel’s UltraVis-System [Knittel00] is a highly optimized grid traverser
relying on empty space skipping and early ray termination. In addition,
it provides perspective ray casting, trilinear interpolation, gradient shading,
four light sources, and alpha blending. To achieve interactive frame-rates, a
series of processor-specific optimizations are implemented. A spread-memory
layout ensures that the volume data always stays in L1 cache. For the
Pentium-III architecture with a four-way associative cache, four times the
size of the volume data is allocated in main memory whereas the voxel data
is stored only in the first quarter of each memory page used. Hence, voxels
are only cached in the first quarter of each cache block and thus accessing
voxel data almost never cause cache data replacements. The remaining parts
can be filled with other frequently accessed data, e.g. lookup tables and other
local data. For the ray-volume intersection test, conditional branches are re-
placed by SSE [Intel] masking operations allowing for 16 intersection tests in
one loop, since packets of 4x4 rays traverse the volume simultaneously. Small
data sets like the Engine or MRbrain can be rendered 2 to 10 fps on a single
500 MHz Pentium-IIT and 1 GB of main memory using a 256 viewport.

The UltraVis-System achieves high frame rates but was specifically suited
for the Pentium-III processor. This makes it necessary to adapt this approach
to every new generation of processors. In the meantime, GPUs appear to be
an interesting alternative, since they became more and more flexible. A
GPU volume ray caster have been proposed for several years but in most
cases rely on multi-pass algorithms [Weiler03, Weiler04]. Recent advances
show, on the other hand, that the latest generation of graphic boards allow
the implementation of a single-pass ray caster on a GPU for regular grids.

One of the first implementations of volume ray casting using programmable
graphics hardware was proposed by Kriiger and Westermann [Kriiger03].

48

Chapter 4: Static Regular Data Sets

They describe a GPU ray caster including typical ray casting optimizations,
such as empty space skipping and early ray termination. While an additional
octree allows for empty space skipping, the early ray termination is realized
by using the early z-test, i.e. the value in the z-buffer is set to some maximum
value preventing unnecessary invocations of the fragment shader. The rapid
development of GPUs soon led to more sophisticated rendering frameworks.

Stegmaier et al. [Stegmaier05] and Hadwiger et al. [Hadwiger05] indepen-
dently proposed frameworks for ray casting on the GPU in 2005. Stegmaiers
et al. [Stegmaier05] approach uses dynamic branching and looping of todays
GPUs. The regular grid is stored in a 3D texture but instead of employing
texture mapping (see Section 3.5), the looping capabilities allow for imple-
menting a grid traverser in the fragment program. The fragments are gener-
ated by rasterizing a polygon covering the screen space area of the volume’s
projected bounding box.

Stegmaier presented an iso-surface shader as an example by searching
only for sign changes in the difference between the iso-value and the current
and previous samples. A linear interpolation of the cell intersection (see
Section 4.3.3) improves the rendering quality. The performance depends
highly on the data set size and screen resolution, leading to 10 fps for 5122 and
3 fps for 10242 for the Engine data set on an nVidia GeForce 6800 GT. The
built-in parallelism of GPUs can be exploited further by clustering several
graphic boards together [Miiller06]. Quality enhancements can be achieved
by implementing the Kubelka-Munk approach for tracking and visualizing
reflectance and transmittance [Strengert06.

Hadwiger’s et al. [Hadwiger05] approach is more advanced, since it uses
multi-level grids already known from a software ray casting, but considers
iso-surface rendering only. Like Parker et al. [Parker99b], a min/max value
per brick (i.e. spatially grouped cells) allows for efficient culling of cells which
do not contribute to the final iso-surface. A second advantage of using bricks
is that they enable out-of-core rendering by swapping culled bricks from
graphics memory to main memory. Whenever the iso-values changes, a range
query checks all bricks, whether they possibly contain the iso-surface or not.
Bricks not longer needed are replaced using a least recently used strategy.

Front and back faces of the volume’s bounding box are rasterized to com-
pute start and exit distances for the rays traversing the volumes. The linear
interpolation is used iteratively as suggested by Neubauer et al. [Neubauer(2]
(further information can be found in Section 4.3.3). Shading occurs in im-
age space by storing the computed intersection position in an off-screen pixel
buffer. With a 5122 viewport it is possible to achieve up to 20 fps even for
mid-sized models and 10 fps for larger, out-of-core rendered data sets. Again,
an nVidia GeForce 6800 GT was used.

4.1 Related Work

49

However, the programming model, as well as the application interface of
GPUs, is still tedious to use. For example, the number of loops in fragment
programs is restricted to 256 at the current state. A ray caster therefore
has to use nested loops for traversing the volume. Even then, secondary
rays for advanced shading can hardly be implemented, since no recursion is
available. First steps in porting ray tracing to GPUs have already been
taken [Purcell02], but the future flexibility of graphics will determine of
whether this will be a sufficient basis for allowing full featured ray tracing.
CUDA [nvidia] seems here an interesting alternative but it still have to be
shown, that it has advantages for volume rendering. The focus is therefore
turned to software implementations with acceleration structures.

4.1.2 Non-hierarchical Acceleration Structures

Avila et al. [Avila92] present a complete visualization system based on ray
casting called PARC (polygon assisted ray casting). Its components are a
grid traverser similar to Amanatides and Woo [Amanatides87], combined
with a polygonal visual hull enclosing non-empty scalar values within the
regular grid. The GPU z-buffer is then employed to determine for each ray a
near and far position for the grid traverser based on the intersection with the
visual hull. This allows a ray to traverse non-empty cells only and hence to
skip the unavoidable empty space surrounding each data set. Although this
performance could be improved by a factor of 10, the rendering takes more
than 5 seconds even for 256° data sets on a Silicon Graphics 240GTX with
2562 screen resolution.

Shell structures, introduced by Udopa and Odhner [Udupa93], have a very
similar concept. A shell is defined as a set of voxels in the neighborhood of
the iso-surface boundary sharing the same range of opacity values. Voxels
completely surrounded by high-opacity voxels are not stored in this set to save
memory and are hence not fetched or traversed either. The saved memory is
used for additional shading information, e.g. normals. Since rendering occurs
in the shell domain, fewer voxels need to be fetched, and hence the rendering
performance is 2 to 3 times faster compared to grid traversal. Although
it would be possible to use shell structures for ray tracing, they choose a
projection approach. The concept was later extended by Yagel [Yagel94).

Cohen and Sheffer [Cohen94| suggest prozimity clouds to skip empty re-
gions within a volume when using a grid traverser. Proximity clouds store
the minimum distance to the next non-empty cell based on the city-block (i.e.
rectangular shapes around each cell) or euclidian metric (i.e. circular shapes
around each cell) in each cell. If a ray encounters a cell, the following n cells
can be skipped, where n is the encoded minimum distance. The performance

50

Chapter 4: Static Regular Data Sets

increased by 30% compared to a grid traverser. Freund and Sloan [Freund97]
adapted this idea in conjunction with transfer functions, i.e. the transfer
function evaluation is directly encoded in the prozimity clouds to skip non-
interesting regions.

4.1.3 Hierarchical Acceleration Structures

Octrees are a fairly often used hierarchical structure. Levoy [Levoy90a] op-
timized his brute-force orthographic grid traverser by adding an octree for
empty space skipping and early ray termination.

Wilhelms et al. [Wilhelms92] used an octree for iso-surface rendering of
regular grids. To achieve this, the octree nodes are filled with the minimum
and maximum scalar values found in the associated subtree. When traversing
the octree, only those branches are taken that contain parts of the iso-surface.
To save memory, eight adjacent cells are grouped together at the leaf level
of the tree. When traversing a leaf node, for each of the contained cells a
polygonal representation is rendered. This representation can be generated,
e.g. with Marching Cubes [Lorensen87] in a pre-processing step.

Parker et al. [Parker99b] were the first to present an interactive iso-surface
renderer for regular grids without extracting a polygonal representation ex-
plicitly. A multi-level grid enriched with min/max values allows for skipping
large regions of the grid. On each level, all cells are grouped together in
bricks (macro-cells) for improving the locality during traversal. Each cell can
be easily accessed by storing its node index in a small table for the three-level
hierarchy of the bricks. Once a cell with a possible intersection is found, a
cubic polynomial is derived from trilinear interpolation (see Section 4.3.3),
which is then solved by Schwarze’s analytic inversion [Schwarze98]. Interac-
tive rendering times still require 16 MIPS R10000 processors or more for a
512% viewport. Additional features like Phong shading [Phong75] and shad-
ows decrease the performance further. Maximum intensity projection is also
easy to implement by using a priority queue to track the cells or macro-cells
with the maximal value, i.e. by using the maximum-value attached to each
grid cell as priority.

A large drawback of this implementation was its restriction to rather
expensive supercomputers. DeMarle et al. [DeMarle03] therefore extended
the concept and adapted the algorithm for a cluster of consumer PCs. Here,
a master node not only distributes image tiles to the cluster nodes, but each
node is able to request a brick from all other nodes. This enables rendering
of large data-sets like the Richtmyer-Meshkov Instability [Mirin99], which
would not fit on a single PC. Using 32 PCs equipped with 1.7 GHz Dual-
Xeon processors, the LLNL [Mirin99] can be rendered with up to 7 fps.

4.2 Background

51

Grimm et al. [GrimmO04] combined several techniques for rendering the
Visible Female from the Visible Human Project [VHP]| with up to 2.5 fps
on a single 1.6 GHz Pentium-M, 1 GB main memory. It is a direct volume
renderer supporting transfer functions but restricted to orthographic projec-
tion. The entire data is organized in bricks of 323 cells where the bricks
themselves are stored in an octree. Bricks with homogeneous regions can
be processed directly by using pre-integrated [Engel01] opacity tables. Inho-
mogeneous bricks are handled by a cell invisibility cache indicating whether
a cell contributes to the final image with respect to the transfer function
chosen.

Recently, Knoll et al. [Knoll06] used the octree not only for acceleration
but also for compression. To achieve this, the volumetric grid itself is encoded
directly into the octree by consolidating voxels with zero variance. The gained
compression factor lies between 3 and 5 times, depending on the spread of iso-
values within the data. The Richtmyer-Meshkov Instability [Mirin99] with
8 GB of data can then be rendered on a single 2.16 GHz Intel Core-Duo
at near-interactive rates using a 5122 viewport. Interactive frame rates are
achieved on a 16-core NUMA 2.4 GHz Opteron workstation with up to 7 fps.

4.2 Background

Kd-trees in general as well as coherent ray tracing are covered first, before
continuing with the description of the implicit kd-tree. This section contains
theoretical background including pseudo-code for a generic kd-tree search.
Section 4.2.2 describes the ideas behind coherent ray tracing and how this
paradigm can be implemented on modern processors.

4.21 Kd-Trees

Kd-trees are a generalization of one-dimensional range trees, where a certain
number needs to be retrieved within a given range. It is easy to see that a
balanced binary search tree is suited best for this task. This guarantees that
at each node within the tree, all children on the left are smaller than the split
value and all values on the right are larger, or vice versa. Since the tree is
required to be balanced, all its paths have length O(logn). Hence, the query
time is O(logn), if a single point is going to be retrieved from the set. The
build time is O(nlogn), since the binary decision is logn for every point n
within the set.

This idea can be extended to more than one dimension, since n-dimensional
queries can be decomposed into n subsequent one-dimensional queries. The

52

Chapter 4: Static Regular Data Sets

Figure 4.1: An example of a 2D kd-tree. The first split I, separates all 2D
points with respect to the x-value, while Iy and l3 separate points with respect
to the y-value. In this example it is assumed, that the x-value of the searched
point is greater than l; and hence, the colored part of the point does not need
to be investigated further.

solution here is to alternate the split between n dimensions, e.g. alternating
between the x and y dimensions in the two-dimensional case.! An example
for a 2D kd-tree is illustrated in Figure 4.1. By alternating between the x, y
and z dimensions, the data structure needed for querying three-dimensional
volumetric grids is obtained.

Theoretical build and query times do not change, since multi-dimensional
points can be distinctly encoded in one dimension. The following pseudo-code
demonstrates a recursive implementation for searching for a point within a
one-dimensional kd-tree. As can be seen from Algorithm 5, the basic idea is
quite simple. Note that the algorithm shows a split in the middle, which is
generally not optimal for a given set of points. A more detailed discussion
on kd-trees can be found in e.g. [de Berg00].

Kd-trees have been proven as a well-suited acceleration structure in the-
ory [Havran01] and practice [Wald04a] for polygonal ray tracing. Since iso-
surface rendering (see Section 2.2.5.3) requires rapid location of cells asso-
ciated with the defined iso-value, which is quite similar to a range search
problem, kd-trees can be easily employed for this volume rendering tech-
nique. This is not only true for single, but also for packet ray tracing, as the
following section shows.

1Originally, the name kd-tree stood for k-dimensional tree.

4.2 Background

53

Algorithm 5 Search a Kd-Tree for a specific value.
seachKdTree(value, start, stop)
if stop — start =1 then
if node[split] = value then
return true
else
return false
end if
else
split = (start + stop)/2
if value < split then
searchKdT'ree(value, start, split)
else
searchKdTree(value, split, stop)
end if
end if

4.2.2 Coherent Ray Tracing

In Section 2.2.5.3, iso-surface rendering was defined as searching for the first
(i.e. closest distance to the eye point) appearance of a user-defined value
along a ray shot through the volumetric data set. This is similar to searching
for the first triangle along the ray and calculating an intersection point. It
seems therefore plausible to implement the same improvements which worked
well for polygonal ray tracing. The ideas of coherent ray tracing are of special
interest here.

Coherent ray tracing is based on the assumption that adjacent rays tra-
verse more or less the same parts within the scene and hence the same kd-tree
nodes. However, especially when using perspective projection, rays diverge
with increasing distance and hence do not use, the same kd-tree nodes re-
quiring them to be treated separately. Despite these shortcomings, coherent
ray tracing showed a significant performance boost for polygonal ray trac-
ing [WaldOla]. As will be shown later, this algorithm can be easily adapted
to traversing regular grids. This demands several additional requirements to
the implemented algorithm:

CPU-friendly algorithms. The implemented algorithm should favor mod-
ern CPUs and therefore try to use processor-specific extensions like
SIMD in order to allow interactive frame rates.

Efficient data layout. Special care should to be taken with respect to the
data layout in both cache and main memory when implementing data

54

Chapter 4: Static Regular Data Sets

structures. This requires for example that the nodes of a kd-tree be
organized in a cache-aligned fashion.

The first of these two requirements is usually implemented by shooting
and traversing packets of four rays through the kd-tree. To exploit coher-
ence as much as possible, the rays are arranged in a 2 x 2 square which
allows for simultaneous traversal when using the SSE implementation [Intel]
of the x86 processor family?. The acceleration structure, in this case a kd-
tree, should also simply extensible to this parallel or packet ray tracing.
In contrast to other data structures, kd-trees demand only a binary deci-
sion per traversal step which is easy to implement. Grid-like data struc-
tures [Parker99b, DeMarle03] or octrees [Wilhelms92, Knoll06], require more
decisions per traversal and are therefore impractical to combine with packet
ray tracing.

4.3 Static Iso-surface Rendering

Rendering an implicit surface determined by a user-defined scalar value within
a regular grid requires extracting that set of cells containing the searched iso-
value. In other words, instead of accumulating all interpolated values along
a ray, the problem is reduced to a binary decision whether a cell contains the
iso-value and is hit or not (see Section 2.2.5). This decision is identical to the
stated range search problem above so that the discussed kd-tree construction
and traversal needs only minor modifications.

In general, the number of cells containing the iso-surface is rather small
compared to the total amount of cells, but they are irregularly distributed
in space. Since this set of (iso-surface) cells often defines the closure of the
implicit surface, they are referred as boundary cells. After retrieving the cells
containing the iso-surface, a cell intersection and typically a normal calcula-
tion are applied to render the final image. This is described in Sections 4.3.3
and 4.3.4. Section 4.4 will briefly sketch an optimized loading and rendering
mechanism for massive data sets, before discussing a possible extension for
semi-transparent rendering in Section 4.5.

4.3.1 The Implicit Kd-tree

As shown on the left side of Figure 4.2 a grid traverser have to check all cells
along the ray until the cell containing the iso-surface is identified. A kd-tree

20ther processor families (e.g. PowerPC) offers similar but incompatible APIs for SIMD

4.3 Static Iso-surface Rendering

55

Figure 4.2: Left: Traversing all cells along the rays until an iso-surface is hit.
Right: A top down traversal in a min/max hierarchy can be used to quickly
skip regions without boundary cells.

provides a significantly faster alternative, since it requires less traversal steps,
as the right side of Figure 4.2 illustrates.

This requires only two modifications of the kd-tree described in Sec-
tion 4.2.1:

1. Each node within a kd-tree must store information regarding the iso-
surfaces contained in the subtree represented by that node.

2. The traversal must be modified in such a way that each node is implic-
itly classified as to whether a subtree contains the searched iso-surface
and is skipped if not.

A naive approach would simply store a binary value in each node, i.e.
true if a subtree contains the searched iso-value, false if not. Encoding the
iso-surface explicitly in each node would however lead to the same problem,
for which extraction was abandoned, since this would require the kd-tree
to be built completely anew whenever the user changes the iso-value. The
new structure should not have this shortcoming, thereby offering a significant
advantage compared to extraction methods.

To achieve this, the kd-tree is built over all possible iso-surfaces at the
same time by annotating each kd-tree node with information on what iso-
surfaces it contains and performing the classification implicitly during traver-
sal. One possible solution is to store the minimum and maximum values
found in the grid region associated with a subtree. If the searched iso-value
lies outside this range, the entire subtree can be skipped.

Since the tree still contains the entire data set, the iso-value can now be
changed on the fly. The culling operation can furthermore be extended for

56

Chapter 4: Static Regular Data Sets

Figure 4.3: Implicitly culling non-contributing branches of the implicit kd-
tree during traversal also enables rendering of multiple iso-surfaces at the
same time. Left: The bonsai tree, with a green iso-surface for the leaves, and
a brown one for the trunk. Right: The Visible Female’s head, with bones
vistble through the semi-transparent skin surface.

searching different iso-surfaces at the same time within one traversal opera-
tion. Data sets containing several iso-surfaces, like skin and bone surfaces for
human data sets, can therefore be displayed simultaneously using blending
operations (see Figure 4.3).

4.3.1.1 Tree Building

Building this kd-tree for iso-surface rendering is rather easy. In a recursive
implementation, the root node contains the range of the entire 3D scalar field
represented by its minimum and maximum scalar values. The volume is then
split in a specific dimension, i.e. each of the two children of the root node
represents now one half of the volume. The range of the scalar values is again
the computed minimum and maximum scalar value found in the sub-volume
corresponding to that node. As described in Section 4.2.1, subsequent splits
could simply alternate between the x-, y-, and z-dimensions.

However, in this approach the dimension with the largest number of cells
is always chosen as the splitting dimension (leading to the same scheme after
some initial steps). The split always occurs in the middle so that the split
plane coincides with the cell boundaries of the volume cells. This yields a
one-to-one mapping between the volume’s cells and the kd-tree nodes. In
case of an odd number of cells in a dimension, the remaining cell is always
assigned to either the left or the right child.

As previously stated, each node is annotated with the range of iso-surfaces
contained within its subtree, which is simply the minimum and maximum

4.3 Static Iso-surface Rendering

57

value of all scalar values found within the associated sub-volume. This can
be computed recursively by first calculating the minimum and maximum
values of a cell given by its eight corner values and propagating these values
up to the root node. The minimum and maximum of one node is then simply
the minimum and maximum, respectively of both children. Hence, each leaf
node stores the minimum and maximum of its corner scalar values while
each inner node stores the minimum and maximum of both children. This
is similar to the approach described by Wilhelms et al. [Wilhelms92], except
that they used an octree instead of a kd-tree, and for iso-surface extraction
instead of ray traversal.

4.3.1.2 Tree Traversal

During each traversal step in a kd-tree, three traversal cases have to be
distinguished. Given the distance from the ray origin to the splitting plane t4
and assuming that ¢,.,, and ¢4, represent the current ray segment in terms of
the distance from the origin, the following three cases must be distinguished:

trar <tq: The current ray segment lies entirely in front of the splitting
plane, i.e. only the front subtree needs to be traversed,

thear = tq: The current ray segment lies entirely behind the splitting plane,
i.e. only the back subtree needs to be traversed,

tnear < ta < lger: The current ray segment overlaps the splitting plane and
hence both children must be traversed by checking the front subtree
first and putting the back subtree onto the stack.

Needless to say, tpeqr and tg,, need be updated accordingly for the next
traversal step. Figure 4.4 illustrates all three possibilities.

The missing link is now how to determine the ray segment defined by 4
and ts,. Since each node contains the minimum and maximum value (see
Section 4.3.1.1), the searched iso-value is checked whether it lies between the
node’s minimum and maximum value, i.e.:

Pmin S Piso S Pmax

where p;,, is the user-defined iso-value, p, is the minimum value stored
in the node, and p,,4, is the maximum value stored in the node. If this
range check is only positive in the left child, this corresponds to the first
case, i.e. only the front subtree is traversed. Inversely, if this range check is
only positive in the right child of the current node, only the back subtree is

58

Chapter 4: Static Regular Data Sets

T

A

B

pd

Figure 4.4: The three traversal cases are shown above. From left to right:
the ray segment is in front of the splitting plane, the ray segment is behind or
overlays the splitting plane. This can be easily extended when shooting four
rays in parallel, e.qg. using the SSE extension [Intel].

used for further traversal. If the iso-value is in both ranges, the left subtree
is traversed and the right subtree is put on stack. In case that the remaining
traversal of the left child fails, the first item is retrieved from the stack and
the traversal continues.

4.3.1.3 Parallel SIMD Implementation

So far, only single ray traversal has been discussed without exploiting any
type of coherence. It was, however, stated that the kd-tree was chosen be-
cause this acceleration structure works well with coherent ray tracing. In
fact, the described traversal can be directly used for traversing four rays in
parallel since one culling query can be applied to all four rays.

However, as mentioned above, this coherence can hardly be maintained
until the leaf-level is reached. Highly diverging rays must be treated sep-
arately, which decreases the number of active rays in a packet and hence
diminishes the performance gain expected using SIMD instructions. While
the theoretical speedup is four, the practical speedup largely depends on the
data set and perspective. The combination of a small screen resolution to-
gether with a large data set leads to volume cells covering only a single pixel.
One would except therefore a relative small SIMD efficiency at least in this
case. It should be noted, however, that the culling is subtrees is very efficient,
i.e. the traversal decision is made on higher tree levels, where the rays are
still coherent.

As can be concluded from Table 4.1, a high data set resolution, i.e. small
cell size combined with a low screen resolution, is the worst case scenario in

4.3 Static Iso-surface Rendering

59

Screen Res. Data 512x512 Speed- 1024x1024 Speed-
Data Set Res. | Single Packet up Single Packet up
Aneurism 2563 19.7 5.73 | 3.41 78.9 21.5 | 3.66
Bonsai 2563 14.7 4.73 | 3.10 58.7 16.8 | 3.49
ML 323 7.93 2.17 | 3.64 31.7 8.33 | 3.81
ML 1283 11.8 3.73 | 3.15 47.2 134 | 3.51
ML 5123 15.5 6.39 | 2.42 61.9 2.71 | 2.95
Female 5127 « 1734 5.57 2.82 | 1.97 22.3 9.56 | 2.33
” (zoom) 5127 « 1734 8.33 2.08 | 3.99 33.3 8.36 | 3.99
LLNL 20482 % 1920 15.9 9.47 1.68 65.5 31.9 1.99
” (ZOOHl) 20482 % 1920 13.3 3.32 4.00 53.2 13.3 4.00

Table 4.1: This table compares the number of traversal steps (in millions
per second) for both single-ray and SIMD traversal with respect to varying
scenes and screen resolutions. It turns out that the speed-up between single
and packet ray is quite low for distant views of high resolution since nearly
every ray within the packet has its own traversal path down the tree. How-
ever, screen resolutions or zoom-ins boost the traversal performance to the
theoretical optimum.

which speed-up is around two. In other cases, the speedup increases to three
or even the theoretical maximum of four.

4.3.2 Optimizations

While the previous section described building and traversal on an abstract
level, it still remains unclear how to efficiently represent this kd-tree in mem-
ory. For the node information discussed above, this leads to twelve bytes
per node: 4 bytes for plane dimension (30 bits) and orientation (2 bits), 4
bytes for a pointer to the right child and 2 bytes each for minimum and max-
imum value (assuming a 12-bit integer representation [Hounsfield80]). The
structure of such a node, which is in the following referred as large node, is
illustrated in Figure 4.5. For large integer or even floating point values, 16
bytes are required. Since leaf nodes do not require a pointer to the right
child, this space can be used for encoding a reference to the associated grid
cell. For regular grids, this reference is just the index value, since all scalar
values are stored in an array.

Since each leaf node points to a cell, it is easy to compute the mem-
ory requirement for the entire tree. Let N be the number of cells or leaf
nodes. Such a tree consists of exactly N — 1 inner nodes, which results in

60

Chapter 4: Static Regular Data Sets

Plane Dimension |Orientation [Pointer Right Child | Min ' Pad. | Max ! Pad.
30 Bits 2 Bits 32 Bit (= 4Bytes) |12 Bits. 4 Bits| 12 Bits. 4 Bits

Figure 4.5: This diagram illustrates each component of the large kd-tree node,
assuming that the minimum and maximum values are stored as 12-bit inte-
gers [Hounsfield80]. In practice, the padding of 4 bits is added by using 16-bit
short values.

(2N — 1) x 12 bytes and hence occupy 12 times the size of the original data
set in memory (which is 2N). While for 32-bit values, the relative over-
head is slightly better (7 times), it becomes worse for 8-bit values (20 times).
The following four paragraphs describe five specific optimizations addressing
memory consumption: reducing the node storage and number of nodes, re-
laxing the power-of-two constraint, discretized min/max values, and re-using
parent min/max values.

4.3.2.1 Reducing Node Storage

A significant reduction can be achieved by assuming for a moment that the
number of cells in each dimension is equal to a power of two, i.e. constructing
a balanced kd-tree. No flag is needed indicating whether the current node is
a leaf or an inner node. It is also easy to see, that all nodes in the same level
[will use the same split orientation d;. Hence, this information can be stored
in a small lookup table equal to the size of the tree height with negligible
memory consumption.

In a similar way, the position of the splitting plane does not have to be
stored either. Let R4; represent the number of cells to be split in dimension
din level [, i.e. level [splits R, ; x R, ; X R cells. It follows immediately that
there are at most R;; — 1 possible split locations. Since a split-in-the-middle
is a necessary pre-requisite for balanced trees, it therefore suffices to simply
save all possible split locations per level. Of course, additional overhead is
added for the table lookup during traversal. Memory consumption, on the
other hand, is reduced from 2N — 1 to 2D — 1 where N, the number of cells,
is defined by N = D3. Note that is possible to compute the splitting plane
position during traversal, making the storage of this extra table obsolete.
However, if the cell size varies within a dimension, i.e. the grid is anisotropic
(see Section 2.2.3), it is costly to compute this position on the fly.

The storage cost can be reduced further by computing the pointers to
both children during traversal. The children of a node at address n is simply
2n for the right child and 2n + 1 for the left child. Not storing the pointer
positions has another interesting side effect. This optimized version is inde-

4.3 Static Iso-surface Rendering

61

Min | Pad. | Max ' Pad.
12 Bits| 4 Bits | 12 Bits | 4 Bits

Figure 4.6: This diagram illustrates each component of the small kd-tree
node, assuming that the minimum and mazimum values are stored as 12-bit
integers [Hounsfield80]. The size of the kd-tree now depends only on the size
of scalar values.

pendent of the size of the pointer and therefore can be easily ported to 64-bit
architectures supporting even larger data sets (see Section 4.4). The memory
overhead is already reduced from 12 to 4 bytes for 16-bit scalar values (see
Figure 4.6). However, despite these enhancements, the needed memory for
this small node scheme is still 4 times the size of the volume data.

4.3.2.2 Reducing the Number of Nodes

Using a balanced binary tree also means that half of the nodes are actually
leaves. Not storing the leaves and instead computing a reference to them
during traversal saves half the memory of the kd-tree. It turns out that this
operation can be quite efficiently implemented in both C and SIMD code.
Additionally, since these minimum and maximum computation only operate
on a leaf level, they are far less common compared to computations in the
inner node traversal. Additionally, due to efficient culling, all visited leaves
require a cell intersection to compute the iso-surface.

Hence the memory overhead for this data structure can be reduced by
another 50%, i.e. the storage cost for a kd-tree is now only twice as large as
the data set size. Although a significant reduction was achieved by reducing
the node size as well as the number of nodes, other approaches still require far
less memory. Wilhelms et al. [Wilhelms92] octree adds only 50% of overhead,
while Parkers et al. [Parker99b] hierarchical grid needs only 0.5% additional
memory. On the other hand, only a fraction of the overall data contained
in a kd-tree is actually accessed during a single traversal, making a factor of
two quite tolerable.

4.3.2.3 Relaxing the power-of-two Constraint

So far the storage cost has been reduced to a factor of two but it was assumed
that a balanced binary tree was used, i.e. the number of nodes in each level of
the kd-tree was 2 and hence the resolution of the data set was 2¢ + 1 values
(i.e. 2¢ cells) in each dimension. This is generally not true for volumetric

62

Chapter 4: Static Regular Data Sets

data sets. The simplest solution is to enlarge the data set to comply with
this constraint by padding each dimension to a suitable resolution.

133 | L Lot

oe6)4 1 1\ _ _ _ __

o334 1 1 1V 0 __ __

|
0 o
<
© S

N © @
o o o
Figure 4.7: In this example, a grid consisting of 3 X 5 cells is embedded in
a virtual 4 X 8 grid with a balanced kd-tree. By Choosing appropriate split
positions, it can be guaranteed that virtual cells never lie outside the scene
bounds [0..1)%, and thus will never be traversed by a ray. As a consequence, the
nodes do not have to be stored and therefore consume no additional memory.

The drawback of this optimization is the higher memory consumption
if the the data set size does not obey the power-of-two constraint. The
situation is especially poor for data sets with 2:+1 cells in a certain dimension
since nearly half of the cells will never be used. It is therefore better to
distinguish between a wvirtual and a real grid size. The virtual grid exceeds
the scene’s original bounding box, and the kd-tree is built over this the virtual
grid. Hence, it can be assured that all virtual nodes lie outside the real
scene bounding box. Since the kd-tree traversal first clips the ray to that
bounding box, rays will never be traversed outside this box, i.e. no ray ever
touches any of the virtual nodes. From this observation, it follows, that
such cells do not have to be stored. Using the same argument, leaf nodes
of the kd-tree that point to virtual cells also do not have to be stored. To
achieve this, the kd-tree is only built over the virtually padded volume, while
the address computations and memory allocation are computed using the
real grid resolution (see Figure 4.7). In other words, for a volumetric grid
consisting of R, x R, x R, cells, a virtually padded volume R x R, x R’ is
constructed with R), . = min{2'|R,, . < 2'} cells.

GroB et al.[GroB07] recently suggested to omit even these virtual nodes
for the kd-tree. They use the fact, that for each kd-tree node the number
of inner nodes is known advance. 3D boxes are used to calculate the split
plane’s position as well as the memory offset to the child node. This box is set

4.3 Static Iso-surface Rendering

63

to the volume dimension when the traversal starts and during each traversal
step this box is refined depending on the child’s position in the tree. This
increases the computational overhead only slightly but saves memory for the
acceleration structure.

4.3.2.4 Discretizing min/max values

Wald et al. [Wald05] also suggested to discretize the minimum and maximum
values stored in the nodes, although it was not investigated further. In a
simple approach discretizing simply means that only the highest bits are
stored in the kd-tree, e.g. the 8 highest bits of a data set with 16-bit scalar
values. Since the leaf nodes are not stored, and therefore must be checked
anyway by computing the minimum and maximum of the corner values on
the fly, the introduced overhead should be negligible.

Figure 4.8: Left: The MRbrain data set is