
Interactive Volume Ray Tracing

Gerd Marmitt
Computer Graphics Group

Saarland University
Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

S
A

R
A V I E N

S
I

S

U
N

I V
E R S I T

A
S

Betreuender Hochschullehrer / Supervisor:

Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany

Gutachter / Reviewers:

Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany
Prof. Dr. rer. nat. Elmar Schömer, Johannes Gutenberg Universität,
Mainz, Germany

Dekan / Dean:

Prof. Dr. rer. nat. Joachim Weickert

Eingereicht am / Thesis submitted:

26. Juni 2008 / June 26th 2008

Datum des Kolloquiums / Date of defense:

18. Dezember 2008 / December 18th 2008

Prüfungskommission / Committee:

Prof. Dr. rer. nat. Sebastian Hack, Universität des Saarlandes
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes
Prof. Dr. rer. nat. Elmar Schömer, Johannes Gutenberg Universität
Dr. Andreas Hildebrandt, Universität des Saarlandes

Gerd Marmitt
Lehrstuhl für Computergraphik, Campus E 1 1
Universität des Saarlandes
66123 Saarbrücken
marmitt@graphics.cs.uni-sb.de

iii

Abstract
Volume rendering is one of the most demanding and interesting topics among
scientific visualization. Applications include medical examinations, simula-
tion of physical processes, and visual art. Most of these applications de-
mand interactivity with respect to the viewing and visualization parameters.
The ray tracing algorithm, although inherently simulating light interaction
with participating media, was always considered too slow. Instead, most re-
searchers followed object-order algorithms better suited for graphics adapters,
although such approaches often suffer either from low quality or lack of flex-
ibility.

Another alternative is to speed up the ray tracing algorithm to make it
competitive for volumetric visualization tasks. Since the advent of modern
graphic adapters, research in this area had somehow ceased, although some
limitations of GPUs, e.g. limited graphics board memory and tedious pro-
gramming model, are still a problem. The two methods discussed in this
thesis are therefore purely software-based since it is believed that software
implementations allow for a far better optimization process before porting
algorithms to hardware. The first method is called implicit kd-tree, which is a
hierarchical spatial acceleration structure originally developed for iso-surface
rendering of regular data sets that now supports semi-transparent rendering,
time-dependent data visualization, and is even used in non volume-rendering
applications. The second algorithm uses so-called Plücker coordinates, pro-
viding a fast incremental traversal for data sets consisting of tetrahedral
or hexahedral primitives. Both algorithms are highly optimized to support
interactive rendering of volumetric data sets and are therefore major contri-
butions towards a flexible and interactive volume ray tracing framework.

iv

Kurzfassung
Die Visualisierung von volumetrischen Daten ist eine der interessantesten,
aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissen-
schaftlichen Visualisierung. Im Gegensatz zu Oberflächenmodellen, repräsen-
tieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwen-
dungen reichen von medizinischen Untersuchungen, Simulation physikalischer
Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen
Interaktivität hinsichtlich Darstellungs- und Visualisierungsparameter. Der
Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhä-
rent die Interaktion mit einem solchen Medium simulieren kann, immer als
zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf
Rasterisierungsansätze, da diese besser für Grafikkarten geeignet sind. Dabei
leiden diese Ansätze entweder unter einer ungenügenden Qualität respektive
Flexibilität.

Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu
beschleunigen, dass er sinnvoll für Visualisierungsanwendungen benutzt wer-
den kann. Seit der Verfügbarkeit moderner Grafikkarten hat die Forschung
auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch
Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder
das umständliche Programmiermodell, enthalten. Die beiden in dieser Ar-
beit vorgestellten Methoden sind deshalb vollständig softwarebasiert, da es
sinnvoller erscheint, möglichst viele Optimierungen in Software zu realisieren,
bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impli-
ziter Kd-Baum genannt, eine hierarchische und räumliche Beschleunigungs-
truktur, die ursprünglich für die Generierung von Isoflächen reguläre Git-
terdatensätze entwickelt wurde. In der Zwischenzeit unterstützt sie auch die
semi-transparente Darstellung, die Darstellung von zeitabhängigen Daten-
sätzen und wurde erfolgreich für andere Anwendungen eingesetzt. Der zweite
Algorithmus benutzt so genannte Plücker-Koordinaten, welche die Implemen-
tierung eines schnellen inkrementellen Traversierers für Datensätze erlauben,
deren Primitive Tetraeder beziehungsweise Hexaeder sind. Beide Algorithmen
wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetri-
scher Daten zu ermöglichen und stellen deshalb einen wichtigen Beitrag hin
zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.

v

for Angela

vi

vii

Acknowledgments
It is unquestionable that many students, colleagues, relatives, and friends
have contributed significantly in many ways to make this thesis finally hap-
pen. During my work in the Computer Graphics Group at the Saarland
University, I advised Jens-Michael Weber, Andreas Kleer, Heiko Friedrich,
Javor Kalojanov, and Roman Brauchle in their Bachelor or Master Theses.
Most of their work was used in several publications within the last four years
and became therefore also part of this thesis. Besides programming essential
parts of the entire framework, discussions were fruitful for both sides.

The same can be said about my former colleagues Andreas Dietrich,
Heiko Friedrich (again), Andreas Pomi, Jörg Schmittler, and Sven Woop,
who helped me understand many issues in the computer graphics area. A
special thanks goes to Heiko Friedrich since most research projects were re-
alized with his help.

Devoting years to education is in my point of view extremely difficult with-
out having relatives and family for support. Most support came from my par-
ents and three sisters, but I also would like to thank my friends Tanja Warken,
Matthias Buchmann, Lars Baldes, Marc Schmidt, and Carsten Spyra. Spe-
cial thanks goes to Benedikt Fries, since he gave me the chance to see Japan
right before I started writing this thesis.

viii

Contents

1 Introduction 1

2 Ray Tracing & Volume Graphics 7

2.1 Ray Tracing . 9

2.2 Volume Graphics . 11

2.2.1 Transport of Light . 12

2.2.2 Volume Rendering Integral 16

2.2.3 Types of Volumetric Data 19

2.2.3.1 Regular Data Sets 21

2.2.3.2 Curvilinear Data Sets 22

2.2.3.3 Unstructured Data Sets 22

2.2.4 Reconstructing a Continuous Volume Signal 23

2.2.5 Volume Rendering Techniques 25

2.2.5.1 Semi-Transparent Rendering 25

2.2.5.2 Maximum-Intensity-Projection (MIP) 25

2.2.5.3 Iso-Surface Rendering 26

2.2.5.4 Decomposition 27

2.2.6 Volume Rendering Pipeline 27

2.3 Conclusion . 28

3 Alternative (object-order) Approaches 31

3.1 Cell Projection . 32

3.1.1 Parallel Cell Projection 33

3.2 Hybrid Algorithms . 35

3.3 Object-Order Ray Casting Algorithms 36

3.4 Vertex Projection (Splatting) 37

3.5 Texture Mapping . 39

3.6 Shear-Warp . 40

3.7 Custom Hardware . 41

3.8 Conclusion . 42

x CONTENTS

4 Static Regular Data Sets 45

4.1 Related Work . 46

4.1.1 CPU and GPU Hardware Acceleration 47

4.1.2 Non-hierarchical Acceleration Structures 49

4.1.3 Hierarchical Acceleration Structures 50

4.2 Background . 51

4.2.1 Kd-Trees . 51

4.2.2 Coherent Ray Tracing 53

4.3 Static Iso-surface Rendering 54

4.3.1 The Implicit Kd-tree 54

4.3.1.1 Tree Building 56

4.3.1.2 Tree Traversal 57

4.3.1.3 Parallel SIMD Implementation 58

4.3.2 Optimizations . 59

4.3.2.1 Reducing Node Storage 60

4.3.2.2 Reducing the Number of Nodes 61

4.3.2.3 Relaxing the power-of-two Constraint 61

4.3.2.4 Discretizing min/max values 63

4.3.2.5 Re-using the Parent’s Min and Max Values . 65

4.3.2.6 Comparison of Performance 65

4.3.3 Iso-Surface Cell Intersection 67

4.3.3.1 Approximate Methods 68

4.3.3.2 Accurate Methods 71

4.3.3.3 Parallel SIMD Implementation 75

4.3.3.4 Comparison of Performance 76

4.3.3.5 Higher-Order Intersection Tests 77

4.3.4 Shading and Gradient Calculation 78

4.3.5 Results . 80

4.4 Massive Iso-surface Rendering 83

4.4.1 Treelet Construction and Traversal 84

4.4.2 Results . 86

4.5 Static Semi-transparent Rendering 86

4.5.1 Adapting and Extending the Implicit Kd-tree 87

4.5.2 Results . 88

4.6 Conclusion . 90

4.7 Contributions . 92

4.8 Future Work . 92

CONTENTS xi

5 Dynamics and Other Applications 95
5.1 Time-dependent Volume Rendering 96

5.1.1 Related Work . 97
5.1.2 Concurrent Tree Update 98

5.1.2.1 Replacing the recursive Implementation . . . 98
5.1.2.2 Multithreading 99
5.1.2.3 Update Performance Speedup 101
5.1.2.4 Synchronization Mechanisms 102

5.1.3 The 4D kd-Tree . 104
5.1.3.1 Extending Tree Building and Traversal 104
5.1.3.2 Optimizing the Order of Splitting Planes . . . 105

5.1.4 Comparison of Performance 106
5.1.5 Results . 109

5.2 Other Applications I: Terrain Rendering 112
5.2.1 Wang-Tiling Scheme 113
5.2.2 Ground Terrain Traversal 114
5.2.3 Results . 116

5.3 Other Applications II: Dynamic Rendering 117
5.3.1 Update and Traversal Process 119
5.3.2 Results . 120

5.4 Conclusions . 122
5.5 Contributions . 124
5.6 Future Work . 124

6 Irregular Data Sets 127
6.1 Related Work . 128
6.2 Theoretical Background . 132

6.2.1 Plücker Coordinates 132
6.2.2 Bilinear Patches . 134

6.3 Tetrahedral Meshes . 134
6.3.1 Finding the Initial Tetrahedron 135
6.3.2 Mesh Traversal in Plücker Space 136
6.3.3 Iso-Surface Cell Intersection 139
6.3.4 Gradient Computation 141
6.3.5 Memory Requirements 143
6.3.6 Scalability Measurements 143

6.4 Hexahedral Grids . 146
6.4.1 Finding the Initial Hexahedron 146
6.4.2 Grid Traversal . 146

6.4.2.1 Plücker Space 146
6.4.2.2 Bilinear Patch Extension 148

xii CONTENTS

6.4.3 Iso-Surface Cell Intersection 149
6.4.4 Gradient Computation 152
6.4.5 Memory Requirements 153
6.4.6 Scalability and Comparison Measurements 154

6.5 Results . 156
6.6 Conclusion . 159
6.7 Contributions . 161
6.8 Future Work . 161

7 Final Summary 165

Bibliography 177

List of Figures

2.1 A Generic Ray Tracing Scheme 10
2.2 Interaction Between Light and Participating Media 13
2.3 Approximating the Volume Rendering Integral 18
2.4 Regular Volumes and Cells . 21
2.5 Anisotropic and Rectilinear Volumes 21
2.6 Curvilinear Volumes with Hexahedral Cells 22
2.7 Unstructured Volumes with Tetrahedral Cells 23
2.8 Tri-linear Interpolation within a Cube 24
2.9 Different Volume Rendering Techniques 30

3.1 Cell Projection Principle . 32
3.2 Vertex Projection (Splatting) Principle 38
3.3 Shear-Warp Factorization . 41

4.1 Tree and Associated Range for a 2D KD-Tree 52
4.2 Volume Grid versus Volume Tree Traversal 55
4.3 Volumes Rendered with Multiple Iso-Surfaces 56
4.4 Traversal Cases for the KD-Tree 58
4.5 Structure of a Large KD-Tree node 60
4.6 Structure of a Small KD-Tree Node 61
4.7 Virtual Nodes Relaxes the Power-of-Two Constraint 62
4.8 MRbrain and Male-Torso Iso-Surface Rendering 63
4.9 Multiple Iso-Surface Intersection Scenario 67
4.10 Midpoint Cell Intersection . 68
4.11 Linearly Interpolated Cell Intersection 69
4.12 Repeated Linearly Interpolated Cell Intersection 71
4.13 Iterative Root Finding Cell Intersection 74
4.14 Scalability Chart of the Implicit Kd-Tree 81
4.15 Several Rendered Images of the Visible Female 82
4.16 Several Renderings Richtmyer-Meshkov Instability 83
4.17 Massive Volume Rendering Pre-Processing 84

xiv LIST OF FIGURES

4.18 Massive Data Set Renderings 85
4.19 Semi-Transparent Rendering with Different Thresholds 89

5.1 A Two-step Iterative KD-Tree Update Procedure 100
5.2 Multi-threaded (i.e., distributed) Iterative Tree Update 101
5.3 Overview of the Synchronization Mechanism 103
5.4 Synchronization of Threads for Updating The KD-Tree 103
5.5 Individual Time Steps of Tested Time-Dependent Data Sets . 106
5.6 Sample Time-Dependent Rendering Series 111
5.7 Puget Sound Area Panorama View 112
5.8 Wang Tiling Scheme with 18 Tiles 113
5.9 Top-level Terrain KD-Tree Traversal 114
5.10 Elevation Fitting of Sub-scene Plants 115
5.11 Construction a Bounded Kd-tree 118
5.12 Bounded Kd-tree Traversal Cases 119
5.13 Dynamic Polygonal Scenes from the FPGA Renderer 121
5.14 Award-Winning Close-up View of the Puget Sound Area . . . 125

6.1 Hexahedron Decomposition into Five Tetrahedra 129
6.2 Geometric Representation of the Plücker Test 133
6.3 Irregular Volume Boundary Examples 135
6.4 Ray-Triangle test using Plücker Coordinates 136
6.5 Näıve versus optimized Plücker-Tetrahedron test 137
6.6 Possible Results of an Iso-Surface within a Tetrahedron 140
6.7 Blunt Rendered with Different Volume Rendering Techniques . 141
6.8 Quality Comparison of different Gradient Computations . . . 142
6.9 Data Structure for the Plücker Traversal Algorithm 143
6.10 Irregular Data Set Rendering Examples 144
6.11 Exit face determination for a hexahedral cell 147
6.12 Handling Concave Hexahedra 148
6.13 Ray intersecting a Hexahedral Face 150
6.14 Curvilinear Grid Rendering Artifacts 151
6.15 Combustion Chamber Rendered with Different Techniques . . 152
6.16 Mixing Different Volumetric Organizations 160

7.1 Seamless Integration of Polygonal and Volumetric Objects . . 167
7.2 Nahtlose Integration von polyg. und volum. Objekten 172

List of Tables

2.1 Summary of Volume Data Organizations 29

4.1 Single and Packet Ray Traversal Step Comparison 59
4.2 Performance Impact of Discretizing the Min/Max Values . . . 64
4.3 Large and Small Variant Memory Consumption 65
4.4 Large and Small Variant Performance Comparison 66
4.5 Cell Intersection Performance for Single Ray 76
4.6 Cell Intersection Performance for Packet Ray 77
4.7 Performance Measurements of the Original Implementation . . 81
4.8 Performance Measurements of the Massive Renderer 86
4.9 RMS-Error and Speedup for the Engine Data Set 90

5.1 Update performance for Iso-Surface Rendering 101
5.2 Update performance for Semi-Transparent Rendering 102
5.3 4d Kd-Tree and Static Kd-Tree Performance Comparison . . . 105
5.4 Single Ray Performance using Different Frameworks 107
5.5 Packet Ray Performance using Different Frameworks 108
5.6 Concurrent Tree Update Single and Packet Ray Performance . 110
5.7 Rendering Performance of the Plant Populated Terrain 117
5.8 SaarCOR, RPU, and OpenRT Performance Comparison . . . 120
5.9 Cycles and Frame Rates of the Dynamic Polygonal Renderer . 122

6.1 Näıve and Optimized Plücker Performance Comparison 137
6.2 Tetrahedra Processed per Second Using the Plücker Tests . . . 142
6.3 Iso-Surface Rendering Performance of Tetrahedral Data 144
6.4 Semi-Transparent Rendering Performance of Tetrahedral Data 145
6.5 Hexahedra Processed per Second for both Approaches 151
6.6 Iso-Surface Rendering Performance of Hexahedral Data 155
6.7 Semi-Transparent Rendering Performance of Hexahedral Data 155
6.8 Unstructured and Semi-structured Data Sets 156
6.9 Volume Rendering Performance of Tetrahedral Data 157

xvi LIST OF TABLES

6.10 Volume Rendering Performance of Hexahedral Data 158

Chapter 1

Introduction

2 Chapter 1: Introduction

Im Lichte bereits erlangter Erkenntnis erscheint
das glücklich Erreichte fast wie selbstverständlich,
und jeder intelligente Student erfaßt es ohne
zu große Mühe. Aber das ahnungsvolle, Jahre
währende Suchen im Dunkeln mit seiner ges-
pannten Sehnsucht, seiner Abwechslung von Zu-
versicht und Ermattung und seinem endlichen
Durchbrechen zur Wahrheit, das kennt nur, wer
es selbst erlebt hat.

Albert Einstein

Scientific visualization is an important research areas within the computer
graphics community and covers a large variety of methods and applications.
However, such applications usually demand processing and inspection of par-
ticipating media. Rendering participating media is called volume graphics
or volume rendering and is one of the most interesting (and difficult) topics,
since it provides a detailed exploration of material in the context of physical,
medical, and biological research.

Volumes are generally described as participating media in a 3D field,
which takes light interaction into account. Such a 3D field may represent
density, temperature, pressure, higher dimensional data like acceleration and
velocity vectors, or even a combination of these properties. The remainder of
this thesis will, however, be restricted to scalar fields since multi-dimensional
fields are beyond the scope of this work.

Sources for 3D scalar fields are either measurement devices or computer
simulations. Typical devices used for this task include computer tomogra-
phy (CT) and magnetic resonance imaging (MRI), which are familiar to the
general public. For example, a CT scanner produce images similar to x-rays
from various orientations offering doctors a better diagnostic tool for their
patients. Until now, physician often relied on 2D images, since 3D imaging
tools were either too costly or lacked display quality. There can be, how-
ever, no doubt that 3D imaging offers far better examination capabilities
and analysis which will lead to a growing demand in the near future.

Another field of application lies in simulation of computational fluid dy-
namics (CFD) or finite element methods (FEM). Both applications require
3D scalar fields for a proper representation of physical processes, e.g. temper-
ature and pressure distribution in a combustion chamber over time. Usually,
supercomputers are employed for such simulations since the underlying phys-
ical model requires complex calculations. Scientific visualization aids in the
understanding of these physical processes.

A third community which has started using volume rendering very re-
cently is visual artists. More and more artists are impressed by the expres-
siveness and possibilities of volume rendering. In computer games and other
areas of visual art, volumetric rendering effects can be used for describing

3

non-solid objects, e.g. fluids, gases, and natural phenomena like fog, clouds,
and fire. Volume rendering is used here to add visual clues to virtual realities
as a supplement to traditional surface models.

Computer games rely completely on graphics boards for rendering, which
do not directly support rendering of volumetric data. Due to their limited
flexibility, which only changed recently, most proposed algorithms are fast but
restricted to the rasterization of surfaces. All primitives are projected onto
the screen before applying visibility sorting. Volumetric primitives, however,
require a sampling and sorting within the primitive for a proper visualization.
Ray tracing naturally supports this, since it imitates the physical model of
light transport directly and can therefore be used in a more general way, i.e.
supporting a variety of visualization tasks with only minor modifications of
the basic algorithm. Yet, due to the lack of ray tracing hardware, it was
always considered as too slow for interactive purposes.

The OpenRT project [Wald02a, Dietrich03] showed that this is no longer
true in the case of polygonal data. This ray tracing engine consists of an
efficient combination of processor-specific command sets, i.e. SIMD, highly
optimized acceleration structures and the ability to cluster several consumer
PCs together for rendering the final image. The latter results directly from its
image-based rendering approach, i.e. the main loop runs over the image pixels
and not scene objects. This allows for nearly linear scalability with respect
to computational power. Since all pixels can be computed independently,
doubling the number of (equally powerful) processors halves the time for
computing the same image. For the same reason, ray tracing can profit
directly from multi-core processors.

Once the basic ray tracing algorithm is implemented, it is easy to add
varying types of shading models, e.g. Lambertian [Gouraud71] and Phong
[Phong75] shading. More complex ray generation and shooting allows for
global illumination with soft shadows and caustics (e.g. [Jensen96]). Addi-
tionally, ray tracing handles any kind of primitive (triangles, quads, nurbs,
etc.) along the ray and returns the hit position of the first opaque object.

The entire framework was restricted to surface models consisting of tri-
angles and could hence not handle volumetric data. The main focus of this
thesis is therefore to add this functionality to the OpenRT rendering sys-
tem by exploring two interesting concepts recently proposed in the area of
volume rendering: implicit kd-trees [Wald05, Marmitt05, Marmitt08] and
Plücker-based volume traversal [Marmitt05, Marmitt06b, Marmitt08]. It is
worth noting that the presented algorithms can be implemented in any ray
tracing-based rendering system.

However, also practical issues are discussed. It is of major importance
to distinguish first between different types of volumetric data, i.e. regular

4 Chapter 1: Introduction

and curvilinear grids as well as unstructured meshes. Since all data sets
offer only a discrete signal, the reconstruction of a continuous signal by using
interpolation is briefly discussed. The section continues with an overview
of typical volume rendering techniques, i.e. iso-surface rendering, maximum-
intensity projection, and semi-transparent rendering. It will be closed with a
short overview of a generic volume rendering pipeline used by most volume
renderers.

Chapter 3 describes different types of object-order approaches for volume
rendering. They are considered as alternative rendering methods throughout
this thesis. In essence, these alternative methods can be distinguished in cell-
projection, vertex-projection, and texture-mapping. Their main advantage
is rendering performance, since it is easier to implement them on graphics
adapters. An exception is certainly the shear-warp algorithm, which is a
fast software implementation for regular grids. It is not frequently used,
however, due to its algorithm-inherent shortcomings, i.e. rendering artifacts
from 45 degree viewpoints, memory consumption, etc. The chapter ends with
a brief discussion of custom hardware implementations. Most, however, are
not developed further due to their costly research and limited extensibility
with respect to rapid advancements in that area.

Chapter 4 extensively discusses the first technique for allowing interactive
volume ray tracing of regular grids. The implicit kd-tree is described and
optimized for rendering iso-surfaces of static volume data sets first. Recent
advancements enable a fast introspection even of massive volumetric data
sets. As the following section shows, hierarchical semi-transparent rendering
can be added with only minor modifications. Conclusions and future work
close this chapter.

As Chapter 5 shows, the implicit kd-tree can also be used for rendering
time-dependent data. The first alternative introduces a concurrent update
mechanism using a shared-memory system and is therefore well-suited for
small data sets. Larger data sets can be rendered by the newly developed
4D kd-tree, although this acceleration structure is not competitive in its cur-
rent state. Two special sections cover the usage of the implicit kd-tree in
non-volume rendering areas. In a first example, a terrain rendering system
consisting of 90 trillion triangles is described where the implicit kd-tree de-
termines which tiles are pierced by a ray from the elevation map. The entire
system achieves near-interactive frame rates on a shared-memory system with
16 cores. The second example uses the idea of the implicit kd-tree to sup-
port dynamic rendering of polygonal data. This is made possible using the
bounded kd-tree.

Chapter 6 describes an incremental traversal algorithm for curvilinear and
unstructured data sets. In contrast to the previously discussed hierarchical

5

acceleration structure, this incremental traverser supports all volume render-
ing techniques with only minor modifications, i.e. semi-transparent rendering
is supported directly. Care has to be taken to allow for an interactive per-
formance since this is the main goal of all algorithms proposed here. This
goal is made possible using the concept of Plücker coordinates and bilinear
patches. While Plücker coordinates solely suffice to render unstructured, i.e.
tetrahedralized, data efficiently, a hybrid approach of Plücker coordinates
and bilinear patch intersections for curvilinear grids consisting of hexahedral
primitives offers both a better quality and a higher performance. Of course
this chapter also closes with results, drawn conclusions and future work.

Finally Chapter 7 briefly summarizes all achievements made towards an
interactive and flexible volume ray tracing system. It also suggests how such
a system might look and states crucial components.

6 Chapter 1: Introduction

Chapter 2

Ray Tracing & Volume Graphics

8 Chapter 2: Ray Tracing & Volume Graphics

The rules of the game are laid down. We all have
to play, buddy!

”Brazil”

This chapter covers main concepts of volume rendering as used throughout
this thesis. It starts with Section 2.1, which provides an overview of the well-
known ray tracing algorithm. As will later be shown, this global, image-space
rendering approach has a variety of advantages compared to rasterization.
While this fact is in general not questioned, the performance for rendering
images with ray tracing is often cited as its largest drawback.

However, rendering polygonal data with ray tracing at interactive frame
rates has been established for several years. Research groups in Utah (USA)
and Saarbrücken (Germany) demonstrated interactive ray tracing for super-
computers (*-ray) [Parker99a] and a cluster of commodity PC’s (OpenRT)
[Wald02a, Wald04a]. The latter was more successful since a cluster of con-
sumer PC’s is less expensive compared to a high-end supercomputer, such
as an SGI Reality Monster. Furthermore OpenRT was extended in a variety
of ways, including global illumination [Wald02b, Günther04], video-textures
for mixed-reality applications [Pomi03], and free-form surfaces [Benthin04].
As a pure software implementation, it can also be used for displaying highly
complex models [Wald01b, Wald04b] such as, CAD data [Dietrich05b], or
natural plant scenes [Dietrich05a, Dietrich06]. Additionally, the ray trac-
ing algorithm was successfully ported to several hardware prototypes. Using
FPGAs as a platform allows for an efficient development while still keeping
close to custom chip design issues, i.e. ASICs. While the first implemen-
tation offered only a limited number of features [Schmittler02], the latest
developments include freely programmable shaders [Woop05] as well as effi-
cient handling of dynamic scenes [Woop06].

However, all of these implementations consider surface (polygonal) data
only. Evaluating light transfer at surfaces only does not take into account
interaction with an atmosphere or the interior of objects. In contrast, volume
rendering describes a wide range of techniques for generating images from a
3D (scalar) field. It seems therefore only plausible to extend the existing in-
teractive ray tracing system to handle volumetric data. The following section
introduces the key components and advantages of a ray tracing system first,
while Section 2.2 discusses the theoretical background and practical issues
for handling volumetric data. It will be shown that ray tracing naturally
supports volumetric data and allows for easy integration into the ray tracing
system.

2.1 Ray Tracing 9

2.1 Ray Tracing

Ray tracing is a well-known technique for producing realistic images by sim-
ulating the transport of light [Appel68, Kay79, Whitted80]. In contrast to
rasterization, the visible objects in a given scene are determined at the pixel
level, i.e. this algorithm works in image-order. The final image is rendered
pixel-wise by searching for the nearest visible object from the eye point.
Pixel-wise processing makes the algorithm relatively slow compared to ras-
terization, especially for objects covering large regions in screen space. On
the other hand, implementing a generic ray tracer is rather straightforward.
Shadows and point light sources can be easily added, and for reflection and
refraction, it is sufficient to implement the corresponding physical equations
for ray shooting, e.g. Bears law, Snell’s law, or Fresnel equation, into the
system.

Algorithm 1 A Generic Ray Tracing Algorithm.

for p = 0..#Pixels do
Compute viewing ray
for o = 0..#Objects do

if o is hit at ray parameter t and t < thit then
hit := true
ohit := o
thit := t

end if
end for
if hit = true then

Set pixel color to ohit color
else

Set pixel color to background color
end if

end for

As can be seen from Algorithm 1, a basic ray tracing engine consists of
two nested loops running over all pixels (outer loop) and over all objects
(inner loop).1 The inner loop enumerates all objects, calculates the distance
from the eye point for each object, and returns the object closest to the eye
point.2 The pixel color is either set to the color of the returned object or the
background color, respectively, if no object was found.

1In fact, swapping inner and outer loops results in a basic rasterization algorithm.
2The visibility sorting applied here is known as the painters algorithm [de Berg00].

10 Chapter 2: Ray Tracing & Volume Graphics

Pixel

Image plane
Object

Object

Reflection ray Refraction rays

Shadow rays

Light source Light source

Eye point

Object

Figure 2.1: In ray tracing, rays are shot from the eye point through each
pixel of the image plane. To account for shadow or material properties like
reflection and refraction, secondary rays are traced recursively in the scene.

So far, this algorithm considers primary (or viewing) rays only, which is
usually referred as to ray casting. To add more visual cues, it is necessary
to continue shooting rays. For example, shooting rays from the intersection
point to all light sources determine whether this part of an object lies in a
shadow. This is achieved by checking whether another primitive is located
between the light source and the object currently intersected. Reflection and
refraction might also be added by applying the corresponding physical laws
to the incoming ray and continue shooting. It is obvious that ray shooting
can continue from that point until no further objects are intersected or the
material properties of the intersected primitive do not request shooting of
further rays. All subsequent rays are called secondary (or higher-order) rays.
Figure 2.1 illustrates the ray tracing algorithm. In general, a ray is only
traced until a pre-defined level of recursion, referred to as depth, is reached,
since the contribution to the final pixel color diminishes with each level.
Instead pre-defining the level of recursion, recursion may also stop if the
contribution is too small.

Another extension towards more realistic images is to shoot more than
one ray per ray depth. For example, image quality can be improved using
super-sampling, i.e. shooting rays ’in-between’ pixels according to a certain
pattern, since this avoids aliasing (staircase) artifacts. More natural appear-
ing soft shadows can be computed by implementing area light sources and
sampling the light source area instead of a single boolean shadow test. Global
illumination effects like color bleeding can be achieved by sampling the hemi-
sphere from each intersection point with several rays and accumulating their

2.2 Volume Graphics 11

contributions. Of course, all these effects lead to an exponential growth of
rays and reduces the rendering performance. The challenge is here to achieve
a realistic looking image with a minimal number of rays.

Applying the basic principles to volume graphics, the problem is shifted
one level deeper. At first, efficient algorithms for shooting rays through vol-
umetric data need to be investigated before applying advanced illumination
effects. Traversing a volume means computing the light interaction with a
participating medium. Basic types of interaction are emission (i.e. increasing
radiance), absorption (i.e. decreasing radiance), and scattering (i.e. radiance
leaves in directions other than the light ray and therefore increases (i.e. out-
scattering) and decreases (i.e. in-scattering) energy at the same time). This
interaction must to be evaluated at all positions in the 3D volume. Gaseous
materials are the most common example. Volume visualization is therefore
more computationally demanding compared to polygonal rendering. The fol-
lowing section will therefore not only provide a theoretical background but
will also discuss practical issues. As it will turn out, ray tracing provides an
easily implemented solution for volume graphics.

2.2 Volume Graphics
For volume graphics, a participating medium needs to be modeled along
with the actual light-transport mechanism. While photo-realistic rendering
requires a physically accurate description of the participating medium, sci-
entific visualization tasks aim at emphasizing certain information implicitly
encoded in the medium.

In other words, the goal of direct volume visualization is the visual ex-
traction of information from a 3D scalar field3, which can be interpreted as
a mapping:

φ : R3 → R,

i.e. from a 3D space to a single-component value. This 3D scalar field orig-
inates either from measurements (e.g. CT, MRT) or simulations (e.g. CFD,
FEM). The following paragraphs discuss the fundamental equations for light
transfer and follows closely in its development of the volume rendering inte-
gral [Engel06, Hege93]. The usage of the complete volume rendering integral
is unfortunately only of limited use for interactive applications. It is there-
fore necessary to discuss a simplified and discrete version afterwards so that
numerical methods can be used (see Section 2.2.2). Finally it is then possible

3Be reminded, that multi-dimensional fields are not a topic of this thesis.

12 Chapter 2: Ray Tracing & Volume Graphics

to put all discussed parts together for a generic volume rendering pipeline
(see Section 2.2.6).

2.2.1 Transport of Light
For this model it is assumed that light propagates along straight lines in space
as long as it does not interact with a participating medium, i.e. relativistic
effects are generally not considered. Typically, the following three types of
interactions are distinguished [Engel06]:

Emission. The participating medium actively emits light, i.e. the radiated
energy is increased. Hot gas converting heat into radiative energy is an
example.

Absorption. Here, the light is absorbed by converting radiated energy into
heat. Sun collectors converting sun light into hot water are an example.

Scattering. Essentially, scattering can be interpreted as changing the di-
rection of light propagation. It can be further distinguished in elastic
scattering (wavelength energy of photons is not a affected) and inelastic
scattering (wavelength energy of photons changes).

Each of these three types of interaction affect the amount of radiated
energy along a light ray. This light energy is usually described by its radiance
L.4 This term can be derived by combining radiant power φ, irradiance E,
and the solid angle Ω:

φ =
dQ

dt

[
W =

J

s

]
E =

dφ

dA

[
W

m2

]
, (2.1)

which leads to the power arriving at or leaving from a surface per solid angle
and per unit projected area, radiance L is defined as

L =
dQ

dA⊥dΩdt

[
W

m2 · sr

]
. (2.2)

In other words, L is characterized as radiance energy Q per unit area
A, solid angle Ω, and time t. dA⊥ = dAcosθ where θ denotes the angle
between the surface normal and the incoming light ray. Hence, the subscript
⊥ indicates that the area is measured as projected along the light direction.

4In [Engel06] the symbol I is used for radiance despite the fact that Glass-
ner [Glassner95] uses L for radiance, since this would lead to confusion with the intensity
term. The Glassner notation is used in the following.

2.2 Volume Graphics 13

Physically, radiance is stated in watts per steradian per square metre. The
unit of the solid angle is dimensionless. The physical units will be omitted
from here on to make the equations more readable.5

(b) absorption

ray ray

(c) in−scattering (d) out−scattering(a) emission

ray ray

Figure 2.2: A light ray traversing a participating medium interacts with it
in several ways. While emission increases the radiance for each ray (a),
absorption has the opposite effect (b). Scattering may either increase the
outgoing radiance (c), or decrease the outgoing radiance (d).

To begin, consider the effect of a medium on the radiative energy along a
ray. Except for a vacuum, a medium generally affects the radiance energy in
different ways. As illustrated in Figure 2.2, emission increases the light en-
ergy, while absorption reduces the light energy. Scattering effects are further
distinguished in in-scattering, where additional energy is redirected into the
ray direction, and out-scattering, where the outgoing ray energy is reduced
since light is scattered in different directions. Note that this is independent
from elastic and inelastic scattering. The latter concerns only changes of the
underlying wavelength and is therefore not further considered here. Combin-
ing the effects for emission, absorption and scattering results in the following
equation for light transfer:

ω · ∇xL(x, ω) = −χL(x.ω) + η. (2.3)

The term ω · ∇xL denotes the dot product between light direction ω
and the gradient ∇ = (∂

∂x
, ∂

∂y
, ∂

∂z
) of the radiance L at position x, i.e. the

directional derivative taken along the light direction. χ represents the total
absorption coefficient defining the rate of light attenuation with respect to
the medium and is therefore dependent on the radiance energy at point x. A
second term, η needs to be added representing the emission (i.e. describing
the extent to which radiative energy is increased through the participating
medium). The quantities χ and η refer to the total absorption and emission
quantities (both measured in m−1) respectively:

5For a comprehensive explanation of physical quantities and light measurements, refer
to Glassner’s two-volume book, Principles of digital image synthesis [Glassner95].

14 Chapter 2: Ray Tracing & Volume Graphics

χ = κ + σ (2.4)

η = q + j. (2.5)

The first equation states that the total absorption coefficient χ consists
of a true (or thermal) absorption coefficient κ and a scattering coefficient σ
representing the energy loss from out-scattering. The second equation shows
that the total emission η is defined as the sum of a source (or thermal)
term q representing emission and an in-scattering term j. It is important
to distinguish between thermal emission and absorption, since they increase
respectively, or decrease, the beam energy. Scattering causes photon interac-
tion with a scattering center and hence energy results in moving in different
directions with (in the case of inelastic scattering) different frequencies.

Note that all six quantities depend on the position in space x. This
parameter is omitted to make the equations more readable. Except for the
emissive scattering part j, the other three quantities depend solely on the
optical material properties which are either assigned by a transfer function
or given by the underlying (gaseous) model. For j, all possible contributions
from incoming light directions must be considered. The basic idea is to
accumulate all incident light by integrating over all directions ω′:

j(x, ω) =
1

4π

∫
sphere

σ(x, ω′)p(x, ω′, ω)L(x, ω′)dΩ′. (2.6)

This equation defines the accumulation of incident light L(x, ω′) by in-
tegrating over all directions ω′. All contributions are not only weighted by
the scattering coefficient σ, but also by the phase function p. This func-
tion basically represents the angle dependency of scattering and is therefore
an important optical property. Assuming a normalized phase function, it is
possible to rewrite Equation 2.3 including all types of interaction. It com-
bines the previously derived terms for emission, absorption, in-scattering,
and out-scattering:6

ω · ∇xL(x, ω) = −(κ(x, ω) + σ(x, ω))L(x, ω) + q(x, ω)

+
1

4π

∫
sphere

σ(x, ω′)p(x, ω′, ω)L(x, ω′)dΩ′. (2.7)

6The similarities with the rendering equation [Kajiya86, Glassner95] are obvious and
of course not surprising since this equation is just a special case of the volume rendering
equation restricted to surfaces.

2.2 Volume Graphics 15

The goal of direct volume rendering is now to determine the radiance L
from Equation 2.7 for the light transfer. It is common to implement only a
subset of the equation above minimizing the cost of its evaluation. For this
purpose one or more terms are removed resulting in the following principle
models [Engel06]):

Absorption Only. In this case the volume represents a perfectly black ma-
terial that may absorb incident light.

Emission Only. The volume consists of a gas that is completely transparent
but emits light.

Emission-Absorption Model. This model is commonly used and simu-
lates a participating medium which can emit light and absorb incident
light at the same time. Indirect lighting and scattering are, however,
not modeled.

Single Scattering and Shadowing. Here, light coming from an external
source is scattered. In the same way, shadows are produced by consid-
ering the attenuation of light incident from an external source.

Multiple Scattering. This means the complete evaluation of Equation 2.7,
i.e. including emission, absorption, and scattering effects.

In practice, however, most volume renderers implement the emission-
absorption model since it offers the best tradeoff between generality and
efficiency. Getting rid of scattering terms, i.e. considering the thermal ab-
sorption κ and (thermal) emission q only, Equation 2.7 can be written as

ω · ∇xL(x, ω) = −κ(x, ω)L(x, ω) + q(x, ω), (2.8)

which is termed the differential volume rendering equation, since the light
transport is described by the differential change in radiance. If only a single
ray is considered, parameterized by arc length s, ω · ∇xI can be rewritten as
the derivative dL

ds
leading to

dL(s)

ds
= −κ(s)L(s) + q(s) (2.9)

In other words, the positions and solid angles are simply substituted by
the length parameter s. Using this volume rendering equation, the volume
rendering integral can be derived by integrating radiance L. This is explained
in the next section.

16 Chapter 2: Ray Tracing & Volume Graphics

2.2.2 Volume Rendering Integral
The volume rendering integral is derived by integrating Equation 2.9 along
the direction of light flow with starting point s0 and endpoint sn:

L(sn) = L0e
−

R sn
s0

κ(t)dt
+

∫ sn

s0

q(s)e−
R sn

s κ(t)dtds. (2.10)

In this equation L0 denotes the light entering the volume from the back-
ground at position s = s0, while L(sn) denotes the radiance leaving the
volume at position s = sn and finally reaching the eye point. In other words,
the first term of the equation describes the light measured at the background
and is hence omitted if there is no background attenuation by the volume.
The second term is the main part since it represents the integral contribu-
tion of the source term attenuated by the participating medium along the
remaining distances to the eye point.

Background attenuation L0 and volume emission q need to be multiplied
by a transparency factor. To compute this factor, the optical depth must be
computed first. Between the positions s1 and s2, optical depth is defined as

τ(s1, s2) =

∫ s2

s1

κ(t)dt, (2.11)

which is basically a measure indicating how long the light travels before
it is absorbed. Small values make the volume transparent while large values
of τ make the volume more opaque. The corresponding transparency can be
computed by plugging in the e-function:

T (s1, s2) = e−τ(s1,s2) = e
−

R s2
s1

κ(t)dt
, (2.12)

leading to a more readable version of the volume rendering integral:

L(sn) = L0T (s0, sn) +

∫ sn

s0

q(s)T (s, sn)ds. (2.13)

In general, however, it is not possible to solve this integral analytically,
and hence it is approximated by numerical methods. From the fact that
points of the underlying 3D scalar field are not continuous but at discrete
positions in space, it follows that the integration domain should be split
into a number of smaller subsets where limits are given by the locations
s0 < s1 < ... < sn−1 < sn, i.e. the ith segment is determined by the interval
[si−1, si]. The starting position is set to s = s0 and the endpoint of the
interval s = sn. Note that these intervals generally do not have equal length.
Using Equation 2.13 it is possible to compute the radiance at location si and
the interval [si−1, si] using:

2.2 Volume Graphics 17

L(si) = L(si−1)T (si−1, si) +

∫ si

si−1

q(s)T (s, si)ds. (2.14)

By setting:

Ti = T (si−1, si), and ci =

∫ si

si−1

q(s)T (s, si)ds,

one can write L(sn) as the product of the sum of all cis and the product
of all Tj’s

L(sn) =
n∑

i=0

ci

n∏
j=i+1

Tj, with c0 = L(s0). (2.15)

Note that the transparency Ti is often replaced by its opacity, i.e. setting
αi = 1− Ti. What is now left to solve the (approximated) volume rendering
integral is the computation of the transparency Ti and color ci of the given
intervals. One possible solution is to approximate the volume rendering inte-
gral by a Riemann sum over n equidistant segments of length δx = (sn−s0)

n
. As

illustrated in Figure 2.3, this is a piecewise-constant function. Each segment
of the integral is approximated by its corresponding rectangle. This is defined
by the function value at the sampling point and the sampling width given by
the intervals. Alternatively, the segment can be approximated by assuming
a linear interpolation between two discrete points (see Figure 2.3). The ith
segment transparency Ti and color contribution ci can be approximated as
follows

Ti ≈ e−κ(si)∆x and ci ≈ q(si)∆x. (2.16)

Unfortunately, uniform sampling may result in artifacts since a homoge-
neous material is assumed. As an alternative, adaptive sampling provides
a better quality since non-homogeneous regions are sampled more densely
compared to homogeneous regions. Another possibility is the Monte-Carlo
approach, which avoids uniform sampling. Pre-integrated volume render-
ing [Engel01] allows for a faster evaluation, since it pre-computes all possible
results from the integral and stores them in a table for lookup.

Since the volume integral along a ray is evaluated step by step, it is often
referred to as compositing. In computer graphics, compositing means com-
puting a weighted sum of two or more elements. The summations and multi-
plications in Equation 2.15 are split into several simple operations executed
sequentially. The two basic approaches are front-to-back and back-to-front
compositing. Setting α = 1 − T (i.e. opacity) and letting C represent the

18 Chapter 2: Ray Tracing & Volume Graphics

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � � f(s)

s

xδ

s1s0

...

f(s)

s

xδ

s1s0

...

s sn n

Figure 2.3: Approximating the volume rendering integral can be solved in sev-
eral ways. Left: Approximation using a Riemann sum. Instead of evaluating
the integral, the area of the rectangles is summed as an approximation. Right:
Evaluating the integral at discrete points and assuming a linear interpolation
in between. Higher-order interpolation schemes are also possible. Note that
∆x was chosen to be extremely large for this demonstration to visualize the
difference between the methods.

color, i.e. both the newly contributed radiance c and the accumulated ra-
diance L are covered by this term, the front-to-back -operation is defined as
follows:

Cdst ← Cdst + (1− αdst)Csrc (2.17)

αdst ← αdst + (1− αdst)αsrc (2.18)

where subscript src is interpreted as source or input from the optical prop-
erties of the data set and subscript dst is the destination or output quantity.
Hence, the output color Cdst is computed by adding the new input color Csrc,
weighted by the current opacity value αdst. The term αdst is similarly com-
puted. Applying Equation 2.17 and 2.18 iteratively while marching through
the volume updates opacity and color. Obviously, there is no contribution
if the opacity reaches αi = 1. In this case the iterative marching can be
stopped, which is commonly referred to as early ray termination.

Reversing the traversal direction leads directly to the back-to-front com-
positing scheme:

Cdst ← (1− αsrc)Cdst + Csrc (2.19)

Since no accumulated opacity is needed, its iterative update is not nec-
essary when determining the color contribution. Hence the compositing is
easier but does not allow for early ray termination. Generally, back-to-front
rendering does not work with regard to perspective ray tracing and ray cast-
ing and will therefore not be discussed further.

2.2 Volume Graphics 19

Instead, this paragraph closes with briefly applying alternative approaches
to this scheme. For example, maximum intensity projection (MIP) is often
used in medical applications. The goal here is to find the maximum value
found along a (light) ray path. This can be achieved by setting:

Cdst ← max(Cdst, Csrc) (2.20)

Obviously, the order of the iteration does not matter, allowing for random
access of all values, and thus enabling the use of acceleration structures.

When rendering iso-surfaces, i.e. implicit surfaces defined by a certain
value, the basic operations are a little different. Here, it is basically a boolean
decision whether there exists a contribution C along the ray that is equal to
the searched value. If so, an iso-surface was found, otherwise, it was not.
Since the first intersection with the iso-surface C defined by Ciso is wanted,
the order of traversal is important:

C =

{
true Ciso = Csrc

false otherwise
(2.21)

An alternative interpretation is to look at iso-surface rendering as a special
case of a transfer function, i.e. a function which results in exactly one non-
zero solution.

As Engel et al. [Engel06] point out, the color C can be interpreted as
radiance values for a consistent and physically correct description of light
transport. If fixed camera parameters as well as a linear response to the
camera is assumed, the strength of the recorded color values is proportional
to the incident radiance. The final radiance C can therefore be seen as a
measure for RGB values.7

2.2.3 Types of Volumetric Data
This paragraph discusses practical issues of volume rendering with the fo-
cus on ray tracing. In the volume rendering pipeline, data traversal is the
first step, and is largely dependent on the underlying topological organiza-
tion. Typical topological volume organizations are regular, curvilinear, and
unstructured sets of 3D points in space. Since each organization necessarily
consists of discrete points in space, the signal must be reconstructed using
filter operations as described in Section 2.2.4.

Different types of volume organization result from different data sources
and volume acquisition techniques. A typical field for scalar volume data
is medical imaging, where the data is acquired by some kind of scanning

7The fact that this is not true for intermediate values is often neglected.

20 Chapter 2: Ray Tracing & Volume Graphics

device. One of the most frequently used devices is computerized tomography
(CT) where the physical scanning process is based on x-rays. In a tube the
radiation is sent from one side to an opposite detector array while traversing
the patient’s body in between. Different materials, like skin and bone, result
in different attenuation of the radiation recorded. The emitter and detector
are then rotated around the patient’s body resulting in a collection of 2D
radiation ’images’. Back-projection is often used for reconstruction and works
easiest with regular 3D grids.

Another device is magnetic resonance imaging (MRI) where nuclear mag-
netic resonance is used to identify different materials in a 3D spatial context.
A rather strong magnetic field is used to align the spins of atomic nuclei.
A much weaker, second magnetic field sends an excitation pulse to perturb
the aligned spins. If these spins realign, radiation is emitted and recorded.
Different materials in space are located using a magnetic gradient field. As
for the CT and most other types of medical devices (e.g. ultrasound, positron
emission tomography), the volume data set is reconstructed from the detected
feedback. Both devices use scanlines and produces therefore rectilinear grids.

Semi-structured or unstructured data sets sometimes produced by Ul-
trasound but result more often from simulations, like computational fluid
dynamics (CFD), finite element methods (FEM). The simulated data points
are distributed in space to form a best fits to the applied physical simulation,
i.e. adapted to the physical phenomena investigated. Besides the simulation
of physics, fire and explosion simulations for special effects are also possible.
As a last example, consider the case of converting the surface representation
of a 3D object into a set of voxels, which is termed voxelization. It should
be noted that such irregular samples often resampled in a 3D grid.

As already mentioned, each element of this field represents a scalar value.
In most cases, this datatype is a 16 bit8 integer value or a 32 bit floating point
value. The following paragraphs describe three major types, their properties,
as well as their decomposition into primitives.

Note that using radial basis functions do not require a topology at all,
since their value only depends on the distance from the origin or some other
center point. Ray tracing, however, requires in general a topology for an
efficient traversal making the following discussion worthwhile.

8Data obtained from CT or MRI scanners usually use only the lower 12 bits, allowing
the representation of values between 0 and 4095. Such measurements are expressed in
Hounsfield units stating the radio density of a material. The radio-density of distilled
water at standard pressure and temperature is defined as 0 (see [Hounsfield80] for more
details).

2.2 Volume Graphics 21

2.2.3.1 Regular Data Sets

This is the most structured way of representing a volume. All scalar values
within the field are arranged in a three-dimensional grid with equal spacing
in each dimension, i.e. it is a uniform grid. Due to the organization in a 3D
regular grid, these values are usually referred as voxels (a portmanteau of the
words volumetric and pixel). Due to their inherent organization, such data
is usually stored in an array. All voxel positions in space are implicitly given
due to the regular (i.e. equidistant) organization of the grid.

Figure 2.4: Regular Data Sets (right) contains samples organized as cubes
(left). Each cube is defined by its eight corner voxels. Note that the position
in space is equidistant and therefore implicitly given.

Anisotropic Regular and Rectilinear Data Sets If the spacing between
the voxels is equidistant within each dimension but different for each dimen-
sion, the grid is called anisotropic regular. Instead of cubes, cuboids have
to be handled. If this property is not given either, the grid is called recti-
linear (see Figure 2.5), i.e. the spacing varies within the voxels in the same
dimension.

Figure 2.5: Left: The spacing varies between the dimensions but not within
each dimension. Right: Rectilinear data sets with different spacing.

22 Chapter 2: Ray Tracing & Volume Graphics

2.2.3.2 Curvilinear Data Sets

In so-called semi-structured grids, all values are arranged in an array, i.e.
there is still adjacency information, and hence some topology implicitly en-
coded in the grid structure.

Figure 2.6: Like regular cells, curvilinear cells consist of eight neighboring
values. The position of each value within a cell is arbitrary, as long as no
overlapping between two cells is introduced.

The grid is, however, warped by some function which makes it necessary to
store with each value a three-dimensional vector representing the position in
space. Decomposing this volume into primitives still results in cells with eight
corner values (see Figure 2.6). A cell, usually referred to as an hexahedral
(cell), is not necessarily convex.

2.2.3.3 Unstructured Data Sets

Unstructured data sets consist of a set of points distributed in space with
no adjacency information at all. It is just a list of spacial coordinates with
an attached scalar value, or in short, a list of values. Since unorganized
data is hard to traverse, a topological structure is often added requiring
additional storage costs. This structure could be built upon an arbitrary
primitive, but in most cases, a tetrahedral mesh is constructed from such a
point cloud by applying, e.g. a Delaunay tetrahedralization [Choi02]. Hence
the corresponding primitives are tetrahedra consisting of four values at their
corners (see Figure 2.7). It is common to add further restrictions to the mesh,
i.e. allowing neither holes nor overlaps of adjacent cell faces.

Tetrahedra belongs to a topological class class called simplices or simpli-
cial cells. A simplex, or more precisely, a n-simplex is defined as the convex
hull of (n + 1) affinely independent points in Euclidian space of a dimension
equal to or greater then n. In this way, a tetrahedron is a three-simplex (see
Figure 2.7), and can be used to build a triangulation of an 3D domain.

2.2 Volume Graphics 23

Figure 2.7: Unstructured volume data sets consist of point clouds only and
therefore have no adjacency information. Since this information is needed,
e.g. for interpolation, it is common to apply a Delaunay tetrahedraliza-
tion [Choi02], i.e. each cell is now a tetrahedra (left) with four values. All
connected tetrahedra construct a tetrahedral mesh.

2.2.4 Reconstructing a Continuous Volume Signal

Many types of volumes share the problem that there exists only a finite set
of discrete values from which a continuous signal has to be reconstructed.
This is a well-known problem of signal theory (refer to Oppenheim and
Schafer [Oppenheim75] for a thorough discussion).

Here it will suffice to say that a linear interpolation delivers reasonably
good results compared to the ideal sinc-function for reconstructing a contin-
uous signal. For simplicity, a regular grid with unit lengths in all three cell
dimensions is assumed. This can be easily achieved by applying a scaling
factor resulting in normalized coordinates. Linear interpolation can then be
computed by:

f(p) = (1− x)f(a) + xf(b), (2.22)

where f(a) and f(b) are sample points at the spatial coordinates a and b
respectively. This scheme can be easily extended to higher dimensions by
applying a tensor product-like reconstruction, which is inherently supported
when using regular grids. As depicted in Figure 2.8, this is achieved by sepa-
rating the interpolation across the dimensions, i.e. by applying a sequence of
linear interpolations. This can be extended to the 2D case by first interpolat-
ing between a and b, then between c and d, followed by a third interpolation
between both interpolated values

f(p) = (1− y)f(pab) + yf(pcd), (2.23)

assuming that the sampled points in the y-dimension are given by c and d.
In the same way, it is possible to add the last dimension for the 3D case

24 Chapter 2: Ray Tracing & Volume Graphics

x 1−x x 1−x x 1−x

y
1

−
y

P

P

P

Pcd

ab

c

a b a b ba

cd d

h

P
1−x

x

g

fe

Figure 2.8: From left to right: Linear interpolation between points a and b.
Interpolating between points c and d and applying one subsequent interpo-
lation results in a bilinear interpolation (middle image). Based on similar
ideas, a tri-linear interpolation can be derived from the points a - h (right
image).

f(p) = (1− z)f(pabcd) + zf(pefgh), (2.24)

which results in a total of seven linear interpolations. Using substitution,
this leads to a rather large equation [Shirley05]. It is also clear that this
trilinear interpolation involves terms up to cubic order which makes tri-linear
interpolation non-linear with respect of the polynomial to be solved. In
Section 4.3.3 it will be shown that this is an important fact for recovering an
implicit function (see Section 2.2.5).

Due to the irregular structure of the more general hexahedral, it is tedious
to derive a cubic polynomial here, but still possible [Pascucci00, McDonnell04].
An alternative approach will be discussed in Section 6.4.4 using a combina-
tion of bilinear patch intersections and a linear interpolation.

On the other hand, with a three-simplex (i.e. tetrahedron) this interpola-
tion is rather easy to compute. The well-known 2D barycentric coordinates
(see [Shirley05]) can be extended to 3D barycentric coordinates. Instead
of putting three triangular sub-areas into a relation, four tetrahedral sub-
volumes are related to each other:

f(p) = (1− β − γ − δ) ∗ f(Vqbcd) + β ∗ f(Vqacd) +

γ ∗ f(Vqabd) + δ ∗ f(Vqabc), (2.25)

if Vqbcd, Vqacd, Vqabd, and Vqabc are four (partial) volumes of the tetrahedron
defined by the vertices a, b, c, and d and a point q = (x, y, z). The hit point
is within the tetrahedron if and only if β > 0, γ > 0, δ > 0, and β+γ+δ < 1.

2.2 Volume Graphics 25

2.2.5 Volume Rendering Techniques
It is now time to discuss semi-transparent rendering, maximum intensity pro-
jection, and iso-surface rendering from the perspective of an actual ray casting
implementation. For the theoretical implications, refer to Section 2.2.2.

2.2.5.1 Semi-Transparent Rendering

This is a direct implementation of the volume rendering integral taking emis-
sion and absorption into account but ignores scattering. Neglecting scattering
provides a good tradeoff between generality and efficiency of computation.
The contribution along a ray is computed by solving the volume rendering
integral (see Equation 2.7), which is implemented iteratively either back-to-
front or front-to-back. For ray tracing, the usual way is a front-to-back im-
plementation since rays traverse the volume in this order. The corresponding
pseudo-code and illustration for an approximation is stated below in Algo-
rithm 2.

Algorithm 2 Semi-Transparent Rendering.

for i = 1..N do
color := color + (1− alpha) ∗ ρi

alpha := alpha + (1− alpha) ∗ αi

end for
return color 0.2 0.1 0.4

0.30.2 0.7

Final
color

Ray

0.2

0.9

Sample values

In this pseudo-code, alpha and color are accumulated values of opacity
and color. In contrast to back-to-front rendering, the opacity must be tracked
independently. Intensity ρi (simply speaking the intermediate color value) is
directly obtained from the volume, i.e. by reconstructing a continuous signal
(see Section 2.2.4) using interpolation and mapping. The opacity value is set
to α := 1 − e−D (i.e. (1 − T)) or simply α = −D (neglecting the e-function
for small D), with D as distance between two adjacent samples along the
ray. It is also possible to apply early ray termination, i.e. the loop stops
after alpha = 1.0 respectively alpha = 1.0 − ε is reached (not shown in
pseudo-code).

2.2.5.2 Maximum-Intensity-Projection (MIP)

Here, the volume is traversed as previously described. Instead of accumulat-
ing values, however, only the maximum value is of interest. This method is
often used for Magnetic Resonance Angiograms where thin structures, e.g.
blood vessels etc. must be rendered accurately.

26 Chapter 2: Ray Tracing & Volume Graphics

Algorithm 3 Maximum-Intensity Rendering.

for i = 1..N do
color = MAX(color, ρi)

end for
return color 0.2 0.1 0.4

0.2

Final
color

Ray

0.2
Sample values

0.2 0.4 0.4

No opacity or any other value needs to be tracked (see Algorithm 3). It is
possible to accelerate the search for the maximum value by using appropriate
structures. Parker et al. [Parker99b] store the maximum values in a multi-
level grid and creates a priority queue for each ray traversing the volumetric
grid. Regions with a lower maximum value compared to the highest value in
the priority queue can be efficiently skipped. A similar acceleration structure
can be used for the next method, called iso-surface rendering.

2.2.5.3 Iso-Surface Rendering

This techniques aims at rendering a surface which is defined by some func-
tion f(x, y, z) = ρ. While ρ is a (user-defined) iso-value, f(x, y, z) is usually
derived from the reconstruction. For example, using a tensor-product like
interpolation for regular grid (see Section 2.2.4), it would be a cubic poly-
nomial. A particularly important application for this rendering method is
virtual endoscopy.

Algorithm 4 Iso-surface Rendering.
for i = 1..N do

if ρi = ρiso then
return true

end if
end for
return false

0.2 0.1 0.4

Final
color

Ray

0.2
Sample values

−−TF

iso−value = 0.1

Algorithm 4 assumes that the value can be find among the number of
samples N . The user-defined value ρiso is compared with each value ρi along
the ray. In practice, it is necessary to reconstruct a continuous signal, e.g.
using an interpolation scheme. It suffice to check the ray at intervals defined
by the underlying primitives (cubes, hexahedra, or tetrahedra). Only those
intervals have to be investigated further, where ρiso lies between the cell’s
minimum and maximum values (see Section 4.3.3).

2.2 Volume Graphics 27

2.2.5.4 Decomposition

Such methods visualize certain subsets of the scalar field, i.e. slices, particular
points, or small geometric objects [Theisel01]. For example, a slice could be
represented as a height field by interpreting the scalar values as a vector
perpendicular to the slice [Nielson90]. Since the usage of such methods is
limited, it will not be considered further, but is mentioned for the sake of
completeness.

2.2.6 Volume Rendering Pipeline

Although the suggested approaches for volume rendering differs with respect
to hardware usage and traversal order (object or image) the underlying ren-
dering process is often implemented as a pipeline. It is common to distinguish
between six stages (see [Engel06]): data traversal, interpolation, gradient
computation, classification, shading and illumination, and compositing. The
following provides a brief description of all stages, as well as references to
upcoming chapters where specific stages will be further discussed.

Data Traversal. This is an essential first step for volume rendering. Travers-
ing the volume data depends strongly on the underlying organization of
the 3D scalar field (see Section 2.2.3). The samples found along a light
ray are the basis for discretization of the continuous volume rendering
integral. Chapters 4, 5 and 6 will mainly discuss how these different
topologies can be efficiently traversed. However, the light rays do not
hit the points within the discretized field directly, which leads to next
step.

Interpolation. Since the sampling positions usually differs from the points
in the 3D scalar field, the values on the light ray need to be interpolated
using given scalar values close to the actual sampling position. More on
this can be found when discussing reconstruction methods in general
(Section 2.2.4) and reconstructing the iso-surface within a regular grid
(see Section 4.3.3) or irregular grid (see Section 6.3.3 and 6.4.3).

Gradient Computation. Computing the gradient of the scalar field at
sample positions increases the rendering quality by adding visual cues.
This allows the use of directional light or Phong shading [Phong75]
but also advanced rendering effects like global illumination. Typically,
the gradient is approximated by computing central differences (see Sec-
tion 4.3.4).

28 Chapter 2: Ray Tracing & Volume Graphics

Classification. The properties of the traversed data set is mapped to the
optical properties of the volume rendering integral. The interpolated
scalar values are usually mapped using a transfer function, i.e. different
materials with certain ranges of scalar values are assigned parameters
in the volume rendering equation, e.g. different colors. See Section 4.5
for more information about transfer functions.

Shading and Illumination. It is possible to add an illumination term to
the emissive term of the volume rendering integral, i.e. light from an
external light source is considered for single-scattering effects. More
common is the shading computation of an implicit surface, the so-called
iso-surface (see Section 2.2.5.3). This is a special transfer function
which evaluates for exactly one (discrete) input value to one and zero
for all others. Once this intersection point is found and the gradient
is computed, all kinds of shading effects can be applied, e.g. Phong
shading [Phong75] with several light sources or even global illumination.

Compositing. This step is necessary whenever multiple contributions need
to be combined, i.e. it is only required for semi-transparent rendering.
The previous section already covered two basic approaches depending
on the traversal order: front-to-back and back-to-front compositing.

Some parts of this pipeline work as local operators and appear therefore
not necessarily in this order: interpolation, gradient computation, shading,
and classification. These stages will be covered only briefly, while more at-
tention will be given to data traversal.

2.3 Conclusion
This chapter discussed essential concepts of ray tracing and volume graphics.
Ray tracing is an image-order algorithm that selects for each screen pixel the
nearest object as perceived from the viewer’s eye point. It was shown that
a basic implementation is rather easy and the concept is powerful enough to
be extended with advanced shading and lighting effects.

The subsequent section first described the transport of light and how
a participating medium interacts with a light beam leading to the volume
rendering equation from which the volume rendering integral can be derived.
The most commonly used model is based on emission and absorption only.

Depending on the origin of the data (devices, physical simulations, etc.),
structured, semi-structured, and unstructured data have to be distinguished,
as the next section showed. No matter how a 3D scalar field is organized,

2.3 Conclusion 29

Property Regular / Curvilinear Tetrahedralized
Rectilinear
(structured) (semi-structured) (unstructured)

Adjacency implicit implicit explicit
Primitive Cube / Cuboid Hexahedron Tetrahedron

Interpolation tri-linear tri-linear barycentric /
linear

Storage scalars scalars + positions scalars + positions
+ topology

Table 2.1: This table summarizes some properties of the most often used
volume data organization with respect to adjacency, primitive, interpolation
and storage.

it always consists of discrete values in space, from which a continuous signal
must be reconstructed to solve the volume rendering integral. Table 2.1
summarizes the most important properties for each of the discussed types,
including the applicable interpolation scheme.

As demonstrated with pseudo-code examples in the following section, ray
tracing is well-suited for the three most common volume visualization tech-
niques. Figure 2.9 shows sample renderings of the engine data set (regular
grid) using semi-transparent rendering, maximum intensity projection, and
iso-surface rendering. The last section gave a brief overview of the volume
rendering pipeline in which traversal was identified as a first and crucial step
for volume graphics.

The next chapter will discuss a variety of alternative rendering approaches,
such as cell projection, slice projection, splatting (vertex projection), and
shear-warp. All of these methods work in so-called object-order. Such algo-
rithms iterate over all primitives in the scene and accumulate each contribu-
tion. This process can be seen as the inverted approach to image-order algo-
rithms. The following chapter will give an overview over major approaches
for object-order algorithms and explain their shortcomings compared to the
image-order ray-tracing algorithm.

Before going into details here, it is worth mentioning that a third class
of algorithms restricted to iso-surface rendering exists. A popular example is
the Marching Cube algorithm proposed by Lorensen and Cline [Lorensen87].
Considering binary iso-values only leads to 256 possible iso-surface alignments
for the eight corner values of a cell. However, most possibilities differ only
in cell rotation leading to fifteen generic types with respect to the iso-value
distribution. Based upon this distribution, polygonal surfaces are placed into

30 Chapter 2: Ray Tracing & Volume Graphics

Figure 2.9: The engine is a small data set based on regular grids with an 8 Bit
scalar value. From Left to Right: Semi-transparent rendering of the density
distribution, maximum intensity projection, and rendering of the iso-surface
at ρiso = 118.

each cell before ’marching’ to the next one. In other words, the iso-surface for
a specific value is extracted and can be rendered by using a rasterization algo-
rithm implemented in graphics hardware. The main disadvantage is that this
extraction step is costly and must be repeated whenever the iso-value changes.
Though the algorithm was extended in many ways [Bhaniramka73, Banks03,
Nielson03, Nielson04] and also adapted to tetrahedral meshes [Cignoni96].
Modern GPUs, on the other hand, allow porting more and more parts of the
algorithm to the GPU [Pascucci04, Klein04], but some problems still remain.
For example, the number of triangles can tremendously increase to more than
one billion for large data sets, which is challenging even for today’s GPUs.

Chapter 3

Alternative (object-order)
Approaches

32 Chapter 3: Alternative (object-order) Approaches

”I understand HOW. I do not understand WHY.

”1984”

This chapter will briefly cover the most relevant object-order approaches
in the area of volume rendering. Projection is one of the most often im-
plemented object-order algorithms and can be further categorized into cell-
projection, vertex-projection (splatting), and texture-mapping. Software as
well as hardware implementations exist for this approach. Since graphics
hardware is becoming more and more flexible, recent implementations even
rely completely on the GPU. Sometimes, even a combination of object-order
and image-order algorithms can be found. The chapter will close with the
shear-warp factorization and custom hardware implementations.

3.1 Cell Projection
In cell projection, the volumetric primitives, either cubes/cubiods, hexahedra
or tetrahedra, are projected onto the image plane (see Figure 3.1). Except for
maximum intensity projection (see Section 2.2.5.2), this implies an additional
sorting step providing the correct visibility order of primitives as observed
from the eye point.

image plane

Figure 3.1: Using projection, all primitives are projected onto the image
plane before processing. In this example, a tetrahedron is projected onto the
image plane resulting in the loss of depth information if the z-value is not
maintained otherwise.

Despite the large restrictions in the first years of dedicated graphics hard-
ware, one of the first algorithms for projecting cells of unstructured grids

3.1 Cell Projection 33

was proposed as early as 1990 by Shirley and Tuchman [Shirley90]. In this
approach, all tetrahedra are sorted front-to-back first with respect to the eye-
point. After projecting each tetrahedron onto the image plane, its outline
is decomposed into one to four triangles determined by the crossings of the
edges of the projected tetrahedron. For example, the tetrahedron shown in
Figure 3.1 would be decomposed into three triangles. Ray integration occurs
by computing opacity and color (i.e. intensity contribution) at the thickest
point for each tetrahedron, followed by a linear interpolation between the
triangle faces pierced by the ray. A final back-to-front accumulation using
the painter’s algorithm [de Berg00] provides the rendered image. Rendering
times were several seconds, even for small data sets and viewport sizes.

Röttger et al. [Röttger00] additionally store color and opacity in a 3D tex-
ture map computed during pre-processing. This enables the concurrent use
of transfer functions since they can be directly encoded in the texture map.
By using back-to-front compositing, each vertex of each projected tetrahe-
dron can be assigned all associated triangles and can blend them into the
frame-buffer. However, the use of 3D textures is memory-consuming; there-
fore the approach has also been adapted for 2D texture maps. To this end,
all dependencies of the volume rendering integral with respect to the length
between two sample points are approximated in linear terms and stored in
the first 2D texture map. The remaining parts of the integral depend only
on the sample values and can thus be organized in another 2D texture map.
Interactive rendering times were achieved on an SGI Octane MXE with up to
5 fps. This algorithm was extended in many ways, e.g. Guthe et al. [Guthe02]
added hardware-accelerated pre-integration [Engel01].

3.1.1 Parallel Cell Projection
An early and straightforward parallel implementation of a projection-based
algorithm was suggested by Lucas [Lucas92]. He described a pure software
system that renders volumes in two passes. The system can handle all major
types of topologies (see Section 2.2.3). The first pass takes care of per-vertex
calculations, e.g. point and normal transformation, lighting, and avoidance
of multiple processing of shared vertices. This part is parallelized by parti-
tioning the object space.

During the second pass, which is parallelized in screen space, all primitives
are scan-converted using the transformed and lit vertices from the first pass.
This scan-conversion is implemented as a z-buffer algorithm (i.e. reverse of the
painter’s algorithm, see [de Berg00]). For volume rendering, each primitive
is decomposed into its faces, which are then sorted back-to-front (in contrast
to Shirley and Tuchman [Shirley90], which sort the primitives themselves).

34 Chapter 3: Alternative (object-order) Approaches

Each face of this sorted list contains the linearly interpolated vertex color,
opacity, and depth value for each pixel in the projection. Lucas used only
the centroids of each face as a sorting criterion which may sometimes lead
to the incorrect sorting. Lucas reported no rendering times for his volume
renderer but showed at least that his surface renderer can be implemented
with linear speed-up with respect to the number of processors.

Wilhelms et al. [Wilhelms96] use scan conversion too for their software
renderer. The volumetric primitives are decomposed into triangles depending
on the grid type, e.g. twelve triangles for a hexahedra. The scan-line conver-
sion uses y- and x-bucket lists which consist of the triangles first appearing on
the scan-line and allow the use of coherence between adjacent pixels as well
as scan-lines. These lists are accumulated front-to-back for color and opacity.
Vertex transforming and bucket sorting can both be parallelized. Addition-
ally a simple hierarchical scheme based on kd-trees was introduced, which
merges a certain number of polygons based upon a user-defined threshold.
This approximation is used for distant views, while the original data is tra-
versed for close views. As a second advantage, the kd-tree also culls invisible
regions from the current viewpoint. Rendering images with a 5122 viewport
nevertheless takes up to one minute and more on the SGI Onyx with four
processors.

Later, Williams et al. [Williams98] developed a rather sophisticated soft-
ware volume renderer based on cell projection. Although graphics hardware
was used for acceleration, their system was not intended for interactive pur-
poses but to produce high-quality images in batch mode. Their HIAC sys-
tem is able to handle any unstructured data set whose cells are tetrahedra,
bricks, prisms, pyramids, or a combination of these primitives. Meshes may
be non-convex or even disconnected. The goal was to present a benchmark
system for comparison for which all mathematical operations are described
in detail. Bennet et al. [Bennett01] later parallelized the HIAC system by
distributing the sorting step of the visibility ordering among several nodes.
Kd-partitioning ensures load balancing of the volumetric data set. Still, this
improved system needs over two seconds even when employing all 128 pro-
cessors of the SGI Onyx2.

Ma and Crockett [Ma97] also distribute the data for load balancing and
use MPI for distributed rendering. In contrast to the previously discussed
approaches, adjacent tetrahedra are not clustered together in the same parti-
tion, but rather scattered over all available nodes. The idea is to allow good
load balancing even for close views. A global kd-tree restores the ordering
during rendering. Each node clusters all cells traversed by the assigned rays
before sending them back to the render nodes. Scan-lines are interleaved
among the rendering nodes to improve load balancing.

3.2 Hybrid Algorithms 35

3.2 Hybrid Algorithms

It is also possible to project irregular meshes onto screen space first, but
then process them in image-order using conventional ray casting. Bunyk et
al. [Bunyk97] proposed such a method for irregular grids. In a preprocessing
step each volumetric primitive, i.e. a tetrahedron (see Section 2.2.3), is de-
composed into its faces (triangles). All triangles are subsequently projected
onto screen, allowing for the determination of the visibility order in screen
space. Casting a ray through those triangles results in a depth-sorted list.
Since each triangle is associated with a tetrahedron, all traversed tetrahedra
along a ray can be fetched by stepping through all triangles. This is neces-
sary for obtaining the scalar values. Assuming a linear opacity and intensity
contribution for each tetrahedron makes volume rendering possible by just
linearly interpolating between adjacent faces. The main advantage of this
approach is that the intersection test is reduced to a 2D problem which can
be efficiently solved. However, the list of triangles per pixel needs to be up-
dated whenever the viewpoint changes. The SGI Power Challenge machine
needed eleven seconds for a 2562 and up to 100 seconds for a 10242 viewport
rendering. The sorting step on each viewpoint change is around two seconds,
which is negligible even for larger resolutions (greater than 5122).

Hong and Kaufman [Hong98] also suggested a projection-based ray-casting
algorithm for curvilinear grids. The first face along the ray observed from
the viewpoint is found by scan converting all boundary faces onto the image
plane before depth-sorting along the given viewing ray. All faces of a hexa-
hedron are decomposed on the fly into twelve triangles. To traverse the cells,
all twelve faces are projected onto the image plane for intersection calcula-
tion. The interpolated scalar values along a ray can be computed together
with the depth as a part of the ray-triangle intersection test. In the original
approach, the remaining eleven triangles (one is already known when a ray
enters the hexahedron) were tested sequentially until another intersected tri-
angle, and hence the face where the ray exits the hexahedron, was found. In
a follow-up paper, Hong and Kaufman [Hong99] suggested to group these re-
maining eleven triangles and project them onto the image plane. The exiting
triangle can then be found by applying a ray-crossing technique [Haines94].
Accordingly, a point P is inside a 2D polygon if and only if the horizontal
ray starting from P and shooting infinitely to the right crosses the polygon
edges an odd number of times. By checking how many times this horizon-
tal ray crosses the edges of tested triangles, the exiting triangle, and hence
the exiting face, can be determined. This new algorithm is twice as fast as
the original implementation, but still needs 3.45 seconds for a 3002 viewport
rendering of the Blunt-fin data set (SGI Octane, 198 MHz MIPS processors).

36 Chapter 3: Alternative (object-order) Approaches

Another hybrid approach was suggested by Weiler et al. [Weiler03]. They
implemented an efficient ray-caster for tetrahedral meshes on a consumer
graphics card. The first tetrahedron along the ray is found by rasteriz-
ing the extracted boundary faces of a given model. For their ray-casting
approach, a ray-plane intersection is used [Garrity90] to determine the ex-
iting face of the currently processed tetrahedron. The ray integration re-
lies on pre-integration, as described in [Engel01]. All of these computations
are performed in the fragment program. Due to the limited flexibility of
graphic boards, it is impossible to trace a ray completely trough the volume.
Instead, multiple rendering passes are necessary, one for each tetrahedron
along the ray. The pre-computation leads to a total memory requirement
of 160 bytes per tetrahedron, and hence the size of the model is restricted
to 600,000 tetrahedra on the card used (ATI Radeon 9700, 128 MB RAM).
Additionally, a convexification needs to be applied as suggested by Williams
et al. [Williams92], which further increases the number of tetrahedra of the
data set. Interactive rendering of mid-sized models is possible with 2 to 5 fps.
A more compact data set representation taking advantage of implicit neigh-
bors [Weiler04] achieves similar performance with less memory consumption.

3.3 Object-Order Ray Casting Algorithms

Object-order ray casting restricted to regular grids was also developed by
several researchers. Mora et al. [Mora02] suggested a software implemen-
tation enabling interactive frame rates for mid-sized data sets (e.g. bonsai,
engine, etc.). Since they use an orthogonal projection, they can take advan-
tage of the fact, that every cell projection corresponds to the same hexagon
template except for the translation. Pre-computed min/max octrees are used
for skipping empty (transparent) regions within the volume. Sub-volumes of
m3 voxels are then projected onto the image plane. The implemented iso-
surface renderer uses hierarchical occlusion maps [Zhang97], i.e. images of
different sizes indicating whether a ray have to be traversed or the previously
computed value can be re-used respectively.

Hong et al. [Hong05] adapted a simular approach to current graphics
hardware. Fragments are generated corresponding to the rays intersecting
that cell. The correct order between sub-volumes is implicitly given by the
min/max octree. Dividing each sub-volume into pre-computed layers further
reduces the visibility ordering.

Another iso-surface rendering algorithm also based on object-order ray
casting was proposed by Neubauer et al. [Neubauer02]. The entire data set
is subdivided into macro-cells of size m3 where m is usually between four

3.4 Vertex Projection (Splatting) 37

and ten. These macro-cells are then used to build a min/max octree similar
to [Wilhelms92]. For each pixel on the image plane that has not yet been
processed, the octree is traversed and at each traversal step, the min/max
values are checked for whether boundary cells (i.e. cells possibly containing
the iso-surface) are in the sub-tree or not. At a leaf node, the boundaries
of the macro-cell are projected and rasterized onto the image plane yielding
a hexagonal footprint. For each pixel in this hexagon, local rays are then
used to traverse the macro-cell grid. This reduces the number of traversal
steps for the octree structure since all pixels that are covered by the hexagon
would perform the same traversal steps. For the macro-cell traversal, the
method of Amanatides and Woo [Amanatides87] is used. If a boundary cell
is encountered, an intersection test is performed with the iso-surface and if
true, normal and shading calculations are performed.

3.4 Vertex Projection (Splatting)

Splatting is a forward mapping algorithm, i.e. the contribution of each voxel
to the final image is calculated independently. The contribution of a voxel in
object space that is projected on the image plane is called a footprint. Hence,
this footprint is in fact the reconstruction kernel that represents the original
signal determined by the voxel in object space. All footprints along a ray are
accumulated to obtain the final pixel color either in front-to-back or back-to-
front order. Splatting was first described by Westover [Westover90], which
concerned rendering regular grids on a CPU. He proved that this footprint
does not depend on the actual position of the voxel in space, enabling the
use of look-up tables for an approximation.

Besides the previously described compositing of all splats, there also exists
the so-called sheet-buffer method [Müller98]. Here, the splats are organized in
cache-sheets that are aligned parallel to the volume face most closely parallel
to the image plane. Each sheet-buffer is first composited into a cache image
by traversing the volume back-to-front, i.e. the voxel contributions are added
slice-by-slice. To avoid popping artifacts, which occur when the orientation
of the sheets suddenly change, the sheet-buffer is always arranged parallel
to the image plane [Müller98]. Since this new buffer does not correspond
to the voxel positions in space, the new positions must be computed using
interpolation so that they lie on the slice again. Whenever a sheet buffer has
received all contributions, it is composited with the current image and the
next slice is processed.

This approach works best for orthographic views since it requires in this
case only a single footprint table and reconstruction kernel, which is constant

38 Chapter 3: Alternative (object-order) Approaches

image plane

Figure 3.2: Vertex projection interprets the scalar values (illustrated here
as varying point sizes) as a spatial extent (i.e. footprint) projected onto the
image plane. Accumulating these footprints per pixel yields the final color.

except for the screen space offset for every voxel. Müller and Yagel [Müller96]
therefore suggested a hybrid method. The voxel contributions are partly pre-
computed by splatting in object space. However, pixel accumulation occur
by shooting rays intersecting the splats in space, similar to ray casting. This
enables at the same time other optimization techniques used for ray tracing,
e.g. space leaping, adaptive screen sampling or spatial acceleration structures.
Performance was stated with 30 seconds for the MRbrain data set rendered
with a 2602 viewport on an SGI Indigo with 200 MHz.

Zwicker et al. [Zwicker01] addressed the problem of aliasing effects caused
by incorrect visibility determination during back-to-front compositing, since
the reconstruction kernels are assumed to be non-overlapping. Note, that
these kernels must overlap to avoid rendering artifacts. Such aliasing effects
can be reduced by adapting Heckberts elliptical weighted average (EWA) re-
sampling filter [Heckbert89] for volume splatting. The footprint function is
replaced with a re-sampling filter. Each footprint function is now separately
band-limited and hence respecting the Nyquist frequency of the rasterized
image. They chose an elliptical Gaussian kernel as basis functions and a low-
pass filter for anti-aliasing. These quality enhancements lead to a rendering
time of eleven seconds for the Skull data set on a system equipped with a
866 MHz Pentium-III.

Unfortunately this makes the computation of the footprint rather ex-
pensive, leading to the idea to simplify this computation in an adaptive

3.5 Texture Mapping 39

way [Chen04]. The key observation is that rays diverge if the volume data is
far from the viewpoint, thus making the sampling rate of these rays fall below
the sampling rate of the volume data set. In this case, the low-pass filter is
the dominant component, while for close range volume data, the reconstruc-
tion filter dominates. By classifying and processing each volume particle with
respect to the previous scheme, the computation of the footprint is acceler-
ated without reducing the quality of EWA splatting. Additional performance
is gained from a GPU implementation allowing for interactive frame-rates of
mid-sized data sets.

Performance was also the main focus of recent implementations. For
example, Jang et al. [Jang04] added an octree to locate the rational basis
functions (RBFs) intersecting the cache-sheets. For each sheet plane pixel, a
fragment program evaluates the exponential Gaussian function of the RBFs.
Frame rates vary largely, for example 7 to 70 fps for the Blunt-fin render-
ing with a 4002 resolution, which is caused by the large variation of the
RBFs. The testing system was equipped with a 2.8 GHz Pentium-IV and
an nVidia GeForce FX 5900. Recently, Neophuytou et al. [Neophytou06]
used the floating-point rasterization facilities of the latest graphics hardware
to avoid invoking expensive fragment programs. Both approaches works on
irregular data. Near-interactive frame rates (1.6 fps for the Blunt-fin) were
achieved on a Pentium-IV with 3.6 GHz and an nVidia QuadroFX 3400.

3.5 Texture Mapping

Cabral et al. [Cabral94] was one of the first to show that texture capabilities
of graphic boards can be used directly for rendering volumetric data sets.
It can be seen as a hybrid approach of backward and forward projection.
In a first step, slices are generated parallel to the image plane by trilinearly
interpolating the sample values on each slice (i.e. backward projection). After
a slice has been processed, the result is blended into the frame buffer (i.e.
forward projection). A final attenuation handles the case of off-center pixels,
where the path length differs.

Engel et al. [Engel01] improved rendering quality using pre-integrated vol-
ume rendering. The ideas presented in [Röttger00] are extended and im-
proved upon for regular grids. Pre-integrated classification overcomes the
problem of high Nyquist frequencies resulting from non-linear transfer func-
tions. Instead of applying higher-order interpolations or adaptive sampling,
the idea is to split the numerical integration into two parts. One handles the
continuous scalar field and the other handles the transfer function. In the
first step, the scalar field is sampled along the viewing ray. This sampling

40 Chapter 3: Alternative (object-order) Approaches

has its own Nyquist frequency that is independent of the transfer function.
Since this integration is approximated by a Riemann sum (see Section 2.2.2),
the sampled values define a one-dimensional piecewise linear scalar field.

Storing these values in a table reduces the integration step to a table
lookup, with the (interpolated) scalar values, as well as the length at the
start and end of the associated ray segment. Since the transfer function is
directly encoded in this lookup table, the table needs to be refreshed whenever
this function is modified by the user. Assuming constant ray segment lengths
and local updates of the transfer function improves the performance. Using
a 200 MHz CPU together with an nVidia GeForce3 produces a performance
of 4 fps for a 2562 viewport. Röttger et al. [Röttger03] later combined this
approach with volumetric clipping and advanced lighting effects.

The approaches discussed so far compute all scalar values of the grid for
rendering the volume, regardless of their visibility. Li et al. [Li03] proposed
therefore to partition the volume into smaller sub-volumes with similar prop-
erties. These properties depend on the transfer function, i.e. scalar values
within a certain range are grouped together. A kd-tree is used to render
this partitioned volume with correct visibility order, where each node in the
tree is associated with a sub-volume. Each sub-volume is culled and clipped
against an opacity map. This opacity map corresponds to a region of the
frame buffer and stores the minimum opacity of the frame buffer pixels found
within that region. They reported 10 fps for the Engine data set using a 2.5
GHz Pentium-IV and a nVidia GeForce4 graphics adapter.

3.6 Shear-Warp

Shear-warp [Lacroute94] is still one of the fastest software implementations
for volume rendering. In contrast to the algorithm presented by Drebin et
al. [Drebin88], the number of resampling passes is reduced from three to
two. The basic idea is to factorize the projection matrix into a 3D shear
and 2D warp. Shearing transforms the data set into sheared object space.
In this space, all viewing rays are parallel to one of the orthogonal axis.
The volume is considered as a stack of 2D slices. The 2D slices are then
aligned and re-sampled such that they are all perpendicular to the viewing
direction which simplifies the traversal of the volume significantly. Finally,
this intermediate image is then warped to the image plane (see Figure 3.3)
to correct the shearing. Perspective Rendering requires individual scaling of
each slice during re-sampling. This original implementation needs one second
for orthographic projection and three seconds for perspective projection on
an SGI Indigo R4000 rendering a 2562 viewport.

3.7 Custom Hardware 41

shear

pr
oj

ec
t

warp

image plane image plane

rays rays

volume slices

Figure 3.3: Instead of shooting rays from the view plane, the volume slices
are sheared so that all rays are perpendicular to the slices, which simplifies
the traversal tremendously. This sheared image must be warped in a second
step allowing for a correct display of the rendered volume. For Perspective
rendering, each slice needs an individual scaling factor for re-sampling.

Rendered images are prone to show stair-casing artifacts near a 45◦ view-
ing angle. Intermediate slices lying halfway between two adjacent volume
slices partly avoid this problem. Furthermore, images may blur during a
zoom-in since the re-sampling of the warp matrix is not adaptive. An en-
hanced version, solving these problems can be found in [Sweeney02], but at
an increased computational cost. Although the warping step significantly
limits the image quality, especially for perspective rendering, it is still used
today, e.g. for the VolumePro [Pfister99] described in the upcoming section.

3.7 Custom Hardware
The need for custom graphics hardware arose with the demand for real-time
volume rendering systems. Neither GPUs nor CPUs were fast enough at
that time to achieve this goal. Most systems have been developed for ren-
dering regular data, e.g. Cube [Kreeger99], Vizard [Knittel97], and Volume-
Pro [Pfister99]. Due to the highly regular computation, all of them achieved
real-time or at least interactive frame rates.

Cube [Kreeger99] implements a hybrid algorithm using Shear-Warp; how-
ever, it was designed to compute only the shear-step on-board and let the
graphics board warp and render the image. Eight identical rendering pipelines
are able to render a 2563 volume at 30 fps. Never commercially realized,
Cube [Kreeger99] was the predecessor of the VolumePro board [Pfister99].

42 Chapter 3: Alternative (object-order) Approaches

Although the scalability was enhanced, perspective rendering was still not
possible. The latest generation consists of separate sample and voxel pro-
cessing pipelines. Voxel processors traverse data slice-by-slice in memory
order and store them in on-chip buffers. These buffers are traversed by sam-
ple processors responsible for illumination, filtering, and compositing. More
interestingly, perspective rendering is now possible [Wu03].

Vizard [Knittel97] and Vizard II [Meissner00] were both based on an
image-order algorithm offering full ray casting including early ray termina-
tion. Phong shading [Phong75] was implemented using lookup tables. The
performance is not comparable to VolumePro due to the FPGA implementa-
tion. The system is therefore more flexible but lacks in rendering performance
(10 fps for 2562 viewport).

Changing or extending custom hardware, however, is tedious and costly.
Another disadvantage which custom hardware shares with GPUs is limited
memory. Out-of-core solutions are not, in general, an alternative due to the
high bandwidth needed.

3.8 Conclusion
The methods discussed in this chapter all provide fast and reliable volume
rendering. Parallelization is possible in almost all approaches, which works fa-
vorably in conjunction with modern GPUs. As it will be shown in Section 4.1,
however, the flexibility of modern graphic boards allow the implementation
of ray casting directly. This significantly improves the image quality while
preserving speed. Previous generations of graphic boards supported only cell
projection directly, which requires a visibility sorting of primitives whenever
the viewpoint changes. This is also true for hybrid approaches. Splatting is
fast and memory efficient, but slow for perspective rendering and prone to
rendering artifacts. Using texture mapping, the data set size is restricted to
the limited on-board texture memory. Shear-Warp is also not well-suited for
perspective projection, prone to rendering artifacts, and not very memory ef-
ficient since each volume needs to be stored three times (one per dimension).
Custom hardware is fast and delivers high quality images, but offers limited
flexibility.

Scientific visualization, however, demands both high quality and flexibil-
ity. Ray tracing offers both but is still considered too slow for interactive
purposes1. The following chapters will show that this is no longer true. In
fact, there exist a large variety of approaches especially for regular grids.

1The obvious idea of rendering with ray tracing only those parts of the image inspected
by the user fails due to the unpredictable behavior of humans eye movements [Marmitt02].

3.8 Conclusion 43

This is true even for modern graphic boards allowing for a ray casting imple-
mentation. After discussing previous work at the beginning of each chapter,
the main part of each chapter will focus on two specific implementations.
Regular grids, implicit kd-trees and their usage for iso-surface rendering, as
well as some extensions, will be discussed throughout Chapters 4 and 5, while
in Chapter 6 a new incremental traverser based on Plücker coordinates and
suitable for both unstructured and semi-structured grids will be explained.

44 Chapter 3: Alternative (object-order) Approaches

Chapter 4

Static Regular Data Sets

46 Chapter 4: Static Regular Data Sets

The most exciting phrase to hear in science, the
one that heralds new discoveries, is not ’Eureka!’,
but ’That’s funny ...’.

Isaac Asimov

Regular data sets consist of equidistantly distributed scalar values in space
which can be organized in a grid (see Section 2.2.3 for further details on data
set organizations). This type of organization is very efficient with respect to
storage and data traversal. Interactive rendering times using software ray
tracing were therefore demonstrated as early as 1998 [Parker99b]. While
this was achieved using a supercomputer, later implementations relied on a
cluster of consumer PCs or even a single PC [Wald05]. Since regular data
sets can be easily stored in texture memory of graphics boards, ray casting
implementations exist even for GPUs [Krüger03, Hadwiger05, Stegmaier05].

The major part of this chapter will, however, cover interactive rendering
of volumetric data using implicit kd-trees. This was first introduced for iso-
surface rendering allowing for several frames per second (fps), e.g. rendering
the Visible Female data set [VHP] without any approximations [Wald05].
The latest improvement accelerated loading and rendering of massive data
sets [Friedrich07] is covered in Section 4.4. A subsequent section shows, that
this approach is not necessarily limited to iso-surfaces. Kd-trees may also
be employed to accumulate values along the viewing ray allowing for semi-
transparent rendering [Marmitt06a]. Advantages are achieved by skipping
empty and homogeneous regions on high tree levels (see Section 4.5).

This chapter will then be closed with conclusions (Section 4.6), contri-
butions (Section 4.7), and future work (Section 4.8) before extending im-
plicit kd-trees for time-dependent rendering or applying it to other areas in
Chapter 5. Before discussing the implicit kd-tree and its optimization, the
following section continues first with an overview of other ray tracing imple-
mentations.

4.1 Related Work
The most obvious way for rendering regular volume data is an incremen-
tal grid traverser [Amanatides87], i.e. all cells along a ray are investigated
whether they contribute to the final image or not. This brute force approach
can be optimized in many ways as the following section will show. The next
Section 4.1.2 covers non-hierarchical acceleration structures, e.g. shell struc-
tures and proximity clouds. Afterwards, hierarchical acceleration structures
like octrees or multi-level grids are discussed (Section 4.1.3) before continuing
with a discussion of the properties of kd-trees.

4.1 Related Work 47

4.1.1 CPU and GPU Hardware Acceleration

The simplest scheme is the skipping of pixels. In that way Levoy [Levoy90b]
traverses the initial image with interleaved pixels and interpolates in between.
Subsequent images are adaptively refined. Lakare and Kaufman [Lakare04]
shoot sample (called detector) rays into the scene not only accumulating
the interpolated scalar values along the ray, but also tracking the first non-
empty cell. Leap rays start from this position and traverse the volume.
Lakare and Kaufman report a performance gain of up to 65% for various
data sets. Interactive frame rates are restricted to a viewport of 2562. It
should be noted, that this approach does not work correctly in all cases.
If the volume distance from the eye point exceeds a certain amount, rays
begin to diverge too much, especially when using perspective rendering. Also,
sampling artifacts may occur due to missed volumetric features.

Knittel’s UltraVis-System [Knittel00] is a highly optimized grid traverser
relying on empty space skipping and early ray termination. In addition,
it provides perspective ray casting, trilinear interpolation, gradient shading,
four light sources, and alpha blending. To achieve interactive frame-rates, a
series of processor-specific optimizations are implemented. A spread-memory
layout ensures that the volume data always stays in L1 cache. For the
Pentium-III architecture with a four-way associative cache, four times the
size of the volume data is allocated in main memory whereas the voxel data
is stored only in the first quarter of each memory page used. Hence, voxels
are only cached in the first quarter of each cache block and thus accessing
voxel data almost never cause cache data replacements. The remaining parts
can be filled with other frequently accessed data, e.g. lookup tables and other
local data. For the ray-volume intersection test, conditional branches are re-
placed by SSE [Intel] masking operations allowing for 16 intersection tests in
one loop, since packets of 4x4 rays traverse the volume simultaneously. Small
data sets like the Engine or MRbrain can be rendered 2 to 10 fps on a single
500 MHz Pentium-III and 1 GB of main memory using a 2562 viewport.

The UltraVis-System achieves high frame rates but was specifically suited
for the Pentium-III processor. This makes it necessary to adapt this approach
to every new generation of processors. In the meantime, GPUs appear to be
an interesting alternative, since they became more and more flexible. A
GPU volume ray caster have been proposed for several years but in most
cases rely on multi-pass algorithms [Weiler03, Weiler04]. Recent advances
show, on the other hand, that the latest generation of graphic boards allow
the implementation of a single-pass ray caster on a GPU for regular grids.

One of the first implementations of volume ray casting using programmable
graphics hardware was proposed by Krüger and Westermann [Krüger03].

48 Chapter 4: Static Regular Data Sets

They describe a GPU ray caster including typical ray casting optimizations,
such as empty space skipping and early ray termination. While an additional
octree allows for empty space skipping, the early ray termination is realized
by using the early z-test, i.e. the value in the z-buffer is set to some maximum
value preventing unnecessary invocations of the fragment shader. The rapid
development of GPUs soon led to more sophisticated rendering frameworks.

Stegmaier et al. [Stegmaier05] and Hadwiger et al. [Hadwiger05] indepen-
dently proposed frameworks for ray casting on the GPU in 2005. Stegmaiers
et al. [Stegmaier05] approach uses dynamic branching and looping of todays
GPUs. The regular grid is stored in a 3D texture but instead of employing
texture mapping (see Section 3.5), the looping capabilities allow for imple-
menting a grid traverser in the fragment program. The fragments are gener-
ated by rasterizing a polygon covering the screen space area of the volume’s
projected bounding box.

Stegmaier presented an iso-surface shader as an example by searching
only for sign changes in the difference between the iso-value and the current
and previous samples. A linear interpolation of the cell intersection (see
Section 4.3.3) improves the rendering quality. The performance depends
highly on the data set size and screen resolution, leading to 10 fps for 5122 and
3 fps for 10242 for the Engine data set on an nVidia GeForce 6800 GT. The
built-in parallelism of GPUs can be exploited further by clustering several
graphic boards together [Müller06]. Quality enhancements can be achieved
by implementing the Kubelka-Munk approach for tracking and visualizing
reflectance and transmittance [Strengert06].

Hadwiger’s et al. [Hadwiger05] approach is more advanced, since it uses
multi-level grids already known from a software ray casting, but considers
iso-surface rendering only. Like Parker et al. [Parker99b], a min/max value
per brick (i.e. spatially grouped cells) allows for efficient culling of cells which
do not contribute to the final iso-surface. A second advantage of using bricks
is that they enable out-of-core rendering by swapping culled bricks from
graphics memory to main memory. Whenever the iso-values changes, a range
query checks all bricks, whether they possibly contain the iso-surface or not.
Bricks not longer needed are replaced using a least recently used strategy.

Front and back faces of the volume’s bounding box are rasterized to com-
pute start and exit distances for the rays traversing the volumes. The linear
interpolation is used iteratively as suggested by Neubauer et al. [Neubauer02]
(further information can be found in Section 4.3.3). Shading occurs in im-
age space by storing the computed intersection position in an off-screen pixel
buffer. With a 5122 viewport it is possible to achieve up to 20 fps even for
mid-sized models and 10 fps for larger, out-of-core rendered data sets. Again,
an nVidia GeForce 6800 GT was used.

4.1 Related Work 49

However, the programming model, as well as the application interface of
GPUs, is still tedious to use. For example, the number of loops in fragment
programs is restricted to 256 at the current state. A ray caster therefore
has to use nested loops for traversing the volume. Even then, secondary
rays for advanced shading can hardly be implemented, since no recursion is
available. First steps in porting ray tracing to GPUs have already been
taken [Purcell02], but the future flexibility of graphics will determine of
whether this will be a sufficient basis for allowing full featured ray tracing.
CUDA [nvidia] seems here an interesting alternative but it still have to be
shown, that it has advantages for volume rendering. The focus is therefore
turned to software implementations with acceleration structures.

4.1.2 Non-hierarchical Acceleration Structures
Avila et al. [Avila92] present a complete visualization system based on ray
casting called PARC (polygon assisted ray casting). Its components are a
grid traverser similar to Amanatides and Woo [Amanatides87], combined
with a polygonal visual hull enclosing non-empty scalar values within the
regular grid. The GPU z-buffer is then employed to determine for each ray a
near and far position for the grid traverser based on the intersection with the
visual hull. This allows a ray to traverse non-empty cells only and hence to
skip the unavoidable empty space surrounding each data set. Although this
performance could be improved by a factor of 10, the rendering takes more
than 5 seconds even for 2563 data sets on a Silicon Graphics 240GTX with
2562 screen resolution.

Shell structures, introduced by Udopa and Odhner [Udupa93], have a very
similar concept. A shell is defined as a set of voxels in the neighborhood of
the iso-surface boundary sharing the same range of opacity values. Voxels
completely surrounded by high-opacity voxels are not stored in this set to save
memory and are hence not fetched or traversed either. The saved memory is
used for additional shading information, e.g. normals. Since rendering occurs
in the shell domain, fewer voxels need to be fetched, and hence the rendering
performance is 2 to 3 times faster compared to grid traversal. Although
it would be possible to use shell structures for ray tracing, they choose a
projection approach. The concept was later extended by Yagel [Yagel94].

Cohen and Sheffer [Cohen94] suggest proximity clouds to skip empty re-
gions within a volume when using a grid traverser. Proximity clouds store
the minimum distance to the next non-empty cell based on the city-block (i.e.
rectangular shapes around each cell) or euclidian metric (i.e. circular shapes
around each cell) in each cell. If a ray encounters a cell, the following n cells
can be skipped, where n is the encoded minimum distance. The performance

50 Chapter 4: Static Regular Data Sets

increased by 30% compared to a grid traverser. Freund and Sloan [Freund97]
adapted this idea in conjunction with transfer functions, i.e. the transfer
function evaluation is directly encoded in the proximity clouds to skip non-
interesting regions.

4.1.3 Hierarchical Acceleration Structures
Octrees are a fairly often used hierarchical structure. Levoy [Levoy90a] op-
timized his brute-force orthographic grid traverser by adding an octree for
empty space skipping and early ray termination.

Wilhelms et al. [Wilhelms92] used an octree for iso-surface rendering of
regular grids. To achieve this, the octree nodes are filled with the minimum
and maximum scalar values found in the associated subtree. When traversing
the octree, only those branches are taken that contain parts of the iso-surface.
To save memory, eight adjacent cells are grouped together at the leaf level
of the tree. When traversing a leaf node, for each of the contained cells a
polygonal representation is rendered. This representation can be generated,
e.g. with Marching Cubes [Lorensen87] in a pre-processing step.

Parker et al. [Parker99b] were the first to present an interactive iso-surface
renderer for regular grids without extracting a polygonal representation ex-
plicitly. A multi-level grid enriched with min/max values allows for skipping
large regions of the grid. On each level, all cells are grouped together in
bricks (macro-cells) for improving the locality during traversal. Each cell can
be easily accessed by storing its node index in a small table for the three-level
hierarchy of the bricks. Once a cell with a possible intersection is found, a
cubic polynomial is derived from trilinear interpolation (see Section 4.3.3),
which is then solved by Schwarze’s analytic inversion [Schwarze98]. Interac-
tive rendering times still require 16 MIPS R10000 processors or more for a
5122 viewport. Additional features like Phong shading [Phong75] and shad-
ows decrease the performance further. Maximum intensity projection is also
easy to implement by using a priority queue to track the cells or macro-cells
with the maximal value, i.e. by using the maximum-value attached to each
grid cell as priority.

A large drawback of this implementation was its restriction to rather
expensive supercomputers. DeMarle et al. [DeMarle03] therefore extended
the concept and adapted the algorithm for a cluster of consumer PCs. Here,
a master node not only distributes image tiles to the cluster nodes, but each
node is able to request a brick from all other nodes. This enables rendering
of large data-sets like the Richtmyer-Meshkov Instability [Mirin99], which
would not fit on a single PC. Using 32 PCs equipped with 1.7 GHz Dual-
Xeon processors, the LLNL [Mirin99] can be rendered with up to 7 fps.

4.2 Background 51

Grimm et al. [Grimm04] combined several techniques for rendering the
Visible Female from the Visible Human Project [VHP] with up to 2.5 fps
on a single 1.6 GHz Pentium-M, 1 GB main memory. It is a direct volume
renderer supporting transfer functions but restricted to orthographic projec-
tion. The entire data is organized in bricks of 323 cells where the bricks
themselves are stored in an octree. Bricks with homogeneous regions can
be processed directly by using pre-integrated [Engel01] opacity tables. Inho-
mogeneous bricks are handled by a cell invisibility cache indicating whether
a cell contributes to the final image with respect to the transfer function
chosen.

Recently, Knoll et al. [Knoll06] used the octree not only for acceleration
but also for compression. To achieve this, the volumetric grid itself is encoded
directly into the octree by consolidating voxels with zero variance. The gained
compression factor lies between 3 and 5 times, depending on the spread of iso-
values within the data. The Richtmyer-Meshkov Instability [Mirin99] with
8 GB of data can then be rendered on a single 2.16 GHz Intel Core-Duo
at near-interactive rates using a 5122 viewport. Interactive frame rates are
achieved on a 16-core NUMA 2.4 GHz Opteron workstation with up to 7 fps.

4.2 Background

Kd-trees in general as well as coherent ray tracing are covered first, before
continuing with the description of the implicit kd-tree. This section contains
theoretical background including pseudo-code for a generic kd-tree search.
Section 4.2.2 describes the ideas behind coherent ray tracing and how this
paradigm can be implemented on modern processors.

4.2.1 Kd-Trees

Kd-trees are a generalization of one-dimensional range trees, where a certain
number needs to be retrieved within a given range. It is easy to see that a
balanced binary search tree is suited best for this task. This guarantees that
at each node within the tree, all children on the left are smaller than the split
value and all values on the right are larger, or vice versa. Since the tree is
required to be balanced, all its paths have length O(log n). Hence, the query
time is O(log n), if a single point is going to be retrieved from the set. The
build time is O(n log n), since the binary decision is log n for every point n
within the set.

This idea can be extended to more than one dimension, since n-dimensional
queries can be decomposed into n subsequent one-dimensional queries. The

52 Chapter 4: Static Regular Data Sets

l2 l

l l

3

6 7

l1

l2

1ll

3l

11

Figure 4.1: An example of a 2D kd-tree. The first split l1 separates all 2D
points with respect to the x-value, while l2 and l3 separate points with respect
to the y-value. In this example it is assumed, that the x-value of the searched
point is greater than l1 and hence, the colored part of the point does not need
to be investigated further.

solution here is to alternate the split between n dimensions, e.g. alternating
between the x and y dimensions in the two-dimensional case.1 An example
for a 2D kd-tree is illustrated in Figure 4.1. By alternating between the x, y
and z dimensions, the data structure needed for querying three-dimensional
volumetric grids is obtained.

Theoretical build and query times do not change, since multi-dimensional
points can be distinctly encoded in one dimension. The following pseudo-code
demonstrates a recursive implementation for searching for a point within a
one-dimensional kd-tree. As can be seen from Algorithm 5, the basic idea is
quite simple. Note that the algorithm shows a split in the middle, which is
generally not optimal for a given set of points. A more detailed discussion
on kd-trees can be found in e.g. [de Berg00].

Kd-trees have been proven as a well-suited acceleration structure in the-
ory [Havran01] and practice [Wald04a] for polygonal ray tracing. Since iso-
surface rendering (see Section 2.2.5.3) requires rapid location of cells asso-
ciated with the defined iso-value, which is quite similar to a range search
problem, kd-trees can be easily employed for this volume rendering tech-
nique. This is not only true for single, but also for packet ray tracing, as the
following section shows.

1Originally, the name kd-tree stood for k-dimensional tree.

4.2 Background 53

Algorithm 5 Search a Kd-Tree for a specific value.

seachKdTree(value, start, stop)
if stop− start = 1 then

if node[split] = value then
return true

else
return false

end if
else

split = (start + stop)/2
if value < split then

searchKdTree(value, start, split)
else

searchKdTree(value, split, stop)
end if

end if

4.2.2 Coherent Ray Tracing
In Section 2.2.5.3, iso-surface rendering was defined as searching for the first
(i.e. closest distance to the eye point) appearance of a user-defined value
along a ray shot through the volumetric data set. This is similar to searching
for the first triangle along the ray and calculating an intersection point. It
seems therefore plausible to implement the same improvements which worked
well for polygonal ray tracing. The ideas of coherent ray tracing are of special
interest here.

Coherent ray tracing is based on the assumption that adjacent rays tra-
verse more or less the same parts within the scene and hence the same kd-tree
nodes. However, especially when using perspective projection, rays diverge
with increasing distance and hence do not use, the same kd-tree nodes re-
quiring them to be treated separately. Despite these shortcomings, coherent
ray tracing showed a significant performance boost for polygonal ray trac-
ing [Wald01a]. As will be shown later, this algorithm can be easily adapted
to traversing regular grids. This demands several additional requirements to
the implemented algorithm:

CPU-friendly algorithms. The implemented algorithm should favor mod-
ern CPUs and therefore try to use processor-specific extensions like
SIMD in order to allow interactive frame rates.

Efficient data layout. Special care should to be taken with respect to the
data layout in both cache and main memory when implementing data

54 Chapter 4: Static Regular Data Sets

structures. This requires for example that the nodes of a kd-tree be
organized in a cache-aligned fashion.

The first of these two requirements is usually implemented by shooting
and traversing packets of four rays through the kd-tree. To exploit coher-
ence as much as possible, the rays are arranged in a 2 × 2 square which
allows for simultaneous traversal when using the SSE implementation [Intel]
of the x86 processor family2. The acceleration structure, in this case a kd-
tree, should also simply extensible to this parallel or packet ray tracing.
In contrast to other data structures, kd-trees demand only a binary deci-
sion per traversal step which is easy to implement. Grid-like data struc-
tures [Parker99b, DeMarle03] or octrees [Wilhelms92, Knoll06], require more
decisions per traversal and are therefore impractical to combine with packet
ray tracing.

4.3 Static Iso-surface Rendering

Rendering an implicit surface determined by a user-defined scalar value within
a regular grid requires extracting that set of cells containing the searched iso-
value. In other words, instead of accumulating all interpolated values along
a ray, the problem is reduced to a binary decision whether a cell contains the
iso-value and is hit or not (see Section 2.2.5). This decision is identical to the
stated range search problem above so that the discussed kd-tree construction
and traversal needs only minor modifications.

In general, the number of cells containing the iso-surface is rather small
compared to the total amount of cells, but they are irregularly distributed
in space. Since this set of (iso-surface) cells often defines the closure of the
implicit surface, they are referred as boundary cells. After retrieving the cells
containing the iso-surface, a cell intersection and typically a normal calcula-
tion are applied to render the final image. This is described in Sections 4.3.3
and 4.3.4. Section 4.4 will briefly sketch an optimized loading and rendering
mechanism for massive data sets, before discussing a possible extension for
semi-transparent rendering in Section 4.5.

4.3.1 The Implicit Kd-tree

As shown on the left side of Figure 4.2 a grid traverser have to check all cells
along the ray until the cell containing the iso-surface is identified. A kd-tree

2Other processor families (e.g. PowerPC) offers similar but incompatible APIs for SIMD

4.3 Static Iso-surface Rendering 55

Figure 4.2: Left: Traversing all cells along the rays until an iso-surface is hit.
Right: A top down traversal in a min/max hierarchy can be used to quickly
skip regions without boundary cells.

provides a significantly faster alternative, since it requires less traversal steps,
as the right side of Figure 4.2 illustrates.

This requires only two modifications of the kd-tree described in Sec-
tion 4.2.1:

1. Each node within a kd-tree must store information regarding the iso-
surfaces contained in the subtree represented by that node.

2. The traversal must be modified in such a way that each node is implic-
itly classified as to whether a subtree contains the searched iso-surface
and is skipped if not.

A näıve approach would simply store a binary value in each node, i.e.
true if a subtree contains the searched iso-value, false if not. Encoding the
iso-surface explicitly in each node would however lead to the same problem,
for which extraction was abandoned, since this would require the kd-tree
to be built completely anew whenever the user changes the iso-value. The
new structure should not have this shortcoming, thereby offering a significant
advantage compared to extraction methods.

To achieve this, the kd-tree is built over all possible iso-surfaces at the
same time by annotating each kd-tree node with information on what iso-
surfaces it contains and performing the classification implicitly during traver-
sal. One possible solution is to store the minimum and maximum values
found in the grid region associated with a subtree. If the searched iso-value
lies outside this range, the entire subtree can be skipped.

Since the tree still contains the entire data set, the iso-value can now be
changed on the fly. The culling operation can furthermore be extended for

56 Chapter 4: Static Regular Data Sets

Figure 4.3: Implicitly culling non-contributing branches of the implicit kd-
tree during traversal also enables rendering of multiple iso-surfaces at the
same time. Left: The bonsai tree, with a green iso-surface for the leaves, and
a brown one for the trunk. Right: The Visible Female’s head, with bones
visible through the semi-transparent skin surface.

searching different iso-surfaces at the same time within one traversal opera-
tion. Data sets containing several iso-surfaces, like skin and bone surfaces for
human data sets, can therefore be displayed simultaneously using blending
operations (see Figure 4.3).

4.3.1.1 Tree Building

Building this kd-tree for iso-surface rendering is rather easy. In a recursive
implementation, the root node contains the range of the entire 3D scalar field
represented by its minimum and maximum scalar values. The volume is then
split in a specific dimension, i.e. each of the two children of the root node
represents now one half of the volume. The range of the scalar values is again
the computed minimum and maximum scalar value found in the sub-volume
corresponding to that node. As described in Section 4.2.1, subsequent splits
could simply alternate between the x-, y-, and z-dimensions.

However, in this approach the dimension with the largest number of cells
is always chosen as the splitting dimension (leading to the same scheme after
some initial steps). The split always occurs in the middle so that the split
plane coincides with the cell boundaries of the volume cells. This yields a
one-to-one mapping between the volume’s cells and the kd-tree nodes. In
case of an odd number of cells in a dimension, the remaining cell is always
assigned to either the left or the right child.

As previously stated, each node is annotated with the range of iso-surfaces
contained within its subtree, which is simply the minimum and maximum

4.3 Static Iso-surface Rendering 57

value of all scalar values found within the associated sub-volume. This can
be computed recursively by first calculating the minimum and maximum
values of a cell given by its eight corner values and propagating these values
up to the root node. The minimum and maximum of one node is then simply
the minimum and maximum, respectively of both children. Hence, each leaf
node stores the minimum and maximum of its corner scalar values while
each inner node stores the minimum and maximum of both children. This
is similar to the approach described by Wilhelms et al. [Wilhelms92], except
that they used an octree instead of a kd-tree, and for iso-surface extraction
instead of ray traversal.

4.3.1.2 Tree Traversal

During each traversal step in a kd-tree, three traversal cases have to be
distinguished. Given the distance from the ray origin to the splitting plane td
and assuming that tnear and tfar represent the current ray segment in terms of
the distance from the origin, the following three cases must be distinguished:

tfar ≤ td: The current ray segment lies entirely in front of the splitting
plane, i.e. only the front subtree needs to be traversed,

tnear ≥ td: The current ray segment lies entirely behind the splitting plane,
i.e. only the back subtree needs to be traversed,

tnear < td < tfar: The current ray segment overlaps the splitting plane and
hence both children must be traversed by checking the front subtree
first and putting the back subtree onto the stack.

Needless to say, tnear and tfar need be updated accordingly for the next
traversal step. Figure 4.4 illustrates all three possibilities.

The missing link is now how to determine the ray segment defined by tnear

and tfar. Since each node contains the minimum and maximum value (see
Section 4.3.1.1), the searched iso-value is checked whether it lies between the
node’s minimum and maximum value, i.e.:

ρmin ≤ ρiso ≤ ρmax

where ρiso is the user-defined iso-value, ρmin is the minimum value stored
in the node, and ρmax is the maximum value stored in the node. If this
range check is only positive in the left child, this corresponds to the first
case, i.e. only the front subtree is traversed. Inversely, if this range check is
only positive in the right child of the current node, only the back subtree is

58 Chapter 4: Static Regular Data Sets

Figure 4.4: The three traversal cases are shown above. From left to right:
the ray segment is in front of the splitting plane, the ray segment is behind or
overlays the splitting plane. This can be easily extended when shooting four
rays in parallel, e.g. using the SSE extension [Intel].

used for further traversal. If the iso-value is in both ranges, the left subtree
is traversed and the right subtree is put on stack. In case that the remaining
traversal of the left child fails, the first item is retrieved from the stack and
the traversal continues.

4.3.1.3 Parallel SIMD Implementation

So far, only single ray traversal has been discussed without exploiting any
type of coherence. It was, however, stated that the kd-tree was chosen be-
cause this acceleration structure works well with coherent ray tracing. In
fact, the described traversal can be directly used for traversing four rays in
parallel since one culling query can be applied to all four rays.

However, as mentioned above, this coherence can hardly be maintained
until the leaf-level is reached. Highly diverging rays must be treated sep-
arately, which decreases the number of active rays in a packet and hence
diminishes the performance gain expected using SIMD instructions. While
the theoretical speedup is four, the practical speedup largely depends on the
data set and perspective. The combination of a small screen resolution to-
gether with a large data set leads to volume cells covering only a single pixel.
One would except therefore a relative small SIMD efficiency at least in this
case. It should be noted, however, that the culling is subtrees is very efficient,
i.e. the traversal decision is made on higher tree levels, where the rays are
still coherent.

As can be concluded from Table 4.1, a high data set resolution, i.e. small
cell size combined with a low screen resolution, is the worst case scenario in

4.3 Static Iso-surface Rendering 59

Screen Res. Data 512x512 Speed- 1024x1024 Speed-
Data Set Res. Single Packet up Single Packet up
Aneurism 2563 19.7 5.73 3.41 78.9 21.5 3.66
Bonsai 2563 14.7 4.73 3.10 58.7 16.8 3.49
ML 323 7.93 2.17 3.64 31.7 8.33 3.81
ML 1283 11.8 3.73 3.15 47.2 13.4 3.51
ML 5123 15.5 6.39 2.42 61.9 2.71 2.95
Female 5122 ∗ 1734 5.57 2.82 1.97 22.3 9.56 2.33
” (zoom) 5122 ∗ 1734 8.33 2.08 3.99 33.3 8.36 3.99

LLNL 20482 ∗ 1920 15.9 9.47 1.68 65.5 31.9 1.99
” (zoom) 20482 ∗ 1920 13.3 3.32 4.00 53.2 13.3 4.00

Table 4.1: This table compares the number of traversal steps (in millions
per second) for both single-ray and SIMD traversal with respect to varying
scenes and screen resolutions. It turns out that the speed-up between single
and packet ray is quite low for distant views of high resolution since nearly
every ray within the packet has its own traversal path down the tree. How-
ever, screen resolutions or zoom-ins boost the traversal performance to the
theoretical optimum.

which speed-up is around two. In other cases, the speedup increases to three
or even the theoretical maximum of four.

4.3.2 Optimizations

While the previous section described building and traversal on an abstract
level, it still remains unclear how to efficiently represent this kd-tree in mem-
ory. For the node information discussed above, this leads to twelve bytes
per node: 4 bytes for plane dimension (30 bits) and orientation (2 bits), 4
bytes for a pointer to the right child and 2 bytes each for minimum and max-
imum value (assuming a 12-bit integer representation [Hounsfield80]). The
structure of such a node, which is in the following referred as large node, is
illustrated in Figure 4.5. For large integer or even floating point values, 16
bytes are required. Since leaf nodes do not require a pointer to the right
child, this space can be used for encoding a reference to the associated grid
cell. For regular grids, this reference is just the index value, since all scalar
values are stored in an array.

Since each leaf node points to a cell, it is easy to compute the mem-
ory requirement for the entire tree. Let N be the number of cells or leaf
nodes. Such a tree consists of exactly N − 1 inner nodes, which results in

60 Chapter 4: Static Regular Data Sets

Plane Dimension
30 Bits

Orientation
2 Bits

Pointer Right Child
32 Bit (= 4 Bytes) 12 Bits 4 Bits 12 Bits 4 Bits

Pad.Pad. MaxMin

Figure 4.5: This diagram illustrates each component of the large kd-tree node,
assuming that the minimum and maximum values are stored as 12-bit inte-
gers [Hounsfield80]. In practice, the padding of 4 bits is added by using 16-bit
short values.

(2N − 1)× 12 bytes and hence occupy 12 times the size of the original data
set in memory (which is 2N). While for 32-bit values, the relative over-
head is slightly better (7 times), it becomes worse for 8-bit values (20 times).
The following four paragraphs describe five specific optimizations addressing
memory consumption: reducing the node storage and number of nodes, re-
laxing the power-of-two constraint, discretized min/max values, and re-using
parent min/max values.

4.3.2.1 Reducing Node Storage

A significant reduction can be achieved by assuming for a moment that the
number of cells in each dimension is equal to a power of two, i.e. constructing
a balanced kd-tree. No flag is needed indicating whether the current node is
a leaf or an inner node. It is also easy to see, that all nodes in the same level
l will use the same split orientation dl. Hence, this information can be stored
in a small lookup table equal to the size of the tree height with negligible
memory consumption.

In a similar way, the position of the splitting plane does not have to be
stored either. Let Rd,l represent the number of cells to be split in dimension
d in level l, i.e. level l splits Rx,l×Ry,l×Rz,l cells. It follows immediately that
there are at most Rd,l− 1 possible split locations. Since a split-in-the-middle
is a necessary pre-requisite for balanced trees, it therefore suffices to simply
save all possible split locations per level. Of course, additional overhead is
added for the table lookup during traversal. Memory consumption, on the
other hand, is reduced from 2N − 1 to 2D− 1 where N , the number of cells,
is defined by N = D3. Note that is possible to compute the splitting plane
position during traversal, making the storage of this extra table obsolete.
However, if the cell size varies within a dimension, i.e. the grid is anisotropic
(see Section 2.2.3), it is costly to compute this position on the fly.

The storage cost can be reduced further by computing the pointers to
both children during traversal. The children of a node at address n is simply
2n for the right child and 2n + 1 for the left child. Not storing the pointer
positions has another interesting side effect. This optimized version is inde-

4.3 Static Iso-surface Rendering 61

4 Bits12 Bits 12 Bits 4 Bits
Min Pad. Max Pad.

Figure 4.6: This diagram illustrates each component of the small kd-tree
node, assuming that the minimum and maximum values are stored as 12-bit
integers [Hounsfield80]. The size of the kd-tree now depends only on the size
of scalar values.

pendent of the size of the pointer and therefore can be easily ported to 64-bit
architectures supporting even larger data sets (see Section 4.4). The memory
overhead is already reduced from 12 to 4 bytes for 16-bit scalar values (see
Figure 4.6). However, despite these enhancements, the needed memory for
this small node scheme is still 4 times the size of the volume data.

4.3.2.2 Reducing the Number of Nodes

Using a balanced binary tree also means that half of the nodes are actually
leaves. Not storing the leaves and instead computing a reference to them
during traversal saves half the memory of the kd-tree. It turns out that this
operation can be quite efficiently implemented in both C and SIMD code.
Additionally, since these minimum and maximum computation only operate
on a leaf level, they are far less common compared to computations in the
inner node traversal. Additionally, due to efficient culling, all visited leaves
require a cell intersection to compute the iso-surface.

Hence the memory overhead for this data structure can be reduced by
another 50%, i.e. the storage cost for a kd-tree is now only twice as large as
the data set size. Although a significant reduction was achieved by reducing
the node size as well as the number of nodes, other approaches still require far
less memory. Wilhelms et al. [Wilhelms92] octree adds only 50% of overhead,
while Parkers et al. [Parker99b] hierarchical grid needs only 0.5% additional
memory. On the other hand, only a fraction of the overall data contained
in a kd-tree is actually accessed during a single traversal, making a factor of
two quite tolerable.

4.3.2.3 Relaxing the power-of-two Constraint

So far the storage cost has been reduced to a factor of two but it was assumed
that a balanced binary tree was used, i.e. the number of nodes in each level of
the kd-tree was 2i and hence the resolution of the data set was 2i + 1 values
(i.e. 2i cells) in each dimension. This is generally not true for volumetric

62 Chapter 4: Static Regular Data Sets

data sets. The simplest solution is to enlarge the data set to comply with
this constraint by padding each dimension to a suitable resolution.

1.66

1.33

0.66

0.33

0.
2

0.
6 1 1.
2

1.
4

1.
60

0

0.
4

0.
8

Figure 4.7: In this example, a grid consisting of 3 × 5 cells is embedded in
a virtual 4 × 8 grid with a balanced kd-tree. By Choosing appropriate split
positions, it can be guaranteed that virtual cells never lie outside the scene
bounds [0..1]2, and thus will never be traversed by a ray. As a consequence, the
nodes do not have to be stored and therefore consume no additional memory.

The drawback of this optimization is the higher memory consumption
if the the data set size does not obey the power-of-two constraint. The
situation is especially poor for data sets with 2i+1 cells in a certain dimension
since nearly half of the cells will never be used. It is therefore better to
distinguish between a virtual and a real grid size. The virtual grid exceeds
the scene’s original bounding box, and the kd-tree is built over this the virtual
grid. Hence, it can be assured that all virtual nodes lie outside the real
scene bounding box. Since the kd-tree traversal first clips the ray to that
bounding box, rays will never be traversed outside this box, i.e. no ray ever
touches any of the virtual nodes. From this observation, it follows, that
such cells do not have to be stored. Using the same argument, leaf nodes
of the kd-tree that point to virtual cells also do not have to be stored. To
achieve this, the kd-tree is only built over the virtually padded volume, while
the address computations and memory allocation are computed using the
real grid resolution (see Figure 4.7). In other words, for a volumetric grid
consisting of Rx ×Ry ×Rz cells, a virtually padded volume R′

x ×R′
y ×R′

z is
constructed with R′

x,y,z = min{2i|Rx,y,z ≤ 2i} cells.
Groß et al.[Groß07] recently suggested to omit even these virtual nodes

for the kd-tree. They use the fact, that for each kd-tree node the number
of inner nodes is known advance. 3D boxes are used to calculate the split
plane’s position as well as the memory offset to the child node. This box is set

4.3 Static Iso-surface Rendering 63

to the volume dimension when the traversal starts and during each traversal
step this box is refined depending on the child’s position in the tree. This
increases the computational overhead only slightly but saves memory for the
acceleration structure.

4.3.2.4 Discretizing min/max values

Wald et al. [Wald05] also suggested to discretize the minimum and maximum
values stored in the nodes, although it was not investigated further. In a
simple approach discretizing simply means that only the highest bits are
stored in the kd-tree, e.g. the 8 highest bits of a data set with 16-bit scalar
values. Since the leaf nodes are not stored, and therefore must be checked
anyway by computing the minimum and maximum of the corner values on
the fly, the introduced overhead should be negligible.

Figure 4.8: Left: The MRbrain data set is typically used for testing twelve bit
data sets (always 16 bits are stored) represented in Hounsfield units. Right:
The Male Torso data set, also represented in Hounsfield units (see 2.2.3
and [Hounsfield80]).

Therefore, only the simplest case is considered, i.e. discretizing the min-
imum and maximum values to 1 byte each. As an additional prerequisite,
the compression scheme should be conservative, i.e. no node should be ig-
nored during traversal which possibly contains the iso-surface. In the scheme
described above, this can easily occur with the maximum value, since the
lowest bits are removed. Rounding up the (discretized) maximum value by
one avoids this problem, but still ignores the range problem. While it is easy

64 Chapter 4: Static Regular Data Sets

to discretize integer values, bit-shifting it is hardly appropriate for floating-
point values. Even in the first case, this discretization is only optimal if the
full range is actually used by the data set. In general this is not true, since
the range might be for example between 200 and 2200 which would make the
bit-shifting inefficient. As a simple solution, all input values are scaled and
translated to the 8 bit range (0 to 255):

output =
ρiso − ρmin

ρmax − ρmin

∗ 255

where ρmin and ρmax denote the minimum and maximum scalar values, re-
spectively of the entire volume and ρiso is the original (non-discretize) scalar
value to be converted to a value between 0 and 255. The same operation
is of course applied to the iso-value given by the user. Using this equation,
the range is optimally used. Table 4.2 shows the number of traversal steps
and frames per second (fps) needed with and without compression for 16-bit
integer and 32-bit floating point values. The results are intriguing (see Ta-
ble 4.2) since one would expect a larger number of average traversal steps for
discretized minimum and maximum values stored in the tree nodes. However,
except for the MRbrain data set, the added traversal steps are negligible.

Data Set Original 8-bit Discret. % %
fps #trav fps #trav ∆fps ∆#trav

MRbrain (16 bit) 1.05 79.18 0.875 85.45 -16.67 7.92
SIMD 1.92 90.26 1.88 98.17 -2.08 8.76
Male-torso (16 bit) 1.03 63.86 1.07 64.16 +3.88 0.47
SIMD 1.54 91.33 1.57 91.93 +1.95 0.66
Drop (32 bit) 3.94 27.60 3.40 27.61 -13.71 0.04
SIMD 6.83 32.18 5.24 32.19 -23.28 0.03
Vortex (32 bit) 1.63 54.60 1.60 55.43 -1.84 1.52
SIMD 2.78 70.21 2.66 71.43 -4.32 1.74

Table 4.2: Comparison of overall frame rates and corresponding average
traversal steps for 16-bit integer (MRbrain and Male-torso) and for 32-
bit floating-point (Drop and Vortex) data sets between non-discretized and
discretized min/max values stored in the kd-tree. Similar average traversal
counts reveal that the bottleneck lies probably in the different memory access
patterns.

This hypothesis is supported by the fact that volumes with a highly ho-
mogeneous distribution of scalar values significantly reduce the overall per-

4.3 Static Iso-surface Rendering 65

formance (see performance for the Drop data set). Data sets with low ho-
mogeneity on the other hand may even lead to a performance gain as can be
seen for the Male-torso.

4.3.2.5 Re-using the Parent’s Min and Max Values

Another interesting storage reduction was recently presented by Groß et
al. [Groß07]. The main observation is that maximum and minimum value are
saved redundantly in either the left or the right child (see Section 4.3.1.1).
By using two bits of the parent’s node for indicating which of the children
contains the identical minimum and maximum values the storage cost of
the kd-tree is reduced to the storage cost of the data set (if no discretized
min/max values are used).

4.3.2.6 Comparison of Performance

With the improvements explained in Sections 4.3.2.1 to 4.3.2.3, the memory
overhead of the kd-tree is significantly reduced from a factor of twelve to a
mere factor of two, independent of the data set’s resolution. Table 4.3 shows
a detailed comparison. The achieved reduction lies between a factor of three
and ten. Note that large data sets, like the Visible Female [VHP] and the
Richtmyer-Meshkov Instability [Mirin99] can not be rendered with the näıve
implementation since the memory consumption is too high.

Small
Scene Data Raw Large w Leaves w/o Leaves

bits Data Mem Mem Ratio Mem Ratio
Bonsai 8 16MB 316MB 64MB 5 32MB 10
Aneurism 8 16MB 316MB 64MB 5 32MB 10
ML 323 16 65KB 680KB 220KB 3 110KB 6
ML 1283 16 4MB 46MB 15MB 3 7.8MB 6
ML 5123 16 256MB 3GB 1GB 3 509MB 6
Female 12(16) 900MB – 3.4GB – 1.7GB –
LLNL 8 8GB – 36GB – 18GB –

Table 4.3: Memory savings of the optimized (’small’) versus the straight-
forward (’large’) implementation. The ’small’ representation can achieve
memory reductions of up to a factor of ten. Larger data sets, like the Visible
Female and LLNL [Mirin99] data set, cannot be rendered at all with the näıve
representation since the address bits in the ’large’ node layout do not suffice
for addressing such large data sets.

66 Chapter 4: Static Regular Data Sets

The compressed small variant of the kd-tree needs more operations in each
traversal step compared to the uncompressed large variant. This is especially
true for tracking and updating all four indices (three for the dimensions
and one for the tree level) of the current node as well as additional integer
operations for computing the address of both children. The voxel indices
must also be pushed and popped on the stack together with the near and far
values to properly traverse the volume.

Scene Single SIMD
Large Small Overhead Large Small Overhead

Aneurism 1.57 0.99 1.59 3.44 2.24 1.54
Bonsai 1.79 1.14 1.57 2.91 2.1 1.39
ML 323 2.47 1.47 1.68 4.92 3.41 1.44
ML 1283 1.86 1.14 1.63 2.93 2.14 1.37
ML 5123 1.30 0.91 1.43 1.62 1.24 1.31

Table 4.4: Comparing the performance of both the ’large’ and the ’small’
variant shows a significant overhead introduced by memory reduction. The
performance loss might look high with 60%, but the memory reduction is
necessary for rendering large data sets.

As can be seen in Table 4.4, all of these computations have a notable
impact on the total rendering performance. Comparing the small and large
variants shows an overhead of roughly 40 to 60 percent. Using SIMD the
overhead is slightly reduced, since this code allows for amortizing address
computation overhead over all rays in the packet. Remembering that the
memory usage was reduced by a factor of ten, the performance loss of 50%
seems quite tolerable. This is true in particular for lage data sets like the
Visible Female [VHP] or the LLNL [Mirin99] data set, which originally could
not be rendered with the employed hardware setup (see Section 4.3.5). Using
the small variant is generally the better choice, except for very small data
sets. Some more details on all tested data sets can be found in Section 4.3.5.

Including these optimizations, a new and efficient method was proposed
to find the cell within a regular grid containing the iso-surface. The missing
link to getting a rendered image is now the intersection with the iso-surface
within a cell. Iso-surfaces are implicitly defined by their distributions of
scalar values. The following section will discuss several intersection methods
which were already described in [Marmitt04] that are suitable for interactive
applications.

4.3 Static Iso-surface Rendering 67

4.3.3 Iso-Surface Cell Intersection
While the previous sections covered in detail the detection of cells containing
the iso-surface within a regular grid, it is now time to discuss the intersection
of the iso-surface with an incident ray once such a cell is detected. Since the
iso-surface is only implicitly defined by the discrete scalar values in space, the
intersection point must be interpolated in some way. Section 2.2.4 already
discussed the tensor-like product as one possible interpolation which will also
be the basis for the following discussion.

Nevertheless, the following paragraphs distinguish between approximate
and accurate intersection methods. The difference between these two meth-
ods is, that accurate methods are able to handle two or more intersections of
the iso-surface with the incident ray within the cell. Approximate methods
cannot detect such situations and therefore fail. One might think that this
does not affect the rendering quality. As can be seen in Figure 4.9, this is
not true. Approximate methods return no intersection point, if more than
one exists, resulting in a black spot.

Figure 4.9: Sample scene for testing how approximate and accurate methods
handle several iso-surfaces within one cell. Left: Although the iterative linear
approximation delivers smooth results, it fails if there exists two iso-surface
intersection and returns false. Right: Accurate methods can handle this case
correctly and return the first iso-surface along the ray.

Accurate methods do not face this problem, as Figure 4.9 shows. Nev-
ertheless, approximate methods are fast and deliver sufficiently good results

68 Chapter 4: Static Regular Data Sets

for some applications. Since approximative methods are also easy to im-
plement on modern GPUs [Hadwiger05, Stegmaier05], they are still widely
used. Accurate methods introduced so far [Parker99b] lack performance and
are therefore not suitable for interactive applications compared to linear in-
terpolation schemes.

4.3.3.1 Approximate Methods

The most simplistic algorithm assumes an intersection for every cell where
the iso-value is within the range of scalar values at the vertices. One could
take the arithmetic mean of the rays’ entry and exit distances with respect
to the cell found by the kd-tree traversal.

Figure 4.10: Left: The Marschner-Lobb data set approximated with a mid-
point cell intersection. Right: Zoomed view reveals that the iso-surface re-
construction is very rough.

While this method is fast, it obviously leads to blocky artifacts when
rendering cells (see Figure 4.10). Thus this method is only mentioned as a
reference for performance comparisons.

Linear Interpolation Another simplistic, but more useful, approach as-
sumes a linear function within a cell. Initially, scalar values at the entry
and exit faces are computed by bilinear interpolation. This is reasonable
since each face represents a quadrilateral primitive. By setting the inter-
polated entry value to ρin = ρ(R(tin)) and the interpolated exit value to

4.3 Static Iso-surface Rendering 69

ρout = ρ(R(tout)), the iso-surface intersection can be computed with an ad-
ditional linear interpolation using the user-defined iso-value ρiso, as outlined
in Algorithm 6.

Algorithm 6 Linear Interpolation.

if (ρiso < ρin) ∨ (ρiso > ρout) then
return false

end if
return thit = tin + (tout − tin) ρiso−ρin

ρout−ρin

R(t)

ρ

ρout

inρ
iso

Though a bilinear interpolation for computing ρin and ρout suffices, it is
generally faster to apply a trilinear interpolation since this avoids extract-
ing the four scalar face values (which is, strictly speaking, also hardware-
dependent). Another advantage is that trilinear interpolation works in favor
of ray-parallel SIMD code, since it cannot be guaranteed that all rays enters
and exits the cell at the same face.

Figure 4.11: Left: The Marschner-Lobb data set approximated with a linear
cell intersection. Right: Close-up view shows a far better approximation
compared to midpoint intersection.

If the implicit (surface) function defined by the cell corner values are
more or less planar, linear interpolation provides a good approximation. It

70 Chapter 4: Static Regular Data Sets

obviously fails, however, whenever this function has more than one root, in
which case the entry and exit densities are either both larger than ρiso, or
both smaller, and no intersection is detected (see Figure 4.9).

Repeated Linear Interpolation Neubauer et al. [Neubauer02] suggested
a method that uses repeated linear interpolation. This method builds upon
the linear interpolation just described, but refines the result iteratively. The
value of at the linearly computed intersection point within the cell is trilin-
early interpolated using the eight corner values. If this interpolated value is
smaller than the user-defined value, the subsequent linear interpolation oc-
curs between the entry point and the linearly calculated intersection point.
Analogously, in the case of a larger interpolated value, the subsequent lin-
ear interpolation occurs between the linearly calculated intersection point
and the exit point (see Algorithm 7). Typically, this iteration is applied a
fixed number of times (two to three), even though an adaptive termination
criterion is also possible.

Algorithm 7 Repeated Linear Interpolation
if ρiso > ρin ∧ ρiso < ρout then

return false
end if
for i=1..N do

t := tin + (tout − tin) ρiso−ρin

ρout−ρin

if ρiso > ρin ∧ ρiso < ρout then
tin := t; ρin = ρ(R(t))

else
tout := t; ρout = ρ(R(t))

end if
end for
return thit := tin + (tout − tin) ρiso−ρin

ρout−ρin

inρ

ρ

out

R(t)

ρ

iso

� �
� �
� �
� �

Unfortunately this approach suffers from similar problems as the previous
technique in that it sometimes fails to locate valid intersections. Nonetheless,
in cases where it does correctly identify the intersection, the result is more
accurate compared to simple linear interpolation. A special case occurs if
there exist three intersections within a cell where two are located in the
ray segment defined by the entry point and the initial linearly interpolated
intersection point, i.e. the last intersection point is returned and not the first.

4.3 Static Iso-surface Rendering 71

Figure 4.12: Left: The Marschner-Lobb data set approximated with a re-
peated linear cell intersection. Right: Close-up view reveals only subtle dif-
ferences between linear and repeated linear interpolation.

4.3.3.2 Accurate Methods

Accurate methods must also interpolate the intersection value between the
cell corners to calculate a meaningful iso-surface intersection. In contrast to
approximate methods, it is guaranteed that the first intersection is returned
no matter how many intersections exist along the ray. The following two
methods both rely on solving a cubic polynomial and hence, take only the
eight corner values of the retrieved cell into account, i.e. only C0 continuity
can be guaranteed.

This cubic polynomial is directly derived from the tensor product as with
trilinear interpolation introduced in Section 2.2.4, on which the following
considerations are based. Given a cell with eight scalar values ρijk (i, j, k ∈
{0, 1}) at its eight vertices, the density ρ at any point (u, v, w) ∈ [0, 1]3 can
be computed by trilinear interpolation, i.e.

ρ(u, v, w) =
∑

i,j,k∈{0,1}

uivjwkρijk, (4.1)

where u0 = u, u1 = 1 − u, v0 = v, etc. (see [Shirley05]). If the spatial
location of this cell C is defined by C = [x0..x1]× [y0..y1]× [z0..z1], then ρ(p)
of any three-dimensional point p ∈ C can be computed by first transforming
p to the unit coordinate system, yielding

72 Chapter 4: Static Regular Data Sets

p0 = (up
0, v

p
0, w

p
0) = (

x1 − px

x1 − x0

,
y1 − py

y1 − y0

,
z1 − pz

z1 − z0

). (4.2)

Using this notation, for a ray R(t) = o + dt with origin o and direction
d, which intersects the cell C in the interval tin and tout, the density ρ(t) =
ρ(R(t)) for each point on the interval is defined as

ρ(t) =
∑

i,j,k∈{0,1}

(uo
i + tud

i)(v
o
j + tvd

j)(w
o
k + twd

k). (4.3)

Expanding this summation yields a cubic polynomial

ρ(t) = At3 + Bt2 + Ct + D, (4.4)

whose coefficients (see [Parker99b, Shirley05]) are

A =
∑
i,j,k

ud
i v

d
j w

d
kρijk,

B =
∑
i,j,k

(
uo

i v
d
j w

d
k + ud

i v
o
jw

d
k + ud

i v
d
j w

o
k

)
ρijk,

C =
∑
i,j,k

(
ud

i v
o
jw

o
k + uo

i v
d
j w

o
k + uo

i v
o
jw

d
k

)
ρijk,

D =
∑
i,j,k

uo
i v

o
jw

o
kρijk.

Finding the intersection of the ray with the implicitly defined iso-surface
ρ(t) = ρiso is then solved by determining the smallest t ∈ [tin, tout] for which
the polynomial

f(t) = ρ(t)− ρiso

is zero, i.e. the smallest root of f in the interval [tin, tout].

Schwarze’s Analytic Inversion This cubic polynomial can now be solved
analytically using Schwarze’s inversion algorithm [Schwarze98]. His method
first checks for special cases (small coefficients A and/or B) where the poly-
nomial can be approximated by a linear or quadratic representation. Note
that even the special case of a quadratic polynomial already involves a costly
square root operation.

The general case of a cubic polynomial is solved using Cardano’s formula
involving several cosines and even more costly inverse cosine operations. It

4.3 Static Iso-surface Rendering 73

is furthermore necessary to compute all roots to locate the first one along
the ray that is within the current cell.

Unfortunately, this algebraic solution is prone to numerical problems.
The goal of interactive volume rendering unfortunately suggests the use of
single-precision floating point values, which makes these issues even worse
with respect to numerical stability. Consequently, it is difficult to tune this
approach in order to completely avoid incorrectly computed intersections.
While the Schwarze approach [Schwarze98] is often applied (e.g. [Parker99b])
and is mathematically one of the most accurate solutions for computing in-
tersections in volume ray tracing, in practice it has too many drawbacks.

Iterative Root Finding Roughly speaking, the methods discussed so far are
either slow and mostly correct, or fast and sometimes incorrect. Therefore,
a new algorithm was derived [Marmitt04], that aims at being as fast as
the Neubauer method, but is as correct as the Schwarze method. The new
intersection method is based on the following two key observations:

• Only the first intersection with the implicit function is of interest and
there is no need to compute all intersections, as in the case of Schwarze’s
algorithm.

• Repeated linear interpolation does find the correct root fast and reliably
if the start interval for the iteration contains exactly one root.

In this new approach, all roots are first isolated by computing the extrema
of the polynomial. These two extrema then split the ray segment within the
cell into at most three parts, where each segment is processed front-to-back
by trilinearly interpolating the values at its start and end points given by
entry and exit point and the polynomial extrema. Not that this is the only
place, where a sqrt() operation is necessary since a quadratic formula has to
be solved. Once the interval is found, it is guaranteed that it (a) contains
(exactly) one root (f is continuous, contains zero, and does not have extrema
in that interval), (b) that the root lies in the interval [tin, tout], and (c) it
is the first root in this interval. Algorithm 8 shows a basic pseudo-code
implementation.

After the interval is found, the root can be located as Neubauer described,
i.e. by using a repeated linear interpolation or simply via recursive bisection.
It is usually faster to apply a fixed number of two to three iterations than
to apply an adaptive termination criterion and has only negligible impact
on the accuracy. The known coefficients of the polynomial can be quickly
and efficiently computed to calculate any data value along the ray, avoiding

74 Chapter 4: Static Regular Data Sets

Algorithm 8 Iterative Root Finding

{Find extrema: f ′(t) = 3At2 + 2Bt + C}
{// Quadratic formula needs sqrt()}
{Advance to intersecting ray segment}
for i=1..N do

t = tin + (tout − tin) −fin

fout−fin

if ρiso > ρin ∧ ρiso < ρout then
tin := t; fin = f(R(t))

else
tout := t; fout = f(R(t))

end if
end for
return thit := tin + (tout − tin) −fin

fout−fin

in

ρ

R(t)

out

ρ

ρiso

further costly trilinear interpolations. This advantage is diminished when
computing the coefficients and the extrema initially. As will be shown below,
this approach is roughly faster by a factor of three than the Schwarze code,
while providing the same guarantees on correctness and even better numerical
stability. It is also well-suited for a data parallel SIMD implementation.

Figure 4.13: Left: The Marschner-Lobb data set approximated with a itera-
tive root-finding cell intersection. Right: Close-up view of the same data set
demonstrating the achieved accuracy.

4.3 Static Iso-surface Rendering 75

4.3.3.3 Parallel SIMD Implementation

Wald et al. [Wald01a] already demonstrated the performance advantage of
exploiting the SIMD instructions on today’s processors using a data parallel
approach, where the computations are performed on multiple rays in parallel.
Modern SIMD instruction sets allow for operating on up to four floating point
values in a single instruction, which can improve performance significantly,
if the algorithm is SIMD friendly.

However, this is not the case for the Schwarze intersection due to its
complex control flow for handling special cases and the evaluation of com-
plex trigonometric functions. The new intersection technique is based on
Neubauer’s algorithm, but adds a SIMD-friendly computation of the poly-
nomial’s coefficients at the beginning. Despite the fact that SIMD involves
masking operations and conditional assignments, the introduced overhead is
negligible as it will be shown below.

The picture, however, is different when integrating the cell intersection
algorithm into the rendering framework. Since the cell intersection neces-
sarily occurs at the leaf level of the kd-tree, the ray coherence is rather low
compared to the kd-tree traversal itself. One might think that this will do
no harm to the performance, but SIMD instructions always introduce some
overhead compared to the single-ray variant. A SIMD implementation, there-
fore, only makes sense if at least two rays are active. If only a single ray is
active, any potential overhead of the SIMD implementation may even result
in reduced overall performance.

Another disadvantage appears if not all rays intersect the iso-surface
within the same cell. In this case, a large number of values must be stored
to update the current hit position, including hit flag, hit distance, local cell
coordinates, normal vector, etc. This leads to a total of eight values per ray
which, in SIMD mode can only be handled using masking operations and
conditional moves. This would lead to significant overhead together with low
intersection coherence described above.

The code is therefore split into two phases: the first phase encapsules
the computational core for a specific cell intersection, while the second phase
simply stores the results. Since this computational core is completely im-
plemented using SIMD, the computational density, as well as the floating
point efficiency of intrinsic code, allow for an implementation which never
slower than the single-ray code. It can thus be safely used even if a low de-
gree of coherency is present at the cell level. The cost for the second phase,
where the results are stored, can be reduced further by checking two special
cases. If none or all four rays resulted an intersection, the amount of costly
conditional moves is significantly reduced.

76 Chapter 4: Static Regular Data Sets

4.3.3.4 Comparison of Performance

The test system for performance measurements was equipped with an AMD
Opteron Processor running at 1.8 GHz. Performance data has been collected
by calling gettimeofday() before and after measurement. As the calling
overhead of such an operating system function is likely to dominate the total
execution time, the intersection kernel is being called several thousand times
in between each timing call.

While this first setup was restricted to a single cell, the second setup
incorporates the intersection test into a real-time iso-surface ray tracing sys-
tem [Wald05]. As before, each kernel is called several thousand times in
order to factor out any influence of the measurement procedure. The sys-
tem was then run on several different real-world datasets, thereby yielding
performance results that should apply to other real-world applications.

Method Correctness Bonsai Aneurism Engine
Midpoint - 26.21 26.18 26.22
Linear - 6.65 6.65 6.68
Neubauer - 2.93 2.94 2.94
Schwarze + 1.60 1.56 1.48
New + 2.76 2.80 2.73

Table 4.5: Single ray intersection performance in million voxel intersections
per second for real-world scenes. As for the synthetic data sets, the new
method provides significantly better performance than approximate techniques
while being as accurate as the much slower Schwarze method.

Using common real-world data sets3, it can be seen, that the new algo-
rithm shows a speedup factor between roughly 1.7 and 1.9 compared to the
Schwarze algorithm that generates images of the same high quality (see Ta-
ble 4.5). Note that all measurements are stated in million voxel intersections
per second. The new algorithm yields similar performance as compared to
the approximate Neubauer method, but always generates accurate images
without artifacts.

For the SIMD versions basically the same measurements are applicable,
but care must be taken such that four rays in parallel are used. Rather than
simply dividing each result by four, it is better to divide by the number of
active rays to compare this SIMD method and the single ray version directly.
Table 4.6 shows the performance for the SIMD implementation. For the

3Measurements for synthetic data sets are provided in [Marmitt04]

4.3 Static Iso-surface Rendering 77

Neubauer code, one can see a strong performance improvement by a factor
between 2.3 and 2.6 compared to the sequential code. Neubauer’s intersection
seems particularly well-suited for some configurations that were not in the
synthetic test suite [Marmitt04] included.

Method Correctness Bonsai Aneurism Engine
Midpoint - 87.71 87.12 87.13
Linear - 13.68 13.66 13.67
Neubauer - 7.65 7.60 6.94
Schwarze + 1.49 1.39 1.44
New + 4.37 4.56 4.39

Table 4.6: SIMD intersection performance for real-world scenes. Again, the
new algorithm is significantly faster than the Schwarze method, but computes
the same correct results. All measurements are in million voxel intersections
per second.

For the new algorithm the improvement is smaller due to the more com-
plex control flow, but it still achieves about 60% higher performance through
the use of SSE [Intel]. With the SSE implementation, the new accurate
algorithm consistently achieve about 60% of the performance of the approx-
imative Neubauer algorithm for the realistic data sets, with the additional
advantage of correct intersection behavior.

4.3.3.5 Higher-Order Intersection Tests

The accurate methods discussed previously operate on one cell only to achieve
the computational performance necessary for interactive applications. This
implies, however, that there is no higher-order continuity, i.e. C1 is not guar-
anteed at cell boundaries. In the following discussion an approach proposed
by Rössl et al. [Rössl04] is briefly covered. It should be noted first that
their method neither allows for interactive performance nor produces a com-
plete C1 continuity, but rather a pseudo-C1 continuity. Neighboring cells are
not taken into account directly, but the cell is subdivided into 24 congruent
tetrahedra to achieve smoother iso-surface contours.

To compute the intersection of the incoming ray with the iso-surface, 65
Bernstein-Beźıer coefficients are calculated: 50 on the cell’s faces, 14 on the
median of each tetrahedron edge, and one at the center position of the cell.
This is achieved by a repeated averaging pattern using 27 values interpolated
in the interior of the actual cell and the 26 surrounding cells. This results in

78 Chapter 4: Static Regular Data Sets

ten coefficients per tetrahedron: four at the vertices and six at the median
of each edge.

The ray iso-surface intersection may now be computed by solving quadratic
equations along the ray for each tetrahedron. This quasi-interpolating spline
results in a univariate piecewise quadratic polynomial, i.e. quadratic super
splines. The ray intersection with each tetrahedron is computed in the fol-
lowing way. Given two intersection points of the ray with a tetrahedron, q0

and q1, as well as the arithmetic average q = q1+q2

2
together with ten Beźıer

coefficients of the tetrahedron, the values w1, w2, and w are computed by
applying the de Casteljaus algorithm at all three intersection points. The
following equation then specifies the intersection point p of the ray with the
iso-surface:

ατ 2 + δβτ + δ2w1 = 0 , τ ∈ [0, δ] (4.5)

where δ denotes the maximum hit interval, α is set to α = 2(w1+w2−2w),
and β is set to β = 4w − 3w1 − w2.

Since this intersection test satisfies pseudo-C1 continuity along the cell
boundaries, the rendering quality is rather high. Even the shading normals
can be directly computed from the polynomial pieces of the splines. Recall,
however, that 65 coefficients are needed per cell. Even if some points are
shared, the memory requirements are high compared to the previously dis-
cussed methods. For optimal performance, a careful tradeoff must be made
between pre- and on-the-fly computation of all values needed for the intersec-
tion calculation. This was not further investigated by Rössl et al. [Rössl04]
since their goal was to produce high-quality images. The reported perfor-
mance of roughly 80 µs per cell seems therefore rather slow.

4.3.4 Shading and Gradient Calculation

After retrieving an iso-surface cell using a kd-tree and calculating the inter-
section with one of the methods previously discussed, shading and gradient
calculation is the last part of a fully featured rendering system. Even for
the simplest shading model, the directional light shader, it is necessary to
compute the gradient at the intersection point to reveal surface-specific char-
acteristics. This is shown in the following equation, where a light source is
assumed at the viewer’s eye position. The shaded color, here including an
ambient term ka, can then be computed with

I = (ka + (1.0− ka) ∗N) ·D (4.6)

4.3 Static Iso-surface Rendering 79

where N denotes the normal (gradient) vector and some ambient value ka

between zero and one. A material color might be added by multiplying the
result component-wise with its RGB-value. Note that this simple shader does
not even need an intersection point, but a surface normal. More sophisticated
shading models, like Phong [Phong75] shading, as well as refraction and
reflection, may be added once an intersection point and the surface normal
are known. Given a scalar field f(x), the gradient vector is defined as

∇f(x) =

(
δf(x)

δx
,
δf(y)

δy
,
δf(z)

δz

)
, (4.7)

which should have unit length of used for illumination:

n(x) =
∇f(x)

‖∇f(x)‖
, if ‖∇f(x)‖ 6= 0. (4.8)

The implicit definition of an iso-surface requires an estimate of this gra-
dient. Considering that interactive frame rates are desired, finite differ-
ences [Engel06] supply the best tradeoff between speed and accuracy and
will therefore be discussed here. Another advantage is that this can be easily
extended for packet ray traversing. The basic idea is to differentiate a Taylor
expansion of the function:

f(x0 + h) =
∞∑

n=0

f (n)(x0)

n!
hn. (4.9)

Assuming that a one-dimensional function is solved for the first-order
derivative, the forward Taylor expansion reads

f(x0 + h) = f(x0) +
f ′(x0)

1!
h + o(h2) (4.10)

and the backward Taylor expansion analogously:

f(x0 − h) = f(x0)−
f ′(x0)

1!
h + o(h2), (4.11)

where o(h2) denotes the approximation error, i.e. the remainder term of
the power series. Subtracting Equation 4.11 from 4.10 results in the well-
known central differences gradient approximation4:

4In order to maintain the approximation error function o(h), it is necessary to calculate
the Taylor expansion up to the third term. This leads to an error with an order of
magnitude o(h2) and is thus of a higher order compared with forward and backward
differences (see [Engel06] for more details).

80 Chapter 4: Static Regular Data Sets

f(x0 + h)− f(x0 − h) = 2f ′(x0)h + o(h3), (4.12)

solved for the first-order derivative:

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+ o(h2) (4.13)

Extending this approach to three dimensions is straightforward. Each of
the three components of the gradient vector ∇f(x)+∇f(x, y, z) is estimated
separately by a central difference resulting in

∇f(x) ≈ 1

2h

 f(x + h, y, z)− f(x− h, y, z)
f(x, y + h, z)− f(x, y − h, z)
f(x, y, z + h)− f(x, y, z − h)

 , (4.14)

Calculating the three-dimensional gradient requires six evaluations of the
scalar function f(x) and therefore, six trilinear interpolations. By normal-
izing Equation 4.14, with Equation 4.8, this vector can be used directly for
the shading equation, e.g. for the directional light shader in Equation 4.6.

4.3.5 Results
This was the last step to implement a fully functional iso-surface renderer
based on regular grids. It is now time to present performance measurements
for the entire system, after the effect of SIMD (see Section 4.3.1.3) and other
optimizations (see Section 4.3.2.6) were briefly discussed.

All performance measurements presented here are based on a single dual-
1.8 GHz AMD Opteron 246 desktop PC with 2 GB RAM running Linux. The
default resolution was set to 5122 pixels. The complete code was compiled
using the Intel C-compiler (icc) package with common optimizations.

Table 4.7 shows that this system achieves interactive frame rates for all
tested scenes on a single PC, as long as the resolution is set to 5122. In
addition, ray tracing allows for a straightforward parallelization of the ren-
dering process, so that it was possible to cluster five 1.8 GHz Dual-Opteron
processors via Gigabit Ethernet. As expected, the frame rate scale approxi-
mately linearly with the employed number of rendering clients. The figures
in Table 4.7 reveal that complex data sets can be rendered at up to 39 fps.

Table 4.7 also shows that the speedup gained by using SIMD for coherent
ray tracing varies significantly depending on the average projected cell size.
However, twice the performance can be expected, which is also confirmed
when rendering time-dependent data sets with the concurrent tree update
(see Section 5.1.2). In some cases, even the theoretical maximum of four
could be achieved, making SIMD a worthwhile extension.

4.3 Static Iso-surface Rendering 81

Scene node Single PC 5-Node Cluster
type Single SIMD Ratio Single SIMD Ratio

Bonsai large 3.4 5.2 1.5 16.2 24.6 1.5
Aneurism large 3.0 6.2 2.0 14.6 29.8 2.0
ML 643 large 4.3 7.8 1.8 20.1 35.7 1.7
ML 5123 small 1.2 2.3 1.8 6.1 11.3 1.8
Female small 2.7 4.2 1.5 13.6 20.7 1.5
” (zoom) small 2.3 7.9 3.5 11.2 39.1 3.5

LLNL small 0.9 1.3 1.5 – – –
” (zoom) small 1.6 5.4 3.9 7.6 28.7 3.8

Table 4.7: Overall rendering performance in fps when running the origi-
nal framework in various setups including diffuse shading using both Dual-
Opteron machines, as well as a five node Dual-Opteron cluster.

Another important aspect is the assumed sub-linear (i.e. logarithmic)
scalability. When using a hierarchical data structure like the kd-tree, the
advantages of polygonal ray tracing should be applicable for the iso-surface
renderer also. This was verified by generating several resolutions of the syn-
thetic Marschner-Lobb data set [Marschner94] measuring both the overall
performance and the number of traversal steps. Plotting both measurements
on a chart (see Figure 4.14) shows that this assumption is nearly true.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1024^3512^3256^3128^364^332^3

se
co

nd
s

pe
r

fr
am

e

dataset resolution (log scale)

seconds per frame
number of trav. steps (*1e7)

Figure 4.14: A scalability chart of the implicit kd-tree with increasing data
set resolution. The resolutions of the synthetic Marschner-Lobb varies from
323 up to 10243. This logarithmic scalability leads to a performance drop by
a mere factor of 2.1 despite the fact that the data size increases by 4.5 orders
of magnitude.

82 Chapter 4: Static Regular Data Sets

The slight rise of the curve beyond 2563 is most probably caused by
caching effects for such large models. This is confirmed by the number of
traversal steps (thick line), which does not show the same behavior. As
for polygonal rendering tasks, this logarithmic scalability works best with
extremely complex data sets. For example increasing the data set complexity
from 323 (i.e. 3.2×103 cells) to 10243 (i.e. 109 cells) corresponds to 4.5 orders
of magnitude in scene complexity, but leads only to a mere performance drop
factor of 2.1.

Figure 4.15: The Visible Female (512× 512× 1920), rendered at 640× 480
pixels on a single 1.8 GHz Dual-Opteron. Upper Left: Complete data showing
the skin iso-surface (8.6 fps). Upper Right: Zoom-in of the head with the
bone iso-surface (5 fps). Lower Left: Shadows added (4 fps). Lower Right:
Shadows and semi-transparent skin added (0.8 fps).

This last observation is important for the first example of the practical
applications. This new framework already allows for an interactive explo-
ration of complex iso-surfaces. Figure 4.15 shows that the Visible Female
data set [VHP] can be rendered at 8.6, 5.0, and 4.0 fps at video resolution
(640 × 480 pixels). Rendering the skin transparently introduces secondary
rays, which were only implemented for single rays at that time. Still, approx-

4.4 Massive Iso-surface Rendering 83

imately one frame per second is achievable on a single PC. By distributing
the rendering task among several processors (see Table 4.7), higher frame
rates can be achieved.

Figure 4.16: The LLNL data set, a 20482× 1920 simulation of a Richtmyer-
Meshkov Instability. Left: Entire data set with directional light Shader. Mid-
dle: Same view, but with additional shadows. Right: Zoom-in of the surface
to show the effect of shadows. Even such a complex data set of 24 GB of
data can be rendered interactively on a single PC. At 640× 480 pixels, these
images render at 0.9, 0.3, and 1.1 fps on a single 1.8 GHz Dual-Opteron with
6 GB RAM.

By combining this with an out-of-core rendering approach developed for
ray tracing [Wald04b], it is even possible to render large data sets like the
Richtmyer-Meshkov Instability from the Lawrence Livermore National Lab
(LLNL) [Mirin99] with a resolution of 20482 × 1920 cells for each time step
(see Figure 4.16). The usual iso-surface extraction is not really helpful, since
this would lead to approximately 470 million triangles, which cannot easily
be rendered using available graphics hardware. Of course, advantages can be
taken from the fact that the implicit kd-tree scales logarithmically. However,
due to the large input data set, this rendering consumes 24 GB of memory
even for the small variant (8 GB data set + 16 GB kd-tree). By implementing
a memory management unit for the Linux memory mapping mechanism, a
single PC with 6 GB of memory is sufficient, to render this large data set
at 2.1 fps when zooming in. With the addition of shadows, the performance
drops to 0.3 fps or 1.1 fps depending on the chosen view.

4.4 Massive Iso-surface Rendering

In a joint work with Heiko Friedrich [Friedrich07], the latest extension of the
implicit kd-tree for static iso-surface rendering aims at rendering large data
sets on a single PC instantaneously. In a pre-processing step (see Figure 4.17),

84 Chapter 4: Static Regular Data Sets

several resolutions for the data set are computed using a Gaussian filter. A
min/max kd-tree is then built for each level of detail (LOD) independently
and are subsequently merged to a single tree valid for rendering all LOD
levels. This merging ensures that the corresponding min/max intervals in
each level are conservative, since the Gaussian filter shifts the range of values;
thus, the kd-tree of the original volume is not necessary valid for all LOD
volumes.

...

...

KD−Tree LOD−Level Merged KD−Tree Treelet−Decomposition

memory page

bit−table

LOD Hierarchy

Figure 4.17: Illustration of the pre-processing pipeline from left to right. It
starts with creating different LOD levels for the volume data sets, then builds
a kd-tree for each level before merging all trees into a final single tree. The
last step is to decompose this kd-tree again into subtrees (called treelets) of
a certain height and store then on the hard drive. Each treelet may also
have two children, if it is not a leaf. During rendering, a bit table tracks the
treelets currently available in the system’s main memory.

4.4.1 Treelet Construction and Traversal

This kd-tree is finally decomposed into so-called treelets. A treelet is defined
as a subtree of the implicit kd-tree with a fixed height, consisting of an
associated block of LOD voxels or the original data set, an id identifying
the treelet, and the number of voxels for each dimension. This fixed height
always corresponds to the number of chosen LOD levels. Except for the root
treelet, all subtrees have the same size, based upon the page size of the Linux
memory management (4096 bytes). Smaller treelet sizes are either padded to
the page size, or multiple treelets are stored in one page if possible.

4.4 Massive Iso-surface Rendering 85

Additionally, the quantized value (half of the original size) of neighboring
voxels need to be stored in a treelet, too. This enables the computation of
surface normals of all but the quantized voxels within the treelet. As pointed
out in Section 4.3.4, gradient calculations require the access of adjacent voxels
since they are estimated using central differences.

Kd-tree traversal is similar to the original implementation previously de-
scribed, except that a second level with treelets is added. Since all treelets
have a fixed height, a conditional check of the leaf nodes can be removed
from the innermost loop reducing the traversal cost considerably.

Treelet fetching occurs independently from rendering using a memory
management unit (MMU) introduced in [Wald04b]. A loader thread loads
the required treelets determined by the current iso-value so that the loading
process does not stall the render threads. The loader sweeps over all treelets,
which are stored in a breadth-first manner, and checks the range of iso-values
stored for each treelet. Both children of a treelet are loaded if the searched
iso-value is within this range. Each newly loaded treelet is marked as present
in a global bit table, while discarded treelets are unmarked. The algorithm
needs to know at LOD i + 1 which treelets have been fetched in level i. This
bit list is necessary since the algorithm needs to know at LOD i + 1 which
treelets have been fetched in level i, thus avoiding accessing unneeded data
on the hard drive.

Figure 4.18: Example images of the tested scenes: LLNL and strange at-
tractor rendered with soft shadows and Phong shading. Performance varies
between 1.2 and 1.9 fps using video resolution and a single ray traversal.

Decomposing the LOD data and the implicit kd-tree into a treelet hierar-
chy is always a trade-off, since increasing treelet heights reduces the number
of levels in the treelet hierarchy but increases the required disc space. It turns
out, that a treelet height of nine seems to be a good choice taking storage

86 Chapter 4: Static Regular Data Sets

costs of the working set and the frame-rate into consideration. For example,
the LLNL data set [Mirin99] can be rendered at 2.5 fps with a 640x480 pixel
viewport (see Figure 4.18).

4.4.2 Results
The original system [Wald05] needs 18 minutes to load all relevant data.
The extension for massive data sets discussed here not only reduces this
loading time to five minutes. Additionally the out-of-core mechanism was
simplified and a conditional in the innermost traversal loop removed. Both
enhancements nearly double the rendering performance. Even the memory
requirement is reduced from 24 GB to 6.1 GB, as shown in Table 4.8.

Loading RAM FPS
Scene Iso Time (Min) Space (GB) Diffuse Phong
LLNL (zoom) 16 5 6.1 2.7 1.3
LLNL (overview) 16 5 6.1 2.3 1.2
Attr (zoom) 25 4 2.1 3.1 1.6
Attr (overview) 25 4 2.1 3.5 1.9

Table 4.8: Overall rendering performance for the LLNL and the strange at-
tractor. As the results show, independent from the view-point interactive
frame rates can be achieved.

The overall performance was not only measured with the LLNL data set,
but also with a synthetically generated strange attractor with a 20483 grid
resolution using 8-bit scalar values. The testing system was equipped with
a dual-core Opteron 275 (2.2 GHz PC with 8 GB main memory). Table 4.8
shows that interactive frame rates are possible in all cases, though the per-
formance decreases by 20% when zooming in.

4.5 Static Semi-transparent Rendering
As explained in Section 2.2.5, iso-surface rendering is a special case of the
volume rendering integral, i.e. the transfer function evaluates exactly one
value as non-zero. Supporting an emission-absorption model seems therefore
at first implausible for the kd-tree since every cell along the ray contributes
to its final pixel value.

In general, a grid traverser [Amanatides87] is better suited for this task,
since the next cell along the ray path can be faster detected. On the other

4.5 Static Semi-transparent Rendering 87

hand, it is impossible to skip certain regions using a grid traverser, which
works in favor of a hierarchical acceleration structure. For regular grids, two
types of regions can be identified which might possibly be skipped.

4.5.1 Adapting and Extending the Implicit Kd-tree
Due to the structured organization of regular grids, many scalar value loca-
tions are simply filled with zeros (and allowing positive values only as data).
This is because the shape of the scanned object typically does not fit the
box defined by the grid boundaries. If such regions could be identified, this
would enhance the rendering performance. Using the kd-tree introduced in
Section 4.3.1, such regions can be identified directly by testing

ρmin = 0 ∧ ρmax = 0

in each traversal step. If this criterion evaluates to true, the ray segment
can be skipped completely. The performance gain of course depends on the
height of the tree level in which such empty nodes can be found. Nevertheless,
the Engine data can be rendered twice as fast keeping the other parameters
the same (i.e. viewport resolution, eye point, and view direction).

However, a far better performance boost can be achieved when consider-
ing homogeneous regions, i.e. regions where the scalar values of all cells are
equal or span only a small range. The idea suggested here is similar to Dan-
skin and Hanrahan [Danskin92], where a pyramidal approximation was used
to identify homogeneous regions. Freund and Sloan [Freund97] later adapted
proximity clouds [Cohen94] (see Section 4.1) for handling homogeneous re-
gions. Here, the implicit kd-tree can be used for identifying such regions by
checking:

ρmin = ρmax.

The contribution for the corresponding ray segment is then set either to
the value stored ρmin or ρmax. Since regions are in most cases not totally
homogenous, it is often better to tolerate deviations up to a threshold ε:

ρmax − ρmin < ε.

In other words, to identify homogeneous regions, the difference of the
minimum and maximum values of the node can be checked against a user-
defined ε-value. The contribution of such an identified region is now the only
unknown left. One might think of just taking the arithmetic average, i.e.
ρmax+ρmin

2
, but this can result in severe rendering artifacts with increasing ε.

88 Chapter 4: Static Regular Data Sets

Empirical analysis showed, that it is better to compute the arithmetic mean
of the entire region:

ρavg =
1

n

n∑
i=0

si

with n denoting the number of scalar values si. This result is then stored
in addition to the minimum and maximum values. To achieve this, the mean
of the eight corner values for a cell is initially computed. The mean value
of one node is then just the arithmetic mean of the mean values in both
children. In other words, the propagation is identical to the minimum and
maximum values discussed in Section 4.3.1.1.

4.5.2 Results
Skipping regions with a threshold introduces a visual error since the arith-
metic mean is only a coarse approximation of the original data. Therefore it
is left to the user when this coarse representation of the volume should be
used. As already stated, the difference of the minimum and maximum val-
ues in a subtree can be compared against a user-defined threshold ε. Regions
along a ray with more or less the same scalar values can be efficiently skipped
in this way. Instead of checking each cell in the region, the arithmetic mean
stored in each node is returned. The volume data itself is not compressed.

To check the introduced error, the same image was rendered with different
thresholds. The well-known Engine data set (2562 × 128) consists of 8-bit
integer scalar values allowing for a threshold range t = [0, 255]. As Figure 4.19
illustrates, choosing a threshold of t = 64 has only a negligible impact on the
rendering quality while tripling the performance (see Table 4.9). Choosing
t = 128 some artifacts, but many details are still visible. Further reduction
(t = 192) leads to a blocky representation. However, regions with a low
homogeneity are still clearly visible. These visual results are supported by
an objective error metric, i.e. using the RMS-error metric defined as

RMS(I0, I1) =

√√√√ 1

n

n∑
i=0

(pi,0 − pi,1)
2

where I0 and I1 are the two images to be compared and pi,0 and pi,1 are
pixels in I0 and I1 respectively. The calculated error (see Table 4.9) support,
that the visual impression corresponds closely to this evaluation.

Extending the implicit kd-tree with an additional node value hence pro-
duces interactive results. The user can change the introduced error during

4.5 Static Semi-transparent Rendering 89

Figure 4.19: The engine data set rendered x-ray like with no threshold (upper-
left), threshold 64 (upper-right), threshold 128 (lower- left) and threshold 192
(lower-right). Note that even for a fairly high threshold, regions with low
homogeneity are still clearly visible.

rendering to make it suitable for the current visualization task. Future im-
plementations might adapt this threshold automatically depending on the
velocity of the camera movement, e.g. a large threshold during fast move-
ments and a small threshold for minor or no camera movements.

It is even possible to switch between iso-surface and semi-transparent ren-
dering, since the original node content was not abandoned. To save memory,
the minimum and maximum values can be replaced with the difference, i.e.
ρdiff = ρmax − ρmin, leading to the same storage costs as for the iso-surface
acceleration structure, i.e. two times the size of the volume.

It should be noted, however, that this can only be seen as a first step
towards full support of semi-transparent rendering. For example, transfer
functions are poorly supported right now, since the overall arithmetic mean

90 Chapter 4: Static Regular Data Sets

Threshold RMS fps Speed-Up
0 0.0000 0.288 1.0
64 0.0063 0.946 3.3
128 0.0096 1.766 6.1
192 0.0785 4.022 14.0

Table 4.9: Different thresholds and associated errors introduced by rendering
the coarse representation. The frame rate is measured for a 5122 viewport on
one dual-core Opteron with 2.0 GHz.

is obviously not a good approximation for transfer functions. One way to
incorporate such functionality was already demonstrated by Subramanian
and Fussel [Subramanian90], where regions not contributing to the current
transfer function are marked in the kd-tree for skipping.

4.6 Conclusion

This chapter extensively discussed implicit kd-trees for rendering iso-surfaces
defined over regular grids. The basic idea was to extend each kd-tree node
with range values allowing the system to search different iso-values without
rebuilding the entire kd-tree whenever the iso-value changes.

Kd-trees not only allow for an efficient retrieval of cells containing the
searched iso-surface, but due to the binary decision during traversal, they
are ideally suited for packet ray tracing, e.g. traversing the trees with four
rays in parallel using SIMD operations.

This straightforward implementation was, however, memory-consuming
compared to the original data set. A more efficient realization of the implicit
kd-tree stores the range value only and additionally omits the storing of leaf
cells. This leads to reduced storage cost, which is just twice as large as the
original data set, but requires a balanced kd-tree. Virtual nodes help reduce
the power-of-two constraint introduced with balanced kd-trees.

Although this memory optimizations reduced the performance by 50%,
interactive frame rates of complex data sets even on a single PC are possible.
This is especially true for the packet ray variant. Using the processor’s SIMD
extension enables the renderer to traverse four rays in parallel, leading to a
speedup of two to four times compared to the single ray approach. An addi-
tional speedup can be achieved by distributing the image rendering process
among several processor nodes. This allows for rendering data sets of several
gigabytes, e.g. the Richtmyer-Meshkov Instability [Mirin99].

4.6 Conclusion 91

After retrieving the set of cells containing the iso-surface, it is necessary
to apply an intersection test to the incident ray with each cell found. Some
of the most relevant approximate and accurate methods were discussed here.
Approximate intersection tests fail, if there is more than one intersection
with the iso-surface within a cell. Up to now, the most often used accurate
intersection method contained a complicated calculation for retrieving all
possible intersections at once, although only the first intersection with a ray is
relevant. The involved trigonometric equations adversely affect performance,
especially since they have to be emulated in SIMD mode.

Iterative root finding was presented as an interesting alternative that com-
bines the accuracy of the Schwarze intersection test with the speed of repeated
linear interpolation. By checking the extrema values of the underlying third-
order polynomial, an iterative bisection of the first region containing the
iso-surface suffices for an accurate intersection calculation.

This hierarchical iso-surface rendering approach, which is based on the
kd-tree together with a processor and cache-friendly implementation and cell
intersection outperforms iso-surface ray tracing approaches previously pub-
lished (e.g. [DeMarle03]). As demonstrated in Section 4.4, this is now true
even for massive volumetric data sets. Using treelets, combined with an
efficient memory management fetching scheme, large models can almost in-
stantaneously be viewed and inspected. At the same time, the rendering
performance is doubled compared to the original approach.

In all cases, no assumption needs to be made about the implicit surface.
Storing the range values of corresponding subtree in each node enables full
flexibility for the user. Since the iso-surface renderer is more or less a plug-in
for a sophisticated rendering framework, lighting effects such as transparency,
shadows, reflection, refraction, and even global illumination are instantly
available. Regular volumes can also be combined with other primitives, e.g.
triangles, free-form surfaces or other volumetric organizations. Interactive
camera movements and iso-value changes are also possible.

However, many rendering visualization tasks require the complete eval-
uation of the volume rendering integral, or at least an emission-absorption
model. At first, it seemed unwise to employ a hierarchical data structure
since all cells along a ray contribute to the final pixel value and must therefore
be checked anyway. Indeed, the a grid traverser [Amanatides87] offers due
to its incremental approach a good rendering quality but lacks performance.
Therefore the kd-tree nodes were enriched with an average value representing
the arithmetic mean of the sub-volume. A homogeneity criterion was used to
skip regions with only minor differences from the scalar value. Together with
empty space skipping, this allows for interactive frame rates depending upon
a user-chosen threshold. The idea is to set up this threshold automatically,

92 Chapter 4: Static Regular Data Sets

i.e. increasing the threshold for fast camera movements and reducing it for
low or no camera movement at all. Another possibility is to to make the
threshold depending upon the features of the data. It is noteworthy that
even for a high threshold, non-homogeneous regions are still clearly visible
so that a user can track regions of interest.

4.7 Contributions
The authors contributions to the topics discussed in this chapter are:

1. The author was involved implementing the implicit kd-tree [Wald05]
and integrating the volume renderer into the OpenRT framework. This
does not only include a full implementation of the iso-surface volume
renderer for single and packet ray traversal, but also data set converting
tools and performance measurements.

2. The author compared not only several ray iso-surface intersection meth-
ods in [Marmitt04] but presented also with iterative root finding a new
fast and easy to implement intersection test which is as fast as a re-
peated linear interpolation while preserving the accuracy of Schwarze’s
interpolation.

3. The author contributed some minor implementation tasks to the mas-
sive iso-surface renderer [Friedrich07] based on treelets, e.g. a 3D gaus-
sian filter and wrote a construction tool for generating large data sets.

4. The author completely developed and integrated an extension allow-
ing for semi-transparent volume rendering in [Marmitt06a] using the
implicit kd-tree.

4.8 Future Work
Although the static variant of the implicit kd-tree was optimized with respect
to memory consumption, further reductions are possible. First steps have
already been taken by reducing the node storage to minimum and maximum
values and by quantizing these values. However, as seen for semi-transparent
rendering, the nodes must been augmented with other important data to
allow for efficient rendering.

One obvious idea is to increase the quantization even further. It is tech-
nically simple to use only four or two bits per stored value, although the
trade-off between memory consumption and the number of traversal steps

4.8 Future Work 93

must always be kept in mind. As already seen, higher quantization rates in-
crease the number of traversal steps and hence, decrease the overall rendering
performance. This effect was negligible, but may become significant for large
data sets with a higher tree size since it not only increases the number of
traversal steps, but also introduces costly bit shifting operations.

The first problem can be tackled by using concatenated range values, i.e.
each level of the kd-tree stores a different bit position of the range values.
It seems plausible to start at the tree root with the highest bit position.
The second level would then store the bit for the second highest position,
and so on. Having a tree with at least eight levels would hence lead to an
8-bit range value when the eighth level of the tree is reached. This follows
from the observation, that higher tree levels contain larger ranges since they
span large sub-volumes. Culling effects, therefore, often have a significant
effect in the lower levels. Even when just 1 bit is used per level, the number
of traversal steps should not increase significantly; however, increased bit
shifting operations become a drawback.

Another issue is the order of split dimensions, which is currently chosen
with respect to the largest dimension. Brauchle’s Master Thesis [Brauchle06]
showed here that a simple optimization scheme, i.e. maximizing the overlap
of the ranges of both children’s ranges, lead to significant speedup of approx-
imately 20%. Details can be found in the upcoming Section 5.1.3. Although
this idea was originally intended for improving the performance of the 4D
kd-tree (discussed in Section 5.1.3), it can be adapted for the static ren-
derer too. Other low-level optimizations require close attention to the exact
caching behavior. This is particularly true for complex data sets.

In the same way, large volume data sets may also profit from this opti-
mization. Furthermore, the massive iso-surface renderer should also support
packet ray traversing and a lossless multi-resolution compression scheme in
order to reduce the in-core and hard-disc memory footprint of this approach.

The proposed hierarchical semi-transparent renderer is in its current state
not more than a proof-of-concept system. The current implementation does
not support transfer functions well which are crucial for scientific visualiza-
tion. Basically the transfer function needs to be ’convoluted’ with the stored
arithmetic mean to allow a meaningful usage of average values. The empty
space skipping feature also needs an extension so that regions corresponding
to the current transfer function are culled.

Grimm et al. [Grimm04] suggested a variety of techniques for rendering
volumes on a consumer PC in software. Some of them could be adapted
for this purpose, e.g. summed opacity tables allow for an efficient region
skipping. Engels et al. [Engel01] pre-integrated volume rendering could be
used to avoid the transfer function evaluation for every ray segment.

94 Chapter 4: Static Regular Data Sets

Even with these optimizations, highly non-homogeneous regions still force
the traverser to locate the adjacent cell using the kd-tree. For such regions
it seems far more effective to use an incremental approach, i.e. a grid tra-
verser [Amanatides87]. A combination of both approaches, a kd-tree for skip-
ping homogeneous regions and a grid-traverser for non-homogeneous regions,
similar to [Levoy90a], should lead to a fast semi-transparent volume renderer
supporting transfer functions with the above mentioned optimizations.

Finally, the CELL architecture seems to offer new opportunities for ren-
dering regular volumes. A fast rendering engine for polygonal data was al-
ready presented in [Benthin06]. In the same way, the discussed hierarchical
volume renderer should take advantage of this architecture.

Chapter 5

Dynamics and Other
Applications

96 Chapter 5: Dynamics and Other Applications

La rigidité est la rigueur des cuistres, qui ne
sauraient jamais rien négliger. Mais qui ne nég-
lige rien ne fait rien.

Gérard Genette

The last chapter extensively discussed the implicit kd-tree as a hierarchi-
cal acceleration structure for (massive) regular grids. Although best suited
for iso-surface rendering, it was also extended to support semi-transparent
rendering by skipping empty and homogeneous regions. However, time-
dependent data sets have not been considered thus far since this would either
require the system to rebuild the tree in each time step [Marmitt06a], or build
a tree over the complete series of time steps [Brauchle06]. Both approaches
are discussed in Section 5.1, including their advantages and shortcomings.

5.1 Time-dependent Volume Rendering
So far, the scalar value distribution was considered as static, i.e. the volu-
metric grid consisted of exactly one time step. However, there is a growing
demand for rendering time-dependent volumetric data, such as simulations
controlled by physical behavior, e.g. weather and climate forecasts, fluid dy-
namics, chemical reactions etc. Even medical applications sometimes require
time-dependent simulations, e.g. a beating heart. This raises the question
whether the discussed rendering framework can be extended to support ren-
dering of time-dependent data.

Regarding the implicit kd-tree, there are mainly two options for this exten-
sion. As already stated, the implicit kd-tree contains the range of iso-values
found in the associated region within a volume. Since it must be expected
that the distribution, and hence the minimum and maximum (and average
for semi-transparent rendering) change between individual time steps, these
updates must be incorporated into the tree.

The first option leaves the node structure exactly as described previously
but instead updates the kd-tree after each time step. This requires extend-
ing the existing framework with both a fast update and a synchronization
mechanism. This concurrent update will be discussed in Section 5.1.2.

The other possibility leaves the kd-tree building within the pre-processing
step, but augments the tree with a temporal dimension. Adding a temporal
dimension to the existing three spatial dimensions is straightforward since
the node structure for the spatial dimension can be kept as is. It turns out,
however, that in this case the order of the dimensional split is crucial to
achieve an acceptable performance. Details on this can be found in Sec-
tion 5.1.3. Before describing the required extensions for both approaches,

5.1 Time-dependent Volume Rendering 97

the following section first covers related work in the area of time-dependent
volume rendering of regular grids.

5.1.1 Related Work
Due to the high computational demands of time-dependent volume render-
ing, extensive research started only a couple of years ago. Shen et al. [Shen99]
propose the so-called Time-Space Partitioning (TSP) tree for efficient culling
of spatiotemporal homogeneous regions. TSP trees consist of an octree as a
spatial hierarchy where each node is extended with a binary tree for traversing
the temporal dimension. Hence, all nodes of this binary time tree associated
with a TSP tree node represent the same subvolume in the spatial domain
but with differing time span. Mean values are used for homogeneity acceler-
ation where additional values represent temporal and spatial error metrics.
This algorithm was later adapted to graphics hardware using a slicing algo-
rithm [Ellsworth00].

Reinhard et al. [Reinhard02] extend the interactive volume ray tracing
system introduced by Parker et al. [Parker99b] for time-dependent iso-surface
rendering. The I/O bottleneck when loading the next time step is signifi-
cantly reduced by storing only those voxel values that differ from the current
time step, i.e. all subsequent time steps are represented as a list of scalar
values associated with their spatial coordinates. During rendering, one pro-
cessor reads the next time step and updates the volume in main memory
while all others render the data set. Rendering with interactive frame rates
need at leat 16 processors on an SGI Origin 2000.

Gao et al. [Gao04] exploit the temporal coherence between adjacent time
steps by grouping cells with temporal and spatial coherence together in vol-
ume blocks. Plenoptic Opacity Functions (POFs) [Gao03] then encode the
minimal occluding capability of a volume block from an arbitrary viewpoint.
The POF as well as the temporal and spatial coherency information for each
block is stored in an octree. They reported a render time of 1.4 seconds
per time step for the Richtmyer-Meshkov Instability [Mirin99] on 32 2.4 GHz
Xeon processors.

Younesy et al. [Younesy05] introduce Differential Time-Histogram Table
(DTHT) to store changing voxel values between two adjacent time steps.
This table has two dimensions, where the size of one dimension is equal to
the number of time steps and the other depends on the range of scalar values
stored in a bin. Each bin refers to the active set of iso-values, which need
to be rendered in the current time step, and a set of differences between the
active sets of adjacent bins. The active set of iso-values is a range determined
by corner values of all cells possibly containing the iso-surface. For each time

98 Chapter 5: Dynamics and Other Applications

step, this table updates the changed voxel values with respect of the next
rendered time step. While the update performance was reported as more
than 10 fps, rendering times were not reported.

5.1.2 Concurrent Tree Update

The approach discussed in the following paragraphs is based on the idea that a
number of update nodes is employed to update the kd-tree for upcoming time
steps concurrently, while the latest available tree is traversed by a number
of render nodes. This makes it necessary to adapt the system discussed in
Section 4.3 for shared-memory architectures since it is now vital to provide
fast construction of the kd-tree, which is accessible to all render nodes. Note
that in the original implementation [Wald05], each processor node built and
used its own copy of the kd-tree due to static volume data sets.

Kd-tree building is accelerated by two observations. The original imple-
mentation built the kd-tree recursively. Although easy to implement, recur-
sive functions cannot be efficiently translated by today’s compilers. Neither
stack usage nor data access is optimal. Additionally, construction was not
distributed across several processors, which is difficult for recursive imple-
mentations anyway. By carefully designing an iterative tree update (see Sec-
tion 5.1.2.1), parallel kd-tree updating (see Section 5.1.2.2) is enabled at the
same time. It turns out that both optimizations suffice for small time-varying
data sets up to 2563 on the shared-memory system.

5.1.2.1 Replacing the recursive Implementation

The first step is therefore to replace the recursive build by an iterative up-
date, which works in two steps. In the first step, the scalar values of a volume
are fetched from the data set cell-wise (see Figure 5.1). For each cell, the nec-
essary values for the tree leaves, e.g. minimum and maximum for iso-surface
rendering (see Section 4.3), or a mean value for semi-transparent rendering
(see Section 4.5) are computed and stored in the array used for the kd-tree.
Care must be taken that access to the volume scalar values (stored as an
array in memory) is as sequential as possible. Due to the one-dimensional
memory access, this can only be achieved for one of the three spatial dimen-
sions, usually the x-dimension. This improves the reading performance by
approximately 20% compared to using the last split dimension for accessing
the data.

The kd-tree nodes cannot be sequentially accessed since neighboring tree
nodes in one level do not necessarily refer to adjacent volume cells. Since
there are eight volume scalar values to read compared to two values to write

5.1 Time-dependent Volume Rendering 99

to the kd-tree array, giving preference to the volume read seems a better
choice. Considering the fact that adjacent cells share four points, the number
of fetches is reduced to four per processed cell (see Figure 5.1). Finally, since
the small variant of the kd-tree was used (see Section 4.2.1), the leaf level of
the tree is not stored either. Instead two adjacent leaf nodes in the last split
dimension are merged directly, i.e. the node content is computed for twelve
values (four values are shared and must not be counted twice).

A further acceleration can be achieved by bricking the volume data as
suggested in [Parker99b, DeMarle03]. Bricking simply means that adjacent
cells in all three dimensions are grouped together in memory so that they can
be accessed within the same fetched cache line. Pre-computed access tables
help keep the computational overhead for index calculation low [Parker99b].
Of course this heavily depends on the cache architecture. Since the volume
is accessed on a cell level, bricking 2 × 2 × 2 cells is a good choice because
this corresponds exactly to a cell. Bricking gives an additional performance
gain between 10% and 15% for the kd-tree update.1

Since the last level of the kd-tree is now filled, it is rather easy to propagate
the computed minimum, maximum, and mean values level by level to the root
node in a breadth-first manner. This is quite similar to the update mechanism
used for dynamic hardware ray tracing, presented in joint work with Sven
Woop [Woop06]. Note that in this step, it is not necessary to access the
volume data itself since basic arithmetic operations suffice for propagating
minimum, maximum and mean values rather quickly compared to the first
step. Figure 5.1 illustrates this step. Empirical analysis showed that using a
separate array (blue color) for intermediate caching is faster, which is believed
to be caused by a better cache usage when propagating the values.

Until now this method has been three times faster than a recursive imple-
mentation (see Table 5.1 and 5.2), but it is still not fast enough for interac-
tive tree updates. This is achieved by using another property of this imple-
mentation. The following sections will describe how to add multi-threading
and synchronization to complete the rendering framework for time-dependent
data.

5.1.2.2 Multithreading

As already mentioned, this approach can be used to distribute the update
routine among several processor nodes. Each processor node can update
a part of the tree and a master process can simply merge them together.

1Theoretically, a 2-2-n bricking, where n is the size of the z dimension is the optimum.
However, this destroys adjacency with respect to the x and y dimensions completely and
therefore does more harm than good.

100 Chapter 5: Dynamics and Other Applications

volume data

Array for tree level (same sorting as kd−tree)

Step 1:

cell

Step 2:

n + 5n + 4n + 3

n + 2 n + 3 n + 4

n + 1node n

Kd−tree(For each tree level)

Array for tree level

level t+1

level t

node 0 node n

n + 2

Used for value propagation

cell−adjacent

voxels

Figure 5.1: In the first step, all values are fetched sequentially from the data
set and the information to be stored is sorted into the tree. The following step
propagates these values bottom-up in a breadth-first manner. Since adjacent
cells share four voxel, they do not have to be fetched twice, i.e. only four
instead of eight values must be fetched per cell.

As an example, consider the case where the first splitting plane is in the
x-dimension. Distributing the ranges of these two new subvolumes to the
iterative update routine, it is easy to see that these two sub-trees can be
built independently (see Figure 5.2). Only the first level needs a merge by
the master.

In the same way, it is possible to update this kd-tree by four, eight, or more
nodes. The only restriction is that there must be a correspondence between
the subvolume represented in the entire tree and the update routine, i.e. the
number of parallel processes must be equal to 2n. Alternatively, virtual nodes
described in Section 4.3.2.3 can be used. A split in the middle naturally leads
to a good load-balancing between all threads since the performance is only
dependent on the number of scalar values processed.

5.1 Time-dependent Volume Rendering 101

l2 l3

l1

l4 l l6 l75

l2

Figure 5.2: In this example, two processor cores update the complete tree. By
assigning to each tree the subvolume corresponding the splitting plane, both
subtrees can be independently built and merged together. At the same, a split
in the middle guarantees time load balancing.

5.1.2.3 Update Performance Speedup

The pure performance of the described update routine was tested with the
well-known Marschner-Lobb [Marschner94] in various resolutions. Here, the
tree is updated every time with the same data set. Caching issues are negli-
gible due to the size of the data. Despite the fact that the operating system
completely handles the thread management, our experiments showed that
the processing time scales linearly for nearly all cases (see Table 5.1). The
test system was, however, equipped with 16 cores so that the decrease might
not be linear. However, with 16 threads the decrease is no longer linear, since
the maximum number of cores on the test system is reached. It is believed
that memory bandwidth becomes a limiting factor in this case. Nevertheless,
a kd-tree for a 5123 volume can be built in approximately 1.5 seconds using
16 threads.

Data rec. iterative (# threads)
size 1 thread 1 2 4 8 16
643 0.056 0.016 0.008 0.004 0.002 0.002

1283 0.454 0.157 0.072 0.043 0.023 0.017
2563 3.784 1.333 0.687 0.357 0.197 0.160
5123 29.75 10.74 5.396 2.945 1.930 1.543

Table 5.1: Updating the iso-surface tree in our threaded version shows that
the update time (in seconds) decreases linearly with the number of threads as
long as the operating system can distribute the threads to free nodes.

102 Chapter 5: Dynamics and Other Applications

Table 5.1 shows the performance in seconds for updating the acceleration
structure for iso-surface rendering. Detailed analysis showed that most of
the time is spent in the first part of the update routine where the data from
the original volume is fetched. Over 80% of the total update time is spent in
this part, while less than 20% is needed for bottom-up propagation. This is
caused by the heavy volume read load (twelve reads versus two writes). The
time for merging the trees for even 16 threads is negligible.

Evaluating our system with the tree structure for emission-absorption
models also shows a linear decrease with the number of threads used. Com-
pared to the iso-surface tree, the timings are approximately 17% higher (re-
cursive implementation: 30%), which can be seen in Table 5.2. This is due to
the fact that a mean value must be calculated, which involves two additional
floating-point multiplications per node.

Data recursive iterative (# threads)
size 1 thread 1 2 4 8 16
643 0.076 0.019 0.009 0.004 0.002 0.002

1283 0.614 0.173 0.085 0.049 0.026 0.021
2563 4.991 1.539 0.782 0.446 0.288 0.238
5123 39.003 12.535 6.239 3.701 2.512 1.980

Table 5.2: Updating the semi-transparent tree in the threaded version shows
the same scaling as for the iso-surface tree. The higher number results from
the fact that computation of the mean values add multiplication operations.

So far, this analysis showed that data sets up to 2563 can be updated
interactively on a setup with 8 cores. For updating large volumes, more
nodes are needed. Due to the linear scalability of the update routine, there
is no significant barrier to using more processors.

5.1.2.4 Synchronization Mechanisms

Since updating the tree is now sufficiently fast for rendering time-dependent
volume data sets, the missing part is an effective synchronization mechanism
between the update and render nodes of the shared-memory system. As
depicted in Figure 5.3, update and render nodes do not communicate with
each other; rather both are controlled by a display master.

For distributing the rays among a number of nodes, this system relies
on OpenRT [Dietrich03]. The rendered image is subdivided into tiles and
the display master does load balancing by distributing the tiles among the
specified number of nodes. Distribution of tiles for rendering is left to the

5.1 Time-dependent Volume Rendering 103

Update

Node 0

Update

Node m

Render

Node n

Shared−Memory System

Display

Master Fetch new Tree Pointer

After each Frame

......

If Next_Tree_is_Ready

Render

Node 0

Figure 5.3: The shared-memory system is separated into render and update
nodes, which do not communicate with each other since the display master
controls the render and update tasks.

OpenRT system [Wald04a]. Unfortunately, OpenRT does not provide a dedi-
cated display master, so this had to be added to the system. Here, on startup,
semaphores are used to ensure that only one of the render nodes takes control
of the update nodes.

getNextTreeRoot:

if updateCounter == NUM_THREADS
switchTreeRoots()

For all Threads

updateCounter = 0

mutex_unlock(updateClient[i])

After each Frame:Update Threads:

Thread i:
while(true):

mutex_lock(updateClient[i])

updateCounter++
update(i)

Figure 5.4: Each thread runs independently and increments a global counter,
which is checked after each rendered frame. The display master unlocks the
update threads for building the next kd-tree once the tree update is complete.
Locking and unlocking of the counter is omitted.

Synchronizing the update threads is achieved by using mutex variables
for locking, and a unique counter indicating how many update nodes have
finished. Each thread locks its mutex before it starts updating. To enable
rendering of time-varying data, two complete kd-trees are kept in memory
for double buffering. One tree is rendered while the other tree is updated.
When the display master asks whether a new tree is available to render,
i.e. by querying this unique counter, the root addresses of both trees are

104 Chapter 5: Dynamics and Other Applications

switched. Furthermore, all mutex variables are unlocked so that the next
tree can be built. If the building process is still ongoing, the old tree pointer
is returned, i.e. the current time step is rendered again. Otherwise the entire
system would be blocked, making navigation tedious for the user in the case
where the update is slower than the frame rate. Figure 5.4 sketches the
implementation overview.

5.1.3 The 4D kd-Tree

A concurrent tree update may not in all cases be the best choice, since
data sets larger than 5123 requires probably 32 processors or more for an
interactive update. On the other hand, the number of time steps might be
only a few. It would than be better to incorporate the temporal domain
directly into the kd-tree which is pursued in this section.

The idea presented here is similar to Woodring et al. [Woodring03], since
space and time are also not treated as separate entities. To achieve this, the
minimum and maximum values are not only computed for the spatial but
also for the temporal domain. The temporal domain can be treated just as
the spatial domains, i.e. always split the largest dimension in the middle. In
the same way, the split alternate not only between the three spatial but also
in the temporal domain.

5.1.3.1 Extending Tree Building and Traversal

Since the building routine is only used in a pre-processing step, it is left in its
recursive implementation for simplicity. At the leaves of the tree, all values
fetched from the volume data set need an additional index indicating the
time step currently rendered. For inner nodes, the split still occurs in the
largest dimension, regardless of whether it is spatial or temporal.

Similar modifications now must be applied to the traversal procedure (see
Section 4.3.1). While the loop as well as the test (e.g. for minimum and max-
imum in the case of iso-surfaces) stays the same, the part for calculating the
new split position must distinguish between spatial and temporal domains.
Temporal splits must not partition the volume further, but instead partition
the time step series.

The memory consumption is the same as storing for each individual time
step a complete kd-tree and therefore rather disappointing. Even worse,
the rendering performance decreases by 50 %. In other words, a rendering
system which just loads a pre-computed kd-tree of the current time step into
the system memory would be twice as fast but consume the same amount
of memory. It is, however, believed, that the 4D kd-tree has a lot of room

5.1 Time-dependent Volume Rendering 105

for improvements, which will be demonstrated by implementing a simple but
effective optimization in the next section.

5.1.3.2 Optimizing the Order of Splitting Planes

The reason for the poor performance of the näıve implementation is obvious.
The additional temporal encoding destroys the efficient culling of subtrees if
the distribution of the scalar values is similar over several time steps. This
is almost always the case since the time between two steps is chosen to be
sufficiently small to allow for a useful analysis of the simulation.

One possible optimization therefore seems to be to rearrange the splitting
planes for the entire tree. To achieve this, the minimum and maximum values
for all four possible split dimensions are computed, allowing the dimension
with maximum overlap of both children’s ranges and hence maximum culling
efficiency to be selected. The rest remains as described in the original imple-
mentation, i.e. the orientation of the splitting plane is the same for each tree
level and always splits in the middle (see Section 4.3.1).

Data fps (# threads)
size Time Steps Framework 1 2 4 8 12
Drop 100 static 3.36 6.80 13.40 27.02 38.99
5122 4d-kd tree 2.58 5.25 10.17 21.15 30.13
5 Jets 200 static 1.70 3.61 7.36 14.71 21.53
5122 4d-kd tree 1.68 3.78 6.92 9.82 14.24
Vortex 100 static 1.68 3.26 6.56 13.22 19.54
5122 4d-kd tree 1.23 2.42 4.92 9.82 14.24
Drop 100 static 0.85 1.67 3.37 6.75 9.82
10242 4d-kd tree 0.56 1.36 2.47 5.31 7.79
5 Jets 200 static 0.43 0.85 1.66 3.85 5.60
10242 4d-kd tree 0.43 0.78 1.58 3.85 4.92
Vortex 100 static 0.43 0.85 1.66 3.35 4.95
10242 4d-kd tree 0.35 0.68 1.26 2.51 3.89

Table 5.3: Comparing the frame rates between the original static implemen-
tation and the 4D kd-tree shows a performance loss of approximately 30 -
40%. All numbers refer to the single ray implementation. This meets the
expectation since the temporal kd-tree levels increase the size of kd-tree by the
same amount.

To ensure that the optimal splitting dimension is chosen throughout the
level, the arithmetic mean over all overlaps for each dimension is computed.

106 Chapter 5: Dynamics and Other Applications

The splitting dimension, where the arithmetic mean is the highest is than
chosen as optimal splitting dimension.

The overall system performance in frames per second (fps) for single-ray
traversal was measured using the following data sets. The Falling Drop data
set consists of 106x108x110 voxels and 100 time steps. As suggested in Wald
et al. [Wald05], the volume is expanded only virtually to 1283 to build a
balanced tree. The second data set is a Turbulent Vortex consisting of 1283

voxels and 100 time steps, while the third data set are Five Jets (1283) with
200 time steps. Figure 5.5 shows all examples used.

Figure 5.5: From left to right: The Falling Drop in a polygonal environment
with two light sources, shadows and reflections rendered at 7 fps (left). 5 Jets
with two individually colored iso-surfaces and reflection rendered at 3 to 6
fps (middle). The turbulent vortex data set rendered as an iso-surface with
reflection and translucence at 6 fps (right).

The performance gain between this optimization and taking the dimen-
sion with the largest size as next split lies between 30 and 50% [Brauchle06],
shifting the performance to 70 % of the original static implementation, as
Table 5.3 shows. The missing 30 % result from the overhead introduced by
traversing the temporal domain.

5.1.4 Comparison of Performance

To allow a direct comparison between the two approaches discussed in Sec-
tion 5.1.2 and 5.1.3, a shared-memory with eight dual-core 2 GHz Opterons
870, each with 64 GB of main memory running Linux was used. All data
sets stay the same as described in the previous section of this chapter.

The rest of the system stays as close as possible to the original implemen-
tation discussed in Chapter 4. This especially implies the use of the small
variant of the kd-tree including all described optimizations (see Section 4.3.2)

5.1 Time-dependent Volume Rendering 107

and linear interpolation as cell iso-surface intersection (see Section 4.3.3). In
every case a directional light shader was used for rendering the image. The
screen resolution was set to a viewport size of 5122 and 10242 for all mea-
surements. Unfortunately, only a single-ray implementation was available
for the 4D kd-tree. Therefore Table 5.4 presents the single-ray performance
comparing all three system before Table 5.5 make use of SIMD but compares
only the static with the concurrent approach.

fps (#render nodes/#update nodes)
Data Set Framework 2/2 4/4 8/8 12/4 16/8 16/16
Drop static 6.54 13.14 26.30 38.99 50.60 50.60
5122 concurrent 6.30 12.39 21.73 30.34 25.14 24.30

4D kd-tree 5.25 10.17 21.15 30.13 - -
5 Jets static 3.59 7.24 14.48 21.53 28.40 28.40
5122 concurrent 3.66 6.98 13.16 18.43 16.46 16.10

4D kd-tree 3.78 6.92 13.81 18.14 - -
Vortex static 2.77 5.60 11.10 19.54 22.0 22.0
5122 concurrent 2.92 5.84 10.88 15.45 14.32 13.69

4D kd-tree 2.42 4.92 9.82 14.24 - -
Drop static 1.65 3.12 6.65 9.82 12.80 12.80
10242 concurrent 1.57 3.176 5.75 8.94 8.92 8.71

4D kd-tree 1.36 2.47 5.31 7.79 - -
5 Jets static 0.91 1.83 3.68 5.60 7.14 7.14
10242 concurrent 0.85 1.84 3.47 6.77 5.88 5.53

4D kd-tree 0.78 1.58 3.85 4.92 - -
Vortex static 0.71 1.41 2.84 4.95 5.57 5.57
10242 concurrent 0.75 1.48 2.80 4.87 5.18 4.72

4D kd-tree 0.68 1.26 2.51 3.89 - -

Table 5.4: Performance comparison between the original static iso-surface
renderer, concurrent build of kd-trees, and the extended 4D kd-tree using
the single ray implementation. The header shows #render nodes / #update
nodes (#update nodes are only applicable for the concurrent build). The
performance is comparable between all approaches for up to eight clients.
Update and render tasks compete on one node in the last two columns, which
diminishes the performance.

The original system described by Wald et al. [Wald05] neither shares
the kd-tree nor the data set between the nodes; so it was kept as is. The
same is true for the 4D kd-tree implementation presented in Section 5.1.3,
although it would be easy to adapt both systems to support shared-memory.

108 Chapter 5: Dynamics and Other Applications

Additionally, the proposed optimization for the 4D kd-tree (see Section 5.1.3)
was also not used here since this would lead to an incomparable comparison
with the original implementation.

fps (#render nodes/#update nodes)
Data Set Framework 2/2 4/4 8/8 12/4 16/8 16/16
Drop static 13.25 26.95 52.33 77.84 81.20 81.20
5122 concurrent 12.29 24.34 33.76 49.79 36.51 31.33
5 Jets static 7.17 14.43 28.80 39.26 52.13 52.13
5122 concurrent 7.28 14.61 22.73 33.97 26.38 22.08
Vortex static 5.35 10.56 21.39 34.99 49.93 49.93
5122 concurrent 5.47 10.87 17.46 27.46 21.31 19.11
Drop static 3.80 7.42 14.60 21.70 26.23 26.23
10242 concurrent 3.59 7.08 11.80 17.23 14.88 14.47
5 Jets static 2.12 4.26 8.55 12.12 16.66 16.66
10242 concurrent 2.22 4.13 7.71 13.01 10.32 10.24
Vortex static 1.66 3.24 6.46 10.80 13.92 13.92
10242 concurrent 1.67 3.33 6.14 8.99 8.77 8.38

Table 5.5: Performance comparison between the original static iso-surface
renderer, concurrent build of kd-trees, and the extended 4D kd-tree using
the packet ray implementation. The header shows #render nodes / #update
nodes (#update nodes are only applicable for the concurrent update). The
results are similar to the single ray traversal, except that SIMD brings an
overall performance speedup factor of approximately two to three.

The last implementation in this comparison relies on the concurrent tree
update described in Section 5.1.2 and therefore, of course, shares both the
data set and the kd-tree. Please keep in mind, that due to the double-
buffering approach described in Section 5.1.2.4 two kd-trees are always kept
in the system memory (representing the current and the next time step).

Table 5.4 directly compares the two newly developed approaches for time-
dependent data rendering against the original implementation. From a the-
oretical point of view, concurrent building should result in about the same
frame rate as the original implementation. This is true for up to eight clients.
Using twelve render and four update nodes still improves the frame rate, but
not as much as expected. The small number of update clients become the
bottleneck here since the system was blocked for this measurement until the
tree was updated to allow a useful comparison. It still turns out to be the
fastest combination since, when using 16 render nodes, render and update
tasks have to compete on one and the same node, which can actually reduce

5.1 Time-dependent Volume Rendering 109

the frame rate again. Scheduling becomes an issue, even if the update with 16
nodes is quite fast for such small individual time-steps (see Section 5.1.2.2).
In essence, the performance scales linearly with the number of render clients
as long as render and update clients do not compete with each other on a
node. The 4D kd-tree is about 33 % slower compared to the static and the
concurrent implementation due to the additional temporal nodes, which was
already expected.

Table 5.5 shows the same performance measurements for the packet ray
implementation. Everything else stays the same as previous described. There-
fore it is no surprise that all interpretations for the single ray version are still
applicable.

The performance gain matches those from the static iso-surface renderer,
e.g. using SIMD increases the performance by a factor of approximately two
for 5122. A factor of four cannot be expected since the size of one individual
time step is rather small, and SIMD works best with large screen resolutions
and zooms. Therefore the speedup is significantly better when using a 10242

viewport resolution. Figure 5.6 on the following page shows individual time
steps for each of the tested data sets. These images were rendered with an
enhanced system allowing Phong shading [Phong75], including reflection and
translucence, and supporting several light sources and cut views.

5.1.5 Results
As already mentioned, a shared-memory system was used for time-dependent
volume rendering. The system consisted of eight dual-core Opteron 870 pro-
cessors with 64 GB of main memory running Linux. Similar to the perfor-
mance comparison between the concurrent tree update and 4D kd-tree in
Section 5.1.4, Table 5.6 compares the single and packed ray performance
between the static renderer and the concurrent tree update. Overall perfor-
mance measurements in frames per second (fps) reveal that performance loss
with respect to the original single-ray SIMD implementation is negligible as
a long as sufficient number of update clients is available.

Configurations included two render / two update nodes and twelve render
and four update nodes. This latter configuration delivers better performance
since it uses a suitable relation between render and update nodes among the
available processors. The rendering frame rates shows a similar behavior as
the original system (see Section 4.3.1.3), i.e. the system scales linear with
the number of processors. However, the speedup of packet traversal does
not show as much variation as the original implementation does. In fact,
the SIMD speedup is with a factor of approximately two rather stable. This
is probably due to the fact that all data sets are similar with respect to

110 Chapter 5: Dynamics and Other Applications

2 rnd/2 upd nodes 12 rnd/4 upd nodes
Data Set Framework Single SIMD Ratio Single SIMD Ratio
Drop static 6.54 13.25 2.0 38.99 77.84 2.0
5122 concurrent 6.30 12.29 2.0 30.34 49.79 1.6
5 Jets static 3.59 7.17 2.0 21.53 39.26 1.8
5122 concurrent 3.66 7.28 2.0 18.43 33.97 1.8
Vortex static 2.77 5.35 1.9 19.54 34.99 1.8
5122 concurrent 2.92 5.47 1.9 15.45 27.46 1.8
Drop static 1.65 3.80 2.3 9.82 21.70 2.2
10242 concurrent 1.57 3.59 2.3 8.94 17.23 1.9
5 Jets static 0.91 2.12 2.3 5.60 12.12 2.2
10242 concurrent 0.85 2.22 2.6 6.77 13.01 1.9
Vortex static 0.71 1.66 2.3 4.95 10.80 2.2
10242 concurrent 0.75 1.67 2.2 4.87 8.99 1.8

Table 5.6: Overall performance data (in fps) for the time-dependent renderer
on a shared-memory system. The first number represents the number of ren-
der nodes, while the latter is the number of update nodes. SIMD traversal
doubles the performance in all cases. Furthermore, large screen resolution
from the same viewpoint increases the size of rendered cells and therefore
generally results in a higher payoff.

their sizes. Comparing different screen resolutions further shows that packet
traversal works in favor of larger viewports, which was observed in the original
implementation. Note that the same framework can be used in conjunction
with semi-transparent rendering (see Section 4.5). Since the performance
mainly depends on the chosen threshold, and hence, on the quality desired,
no performance measurements are presented here.

5.1 Time-dependent Volume Rendering 111

Figure 5.6: (a) A series of different time steps visualizing the Falling Drop
in a polygonal environment. The shadows are cast from two light sources.
(b) The Five Jets with two individually colored iso-surfaces and reflection.
A freely orientable cutting plane reveals the interior during rendering. (c)
The Turbulent Vortex with two individually colored iso-surfaces. Reflection
and translucence are used to make the second surface (green) visible. (d) The
Turbulent Vortex data set rendered semi-transparent with a transfer function
to highlight regions of interest.

112 Chapter 5: Dynamics and Other Applications

5.2 Other Applications I: Terrain Rendering

So far the implicit kd-tree has been used for rendering volumetric grid data
only. By adding minimum and maximum values denoting the range of a
subvolume in each node, the kd-tree is able to find cells containing an implicit
surface based upon a user-defined value, the so-called iso-value. The kd-
tree was chosen to allow for an efficient SIMD implementation. This was
possible since the kd-tree is based on binary decisions. Massive volumetric
data sets are supported using treelets. Subsequent sections showed that this
acceleration structure can also be used for semi-transparent rendering by
storing the average density and variation within the nodes. Furthermore, the
kd-tree can be expanded to four dimensions for handling time varying data.

Figure 5.7: A panoramic view over a highly complex model of the Puget Sound
Area. The ground terrain consists of 134 million triangles. It is covered with
billions of plant instances, where each plant model is made up of several
thousand polygons.

However, the implicit kd-tree has only been used for volumetric data so
far. This section will discuss an alternative application for implicit kd-trees
in the area of terrain rendering. In the following, a multi-level instancing ap-
proach is described, where the implicit kd-tree plays an important role. The
final goal of this joint work with Andreas Dietrich [Dietrich06] was to render
extremely huge landscapes covered with trees and forests (see Figure 5.7),
where a user can freely choose between highly detailed close-up views or
flyover scenarios.

The ground terrain alone consisted of 134 million triangles, while the bil-
lions of plant instances consisted of over 90 trillion triangles. Such high detail
can hardly be achieved without instancing. Instancing basically means that
only a pointer to a detailed model is stored so that the model can be used
several times in the scene with negligible memory consumption. Whenever

5.2 Other Applications I: Terrain Rendering 113

a ray traverses a scene, therefore, it is simply redirected such that an inter-
section test with the detailed model can be applied. This technique is used
here on two levels.

5.2.1 Wang-Tiling Scheme
In the first level, a so-called rectilinear tile of 160 m2 is populated with
trees, flowers, grass, and ground vegetation. Note that even for such a small
tile, instancing is hardly avoidable. Several hundred trees, consisting of to
100,000 triangles each, can be found within the tile. Flowers or ground
vegetation are placed several thousand times onto the tile to produce some
sort of realistic landscape. Hence both types profit from instancing. Using
affine transformations like rotation and scaling, the user has the impression
that not every tree is identical to all the others. Of course, a number of
different trees, bushes, flowers, and other plants was used to improve realism.

3

2

4

1

1

346

5 4

8

5 8 7

5

8

2

1

8
1 4

6

7 8

5

1

Figure 5.8: This Wang tiling scheme is used to cover the ground terrain with
sub-scene plant tiles. Left: Example with two different horizontal and vertical
colors. Middle: An aperiodic tiling example. Right: Replication mechanism
for overlapping plants.

This rectilinear tile could now be distributed over a larger terrain by
simple replication (i.e. instantiation). However, this would lead to a clearly
visible pattern at the border of each tile. Instead, it is better to use a Wang
tiling scheme, illustrated in Figure 5.8. In this example, 18 tiles are generated
and each border is assigned a certain color. When distributing the tiles on the
ground terrain, all tiles with adjacent borders must have the same color to
achieve an aperiodic tiling scheme. In other words, all tiles must be designed
in such a way that plants may overlap whenever they have the same color
at an adjacent border. More details about aperiodic tiling can be found
in [Wang61, Cohen03, Deussen05]. The focus will now turn to the ground
terrain where the tiles are actually placed.

114 Chapter 5: Dynamics and Other Applications

5.2.2 Ground Terrain Traversal
This ground terrain is basically an elevation map where an elevation z is
assigned to each position in x and y. All plants on this elevation map must
be placed with respect to the actual elevation on the map. It seems plausible
to partition this elevation map into cells that correspond to the tile size so
that each cell can be associated with a previously described tile. This leads
to the issue of quickly finding the terrain cells intersected by a ray. These
cells can be seen as a 2D grid containing minimum and maximum z (i.e.
elevation) values for each cell bounding box.

z1

z3

z4

z2

5z

1 2

3
4

Figure 5.9: Top-level terrain kd-tree traversal. Dashed and dotted lines indi-
cate how min/max z-values of kd-tree leave nodes can be combined recursively
to form the min/max z-values for inner nodes.

Hence, a 2D grid traverser could be employed by performing some sort of
2D line drawing algorithm. While marching through the cells, the minimum
and maximum values attached to each cell would be compared against the z-
value of the current ray, evaluated at the entry and exit points. The cell can
be skipped if both the entry and the exit values lie above the cell’s maximum
value or below the cell minimum value. See Figure 5.9 for an illustration.

This problem appears quite similar to the iso-surface rendering problem.
Indeed, the kd-tree traversal described in Section 4.3.1 needs only a small
modification at a certain place, i.e. by exchanging the line:

ρiso ≥ node(ρmin) ∧ ρiso ≤ node(ρmax)

with

Dnearz ≥ node(ρmin) ∧Dnearz ≤ node(ρmax) ∨
Dfarz ≥ node(ρmin) ∧Dfarz ≤ node(ρmax).

5.2 Other Applications I: Terrain Rendering 115

The kd-tree traversal is now ready for terrain rendering. The building
routine is even easier, since the split occurs only in two dimensions, x and y.
By using a kd-tree, larger parts of the terrain can be hierarchically skipped.
The minimum and maximum values of the leaves contain the minimum and
maximum elevation values for z within that cell. As for the implicit kd-tree,
inner nodes contain ’merged’ values of its left and right child, i.e. minfather =
min{minchildl

, minchildr} and maxfather = max{maxchildl
, maxchildr}. Hence,

a child can be skipped if a ray lies above the top (or below the bottom)
bounding surface of an inner node. For example, in Figure 5.9, z3 to z5 are
above the maximum z-value of cells three and four, and therefore, these cells
do not have to be investigated further.

Similar to the implicit kd-tree, the split is always set to the middle of the
largest dimension. More elaborate algorithms, such as surface area heuris-
tics (SAH), could determine a better splitting plane position by using cost
prediction functions.

zmin

zmax zmax

zmax

zmin

zmin

zmin zmin zmin

zmax zmax

0 0

p

p

g

= + p

= + p

g

zmax
g

g

Figure 5.10: Approximate calculation of the min/max z-values of terrain
bounding boxes. Left: Bounding box of a plant sub-scene. Right: The ground
bounding box extended by the sub-scene bounding box.

If the cell is populated with plants, it is not possible to simply take the
minimum and maximum values of the elevation of the cell. The plants of the
sub-scene placed into the elevation cell must also be taken into account, as
illustrated in Figure 5.9. Suppose, all plants are aligned to the ground, i.e.
all plant roots have negative coordinates, then the minimum and maximum
z-values of the plant’s bounding box (zp

min and zp
max) are simply added to the

minimum and maximum values obtained from the elevation positions (zp
min

and zp
max), resulting in

zmin = zg
min + zp

min, zmax = zg
max + zp

max. (5.1)

116 Chapter 5: Dynamics and Other Applications

This estimation led to over-conservative cell bounding boxes, which can
be avoided by calculating zmin and zmax based on the actual plant z-position
in the respective cell. Note, however, that a correct calculation involves the
testing of potentially billions of plant instances. Also, handling negative
coordinates can be neglected if the camera will not move below the ground.
Once it is determined that the ray intersects a cell, plants and ground terrain
are then tested against the ray separately. It turns out that it is better with
respect to performance to first test against the ground scene to obtain useful
near and far values for the current ray, and subsequently, test all plants.
This avoids permanent switching between two traversal operations (terrain
and plants) once a ray enters the cell.

A two-dimensional lazy kd-tree is used for traversing the plants within
a cell. This is a top-level kd-tree, since each geometric object maintains
its own 3D SAH kd-tree. Only the bounding boxes are organized in this
second-level kd-tree, which allows instantiation at the same time. Care must
be taken, however, that the plants are shifted in the z-dimension to place
them properly onto the elevation map. Omitting horizontal splitting planes
in this tree completely reduces the traversal to merely extending the upper
bounding box zp

max value by zg
max−zg

min. When entering a leaf of this kd-tree,
the plant’s z-direction is adapted to the local height map coordinates.

Of course, the entire implementation for rendering realistic looking land-
scapes is far more complex. For example, it certainly does not suffice to use
an aperiodic tiling scheme since humans expect different plants on certain
grounds and heights. An adaptive plant density reduction scheme avoids
the most significant flaws, e.g. non-water plants in water, fewer plants where
snow is found and a decreasing plant population depending on the height.
For details refer to [Dietrich06].

5.2.3 Results

This highly detailed landscape suffers from rather poor rendering perfor-
mance. Using a shared-memory system of eight dual-core Opterons with 64
GB RAM and video resolution, still the system needs several seconds to ren-
der an image. Table 5.7 shows the impact of different orders of magnitude
of triangles on the resolution of the underlying terrain grid.2 This 2D grid
distributes the pre-computed Wang tiles over the landscape.

Each tile was designed so that the plants, fit best with a 5122 resolution.
Reducing the grid resolution therefore destroys the correct relation between

2The measurements in [Dietrich06] are already outdated, since resolved bugs and other
enhancements improved the rendering speed tremendously.

5.3 Other Applications II: Dynamic Rendering 117

landscapes and plants, i.e. trees, bushes, and flowers appear to large com-
pared to the ground. This is of course not realistic anymore but irrelevant
for the performance measurements. All frame rates were measured at video
resolution (640 × 480). Due to the logarithmic scaling, changing the grid
resolution has almost no impact on the rendering time.

Grid Resolution Triangles Frame time (sec)
64× 64 1.4 · 1012 4.39

128× 128 5.7 · 1012 4.44
256× 256 22.6 · 1012 4.90
512× 512 90.5 · 1012 5.18

Table 5.7: Rendering performance for different terrain grid resolutions and
scene complexities. The last line contains the correct terrain to plant relation.

The sub-scenes populating the scene consisted of approximately 82,000
plant instances (the exact number may differ from tile to tile since a Poisson-
Disc distribution was used). Each plant itself consisted of another 1,000 to
100,000 triangles, leading to 454,000 triangles per tile. Due to the extensive
use of instancing, the data geometry and kd-tree consume only about 1 GB
of main memory.

Nevertheless, this application shows, that the implicit kd-tree is a versa-
tile acceleration structure. Originally developed for iso-surface rendering on
regular grids, it can now be used for semi-transparent rendering, rendering
of time-dependent data, and was recently adapted to terrain rendering with
only minor modifications.

5.3 Other Applications II: Dynamic Rendering
The last section discussed a slight modification to the implicit kd-tree. The
range test found in the innermost loop was adapted so that it quickly deter-
mines the terrain cells pierced by a ray. In this section, the implicit kd-tree
is going to be modified to allow an efficient traversal of triangles in dynamic
scenes [Woop06].

Recall that the implicit kd-tree stores the minimum and maximum value,
i.e. the range of the iso-values of the associated sub-volume in each node.
However, this tree traverses triangles and not scalar values. The minimum
and maximum values are therefore replaced by a plane where the plane ori-
entation alternates between the x, y, and z dimension. Both plane positions
are determined by the triangles bounding box at the leaf level for a certain

118 Chapter 5: Dynamics and Other Applications

orientation. Higher tree levels not only alternate the plane orientation but
merge the triangles bounding boxes up to the scene bounding box stored in
root node of the kd-tree.

In an alternative interpretation, the bounded kd-tree is a hybrid spatial
index structure. It combines the advantages of bounding volume hierarchies
with those of the kd-trees in a single homogeneous data structure. Bounding
volume hierarchies efficiently support dynamic scenes, but are more costly
to traverse, especially on hardware. Ordinary kd-trees on the other hand
can be efficiently traversed even with packets of rays but lack support for
dynamic updates. Bounded kd-trees combines the strengths of both acceler-
ation structures into a single one and can be defined as follows [Woop06]:

A Bounded kd-tree is a binary tree, where each node recur-
sively subdivides the geometry of the scene into two disjoint sub-
sets represented by its two children. Each node stores the index
of a coordinate axis and bounds on the geometric extent of its
two children along this axis in the form of two intervals, one for
each child, often also referred to as a slab (see Figure 5.11). Each
leaf node stores a reference to a single primitive of the scene.

In other words, a scene with N primitives has exactly N leaf nodes and
N − 1 inner nodes. Hence, neither a special handling of primitive lists is
necessary nor is the size of the tree unpredictable. The bounding planes still
can be efficiently updated but the size of the data structure is reduced by
a factor of three compared to bounding volume hierarchies since only one
dimension is stored per kd-tree level.

Figure 5.11: Each inner node is split into two overlapping subsets (T0 and
T1 in this example). Note that only one splitting axis is stored per level. This
subdivision continuous until there is only one primitive per node.

From the construction follows furthermore that the traversal of bounded
kd-trees is strictly ordered along the ray, i.e. if an intersection occurs in front

5.3 Other Applications II: Dynamic Rendering 119

of the next node, the traversal computation can be terminated early. The
traversal order of the child nodes can even be precomputed for the axis and
depends solely on the sign of the ray direction.

5.3.1 Update and Traversal Process

Since the geometry is allowed to change over time, an efficient updating
mechanism is required. The update mechanism is in its core similar to the
concurrent implicit kd-tree update described in Section 5.1.2. Instead of
minimum and maximum values, this update process merges two different
bounds of the nodes from bottom-up through the tree and updates for each
bounded kd-tree node the extend of both children along the nodes’ axis. Care
has to be taken that the geometry in a sub-tree stays as close together as
possible since a mismatch may lead to significant overlap of the bounds of
child nodes and hence redundant traversal. As a result, only dynamic scenes
with at least some coherence profit from this acceleration structure while the
benefit for, e.g. for explosions, will be rather marginal.

Figure 5.12: During each traversal step, the ray intersects four planes which
are defined by the children bounds. This results in two (possibly overlapping)
intersection intervals I{0,1} along the ray. A child is only traversed iff its
intersection interval overlaps the traversal interval defined by I = [near, far].
Examination of the closer child allows for early ray termination.

120 Chapter 5: Dynamics and Other Applications

It should also be clear that traversal is very similar to standard kd-trees.
The ray is first tested for early ray termination by comparing the hit distance
with the near distance. Subsequently the ray is intersected with four bound-
ing planes defined by the node, giving the two intersection intervals I0,1 one
for each child node. An example traversal is illustrated in Figure 5.12. Two
comparisons first determine (for instance child 0) whether its intersection
Interval I0 overlaps the current traversal interval I. This child is recursively
traversed with the interval updated to the intersection of I and I0. In case
that the other child overlaps the traversal interval is pushed onto the stack
together with its Intersection of I and I0 as its traversal interval.

In contrast to the algorithm described in Section 5.1.2.1, a top-down
approach builds the first kd-tree including a Surface Area Heuristic to se-
lect an optimal partitioning of the triangle set. For details it is referred
to [Havran01, MacDonald89, Woop06].

5.3.2 Results

The entire rendering is realized in hardware using an FPGA chip for rapid
prototyping, .e.g. the Update and Traversal Units. Skinning and Geometry
Units are other important parts responsible for recomputing the position of
all vertices in a mesh for every frame and for sequentially intersecting the
rays of a packet with the triangle geometry respectively.

Scene triangles DRT SaarCOR RPU OpenRT
Scene6 0.8 k 45.0 44.6 20.8 12.9
Office 34.3 k 27.9 35.9 14.6 10.4
Gael 52.5 k 14.4 18.6 7.5 8.0

Table 5.8: A comparison with the original implementation shows a slightly
slower performance caused by the more expensive intersection test. However,
the dynamic approach is still 2 to 3 times faster compared to a 2.66 GHz
Pentium-IV. The last four columns represent frames per second.

The prototype platform at that time was a Xilinx Virtex-II 6000-4 FPGA
hosting an Alpha Data ADM-XRC-II PCI-board. The FPGA has access to
an 64-bit wide DDR memory interface that can deliver a peak bandwidth
of 1.0 GB/s at 66 MHz. More detailed on all implemented units and the
architecture setup can be found in [Woop06]. Some sample images from
rendered dynamic scenes are shown in Figure 5.13. All test scenes achieve
interactive performance on our FPGA prototype.

5.3 Other Applications II: Dynamic Rendering 121

Figure 5.13: Sample images of dynamic scenes rendered in real time with 10
to 56 fps at 512 × 384 screen resolution on both prototype FPGAs. Upper-
left: Hand (17k triangles, 33 fps), upper-right: Skeleton (16k triangles, 34
fps), lower-left: Helix (78k triangles, 10.5 fps), and lower-right: Pipe (0.5k
triangles, 56 fps).

Restricting to static scenes, it is possible to compare this new prototype
against the fixed-function SaarCOR ray tracing prototype, the programmable
RPU architecture and the OpenRT ray tracing system. Table 5.8 shows that
the rendering performance is slightly slower compared to the original fixed-
function SaarCOR architecture. This is caused by the lower intersection
performance (2.0 compared to 1.25 cycles per intersection). On the other
hand, this dynamic ray tracer is still 2 to 3 times faster than the used 2.66
GHz Pentium-IV.

Dynamic scenes must be further distinguished in scenes with available
skinning models or not. This explains the rather large variation for the
Hand, Skeleton, and Helix scene with respect to the relative cycles of the
Update Unit (See Table 5.9). All three are poser animations, thus the vertex
positions must be precomputed by Poser and uploaded to the FPGA via
DMA. Note that update is still performed in hardware. Other test scenes
use typical deformation, e.g. bending and morphing. The DynGael scene
contains the static gael environment with 25K triangles and several dynamic
objects with 44k triangles. The bounded kd-tree nodes on top of these six
object instances are recomputed by the driver for each frame.

122 Chapter 5: Dynamics and Other Applications

Table 5.9 reveals relative cycles and frame rate for these dynamic scenes.
All numbers refer to a 512× 386 resolution for each of the demo scenes. Ob-
viously, rendering is the most expensive operation since it occupies mor than
90 % of all clock cycles. It can further be inferred, that the Skinning Unit
behaves linear in the number of vertices times the number of connected matri-
ces. The random scenes shows the worst performance of all demo scenes since
the random triangle distribution cannot be matched to the initial bounded
kd-tree structure during the morphing sequence.

skinning relative cycles fps
Scene triangles vert. mat. skinning update render
Pipe 0.5k 0.26k 2 0.17% 0.21% 99.6% 32.6
Hand 17k 9.3k - - 6.8% 93.2% 20.9
Skeleton 16k 8.3k - - 7.0% 93.0% 25.5
Helix 78k 50.1k - - 13.7% 86.3% 12.3
Rot. Cube 18k 17.7k 2 4.5% 5.2% 90.2% 18.5
Morph 4.3k 2.1k 3 1.6% 1.8% 96.6% 32.3
DynGael 97k 184k - 1.6% 3.6% 94.8% 13.0
Random 4.3k 12.9k 3 0.5% 0.2% 99.3% 2.8

Table 5.9: This table presents scene details including the relative cycle usage
of each unit and the achieved frame rates. All measurements refer to a reso-
lution of 512 × 386. Interactive frame rates are in all but the random scene
possible.

Not demonstrated here, but in [Woop05] several FPGAs boards might be
employed with linear scaling capabilities as long as each FPGA has a local
scene description for traversal. Hence, dynamic scenes have to rely on a fast
synchronization scheme if this feature is added. This data structure is robust,
fast, and easy to use as long as the triangles are coherent. This should, except
for explosions, rarely be the case and therefore be widely used.

5.4 Conclusions
This chapter covered three extensions to the original iso-surface renderer
based on the implicit kd-tree. Time-dependent volume rendering was first
enabled by a concurrent tree update. It was shown that replacing the recur-
sive tree built by an iterative scheme, together with multi-threading enables
the use of a number of nodes within a shared-memory system to update the
kd-tree concurrently. Using a double buffering approach, one tree is traversed

5.4 Conclusions 123

for rendering while the other is updated. The performance can keep up with
the original static implementation as long as additional nodes for updating
are available. Although this approach itself limits rendering to rather small
data sets, it certainly has a practical usage.

Since CFD simulations are even on todays super computers time consum-
ing, it is often required to produce testing series with small resolutions. Such
series could be instantly checked with the rendering system extended with the
concurrent tree update presented here. Another idea is to use this approach
for streaming applications, since the acceleration structure is independent of
the number of time steps.

However, the data set size is limited this approach, which is why the 4D
kd-tree was introduced. Currently it both consumes too much memory and is
too slow due to the additional temporal encoding. Optimization approaches
was, however, are promising, i.e. by using a more sophisticated splitting
orientation scheme for the tree.

The next two sections showed that implicit kd-trees are not necessarily
restricted to the area of volume rendering. They can also be used in the
multi-level instancing approach, where the implicit kd-tree stores the min-
imum and maximum elevation heights instead of scalar iso-values. Culling
parts of the terrain, which are not intersected by the ray improves speed
and enables render times of less than five seconds for a video resolution im-
age using a shared-memory system equipped with eight dual-core Opterons.
It should be noted that the complete landscape consists of trillions of po-
tentially visible triangles, which can hardly be handled by modern graphic
cards. Additionally, advanced lighting effects can also be instantly used for
this terrain renderer.

The bounded kd-tree for dynamic rendering of polygonal scenes can fur-
thermore be seen as a variation of the implicit kd-tree as demonstrated in
section 5.3. Bounded kd-trees proved as a good trade-off between update
and rendering speed. This enable interactive frame rates even on an FPGA
prototype as long as no complete random movement happens.

Overall, the kd-tree has proven to be a versatile tool, if the underly-
ing data is organized in a 3D or 4D grid. Unfortunately, other types of
volumetric data do not obey this strict rule (see Section 2.2.3). Regard-
ing unstructured and semi-structured data, a new algorithm is needed that
provides interactive performance. This will be covered in the next chapter,
where the Plücker space is introduced allowing for an efficient cell-by-cell (i.e.
incremental) traversal of tetrahedral and hexahedral meshes.

124 Chapter 5: Dynamics and Other Applications

5.5 Contributions
The author’s contributions to the topics discussed in this chapter are:

1. The author completely developed and implemented the concurrent tree
update mechanism in [Marmitt06a], including a fast and iterative tree
update, a synchronization mechanism between render and update clients,
and its integration into the OpenRT rendering framework.

2. The author developed the basic concept of the 4D kd-tree and super-
vised its implementation in a master thesis [Brauchle06].

3. The author adapted the implicit kd-tree for the terrain rendering sys-
tem [Dietrich06], implemented the Wang-tiling scheme, and generated
the landscapes for performance measurements and the award-winning
image for the Computer Graphics Forum Cover competition.

4. The author implemented several important parts of the FPGA-based
polygonal rendering system [Woop06] including a compiler for the kd-
tree update mechanism and a fixed function shader. He was further-
more responsible for creating the test scenarios and measurements.

5.6 Future Work
Although the concurrent tree update was optimized in many ways, its main
drawback is its the restriction to small volume data sets. As already shown,
fetching the data for the leaf level is still a bottleneck and prevents its usage
for volumes larger than 5123. One interesting idea is to build the kd-tree not
for one but say for two or four time steps per update. Relaxing the constraint
of having a kd-tree ready for every time step would give the update routine
more time. The 4D kd-tree could for example used for this, assuming that it
is developed with efficient encoding in mind.

Additionally, the test system had 64 GB of main memory so that all time
steps were probably kept in main memory, even with enabled memory map-
ping. Linux memory mapping will, however, not suffice if the data set either
consists of thousands of time steps or the rendering system is equipped with
less memory. This could be true for upcoming low-cost systems with quad-
core CPUs, which may be equipped with only 2 or 4 GB of main memory.
Hence, a more efficient memory scheme handling seems unavoidable, as with
the MMU introduced for rendering massive volume data sets [Friedrich07].

The 4D kd-tree was the second method proposed in this chapter for ren-
dering time-dependent data sets. First results are unsatisfactory in terms

5.6 Future Work 125

of rendering speed and memory consumption. Hence, this structure re-
quires further investigations to become a competitive acceleration solution
for time-dependent volume rendering. Its greatest advantage is that there is
no time limit for constructing the tree, since the entire tree is built during
pre-processing. In this way, the two proposed methods must be treated as
complementary rather than competitive methods.

Finally, the use of the implicit kd-tree showed its versatility in the area
of terrain rendering, as seen in Section 5.2. A variation, the bounded kd-tree
can be used to efficiently render dynamic polygonal scenes (see Section 5.3).
Therefore this chapter closes with an image shown in Figure 5.14 winning
the Computer Graphics Journal Image Competition 2007. It was generated
with the system proposed in [Dietrich06].

Figure 5.14: Example close-up view on some on the trees. All leaves are
modeled as alpha-textured polygon meshes, which result in a high number of
transparency rays. The scene is fully ray traced each frame, without any kind
of precomputation or geometric simplification.

126 Chapter 5: Dynamics and Other Applications

Chapter 6

Irregular Data Sets

128 Chapter 6: Irregular Data Sets

If you have an apple and I have an apple and we
exchange these apples then you and I will still have
one apple. But if you have an idea and I have an
idea and we exchange these ideas, then each of us
will have two ideas.

George Bernard Shaw

Previous chapters extensively discussed the implicit kd-tree to accelerate
iso-surface rendering of structured volumes. From this starting point, both
the hierarchical structure and the traversal procedure were augmented to
support massive data sets, as well as semi-transparent and time-dependent
rendering of volumetric data. However, the restriction to regular grids was
never lifted even though scientific simulations often rely heavily on semi-
structured or even unstructured volumetric data.

These two types of volumetric organizations (see Section 2.2.3) are the
focus of this chapter. Their irregular organization makes the visualization
task far more demanding compared to data sets organized in regular grids. In
contrast to previous chapters, no hierarchical approach will be presented, but
rather a fast incremental traverser. Hierarchies are not as easy to implement
as for regular grids due to the irregular organization of the underlying data.

An incremental traversal on the other hand offers full flexibility with re-
spect to the visualization task (see Section 2.2.5), i.e. iso-surface rendering,
maximum-intensity projection, and semi-transparent rendering. The main
part of this chapter will therefore discuss a fast approach for traversing irreg-
ular volume data. Using the Plücker test for deciding, whether a ray passes
clockwise or counter clockwise with respect to an oriented edge connected
to values of the scalar field, a primitive-by-primitive traversal is easy to im-
plement. Implementation and performance measurements are explained for
tetrahedral primitives in Section 6.3.2. It should be noted, however, that
Plücker tests can be applied to any convex polyhedra, e.g. a prism, making
it a versatile and powerful method for incremental traversal of irregular data
sets. A hexahedral traversal is explained in Section 6.4.2.1.1

6.1 Related Work
Garrity [Garrity90] and Wilhelms et al. [Wilhelms90] were the first to con-
sider software ray casting for irregular grids. Garrity adapted a method
introduced by Siddon [Siddon85], who describe an approach for ray tracing
regular volumes using ray-plane intersections for determining all intersected

1Note that a hexahedron is not necessarily a convex polyhedra. In practice, however,
many curvilinear grids consist of hexahedra with planar faces.

6.1 Related Work 129

cells along a ray path. While traversing the volume, each cell is decomposed
into six faces, where each face is treated as a plane. Given an entry face, i.e.
the face where a ray enters a cell, the exit face can be determined by comput-
ing the ray-plane intersection for all five possible exit faces within a cell and
choosing the face with the minimum distance. Since each face is shared by
two cells, except for boundary cells, all subsequent cells along the ray can be
determined. In a regular grid, the planes within one dimension are parallel
and uniformly spaced which keeps the computational burden light.

Figure 6.1: A convex hexahedron can be approximated by five tetrahedra if
the renderer supports tetrahedral meshes only.

Garrity [Garrity90] propose in the same way an incremental traverser for
tetrahedral meshes. Again, given the entry face of an intersected tetrahedron,
the ray is intersected with all three possible exit faces where the intersection
with the smallest distance to the current intersection is the sought exit face.
Since tetrahedral faces are planar by definition, ray-plane intersection can be
used here also. Except for the boundary faces, all faces are shared by exactly
two tetrahedra. Additional overhead results from keeping track of adjacency
information; therefore an index is attached to each tetrahedral face for all
tetrahedra pointing to the tetrahedron sharing the face.

Sliding interfaces, i.e. faces that share only sub-areas of two adjacent
primitives, are not allowed but hardly needed for tetrahedral meshes any-
way. To render curvilinear grids consisting of hexahedral primitives, Garrity
suggested to approximate each (convex) hexahedron by five tetrahedra. A
sample decomposition for a convex hexahedra is illustrated in Figure 6.1.

The missing link to a complete volume renderer is how to find the initial
tetrahedron along a ray. A näıve approach would be to intersect the ray
with all faces of the volume and choose the minimum distance. A better

130 Chapter 6: Irregular Data Sets

way is to use an acceleration structure. Garrity decided to use a grid in
which all boundary faces were sorted. For the tetrahedral case, this is a set
of triangles, where a pointer to the corresponding tetrahedra is attached to
each boundary triangle. This two-step approach is typical and used often
in such techniques, including the approaches discussed here (see Section 6.3
and 6.4). Garrity measured the performance on a Stardent ST1000 with four
processors. Rendering a 5122 viewport required 80 to 150 seconds for data
sets consisting of up to 16,000 tetrahedra.

Wihelms [Wilhelms90] compares two basic principles when rendering curvi-
linear grids. The first approach renders the volume directly by decomposing
all six faces of a hexahedron into two triangles per face, resulting in a total
of twelve triangles per hexahedra. Assuming a convex hexahedra, at most
two triangles are intersected per hexahedron, determining the entry and exit
face. From that point, the inherent adjacency information can be used to
incrementally traverse the curvilinear data. To interpolate the scalar value
at the entry and exit faces, barycentric coordinates are used directly resulting
in discontinuities at the diagonal line introduced on each face.

The other methods summarized in [Wilhelms90] interpolate (i.e. resam-
ple) the curvilinear volume into a regular volume. This can be achieved
by either using tri-linear (see Section 2.2.4) or an inverse distance-weighted
interpolation. The latter approach uses a neighborhood of points for re-
sampling the grid values, where the influence of each point decreases with
increasing distance to the resampled point. Nearest neighbor interpolation,
the last method compared, is rather simplistic. The point in space closest to
the point to be resampled is chosen without interpolating the scalar value,
typically resulting in blocky rendered images. At that time converting the
curvilinear to a regular grid was the best choice since the rendering time of
a curvilinear grid of 800 seconds (1282 viewport) was an order of magnitude
higher on an SGI Iris 4D50GT compared to rendering a regular grid.

An interesting alternative was proposed by Frühauf [Frühauf94] for travers-
ing curvilinear grids directly. Instead of traversing rays through the curvi-
linear grid, the curvilinear grid is warped into a regular grid, simplifying the
incremental traversal tremendously. This mapping from physical space to
computational space2 is computed using a Jacobian matrix. Frühauf sug-
gested using central differences to approximate this Jacobian matrix, i.e.

2Computational space is an abstract representation of the logical organization of a
curvilinear (or even rectilinear) grid. It can be seen as a mapping from a warped (i.e.
curvilinear) grid to a regular grid with an orthographic coordinate system and unit length
cells for each dimension. This term originates from numerical simulations, since all com-
putations are performed in this space. All results are then mapped back to physical space,
i.e. the non-regular representation [Frühauf94].

6.1 Related Work 131

using adjacent vertices in computational and physical space. Each vertex or
vector can then be transformed from computational to physical space, and
vice versa using this Jacobian matrix.

An incremental grid traversal for regular grids is then employed to resam-
ple the scalar values. At each face intersection of a grid cell, the ray is bent
according to the precomputed vectors given by the four face vertices using
bilinear interpolation. To reduce computational costs, all ray bendings are
precomputed for each node and updated only when changing the viewpoint.
Hence, if the mapping parameters, e.g. transfer function, changes, the ray
paths can be directly used without any further computation. To find the
initial cell, all boundary faces are color-coded and projected onto the screen
using graphics hardware [Weghorst84]. Unfortunately, Frühauf reported no
performance results for his system.

Ma [Ma95] was one of the first to exploit the parallelism of ray tracing
for rendering tetrahedral data. The data set, as well as the rendering, is
distributed among all processing nodes. In a preprocessing step, the volume
is partitioned such that each processor handles only a subvolume. Boundary
faces are projected orthographically onto the screen to determine the first
cell along a ray. Incremental traversal is identical to [Garrity90].

Transfer functions lead to artifacts if interpolating only at the tetrahe-
dral faces. This is mainly caused by not respecting the Nyquist limit during
sampling and can be avoided by calculating sufficient samples in-between the
tetrahedra. Instead of an adaptive sampling scheme, Ma [Ma95] chose only
one additional point per tetrahedron and applied a trapezoidal filter between
each pair of sample points. All processors accumulate the interpolated values
along a ray independently. These contributions must be sorted with respect
to visibility order before the final image can be composed. Ma measured the
performance of a synthetical generated volume consisting of 150,000 tetrahe-
dra. This was rather large at that time and hence an Intel Paragon XP/S
with 128 processors still required 115 seconds to render a single image.

Parker et al. [Parker99b] presented an interactive iso-surface renderer for
regular grids (see Section 4.1), and used the same acceleration structure as for
unstructured tetrahedral meshes. To this end, the multi-level grid requires
only a slight modification at each leaf. Each leaf now stores a list of tetrahedra
spatially located in the grid cell associated with the leaf. Ray traversal then
starts as described for the rectilinear case. At leaf level, each of the tetrahedra
found in that cell is then sequentially tested against the ray for intersection.
All tetrahedra are treated as independent items, which avoids storing con-
nectivity information. Similar to the regular grid approach, the iso-surface
can again be implicitly computed using this time local barycentric coordi-
nates. This intersection computation is even easier, since the iso-surface is

132 Chapter 6: Irregular Data Sets

planar by definition (triangle or quadrangle) within each tetrahedron lead-
ing to a set of four linear equations to be solved. The system performance
was reported as 11 fps for a bioelectric field simulation of approximately one
million tetrahedra using 124 processors on an SGI Reality Monster.

The latest development in CPU ray tracing of tetrahedral grids uses
bounding volume hierarchies (BVH) for fast iso-surface rendering, and sup-
ports time-dependent data sets [Wald07]. The BVH is constructed over the
tetrahedral grid by merging together tetrahedra with similar ranges of scalar
values. As for the implicit kd-tree, each bounding volume in the hierarchy
is provided with minimum and maximum values representing the range of
scalar values. Further speedup is gained from packet traversal and frustum
culling. Mid-sized data sets (e.g. orbital, bucky-ball, Blunt-fin) consisting
of 150.000 to 220.000 triangles can be rendered at 40 fps on a desktop PC
using a 5122 screen resolution. However, this approach is not only restricted
to iso-surface rendering but to tetrahedral meshes also.

In summary, this section presented approaches either restricted to tetra-
hedral meshes [Garrity90, Ma95, Wald07] or curvilinear grids [Wilhelms90,
Frühauf94]. The latest approaches [Parker99b, Wald07] demonstrate the use
of an acceleration structure when restricted to certain visualization tasks.
The upcoming section will present a fast alternative to the ray-plane inter-
section, namely the computational space traversal, based on Plücker coordi-
nates [Marmitt05, Marmitt06c, Marmitt06b].

6.2 Theoretical Background

This section explains the theoretical background for Plücker coordinates and
bilinear patch intersections before describing both traversal algorithms in
detail.

6.2.1 Plücker Coordinates

Plücker coordinates provide a way of specifying directed lines in three-di-
mensional space [Erickson97]. Basically, these coordinates represent a ray as
an oriented line. Suppose a ray r(t) = o + dt is given, this results in the
following six-vector:

πr = {d : d× o} = {pr : qr}. (6.1)

Plücker coordinates are homogeneous. Multiplying all six coordinates
by any real number results in new Plücker coordinates for the same line.

6.2 Theoretical Background 133

Additionally, coordinates given by πr = (px, py, pz; qx, qy, qz) always satisfy
the following equation:

px ∗ qz − py ∗ qy + pz ∗ qx = 0. (6.2)

Now, two given oriented lines, r and s, in space can interact in three
different ways: r might intersect s, r might pass counter-clockwise about s,
or r might pass clockwise about s. This information is encoded in a permuted
inner product of Plücker coordinates, which is rather easy to compute. For
two lines r and s, represented by Plücker coordinates, this results in

πr � πs = pr · qs + qr · ps. (6.3)

A positive result means that r passes counter-clockwise about s, while in
the negative case, r passes clockwise about s. If this product is zero, the lines
intersect (see Figure 6.2). Care must be taken about the direction, i.e. the
Plücker product for a line r → s differ from s→ r. The sign of the permuted
inner product changes.

(a) (b) (c)
s

r

s s

rr

Figure 6.2: Three possible cases for the Plücker test: Looking toward the
direction of s, (a) ray r passes counter-clockwise about line s, (b) ray r
passes clockwise about line s, and (c) ray r intersects line s.

The geometric interpretation is therefore simple to follow. πr � πs is
nothing more but the signed volume of a tetrahedron spanned by the (end
points of) lines r and s. This is no surprise since the Equation 6.3 calculated
the determinant of the tetrahedron specified by the four points. Plücker
coordinates are simply a special case for three dimensions. For n dimensions
the discussed properties are referred to as Grassmann coordinates.

134 Chapter 6: Irregular Data Sets

6.2.2 Bilinear Patches

A bilinear patch is determined by a set of four points (p0, p1, p2, p3) in three-
dimensional space, which are not necessarily coplanar. If one wants to find
the intersection of a ray r(t) = o + dt with a bilinear patch, the following
equation must be solved:

o + dt = (1− u)(1− v)p0 + (1− u)vp1 (6.4)

+u(1− v)p2 + uvp3,

where (u, v) ∈ [0, 1]2, i.e. the contribution of each point is described as a
weighting of two parameters (u, v). Substituting the ray equation into Equa-
tion 6.4 leads to a quadratic equation, since two intersections are possible.
This unfortunately introduces a costly square root operation. The nearest
intersection is then to be returned. It is straightforward to solve the equation
for u and v. Numerical instabilities due to small denominators can be avoided
by choosing the largest absolute value of the denominators. A fast and robust
implementation was described by Ramsey et al. [Ramsey04], which was also
used here.

After given this theoretical background, two incremental traversal algo-
rithms for both tetrahedral meshes and hexahedral grids are described, where
the traversal decision is made using Plücker coordinates. Bilinear patches will
be used in the following section where hexahedral primitives are traversed,
since they provide a better parameterization for hexahedral faces. Both rely
on kd-tree for finding the initial (i.e. first) primitive along a ray.

6.3 Tetrahedral Meshes

Many scientific areas require an unstructured point cloud, e.g. for simulat-
ing physical processes. However, from the visualization perspective, it is
rather tedious to traverse point clouds; therefore, such data sets are often en-
hanced with a tetrahedral mesh providing an additional topology. This can
be achieved by a Delaunay-tetrahedralization [Choi02], which is also assumed
for the approach explained below.

In such a mesh, each tetrahedron consists of four vertices and six lines
connecting them. Each face of a tetrahedron is either shared between two
adjacent tetrahedra (i.e. inner faces), or they belong to the boundary of the
tetrahedral mesh (i.e. boundary faces). Sliding interfaces, i.e. tetrahedra that
share only a part of a face, are not allowed. As Platis and Theoharis [Platis03]

6.3 Tetrahedral Meshes 135

showed, Plücker coordinates can be used to quickly determine, which faces
are intersected by a ray piercing a tetrahedron.

In the following, this method is extended to allow for traversal of a tetra-
hedral mesh. The first step is to determine the initial (i.e. first) tetrahedron
along a ray path. This can be found using a well-known acceleration struc-
ture for ray tracing, i.e. kd-trees on the boundary faces of the tetrahedral
mesh. Once the first tetrahedron is known, all subsequent tetrahedra are
traversed using Plücker coordinates. In each cell either iso-surface rendering
or an emission-absorption model is applied.

6.3.1 Finding the Initial Tetrahedron

To find the initial tetrahedron along a ray, the first step is to extract all
boundary faces during a preprocessing step (see Figure 6.3). It is easy to see
that this is the set of all tetrahedral faces not shared with any other tetra-
hedra in the set. A kd-tree can then be used as an acceleration structure,
which has been proven as a fast and efficient technique when using ray trac-
ing [Havran01]. The implementation suggested by Wald et al. [Wald04a] was
used especially for this purpose. The data associated with the returned trian-
gle provides the tetrahedron as well as its entry face so that the incremental
Plücker traversal can be used thereafter.

Figure 6.3: Left: Boundary representation of the Blunt-fin data set. This is
identical for the tetrahedral and hexahedral cases, since all boundary faces are
decomposed into triangles. Right: Boundary representation of the Combus-
tion Chamber consisting of hexahedral primitives. Each hexahedral boundary
face is decomposed into two triangles.

136 Chapter 6: Irregular Data Sets

6.3.2 Mesh Traversal in Plücker Space

Here, the ray-tetrahedron intersection algorithm introduced by Platis and
Theoharis [Platis03] is extended for the traversal of tetrahedral meshes. They
specifically exploited the fact that each tetrahedron can be decomposed into
four triangles. To find the exiting face, each triangle must be checked for
intersection with the ray. This can be achieved by converting all edges and the
intersecting ray into Plücker coordinates. Using the properties described in
Section 6.2, a ray intersects the triangle if and only if all results have the same
sign. The only condition that must be checked is that the Plücker coordinates
are either all clockwise or all counter-clockwise. Figure 6.4 illustrates the
basic idea.

(b)(a)

Figure 6.4: Two different configurations with the same (positive) intersection
result: (a) the ray passes clockwise about all line segments of the triangle,
hence all signs are positive, and (b) the ray passes about counter-clockwise
all line segments, and therefore all signs are negative.

A straightforward approach would be to check all three possible exit faces
separately (see Figure 6.5). The resulting number of tests varies in this
case between three and nine, depending on which triangle returns a positive
intersection first. Empirical investigations show that the average number of
tests lead to approximately 4.9 tests per tetrahedron. In a tetrahedral mesh,
however, the Plücker test can be even more efficiently applied, since all three
results (i.e. v0 → v1, v1 → v2, and v2 → v0) from the shared face can be
re-used. It suffices then to test the edges v0 → v3 and v1 → v3 against the
incident ray. If the sign of these two tests differ, edge v2 → v3 must be
checked as well. An important premise is that all interior faces are shared by
exactly two tetrahedra.

Applying the above mentioned optimizations, the number of tests drop
to 2.67 on average while the performance increases to roughly 17 million
processed tetrahedra per second. Also, the raw performance of tetrahedra

6.3 Tetrahedral Meshes 137

(a)

v3

v2

v0 v1
(b)

v3

v2

v0 v1
(c)

v3

v2

v0 v1

xOR

Figure 6.5: (a) Näıve approach: All three exiting faces of the triangle are
tested independently although each line is shared by two faces (b) Optimized
approach: The solid line tests are given from the previous tetrahedron and the
dotted line need only be computed if the test with the dashed lines failed. The
direction of each line can be reversed by negating the sign of the Plücker test.
(c) Theoretical optimum: The first dashed line divides the possible exit space
into two halves, where one additional test (one of the dotted lines) suffices to
determine the exit face.

processed per second increases by 55% on average compared to the näıve ap-
proach (see Table 6.1). Another advantage is that only one vertex coordinate
and the corresponding scalar value have to be fetched per tetrahedron. This
keeps the memory bandwidth low and improves overall performance due to
better cache usage. Once the exit face is identified, connectivity informa-
tion helps to determine the neighboring tetrahedron and requires only 16
additional bytes per tetrahedron.3

näıve approach optimized approach
Dataset #π-tests Mt/s #π-tests Mt/s
Blunt-fin 4.714 9.346 2.669 17.106
Orbital 4.976 9.615 2.675 17.101
Bucky-ball 5.373 9.615 2.663 17.612

Table 6.1: Comparing the number of Plücker tests and the rendering rate
(millions tetrahedra per second) for the näıve and the optimized approaches.
The optimized approach reduces the number of tests, resulting in a perfor-
mance increase of 70% (3 GHz Athlon64, 2 GB memory).

The minimum number of Plücker tests per tetrahedron in a mesh is 2.33
in average, as Figure 6.5 (c) shows. The first test with the dashed line divides
the possible exit face into two halves, reducing the problem of finding the exit

3In contrast, Weiler et al. [Weiler03] reported that 160 bytes per tetrahedron were
necessary to use their approach.

138 Chapter 6: Irregular Data Sets

face from three to two faces. Another test with either of the dotted lines re-
veals the correct exiting face. For now, even two Plücker tests would suffice.
However, to compute barycentric coordinates to interpolate the scalar value
at the face, a third test must be applied in 1

3
of all cases on average, leading to

2.33 tests per tetrahedron [Marmitt06c]. Unfortunately this introduces addi-
tional branches, as pseudo-code listings of both approaches show, destroying
the advantage gained by using today’s highly pipelined processors, as shown
in Algorithm 9.

Algorithm 9 Determining the exit face within a tetrahedron: implemented
approach (left) versus theoretical optimum (right).

while New Tetrahedron do
if π(v0, v3) < 0 ∧ π(v1, v3) > 0
then
{Exit with Face 2}

else if π(v2, v3) > 0 then
{Exit with Face 0}

else
{Exit with Face 1}

end if
end while

while New Tetrahedron do
if π(v2, v3) < 0 then

if π(v0, v3) > 0 then
{Exit with Face 1}

else
{Exit with Face 2}

end if
else if π(v1, v3) < 0 then
{Exit with Face 0}

else
{Exit with Face 2}

end if
end while

Moving from one tetrahedron to the next, the algorithm needs to know
which of the four faces is shared with the tetrahedron just visited. To this
end, each face-id is set to the id of the vertex lying ”across” the face. In other
words, it is the id of the vertex which is not in the set of the three vertices
defining this face. For example, the face determined by the vertices v0, v1, v3

has the (local) face-id v2 = 2. Since the subsequent tetrahedron receive the
same face-ids the only missing vertex for processing this tetrahedron can be
fetched immediately by using the (already known) face-id of the shared face,
which works well with the new implementation.

Of course, the performance gain is less significant when taking the entire
algorithm into account. Finding the initial tetrahedron and computing the
shading also have a large impact. A detailed analysis shows that identifying
the exit face consumes about one third of the total computational cost. This
leads to an expected performance gain of at most 35%. It is actually a little
less, since the optimized method introduces additional overhead. This is due
to the fact that the system must know, which vertices of both tetrahedra are

6.3 Tetrahedral Meshes 139

shared. The sequence of the vertices is also important since the Plücker test
is direction sensitive. For the same reason the face-id of the exit face needs
to be checked using two additional conditionals.

The data parallel scheme requiring the calculation of up to three Plücker
tests per tetrahedron suggests the use of SIMD extensions, e.g. via the SSE
instruction set [Intel], which would allow the calculation of all Plücker coordi-
nates simultaneously. However, arranging the data appropriately for the SSE
registers results in significant overhead. Additionally, full parallelism cannot
be achieved for the four-component wide SSE instruction as there are only
three parallel Plücker tests computable. This results in very little gain using
SIMD computations and in this case, led roughly to the same performance.

6.3.3 Iso-Surface Cell Intersection

For all rendering tasks, the interpolated value at the entry and exit points
must be computed first. Plücker products provide the scaled barycentric
coordinates, which is a major advantage compared to plane-intersection ap-
proaches. Thus, each Plücker product need only be divided by the sum of all
three products associated with the tested face:

wi = πr � πei
and ui = wi/

3∑
j=0

wj. (6.5)

For the emission-absorption model, these values can either be used di-
rectly for accumulation, or an additional super-sampling can be applied since
evaluating at the tetrahedral faces only does not necessarily obey the Nyquist
limit. Since the reconstructed signal along the ray is described using linear
equations within a tetrahedron, this is not necessary for maximum intensity
projection. Recall that maximum intensity projection saves the highest in-
terpolated value found along the ray path, which is then used as the final
pixel color.

When using iso-surface rendering, the reconstructed signal along the ray
is searched for a specific value, i.e. the iso-value. This is usually achieved
by reconstructing the signal piecewise per tetrahedron. Once a tetrahedron
along the ray is detected, where the iso-value is located within the range
determined by the entry and exit points, a linear interpolation returns the
intersection with the iso-surface. As depicted in Figure 6.6, the four vertices
of a tetrahedron are treated as a linear equation, which always results in a
planar iso-surface (either a triangle or a quadrangle). Iso-surface rendering,
like maximum intensity projection, does not have to obey the Nyquist limit.

140 Chapter 6: Irregular Data Sets

f=1

f=3

f=2

f=4

Figure 6.6: A tetrahedron with associated function values at all four vertices.
Possible iso-surfaces (blue) are shown for f = 1.8 (triangle), f = 2.5 (quad),
and f = 3.7 (triangle). Values outside the range, e.g. f = 0, produce no
iso-surface.

Solving this system requires only simple mathematics. Given a tetrahe-
dron with vertices vi and corresponding scalar values si (i ∈ {0, 1, 2, 3}), the
linear function is calculated by solving the system of four equations:

si = axi + byi + czi + d (6.6)

with vi = (xi, yi, zi) for the unknowns a, b, c and d. The intersection is
then found by substituting the ray equation into (6.6) and setting si to the
chosen iso-value. Figure 6.7 illustrates the results for the described rendering
modes as well as the application of a transfer function to highlight regions of
interest.

The results in Table 6.2 show that the performance of the pure traversal is
about 10 million tetrahedra per second. Note that the entire implementation
relies on the CPU. No special hardware is needed for the implementation. Iso-
surface rendering requires, as pointed out earlier, additional computations,
i.e. calculating barycentric coordinates and applying a linear interpolation.
These two operations lead to a performance drop by 50%, but still achieves
over 5.3 million intersections per second. The number of processed tetrahe-
dra per second is even a little slower for semi-transparent rendering, which
is caused by tracking the emission and absorption values. More importantly
in both cases the number of processed tetrahedra per second is stable, which
suggests that other data sets of size will lead to similar rendering perfor-
mance.

6.3 Tetrahedral Meshes 141

Figure 6.7: Upper Left: The tetrahedral Blunt-fin data set rendered as an
iso-surface, Upper-right: maximum-intensity-projection, Lower-left: semi-
transparent rendering, and Lower-right: with transfer functions.

6.3.4 Gradient Computation

From the previous observations, it follows directly that the orientation of
the plane describing the iso-surface is independent of the iso-value; hence,
the plane normal Nt = (a b c)T is constant within the cell. Unfortunately,
this results in discontinuities at the tetrahedra surfaces, which decreases the
rendering quality significantly (see Figure 6.8). For better results, one can
calculate a normal Nv per vertex of the tetrahedron. This can be expressed
as the sum of all n tetrahedra ht connected to this vertex and weighted with
volume V (ht):

Nv(a b c)T =
n∑

t=0

Nt(a b c)T ∗ V (ht) (6.7)

These vertex normals can be pre-computed and attached to the ver-
tices of the data set. In a final step, 3D barycentric coordinates (i.e. for
a tetrahedron) of the intersection point within the tetrahedra are calculated

142 Chapter 6: Irregular Data Sets

Dataset # Tetrahedra T-Traversal iso-surface semi-transparent
Blunt-fin 224,874 11.175 5.394 4.189
Orbital 148,955 10.568 5.379 4.020
Bucky-ball 176,856 10.514 5.237 4.049

Table 6.2: Number of tetrahedra processed (in millions per second) for the
pure tetrahedra traversal, for iso-surface rendering, and for semi-transparent
rendering. Although the number of tetrahedra differ significantly, the number
of processed tetrahedra per second is stable.5

and weighted with the associated (pre-computed) vertex normal to obtain a
smooth iso-surface normal. Finally, the vector resulting from Equation 6.7
must also be normalized.

Figure 6.8: Overview (top) and close-up views (bottom) of both normal calcu-
lations. Left: Normals per tetrahedron result in severe artifacts while, Right:
weighted vertex normals leads to smooth color transitions.

6.3 Tetrahedral Meshes 143

6.3.5 Memory Requirements
Compared to regular grids, the data structure for tetrahedral meshes is rather
complex (see Figure 6.9). First, it is necessary to store not only the scalar
value, but the spatial position of each vertex, which results in additional
12 bytes per vertex when using 32-bit floating point precision. Since every
point is used for several tetrahedra, it is not wise to attach this information
directly to each tetrahedron. The usual alternative is to save four index
pointers, leading to 16 bytes of memory consumption per tetrahedron.

Points
(x, y, z)

(x, y, z)
(...)

32 Bit (= 4 Bytes)
Index to Points Face ID

2 Bits
Index to connecting Tetrahedra

For each Vertex For each Face

30 Bits

Tetrahedra
[Tetrahedron]
[Tetrahedron]

Figure 6.9: The data structure for the tetrahedral traversal algorithm consists
of two tables. Table Points contains all 3D vertices. Table Tetrahedra holds
entries for the Tetrahedron structure. Each Tetrahedron structure have four
indices for the vertices as well as a face-id and a connection-id.

Another 16 bytes are needed for neighbor connectivity information. If
the index pointer is restricted to 30 bits the remaining two bits can be used
for storing the face-id of the connecting tetrahedron in the case of an inner
face. This avoids checking the face-id with costly conditional statements
while traversing the tetrahedron.

Assuming 32-bit floating point scalars, the memory consumption is 16
bytes per vertex and 32 bytes per tetrahedron, which is four times less than
Weilers approach [Weiler03] requiring 160 bytes per tetrahedron. Further
space consumption depends on whether and where to store the gradient vec-
tor. As was shown in Section 6.3.4, the gradient vector can be either attached
to the tetrahedron or to the vertex.

6.3.6 Scalability Measurements
Scalability measurements are given using the proven shared-memory system
(eight dual-core 2 GHz Opteron 870s, 64 GB RAM). The following tables
present, if not stated otherwise, an average mean of four differently chosen
viewpoints. Unlike regular grids, the average number of tetrahedra along a

144 Chapter 6: Irregular Data Sets

ray path largely depends on the viewpoint. Therefore three viewpoints were
orthogonally chosen with respect to one of the three spatial dimensions along
as well as an additional typical perspective view.

Figure 6.10: Unstructured data sets: Left: Blunt-fin data set consisting
of 224,873 tetrahedra, Middle: Orbital with 148,955 tetrahedra, and Right:
Bucky-ball with 176,856 tetrahedra.

Three well-known unstructured data sets were evaluated from different
viewpoints using iso-surface rendering and semi-transparent rendering: the
Blunt-fin data set with 224,873 tetrahedra, the Orbital data with 148,955
tetrahedra, and the Buckminster fullerene (Bucky-ball) containing 176,856
tetrahedra. Rendered sample images of all three data sets can be seen in
Figure 6.10. A detailed description of the testing system, data sets, and
conditions is provided in Section 6.5.

Number of Cores (fps)
Data Set Screen Res 1 2 4 8 12 16
Blunt fin 5122 1.13 2.29 4.59 9.32 12.86 15.78

10242 0.29 2.32 1.17 2.34 3.47 4.61
Orbital 5122 0.86 1.72 3.46 6.91 10.34 13.86

10242 0.22 0.44 0.87 1.75 2.61 3.34
Bucky-ball 5122 0.77 1.55 3.10 6.15 9.24 12.04

10242 0.20 0.39 0.78 1.57 2.33 2.87

Table 6.3: Distributing the rays shot among several nodes allow for inter-
active rendering performance with 4 to 16 nodes since this approach has an
inherent linear scalability. All figures represent average fps from four differ-
ent viewpoints.

In general, it is not recommended to render iso-surfaces with an incre-
mental traversal, since almost in every case it is better to add some sort of
hierarchy to the volume topology to speedup cell processing (e.g. [Parker99b,

6.3 Tetrahedral Meshes 145

Wald07]). It is nevertheless interesting to see the performance gain compared
to semi-transparent rendering.

Table 6.3 shows the expected linear scaling while increasing the number
of rendering cores of the shared memory system. Due to a different imple-
mentation of the rendering system, each node keeps its own copy of the data
set and other data structures. As expected, the performance is not suitable
for interactive applications, especially for larger screen resolutions. To render
iso-surfaces with this implementation, at least two dual-core processors are
needed for a 5122 viewport, and all eight dual-core processors for a 10242

viewport.

It is especially important to test the performance for semi-transparent
rendering since this is the main application for an incremental traverser.
Visiting all primitives along a ray is slow, but allows for a more accurate
representation compared to the approach discussed in Section 4.5, since no
approximation for homogeneous regions is used.

Number of Cores (fps)
Data Set Screen Res 1 2 4 8 12 16
Blunt fin 5122 0.81 1.62 3.25 6.47 9.49 11.69

10242 0.20 0.40 0.81 1.64 2.44 3.27
Orbital 5122 0.59 1.21 2.45 4.92 7.32 9.68

10242 0.16 0.31 0.62 1.24 1.86 2.44
Bucky-ball 5122 0.72 1.48 2.98 5.95 8.90 11.94

10242 0.19 0.38 0.76 1.52 2.26 2.96

Table 6.4: Compared to iso-surface rendering, performance is again signifi-
cantly reduced. This is caused by the increased number of primitives along a
ray, which is on average 30% higher. All figures are average fps from different
viewpoints.

Table 6.4 shows the overall rendering performance in fps for semi-trans-
parent rendering. The average number of primitives processed increases by
approximately 30%, since the traversal does not stop as soon as a iso-surface
is found but when the absorption reaches 100 %. Note that the frame-rate
drops by approximately the same amount. This is due to the fact that the
number of Plücker tests, and hence the number of tetrahedra processed per
second, is stable for this algorithm.

146 Chapter 6: Irregular Data Sets

6.4 Hexahedral Grids
Hexahedral grids are better known as curvilinear data sets. All vertices are
represented in a 3D grid, but the distance between two neighboring points
varies. Ideally, a bijective function is supplied, which allows the conversion of
points from physical space to computational space, and vice versa. In reality,
this function is often not available. Therefore it is assumed that only scalar
values, together with the 3D grid vertices, are given.

6.4.1 Finding the Initial Hexahedron

Again, the initial hexahedron along a ray is found using the same kd-tree as
described in Section 6.3.1. All boundary faces of the data set are extracted in
a preprocessing step, whereas each (boundary) quadrilateral (i.e. hexahedral
face) is decomposed into two triangles (see Figure 6.3). This makes the kd-
tree traversal as efficient as for the tetrahedral traversal.

6.4.2 Grid Traversal

Two approaches are evaluated in the following subsections. First, the Plücker
test introduced in Section 6.3.2 can be easily extended to traverse hexahedral
grids, too. This is possible under the assumption that all faces of a hexahe-
dra are planar. However, it is still unclear whether the Plücker test can be
used to derive parametric coordinates for hexahedral faces. Hence, in this
approach each face needs to be decomposed into two triangles for calculating
the coordinates of interpolating the scalar values. This leads to paramet-
ric discontinuities along the additional diagonal, but allows the intersected
faces to be determined unambiguously. The second method extends this ap-
proach using bilinear patches. Here, no discontinuities occur but numerical
issues can sometimes lead to inconsistent decisions for rays at the edges (see
Section 6.2.2).

No extra memory for hexahedral adjacency is required since this is im-
plicitly encoded into the grid. Once the exit face has been determined, only
an index pointer is modified by incrementing or decrementing with respect to
the dimension. If this pointer exits the volume bounds, the traversal stops.

6.4.2.1 Plücker Space

Applying the same optimizations used for the tetrahedral traversal from Sec-
tion 6.3.2 lead to at most four tests to decide, which one of the five possible
faces is the exit face. This algorithm is designed for convex hexahedral faces

6.4 Hexahedral Grids 147

since concave faces do not occur in most simulations. Figure 6.11 illustrates
the algorithm. Suppose that the entry face is given by the vertices v0, v1, v2,
and v3. The opposite face is determined by v4, v5, v6, and v7.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

v0 v1

v3v2

v4

v6

A1

A2

A0

(b)(a)
v0

v3

v6

A1

A2

A0

v5

v7v7

v1

v2

v4 v5

Figure 6.11: a) To determine the exiting face, the hexahedron is subdivided
into three areas. (b) The next step is then to check which face is intersected
by applying up to two additional Plücker tests (A0: dotted edges, A1: solid
edges, and A2: dashed edges).

In the first step, the Plücker test is performed with the edges v4 → v5

and v6 → v7. This results in three areas, A0, A1, and A2. Note that each
area contains at most three faces of the hexahedron, i.e. there are only three
faces left to check. To accomplish this, each area is treated differently, i.e.
the edges v2 → v6 and v3 → v7 for A0, v4 → v6 and v5 → v7 for A1,
and v0 → v4 and v1 → v5 for A2 are tested first. The second test needs
only be performed if the first does not lead to a decision. This second step is
illustrated in Figure 6.11(b). Now simple sign comparisons are sufficient to
determine the correct exit face.

Fetching the data for the next cell and saving the appropriate data for re-
using requires more time compared to the tetrahedral mesh. Analysis shows
that the costs for these operations are seven times higher compared to the
previously discussed tetrahedral traversal, where only one vertex and scalar
value need to be fetched in each step.

Extending this algorithm to support concave faces is unfortunately diffi-
cult to achieve. Figure 6.12(left) shows one important problem arising with
this extension: line v4 → v5 cannot be used for a sign test, since for parts
of this segment (colored area), this test fails. One is faced with similar prob-

148 Chapter 6: Irregular Data Sets

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

v0 v1

v3v2

v6

(b)(a)
v0

v3

v6 v7

v1

v2

v5

v4

v5

v4

v7

Figure 6.12: (a) The concave face illustrated cannot be handled correctly with
the approach discussed previously, since it is impossible to test line v4 → v5

appropriately with respect to the colored area. (b) As a possible solution, the
convex hull of the concave face is partitioned into triangles, which can then
be handled separately. This includes two additional calculations of Plücker
coordinates and a test for concave polygons.

lems when trying to identify other areas uniquely with this test. A possible
solution is outlined in Figure 6.12(right). Constructing the convex hull of
this sample concave face yields a triangle, which can then be tested with
Plücker coordinates again. This leads to a total of six tests including the
additional diagonal. Although the overhead introduced probably lies below
20%, an additional test for detecting concave faces must be implemented as
well. Possible techniques are ray-crossing counts used by Hong et al. [Hong99]
or the winding number test (see [Haines94] for details on both methods).

6.4.2.2 Bilinear Patch Extension

As it will be shown in the next section, one runs into problems when trying
to derive parametric coordinates from the face using Plücker tests. This
can be avoided by considering bilinear patches as an alternative. Note that
it is even possible to traverse the curvilinear data set directly by applying
this test to each of the five possible exit faces, and to stop as soon as a
patch is hit, i.e. (u, v) ∈ [0, 1]2. Due to the high computational cost of
bilinear patch intersections, this is, however, undesirable. Furthermore, in
some configurations numerical imprecision can lead to inconsistent decisions
at edges. In particular, an edge of a bilinear patch depends on all four

6.4 Hexahedral Grids 149

face vertices. In contrast, Plücker coordinates allow for a unique decision
whether a ray passes clockwise or counter-clockwise about a line in space
since they depend solely on the two edge vertices. It is important to handle
this inconsistency so that a ray can traverse the correct cells within a volume.

Considering these facts, a combination of Plücker coordinates and bilinear
patches seems to be the optimal solution [Marmitt06c]. The first step is again
to compute Plücker coordinates of the lines v4 → v5, v6 → v7, and the ray,
which results in three areas, A0, A1, and A2 (see Figure 6.11). In contrast
to the previous method, in each area all three possible exit faces are checked
using the bilinear patch intersection. As a result, raw traversal performance
is 15% lower compared to the pure Plücker traversal. However, time is saved
in the overall performance since the surface parameters (u, v) are already
known.

Finding the exit face by using bilinear patches is rather simple. The
patch coordinates are computed for each possible exit face within a given
cell, stopping as soon as a patch with (u, v) ∈ [0, 1]2 is found. This means
that at most three faces need be checked per hexahedron. Assuming that the
face opposite of the entry face has a higher probability than the other four
faces due to its (apparent) larger area, the process runs faster when testing it
first. This is of course not in true all cases since it depends on the individual
shape of a hexahedron. On the other hand, giving preference to the opposite
face requires hardly more time and is therefore at least as fast as testing the
faces in an arbitrary order.

One drawback of this algorithm is that it introduces numerical inconsis-
tencies at the edges, since the two bilinear patches sharing this edge claim
that the ray is intersecting their face. Such inconsistencies are caused by nu-
merical issues (i.e. insufficient floating point accuracy), where an additional
Plücker test, equivalent to the second step described in Section 6.4.2.1, solve
this problem. These numerical issues depend on the spatial extension of the
cells and are therefore data-dependent. However, the additional Plücker tests
in both tested data sets and adds only a negligible performance impact.

6.4.3 Iso-Surface Cell Intersection
The previous section pointed out that Plücker coordinates generally cannot
be used to derive parametric coordinates from a hexahedral face. For this
reason, bilinear patches were added to the traversal. Figure 6.13 sketches,
why this not easy and therefore probably computationally expensive. Let a,
b, c, and d denote the result of the Plücker test for the intersecting ray with
each of the four edges. One might think that a surface parameterization is
still possible by scaling all four values. However, it still remains unclear how

150 Chapter 6: Irregular Data Sets

to scale the values properly. Simply dividing each tetrahedral volume by the
pyramidal volume obviously does not work. The base area of a pyramid is
quadrilateral and thus it is hard to derive meaningful scaling vectors, and
hence parametric coordinates for interpolation, with the Plücker test.

a

d

c

b

Ray r

Hexahedral face

Figure 6.13: This figure illustrates why the Plücker test fails to provide mean-
ingful parametric coordinates in the case of a hexahedral face. The scaling
factor for the Plücker tests a and b differs from the one for c and d, since
they were calculated using two different tetrahedral volumes.

Instead of searching for an analytical solution which is probably too costly
to compute, each face is simply split into two triangles so that barycentric
coordinates can again be computed. Depending on the previously computed
Plücker tests, one or two additional tests are required, which decreases perfor-
mance significantly [Marmitt06c]. Furthermore, decomposing a face into two
triangles leads to unwanted discontinuities if the values of the hexahedron
are poorly distributed (see Figure 6.14).

In addition to the traversal operation, interpolation of the scalar values
at these points is also performed for shading the volume. This introduces one
or two additional Plücker tests depending on what can be re-used from the
exit face decision. When using bilinear patches, the parametric coordinates
are already known, and hence only the interpolated scalar values at the entry
and exit faces must be computed. Discontinuities are completely avoided in
this way.

Applying iso-surface rendering is now fairly simple. If the user-defined
value is within the values interpolated at the entry and exit faces, an addi-
tional linear interpolation determines the intersection with the implicit sur-
face. Of course, it would be better to trilinearly interpolate in computational

6.4 Hexahedral Grids 151

Figure 6.14: Artifacts when rendering the Blunt-fin data set. Left: Decom-
posing produces artifacts, while Right: the bilinear patch delivers smooth
results.

space and derive a cubic function. This additional computations would, how-
ever, significantly decrease the performance. For semi-transparent rendering
or maximum intensity projection the interpolated values are used directly. It
is also possible to super-sample these values in the computational domain to
obtain smoother results.

Dataset H-Marching iso-surface semi-transparent
Plücker Hybrid Plücker Hybrid Plücker Hybrid

Blunt-fin 7.49 7.58 3.15 5.46 2.21 3.17
Combustion 8.44 8.83 2.83 4.49 2.12 3.45

Table 6.5: Number of hexahedra processed (in millions per second) for the
pure hexahedra traversal; for iso-surface rendering, and for semi-transparent
rendering. The hybrid approach always performs better than the pure Plücker
traversal. Far better performance results from the fact that bilinear patches
already include parameterization for face interpolation (3 GHz Athlon64, 2
GB memory).

The results in Table 6.5 show that the performance for the pure traversal
is still about eight million hexahedra per second. When traversing the hexa-
hedral mesh, both approaches show similar performance. In both cases, this
performance is halved when the data set is actually rendered. Pure Plücker
traversal needs an additional Plücker test for face interpolation, which is al-
ready included in the hybrid approach. Therefore the hybrid approach can
process far more hexahedra for both iso-surface and semi-transparent render-

152 Chapter 6: Irregular Data Sets

Figure 6.15: Various renderings of the Combustion Chamber data set.
Upper-left: rendered as iso-surface, upper-right: maximum intensity projec-
tion, lower-left: semi-transparent rendering, and lower-right: with transfer
functions.

ing. Further analysis shows that the number of processed hexahedra varies
about 20% among the three tested data sets. This is caused by bilinear patch
computation, which is much faster in the case of small denominators since
an approximation is used in this case without costly square root operations.

6.4.4 Gradient Computation

Since it was decided before to avoid the costly transformation into com-
putational space for finding the iso-surface, it is now also for the gradient
computation necessary to use a method other than trilinear interpolation.
Let us assume for a moment that pre-computed normal vectors are available
at each vertex. To compute the normal at the intersection of the ray and the
iso-surface, it is then possible to re-use the same parametric coordinates used
for interpolating the scalar values, except that now a vector is interpolated
at the entry and exit face. Another linear interpolation between the gradient
vectors at the entry and exit faces based on their distances to the iso-surface,
yields the normal.

For computing the vertex normals of a hexahedron, a method suggested
by Frühauf [Frühauf94] is applied [Marmitt06c]. Note that in [Frühauf94] this

6.4 Hexahedral Grids 153

method is used for ray traversal and not for any gradient computation. In
fact, in general the gradient cannot be transformed with the same matrix as
the object points. In this case, the following approximation works, however,
well enough.

The basic idea is to compute the normal as in a regular grid with unit
length, i.e. in computational space. Thereafter, the following relationship
can be used to convert between physical coordinates pi and computational
coordinates ξj, determined using the Jacobian matrix Jij:

xi = Jij · ξj and Jij =
δpi

δξj

(6.8)

This equation allows the conversion of vectors from one space to another.
The missing link is the still unknown Jacobian matrix for a grid node, which
is approximated by using central differences:

Jij =
1

2
·
(

pi(xn, yn, zn)− pi(xn−1, yn, zn)

ξj(xn, yn, zn)− ξj(xn+1, yn, zn)
+ (6.9)

pi(xn+1, yn, zn)− pi(xn, yn, zn)

ξj(xn−1, yn, zn)− ξj(xn, yn, zn)

)
.

Since the computational grid was defined with unit length, both denom-
inators are set to one, and hence only the neighboring vectors need to be
subtracted. Since central differences must be computed separately for the
x, y, and z component of each point p and ξ, the index differs for the com-
ponent. In the above equation, central differences for the x dimension are
computed, i.e. Jij = Jx. The vectors for Jy and Jz can be computed similarly.
A linear combination of these vectors, i.e. Jx, Jy, Jz, with the normal vector
in computational space N c, results in physical space Np:

Np = N c
x · Jx + N c

y · Jy + N c
z · Jz (6.10)

where N c
x, N c

y , and N c
z denote the x, y, and z components of the normal N c in

computational space, respectively. Since this calculation involves only simple
mathematical operations, this can either be performed on the fly, or stored
with the volume. For the small demonstration models, the second approach
was chosen since the added storage cost is negligible.

6.4.5 Memory Requirements
As pointed out in Section 2.2.3, in addition to that of the scalar value, the
explicit storage of each grid vertex requires another 12 bytes (using of 32-bit
floating point precision), resulting in a total of 16 bytes per grid node.

154 Chapter 6: Irregular Data Sets

Saving a normal vector per grid node adds another 12 bytes, which leads
to a total of 28 bytes per vertex grid node. Note that neither adjacency nor a
face-id information must be stored since this is already implicitly defined in
the grid. Hence, in terms of storage consumption it makes no sense to convert
a curvilinear grid into a tetrahedral mesh. However, in terms of performance,
using the tetrahedral grid traverser might lead to better performance. This
issue is addressed in the next section, which discusses the performance results
of both approaches in detail, including a comparison of both.

6.4.6 Scalability and Comparison Measurements
Again, all measurements were performed on a shared-memory system with
eight dual-core 2 GHz Opteron 870s, and 64 GB RAM. The arithmetic mean
from four different viewpoints (three directly derived from an orthogonal
viewing positions and one from a perspective position) is presented for the
reasons explained in Section 6.3.6. This is reasonable, since an incremental
traversal is investigated, where only the primitives traversed are exchanged.
This will lead to an interesting comparison in the final results section of the
tetrahedral and hexahedral traversal algorithms, as the Blunt-fin data set
was available as both tetrahedral mesh and hexahedral grid.

In this section, however, the focus is on scalability and a comparison
between the pure Plücker traversal and the hybrid traversal. As previously
mentioned the hybrid approach using Plücker and bilinear patches delivers
better rendering quality compared to the pure Plücker traversal, since the
latter approach produces artifacts caused by an additional decomposition
of each face. The hybrid algorithm is furthermore able to process more
hexahedra per seconds compared to the pure Plücker traversal. This should
produce higher frame rates, which is demonstrated in the following.

In this case, only two data sets were available for measurements. The
Blunt-fin data set is already known as tetrahedral mesh. Here, it is a hex-
ahedral grid represented by 40x32x32 vertices. The Combustion Chamber,
on the other hand consists of 57x33x25 grid points. Table 6.3 presents the
performance of both approaches for direct comparison. The linear scalability
with respect to the number of processor cores is again no surprise. More
interestingly, the hybrid approach delivers not only better quality, but also
better performance than the Plücker traversal when rendering iso-surfaces.

The same conclusions can be drawn for semi-transparent rendering pre-
sented in Table 6.7. Now, all values along the ray must be accumulated
instead of searching for a specific value. Due to the different termination cri-
teria, more cells along a ray have to be processed which was approximately
20 % for both tested data sets. This is a little less than to the 30% increase

6.4 Hexahedral Grids 155

Number of Cores (fps)
Data Scr 1 2 4 8 16
Set Res P H P H P H P H P H
Blunt 5122 0.97 1.20 1.91 2.45 3.82 4.94 7.57 9.94 12.24 16.24

10242 0.24 0.31 0.48 0.61 0.92 1.23 1.91 2.50 3.74 4.88
Comb 5122 1.24 1.34 2.47 2.80 4.97 5.67 9.86 11.38 18.85 20.72

10242 0.31 0.34 0.63 0.71 1.25 1.42 2.49 2.86 4.91 5.60

Table 6.6: A direct comparison between both approaches reveals that hybrid
traversal (H) delivers not only better rendering quality, but is also signifi-
cantly faster compared to the pure Plücker traversal (P). This is especially
true for small screen resolution (5122). The difference is not that great for
10242, which is probably due to better cache usage.

for the tetrahedral case for the Blunt-fin data set, but is probably caused by
the fact that the average number of hexahedra is smaller compared to the
average number of tetrahedra along a ray. Supposably, each hexahedra of the
Blunt-fin was decomposed into five tetrahedra to convert the data set (see
Figure 6.1).

One unusual finding is that semi-transparent rendering is not always
slower than iso-surface rendering. Since these cases are fairly restricted to the
Combustion Chamber, it is believed that early ray termination pays better
off, i.e. the resampled values accumulate rapidly to one. The traversal stops
in this case and the accumulated value is returned as pixel color, which leads
to higher frame rates.

Number of Cores (fps)
Data Scr 1 2 4 8 16
Set Res P H P H P H P H P H
Blunt 5122 0.78 1.01 1.53 2.01 3.08 4.09 6.12 8.10 11.29 14.82

10242 0.19 0.25 0.37 0.51 0.76 1.02 1.53 2.03 3.02 3.94
Comb 5122 1.60 1.77 3.14 3.62 6.29 7.26 12.61 14.45 23.95 24.83

10242 0.41 0.45 0.77 0.88 1.58 1.81 2.92 3.64 6.26 7.08

Table 6.7: The measured frames per second for semi-transparent rendering
confirms the conclusion that the hybrid approach (H) is a little faster com-
pared to the pure Plücker traversal (P). Interestingly, the performance for the
Combustion is in some cases even faster compared to iso-surface rendering.

156 Chapter 6: Irregular Data Sets

While the effect of early ray termination needs to be investigated further,
this algorithm again achieves a linear scalability. Two dual-core processors
allow for interactive frame rates at low resolution (i.e. 5122), while a high
resolution (i.e. 10242) demands four times as much. A more important result
is that the hybrid hexahedral traversal not only deliver better quality, but is
in every case faster than the pure Plücker traversal.

6.5 Results

The system used for performance measurements was equipped as mentioned
in Sections 6.3.6 and 6.4.6: a Linux box consisting of eight dual-core 2 GHz
Opteron 870s and 64 GByte of shared main memory. Since scalability was al-
ready tested in Sections 6.3.6 and 6.4.6 this section compares both approaches
against each other on a single dual-core Opteron only. The Blunt-fin data set
was especially useful since it was available as both tetrahedral mesh and hex-
ahedral grid. All other data sets were only available either as a tetrahedral
mesh (Bucky-ball, Orbital) or as a hexahedral grid (Combustion Chamber)
only. Table 6.8 shows the key features of each data set.

Data Set Type Primitives Dimensions
Blunt-fin tetrahedral 224,873 n/a
Orbital tetrahedral 148,955 n/a
Bucky-ball tetrahedral 176,856 n/a
Blunt-fin hexahedral 40,960 40x32x32
Combustion hexahedral 47,025 57x33x25

Table 6.8: Several unstructured and semi-structured data sets listed with re-
spect to their type, number of primitives, and dimensions. Grid dimensions
are not applicable for unstructured data sets.

Putting all parts of the previously discussed incremental traverser to-
gether allows for an overall performance comparison. It should be noted that
this is in no way comparable to the hierarchical approach for regular grids
(see Chapter 4). Since all primitives along the ray are visited, basically any
volume rendering technique (see Section 2.2.5) can be implemented without
any further extension or approximation. Additionally, unstructured grids are
far more complicated to handle than regular grids. Hence it is pointless to
compare grid traversal for unstructured and structured grids.

6.5 Results 157

It is also true that an incremental traverser exhibits different performance
behavior than a hierarchical traverser. To take the viewpoint dependent
frame rate into account, four different viewpoints were measured indepen-
dently. However, only the arithmetic mean was presented in the following
performance measurements, despite the fact that the frames per second varies
up to 30%.

Three viewpoints were directly derived from the orthogonal viewing axes,
i.e. one from the x, from the y, and from the z direction. The fourth view-
point was chosen from a typical perspective view. It is assumed that most
applications demand not a worst-case, but an average case analysis. Un-
derstanding these three issues helps to interpret the following table, which
summarizes the results of this chapter. Since the scalability of both traverser
was already proven in Sections 6.3.6 and 6.4.6, only the performance for one
dual-core Opteron 870 is presented here.

Number of Cores (fps)
Data Scr initial iso mip semi
Set Res 1 2 1 2 1 2 1 2
Blunt-fin 5122 14.23 27.57 0.57 1.13 1.02 2.04 0.81 1.62

10242 3.89 7.00 0.14 0.28 0.27 0.53 0.20 0.40
Bucky-ball 5122 10.45 19.70 0.42 0.84 0.48 0.98 0.72 1.48

10242 2.78 5.13 0.12 0.24 0.13 0.25 0.19 0.38
Orbital 5122 10.03 20.19 0.56 1.14 0.56 1.13 0.59 1.21

10242 2.77 5.26 0.27 0.48 0.14 0.28 0.16 0.31

Table 6.9: Measurements in fps for three common unstructured data sets
using one or two processor cores. Initial indicates fps for finding the first
primitive along the ray, i.e. by a kd-tree traversal. The columns that follow
represent the total rendering time for iso-surface rendering (iso), maximum-
intensity-projection (mip), and semi-transparent rendering (semi).

Table 6.9 shows the performance in frames per second achieved on one
and two cores of a dual-core processor for all important volume rendering
techniques. Initial indicates the kd-tree performance for finding the first
primitive along a ray only. This first step consumes 6 to 18% of the total
rendering time. The columns that follow represent iso-surface rendering (iso),
maximum-intensity-projection (mip), and semi-transparent rendering (semi)
including the finding of the initial primitive.

All iso-surfaces are rendered with enhanced normal calculation, leading to
about half the speed compared to the straightforward implementation. This
is caused by the computationally expensive calculation of the 3D barycentric

158 Chapter 6: Irregular Data Sets

coordinates for the intersection point with the tetrahedron. This is necessary
to assign meaningful weights for the pre-computed vertex normals. However,
the observed performance reduction is less significant for the higher screen
resolution. It is believed that in this case, more rays hit the same tetrahedra,
thus improving cache usage.

Maximum-intensity projection performs slightly worse in all cases com-
pared to semi-transparent rendering. This seems at first implausible since
the ray integration is replaced by a simple comparison. However, semi-
transparent rendering can obviously profit from early ray termination, i.e.
stopping traversal if the accumulated intensity reaches one.

Number of Cores (fps)
Data Scr initial iso mip semi
Set Res 1 2 1 2 1 2 1 2
Blunt-fin 5122 14.23 27.57 1.20 2.45 1.23 2.44 1.01 2.01

10242 3.89 7.00 0.31 0.61 0.31 0.61 0.26 0.51
Comb 5122 9.36 18.31 1.34 2.80 0.70 1.39 1.77 3.62

10242 2.60 4.70 0.34 0.71 0.17 0.33 0.45 0.88

Table 6.10: Measurements in fps for two common curvilinear data sets using
one or two processor cores. Initial indicates fps for finding the first element
along the ray. The columns that follow state the total rendering time for
iso-surface rendering (iso), maximum-intensity-projection (mip), and semi-
transparent rendering (semi).

Section 6.4.6 already showed that the proposed hybrid algorithm, i.e.
using Plücker coordinates and bilinear patches, produces not only better
quality but is also significantly faster. It is no surprise that this is also
true for maximum-intensity projection, where a performance gain of 10 -
50% compared to the pure Plücker traversal can be expected. Table 6.10
therefore shows only fps for the hybrid approach.

Of course, a variation between 10 - 50% in performance is rather high, but
actually true for other measurements too. The reason for this can be found
in the bilinear patch intersection test. As already noted, this is basically
solving a quadratic equation. The square root coefficient can, however, get
very small leading to numerical instabilities. If this occurs, a linear equation
is solved. Computing this linear solution is far less expensive since there is no
square root involved, leading to a faster traversal speed. This is true for large
parts of the Blunt-fin data set, i.e. from a certain viewpoint, the visible parts
of the Blunt-fin set mostly contains patches where numerical issues disable

6.6 Conclusion 159

the quadratic solution. The Plücker space traversal cannot of course profit
from this special case.

Another strange result seems to be the fact that the Blunt-fin is rendered
more slowly than the Combustion Chamber using semi-transparent rendering,
while this behavior is reversed for maximum intensity projection. It can be
concluded that on average the accumulation evaluates to one even before the
iso-surface is found. Maximum-intensity projection cannot profit from this
behavior. Additionally, the data set contains hardly quadrilaterals, making
the bilinear patch evaluation computationally expensive.

6.6 Conclusion

This chapter provided a thorough discussion of the implementation of an
incremental traversal algorithm for unstructured and semi-structured volume
data sets. The main idea relies on converting all edges of a primitive into so-
called Plücker coordinates, allowing for a quick decision whether a ray passes a
primitive edge clockwise or counterclockwise. The efficiency of this approach
results mainly from the property that many edges, except for the boundary
faces, are shared between two adjacent primitives and can therefore be re-
used when selecting the next primitive along a ray. Incremental traversal was
designed such that the number of Plücker tests is stable for each primitive,
so that the rendering speed relies only on the number of primitives traversed.

The tetrahedral traversal code requires 2.67 tests per tetrahedron, which
is for reasons explained, faster than the theoretical optimum of 2.33 tests.
This observation depends on the processor architecture and is therefore sub-
ject to change for other platforms or future generations of processors. The
storage cost, with an additional 16 bytes per tetrahedron, is quite tolerable,
since other approaches reported up to 160 bytes per tetrahedron [Weiler03].
Furthermore, it is worth noting that only one vertex needs to be fetched per
newly traversed tetrahedron, keeping memory bandwidth low. Additionally,
no Plücker coordinates are pre-computed. Although this would lead to some
speedup compared to converting the ray and all edges along the ray during
traversal, it requires additional storage of six floating-point values per edge.
Furthermore, it must be kept in mind that Plücker coordinates represent ori-
ented lines in space, and hence correct orientation must be computed before
usage. Implementing pre-computed Plücker coordinates, therefore, would
probably introduces additional conditional statements that destroy the ad-
vantages of modern pipelined processors.

The hexahedral traversal was first implemented using the same ideas as
for the tetrahedral case. Since hexahedra are more complex, the number

160 Chapter 6: Irregular Data Sets

of tests increase to four tests per hexahedron. This is only true for convex
tetrahedra. Handling concave hexahedral faces is possible, but more compli-
cated. The hybrid approach uses a combination of Plücker tests and bilinear
patch intersections, and needs therefore only two Plücker tests per hexahe-
dron, from which at most one could be used for the next hexahedron along
the ray. However, multiple conditional statements when reusing such results
is an issue, making the repeated computation a faster alternative.

Figure 6.16: Unstructured (Bucky-ball) and curvilinear (Combustion Cham-
ber) data sets not only can be rendered into one scene, their primitives can
also interact with each other.

The main advantage of an incremental traversal algorithm is, of course,
that all volume rendering techniques can be easily implemented. An addi-
tional advantage of Plücker space traversal is its usage for non-planar faces.
For example, ray-plane intersection can be used for tetrahedral meshes, but
not for curvilinear grids, since hexahedral faces generally do not consist of
planar faces. In fact, Plücker coordinates can be used for many other primi-
tives, like prisms, etc. The only restriction is that every connection between
two vertices can be represented as a straight line. On the other hand, the
methods introduced by [Garrity90] and [Frühauf94] are restricted to a certain
primitive, i.e. tetrahedra or hexahedra and therefore less versatile.

Another effect results from integrating this technique into a larger ray
tracing system. This makes it possible to combine different primitives easily

6.7 Contributions 161

into one scene. Basically, the arguments discussed in Section 4.3.5 hold here
as well. This works without any additional effort, i.e. once a shader is avail-
able for one primitive, it can be used by any primitive located in the scene.
A sample demonstration of this scene integration is shown in Figure 6.16.

This versatility, of course, comes with a price. Interactive frame rates re-
quires clustering of several processors, especially for larger screen resolutions.
In this case, 8 or even 16 cores are needed to provide interactivity. On the
other hand, quad-core processors are already available, and the CELL archi-
tecture even offers eight parallel units. In the near future it can therefore
be expected that even more cores will be packed on one processor allowing
for interactive frame rates on a consumer PC. Additional interesting areas of
investigation are discussed in the last section of this chapter.

6.7 Contributions
The author’s contributions to the topics discussed in this chapter are:

1. The author completely developed and implemented the incremental
tetrahedral traversal algorithm in [Marmitt06c] including iso-surface
rendering, maximum-intensity-projection, and semi-transparent ren-
dering. This also includes the integration into the OpenRT framework
and all presented performance measurements.

2. The author completely developed in implemented the incremental hex-
ahedral in [Marmitt06c] traversal algorithm including the hybrid ap-
proach based on bilinear patches. Like before, the hexahedral traversal
was integrated into the OpenRT framework and the performance was
measured by the author, too.

6.8 Future Work
This chapter initially discussed the concept of Plücker coordinates for travers-
ing tetrahedral meshes. Unstructured data sets are far more complicated to
handle, so that in contrast to Chapter 4 and 5, an incremental traverser was
implemented allowing for a variety of volume rendering techniques (see Sec-
tion 2.2.5) with little effort. Although it is best suited for semi-transparent
rendering, iso-surface rendering, and maximum-intensity projection are also
possible to implement.

However, the last two rendering techniques would work better in con-
junction with a hierarchical acceleration structure. Parker et al. [Parker99b]

162 Chapter 6: Irregular Data Sets

sorted the entire tetrahedral mesh into a grid for quick identification of the
cells containing the iso-surface. This combination is applicable here, too.
Multi-level grids have the advantage of low memory consumption for the hi-
erarchy, but lack flexibility. Two other major spatial acceleration structures,
the kd-tree and the bounding volume hierarchy [Wald07], may be better
choices today since today memory consumption is a minor issue. Wald et
al. [Wald07] report frame rates 30 to 40 times higher compared to the incre-
mental traverser here using a comparable viewport and data set. Octrees are
also used today [Knoll06], but seem better suited for regular grids.

Basically the same is true for maximum intensity projection. Again
Parker et al. [Parker99b] showed a rather simple method of acceleration by
implementing a priority queue, which skipped regions within the volume
where the maximum is below the maximum currently found.

Semi-transparent rendering, especially when using transfer functions, can
also be sped up further. The key observation here is that pre-integrated vol-
ume rendering [Engel01] can also be used for tetrahedral meshes due to their
linear behavior. This was already demonstrated by Weiler et al. [Weiler03]
in their graphics card volume renderer. Currently, this result is achieved by
simply resampling more points along the ray, which, without an adaptive
scheme, is time-consuming.

The same ideas can be applied to curvilinear data with respect to visu-
alization methods. Here also, iso-surface rendering and maximum-intensity
projection would certainly benefit from using a hierarchical acceleration struc-
ture. If linear approximation suffices, pre-integrated volume rendering is op-
tion here too. On the other hand, a significant speedup can be expected
when optimizing the fetching of new vertices while traversing the grid. A
nice feature of the tetrahedral traverser was that only one vertex per new
tetrahedron must be fetched. Curvilinear grids consist of hexahedra, which
requires four vertices be loaded. Analysis shows that this reduces the num-
ber of processed hexahedra per second by 25%. Bricking or the prefetching
mechanism might lead here to further improvements.

Both algorithms can be further accelerated by shooting rays in parallel,
i.e. using SIMD operations. This is, however, difficult for an incremental tra-
verser since the rays diverge quickly for perspective viewing. In combination
with an acceleration structure, however, the same principles could be used
as already discussed in Chapter 4 and recently demonstrated in [Wald07].
Further ideas for optimizing the traversal can be found in [Reshetov05], as
well as for the CELL architecture in [Benthin06]. Optimal cache usages are
an issue for all modern processors and therefore require special attention.

As already discussed in Section 4.8, a combination of a hierarchical and
incremental approach seems to be the optimal approach for a versatile volume

6.8 Future Work 163

rendering tool. This leads directly to the last chapter of this thesis, which
summarizes the major topics.

164 Chapter 6: Irregular Data Sets

Chapter 7

Final Summary

166 Chapter 7: Final Summary

Im Auslegen seit frisch und munter, und legt Ihr’s
nicht aus, so legt was unter!

Johann Wolfgang von Goethe

This thesis is a contribution towards a flexible and interactive volume ray
tracing system for scientific visualization. Chapter 2 showed that ray tracing
allows for an appropriate and straightforward implementation of iso-surface
rendering, maximum-intensity projection, and semi-transparent rendering.
This is true for all major volumetric types, i.e. regular and curvilinear grids,
or unstructured meshes. There was never a doubt concerning the quality of
the images rendered with ray tracing. Rendering performance, on the other
hand, was always considered as too slow. Since scientific visualization tasks
aim at exploring new features, interactive walk-through and adjustment of
visualization parameters, e.g. iso-value or control points of transfer functions
are a ’must-have’ feature of every renderer.

Hence, much research was devoted to alternative approaches more suitable
for GPU implementations. Most implementations aim at adding different
visualization methods to modern graphics adapters. Such graphic adapters
are usually designed to render only triangles efficiently and therefore does not
take interaction with a media into account. Cell projection, vertex projection
(splatting), and texture mapping allow rendering of volumetric data. Using
hardware for rendering, even if it was not specifically designed for it, is of
course quite fast but suffers from serious limitations. Cell projection requires
a visibility sorting for every viewpoint change; vertex projection lacks quality,
and texture mapping is restricted to regular grids and to the size of texture
memory. Therefore, several hardware architectures were developed which
resulted in an interactive high-quality volume rendering system. It soon
turned out that such custom hardware was outdated before it was ready
for market. Today, only the VolumePro board is sold by TerraRecon. Other
developments, like Cube, Vizard, and Virix, have faded away in the meantime.

Instead of trying to increase the quality of GPU-approaches, the idea here
was to make ray tracing fast enough for interactive purposes. This has been
pursued by numerous researchers, especially since graphic adapters are now
programmable and allow, e.g. the implementation of a volume ray caster using
a fragment shader. While this is a possible area of research, it is believed that
ray tracing itself should first be further developed in software before adapting
it to any kind of hardware. Software ray tracers have an additional advantage
of seamlessly integrating different primitives into one scene (see Figure 7.1),
which is still difficult to achieve even on modern graphic adapters.

To this end, two basic ideas were extensively developed throughout Chap-
ters 4 - 6. Chapter 4 introduced the concept of the implicit kd-tree for iso-

167

Figure 7.1: Left: A test scene showing mixed surfaces and interactive iso-
surface volume rendering with roughly 2 fps at 640×480 resolution on a dual
Intel Pentium-4 2.2 GHz system. Right: Seamless integration with surface
ray tracing. The volume data set, in this case the Bucky-ball, is augmented
and surrounded by reflective surfaces and light sources.

surface rendering of regular grids. With this hierarchical data structure, it is
possible to render even large volume data sets on a single PC. The key obser-
vation was the fact that only a small subset of all cells actually contains the
iso-value sought at any given time. Since iso-surface rendering is basically
a range searching problem, adapting the kd-tree to allow for searching cells
containing the iso-surface was the natural next step. The kd-tree nodes were
augmented with minimum and maximum values representing the range of
the associated sub-volume within the grid. This allows for an efficient culling
of subtrees but consumed too much memory in its näıve implementation. An
optimized version stored only the two range values assuming the tree was
balanced. Newly introduced implications, i.e. the power-of-two constraint,
are relaxed. This reduces memory consumption already from 16 times to
only twice as much memory as the original data set. Furthermore, simple
quantization schemes showed that additional memory can be saved without
reducing the performance too much.

In the second step, the actual intersection with the iso-surface within a lo-
cated cell must be computed to finally render an iso-surface. Until recently,
it was common to derive a cubic polynomial, which was then solved with
the Cardanos formula. Unfortunately this introduce trigonometric functions,
which are costly to compute. Therefore it was proposed to replace the Car-
danos formula with an iterative root finding scheme. This scheme divides
the cubic polynomials into three parts, depending on the computed extrema

168 Chapter 7: Final Summary

values. Since there is exactly zero or one ray intersection per segment, only
the first segment where the range lies between the iso-values, must be investi-
gated further. Iterative bi-section determines the exact intersect position by
using a small number of loops. This new approach is as fast as Neubauers it-
erative linear interpolation, but does not suffer from the problem of returning
no intersection if two or more intersections exist along a ray.

For the kd-tree, as well as the computation of the intersect position within
a cell, both a single ray and a packet ray variant were implemented. Using
SIMD compiler intrinsics, it is possible to traverse the kd-tree with four rays
in parallel. This led to a speedup factor between two and the theoretical
maximum of four. Only in scenarios where a small cell size is combined with
low resolution, is the speedup close but never below to single ray performance.

Although this system is able to handle even large data sets, loading and
traversal speed could be improved. An LOD scheme together with the treelet
concept and an improved MMU, not only reduces the time for loading the
data set to one third, but also doubles the traversing speed and saves memory.

The next obvious step was to extend this framework to allow for semi-
transparent rendering. To make use of the hierarchy, the kd-tree nodes are
further augmented with an arithmetic mean, which is used to skip homoge-
neous regions. Visual results, as well as statistical error metrics, are promis-
ing, which makes using this acceleration structure for semi-transparent ren-
dering worthwhile. However, at the current state, neither transfer functions
nor high-quality is efficiently supported. Suggestions addressing these two
issues were made in Section 4.8.

Chapter 5 continued extending the implicit kd-tree. This time the tem-
poral domain was addressed, allowing the rendering of time-dependent reg-
ular grids. Two approaches were discussed to extend the existing rendering
framework. In the first approach, the kd-tree was updated completely for
every time step concurrently. This was achieved by carefully optimizing the
existing tree building procedure in two ways. Most importantly, the recur-
sive build was replaced by an iterative update, which worked in conjunction
with bricking and other minor optimizations at a rate three times faster
than a straightforward recursive implementation. Secondly, this allowed the
kd-tree to be updated in parallel by employing several processors. Finally
the original client-server-based implementation needed to be adapted for the
shared-memory system used here. This was necessary since not every render
client may build its own tree in each step, but rather may divide the system
into render and update nodes carefully chosen with respect to the size of the
updated volume.

Although this approach allows for streaming applications, i.e. it is inde-
pendent in the number of time steps and does not need an extensive prepro-

169

cessing step, the dimensional size of a single time step is certainly a limiting
factor. It was therefore proposed to update the tree not for a single, but
only after some (not necessarily fixed) number of time steps, thus relaxing
the burden of real-time update. For this purpose, the 4D kd-tree could be
used as a second method for rendering time-dependent volumetric data.

This tree is simply an implicit kd-tree augmented with a temporal di-
mension. Its key feature is that there is no separation between temporal
and spatial domains, which is the usual way for handling time-dependent
data [Shen99, Younesy05]. In its current implementation, this structure is
unfortunately not competitive since it consumes as much memory as the con-
catenation of all individual trees and runs 30% slower. The latter issue was
addressed by a more clever ordering of the splitting dimension, but the mem-
ory consumption is still too high. In all, it seems to be a promising structure
for future research, especially since the 4D kd-tree also works for larger data
sets. Both approaches work and are complementary. Small data sets can
be rendered with a concurrent kd-tree update without worrying about the
number of time steps. Larger data sets require pre-processing and should
therefore use the 4D kd-tree.

The next sections of Chapter 5 showed the versatility of the implicit
kd-tree for other applications. As a first example, a multi-level instancing
approach for rendering large terrains was briefly described, along with how
the implicit kd-tree identified the surface patches pierced by a ray. This
required only minor modifications since the elevation values could be treated
as range (iso-) values. The entire system allows the rendering of large terrains
populated with thousands of plants, consisting of up to 90 trillion triangles
at near-interactive frame-rates.

The second example showed a concept very similar to the concurrent
tree update supporting dynamic rendering of polygonal data. A bounded
kd-tree combines the strengths of ordinary kd-trees and bounding volume
hierarchies into a single acceleration structure. Both splitting plane positions
and orientations attached to each node can be interpreted as a certain range
which is very similar to the ranges of iso-values stored in an implicit kd-tree.
If the temporal distribution of scene triangles is not random, interactive
frame-rates are certainly possible.

While Chapters 4 and 5 described and extended the implicit kd-tree as a
hierarchical data structure, step by step to finally allow semi-transparent
rendering, Chapter 6 started with a semi-transparent renderer. Here, a
new versatile incremental traverser was introduced that offers direct and
high-quality support of different rendering tasks, i.e. iso-surface rendering,
maximum-intensity projection, and semi-transparent rendering. It is also
adaptable to any underlying convex primitive as long as its edges can be rep-

170 Chapter 7: Final Summary

resented as straight lines. This was successfully demonstrated for tetrahedra
and hexahedra primitives.

Plücker coordinates are the key for fast traversal of both tetrahedral
meshes and hexahedral grids. Traversing tetrahedral meshes is possible with
just 2.67 Plücker tests and one vertex fetch per tetrahedron. When using
small screen resolutions, a dual-core processor suffices for interactive frame
rates. Larger resolutions and larger data sets require either a shared-memory
system or a cluster of PCs.

Handling hexahedra primitives complicates the traversal process, since
the number of faces increases and each face consists of four vertices instead
of three. Assuming convex hexahedra, four Plücker tests suffice to determine
the exit face, plus one for calculating an interpolation point. It turns out that
this leads to rendering artifacts caused by the newly introduced diagonal on
a face. Therefore a hybrid approach was suggested that is not only faster
compared to a pure Plücker traversal, but avoids artifacts by using bilinear
patches for the parameterization of the intersected hexahedral faces. Two
Plücker tests first sort out two of the five possible exit faces. The three
remaining faces are treated as bilinear patches, where parametric coordinates
ranging between zero and one indicate the patch intersection with a ray,
and hence the exit face. This must be applied at most three times, which
is important due to the computationally expensive square root operation
inherent in the bilinear patch computation.

Furthermore, the Blunt-fin model showed that it makes no sense to con-
vert a curvilinear grid into an unstructured mesh by decomposing each hex-
ahedra into five tetrahedra. Both storage cost and rendering time increase
compared to the hexahedral traverser. However, incremental traversal algo-
rithms are perfectly suited for semi-transparent rendering but not as useful
for iso-surface rendering and maximum-intensity projection in terms of per-
formance. For such tasks it is better to add a spatial hierarchy.

In other words, Chapters 4, 5, and Chapter 6 approached the interactive
volume ray tracing problem from two different perspectives. Chapter 4 and 5
introduced a hierarchical structure, which was later extended allowing semi-
transparent rendering. It turns out that this can only be efficiently solved
by switching to a grid traverser if a non-homogeneous region is encountered
during the hierarchical traversal. Chapter 6 described, on the other hand
an incremental traverser that must be extended with a spatial hierarchy for
efficient iso-surface rendering. Augmenting each approach with its missing
part would therefore lead to a flexible and interactive volume ray tracing
system specified in the introductory chapter.

Zusammenfassung

Diese Arbeit leistet einen Beitrag zu einem flexiblen und interaktiven Volumen-
Ray-Tracing-Systems für die wissenschaftliche Visualisierung. Kapitel 2 zeig-
te, dass Ray-Tracing eine geeignete und einfache Implementierung von Isoflä-
chen-Darstellung, Maximalintensitätsprojektion und semi-transparenter Dar-
stellung ermöglicht. Dies trifft auf die wichtigsten volumetrischen Topologien
zu, i.e. reguläre und gekrümmte Gitter oder unstrukturierte Netze.

Obwohl es grundsätzlich keinen Zweifel bezüglich der Darstellungsqualität
gibt, wurde die Bildgenerierung immer als zu langsam angesehen. Da die wis-
senschaftliche Visualisierung darauf abzielt, neue Eigenschaften zu entdecken
sowie interaktives Positionieren der Kamera und die Änderung anderer Pa-
rameter, beispielsweise Stützpunkte von Transferfunktionen zu ermöglichen,
sind solche Funktionalitäten für bildgebende Verfahren ein Muss.

Deshalb wurde einiges an Forschung in alternative Ansätze eingebracht,
welche GPU-orientert sind. Die meisten Implementierungen zielen darauf
ab, verschiedene Visualisierungsmethoden modernen Grafikkarten hinzu zu-
fügen. Solche Grafikkarten sind typischerweise entworfen worden, um Drei-
ecke effizient darzustellen, was wiederum gerade das Gegenteil eines semi-
transparenten Mediums ist. Zellprojektion, Knotenprojektion und Textu-
reabbildungen erlauben das Darstellen volumetrischer Daten. Die Benutzung
von Hardware zur Darstellung, selbst wenn diese nicht dazu entworfen wor-
den ist, ist natürlich relativ schnell, aber bringt auch nicht unerhebliche Be-
schränkungen mit sich. Zellprojektion benötigt eine Sichtbarkeitssortierung,
sobald sich der Beobachtungspunkt ändert; Knotenprojektion erreicht nicht
die erwünschte Qualität und Textureabbildungen sind nur für reguläre Git-
ter anwendbar und zudem limitiert durch die Größe des Texturespeichers.
Deshalb wurden verschiedene Hardware-Architekturen entwickelt, die zu ei-
nem interaktiven System mit hoher Ausgabequalität führten. Es stellte sich
jedoch bald heraus, das solche spezial-gefertigte Hardware veraltet war, be-
vor die Marktreife erreicht wurde. Heute wird nur noch die VolumePro-Karte
von TerraRecon verkauft. Andere Entwicklungen, wie Cube, Vizard und Virix
sind in der Zwischenzeit eingestellt worden.

172 Chapter 7: Final Summary

Statt die Qualität von GPU-Ansätzen zu verbessern, wurde hier die Idee
verfolgt, Ray-Tracing für interaktive Zwecke ausreichend zu beschleunigen.
Dies wurde schon von einigen Forschern betrieben, insbesondere seit Grafik-
karten nun programmierbar sind und so beispielsweise die Implementierung
eines Volumen-Ray-Casters im Fragment-Shader erlauben. Obgleich dies ein
möglicher Forschungsansatz ist, wurde es hier vorgezogen, Ray-Tracing selbst
zuerst in Software weiter zu entwickeln, bevor man es auf irgendeine Hard-
ware adaptiert. Software-Ray-Tracer haben den zusätzlichen Vorteil, dass
verschiedene Primitive in der Szene nahtlos integriert werden können (siehe
Bild 7.2), was selbst auf modernen Grafikkarten immer noch schwierig zu
realisieren ist.

Abbildung 7.2: Links: Eine Test-Szene zeigt verschiedene Oberflächen zusam-
men mit einer Isofläche interaktiv mit ungefähr zwei Bildern pro Sekunde bei
einer Auflösung von 640 × 480 auf einem Dual Intel Pentium-4 2.2 GHz-
System. Rechts: Nahtlose Integration mit Oberflächen-Ray-Tracing. Der Vo-
lumendatensatz, in diesem Fall ein Buckminster Fulleren, ist von spiegelnden
Oberflächen und Lichtquellen umgeben.

Um dies zu erreichen, wurden zwei grundlegende Ideen in den Kapi-
teln 4 - 6 detailliert entwickelt. Kapitel 4 führte das Konzept des impliziten
Kd-Baums für Isoflächen-Darstellung von regulären Gittern ein. Mit dieser
hierarchischen Datenstruktur ist es möglich, auch große Datensätze auf ei-
nem einzelnen Rechner darzustellen. Schlüssel dazu war die Erkenntnis, dass
nur ein kleiner Teil aller Zellen tatsächlich den gesuchten Isowert enthält. Da
Isoflächen-Darstellung im Prinzip ein Problem der Bereichssuche ist, war die
Anpassung eines Kd-Baumes zur Suche nach Zellen mit der Isofläche der logi-
sche nächste Schritt. Die Kd-Baum-Knoten wurden mit Minimum- und Maxi-
mumwerten erweitert, die den Bereich des korrespondierenden Teil-Volumens

173

innerhalb des Gitters speichern. Dies erlaubt das effiziente Überspringen von
Teilbäumen, aber verbraucht bei einer simplen Implementierung zu viel Spei-
cher. Eine optimierte Version speichert nur noch die Bereichswerte unter
der Annahme, dass der Baum ausgeglichen ist. Die dadurch hinzu kommen-
den Einschränkungen, wie die Beschränkung auf Zweier-Potenzen, wurden
anschließend wieder aufgelöst. Der zusätzliche Speicherverbrauch wurde da-
durch bereits von der 16fachen hin zur doppelten Menge im Verhältnis zum
Originaldatensatz reduziert. Einfache Quantisierungsschemata zeigten, dass
der Speicherverbrauch weiter verringert werden kann, ohne dass die System-
leistung darunter signifikant leidet.

In einem zweiten Schritt muss der eigentliche Schnittpunkt mit der Isoflä-
che innerhalb einer gefundenen Zelle berechnet werden, um die Isofläche letzt-
endlich darzustellen. Bis vor Kurzem war es üblich, ein kubisches Polynom
abzuleiten, welches dann mit den Cardano-Formeln gelöst wurde. Unglück-
licherweise beinhalten diese trigonometrische Funktionen, deren Berechnung
teuer ist. Deshalb wurde vorgeschlagen, die Cardano-Formeln durch iteratives
Finden der Nullstellen zu ersetzen. Nach diesem Schema wird das kubische
Polynom in drei Abschnitte eingeteilt, die von den Extremwerten abhängen.
Da es in jedem Abschnitt nur genau eine oder gar keinen Strahlschnitt gibt,
muss nur der erste Abschnitt genauer untersucht werden, in dem der Isowert
im jeweiligen Bereich liegt. Eine iterative Halbierung bestimmt den exak-
ten Schnittpunkt dann mit einer geringen Anzahl von Schleifendurchläufen.
Diese neue Methode ist ebenso so schnell wie Neubauer’s iterative lineare
Interpolation, hat aber nicht das Problem, keinen Schnittpunkt zu liefern,
wenn zwei oder mehr Schnittpunkte entlang des Strahls existieren.

Sowohl für den Kd-Baum, also auch für die Berechnung des Schnittpunk-
tes innerhalb einer Zelle wurden eine Einzel- sowie eine Paketstrahlvarian-
te implementiert. Durch die Benutzung von übersetzerabhängigen SIMD-
Befehlen ist es möglich, den Kd-Baum mit vier Strahlen gleichzeitig zu durch-
laufen. Dies führte zu einem Beschleunigungsfaktor zwischen zwei und dem
theoretischen Maximum von vier. In den Szenarien, in denen eine Kombina-
tion von kleinen Zellgrösen und geringer Auflösung vorlag, ist die Beschleuni-
gung zwar nur noch marginal größer, aber nie langsamer als die Einzelstrahl-
version.

Obwohl dieses System bereits in der Lage ist, auch große Datensätze zu
handhaben, konnten das Laden und das Durchlaufen des Kd-Baumes wei-
ter verbessert werden. Eine Hierarchie unterschiedlicher Detailierungsstufen
zusammen mit dem Treelet-Konzept sowie einer verbesserten Speicherverwal-
tung reduzierte nicht nur die Zeit zum Laden des Datensatzes auf ein Drittel,
sondern verdoppelte auch die Durchlaufgeschwindigkeit des Kd-Baumes und
verbraucht weniger Speicher.

174 Chapter 7: Final Summary

Der nächste offensichtliche Schritt war nun, dieses System um eine semi-
transparente Darstellung zu ergänzen. Um die Hierarchie des Kd-Baums aus-
zunutzen, wurden die Knoten um ein arithmetisches Mittel erweitert, dass da-
zu benutzt werden kann, homogene Regionen zu überspringen. Die visuellen
Ergebnisse sowie statistische Fehlerabschätzungen sind vielversprechend, wo-
durch die Benutzung dieser Beschleunigungsstruktur lohnenswert erscheint.
Trotzdem, im Moment werden weder Transferfunktionen noch hochwertige
Visualisierungen effizient unterstützt. Lösungsvorschläge zu diesen beiden
Punkten wurden im Abschnitt 4.8 gemacht.

Im Kapitel 5 wurde der Ausbau des impliziten Kd-Baums fortgesetzt.
Diesmal wurde die zeitliche Dimension adressiert. Zwei Ansätze wurden be-
sprochen, um das existierende System nachzurüsten. Im ersten Ansatz wird
der Kd-Baum für jeden Zeitschritt nebenläufig komplett aktualisiert. Dies
wurde erreicht, indem die existierende Prozedur für den Baumbau in zweifa-
cher Hinsicht erweitert wurde. Am Wichtigsten war die Ersetzung des rekur-
siven Bauens durch ein iteratives Aktualisieren, dass zusammen mit Bricking
und anderen kleineren Verbesserung dreimal schneller ist als eine einfache re-
kursive Implementierung. Zweitens, erlaubte dies gleichzeitig das simultane
Aktualisieren eines Baumes durch Benutzung mehrerer Prozessoren. Schließ-
lich musste auch die Client-Server-basierte Implementierung für das hier be-
nutzte Shared-Memory-System angepasst werden. Dies war notwendig, da
nicht jeder Darstellungs-Client seinen eigenen Baum für jeden Schritt bauen
soll, sondern das System vielmehr in Darstellungs- und Aktualisierungskno-
ten unterteilt wurde, deren Verhältnis wiederum sorgfältig hinsichtlich der
Größe des Volumens gewählt wurde.

Obwohl dieser Ansatz Streaming-Anwendungen erlaubt, er also unabhän-
gig von der Anzahl der Zeitschritte ist und keine umfangreiche Vorverarbei-
tung benötigt, ist die Größe eines einzelnen Zeitschritts zweifellos ein limitie-
render Faktor. Deshalb wurde vorgeschlagen, den Baum nicht für einen einzi-
gen, sondern für einige (nicht unbedingt festgelegte) Anzahl von Zeitschritten
zu bauen, was wiederum die Belastung durch die Echtzeit-Aktualisierung ver-
ringern würde. Für dieses Zweck könnte der 4D Kd-Baum als zweite Methode
benutzt werden, um zeitabhängige Volumendaten darzustellen.

Dieser Baum ist einfach ein impliziter Kd-Baum; erweitert um eine zeit-
liche Dimension. Sein Hauptmerkmal ist die Tatsache, dass keine Trennung
zwischen zeitlichen und örtlichen Dimensionen statt findet, was sonst für die
Handhabung zeitabhängiger Daten üblich ist [Shen99, Younesy05]. In ihrer
gegenwärtigen Implementierung ist diese Struktur leider nicht konkurrenz-
fähig, da sie gleich viel Speicher gegenüber einer Verknüpfung aller einzel-
nen Bäume verbraucht und sie auch 30 % langsamer ist. Letzteres wurde
durch eine intelligentere Anordnung der Schnittebenen beseitigt, aber der

175

Speicherbrauch bleibt dennoch hoch. Insgesamt erscheint sie jedoch als eine
vielversprechende Struktur für weitere Forschungen, insbesondere da der 4D
Kd-Baum auch bei großen Datensätzen arbeitet. Beide Ansätze funktionieren
und ergänzen sich somit. Kleinere Datensätze können mit der nebenläufigen
Kd-Baum-Aktualisierung dargestellt werden, ohne sich über die Anzahl der
Zeitschritte Gedanken machen zu müssen. Größere Datensätze erfordern ei-
ne Vorverarbeitung und sollten deshalb zur Volumenvisualisierung den 4D
Kd-Baum benutzen.

Die folgenden Abschnitte von Kapitel 5 zeigte die Vielseitigkeit des im-
pliziten Kd-Baumes in anderen Anwendungen. Als erstes Beispiel wurde ein
mehrstufiger Instanziierungsansatz zur Darstellung weiträumiger Landschaf-
ten kurz beschrieben, indem der implizite Kd-Baum die vom Strahl getroffene
Geländekacheln identifiziert. Die Modifizierungen dazu waren nur gering, da
die Höhenwerte einfach als Bereichs- (Iso-)werte interpretiert wurden. Das
Gesamtsystem erlaubt die Darstellung weiträumiger Landschaften, in denen
sich zigtausend Pflanzen befinden und aus bis zu 90 Milliarden Dreiecken
bestehen, nahezu interaktiv.

Das zweite Beispiel zeigte ein Konzept, dass der nebenläufigen Kd-Baum-
Aktualisierung ähnlich ist und die dynamische Darstellung polygonaler Sze-
nen ermöglicht. Der einbegrenzte Kd-Baum kombiniert die Stärken von ge-
wöhnlichen Kd-Bäumen und Boxhierarchien in einer einzigen Beschleuni-
gungsstruktur. Beide Schnittebenenpositionen und -orientierungen werden
an jeden Knoten angehängt und können als ein bestimmter Bereich inter-
pretiert werden, der den Bereichsisowerten des impliziten Kd-Baums sehr
ähnlich ist. Solange die zeitliche Verteilung der Szenendreiecke nicht zufällig
ist, sind interaktive Bildwiederholraten fast immer möglich.

Während die Kapitel 4 und 5 den impliziten Kd-Baum als eine hierarchi-
sche Datenstruktur beschrieben und Schritt für Schritt zur semi-transparenten
Darstellung erweiterten, begann Kapitel 6 mit einer semi-transparenten Dar-
stellung. Hier wurde ein neuer, vielseitiger inkrementieller Traversierer einge-
führt, der eine direkte und hochqualitative Darstellung verschiedener Darstel-
lungsmöglichkeiten anbietet, insbesondere Isoflächen-Darstellung, Maximal-
intensitätsprojektion und semi-transparente Darstellung. Er ist auch anpass-
bar hinsichtlich des darunter liegenden konvexen Primitives, solange dessen
Kanten durch Strecken represäsentiert werden können. Dies wurde erfolgreich
für Tetraeder und Hexaeder gezeigt.

Plücker-Koordinaten sind der Schlüssel sowohl für eine schnelle Traversie-
rung von Tetraedernetzen als auch Hexaedergittern. Die Traversierung von
Tetraedernetzen benötigt gerade einmal 2.67 Plücker-Tests und das Nach-
laden eines Eckpunktes pro Tetraeder. Bei kleineren Bildauflösungen reicht
bereits ein Doppelkernprozessor für interaktive Bildwiederholraten. Größe-

176 Chapter 7: Final Summary

re Bildauflösungen und größere Datensätze benötigen dagegen ein Shared-
Memory-System oder einen Cluster von PCs.

Die Handhabung von Hexaedern komplizierte den Traversierungsprozess,
da sich die Anzahl der Flächen erhöht und jede Fläche nun durch vier statt
drei Eckpunkten begrenzt wird. Nimmt man an, dass alle Hexaeder konvex
sind, reichen vier Plücker Tests um die Austrittsfläche zu bestimmen; sowie
ein weiterer Test, um den Interpolationspunkt zu berechnen. Es zeigt sich,
dass dies zu Darstellungartefakten aufgrund der neu hinzu gefügten Diagona-
le führt. Deshalb wurde ein hybrides Verfahren vorgeschlagen, dass nicht nur
schneller gegenüber einer reinen Plücker-Traversierung ist, sondern auch Ar-
tefakte aufgrund der Benutzung Bilinearer Flächen für die Parametrisierung
der geschnittenen Hexaederflächen vermeidet. Zwei Plücker Tests sortieren
dazu zunächst zwei der fünf möglichen Austrittsflächen aus. Die drei verblei-
benden Flächen werden als Bilineare Flächen betrachtet, wobei parametrische
Koordinaten zwischen null und eins einen Schnitt des Strahls mit der Fläche
und damit auch der Austrittsfläche anzeigen. Dies muss höchstens dreimal
durchgeführt werden, was aufgrund der immanenten rechenintensiven Qua-
dratwurzel bei der Berechnung Bilinearer Flächen entscheidend ist.

Zudem zeigte das Blunt-fin-Modell, dass es keinen Sinn macht, ein ge-
krümmtes Gitter in ein unstrukturiertes Netz durch Zerlegung jedes Hexa-
eders in fünf Tetraeder umzuwandeln. Sowohl der Speicherbedarf als auch die
Darstellungszeit erhöht sich gegenüber dem Hexaeder-Traversierer. Trotzdem
sind inkrementielle Traversierer zwar sehr gut zur semi-transparenten Dar-
stellung geeignet, aber in Bezug auf Leistung nicht unbedingt sinnvoll für
Isoflächen-Darstellung und Maximalintensitätsprojektion. Für solche Anwen-
dungen ist es sinnvoller, eine räumliche Hierarchie hinzu zufügen.

Mit anderen Worten, die Kapitel 4, 5 und 6 näherten sich dem Problem
der interaktiven Darstellung volumetrischer Daten von zwei verschiedenen
Perspektiven. Kapitel 4 und 5 führten eine hierarchische Datenstruktur ein,
die später auch die semi-transparente Darstellung erlaubte. Es zeigte sich,
dass dies nur effizient gelöst werden kann, wenn auftretende inhomogene Re-
gionen während des hierarchischen Durchlaufens des Kd-Baum durch einen
Gittertraversierer abgearbeitet werden. Kapitel 6 beschrieb andererseits einen
inkrementiellen Traversierer, der um eine räumliche Hierarchie ergänzt wer-
den müsste, um eine effiziente Isoflächen-Darstellung zu ermöglichen. Die
Erweiterung beider Ansätze mit dem jeweils fehlenden Teil würde deshalb zu
einem flexiblen und interaktiven Volumen-Ray-Tracing-System führen, dass
im Einführungkapitel beschrieben wurde.

Bibliography

[Amanatides87] John Amanatides and Andrew Woo. A Fast Voxel Traversal
Algorithm for Ray Tracing. In EG ’87: Proceedings of
Eurographics, pages 3–10, 1987.

[Appel68] Arthur Appel. Some Techniques for Shading Machine Ren-
derings of Solids. In Proceedings of the AFIPS Spring Joint
Computing Conference, pages 37–49, 1968.

[Avila92] Ricardo S. Avila, Lisa M. Sobierajski, and Arie E. Kauf-
man. Towards a Comprehensive Volume Visualization Sys-
tem. In VIS ’92: Proceedings of the 3th IEEE Visualiza-
tion, pages 13–20, 1992.

[Banks03] David C. Banks and Stephen Linton. Counting Cases in
Marching Cubes: Toward a Generic Algorithm for Pro-
ducing Substitopes. In VIS ’03: Proceedings of the 14th
IEEE Visualization, pages 51–58, 2003.

[Bennett01] Janine Bennett, Richard Cook, Nelson Max, Deborah
May, and Peter Williams. Parallelizing a High Accuracy
Hardware-assisted Volume Renderer for Meshes with Ar-
bitrary Polyhedra. In PVG ’01: Proceedings of the IEEE
2001 Symposium on Parallel and large-data Visualization
and Graphics, pages 101–106, 2001.

[Benthin04] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Inter-
active Ray Tracing of Free-Form Surfaces. In Afrigraph ’04:
Proceedings of the 2th International Conference on Com-
puter Graphics, Virtual Reality and Interaction in Africa,
pages 99–106, 2004.

[Benthin06] Carsten Benthin, Ingo Wald, Michael Scherbaum, and
Heiko Friedrich. Ray Tracing on the CELL Processor. In

178 BIBLIOGRAPHY

RT ’06: Proceedings of the 2006 IEEE Symposium on In-
teractive Ray Tracing, pages 15–23, 2006.

[Bhaniramka73] Praveen Bhaniramka, Rephael Wenger, and Roger Crawfis.
Isosurfacing in higher Dimensions. In VIS ’00: Proceedings
of the 11th IEEE Visualization, page 2000, 267–273.

[Brauchle06] Roman Brauchle. Realtime Visualization of Time-Varying
Volume Data. Master’s thesis, Computer Graphics Group,
Saarland University, 2006.

[Bunyk97] Paul Bunyk, Arie E. Kaufman, and Cláudio T.
Silva. Simple, Fast, and Robust Ray Casting of Irregu-
lar Grids. In Dagstuhl ’97: Scientific Visualization, pages
30–36, 1997.

[Cabral94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated
Volume Rendering and Tomographic Reconstruction using
Texture Mapping Hardware. In VVS ’94: Proceedings of
the 1994 IEEE Symposium on Volume Visualization, pages
91–98, 1994.

[Chen04] Wei Chen, Liu Ren, Matthias Zwicker, and Hanspeter Pfis-
ter. Hardware-Accelerated Adaptive EWA Volume Splat-
ting. In VIS ’04: Proceedings of the 15th IEEE Visualiza-
tion, pages 67–74, 2004.

[Choi02] Sunghee Choi. The Delaunay Tetrahedralization from De-
launay Trangulated Surfaces. In SCG ’02: Proceedings
of the 8th Symposium on Computational Geometry, pages
145–150, 20002.

[Cignoni96] Paolo Cignoni, Claudio Montani, Enrico Puppo, and
Roberto Scopigno. Optimal Isosurface Extraction from Ir-
regular Volume Data. In VVS ’96: Proceedings of the 1996
Symposium on Volume Visualization, pages 31–38, 1996.

[Cohen94] Daniel Cohen and Zvi Sheffner. Proximity clouds - an ac-
celration technique for 3D grid traversal. The Visual Com-
puter, pages 27–38, 1994.

[Cohen03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and
Oliver Deussen. Wang Tiles for Image and Texture Gen-
eration. ACM Transactions on Graphics, Vol. 22, No. 3,
pages 287–294, 2003.

BIBLIOGRAPHY 179

[Danskin92] John Danskin and Pat Hanrahan. Fast Algorithms for Vol-
ume Ray Tracing. In VVS ’92: Proceedings of the 1992
Symposium on Volume Visualization, pages 91–98, 1992.

[de Berg00] Mark de Berg, Marc van Kreveld, Mark Overmars, and
Otfried Schwarzkopf. Computational Geometry. Algorithms
and Applications. Springer, 2000.

[DeMarle03] David E. DeMarle, Stive Parker, Mark Hartner, Chris-
tiaan Gribble, and Charles Hansen. Distributed Interac-
tive Ray Tracing for Large Volume Visualization. In PVG
’03: Proceedings of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics (PVG), pages 87–
94, 2003.

[Deussen05] Oliver Deussen and Bernd Lintermann. Digital Design
of Nature – Computer Generated Plants and Organics.
Springer, 2005.

[Dietrich03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and
Philipp Slusallek. The OpenRT Application Programming
Interface – Towards A Common API for Interactive Ray
Tracing. In OpenSG ’03: Proceedings of the OpenSG Sym-
posium, pages 23–31, 2003.

[Dietrich05a] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and
Philipp Slusallek. Realistic and Interactive Visualization
of High-Density Plant Ecosystems. In Proceedings of the
Eurographics Workshop on Natural Phenomena, pages 73–
81, 2005.

[Dietrich05b] Andreas Dietrich, Ingo Wald, and Philipp Slusallek. Large-
Scale CAD Model Visualization on a Scalable Shared-
Memory Architecture. In VMV ’05: Proceedings of 10th
International Fall Workshop - Vision, Modeling, and Vi-
sualization, pages 303–310, 2005.

[Dietrich06] Andreas Dietrich, Gerd Marmitt, and Philipp Slusallek.
Terrain Guided Multi-Level Instancing of Highly Complex
Plant Populations. In RT ’06: Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, pages 169–
176, 2006.

180 BIBLIOGRAPHY

[Drebin88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan.
Volume Rendering. In SIGGRAPH ’88: Proceedings of the
15th annual Conference on Computer Graphics and Inter-
active Techniques, pages 65–74, 1988.

[Ellsworth00] David Ellsworth, Ling-Jen Chiang, and Han-Wei Shen.
Accelerating Time-Varying Hardware Volume Rendering
Using TSP Trees and Color-Based Error Metrics. In VVS
’00: Proceedings of the 2000 Symposium on Volume Visu-
alization, pages 119–128, 2000.

[Engel01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using
Hardware-Accelerated Pixel Shading. In HWWS ’01:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics hardware, pages 9–16, 2001.

[Engel06] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christoph
Rezk-Salama, and Daniel Weiskopf. Real-Time Volume
Graphics. A K Peters, Ltd., 2006.

[Erickson97] Jeff Erickson. Pluecker Coordinates. Ray Tracing News,
Vol. 10, No. pages 3, 1997.

[Freund97] Jason Freund and Kenneth Sloan. Accelated Volume Ren-
dering Using Homogeneous Regions Encoding. In VIS ’97:
Proceedings of the 8th IEEE Visualization, pages 191–196,
1997.

[Friedrich07] Heiko Friedrich, Ingo Wald, Johannes Günther, Gerd Mar-
mitt, and Philipp Slusallek. Interactive Iso-Surface Ray
Tracing of Massive Volumetric Data Sets. In EGPGV ’07:
Proceedings of Eurographics Symposium on Parallel Graph-
ics and Visualization, pages 109–116, 2007.

[Frühauf94] Thomas Frühauf. Raycasting of Nonregularly Structured
Volume Data. In EG ’94: Proceedings of Eurographics,
pages 295–303, 1994.

[Gao03] Jinzhu Gao, Jian Huang, Han-Wei Shen, and
James Arthur Kohl. Visibility Culling Using Plenop-
tic Opacity Functions for Large Volume Visualization.
In VIS ’03: Proceedings of the 14th IEEE Visualization,
pages 341–348, 2003.

BIBLIOGRAPHY 181

[Gao04] Jinzhu Gao, Han-Wei Shen, Jian Huang, and
James Arthur Kohl. Visibility Culling for Time-Varying
Volume Rendering Using Temporal Occlusion Coherence.
In VIS ’04: Proceedings of the 15th IEEE Visualization,
pages 147–154, 2004.

[Garrity90] Michael P. Garrity. Raytracing Irregular Volume Data. In
VVS ’90: Proceedings of the 1990 Symposium on Volume
Visualization, pages 35–40, 1990.

[Glassner95] Andrew Glassner. Principles of Digital Image Synthesis.
Morgan Kaufmann, 1995.

[Gouraud71] Henry Gouraud. Continuous Shading of Curved Surfaces.
Communications of the ACM, Vol. 18, No. 6, pages 623–
629, 1971.

[Grimm04] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and
Meister Eduard Gröller. Memory Efficient Acceleration
Structures and Techniques for CPU-based Volume Ray-
casting of Large Data. In VOLVIS ’04: Proceedings
IEEE/SIGGRAPH Symposium on Volume Visualization
and Graphics, pages 1–8, 2004.

[Groß07] Matthias Groß, Carsten Lojewski, Martin Bertram, and
Hans Hagen. Fast Implicit Kd-trees: Accelerated Isosur-
face Ray Tracing and Maximum Intensity Projection for
large Scalar Fields. In CGIM ’07: Proceedings of Com-
puter Graphics and Imaging, pages 67–74, 2007.

[Günther04] Johannes Günther, Ingo Wald, and Philipp Slusallek. Re-
altime Caustics using Distributed Photon Mapping. In
EGRW ’04: Proceedings of the 15th Eurographics Work-
shop on Rendering, pages 111–121, 2004.

[Guthe02] Stefan Guthe, Stefan Roettger, Andreas Schieber, Wolfgang
Strasser, and Thomas Ertl. High-Quality Unstructured
Volume Rendering on the PC Platform. In HWWS ’02:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 1–8, 2002.

[Hadwiger05] Markus Hadwiger, Christian Sigg, Henning Scharsach,
Katja Bühler, and Markus Gross. Real-TimeRay-Casting

182 BIBLIOGRAPHY

and Advanced Shading of Discrete Isosurfaces. In EG ’05:
Proceedings of Eurographics, pages 303–312, 2005.

[Haines94] Eric Haines. Point in Polygon Strategies. In Graphics
Gems IV, pages 24–46. Academic Press, 1994.

[Havran01] Vlastimil Havran. Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, 2001.

[Heckbert89] Paul Heckbert. Fundamentals of Texture Mapping and Im-
age Warping. Master’s thesis, Department of Electrical
Engineering and Computer Science, University of Califor-
nia, 1989.

[Hege93] Hans-Christian Hege, Tobias Höllerer, and Detlev Stalling.
Volume Rendering - Mathematical Models and Algorithmic
Aspects. Technical report, ZIB (Konrad-Zuse-Zentrum),
1993.

[Hong98] Lichan Hong and Arie Kaufman. Accelerated Ray-casting
for Curvilinear Volumes. In VIS ’98: Proceedings of the
9th IEEE Visualization, pages 247–253, 1998.

[Hong99] Lichan Hong and Arie E. Kaufman. Fast Projection-
Based Ray-Casting Algorithm for Rendering Curvilinear
Volumes. IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 5, No. 4, pages 322–332, 1999.

[Hong05] Wei Hong, Feng Qiu, and Arie Kaufman. GPU-based
Object-Order Ray-Casting for Large Datasets. In VG
’05: Proceedings of the International Workshop on Volume
Graphics, pages 177–186, 2005.

[Hounsfield80] Godfrey N. Hounsfield. Nobel Award address. Computed
medical imaging. Medical Physics, Vol. 7, No. 4, pages
283–290, 1980.

[Intel] Intel Pentium III Streaming SIMD Extensions. http://-
developer.intel.com/vtune/cbts/simd.htm.

[Jang04] Yun Jang, Manfred Weiler, Matthias Hopf, Jingshu Huang,
David S. Ebert, Kelly P. Gaither, and Thomas Ertl. Inter-
actively Visualizing Procedurally Encoded Scalar Fields. In

BIBLIOGRAPHY 183

VISSYM ’04: Proceedings of EG/IEEE TCVG Symposium
on Visualization, pages 35–44, 2004.

[Jensen96] Henrik Wann Jensen. Global Illumination using Photon
Maps. In EGRW ’96: Proceedings of the 13th Eurographics
Workshop on Rendering, pages 21–30, 1996.

[Kajiya86] James T. Kajiya. The Rendering Equation. In SIGGRAPH
’86: Proceedings of the 13th annual Conference on Com-
puter Graphics and Interactive Techniques, pages 143–150,
1986.

[Kay79] Douglas Scott Kay and Donald Greenberg. Transparency
for Computer Synthesized Images. SIGGRAPH Comput.
Graph., Vol. 13, No. 2, pages 158–164, 1979.

[Klein04] Thomas Klein, Siman Stegmaier, and Thomas Ertl.
Hardware-accelerated Reconstruction of Polygonal Isosur-
face Representations on Unstructured Grids. In Proceed-
ings of Pacific Graphics ’04, pages 186–195, 2004.

[Knittel97] Günter Knittel and Wolfgang Strasser. VIZARD - Visual-
ization Accelerator for Realtime Display. In HWWS ’97:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 139–146, 1997.

[Knittel00] Günter Knittel. The ULTRAVIS System. In VVS ’00:
Proceedings of the 2000 IEEE Symposium on Volume Vi-
sualization, pages 71–79, 2000.

[Knoll06] Aaron Knoll, Ingo Wald, Steven Parker, and Charles
Hansen. Interactive Isosurface Ray Tracing of Large Oc-
tree Volumes. In RT ’06: IEEE Symposium on Interactive
Ray Tracing 2006, pages 115–124, 2006.

[Kreeger99] Kevin Kreeger and Arie Kaufman. Hybrid Volume and
Polygon Rendering with Cube Hardware. In HWWS ’99:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 15–24, 1999.

[Krüger03] J. Krüger and R. Westermann. Acceleration Techniques
for GPU-based Volume Rendering. In VIS ’03: Proceedings
of the 14th IEEE Visualization, pages 287–292, 2003.

184 BIBLIOGRAPHY

[Lacroute94] Philippe Lacroute and Marc Levoy. Fast Volume Rendering
using a Shear-Warp Factorization of the viewing Transfor-
mation. In SIGGRAPH ’94: Proceedings of the 21st annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 451–458, 1994.

[Lakare04] Sarang Lakare and Arie Kaufman. Light Weight Space
Leaping using Ray Coherence. In VIS ’04: Proceedings of
the 15th IEEE Visualization, pages 19–26, 2004.

[Levoy90a] Marc Levoy. Efficient Ray Tracing for Volume Data. ACM
Transactions on Graphics, Vol. 9, No. 3, pages 245–261,
1990.

[Levoy90b] Marc Levoy. Volume Rendering. IEEE Coomputer Graph-
ics Applications, Vol. 10, No. 2, pages 33–40, 1990.

[Li03] Wei Li, Klaus Müller, and Arie Kaufman. Empty Space
Skipping and Occlusion Clipping for Texture-based Vol-
ume Rendering. In VIS ’03: Proceedings of the 14th IEEE
Visualization, pages 317–324, 2003.

[Lorensen87] William E. Lorensen and Harvey E. Cline. Marching
Cubes: A High Resolution 3D Surface Construction Algo-
rithm. In SIGGRAPH ’87: Proceedings of the 14th annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 163–169, 1987.

[Lucas92] Bruce Lucas. A Scientific Visualization Renderer. In VIS
’92: Proceedings of the 3rd IEEE Visualization, pages 227–
234, 1992.

[Ma95] Kwan-Liu Ma. Parallel Volume Ray-Casting for
Unstructured-Grid Data on Distributed-Memory Architec-
tures. In PRS ’95: Proceedings of the IEEE Symposium on
Parallel rendering, pages 23–30, 1995.

[Ma97] Kwan-Liu Ma and Thomas W. Crockett. A Scalable Paral-
lel Cell-Projection Volume Rendering Algorithm for three-
dimensional Unstructured Data. In PRS ’97: Proceedings
of the IEEE Symposium on Parallel Rendering, pages 95–
104, 1997.

BIBLIOGRAPHY 185

[MacDonald89] David J. MacDonald and Kellogg S. Booth. Heuristics for
Ray Tracing using Space Subdivision. In GI ’89: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Work-
shop on Graphics Interface, pages 152–63, 1989.

[Marmitt02] Gerd Marmitt and Andrew T. Duchowski. Modeling Vi-
sual Attention in VR: Measuring the Accuracy of Predicted
Scanpaths. In EG ’02: Proceedings of Eurographics Short
Presentations, pages 217–226, 2002.

[Marmitt04] Gerd Marmitt, Andreas Kleer, Ingo Wald, Heiko Friedrich,
and Philipp Slusallek. Fast and Accurate Ray-Voxel Inter-
section Techniques for Iso-Surface Ray Tracing. In VMV
’04: Proceedings of 9th International Fall Workshop - Vi-
sion, Modeling, and Visualization, pages 429–435, 2004.

[Marmitt05] Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Re-
cent Advancements in Ray-Tracing based Volume Render-
ing Techniques. In VMV ’05: Proceedings of 10th Inter-
national Fall Workshop - Vision, Modeling, and Visualiza-
tion, pages 131–138, 2005.

[Marmitt06a] Gerd Marmitt, Roman Brauchle, Heiko Friedrich, and
Philipp Slusallek. Accelerated and Extended Building of
Implicit Kd-Trees for Volume Ray Tracing. In VMV ’06:
Proceedings of 11th International Fall Workshop - Vision,
Modeling, and Visualization, pages 317–324, 2006.

[Marmitt06b] Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. In-
teractive Volume Rendering with Ray Tracing. In EG ’06:
Proceedings of Eurographics State of the Art Reports, pages
115–136, 2006.

[Marmitt06c] Gerd Marmitt and Philipp Slusallek. Fast Ray Traversal
of Tetrahedral and Hexahedral Meshes for Direct Volume
Rendering. In EUROVIS ’06: Proceedings of the EG/IEEE
Symposium on Data Visualisation, pages 131–138, 2006.

[Marmitt08] Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Effi-
cient CPU-based Volume Ray Tracing. Computer Graphics
Forum, Vol. 27, No. 6, pages 1687–1709, 2008.

[Marschner94] Stephen R. Marschner and Richard J. Lobb. An Evaluation
of Reconstruction Filters for Volume Rendering. In VIS

186 BIBLIOGRAPHY

’94: Proceedings of the 5th IEEE Visualization, pages 100–
107, 1994.

[McDonnell04] Kevin T. McDonnell, Yu-Sung Chang, and Hong Qin. In-
terpolatory, solid subdivision of unstructured hexahedral
meshes. The Visual Computer, Vol. 20, No. 6, pages 418–
436, 2004.

[Meissner00] Michael Meissner, Jian Huang, Dirk Bartz, Klaus Mueller,
and Roger Crawfis. A Practical Evaluation of Popular Vol-
ume Rendering Algorithms. In VVS ’00: Proceedings of
the 2000 IEEE Symposium on Volume Visualization, pages
81–90, 2000.

[Mirin99] Arthur A. Mirin, Ron H. Cohen, Bruce C. Curtis,
William P. Dannevik, Andris, M. Dimits, Mark A.
Duchaineau, D. E. Eliason, Daniel R. Schikore, S. E. An-
derson, D. H. Porter, and Paul R. Woodward. Very High
Resolution Simulation of Compressible Turbulence on the
IBM-SP System. In Supercomputing ’99: Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 70–78,
1999.

[Mora02] Benjamin Mora, Jean Pierre Jessel, and Rene Caubet. A
new Object-order Ray-Casting Algorithm. In VIS ’02:
Proceedings of the 13th IEEE Visualization, pages 203–210,
2002.

[Müller96] Klaus Müller and Roni Yagel. Fast Perspective Volume
Rendering with Splatting by Utilizing a Ray-driven Ap-
proach. In VIS ’96: Proceedings of the 7th conference on
Visualization, pages 65–72, 1996.

[Müller98] Klaus Müller and Roger Crawfis. Eliminating Popping Ar-
tifacts in Sheet Buffer-Based Splatting. In VIS ’98: Pro-
ceedings of the 9th IEEE Visualization, pages 239–245,
1998.

[Müller06] Christoph Müller, Magnus Strengert, and Thomas Ertl.
Optimized Volume Raycasting for Graphics-Hardware-
based Cluster Systems. In EGPGV ’06: Proceedings of
Eurographics Symposium on Parallel Graphics and Visual-
ization, pages 59–66, 2006.

BIBLIOGRAPHY 187

[Neophytou06] Neophtos Neophytou, Klaus Mueller, Kevin T. McDonnel,
Wei Hong, Xin Guan, Hong Qin, and Arie Kaufmann.
GPU-Accelerated Volume Splatting with Elliptical RBFs.
In EUROVIS ’06: Proceedings of the EG/IEEE Sympo-
sium on Data Visualisation, pages 13–20, 2006.

[Neubauer02] André Neubauer, Lukas Mroz, Helwig Hauser, and Rainer
Wegenkittl. Cell-Based First-Hit Ray Casting. In EURO-
VIS ’02: Proceedings of the EG/IEEE Symposium on Data
Visualisation, pages 77–86, 2002.

[Nielson90] G.M. Nielson and B. Haman. Techniques for the Interac-
tive Visualization of Volumetric Data. In VIS ’90: Pro-
ceedings of the 1st IEEE Visualization, pages 45–50, 1990.

[Nielson03] Gregory M. Nielson. MC*: Star Functions for Marching
Cubes. In VIS ’03: Proceedings of the 14th IEEE Visual-
ization 2003, pages 59–66, 2003.

[Nielson04] Gregory M. Nielson. Dual Marching Cubes. In VIS ’04:
Proceedings of the 15th IEEE Visualization, pages 489–496,
2004.

[nvidia] CUDA Programming Guide 1.1. http://-
developer.download.nvidia.com/cuda/1 1/-
NVIDIA CUDA Programming Guide 1.1.pdf.

[Oppenheim75] Alan V. Oppenheim and Ronald W. Schafer. Digital Signal
Processing. Prentice Hall, 1975.

[Parker99a] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter
Shirley, Brian Smits, and Charles Hansen. Interactive Ray
Tracing. In SI3D ’99: Proceedings of the ACM Symposium
on Interactive 3D Graphics, pages 119–126, 1999.

[Parker99b] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike
Sloan, Charles Hansen, and Peter Shirley. Interactive Ray
Tracing for Volume Visualization. IEEE Transactions on
Visualization and Computer Graphics, Vol. 5, No. 3, pages
223–250, 1999.

[Pascucci00] Valerio Pascucci and Chandrajit L. Bajaj. Time Critical
Isosurface Refinement And Smoothing. In VVS ’00: Pro-
ceedings of the 2000 IEEE Symposium on Volume Visual-
ization, pages 33–42, 2000.

188 BIBLIOGRAPHY

[Pascucci04] Valerio Pascucci. Isosurface Computation Made Simple:
Hardware Acceleration, Adaptive Refinement and Tetrahe-
dral Stripping. In VISSYM ’99: Proceedings of EG/IEEE
TCVG Symposium on Visualization, pages 293–300, 2004.

[Pfister99] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh
Lauer, and Larry Seiler. The VolumePro Real-Time Ray-
casting System. In SIGGRAPH ’99: Proceedings of the
26th annual Conference on Computer Graphics and Inter-
active Techniques, pages 251–260, 1999.

[Phong75] Bui Tuong Phong. Illumination for Computer Generated
Images. Communications of the ACM, Vol. 18, No. 6, pages
311–317, 1975.

[Platis03] Nikos Platis and Theoharis Theoharis. Fast Ray-
Tetrahedron Intersection Using Plücker Coordinates. Jour-
nal of Graphics Tools, Vol. 8, No. 4, pages 37–48, 2003.

[Pomi03] Andreas Pomi, Gerd Marmitt, Ingo Wald, and Philipp
Slusallek. Streaming Video Textures for Mixed Reality Ap-
plications in Interactive Ray Tracing Environments. In
VMV ’03: Proceedings of 8th International Fall Work-
shop - Vision, Modeling, and Visualization, pages 261–269,
2003.

[Purcell02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat
Hanrahan. Ray Tracing on Programmable Graphics Hard-
ware. In SIGGRAPH ’02: Proceedings of the 29th annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 703–712, 2002.

[Ramsey04] Shaun Ramsey, Kristin Potter, and Charles Hansen. Ray
Bilinear Patch Intersections. Journal of Graphics Tools,
Vol. 9, No. 3, pages 41–47, 2004.

[Reinhard02] Erik Reinhard, Charles Hansen, and Steve Parker. Inter-
active Ray Tracing of Time Varying Data. In EGPGV ’02:
Proceedings of the 4th Eurographics Workshop on Parallel
Graphics and Visualization, pages 77–82, 2002.

[Reshetov05] Alexander Reshetov, Alexei Soupikov, and Jim Hurley.
Multi-level Ray Tracing Algorithm. In SIGGRAPH ’05:

BIBLIOGRAPHY 189

Proceedings of the 32th annual Conference on Computer
Graphics and Interactive Techniques, pages 1176–1185,
2005.

[Rössl04] Christian Rössl, Frank Zeilfelder, Günther Nürnberger,
and Hans-Peter Seidel. Reconstruction of Volume Data
with Quadratic Super Splines. IEEE Transactions on Vi-
sualization and Computer Graphics, Vol. 4, No. 10, pages
397–409, 2004.

[Röttger00] Stefan Röttger, Martin Kraus, and Thomas Ertl.
Hardware-Accelerated Volume And Isosurface Rendering
Based On Cell-Projection. In VIS ’00: Proceedings of the
11th IEEE Visualization, pages 109–116, 2000.

[Röttger03] Stefan Röttger, Stefan Guthe, Daniel Weiskopf, Thomas
Ertl, and Wolfgang Strasser. Smart Hardware-Accelerated
Volume Rendering. In VISSYM ’03: Proceedings of
EG/IEEE TCVG Symposium on Visualization, pages 231–
238, 2003.

[Schmittler02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek.
SaarCOR – A Hardware Architecture for Ray Trac-
ing. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, pages 27–36, 2002.

[Schwarze98] Jochen Schwarze. Cubic and Quartic Roots. In Graphics
Gems, pages 404–407. Academic Press, 1998.

[Shen99] Han-Wei Shen, Ling-Jen Chiang, and Kwan-Liu Ma. A
Fast Volume Rendering Algorithm for Time-Varying Fields
Using a Time-Space Partitioning (TSP) Tree. In VIS ’99:
Proceedings of the 10th IEEE Visualization, pages 371–377,
1999.

[Shirley90] Peter Shirley and Allan Tuchman. A Polygonal Approxi-
mation to Direct Scalar Volume Rendering. In VVS ’90:
Proceedings of the 1990 Symposium on Volume Visualiza-
tion, pages 63–70, 1990.

[Shirley05] Peter Shirley. Fundamentals of Computer Graphics. A K
Peters, 2005.

190 BIBLIOGRAPHY

[Siddon85] Robert L. Siddon. Fast Calculation of the Exact Radio-
logical Path for a Three-Dimensional CT Array. Medical
Physics, Vol. 12, No. 2, pages 252–255, 1985.

[Stegmaier05] Simon Stegmaier, Magnus Strengert, Thomas Klein, and
Thomas Ertl. A Simple and Flexible Volume Rendering
Framework for Graphics-Hardware–based Raycasting. In
VG ’05: Proceedings of the International Workshop on Vol-
ume Graphics, pages 187–195, 2005.

[Strengert06] Magnus Strengert, Thomas Klein, Ralf Botchen, Siman
Stegmaier, Min Chen, and Thomas Ertl. Spectral Volume
Rendering using GPU-based Raycasting. The Visual Com-
puter, Vol. 22, No. 8, pages 550–561, 2006.

[Subramanian90] K. R. Subramanian and Donald S. Fussel. Applying Space
Subdivision Techniques to Volume Rendering. In VIS ’90:
Proceedings of the 1st IEEE Visualization, pages 150–159,
1990.

[Sweeney02] Jon Sweeney and Klaus Müller. Shear-Warp Deluxe: The
Shear-Warp Algorithm Revisited. In VISSYM ’02: Pro-
ceedings of EG/IEEE TCVG Symposium on Visualization,
pages 95–104, 2002.

[Theisel01] Holger Theisel. CAGD and Scientific Visualization. PhD
thesis, Faculty of Electrical Engineering, Rostock Univer-
sity, 2001. Habilitionsschrift.

[Udupa93] Jayaram K. Udupa and Dewey Odhner. Shell Rendering.
IEEE Computer Graphics and Applications, Vol. 13, No.
6, pages 58–67, 1993.

[VHP] The Visible Human Project. http://www.nlm.nih.gov/-
research/visible/visible human.html.

[Wald01a] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. Interactive Rendering with Coherent Ray Trac-
ing. In EG ’02: Proceedings of Eurographics, pages 153–
164, 2001.

[Wald01b] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Inter-
active Distributed Ray Tracing of Highly Complex Models.

BIBLIOGRAPHY 191

In EGRW ’01: Proceedings of the 12th Eurographics Work-
shop on Rendering, pages 274–285, 2001.

[Wald02a] Ingo Wald, Carsten Benthin, and Philipp Slusallek.
OpenRT - A Flexible and Scalable Rendering Engine for In-
teractive 3D Graphics. Technical report, Computer Graph-
ics Lab, Saarland University, 2002.

[Wald02b] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander
Keller, and Philipp Slusallek. Interactive Global Illumina-
tion using Fast Ray Tracing. In EGRW ’02: Proceedings
of the 13th Eurographics Workshop on Rendering, pages
15–24, 2002.

[Wald04a] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004.

[Wald04b] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An In-
teractive Out-of-Core Rendering Framework for Visualiz-
ing Massively Complex Models. In EGRW ’04: Proceedings
of the 15th Eurographics Workshop on Rendering, pages
81–92, 2004.

[Wald05] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp
Slusallek, and Hans-Peter Seidel. Faster Isosurface Ray
Tracing using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics, Vol. 11, No. 5, pages
562–573, 2005.

[Wald07] Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles
Hansen. Interactive Isosurface Ray Tracing of Time-
Varying Tetrahedral Volumes. pages IEEE Transactions
on Visualization and Computer Graphics, 2007.

[Wang61] Hao Wang. Proving Theorems by Pattern Recognition.
Bell Systems Technical Journal, Vol. 40, No. ???, pages
1–42, 1961.

[Weghorst84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg.
Improved Computational Methods for Ray Tracing. ACM
Transactions on Graphics, Vol. 3, No. 1, pages 52–69, 1984.

192 BIBLIOGRAPHY

[Weiler03] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas
Ertl. Hardware-Based Ray Casting for Tetrahedral Meshes.
In VIS ’03: Proceedings of the 14th IEEE Visualization,
pages 333–340, 2003.

[Weiler04] Manfred Weiler, Paula N. Mallon, Martin Kraus, and
Thomas Ertl. Texture-Encoded Tetrahedral Strips. In VV
’04: Proceedings of the IEEE Symposium on Volume Visu-
alization and Graphics, pages 71–78, 2004.

[Westover90] Lee Westover. Footprint Evaluation for Volume Rendering.
In SIGGRAPH ’90: Proceedings of the 17th annual Con-
ference on Computer Graphics and Interactive Techniques,
pages 367–376, 1990.

[Whitted80] Turner Whitted. An Improved Illumination Model for
Shaded Display. CACM, Vol. 23, No. 6, pages 343–349,
1980.

[Wilhelms90] Jane Wilhelms, Judy Challinger, Naim Alper, Shankar Ra-
mamoorthy, and Arsi Vaziri. Direct Volume Rendering of
CurvilinearVolumes. In VVS ’90: Proceedings of the 1990
Symposium on Volume Visualization, pages 41–47, 1990.

[Wilhelms92] Jane Wilhelms and Allen Van Gelder. Octrees for faster
Isosurface Generation. ACM Transactions on Graphics,
Vol. 11, No. 3, pages 201–227, 1992.

[Wilhelms96] Jane Wilhelms, Allen Van Gelder, Paul Tarantino, and
Jonathan Gibbs. Hierarchical and Parallelizable Direct Vol-
ume Rendering for Irregular and Multiple Grids. In VIS
’96: Proceedings of the 7th IEEE Visualization, pages 57–
64, 1996.

[Williams92] Peter L. Williams. Visibility Ordering Meshed Polyhedra.
ACM Transactions on Graphics, Vol. 11, No. 2, pages 103–
126, 1992.

[Williams98] Peter L. Williams, Nelson L. Max, and Clifford M. Stein.
A High Accuracy Volume Renderer for Unstructured Data.
IEEE Transactions on Visualization and Computer Graph-
ics, Vol. 4, No. 1, pages 37–54, 1998.

BIBLIOGRAPHY 193

[Woodring03] Jonathan Woodring, Chaoli Wang, and Han-Wei Shen.
High Dimensional Direct Rendering of Time-Varying Vol-
umetric Data. In VIS ’03: Proceedings of the 14th IEEE
Visualization, pages 417–424, 2003.

[Woop05] Sven Woop, Joerg Schmittler, and Philipp Slusallek. RPU:
A Programmable Ray Processing Unit for Realtime Ray
Tracing. In SIGGRAPH ’05: Proceedings of the 32th an-
nual Conference on Computer Graphics and Interactive
Techniques, pages 434–444, 2005.

[Woop06] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD
Trees for Hardware Accelerated Ray Tracing of Dynamic
Scenes. In HWWS ’06: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, pages 67–77, 2006.

[Wu03] Yin Wu, Vishal Bhatia, Hugh Lauer, and Larry Seiler.
Shear-image Order Ray Casting Volume Rendering. In
SI3D ’03: Proceedings of the Symposium on Interactive 3D
graphics, pages 152–162, 2003.

[Yagel94] Roni Yagel. Shell Accelerated Volume Rendering of Trans-
parent Regions. The Visual Computer, Vol. 10, No. 1, pages
53–61, 1994.

[Younesy05] Hamid Younesy, Torsten Möller, and Hamish Carr. Vi-
sualization of Time-Varying Volumetric Data using Differ-
ential Time-Histogram Table. In VG: ’05: Proceedings of
Volume Graphics, pages 21–29, 2005.

[Zhang97] Hansong Zhang, Dinesh Manocha, Tom Hudson, and III
Kenneth E. Hoff. Visibility Culling using Hierarchical Oc-
clusion Maps. In SIGGRAPH ’97: Proceedings of the 24th
annual Conference on Computer Graphics and Interactive
Techniques, pages 77–88, 1997.

[Zwicker01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. EWA Volume Splatting. In VIS ’01: Pro-
ceedings of the 12th IEEE Visualization, pages 29–36, 2001.

