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Abstract

Modern combination drug therapy has substantially improved the clinical management
of HIV-1 infection. Still, the emergence of drug-resistant variants eventually leads to
therapy failure in most patients. The selection of an optimal follow-up regimen is
complicated by an ever-increasing range of possible drug combinations. In this thesis,
we present foundations for rational, model-based treatment strategies.

Firstly, we study viral evolution. In a simulation study, we establish a general link
between the shape of a fitness landscape and population dynamics, using an idealized
population undergoing mutation, recombination and selection at three biallelic loci as
an example. Using techniques from survival analysis, a model of mutation dynamics in
the absence of drug is proposed. Differently from mutation accumulation, mutations
are found to disappear independently from each other, but with individual survival
probabilities. A Fisher kernel for mixtures of mutagenetic trees is derived, quantifying
the similarity of evolutionary escape from drug pressure between two viral sequence
samples. Kernel-based prediction of drug resistance leads to significant improvements
over an evolution-agnostic approach.

Secondly, the controversial interplay between genotypic, phenotypic, and clinical
resistance is analyzed. Methods for identifying resistance mutations from either in
vitro or in vivo data, and for characterizing mutational covariation patterns are de-
scribed. A case study focusing on reverse transcriptase inhbitors yields over 20 pre-
viously undescribed mutations, most of them extending classical resistance pathways.
Finally, the widely held view of an ill-defined relation between phenotypic and clinical
resistance is challenged, and a hybrid model incorporating both genotypic and inferred
phenotypic information is shown to outperform its components in predictivity. Sur-
prisingly, the incorporation of viral fitness does not lead to any further improvements.

Thirdly, genotypic, clinical, host-specific, and structural determinants of viral cell
entry via the human receptors CCRS and CXCR4 are investigated. Previously unde-
scribed mutations in the third hypervariable region of the viral envelope protein, CD4 "
cell counts, host heterozigosity for the CCR5-A32 allele, number of sequence ambi-
guities arising from population sequencing, and presence of indels are shown to be
predictive of coreceptor choice alone and in combination, as are changes in the pre-
dicted side-chain conformation in a three-dimensional model of the V3 loop.
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Kurzfassung

Moderne Kombinationstherapien haben die klinische Behandlung von HIV-1-
Infektionen wesentlich verbessert. Trotzdem fiihrt das Auftauchen wirkstoffresistenter
Varianten bei den meisten Patienten letztlich zum Versagen der Therapie. Die Auswahl
eines optimalen Nachfolgeregimes wird durch die stetig wachsende Zahl moglicher
Wirkstoffkombinationen erschwert. In dieser Arbeit prisentieren wir Grundlagen fiir
rationale, modellbasierte Behandlungsstrategien.

Als erstes untersuchen wir die virale Evolution. In einer Simulationsstudie eta-
blieren wir eine allgemeine Verbindung zwischen der Form einer Fitnesslandschaft
und der sich ergebenden Populationsdynamik, am Beispiel einer idealisierten Popula-
tion unter dem Einfluss von Mutation, Rekombination und Selektion an drei bialleli-
schen Loci. Unter Verwendung von Techniken der Ereigniszeitanalyse wird ein Modell
zur Mutationsdynamik in Abwesenheit von Wirkstoffen vorgeschlagen. Anders als bei
der Akkumulation von Mutationen geschieht deren Verschwinden unabhiingig vonein-
ander, jedoch mit individuellen Uberlebenswahrscheinlichkeiten. Ein Fisher-Kern fiir
Mixturen mutagenetischer Biume wird hergeleitet. Dieser quantifiziert die Ahnlichkeit
der evolutiondren Flucht vor Medikamentendruck zweier viraler Sequenzen. Die kern-
basierte Vorhersage von Wirkstoffresistenz fiihrt zu einer signifikanten Verbesserung
verglichen mit einer evolutions-agnostischen Methode.

Als zweites analysieren wir das kontroverse Zusammenspiel von genotypischer,
phénotypischer und klinischer Resistenz. Wir beschreiben Methoden zur Identifikati-
on von Resistenzmutation auf der Basis von in vitro oder in vivo-Daten, und zur Cha-
rakterisierung von Kovariationsmustern zwischen Mutationen. Eine Fallstudie mit Fo-
kus auf Inhibitoren der Reversen Transkriptase ergibt iiber 20 bisher unbeschriebene
Mutationen; die meisten von ihnen erweitern klassische Resistenzpfade. Schlie3lich
widerlegen wir die hiufig geduBerten Zweifel an einem deutlichen Bezug zwischen
phénotypischer und klinischer Resistenz. Ein hybrides Modell, das sowohl auf geno-
typischer als auch auf inferierter phinotypischer Information beruht, iibertrifft seine
Bestandteile an Pridiktivitit. Uberraschenderweise fiihrt das Einbeziehen von viraler
Fitness zu keinen weiteren Verbesserungen.

Als drittes studieren wir genotypische, klinische, wirtsspezifische und strukturelle
Determinanten des viralen Zelleintritts iiber die menschlichen Rezeptoren CCRS und
CXCR4. Bislang unbeschriebene Mutationen in der dritten hypervariablen Region des
viralen Hiillproteins, die Anzahl an CD4"-Zellen, die Heterozygositit des Wirts fiir
das CCR5-A32 Allel, die Anzahl der sich durch Populationssequenzierung ergeben-
den Sequenzambiguititen, und das Vorhandensein von Indels stellen sich als pradiktiv
fiir die Korezeptorwahl heraus, sowohl alleine als auch in Kombination. Dasselbe gilt
fiir Anderungen in der vorhergesagten Seitenkettenkonformation in einem dreidimen-
sionalen Modell der V3-Schleife.
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Introduction

Model-based anti-HIV therapy refers to treatment decisions made on the basis of quan-
titative models. Ideally, these models should be

e predictive (in close agreement with observed and previously unseen data)

e cxplanatory (formulated as to reflect the “true” nature of the process to be mod-
eled)

e general (covering all aspects in the interactions between host, virus, and drug)

Such models have a century-old tradition in physics, a younger tradition in chemistry,
and are now becoming increasingly popular in the life and medical sciences (Cohen,
2004).

Modern statistical learning methods allow for deriving predictive models from data
when relatively little prior knowledge is available. Thus, they present a powerful start-
ing point into new research fields. Starting from such agnostic, empirically derived
models, a unifying theme of this thesis lies in various attempts to move towards more
predictive, explanatory and/or general models. These attempts are based on the in-
corporation of problem-specific background knowledge or on the interconnection of
different pieces of information.

The remainder of this introductory chapter will set the stage by discussing the scope
of the AIDS pandemic, the basic principles of anti-HIV therapy, the past and future role
of HIV as a test for model-best methodologies, and the structure of this thesis.

HIV/AIDS: scope of the problem

Since its recognition in 1981, AIDS has killed more than 25 million people, making
it one of the most destructive epidemics in the history of mankind. Recent years have
seen promising developments, including increased access to treatment and prevention
programmes. Still, the number of people living with HIV continues to grow, as does the
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Figure 1.1: Life expectancy at birth in selected African countries, from (United States,
2005). By 1999, HIV/AIDS had cut life expectancy in Africa by one quarter (Logie,
1999). In the same time, life expectancy continued to rise monotonically in all other
parts of the world (Dorling et al., 2006). It has been estimated that six years of the
difference in life expectancy between Africa and North America is accounted for by
differences in access to antiretroviral therapy and means of prevention (Dorling et al.,
20006).

number of deaths due to AIDS. In 2006, a total of 39.5 million people were living with
HIV, representing an increase of 2.6 million since 2004. Among the adult population
(15-49 years), the global prevalence of HIV-infected people is estimated to be 1%. In
2006, an estimated 4.3 million of adults and children were newly infected with HIV,
which is about 400,000 more than in 2004. An estimated 2.9 million of adults and
children died due to AIDS during the last year (UNAIDS, 2006). Annual HIV/AIDS
deaths have been projected to rise to 6.5 million by 2030, under the assumption that
coverage with antiretroviral drugs reaches 80% by 2012 (Mathers and Loncar, 2006).
In this scenario, the total number of deaths from HIV/AIDS between 2006 and 2030
is projected to be 117 million. The impact of the AIDS pandemic is so severe that it
is addressed in one of the eight UN Millenium Development Goals, specifically “by
20135, to halt and begin to reverse the spread of HIV/AIDS”. (Annan, 2000, ch. 7)

This thesis is concerned with the development of rational tools for decision sup-
port in anti-HIV therapy. However, it must not be forgotten that in many developing



countries, less than one quarter of those in need are actually receiving antiretroviral
therapy (UNAIDS, 2006). This is in stark contrast to the idealistic formulation of the
Constitution of the World Health Organization, which states that “the highest attain-
able standard of health is one of the fundamental rights of every human being without
distinction of race, religion, political belief, economic or social conditions” (World
Health Organization, 2005, p.1). Further discussion of this issue is beyond the scope
of this thesis, but Figure 1.1 will serve as a dramatic reminder of the limited impact of
scientific contributions on public health in the absence of sufficiently effective political
and economical measures.

Principles of anti-HIV therapy

Patients infected with the virus HIV-1 exhibit a gradual decline in their naive and mem-
ory CD4" T-lymphocyte populations (Douek et al., 2003). Due to their coordinating
role, depletion of CD4™ cells disrupts many defense mechanisms of the immune sys-
tem. Patients infected with HIV eventually die from diseases rarely observed or lead-
ing only to mild symptoms in HIV-negative individuals, including specific infections,
parasitic diseases (Bonnet et al., 2005), or malignant cancers (Bonnet et al., 2004).
Given the central role of CD4 " cell destruction in the morbidity and mortality of HIV-
infected patients, it is understandable that current treatment guidelines (DHHS Panel
on Antiretroviral Guidelines for Adults and Adolescents, 2006) consider the ultimate
goals of anti-HIV therapy “to prevent further immune deterioration” (immunologi-
cal goal), and “to avoid HIV-associated morbidity and mortality” (clinical goal). The
AIDS disease is the ultimate consequence of treatment that does not meet these goals.
Per definition, AIDS is diagnosed in HIV-positive individuals with CD4" cell count
below 200 cells/mm?, or CD4 percentage below 14%, or at least one from a list of
currently 26 “AIDS-defining” diseases (CDC, 1992).

If CD4™ cells are killed at a certain rate, stable CD4™" cell counts (and thus fulfill-
ment of the ultimate goals of therapy) could be obtained by either increasing the rate of
production of novel CD47 cells, or by decreasing their rate of destruction. Increasing
the production rate is being investigated in the field of immunotherapy, but the clinical
efficacy of these experimental treatments remains to be proven (Wynne and Davey,
2005). While immunotherapy is targeted at relieving the symptoms of CD4™ cell de-
cline by ensuring enough replenishment of cells, decreasing the rate of destruction
requires targeting the cause(s) underlying this process. Currently, it is hypothesized
that the depletion is mostly attributable to the direct effects of HIV replication in this
cell population (however, cf. Section 2.3). Specifically, HIV RNA plasma level has
been considered the main determinant of the speed of CD4™ cell loss. Based on this
hypothesis, “suppression of viremia to less than detection limits” (DHHS Panel on An-
tiretroviral Guidelines for Adults and Adolescents, 2006) is recommended as the direct
(virological) goal of anti-HIV therapy.
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To date, 21 compounds from four different classes of drugs have been approved for
anti-HIV therapy by the US Food and Drug Administration, with many others at vari-
ous stages of the drug development pipeline. These drugs interfere with distinct steps
in the viral replication cycle, resulting in a sharp drop of plasma viral RNA levels.
However, single-drug therapy rapidly selects viral variants that carry mutations con-
ferring resistance to the given drug, leading to a return of viral load to high levels. In
contrast, modern combination therapy, which consists of the administration of at least
three drugs from more than one class, can suppress viral replication for substantially
longer times. This ongoing suppression is often accompanied by a substantial increase
in CD4" counts. In this way, meeting the virological goal of anti-HIV therapy ideally
entails meeting the immunological and clinical goals. Indeed, many clinical studies
have shown a striking decrease in HIV-induced morbidity and mortality since the in-
troduction of combination therapy (e.g. Mocroft et al., 1998; Hogg et al., 1998; Palella
etal., 1998), to a degree that HIV-1 infection is now considered by many as a “treatable
chronic disease” (Simon et al., 2006).

Despite these successes, even modern combination therapy can only delay the
emergence of drug-resistant variants in most patients. Resistance will render the cur-
rent regimen ineffective, leading again to high levels of viremia. When faced with such
a therapy failure, the treating physician has to select a new — and preferably optimal
— regimen. This task is highly complex due to increasing numbers of available an-
tiretroviral drugs, significant cross-resistance and the likely presence of archived drug-
resistant viral variants selected by previous regimens (discussed in detail in Chapter
2). Parameters with potential impact on treatment decisions which are typically ob-
tained before choosing a new regimen include plasma viral load, CD4" cell count,
viral genotype (determined by sequencing the relevant parts of the viral genome), phe-
notypic resistance, and prior treatment history. Other factors of relevance include tol-
erability, toxicity, the ability to preserve future treatment options, and data on drug
metabolism. Currently, physicians interpret these complex and heterogeneous data
using a subjective mix of information from guidelines, experience, and intuition. In
contrast, model-based anti-HIV therapy aims to provide decision support which is jus-
tified by objective, reproducible, and data-driven criteria and studies. It is now being
realized that “computational tools will be essential as exploratory and interpretation
systems in order to obtain a better support of clinical decisions concerning both the
prediction and the evolution of drug resistance” (Carvajal-Rodriguez, 2007).

Currently, HIV-1 infection entails the necessity of a life-long drug therapy. The
main obstacle to eradicating HIV from a patient seems to lie in the viral ability to build
a latent reservoir within resting memory CD4™" cells. This means that both wild-type
and drug-resistant viruses circulating for significant periods will get stored and can
re-emerge if therapy is stopped or changed. Due to the lack of viral replication, virus
stored in resting cells cannot be reached by current anti-HIV therapies. Several ap-
proaches to target these reservoirs are under investigation, but their clinical feasibility



remains to be determined.

HIV: test for drug design methodologies in the past — test for drug administra-
tion methodologies in the future

Before 1996, only one class of drugs was available for anti-HIV therapy. The years
1995-1996, with the approval of the first protease inhibitors represented a triumph
for anti-HIV therapy: it was found that the simultaneous administration of the novel
drugs with reverse transcriptase inhibitors could prolong the development of resistance
substantially. David Ho, one of the main proponents of the new combination therapy,
was even voted TIME magazine’s 1996 Man of the Year.

However, protease inhibitors did not only represent a triumph for antiviral therapy.
They also represent one of the first successes of the then-new paradigm of structure-
based (or: rational) drug design. Historically, new lead compounds had been discov-
ered by chance or by mass screening of compound libraries. Not surprisingly, the
success rate of these approaches was very low. In contrast, the first protease inhibitors
— saquinavir, ritonavir, and indinavir (whose development started in 1989, with ap-
proval in late 1995 and early 1996) — had been derived by excessive use of all rational
tools available at that time, including three-dimensional modeling studies and database
searches for novel scaffolds (Bohm et al., 1996, pp. 494ff; in German). Due to these
efforts, the case of the first protease inhibitors has been termed “a test for drug design
methodologies” (West and Fairlie, 1995).

With the historical focus on rationalizing “drug discovery” into a process of “drug
design”, considerably less attention has been devoted to modernizing the later stages
of drug development, and their clinical use. It was only in 2004 that the United States
Food and Drug Administration drew attention to the fact that “a new product develop-
ment toolkit — containing powerful new scientific and technical methods such as [. . .]
computer-based predictive models [...] is urgently needed to improve predictability
and efficiency along the critical path from laboratory experiment to commercial prod-
uct” (FDA, 2004). Among several other challenges, “new medical technologies, in-
cluding [...] individualized drug therapies” (FDA, 2004) are highlighted prominently.

The goal of individualizing drug therapies can be paraphrased as “customized med-
ical care for each patient’s unique condition” (van der Greef et al., 2006). Ideally, such
customized care would involve “a system of patient evaluation that would tell clinicians
the correct drug, dose or intervention for any individual before the start of therapy”
(Nicholson, 2006). In general, individualized medicine includes not only intervention,
but also the evaluation of an individual’s predisposition to diseases prior to its potential
onset. Until recently, the pharmaceutical industry itself has not been a driving force be-
hind individualizing therapies, largely due to uncertainty of how the traditional model
of mass-market block buster drugs will be affected by the new tretament paradigm
(Abrahams et al., 2005). However, with recent advances in metabolomics and pharma-
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cogenomics, and with the $1000 personal genome much faster in sight than initially
anticipated (Service, 2006), it is obvious that future medicine will be strongly individ-
ualized. Implications of the paradigm shift away from the outdated “one size fits all”
model of drug discovery, drug development, and healthcare infrastructure are discussed
in (Jain, 2006; Meyer et al., 2002; Abrahams et al., 2005).

Most importantly, in individualized medicine, “combination drug therapies with
individualized optimization are likely to become a major focus” (van der Greef et al.,
2006). There is no doubt that among all diseases, the treatment of HIV is most ad-
vanced with respect to these challenges. Once again, similar as in the case of protease
inhibitors mentioned above, challenges posed by HIV are leading the way into a new
era, and serving as a test for methodologies. In other words, a challenge for drug de-
sign has now become a major challenge for their optimal use as well. While most
individualization is performed with respect to viral, rather than host characteristics,
extending the approaches to more classical host pharmacogenomics data, such as ge-
netic variation in the cytochrome P450 enzyme family (affecting drug metabolism), or
information about host Major Histocompatibility Complex haplotype, is methodolog-
ically straightforward, once enough data become available (e.g. Section 6.3 describes
the inclusion of information about the allelic state of a certain cell-surface receptor
relevant in HIV cell entry).

The challenge of selecting an appropriate drug combination from several available
drugs based on pharmacogenomics and resistance data is now becoming increasingly
common in many other viral, bacterial, fungal and parasitical diseases (Nosten and
Brasseur, 2002) that take a high toll on our society. In this context, the experiences
made with anti-HIV therapy will serve as “a model for the feasibility of treating chronic
viral infections, [...] such as HBV and HCV” (Knipe et al., 2007, p.2198). Moreover,
the treatment of cancer is also on the verge of individualized (combination) therapy
(Ozols et al., 2007; Daly, 2007; Fonseca and Stewart, 2007). For example, in lung
cancer, several genetic alterations in the EGFR gene have been found to be associated
with how well patients will respond to a given drug (reviewed in Ozols et al., 2007).

Outline

The goal of this thesis is to advance, on a quantitative basis, our understanding of
HIV evolution in the presence and absence of drug, of the relation between genotype,
phenotype, and response to therapy, and of the genetic basis of coreceptor usage. As
should be clear from the introductory discussion, these questions are critically relevant
as building blocks of rational, individualized anti-HIV therapy.

We begin in Chapter 2 with a brief review of the essential biomedical background
on HIV-1 and AIDS, as a preparation for the main chapters of this thesis. Chapter 3
is devoted to an integrated discussion of scientific modeling and statistical learning.
Supervised statistical learning methods will play a major role throughout this thesis.



In our discussion, they will appear as extremely empirical (i.e. non-explanatory) forms
of scientific models. A section discussing the various modeling strategies taken in this
thesis concludes the chapter.

Chapter 4 is devoted to the role of evolution. A classification system for fitness
landscapes and its role in influencing the evolutionary dynamics of populations are
studied using simulated data (Section 4.1). After these theoretical considerations, we
shall turn our attention to evolutionary modeling based on data from clinical prac-
tice. To date, little is known about the dynamics of mutation disappearance in the
absence of drug. Does it invert exactly the patterns observed during the emergence of
resistance under drug pressure, or does it follow different principles? This question is
addressed in Section 4.2. Finally, in Section 4.3, we show how to incorporate evolu-
tionary modeling into approaches for predicting drug resistance or virological response
from genotype.

Section 4.3 also serves as a bridge from Chapter 4 to Chapter 5, in which we focus
on the various manifestations of resistance and their interpretation. We start with a
comprehensive overview of the field of resistance interpretation algorithms (5.1). We
then describe novel approaches for identifying resistance mutations and for charac-
terizing their co-occurrence behavior, followed by an application to nucleoside and
non-nucleoside reverse transcriptase inhibitors (5.2). The question of whether clinical
resistance should be predicted by direct correlation of genotypes with virological re-
sponse, or by using predicted phenotypes as an “intermediate” step has been subject
to some controversy. We study this question in a large-scale evaluation in Section 5.3.
Concluding the chapter, we investigate potential benefits of incorporating an additional
phenotypic property of the virus — “fitness”, or, more accurately, replication capacity —
into models for virological response prediction (5.4).

Finally, in Chapter 6, we focus on the process of viral cell entry. The entry process
is initiated by attachment of the viral envelope protein to the CD4 receptor. How-
ever, fusion of viral and cell membranes depends on the additional interaction with a
coreceptor (mainly CCR5 or CXCR4). The coreceptor choice of a viral population is
not only tighly linked to disease progression, but also relevant for the treatment with a
novel class of anti-HIV drugs called coreceptor antagonists, as reviewed in Section 6.1.
We describe a comprehensive comparison of different methods for predicting corecep-
tor usage from (part of) the sequence of the viral envelope protein (Section 6.2). It
will be apparent that the reliability of purely sequence-based prediction is not satis-
factory on clinical sequence data obtained from population-based sequencing. For this
reason, we propose to combine sequence-based models with clinical and host markers,
and data on the heterogeneity of the viral population in vivo, to improve the predic-
tion of coreceptor usage in a clinical setting (6.3). Finally, we describe an approach to
improving predictive reliability by structural modeling (6.4).
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Anti-HIV Therapy

In this chapter, we provide the necessary background on HIV/AIDS. Many important
aspects not immediately relevant for this thesis had to be omitted. Excellent mono-
graphs on virology (Knipe et al., 2007; Flint et al., 2000), anti-HIV therapy (Hoffmann
et al., 2006; Butera, 2005), drug resistance (Clavel et al., 2004; Geretti, 2006), and
modeling for anti-HIV therapy (Crandall, 1999; Nowak and May, 2000; Rodrigo and
Learn, 2001; Tan and Wu, 2005) are available.

2.1 Epidemiology

HIV-1 belongs to the genus Lentivirus, as part of the family of retroviruses (Retroviri-
dae). Two rather different forms of HIV have been described, HIV-1 and HIV-2, the
former being the more common and more pathogenic, and the subject of this thesis.
Based on genetic similarity, HIV-1 viruses are classified into three major groups: M
(the “main”, or pandemic group), O, and N (Figure 2.1), which have been implicated
with separate cross-species transmission events in the early 20" century (Hahn et al.,
2000; Korber et al., 2000; Sharp et al., 2001). The chimpanzee communities from
which groups M and N originate were recently discovered in two geographically dis-
tinct regions in southern Cameroon (Keele et al., 2006). As shown schematically in
Figure 2.1, group M consists of several distinct clusters, called subtypes, and many
circulating and unique recombinant forms, which carry genetic material from two or
more subtypes. While subtype C accounts for approximately 55% of all HIV-1 infec-
tions worldwide, subtype B dominates in Europe, America, and Australia.

In the context of this thesis, the genetic diversity of HIV-1 is only relevant regard-
ing potential implications on computational procedures. While the impact of subtype
diversity on vaccine design is obvious, the impact on response to anti-HIV therapy,
resistance evolution and disease progression remains controversial (reviewed in Ca-
macho, 2006). However, and most importantly, it is very plausible that models derived
from databases (mostly consisting of subtype B sequences) by statistical learning are
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Figure 2.1: Phylogenetic relations among HIV and SIV groups and subtypes. From
(Simon et al., 2006).
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Figure 2.2: Structure of the HIV virion.

less reliable for other subtypes. In fact, for this very reason, it has been suggested that
“results using automated interpretation systems should be analysed and corrected by
an expert virologist before a final report is sent to the clinician” (Camacho, 2006). For
example, in predicting coreceptor usage from the sequence of the viral envelope pro-
tein (cf. Chapter 6), it has been reported that methods trained on subtype B sequences
perform poorly on subtype C data. As a consequence, a subtype-specific prediction
approach has been proposed (Jensen et al., 2006).

2.2 Structure of virion, genome, and viral proteins

HIV-1 virions are spherical particles with a diameter of about 100 nm (Figure 2.2(a)).
A schematic representation is shown in Figure 2.2(b). The virion is surrounded by an
envelope, consisting of a lipid bilayer. The prominent surface spikes are heterotrimeric
complexes consisting of three copies of the viral envelope protein gpl120 (cf. below
for details on the viral proteins), along with three copies of the viral transmembrane
protein gp41. Another spherical layer, consisting of copies of the p17 (matrix) protein,
is located immediately below the envelope membrane. The matrix layer serves to
stabilize the viral envelope. The actual core (or capsid) of the virion is located beneath
the matrix layer. The capsid is composed of about 2,000 copies of the viral p24 protein.

The viral genomic information is sheltered within the capsid. It consists of two
single-stranded copies of RNA, each about 9.7 kb in length. The two strands are iden-
tical or almost identical. Along with the genetic material, several viral proteins are
packaged within the core. Two of them are of particular relevance in the context of
this thesis. Reverse transcriptase (RT) is the key enzyme for catalyzing the conversion
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Figure 2.3: The HIV-1 genome. Currently approved antiretroviral drugs are targeted
against the viral protease, reverse transcriptase, and the transmembrane protein gp41.
Resistance mutations in the genetic regions encoding these proteins are highlighted.
From (Lengauer and Sing, 2006).

of viral RNA back to DNA. Without this RT-mediated conversion, the viral genome
could not be “rewritten” in a form appropriate for integration into the human genome.
The viral protease (PR) cleaves viral polyproteins into functional proteins. Without the
cleavage activity of PR, newly produced viral particles would remain non-infectious.

The viral genome contains nine genes that code for 15 proteins (Figure 2.3). The
genes occupy all three reading frames, with considerable overlap. The overall genomic
organization 5’ — gag — pol — env — 3’ is common to all retroviruses. In this thesis, we
are exclusively concerned with the proteins PR, RT, and gp120. These are encoded by
the pol (PR, RT) and env (gp120) genes, respectively. In the remainder of this section,
we shall summarize the main characteristics of the three enzymes.

HIV protease (Figure 2.4(a)) is a homodimeric enzyme consisting of two identi-
cal symmetrical subunits of 99 residues each. A cavity is located in the middle of
the enzyme, forming the substrate-binding cleft. The active site of the enzyme lies
at the bottom of this cleft. From the top, the cavity is covered by two mobile flaps
which allow the substrate to enter or leave. In HIV-1, and in several other viruses
(Flint et al., 2000, p.467-471), newly produced virions budding from an infected cell
are non-infectious. This is because HIV produces most of its proteins as polyproteins
which have to be cleaved into functional proteins before virus particles can mature
to become infectious. The polyproteins cleaved by HIV protease are Gag (encoding
structural proteins of the virus) and Gag-Pol (encoding the protease itself, the reverse
transcriptase, and the integrase). Protease-mediated cleavage of these precursors pro-
ceeds at different cleavage sites in a well-defined order. As mentioned in Chapter 1,
protease inhibitors (cf. also Section 2.4) did not only manifest a break-through in an-
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Figure 2.4: The viral proteins of relevance for this thesis. Rendered with the Pymol
software.
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tiviral therapy, but also represented one of the first successes of rational drug design.

Reverse transcription is the “hallmark of the retroid viruses” (Coffin et al., 1997).
The proposal that genetic information could be copied into DNA, and that this DNA
could become integrated into the genetic material of cells was originally considered
“heresy”! by most scientists because it violated the widely accepted “central dogma of
molecular biology” (Crick, 1970). The dogma states that information flow in nature
always occurs from DNA to RNA, and never in the opposite direction. However, in the
late 1960s, an enzyme — appropriately named reverse transcriptase — was discovered in
certain tumour viruses that could indeed produce DNA copies from RNA (Temin and
Mizutani, 1970; Baltimore, 1970). In 1975, the Nobel Prize in physiology or medicine
was awarded to Howard Temin and David Baltimore for these discoveries. The re-
verse transcriptase of HIV (Figure 2.4(b)) is a heterodimer consisting of two subunits
named p66 and p51. The p66 subunit contains two domains, polymerase (N-terminal,
440 residues) and RNase H (C-Terminal, 120 residues). The p51 subunit consists of
the polymerase domain from the p66 subunit. However, the spatial arrangement of the
two analogous domains is very different, and they are also associated with different
functions in the enzyme. The molecular process of reverse transcription is very com-
plex and not relevant in the context of this thesis (Flint et al., 2000, p.200-214). In our
context, the single most important fact is that unlike other DNA polymerases, the RT
lacks a proofreading mechanism. This results in a high number of errors during reverse
transcription, and constitutes the source for the extremely high variability of HIV in
vivo, which presents a major obstacle to successful therapy or vaccination (cf. Section
2.5).

The envelope protein gp120 is the building block (along with the transmembrane
protein gp41) for the surface spikes protruding from the envelope membrane. It con-
sists of about 480 residues, although its length is very variable compared to protease
or RT, where insertions or deletions occur much less frequently. The enzyme is com-
posed of three domains (Figure 2.4(c)). The “inner” domain (shown in orange) covers
the N- and C-terminal regions of gp120. It consists of two « helices, two (3 strands
and a small 3 sandwich next to the terminals”. The “outer” domain (blue) is a stacked
double barrel structure covering the middle of the sequence. The inner and outer do-
mains are connected by a “bridging sheet” (purple) which consists of four antiparallel
strands. In Chapter 6, we focus on the grey structure extending from the outer domain
as a loop. It is encoded by a highly variable region of the env gene of length 33 to
37. The region usually starts with the amino acid motif CTR or CIR, ends with AHC
or AYC, and contains a conserved GPG motif in the middle (mapping to the tip of loop
in the structure). Starting from the N-terminus of the gp120 primary structure, this

IPress release for the Nobel Prize in physiology or medicine 1975. From http://nobelprize.
org/nobel_prizes/medicine/laureates/1975/press.html.
Frequent structural motifs in proteins are reviewed in (Branden and Tooze, 1999, p. 13-88).
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Figure 2.5: The mechanism of HIV replication. From (Markel, 2005).

region is the third highly variable region (although the “constant” regions are far from
constant). For these reasons, it has been called the third hypervariable (V3) region, and
the structural motif the V3 loop. As discussed in detail in Section 6.1, the V3 loop has
been implicated as one of the main determinants of differential viral coreceptor usage.

2.3 Replication and pathogenesis

HIV-1 replication is a complex process whose outcome and duration depend on a num-
ber of factors, including target cell type and cell activation. As shown in Figure 2.5,
HIV cell entry is mediated by consecutive interaction with the CD4 cell surface recep-
tor and one of the two major coreceptors CCRS5 and CXCR4. After binding to CD4,
a conformational switch in the surface protein gp120 of HIV reveals the coreceptor
binding site, most notably, the third hypervariable loop region V3. The V3 loop is
considered to be a major viral determinant for coreceptor specificity, and will be a fo-
cus of Chapter 6. After successful binding to the coreceptor, fusion of the viral and
host cell membranes takes place (Berger et al., 1999). The coreceptor selectivity of the
viral population is of central pathological and clinical importance. In newly infected
patients, CCR5-using (R5) variants dominate. However, in around 50% of the patients,
CXCR4-using (X4) variants appear during later stages of the disease characterized by
progression towards AIDS (cf. Chapter 6).

During cell entry, the virion’s envelope and matrix layer are lost. However, the
capsid stays intact until the genome has been reverse transcribed to DNA. In the mean-
time, the capsid moves to the nucleus of the cell. There it opens and the viral DNA
(called provirus) enters the nucleus, along with other viral proteins. With the help of
integrase, another viral protein, the provirus is inserted into the human genome. This
marks the “turning point” (Simon et al., 2006) from which a cell is irreversibly trans-
formed into a potential virus producer. Viral mRNA is then produced by the normal
transcription machinery of the cell. The mRNAs are transported out of the nucleus
and translated into amino acid sequences consisting of multiple uncleaved proteins.
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Figure 2.6: Schematic course of viral and CD4" cell dynamics during HIV infection.
From (Coffin et al., 1997)

These polyproteins are then shipped to the cell membrane where they are packed into
new virus particles. Finally, the newly assembled virions bud from the cell, taking part
of the cell membrane as their envelope. Meanwhile, inside the virion, the protease
cleaves the non-functional polyproteins into functional proteins. Each of these steps is
the result of complex, temporally and spatially highly coordinated interactions, whose
details are still only partially understood and beyond the scope of this thesis.

As mentioned in Chapter 1, HIV-1 pathogenesis is characterized by a gradual de-
struction of the naive and memory CD4" T-lymphocyte populations, with AIDS as the
end stage (reviewed in Knipe et al., 2007, p.2187-2214). Figure 2.6 shows a schematic
representation of CD4" cell and virus dynamics in peripheral blood during the course
of infection. According to this picture, HIV infection is commonly divided into three
phases. The acute phase of infection is characterized by high plasma viral load and low
CD4™ cell counts. During peak levels of viral load, clinical symptoms can be mani-
fest. After several weeks, the acute phase levels off into a latent (asymptomatic) phase,
characterized by CD4" cell counts and viral load at relatively stable levels and the
absence of clinical symptoms. However, these stable levels are the result of a steady
state of virus and CD4™" cell dynamics in which rapid, continuous turnover takes place
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within these populations (reviewed in Douek et al., 2003).> The latent phase can last
between two and 20 years with slowly decreasing CD4" cell counts, until eventually
the immune system collapses, leading to fatal immunodeficiency, sharp increases in
viral load, and the emergence of AIDS-associated morbidities in the clinical phase of
infection.

The three-stage description of HIV pathogenesis suggests immune depletion to be
a direct consequence of HIV replication in the CD4" cell population. However, the
extensive amount of viral replication throughout the course of infection clashes with
the rather slow deterioration of CD4" cells (reviewed in Simon and Ho, 2003). In
fact, HIV RNA levels have been found to predict the rate of CD4" cell decline only
minimally, thus “challenging the concept that the magnitude of viral replication (as
reflected by plasma levels) is the main determinant of the speed of CD4" cell loss”
(Rodriguez et al., 2006). The inability to resolve this central question of HIV pathogen-
esis has stimulated heated debate within the scientific community, mostly concerning
the relative role of direct and indirect effects of viral replication (reviewed in Douek
et al., 2003). Recently, substantial attention has been devoted to the fact that most data
originate from peripheral blood. Such data can be easily obtained, but may provide
only a limited view of how HIV affects the immune system as a whole. In fact, a
rapid (within days) and dramatic depletion of both active and memory CD4" T cells
in gut-associated lymphoid tissues (which contain 70% of a body’s lymphocyte pop-
ulation) has been observed (Guadalupe et al., 2006). This depletion seems to remain
mostly irreversible (Mehandru et al., 2006), while the CD4" cell population in the
peripheral blood often returns to normal levels in response to antiretroviral therapy.
These data have been interpreted as establishing “that it is the virus in the acute phase
of the disease rather than immune activation in the chronic phase that is responsible
for the bulk of CD4™ T cell depletion” (Brenchley et al., 2006a) and that the major
battlefield might be located in gut-associated lymphoid tissue rather than in periph-
eral blood. However, this conclusion does not explain why sooty mangabeys infected
with SIV show a similar gut depletion, but almost never progress to immunodeficiency
(reviewed in Grossman et al., 2006). More recent work provides evidence that the
compromised lymphoid tissue in the gut may lead to circulating microbial products in
HIV but not in SIV infection, thus suggesting a possible explanation for differences in
human versus simian hosts. This bacterial translocation has been suggested as a ma-
jor cause of HIV-related systemic immune activation (Brenchley et al., 2006b). While
important details remain poorly understood, the recent work could lead to a “massive
reappraisal” (Check, 2007) of the mechanisms of HIV pathogenesis.

3Sompayrac (2002, p.69) uses more pictorial language in his description of this disease stage in
which “huge amounts of virus are produced, large numbers of CD4™" T cells are continuosly killed and
replaced, and in which the host immune system is engaged in a heroic battle to control and eliminate the
virus.”
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2.4 Anti-HIV drugs

As mentioned in Chapter 1, antiretroviral therapy is based on the hypothesis that max-
imal suppression of viral replication will prevent or delay immune deterioration and
avoid HIV-associated morbidity and mortality. Suppression is achieved by interfering
with the viral replication cycle at various steps. As of April 2007, 21 compounds from
different mechanistic classes have been approved by the US Food and Drug Adminis-
tration for anti-HIV therapy and two further compounds from entirely new classes are
expected to enter the market before the end of the year (Opar, 2007). In this section,
we shall give an overview of the different drug classes and their mechanism of action.

Reverse transcriptase inhibitors comprise more than half of the currently approved
anti-HIV drugs (Table 2.1). They interfere with the process of reverse transcription
via two different mechanisms. Nucleoside reverse transcriptase inhibitors (NRTIs)
are analogues of deoxynucleotides, the natural building blocks of DNA. However, un-
like deoxynucleotides, NRTTs lack a 3’-OH group which is needed for primer elonga-
tion. Thus, once incorporated into a growing cDNA strand, they will disrupt reverse
transcription by acting as chain terminators. NRTIs have formed the backbone of an-
tiretroviral therapy since the introduction of zidovudine as the first anti-HIV drug in
1987 (Table 2.1).

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) act as non-competitive
inhibitors of reverse transcriptase by occupying a hydrophobic pocket close to, but dis-
tinct from the catalytic domain of RT. The binding of the inhibitor induces a structural
alteration in RT, thus blocking its polymerase activity. In face of their high potency
coupled with lox toxicity, NNRTIs are preferred agents for first-line regimens and for
preventing mother-to-child transmission of HIV.

Protease inhibitors (PIs) mimic the natural substrates of the viral protease. They
occupy the active site of the enzyme, thereby preventing HIV protease from processing
the Gag and Gag-Pol precursor polyproteins (cf. Section 2.2) into functional proteins.
Unlike RT inhibitors, PIs do not prevent virus from persistently infecting cells by in-
terrupting the replication cycle before the irreversible “turning point” (cf. Section 2.3)
of integration. Rather, they prevent infected cells from producing infectious particles
by preventing maturation of budding virions. Due to their relatively poor bioavailabil-
ity, most PIs are co-administered with a low dose of ritonavir, a protease inhibitor that
inhibits cytochrome Pj5-mediated metabolism of these drugs. PIs have proven highly
effective in both initial and subsequent treatment regimens.

During the last few years, the novel drug class of entry inhibitors has rapidly moved
from laboratory to clinical evaluation (reviewed in Derdeyn and Hunter, 2005). Block-
ing extra- rather than intracellular interactions, entry inhibitors need not be transported
across the cell membrane. Different classes of entry inhibitors targeting distinct steps
in the process of HIV entry (cf. Section 2.3), including attachment, coreceptor binding,
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Table 2.1: Anti-HIV drugs with year of FDA approval. The coreceptor antagonist
maraviroc and the integrase inhibitor raltegravir are expected to receive FDA approval
in 2007.

Generic name  Abbreviation  Trade name FDA approval
Nucleoside reverse transcriptase inhibitors (NRTTs)
zidovudine ZDV, AZT Retrovir 1987
didanosine ddI Videx 1991
zalcitabine ddC Hivid 1992
stavudine d4T Zerit 1994
lamivudine 3TC Epivir 1995
abacavir ABC Ziagen 1998
tenofovir TDF Viread 2001
emtricitabine FTC Emtriva 2003
Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
nevirapine NVP Viramune 1996
delavirdine DLV Rescriptor 1997
efavirenz EFV Sustiva 1998
Protease inhibitors (PIs)
saquinavir SQV Fortovase, Invirase (SQV+RTV) 1995
ritonavir RTV Norvir 1996
indinavir IDV Crixivan 1996
nelfinavir NFV Viracept 1997
fos-/amprenavir FPV/APV Lexiva/Agenerase 2003/1999
lopinavir LPV Kaletra (LPV+RTV) 2000
atazanavir ATV Reyataz 2003
tipranavir TPV Aptivus 2005
darunavir T™™C114 Prezista 2006
Fusion inhibitors (FIs)
enfuvirtide ENE, T-20 Fuzeon 2003
Coreceptor antagonists
maraviroc (UK-427,857) (NA) (2007)
Integrase inhibitors
raltegravir (MK-0518) (NA) (2007)
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and membrane fusion, have arrived at various stages of clinical development. In 2003,
the fusion inhibitor enfuvirtide has become the first entry inhibitor to be approved by
the FDA (reviewed in Matthews et al., 2004). The work described in Chapter 6 is moti-
vated by the expected approval (reviewed in Opar, 2007) of the first member of a novel
subclass of entry inhibitors called coreceptor antagonists (Westby and van der Ryst,
2005). These drugs prevent HIV entry by blocking one of the cell-surface receptors
used by HIV as a coreceptor. Unlike previous anti-HIV drugs, coreceptor antagonists
target host, rather than viral proteins.

Many other drugs are under investigation. Another drug class whose first member
is expected to become approved in 2007 are integrase inhibitors. With two new classes
of anti-HIV drugs poised to enter the market in 2007, “a watershed in HIV treatment,
second only to the introduction of cocktail therapy more than one decade ago” (Opar,
2007) has been anticipated. Currently, about 20 anti-HIV drugs are in various stages of
clinical development, most of them belonging to entirely new classes of drugs (Opar,
2007), and many more are in pre-clinical stages of the drug development pipeline.
Moreover, novel drugs (e.g. tipranavir or darunavir) from “traditional” classes (NRTI,
PI, NNRTI) are being designed so as to minimize cross-resistance (cf. Section 2.5)
with older drugs from the same class.

Besides antiretroviral drug therapy — the focus of this thesis — several other anti-
HIV strategies are investigated, including immune-based therapies, RNA interference,
or the clearance of latent reservoirs (all reviewed in Butera, 2005). While fully sup-
pressive antiviral therapy in combination with effective clearance of latent reservoirs
could provide a cure for HIV, the complete eradication of the disease would crucially
depend on the development of a preventive vaccine. Indeed, the availability of such a
vaccine was proclaimed within two years after the discovery of HIV in 1983/84 (Smith,
2003). The eradication of smallpox through vaccination programs which had been de-
clared by the World Health Organization in 1979 served as an encouraging example
at that time. However, over twenty years later, and with more money spent than for
any other vaccine effort in history (Cohen, 2005), the race towards an HIV vaccine has
proved nothing but a “Sisyphean onslaught of disappointments” (Markel, 2005). Still,
the potential of thwarting millions of new HIV infections each year more than justifies
the ongoing high investments in HIV vaccine research. In fact, the 125-year celebra-
tion issue of the journal Science has selected the question “Is an effective HIV vaccine
feasible?” (Cohen, 2005) as one of 25 scientific questions of outstanding impact until
2030 (Kennedy and Norman, 2005).

2.5 Evolution, drug resistance, combination therapy

Drug resistance refers to the ability of a viral population to replicate in the presence
of drug. The first accounts of HIV drug resistance appeared shortly after approval of
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the NRTI zidovudine as the first anti-HIV compound (Larder et al., 1989). In the same
year, mutations in reverse transcriptase were identified as a cause for reduced suscepti-
bility (Larder and Kemp, 1989), establishing a link between viral genotype and clinical
resistance. Since then, the mechanisms of HIV drug resistance have been studied ex-
tensively. In general, resistance mutations occur in regions of the viral genome coding
for the drug target.* They alter the structure and/or chemical properties of the targeted
enzyme such that its molecular function is no longer inhibited. Two different mech-
anisms of NRTI resistance are known (reviewed in Marcelin, 2006): the improved
differentiation between real nucleosides and nucleoside analogues, and the excision of
already incorporated analogues in a process called “primer unblocking”. Resistance to
NNRTIs involves mainly mutations in the RT pocket targeted by this class of drugs,
reducing the affinity of the inhibitors for the enzyme. PI resistance is believed to be a
more gradual process, with initial, or “primary” mutations appearing near the subtrate-
binding cleft of the enzyme. The structural alterations in the cleft lead to reduced
susceptibility. During ongoing treatment, ““secondary” mutations arise in other parts of
the protease and can lead to drastic increases in resistance. Resistance to coreceptor
antagonists can be manifest by a shift in coreceptor usage of the viral population, or
by increased affinity to the current coreceptor (reviewed in Poveda and Soriano, 2006).
Resistance to other drug classes is beyond the scope of this thesis. Due to the similarity
of compounds within a given drug class, it is often observed that resistance selected by
one compound also confers a certain degree of resistance to other, non-administered,
compounds (“cross-resistance”).

Resistance to chemical intervention was nothing new in 1989. When the first re-
ports on HIV drug resistance appeared, resistance had already been described in more
than 500 species (reviewed in Palumbi, 2001). The time to emergence of resistance
depends heavily on a species’ genetic variability and population turnover. Herbicide
and insecticide resistance often evolves within time scales of about a decade from de-
ployment (Palumbi, 2001). Resistance to antibiotics can evolve even faster, due to the
increased variability and turnover of bacterial populations. For example, the first re-
ports on penicillin resistance appeared within three years after its first use. Even faster
bacterial evolution has been observed under controlled laboratory conditions (Lenski
et al., 2003; Papadopoulos et al., 1999).

The highest rates of evolution, however, are observed within virus populations, at
the border between the living and non-living world. This is especially true for RNA
viruses, whose RNA polymerases (or, in the case of retroviruses, reverse transcriptases)
typically lack proofreading-repair activity (in the form of a 3’ to 5° exonuclease do-

“Resistance mutations can also appear in substrates, leading to enzyme-substrate co-evolution. For
example, in the context of PI resistance, mutations in the protease-cleavage sites in Gag have been shown
to emerge in response to therapy. Such mutations are considered as “compensatory” in the sense that
they restore the catalytic activity of resistance enzymes, which is often reduced compared to wild-type
enzymes.
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main). For many RNA viruses, mutation rates have been estimated to lie in the range of
1073 to 10~° misincorporated nucleotides per nucleotides copied (reviewed in Knipe
et al., 2007, p.395). For HIV-1 with wild-type reverse transcriptase, a mutation rate
of 3.4 x 107° has been estimated (Mansky and Temin, 1995). Given HIV’s genome
length of about 10 kbp, this means that an average of 0.1 to 1 misincorporations per
template copied are to be expected. Owing to this powerful source of variability, RNA
virus populations consist of complex distributions of mutant genomes — often termed
quasispecies (Domingo, 2005; Domingo et al., 2001) — rather than defined genomic se-
quences. Another source of variability is provided by recombination. Recombination
in HIV is the formation of new genomes by template switching of the reverse tran-
scriptase between two different genomes within a multiply infected cell. It has been
reported to occur between two and three times per template copied (Jetzt et al., 2000;
Zhuang et al., 2002; ?) — an even higher rate than the rate of nucleotide misincor-
poration. While nucleotide misincorporation and recombination provide the source of
variability, the speed of adaptation depends heavily on the turnover of a population. In
HIV, the turnover is extremely high, with a total daily virion production on the order
of 10%, and a replication time of only one to three days (reviewed in Simon and Ho,
2003).

In practice, the extraordinary variability and turnover of HIV populations render
monotherapy effectively useless: Clinical resistance to monotherapy has been observed
as early as one or two weeks after infection (Richman et al., 1994; Condra et al., 1996).
In fact, in the case of NNRTTISs, resistance has been reported to appear after only a single
dose of monotherapy, which was given with the intention of preventing mother-to-child
transmission (Jackson et al., 2000; Cunningham et al., 2002). Moreover, follow-ups of
early clinical trials revealed that the observed short-term benefits of monotherapy as
compared to placebo therapy vanished over longer observation periods, with respect
to either virological, immunological or survival endpoints (reviewed in Butera, 2005).
In the light of these problems it was hypothesized from early on that “combination
therapies that target different viral replicative sites likely will [...] help prevent drug
resistance” (Hirsch, 1990). This hypothesis could be tested in the early 1990s, when
two additional NRTIs were approved, didanosine and zalcitabine (Table 2.1). Several
clinical trials (reviewed in Butera, 2005, p.5-8) compared zidovudine monotherapy
with the first combination therapies consisting of zidovudine and either didanosine
or zalcitabine. The results of these studies were convincing enough to establish a new
standard of care for anti-HIV therapy lasting until the mid-1990s: combination therapy
with two NRTIs.

The real breakthrough for combination therapy occurred in the years 1995/1996,
when the first drugs from the novel classes of PIs and NNRTIs became available. In
several trials, combination regimens consisting of NRTIs plus one PI or NNRTI sub-
stantially outperformed purely NRTI-based combinations (reviewed in Butera, 2005,
pp.- 9-16). These findings can be readily understood when considering the extraordi-
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Figure 2.7: Dose-response curve for zidovudine, determined using an in vitro recom-
binant assay. The curve for the patient virus is shown in brown, whereas the reference
virus is shown in blue. The quotient between the 50% inhibitory concentration (ICs)
of the patient virus (14 pmol) versus the reference virus (1.4 pmol) represents a ten-
fold change in susceptibility. Other parameters of the curve, such as the slope or the
IC90 (the drug concentration that induces the reduction of viral activity to 10% of the
activity in the absence of the drug), might have clinical relevance as well, but are not
used routinely. From (Lengauer and Sing, 2006).

nary variability and turnover of HIV in vivo mentioned above: since variability is so
high that virtually all possible point mutations along the HIV genome are produced on
a day-by-day basis (Coffin, 1995), a certain level of resistance to any single drug is
likely to be present in the population at any time. However, it is highly unlikely that
a number of mutations conferring resistance to multiple classes of drugs are present
on a single genome a priori. As a consequence, combination therapy with three or
more drugs from two different classes quickly became the standard of care. Highly
active antiretroviral therapy (HAART), as the strategy was called for almost a decade’,
led to a dramatic reduction in HIV-related morbidity and mortality from 1995 on (e.g.
Mocroft et al., 1998; Hogg et al., 1998; Palella et al., 1998). Moreover, the emergence
of resistant variants can be delayed substantially with this strategy. Still, residual repli-

SRecently, the more neutral term “combination antiretrovial therapy” (cART) has been preferred.
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cation will eventually lead to the production of multi-drug resistant virus and subse-
quent therapy failure. Combined with the existence of viral reservoirs (cf. Section 2.3),
this means that HIV-infected individuals are in need of life-long combination therapy
under changing regimens. Apart from the serious consequences for patients, life-long
therapy also imposes a tremendous burden on public health: Based on an estimated life
expectancy of 24.2 years from time to entering HIV care, the lifetime cost for treat-
ment of a single HIV patient in the US has been estimated to be $618,900, with 73%
of this sum accounted for by the cost of antiretroviral drugs (Schackman et al., 2006).

As mentioned above, reduced susceptibility to drugs in vivo can be quantified by
viral load measurements from blood samples. Viral load tests are usually given in units
of “viral RNA copies per milliliter (cp/ml)” of blood plasma. For example, a value of
10° cp/ml indicates that 50,000 virions per ml are present (since each virion carries two
copies of RNA). However, the link between mutations in the viral genotype and viral
load is confounded by many additional parameters, such as inter-individual differences
in immunology, drug metabolism, other host factors, or viral fitness. Moreover, given
the ubiquitous use of combination therapy, it is far from straightforward to infer the
contributions of individual drugs from such measurements. Thus, absolute levels of
viral load are problematic as direct measures of viral resistance to a given drug. Rather,
drug resistance should be quantified in isolation (i.e. in the absence of the confounding
factors mentioned above) under well-controlled laboratory conditions. In phenotypic
resistance assays (Schutten, 2006), the virus under inspection (or parts of its genome
engineered into a cultivatable reference strain) is exposed to different concentrations
of a single drug, and its replication is measured. The result is a curve (Figure 2.7) that
represents the decreasing activity of the virus with increasing drug concentrations. The
most common summary measure for this curve is the 50% inhibitory concentration —
that is, the drug concentration that halves viral activity. The fold-change in the 50%
inhibitory concentration between a patient’s virus and a sensitive reference isolate,
sometimes called the resistance factor,

RF — IC50(clinical virus)
~ ICs(reference virus)

is then used as a scalar representation of resistance to a specific drug. Commercial

phenotyping is available, for example from the companies Virco® and Monogram Bio-
: 7

sciences’.

2.6 Challenges and opportunities for modeling

One aim of this chapter was to review the necessary background on HIV. Another aim
was to raise awareness for the opportunities and challenges to modeling in the field

Swww.vircolab.com

Twww .monogrambio.com
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of anti-HIV therapy. In particular, rational (or model-based) therapy would greatly
benefit from advances in the following areas:

e Models linking variations in the viral genotype, differences in phenotypic (in
vitro) properties, and individual response to therapy in vivo.

e Models tailored to the characteristics of specific novel drug classes.

e Models for viral evolution in the presence and absence of drug, and their ex-
ploitation in the clinical management of HIV infection.

All of these challenges will be addressed in this thesis. The research includes devel-
opment of novel methodology, application to clinical data, comprehensive evaluation,
and implementation in software. Throughout the thesis, particular attention is devoted
to three modeling strategies:

e Expanding models to accomodate additional input data, such as host markers or
clinical parameters.

e Refining models by incorporating domain-specific statistical, evolutionary, or
structural aspects.

e [nterpreting and visualizing models and data to discover novel knowledge, avoid
“black-box’ solutions, and encourage both clinical application and experimental
validation.

The implementation of these strategies in specific problems depends heavily on the
precise goals, the amount of data and the prior knowledge available. Often, several ap-
proaches may be feasible and priorities have to be set. These issues shall be discussed
within the general context of modeling in the next chapter.
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3

Modeling with Data: The Views of
Aristotle and Plato, and Later
Developments!

Science is modeling. Scientific models are formal representations of natural phenom-
ena that must be able to make quantitative predictions about unobserved events.? The
work presented in this thesis spans three “cultures” of modeling: machine learning
(e.g. Section 5.3), classical statistics (e.g. Section 4.2), and domain-specific explana-
tory modeling (e.g. Sections 4.3 or 6.4). The main purpose of this chapter is to provide
a unifying perspective by showing how these cultures are concerned with the same
problems, differing mainly in their adoption of more empirical or more explanatory
perspectives.

3.1 Generality, predictive power, explanatory power
Three important, and widely discussed, characteristics of models are:
e Generality: the breadth of natural phenomena for which a model claims to apply.
e Predictive power: the degree to which a model agrees with observations.

e Explanatory power: the degree to which the architecture of the model reflects
the actual mechanisms of nature.

Generality is a very intuitive concept. A more general model is usually regarded
as superior from a scientific point of view. However, if the predictive power of a

I'The title of this chapter is chosen in humble reference to (Lehmann, 1990).

2Many researchers and philosophers of science also require scientific models to be falsifiable. This
means that the unobserved events for which predictions can be made need to be observable in principle
(Popper, 1959).
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less general model is sufficient for some phenomena, it may be preferred to a more
general model in these cases (e.g. classical vs. quantum mechanics). Note that given
two models, it need not be the case that one of them is more general than the other.
Predictive power is also intuitive. Obviously, models with higher predictive power are
preferred in general. However, often there is a trade-off between predictive power and
the computational demands of a model. Thus, for many purposes, predictive power is
deliberately sacrificed in favor of computational feasibility.® Heisenberg’s uncertainty
principle suggests that there are upper bounds to predictive power at least in some
modeling domains.

Explanatory power, while superficially intuitive, is a more complex and contro-
versial concept, as it involves assumptions on the relationship between models and
reality.* Moreover, it is controversial whether explanatory power is desirable or even
achievable (reviewed in Blackburn, 2005). Two extreme viewpoints are taken.

3.2 Scientific realism vs. instrumentalism

Scientific realism declares the goal of science “to find the real law of Nature” (Vapnik,
2005). For realism, scientific models are about “something out there, ’external’ and
(largely) independent of us”, about “an objective, external world” (Fine, 1986), and
the elements of a model are equated with elements of the “real” world. Consequently,
realism judges models by both their predictive and explanatory power. Scientific real-
ism is often traced back to Aristotle (e.g. Duhem, 1969), who distinguished between
“understanding the fact and understanding the reason why” (quoted from Freudenthal,
2003).

In contrast, instrumentalism (also called scientific anti-realism), considers models
as “nothing but computation rules” (Popper, 1968), “a heuristic device, a calculating
instrument for predictions alone” (Rosenberg, 2000, p.103), thus “denying that sci-
entific theories seek to describe the underlying realities that systematize and explain
observational generalizations” (Rosenberg, 2000, p.103). In language more familiar to
our community, Nature is assumed to form “the outputs y from the inputs = by means
of a black box” (Breiman, 2001b), and models will not aim to be literal descriptions
of the inner working of this black box. Consequently, instrumentalism judges models
by their predictive power, and possibly by their generality, but does not attempt to de-
fine criteria for explanatory power. Instrumentalism is often traced back to Plato (e.g.
Duhem, 1969), who believed that “genuine scientific knowledge of our material world
is impossible” (Good, 1999), and who “started the tradition of ’saving the appearances’

3For example, Baker and Sali (2001) have compared different scenarios in which de novo protein
structure prediction, threading, or comparative modeling might be most appropriate.

“In the philosophy of science, such assumptions are termed epistemological, or meta-theoretical, (cf.
e.g. Rosenberg, 2000).
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in astronomy” (Niiniluoto, 2007).

Ever since the times of Plato and Aristotle, discordant interpretations of models
from realistic vs. instrumentalistic attitudes have been a source of controversy and
heated debate. For example, the famous controversy between Galileo Galilei and the
Catholic Church in 1633 — considered by many as the starting point of the “scientific
revolution” (Kuhn, 1957) — was about whether the Copernican (heliocentric) model
of planetary motion should be interpreted realistically (Galileo) or instrumentalisti-
cally (Church). While scientific realism appears to reflect the motivation of scientific
endeavor most naturally, there are substantial concerns about the feasibility of such in-
terpretations, which have led to claims that “the realist programme has degenerated by
now to the point where it is quite beyond salvage” (Fine, 1986). Most notably, quantum
mechanics, “the most precisely tested and most successful theory in the history of sci-
ence” (Kleppner and Jackiw, 2000), is interpreted from a decidedly instrumentalistic
point of view by most researchers, for example by denying the wave function a “real”
existence.’. A particularly striking example — in which instrumentalistic interpretation
is inevitable — is given by attempts to provide models for effective procedures, or “al-
gorithms”. Dozens of completely different models for effective procedures have been
shown to be mathematically equivalent (e.g. Turing machines, lambda calculus, or -
recursive functions (Taylor, 1998)). To date, no “recipe” for performing a specific task
has been described which could not be instantiated in any of these models. Thus, while
all models are equivalent, and possibly “perfect” in the sense that they give a complete
picture of effective computation, at most one of them could be “true” from a realistic
point of view.

3.3 Explanatory vs. empirical models

As discussed above, from a realistic perspective, models are not only judged accord-
ing to generality and predictive power, but also by their explanatory power. Models
that merely aim to “save the appearances”, i.e. provide predictive power without an at-
tempt to suggest a physical explanation of the modelled phenomena, are often termed
empirical models. In contrast, models suggesting to mimic the underlying physical
principles of a system are termed mechanistic, or explanatory models. Healy (1978)
polemizes this dichotomy by distinguishing between “technological” vs. “scientific”
models, stating that “in contrast to the scientist, the technologist is not concerned with
truth at all.” (Healy, 1978).

Empirical models are widely and successfully used throughout science and tech-

nology. Their use can be advocated using pragmatic or instrumentalistic arguments.
The pragmatic attitude contends that empirical models are “better than nothing” in

SThis is part of the “Copenhagen” or “standard” interpretation of quantum mechanics first advocated
by Bohr and Heisenberg (reviewed in Ismael, 2004)
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situations when little is known about the system to be modelled, where there are nu-
merical identifiability or parameterization problems, or where a more general or mech-
anistic model might be computationally intractable. Often, empirical components are
incorporated within a generally mechanistic model, which is often referred to as a
semi-mechanistic model, for example in quantum chemistry or in pharmacokinetic/-
dynamic modeling. From an instrumentalistic attitude explanation is not necessary
(or even possible), leaving mainly generality and predictive power as criteria for judg-
ing models. Possibly the oldest justification for using empirical models is due to the
stoic philosopher Geminus (c.10 BC — ¢.60 AD), who stated that “it is no part of the
business of the astronomer to know what is by nature suited to a position of rest, and
what sort of bodies are apt to move, but he introduces hypotheses under which some
bodies remain fixed, while others move, and then considers to which hypotheses the
phenomena actually observed in the heavens will correspond” (quoted from O’Connor
and Robertson, 2003)).

In Section 3.5.2, we shall discuss, using the example of planetary motion, that there
is in fact not a strict dichotomy between empirical and explanatory models. Rather, all
explanatory models rely on some empirical components or assumptions. Thus, in-
stead of a dichotomy, it may be more appropriate to think of a continuum from more
empirical to more explanatory models. For example, Newton, whose model of plane-
tary motion explained the elliptical motion which was empirically assumed in Kepler’s
model (cf. Section 3.5.2), was very much aware of the unexplained assumptions in his
own model (most notably the nature of gravity), as apparent from his famous phrase:
“I have not yet been able to discover the cause of these properties of gravity from
phenomena and I feign no hypotheses” (Cohen and Whitman, 1999, p.943).

3.4 Statistical vs. “machine learning” models

In this section, we shall briefly review a modeling discussion in the statistics com-
munity, which at its core is also about more empirical vs. more explanatory model-
ing. Central articles in this debate include (Lehmann, 1990; Chatfield, 1995; Breiman,
2001b), although the roots of the discussion go back to Neyman (1939), who distin-
guished between “explanatory” vs. “interpolatory” models. The classical approach to
developing more empirical models has been statistics (in the frequentist, parametric
paradigm): First, a stochastic data model for a phenomenon to be modelled is estab-
lished. Then, an attempt is made to estimate the “true” values of the parameters from
data about the phenomenon. The parameterized model can then be used for prediction
or — from the perspective of scientific realism — in attempts to learn and understand
more about the underlying process.

In this classical approach, it is implicitly assumed that enough domain knowledge
exists that allows for pre-specifying the model accurately. This assumption has
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been criticized widely, for example “as being at worst an arbitrary imposition of the
modeler’s assumptions on the data and at best an inflexible approach to modeling
data” (Jordan, 1994). The relatively late increase in interest on model specification
could be due to the fact that is was considered from the beginning as “entirely a matter
for the practical statistician” (Fisher, 1922). In other words, “the theoretician is happy
to accept that his abstract probability triple (€2, A, P) was found under a gooseberry
bush, while the applied statistician’s model ’just growed’ [...]” (A. P. David, quoted
in Lehmann, 1990).

While statistics considered itself the “home” of empirical modeling, a “second cul-
ture” (Breiman, 2001b) grew rapidly from outside statistics, defining its activity as
“machine learning” or “data mining”. Machine learning might be defined as empirical
modeling without imposing constraints on the stochastic nature of the data generation
process. Rather, the data generation process is treated as unknown, as a “black box”
(Breiman, 2001b). This paradigm is taken to the extreme in situations “where the an-
alyst looks at a new set of data with virtually no preconceived ideas at all” (Chatfield,
1995). It is assumed that “the correct model is truly unknown” and that the models
considered “need not be of the same form and none of them need to be correct” (Hosk-
ing et al., 1997). This opposition to classical parametric statistics is also reflected in a
new terminology, in that models are “learned” instead of “parameterized”. In the mid-
to late 1990s, the statistics community was surprised by the rapidly increasing popu-
larity of this other culture (Chatfield, 1995; Hosking et al., 1997; Friedman, 1998) and
it was realized: “We are no longer the only game in town. Until recently if one were
interested in data analysis, Statistics was one of the very few even remotely appropriate
fields in which to work. This is no longer the case. There are now many other exciting
data oriented sciences that are competing with us for customers, students, jobs, and
our own statisticians.” (Friedman, 1998).

Arguably, the roots of both cultures trace back to 1823, when Carl Friedrich Gauss
(1777-1855) described his method of least squares. We shall use this foundational
contribution as an example for coarsely outlining the different flavour of statistics
and machine learning. Suppose we are given data in the form of a vector of sam-
ples (z1,y1), .-, (Tn,yn), with z; € RP~! and y; € R. Suppose also that our model
for these data is f(x) = By + Bix1 + ... + Bp—12,_1, .. a simple linear relationship
between inputs and outputs. For notational convenience let y = (y1,...,y,)", and
denote by X the n X p matrix

1z - T1,p—1
1 xo1 -+ @ap

1 Tpl 0 Tpp-1
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A typical machine learning argumentation would be not to assume anything addi-
tionally about the data generation process or about the role and distribution of noise.
Rather, “learning” would consist in finding a model that is optimal according to some
loss function (e.g. Scholkopf and Smola, 2002, p.61), most commonly the squared
error loss. In this formulation the desired set of parameters B would be specified as

~

BZM@%My—X@Wy—X@-

This formulation, which is closest to Gauss, is purely geometrical, and so far contains
no additional assumptions about the data generating process and the noise.

In contrast, classical statistical modeling requires an explicit formulation of the
data generating process, including the distribution of noise. This is accomplished by
“constructing a hypothetical infinite population, of which the actual data are regarded
as constituting a sample. The law of distibution of this hypothetical population is
specified by [...] parameters.” (Fisher, 1922). The simplest approach is to assume
that samples are drawn independently from each other, and that they are equipped with
noise that is normally distributed. More formally, the data model would be

y=X0+e

with
e x N(0,0°1).

The search criterion is then also defined statistically, for example in terms of the like-
lihood function L, () = Ps(z). Then the desired parameters are those that maximize
the likelihood function:

~

b= arg mgnx L.(B).

It is easy to see that the parameter vector that maximizes the likelihood is also the one
that minimizes the sum of squares. Thus, in this example, parameter estimation and
“learning” will lead to the same fitted model.

Examples of approaches originating from the “second culture”, where the neces-
sity for modeling the data generation process is abandonded, include nearest neighbor
methods (reviewed in Hastie et al., 2001, pp. 411-436), decision trees (reviewed in
Hastie et al., 2001, pp.266-279), rule set induction (reviewed in Mitchell, 1997, pp.
274-306), neural networks (reviewed in Bishop, 2006, pp. 225-284), support vec-
tor machines (reviewed in Scholkopf and Smola, 2002), or ensemble methods such as
bagging or boosting (reviewed in Hastie et al., 2001, pp. 299-344), or random forests
(Breiman, 2001a). It should be noted that ensemble methods and other extreme forms
of generic empirical modeling pose serious challenges to the interpretability of the
learned model: “Doctors can interpret logistic regression. There is no way they can
interpret a black box containing fifty trees hooked together.” (Breiman, 2001b).
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Even though some of these models can be interpreted from the point of view of
statistical modeling (e.g. (Jordan, 1994, decision trees), (Pontil et al., 2000, SVMs),
(Friedman et al., 2000, Boosting)), in most cases, the reformulations are less elegant
and less general than the original descriptions of the methods. While some methods,
such as SVMs or neural networks have in common with statistical models that the
method is based on an objective function which is optimized during learning, for other
methods (e.g. trees, random forests, boosting) there is not even an objective function in
the original formulation, and “the algorithm is the true starting point” (Faraway, 2006).

Often, explicitly modeling the data generation and noise processes will be more
explanatory — if successful — than the use of very generic machine learning methods.
Thus, developing a statistical model may be appropriate when more domain knowl-
edge is available. In contrast, machine learning (or data mining, or nonparametric
regression) is especially suited for situations in which very little known about the phe-
nomenon to be modelled, and for complicated domains with many variables of uncer-
tain importance. Consequently, the approaches developed in these fields rely on weaker
assumptions as those in classical parametric statistics. Still, there is no learning method
without “inductive bias” (e.g. Mitchell, 1997, pp. 39-45). For example, in decision
tree learning, it is assumed that the predictor space can be adequately partitioned into
axis-parallel regions. The famous “No Free Lunch” theorems (reviewed in Wolpert,
2001) imply (among many other things) that no learning method can outperform any
other method in general.

As in the discussion of empirical vs. mechanistic models in the previous sec-
tion, we suggest to consider “statistical” vs. “machine learning” modeling not as a
dichotomy, but rather as a continuum in the range of more empirical models, extend-
ing from empirical models with some explanatory components to highly generic em-
pirical models. This “continuum” view is supported by several observations. Firstly,
there are many connections between partially explanatory statistical modeling (which
would generally still be regarded as part of empirical methodology) and modeling
approaches that reflect genuinely mechanistic or explanatory thinking. For example,
the “population-based” approach to pharmacokinetics is often based on a combination
of mechanistic, compartmental pharmacokinetic or pharmacodynamic modeling using
differential equations with an estimation procedure based on nonlinear mixed-effects
modeling (Pinheiro and Bates, 2000). Support for the “continuum” perspective is also
provided by the increasing “cross-talk” between the disciplines. For example, more
recent textbooks in applied statistics devote entire chapters to concepts and methods
originating in machine learning (e.g. Wasserman, 2004; Faraway, 2006). Using labels
such as “greater statistics” (Chambers, 1993); “wide view of statistics” (Wild, 1994), or
“learning from data” (Hastie et al., 2001), statistical methodologists have been adver-
tising the expansion of statistical modeling to encompass the whole modeling process,
including model specification and selection. In turn, statistical methods are becoming
more and more popular in machine learning, and much work is devoted to develop-
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ing statistical foundations for the field (e.g. Vapnik, 1998). The defining difference
between this paradigm of “statistical learning”, as compared to traditional parametric
statistics is that the underlying distribution class is considered unknown. Thus, the-
orems should usually hold for any distribution on X x Y. Famous examples include
Vapnik-Chervonenkis type inequalities or other concentration of measure inequalities
(Scholkopf and Smola, 2002, chapter 12). The confluence of ideas from machine learn-
ing and classical statistics is also apparent in fields such as semi-parametric regression
(e.g. Ruppert et al., 2005), which explicitly seeks to develop models combining para-
metric with nonparametric components.

Ultimately, “any method of analysis should be [...] judged on whether it success-
fully predicts or explains something. Statistical models may achieve this, but algo-
rithmically based methods are also competitive” (Faraway, 2006). Depending on the
problem at hand and the amount of domain knowledge available, in empirical mod-
eling, “the best solution could be an algorithmic model, or maybe a data model, or
maybe a combination.” (Breiman, 2001b)

3.5 Examples

In this section, we try to substantiate the abstract discussion of the previous sections
with some illustrative examples.

3.5.1 Empirical models and the “Rashomon” effect

We begin with an example given by Breiman (2001b). Consider the following three
alternative linear models:

Yy = 2.1+ 38$3 — 061’8 + 83.21’12 - 2.11‘17 + 3.21’27
Yy = —8.9 + 461‘5 + 001.776 + 12.0%15 + 17.51’21 + 0.233'22

These are three five-variable linear regressions selected from 30 variables that are all
within 1.0% test set error of each other. The example exhibits what Breiman calls the
“Rashomon effect”: “that there is often a multitude of different descriptions [equations
f(z)] in a class of functions giving about the same minimum error rate” (Breiman,
2001b). From an instrumentalist perspective, this is not a source of concern, as long as

the predictive power of these models is sufficient (evaluated on independent test data).

However, from the point of view of scientific realism, where we are not only con-
cerned about predictive, but also about explanatory power, having to choose among
these models is a disturbing task. Obviously, none of the three models describes “the
real laws of Nature” (Section 3.2) — rather, they are purely empirical (Section 3.3),
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1.e. chosen to fit the data (or, an independent validation set) as well as possible, without
regard to their relation to true underlying processes.

3.5.2 Modeling planetary motion

In this section we shall review the classical example of scientific modeling: planetary
motion. The example will underline the statement from Section 3.3 that empirical vs.
explanatory modeling should be regarded not as a dichotomy, but rather as a continuum
of possibilities.

For an observer on Earth, the trajectories of the planets appear very complicated,
and it was considered a major challenge since Ancient Greece to accurately predict
(and possibly, but not necessarily, explain) these trajectories. One particularly bewil-
dering phenomenon was that of retrograde motion — a change in direction of a planet
over a time frame of several weeks when observed from the Earth (Figure 3.1). We
now know that the complexity of the observed trajectories is due to the revolution of
the planets around the Sun, combined with the rotation of the Earth around itself (even
complicated by a tilted rotation axis, i.e. one which is not orthogonal to the plane of
revolution).

A model developed by Ptolemy (c.90—c.168 AD) became the basis of all further
work for nearly 1,500 years. In this model, the Earth is located at the center. The
Sun and the other planets revolve around this center in circular orbits. However, the
movement of a planet does not take place on the cycle itself, but rather around an
epicycle, another cycle of smaller radius which is moving itself along the main cycle
(Figure 3.1(a)). The Ptolemaic model was famously challenged in 1543 by Nicolaus
Copernicus (1473—-1543). In his treatise “On the Revolution of the Celestial Orbs”,
Copernicus proposed a model of circular planetary motion with the Sun, rather than
the Earth, at the center® (Figure 3.1(b)), sharing however with the Ptolemaic model the
use of epicycles.

The Copernican model, despite its huge explanatory implications, did not fit the
data better than the Ptolemaic model. In this bewildering situation of many conceptu-
ally and computationally different models, Tycho Brahe (1546-1601), aged only 17,
formulated a life-long research agenda in his diary: “I’ve studied all available charts
of the planets and stars and none of them match the others. There are just as many
measurements and methods as there are astronomers and all of them disagree. What’s
needed is a long term project with the aim of mapping the heavens conducted from a
single location over a period of several years.””. This agenda led to the first systematic
large-scale data collection effort in the history of science: Between the years 1582 and

®While heliocentric models had been proposed already in ancient India and Greece, they gained little
popularity at that time.

"Quoted from Wikipedia, http://en.wikipedia.org/wiki/Tycho_Brahe, version:
May 13, 2007.
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(a) Ptolemaic geocentric model. (b) Copernican heliocentric model.

Figure 3.1: Heliocentric vs.  geocentric models of planetary motion (from
http://faculty.fullerton.edu/cmcconnell/Planets.html). The
phenomenon of apparent retrograde motion can be seen in the planet trajectory pro-
jected onto the celestial sphere (red lines).

1600 Brahe collected, among other data, a series of 923 measurements of the declina-
tion of the planet Mars. With Tycho’s death, Johannes Kepler (1571-1630), originally
an assistant of Tycho, began to analyze the data on his own. After over six years of
work, thousands of pages of calculations, and many different attempts and dead ends
(Koestler, 1989), he came to the conclusion that all previously suggested models were
insufficent in explaining Brahe’s data up to the limits of measurement error. More-
over, he proposed a new model in which Mars (as well as the other planets) moves in
elliptical orbits with the Sun at a focus.

From a modern perspective it should be noted that the proposed heliocentric models
(with or without epicycles) can all be described by means of an observationally equiv-
alent geocentric model with epicycles (Hanson, 1960; Gearhart, 1985; Fitzpatrick,
2006). In fact, “there is no [...] curve used in any branch of astrophysics or obser-
vational astronomy today which could not be smoothly plotted as the resultant motion
of a point turning within a constellation of epicycles, finite in number [...]” (Hanson,
1960). Thus, from an instrumentalist perspective, the use of a geocentric reference
would be simply regarded as a change in the coordinate system for practical purposes,
without any physical implications. In terms of predictive power, there is no advantage
at all to the heliocentric models of Copernicus or Kepler, as compared to geocentric
models in the spirit of Ptolemy. Rather, the difference between heliocentric and geo-
centric modeling lies in their explanatory power: in the geocentric model, retrograde
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motion is predicted accurately by assuming that planets move on rather complicated
epicyclical trajectories. In contrast, in the heliocentric model of Kepler, planetary mo-
tion proceeds along much simpler (elliptical) trajectories, and retrograde motion is
explained as only perceived and apparent for an observer on Earth, rather than “real”.
In conclusion, geocentric and heliocentric models stand side by side as computational
tools, but heliocentrism offers a much simpler explanation of retrograde motion. As
mentioned in Section 3.2, the famous controversy between Galilei and the Catholic
Church in 1633 was precisely about whether heliocentrism should be interpreted from
the perspective of instrumentalism or from that of scientific realism.

While Kepler’s model explained retrograde motion as a consequence of observing
an elliptical motion from a moving planet, it did not provide an explanation for the
cause of elliptical motion: the model class of ellipses was assumed on a purely empiri-
cal basis. Isaac Newton (1643—1727), in the third volume of his Principia, described a
model of planetary motion which was equivalent in predictive power to Kepler’s model,
but which far superseded it in terms of generality and explanatory power. In Newton’s
model, Kepler’s empirically derived model of elliptic orbits appears as a special case
from a much more comprehensive model for predicting the motion of all bodies based
on the concept of forces acting between the bodies according to three axioms, with the
forces themselves originating from another axiom, the law of universal gravitation.

Newton’s work provided a mechanistic explanation for Kepler’s model with ob-
servational equivalence. However, like its predecessors, this model is not devoid of
empirical elements and unexplained concepts. Most importantly, there is no expla-
nation of how gravitational forces should be mediated, and how this should happen
instantaneously (particularly, at faster than light speed). Newton himself was aware of
this explanatory inadequacy, but tried to put it into perspective with an instrumentalis-
tic argumentation: “It is enough that gravity does really exist and acts according to the
laws I have explained, and that it abundantly serves to account for all the motions of ce-
lestial bodies.”®. In the 20th century, Albert Einstein resolved this action-at-a-distance
problem in his general theory of relativity by introducing a curved spacetime. How-
ever, Einstein’s model does in turn not explain the mechanisms by which spacetime
becomes curved by mass and energy.

Thus, the history of models for planetary motion appears as a history of provid-
ing explanations for previously empirical assumptions: Kepler’s model explained the
retrograde motion unexplained in Ptolemy’s model, Newton’s model explained the el-
liptical trajectories unexplained in Kepler’s model, and Einstein’s model explained the
apparent action-at-a-distance of gravity unexplained in Newton’s model. We see how
explanatory improvements in a sequence of models were achieved by subsequently
introducing more general, or “fundamental” concepts. However, these more general

8Quoted from Wikipedia’s article on “Newton’s law of universal gravitation” (version: April 22,
2007), which in turn quotes from (Westfall, 1978).
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concepts are then left as empirical assumptions without further explanation.

3.5.3 Modeling sunflower growth

This is one of two examples in which we consider how more explanatory models can
lead to improvements in predictive power, as compared to purely empirical models —
if the structure of the phenomenon assumed in the explanatory model matches reality
sufficiently well.

Reed and Holland (1919) have collected weekly measurements of the height of 58
sunflowers grown under uniform conditions.” Growth of plants or animals provides a
very simple situation in which a priori background knowledge is available from obser-
vations of many different species: growth begins at a slow rate, becomes increasingly
fast over time, but finally slows down until it eventually comes to a halt.'® Moreover,
the height of a plant or animal can be assumed to never decrease. A classical model
for such a pattern is the logistic model,

fw:%-
14+e ¢

Figure 3.2 shows the mean heights of the 58 sunflowers at weekly intervals be-
tween 7 and 84 days. Only the heights at 28, 35, 42, 49, and 56 days (shown in red)
are used for model fitting. Predictions are then made for the entire time span. Models
used are empirical approaches based on linear regression (dashed), polynomial (order-
four) regression (dotted), support vector regression with radial basis function kernel
and standard hyperparameters (dash-dotted), and a less empirical model based on the
assumption of logistic growth (solid). It is obvious that all three empirical models
lead to unrealistic predictions: linear regression predicts indefinite growth, fourth-
order polynomial regression predicts shrinkage after a period of growth, and support
vector regression predicts a shrinkage-growth-shrinkage pattern. Only a less empiri-
cal model, incorporating the background knowledge that (a) no shrinkage will occur,
and (b) growth will ultimately slow down and come to a halt, leads to qualitatively
reasonable predictions.

3.5.4 Modeling in population genetics

The sunflower example introduced above showed how a slightly less empirical model
(incorporating some background or a priori knowledge on plant growth) could greatly
improve over very empirical, off-the-shelf methods. We now turn to an even more

°This publication was identified by searching on the Web with terms such as “logistic”, “bilogistic”,
and “growth data”.

100f course there are indefinitely many other growth patterns and corresponding models, which are
outside the scope of this thesis, cf. (Case, 2000).
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Figure 3.2: Sunflower growth measurements (points) reported in (Reed and Holland,
1919). The horizontal axis represents the time in days after onset of the study, the
vertical axis represents the average height of the considered sunflowers in centimeters.
The lines represent three different models fitted to the red points: a logistic growth
model fitted by nonlinear least-squares minimization (solid line), a fourth-order poly-
nomial regression model (dashed line), and a support vector regression model (dotted
line). The green points are used as a test set to estimate the generalization ability of
the methods.
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extreme example, in which we show the differences in predictive performance (and
also interpretability) that can be gained when the nature of the data-generating process
is modelled correctly. The system is a simplified form of that studied in Section 4.1.
Here, we consider an infinite population whose individuals consist of two biallelic (0
or 1) genetic loci. Thus, the state of the population can be described by the fraction
of genotypes: poo, Po1, P10, and pq1, per definition summing up to one. Population
dynamics is introduced via operators for mutation and selection. Mutation is assumed
to take place independently at each locus with a symmetric, constant mutation rate of f,
leading to the mutation matrix shown in Section 4.1.3. Here, we assume a fixed “weak”
selection, with the following fitness values w, assigned to genotypes g: wgy = 1,
wor = 1.01, wyp = 1, wy; = 0.99. Thus, the system obeys the following dynamics
(explained in detail in Section 4.1.3):

iy (w, Mp(t))
PO = T, 3p(0)]

We simulate 1,000 trajectories with random initial genotype frequencies (uniformly
drawn from the population simplex, cf. Section 4.1.3), and random mutation rate (uni-
formly distributed in [0, 1]), but always the same fixed fitness values. These trajectories
are sampled at times 0, 1,...9. Our goal is to learn how to estimate the mutation rate
from observed trajectories.

p(t)

Gaussian noise with mean zero and standard deviation ¢ is added to the trajectories.
After adding noise, genotype frequencies at each time point are renormalized to one.
The 1, 000 simulations are replicated with the standard deviations

o € {0.0,0.001, 0.0025, 0.005, 0.0075, 0.01, 0.05, 0.1}

An example trajectory with o = 0.01 is shown in Figure 3.3.

We first adopt a completely agnostic approach to predicting mutation rates from
population trajectories. We use support vector regression with radial basis function
kernel (insensitive loss is set to € = (.01, otherwise standard parameters are used) to
derive models from trajectories with known mutation rates. Ten-fold cross-validation
is used on the 1,000 trajectories with corresponding mutation rates to obtain unbiased
estimates of predictive performance.

As an alternative, we assume that the form of the model is known, except for mu-
tation rates. Using this model, learning from observations is not necessary. Rather, the
mutation rate is predicted by minimizing the sum of squared differences between the
noisy observations and simulations of the system with various mutation rates.

The predictive performance of these two different models is summarized in Ta-
ble 3.1. As expected, the reliability decreases monotonically with increasing noise.
In general, the mechanistic model far outperforms the empirical model. However, the
performance decrease between noise rates 0 = 0.01 and o = 0.1 is much sharper for
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Figure 3.3: Sample trajectory of the two-locus system of population dynamics. The
dotted lines represent the numerical solution to the system, while the solid line con-
nects the samples taken at time points 0 to 9 with Gaussian noise of mean zero and
standard deviation (.01 added.
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the mechanistic model. At a noise of 0.1 the empirical model even slightly outper-
forms the mechanistic model, although both predictions are highly unreliable in that
case, since noise has become the dominating influence in the observations.

Noise MAE r?
SVM | ODE | SVM | ODE
0.0 0.11] 0.00[ 0.71] 1.00

0.001 0.11 | 0.00 | 0.71 | 1.00
0.0025 | 0.11 | 0.01 || 0.69 | 0.99
0.005 0.12 | 0.02 || 0.68 | 0.98
0.0075 || 0.12 | 0.03 || 0.67 | 0.96
0.01 0.13 | 0.04 || 0.63| 093
0.05 0.19 | 0.17 || 034 | 0.40
0.1 022 025 0.15| 0.13

Table 3.1: Predictive performance of support vector regression (SVM) and non-linear
least squares fitting to the mechanistic model (ODE). The comparison shows mean
absolute error (MAE) and squared correlation coefficient (r?) between predicted and
true mutation rates for various magnitudes of noise in the observations.

3.5.5 Summary

The previous examples have underlined the following points:

e Explanatory modeling aims to be faithful to what we think are the true mech-

anisms of a natural process. Explanatory and empirical modeling are not to
be seen as a dichotomy, because each model includes certain empirical compo-
nents. From an antirealistic point of view, the explanatory power of a model is
not a relevant characteristic.

A model that is “wrong” from a realistic point of view may be observationally
equivalent (i.e. behave identically in any respect) to a more “correct” model.
This is the case for geocentric epicycle models in the tradition of Ptolemy which
are observationally equivalent to the later heliocentric models.

Empirical models based on few assumptions can have drastically higher predic-
tive performance than explanatory models based on wrong assumptions. This
indicates that statistical learning “can be applied to some problems where classi-
cal methods cannot be used” (Vapnik, 2005). For example, in an engineering ap-
plication, Cejudo et al. (2002) concluded: “The neural network models are more
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adequate to simulate wheel performance because, in this case, the hypotheses of
the physical model are not in accordance with the reality.”.

e [f the assumptions of an explanatory model are appropriate, it can vastly out-
perform generic empirical models in terms of both predictive and explanatory
power, as has been shown in the examples on sunflower growth and on popula-
tion genetics.

3.6 Modeling strategies in this thesis

The level of explanatory power provided in this thesis is generally more limited than
in biomedical fields with a more established tradition of explanatory modeling, for ex-
ample pharmacokinetics and pharmacodynamics. In fact, many studies on mechanistic
modeling in the context of HIV dynamics have been published, but they often rely
on unrealistic assumptions regarding the genetic basis of drug resistance. Moreover,
validations on real, independent data are scarce. In such a situation, the use of an inad-
equate mechanistic model would mean sacrificing predictive power compared to that
achievable by modern statistical learning methods.

Figure 3.4 may serve as a metaphor for the current state of model-based anti-HIV
therapy. It shows the original Mars data of Tycho Brahe!! (black points) with a super-
imposed fit obtained using a modern empirical regression method (blue line). While
the fit might be regarded as reasonable even in cross-validation (red points), it is ob-
vious that the level of explanatory power is far below any of the models reviewed
in Section 3.5.2, as there is not even a notion of moving bodies incorporated in the
model. Still, in terms of predictive power, such a model would be far superior to a very
inadequate mechanistic model based on, say, rectangular orbits.

Despite this primary focus on predictivity (rather than explanation) throughout this
thesis, we describe several steps away from purely empirical modeling to the incorpo-
ration of domain-specific or semi-mechanistic elements. However, to ensure that these
extensions are not seen as an exercise for its own sake, they are always benchmarked
against purely empirical approaches. Whenever possible, the impact of variables (e.g.
mutations or clinical parameters) affecting a modelled system is quantified and inter-
preted. Domain-specific background knowledge is incorporated in several places, for
example in Section 4.3, in which a model of viral evolution is coupled with a method
for predicting drug resistance via a custom Fisher kernel. Another example, reported
in Section 6.4, is a model that explains changes in viral coreceptor usage phenotype
in terms of changes in the side-chain orientation pattern of the viral envelope protein,
thus taking into account the fact that phenotypic changes are ultimately mediated by
physico-chemical alterations in specific proteins. It is not always straightforward to

URetrieved from http://www.pafko.com/tycho/observe.html.
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Figure 3.4: The data collected by Tycho Brahe, consisting of 923 observations
recorded between the years 1582 and 1600. The observed values (shown as black
points) show the declination of the planet Mars. Red points show predictions for these
data using support vector regression from ten-fold cross-validation. The blue curve
shows the fit of a support vector regression when using the entire data set.
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decide on a particular modeling strategy a priori. Often, several alternatives are con-
ceivable, and it is far from clear which one will be the most promising. For example,
our first approach to the problem of modeling mutation loss during interruption of
therapy was based on a linear mixed-effects model. However, the survival analysis
approach presented in Section 4.2 proved to be superior both in terms of model fit and
in terms of explanatory power.

In 1900, David Hilbert proclaimed the axiomatization of physics to be a major aim
of 20th-century mathematics, a research programme which became known as number
six in the famous list of Hilbert’s problems (Schirrmacher, 2003). His explicit goal
was to win mathematicians “over to the inspirations that flow into mathematics from
the side of physics” (quoted from Schirrmacher, 2003). Without doubt, the subject of
physics was chosen as an example because it was the most advanced among the sci-
ences at that time, and because it had the most well-established tradition of quantitative
modeling. However, Hilbert did not think of physics alone, rather he was deeply con-
vinced that “any science is at any time not only ripe enough but necessarily requires
axiomatization” (quoted from Schirrmacher, 2003). One hundred years later, mathe-
matics is at the verge of becoming “biology’s next microscope (only better)” and in
turn biology “mathematics’ next physics (only better)” (Cohen, 2004). Is the time ripe
for formulating a sixth Hilbert problem for biology and medicine? How would young
paradigms such as data mining, machine learning, or hypothesis-free science fit into
such an agenda? In the spirit of this chapter, we should praise them as opportunities
for starting empirical modeling earlier than ever before, even in the complete absence
of problem-specific knowledge. Ultimately, however, they are nothing but initial steps
on the quest for a better understanding and explanation of Nature.
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4

Viral Evolution: Foundations and
Clinical Implications

Futuyma (1998, p.4) defines biological evolution as “change in the properties of pop-
ulations of organisms, or groups of such populations, over the course of generations”.
He emphasizes that “the changes in populations that are considered evolutionary are
those that are ’heritable’ via the genetic material from one generation to the next”.
Because many biological properties can be understood more easily in the light of evo-
lution, evolutionary theory has been called “the one theory that transcends all of biol-
ogy” (Nowak, 2006). It is important to understand that evolution happens on the level
of populations, not on the level of an individual. In fact, we shall focus on the evolution
of a population consisting of a single species; the study of interactions between groups
of populations is part of the field of ecology (Case, 2000).

Beerenwinkel (2004, p.37-42 & p.55-69) provides a very good introduction to
evolutionary theory. In addition, much of the relevant work is now conveniently avail-
able in standard text books. For these reasons, we shall only provide the minimal
background necessary to understand the research presented in this chapter. This back-
ground will be introduced in the appropriate sections. Two general introductions to
evolutionary theory, which are concise, highly readable, and complement each other
well, are given by Gillespie (2004, focusing on classical population genetics) and
Nowak (2006, focusing on evolutionary theory beyond population genetics). Specific
monographs on HIV-1 modeling (mostly focusing on evolution and epidemiology) are
also available (Crandall, 1999; Nowak and May, 2000; Rodrigo and Learn, 2001; Tan
and Wu, 2005). Methodologically, population genetic modeling is in no way different
from any other kind of modeling in biology. General introductions to this broader field
include (Edelstein-Keshet, 2004; Britton, 2003; Allman and Rhodes, 2004; Haefner,
2005; Murray, 2002, 2004).

This chapter is structured as follows. In Section 4.1, we study fitness landscapes
and their impact on the evolutionary dynamics of a population. In the other two sec-
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tions of this chapter, we ignore population dynamics, focusing exclusively on the dy-
namics of mutation fixation or loss within a population. Specifically, Section 4.2 is
concerned with viral evolution in the absence of drug pressure. While treatment in-
terruptions (TIs) are not a recommended treatment strategy against HIV, unplanned
TIs are an inevitable part of antiretroviral therapy for many patients (e.g. due to non-
adherence or suboptimal drug levels). To our knowledge, this is the first study on
mutation dynamics based on methods from survival analysis. The final section (4.3)
serves as a bridge from the present chapter to Chapter 5, since we show how to use
evolutionary modeling for a clinical purpose, namely to improve the prediction of drug
resistance from genotype. We build on ideas originating in differential geometric ap-
proaches to statistics and refined in the field of statistical learning to derive a so-called
“Fisher kernel” for the mutation dynamics model of mutagenetic tree mixtures.

4.1 Shapes of fithess landscapes and population dy-
namics'

We study the relation between the shape of a fitness landscape and the fate of a popula-
tion of multilocus genotypes, using the time to equilibrium as a proxy of evolutionary
outcome. Shapes are shown to be related via symmetries determined by the genetic
operators that govern the dynamics of the population. Using large-scale numerical
simulations, we show that the shape of the fitness landscape is significantly associated
with time to equilibrium. Recombination speeds up the onset of equilibrium within all
shapes, although the magnitude of the effects appears to be shape-dependent. Classifi-
cation of fitness landscapes according to their shape is shown to be complementary to
a rank-based classification, suggesting potential synergies from a hybrid classification
scheme.

41.1 Introduction

Fitness landscapes quantify the reproductive success of the individuals in a genetically
heterogeneous population. They enter evolutionary models via a selection operator.
Intuitively, the concept of fitness aims at providing a simple scalar-valued summary of
the many different factors in the life cycle of organisms that affect their reproductive
success, such as viability (probability to survive to reproductive age), mating success,
age of reproduction, or fertility (number of produced offspring). Models that integrate
selection with other genetic operators, such as mutation or recombination, usually lead
to complex, nonlinear systems with analytically intractable dynamics. As a conse-
quence, considerable attention has been devoted to the identification of features of

I'The work reported in this section was performed in collaboration with Niko Beerenwinkel (Berke-
ley).
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fitness landscapes that are associated with certain evolutionary “outcomes’.

One of the most widely studied features of fitness landscapes is epistasis (reviewed
in Cordell, 2002), which quantifies fitness interactions between pairs of alleles at dif-
ferent loci. Epistasis has been linked to evolutionary properties of a system in various
ways, most prominently in studies investigating the advantage of sex and recombina-
tion (e.g. Feldman et al., 1974, 1996; Grote et al., 1998; Weinreich, 2005). Epistatic
effects in HIV-1 have also been subject to a large-scale study, with evidence for positive
epistasis (Bonhoeffer et al., 2004).

Given its definition in terms of pairs of loci, classical epistasis may fail to discover
or describe higher-order dependencies among loci in multi-allelic (n > 2) scenar-
10s. Addressing this shortcoming, Beerenwinkel et al. (2006) have suggested a novel
classification system for fitness landscapes. In this system, landscapes are classified
according to their geometric “shape”. In the case of two loci, the shapes of a fitness
landscape correspond exactly to the different forms of classical epistatic interaction
(positive, negative, no interaction). Based on this observation, the novel classification
scheme has been hypothesized to play a role of similar importance in describing the
evolution of multi-locus systems as classical epistasis has been found to play for bial-
lelic systems. In this chapter, we provide empirical support for this hypothesis. For the
sake of clarity and simplicity, we focus on a minimal extension of the classical case: a
three-locus monoallelic system, whose dynamics is determined by infinite population
size, continuous time, exclusively fitness-dependent selection, and locus-independent
mutation and recombination rates. Moreover, we focus on only one proxy of the many
possible measures of evolutionary outcome, namely the time until the system reaches
equilibrium. We find a strong statistical association between the shape of the fitness
landscape and the time to equilibrium.

4.1.2 The shape of a fithess landscape

In this section we briefly review the concept of the shape of a fitness landscape, as
proposed in (Beerenwinkel et al., 2006).>

Genotype space and fithess landscape.

We consider the genotype space § = {0, 1}" (for most of the discussion we shall
focus on the case n = 3). A genotype g € G with g; = 0 is said to carry the wild
type allele at locus i, whereas g; = 1 is referred to as the mutant allele. A fitness
landscape on § is a function w : § — R>(. Each coordinate w, of w denotes the
logarithm of the reproductive fitness of genotype g. In order to classify landscapes
according to their “shape” or “curvature”, one needs a continuous object, rather than a
discrete assignment of fitness values to individual genotypes. The solution suggested

2We sacrifice some generality for ease of exposition.
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by Beerenwinkel et al. (2006) is to extend w from individual genotypes to populations.

Population simplex and genotope.

Here, we shall focus on populations of infinite size, such that a population can be
considered a point in the population simplex Ag = {p € [0,1]9 : 37 _cp, = 1}. The
cumulative allele frequencies in a population p are summarized as a point in the n-cube
IIg = [0,1]". More precisely, if v = (v1,...,v,) € Ilg, then v; = 37, g .1y Dy.
Thus, v; denotes the frequency of the mutant allele at locus 7 in the population p € Ag.
We refer to Ilg as the genotope. Note that Beerenwinkel et al. (2006) consider a more
general setting, in which the genotope need not be an n-cube. Rather, it can be any
convex polyhedron, depending on the genotype space G.

Continuous fitness landscape.

The continuous fitness landscape 1 is defined as a scalar function on the genotope 11g,
based on a fitness landscape w. The continuous fitness landscape maps allele frequen-
cies to population fitness values. The fitness of a population is defined as the frequency-
weighted average fitness of the individuals in the population: (p, w) = > geg WoPg- A
point v in the genotope (representing a specific allele frequency) corresponds to a fiber
in the population simplex, consisting of all the populations with a given allele fre-
quency. Beerenwinkel et al. (2006) define the value @w(v) of the continuous fitness
landscape at this allele frequency as w(v) := max(p, w), where the maximum is taken
over all populations p with allele frequency v. Obviously, w has the same values as w
on the vertices of 1Ig (for w, these vertices are interpreted as single populations rather
than allele frequencies).

Shape of a fithess landscape.

The central insight underlying the novel classification of fitness landscapes laid out by
Beerenwinkel et al. (2006) is that for all fitness landscapes w the induced continuous
fitness landscape w defined over the genotope Ilg is continuous, piecewise linear, and
convex, and that the domains of linearity are the cells of a regular polyhedral subdi-
vision IIg(w) of the genotope. Indeed, for almost all (w.r.t. Borel measure) w, the
subdivisions are even simpler, namely regular triangulations. Thus, the domains of
linearity of w are simplices. The subdivision IIg(w) induced by w is called the shape
of the fitness landscape w. The set of all polyhedral subdivisions of the genotope (and
thus, the set of all shapes of fitness landscapes) is represented by an object called the
secondary polytope, which can be algorithmically computed. For n = 2, only two
regular subdivisions exist; these correspond exactly to positive and negative epistasis,
respectively. For n = 3, there are 74 shapes of fitness landscapes (Beerenwinkel et al.,
20006).
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4.1.3 Evolutionary dynamics

The evolutionary model used in this study generalizes the two-locus model of Chris-
tiansen et al. (1998) to an n-locus genotype space § = {0, 1}". We follow the evolution
of an infinite (and thus deterministically evolving) population through generations of
recombination, mutation, and selection (in this order). These evolutionary events are
represented as mappings

R, M y S Ag I Ag

that transform a population into a next-generation population according to the rules of
the given event.

Selection.

In our model, selection is purely fitness-proportionate, so that S is defined as

S() (w, p)

PP i,

where the denominator ensures that » gegPg = 1 still holds after selection.

Mutation.

Mutation is symmetric, so that a locus may mutate either from 0 to 1 or vice versa.
Mutation events at different loci occur independently from each other with constant
rate ;. Thus, the mutation rate from genotype g to genotype ¢’ is given by

Yily ag il =yt
[gg = =" OTA (L — )T e
The effect of mutation on a population can then be written using the linear operator

M(p) = Mp = (figg' ) gg'-

Recombination.

The possible patterns of recombination given two genotypes ¢gt!) and ¢(® are defined
by the function
r: §x{1,2}" — G,
(99,9, k) — gg") gl
The index vector k determines for each locus whether the corresponding locus of the
recombinant should carry the genetic information of ¢* or ¢(®. We always assume

k1 = 1. Recombination events at different loci occur independently from each other
with constant rate p. Thus, the recombinant r(¢("), g, k) is produced with rate

n—1 n—1
a = pzizl Ly #k; . (1 — p)zizl Lioi =k
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Mating is assumed to be random, so that the fraction of recombinants of genotype g
after recombination is equal to the sum of the individual recombination events between
any two genotypes ¢ and ¢(® which lead to g, weighted by both the probability of
drawing ¢(!) and ¢® from the population and the recombination rate towards ¢:

R(p) = (ﬁg)gGS € Ag, with
Py = > Dy Py A
{9, @ k1 r(g™M),g(2) k)=g}
The combined system.

In discrete time, the sequence of recombination, mutation and selection stages maps a
population at generation ¢ to a population at generation ¢+1 via the system of difference
equations

p(t+1)=(SoMoR)(p(t)).

From this time-discrete system, we obtain the corresponding time-continuous ver-
sion in the standard way (Edelstein-Keshet, 2004): Starting with the discrete identity

p(t+1) —p(t) = (So Mo R—1I)(p()),
we extend the identity to infinitesimally small time steps, and obtain:

L P+ 0) — p()

ﬂ@)zd_m 5

— (SoMoR—I)p(t)).

Example: The system equations in two loci.
In two loci, the mutation matrix is given by

00 01 10 11
00 ((L—p)?® p@l—yp) pld—-p)  p@

_ _ 0| p(l=p) Q=p)?® g p(l—p)
M=Uder = 10| wi—p) 1w a=p? wli-p |
1\ 2 p(l—p) p(l—p) (1-p)?

and recombination can be written concisely as

00 / —L

o1 L
Rp)=pr+r 4| 1 |

11\ —L

with L being the classical linkage disequilibrium (Gillespie, 2004), L = poop11 —
Po1P1o-



4.1. SHAPES OF FITNESS LANDSCAPES 53

4.1.4 Symmetries of the ODE system

The system of ordinary differential equations introduced above has some interesting
invariance properties. To formalize these properties, we write .S, instead of .S for the
selection operator, to emphasize its dependence on the fitness vector w. We further
define, for any permutation o € Sym(9), the induced mapping

Yo : R — RS

(*rOOOu e 7$111) — (55071(000), e Jrl(nl))

Moreover, let c M := y,-10M o,, and likewise for recombination. For selection,
we will also have to permute the fitness vector accordingly: oS, = X,-1 0 Sy, (w) ©
Xo- This defines a group action (Sagan, 2001) of Sym(S) on the set {of : 0 €
Sym(9)}. The symmetries of the ODE system defined by f are represented by the
stabilizer subgroup 8(f) (Sagan, 2001) of Sym(§) with respect to f, i.e. the set {o €
Sym(§) : of = f}. The following proposition establishes these stabilizers for the
genetic operators in our system (proofs were performed by exhaustive enumeration in
the computer algebra system Mathematica™; the code is available on request).

Proposition. The stabilizer subgroups of Sym(S) with respect to selection, mutation,
and recombination are given by

8(Sw) = Sym(§),
S(M) = Oha
S(R) = D1h4 XZQ.

OJ

Here, Oy, is the symmetry group of the 3-cube, of order 48. This group consists
of 24 rotations, plus one reflection each. It is generated by two rotations and one
reflection. The group can be easily visualized by noting that it is isomorphic to Sy X Zs.
Every permutation within the group is defined by choosing a permutation of the four
diagonals in the 3-cube (S4), and by setting a “flag” whether to reflect at a fixed axis
or not (Zs). Thus, informally, permuting the initial conditions of our system will lead
to equivalent dynamics if and only if the permutation is an isometry of the 3-cube.

The symmetries of the system under recombination are even more restricted. The
group Dihy is the dihedral group of order 8. The product Dihy X Z, is one of the 14
groups of order 16. Note that Dihy X Zy C Oy, C Sym(§), such that the symmetries of
the full system So M o R are exactly those of the system containing only recombination.
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Example. We shall explain the previous proposition in the context of a numerical
example. Let ;o = 0.07, and

w = (.6739.9994 .9616 .0589 .3603 .5485 .9618 .5973)",
p(0) = (.2065 .1931 .0972 .0466 .0437 .0537 .2587 .2405)".

In addition to the original w and p(0) vectors, we consider them in the following per-
mutations:

o1 = (000 100)(001 101)(010 110)(011 111) € Dihy X Zs,
oy = (000 100)(001 110)(010 101)(011 111) € Oy, \ Dihy xZs, and
o3 = (000100 101 001)(010)(110)(111)(011) € Sym(G) \ Op.

Permutation o; is simply a reflection at a parallel of the 0** plane of the 3-cube,
whereas o5 is a reflection at this plane, followed by a reflection at the plane through
the vertices 000, 100, 011, and 111. Finally, o3 rotates the genotypes *0*, but leaves
all the genotypes *1* in place. Figure 4.1 shows the results of simulating the original
and permuted systems, for each permutation once without recombination (left column;
subfigures a, c, e, g), and once with recombination rate R = 1.0 (right column; subfig-
ures b, d, f, h). As stated in the proposition, without recombination, the dynamics of
the system are identical to those of the original system for the permutations ¢ and o5
(subfigures c, e), because the permutations are from Oy,. With o3 € Sym G\ Oy, slightly
different trajectories and equilibrium states are obtained, as expected. In contrast, with
recombination, we only observe identical trajectories for permutation o1 € Dihy X Zs
(subfigure f), and the dynamics are already different for o5. For o3 (subfigure h), yet
another different set of trajectories is obtained. Note the impact of recombination on
the mutation-selection balance in permutations o, and o3, where the most prevalent
genotype at equilibrium differs depending on whether R = 0 or R = 1.

4.1.5 Simulations

The simulations described in this section are performed to investigate two questions:

e The predictive value of shapes on evolutionary outcome (time to equilib-
rium). Are some shapes associated with inherently reduced or extended times
to system equilibrium?

e The effect of recombination. Is there a consistent effect of higher recombi-
nation rates on time to equilibrium across all shapes? Is there some consistent
effect within particular shapes? Or is there no statistically significant association
of recombination rate with shapes?
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Figure 4.1: The trajectories of the three-locus system defined in the example. The left
column shows trajectories without recombination, whereas the right column shows the
corresponding system with recombination rate R = 1. The top row shows the original
system, whereas rows 1 — 3 show the effects of applying the permutations o4, 05, and

o3 to the fitness vector w, and to the initial genotype frequencies p(0). Different colors

indicate different genotypes.
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Simulation setup. The simulations were performed according to Algorithm 1. A
mutation rate 4 is drawn uniformly from [0, 1]. An initial population p(0) is drawn uni-
formly from the population simplex Ag = {p € [0,1]9: 3~ __;p, = 1}. Uniform dis-
tribution on this simplex is represented by the Dirichlet(1,1,1,1,1,1,1,1) distribution.?
Finally, a fitness vector w is drawn uniformly from [0, 1]®. Using this combination of
i, p(0) and w, the ODE system is then simulated with four different recombination
rates 0 (no recombination), 0.1, 0.5, and 1 (maximal recombination). To minimize bias
resulting from differences in the relative fitnesses of genotypes in the population, the
simulation is replicated in all 40,320 possible permutations from Sym(5). This whole
procedure is replicated 1,000 times, leading to a total of 1,000 (replicates) x40, 320
(permutations) x4 (recombination rates) = 161, 280, 000 simulated systems. The sim-
ulations were performed using Matlab™with the ode45 solver (code is available on
request) on 40 CPUs in parallel for the independent simulation runs. Time to equilib-
rium was defined as the time point at which all trajectories have entered a 1% margin
around their equilibrium.

for : <— 1 to 1000 do
i < a random number drawn from the uniform distribution on [0, 1];
p(0) < a random vector drawn from the Dirichlet(1,1,1,1,1,1,1,1)
distribution;
w < a random vector from the uniform distribution on [0, 1]%;
foreach p € {0,0.1,0.5,1.0} do
foreach o € Sym(9) do
Simulate the system using p, p, ow, op(0);
Record for this set of parameters the time until the system is in
equilibrium;
end
end
end

Algorithm 1: Simulating trajectories for random populations.

Results. Figure 4.2 shows the results of our simulation study. For each of the 74
shapes of fitness landscapes, the mean time to equilibrium for the simulated popu-
lations is indicated by the hight of the corresponding bar. Black bars correspond to
recombination rates of 0, whereas increasingly lighter gray tones indicate recombi-
nation rates of 0.1, 0.5, and 1.0, respectively. Each of the 161, 280, 000 population

3The naive approach of sampling eight numbers uniformly from [0, 1], and then normalizing them to
one would not yield the desired uniform distribution on the population simplex.
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simulations contribute to exactly one of the bars. The results can be summarized as
follows:

e For each of the four recombination rates p € {0,0.1,0.5,1.0}, the mean time to
equilibrium strongly depends on the shape of the fitness landscape. For example,
in the absence of recombination, the mean time to equilibrium in shape 74 is
only little more than ten units of time. In contrast, a mean of 60 time units is
necessary in shapes 20-25 to reach equilibrium in the absence of recombination.
The visual impression is confirmed by the Kruskal-Wallis test, which tests for
the null hypothesis that the time to equilibrium is the same in the 74 different
shapes. For all four recombination rates, this null hypothesis can be rejected
with extremely high significance (p < 1071°).

e Within all shapes, presence of recombination leads to shorter times to equilib-
rium in mean. However, the relation between recombination rate and mean time
to equilibrium appears to be non-monotonic, the minimum being reached at in-
termediate recombination rates.

e The speed-up in time to equilibrium mediated by recombination varies across
the different shapes of fitness landscapes.

4.1.6 Comparison with a rank ordering classification of fitness
landscapes

Another classification system for fitness landscapes was recently proposed by Wein-
reich (2005). Briefly, the classes of fitness landscapes in that system are based on the
rank ordering of the genotypes according to their fitness values. For example, all fit-
ness vectors w, for which wyyy < wper < ... < wyp; would be grouped into the same
class according to their common rank ordering of genotypes. Symmetry considera-
tions reduce the number of distinct classes to below the theoretically possible number
of |§|!. In particular, Weinreich (2005) focuses on fitness landscapes lacking sign epis-
tasis, giving rise to eight different classes of landscapes for three loci. In this section,
we compare this combinatorial classification to the geometric classification based on
the shape of the landscape proposed by Beerenwinkel et al. (2006).

Fitness landscapes were generated by drawing eight samples from the uniform dis-
tribution on [0, 1]. These were then permuted such that the eight classes of Weinreich
(2005) are sampled uniformly. Table 4.1 shows both classifications for 10, 000 fitness
landscapes generated according to this scheme. Interestingly, even though the sam-
pling scheme was restricted to landscapes lacking sign epistasis, all of our 74 shapes
are hit by samples. Nevertheless, a small number of shapes receive the largest number
of hits.
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Figure 4.2: Time until reaching equilibrium within the different shapes of fitness land-
scapes, for different recombination rates p. The rates p € {0,0.1,0.5,1.0} are indi-
cated by increasingly lighter gray scale.
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Table 4.1: Sampling 10,000 fitness landscapes lacking sign epistasis, as described in
the text. Rows indicate the eight classes of fitness landscapes according to Weinreich,
while columns indicate the 74 shapes of fitness landscapes according to the classifi-
cation of Beerenwinkel et al. (2006). Entry (¢, j) in the table indicates the number of
fitness landscapes of Weinreich class ¢ and shape j.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 21 10 4 28 0 6 9 3 0 0 54 136 0 15 0 0 0 0 0 54
2 54 13 11 8 17 1 21 5 1 0 75 49 6 9 13 20 1 1 4 23
3 2 105 2 0 0 0 131 0 0 0 13 0 1 0 0 0 0 0 0 162
4 9 68 1 7 0 1 20 28 0 3 13 41 0 2 0 0 0 1 0 104
5 11 114 2 3 5 2 5220 6 0 19 19 2 4 3 11 1 1 0 70
6 2 24 5 0 0 1 33 0 0 2 78 0 0 0 0 0 3 0 0 155
7 11 47 4 0 1 1 82 0 3 1 24 0 18 0 15 0 2 0 0 64
8 3 36 0 0 0 0 23 7 0 0 50 78 0 0 0 0 0 1 0 194
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 19 0 3 0 0 0 4 0 6 0 0 0 0 0 135 89 0o 11 21 0
2 10 3 6 1 3 3 2 0 0 2 4 4 0 2 220 117 20 3 0
3 0 22 0 0 0 9 0 1 0 0 0 4 0 0 454 0 0 2 0 0
4 76 0o 13 0 0 2 13 0 3 0 0 0 8 0 177 205 0 4 11 0
5 43 11 11 2 8 5 0 0 1 4 0 2 1 4 298 146 41 5 0 0
6 0 0 0 0 0 13 0 1 0 0 0 3 0 0 179 0 0 26 0 0
7 0 58 0 9 0 11 0 1 0 2 1 2 0 0 371 0 23 3 0 2
8 59 0 0 0 0 4 5 0 0 0 0 0 0 0 208 70 0 24 40 0
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 19 0 3 0 0 0 4 0 6 0 0 0 0 0 135 89 0o 11 21 0
2 10 3 6 1 3 3 2 0 0 2 4 4 0 2 220 117 20 5 3 0
3 0 22 0 0 0 9 0 1 0 0 0 4 0 0 454 0 0 2 0 0
4 76 0 13 0 0 2 13 0 3 0 0 0 8 0 177 205 0 4 11 0
5 43 1111 2 8 5 0 0 1 4 0 2 1 4 298 146 41 5 0 0
6 0 0 0 0 0 13 0 1 0 0 0 3 0 0 179 0 0 26 0 0
7 0 58 0 9 0 11 0 1 0 2 1 2 0 0 371 0 23 3 0 2
8 59 0 0 0 0 4 5 0 0 0 0 0 0 0 208 70 0 24 40 0
61 62 63 64 65 66 67 68 69 70 71 72 73 74
1 0 5 0 0 3 0 2 1 0 4 45 90 0 1
2 1 8 0 9 0 0 1 0 1 6 96 16 7 2
3 4 0 0 0 0 0 0 1 1 0 66 0 0 0
4 0 8 0 0 1 0 0 0 0 1 19 42 0 2
5 1 2 0 2 1 0 0 0 0 4 29 4 3 4
6 0 0 0 0 1 0 0 4 0 0 186 0 0 1
7 23 0 8 0 2 3 0 1 2 0 95 0 6 4
8 0 0 0 0 1 0 0 4 0 0 43 20 0 2
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Visual inspection of Table 4.1 suggests a low degree of similarity among the two
classification systems. However, it is desirable to provide a more quantitative char-
acterization of similarity. The standard way of comparing partitions (such as those
induced by the two classifications of fitness landscapes) is based on the adjusted Rand
index (Hubert and Arabie, 1985). The Rand index of the partition shown in Table 4.1
1s 0.04. With 1 indicating maximal agreement, and 0 completely random agreement,
this confirms the visual impression of two virtually unrelated classifications.

4.1.7 Discussion

The analytical intractability of all but the simplest population genetic models involving
mutation, selection, and recombination has stimulated the search for features that are
to some degree associated with the fate of a population. Intuitively, since the fitness
landscape governs the selection process, it should have a substantial impact on the fate
of a population, along with initial conditions and mutation or recombination rates. This
intuition has been confirmed in various studies when focusing on pairs of loci using
the concept of epistasis. In this study, we have investigated whether a novel extension
of classical epistasis to multilocus systems proposed by Beerenwinkel et al. (2006)
exhibits a similarly pronounced association with the fate of a population. We have
focused on a deterministically evolving biallelic three-locus system, and the property
of “time to equilibrium‘ as a proof of concept.

We have proven that the 74 classes of fitness landscapes existing in this case are
related to each other via symmetries determined by the definition of the genetic op-
erators. Moreover, using large-scale numerical simulations, we have shown that the
shape of the fitness landscape is significantly associated with the time to equilibrium
at any of the tested recombination rates. The presence of recombination has led to a
shorter mean time to equilibrium within all shapes, although the magnitude of the ef-
fect appears to be shape-dependent. The consistent benefit of recombination (albeit of
varying size) is surprising in the light of theories for the two-locus case that suggest a
benefit of recombination mostly in the case of negative epistasis. Recombination might
have been expected to have beneficial effects in some shapes and detrimental effects
in others, in analogy to the case of negative and positive epistasis, respectively. How-
ever, these theories are linked to very specific population genetic models (often making
use of modifier loci influencing recombination) and do not generalize well to a wide
range of scenarios (Otto and Lenormand, 2002; Kouyos et al., 2006). Finally, we have
compared the shape-based classification of fitness landscapes by Beerenwinkel et al.
(2006) to the rank ordering-based classification by Weinreich (2005). Our results show
that the two classification systems are virtually orthogonal to each other, meaning that
they focus on very different features of the fitness landscape. Combined with the ob-
servation that both classifications are strongly associated with evolutionary dynamics,
it seems desirable to investigate the use of a hybrid classification combining the two
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individual systems. Due to their orthogonality, this hybrid classification scheme would
likely be a stronger predictor of evolutionary dynamics than each individual scheme.

4.2 Mutation dynamics during interruption of an-
tiretroviral therapy*

In this section, we study the dynamics of mutation disappearance in the absence of
drug pressure, based on longitudinal data collected during clinical practice. While
treatment interruptions (TI) are not a recommended therapeutic strategy, unstructured
TIs are part of the every-day life of many patients (e.g. due to non-adherence or insuf-
ficient drug levels). Our analysis strongly suggests that mutation loss does not revert
the complex patterns of mutation accumulation observed during antiretroviral therapy.
Rather, mutations are shown to disappear largely independently from each other, albeit
at individual rates.

4.2.1 Introduction

Combination therapy against human immunodeficiency virus HIV-1 can substantially
delay disease progression, prolong survival, and maintain quality of life. However,
treatment cannot clear the virus from the patient and, if viral load is to remain sup-
pressed, drug administration needs to occur indefinitely. Moreover, the duration of
treatment response is limited and highly variable. Therapy failure is primarily caused
by the emergence of pre-existing or newly produced drug-resistant viral variants. The
patterns of resistance mutations accumulating over time in the presence of drugs have
been studied extensively (cf. Section 5.1). In general, mutations become fixated within
the viral quasi-species in a non-deterministic order. However, positive or negative
interactions between mutations (cf. Section 5.2) lead to stochastic preferences for evo-
lution to proceed along more or less well-defined resistance pathways (cf. Section 4.3).

In response to treatment with nucleoside reverse transcriptase inhibitors (NRTIs),
the most prominent positive interactions are known to occur among the nucleoside
analogue mutations (NAMs). These mutations enhance the phosphorolytic removal
of the chain-terminating NRTI from the 3’-terminus of the primer ("“primer unblock-
ing"). The classical NAMs fall into two distinct classes: NAM I (consisting of the core
mutations M41L, L210W, and L215Y) and NAM II (D67N, K70R, K219Q). While a
substantial overlap exists between these classes, several studies have confirmed that
mutations from the same NAM class co-occur significantly more frequently than ex-
pected under an independence assumption, and mutations from different NAM classes
significantly less frequently (Svicher et al., 2006; Sing et al., 2005b; Cozzi-Lepri et al.,

“The work reported in this section was performed in collaboration with Valentina Svicher, Francesca
Ceccherini-Silberstein, and Carlo-Federico Perno, University of Rome “Tor Vergata”.
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2005; Gonzales et al., 2003). A strong antagonism exists between the NAM mutations
and point mutations like K65R or M184V. The latter mutations are involved in a differ-
ent resistance mechanism which leads to better discrimination between NRTIs and the
corresponding ANTP substrate. Another cluster, less frequently observed, but equally
well defined as the NAMs, consists of mutations at the RT positions 151, 62, 75, 77,
and 116.

With a wealth of work on the response of a wild-type population to drug-induced
change in the natural fitness landscape of HIV, it is remarkable how little is known
about the mutational dynamics of a resistant viral population during interruption of
drug pressure. Clinically, structured treatment interruptions (STI) have been expected
to boost host cellular response, minimize drug toxicities, and, perhaps most impor-
tantly, allow the viral population to revert back to wild-type. It was expected that
such a reversion would improve the range of future drug options or the virological re-
sponse to follow-up therapy (reviewed in Benson, 2006). Unfortunately, according to
a number of studies, STI in patients with multidrug-resistant HIV was found to have
no clinical or virological benefit and thus should not be applied (Benson, 2006). Still,
some findings indicate benefits of interrupting an individual drug in a class for which
there has been an accumulation of resistance mutations. However, the existence of
latent reservoirs in which virtually every resistant variant becomes archived presents
a fundamental limitation to approaches that aim to revert resistance mutations in the
viral population.

Despite these limitations, the study of mutational dynamics of resistant populations
in the absence of drug pressure is crucially interesting from at least two points of view.
From the clinical point of view, we have to accept the fact that even if STI might not
be clinically advised, "unstructured" therapy interruptions occur every day as part of
life for many HIV-infected patients, for a wide variety of reasons (e.g. non-adherence
or toxicities). From the scientific point of view, the study of therapy interruptions is
particularly interesting since it represents the dual of the standard situation of drug
therapy: In the latter case, a naive population is subjected to a fitness landscape shaped
primarily by drug factors. In the former case, a resistant population is subjected to
a fitness landscape shaped primarily by host factors. Will the resulting evolutionary
pathways also be duals of each other?

In this study, we focus specifically on the dynamics of classical NRTI mutations,
plus a number of “novel” NRTI-associated mutations (Svicher et al., 2006), during
treatment interruption. To our knowledge, this study is the first application of methods
from survival analysis to longitudinal sequence data. First, we compare survival func-
tions for individual mutations. Next, we analyze if the survival function of a mutation
depends on the presence of specific other mutations at baseline. Based on these anal-
yses, we propose a model for mutation dynamics during TI and compare it to a naive
linear model.
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4.2.2 Materials and Methods
Patient population

The study included 132 HIV-1 infected, drug-experienced adult patients treated in clin-
ical centers in or around Rome, and undergoing genotypic resistance testing for rou-
tine clinical purposes between 1999 and 2006. Data for all patients were stored in a
specifically designed anonymous database that included mutational, demographic, im-
munologic, virologic and therapeutic parameters. The decision for TI was either based
on limited remaining treatment options or on patient choice (mainly due to side effects
of the drugs). The median time of exposure to antiretroviral treatment before TI was
7.3 years. At the time of starting interruption, the patients had been exposed to an av-
erage of 5 (IQR=4-5) NRTIs, 2 (IQR=1-4) protease inhibitors (PIs), and 1 (IQR=1-1)
(non-nucleoside RT inhibitor) NNRTIs and their median number of resistance muta-
tions were: 4 (IQR=3-5) for NRTIs, 10 (IQR=8-10) for PIs and 2 (IQR=1-2) for
NNRTIs. A total of 144 treatment interruption episodes (TIEs) were available for the
132 patients (nine patients underwent two, and one patient four TIEs). For each TIE, a
baseline sample was taken before TI onset (days before onset: mean [median]=33.21
[31.00]; IQR: 16.00-47.50; min—max: 0-90). A baseline genotype was obtained in
all cases as described below, and baseline viral load (VL) and CD4* cell counts were
available in 134 and 130 cases, respectively.

HIV sequencing

HIV genotype analysis was performed on plasma samples by means of a commer-
cially available kit (the ViroSeqTM HIV-1 Genotyping System, versions 1 and 2,
Applied Biosystems) and an automatic sequencer (ABI 377 and ABI 3100, Applied
Biosystems, Foster City, California, USA) (Perno et al., 2001; Ceccherini-Silberstein
et al., 2004). Briefly, RNA was extracted, retrotranscripted by MULV RT, and ampli-
fied with Amplitaq-Gold polymerase enzyme by using two different sequence-specific
primers for 40 cycles. Pol-amplified products (containing the entire protease and the
first 335 amino acids of the reverse transcriptase open reading frame) were full-length
sequenced in sense and antisense orientations by using seven different overlapping
sequence-specific primers for an automated sequencer (ABI 3100). Mixtures of multi-
ple residues at a single position were all considered as present in the statistical analy-
ses. The isolates were subtyped by comparing them to reference sequences of known
subtype (http://hivdb.stanford.edu). All sequences were found to be of
subtype B.

Mutations

The mutations considered in the analysis were those reported to be associated with
resistance to nucleoside reverse transcriptase-inhibitors (NRTIs) in the mutation lists
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of the International AIDS Society (Johnson et al., 2006), the Stanford HIV Drug Re-
sistance Database®, and in a comprehensive screening for “novel” mutations (Svicher
et al., 2006). Specifically, we focused on 35 NRTI resistance mutations, 20 classical
(M41L, E44D, A62V, K65R, D67N, K70R, L74V, V751, F77L, Y115F, F116Y, V118I,
QI5IM, M1841, M184V, L210W, T215F/Y, K219E/Q), and 15 novel (K20R, V35M,
T39A, K43E/N/Q, 150V, R83K, K122E, G196E, E203D/K, H208Y, F214L, D218E).
We will denote the set of these 35 mutations by the symbol M. Of the mutations con-
sidered, a mean (median) number of 6.6 (6.0) was present at baseline (IQR=4.0-8.3;
min-max=1.0-15.0). At follow-up, the mean (median) number of mutations was 4.1
(2.0), with IQR=1.0-5.3 and min—max=0.0-21.0.

Survival analysis for mutation dynamics

For all mutations m € M, survival functions S,, were estimated using the Kaplan-
Meyer product-limit estimator. For a given mutation m, all therapy interruptions with
m present at baseline were considered. Observations were treated as right-censored,
i.e. if mutation m was present in a sequence from time ¢;, and absent in a sequence from
time ¢, > t;, mutation m was assumed to disappear exactly at time ¢ (cf. Discussion).
If a mutation present at baseline was still present in the last follow-up within a TI
period at time ¢, a survival time of “at least ¢” was assumed.

The impact of baseline viral load, CD4™ cell count, and baseline number of mu-
tations on the survival function of a mutation was assessed using Cox proportional
hazards regression. To assess if the survival function of a mutation m depends on the
baseline presence of some other mutation, we proceeded as follows: For each mutation
m’ € M\ {m}, the TI episodes with m present at baseline were split into two classes,
according to whether m’ was present or absent at baseline. Two separate survival
curves for m were then estimated from the two classes. The null hypothesis that the
two survival curves are identical was tested using the log-rank test. This procedure was
only performed if at least five TI periods were available in each of the two classes. Cor-
rection of p-values for multiple testing was performed using the Benjamini-Hochberg
method (Benjamini and Hochberg, 1995).

Independence model of mutation loss

As will be shown below, the results from the previous analyses suggest that mutations
are lost independently from each other. For confirmation, we evaluated the fit of an
independence model that predicts the number of mutations present after a given time
post TI onset from the set of mutations present at baseline. The model is based on
the individual survival functions S,,, for the mutations m € M. For each time ¢ > 0
after onset of therapy interruption, S,,(t) gives the probability that mutation m is still

Shttp://hivdb.stanford.edu
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present at time ¢, provided it was present at baseline. Let (M;);>o be a family of ran-
dom variables denoting the mutations present at time ¢. Then, assuming independent
mutation disappearance,

P(M; =M : My= M) = [[ Su(®)- [] (1= 5m(t)),

meM méeMo\M
for any mg C m C M. It follows that
P(IMy|=k: My=My)= > P(M;=M:M,= M)
MCMo:|M|=Fk

Using a linearity argument familiar from e.g. the expectation of the binomial distri-
bution, the expected number of mutations at time ¢ given the set of mutations M, at
baseline is simply given as

EHMt‘ : My = Mo} = Z Sm(t)-

mée Mo

Discordance between predicted and observed mutation counts

To identify situations in which the disagreement between predicted and actually ob-
served mutation counts is largest, we fitted linear regression models for the dependent
variable "expected number of mutations - observed number of mutations". In simple
linear regression, we evaluated the following potential predictors of discordance: base-
line viral load; CD4+ cell count; time ¢ after onset of T1; number of mutations that had
actually disappeared until time ¢. The significance of these predictors in combination
was assessed using multiple linear regression.

Linear model of mutation loss

The independence model of mutation loss is quite simple as it assumes no interactions
between mutations. However, it allows each mutation to have an individual, and possi-
bly non-linear survival function. To compare whether this added flexibility is necessary
and adequate, we also fitted a linear model predicting the number of mutations at time
t only based on the number of mutations at baseline.

4.2.3 Results
Baseline patient characteristics

The study population was predominantly male (103/138 patients, 74.6%), and had a
median age of 40 years at baseline (IQR=36-45). At baseline, mean (median) CD4*
count was 514.0 (489.0) cells per mm?® (IQR=327.8-642.8; min—max=21.0-1600.0).
Mean (median) VL at baseline was 40,930 (7552) copies per ml (IQR=2227-28590;
min-max=105-810000).
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Follow-up data during therapy interruption

For 114 of the 144 patients, a single follow-up during treatment interruption was avail-
able. Two follow-ups were available for 25 patients. Three and four follow-ups were
given for four and one patients, respectively. Mean (median) follow-up time was 5.4
(4.3) months, with an IQR from 3.1 to 6.8 months, a minimum of one month and a
maximum of 28.8 months.

Emergence of NRTI resistance mutations not present at baseline

Some studies have reported anecdotal evidence on the appearance of resistance muta-
tions not present/detected at baseline during the TI. In our data, this seemingly counter-
intuitive (but see Discussion section) phenomenon of emerging mutations not detected
at baseline was very rare for resistance-associated mutations: 44D (1 TBE), 70R (3),
1181 (3), 184V (1), 210W (1), 215Y (2), 20R (1), 35M (2), 39A (2), 43E (2), 50V (5),
83K (15), 122E (3), 196E (1), 203D (1), 208Y (2), 214L (7). Thus, follow-up samples
from within the TIE represent almost exclusively maintenance or loss of mutations
already present at baseline.

Survival analysis for individual mutations

Table 4.2 shows statistics for the estimated survival functions of the 35 mutations con-
sidered here. The median survival times for all classical NRTI resistance mutations lie
between 3.1 (184V) and 6.8 (116Y) months. The survival time of novel mutations as-
sociated with NRTI failure also lies within this range. In contrast, resistance-associated
polymorphisms (122E, 196E, 214L) show a substantially longer median survival (8.0—
11.6). Finally, the mutations 50V and 83K which have been shown to be negatively
associated with NRTT failure (Svicher et al., 2006) do not disappear at all in the ab-
sence of drug pressure. Finite 95% upper confidence intervals could only be calculated
for sufficiently frequent mutations.

Using Cox proportional hazards regression, we then analyzed the effect of base-
line VL, CD4+ cell count, and baseline number of mutations (each in an individual
Cox model) on the survival curve of each individual mutation. Baseline number of
mutations was never a significant predictor. Similarly, baseline CD4" cell count was
significant only for 122E (p=0.037), and with a very weak effect size. In contrast,
baseline viral load was significantly associated with mutation survival for several mu-
tations: 196E (p = 0.017), 20R (p = 0.006), 215Y (p = 0.050), 184V (p = 2.4-1079),
118I (p = 0.001), and 44D (p = 0.040). The estimated effect size was relatively con-
sistent across the mutations in that an increase in VL by 10, 000 copies decreased the
survival probability of a mutation by about 10%. The lack of significance for other
mutations may possibly be due to a lack of data.
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Table 4.2: Statistics for the estimated survival functions of the 35 mutations consid-

ered.

Mutation N (Events)  Mean (SD)  Median (95% CI)
41L 68 (46) 5.61(0.37) 4.70(3.90 — 6.30)
44D 25 (15) 5.22 (0.48) 4.80 (3.60 — o)
62V 10 (6) 7.63 (1.64) 5.60 (5.20 — o0)
65R 8(8) 6.11 (1.01) 5.70 (4.00 — o0)
67N 84 (63) 5.25(0.34) 4.40 (3.80 — 5.60)
70R 59 (43) 5.68 (0.43) 5.20 (4.40 — 6.80)
74V 32 (27) 5.55(0.53) 4.40(3.90 — 7.40)
751 8(7) 6.14 (1.44) 4.90 (4.20 — 00)
115F 8 (8) 6.03 (1.20) 5.20 (4.00 — o0)
116Y 7(7) 7.89 (1.25) 6.80 (5.50 — 00)
1181 35(22) 5.97 (0.56) 4.90 (4.20 — 8.00)

151M 9(8) 6.55 (1.13) 5.60 (4.20 — o0)
1841 5(5) 3.44 (0.45) 3.10 (2.70 — c0)
184V 95 (87) 5.09 (0.31) 4.30(3.90 — 5.00)
210W 45 (27) 6.33(0.49) 6.30 (4.10 — 8.00)
215F 36 (28) 4.76 (0.43) 4.20 (3.50 — 5.60)
215Y 61 (44) 5.69 (0.35) 5.20(4.10 — 7.30)
219E 14 (10) 5.91 (0.76) 5.20 (3.90 — o0)
219Q 41 (29) 5.58 (0.55) 5.20 (4.30 — 6.50)
20R 26 (13) 5.75 (0.54) 5.60 (3.80 — o0)
35M 15 (6) 14.19 (3.87) 6.30 (5.20 — o0)
39A 17 (9) 6.11 (0.82) 4.60 (3.30 — )
43E 95 4.16 (0.70) 3.60 (3.30 — c0)
43N 52) 8.88 (1.67)  10.80 (3.10 — c0)
43Q 503) 5.85(1.14) 8.00 (3.90 — 0)
50V 5(0) 8.40 (0.00) 00 (00 — 00)
83K 28 (1) 22.75(0.74) 00 (00 — 00)
122E 60 (19) 8.65 (0.79) 8.30 (6.50 — c0)
196E 50 (9) 10.76 (0.92)  11.60 (9.40 — c0)
203K 14 (9) 5.36 (0.97) 5.10 (3.10 — o0)
208Y 13 (7) 5.91(0.77) 5.70 (4.40 — o0)
214L 30(11) 8.36 (0.95) 8.00 (5.20 — 0)
218E 19 (14) 4.75(0.44) 4.50 (3.50 — 7.40)
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Table 4.3: The seven mutation pairs with significant (p < 0.05, log-rank test) inter-
action in mutation survival. For example, row one compares the survival function of
122E, depending on whether 219Q is not present (stratum 0) or present (stratum 1).
The median survival time in the absence of 219Q is 12.6 months, while the median in
the presence of 219Q decreases to 6.5 months. The estimated survival function of this
most significant interaction is shown in Figure 4.3. None of the interactions remained
significant after correcting for multiple testing.

Mutation ~ Stratification  stratum size Median survival in P
;1) stratum (0;1) (log-rank)
122E 219Q 35; 25 12.6; 6.5 0.002
196E 44D 36; 14 11.6; o0 0.049
70R 67N 7;52 6.8;4.6 0.046
184V 67N 39; 56 4.5;4.0 0.043
122E 67N 17; 43 12.6; 7.4 0.032
122E 70R 33; 27 9.7, 6.5 0.035
214L 219Q 13; 17 9.7;5.2 0.040

Interaction effects in mutation survival

For each pair of mutations m # m’ € M, we estimated the survival function of m
depending on whether m/ is present at baseline or not. This procedure was only per-
formed if from all samples with m at baseline, at least five samples were available with
m’ present, and five with m’ absent. This was the case for 135 of the theoretically pos-
sible 1,190 pairs. Before correction for multiple testing, the p-values appear very close
to uniformly distributed in the interval [0, 1] (mean [median] 0.50 [0.48], IQR=0.25—
0.67, min—-max=0.00—1.00). In a multiple testing problem, this usually indicates that
in none of the cases the null hypotheses can be rejected. Indeed, after correcting p-
values for multiple testing using the Benjamini-Hochberg method, all of the potential
interactions became insignificant (p > 0.29). In Table 4.3, we show the mutation pairs
with a p-value smaller than 0.05 before correction for multiple testing.

Of course, the inability to reject the null hypothesis that survival curves of a mu-
tation differ depending on the presence or absence of another mutation does not con-
stitute “proof” of independence. For example, in Figure 4.3, we have contrasted the
survival times of 122E and 184V, in both cases stratified by the baseline presence of
219Q. While the visual impression for 184V confirms the lack of interaction p = 0.944
with 219Q, the 219Q-stratified survival curves for 122E are remarkably different, de-
spite the lack of significane (p = 0.29) after correcting for multiple testing.

Additionally, in theory, the absence of significant pair-wise interactions does not

preclude the possible existence of higher-order interactions (i.e. between triplets or
even larger groups of mutations). In practice, however, this is highly implausible.
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Figure 4.3: Estimated survival functions for M184V (blue) and K122E (green), de-
pending on whether K219Q is present at baseline (solid) or not (dashed). The
KI122E/K219Q interaction was the most significant among all pairs of mutations
(p = 0.0021), while M184V/K219Q 1is shown as an example of a clearly non-
significant interaction (p = 0.944). As mentioned in the text, none of the interactions
remained significant after correcting for multiple testing. Censoring times are marked
by a vertical dash.
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Moreover, there will rarely be enough longitudinal data to exhaustively test for de-
pendencies of order three or more. Given the infeasibility of exhaustive higher-order
testing, we instead tested special cases in which higher-order interactions might be ex-
pected. Specifically, we compared the survival probability of the core TAM mutations
in the presence or absence of mutations from the other TAM group, and in the presence
or absence of mutations from the extended TAM cluster. As shown in Table 4.4, there
was a very weak trend that in both variants the additional mutations did not extend,
but rather limited the survival time of the mutations. However, none of the observed
differences turned out to be significant.

Goodness of fit of the independence model

The results from the previous section strongly suggest that if pair-wise interactions play
any role at all in the speed of mutation disappearance, that this role is very marginal.
Higher-order interactions are infeasible to be tested exhaustively, but the manually
selected test scenarios shown in Table 4.4 show nothing significant either. Thus, dis-
regarding all non-sequence information (host factors, clinical parameters), mutation
dynamics in viral load should be predictable using an independence model (cf. Meth-
ods). By considering the presence or absence of a mutation m at a specific time ¢ as
the outcome of a Bernoulli experiment with success probability given by the value of
the estimated survival function of m at time ¢, our goal is to predict, given a set of
mutations present at baseline, the number of remaining mutations at a given time after
onset of the therapy break.

The absolute difference between observed and expected (according to the indepen-
dence model) number of mutations was 1.23 in median (IQR 0.39-2.74). In contrast,
the absolute difference between baseline number of mutations and observed number
of mutations (i.e. a null model assuming no mutation dynamics at all) was 3.00 in
median (IQR 1.00-6.00). To obtain a second comparison, we fitted a linear model to
the data for predicting the number of mutations at time ¢ from the number of muta-
tions at baseline and the time ¢. Ignoring all mutation-specific information (in contrast
to the independence model which relies on mutation-specific survival probabilities),
this model led to a median difference of 1.84 mutations (IQR 0.74-2.93), despite the
advantage given to it by being fitted directly to the data for which predictions were
made.

Predictors of discordance between independence model and observed number
of mutations

In an attempt to characterize situations of discordance between observed mutation
counts and those expected under the independence model, we fitted linear regression
models for the target variable "expected number of mutations - true number of muta-
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Table 4.4: Analysis of potential higher-order interactions between mutations in muta-
tion survival. The first column shows the mutations required at baseline for a sample
to be included in an analysis. The second column denotes the endpoint used in survival
analysis. For example, in the first row the endpoint is the loss of the first of the three
mutations considered). Column three contains the stratification criterion, column four
the number of samples in each stratum, column five and six the (restricted) mean and
median survival time for each stratum, and column seven contains the p-value from the

log-rank test.

219Q =0

Baseline Endpoint Stratification N Mean Median p
41L, 210W, 215Y 41L + 210W + 67N+ 70R +219Q 15;27 5.95;5.56 6.5;43 091
215Y <2 >0
41L, 210W, 215Y 41L + 210W + 67N + 70R+ 219Q 15;27 5.95;6.23 6.5;4.7 0.76
215Y <1 >0
41L, 210W, 215Y 41L + 210W + 67N+ 70R+ 219Q 15;27 5.95;6.23 6.5;4.7 098
215Y =0 >0
41L, 210W, 215Y 41L + 210W + 39A+ 43E+ 43Q+ 6;36  7.15;527 17.1;4.7 0.17
215Y <2 122E+ 203K+
208Y> 0
41L, 210W, 215Y 41L + 210W + 39A+ 43E+ 43Q+ 6;36  7.15;5.52 7.1;4.8 0.35
215Y <1 122E+ 203K+
208Y> 0
41L, 210W, 215Y 41L + 210W + 39A+ 43E+ 43Q+ 6;36  7.15;555 7.1;4.8 044
215Y =0 122E+ 203K+
208Y > 0
67N, 70R, 219Q 67N + 70R + 41L+210W+215Y 26;7 4.58;3.89 4.3;3.8 0.28
219Q <2 >0
67N, 70R, 219Q 67N + 70R + 41L+210W+215Y 26;7 4.88;3.89 4.6;3.8 0.15
219Q<1 >0
67N, 70R,219Q 67N + 70R + 41L+210W+215Y 26;7 554;42 6.1;3.8 0.14
219Q =0 >0
67N, 70R, 219Q 67N + 70R + 218E+214L >0 10;23 4.89;4.21 4.2;43 0.30
219Q <2
67N, 70R, 219Q 67N + 70R + 218E+214L >0 10; 23  4.89;451 4.2;46 0.52
219Q <1
67N, 70R, 219Q 67N + 70R + 218E+214L >0 10;23 5.53;52  6;5.7 0.78
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Figure 4.4: Predictors of discordance between the independence model and the ob-
served number of mutations.

tions". In simple regression, both time (p = 1.03 x 107°) and the actual number of
mutations lost (p < 2.2 x 107%) were highly significantly associated with this dif-
ference, whereas baseline viral load (p = 0.918) and CD4+ cell count (p = 0.8413)
were not. A multiple regression model with only “time” and “actual number of mu-
tations lost” as predictors (i.e. no intercept variable) fitted the difference between the
expected and observed number of mutations with an R? of 0.74, indicating that 74% of
the prediction error can be explained only by sampling time and actual number of mu-
tations lost. Both variables were highly significant in the model (p < 2 x 10716). The
coefficients in the model indicate increasing difference with higher number of muta-
tions actually lost, and decreasing difference with increasing time. In other words, the
model suggests that the TI episodes that are explained least well by our independence
model are those in which a high number of mutations are lost in a very short time. This
intuitive characterization can also be seen in Figure 4.4.

Revertants at RT position 215

The revertants (215CDIVS) provide important indicators for estimating whether the
appearance of susceptible variants is more likely due to a mutating resistant population,
or due to the outgrowth of an archived wild-type population. A total of 96 out of 144
TIEs started with 215Y (61) or 215F (36) at baseline (1 TIE having a mixture of F and
Y at baseline). In 44 of the 61 TIEs with 215Y at baseline (72.1%), Y had disappeared
completely at the last follow-up. Likewise, 215F had disappeared completely in 28 of
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the 36 TIEs (77.8%). Of the 93 TIEs with either F or Y and no revertants at baseline,
revertants are present in the last follow-up in 76 TIEs (81.7%), suggesting that mutation
loss in TI takes place primarily (but not exclusively) via mutations in the dominant
subpopulation rather than by outgrowth of minority populations with fewer mutations.

4.2.4 Discussion

To our knowledge, this is the first longitudinal study of mutation dynamics based on
survival analysis methods, and the largest longitudinal analysis of TI data undertaken to
date. The main result of this study is the finding that mutations disappear largely inde-
pendently from each other in the absence of drug pressure. Despite extensive screening
for pair-wise or higher-order interactions among mutations during the disappearance
process, no significant dependencies (after correction for multiple testing) were found.
This behavior is in stark contrast to the accumulation of resistance mutations in the
presence of drug pressure, which is characterized by a clear deviation from indepen-
dence and the formation of well-pronounced clusters of mutations, as summarized in
Section 4.2.1.

We hypothesize the following mechanism for explaining the discordant behavior
of mutations in presence versus absence of drug pressure: As summarized in Section
4.2.1, groups of mutations contribute to distinct mechanisms of resistance (improved
NRTTI recognition, primer unblocking), and it seems natural to expect synergistic or
antagonistic behavior of mutations involved in the same or in different mechanisms. In
contrast, in the absence of drug, none of the resistance mechanisms fulfills a biologi-
cal function, and the involved mutations simply become a "nuisance" for the virus. In
other words, synergistic or antagonistic interactions are based on a mechanism which
is needed for a fitness landscape induced by the presence of drug but not for the natural
fitness landscape, which is restored by removing drug pressure. Thus, the mutations
disappear independently from each other with little mutual protection. However, we
note that our model overestimated the number of remaining mutations in the presence
of few baseline mutations, and underestimated it slightly in the presence of many base-
line mutations. This apparent deviance from independence could possibly be due to
a lack or an abundance of compensatory (fitness-restoring) effects in the former or
latter case, respectively. If such a mechanism should exist, it would likely be more
pronounced in the case of protease inhibitors, with their substantially larger clusters of
secondary mutations.

It is also worth noting that the independence model was least adequate for patients
who exhibited a rapid mutation loss within a very short period of time — patients who
apparently respond very well to TI. We could not incorporate additional predictors
into this model to improve the fit for those patients without compromising the model
fit for the majority of patients. Assuming that interactions between viral mutations
exhibit consistent effects across subjects, patient-specific genetic factors might be hy-



74 CHAPTER 4. VIRAL EVOLUTION

pothesized as reasons for the difference in mutation dynamics between the majority of
patients and the fewer subjects with rapid mutation loss.

We show that in general, therapy interruptions induce a process consisting almost
exclusively of resistance mutation loss over time. The appearance during TI of muta-
tions associated with NRTI resistance not present at baseline was a very rare event —
in contrast to some previous studies which reported a more frequent appearance (e.g.
Balduin et al., 2005). It is important to consider what “appearance” really means in this
context. Given the lack of drug-induced selective pressure during TI, the appearance of
a mutation is certainly not to be explained by mutation events within the predominant
subpopulation. Rather, it is more likely a population dynamic effect in which a pre-
existing but previously undetected viral subpopulation which is also partially resistant
to the previous regimen grows over the limit of detection, before wild type variants
archived in latent reservoirs take over again in the viral quasispecies. In fact, the rar-
ity of appearance events corresponds well to the high prevalence of revertants at RT
position 215, indicating that mutation events are more prominently visible than pure
population dynamic effects.

Limitations of this study include the limited number of follow-up samples from
each of the patients. Clearly, more densely sampled data (e.g. one sequence per month)
on the disappearance of mutations would be desirable. Moreover, strictly speaking, the
available sequence data is not simply right-censored, but rather interval-censored, be-
cause a mutation can disappear from the main population at any time between two
sequencings. However, survival methods for interval-censored data are usually based
on rather strong parametric assumptions, in contrast to the non-parametric methods
available for right-censored data. The right-censored assumption can also be justified
as a conservative scenario of mutation loss, in which mutations disappear just at the
last possible time point before the next sampling, and not anywhere in between two
samplings. This factor might also contribute to the fact mentioned above that the es-
timated number of mutations was more often above than below the actually observed
number of mutations.

Several other methods for studying viral mutation dynamics, either from cross-
sectional or from longitudinal sequence data, have been proposed. In contrast to pre-
viously suggested approaches for cross-sectional data, which are based on Bayesian
networks (Deforche et al., 2006, 2007) or mutagenetic trees (Beerenwinkel et al.,
2005a,b), our survival analysis approach makes use of the full information contained
in the longitudinal data. Unlike other methods used for longitudinal data (e.g. Foulkes
and DeGruttola, 2003; Beerenwinkel and Drton, 2007), our approach allows for incor-
porating the effects of baseline covariates (clinical/host parameters, other mutations
present at baseline) on mutation dynamics via standard Cox regression. A more so-
phisticated variation considering the cumulative effect of interactions between muta-
tions during the whole time after onset of TI would require integration of conditional
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survival probabilities and would have to allow for transitions between states over time.
While such extensions are not necessary to model mutation dynamics during TI (as ev-
idenced by the absence of any sign of significant interaction), it would be necessary to
account for the strong interactions among mutations during their accumulation under
drug pressure. Another advantage of our approach over previous longitudinal methods
is that it provides a natural treatment for the inherently censored nature of the longitu-
dinal sequence data. Finally, it would also be possible to extend the survival approach
to allow for both mutation appearance and mutation loss, either by having two different
functions for a single mutation, or by using one of the well-developed extensions of
classical survival analysis towards recurrent events (Therneau, 2001).

4.3 Improved prediction of drug resistance by evolu-
tionary modeling

Starting with the work of Jaakkola and Haussler, a variety of approaches have been pro-
posed for coupling domain-specific generative models with statistical learning meth-
ods. The link is established by a kernel function which provides a similarity measure
based inherently on the underlying model. In computational biology, the full promise
of this framework has rarely ever been exploited, as most kernels are derived from very
generic models, such as sequence profiles or hidden Markov models. In the present
section, we introduce the MTreeMix kernel, which is based on a generative model
tailored to the underlying biological mechanism. Specifically, the kernel quantifies
the similarity of evolutionary escape from antiviral drug pressure between two viral
sequence samples. We compare this novel kernel to a standard, evolution-agnostic
amino acid encoding in the prediction of HIV drug resistance from genotype, using
support vector regression. The results show significant improvements in predictive per-
formance across 17 anti-HIV drugs. Thus, in our study, the generative-discriminative
paradigm is key to bridging the gap between population genetic modeling and clinical
decision making.

4.3.1 Introduction

Kernels provide a general framework of statistical learning that allows for integrating
problem-specific background knowledge via the geometry of a feature space. Owing
to this unifying characteristic, kernel methods enjoy increasing popularity in many
application domains, particularly in computational biology (Scholkopf et al., 2004).
Unfortunately, despite some basic results on the derivation of novel kernels from ex-
isting kernels or from more general similarity measures (e.g. via the empirical kernel
map (Scholkopf et al., 2004)), the field suffers from a lack of well-characterized de-
sign principles. As a consequence, most novel kernels are still developed in an ad hoc
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manner.

One of the most promising developments in the recent search for a systematic
kernel design methodology is the generative-discriminative paradigm (Jaakkola and
Haussler, 1999), also known under the more general term of model-dependent fea-
ture extraction (MDFE) (Tsuda et al., 2002a). The central idea of MDFE is to de-
rive kernels from generative probabilistic models of a given process or phenomenon.
Starting with Jaakkola and Haussler (Jaakkola and Haussler, 1999) and the seminal
work of Amari (Amari and Nagaoka, 2000) on the differential geometric structure of
probabilistic models, a number of studies have contributed to an emerging theoretical
foundation of MDFE. However, the paradigm is also of immediate intuitive appeal, be-
cause mechanistic models of a process that are consistent with observed data and that
provide falsifiable predictions often allow for more profound insights than purely dis-
criminative approaches. Moreover, entities that are similar according to a mechanistic
model should be expected to exhibit similar behavior in any related properties. From
this perspective, MDFE provides a natural bridge between mathematical modeling and
statistical learning.

To date, a variety of generic MDFE procedures have been proposed, including the
Fisher kernel (Jaakkola and Haussler, 1999) and, more generally, marginalized ker-
nels (Tsuda et al., 2002b), as well as the TOP (Tsuda et al., 2002a), heat (Lafferty
and Lebanon, 2003), and probability product kernels (Jebara et al., 2004), along with
a number of variations. Surprisingly, however, instantiations of these procedures in
bioinformatics have been confined to a very limited number of classical problems,
namely protein fold recognition, DNA splice site prediction, exon detection, and phy-
logenetics. Furthermore, most approaches are based on standard graphical models,
such as amino acid sequence profiles or hidden Markov models, that are not adapted in
any specific way to the process at hand. For example, a first-order Markov chain along
the primary structure of a protein is hardly related to the causal mechanisms underly-
ing polypeptide evolution. Thus, the potential of combining biological modeling with
kernelization in the framework of MDFE remains vastly unexplored.

This chapter is motivated by a regression problem from clinical bioinformatics that
has recently attracted substantial attention due to its pivotal role in anti-HIV therapy:
the prediction of phenotypic drug resistance from viral genotype (reviewed in (Beeren-
winkel et al., 2005b)). Drug resistant viruses present a major cause of treatment failure
and their occurrence renders many of the available drugs ineffective. Therefore, know-
ing the precise patterns of drug resistance is an important prerequisite for the choice of
optimal drug combinations (Clavel and Hance, 2004; Shafer and Schapiro, 2005).

Drug resistance arises as a virus population evolves under partially suppressive
antiviral therapy. The extreme evolutionary dynamics of HIV quickly generate viral
genetic variants that are selected for their ability to replicate in the presence of the
applied drug cocktail. These advantageous mutants eventually outgrow the wild type
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population and lead to therapy failure. Thus, the resistance phenotype is determined
by the viral genotype. The genotype-phenotype prediction problem is of considerable
clinical relevance, because genotyping is much faster and cheaper, while treatment
decisions are ultimately based on the viral phenotype (i.e. the level of resistance).

From the perspective of MDFE, the interesting feature of HIV drug resistance lies
in the structure of the underlying generative process. The development of resistance
involves the stochastic accumulation of mutations in the viral genome along certain
mutational pathways. Here, we demonstrate how to exploit this evolutionary structure
in genotype-phenotype prediction by deriving a Fisher kernel for mixtures of mutage-
netic trees, a family of graphical models designed to represent such genetic accumula-
tion processes. The remainder of this section is organized as follows. In Section 4.3.2,
we briefly summarize the mutagenetic trees mixture (MTreeMix) model, originally in-
troduced in (Beerenwinkel et al., 2005b). The Fisher kernel is derived in Section 4.3.3.
In Section 4.3.4, the kernel is applied to the genotype-phenotype prediction problem
introduced above. We conclude with some of the broader implications of our study,
including directions for future work.

4.3.2 Background: Mixture models of mutagenetic trees

Consider n genetic events {1,...,n}. With each event v, we associate the binary
random variable X, such that { X, = 1} indicates the occurrence of v. In our appli-
cations, the set {1, ...,n} will denote the mutations conferring resistance to a specific
anti-HIV drug. Syntactically, a mutagenetic tree for n genetic events is a connected
branching 7' = (V, E) on the vertices V' = {0,1,...,n} and rooted at 0, where
E C V x V denotes the edge set of 7. Semantically, the mutagenetic tree model
induced by 7" and the parameter vector = (61,...,6,) € (0,1)" is the Bayesian
network on 7" with constrained conditional probability tables of the form

0 1

0 1 0
Py = 1<1_9v 91;)’ v=1,...n.

Thus, a mutagenetic tree model is the family of distributions of X = (Xi,..., X,,)
that factor as

Pr(X =z |0) = H Do oy )
v=1

Here, xy := 1 (indicating the wild type state without any resistance mutations), and
pa(v) denotes the parent of vertex v in 7'. Figure 4.5 shows a mutagenetic tree for the
development of resistance to the protease inhibitor nelfinavir.

The probability tables impose the constraint that a mutation can only be present if
its predecessor in the topology is also present. This restriction sets mutagenetic trees
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Figure 4.5: Mutagenetic tree for the development of resistance to the HIV protease
inhibitor nelfinavir (NFV). Vertices of the tree are labeled with amino acid changes
in the protease enzyme. Edges are labeled with conditional probabilities. The tree
represents one component of the 6-trees mixture model estimated for this evolutionary
process.

apart from standard Bayesian networks in that it allows for an evolutionary interpre-
tation of the tree topology. In particular, the model implies the existence of certain
mutational pathways with distinct probabilities. Each pathway is required to respect
the order of mutation accumulation that is encoded in the tree. Mutational patterns
which do not respect these order constraints have probability zero in the model. We
shall exclude these genotypes from the state space of the model. The state space then
becomes the following subset of {0, 1}",

C={zc{0,1}" | (Tpaw),v) # (0,1), forall veV},
and the factorization of the joint distribution simplifies to

PI'(X = | 0) = H 0?)11(1 _ ev)l—xv.

{U|mpa(v):1}

The mutational pathway metaphor, originating in the virological literature, is gen-
erally considered to be a reasonable approximation to HIV evolution under drug pres-
sure. However, sets of mutational patterns that support different tree topologies are
commonly seen in clinical HIV databases. Thus, in order to allow for increased flexi-
bility in modeling evolutionary pathways and to account for noise in the observed data,
we consider the larger model class of mixtures of mutagenetic trees. Intuitively, these
mixture models correspond to the assumption that a variety of evolutionary forces con-
tribute additively in shaping HIV genetic variability in vivo.
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Consider K mutagenetic trees 71, ..., Tk with weights A\y,..., Agx_1, and A\ =
1-— ZkK;ll Ak, respectively, such that 0 < A\, < 1forall k = 1,..., K. Each tree T}
has parameters 6, = (6x,)y=1,..n. The mutagenetic trees mixture model is the family
of distributions of X of the form

K
Pr(X =z | )\0)=> MPr(X =ux]6).
k=1

The state space C of this model is the union of the state spaces of the single tree models
induced by 77, ..., Tk. In our applications, we will always fix the first tree to be a star,
such that € = {0, 1}" (i.e., all mutational patterns have non-zero probability). The star
accounts for the spontaneous and independent occurrence of genetic events.

4.3.3 The MTreeMix Fisher kernel

We now derive a Fisher kernel for the mutagenetic trees mixture models introduced in
the previous section. In this paper, our primary motivation is to improve the prediction
of drug resistance from viral genotype. However, we defer application-specific details
to Section 4, to emphasize the broader applicability of the kernel itself, for example in
kernelized principal components analysis.

As Jaakkola and Haussler (Jaakkola and Haussler, 1999) have suggested, the gradi-
ent of the log-likelihood function induced by a generative probabilistic model provides
a natural comparison between samples. This is because the partial derivatives in the
direction of the model parameters describe how each parameter contributes to the gen-
eration of that particular sample. Intuitively, two samples should be considered similar
from this perspective, if they influence the likelihood surface in a similar way. The nat-
ural inner product for the statistical manifold induced by the log-likelihood gradient is
given by the Fisher information matrix (Amari and Nagaoka, 2000). The computation
of this matrix is straightforward, but for practical purposes, the Euclidean dot prod-
uct (-, -) provides a suitable substitute for the Fisher metric (Jaakkola and Haussler,
1999).

We first derive the Fisher kernel for the single mutagenetic tree model. The log-
likelihood of observing a mutational pattern = € {0, 1}" under this model is

LO)= Y z,log(0,) + (1 - ,)log(l — 0,).
{lepa(v)zl}

Hence, the feature mapping of binary mutational patterns into Euclidean n-space,

06:(0)  9(0)
20, 7 06, )’

¢:C— R", wr—>V€x(0):<
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0 0
V V
0 1 2
4\ ! V
- 1 2 2 1
00,00 (91 — 1)72 + (92 — 1)72 (91 — 1)72 (92 - 1)72
00,01 (01 —1)"2+ 65102 — 1)1 — 05 (02 — 1)1
00,10 6740 — 1)1 4 (fp — 1)72 0710, — 1)1 —
00,11 07 (01 —1)7' + 02(02 — 1)1 07 (0 — 1)1 051 (02 — 1)1
01,01 (01 —1)72 + 6,2 — (01 —1)72 + 6,7
01,10 0,1 (01 —1)"' + 0510y — 1)1 — —
01,11 071 (0h — 1)~ + 0657 — 0710, — 1)~ + 6,7
10,10 072 + (a —1)72 072+ (6 —1)72 —
10,11 072+ 60502 — 1)1 072 + 05102 — 1)1 —
11,11 0,20, 0,260, 0,205

Table 4.5: Mutagenetic tree Fisher kernels for the three trees on the vertices {0, 1, 2}.
The value of the kernel K (z, ') is displayed for all possible pairs of mutational pat-
terns (z, 2’). Empty cells are indexed with genotypes that are not compatible with the
tree.

is given by the Fisher score consisting of the partial derivatives

0. if (Tpagw), Tw) = (1,1)

agm(e) _ N—Tw . Tw—1N1—ZTpa(w) — -1 : pel) _
90 = Ow (Qw 1) 0" ralw) = (Hw — 1) , if (:Epa(w),l’w) = (1,0)
b 0, if (Zpagw) Tw) = (0,0).

Thus, we can define the mutagenetic tree Fisher kernel as
K (1) = (VE,(8), Ve (0)) = 3 6765+ (5, — 1)mre)=2 g2 Cme #hucy),
v=1

For example, the Fisher kernels for the three mutagenetic trees on n = 2 genetic events
are displayed in Table 4.5.

To better understand the operation of the novel kernel, we rewrite the kernel func-
tion K as follows:

n

K($, x/) = Z /{(QU)(wpa(v)vzv)v(w;a(v)vx;) ’

v=1
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Figure 4.6: Non-zero entries of the matrix () that defines the mutagenetic tree Fisher
kernel. The three graphs are indexed in the same way as the matrix, namely by pairs
((Zpa(o): Tv)s (Tpa(): T,)) denoting the value of two genotypes x and 2’ at an edge
(pa(v), v) of the mutagenetic tree. The graphs illustrate that the largest contributions
stem from shared, unlikely mutations (positive effect, solid and dashed line) and from
differing, likely or unlikely mutations (negative effect, dash-dot line).

with x defined as

(0,0) (1,0) (1,1)
(0,0) /0 0 0
k()= (1,00 0 t—1)72 t -1t
L\ o ¢E—-17" t2

The matrix £(t) is indexed by pairs of pairs ((Zpa(v), ), (T},): %1))- The non-zero
entries of x are displayed in Figure 4.6 as functions of the parameter ¢t. An edge con-
tributes strongly to the kernel value, if the two genotypes agree on it, but the common
event (occurrence or non-occurrence of the mutation) was unlikely (Figure 4.6, solid
and dashed line). If the two genotypes disagree, the edge contributes negatively, espe-
cially for extreme parameters 6, close to zero or one (Figure 4.6, dash-dot line), which
make one of the events very likely and the other very unlikely. Thus, the application
of the Fisher kernel idea to mutagenetic trees leads to a kernel that measures similarity
of evolutionary escape in a way that corresponds well to virological intuition.

Due to the linear mixing process, extending the Fisher kernel from a single muta-
genetic tree to a mixture model is straightforward. Let £, (A, 0) = log Pr(z | A,0)) be
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the log-likelihood function, and denote by

A Pr(z | 6))

the responsibility of tree component 7; for the observation x. Then the partial deriva-
tives with respect to 6 can be expressed in terms of the partials obtained for the single
tree models, weighted by the responsibilities of the trees,

9l (\, 0) 0, (6))
.0 01

=y(z |\ 0)

Differentiation with respect to A yields

0l (N, 0) Pr(xz|6)—Pr(x|0k)

O\ Pr(z | A,0)
We obtain the mutagenetic trees mixture (MTreeMix) Fisher kernel

K(z,2") = (VL,(\,0), Vi (X, 0))

K—

B [Pr(z | 0,) — Pr(z | Ok)] [Pr(z' | 6;) — Pr(a’ | Ok)]
B Z Pr(z | A,0) Pr(z’ | A, 0)

=1

K n
D @ [ X0 | A OO ), @y )

=1 w=1

4.3.4 Experimental results

In this section, we use the Fisher kernel derived from mutagenetic tree mixtures for
predicting HIV drug resistance from viral genotype. Briefly, resistance is the ability of
a virus to replicate in the presence of drug. The degree of resistance is usually commu-
nicated as a non-negative number. This number indicates the fold-change increase in
drug concentration that is necessary to inhibit viral replication by 50%, as compared to
a fully susceptible reference virus. Thus, higher fold-changes correspond to increasing
levels of resistance. We consider all fold-change values on a log,, scale.

Information on phenotypic resistance strongly affects treatment decisions, but the
experimental procedures are too expensive and time-consuming for routine clinical
diagnostics. Instead, at the time of therapy failure, the genotypic makeup of the viral
population is determined using standard sequencing methods, leaving the challenge
of inferring the phenotypic implications from the observed genotypic alterations. It
is also desirable to minimize the number of sequence positions required for reliable
determination of drug resistance. With a small number of positions, sequencing could
be replaced by the much cheaper line-probe assay (LiPA) technology (Schmit et al.,
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1998), which focuses on the determination of mutations at a limited number of pre-
selected sites. This method could bring resistance testing to resource-poor settings in
which DNA sequencing is not affordable.

All approaches to this problem described to date are based on a direct correlation
between genotype and phenotype, without any further modelling involved. Applica-
tion of the Fisher kernel to this task is motivated by the hypothesis that the traces
of evolution present in the data and modelled by mutagenetic trees mixture models
can provide additional information, leading to improved predictive performance. In
a recent comparison of several statistical learning methods, support vector regression
attained the highest average predictive performance across all drugs (Rabinowitz et al.,
2006). Accordingly, we have chosen this best-performing method to compare to the
novel kernel.

Specifically, our experimental setup is as follows. For each drug, we start with
a genotype-phenotype data set (Walter et al., 1999) of size 305 to 858 (Table 4.6,
column 3). Based on a list of resistance mutations maintained by the International
AIDS Society (Johnson et al., 2005), we extract the residues listed in column 2. The
number indicates the position in the viral enzyme (reverse transcriptase for the first
two groups of drugs, and protease for the third group), and the amino acids following
the number denote the mutations at the respective site that are considered resistance-
associated. For example, the feature vector for the drug zidovudine (ZDV) consists of
six variables representing the reverse transcriptase mutations 41L, 67N, 70R, 210W,
215F or Y, and 219E or Q. In the naive indicator representation, a mutational pattern
within these six mutations is transformed to a binary vector of length six, each entry
encoding the presence or absence of the respective mutation.

The Fisher kernel requires a mutagenetic trees mixture model for each of the eval-
uated drugs. Using the MTreeMix software package®, these models were estimated
from an independent set of sequences derived from patients failing a therapy that con-
tained the specific drug of interest. In 100 replicates of ten-fold cross-validation for
each drug model, we then recorded the squared correlation coefficient (72) of indicator
variable-based versus Fisher kernel-based support vector regression. Avoiding both
costly double cross-validation with the limited amount of data and overfitting with sin-
gle cross-validation, we fixed standard parameters for both SVMs. As suggested by
Jaakkola and Haussler (Jaakkola and Haussler, 1999), the Fisher kernel may be com-
bined with additional transformations. Thus, we evaluated the standard kernels for both
setups. For the indicator representation, the linear kernel performed best, whereas the
Fisher scores performed best when combined with a Gaussian RBF kernel. We used
these two kernels in the final comparison reported in Table 4.6.

The results displayed in columns 5 and 6 of Table 4.6 show the improvements at-
tained via the Fisher kernel method as estimated by the squared correlation coefficient,

®http://mtreemix.bioinf.mpi-sb.mpg.de
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r2. After correction for multiple comparisons, the null hypothesis of equal mean was
rejected (P < 0.01, Wilcoxon test) in 15 out of 17 cases, a ratio that is highly unlikely
to occur by chance (P < 0.0025, binomial test). The most drastic improvements were
obtained for the drugs 3TC, NVP and NFV. Slight decreases were observed for ddC
and APV. Interestingly, when we combined both feature vectors, the cross-validated
performance of the combined predictor was consistently at least as good as the best
individual predictor (data not shown). We obtained similar results when evaluating
performance by the mean squared error instead of the correlation coefficient (data not
shown).

4.3.5 Conclusions

The Fisher kernel derived in this paper allows for leveraging stochastic models of HIV
evolution in many kernel-based scenarios. To our knowledge, this is the first study
in which a probabilistic model tailored to a specific biological mechanism (namely,
the evolution of drug resistance) is exploited in a discriminative context. Using the
example of inferring drug resistance from viral genotype, we showed that significant
improvements in predictive performance can be obtained for almost all currently avail-
able antiretroviral drugs. These results provide strong incentive for further exploitation
of evolutionary models in clinical decision making. Moreover, they also underline the
potential benefits from integrating several sources of data (genotype-phenotype, evo-
lutionary). The high correlation that can be observed with a relatively small number of
mutations was unexpected and suggests that reliable resistance predictions can also be
obtained on the basis of LiPA assays which are much cheaper than standard sequenc-
ing technologies. While our choice of mutations was based on a selection from the
literature, an interesting problem would be to design dedicated LiPA assays containing
a set of mutations that allow for optimal prediction performance in this generative-
discriminative setting. Finally, mixtures of mutagenetic trees have already been ap-
plied in other contexts, for example to model progressive chromosomal alterations in
cancer (Rahnenfuhrer et al., 2005), and we expect kernel methods to play an important
role in this context, too.

4.3.6 Acknowledgment

The work reported in this section was performed in collaboration with Niko Beeren-
winkel (Berkeley).



4.3. MTREEMIX FISHER KERNEL 85

Table 4.6: Comparison of support vector regression performance for the MTreeMix
Fisher kernel (F') versus a naive amino acid indicator (/) representation. The drugs
(first column) are grouped into the three classes of nucleoside/nucleotide reverse tran-
scriptase inhibitors (rows 1-7), nonnucleoside reverse transcriptase inhibitors (rows
8-10), and protease inhibitors (rows 11-17). MTreeMix models were estimated based
on the mutations listed in the second column. The third column indicates the number
N of available genotype-phenotype pairs, and the number K of trees in the mixture
model is shown in column 4. Columns 5 and 6 indicate the squared correlation co-
efficients, averaged across 100 replicates of 10-fold cross-validation. P-values (last
column) are obtained from Wilcoxon rank sum tests (for the null hypothesis that the
location of the distributions of r2 and r? are identical), correcting for multiple testing
using the Benjamini-Hochberg method.

DRUG MUTATIONS N K 13 r?  logio P

ZDV 41L, 67N, 70R, 210W, 215FY, 219EQ 86 5 0.61 0.57 < -15.0

3TC 44D, 1181, 1841V 817 5 0.71 0.64 < -15.0

ddI 65R, 67N, 70R, 74V, 184V, 210W, 215FY, 858 4 0.28 0.24 < —15.0
219EQ

ddC 41L, 65R, 67N, 70R, 74V, 184V 536 2 0.25 0.26 -0.3

d4T 41L, 67N, 70R, 75STMSA, 210W, 215YF, 857 4 0.22 0.21 2.7
219QE

ABC 41L, 65R, 67N, 70R, 74V, 115F, 184V, 210W, 846 7 0.57 0.55 -9.0
215YF

TDF 41L, 65R, 67N, 70R, 210W, 215YF, 219QE 527 3 045 0.43 -7.0

NVP 1001, 103N, 106A, 108I, 181CI, 188CLH, 857 5 0.58 049 < —15.0
190A

EFV 1001, 103N, 1081, 181CI, 188L, 190SA 843 4 0.60 0.56 < —15.0

DLV 103N, 181C 86 2 049 0.48 —-1.7

IDV 10IRV, 20MR, 241, 32I, 36I, 46IL, 54V, 851 4 0.65 0.63 —14.3
71VT, 73SA, 771, 82AFT, 84V, 90M

SQV 10IRV, 48V, 54VL, 71VT, 73S, 771, 82A, 854 4 0.68 0.66 —8.6
84V, 9O0OM

RTV 10FIRV, 20MR, 241, 32I, 33F, 36lI, 46IL, 855 4 0.77 0.75 —12.0

54VL, 71VT, 771, 82AFTS, 84V, 90M

NFV 10FI, 30N, 36I, 46IL, 71VT, 771, 82AFTS, 853 6 0.62 0.55 < —15.0
84V, 88DS

APV 10FIRYV, 321, 46IL, 47V, 50V, 54LVM, 73S, 665 3 0.58 0.59 -2.0
84V, 90OM

LPV 10FIRV, 20MR, 241, 32I, 33F, 46IL, 47V, 507 5 0.73 0.69 < —15.0
50V, 53L, 54LV, 63P, 71VT, 73S, 82AFTS,
84V, 90M

ATV 321, 461, 50L, 54L, 71V, 73S, 82A, 84V, 88S, 305 2 0.54 0.52 —2.4
90M
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5

Drug Resistance: Genotype,
Phenotype, and Virological
Response

By using evolutionary modeling for predicting drug resistance, Section 4.3 has pro-
vided a bridge from viral evolution to drug resistance, whose various manifestations —
genotypic, phenotypic, clinical — will be the subject of the present chapter. We start
(Section 5.1) with a comprehensive review of the algorithms that have been proposed
to date for relating genotypic alterations to changes in the viral phenotype or in the
virological response to therapy. We then describe novel approaches for identifying re-
sistance mutations and for characterizing their co-occurrence behavior, followed by an
application to nucleoside and non-nucleoside reverse transcriptase inhibitors (Section
5.2). The question of whether clinical resistance should be predicted by direct corre-
lation of genotypes with virological response, or by using predicted phenotypes as an
“intermediate” step has been subject to some controversy. We study this question in a
large-scale evaluation in Section 5.3. Concluding the chapter, we investigate potential
benefits of incorporating an additional phenotypic property of the virus — “fitness”, or,
more accurately, replication capacity — into models for virological response prediction
(Section 5.4).

5.1 Algorithms for the interpretation of drug resis-
tance: a review

5.1.1 Introduction: selection of antiretroviral therapy

Physicians treating HIV-1-infected patients are faced with selecting an optimal new
regimen upon therapy failure. This task is highly complex because of the increas-
ing number of available antiretroviral drugs, significant cross-resistance and the likely
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presence of archived drug-resistant viral variants selected by previous regimens. Pa-
rameters with potential impact on treatment decisions include the plasma viral load,
CD4* cell count, viral genotype, phenotype and replication capacity, and pharmaco-
logical data. Other factors to consider include tolerability, toxicity and the ability to
preserve future treatment options.

Interpretation algorithms are designed to assist the treating physician in choosing
an optimal drug combination using information from drug-resistance testing. In this
context, ‘interpretation’ refers to the task of predicting a specific factor (i.e. drug ac-
tivity or virological response) from one or more other factors. The word ‘algorithm’
originates from computer science and denotes a set of well-defined instructions for
accomplishing a given task. In clinical practice, the most popular interpretation algo-
rithms are rule-based approaches for predicting drug activity from the viral genotype.
Published reviews provide in-depth coverage of rule-based approaches (Schmidt et al.,
2002; Zolopa et al., 2004). However, the field has broadened considerably in scope
and methodology, and new tools are currently being developed.

5.1.2 The factors of interest: drug activity, viral phenotype and
virological response

Interpretation algorithms vary considerably in goals and methodology. However, due
to the lack of a commonly accepted terminology, they are often collectively referred
to as ‘resistance algorithms’ or ‘resistance scores’. To avoid confusion, this chapter
distinguishes between algorithms for predicting in vivo antiviral activity of a single
drug, in vitro viral phenotypic resistance or replication capacity, and in vivo virological
response to a combination of drugs. From the clinical point of view, we are ultimately
interested in the latter (measured as the decline in plasma viral load). However, drug
activity and viral phenotype can be valuable intermediates in predicting responses to
combination therapy (cf. also Section 5.3). For an appropriate use of interpretation
algorithms, it is crucial to understand the differences between these three key terms.

Phenotypic drug resistance and replication capacity refer to the ability of a virus to
replicate in the presence and absence of drug, respectively. These parameters are mea-
sured using controlled and reproducible experimental assays. Results of phenotypic
assays are typically reported as the fold change (FC) in the drug concentration that
inhibits viral growth by 50% (1C5) relative to a control wild-type virus for each drug.
The replication capacity is reported as a percentage relative to the reference strain. It
should be kept in mind that the ability of a virus to replicate decreases continually with
increasing drug concentration, and that measurements of FC and replication capacity
can be used to summarize this dose-response curve.

Replication capacity assays have only recently been introduced and are yet to gain
a firm place in clinical practice; however, assays for measuring phenotypic resistance
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have been in use for about 10 years and are able to predict virological response (De-
Gruttola et al., 2000). Nevertheless, this association is not perfect, and several cases of
discordance between FC values and virological response in vivo have been reported.
For example, the reverse transcriptase (RT) mutation M184V is associated with re-
sistance to didanosine (ddI) and abacavir (ABC), but in isolation has little or no dis-
cernible impact on virological response to these drugs (Brun-Vézinet et al., 2004).
Similarly, patients who develop M 184V during lamivudine (3TC) monotherapy main-
tain a plasma viral load of approximately 0.5 log,, copies/ml lower than at baseline,
despite maximal levels of phenotypic resistance to the drug (Eron et al., 1995). Based
on these observations, the clinical use of phenotypic resistance data has been said to
suffer from ‘serious limitations as the association between in vitro resistance levels
and virological response is often not well characterized’ (Brun-Vézinet et al., 2004).
However, it is conceivable that these apparent shortcomings can be alleviated by tak-
ing into account additional features of the dose-response curve. For example, repli-
cation capacity assays show a marked replicative defect associated with the M184V
mutation (Devereux et al., 2001), thus providing a possible explanation for the ob-
served virological suppression despite phenotypic resistance. In summary, phenotypic
drug-resistance data alone cannot explain the full range of in vivo virological response
effects.

The concept of in vivo antiviral activity of a single drug is slightly more abstract
than in vitro phenotype and in vivo virological response. The objective of this mea-
surement is to capture information about the antiviral effect of a single drug. However,
anti-HIV drugs are generally given in combination, and synergistic and antagonistic
effects between the drugs in a regimen play a significant role in determining viro-
logical response; an up-to-date review can be found in (Boffito et al., 2005), and the
University of Liverpool provides an informative on-line resource!. Thus, it is concep-
tually problematic to evaluate in isolation a model of single-drug activity because the
effects induced by the drug are not independent from the effects of co-administered
drugs. Consequently, models of drug activity are often evaluated in the context of
combination therapy, where an additional algorithm is used to combine the activity of
individual drugs into a score for the drug combination. While this suggests a straight-
forward evaluation procedure, it is important to emphasize that it is the integration of a
drug activity model and an activity combination step that is evaluated here, and not an
activity model in isolation. Nevertheless, different activity models can be compared by
keeping the combination algorithm fixed. To summarize, the concept of in vivo drug
activity has proven to be a useful intermediate between in vitro measurements and the
virological response to a combined regimen.

'www.hiv-druginteractions.org
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5.1.3 Predicting in vivo antiviral activity of individual drugs

Algorithms for predicting in vivo drug activity can be either derived from automatic,
data-driven statistical procedures or developed by panels of experts. They can be for-
mulated as simple tables or as complex computational procedures. Finally, they can
be based on genotype, phenotype, or genotype with predicted phenotype as an in-
termediate step, and can also take into account additional relevant factors, such as
pharmacokinetic data.

Predicting in vivo drug activity from the viral genotype

As genotyping is used widely, algorithms for predicting in vivo activity from the geno-
type provide valuable tools to support decision-making in clinical practice. The main
limitations in relating the viral genotype to drug activity include paucity of monother-
apy data and the diversity and complexity of mutational patterns. Currently, more than
80 mutations have been implicated in drug resistance in vitro or reduced drug activity
in vivo (Johnson et al., 2005), and the number is likely to grow as more patients are
exposed to existing agents in varying combinations (Gonzales et al., 2003; Wu et al.,
2003; Svicher et al., 2006), increasing attention is devoted to non-B HIV-1 subtypes
(Camacho, 2006), new compounds are introduced and new resistance mutations are
identified from large databases.

The most popular genotype interpretation algorithms include:

e ANRS AC 11, Version 09/2005 (Brun-Vézinet et al., 2003). The algorithm
specification is available at www.hivfrenchresistance.org. Free web-
based services based on this algorithm are available at pugliese.club.fr/
resistance.html (in French) and hivdb.stanford.edu/pages/
algs/HIValg.html. There are two output categories for NRTIs and PlIs,
and three output categories for NNRTIs and FIs.

e GuideLines, Version 9.0 (Bayer Diagnostics). This proprietary algorithm ac-
companies the TruGene Genotyping System. Information is available at www .
labnews.de.

e HIVdb, Version 4.1.2 (05/2005). The algorithm is available at hivdb6.
stanford.edu/asi/deployed/HIVdb.html. It has five output cate-
gories, derived from a more fine-grained scoring system.

e HIVgrade, Version 1.0. A free web-based service is available at www.
hiv-grade.de. The algorithm has four output categories.

e Rega, Version 6.4 (Van Laethem et al.,, 2002). The algorithm spec-
ification is available at www.kuleuven.be/rega/cev/pdf/
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RegaResistanceAlgorithmvé6.4.0_1Dec2004.pdf. A free web-
based service is available at hivdb6.stanford.edu/asi/deployed/
HIValg.html.

e Retrogram, Version 1.61 (Virology Networks). The algorithm is available at
www.retrogram.com. It has four output categories, plus one category “no
prediction” (due to insufficient data).

e ViroSeq, Version 2.6 (Celera Diagnostics). This proprietary algorithm accompa-
nies the ViroSeq HIV-1 Genoyping System (Abbott). Information is available at
www.celeradiagnostics.com/cdx/ViroSeq. There are three output
categories.

e geno2pheno, Version 3.0 (05/2005), (Beerenwinkel et al., 2002, 2003a). A
free web-based service for predicting phenotypic resistance is available at
www . geno2pheno . org. Predictions offered include a regression of the fold-
change in IC5, and a classification with two output categories.

e VircoType (Virco BVBA). This proprietary algorithm predicts fold-change in
IC5y, and a three-category output based on clinical cutoffs.

e THEO, Version 1.0 (04/2005), (Altmann et al., 2007). A free web-based service
for ranking combination therapies is available at www.geno2pheno.org.
The ranking criterion is the probability that a given patient will respond to a
given drug combination.

The algorithms ANRS, GuideLines, HIVdb, HIVgrade, Rega, Retrogram, and Vi-
roSeq aim at predicting in vivo activity from genotype, while geno2pheno and Virco-
Type predict in vitro (phenotypic) resistance, although the VircoType also includes a
prediction of in vivo activity based on the predicted phenotypic resistance and clinical
cutoffs. Finally, THEO aims at predicting virological response to combination therapy.
The remainder of this section will briefly compare the scoring schemes, reported levels
of drug activity, and the design and evaluation of these different approaches.

Scoring schemes. At the heart of most genotype interpretation algorithms are simple
scoring schemes, based on the presence or absence of specific mutations. For exam-
ple, one of the rules for predicting resistance to ddI in the current version of the Rega
algorithm is based on the scheme [K65R+T69G/N+"T69 insertion”+L74V+Q151M].
Thus, a genotype with mutation K65R and L74V would be assigned a score of 2.
Scores are often turned into a fixed set of activity levels (such as active versus non-
active) via the choice of a cut-off (see below). Our example would be classified as
’ddI inactive’ by the Rega algorithm because the scheme comes with a cut-off of 1.
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Scores may also take into account resensitization effects induced by specific muta-
tions. For example, one of the ANRS rules for predicting ddI resistance is based on the
scheme [M41L+T69D+L74V+T215Y/F+K219E/QK70RM184V/1], with the resensi-
tization condition that the presence of K70R or M184V/I leads to a subtraction from
the score.

In reality, not all mutations contribute equally to reduced activity of a drug.
The HIVdb algorithm accommodates this observation by assigning a weight (expert-
derived) to each mutation. Again, negative weights indicate resensitization effects
of varying strength. For example, the current HIVdb ddl scoring scheme is based
on 51 mutations with weights ranging from +2 to +50. When limited to the muta-
tions given in the REGA score mentioned above, the HIVdb score reads as follows:
[30xK65R+20xT69G+40xT69 insertion+50xL74V+50xQ151M]. Non-linear in-
teractions between specific mutations are usually ignored in these models.

Levels of drug activity. Although drug activity is a continuum, for ease of us-
age, scores are typically split into a small number of drug activity levels. The
most popular approaches employ three classes of drug activity: active, inac-
tive and intermediately active. Unfortunately, most activity algorithms use the
terms susceptible and resistant which should be restricted to approaches for pre-
dicting in vitro drug resistance. For example, the ANRS score for tenofovir
[M41L+E44D+D67N+T69D/N/S+L74V+L210W+T215F/Y] is categorized using the
genotypic cut-offs *< 3 mutations’ (active), *3—5 mutations’ (partially active) and > 6
mutations’ (inactive). The ANRS algorithm assigns only two levels of activity to non-
nucleoside reverse transcriptase inhibitors (NNRTIs) and the fusion inhibitor enfuver-
tide, in contrast to the situation with nucleoside reverse transcriptase inhibitors (NRTIs)
and protease inhibitors (PIs). Other approaches that use three activity levels include
GuideLines, Rega and ViroSeq. Four levels are used by HIV-GRADe and RetroGram
(which have an additional special class ‘insufficient data’ for refraining from a pre-
diction), whereas HIVdb has five distinct activity levels. Although these categories of
activity may facilitate interpretation, the use of raw scores may be useful when pre-
dicting response to drug combinations (Swanstrom et al., 2004).

Design and evaluation. Statistical approaches for deriving drug activity from geno-
type and treatment response data are summarised in (Brun-Vézinet et al., 2004). Cru-
cial decisions include the way the response is measured and the time of analysis. Typ-
ically, relevant mutations are first identified by using a feature-selection method, such
as simple univariate statistical tests, followed by a multivariate model-building pro-
cedure. This approach has been used for example in the ANRS Narval study (Brun-
Vézinet et al., 2003). However, most methods are not based on statistical analysis, but
rather on consensus from expert panels based on current literature. Several compar-
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ative evaluations of these models have been performed (De Luca et al., 2003, 2004),
and further initiatives are on the way (Costagliola et al., 2005).

5.1.4 Predicting in vivo drug activity from the viral phenotype

At first sight, predicting drug activity from FC values obtained in phenotypic assays
may seem easier than interpreting genotypic results. However, despite this apparent
simplicity, there is no gold standard for interpreting phenotypic results. The bulk of
work on this topic has focused on the choice of the appropriate FC cut-offs to catego-
rize drugs into ‘active’ or ‘non-active’. The use of cut-offs is based on the assumption
that drugs have a binary activity profile, being completely active below, and completely
inactive above, a given level of phenotypic resistance. However, for most antiretroviral
drugs, the relation between phenotypic resistance and in vivo activity is not an all-or-
nothing phenomenon. Distinct levels of activity can be derived from FC data by setting
two cut-offs, one for diminished activity (the lower cut-off) and one for abolished ac-
tivity (the higher cut-off). For example, the VircoTYPE system (Virco BVBA) has
recently adopted two cut-offs for each drug, categorizing the continuous drug activity
as full, reduced by 20% or reduced by 80% (Bacheler et al., 2004).

Remarkably, recent studies indicate that the use of models based on cut-offs does
not necessarily improve prediction of virological response. Swanstrom et al. (2004)
compared activity derived from a single cut-off with a continuous activity score in
which FC values below 2.5 and above 10 were mapped to 0 (completely active) and
1 (completely inactive), respectively, with linear interpolation in between. The model
using continuous activity score, but not that with cut-offs, was significantly associated
with virological response.

An interesting combination of a dichotomous model with a continuous score is
described by Beerenwinkel et al. (2003b). Based on the observation that the distri-
bution of predicted resistance factors closely follows a mixture of two Gaussians (the
two components accounting for susceptible and resistant samples), activity of a drug is
defined as the probability that the corresponding FC value belongs to the susceptible
population.

5.1.5 Predicting in vitro resistance and replication capacity from
the viral genotype

Phenotypic assays are more expensive and laborious than genotypic assays, and thus
less suitable for routine clinical use. There is also evidence that phenotype predictions
derived from genotypic data might be more accurate than a single phenotypic mea-
surement as a result of the inherent variability of phenotypic assays (Van Houtte et al.,
2004). Moreover, genotypic testing can detect the presence of resistance mutations
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that signal emerging resistance before a significant effect on phenotype is measurable
in vitro. For these reasons, a considerable amount of work has been devoted to devel-
oping systems for accurately predicting the viral phenotype from genotypic data.

To date, only two comprehensive systems are available, the VircoType provided
by Virco BVBA and geno2pheno (Beerenwinkel et al., 2002, 2003a), which is freely
available. Both systems are based on statistical learning methodology (Hastie et al.,
2001), which constructs predictive models from ’training’ data in the form of matched
genotype-phenotype pairs. Despite this common background, the models are very dif-
ferent in nature: the VircoType is derived from an instance-based method, also known
as nearest-neighbour learning. From a query sequence, a drug-specific mutational pro-
file is derived, based on predefined sequence positions. All samples with this profile are
then retrieved from a large database of experimentally determined genotype-phenotype
pairs. The predicted phenotype is the mean FC of these matched samples. geno2pheno
is based on a much smaller database (= 900 samples per drug) than the VircoType
(= 25,000 samples per drug). Whereas the latter is essentially model-free, relying
only on averaging experimentally determined phenotypes, geno2pheno is based on a
mathematical model known as the support vector machine (SVM). In the training step,
sequences with known phenotype are mapped into a high-dimensional vector space.
In this space, a hyperplane is computed which optimally approximates the genotype-
phenotype relation. The final SVM models of geno2pheno are high-dimensional linear
models that assign weights to individual mutations, which are then added to yield
the predicted FC, similar to in the HIVdb model. The VircoType has been shown to
be superior to standard phenotyping (when using a single measurement), whereas the
prediction for geno2pheno is highly correlated with phenotypic resistance for most
drugs.

Other approaches have been considered based on a variety of statistical learning ap-
proaches, including linear discriminant analysis (Sevin et al., 2000), linear regression
with (Vermeiren et al., 2004) or without interaction terms (Wang et al., 2004a), a novel
non-parametric statistical method (DiRienzo et al., 2003), decision trees (Beeren-
winkel et al., 2002) and artificial neural networks (Wang and Larder, 2003), in ad-
dition to a semi-supervised approach based on self-organising maps using predicted
structural features of the enzyme-ligand complex (Draghici and Potter, 2003).

All approaches based on statistics or statistical learning crucially rely on ‘training’
data in the form of matched genotype-phenotype pairs. However, such data are hard to
obtain for novel drugs, thus delaying the development of genotype-phenotype models.
A possible approach to deriving genotype-phenotype models without training data is
structure-based phenotyping. This method is based on the assumption that resistance
can be predicted from computing changes in binding energy using molecular mod-
elling. The only prerequisite is the availability of at least one crystal structure of the
target molecule, which is then adapted computationally to specific mutant genotypes.
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For example, Cengent Therapeutics and Quest Diagnostics have developed structure-
based phenotyping models for six PIs and, in comparing the models to the PhenoSense
or Antivirogram assays, report squared correlation coefficients between 0.34 and 0.83,
depending on drug and data source. Whereas the correlation is lower than that of
the data-driven approaches, structure-based phenotyping may be useful at stages when
genotype-phenotype data are scarce. Intrinsic drawbacks include the dependence on
an adequate crystal structure (which can be problematic in the case of the envelope
glycoprotein gp120 or the transmembrane glycoprotein gp41) and the inability to cap-
ture effects that take place across large distances in the enzyme or that happen far from
the active site.

As mentioned above, drug activity is a function of multiple factors, including resis-
tance. One of these factors, which can also be measured in vitro, is the viral replication
capacity. Models for predicting activity from FC and replication capacity might be
superior to approaches based on FC alone (but cf. Section 5.4). Thus, as in the case
of phenotypic resistance, approaches for predicting replication capacity from genotype
may prove useful in routine clinical practice. To date, two approaches have been sug-
gested. Segal et al. (2004) have used decision trees and random forests, and a custom
‘deletion/substitution/addition’ regression algorithm has been developed by Birkner
et al. (2005). In both models, the M184V mutation was predictably found to be as-
sociated with reduced replication capacity, along with a number of other mutations.
A comprehensive screening for protease and RT positions associated with changes in
replication capacity has been performed (Bonhoeffer et al., 2004), based on almost
10,000 matched genotype-replication capacity pairs.

5.1.6 Predicting in vivo virological response to combination ther-
apy

The most common approach to predicting virological response to a combination of
drugs proceeds in two steps. The activities of the individual drugs in the regimen
are predicted using one of the models described above, and combined into an overall
response score for the whole regimen. One method simply sums up all predicted activ-
ities for the drugs in the regimen. Depending on the data source, this approach leads to
the calculation of a genotypic (GSS) or phenotypic (PSS) susceptibility score (DeGrut-
tola et al., 2000). For example, given a viral population with the RT mutation K65R and
the protease mutations V32I and 147A, when using the ANRS algorithm for predicting
activity, a regimen comprising ABC, 3TC and ritonavir-boosted lopinavir would be
assigned a GSS of 0.5+0.5+0=1, whereas the combination of zidovudine (ZDV), ddI
and efavirenz (EFV) would attain a score of 14+0.5+1=2.5. Likewise, given phenotypic
measurements, scores of 0 and 1 (or intermediate scores) are assigned based on FC
cut-offs. Susceptibility scores can also be weighted, for example with different drug
potencies, or can be derived from continuous activity models. Indeed, Swanstrom et al.



96 CHAPTER 5. DRUG RESISTANCE

(2004) showed that a PSS based on continuous activity is superior to a score based on
a cut-off.

Both the GSS and PSS suffer from ignoring drug-drug interactions. An alternative
to these susceptibility scores has been suggested based on a very conservative model
of drug-drug interactions (Beerenwinkel et al., 2003b). Whereas susceptibility scores
assume that the effect of single drugs combines additively both within and across drug
classes, the alternative model assumes that only the most active drug from each drug
class determines the response to a drug combination. Using this model, the combina-
tion of ZDV, ddI and EFV in the aforementioned example (RT, K65R; protease, V321
and I47A; evaluated with ANRS) would be scored as 1(NRTIs)+1(NNRTIs)=2 because
ddl is less effective than ZDV and thus ignored. At first sight, this approach implies no
immediate benefit of having more than one drug from a class in a particular regimen
as only the most active drug in each class is scored. However, in (Beerenwinkel et al.,
2003b), not only is the current state of the viral population (as represented by the geno-
type) considered in scoring a drug combination, but also by traversing the evolutionary
neighbourhood of the current genotype possible escape mutants. The most active drug
from each class will usually vary across these escape mutants, which leads to ’indirect’
positive interactions between compounds from the same class. These intraclass syn-
ergies are demonstrated using the example of a wild-type strain and the combination
of ZDV/3TC, which differ significantly in their phenotypic resistance profiles. When
taking into account only the current genotype (no consideration of escape mutants),
the same score is assigned to the combination of both drugs as to the drugs in isola-
tion. However, when the evolutionary neighbourhood is traversed and possible escape
mutants are considered, the benefits of the combination can be observed. For exam-
ple, consider the case of two escape mutants, one with a thymidine analogue mutation
and the other with K65R. For the first mutant, 3TC will be an active drug, and for the
second mutant, ZDV will be active. Thus, the combination of 3TC and ZDV will be
active on both escape mutants, whereas the single-drug regimens would only be active
on one of them.

As summarised above, scoring the mutational neighbourhood can improve re-
sponse prediction. It seems intuitive that the neighbourhood search probes the genetic
barrier to the drug combination and, as we have seen, the combination of ZDV/3TC
has a higher genetic barrier than the individual drugs. However, the search, as it is
performed by Beerenwinkel et al. (2003b), corresponds to a simple notion of genetic
barrier, which is based on counting the number of substitutions necessary to acquire
resistance (or lose activity). This simple definition ignores the different probabilities
and timings at which these mutations occur. Thus, a more realistic assumption relies
on defining the genetic barrier as the probability that the virus will not develop resis-
tance within a given time period. An estimation method for this *probabilistic’ genetic
barrier is described in (Beerenwinkel et al., 2005a). The application of genetic barri-
ers in predicting response to combination therapy is described in (Beerenwinkel et al.,
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2005b; Altmann et al., 2007), and implemented in the THEO (THErapy Optimizer)
system?.

Another two-step approach for predicting response to combination therapy has
been suggested based on the use of fuzzy logic (Prosperi et al., 2004), but there are
also several approaches that try to relate baseline parameters directly with response to
a drug combination. For example, the HIV Resistance Response Database Initiative
is experimenting with neural networks, using mutations, drugs and viral load as direct
inputs (Larder et al., 2004, 2005). Recently, another ’direct’ approach consisting of a
nearest neighbour classifier has been suggested (Prosperi et al., 2005): given baseline
genotype, viral load and a drug combination, similar cases with known outcome are
retrieved from a clinical database and the average of the outcomes is taken as the pre-
dicted response (as with the VircoType). The success of the method crucially depends
on the similarity measure being used. Certainly, comparative evaluations are needed
to identify the advantages and limitations of all these approaches.

5.1.7 Summary

This section has outlined the currently available interpretation algorithms for support-
ing the use of antiretroviral therapy. Several rule-based algorithms for predicting in
vivo drug activity from the viral genotype are regularly updated by panels of experts
and represent the most widely known tools to support decision-making. The label ’re-
sistance interpretation algorithm’ commonly assigned to these systems is misleading
because all of them partially or completely rely on in vivo response data and should
therefore be termed ’drug activity algorithms’.

Drug resistance, defined as the ability of the virus to replicate in the presence of
drug, and measurable using phenotypic assays, is a major determinant of in vivo re-
sponse. Consequently, approaches with and without cut-offs have been developed for
predicting virological response from phenotypic resistance data. Although phenotypic
resistance and viral replication capacity can be measured using experimental assays.
These are more laborious and expensive than standard genotyping and thus less suit-
able for routine clinical use. Thus, it is desirable to be able to accurately predict both
quantities from genotypic data and considerable advances have been made in this field.

Finally, in this chapter, the current approaches for predicting virological response
to a drug combination have been reviewed. This is without doubt the ‘holy grail’ of the
field, and we are still far from satisfying solutions. The mainstream approach is to use
a susceptibility score in which the in vivo response to a drug combination is computed
by adding the activities of the individual components. Alternatives have been proposed
with the aim of modelling drug-drug interactions in non-additive ways, or of directly
relating genotype to response with combination therapy, without resorting to individual

2www.geno2pheno.org
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drug activity models.

5.1.8 The future

Several topics are expected to play a crucial role as the field of interpretation algorithms
moves forwards.

Reference datasets and standardized evaluation schemes. One important obstacle
to progress in the field is the lack of large and publicly available clinical outcome data
that can serve as a standard benchmark for the evaluation and comparison of interpreta-
tion algorithms. An additional problem is that the evaluation procedures differ between
studies. As a consequence, it is difficult to compare reported performance measures
(such as correlation coefficients or error rates) across different studies. Although com-
parisons of different methods are being published, they fall short of their objectives as
long as they do not reach maximal reproducibility by publishing the underlying data,
for example, via the Stanford HIV Drug Resistance Database®.

Decision support for coreceptor antagonists (cf. Chapter 6). The introduction of
coreceptor inhibitors in clinical practice may require monitoring of coreceptor usage
before, during and after treatment. Clinical practice would greatly benefit from reliable
genotype-based prediction models for coreceptor usage, as these would be cheaper and
faster than phenotypic assays. All genotypic approaches described to date are based
on the third hypervariable (V3) loop of the envelope gp120, known as the major de-
terminant of coreceptor usage. The most popular genotypic prediction is based on the
classical 11/25 rule, predicting virus that uses the chemokine coreceptor CXCR4 (X4
virus; cf. Chapter 6 for details) in the presence of positively charged residues at po-
sitions 11 or 25 of the V3 region. However, several statistical learning methods have
been shown to improve the sensitivity of detecting X4 virus (reviewed in Jensen and
Wout, 2003). Recently, it was shown that the prediction performance can be further
improved by incorporating immunological markers (such as CD4 counts) into predic-
tive models as surrogate markers for undetected minority viral variants (Sing et al.,
2007b), cf. also Chapter 6. Despite these advances, genotypic prediction of coreceptor
usage needs further improvements, for example by considering positions outside the
V3 region.

Improved interpretability. Paradoxically, many interpretation algorithms excluding
rule-based algorithms lack easy interpretability (in the sense that a user can easily
understand the rationale for a prediction), and are mainly used as ‘black box’ prediction

3hivdb.stanford.edu
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systems. This is especially true with modern statistical learning methods such as neural
networks and SVMs, although advances have been made in this respect (Sing et al.,
2005b). To be clinically useful, the output of prediction systems should at least be
augmented with well-calibrated confidence estimates. Moreover, sensitivity analyses
and other techniques should be used to provide a certain degree of interpretability even
for highly non-linear models such as neural networks.

Additional baseline parameters for activity and response prediction. Baseline
genotype is the most popular piece of information for predicting activity, augmented
by baseline viral load for predicting virological response. As more sophisticated mod-
els are being developed, the types of input that can be used by these models will
expand. This might include (predicted) replication capacity, antiretroviral treatment
history (Larder et al., 2004), adherence data (Larder et al., 2005) or immunological pa-
rameters. It remains a major challenge to integrate pharmacokinetic data, as obtained
from therapeutic drug monitoring, into algorithms for predicting activity or response.
The concept of inhibitory quotient, calculated as the ratio of the minimum plasma
concentration (Cmin) for the drug to the level of drug resistance is a first step in this
direction.

Incorporating information on salvage options and therapy sequencing into regi-
men scoring. Current algorithms predict virological response to a given drug com-
bination. However, long-term planning requires considering the future treatment op-
tions should the regimen fail. Would there be enough remaining treatment options, or
would further options be severely limited by the emergence of cross-resistance? With-
out doubt, questions related to optimal therapy sequencing will become increasingly
important with the ever-rising number of approved anti-HIV-1 drugs and increasing
number of individuals on long-term therapy.

Recommendations for clinical practice

e Interpretation algorithms are designed to support, not replace, the treating physi-
cian. The guidance they provide is further improved by expert opinion.

e Given the availability of several systems for different tasks, it is advisable not
to rely on a single system, but to collect and consider recommendations from a
variety of systems.

e Rule-based scores for predicting in vivo drug activity from genotype are cur-
rently the most widely used interpretation algorithms. However, as activity pre-
diction is difficult, the output should be used in an informed way, along with
other treatment-relevant information.
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e Tools for predicting phenotype from genotype provide reliable predictions and
can be used, in addition to other tools, to obtain a comprehensive overview of
the current treatment situation.

e A variety of tools for predicting response to combination therapy are being devel-
oped (and one is already available), but these have not yet matured to the degree
of reliability provided by systems for predicting phenotype from genotype.

5.2 Discovery and characterization of novel HIV drug
resistance mutations*

In this section, we present a case study on the discovery of clinically relevant domain
knowledge in the field of HIV drug resistance. Novel mutations in the HIV genome as-
sociated with treatment failure were identified by mining a relational clinical database.
Hierarchical cluster analysis suggests that two of these mutations form a novel mu-
tational complex, while all others are involved in known resistance-conferring evolu-
tionary pathways. The clustering is shown to be highly stable in a bootstrap proce-
dure. Multidimensional scaling in mutation space indicates that certain mutations can
occur within multiple pathways. Feature ranking based on support vector machines
and matched genotype-phenotype pairs comprehensively reproduces current domain
knowledge. Moreover, it indicates a prominent role of novel mutations in determining
phenotypic resistance and in resensitization effects. These effects may be exploited
deliberately to reopen lost treatment options. Together, these findings provide valuable
insight into the interpretation of genotypic resistance tests.

5.2.1 Introduction

Motivation: Evidence for additional resistance-associated mutations and muta-
tional clusters

To date, the decision for follow-up drug combinations in patients failing therapy is
routinely based on sequencing the relevant genomic region of the viral population har-
bored by the individual. The sequence is then analyzed to identify the presence of
resistance-associated mutations for each of the 19 drugs currently available for anti-
HIV therapy, by using mutation lists annually updated by the International AIDS So-
ciety (IAS) (Johnson et al., 2005) or other panels of human experts.

The situation is complicated by the fact that resistance mutations do not accumulate
independently from each other. Rather, they are loosely time-ordered along mutational

4The work reported in this section was performed in collaboration with Valentina Svicher, Francesca
Ceccherini-Silberstein, and Carlo-Federico Perno, University of Rome “Tor Vergata”.
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pathways, leading to distinct mutational complexes or clusters.’ Rational therapy plan-
ning is severely compromised by our limited understanding of these effects. Increasing
evidence on additional mutations involved in the development of drug resistance (Gon-
zales et al., 2003; Svicher et al., 2005), besides those listed by the IAS, provides the
incentive for our present study.

Outline

We describe an approach towards the discovery and characterization of novel mutations
associated with therapy failure from a large relational database, and their evolutionary
and phenotypic characterization using supervised and unsupervised statistical learning
methods. We focus on resistance against seven drugs from the class of nucleoside
reverse transcriptase inhibitors (NRTIs), which target an HIV protein called reverse
transcriptase (RT). This enzyme is responsible for translating the RNA genome of HIV
back to DNA prior to its integration into the human genome. NRTIs are analogues of
the natural building blocks of DNA, but lack a group essential for chain elongation.
Thus, incorporation of a nucleoside analogue during DNA polymerization terminates
the chain elongation process.

The knowledge discovery process described in this paper combines heterogeneous
data from three different virological centers. To allow for integrated analysis, these
data are stored in a relational database, whose structure is outlined in section 2. Sys-
tematic mining for mutations with differing propensities in NRTI-treated and untreated
patients, respectively, as detailed in section 3, leads to the identification of 14 novel
mutations associated with therapy failure. In section 4, we propose an approach to-
wards characterizing the covariation structure of novel mutations and their association
into complexes using hierarchical clustering and multidimensional scaling. Stability
results are provided using a bootstrap method. Feature ranking based on support vec-
tor machines, described in section 5, allows for assessing the actual phenotypic impact
of novel mutations. In section 6, we conclude by summarizing our approach, related
work, and open problems.

5.2.2 Mining for novel mutations

Our approach towards identifying mutations associated with NRTT therapy is based on
the assumption that these should occur with different frequencies in treatment-naive
subjects and in patients failing therapy, respectively.

Thus, mining for novel mutations was based on contrasting the frequency of the
wild-type residue with that of a specific mutation in 551 isolates from drug-naive pa-
tients and 1355 isolates from patients under therapy failure, at RT positions 1-320 (?).
Chi-square tests were performed for all pairs of wild-type and mutant residues to de-

SThroughout this paper, the words complex, cluster, and pathway are used interchangeably.



102 CHAPTER 5. DRUG RESISTANCE

termine mutations for which the null hypothesis that amino acid choice is independent
from the patient population can be rejected. Correction for multiple testing was per-
formed using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) at a
false discovery rate of 0.05.

This procedure revealed 14 novel mutations significantly associated with NRTI
treatment, in addition to those previously described in (Johnson et al., 2005):
K43E/Q/N, E203D/K, H208Y, D218E were virtually absent in therapy-naives (<
0.5%), while K20R, V35M, T39A, K122E, and G196E were already present in the
naive population with a frequency of > 2.5% but showed significant increase in treated
patients. Surprisingly, mutations IS0V and R83K showed significant decrease in the
treated population as compared to therapy-naives.

5.2.3 Identifying mutational clusters

In this section we describe an unsupervised learning approach towards characteriz-
ing the covariation structure of a set of mutations and its application to the newly
discovered mutations. Mutational complexes can give rise to distinct physical resis-
tance mechanisms, but can also reflect different ways to achieve the same resistance
mechanism. Indeed, the two most prominent complexes associated with NRTI re-
sistance, the nucleoside analogue mutations (NAMs), groups 1 and 2, consisting of
mutations M41L/L210W/T215Y and K70R/K219Q/D67N, respectively, both confer
resistance via an identical mechanism, called primer unblocking. On the other hand,
the multi-NRTTI resistance complex with Q151M as the main mutation mediates a dif-
ferent physical mechanism in which recognition of chemically modified versions of
the DNA building blocks is improved to avoid unintended integration. In essence, to
appreciate the evolutionary role of novel mutations it is important to identify whether
they aggregate with one of these complexes or whether they form novel clusters, possi-
bly reflecting additional resistance mechanisms. This analysis was performed focusing
on 1355 isolates from patients failing therapy.

Pairwise covariation patterns

Patterns of pairwise interactions among mutations associated with NRTI treatment
were identified from the database using Fisher’s exact test. Specifically, for each
pair of mutations co-occurrence frequencies for mutated and corresponding wild-type
residues were contrasted in a 2-way contingency table, from which the test statistic
was computed.

A visual summary of these pairwise comparisons, part of which is shown in Fig.
5.1, immediately reveals the classical mutational clusters described above. It is also
apparent that no significant interactions are formed between the Q151M complex and
mutations from the NAM clusters, suggesting that resistance evolution along the for-
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mer pathway is largely independent from the other complexes and that different path-
ways may act simultaneously on a sequence, at least if they mediate different physical
resistance mechanisms.

In contrast, significant interactions take place across the two NAM complexes. An-
tagonistic interactions between the core NAM 1 mutations L210W / M41L / T215Y
and NAM 2 mutations K70R and K219Q might indicate negative effects of simultane-
ous evolution along these two pathways, which both contribute to the primer unblock-
ing mechanism.
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Figure 5.1: Pairwise ¢ correlation coefficients between mutations (part view), with red
indicating maximal observed positive covariation and blue maximal observed negative
covariation. Boxes indicate pairs whose covariation behavior deviates significantly
from the independence assumption, according to Fisher’s exact test and correction for
multiple testing using the Benjamini-Hochberg method at a false discovery rate of 0.01.
The classical mutational complexes introduced in section 4 form distinct clusters, from
left to right: NAM 1, Q151M multi-NRTI, NAM 2.

Clustering mutations

Dendrograms obtained from hierarchical clustering allow for a more detailed analy-
sis of mutation covariation structure. The similarity between pairs of mutations was
assessed using the ¢ (Matthews) correlation coefficient, as a measure of association
between two binary random variables, with 1 and —1 representing maximal positive
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and negative association, respectively. This similarity measure was transformed into a
dissimilarity 6 by mapping ¢ = 1to 0 = 0 and ¢ = —1 to 6 = 1, with linear interpo-
lation in between. Since it is impossible to obtain adequate dissimilarity estimates for
pairs of mutations at a single position from cross-sectional data, ® these were treated
as missing values in our approach. The resulting partial dissimilarity matrix was taken
as the basis for average linkage hierarchical agglomerative clustering.’

The dendrogram in Fig. 5.2 reveals that most novel mutations group within the
NAM 1 cluster (T215Y/M41L/L210W), except for D218E and F214L, which aggre-
grate to NAM 2. Interestingly, mutations R§3K and I50V, which occur more frequently
in naive than in treated patients appear to form a novel outgroup.

To assess the stability of the dendrogram, 100 bootstrapped samples of RT se-
quences were drawn from the original 1355 sequences. Distance calculation and hi-
erarchical clustering were performed for each of these samples as described above.
Then, for each subtree of the dendrogram in Fig. 5.2, the fraction of bootstrap runs
was counted in which the set of mutations defined by the subtree occurred as a subtree,
without additional mutations. 8

The four edge weights next to the root of the dendrogram show that the reported
association of mutations D218E and F214L with NAM 2 is indeed highly stable across
resampled data subsets, as is the grouping of other novel mutations with NAM 1, and
the outgroup status of R83K and I50V. Bootstrap values for the lower dendrogram lev-
els have been omitted for the sake of clarity; they range from 0.35 to 0.99, reflecting
considerable variability of intra-cluster accumulation order. Finally, the core NAM 1
and NAM 2 mutations, respectively, are again grouped together with maximal confi-
dence.

Multidimensional scaling in mutation space

As can be seen in Fig. 5.1, certain mutations correlate positively with mutations from
both NAM pathways — an effect which might be missed in a dendrogram represen-
tation, and which can be visualized, at least to some extent, using multidimensional
scaling (MDS).

The goal in MDS is, given a distance matrix [ between entities, to find an em-
bedding of these entities in R™ (here n = 2), such that the distances D’ induced by
the embedding match those provided in the matrix optimally, defined via minimizing
a particular “stress” function. Our embedding is based on the Sammon stress function

Such mutation pairs never co-occur in a sequence.

"In average linkage with missing values, the distance between clusters is simply the average of the
defined distances.

8Thus, in computing confidence values increasingly closer to the root, topology of included subtrees
is deliberately ignored (otherwise, values would be monotonically decreasing from leaves to the root).
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Figure 5.2: Dendrogram, as obtained from average linkage hierarchical clustering,
showing the clear propensity of novel mutations to cluster within one of the classical
NAM complexes T215Y/M41L/L210W and K219Q/K70R/D67N, or in the case of
R83K and I50V, to a distinct outgroup. Novel mutations are marked in bold face.
Bootstrap values which are not relevant for our discussion have been removed for the
sake of clarity. Distances between mutations at a single position are treated as missing
values in the clustering procedure. Remarkably, such pairs of mutations can show
differential clustering behavior, as is apparent in the case of K219Q/R and T215F/Y.

(Sammon, 1969),
1 (Dyj — Djy)?
2z Dig 2 Dy

E(D,D') = (5.1)

which puts emphasis on reproducing small distances accurately. As in clustering, mu-
tation pairs at a single position are excluded from the computation of the stress func-
tion, to avoid undue distortions.

The optimal Sammon embedding for the mutation distance matrix derived from

pairwise ¢ values is shown in Fig. 5.3. Note that due to the non-metricity of this
matrix, which violates the triangle inequality, such an embedding cannot be expected
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to preserve all original distances accurately. Still, the MDS plot supports the main
conclusions from Section 5.2.3, such as to the structure of the classical NAM com-
plexes, the outgroup status of R83K and I50V, and the exclusive propensity of certain
mutations, such as K43E/Q or F214L, to a unique pathway. In addition, the plot also
suggests a role in both NAM pathways for several mutations, such as H208Y, D67N,
or K20R.

5.2.4 Phenotypic characterization of novel mutations using
SVM-based feature ranking

The analyses described above allowed us to associate novel mutations with treatment
failure and to group them into distinct mutational complexes. In this section we address
the question whether novel mutations contribute directly to increased resistance or
merely exert compensatory functions in removing catalytic deficiencies induced by the
main resistance-conferring mutations. We do so by analyzing their role in classification
models for predicting phenotypic drug resistance.

Resistance of a given HIV strain against a certain drug can be measured in vitro by
comparing the replicative capacity of the mutant strain with that of a non-resistant ref-
erence strain, at increasing drug concentrations (Walter et al., 1999). The result of this
comparison is summarized in a scalar resistance factor. On the basis of 650 matched
genotype-phenotype pairs for each drug, we have built predictive models, using deci-
sion trees (Beerenwinkel et al., 2002), and support vector machine classification and
regression. These models are implemented in a publically available web server called
geno2pheno’® (Beerenwinkel et al., 2003a), which has been used over 36,000 times
since December 2000'°.

While support vector machines are widely considered as the state-of-the-art in pre-
diction performance, there is a common attitude that these models are difficult to in-
terpret and suffer from “the same disadvantage as neural networks, viz. that they yield
black-box models” (Lucas, 2004). However, a substantial set of techniques is in fact
available for feature ranking with SVMs (e.g. (Guyon et al., 2002)), by removing fea-
tures or destroying their information through permutation, and even for extracting rule
sets from SVMs.

In our case, using the linear kernel k(x, y) = (x,y) (standard nonlinear kernels did
not significantly improve accuracy), feature ranking is particularly straightforward.
Due to the bilinearity of the scalar product, the SVM decision function can be written

‘http://www.geno2pheno.org
10This server is updated regularly and is now based on a larger number of genotype-phenotype sam-
ples per drug than at the time at which this study was performed.
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Figure 5.3: Multidimensional scaling plot of novel (shown in black) and classical mu-
tations (in white; main NAMs indicated by a cross), showing a two-dimensional em-
bedding which optimally (according to Sammon’s stress function) preserves the dis-
tances among the mutations, as derived from the ¢ correlation coefficient. Distances
between mutations at a single position were treated as missing values.

as a linear model,

fla) = wyioik(ziz) + b= giova, ) +b,

allowing for direct assessment of the model weights.

(5.2)
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Figure 5.4: Major mutations conferring resistance to zidovudine (ZDV), as obtained
from SVM-based ranking of 5001 mutations. Bar heights indicate z-score-normalized
feature weights (for example, mutation M41L is more than 20 standard deviations
above the mean feature weight). Mutations associated with ZDV resistance by the
International AIDS Society are shown in black; novel mutations identified from fre-
quency comparisons in treated and untreated patients are shown in grey. Mutations not
further studied here are shown in white.
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Figure 5.4 shows the result of this SVM-based feature ranking for zidovudine
(ZDV), one of the seven NRTIs. All mutations associated with resistance to ZDV
in the current resistance update provided by the International AIDS Society (Johnson
et al., 2005) appear in the top 50 of 5001 features (250 positions, 20 amino acids each,
plus 1 indicator for an insertion), with the first six positions exclusively occupied by
classical NAM mutations (shown in black). This observation provides evidence that
our models have adequately captured established domain knowledge as contributed by
human experts. Remarkably, when investigating the role of novel mutations (shown in
grey) in the model, we find that many of them are prominently involved in determining
ZDV resistance, ranking even before several of the classical ZDV mutations.

These findings generalize to the whole NRTI drug class, as is obvious from Table
5.1, which shows the ranks of novel mutations in the individual drug models. Table 5.1
also reveals some striking and unexpected differences among mutations. For example,
various results suggest a close relationship of mutations H208Y and E203K, which
form a tight cluster in the dendrogram, show up as neighbors in the multidimensional
scaling plot, and exhibit similar rank profiles — with the notable exception of their
differential impact on ddC resistance.

This surprising difference and other effects are more readily appreciated in Fig.
5.5, which shows the weights associated with novel mutations in the individual SVM
drug models (after drug-wise z-score weight normalization for improved comparabil-
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| ZDV | ddI | ddC | d4T | 3TC | ABC | TDF |

R83K 4972 | 3722 | 718 | 79 | 4973 | 539 | 154
I50V 4910 | 803 | 4702 | 4855 | 4736 | 4818 | 4899
H208Y 8 16 170 9 114 | 20 65
E203K 17 | 271 | 4963 | 103 8 19 103
K43Q 30 121 72 | 684 19 32 18
K43E 12 19 | 641 10 107 | 49 10
K122E 10 21 37 45 72 72 | T4
T39A 11 | 3814 | 4882 | 528 | 169 | 4017 | 50
D218E 20 22 103 | 50 25 13 659
F214L 119 | 898 | 4019 | 735 | 128 | 303 | 4844

MIB4AV [ 67 | 2 | 1 [4971] 1 | 1 [4994]

Table 5.1: Ranks of novel mutations in SVM models for seven NRTIs, with rank 1
indicating maximal contribution to resistance, and rank 5001 maximal contribution to
susceptibility. The classical mutation M184V is shown here for comparison, due to its
particularly strong resensitization effect. The clinical (but not virological) relevance of
results concerning ddC is limited by the limited popularity of this drug.

ity). Indeed, increased resistance against ZDV, 3TC, and ABC upon appearance of
E203K seems to coincide with resensitization (i.e. increased susceptibility) towards
ddC. A similar, even more extreme effect can be observed in the case of T39A, for
which increased resistance against ZDV and TDF again contrasts with increased ddC
susceptibility. R83K shows dual behavior: increased d4T resistance and increased
ZDV susceptibility. The presence of 150V is associated with increased susceptibility
against all NRTTs, explaining its decreased frequency in treated patients.

Related effects have attracted considerable recent interest due to their possible ben-
efits in reopening lost treatment options (Wang et al., 2004b). Arguably the most pro-
nounced behavior can be seen in the classical mutation M184V (Table 5.1), known to
confer high-level resistance to 3TC but inducing d4T and TDF resensitization. SVM-
based feature ranking reproduces this effect in a most striking manner: For ddI, ddC,
3TC, and ABC, M184V turns out to be the top resistance mutation, with contribu-
tions of 11.2,15.4,42.0, and 20.8 standard deviations above the mean. In contrast, the
same mutation appears to be one of the major contributors of increased susceptibility
towards d4T and TDF, 3.5 and 8.2 standard deviations below the mean, respectively.

5.2.5 Discussion

We have presented a case study on mining a multi-center HIV database using super-
vised and unsupervised methods. Previously undescribed mutations could be asso-
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Figure 5.5: Weights of novel mutations (after z-score normalization) in SVM mod-
els for seven NRTIs. For example, mutation E203K contributes significantly to ZDV
resistance, while increasing susceptibility towards ddC.

ciated with resistance towards the drug class of nucleoside reverse transcriptase in-
hibitors and grouped into mutational clusters. SVM-based feature ranking on an in-
dependent data set suggests a direct contribution of novel mutations to phenotypic re-
sistance and an involvement in resensitization effects which might be exploited in the
design of antiretroviral combination therapies. Feature ranking has been incorporated
into the geno2pheno system Figure 5.6.

Mutation screening. Novel mutations were found by position-wise comparisons,
leaving inter-residue effects aside. It is conceivable that additional sets of mutations
related to therapy failure, whose effect is too weak to discern in isolation, could be
identified using other methods, such as discriminating item set miners. In fact, we
have recently proposed an approach towards mining discriminating item sets, in which
an overall rule weight in a mixture model of rules is modulated by the genomic back-
ground in which a rule matches (Sing et al., 2004). Further work will have to explore
the possible benefits of using such strategies in the present context.

Covariation versus evolution. Dendrograms and MDS analyses describe the as-
sociation of mutations into mutational complexes, but refrain from explicit statements
on the accumulation order of mutations. Other approaches, most notably mutagenetic
tree models (Beerenwinkel et al., 2005a), are explicitly tailored towards elucidating
HIV evolutionary pathways from cross-sectional data as those used in our study. How-
ever, while novel mutations exhibit distinct clustering behavior, the actual order of
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11l. Phenotype prediction

Drug Resistance z-score S cored Mutations (**)
Factor RF (¥

ZDV 377.4 13.0 215Y 70R 41L 62V 67N 197H 35T 49N 395

ddl 3.6 6.5 gg‘T 62V 215Y 162C 214F 135V 58S 1791 207E 216P 163T 121E 49N 4L 69D

daT 2.8 6.1 67N 215Y 162C 62V 41L 69D 122K 216S 39S 207E 35T 159M

3TC 9.6 7.2 215Y 41L 162C 207E 1081 62V 70R 67N 35T 121E 58N 601 1791 163T 216P
2F 181F

ABC 4.6 9.5 215Y 41L 62V 35T 1791 67N 58N 162C 214F 69D 70R 135V 108l 39S 87L 4H

TDF 7.8 12.2 215Y 62V 35T 41L 70R 67N 135V 581 207E 60l

NVP 10.6 3.3 é(3]‘5\1/7291|0F 197H 4L 35T 1081 39A 75T 121E 163162V 181F 58S 122K 83S 2L

EFV 4.4 3.2 135V 62V 1081 581 35T 39A 181F 4L 75T 69D 210F 70R 87L 207E 214F 41L
601 122K 163N 59Q 1791

sSQV 33.5 12.7 90M 73S 2K 6G 72V 43T 71T 5V 23R 59F 63P 37N

IDV 10.9 6.8 90M 63P 73S 71T 201 41 72V 62V 43T

RTV 30.3 1.4 90M 43T 33F 73S 41 2K 23R 63P 61E

NFV 31.2 7.5 90M 63P 201 72V 43T 33F 2K 71T 73S 41 3

FPV 5.1 4.0 33F 90M 63P 2K 43T 61E 72V

LPV 4.7 4.9 33F 63P 90M 71T 201 73S 62V 72V

ATV 12.3 6.6 90M 73S 33F 361 63P 20l

Figure 5.6: SVM-based feature ranking in the PDF output of the geno2pheno sys-
tem. The column “Scored Mutations” shows those mutations with the highest absolute
SVM weights that contribute either positively (shown in red) or negatively (green)
to predicted resistance levels. Mutations are shown up to 95% of the total mutation
weight mass.

their accumulation seems to be relatively flexible, challenging the applicability of such
evolutionary models in this setting.

SVM-based versus correlation-based feature ranking. To date, feature ranking
is performed mostly using simple correlation methods, in which features are assessed
in their performance to discriminate between classes individually, e.g. by using mu-
tual information. However, as detailed in (Guyon et al., 2002), feature ranking with
correlation methods suffers from the implicit orthogonality assumptions that are made,
in that feature weights are computed from information on a single feature in isolation,
without taking into account mutual information between features. In contrast, statisti-
cal learning models such as support vector machines are inherently multivariate. Thus,
their feature ranking is much less prone to be misguided by inter-feature dependen-
cies than simple correlation methods. Further analysis of the feature rankings induced
by different methods can provide valuable insights into their particular strenghts and
weaknesses and suggest novel strategies for combining models from different model
classes.
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5.3 Inferring response from genotype: with or without
predicted phenotypes?'!

In the prediction of response to antiviral combination therapy, we compare the use
of predicted phenotypes as an “intermediate” step with approaches based on a direct
correlation of genotype with response. In contrast to other reports, we find that the use
of predicted phenotypes is very competitive, often outperforming direct approaches.
We show that synergies between phenotype-based and direct representations can be
used to build “hybrid” systems combining both sources of information.

5.3.1 Introduction

Modern antiretroviral combination therapy can substantially delay disease progression,
prolong survival and maintain quality of life, but a cure for HIV infection remains out
of reach. Therefore, research focuses not only on the search for novel drugs, but also
on exploiting the currently available drug collection to the best possible effect using
personalized therapy administration. The main obstacle to ultimate treatment success
is the ability of the virus to rapidly acquire mutations that confer resistance to specific
drugs.

Prior to the availability of assays for determining drug resistance, drug combina-
tions had to be chosen exclusively based on the clinical and therapeutic history of the
patient. Nowadays, in many countries, the genomic make-up of a viral population at
treatment failure (and increasingly also in newly diagnosed patients) is routinely de-
termined by sequencing the relevant portions of the HIV genome. The resulting data
are often collected in regional or national databases and have led to the discovery of
an ever-increasing number of resistance-associated mutations, which tend to occur in
diverse mutational patterns. The interpretation of a given pattern with respect to its
implications on drug resistance and response to combination therapy is an extremely
complex task. Consequently, a number of expert panels have been developing and
continue to refine rules- or mutation score-based interpretation algorithms. Backed up
by several resistance and therapeutic clinical trials (reviewed in Descamps and Brun-
Vezinet, 2006), the benefit of using viral genomic information in addition to clinical
and therapeutic data, as opposed to exclusively relying on the latter, is no longer con-
troversial. However, the diversity and complexity of resistance-associated mutational
patterns and their impact on the activity of drugs given in combination is far from
understood.

While sequencing assays are the basic tool for detecting mutations in the viral

""'The work reported in this section was performed in collaboration with Virco/Tibotec, Andre Alt-
mann (MPI for Informatics, Saarbriicken), and using clinical data kindly provided by Bob Shafer (Stan-
ford).
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population, they do not provide any information about the clinical role of these mu-
tations. A standard approach for distinguishing resistance-associated mutations from
mere polymorphisms has been to compare mutation frequencies in untreated versus
treated patients (reviewed in Sabin, 2006). However, this approach cannot provide
quantitative assessments of the phenotypic effect of particular mutations and is thus
of limited utility in the development of prediction algorithms. In order to develop
quantitative models it is necessary to link genotypic and treatment information to vi-
rological response data reflecting the activity of a given regimen on a viral population
with a given genomic make-up. Such a link between a viral genotype, a drug combi-
nation, and a measure of how effectively this particular drug combination works for
this particular genotype, is the atomic piece of information in datasets used for build-
ing models for virological outcome prediction. Adopting a terminology coined by the
HIV Resistance Response Database Initiative (RDI), we shall call this basic data unit
a treatment-change episode (TCE). It is well known that other pieces of clinical and
therapeutic information, such as baseline viral load or CD4" T-cell counts, treatment
and adherence history, can contribute to an improved prediction. However, as this in-
formation is not always available, models should always be built in such a way that
therapies can be ranked based on the minimum of only a viral genotype.

TCE datasets extracted from clinical databases can and have been used for model
building without any further processing. Expert panels screen these data for mutations
associated with treatment failure and can then integrate this information together with
other sources of knowledge, including scientific publications, into their carefully hand-
crafted interpretation tables. As an alternative approach, an increasing number of re-
search groups are trying to develop well-defined, algorithmic and strictly reproducible
approaches to model building based exclusively on the foundation of statistics, statis-
tical learning, and bioinformatics. While our own work follows this latter paradigm,
we emphasize that none of the approaches to model building is inherently superior and
each has its advantages and disadvantages (which we shall outline in Section 5.3.4).
Thus, in evaluating and comparing the clinical utility of different approaches, we are
neither able nor willing to assess a particular design philosophy (i.e. human-based
versus automated). Rather, the only quantity of interest in this paper is the predictive
performance, as quantified by a variety of standard performance measures.

While TCEs can be used "as is" for model building, as described in the previous
paragraph, it should be evaluated whether additional sources of data can be used dur-
ing model building to improve the genotype-based prediction models. Importantly, the
emphasis is on using the additional data only during model building, as opposed to
using them also during prediction, as would be the case in the example of using base-
line viral load or treatment history as additional predictors. The additional data are
only used to extract all possible information from the genotype during model build-
ing. As a consequence, the final models still remain useful when only a genotype is
available. Examples of this approach related to HIV include the use of x-ray protein
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structure data in combination with molecular modeling to improve to prediction of
phenotypic drug resistance (Draghici and Potter, 2003; Jenwitheesuk and Samudrala,
2005; Shenderovich et al., 2003) or coreceptor usage (Sander et al., 2007), or the use of
evolutionary modeling via the "genetic barrier" to resistance to improve the prediction
of response to combination therapy (Altmann et al., 2007).

In this study, we focus on the use of a particular source of additional information
during model building that has recently caused an unexpected controversy: phenotypic
resistance assays. Intuitively, the output of these assays is immediately appealing, as
compared to genotype-clinical databases. First, different from the clinical setting, they
provide information about the resistance of virus against individual drugs. Second, the
fold-change in 50% inhibitory concentration, as compared to a susceptible wild-type
strain, provides a much simpler measure of resistance than a complex mutational pat-
tern. As experimental phenotyping is too expensive for routine clinical use, the use
case is exactly as described in the previous paragraph: to build genotype-phenotype
models which can then be used on a given genotype as an additional source of infor-
mation in predicting virological outcome. However, three factors have contributed to
general doubts about the usefulness of phenotypes in the clinical setting: First, the
lack of consistent improvements of phenotype-based treatment decisions as compared
to the use of genotypic resistance testing or even to the previous standard of care (clin-
ical and therapeutic history) in a number of clinical trials (reviewed in Descamps and
Brun-Vezinet, 2006). Second, the insight that mutations in the genotype might not have
any phenotypic effect, while still providing information about the extent of previous
resistance or evolutionary progression, such as silent mutations on the nucleotide level,
revertants, or polymorphisms associated with specific resistance pathways. Third, the
observation that some mutations might have a different effect in the in vitro resistance
assays than in vivo. Taken together, these factors have led to a frequently uttered
mainstream view in the drug resistance community that "attempting to infer response
from genotype via the intermediate step of predicting the phenotype is likely to have
serious limitations" (Larder et al., 2007; Brun-Vézinet et al., 2004). In this chapter,
we re-examine and challenge this view in a detailed evaluation of the relative merits
and weaknesses of genotype- and phenotype-based approaches in virological response
prediction. In particular, we address the two questions: (1) How is the performance
of approaches exclusively based on predicted phenotypes in comparison to established
genotypic interpretation algorithms? (2) What is the potential for improvements by hy-
brid approaches using both the genotypic-clinical, as well as the genotype-phenotype
information?
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5.3.2 Materials and Methods
Standard datum definitions

The virological response to a therapy was dichotomized into success and failure. For
the present analysis, which focuses on the intrinsic value of alternative input repre-
sentations, this allows us to compare similarities and differences between the various
representations in the most intuitive way. In this study, our main focus is on a genotype-
centric standard datum defined by the EuResist consortium (Zazzi, 2006). This defini-
tion is as close as possible to the notion of “clinical”, as opposed to “phenotypic” drug
resistance (cf. Section 5.3.4). A diagrammatic representation is shown in Figure 5.7.
Any available genotype is considered as evidence of a failing regimen, because, in
general, sequencing can only be performed if the virus load exceeds ~ 1,000 copies
per ml. Intuitively, this means that the drug combination at the time of sequencing
must be considered a bad therapy for this particular genotype (otherwise sequencing
would not have been possible). Successful regimens are defined by inspecting thera-
pies that follow a failure: If the virus is undetectable at least once during the course of
the follow-up therapy and if the most recent sequencing was performed no earlier than
three months before starting the therapy, then the respective treatment was considered
a success. If multiple genotypes are available, the most recent sequence sample before
the onset of therapy was used. While this definition is most appropriate for the question
at hand, we also performed all experiments in parallel for the very different “classical”
standard datum definition of the EuResist project (Zazzi, 2006). Briefly, in the classi-
cal definition, success or failure is defined based on the viral load measurement that is
closest to 56 days after onset of therapy, among those available within 28 to 84 days af-
ter onset. If that value is below 500 copies per ml, the therapy is considered a success,
otherwise a failure.

Data

With the same motivation as that for using two TCE definitions, we perform our analy-
ses in parallel on two disjoint databases. The first dataset, called "Stanford" henceforth,
consists of data from two Northern California clinic populations undergoing genotypic
resistance testing at Stanford University and of data from the Stanford HIV Drug Resis-
tance Database (clinical studies ACTG 320, ACTG 364, GART, and HAVANA). The
second dataset, called "EUResist" consists of the EUResist database, which merges
routine clinical data from the German database Arevir, the Italian database ARCA,
and the Swedish database maintained at Karolinska University Hospital. The Stan-
ford raw data consists of 25,717 therapies; 16,288 sequences; 6,706 patients; 110,392
viral load measurements; giving rise to 6,337 TCEs (4,776 failures; 1,583 successes)
according to the genotype-centric, and 2,351 TCEs (924 failures; 1,427 successes)
according to the standard TCE definition. The EUResist data set contains 34,078 ther-
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Figure 5.7: The “genotype-centric” EuResist standard datum. A treatment change
episode (TCE) resulting in sequencing is always considered to be a failure (top part
of the figure). If the virus is undetectable during the treatment following a failure, the
TCE is called a success (bottom part of the figure).

apies; 13,628 sequences; 17,162 patients; 166,037 viral load measurements; giving
rise to 5,224 TCEs (4,320 failures; 904 successes) according to the genotype-centric,
and 1,064 TCEs (450 failures; 614 successes) according to the standard TCE defi-
nition. We focus on therapies consisting exclusively of the following 17 drugs from
the different classes: nucleoside reverse transcriptase inhibitors (NRTIs): ZDV, ddl,
ddC, d4T, 3TC, ABC, TDF; non-nucleoside reverse transcriptase inhibitors (NNRTIs):
NVP, DLV, EFV; protease inhibitors (PIs): SQV, RTV, IDV, NFV, APV, LPV, ATV.

Inputs

The objective of this study is to compare the reliability of predicting success or failure
of antiretroviral combination therapy when using various alternative input representa-
tions. Since the use of predicted phenotypes has been criticized frequently, our par-
ticular attention is on comparing this input representation with other representations,
and to investigate potential synergies by hybrid approaches. In particular, we investi-
gate nine input representation: three expert algorithms, one representation relying on
predicted phenotypes, one relying on raw genotypes, and four “hybrid” approaches
combining either expert algorithms or raw genotype with phenotype:

1. ANRS. One number for each drug, representing the predicted activity of the drug
for a given genotype. Activity was scaled between 0 and 1, with 0 indicating
fully inactive drugs and 1 fully active drugs. Prediction was performed using
the ANRS expert algorithm, version 2006/07 (Section 5.1.3). Mapping of the
categorical ANRS predictions to activity levels was as follows: “Resistance”
—— 0; “Possible resistance” —— 0.5; “Susceptible” — 1. All drugs not applied
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in a given treatment change episode were scored as 0 (i.e., fully inactive).

2. Rega. Same as (1), but using the Rega expert algorithm, version 6.4.1 (Section
5.1.3). Mapping of Rega resistance levels to drug activity levels in the interval
0, 1] was performed as follows: “Resistant” — 0; “Intermediate resistant” —
0.5; “Susceptible” — 1.

3. HIVDB. Same as (1), but using the Stanford HIVDB expert algorithm. As we
introduced in Section 5.1.3, the HIVDB algorithm is different from other ex-
pert algorithms in that it does not assign categorical resistance levels directly.
Rather, mutations in the genotype are assigned individual scores, which are then
added into an overall genotype score (in this way, HIVDB can be regarded as an
expert-derived linear regression model). As part of HIVDB, these scores are then
discretized into five levels of resistance. The mapping of these resistance levels
to drug activity levels was as follows: “High-level resistance” —— 0; “Interme-
diate resistance” —— 0.25; “Low-level resistance” —— 0.5; “Potential low-level
resistance” — 0.75; “Susceptible” — 1.

4. Pheno. Same as (1), but using the VircoTYPE 4.0 system for predicting pheno-
typic resistance to the individual drugs for a given genotype. The VircoTYPE is a
linear model with pair-wise interaction terms that has been fitted to an average of
46, 100 matched genotype-phenotype pairs per drug. For a given genotype, the
prediction is log;,(ICs,). This “resistance factor” was then mapped into the in-
terval [0, 1] as follows. For each drug, VircoType provides an upper and a lower
cutoff. Resistance predictions above the upper cutoff were mapped to a drug
activity level of O (fully inactive drug), while resistance predictions below the
lower cutoff were mapped to a drug activity level of 1 (fully active drug). Resis-
tance predictions between these cutoffs were transformed into activity levels in
the range [0, 1] by simple linear interpolation (RF —— 1 — (RF—7) /(7 — 1)),
with 77 and 7, denoting the upper and lower cutoff, respectively. Like with the
three expert algorithms, drugs not applied in a given tretament change episode
were assigned an activity level of 0.

5. Geno. This is a 0/1 representation of the genotype that indicates the presence
(“17) or absence (“0”) of specific mutations. We used the list of mutations sug-
gested by the International AIDS Society (Fall 2006 version, (Johnson et al.,
2006)). Accumulating the mutations listed for the 17 drugs considered here, this
resulted in a total of 62 protease and 32 reverse transcriptase mutations. In the
expert and Pheno representations, the drugs applied in a regimen were encoded
implicitly, by setting predictions for non-occurring drugs to fully inactive. In the
Geno representation, however, we need an additional 17 dimensions to indicate
the presence (“1”) or absence (““0”) of individual drugs. Thus, in total a genotype
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plus drug combination is represented by a (62 + 32 + 17)-dimensional binary
vector.

6. ANRS+Pheno. This is a “hybrid” input representation concatenating the ANRS
and Pheno representations introduced above, leading to a (17 4 17)-dimensional
vector.

7. Rega+Pheno. Concatenation of the Rega and Pheno representation.
8. HIVDB+Pheno. Concatenation of the HIVDB and Pheno representation.

9. Geno+Pheno. Concatenation of the Geno and Pheno representation. As the
Pheno part captures the drug combination implicitly, it is left out in the Geno
part, leading to a vector of same dimensionality as the Geno representation itself.

Combining individual-drug scores into regimen scores

Traditionally, the activity of a drug combination has been determined from the ac-
tivities of the individual components by simple summation. This approach has been
termed genotypic/phenotypic susceptibility (or: sensitivity) score (GSS/PSS) (DeGrut-
tola et al., 2000) and has been used for the approaches (1-4). A more recent study has
refined the summation by using drug-specific weights when combining the individual
drug activities. Here, we compare two different ways of combining individual-drug
scores into a regimen score: summation (for inputs 1-4); statistical learning (for all in-
puts) using support vector classification. Support vector classification was performed
using a Gaussian radial basis function (RBF) kernel. The RBF parameter v was used
with libsvm default value, class weights were set to adjust for the class skew between
successes and failures, and the soft margin penalty C' was optimized for each input as
described below. A continuous score normalized within the interval [0, 1] was obtained
by Platt’s probabilistic method for SVMs (Platt, 1999).

Evaluation setup

Models were compared by 10-fold cross-validation. To ensure an unbiased compari-
son, the model selection procedure was integrated into the evaluation procedure. Vari-
ants of this approach are sometimes referred to as “double” or “nested” cross-validation
(Ruschhaupt et al., 2004). The goal is to avoid overfitting hyperparameters which
could happen in simple cross-validation. Specifically, the three evaluations reported
here were performed as follows:

1. Genotype-centric standard datum; cross-validation on Stanford-Kaiser
data. 1,000 random TCEs were drawn from the Stanford-Kaiser data (consist-
ing of 6,337 TCEs) to determine the optimal value of C'. The set was randomly
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split into 750 training and 250 validation samples. For each of the nine input
alternatives introduced above, and for each C' € {271, 270520 205 961 3
support vector classifier was fitted to the training data. The models were then
used to predict the 250 validation samples and for each of the nine input alter-
natives, the C' with the highest area under the ROC curve was chosen as the best
hyperparameter. The remaining 5, 337 TCEs were then used with the optimal
C' value to obtain an unbiased estimate of model performance using ten-fold
cross-validation. This whole procedure was repeated ten times to account for
randomness in determining the optimal value of C'. Thus, for each of the nine
inputs, ten (possibly different values of ') times ten (cross-validation) sets of
“blind” predictions, each of size 533 or 534, were available for performance
evaluation. For each of these sets, we also determined regimen scores by the
simple summation method for comparison.

2. Genotype-centric standard datum; training on Stanford-Kaiser data, pre-
diction on EuResist data. Even though all measures have been taken to prevent
overfitting, it is obvious that models heavily depend on the properties of the data
from which they are fitted. It has been observed previously that the distribu-
tion of used drug combinations is heavily skewed (Beerenwinkel, 2004), reflect-
ing approval times, changes in treatment strategies, or even regional differences
from hospital to hospital (Larder et al., 2007). To estimate how well our results
generalize not only across data similar to that collected in the Stanford-Kaiser
effort, but across completely different collection efforts, we performed this sec-
ond analysis. For each of the nine inputs, and for each of the ten values of C'
determined as optimal for a particular input in the first analysis, models were
trained on the full Stanford-Kaiser data and then used to predict the full EuRe-
sist data. Thus, for each of the nine inputs, ten sets (possibly different values
of C') of “blind” predictions, each of size 5,224, were available for performance
evaluation.

3. Classical standard datum; cross-validation on Stanford-Kaiser data. The
genotype-centric standard eliminates the evolutionary forces behind therapy fail-
ure and focuses on the role of the genotype at time of failure. Thus, it is well-
suited to study how big the alleged dichotomy between clinical and genotypic
drug resistance really is. Moreover, it can be, and in fact is being used in prac-
tice to rank combination therapies by their probability of success (Altmann et al.,
2007). Still, by its retrospective look on failures, it does not mimic the real situ-
ation when a physician has to choose a novel therapy without knowledge about
a future genotype. Therefore, we repeated the first analysis using the classical
standard datum. The same ten values of C' as determined in analysis (1) were
used, so that 10-times cross-validation could be performed on the whole data.
Thus, for each of the nine inputs, ten times ten sets of “blind” predictions, each



120 CHAPTER 5. DRUG RESISTANCE

of size 235 or 236, were available for performance evaluation. For each of these
sets, we also determined regimen scores by the simple summation method for
comparison.

Measures of predictive performance

The output of both the simple summation, as well as the support vector machine, is
given by a score rather than an actual class prediction. The analysis of such scoring
classifiers is usually performed in the framework of ROC analysis (Fawcett, 2006). The
analyses were performed using the classifier evaluation package ROCR (Sing et al.,
2005). We considered successes as “positive” and failures as “negative” samples, and
focused on the following five performance measures:

e TPR;, and TPRy,: The true positive rate (sensitivity, recall) of a scoring classi-
fier at a cutoff the induces a false positive rate of 10% (equivalently, a specificity
of 90%) or of 20%.

o AUC, AUC,y and AUCy,: The area under the ROC curve (providing a cutoff-
independent measure of class separation by a scoring classifier), and the partial
AUC:s up to a false positive rate of 10% and 20%, respectively.

5.3.3 Results

Regimen scores from individual drug scores: summation versus statistical
learning

Our first analysis was devoted to comparing summation versus statistical learning as
methods for combining scores for single drugs into regimen scores. Figure 5.8 shows
averaged ROC curves (10 replicates of 10-fold cross-validation) based on the ANRS,
Rega, HIVDB, and Pheno input representation, respectively. For each representation,
regimen scores are either derived by simple summation or by statistical learning, as
described in Section 5.3.2. The graph clearly shows that at all practically relevant false
positive rates, the regimen score based on statistical learning drastically outperforms
the summation-based regimen score. Table 5.2 shows the performance improvements
conferred by statistical learning according to a number of performance criteria. For all
input representations and performance criteria, the improvements are consistent and
highly statistically significant (p < 2.2 x 1076, Wilcoxon signed rank test). For ex-
ample, at a false positive rate of 10%, the improvements in true positive rate range
from 19.2% (ANRS) to 31.3% (Pheno). Given these clear results, all further experi-
ments were performed with regimen scores derived by statistical learning.



5.3. INFERRING RESPONSE FROM GENOTYPE: PHENOTYPES 121

o
Fi = ——
©
®
Q
©
©
2 o7
.‘U:"
o
[o%
[}
2
o
g =
§ o
<
N
SN
—— ANRS
— Rega
HIVDB
— PHENO
o
S
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 5.8: Comparing summation (dashed lines) vs. statistical learning (solid lines)
for combing individual-drug scores into regimen scores.

Table 5.2: Mean (standard error) performance improvement (across 10 replicates of
10-fold cross-validation) for selected performance measures when using statistical
learning rather than simple summation to combine individual drug scores into regi-
men scores. AUC refers to the AUC up to a false positive rate of 10%.

AUC1o

AUCo0

AUC

TPR o

TPRoyo

ANRS
Rega
HIVDB
PHENO

0.013 (0.005)
0.022 (0.005)
0.022 (0.006)
0.026 (0.006)

0.034 (0.009)
0.045 (0.009)
0.048 (0.009)
0.048 (0.009)

0.063 (0.016)
0.065 (0.015)
0.078 (0.017)
0.071 (0.016)

0.192 (0.08)

0.291 (0.069)
0.283 (0.066)
0.313 (0.076)

0.19 (0.056)

0.177 (0.044)
0.176 (0.048)
0.159 (0.049)
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Method comparison

The second experiment was devoted to a detailed comparison of the five non-hybrid
input representations and the four hybrid input representations combining a genotypic
representation (ANRS, Rega, HIVDB, Geno) with the Pheno representation. Averaged
ROC curves from 10 replicates of 10-fold cross-validation on the Stanford data are
shown in Figure 5.9(a), and numerical readouts of the graph at selected false positive
rates are shown in the upper part of Table 5.3. Remarkably, the Pheno representation is
among the best non-hybrid representations overall, with the highest AUC,, and AUC.
In terms of AUC;, and TPR,j, the Geno representation is the best non-hybrid repre-
sentation, and in terms of TPRy, the Rega representation is best. As can be seen in
Figure 5.9(a), even the worst hybrid representation outperforms the best non-hybrid
representation at all practically relevant false positive rates. Table 5.4 shows p-values
of comparisons (Wilcoxon signed rank test) between the best non-hybrid and the worst
and best hybrid representation, respectively. For all performance measures but AUC,
the improvement conferred even by the worst hybrid representation is significant (first
row). When comparing the best non-hybrid with the best hybrid representation (second
row), the improvements are highly significant for all performance measures.

Data sets collected from different regions at different times may be very different
from each other, reflecting local or temporal changes in preferred treatment strategies.
In order to investigate to which degree classifiers learned from the Stanford data can
be used for prediction on completely different data, we used them for predicting the
EuResist data set, which was not used at all during training. ROC curves are shown
in Figure 5.9(b), and selected numerical readouts are presented in the lower part of
Table 5.3. Generally, the prediction performance of all methods decreases when used
on the completely different data. For example, on the Stanford data, the best methods
achieve a TPRyy of 76.3% and a TPRy, of 92.7% (in cross-validation), compared to
53.4% and 74.3% when trained on the Stanford, but evaluated on the EuResist data.
However, qualitatively, the results remain similar in that again hybrid methods outper-
form non-hybrid methods across all relevant false positive rates.

Classical standard datum

As a final experiment, we replicated the two experiments reported above using the clas-
sical standard datum definition instead of the genotype-centric standard datum. The
ROC curves (from ten replicates of ten-fold cross-validation) in Figure 5.10(a) are the
results of comparing summation versus statistical learning for combining single-drug
scores into regimen scores. Similar to the genotype-centric standard datum, statistical
learning outperforms summation for all the methods investigated, although the differ-
ences are smaller than in the alternative case.

Figure 5.10(b) shows the results — now using the classical standard datum — of
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Table 5.3: Selected measures of model performance for hybrid and non-hybrid input

representations.

Cross-validation on Stanford-Kaiser data.

AUCqg

AUCy

AUC

TPRy,

TPRy

ANRS

Rega

HIVDB

Pheno

Geno
ANRS+Pheno
Rega+Pheno
HIVDB+Pheno
GENO+Pheno

0.035 (0.005)
0.042 (0.005)
0.04 (0.005)

0.046 (0.006)
0.047 (0.006)
0.048 (0.006)
0.048 (0.006)
0.05 (0.006)

0.048 (0.006)

0.112 (0.009)
0.125 (0.009)
0.116 (0.008)
0.129 (0.009)
0.129 (0.008)
0.134 (0.008)
0.133 (0.009)
0.135 (0.008)
0.134 (0.008)

0.879 (0.017)
0.907 (0.013)
0.873 (0.017)
0.908 (0.015)
0.908 (0.014)
0.92 (0.012)

0.92 (0.013)

0.922 (0.012)
0.915 (0.013)

0.622 (0.077)
0.708 (0.06)

0.644 (0.064)
0.714 (0.061)
0.725 (0.052)
0.761 (0.054)
0.744 (0.053)
0.761 (0.049)
0.763 (0.051)

0.855 (0.037)
0.898 (0.031)
0.835 (0.031)
0.895 (0.035)
0.886 (0.031)
0.92 (0.025)

0.923 (0.03)

0.927 (0.024)
0.906 (0.029)

Training on Stanford-Kaiser data, prediction on EuResist data.

AUCqg

AUCqyg

AUC

TPRy

TPRog

ANRS

Rega

HIVDB

Pheno

Geno
ANRS+Pheno
Rega+Pheno
HIVDB+Pheno
Geno+Pheno

0.019 (0.002)
0.028 (0.003)
0.025 (0.004)
0.028 (0.002)
0.037 (0.001)
0.031 (0.001)
0.031 (0.003)
0.034 (0.005)
0.033 (0.003)

0.066 (0.005)
0.089 (0.004)
0.076 (0.004)
0.09 (0.005)

0.099 (0.002)
0.095 (0.002)
0.094 (0.005)
0.099 (0.007)
0.097 (0.004)

0.802 (0.006)
0.843 (0.007)
0.781 (0.009)
0.841 (0.007)
0.84 (0.002)

0.859 (0.003)
0.857 (0.007)
0.862 (0.009)
0.846 (0.004)

0.318 (0.03)
0.499 (0.036)
0.4 (0.032)
0.481 (0.029)
0.525 (0.006)
0.506 (0.016)
0.519 (0.03)
0.534 (0.043)
0.528 (0.023)

0.608 (0.007)
0.703 (0.01)

0.622 (0.013)
0.732 (0.014)
0.716 (0.005)
0.739 (0.006)
0.737 (0.011)
0.743 (0.012)
0.74 (0.009)

Table 5.4: Statistical significance (logarithm of the p-values) of performance differ-
ences observed in cross-validation on the Stanford data.

y [ AUCy AUCy AUC TPR1o TPR2o
nonl-glel:;:)ri d Geno Pheno Pheno Geno Rega
Worst —0.87 —9.92 —8.28 —3.42 —-2.21
hybrid ANRS+Pheno Rega+Pheno Geno+Pheno  Rega+Pheno Geno+Pheno
Best —4.20 < =15 < —15 —9.54 < —15
hybrid HIVDB+Pheno HIVDB+Pheno HIVDB+Pheno Geno+Pheno HIVDB+PHENO
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Figure 5.9: Comparing hybrid (solid lines) and non-hybrid (dashed lines) input repre-
sentations.

comparing the five non-hybrid input representations and the four hybrid input repre-
sentations that combine a genotypic representation (ANRS, Rega, HIVDB, Geno) with
the Pheno representation. With the general decrease in predictive performance, the
advantage of hybrid methods is greatly reduced, as compared to the genotype-centric
standard datum. Remarkably, as shown in Table 5.5, the Pheno representation achieves
the highest AUC among all non-hybrid representations.

5.3.4 Discussion

In this large-scale study, we have compared a variety of input representations for their
ability to discriminate between treatment success or failure, based on genotype and a
chosen drug combination. Two different methods for combing scores for individual
drugs into scores for a regimen as a whole have been evaluated, based on either the tra-
ditional summation, or on statistical learning using support vector machines. The use
of statistical learning for score combination consistently outperformed the summation
in our experiements. We hypothesize that the superiority of the learning-based com-
bination is due to its intrinsic ability to assign specific weights for individual drugs
in a regimen (possibly corresponding to potency), in contrast to the traditional un-
weighted summation, and for capturing drug-drug interaction effects, as far as they
can be learned from the data. The benefits of weighting the contributions of individual
drugs has previously been reported in the context of a linear model (Swanstrom et al.,
2004).
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Figure 5.10: Replication of the previous experiments, now based on the classical,
rather than the genotype-centric standard datum.

Table 5.5: Selected measures of model performance, estimated by cross-validation on
the Stanford data, using the classical standard datum.

AUC

TPR1

TPRy

ANRS

Rega

HIVDB

Pheno

Geno
ANRS+Pheno
Rega+Pheno
HIVDB+Pheno
Geno+Pheno

0.723 (0.033)
0.727 (0.036)
0.712 (0.034)
0.74 (0.033)

0.719 (0.033)
0.741 (0.033)
0.74 (0.034)

0.739 (0.035)
0.733 (0.031)

0.303 (0.075)
0.252 (0.075)
0.286 (0.073)
0.283 (0.068)
0.273 (0.067)
0.271 (0.079)
0.29 (0.067)

0.267 (0.078)
0.283 (0.066)

0.486 (0.074)
0.458 (0.094)
0.446 (0.065)
0.495 (0.084)
0.463 (0.084)
0.5 (0.082)

0.488 (0.085)
0.492 (0.087)
0.478 (0.078)
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A major focus of our analysis was to compare the performance of input represen-
tations directly based on the genotype with an input representation based on predicted
phenotypes. As mentioned in Section 5.3.1, this latter approach has been cricized fre-
quently, although there has been little data as a basis for judgement. For example,
it has been mentioned that "attempting to infer response from genotype via the inter-
mediate step of predicting the phenotype is likely to have serious limitations" (Larder
et al., 2007; Brun-Vézinet et al., 2004). Contrary to this widely held belief, none
of the experiments reported here shows any limitation of the phenotype-based repre-
sentation, as compared to the genotype-based representations. Rather, according to
several performance measures (AUC, AUCy), the phenotype representation is even
the best non-hybrid input representation. It is also in closest correspondence with an
actual measurable quantity among all input representations, namely the resistance fac-
tor (fold-change in IC50). It is important to keep in mind that the phenotype-based
representation relies on normalization for realizing its full potential (e.g. in the way
described in Section 5.3.2). This is most likely due to the very different range of resis-
tance factors observed for the different drugs, and their nonuniform clinical relevance.

A third focus of our study was to assess potential synergies between genotypic rep-
resentations and the phenotypic representation. Intuitively, a certain degree of comple-
mentarity might be expected between representations that were derived from very dif-
ferent kinds of data. Moreover, approaches based on integrating these various sources
of data could lead to more robust discriminations between successes and failures. Con-
firming this hypothesis, a substantial and highly significant benefit was observed for
hybrid over non-hybrid methods in cross-validation experiments on the Stanford data.
This benefit was qualitatively preserved when using classifiers trained on the Stanford
data for predicting samples from the EuResist data. However, the difference was much
smaller when using the methods on a completely different data set. Finally, when us-
ing the classical, instead of the genotype-centric standard datum, the benefits of hybrid
over non-hybrid representations have virtually vanished. We were not able to explain
these dataset-dependent discrepancies. Still, when using the genotype-centric standard
datum, such as for ranking therapies (as currently done in the THEO system!?), the
use of a hybrid representation is likely to contribute to an increased predictive perfor-
mance.

In summary, we have shown that the use of a phenotypic input representation is
clearly competitive with genotype-based representations, the former often outperform-
ing the latter. Moreover, substantial synergies can exist between these different repre-
sentations, which can be explained by the different kinds of data from which they are
derived. However, in our experiments, the magnitude of these synergies strongly de-
pends on the data set and on the standard datum definition. For a better understanding
and definition of the potential benefits of hybrid approaches, these and similar exper-

12 Available at www . geno2pheno. org.
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iments should be replicated with different datasets, standard datum definitions, and
possibly more sophisticated forms of hybrid representations.

5.4 Inferring response from genotype: with or without
predicted replication capacity?'?

In Section 5.3, we have shown how the incorporation of predicted resistance pheno-
types can improve the reliability of response prediction. In this short section, we study
the clinical relevance of another phenotypic quantity of potential clinical relevance:
viral replication capacity (RC), or “fitness”'*. The derivation of genotype-RC models
using support vector machines and random forests is described in detail in (Weisser,
2006; Sing et al., 2006). Here, we only briefly review the necessary background from
these studies, but focus on the previously unreported evaluation of the clinical rele-
vance of predicted RC.

5.4.1 Introduction

Although there is a correlation between drug resistance and virologic response, devel-
opment of resistance does not always entail treatment failure. Many of these discordant
cases might be explained by non-viral effects, such as host or pharmacological factors.
However, in several cases, the discordance was linked to the presence of specific mu-
tations in the viral genome. A well-known example is the M184V mutation which
confers high-level resistance to lamivudine and emtricitabine. Still, despite resistance,
viral load often remains below baseline levels in patients harboring M 184V strains.

Based on the reported cases of discordance, the clinical use of phenotypic resis-
tance data has been said to suffer from “serious limitations as the association between
in vitro resistance levels and virological response is often not well characterized”
(Brun-Vézinet et al., 2004). As an alternative, it has been suggested “to refine and
optimize the use of genotyping by establishing interpretative tools or algorithms based
on direct correlations [of genotypes] with virological response” (Brun-Vézinet et al.,
2004).

However, compared to phenotypic measurements which are obtained from well-
controlled and reproducible assays, virological response is influenced by many addi-
tional factors. Moreover, models based on the direct correlation between genotype and
response do not even try to understand the causal relationships involved in determining

3Part of the work reported in this section (on genotype-fitness data) was performed in collaboration
with Hendrik Weisser (MPI for Informatics, Saarbriicken), in the context of a Bachelor’s thesis, and
with Hauke Walter and Monika Tschochner (University of Erlangen).

'4Due to the many different uses of the word “fitness”, we prefer to use the technical term “replication
capacity”.
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response to therapy, but rather treat virus-host interaction entirely as a “black box”.

For these reasons, it is worthwhile further exploring the use of phenotypic infor-
mation (typically predicted from genotype) in predicting response to therapy. Thus,
while the “black box™ paradigm mentioned above concludes that “less modeling” (in
the sense of discarding phenotypic information and directly correlating genotype to
response) is the appropriate reaction to reported resistance-response discordance, we
suggest it should be “more modeling”. For example, we have previously shown that
the integration of evolutionary information into models of therapy response improves
the reliability of the predictions (Altmann et al., 2007; Sing and Beerenwinkel, 2007).

In the present study, we explore the use of another factor of potential relevance:
viral replication capacity (RC). In several cases in which specific mutations have been
implicated with discordant phenotypic and in vivo behavior, this was attributed to RC
effects. Thus, genotype-based approaches for predicting response to therapy could
potentially benefit from integrating predicted RC.

5.4.2 Materials and Methods

Genotype-RC data. Two datasets of matched genotype-RC pairs were available for
building genotype-RC models. Dataset “Erlangen” consisted of 261 samples measured
using a novel RC assay developed at the University of Erlangen-Niirnberg (reviewed
in Weisser, 2006). Genotyping was performed for the whole protease, and for residues
1-250 of the reverse transcriptase. Dataset “Virologic/Monogram™ consisted of 317
samples measured using the commercial Monogram replication capacity assay'>. Here,
genotypes were available for protease positions 4 to 99 and for reverse transcriptase
positions 38 to 223. Genotype-RC models were derived by support vector regression
and random forest regression, with model selection and performance evaluation as
described in detail in (Weisser, 2006). In particular, RC was represented as the decadic
logarithm of the measured RC. For example, a measured RC value of 70% would be
represented as log,,(70) ~ 1.85.

Clinical genotype-therapy-response data. For analyzing clinical relevance, a sub-
set of the “Stanford-Kaiser” data described in Section 5.3 were available. These data
were dichotomized into success and failure according to the “alternative” standard da-
tum (cf. Section 5.3). Moreover, the data had been “balanced on therapies”, meaning
that for each drug combination the number of successful treatment change episodes
(TCEs) was equal to the number of failing TCEs. In this way, no drug will appear su-
perior per se compared to any other drug in the statistical learning procedure. This is
in contrast to the unbalanced datasets used in Section 5.3, where for example the ratio
of successful to failing therapies is much higher for lopinavir-containing regimens than

5Kindly provided by Mark Segal (University of California, San Francisco).
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for zidovudine-containing regimens. In total, there were 1,022 successful TCEs and
the same number of failing TCEs.

Evaluation of clinical relevance. To assess the clinical relevance of predicted RC,
we evaluated three different input representations. In representation RC, each of the
2,048 samples was simply represented by the RC (predicted with an SVM model de-
rived from the “Virologic/Monogram” data) and the drugs in the regimen, leading to
a (1 [RC] + 17 [drugs])-dimensional vector for each sample. Representation RF (for
“resistance factor’”) was exactly the “Pheno” representation from Section 5.3, in which
a sample was represented by a 17-dimensional vector representing drug resistance for
the samples in the regimen. Finally, representation RF+RC consisted of representation
RF, to which the predicted RC was concatenated, leading again to a (17 [RF/drugs]
+ 1 [RC])-dimensional representation for each sample. Each of these three input rep-
resentations was then correlated to response (success or failure) using support vector
classification with a linear kernel. Ten replicates of ten-fold cross-validation were used
to assess predictive performance.

5.4.3 Results

Predictive reliability of the genotype-RC models. In 10-fold cross-validation, the
squared correlation coefficient r? of support vector regression attained a mean of 0.241
(Erlangen, 0 = 0.015) and 0.316 (Monogram, o = 0.018). Random forests led to a
mean 72 of 0.297 (Erlangen, o = 0.019) and 0.272 (Monogram, o = 0.028). This
predictive performance is substantially lower than that observed for most drugs when
predicting phenotypic resistance, even in datasets of the same size, and using exactly
the same methods. We could not identify the reasons why reliable prediction of RC
was not possible here. For the Erlangen data set, repeated measurements of one sample
were available to investigate the assay variablity (these repeated measurements were
not used in training the classifiers). As shown in Figure 5.11, the assay variability is
substantial, spanning almost 50% of the range of fitness values between 0 and 100%.
There were no repeated measurements available to us for the Monogram dataset, so no
comparison was possible. Certainly, a measurement noise of this degree is likely to
exhibit a strong burden on the expected predictive performance.

Evaluation of clinical relevance. Figure 5.12 shows the results of evaluating the
different input representations in the task of predicting success or failure of antiviral
combination therapy. The yellow curve, representing the predictive performance of the
RC representation, is close to the diagonal for the practically relevant false positive
rates. The combined representation RF+RC outperforms the RF representation only
marginally.
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Figure 5.11: Repeated measurements of a single sample a three different dates, show-
ing the substantial assay variability and a slight trend over time.
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Figure 5.12: Averaged ROC curves (from 10 replicates of ten-fold cross-validation)
for the prediction of success or failure of combination therapy. The dotted diagonal
represents completely uninformed prediction. The yellow, black, and red curves repre-
sent classification purely based on RC, purely based on RF, and based on both RF and
RC, respectively.
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5.4.4 Discussion

In this section, we have studied the integration of predicted replication capacity into
a classifier for predicting success or failure of antiviral combination therapy. The ob-
served benefits were marginal, compared to an approach based exclusively on predicted
phenotypic drug resistance. Thus, in the current form, information about viral replica-
tion capacity cannot be used to improve systems such as the therapy ranker THEO'®,
We hypothesize three alternative explanations for the lack of utility of RC. First, the
predictive performance of genotype-RC regression was substantially below that ob-
served in the prediction of phenotypic resistance. The predicted RCs might be too
noisy to be useful for other purposes. Second, it might be that the naive integration
of RC with RF by simple concatenation was not adequate, and that more sophisticated
forms of integration might be needed. Third, as of today, the clinical relevance of repli-
cation capacity is not fully established (De Luca, 2006), and the lack of clinical utility
of predicted RC might be a symptom of a lack of clinical utility of RC in general. Ad-
ditional studies will be needed in order to identify which of these three alternatives is
the true explanation for our observations.

16 Available at www . geno2pheno. org.
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6

Genotypic, Clinical, and Structural
Predictors of HIV Coreceptor Usage

HIV coreceptor usage is tightly linked to disease progression towards AIDS. More-
over, drugs from the novel class of coreceptor antagonists aim to selectively inhibit
one of the two main coreceptors for HIV, called CCR5 and CXCR4. For these two rea-
sons, it is important to understand the relation between mutations in the viral genome
and changes in the coreceptor usage of the viral population. This chapter is struc-
tured into four main parts. First, we shall review the clinical motivation for predicting
coreceptor usage, including a brief account of the exciting history of research on core-
ceptor usage (Section 6.1). Section 6.2 is devoted to analyzing the relation between
genotype and coreceptor usage phenotype on both clonal and clinical (“population-
based”) data, including a discussion of related work. Because (as we shall see) clinical
data is “harder” to deal with than clonal data, we devote Section 6.3 to the incorpora-
tion of sequence, clinical and host data only available in a clinical setting. Finally, in
Section 6.4, we show how the incorporation of structural modeling into a prediction
system can improve both predictive performance as well as our understanding of the
genotype-phenotype relation.

6.1 Introduction

Motivation

HIV-1 enters target cells through a multi-stage interaction of the viral envelope pro-
tein gp120 with the CD4 host cell receptor and a cellular coreceptor, usually CCRS5
or CXCR4 (reviewed in Sirois et al., 2005)). Individual virions are able to use one or
the other or both coreceptors (R5/X4 phenotype). In vivo, R5-only virus is generally
present over the entire course of infection (Schuitemaker et al., 1991), and CXCR4-
capable (R5/X4 or X4) variants are detected in approximately 50% of infected indi-
viduals at end-stage disease. The reason for this coreceptor switch remains unclear,
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but both in vitro studies and experiments in animal models suggest that the emergence
of X4 virus is strongly associated with CD4" cell depletion and thus may be an im-
portant determinant of pathogenesis (Regoes and Bonhoeffer, 2005). The question of
whether X4 virus is a cause or emerges as a result of CD4™ cell depletion (or both) as
well as the evolutionary reasons for the development of these variants, remain largely
unresolved (Penn et al., 1999). The capacity of the virus to use CXCR4 lies at least
partially in a change of several amino acids in the third hypervariable (V3) loop of
gp120 (Fouchier et al., 1992), although sequence changes outside the V3 region also
contribute to coreceptor use (Groenink et al., 1992).

In recent years, substantial attention has been devoted to HIV coreceptors due to
their potential as drug targets, and antagonists of the CCRS5 coreceptor are now in
advanced clinical studies (Dorr et al., 2005; Westby and van der Ryst, 2005). No-
tably, coreceptor antagonists represent the first class of anti-HIV drugs targeting a host
protein, rather than a viral protein. Unfortunately, the static nature of this target (as
opposed to the rapidly adapting viral enzymes targeted by classical drugs), does not
prevent the emergence of resistant mutants. Specifically, resistance to coreceptor an-
tagonists can include increased viral binding affinity to the coreceptor, changes in the
CCRS5 binding mode, or the emergence of newly produced or pre-existing X4 variants
(Moore et al., 2004). Given the link between emerging X4 virus and disease pro-
gression, the need for careful monitoring of viral coreceptor usage for screening and
treatment with CCRS antagonists becomes apparent.

Phenotypic assays for monitoring viral drug resistance or coreceptor usage are
commercially available, although they are relatively expensive and have a relatively
slow turnaround. Approaches based on the viral genotype promise potential alter-
natives for routine clinical usage. The complex relationship between viral genotype
and phenotype and/or response to therapy has led to the development of sophisticated
interpretation algorithms which have been successfully implemented for HIV drug re-
sistance testing. As reviewed in Section 5.1, these algorithms are now widely used
to support treatment with the antiretroviral drug classes of protease (PIs) and reverse
transcriptase inhibitors (RTIs). Genotypic approaches for monitoring coreceptor usage
aim at detecting X4-capable virus with high sensitivity, while minimizing the number
of false positives, i.e. R5-only variants that are incorrectly predicted as X4-capable.
To date, the most popular genotypic predictor of X4-capable virus is the simple 11/25
rule, predicting X4-capable virus based on the presence of arginine or lysine at posi-
tions 11 and/or 25 of the third hypervariable (V3) region of the envelope protein gp120
(Fouchier et al., 1992; de Jong et al., 1992; Fouchier et al., 1995; Korber et al., 1993).
However, previous studies have found the overall reliability of sequence motif-based
methods for phenotype inference, especially for coreceptor usage prediction, to be
limited (Resch et al., 2001). Moreover, it has been suggested that for many V3 back-
grounds, basic changes at position 11 or 25 are neither necessary nor sufficient for a
phenotype switch (Jensen et al., 2003). As a consequence, several alternatives based on
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statistical learning methods have been developed (reviewed in Jensen and Wout, 2003),
including linear regression (Briggs et al., 2000), artificial neural networks (Resch et al.,
2001), decision trees (Pillai et al., 2003), support vector machines (Pillai et al., 2003),
position-specific scoring matrices (Jensen et al., 2003), and mixtures of localized rules
(Sing et al., 2004).

A brief history of research on HIV coreceptor usage

In this section, we briefly review the events that led to our current understanding of
HIV coreceptor usage and the implication of the gp120 V3 loop as a major determinant.
Among other factors, this history is remarkable because of its delayed onset: Reverse
transcriptase inhibitors had been in use already for a decade and the first protease
inhibitors had just been approved when the first reports appeared showing that HIV
was dependent on a coreceptor to enter a host cell.

The fact that HIV-1 could only infect cells with the CD4 receptor was discovered
very early (Dalgleish et al., 1984; Klatzmann et al., 1984), in fact almost immediately
after the discovery of HIV-1 (Barré-Sinoussi et al., 1983; Popovic et al., 1984). How-
ever, research on HIV coreceptors began over a decade after these discoveries. First,
Cocchi et al. (1995) observed that three chemokines, MIP1-« , MIP1-3, and RANTES
(nowadays systematically called CCL3 to CCLS5) were potent repressors of strains
with in vitro tropism for macrophages. Next, Feng et al. (1996), discovered that some
strains infecting T-cells in vitro needed a particular chemokine receptor — which we call
CXCR4 today — as a coreceptor, in addition to CD4. However, the three chemokines
did not bind to CXCR4. Due to this observation it was widely hypothesized that CCL3
to CCL5 were the natural ligands of a hypothetisized “second” coreceptor which is
needed by some viral variants as a coreceptor. Shortly afterwards, this receptor, today
called CCRS, was identified simultaneously by several groups (Alkhatib et al., 1996;
Deng et al., 1996; Dragic et al., 1996; Choe et al., 1996; Doranz et al., 1996).

At the very moment of their discovery, the idea of inhibiting the HIV coreceptors
to prevent viral entry was born. Furthermore, the discovery of differential coreceptor
usage also replaced previous phenotype classification systems based on cell tropism,
replication rate in peripheral blood mononuclear cells (PBMCs), or the cytopathology
in MT-2 cells (Fenyo et al., 1997). Based on these "old" classification schemes, which
are highly correlated but not identical to coreceptor usage, the third variable region
of gp120 had already been identified as a major determinant of phenotype (Chesebro
et al., 1991; Hwang et al., 1991). The rough region being identified, interest grew in
determing the relation between genotype and phenotype more precisely. Two pioneer-
ing papers appeared in 1992, implicating a net V3 charge of at least five (Fouchier
et al., 1992) or the presence of a basic residue at V3 positions 11 or 25 (de Jong et al.,
1992) with usage of the CXCR4 receptor. At this time it was already known that a
phenotype switch was associated with progression to AIDS (Tersmette et al., 1989).



136 CHAPTER 6. CORECEPTOR USAGE

Thus, a direct link between the sequence evolution of V3 and disease progression had
been established. Reflecting the growing interest in this link, the first article on V3
evolution appeared soon afterwards (Kuiken et al., 1992). Long before the V3 region
was implicated as a phenotype determinant, it had been recognized as a major target
for neutralizing antibodies. In an early bioinformatics paper by Modrow et al. (1987),
aregion within V3 was predicted as an epitope, along with other regions. This predic-
tion was confirmed in the following year (Goudsmit et al., 1988), and in 1989, the V3
region was given the name the "principal neutralizing determinant”, because its dele-
tion stopped the activity of neutralizing antibodies. Thus, in 1996, all questions were
there which have occupied HIV coreceptor research until today, and will continue to
do so for a while.

6.2 Predicting HIV coreceptor usage from sequence'
6.2.1 Related work

Ultimately, all information for determining the coreceptor usage of a given virus
strain is contained in its genome. Thus, the relation between sequence alterations and
changes in coreceptor usage could in principle be derived by directly correlating geno-
type to phenotype. Potential benefits of a good understanding of genotype-phenotype
relations include the possibility to make suggestions that can be validated via site-
directed mutagenesis or biophysical studies. Moreover, the genotype reveals a much
more fine-grained picture of how "close" a virus is to changing its coreceptor usage
behavior. This is similar to the notion of "genetic barrier" which is commonly used in
drug resistance to denote the number of mutations a given strain has to accumulate in
order to become resistant to a given drug. An understanding of genotype-phenotype re-
lations also has a very practical effect: experimental assays for determining coreceptor
usage are expensive and time-consuming, whereas predictions based on the genotype
only rely on sequencing a small part of the viral genome which is a cheap and fast
routine task. As mentioned in Section 6.1, experimental work has identified the V3
loop as the main determinant of viral coreceptor usage. Consequently, and due to lack
of sufficient data for other regions, all current approaches focus on V3.

Early rules-based approaches include (Fouchier et al., 1992; De Jong et al., 1992;
Fouchier et al., 1995; Milich et al., 1997; Xiao et al., 1998). Donaldson et al. (1994)
presented one of the earliest approaches to predict genotype from phenotype which
was not based on a simple amino acids rule. Here, a line was chosen manually to
separate RS from R5X4/X4 sequences in the two-dimensional space spanned by the
positive charge of the V3 loop and the number of amino acid differences from an RS

The work reported in this section was performed in collaboration with Richard Harrigan and An-
drew Low (British Columbia Center for Excellence in HIV/AIDS) and with Martin Ddumer and Rolf
Kaiser (University of Cologne).
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consensus strain.

Statistical learning methods entered the field starts with the work of (Briggs et al.,
2000), who proposed a linear model for the combined prediction of coreceptor usage
and cell tropism. More precisely, a value of 1 for the dependent variable was used
to denote M-tropic RS virus, a value of 2 for R5X4- or X4-using dualtropic virus,
and a value of 3 for X4-using T-tropic virus (while not being an exhaustive listing of
coreceptor usage / cell tropism combinations, this choice covered the data used in this
study). The explanatory variables were net V3 charge, positive V3 charge, negative
V3 charge, and an indicator variable for the presence of an isoleucin at HXB2 position
326 (V3 position 31). These variables were based on a heuristic assessment of V3
alignments and on published evidence.

Beerenwinkel et al. (2001) used decision trees to predict SI/NSI phenotype from
V3 sequence. Initially, the amino acids at individual alignment positions were taken
as the explanatory variables. In a second run, the overall V3 charge was incorporated
as an additional explanatory variable. Resch et al. (2001) applied neural networks for
the prediction of coreceptor usage. The dependent variable was coreceptor usage, with
one class for R5-virus and one class for R5X4/X4-virus (thus the goal was to detect the
capability of using CXCR4). The network topology was specified as a fully connected
feed-forward network with 16 input nodes, a hidden layer of three sigmoidal nodes,
and one linear output unit. The 16 variables used for the input nodes were the amino
acids at positions 5, 7, 8, 10, 11, 13, 18-22, 24, 25, 27, 32, plus the overall charge of the
V3 loop. These positions were chosen empirically, guided by some statistical analysis.
Amino acids were encoded by numbers from 1 to 21 (including a number for a gap in
the alignment), while trying to order the amino acids in a chemically meaningful way
(with positively charged amino acids at one end and negatively charged amino acids at
the other end).

Pillai et al. (2003) used decision trees (C4.5 and PART) and support vector ma-
chines with linear kernel, again for the detection of CXCR4 using virus. Explanatory
variables were the individual aligned amino acids in the case of decision trees, and an
indicator representation for SVMs (a binary vector with 21 entries for each position,
which are all O except for the entry representing the amino acid at hand, which is set to
1). This is the first paper which reports a statistically significant overrepresentation of
misclassified R5X4 viruses, indicating special problems with this intermediate class.

Jensen et al. (2003) proposed the use of position-specific scoring matrices
(PSSMs), for the detection of CXCR4-using virus. PSSMs are a probabilistic sequence
model. Sequence profiles (matrices indicating the frequency of each amino acid at
each position) are estimated for the class of RS and R5X4/X4 viruses, respectively.
The probability of observing a sequence under one of the two models can be computed
from the respective profile when assuming independence among the columns in the
alignment. The PSSM score corresponds to a likelihood ratio test between the two
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models. Explanatory variables are the amino acids at the individual positions.

A new method for statistical learning called mixtures of localized rules was pro-
posed in (Sing et al., 2004). This approach was used to detect X4-capable virus, based
on individual amino acids at the alignment positions. Briefly, simple classification
rules are learnt from data in this approach. These rules are combined for prediction
in a weighted voting model, where each rule is assigned an individual weight. The
weights are estimated by maximizing the area under the ROC curve. Moreover, the
weight of each rule can vary across different samples, based on the assumption that a
rule’s prediction will be most reliable on sequences that are similar to those that were
used to learn the rule. Sequence similarity is measured by a sequence profile score,
similar to the profiles in (Jensen et al., 2003).

Performance evaluations

Briggs et al. (2000) used 43 subtype B sequences to fit a linear model. Cutoffs of 1.5
and 2.5 were chosen to transform the numeric predictions into predictions for three
classes. They report a perfect model fit (error rate 0%) on the training data and an error
rate of 8.33% on an independent test set of 24 isolates with known coreceptor usage.

Beerenwinkel et al. (2001) used 189 sequences, of various subtypes, from 156
patients. Model fit was estimated by 10-fold cross-validation. For decision trees with
amino acid input, an average error rate of 10.1% was reported on training sets, and
an average of 17.5% on test sets. Adding overall V3 charge as another explanatory
variable resulted in an average error rate of 11.6% on both the training and test sets.
This compared to error rates of 15.8% and 16.4% on training and test sets, respectively,
when refitting the model of Donaldson et al. (1994). Thus, decision trees using amino
acids and overall charge represented a significant increase in accuracy as compared to
the Donaldson model.

Resch et al. (2001) used 216 subtype B sequences (cloned isolates; 168 RS, 28
R5X4, 17 X4) from 177 patients from the HIV Sequence Database in Los Alamos
and from published studies. Patients were carefully shown not to be epidemiologically
related. Several neural networks were trained on subsets of the whole data set. The
network with the best accuracy on the test set was used to report estimates. Those
were compared with the performance of the "charge rule". On the training set, neural
network sensitivity, specificity, and phi coefficient were reported as 0.8, 0.98, and 0.82,
respectively. Corresponding values for the charge rule were estimated as 0.60, 0.89,
and 0.51. Sensitivity, specificity, and phi coefficient on an independent test set were
reported as 0.80, 0.89, and 0.67 for the neural network and 0.53, 0.87, and 0.42 for the
charge rule.

Pillai et al. (2003) used 271 sequences from multiple subtypes (168 RS, 103 X4,
21 R5X4) from the HIV Sequence Database. Only sequences of length 34 to 36 were
included. The database was compiled so that no duplicate sequences were contained in



6.2. PREDICTING HIV CORECEPTOR USAGE FROM SEQUENCE 139

it. Jensen et al. (2003) used the data set compiled by Resch et al. (2001) to estimate a
PSSM. Results were compared to the charge rule and a modified version of the charge
rule. In 100 times 10-fold cross-validation, the method was shown to have sensitivity
of 0.64 and specificity of 0.94, when using all data. When using unique sequences,
the sensitivity dropped to 0.59 and the specificity to 0.86. For comparison, values
for the charge rule and for the modified charge rule were reported: the charge rule
sensitivity and specificity were 0.58 and 0.90, respecitvely, and 0.51 (sensitivity) and
0.96 (specificity) for the modified charge rule.

6.2.2 Method comparison on clonal data

Here, we provide a comparison of the methods introduced above in a joint cross-
validation setting, using a large clonal dataset of HIV V3 genotype-phenotype pairs.
The raw output of all methods is a numeric score, optimized for class prediction (RS-
only versus X4-capable) via a pre-defined and method-dependent cutoff.

Specifically, the predictive performance of the 11/25 rule is compared with alterna-
tives based on statistical learning (Resch et al., 2001; Pillai et al., 2003; Jensen et al.,
2003; Sing, 2004) using ten replicates of 10-fold cross-validation. The comparison is
based on 1,110 clonal genotype-phenotype pairs obtained from the Los Alamos HIV
Sequence Database and from selected publications. The samples originate from 332
patients, with 769 RS, 131 R5/X4, and 210 X4 phenotypes.

Clonal and clinical samples were aligned with the multiple alignment package
MUSCLE (Edgar, 2004), using standard parameters, followed by visual inspection.
No manual alignment correction was necessary.

R5/X4 and X4 variants were pooled into a single class (X4- capable), as opposed to
variants that are limited to using CCRS (R5-only). 156 samples (14%) had insertions
or deletions relative to the subtype B V3 consensus sequence,

CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC,

the reference for position numbering in this study. It should be noted that the V3 region
of the HXB2 (Korber et al., 1998) sequence has two insertions and one deletion relative
to this consensus sequence.

The 11/25 rule has a mean sensitivity of 59.5% in detecting X4-capable variants
and a mean specificity of 92.5% on the clonal isolates, in good agreement with previous
studies. We compared this with a variety of other prediction methods in the framework
of receiver operating characteristic (ROC) analysis (Sing et al., 2005) to analyze the
sensitivity/specificity trade-off across the range of all possible cutoffs (Figure 6.1).
These analyses, and all previous studies, are based on genetically and phenotypically
homogeneous clonal samples. The ROC curve shows the trade-off between sensitivity
and specificity by varying the score cutoff for all compared predictive methods. In
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our analysis, decision trees, neural networks, and mixtures of localized rules only led
to minor improvements in predictive performance over the 11/25 rule when a method-
specific cutoff corresponding to the 11/25 specificity of 92.5% was chosen. In contrast,
classifiers based on position-specific scoring matrices (PSSMs) or support vector ma-
chines (SVMs) significantly outperformed the 11/25 rule, increasing sensitivity by 12.4
percentage points and 16.9 percentage points, respectively, at the 11/25 rule specificity.
Using Wilcoxon’s ranks sum test, the differences in sensitivity between the SVM and
PSSM (p = 0.03) or 11/25 (p < 10~'2) were significant at this specificity. SVMs and
PSSMs also showed significantly higher areas under the ROC curve (AUC) than the
three other methods (0.91 and 0.90 respectively), indicating an overall improvement in
the ability to distinguish X4-capable samples from R5-only samples.

6.2.3 Method comparison on population-based data

In contrast to the scenario reflected by clonal data, it is important to note that the viral
population in vivo is a swarm of genetically and phenotypically heterogeneous variants,
often termed a "quasispecies" (Domingo et al., 1995); therefore, approaches which give
satisfactory results on clonal data may not be satisfactory on clinically derived data. In
order to obtain a representative sample of this quasispecies, a substantial number of
clones would have to be phenotyped and/or genotyped, which is not presently feasible
in routine clinical practice. Instead, both the genotype and the phenotype are obtained
using bulk or “population-based” approaches. Genotypes from population-based se-
quencing often contain mixtures of co-existing viral variants. Sequence ambiguities
that remain undetected either by genotyping or phenotyping may differ from the exact
genotype-phenotype match seen in clonal samples. In this section, we evaluate the
implications of using population-based — as opposed to clonal — sampling strategies on
the reliability of coreceptor usage prediction.

We analyzed plasma samples from 952 antiretroviral-naive patient samples with
matched V3 genotype and coreceptor phenotype. V3 genotype was determined us-
ing population-based “bulk” sequencing techniques and coreceptor phenotype was ob-
tained using the Trofile Coreceptor Assay (Monogram Biosciences), as described in
(Brumme et al., 2005a). Only one of these samples was phenotyped as pure X4 with
the coreceptor assay, suggesting that in vivo, X4 virus is only rarely present without
concordant RS variants. We use the term “X4-capable” for samples containing either
R5/X4 or X4 variants, in contrast to “R5-only” samples. The sequences were aligned
together with the clonal sequences from Section 6.2.2 using the multiple alignment
package MUSCLE (Edgar, 2004), with standard parameters, followed by visual in-
spection. No manual alignment changes were made.

For each mutation we first assessed the association with coreceptor usage in uni-

variate analysis, using Fisher’s exact test (mutation vs. wild type amino acid; R5-only
vs. X4-capable). Correction for multiple testing was performed using the Benjamini-
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Figure 6.1: Predictive performance of the 11/25 rule and five statistical learning meth-
ods, assessed on clonal data. Evaluation was performed using ten replicates of ten-fold
cross-validation, followed by threshold averaging of the ROC curves. The dotted ver-
tical line indicates the specificity of the 11/25 rule (92.4%). While decision trees (DT),
mixtures of localized rules (MLR), and artificial neural networks (ANN) did not im-
prove substantially over the classical rule in our analysis, PSSMs and SVMs did lead
to an increase in sensitivity of 12.4% and 16.9%, respectively. One standard error
indicates the sensitivity spread of 11/25 rule, PSSM, and SVM at the specificity of
92.4%.
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Hochberg method (Benjamini and Hochberg, 1995), at a false discovery rate of 5%.
As shown in Table 6.1, a total of 41 mutations at 19 V3 positions were significantly
associated with coreceptor usage (25 predicting X4-capability, 16 predicting R5-only
variants).

As mentioned above, we are specifically interested in X4-associated mutations,
which occurred at 14 V3 positions. The positions are highlighted in Figure 6.5, on top
of the only V3 loop structure in context of the gp120 core available to date (Huang
et al., 2005). As can be seen in the figure, most of the significant mutations are located
close to the tip of the loop, where the two strands of the [3-hairpin are in close spatial
proximity. The most well-known V3 mutation 11R (p = 1.58 - 10~2°) was present in
31 samples (often in mixtures also containing glycine or serine), 29 of which (94%)
were phenotyped as X4-capable. However, other mutations were also strong X4 deter-
minants. Mutation 13Y (p < 107®) occurred in 21 samples, 16 of which were pheno-
typed as X4-capable. In all cases in which samples with 11R or 13Y were phenotyped
as RS, sequence ambiguities were present at these positions, possibly indicating cases
of genotype-phenotype mismatch. To assess the evolutionary role of 13Y and other
mutations, we analyzed mutation covariation between all pairs of the 25 X4-associated
V3 mutations, again using Fisher’s exact test with the Benjamini-Hochberg method
at a false discovery rate of 0.05 (the method is described in detail in Section 5.2.3).
As shown in Figure 6.6, mutation 11R occurred as part of a mutation cluster with
significant pair-wise association, containing also mutations 9S, 13S, and 24R. Some
of these associations had been described in a previous covariation analysis based on
mutual information rather than Fisher’s exact test (Korber et al., 1993). In contrast,
mutation 13Y was not significantly associated with any of these mutations, suggesting
the existence of several alternative mutational pathways for evolution from R5-only to
X4-capable genotypes.

After this univariate analysis, we evaluated the predictive performance of multi-
variable models on the population-based data, in comparison to their performance on
the clonal data. We focussed on the 11/25 rule (as the classical approach) and the
SVM (as the best-performing prediction method on the clonal data; cf. Section 6.2.2).
The specificity of the 11/25 rule remained close to that observed for the clonal data
(93.5%), while the sensitivity decreased drastically, to 30.5% compared to the 59.9%
sensitivity observed on the clonal dataset. SVM-based prediction was evaluated using
ten replicates of 10-fold cross-validation. Averaged over the 100 test sets from the
cross-validation data, the mean sensitivity of the 11/25 rule was even lower (25.9%)
than on the dataset as a whole, at a mean specificity of 93.9%. SVM-based prediction
again outperformed the 11/25 rule, but, as compared to the clonal data, also decreased
substantially in sensitivity to 39.8% at the 11/25 specificity of 93.5%.

In summary, training and testing SVMs on our clinically derived, population-based
genotype-phenotype data set reveals a substantial decrease in sensitivity, as compared
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to clonal data reported in Section 6.2.2. The extent of this decrease contrasts with
previous experience with the prediction of phenotypic resistance to protease or re-
verse transcriptase inhibitors. In that case, satisfactory results can be obtained even
when using population-based data, and from as few as 500 genotype-phenotype pairs
(Beerenwinkel et al., 2002).

We hypothesize that the transition from clonal to clinically-derived data has a more
profound impact on predicting coreceptor usage than on predicting phenotypic resis-
tance due to the different nature of the reported phenotype. In drug resistance, the
phenotype is reported as a continuous quantity — the fold-change in 50% inhibitory
concentration as compared to a reference strain (cf. Section 2.5) — and the presence of
mixed populations will only cause the reported phenotype to be more variable around
the mean value in repeated experiments, as compared to measurements on homoge-
neous populations. In contrast, coreceptor usage phenotype is a categorical quantity,
and instead of only increasing measurement variability, mixed populations can lead
to a complete mismatch between genotype and phenotype. Furthermore, X4 virus is
usually present as a mixture or a minority species whereas resistance mutations are
often the predominant viral species. The mismatch can be due to X4-capable variants
detected in the phenotype, but undetected in the genotype, either because they are a
minority species or due to mutations outside the sequencing range. As an example,
some of the population-based samples share identical nucleotide sequences within the
sequencing range, but are associated with different phenotypes. On the other hand, X4-
capable variants may remain undetected in the phenotype assay: in a separate study, we
tested 74 of these clinic samples with a second recombinant phenotype assay, finding
an assay agreement of only 85.1% (Skrabal et al., 2007).

The most important limitation of the present and previous studies is the exclusive
consideration of the V3 region. There is accumulating evidence that other parts of the
“bridging sheet” that connects inner and outer domain of gp120 are critically involved
in coreceptor selectivity (Pastore et al., 2006) and using key mutations in these regions
could substantially increase the sensitivity of any genotype-based prediction algorithm.

Most importantly, by assembling a large dataset on coreceptor usage for
population-based samples, we have demonstrated that performance evaluations based
on clonal data — the basis for all prediction studies to date — provide positively biased
estimates of the predictive reliability of genotypic methods for predicting HIV core-
ceptor use in clinical practice. In the latter scenario, the prediction problem is com-
plicated by the use of population-based genotyping and phenotyping, and the presence
of genetically and phenotypically heterogeneous — possibly even undetected — viral
subpopulations. A multitude of V3 mutations appear to be associated with coreceptor
usage, in addition to the classical mutations at positions 11 and 25. The role of these
mutations should be confirmed in vitro using mutagenesis studies in a variety of ge-
netic backgrounds. Our results also show consistent advantages to statistical learning
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methods over the classical 11/25 rule.

6.3 Clinical and host markers in predicting corecep-
tor usage?

In the previous section we have shown that predicting coreceptor usage from clini-
cally derived (population-based) data is substantially harder than for clonal data. In
the present section, we study if the incorporation of additional data only available
in the clinical setting can countervail against the performance loss incurred due to
population-based (as opposed to clonal) sequencing and phenotyping.

To identify potentially useful markers of coreceptor usage, we examined clinical
parameters, including plasma viral load (VL), CD4 and CD8 cell counts, and the per-
centage of CD4™ T-cells (CD4%) at the time of sampling for all of the 976 HOMER
patients (Brumme et al., 2005a). Moreover, patients were tested for heterozygosity at
the CCR5 A32 allele, a 32-basepair deletion resulting in non-functional CCRS5 core-
ceptors (Brumme et al., 2005b). The univariate association between clinical features
and coreceptor usage is summarized in Table 6.1. To assess the predictive benefit of
these features when combined with a purely sequence-based prediction approach, we
evaluated different feature subsets in combination with an SVM-based classifier. The
best feature combination relied on four additional features (log,,(CD4%); host CCR5
A32 heterozygosity; number of ambiguous amino acid V3 positions; and a variable
indicating the presence of insertions or deletions in the V3 sequence). The improve-
ments in sensitivity over the 11/25 rule and the purely sequence-based SVM were
substantial when the clinical parameters were considered (Figure 6.2). The sensitiv-
ity of 63% at the 11/25 specificity corresponds to a 2.4-fold improvement in detecting
X4-capable samples relative to the 11/25 rule. SVM-based feature ranking showed
that 221 of the 704 variables had non-zero weights in the combined model. In par-
ticular, 98 variables contributed to increased CXCR4 propensity, and 123 variables to
increased CCRS propensity (Figure 6.3). The top 5-ranking variables were CD4%, the
presence of mutation 13Y, the presence of mutation 11R, the number of ambiguous V3
positions, and the presence of mutation 24G. As shown in Figure 6.4, the probabilis-
tic SVM output was well-calibrated (e.g. approximately 75% of the samples with X4
probability of 75% were indeed X4- capable).

Thus, the intricacies of population-based data can be compensated for by lever-
aging additional information which is routinely available in the clinical setting, but
not with clonal data. Indeed, we have shown that the very source of these intricacies,
namely the genetic diversity of the viral population as measured by the number of

>The work reported in this section was performed in collaboration with Richard Harrigan and An-
drew Low (British Columbia Center for Excellence in HIV/AIDS).
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Figure 6.2: Predicting coreceptor usage on population-based data. ROC curves are
obtained by threshold averaging from ten replicates of ten-fold cross-validation. Bars
indicate one standard error in horizontal and vertical direction. The 11/25 rule per-
forms better when it is applied also in the presence of ambiguous positions 11 or 25
(11/25[b]), as compared to the requirement of unambiguous positions in these places
(11/25[a]). Compared to the clonal dataset, a substantial performance decrease is ob-
served not only for the 11/25 rule, but also for the SVM with amino acid indicator rep-
resentation (SVM). The inclusion of additional features (CD4%, number of sequence
ambiguities, host CCR5 A32 heterozygosity, presence of insertions/deletions), leads
to considerable improvements in predictive performance (SVM and CLINICAL).
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Figure 6.3: Feature ranking for the SVM trained on the clinical dataset (cf. Section
5.2.4 for details). The feature set consists of 704 variables: for each of the 35 V3
positions, 20 variables indicate the presence of specific amino acids. It can seen that
mutation 13Y contributes most strongly to X4 predictions, followed by the 11R muta-
tion. Four additional variables representing CD4%, number of sequence ambiguities,
host CCRS A32 heterozygosity, and presence of insertions/deletions, respectively, are
not shown here, but mentioned in the text.
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Figure 6.4: Calibration analysis of the probabilistic predictions. The horizontal axis
indicates the predicted probability. Ideally, for example, 75% of predictions with confi-
dence 75% should be correct. The calibration error at a given probability is the absolute
difference between the two quantities.
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Table 6.1: V3 mutations significantly associated with coreceptor usage in univariate
analyses of the population-based data. The header row shows the most frequent residue
at the V3 position with relative frequency/entropy below. Underlined mutations predict
X4-capable virus, while the remaining predict R5-only virus, with relative frequency
of all (R5-only; X4) samples below. The p-value (Fisher’s exact test) is indicated in

brackets as log;,.

y N6 N7 T8 R9 S11
N (-3.8) N (-6.0) 1(-4.0) R (-7.9) R (-19.8)
97.0 (98.1:92.1)  96.7 (98.2:89.9) 1.4 (0.4:4.5) 93.0(95.5:82.0) 3.2(0.3:16.3)
Y (-3.0) T (-3.6) S (-4.2)
0.4 (0.0;2.2) 96.9 (98.0;92.1) 2.8 (1.6;7.9)
K37
0.5 (0.0;2.8)
112 HI13 RI18 A19 F20
1(-3.5) Y (-8.8) S(-22) V (-6.0) F(-6.2)
94.0 (95.4:87.6) 2.3 (0.6;9.6) 8.0(9.3:2.2) 3.9(23;11.2)  84.4(87.4,71.3)
S (-4.6) A(3.2) V(-5.2)
4.6 (3.1;11.2) 86.5 (88.4;78.1) 1.8 (0.8:6.7)
T(-28)
5.0(3.9;10.1)
R(-2.8)
3.8 (2.8;8.4)
Y21 A22 T23 G24 E25
H(-52) A (-45) T (-4.6) R(-11.4) D (-4.8)
1.8 (0.8:6.7) 71.5(74.5:58.4)  93.2(95.0:85.4) 2.3(0.4:10.7) 34.4 (37.4;20.8)
1(-3.8) T (-4.4) A (-2.7) G (-7.9) R (-4.6)
0.9 (0.3;3.9) 27.0 (24.2;39.9) 1.8 (1.1;5.1) 84.7 (88.1;69.7) 4.6 (3.1;11.2)
R (-2.7) E (-3.9) Q(-3.8)
1.2 (0.6;3.9) 5.7(4.3:12.4) 7.0 (5.4:14.0)
S (-3.0) N(-2.6)
0.6 (0.1;2.8) 2.6 (1.8:6.2)
126 127 130 Q32
1(-2.6) V(-42) 1(-2.7) Q (-4.0)
92.4 (93.7:86.5) 7.1(5.4;14.6) 97.1(98.0;93.3)  82.9(85.2;72.5)
1(-3.7) K (-3.6)
88.8 (90.7;90.3) 13.5 (11.5;22.5)
A(-3.0)
0.6 (0.1;2.8)
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Table 6.2: Univariate association of individual parameters with coreceptor usage.

N R5-only X4-capable p
(RS, X4) mean; median (IQR) mean; median (IQR)

Viral load 976 220.7; 120 279.5; 175 0.0008
(799 R5, 177 X4) (48.5-310) (84-415) (Wilcoxon)
CD4 7T T-cell count 976 318.6; 290 175.3; 110 7810721
(799 R5, 177 X4) (155-430) (30-260) (Wilcoxon)

CD8* T-cell count 790 933.2; 840 945.0; 790 0.5157
(656 R5, 134 X4) (580-1,140) (470-1,210) (Wilcoxon)
CD4 percentage 790 20.12; 19.00 10.29; 8.00 3.4-107%
(656 R5, 134 X4) (12.00-27.00) (3.00-15.00) (Wilcoxon)

CCRS5 wt/A32 964 94 34 0.0132

genotype (789 RS, 175 X4) (11.91%) (19.43%) (Fisher)
#ambiguous V3 952 1.09; 1.00 2.64;2.00 6.7-10~1°
positions (785 R5, 167 X4) (0.00-2.00) (1.00-4.00) (Wilcoxon)
V3 net charge 952 5.02:5.00 5.78: 6.00 5.7-10713
(785 R5, 167 X4) (4.00-6.00) (5.00-7.00) (Wilcoxon)

Presence of indels 952 64 24 0.0177

(785 R5, 167 X4) (8.15%) (14.37%) (Fisher)

Figure 6.5: The 35 amino acid V3 loop extending from gpl120. Amino acid posi-
tions are numbered from the N-terminus and colored according to the most relevant
substitution (log;, p-value) from consensus for predicting coreceptor phenotype. Pre-
dictive ability (according to univariate analysis) varies from red (most significant) to
blue (least significant). Positions without any mutation significantly associated with
X4 virus are shown in grey.
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Figure 6.6: Covariation among pairs of X4-associated V3 mutations. Within each box, the upper value indicates the phi
correlation coefficient. The lower value (in brackets) shows the log;, of the p-value from Fisher’s exact test. Mutation pairs
with covariation significantly from independence after correction for multiple testing are framed with a box. See Section
5.2.3 for details on the analysis method.
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ambiguous sequence positions, can be one of the most important predictors of core-
ceptor usage both in univariate analyses and in SVM-based models. Remarkably, the
association between increasing viral genetic diversity and increased CXCR4 propen-
sity observed here on cross-sectional, population-based data supports the model of env
evolution postulated in the longitudinal study (Shankarappa et al., 1999) on the basis
of multiple clones per time point. Beyond the viral genomic information, we show
that the host genome (CCRS5 A32 heterozygosity), and more significantly, the host im-
munological status (as measured by CD4%) contain information relevant for predicting
the potential presence of undetected X4-capable variants. While these quantities may
or may not be causally related to coreceptor usage, the association with these param-
eters clearly helps to distinguish environments that are more typical of X4-capable
variants. Alternatively, the relationship between the V3-genotype and viral corecep-
tor phenotype may be dependent on CD4 count or CD4%. These additional data on
viral diversity, host factors, and host immunological status contain non-redundant in-
formation, as evidenced by the substantial improvements in predictive performance
compared to purely sequence-based prediction. Genotype-based prediction could be
used exclusively, or as a prefilter to phenotyping (in that phenotyping is only performed
when the predicted X4 probability is close to the chosen cutoff, indicating a potentially
difficult case).

6.4 Structural determinants of coreceptor usage’

In this section, we describe a structure-based approach to predicting HIV-1 coreceptor
usage, as published in (Sander et al., 2007). The novel approach is shown to be superior
to a standard sequence-based method.

6.4.1 The structural basis of coreceptor usage

To date, information on the three-dimensional structure of the V3 loop has not been
exploited for predicting the coreceptor type used by a viral population. Including struc-
tural information can improve predictive performance and, even more importantly, be a
first step towards a deeper understanding of the structural aspects of coreceptor usage.
Several studies have analyzed conformational properties of the V3 loop. However,
these investigations did not particularly consider the impact on coreceptor usage. As
Lusso (2006) points out, structural understanding of coreceptor specificity is limited at
the moment. In recent work, Watabe et al. (2006) suggested empirical potentials to as-
sess the fit of sequence variants to loop candidates generated by Monte Carlo variation
of NMR peptide structures. So far, structural studies have been based on peptide struc-

3The work reported in this section was performed in collaboration with Oliver Sander and Francisco
Domingues (MPI for Informatics, Saarbriicken).
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Figure 6.7: Schematic overview of the structural descriptor computation and corecep-
tor usage prediction.

tures, as no completely resolved structure of gpl120 was available. The situation has
changed with a recently published crystal structure of the HIV-1 JR-FL gp120 protein
(PDB 2b4c) including the V3 loop (Figure 2.4(c)) by Huang et al. (2005). Although
some evidence for conformational changes in the loop structure exists, there is an on-
going debate about the relevance of V3 loop conformation to coreceptor selectivity
(Sharon et al., 2003; Rosen et al., 2006). Sharon et al. (2003) suggest that alternative
conformations of the V3 loop play a key role in determining the coreceptor specificity
of HIV-1. On the other hand, Scheib et al. (2006) argue that there is a predominant
conformation for both RS and X4 variants and that varying sequence features are re-
sponsible for specificity towards the respective coreceptor.

6.4.2 Methods

Here, we propose an approach for incorporating a structural component into our model
of coreceptor usage. Structural approaches to predicting coreceptor usage have to face
two major challenges: Firstly, structural details on gp120-coreceptor complexation are
unknown. This is why we refrain from attempting to integrate structural information on
the coreceptors. Secondly, no crystal structures are available for viral variants. As it is
unlikely that comprehensive structural data on the wealth of viral variants will become
available, modelling of side chains and potentially also changes in the backbone is
necessary. The decision to rely on sequence data alone for user input is also justified
by application scenarios in routine clinical practice, where structure data will never be
feasible to obtain. Thus, the novel component will try to predict the structural changes
in the V3 loop induced by sequence alterations. In turn, features will be extracted from
the predicted structure which can be used as input for statistical learning methods. In
our structural modeling, we rely on a structural template of the V3 loop provided by
the single available crystal structure of the V3 loop in context with gp120 (Huang et al.,
2005, PDB identifier 2b4c). This structure represents a CCR5-using variant.

We focus on two simple and computationally cheap approaches to structure mod-
eling (Figure 6.7 shows a schematic overview). In both approaches, the V3 loop back-
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bone is kept rigid (i.e. invariant under mutations). The first approach, called V3SD¢j ,
approximates the position of all functional side chain atoms by the fixed Cj positions
of the structure 2b4c. The second approach, called V3SDgcwrr , models side chains
using SCWRL (Canutescu et al., 2003). SCWRL is a reliable and fast program to
predict side chains for large sets of sequences. By comparing the two descriptors in-
duced by V3SD¢g and V3SDgcewrr Which represent structures of viral variants at two
different levels of approximation, the trade-off between increased uncertainty and the
improved information about side chain location and length can be assessed. To specif-
ically address the structural uncertainty in the presence of insertions and deletions, we
evaluate the performance separately for sequence variants with substitutions only, as
opposed to variants exhibiting also insertions and deletions relative to the reference V3
loop of the structure 2b4c.

In order to extract features from the modelled variants (which are often called
“structural descriptors” in structure-based bioinformatics), the side chains are repre-
sented by functional atoms, labelled as hydrogen-bond donor, acceptor, ambivalent
donor/acceptor, aliphatic, or aromatic ring, according to Schmitt et al. (2002). The
spatial arrangement of side chains induced by the modeling approaches V3SD¢g or
V3SDgcwre 1s then encoded by 15 distance distributions, one for each pair of func-
tional atom types. Specifically, for each atom type combination (e.g. donor-donor,
donor-acceptor, etc.) all Euclidean distances between the respective atoms are com-
puted and condensed into a distribution function, similar to a smoothed histogram.
Finally, the 15 histograms are sampled at fixed positions, and the results concatenated
into a single vector. This vector is then taken as the structural descriptor for a given
sample, and used as input for support vector classification.

Technical details

V3 loop structural template. In the 2b4c crystal structure, we extracted the V3 loop
from chain G, ranging from residue 296 to residue 331.

The five functional atom types. Assignment of amino acids to five (overlapping)
functional atom types was performed as follows:

e Hydrogen-bond donor: R, N, Q, K, W.

Hydrogen-bond acceptors: N, D, Q, E.

Ambivalent donor/acceptors: H, S, T, Y.

Aliphatic amino acids: A,R,C,I,L, K, M, P, T, V.

Pi-stacking centers: H, F, W, Y.
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This assignment follows Schmitt et al. (2002), but does not assign backbone centers as
pi-stacking. For aliphatic and aromatic interaction centers all involved atom positions
were averaged per residue to compute a pseudo-atom. In contrast to Schmitt et al.
(2002) who weight atoms by their solvent access for computing the pseudo-atom of
aliphatic side chains, we used the unweighted average of the respective carbons as the
solvent exposure of the V3 loop can be seen as rather uniform.

Feature extraction. For each of the 15 combinations of functional atom types (i.e.
donor-donor, donor-acceptor, etc.), pairwise Euclidean distances between the respec-
tive pseudo-atoms in the V3 loop are calculated. The number of these distances de-
pends on the number of pseudo-atoms in the two groups. From these distance matrices
we derive distance distributions using a kernel density estimate with Gaussian kernel
and bandwidth of 1 Angstrom. The density estimates are then discretized by uniform
sampling at intervals of 0.5 Angstrom, resulting in a 15 (distance distributions for atom
type combinations) times 100 (sample points) dimensional vector. The resulting vec-
tor is used as a structural descriptor for a given sample, as an alternative to the purely
sequence-based indicator representation, and used as input to the statistical learning
method. The bandwidth as well as the sampling intervals for the distance-based de-
scriptors have been set to reasonable values based on empirical observations. To keep
computation times feasible they were not optimized systematically.

Evaluation of predictive performance To assess the predictive performance of the
structure-based descriptors, we compared the two variants V3SD¢g and V3SDgscewrr
against purely sequence-based predictions by the 11/25 rule, and by a sequence-based
SVM (Indicator). The traditional 11/25 rule is an empirically derived procedure often
used in clinical practice to predict coreceptor usage. It predicts a viral variant to be
X4 if there is a positively charged amino acid at V3 position 11 or 25 (de Jong et al.,
1992). Among simple sequence rules (i.e. not based on statistical learning), Resch
et al. (2001) consider the 11/25 rule to be the best predictor of coreceptor usage. The
Indicator approach is based on a binary sequence encoding. A viral variant is encoded
by a bit vector (i.e. consisting of only zeros and ones). Each component in this vector
indicates the presence or absence of a specific amino acid at a specific V3 position.
In order to evaluate potential benefits of a hybrid approach integrated sequence- and
structure-based information, we implemented the V3SDgcwrL +Indicator representa-
tion based on a concatenation of the individual representations.

In order to assess predictive performance for the structural descriptors, we per-
formed ten replicates of ten-fold cross-validation. Evaluation of predictive perfor-
mance was done using ROCR (Sing et al., 2005).
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Table 6.3: Performance according to various measures for the sequence-based,
structure-based, and hybrid approaches. Sensitivity and PPV are given at the speci-
ficity of the 11/25 rule, accuracy is measured for the cutoff 0.5.

11/25 rule Indicator V3SDcs  V3SDscwrr,  V3SDscwre +

Indicator
Sensitivity  0.6186 0.7340 0.6959 0.7742 0.8041
PPV 0.7692 0.7980 0.7894 0.8065 0.8124
Accuracy 0.8727 0.9000 0.8933 0.9126 0.9156
AUC 0.7824 0.9215 09122 0.9266 0.9348

Support vector classification. For the sequence indicator encoding (/ndicator) a lin-
ear kernel is used, as previous studies showed that non-linear kernels do not help for
simple sequence encodings (Sing et al., 2004). For prediction based on the structural
descriptors a radial basis function kernel (Burges, 1998) is applied, as it provides better
performance than a linear kernel in this case. In both cases, probabilistic predictions
are obtained from the SVM by the method of Platt (1999) to obtain estimates of predic-
tion confidence and a scoring classifier for the receiver operating characteristic (ROC)
analysis. To optimize SVM parameters we conducted parameter grid searches. For
the linear kernel (Indicator) we varied the cost parameter log,(C') in [—7,2]. For the
radial kernel (V3SD¢p , V3SDscwrL ) we varied the cost parameter log,(C') in [—6, 5]
and the -y parameter log,(7y) in [—15, —5]. Optimal parameter values were obtained
from 10 bootstrap samples of the data set and kept fixed for the subsequent analysis
and evaluation. Each bootstrap sample contained 9/10 of the number of samples in the
original data set (drawn with replacement), using the default in the R package e/071.

Data set and sequence alignment We evaluated the two structural descriptors and
the two sequence-based predictors on data compiled from the Los Alamos HIV Se-
quence Database and several publications (Resch et al., 2001; Cilliers et al., 2003;
Johnston et al., 2003; Zhang et al., 2002; Zhong et al., 2003). The evaluation was
performed on a data set containing 514 mutually distinct V3 sequences. Each of the
sequences was annotated as either using CCRS only or being capable of using CXCR4.

As measures of performance we used the sensitivity at the specificity of the 11/25
rule, the area under the ROC curve (AUC), the accuracy at a cutoff of 0.5 (for the
posterior probability obtained by the SVM), and the positive predictive value (PPV)
at the specificity of the 11/25 rule. Of all these measures we consider the sensitivity
at the specificity of the 11/25 rule as most important in practice, because it focuses
on detecting X4 viral variants at an acceptable level of false positives (RS erroneously
considered to be X4).
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6.4.3 Resulis

Figure 6.8 shows ROC curves for the different approaches. ROC curves plot (1-
specificity) against sensitivity for varied decision cutoffs, ranging from predicting
mainly RS (towards the lower left corner) to predicting mainly X4 (towards the up-
per right corner). On our data set, the 11/25 rule has a sensitivity of 0.6186 while
exhibiting a specificity of 0.9463. Considering the routine clinical application of this
simple rule, the benefit of improving the sensitivity towards X4 viral variants is ob-
vious. For the fixed specificity of 0.9463 (i.e. maintaining a fixed number of false
positives) the sequence-based indicator prediction using a linear SVM improves sen-
sitivity to 0.7340. A similar improvement has been reported previously (Pillai et al.,
2003; Sing et al., 2004) when applying statistical learning methods in comparison to
the traditional 11/25 rule.

For the simpler form of structural descriptor V3SD¢ , the performance is below
the Indicator prediction at a sensitivity of 0.6959. Still, this constitutes a considerable
improvement over the 11/25 rule. Thus, as features different from pure sequence in-
formation are encoded in this structural descriptor, its analysis can provide important
insights regarding structural features.

Using structural models for the sequence variants with side chains placed by
SCWRL (Canutescu et al., 2003), predictive performance improves considerably over
the simple structural descriptor V3SD¢ 3 and even compared to the Indicator encoding.
The structural descriptor V3SDgcwrr improves sensitivity to 0.7742. SCWRL faces a
difficult task in optimizing side chain conformations as no direct contacts between the
side chains within the loop with side chains of binding partners are present. However,
the improved predictive performance indicates that the additional information over the
V3SDcg descriptor helps in discriminating coreceptor usage. One important aspect
might be the information about side chain length and volume, which is completely lost
in the V3SD(g descriptor.

An overview of predictive performance for further performance measures can be
found in Table 6.3. The observed ordering of methods regarding performance is sim-
ilar to the trend observed for the sensitivities. The absolute performance increases
regarding AUC and accuracy are smaller. This is because AUC and accuracy are less
responsive to improvements in detection of X4 variants due to the class imbalance
towards R5 samples. The relative improvements in sensitivity were significant, both
from 11/25 to Indicator (p = 0.0059, paired Wilcoxon test), and from Indicator to
V3SDgcewre (p = 0.0137).

Considering the different type of information used in the sequence-based and in the
structural descriptors we combined the respective features to assess whether further
predictive improvements are feasible (V3SDscwrr +Indicator). The sequence-based
and structural features were combined by concatenating the corresponding feature vec-
tors. As shown in Figure 6.8, this combination of the sequence-based Indicator encod-
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Figure 6.8: ROC comparison of predictive performance: sequence-based (11/25 rule;
Indicator), structure-based (V3SD¢p ; V3SDscwre ), and hybrid (V3SDscwrr, + Indi-
cator) predictions.
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ing and the structural descriptor V3SDgcwrr further improves sensitivity to 0.8041 at
the specificity of the 11/25 rule (0.9463). This indicates that sequence and structure
convey complementary information, to some extent. The sensitivity improvements
were significant both from V3SDgcwrr to V3SDscewre + Indicator (p = 0.0098), and
from Indicator to V3SDgscwrL + Indicator (p = 0.0020). Further performance evalua-
tions are shown in Table 6.3.

6.4.4 Discussion

The proposed descriptor yields a considerable performance increase over the estab-
lished 11/25 rule and even compares favorably to other modern methods based on sta-
tistical learning (Indicator). In contrast to purely sequence-based coreceptor usage pre-
dictions the proposed structural representation captures the relative three-dimensional
arrangement of chemical groups. From a biophysical perspective this relative place-
ment of chemical groups determines which coreceptor the viral variant will bind to.
The method has also been shown to be robust with respect to sequence variants con-
taining indels (Sander et al., 2007), making it applicable in realistic scenarios and on
large-scale data sets. The most interesting aspect of the proposed descriptor is its inte-
gration of structural data, providing the first application of structural data in the context
of coreceptor usage prediction. The combination of methods from structural bioinfor-
matics with statistical learning methods allows for competitive performance as well as
interpretation of coreceptor usage at the structural level (cf. Sander et al., 2007).

The proposed structure representation is related to ideas from protein structure
comparison and prediction. Distributions of atomic distances have been used suc-
cessfully in structure comparison (Carugo and Pongor, 2002; Choi et al., 2004). In
protein structure prediction, distributions of distances have been applied as knowledge-
based potentials to evaluate the fit of a sequence to a specific structure (Sippl, 1995;
Domingues et al., 1999). In the context of protein function, Stahl et al. (2000) have
used distance-based descriptions to cluster active sites of enzymes based on chemical
and geometric properties. For the analysis of protein-protein interaction interfaces,
Mintseris and Weng (2003) have proposed atomic contact vectors which consist of
contact counts derived from thresholded distance matrices. Aloy and Russell (2002)
have suggested empirical potentials to assess the compatibility of a pair of sequences
to the contacts formed in a known complex of two respectively homologous sequences.
In a similar setting, MULTIPROSPECTOR (Lu et al., 2002) uses a threading algorithm
to align a pair of sequences to a structurally resolved protein-protein complex. Besides
the interface energy term like in (Aloy and Russell, 2002), this method also uses the
threading score for the protomers themselves.

This study has provided proof of concept that integrating structural modeling can

improve the predictive performance over state-of-the-art sequence-based approaches.
Despite the good performance there are several limitations and possible directions for
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improvement, either by methodological enhancements or by integration of further ex-
perimental data. As almost no side chain interactions take place within the V3 loop
and the binding partner is not available in the structural model, SCWRL faces a dif-
ficult task in optimizing side chains. One possible way of relaxing this difficulty is
by considering ensembles of alternative side chain conformations in the structural de-
scriptor. From a methodological point of view, alternative conformations are easy to
integrate into the distance distributions in a weighted manner. A further possible bot-
tleneck is the assumption of a fixed backbone structure. Further understanding of the
structure-function relationship of coreceptor usage or new insights in the debate men-
tioned above (Sharon et al., 2003; Scheib et al., 2006; Rosen et al., 2006) could be
incorporated into the descriptor. Instead of the fixed backbone structure, several al-
ternatives are possible. Experimentally resolved peptide structures could be used to
model sequence variants or molecular dynamics simulations could be used to generate
ensembles of backbone variants. With all these alternatives, the proposed descriptor
provides a generic way of incorporating new structural information on V3 loop con-
formation, especially interesting would be crystal structures of X4 viral variants.

Another interesting perspective is to correlate the discriminative spatial features of
the V3 region to spatial arrangements in the coreceptor. Published chemokine receptor
models (Paterlini, 2002; Zhang et al., 2006) could be used to generate such spatial de-
scriptions and search for complementary arrangements of physicochemical properties.
Finally, the proposed method to describe the spatial arrangement of physicochemical
properties is not limited to the demonstrated application, in principle. By providing a
vectorial representation of a binding site it can be used as a generic way of describ-
ing and comparing any set of binding sites regarding geometric and physicochemical
features involved in different protein-protein interactions.



Summary

Modern anti-HIV therapy, in which three or more drugs are given in combination, can
substantially delay disease progression, prolong survival and maintain quality of life.
Still, a cure for HIV infection remains out of reach. The main obstacle to ultimate
treatment success lies in the emergence of drug-resistant variants in response to in-
complete suppression of viral replication. Upon therapy failure, the treating physician
is faced with selecting an optimal new drug combination. This task is highly complex
due to the ever-increasing number of available antiretroviral drugs, significant cross-
resistance and the likely presence of archived drug-resistant viral variants selected by
previous regimens. Parameters with potential impact on treatment decisions include
the plasma viral load, CD4" cell count, viral genotype, phenotype, fitness, pharmaco-
logical data, and the treatment history of a patient.

To date, physicians have to rely on a mix of intuition, experience, and empirically
derived guidelines and resistance interpretation tables for devising a treatment strategy
given the data available for a patient. Model-based approaches to anti-HIV therapy
aim to establish a quantitative, comprehensive, and data-driven framework for studying
the interactions between host, virus and drugs. Such a framework will also provide a
basis for urgently needed decision support systems based on objective and reproducible
criteria. In this thesis, we present progress on the elements of model-based therapy,
covering many different aspects relevant to optimal therapy choice, in the fields of
viral evolution, drug resistance, and coreceptor usage.

The ability of viral populations to adapt extremely fast to changing environmen-
tal conditions is the fundamental obstacle to prolonged treatment success. Natural
selection determines the “direction” of adaptation. In many situations, the effects of
selection can be described in terms of an idealized “fitness landscape” which pro-
vides a simple scalar-valued summary of the various factors in the life cycle of or-
ganisms that affect their reproductive success. Fitness interactions among pairs of
genetic loci, quantified by the classical concept of epistasis, have been shown to be
related to the evolutionary fate of a population in a variety of scenarios. However,
higher-order interactions cannot be adequately captured in this classical framework.
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We analyze a recently proposed classification system for fitness landscapes based on
their combinatorial-geometric shape that generalizes epistasis to multiple loci. Using
large-scale numerical simulations, we provide proof of concept that the shape of a
fitness landscape is significantly associated with the evolutionary fate of a population.

Virtually all longitudinal studies of viral evolution focus on the accumulation of
resistance-associated mutations under drug pressure, and little is known about the dy-
namics of mutations in the absence of drug pressure. While treatment interruptions
are not a recommended treatment strategy against HIV, unplanned interruptions are an
inevitable part of antiretroviral therapy for many patients (e.g. due to non-adherence
or suboptimal drug levels). Our analysis, introducing a novel approach to longitudinal
genotype data based on survival analysis, strongly suggests that mutation loss does not
revert the complex patterns of mutation accumulation observed during antiretroviral
therapy. Rather, mutations are shown to disappear largely independently from each
other, albeit at individual rates.

It is not straightforward how to incorporate evolutionary modeling into approaches
for predicting drug resistance or response to therapy from genotype. A variety of
approaches, from explicit search strategies to direct statistical learning have been pro-
posed. We introduce a more principled approach based on kernel methods. Specifi-
cally, we derive a Fisher kernel for mixtures of mutagenetic trees, a family of graphical
models for describing the accumulation of resistance mutations under drug pressure.
The novel kernel quantifies the similarity of evolutionary escape from antiviral drug
pressure between two viral sequence samples. We compare the kernel to a standard,
evolution-agnostic amino acid encoding in the prediction of HIV drug resistance from
genotype, using support vector regression. The results show significant improvements
in predictive performance across 17 anti-HIV drugs.

After these studies related to viral evolution, we turn our focus to the relation be-
tween viral genotype, drug resistance, and response to therapy. Most of the approaches
proposed to date have been applied in a purely “black-box” manner, without attempting
to use them for knowledge discovery. We describe several approaches for extracting
biological knowledge from viral genotype and phenotype data. Novel mutations in the
HIV genome associated with treatment failure were identified by mining a relational
clinical database. Cluster analysis and multidimensional scaling were used to identify
the association of novel mutations with specific mutational pathways. Feature ranking
based on support vector machines indicated a prominent role of novel mutations in
determining phenotypic resistance and in resensitization effects.

We then turn our main focus from phenotypic quantities measured in vitro to vi-
rological response in vivo. The appropriate approach for predicting virological re-
sponse from genotype is highly controversial. The use of phenotype data obtained
under controlled laboratory conditions may seem intuitive, but has faced substantial
objections. However, we show in a large-scale study that the use of an input representa-
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tion based on predicted phenotypes is clearly competitive with (and often even outper-
forms) genotype-based representations. Moreover, substantial synergies exist between
these different representations, which can be explained by the different kinds of data
from which they are derived. These synergies can be exploited in “hybrid” systems
combining both sources of information. We also studied the use of predicted replica-
tion capacity for clinical purposes; however, the observed benefits were marginal.

The bulk of computational work related to anti-HIV therapy has been performed in
the context of the classical drug classes of protease and reverse transcriptase inhibitors.
However, with drugs from entirely novel classes already approved (fusion inhibitors)
or expected to see approval before 2008 (integrase inhibitors, coreceptor antagonists),
decision support has to be extended to these classes. Here, we focus on the support
of treatment with coreceptor antagonists. After a comprehensive review of the field,
we analyze the relation between genotype and coreceptor usage phenotype on both
clonal and clinical (“population-based”) data. We exploit clinical and host informa-
tion as surrogate markers for undetected viral minority populations. Finally, we show
how to further improve predictive performance by applying simple and fast molecular
modeling methods.

Several of the methods developed in the context of this thesis have been made
available to the public, either as packages for the statistical language R (ROCR;
covaRius) or in the form of web-based services (mutation scoring for geno2pheno;
geno2pheno[coreceptor]).
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Zusammenfassung

Moderne Kombinationstherapien gegen HIV, bei welchen drei oder mehr Wirkstoffe in
Kombination verabreicht werden, konnen das Fortschreiten der Erkrankung wesentlich
verlangsamen und zu verlingertem Uberleben und verbesserter Lebensqualitiit beitra-
gen. Trotz dieser Fortschritte ist ein Heilen von HIV-Erkrankten derzeit unméglich.
Ein endgiiltiger Behandlungserfolg wird hauptsédchlich verhindert durch das Auftreten
wirkstoffresistenter Varianten in Folge von unvollstindiger Unterdriickung der viralen
Replikation. Beim Versagen einer Therapie muss der behandelnde Arzt eine optima-
le neue Wirkstoffkombination auswéhlen. Diese Aufgabe ist hochkomplex, vor allem
durch die stindig wachsende Zahl antiviraler Wirkstoffe, signifikante Kreuzresisten-
zen, und das Vorhandensein archivierter viraler Varianten, die von fritherer verabreich-
ten Medikamentenkombinationen selektioniert wurden. Therapieentscheidungen wer-
den beinflusst durch Viruslast im Plasma, CD4"-Zellzahl, viralen Genotyp, Phinotyp,
Fitness, pharmakologische Daten, sowie die Behandlungshistorie eines Patienten.

Derzeit miissen sich Arzte bei Ihren Behandlungsstrategien auf eine Mischung aus
Intuition, Erfahrung, sowie auf empirisch abgeleitete Richtlinien und Interpretations-
tabllen zur Resistenz verlassen. Modellbasierte Zuginge zur Anti-HIV-Therapie zielen
hingegen auf ein quantitative, umfassende, und datengetriebene Basis zum Studum der
Interaktionen zwischen Wirt, Virus und Wirkstoffen. Solch eine Basis wird auch fiir
dringend bendtigte Systeme zur Entscheidungsunterstiitzung aufgrund objektiver und
reproduzierbarer Kriterien den geeigneten Rahmen bilden. In dieser Arbeit berichten
wir iiber Fortschritte in der modellbasierten Therapie hinsichtlich vieler verschiedener
Aspekte im Bereich von viraler Evolution, Wirkstoffresistenz und Korezeptorbenut-
zung, die fiir eine optimale Therapieauswahl relevant sind.

Die Fihigkeit viraler Populationen, sich extrem schnell wechselnden Umweltbe-
dingungen anzupassen, ist ein Haupthindernis zu nachhaltigen Behandlungserfolgen.
Die “Richtung” der Adaptation wird bestimmt durch die natiirliche Selektion. Selekti-
onseffekte konnen hdufig mithilfe einer idealisierten “Fitnesslandschaft” beschrieben
werden, welche verschiedene Faktoren im Lebenszyklus eines Organismus, die sich
auf den reproduktiven Erfolg auswirken, zusammenfasst. Fitnessinteraktionen zwi-
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schen Paaren genetischer Loci werden durch das klassische Konzept von Epistasis
quantifiziert und wurden in verschiedensten Szenarien mit dem evolutionédren Schick-
sal einer Population in Verbindung gebracht. Interaktionen hoherer Ordnung kdnnen
jedoch in diesem klassischen Rahmen nicht addquat beschrieben werden. Wir ana-
lysieren ein kiirzlich vorgeschlagenes Klassifikationssystem fiir Fitnesslandschaften
basierend auf deren kombinatorisch-geometrischer Form, welches Epistasis auf mehr
als zwei Loci verallgemeinert. Mittels umfangreicher numerischer Simulationen zei-
gen wir, dass die Form einer Fitnesslandschaft mit dem evolutiondren Schicksal einer
Population signifikant assoziiert ist.

Longitudinale Studien zur viralen Evolution haben sich immer auf die Akkumula-
tion resistenz-assoziierter Mutationen unter Wirkstoffdruck konzentriert, so dass we-
nig iiber die Dynamik von Mutationen in der Abwesenheit von Wirkstoffen bekannt
ist. Zwar sind Behandlungsunterbrechungen keine empfohlene Therapiestrategie ge-
gen HIV; ungeplante Unterbrechungen gehoren jedoch fiir viele Patienten unvermeid-
bar zur antiretroviralen Therapie (z.B. durch Nichtadhédrenz oder durch suboptimale
Wirkstoffkonzentrationen). Unsere Analyse, die einen neuen Zugang zu longitudinalen
Genotypdaten beinhaltet, zeigt, dass der Mutationsverlust wihrend der Behandlungs-
unterbrechung nicht die komplizierten Muster der Mutationsanhdufung wihrend der
antiretroviralen Therapie umkehrt. Die Mutationen verschwinden vielmehr unabhén-
gig voneinander, wenn auch mit verschiedenen Raten.

Es ist nicht offensichtlich, wie sich evolutionidre Modellierung am besten in Metho-
den zur Vorhersage von Wirkstoffresistenz oder Ansprechen auf Therapie integrieren
lasst. Eine Reihe von Methoden, von expliziten Suchstrategien bis zu direkter Verwen-
dung statistischer Lernverfahren wurde hierzu vorgeschlagen. Wir fithren hier einen
fundamentaleren Zugang, basierend auf Kernmethoden, ein. Insbesondere leiten wir
einen Fisher-Kern fiir Mixturen mutagenetischer Baume her. Hierbei handelt es sich
um eine Familie grafischer Modelle zur Beschreibung der Akkumulation von Resi-
stenzmutationen unter Wirkstoffdruck. Der neue Kern quantifiziert die Ahnlichkeit der
evolutiondren Flucht zweier Sequenzen vor antiviralem Medikamentendruck. Wir ver-
gleichen den Kern mit einer evolutions-agnostischen Standardkodierung von Amino-
sduren fiir die Vorhersage von HIV-Wirkstoffresistenz aus dem Genotyp, basierend auf
Support-Vektor-Regression. Die Resultate zeigen signifikante Verbesserungen in der
pradiktiven Performanz iiber 17 Anti-HIV-Medikamente hinweg.

Nach diesen Studien zur viralen Evolution wenden wir uns der Beziehung zwi-
schen viralem Genotyp, Wirkstoffresistenz und Ansprechen auf Therapie zu. Die mei-
sten Methoden, die bisher vorgeschlagen wurden, wurden in einer reinen “black-box’-
Art angewendet, ohne den Versuch, sie zur Entdeckung neuen Wissens zu gebrauchen.
Wir beschreiben mehrere Zugéinge zur Extraktion biologischen Wissens aus viralen
Genotyp- und Phénotypdaten. Neue Mutationen im HIV-Genom, die mit Therapie-
versagen assoziiert sind, wurden durch das Durchsuchen einer ralationalen klinischen
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Datenbank identifiziert. Clusteranalyse und multidimensionale Skalierung wurden ver-
wendet, um die Assoziation der neuen Mutationen mit bestimmten Mutationspfaden zu
charakterisieren. Merkmals-Ranking basierend auf Support-Vektor-Maschinen zeigte
eine deutlich ausgeprigte Rolle der neuen Mutationen in der Bestimmung von phino-
typischer Resistenz, sowie in Resensitivierungseffekten.

Nach diesen Analysen wenden wir uns von phianotypischen GréBen, die in vitro ge-
messen werden, hin zum virologischen Ansprechen in vivo. Es ist hochst kontrovers,
welcher Zugang zur Vorhersage des virologischen Ansprechens aus dem viralen Geno-
typ heraus am angebrachtesten ist. Die Verwendung phinotypischer Daten, die unter
kontrollierten Laborbedingungen erhoben wurden, mag intuitiv naheliegend erschei-
nen. Diesem Ansatz wurde jedoch starker Widerspruch entgegengebracht. Wir zeigen
aber unter Verwendung umfangreicher klinischer Daten, dass die Verwendung einer
Eingabe-Represintation, die auf vorhergesagten Phinotypen basiert, sich gut mit rein
genotyp-basierten Reprisentationen vergleicht, diese hdufig sogar in pridiktiver Per-
formanz iibertrifft. Dariiberhinaus zeigen wir, dass substantielle Synergien zwischen
beiden Zugédngen bestehen, die sich durch die unterschiedlichen Arten von Daten, die
jeweils verwendet werden, erklidren lassen. Diese Synergien konnen in “hybriden” Sy-
stemen, die auf beide Informationsquellen zuriickgreifen, ausgenutzt werden. Wir ha-
ben dariiberhinaus auch noch die Verwendung von vorhergesagter Replikationskapa-
zitét fiir klinische Zwecke untersucht, der beobachtete Nutzen war jedoch marginal.

Der Hauptteil an quantitative Studien im Bereich der Anti-HIV-Therapie wurde im
Kontext der klassischen Wirkstoftklassen von Inhibitoren der Protease oder der Re-
versen Transkriptase durchgefiihrt. Nachdem jedoch Wirkstoffe von vollig neuartigen
Klassen entweder schon zugelassen sind (Fusionsinhibitoren) oder hochstwahrschein-
lich noch vor 2008 zugelassen werden (Integraseinhibitoren und Korezeptorantagoni-
sten), muss die Entscheidungsunterstiitzung auf diese Klassen erweitert werden. Wir
widmen uns hier der Unterstiitzung der Behandlung mit Korezeptorantagonisten. Nach
einem umfassenden Uberblick iiber das Feld analysieren wir die Beziehung zwischen
Genotyp und Korezeptorbenutzungphinotyp, sowohl auf klonalen als auch auf klini-
schen (“populations-basierten”) Daten. Wir nutzen klinische und Wirtsinformation as
Surrogatmarker fiir unentdeckte virale Minderheitspopulationen. Abschlieend zeigen
wir, wie sich die pridiktive Performanz durch die Verwendung einfacher und schneller
Methoden des molekularen Modellierens noch weiter verbessern ldsst.

Einige der Methoden, die im Rahmen dieser Arbeit entwickelt wurden, sind in 6f-
fentlich zuginglichen Implementationen verfiigbar, entweder in Form von Paketen fiir
die Statistiksprache R (ROCR; covaRius) oder in Form von Web-basierten Angeboten
(Mutations-Scoring fiir geno2pheno; geno2pheno[coreceptor]).
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