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Abstract

This thesis presents new 3D scanning methods for compleescsuch as sur-
faces with fine-scale geometric details, translucent ¢®jdow-albedo objects,
glossy objects, scenes with interreflection, and discantis scenes.

Starting from the observation that specular reflection isliable visual cue
for surface mesostructure perception, we propose a praigesscquisition system
that captures a dense specularity field as the only infoomdtr mesostructure
reconstruction. Our method can efficiently recover sudagih fine-scale geo-
metric details from complex real-world objects.

Translucent objects pose a difficult problem for traditiomgtical-based 3D
scanning techniques. We analyze and compare two desngttaathods, phase-
shifting and polarization, and further present severabpkeshifting and polariza-
tion based methods for high quality 3D scanning of transitiobjects.

We introduce the concept of modulation based separatioarend high fre-
guency signal is multiplied on top of another signal. The oiatéd signal inherits
the separation properties of the high frequency signal hoswus to remove arti-
facts due to global illumination. This method can be usee@ficient 3D scanning
of scenes with significant subsurface scattering and efleations.

Kurzfassung

Diese Dissertation prasentiert neuartige Verfahren fi@ 3ID-Digitalisierung
komplexer Szenen, wie z.B. Oberflachen mit sehr feinen Strek{ durch-
scheinende Objekte, Gegenstande mit geringem Albedozehdie Objekte,
Szenen mit Lichtinterreflektionen und unzusammenhang8adaen.

Ausgehend von der Beobachtung, dal’ die spekulare Reflektionuger-
lassiger, visueller Hinweis fur die Mesostruktur einer @ldehe ist, stellen wir
ein progressives Mel3system vor, um Spekularitatsfeldenessen. Aus diesen
Feldern kann anschlie3end die Mesostruktur rekonstruiertden. Mit unserer
Methode kdnnen Oberflachen mit sehr feinen Strukturen vonpkexen, realen
Objekten effizient aufgenommen werden.

Durchscheinende Objekte stellen ein grof3es Problem fiitioaelle, optisch-
basierte 3D-Rekonstruktionsmethoden dar. Wir analysieneth vergleichen
zwei verschiedene Methoden zum Eliminieren von Lichtstrep(Descattering):
Phasenverschiebung und Polarisation. Weiterhin prasentwir mehrere hoch-
qualitative 3D-Rekonstruktionsmethoden fur durchschedeeObjekte, die auf
Phasenverschiebung und Polarisation basieren.

AulRerdem fuhren wir das Konzept der modulationsbasierignaBrennung
ein. Hierzu wird ein hochfrequentes Signal zu einem and&igaal multi-



pliziert. Das so modulierte Signal erhalt damit die separiden Eigenschaften
des hochfrequenten Signals. Dies erlaubt uns Mel3artedakgeund von globalen
Beleuchtungseffekten zu vermeiden. Dieses Verfahren kanmeffizienten 3D-
Scannen von Szenen mit durchscheinden Objekten und litkdtrenen benutzt

werden.



Summary

This thesis presents new 3D scanning methods for complexescsuch as sur-
faces with fine-scale geometric details, translucent abjdow-albedo objects,
glossy objects, scenes with interreflection, and discaotis scenes.

Starting from the observation that specular reflection ediable visual cue for
surface mesostructure perception, we present a simpleshodtrmethod for sur-
face mesostructure acquisition. In contrast to most phetomstereo methods,
which take specularities as outliers and discard them, weqse a progressive ac-
quisition system that captures a dense specularity fieldeasrily information for
mesostructure reconstruction. Our method can efficiemityver surfaces with
fine-scale geometric details from complex real-world otgedth a wide variety
of reflection properties, including translucent, low albgdnd highly glossy ob-
jects. We show results for a variety of objects including huarskin, dried apricot,
orange, jelly candy, black leather and dark brown chocolate

We present efficient and practical methods for 3D scannirigaoslucent ob-
jects. Translucent objects pose a difficult problem foritraal structured light
3D scanning techniques. Subsurface scattering corruptsatige estimation in
two ways: by drastically reducing the signal-to-noiseaatnd by shifting the
intensity peak beneath the surface to a point which does giatide with the
point of incidence. In this thesis we analyze and compared@gzattering meth-
ods in order to obtain reliable 3D coordinates for transhiadjects. By using
polarization difference imaging, subsurface scatterimg loe filtered out because
multiple scattering randomizes the polarization diractad light while the sur-
face reflectance partially keeps the polarization directibthe illumination. The
descattered reflectance can be used for reliable 3D reaatistr using traditional
optical 3D scanning techniques, such as structured ligias@-shifting is another
effective descattering technique if the frequency of thigqmted pattern is suffi-
ciently high. We demonstrate the performance of these telnigues and the
combination of them on scanning real-world translucenécts;.

We introduce the concept of modulation based separatiomendndrigh fre-
guency signal is multiplied on top of another signal. The aolatkéd signal inher-
its the separation properties of the high frequency signdlalows for removing
artifacts due to global illumination. This technique canused to clean up arbi-
trary projected signals, e.g. photographs as well as thesgid patterns used for
phase-shifting. For the modulated phase-shifting, we gge@a two-pass separa-
tion method exploiting high frequency patterns in two-ditsiens that can filter
out the global components much more completely than traditione-pass sepa-
ration methods. We demonstrate the effectiveness of ounaph on a couple of
scenes with significant subsurface scattering and inteoteshs.
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Chapter 1
Introduction

1.1 Problem Statement

3D scanning of real-world objects or scenes has been a pdppla in computer
graphics and computer vision for a long time and importangpss has been
made since the early days. Nevertheless, there are stikk soell known open
problems.

Generally, 3D scanning techniques can be categorizednstef being active
or passive, or being contact or non-contact. In this thegsyill focus on active
non-contact 3D scanning methods. One of the most populaeawbn-contact
3D scanning methods is structured light scanning, which igely employed
and tested in research or industry projects, such as thaaDiglichelangelo
Project [Levoy00] and the Michelangelo’s Florentine P@tgject [Bernardini02].
Some following structured light methods improve the perfance by incorporat-
ing both spatial and temporal coherence [Curless95, Zhaj®g04, Davis05,
ZhangO05] or by integrating position and normal informat[dlehab05]. Most
of these methods work on opaque objects and assume the tigitiee from the
light source will hit the surface once and directly reflecthe sensor. In real
world, however, this assumption will often be broken. Faaraple, most sculp-
tures made from marble or alabaster exhibit strong subseidaattering, which
causes serious problems for laser based scanning wheretdatatl peak will be
shifted [Godin01, Curless95]. Translucent objects are werymon in the real
world, including most fruits, animal or human skin, markdégbaster, jade, etc.
It is a challenging task to acquire high quality and high hetson 3D models of
such kind of objects. Subsurface scattering is only one efpitoblems posed
for optical based 3D scanning methods. In addition otheballtight transport
effects inside an object or a scene make 3D scanning moreuttiffsuch as volu-
metric scattering, refraction and interreflection. Evendbjects with only direct
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reflection, such as specular or low-albedo objects, ace@@tscanning becomes
a hard problem. Recently the scanning of optically challeggbjects/scenes
attracts more and more interests from both computer gragnd computer vi-
sion communities [Kutulakos05, Hasinoff06, MorrisO7a, mis07b, Hullin08,
Narasimhan05, MagdaO1, MiyazakiO3a, MiyazakiO5, TaBniChen06, Ma07,
Chen07, Chen08, Hertzmann05].

1.2 Contributions

In this thesis, we contribute to the 3D scanning problem afglex objects/scenes
in three different aspects: mesostructure reconstruédiocomplex objects, such
as translucent, glossy or low-albedo objects; 3D scanninggamslucent ob-
jects using phase-shifting and polarization; and a novelutaded phase-shifting
method.

1.2.1 Mesostructure from Specularity

Surface mesostructure represents geometric details thatktively small but
still individually visible such as bumps or dents on a sugfac

By drawing inspiration from photographs of real-world triaicent objects
and from the literature on human vision and perception [kigd4, Fleming05,
NormanO04, Todd04a], we found that specular highlights arergortant visual
cue for surface mesostructure perception and reliableaviatormation for sur-
face detail representation. In Figure 1.1, the first row shimur images of a piece
of orange skin under changing illumination. The small bumpshe orange skin
introduce rich visual effects and can be efficiently reve&ig specular highlights.
Based on this observation, we developed a simple and proggessstem that
uses specular highlights in order to solve the dense mestiste reconstruction
problem for a variety of real-world complex objects, whiabspess a significant
specular reflection component. Our method is largely inddpet of the underly-
ing reflectance model, and can therefore successfully banjiects with complex
reflectance that have previously been challenging. Efficresostructure recon-
struction methods can contribute greatly to high-qualrgpdics models in terms
of fine-scale surface geometric details. An accurate antdcgxmesostructure
model can also benefit related mesostructure modeling ipods such as BTFs
(Bidirectional Texture Functions) [Dana99, Muller05].

Our contributions to the mesostructure reconstruction blera in-
clude [Chen06]:

o We simplify the problem of mesostructure reconstructi@mficomplex ob-
jects, e.g., objects with translucency, which has up to neantexpensive
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Figure 1.1 Mesostructure reconstruction of a piece of orange skind)d&our

cropped input images. (e) Recovered normal field (RGB-eedjod(f) Filtered

normal field [Tomasi98]. (g) Rendering of the normal fieldngsiVard’s isotropic
BRDF model [Larson92]. (h) Reconstructed 3D surface readeit a novel view-
point.

or even impossible to solve.

e We use a dense specularity field as the only reliable visdatrimation for
mesostructure reconstruction.

e We develop a simple incremental and very flexible acquisisgstem.
e We acquire high-quality mesostructure, for a variety of-searld objects

including human skin, dried apricot, orange skin, jellydarblack leather,
and dark brown chocolate.
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. e v

) (b)

Figure 1.2 3D Scanning of a translucent object. (a) is a photographrohayhly
translucent alabaster Venus figurine (heightLl9cm). (b) is a 3D scan from Mi-
nolta VI-910 laser range scanner. (c) By combining phaséks and polariza-
tion our method faithfully captures the 3D geometry.

1.2.2 3D Scanning of Translucent Objects

For a number of scenes, structured light 3D scanning teaksigun into the prob-
lem that the signal observed by the camera for a surface aictually not only
due to direct reflection of the projected pattern but instadains polluting sig-
nals originating from ambient illumination, interreflemtis from other scene parts,
or from subsurface scattering.

These effects are most prominent in translucent objectsenthe directly re-
flected signal is furthermore weakened since the incidght is diffused inside
the material instead of being fully reflected at the surface.

Subsurface scattering can of course be excluded compléttig object’s
surface is painted before scanning, as it is done frequemtiythis thesis, we
propose 3D scanning techniques which are inherently radoyssinst subsurface
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scattering.

In order to obtain reliable scans of translucent objects lwe to separate
the direct reflection from the pollution due to multiple imtflections or scat-
tering. One approach to descattering is to use the fact ijisit cattered mul-
tiple times gets unpolarized. Projecting polarized lightl womputing the dif-
ference of images captured with a polarization filter at twih@gonal orienta-
tions thus removes most of the multiple scattering contioio{\Wolff94, Rowe95,
Schechner05, Treibitz06]. Another method for separatingctdfrom global re-
flections based on high frequency illumination patterngaesntly been proposed
by Nayar et al. [Nayar06]. In the same paper Nayar et al. aksation that phase-
shifting [Srinivasan85, Zhang06e] can perform the separatnd 3D scanning at
the same time.

Inspired by the previous work, we propose a new 3D scanninipadeby
combining phase-shifting and polarization. Figure 1.2nsldchighly translucent
alabaster Venus figurine, which is very difficult to be scahmgth traditional
optical scanning methods, can be successfully scannedg asimmethod.

Our contributions to the 3D scanning of translucent objeatkide [Chen07]:

e We analyze the descattering properties of phase-shiftidgpalarization.

e We propose efficient and practical methods for 3D scanningasfsiu-
cent objects, which were previously very difficult or everpwssible. We
demonstrate and assess our methods on a variety of transtigjects, such
as fruits, alabaster sculptures, etc.

1.2.3 Modulated Phase-Shifting

The feasible frequency of traditional phase-shifting rodtis limited by the phase
unwrapping method and the optics and resolution of both éneeca and the pro-
jector and is in one dimension. The limitations can hurt teeoattering capability,
which is mostly related to the frequency of the projectedalgof the traditional

phase-shifting method.

In order to alleviate this problem, we introduce the modzdgthase-shifting.
Figure 1.3 demonstrates the improvements of modulatedepdtafting over tra-
ditional phase-shifting and polarization difference inmag Our contributions in-
clude [Chen08]:

e We introduced the modulation based phase-shifting metivbah greatly
improves the descattering power of traditional phaseisbifmethod and
achieves higher performance in real 3D scanning of scen#s stiong
global light transport, such as subsurface scatteringratedreflection, than
previous methods.
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(€) (d)

Figure 1.3 A scene with strong interreflections caused by a glossy sydetween
the two pages of a book. (a) Photograph of the scene. (b) P$faifiérg produces
ripples in the final geometry due to the reflections of the sphe) The result by
polarization difference imaging is very noisy due to the ified polarization after
interreflections. (d) The most accurate reconstructiorcls@ved using modulated
phase-shifting.



1.3 Thesis Overview

e We further show that due to the non-linearity in the sepanatinalysis, a
sequential analysis of a 2D pattern once horizontally angkorertically
produces an even better separation.

e Moreover, the modulation and separation scheme can beiegfor gen-
eral low frequency patterns, such as an ordinary photograph

1.3 Thesis Overview

The remainder of this dissertation is structured as follolmwsChapter 2 we will
briefly review the related work. Chapter 3 summarizes the damehtals of light
transport. Most of the optically challenging objects for 8€anning can be an-
alyzed under the light transport framework. In the follogrichapters, we will
solve some of the open problems. In Chapter 4, we present Amegestructure
acquisition method by exploiting specularities. In Chaptere propose efficient
and practical methods for 3D scanning of translucent objébk further improve
the performance of phase-shifting method by introduciregrttodulated phase-
shifting method in Chapter 6. We conclude the thesis in Chap#ed provide an
outlook on future work.
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Chapter 2
Related Work

In this section, we provide a short introduction to 3D scagrtechnologies and
briefly review the related work, including 3D shape percaptsurface mesostruc-
ture acquisition and rendering, 3D reconstruction methptietometric stereo,
phase-shifting for 3D scanning, separation of reflectiomgonents, and polar-
ization based imaging techniques.

2.1 3D Scanning Technologies

3D models are either created by artists or captured fromwedd. 3D scanning
technologies are the enabling technologies to help pealédigital 3D models
from the real world. They may find applications in dissemorabf museum arti-
facts, special visual effects production, games, virtualds, reverse engineering,
design, product prototyping, medicine, web commerce amer&inment indus-
try.

3D scanning technologies divide roughly into to contact aod-contact.
The contact methods includes CMM (Coordinate MeasuremenhiMay; jointed
arms, slicing etc. The non-contact methods includes dgbiased, microwave-
based, radar-based, and sonar-based methods. In this eswill focus on
optical-based methods, which can be roughly classified taseawr passive. Ex-
amples of passive methods include stereo, multi-view stestgape from shading,
photometric stereo, shape from silhouettes, depth fromsfolefocus etc. The ac-
tive methods include laser scanner, structured light,-tfaéight, interferometry,
tomography, active depth from defocus etc.

An optimal 3D scanning technique usually includes the foilgy characteris-
tics:

e accurate
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o fast

¢ high resolution

e robust for different kind of materials

e stable under various environments

e easy to use and to move

¢ safe and non-destructive

e capable of capturing object appearance
e low price

However, in practice, there are no single 3D scanning tdolggdas all the above
characteristics. Usually an individual scanning methaspiscialized for specific
kind of applications. For example, a high resolution methsdally works slower
than a low resolution method. The best choice of scanningiEogy is usually
made with compromise and depending on application.

2.2 3D Shape Perception via Specular
Reflections

Research on the nature of 3D shape perception has been anantpopic for
more than two millennia, and remains an active area invglvirany different
disciplines, including psychology, physics, neuroscegeremmputer science, and
mathematics. There are many different types of opticalidaition that provide
perceptually salient information about 3D shape, inclgdiariations of shad-
ing, texture, contours, occlusion, binocular disparitgtion parallax, and opti-
cal deformations of a dynamic scene. To keep simplicity, wh oeview the
work on shape perception relying on specular reflectionsiyMaaterials, includ-
ing skin, leather, jade, marble, glass, water, leavestiplasgeel, ceramic prod-
ucts, oil painting etc., exhibit specular reflections. Ryag studies have shown
that specular reflections aid shape estimation or even gea@liable and accu-
rate constraints on 3D shape [Blake90, Blake91, Todd04a,0/gd-leming04,
NormanO04]. In [Weidenbacher06], Weidenbacher et al. pgeda biologically
motivated recurrent model for the extraction of visual tees relevant for the per-
ception of 3D shape information from images of a mirroreceoty and utilized
the model output to create a rough nonphotorealistic skejotesentation.
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Inspired by the work on human vision and perception, someares formal-
ize the problem by a computational framework. In contrashtist of the pho-
tometric stereo methods, where specular highlights arectest and separated
as outliers, shape-from-specularity methods try to efiityeuse the specular re-
flectance component.

Ikeuchi [lkeuchi81] analyzed photometric stereo for spacusurfaces.
Sanderson et al. [Sanderson88] developed a structuretdsygtem, SHINY to
recover surface depth and orientation using both singleraultiple cameras.
Zheng and Murata [Zheng00] presented a system in which &irrgtapecular
object was illuminated by an extended circular light sosraad reconstructed
3D shape by tracing the specularity trace or using motioreste Zisserman
et al. [Zisserman89] provided a quantitative analysis @f ithformation avail-
able to a camera undergoing known motion. One key result hatstihe con-
vex/concave ambiguity can be resolved under unknown ithatnon. Oren and
Nayar [Oren96] introduced a comprehensive theoreticahéwork for the per-
ception of specular surface geometry and developed anitfgothat uniquely
recovers 3D surface profiles using a single virtual feattaekied from the oc-
cluding boundary of the object. Savarese and Perona [Saef@ite Savarese02]
provided a general solution for recovering shape from mnetlections in a single
static image. Solem et al. [SolemO04] introduced variati@malysis into shape-
from-specularity and demonstrated the robustness of stegoastruction from
sparse specularity data. Lu et al. [Lu0O] used specularcteftes on surfaces to
help modeling tangential hairs or grooves.

Francken et al. [Francken08] proposed a mesostructure §pecularities
method using LCD monitor as the illumination. Ma et al. [Ma@igveloped
a rapid acquisition method of specular and diffuse normgbsrfeom polarized
spherical gradient illumination, where specular refleti® used for the recon-
struction of fine-scale geometry of translucent objects.atAcet al. [Adato07]
developed a framework for recovering general shape frotontésl specular re-
flection under unknown environment. Nehab et al. [Nehab@8}gnted a dense
3D reconstruction method for glossy objects using speitylemnsistency.

2.3 Surface Mesostructure

Surface mesostructure is one of the key components of 3D tex-
ture [Koenderink96]. It contributes strongly to the compsirface appearance
of real-world objects. One method for modeling and rendgnresostructure is
through BTFs (Bidirectional Texture Functions) [Dana99]jatican be regarded
as a mapping from the 4D space of lighting and viewing dicggito the space
of 2D images. Most previous work on BTFs aims at capturing appee data
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from natural materials and at efficient representation. |diigt al. [MUller05]
gives a comprehensive report on the state of the art of BTHmigges. Liu
et al. [Liu01] used a shape-from-shading method to recoppraximate 3D
geometry of surface details from a BTF dataset. In [NeubelghO&ubeck et al.
proposed a method for 3D texture reconstruction from exterBTF data, with
only a few and rather weak assumptions about reflectance emteajry. The
reconstructed mesostructure can be used for the simpiircaf the BTF-based
texture description and efficient compression of a BTF dat&sen for the most
advanced and expensive laser scanning systems, mesosgruetonstruction
of highly specular or translucent objects is still a difficproblem. Most of
the scanning technologies based on structured lightingalgb fail in recon-
structing fine-scale details for very low albedo, transhicer highly-specular
surfaces [Nehab05, Davis05]. To deal with highly-specalafaces, Wang and
Dana [Wang03, Wang06] presented a method that can simaliahecapture
fine-scale surface shape and spatially varying BTFs by usBiFameasurement
system. Similar to that work, our method will also depend pecsilar reflection.
But we extend the idea to include not only highly-speculafass, but also very
low albedo glossy or translucent glossy materials. Instéasing a complicated
BTF measurement system, we developed a simple, flexible angrgssive
acquisition system. In [YuO5], Yu and Chang introduced shadmphs for 3D
texture reconstruction. They show that the shadow grapheait® sufficient to
solve the shape-from-shadow problem from a dense set ofesnadhey also
solved the problem of recovering height fields from a spaeteosimages by
integrating shadow and shading constraints. However,ntiehod cannot work
effectively for objects where shadow is no longer an aceurgbrmation, such
as skin or fruit.

2.4 3D Reconstruction

Numerous 3D scanning techniques [BeslI88, Poussart88, GarlEsave been de-
veloped during the last decades. A long processing pipalinecessary to obtain
a complete 3D model from a collection of range scans [Levo@@dnardini02].
In this thesis we concentrate just on capturing reliablggeamaps and do not
cover further processing such as registration, mergingnarothing. Structured
light methods (see Salvi et al. [SalviO4] for a survey) amala set of images
captured under well defined patterns in order to determi@edhrespondence be-
tween camera and projector pixels for each surface pooj fiwhich the point’s
depth can be computed. They range from line sweeping ahgosi{Curless95] to
optimized stripe boundary codes that allow for real-timenstng [Hall-Holt01].
Rusinkiewicz et al. [Rusinkiewicz02] proposed a real-timer8Bdel acquisition
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system that permits the user to rotate an object by hand and sentinuously-
updated model as the object is scanned. Davis et al. [Dgvms@5ented a com-
mon framework, space-time stereo to unify stereo, stredtlight, and laser scan-
ning. Nehab et al. [NehabO05] introduced an efficient alganifor combining po-
sitions, usually from stereo triangulation and normalsially from photometric
stereo, to obtain highly precise 3D geometry.

Recently, people saw more and more specialized methods foe@instruc-
tion of complex objects, including transparent, transhicepecular, inhomoge-
neous, or geometrically intricate objects. Kutulakos ateh&r [Kutulakos05]
proposed an effective method for 3D shape reconstructionefsbctive and
specular objects by light-path triangulation. Miyazaki at [MiyazakiO3a,
MiyazakiO5] reconstructed the surface shape of transpafgects using polar-
ization. In [Hasinoff06], Hasinoff and Kutulakos preseahtsonfocal stereo for
computing 3D shape by controlling the focus and aperturelefis. The method
is specially designed for reconstructing scenes with hggnagetric complexity or
fine-scale texture. To achieve this, they introduced thdomath constancy prop-
erty. Wei et al. [Wei05] proposed an image-based approaatottel hair geom-
etry from images taken from multiple viewpoints. Yamazakale [YamazakiO7]
presented a practical shape-from-silhouettes method esiplanar shadowgram
imaging to acquire 3D models of intricate objects, such @s lbiranches, bicycle
and insects. In [MorrisO7b] Morris and Kutulakos preserdedethod for recon-
structing the exterior surface of a complex transparenteseath inhomogeneous
interior (e.g. multiple interfaces, reflective or paintederiors, etc.). Trifnov
et al. [Trifonov06] provided a visible light tomographicanstruction method for
transparent objects.

2.5 Photometric Stereo

Photometric stereo methods [Woodham80, Rushmeier97] arerkto be able to
capture fine-scale surface details and to provide an efficikernative to BTF-
based methods. In [Hertzmann05], Hertzmann and Seitz miexs@n example-
based photometric stereo for shape reconstruction witkrgéspatially varying
BRDFs. They assumed that there are no cast shadows, no irgeticefs, and
no subsurface scattering. Goldman et al. [Goldman05] mega@ photometric
stereo method for iteratively recovering shape and BRDFsy @hployed a local
reflectance model, which cannot properly account for shadamterreflections
and subsurface scattering. In [Paterson05], Paterson eteaeloped a simple
system for BRDF and geometry capturing. Their system can bamdlariety
of real-world objects except highly specular or transldamaterials. Wu and
Tang [WuO05] presented a simple dense photometric stereloaaetising only a
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mirror sphere, a spotlight and a DV camera. They achievegrisurgly good
results even with the presence of moderate shadows andlapbhlights. To
our knowledge, photometric stereo methods can rarely sxcdense fine-scale
surface details from translucent, highly specular, or |tvedo glossy materials.

In [MagdaO1l], Magda and Zickler take advantage of Helmho#t@procity
and light fields to reconstruct surfaces with arbitrary BRDHsat method makes
no assumption of the surface BRDF and works effectively for réetsa of non-
Lambertian surfaces (e.g. glossy surface), but not forlhitganslucent objects,
where subsurface scattering dominates. Alldrin et al.d#08] presented a pho-
tometric stereo method for simultaneously recovering sham spatially vary-
ing reflectance of a surface. In their method, novel bi-targpproximations of
isotropic reflectance functions were employed.

2.6 Phase-Shifting

While most structured light approaches simply assume torebske undistorted
measurements from direct surface reflections the phagi&gtalgorithm is more
robust against noise caused by global illumination effsat$ as subsurface scat-
tering. Phase-shifting [Srinivasan85, Wust91] based imnssiid patterns has been
used extensively in optical 3D scanning. The source, ugaatligital projector,
projects a series of phase-shifted sinusoid patterns h@stene and a camera
records the resulting image. From a sequence of shiftedrpatbne can detect
for every camera pixel the phase within one period of therlhating sinusoid
pattern. The collective phase information is called the uh@dr phase map. In
order to determine the absolute position within the illuation pattern the period
has to be localized. This process is called phase-unwrgpfon which lower
frequency sinusoid patterns are typically used [Ghigl]a2® unwrapped phase
map directly encodes the correspondence between the ineddjarfid the projec-
tion field. Once this correspondence is determined, the 3itdooate information
of the object can be computed by triangulation.

Most of the advanced phased-shifting methods focus on fferett aspects
of the above procedure. With the increasingly ubiquitousilaility of digi-
tal projectors and digital cameras, a typical setup of a @ishifting system is
a projector-camera system. However, the inaccuracy inhénethe commer-
cial projectors introduces new problems. Zhang and Yaurigéd] proposed
a new look-up-table method for phase error compensatiostedal of trying to
improve scanning accuracy, some researchers are consiyuworking on the
scanning speed. Zhang and Yau [Zhang06e] presented adsghition, real-time
phase-shifting method with customized hardware. Weisé¢. §iVe@ise07] devel-
oped a fast 3D scanning system combining stereo and phéseegshMost of
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the high quality or high speed phase-shifting methods recan efficient phase-
unwrapping method [Ghiglia98]. Zhang et al. [Zhang06ckerded a multi-level
guality guided phase-unwrapping for a real-time phas#hspisystem. Hunt-
ley and Saldner [Huntley93] introduced the temporal phassrapping method,
which is a multi-scale method and very robust, especiallgmcanning highly
discontinuous surfaces.

2.7 Separation of Reflection Components

Using images captured with a polarization filter at diffdrenentations one can
for example separate diffuse from specular reflections @y, Rowe95, Tyo96,
Umeyama04] or attempt to remove depolarized global effsath as multiple
scattering due to participating media [Schechner04, Sutex05, Schechner03,
Treibitz06]. Making use of structured, high frequencymiiination, most global
effects can be removed since only direct reflection will giggte high frequencies
while global effects drastically damp them [Narasimhan@&ayar06]. Wu and
Tang [Wu04] obtained a full separation into specular, défuand subsurface scat-
tering reflection components by additionally analyzingedironal dependence.
The direct reflection component is due to a single reflectiadheasurface and
is therefore directly correlated to the surface geomethe global component is
caused by multiple scattering events, such as interreflecti subsurface scat-
tering. The global components can seriously deterioragertbasurements in 3D
scanning [Godin01]. Accurate 3D scanning methods for ssevith complex
global light transport usually have a key component of reimgpwr suppressing
the global components. In [Seitz05], Seitz et al. preseateaethod for com-
puting and removing interreflection in photographs of reaines. Their method
is based on the Lambertian assumption and requires a vey tarmber of im-
ages to estimate the photometric coupling between all paissene points. Ma
et al. [Ma07] presented a rapid acquisition method of sgeand diffuse normal
maps from polarized spherical gradient illumination. Theethod can produce
high resolution 3D scans for moderately translucent objesttch as human faces.
Based on the insight that direct and indirect scatter traege Hifferent charac-
teristics, Morris and Kutulakos [MorrisO7b] introduced ewn3D photography
method, called scatter-trace photography. Their methodiges new possibili-
ties for 3D scanning of inhomogeneous transparent scend®NalyarO6] Nayar
et al. introduced an efficient method for separating diradtgobal components
by using high frequency illumination. Their approach isdzhen the insight that
global light transport significantly dampens high frequeaadn the incident illu-
mination patterns while the direct reflections does not. hin$ame paper, they
proposed several useful high frequency patterns, suchexketboard patterns,
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sine patterns, etc. They also pointed out that phase+shifian be used for 3D
scanning. In [Talvala07], Talvala et al. adapted Nayar.stsg¢paration method to
remove veiling glare in high dynamic range imaging. They aisegh frequency

mask to selectively block the light that contributes to tlefling glare. Veer-

araghavan et al. [Veeraraghavan07] presented a novel atamiubased method
for capturing light field by using an attenuating mask.

2.8 Polarization

Polarization imaging has been widely used in computer mismetrology, and
optics. We refer to the book [Born99] for comprehensive usidgrding of polar-
ization and its applications. We summarize some typicaliegions of polariza-
tion in computer vision, including reflectance separatimaterial classification,
visibility improvements, 3D reconstruction etc.

Imaging in scattering media such as water and fog is usuaffering from
poor visibility due to backscattering and signal atterarati Polarization can
be used to improve visibility under these situations. Sonshids assumed
a negligible degree of polarization of the objects [Schecb#, Schechner05,
Schechner03, Treibitz06]. Other methods assumed theagnire., that ob-
ject reflection is significantly polarized, rather than theckscatter [Tyo096].
In [Treibitz08], Treibitz presented a unified method foreepolarization descat-
tering which allow both the backscatter and the object refiado be partially
polarized. Based on imaging through a polarizer at two or nooientations,
Schechner et al. [Schechner00] presented an approacholerescenes deterio-
rated by reflections off a semi-reflecting medium (e.g., agl@ndow).

Shape-from-polarization is known to be effective to estathe shape of spec-
ular objects such as metals or transparent objects. Theeedpolarization of
the light reflected from the object surface depends on theatésh angle, which,
in turn, depends on the object’s surface normal. Wolff ef\&bIffo0, Wolffo1]
measured the orientation of glass and metal plane by congpularization anal-
ysis and binocular stereo. Clark et al. [Clark97] and Wallacal.fWallace99]
improved the laser range finder by polarization analysisstorate the shape of
opaque objects. Saito et al. [Saito99] attempted to medbersurface shape
of transparent objects; unfortunately, there was an antigiguoblem for deter-
mining the true surface normal. Miyazaki et al. [MiyazaKi@Xtended Saito’s
method and solved the ambiguity problem from a polarizatinalysis of ther-
mal radiation. Rahmann and Canterakis [Rahmann01] appliedipation imag-
ing to the reconstruction problem of specular surface. Tiogeption of surface
normals is directly provided the polarization image. Maeehl. [Morel06] ex-
tended the shape from polarization method to specular heetatfaces. Recently,
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Miyazaki et al. [MiyazakiO3b] proposed a method to estintatesurface shape of
an opaque specular object from a polarization image fromglesview. Miyazaki
et al. [MiyazakiO3a] further presented a method to recoudiase shape of trans-
parent objects from two views. Miyazaki and lkeuchi [Miy&if¥5] introduced
inverse polarization raytracing, which incorporates hbib#h path of light and its
polarization state, for estimating surface shapes of prament objects.

2.9 Discussion

Inspired by the previous work on 3D perception, 3D recomsion, reflectance
separation, and polarization, we introduce several noethods for 3D scanning
of complex scenes, including scenes with fine geometrialdetaibsurface scat-
tering and interreflection.

For human vision, specularity is one of the key visual cueS8 shape per-
ception of fine geometric details, namely mesostructures.ekample, wrinkles
on glossy skin are much more obvious on diffuse skin. Wrinkieder direc-
tional illumination are more visible than under uniform gomment illumination.
Based on this perceptual observation, we introduce an ctteeaphotometric
methodmesostructure from specularjtywhich can do successful mesostructure
reconstruction even for low-albedo, or translucent olsjestich as leather, skin
etc. The system is easy to implement, including one cametdaaea point light
source. The quality of scanning can be interactively andassively improved
by denser sampling of the light source position. A densedicsd light source en-
vironment, such as a light stage, could be used for fast ajidduality scanning.

Accurate 3D scanning of scenes with global light transpiarasuch as sub-
surface scattering and interreflection is a challenginky t&er most of the optical-
based 3D scanning methods, subsurface scattering ingdeatslucent objects,
such as marble, alabaster, jade etc. will severely spo#¢haning accuracy. Na-
yar et al. [Nayar06] pointed out that high frequency illuation can be used to
separate direct and global reflectance components. Thefroehgrovides new
possibility of efficiently separating the direct surfac@ieetance from the global
reflectance including subsurface scattering, interrefiecttc. On the other hand
phase-shifting is a very robust and efficient 3D scanninghoein the optical
engineering community. We combine these two powerful nagrend introduce
the phase-shifting based 3D scanning method for sceneglitial light trans-
portation, such as subsurface scattering and interreftedivith the increasing of
frequency, the phase-shifting patterns become more and efiactive in descat-
tering performance. Combining with temporal phase unwrapmpnethod, it is
possible to scan a highly discontinuous surface. Howewelfrdguency of the
phase-shifting pattern, the sine pattern, is bounded ditivaal phase-shifting
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method, which limits the descattering power and furtheitnthe scanning ac-
curacy. The key of successful scanning of scenes with glajfdltransportation

is to do successful descattering, i.e. separate the mesesting direct reflection
from the rest. In computer vision, polarization phenomenquite well under-

stood and exploited to do descattering and dehazing for lsi@on. We further

introduced two methods to improve the performance of puesetshifting. First
we incorporate polarization to enhance the descatteringipeance of high fre-
guency illumination. The improvement is most visible whealkhg with surfaces
with moderate variation of normals. Second we find out thesptshifting pat-

tern can be further modulated and be in much higher frequewaich leads to

higher performance in descattering. The modulation scheanealso be applied
to general low frequency signal.



Chapter 3
Light Transport

In this chapter we will review the reflectance models andtligansport. We
will discuss the relevant effects of direct reflection, nplé scattering or inter-
reflections on projected polarized or non-polarized stmaet light patterns. The
signal we are most interested in for 3D scanning is the dyreeflected light,

which is closely correlated to the surface geometry. All $banning methods
presented in this thesis will focus on how to separate effityig¢he direct reflec-
tion and how to retrieve accurate 3D information from theadireflection. For
example, the mesostructure from specularity method etgptloé specular reflec-
tion, which is one component of direct reflections, to retats fine-scale ge-
ometry, the mesostructure from complex objects even witbajllight transport.
The phase-shifting and polarization based methods contimtie the descatter-
ing properties of high frequency illumination and polatiaa to select the direct
reflection for 3D reconstruction.

3.1 Reflectance Models

Light reflectance models have always been of great intayéisetcomputer graph-
ics and computer vision communities. Reflection of light frearfaces can be
classified into two broad categories: diffuse and specilila. diffuse component
is distributed in a wide range of directions around the sigrfaormal, giving the
surface a matte appearance. In the ideal case of Lambetiéacss, the dif-
fuse reflection does not change with direction at all. Thecsjae reflection, on
the other hand is strictly related to the light incident amdaamt angles and is
concentrated in a compact lobe around the specular direclibe bidirectional
reflectance distribution function (BRDF) [Nicodemus77] is tieneral model to
describe surface reflectance. It is a function of the wawgtlensurface rough-
ness properties, and the incoming and outgoing directindssaable to correctly
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(a) BRDF (b) BSSRDF

Figure 3.1 BRDF vs. BSSRDF. A BSSRDF describes light transport beteugen
two rays that enter or leave a surface. It can successfullyaiogl single/multiple
scattering of translucent material. A BRDF is an approxiimatof the BSSRDF
for which it is assumed that light enters and leaves the saerédat¢he same point.
It is a function of the wavelength, surface roughness proggrand the incoming
and outgoing directions and is able to correctly predict th#use and specular
components of the reflected light.

predict the diffuse and specular components of the refldigibt

The BRDF, however, assumes that light entering a surfacedebgesurface at
the same position (see Figure 3.1(a)). This approximasimalid for most of the
the opaque objects, such as metals, but it fails for trapslumaterials, which ex-
hibit significant subsurface scattering. Translucent nageare ubiquitous in the
real world, such as leaves, fruits, marble, jade, milk, sbeskin, alabaster and so
on. A more general reflectance model, called bidirectiondbse scattering re-
flectance distribution function (BSSRDF) [Nicodemus77,isdniu78, Jensen01]
can describe light transport between any two rays that emtégave a surface
(see Figure 3.1(b)). A BSSRDEF, relates the outgoing radiancg,(z,, ;) at
the pointz, in directionw,, to the incident flux®;(z;, ;) at the pointz; from
direction®;:

dLo(xmuTO)) = S(xi’viaxo7m>d¢i(xiau—)>i>‘ (31)

The BRDF is an approximation of the BSSRDF for which it is assurhatlight
enters and leaves the surface at the same poing; j.€. ;.
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3.2 Light Transport

Nayar et al. [Nayar06] presented a fast separation methodirfect and global
components of a scene using high frequency illumination. Wiefollow the
definitions of direct and global components in [Nayar06]. Whescene is lit by

a single light source and viewed by a single camera, themadiaf each point in
the scene can be broadly classified as two components, natirelst and global.
The direct component is due to the illumination of the pointtthe source. The
global component is due to the illumination of the point bfaestpoints in the
scene. We call the incident radiance upon the camera froettdadomponent
the direct reflection such as specular reflection. Any other reflection different
from direct reflection is calledlobal reflection such as subsurface scattering and
interreflection.

Figure 3.2 shows schematically the behavior of direct antalillumination
components. The scene is lit by a single light source andedédy a single cam-
era. Consider the scene poift The light rayA represents its direct illumination
by the source. The global component is due to the illumimaftiom other points
in the scene. It can be caused by different physical phenatier are common in
the real world. For example, rdyis caused by the interreflection of light between
scene points. Rag' and D results from single and multiple subsurface scattering
within the medium beneath the surface respectively. Ray due to volumetric
scattering by a participating medium in the scene. AndBagpresents refraction
and diffusion of light through translucent or transpareetimm.

We will further discuss the relevant effects of direct reflee, multiple scat-
tering or interreflections upon structured light based 3@&hsing.

3.2.1 Direct Reflection

The signal we are most interested in for 3D scanning is thecthyr reflected

light (Figure 3.3(a)). The amount of directly reflected liglepends on the sur-
face properties such as color, roughness, etc. which canrbenarized in the

BRDF [Nicodemus77]. In addition, light that is reflected fromsmooth sur-

face of a dielectric (or insulating) material is partiallglarized. The amount of
polarization of the reflected light can be computed accgrttinFresnel’s formu-

lae [Born99] and depends on the material properties and tbetation of surface
with regard to the incident and reflected ray directions. Apcehensive polar-
ization reflectance model can be found in Wolff and Boult [Vi@].
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Figure 3.2 The radiance of a scene poiiit is due to direct illumination of the
point by the sourceA) and global illumination due to other points in the scene
(B, C, D, E,andF). The global illumination can arise from interreflections)(
single subsurface scattering’'j, multiple subsurface scatteringj, volumetric
scattering §), and refraction (3). Only the direct reflection fromA4) is directly
related to the surface geometry. Therefore, a clean sejerand an accurate
measurement of direct reflection is very important for 3Dnstag of surface
geometry.

3.2.2 Multiple Scattering

The prominent effect that distinguishes translucent frggacue materials is that
some light penetrates the surface and is scattered muitpds inside the object
before it finally leaves the surface at some other locatiorteBnining the 3D

shape of a translucent object requires detecting the firitiintersection of the
incoming light ray, i.e. to observe the pure direct reflat(éigure 3.3(a)). Unfor-

tunately, the signal of the direct reflection will be rathexak since some fraction
of the incident light will penetrate the surface instead einlg reflected. The
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Figure 3.3 Rays to consider in 3D scanning. (a) 3D geometry can be astith

reliably only from the direct reflection off the surface. {f)e subsurface scat-
tering in translucent objects can shift the observed intgnseak away from the
point of incidence. (c) Opaque structures beneath the sarfmllute the range
estimate. (d) The signals of different projector rays arertaid due to interreflec-

tion from another surface.

reflected signal will furthermore be heavily polluted bygdanor multiple scat-
tering created by light incident on other scene points. Aistpd out by Godin
et al. [Godin01] multiple scattering results in a measwdbés in the depth es-
timate since the location of the observed intensity peakiitesl away from the
point of incidence (Figure 3.3(b)). Multiple scatteringhdae approximated by a
diffusion process [Jensen01] and leads to a significant degrgd the high fre-
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guencies in the incident illumination. Projecting shiftédh frequency patterns,
the global component will remain the same while changes eawbkerved in the
direct reflection only. This can be used to remove the gloffattalgorithmi-
cally [Nayar06].

Multiple scattering further influences the state of polatian. While single
scattering polarizes light according to the size and sh&peparticle and the ref-
erence plane spanned by the direction of the incoming ligttthe scattered di-
rection, multiple scattering due to the random orientatibparticles to some de-
gree depolarizes the incident light [van de Hulst81, SchedB, Schechner05].
We make use of the depolarization properties to remove pheisicattering effects
from the measurements.

Another important source of error is depicted in Figure &.3Here, some
structure beneath the surface actually reflects more ligirt the direct reflection
at the surface leading to wrong depth estimates (compargdsdh.10 and Fig-
ure 5.6). While light reflected by those structures keepsitjtefrequencies of the
incident light pattern we show in our experiments that itengdes some degree
of depolarization, which can be utilized.

3.2.3 Interreflections

Similar effects are introduced by interreflections due tarhg surfaces (Fig-
ure 3.3(d)). The signal of the direct reflection off an admyrsurface (not nec-
essarily translucent) is disturbed by the indirect reftacfrom another surface.
The resulting artifacts might range from a small bias addeti¢ depth estimate
of the original surface (A) to wrongly detecting the depthioé mirror image of
the other surface (B).

Depending on the reflection properties of the other surf&edhe high fre-
guencies of the original pattern will typically be signifintly reduced in the in-
direct reflection; for a glossy or diffuse BRDF, the illumiratiof a single point
on surface (B) will indirectly illuminate a larger region oarface (A), hereby
spreading out the signal. For second and higher order @iftections the loss of
high frequencies is even more prominent.

Note, however, that interreflections might still resultiimelarly polarized light
depending on the arrangement of surfaces (A) and (B). As # rpslarization is
not always suitable for separating the direct componemirderreflections.
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The visual appearance of a real-world object is governeceBigatance proper-
ties, illumination condition, and a hierarchy of geomet@emponents. In the ge-
ometric hierarchy, there are basically three differenelgwof scales, namely, the
macrostructure level, the mesostructure level, and theostiwcture level. The
macrostructure level represents the gross surface gegrygiically expressed as
a polygonal mesh or parametric spline surface. The miarostre level involves
surface microfacets that are visually indistinguishabiée mesostructure level
represents geometric details that are relatively smalkbliindividually visible
such as bumps or dents on a surface.

Efficient mesostructure reconstruction methods can dartirigreatly to high-
quality graphics models in terms of fine-scale surface gé&ocngetails. An ac-
curate and explicit mesostructure model can also beneéitegtlmesostructure
modeling techniques such as BTFs (Bidirectional Texture &omg) [Dana99,
Miller05].

State of the art high-resolution 3D scanning methods irel{iehab05,
Davis05, BernardiniO2, Levoy00]. Photometric stereo méshcan achieve
high-resolution surface reconstruction with inexpenssetup [Woodhama80,
Rushmeier97, Hertzmann05, Goldman05, Paterson05, WuOX]stirtgy tech-
niques are, however, rarely able to capture the fine-scaklsl®f real-world
objects with translucency or specular reflection, such s sbugh fruit skin, etc.

By drawing inspiration from photographs of real-world triicent objects
and from the literature on human vision and perception [eg®4, Fleming05,
Norman04, Todd04a], we found that specular highlightsmpgortant visual cues
for surface mesostructure perception and provide reliaisieal information for
surface detail representation. In Figure 4.1, the hand éemagler point light
illumination conveys much more fine surface geometric teethian that under
diffuse illumination. The specular reflection in image Fgd.1(b) greatly helps
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() (d)

Figure 4.1 Specularity as a strong visual cue for surface mesostrect(@a) A
hand under diffuse illumination. (b) A hand under point s@ulumination. (c)
Zoom-in of (a). (d) Zoom-in of (b). The hand image under pbgttt illumi-
nation conveys much more fine surface geometric detailstthetrunder diffuse
illumination. The specular reflection in image (b) greatBlis the perception of
mesostruture of the hand.

the perception of mesostruture of the palm. The small weiskin the hand skin
introduce rich visual effects and can be efficiently revedilg specular highlights.
Based on this observation, we developed a simple and proggaystem that uses
specular highlights in order to solve the dense mesosteioéconstruction prob-
lem for a variety of real-world complex objects, which passsignificant specular
reflection. Our method is largely independent of the undeglyeflectance model,
and can therefore successfully handle objects with conmeléectance that have
previously been challenging.
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Motivated by the simplicity of existing shape-from-spetly methods, we
extend them to reconstruct surface mesostructure, file-gemmetric surface
details, from objects with a significant specular compormenbss the surface. A
large set of real-world objects possess this property, agétuit skin, human skin,
plant leaves etc. Under the dichromatic reflectance modefE$85, Klinker88],
the light reflected from a surface comprises two physicalfifgient types of re-
flections, interface or surface reflection and body or subsarreflection. The
body part models conventional matte surfaces. Interfafect®n that models
highlights, is directly related to the surface (interfaetvizen the object and the
air). We exploit only the specular reflectance, and devel@peery simple system
to capture dense mesostructure from complex real-worleoid;

4.1 Overview

In our approach, there is no explicit reflectance model assu/e only exploit
the specular reflection, which is directly related to suefgeometry.

Figure 4.2 gives an overview of our method. The overall systensists of a
camera for capturing images, an LED light as the point liglhtrse, four specular
spheres for light position estimation and some accessineslibration and sup-
porting. Before all the images are taken, the system is firdt pbotometrically
and geometrically calibrated.

At the acquisition stage, multiple images of the intergsthject and the four
specular spheres are captured under point illuminatiam tidferent directions.
We locate the regions for the interesting object and fouesghseparately. Us
ing histogram thresholding, we build up the specularity magate the highlight
spots on the four spheres and inversely calculate the liggitipn by intersecting
all the four rays reflected from the spheres. The specularép is interactively
displayed on a screen. The user manipulating the LED lighmfermed and
guided by this specularity map with a clear goal in mind, tbtie specularity
map as much and fast as possible.

With the known light positions and the geometric calibrataf the system,
we can calculate the normal for each pixel on the object.Heunmiore, the normal
map is post-processed, e.g. hole filling and bilateral d@ngi Finally, we obtain
the height map of the object by integrating the normal map.

4.2 Acquisition System

Most mesostructure acquisition systems are extensionsroplicated and ex-
pensive BTF acquisition systems [Wang03, Wang05, WangO0ap&ik05]. In
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Input images > ‘ < System calibration
Sepcularity map Light position estimation

| l

Normal map

Post-processed normal map

|

Height field

Figure 4.2 System overview of mesostructure from specularity. Tétesyis first

photometrically and geometrically calibrated. Then npl#iimages are taken
under varying point illumination. From the captured imaggsecularity map can
be built using histogram thresholding and light positiomde estimated from
the 4 specular spheres. With known light positions, we contpeteormal map

from the specularity map. The normal map is further postpssed, e.g. hole
filling and denoising. The final height field is an integrati@sult of the post-

processed normal map.
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Figure 4.3 Photograph of the acquisition system. The camera captonages
while the LED is moved manually. A checkerboard is used fomgsac calibra-
tion. Four specular spheres are employed for light sour¢eregion. The sample
object is placed at the center of the checkerboard. The cansesibout 1.5 me-
ters away from the sample. The light moves roughly on a vitteatisphere with
1.5-meter radius and points always towards the sample object.
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contrast, we propose a simple, progressive, and flexiblaisitign system for
high-quality mesostructure recovery. The user can inteedg adjust the num-
ber and distribution of light source positions without lgeiconstrained by the
mechanical capabilities of the acquisition system.

The basic setup of the mesostructure acquisition systemsisterof a digital
camera and a point light source (see Figure 4.3). We usedhit 1300x 1030-
pixel Jenoptik ProgRes C14 digital camera for image acqarsiind a 5 Watt
Luxeon Star white LED as point light source. A checkerboardsed for camera
calibration [Bouguet]. Four specular spheres are positi@iehe four corners of
the checkerboard to estimate the light source position.séh&le object is placed
on a small support at the center of the checkerboard. Thereaaes downward
to the checkerboard with the optical axis perpendiculangéocheckerboard plane.
We keep the camera 1.5 meters away from the checkerboardn&bestructure
has ignorable magnitude, compared to such a large distafie@lso assume the
base geometry of the sample object has minute scale, cothprathe distance
between the camera and the object.

During acquisition, we keep the light source about 1.5 nsed@ray from the
object. This allows us to approximate the LED by a point ligbtirce. To keep
the illumination consistent, we always point the light te tample object. We
capture one image for each position of the point light sautdeing histogram
thresholding, we can in real-time extract the specularctfle component of the
sample object and update the specularity field, which kdepstate of how much
specularity data has been captured from the sample obj@ctlsRor which a
specular peak was detected in at least one image are maxkeotiherwise they
are marked black. During the acquisition, a growing portdrthe specularity
field will be colored red and the user can use this feedbackdeenthe light
source in a way that increases coverage of the speculaltiy fie

This incremental refinement allows flexible control of thalify of the result
mesostructure. If the final specularity field is very denise resulting mesostruc-
ture will be very accurate and highly-detailed. On the otkeard, if only a sparse
specularity field is captured, the reconstructed mesdsir@iwvill be dominated by
low frequency features. In practice, less than 200 inpugesacan already lead
to a very dense specularity field and consequently hightgidel mesostructure
for complex real-world objects (see Table 4.1). Figure #@s 64 input images
for the orange skin. The specular highlights in these imagestrong visual cues
for mesostructure perception of the orange skin.
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Figure 4.4 Mosaic of 64 input images for the orange skin. The spectiggrin
these images are strong visual cues for mesostructure pgoceof the orange
skin.
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Sample Objects \ Numbers of Input Images
black leather 35
orange skin 65
jelly candy (red) 101
jelly candy 102
human skin 183
dried apricot 188
dark brown chocolate 196

Table 4.1 Numbers of input images captured for sample objects usediin o
experiments. Even for complex real-world objects, less #tdhimages are suffi-
cient for high quality mesostructure reconstruction.

4.3 Light Source Estimation

Light source estimation from images is a well-researchetlpm in computer vi-
sion. In our experiments, we use four specular spheresgedan a rectangle on a
common plane to estimate the light source position. Massalal. [Masselus02]
use diffuse spheres in a similar configuration for this pagoThe law of re-
flection yields the geometric constraint that the specuteim@al V is a bisector
between the light source directidnand the viewing directioi” (see Figure 4.5),
ie.,

V =2(NTL)N — L. (4.1)

With the known geometry of the camera and spheres, and tleetddt spec-
ular peaks on the spheres, we can easily compute the reflegteddirec-
tions of the spheres according to Equation 4.1. Let the fetlected rays be
R, = O;+ D;t;,;i = 0,1,2,3, whereO; and D; are the ray origin and ray direc-
tion respectively. Since there is only one point light seumee can construct an
overdetermined linear system with six equations and foknawns. Using SVD,
we can compute the four unknownsi: = 0,1,2,3, and then the light source
position.

Figure 4.6 shows a simplified 2D case with only two sphefess the optical
center of the camerd. is the light..S; and.S, are two specular spheres. Light rays
from L are reflected by the spher@sand.S; and imaged by the camera at points
A and B respectively. In the actual computation, we trace revegright rays
OA andOB and intersect the two spheres, and .S, at A" and B’ respectively.
According to the law of reflection and the known geometry ef$pheres, we get
the light position estimation by intersecting two reflectaeys A'L and B’ L.
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camera

light
[\

Figure 4.5 Geometric constraint of specular reflection. At a specuydaint, the
surface normalV is the bisector between the light vectbrand viewing vector
V. In one captured image, a large set of surface normals carebevered simul-
taneously with known light source and camera positions.

4.4 Specularity Field Construction

Efficient and robust separation of diffuse and specular aorapts of surface re-
flection for arbitrary materials — especially for transloter refractive materials
—is still an open problem. State of the art techniques ekptih polarization and
color appearance [Umeyama04, Tan05, Nayar97, Wolffo0].

In experiments, we found that color appearance is no longetiable cue
for specularity isolation, especially when translucenterials are involved. On
the other hand, polarization imaging techniques pose heghirements for pro-
gressive and interactive acquisition. With these conatitans, we used a simple
histogram thresholding method to extract the specularatedle component.

During the progressive acquisition process, for each impage, we construct
the intensity histogram as in Figure 4.7. LEti) be the histogram, wheré



34

Chapter 4: Mesostructure from Specularity

)
A B
Image plane
L
A B
S1 S2

Figure 4.6. Light source estimationQ is the optical center of the camerd. is
the light. S; and S, are two specular spheres. Light rays from L are reflected by
the spheres; and S, and imaged by the camera at poimtsand B respectively.

represents intensity anfd(i) is the number of pixels with intensityin a specific
image. We define the histogram gradient as

Gn(1) = [H(i = 1) = H(i)]. (4.2)

For a specific gradient threshdlg, we can find the associated intensity threshold
T; from the histogran¥{ (). Then the specularity field, indicating the position
of specular reflection, can be computed by thresholdingrtiege according to
T;, i.e., there is specularity if the pixel value is larger tiian DenoteF, as the
specularity field, which is defined as

_ [ 1, specular highlight was observed(at v);
Falwy) = { 0, otherwise (4.3)

Each pixel(z, y) in the specularity fieldF, will be updated while the acqui-
sition proceeds. The current state of the specularity feldisplayed for active
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Figure 4.7: Specularity separation via histogram thresholding. (apuit image.

(b) Extracted specularity field. (c) Input image with specityamarked. (d) His-
togram. With a user specified histogram gradient threshgle- 10, an intensity
thresholdT; = 491 can be found in the histogram. The specularity field can be
computed from the input image by simple thresholding. Natedtiferent input
images have the sanig but different intensity thresholds.
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control of the light source. In our experiments, less tha@ @fages were re-
quired to recover almost complete specularity fields. Fahgaxel, there are
usually multiple images in which it was classified as spacée select the im-
age where the brightest highlight occurred to calculatenthrenal. Images with
overexposed pixels are avoided using the exposure setfrige camera.

4.5 Inferring Normal Field

With the known specularity field, and the known light source positions for each
input image, we can easily compute the surface normal of paeh (x,y) on

Fs (see Figure 4.5) yielding a normal field,. In order to remove noise from
Fn., we filter it using the edge-preserving bilateral filter [Tasi98]. The resulting
normal field can be used for direct rendering of mesostrachyr bump map-
ping [Blinn78] or to reconstruct the 3D mesostructure. Tominconvey the
reconstructed mesostructure, we use Ward’s isotropic BRDdehjbarson92] to
render the normal field under directional illumination.

4.6 3D Mesostructure Reconstruction

To compute an accurate height field of the surface mesosteudtom the
estimated normal field we use the method proposed by FrankdtCGhel-
lappa [Frankot88] which uses surface smoothness as amabity constraint.

Letp = 0z/0x andq = 0z/0y be the surface gradients inandy directions
respectivelyN (z, y) is the normalized surface normal at posit{any), which is
related to the partial derivativés /0x anddz/dy through the formula:

N(z,y) = - (4.4)

gl
whereg = {0z/0z,0z/0y, 1}. We will refer to the equality of the second order
partial derivatives as the integrability constraint,,i.e.

dp  0Oq
oy Oz
for all positions(x,y) on the support of the normal field. That is, they corre-
spond to a surface with second order partial derivativegpeddent of the order
of differentiation. Consequently, the surface height at pasticular position is
independent of the path of integration.
We applied this method on all our experimental examples ahdtgble results
even with a noisy input normal field. To increase performameecompute the
integration through Fourier expansion.

(4.5)
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4.7 Experimental Results

Previous mesostructure reconstruction techniques hdfreutties with translu-
cent, highly specular, or low albedo glossy materials. Tlegomadvantage of
our method is that it can handle successfully these kindsatérnals. In exper-
iments, we choose a piece of dark brown chocolate and a pfddack leather,
both of them have glossy reflection. To test translucent nadde we use orange
skin, dried apricot, human skin, and jelly candy. The resdémonstrate that our
method can effectively reconstruct surface mesostruétone complex materials.

4.7.1 Very Low Albedo Glossy Materials

Figure 4.8 and Figure 4.9 shows mesostructure recongingdior a piece of black
leather and a piece of dark brown chocolate respectivelg.cRlocolate has larger
scale mesostructure than the leather. We successfullyeetiee large-scale shape
of the chocolate and get a relatively smooth surface. Witl 85 input images,
we obtain accurately the fine-scale details of the leather.

4.7.2 Translucent Glossy Materials

Photometric stereo techniques are capable of measuringuifece details. Ef-
fectively modeling surface details of translucent matesichowever, still an open
problem. We captured four real-world objects with varioegres of translu-
cency: orange skin (Figure 1.1), dried apricot (Figure $.bdiman skin (Fig-
ure 4.11), and jelly candy (Figures 4.12 and 4.13).

Our system can effectively deal with the orange skin and tiedcapricot
whose fine-scale surface details are accurately recovéréds, however, some
difficulties with the jelly candy’s boundary, while the inmgart of the jelly candy
is successfully reconstructed. The reason for this is tldofOne is that the strong
caustics around the jelly candy’s boundary makes accupsteusarity detection
difficult. The other reason is that there are some surfacealgron the boundary
facing away from the camera, which cannot be captured wahcthrrent setup.
To overcome this problem, we need additional cameras outageveral views
of the object.

The skin case is notoriously known to be difficult in compwtision or graph-
ics. The results in Figure 4.11 demonstrate the effects®onéour method. From
the renderings at different viewpoints, we can clearly $eevtell-reconstructed
fine wrinkles and pores. A promising extension is to measwggastructure from
general 3D skin, which can find important applications in paiar graphics.



38

Chapter 4: Mesostructure from Specularity

Figure 4.8 Mesostructure reconstruction of a piece of black leatlia).Mosaic
of input images. (b) Recovered normal field. (c) Renderiighenormal field
using Ward'’s isotropic BRDF model [Larson92]. (d) Reconsted 3D model
rendered at a novel viewpoint.
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(b)

Figure 4.9 Mesostructure reconstruction of a piece of dark brown chaieo
(a) Mosaic of input images. (b) Recovered normal field. (a)deengs of the
normal field using Ward’s isotropic BRDF model [Larson924) Reconstructed
3D model rendered at a novel viewpoint.
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(b) (€) (d)

Figure 4.10 Mesostructure reconstruction of a piece of dried apric¢d) Mo-
saic of input images. (b) Recovered normal field. (c-d) Reitooted 3D model
rendered at novel viewpoints.
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(b) (©)

Figure 4.11 Mesostructure reconstruction of skin. (a) Mosaic of inputages.
(b) Recovered normal field. (c-d) Reconstructed 3D modelessd at novel view-
points.
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(b)

Figure 4.12 Mesostructure reconstruction of a piece of jelly candy.Nsaic of
inputimages. (b) Recovered normal field. (c-d) Reconsdi8D model rendered
at novel viewpoints.
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/ \ | ..J'; e, - -'Ir -
(c) (d)

Figure 4.13 Mesostructure reconstruction of a piece of jelly candy) Ifgut
image. (b) Shape by laser scanner. (c) Shape by laser scaifteercovering the
object with Lambertian powder, which is close to the groundhtriftl) Shape by
our method. Itis very close to (c).
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We also captured a piece of highly translucent jelly candyr wegular geo-
metric pattern (see Figure 4.13). In order to compare aggmoaind truth, we
captured its surface structure also with a Minolta VI-91€elarange scanner. As
expected, the laser scanner has difficulties recoveringlthpe because the laser
light is scattered inside the object. The recovered pasitiformation is unreli-
able and the final geometry reconstruction shows stronfgetsi We then covered
the jelly candy with a layer of very fine and homogeneous white¢der in order
to make it Lambertian and performed another laser range 0an mesostruc-
ture reconstruction compares favorably against this tzeat,swhich is the closest
approximation of ground truth we were able to capture fas thpe of object.

4.8 Limitations

Although our method can reconstruct fine-scale geometgildethe mesostruc-
ture of complex real-world objects, there are still sevénaitations existing. To
list some of them:

e For high quality reconstruction, we need dozens of inputgesa which
limits our method to be applicable only to still objects. lbwid be a very
interesting extension to decrease the number of input isadpde still ex-
ploiting the fundamental power of shape from speculariti®sme recent
research went in this direction [Ma07, Francken(8].

e The range of recovered normals are limited. The maximumeabglween
viewing direction and light direction is 90 degrees, anddeeihe maximum
angle between surface normal and viewing direction is 4 besey

e Our system only recovers the surface normals of the objettorder to
reconstruct the absolute 3D of the surface, we need abgmdstaon infor-
mation as reference for solving the ambiguity in normalgnéion.

e We simply use histogram threshold to separate speculactiefifrom dif-
fuse reflection. It would be interesting to use a more advacel efficient
separation method, such as methods using color, polanzatistatistics.
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Phase-Shifting and
Polarization-Based 3D Scanning

This chapter focuses on structured light based 3D scanririgaiosiucent ob-
jects. The most important problem here is to separate teetdeflection compo-
nent from any global illumination effect. Current sepamatpproaches are either
based on polarization, or on structured, high frequenaynihation.

For a number of scenes (see Figure 5.1), structured ligletdhdB scanning
techniques run into the problem that the signal observeth&gamera for a sur-
face point is actually not only due to direct reflection of giejected pattern but
instead contains polluting signals originating from ambiglumination, inter-
reflections from other scene parts, or from subsurfaceesaagt These effects
are most prominent in translucent objects where the dyreeflected signal is
furthermore weakened since the incident light is diffuseside the material in-
stead of being fully reflected at the surface. Subsurfactteso®y can of course
be excluded completely if the object’s surface is paintefbigescanning, as it
is done frequently. In this thesis, we propose 3D scannidignigues which are
inherently robust against subsurface scattering.

In order to obtain reliable scans of translucent objects bag to sepa-
rate the direct reflection from the pollution due to multipheerreflections or
scattering. One approach to descattering is to use the Hattlight scat-
tered multiple times gets depolarized. Projecting podatidzight and com-
puting the difference of images captured with a polarizatitter at two or-
thogonal orientations thus removes most of the multipléteiag contribution
[Wolff94, Rowe95, Schechner05, Treibitz06]. Another metifiar separating di-
rect from global reflections based on high frequency illletion patterns has
recently been proposed by Nayar et al. [Nayar06]. Their@ggr is based on the
insight that global effects significantly damp high freqcies. Illuminating the
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(a) Grapes (b) Alabaster stone

(c) Jelly candy (d) Alabaster slab

Figure 5.1 Translucent objects. For these objects, traditional oati3D scan-
ning techniques run into the problem that the signal obs#twethe camera for
a surface point is actually not only due to direct reflectidrtiee projected pat-
tern but instead contains polluting signals originatingrit ambient illumination,
interreflections from other scene parts, or from subsurfecattering. Even for
human eyes, it is not easy to recognize the surface geonaetiads of a highly
translucent object because of its strong subsurface soagte
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scene with shifted high frequency patterns therefore weduit in high frequencies

observable in the direct reflection part only. Various patidhave been proposed
by Nayar et al. [Nayar06] to perform the separation rangnognfcheckerboard

and simple stripe patterns to sinusoids.

In [Nayar06], Nayar et al. also mentioned that phase-slgffSrinivasan85,
Zhang06e] can perform the separation and 3D scanning atthe §me. Our
3D scanning approach for translucent objects is also basgtiase-shifting. We
demonstrate and analyze why descattering based on st&ddight alone is not
sufficient to obtain high quality depth maps of heterogesdmanslucent objects.
Our proposed method therefore combines phase-shifting palarization filter-
ing. The increased performance is demonstrated and adsessa variety of
translucent objects.

5.1 Overview

We perform 3D scanning of translucent objects by exploibath high frequency
illumination, which possesses algorithmic descatterirgperties, and polariza-
tion, which performs reflections separation physicallyitaily. For the high fre-
guency illumination pattern, we chooséstep phase-shifting, which is proven to
be robust and accurate and can result in absolution 3D cuaisdi. Figure 5.2
shows schematically the pipeline of our methods.

The acquisition system consists of a projector, a camehj\ao linear po-
larizers (see Figure 5.7). The projector generates a sefrigige patterns while
the camera takes images simultaneously. In the simplegp,se¢. theN-step
phase-shifting, no polarizer is used. In parallel poldi@aimaging, two polariz-
ers are set up with parallel polarization orientations hmpolarization difference
imaging, an additional set of images is taken by rotatingepolarizers to be
orthogonal. The differences between the parallel and droage sets, are used
for ordinary phase estimation. The image acquisition ptaceis repeated for all
the frequencies, usually with = {55, =13+ 36> 735> 31> 33 15> 5 - The unit for
frequency isycles/pixel.

Before the real acquisition, we first calibrate the projeatwt the camera pho-
tometrically, and geometrically calibrate the projeatamera system, which is
crucial for triangulation. For the different scanning sties, we get different sets
of input images. Then we compute the phase map for each meguknowing
all are N-step phase-shifting. For the recovered phase maps, werpetémpo-
ral phase unwrapping and get the absolute phase map forghedtifrequency,
heref = % The projector-camera system is calibrated beforehangyesferm
triangulation and obtain the 3D coordinates for all the [six8ince the pixels are
regularly spaced, we easily obtain the 3D mesh.
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Figure 5.2 System overview of phase-shifting and polarization b&fedcan-
ning. The inputimages can be simply the images takenMAsitep phase-shifting
pattern projected. They can also be the images taken usirajl@lgpolarization
imaging or polarization difference imaging. The image asdion procedure is
repeated for all the frequencies. Then we compute the phapefan@&ach fre-
guency, knowing all aréV-step phase-shifting. For the recovered phase maps, we
perform temporal phase unwrapping and get the absolute pmagefor the high-

est frequency. Assuming the projector-camera system iisratdd beforehand,

we perform triangulation and obtain the 3D coordinates fdrthe pixels. Since
the pixels are regularly spaced, we can easily get the 3D mesh.



5.2 Phase-Shifting 49

5.2 Phase-Shifting

In the past years, many different phase-shifting algorghhave been de-
veloped [Ghiglia98, Srinivasan85, Wust91, Huang06, ZB&dg ZhangO6e,
Weise07, Zhang06c, Zhang06a, Zhang06b]. The measurecwmbay of phase-
shifting is usually affected by the noise and inaccuracyhefgsource and sensor,
e.g. imaging noise of the camera, and nonlinearity and legkage of the projec-
tor. One of the most accurate methods is based oVtséep least squares phase-
shifting algorithm [Zhang06d] for a projector-camera syst Sinusoid patterns
are generated by the projector and shifted by a factég— ®br NV times as

Li(z,y) = 0.5+ 0.5cos(2m fx + 6;), (5.1)

where (z,y) is the projector coordinate. The sinusoid is varying onlyha x
dimension. The frequency is denoted fy); = 27” ,1=1,2,..., N denote theV
different phase shifts. The unit for frequenc;cgﬁles/pm:el

The camera records one image for each phase-shifivantages in total. The
resulting intensity at camera pixét, y) in stepi can be expressed as follows:

Li(z,y) = I 41 cos(®(z,y)+6) (5.2)
= ag(z,y) + a1(x, y)cos(0;) + as(z, y)sin(d;),

where’ is the average intensity, the intensity amplitude, an@l the phase to be
solved. Solving the set of equations given in Eq. 5.2 in atlegaares sense, we
obtain,

_ anfl —ag(x,y)
(I)(m,y) =1 ( al(:c’,y) )7 (53)
where
[CLO(q;»y) (11( y) CLQ([E y)]T:A_1<5i>B(x7y75i)7 (54)

N > cos(d;) (6:)
A(6) = | Dcos(8;) > cos?(6;) >~ cos(6;)sin(8;) | (5.5)
STsin(6;) > cos(6;)sin(6;) S sin?(

and

B(z,y,d [Zl Zlcos lem ] . (5.6)

All the sums are over th& measurements. This result has also been observed in
communication theory when detecting noise corrupted $sgising synchronous
detection [Bruning74]. At the same time we can use the ratd the observed
amplitude over the observed bias as a measure for the fdliath the phase

estimation:
2 2
S Al S (5.7)

Qo
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Figure 5.3 Some of the projected patterns and captured images durivage-
shifting. For each frequency, multiple phase-shiftedgraté are projected.



5.3 Separation Properties of Phase-Shifting

Using phase-shifting for 3D scanning, one is mostly intex@sn determin-
ing the effective phasé(x,y) which is correlated to the disparity and therefore
the depth of the pixel. Additional phase-unwrapping emjppigyfower frequency
patterns is necessary to locate the period for which thegpisaseasured.

Figure 5.3 shows some of the projected patterns and capimages during
phase-shifting. For each frequengy= L., -L.. L multiple phase-shifted pat-

N , 2567 128 64°
terns,d; = 0, 5, 7 are projected.

5.3 Separation Properties of Phase-Shifting

Following the idea presented in [Nayar06] one can expl@tdifferent dependen-
cies of the direct and global illumination effects on a higdgluency illumination
pattern to separate these two components. Only the diregb@oent’, is corre-
lated to the amplitude terth’ while the global componerit, is not if and only if
f is sufficiently high. BothL,; and L, contribute to the average imade or ay.

We computel, and L, as:
Ly=2y\/a?+ a3, and

L,=2ay — 2y/a? + a3. (5.8)

Since there are three unknowns, a,, andas,, theoretically, three shifts are the
minimum requirement for calculating the phase and the sgipar In our experi-
ments we apply either 6 or 8 shifts in order to alleviate digias due to imaging
noise, nonlinearity, vibration, etc.

In the minimum case, there are only three different phadésshe. N = 3,
d; € {—2n/3,0,27/3}, one can separate the global and the direct components as:

2

Ly = 5¢3(10 — L)+ (21, — I, — I,)? and (5.9)
2

Lg = 5([0+[1+[2) _Ld- (510)

In [Nayar06], Nayar et al. pointed out that the best sepamadf direct and
global components is achieved with the highest frequertggnihation patterns.
In other words, the performance of the separation is limligdhe frequency
of the illumination. This highest frequency is however givey the properties
of the projector and might be reduced due to light leakage lanid-in image
processing. In practice we apply = % as the overall highest frequency, and
found [ = % with V = 8 to produce the best phase estimates. The unit for
frequency iscycles/pizel. While there are practical limits to the highest reliable
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frequency the phase-shifting pattern furthermore is ofilyigh frequency in the
phase direction, here thedirection. It does not contain any high frequencies in
they direction and therefore has only limited descatteringgrenaince.

5.4 Temporal Phase-Unwrapping

Using shifted patterns with a single frequency we can ddtextphase within
one period of the selected frequendy € [0,27]). The period however might
be repeated multiple times over the entire scene. The prolideto locate
the absolute unwrapped pha$ethat uniquely identifies the pixel's phase. A
number of different methods have been proposed to obtaimamapped phase
map [Ghiglia98]. If the scene contains depth discontiegithe exact phase and
period can be obtained by repeating the phase extractiandtiiple (lower) fre-
guencies [Huntley93, Huntley97a, Huntley97b]. Possilplpraaches are choos-
ing frequencies such that the greatest common divisor gi¢hieds is larger than
the number of columns in the projector image [TariniO5]. Bloobust unwrap-
ping is obtained by creating a series of frequengigs- 0.5\,_; until one period
spans the projector image widttresulting roughly inF' = log,(s) frequencies
[Huntley97a]. Given the unwrapped phase at one frequgncly, the unwrapping
algorithm iteratively locates the phase at sjethe next higher frequency. Start-
ing withj = F — 1 andV» = & one computes the unwrapped phase at the next
higher frequency by

U; = &, — 27NINT (w) : (5.11)
2

where NINT rounds to the nearest integer. The unwrappirelf iis to some
extent similar to decoding binary encoded structured Iggtiterns [SalviO4], but
more robust.

Figure 5.4 shows the temporal unwrapping process. In ouergxgnts we
use frequencies of, -, =5, o7, T35 325> 513 @nd 55; cycles/pixel At the higher
frequencies [ = % andf = %) we use 8 and 16 phase-shifts to obtain the best
guality while the lower frequencies are only used for diseyunéting the period
(making rough and stable binary decisions), thereforelsasp shifts turned out to
be sufficient. Overall, 60 images are captured for each raoge but the number
could be further reduced if necessary. The unwrapping gogees from the
lowest frequencyf = ﬁ to the highest frequency, = % The phase map at the
lowest frequency is the absolute phase map. The phase maghat frequency
is unwrapped using the absolute phase map at lower frequency

Using multiple frequencies poses the problem that Equ&ti2only holds for
high frequencies. For low frequencies, the global compbwnéhalso vary with
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Figure 5.4 Temporal phase-unwrapping. The phase maps on the left cotuen
those to be unwrapped. The right column shows the unwrappeidrersor the

the unwrapped is the same as the wrapped. For the
higher frequencies, the unwrapping is done by using the mébion of the last
unwrapped phase map at lower frequency. The final unwrappecephap at
frequencyf = % is used for 3D reconstruction.
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the phase-shift and thus the phase and depth estimates\vbilhbed. We demon-
strate this effect in Figure 5.5(a) by comparing the phasienates for different
frequencies. The lower the frequency, the larger the dewiaif the estimated
phase for the individual frequency. A small or moderatet@ifa low frequency
has typically only very little effect on the combined ressilice the lower fre-
guencies are just used for estimating #fwemodulo jumps. Figure 5.6(c) shows
an example where the deviation on a lower frequency is ldhger one period and
thus introduces a major offset in the 3D scan.

In the next section we will demonstrate how reliable deptbfijgs can be
computed even for low frequencies when polarization is iseddition to phase-
shifting to separate out the global component (Figure % &l Figure 5.6(d)).

5.5 Polarization Difference Imaging

Most natural and artificial light sources produs®olarizedor depolarized, non-
polarized light waves whose electric field vectors vibrate in all @athat are per-
pendicular with respect to the direction of propagationhéf electric field vectors
are restricted to a single plane by filtration of the beam wphcialized materi-
als, such as long-chain molecules oriented in a single titrgcthen the light is
referred to adinearly polarized When two polarizers are crossed, their trans-
mission axes are oriented perpendicular to each other ghtigassing through
the first polarizer is completely blocked by the second pzday which is typi-
cally termed agnalyzer Theextinction factordescribes how much light is extin-
guished through a pair of crossed polarizers. Quantitgtitlee extinction factor
is determined by the ratio of light that is passed by a pairaddipzers when their
transmission axes are oriented parallel versus the amasased when they are
positioned perpendicular to each other. A typical extmttiactor ranges from
10,000 to 100,000. More generally, the amount of light passinrough a pair
of polarizers can be quantitatively described by applyirgd’ cosine-squared
law, as a function of the angles between the polarizer treassom axes, using the
equation:

L' = L-cos®6. (5.12)

L' is the amount of light passing through the analyzer and tte# gsnount of
light passed through the pair of crossed polarizérss the amount of light that

is incident upon the polarizef.is the angle between the transmission axes of the
polarizer and analyzer. By examining the equation, it candberchined that when
the two polarizers are crossefl £ 90), the amount of passed liglit is zero.
When the polarizers are partially crossed at 30 andé = 60 degrees, the light
transmitted by the analyzer is reduced by 25 percent and g mperespectively.
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Figure 5.5 Biased phase reconstruction for low frequency patterrag. Rhase
profiles of individual frequencies for one line on the plaadabaster block. (b)
After polarization difference imaging even the lower fremgies result in correct
depth estimates. Note that the curves are tilted by the sarhar fl@r illustration.
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(@) L for f = § (b) Lyfor f = 4

(c) Phase-shifting (d) PDI

Figure 5.6 For this translucent vase filled with lavender, the recounsted direct

reflection is dependent on the frequency of the illumingpiattern. (a) Most sub-
surface scattering is removed using the highest frequefmyAt lower frequen-
cies structures beneath the surface contribute to the titemponent polluting
the phase-unwrapping results in (c). (d) Using PDI the infeeenf subsurface
structures is largely reduced and the desired shape is cagtu
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camera projector

polarized
light

scene

Figure 5.7: System setup for polarization difference imaging (PDheProjec-
tor is equipped with a linear polarization filter at fixed ortation. The camera
captures two image sequences with parallel and with perpefatiodentation of
the polarization filters.

On the one hand polarized light becomes unpolarized aftirsdi reflection
or multiple scattering. On the other hand, initially unpaed light reflected off
of a smooth surface at an oblique angle will have a transdchitidiance through a
polarizer that oscillates sinusoidally as a function ofgpialer angular orientation
between a maximund,,,, and a minimum/,,;,. A quantitative measure of the
proportion of how much initially unpolarized light beconlesarly polarized on
reflection, also called théegree of polarization (DoH$¥ given by

Imax - [mzn
* ™ Toae + I (549
p varies between 0 and 1 inclusive [Born99]. At= 0, reflected light is unpo-
larized, as is generally true for the diffuse component dection. Atp = 1,
reflected light is completely linearly polarized as preelitfor pure specular re-
flection at theBrewster angl€for a dielectric surface. At this angle, only the
polarization component perpendicular to the specularepigneflected.

As discussed in Chapter 3 multiple scattering depolarizesnttoming light.
Schechner et al. [Schechner03, Schechner04, Schechifiezttz06] have made
extensive use of this phenomenon to compute clear pictaresdgh haze or murky
water by taking several polarized images from which the teped part can be
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removed afterwards. Based on the estimated signal lossadducthe participat-
ing media the authors further compute approximate deptrsrobihe underlying
scene.

The Polarization Difference Imaging (PDI) [Lythgoe79] ibia-inspired tech-
nigue originally developed for optical imaging which prdes significantly en-
hancements in target detection and feature extractiontbeezonventional meth-
ods. In our setup depicted in Figure 5.7 linear polarizeespart in front of the
camera and the projector. We then capture the phase-shifflersequence twice,
once when the camera’s polarizer axis is oriented paralliie projector’s polar-
izer axis, yieIdingI]‘.‘, and a second time using cross-polarizatiljn,A polariza-
tion difference image [Rowe95, Tyo96] is then computed as

I* =1 - I} (5.14)

The idea is that depolarized light will add exactly the sametigbution to both
image sequences, independent of the camera’s filter oti@mtand thus will be
completely removed imjA. Relying on]jA we then perform the 3D reconstruction.

Figure 5.8 shows visually the effectiveness of polarizatipon the separa-
tion of direct/global components. While the direct compdnextracted using
ordinary phase-shifting even at high frequency contaimsessubsurface scatter-
ing from underlying structures, they are partially remofggarallel polarization
and almost completely eliminated after applying PDI. Aftising polarization,
the contrast of the projected pattern can be greatly impr¢see Figure 5.9). The
sine patterns become clearer after employing parallekrizak#on and are further
improved after using PDI. Figure 5.10 demonstrates theedfiepolarization fil-
tering on the quality of the 3D reconstruction of a quite piablock of alabaster.
The most important difference between 3D reconstructiopiase-shifting with-
out polarization filtering and with polarization differemanaging applied is that
scattering events beneath the surface are much better eehmovhe latter case.
However, as will be discussed in the result section, thexesame scenes where
the PDI approach filters out too much of the direct reflectlarihese cases using
the image sequence with parallel orientation of the poddion filters provides a
good trade-off between no polarization and PDI.

5.6 Acquisition System

Figure 5.7 shows schematically the system setup for palgoiz enhanced phase-
shifting. All images have been acquired with a 14-bit 186024-pixel Jenoptik

ProgRes CFcool CCD camera and a Mitsubishi XD490U XGA DLP Proiect
whose native resolution is 102%68. We performed a photometric calibration
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(a) Photograph (b).4 from Phase-shifting

(c) Ly from parallel polarization (d).4 from PDI

Figure 5.8 While the direct component, (b) extracted using no polarization
filters clearly contains some subsurface structures theypartially removed by
parallel polarizationLL'l (c) and not present after applying PDL3 (d).

dr

(a) Phase-shifting (b) Parallel polarization (c) PDI

Figure 5.9 The contrast in the high frequency input images is imprdvegar-
allel polarization and further by PDI.
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Figure 5.1Q0 Reconstruction results for a planar surface of heterogerseal-
abaster. 3D reconstruction from (a) line sweeping, (b) phsisiéing without po-
larization, (e) with parallel polarization, and (f) with PDIThe influence of the
subsurface structures on the final 3D geometry has been etehpremoved by
PDI. (c), (d), (g) and (h) are the zoom-ins of (a), (b), (e) &fdespectively.
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for both devices and captured HDR images [Robertson03] usiagdifferent
exposures. The measured maximum simultaneous contrastioé @attern with
a period of 8 pixels reflected by a gray card is 180:1 (max/m¥§¢ performed
geometric calibration between the camera and the proj¢Zt@ang00]. Linear
polarization filters have been placed in front of the praeend the camera to
acquire the PDI image sequences.

During the acquisition time, the projector generates a aecgl of phase-
shifting pattern at different frequencies. The cameradakeultaneously images
of the interesting scene. For ordinary phase-shifting, olanzer will be used.
For parallel polarization imaging, the two polarizers, iiarft of the camera and
the projector respectively, are set with parallel polaraaorientations. Then we
turn the polarizer in front of the camera, the analyzer, 9freles to make the po-
larization orientations of the two polarizer crossed. Tifeedence between the
images taken under parallel polarization and cross paiaoiz will be the input
for PDI based phase-shifting.

5.7 Calibration

In this section, we focus on the geometric calibration ofghegector-camera sys-
tem (see Figure 5.11). A planar checkerboard with blueawttiteckers (see Fig-
ure 5.11(a)) is used for calibrating both the camera andthjegtor.

We take two sets of images, one for the camera, and the othtiiefprojector.
For each pose of the planar checkerboard with blue and whéekers, we first
take an image with a desktop light (see Figure 5.11(c)). Thenoff the desktop
light and project a R/BR (Color is Red=255, Green=0, and Blue=0o1@®R is
Blue=255, Red=255, and Green=0) checkerboard pattern anfodhar checker-
board (see Figure 5.11(d)). Figure 5.11(e) is the blue oblavfFigure 5.11(d).
Figure 5.11(f) is the color invert of Figure 5.11(e). Aftaking these two images,
we change the pose of the planar checkerboard, and repeataitedure fork
(K > 8) times and get two sets of calibration images. The camdreessists of
K images, shown in Figure 5.11(c). The projector-set cansisk images, see
Figure 5.11(f). We perform camera calibration on the carsetausing Zhang’s
method [Zhang00] and obtain both the intrinsic and extcpgirameters. Since
the projected pattern share the same plane with the prirattterp, we can com-
pute the positions of the checker corners of the proje@bimsages using homo-
graphies. With the known checker corner positions, we clbrege the projector
both intrinsically and extrinsically by using the same leadtion algorithm of the
camera.

The calibration, including the intrinsic and extrinsic @areters of both the
projector and the camera, will be used for triangulationdgbtge 3D coordinates
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(b)

() (d)

Figure 5.11 Projector-camera calibration. (a) Blue-white checkerhbdgattern,
printed on a planar surface. (b) R/BR checkerboard, where drexker is red
and one checker is a mixture of red and blue. (c) Image takethéoplanar blue-
white checkerboard. (d) Image taken under (b) being progect&o the planar
checkerboard. (e) Blue channel of (d). (f) Color inversedsiaar of (c). (c) and
(f) will be used for corner detection.
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(c) 3D from parallel polarization (d) 3D from PDI
Figure 5.12 3D reconstructions of grapes using different methods. Eaen-
struction results of phase-shifting without polarizatita &nd with parallel polar-
ization (c) are of comparable quality since the objects amstly homogeneous.

At grazing angles too much signal from the direct reflectfiliered out by PDI
(d) resulting in more holes and noisier depth maps

as soon as we have the pixel-to-pixel correspondences betthe camera and
the projector. Building this correspondence is the main ipattte phase-shifting
based 3D scanning method, where the correspondence isezhirotihe absolute
phase map.

5.8 Results

In the following section we assess the descattering capabibf phase-shifting
with and without polarization on a set of translucent sceresighly translu-
cent, almost homogeneous alabaster figurine (Figure 5.@4Fayure 5.15), a
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(c) 3D from parallel polarization (d) 3D from PDI

Figure 5.13 3D reconstructions of a starfruit using different methods
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filled, translucent vase (Figure 5.6), a heterogeneousapkab of alabaster (Fig-
ure 5.10), some grapes and a starfruit (Figure 5.13). Exoeptmoving spurious
background pixels and pixels having a too weak signal nd&uprocessing, i.e.,
noise removal or smoothing has been applied to the results.

5.8.1 Structured Light

Descattering based on phase-shifting without polarinatian deal pretty well
with translucent objects and clearly removes some amouhessubsurface scat-
tering, as predicted by Nayar et al. [Nayar06]. The phaserapping, however,
relies on low frequency patterns which clearly suffer froiwbal effects (see Fig-
ure 5.5 and Figure 5.6). Furthermore, structures beneatbldse to the surface
will have some influence on the estimated direct componertiwk unwanted in
the context of 3D scanning (Figure 5.6 and Figure 5.10).

Sweeping a single line is an alternative to phase-shiftmy@erforms surpris-
ingly similar. As can be seenin Figure 5.10 even for highiysiucent objects one
obtains a reasonable 3D scan if high quality equipment an® d€qguences are
used. The noise in the figure indicates that the SNR of lineepig compared to
phase-shifting is considerably lower. Although line swiagps still sensitive to
the bias introduced by subsurface scattering or subsustasetures global effects
are minimized by the comparably small amount of incidertttligoncentrated on
a small region.

5.8.2 Polarization

Polarization difference imaging also separates the dirent the global compo-
nent very well. It faithfully removes all traces of subswdastructures. At grazing
angles PDI however filters out too much of the direct reflec{see Figures 5.12,
5.13, 5.14, and 5.15). It is worthwhile to note that depegdin the surface prop-
erties also some fraction of the direct reflection might beodrized. This frac-
tion will also be removed in the polarization difference gea For some scenes,
we actually observed a better contrast of direct vs. glagfidction in the parallel
polarization settingjl,| producing smoother 3D scans (see Figures 5.12, 5.13, 5.14,
and 5.15). Even though parallel polarization in theory aelyjoves some fraction
of multiple scattering effects (compare images in Figu8),5combining it with
phase-shifting adds the descattering capabilities of tethniques. Figure 5.10
further shows that parallel polarization also renders efssfting slightly more
robust against subsurface structures, though not as rabuBDI. On the other
hand parallel polarization is much easier to acquire singguires only half the
amount of images and a fixed orientation of the filters.
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Photograph 3D from phase-shifting

Figure 5.14 3D reconstructions of an alabaster figurine of Venus.

5.9 Limitations

The ordinaryN-step phase-shifting is only high frequency in one dimemsibe
x direction in our case. A two dimensional high frequency grattwill perform
better in terms of descattering and further 3D reconstuactiFurthermore, the
projector can only generate accurate patterns at limiteguiencies because of
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3D from parallel polarization 3D from PDI

Figure 5.15 3D reconstructions of an alabaster figurine of Venus.

the optics and internal image processing of the projecttie limits of the fre-
guency of the projected pattern constrain the ability ohggphase-shifting for
3D scanning.

Polarization enhanced methods, parallel polarizatiorgingaor polarization
difference imaging, can alleviate the problem inherenthe ordinary phase-
shifting method by separating the direct reflection comptseHowever, the po-
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larization based methods also kill direct reflection infatimn when filtering the
global reflection components, which lowers significantlg gignal-noise-ratio.
Furthermore, polarization is heavily depending on theasigbrientation. It varies
dramatically with the changing surface normal. This lirida cause the polariza-
tion based method’s failure during scanning highly curvedage or scene with
strong interreflection caused by multiple specular refbest

For both temporal-unwrapping basédstep phase-shifting and polarization
enhanced phase-shifting, there is a speed problem. In toddw high quality
scanning, usually dozens of HDR images are required. Healcthe methods
presented in this chapter are only designed for static th{@cscenes.



Chapter 6

Modulated Phase-Shifting for 3D
Scanning

In structured light based 3D scanning, the 3D informationb&ined by trian-
gulation after establishing the correspondence betweenamera pixels and the
sub-pixel locations of the illuminating projector pixels. order to establish this
correspondence a large variety of patterns have been @odp8alviO4], encod-
ing the projector pixel locations. The decoding algorithitmsn assume that the
measured camera pixels only locally depend on the projquaétérns. This as-
sumption is violated if global illumination effects suchiaterreflections or sub-
surface scattering are strong, leading to the observatibmaultiple overlaid sig-
nals. Most often these global illumination effects dampigh lirequencies in the
input patterns.

By choosing appropriate high frequency patterns, Nayar. @lalyar06] have
demonstrated how global illumination effects can be seapdfaom the direct illu-
mination. In Chapter 5 we exploited this method for 3D scagiiy using phase-
shifting where the use of high-frequency sinusoid patterastically reduced the
influence of the global illumination. The employed one-disienal patterns (si-
nusoidal inx but constant iny), however, do not fully remove the global effects.
It gets even worse for the lower frequency patterns that egeired in tempo-
ral phase-unwrapping [Huntley93, Huntley97a, Huntle\|9 Hor these reasons,
our method was combined with polarization difference imggiPDI), exploit-
ing the fact that multiply scattered light becomes depoéati PDI on the other
hand adds to the complexity of the setup and the acquisitianthermore, the
combined effect of polarized illumination and the polatiaa characteristics of
reflections at surfaces leads to a drastically weakenedlsigspecially at grazing
angles [Born99].

In this chapter we introduce modulation based separatidrerevthe direct
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(a) (b)

Figure 6.1 1D modulation example. (a) Sine patternidrdirection. (b) Modula-
tion in y direction with binary modulation function.

illumination component even of a low-frequency projectephal is correctly es-

timated. On top of the low-frequency signal we multiply a tdimensional high

frequency signal. We analyze the separation performaniog tigh-frequency

patterns in 1D or 2D, demonstrating that 2D separation pettesult in a much

clearer separation. We further show that due to the nomdlityein the separa-

tion analysis, a sequential analysis of a 2D pattern oncedmally and once

vertically produces an even better separation. Moreolremtodulation and sep-
aration scheme can be exploited for general low frequentignpes, such as an
ordinary photograph.

The improved separation based on modulation with sequemtéysis leads
to a much better performance of 3D scanning. The proposeditim is more ef-
ficient with regard to subsurface scattering as well asiefiections than previous
methods.

6.1 Modulation

In telecommunication, modulation is the process of varg@meriodic waveform
in order to carry another signal. Usually, a high-frequesityusoid waveform
is used as carrier signal. We perform modulation by mulifgyan input signal
L (sine waves for phase-shifting, see Eg. 5.1) with othertesthihigh frequency
patterns. The process can be formally expressed as
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whereL is the modulated function to be projected, is the modulation function

in = dimension with frequency, andN, shifts. Accordingly, )/, is a modulation
function in they dimension with frequency, andN,, shifts. The total number of
projected images i8/, V.. The highest frequency of the modulated signal is now
given by eitherf, or f, and is no longer limited by the original signal’s frequency
since a multiplication in the spatial domain corresponda tmnvolution in the
frequency domain. Thus the modulated functiohas higher frequency than the
non-modulated functioi in both dimensions, and we can overall obtain a better
separation of the direct/global components.

In principal, all the high frequency functions proposed Wayar06] for the
separation can be used as modulation functissandM,. We use either peri-
odic binary functions or sinusoid functions as the modatatunctions in all our
experiments. The sinusoid modulation function is definethexsame way as
(see EQ. 5.1). The periodic binary functiorirdimension is defined as

B.(x,y) = [2zf] mod 2. (6.2)

Figure 6.1 shows an 1D modulation example. The sine patterrdirection
is modulated iny direction with binary modulation function. The modulatest{
tern is of high frequency in both andy direction and thereby possesses better
separation property.

6.2 Multi-Pass Separation

In principle, a modulation in one direction is sufficient terfporm some (possibly
limited) separation. In this case, the separation into trectiand global compo-
nents can be done using sinusoid functions and the analysis i Eq. 5.8. One
can also use a binary pattern. The separation is then cothpat®llows:

Ld<m7 y) = ]max<m7 y) - ]min(xv y)v and

where [,,..(z,y) and L,;,(z,y) are the maximum and minimum intensities of
pixel (x,y) for the N, images.

In order to increase the separation performance one shetiorm the modu-
lation in both dimensions to remove global illumination mthbdirections. Apply-
ing the modulation in 2D, one can simply apply the minimunximaum approach
ontheN, N, images and then evaluate Eq. 6.3, as that has been propoksieg ary
et al. [Nayar06].

It turns out, however, that a much better separation can bieaed by us-
ing sequential separation in each dimension. One can sed thmages for a
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(b)

() (d)

Figure 6.2 Two-pass separation vs. one-pass 2D separation. Direcipoom@nt

(a) and global component (b) from the one-pass algorithmre®icomponent
(c) and global component (d) from the two-pass separatione Nehile working

on exactly the same input data the two-pass separation metfoaldices a much
clearer separation.
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screen

projector camera

Figure 6.3 Setup sketch. The projector projects an ordinary photpgranto a
white diffuse paper screen. On the way of the projection, tisesespecular book
which reflects the projection onto the screen. Consider a pBionh the screen,
its radiance is composed of both the direct projection fagnd the reflected ray
B, which hits the book ab and reflects. Therefore, the final camera K@ys a
hybrid of both direct reflection and interreflection.

fixed stepi in = as the 1D modulation of the “original” signal’ with the mod-
ulation pattern)/,. Performing the 1D separation for every individual step:in
then results inV,, direct component imagés, which act as the input to the second
separation phase, this timean Note that we have used exactly the same input im-
ages as before but have a two-stage filtering where globatiiation effects that
might pass the first separation are filtered out in the secasd.prlhe improved
performance of the two-pass separation vs. the one-passr@Bom-maximum
separation is demonstrated in Figure 6.2.
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(@) (b)

Figure 6.4 An ordinary photograph (a) is projected into a scene conitag a
specular surface at the bottom and a diffuse paper screeharback. (b) The
projected image in the back is polluted by the ghost imagseaby the reflection
from the specular book cover. (c) The direct component sgpdiusing 1D phase-
shifting, with f, = % still contains some artifacts. (d) The two-pass separation
algorithm, withf = £ in both dimensions suppresses the ghost image completely.
See Figure 6.3 for the setup sketch.

6.3 Modulation for a General Signal

The idea of modulation based separation can be applied te geeral signals.
We demonstrate this by projecting an ordinary photographanscene inducing
interreflections.

Figure 6.3 shows the schematic sketch of a scene with ifiectens. The
projector projects an ordinary photograph onto a whiteudgfpaper screen. On
the way of the projection, there is a specular book which ctfléhe projection
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onto the screen. Consider a poifiton the screen, its radiance is composed of
both the direct projection rayt and the reflected rag, which hits the book ab
and reflects. Therefore, the final cameraaig a hybrid of both direct reflection
and interreflection.

Figure 6.4 demonstrates the effects of the setup and ouegsowy. The pro-
jected image is reflected off the specular book cover cawsgtgost image on the
white paper screen in the back. The interreflection furtkeeuces the contrast
of the projected image. Moreover, the white paper is modgratanslucent and
induces subsurface scattering which reduces the sharph#ss projection. All
these global illumination effects, interreflection and swtace scattering cause
the degeneration of the projection (see Figure 6.4(b)).rdieioto suppress these
artifacts, we first modulate the image using a sinusoid fanawith f, = % inx
direction. This 1D separation (Figure 6.4(c)) reduces tbba] illumination ef-
fects, but one can still notice some remaining artifacts iftege in Figure 6.4(d)
is obtained by using the two-pass separation with a sinusfofgd = % and a bi-
nary pattern withf, = % The additional second pass removes the ghost image
completely and improves the contrast.

This example demonstrates the effectiveness of modulaimhmulti-pass
separation in removing interreflection and subsurfaceesiiag effects even for
general input signals. More generally, any low frequengutrsignal could be
modulated to inherit the separation properties of the highjdency modulation
function.

6.4 Modulated Phase-Shifting and
Unwrapping

In the case of phase-shifting, the original pattetrare already one-dimensional
sinusoids that inherently perform 1D separation for sughdy high frequencies
f. For temporal phase-unwrapping [Huntley93, Chen07] a sefidifferent fre-
quencies is applied, e.g55;. =13+ 555 550 a1 350 15> @nds. The highest frequen-
cies are used for estimating the phase while the lower frecjas are required to
unwrap the phase.

In order to obtain measurements that are robust to glolhmhiHation effects
we apply a modulation in thedirection using a shifted high frequency pattern on
top of the original phase-shifting signal and then perfanmtivo-pass separation
presented in the previous sections. The first pass, opgratithe y direction,
only performs the direct/global separation. The second sathen used for both
filtering out the global component that might have surviveel first pass and for
determining the phase or performing the unwrapping.
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(© (d)

Figure 6.5. Photographs of the experimental scenes. (a) One face ofdmaster
block. (b) An alabaster horse head. (c) One edge of an alabddbck. (d) A
glossy sphere in the corner of an open notebook.

In theory, for the low frequencies a modulationzandy would be necessary
to remove any influence of global illumination effects on timevrapping. In prac-
tice, since the low frequencies are only used to determiagéniod and not the
phase, the unwrapping turns out to be stable enough eveawviiimy modulation
in all our test cases.
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Modulation is therefore only applied to the high frequenignals used to es-
timate the phase witlf, = % or f, = % Since the frequencies in are high
enough to obtain reasonable separation performancej@ddilD modulation in
y is sufficient. For the 3D scans presented in this chapter wkempa modulation
frequency off, = & with 6 shifts, leading to six times the number of images for
the highest frequency. However, since no modulation isireddor the lower fre-
guencies the overhead for the whole 3D scanning using midldase-shifting
is quite moderate. For PDI enhanced phase-shifting methedeed two times
the number of images for the highest frequency.

6.5 Results

In this section we describe the experimental setup and dsinade the effective-
ness of our method in removing subsurface scattering aed @fkections during
3D scanning. We show results for both planar (a face of araatabblock) or non-
planar objects (an edge of an alabaster block and an alabasse head). We also
show results for a scene including high frequency intercgtie (a glossy sphere
in a corner). The four scenes are presented in Figure 6.5.

Our basic acquisition system consists of only one projeatat one cam-
era capturing images. In this setup, we again use a MitsuX{§x90U
XGA DLP projector (with 1024768 pixels) and a 14-bit 13601024-pixel
ProgRe® C14plus CCD camera. For comparison with polarization difference
imaging enhanced phase-shifting [Chen07], we add two additilinear polar-
izers, one for the camera and the other for the projector. CEngera’s response
curve is recovered using the method proposed by Debevec aliki[ebevec97]
and HDR images are taken by fusing multiple images with chffié exposure
times. We calibrate the projector-camera system geonaéjriasing Zhang’s
method [Zhang00].

6.5.1 Alabaster Plane

In the first example we perform 3D scanning on a planar slalgbiytranslucent
alabaster with significant subsurface structures (Figug @erforming phase-
shifting with 1D patterns of frequency, = % separates out some of the sub-
surface scattering but gets corrupted by structures ctoseetsurface. Applying
polarization difference imaging filters out the depoladineultiply scattered com-
ponents but also weakens the signal, resulting in a lesediast slightly noisier
reconstructed geometry. An even better separation witgleehnifrequency signal
is obtained by modulating the phase-shifting signal by @sécinusoid in the
y direction of frequencyf = % following the approach outlined in the previous
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Figure 6.6. Separated direct components (first row) and reconstruct2gldapes
(second row) for the alabaster slab. (a) Standard phase#si{PS) withf, = %
(b) Polarization difference imaging (PDI) witli, = % (c) Modulated phase-
shifting (MPS) withf, = % and f, = % The subsurface structures that are
corrupting the 3D reconstruction in (a) have been succdigdiliered out by both

PDI and MPS.

sections. The separated direct component and the resB@imggometry is almost
free of subsurface structures and slightly smoother thamegbonstruction based
on PDI.

This increase in quality comes at a small cost in the timeirequor acqui-
sition: For 1D phase-shifting, we applied 8 different shiffor PDI this 8-image
sequence is actually captured twice (16 images in totafwordifferent orienta-
tions of the camera polarization filter. In the modulatedsghshifting we added
three phase shifts in thedirection amounting t8 x 8 = 24 images.

The benefit of modulating a traditional phase-shifting grattgets even more
apparent if the original signal has lower frequency. In FégiL7, the dark veins of
the alabaster cause some clear marks in the reconstrucietegy when applying
traditional 1D phase-shifting witlf, = % Modulating with a binary pattern of
frequencyf, = % again brings out a much better separated direct compondnt an
an unbiased 3D shape. The effectiveness of modulated ghifieg (MPS) to
obtain accurate results even for low frequencies is of higipartance for phase-
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Figure 6.7: Direct components and 3D shapes for the alabaster block litler
frequencies. (a) PS withf, = . (b) MPS withf, = - and f, = ;. The
subsurface structures influence the estimated geometry®®.

shifting with temporal phase unwrapping where it brings twemefits: Phase-
maps generated with lower frequencies typically carryhthgless noise than
those obtained from higher frequencies. Furthermore, éineyeasier to unwrap
because there are less ambiguous periods.

6.5.2 Alabaster Edge

While in the previous example PDI and our MPS have demonsitratther sim-

ilar performance we obtained rather different results ansbcond experiment
where we rotated the alabaster block to capture one of ite(fggure 6.8).

Due to the different orientation of the normals which infloerthe polarization

even of the direct reflection the measured direct compometita PDI is much

darker. The noise in the 3D reconstruction by PDI is cleadiaeable. Standard
phase-shifting still contains too much subsurface saagavhich can be removed
effectively using additional modulation.
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|
*i

Figure 6.8 Direct components and reconstructed 3D shapes for the etijee
alabaster block. (a) PS withi, = £ is not sufficient to remove all subsurface
scattering. (b) For PDI.f, = % the strength of the recovered direct component
is largely dependent on the surface normal resulting in asyaeconstruction.
(c) MPS withf, = % and f, = % yields good results independent of the surface
orientation.

6.5.3 Alabaster Horse Head

A slightly better performance of the PDI approach is visibléhe results we ob-
tained for the even more translucent alabaster horse hddadure 6.9. Due to its
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Figure 6.9 Direct components and reconstructed 3D shapes for theaaitay
horse head. (a) PS witfi, = §. (b) PDI with f, = £. (c) MPS withf, = § and
fy = é PDI reconstructs fewer surface points but produces a snesatrface
for some parts. The applied frequency for MPS is not suffidi@na perfect
separation in this case.

dependence on the surface normal PDI cannot reconstruaties ofi the surface
as our MPS method but the reconstructed surface is slighittogher, indicating
that in this case the MPS could not filter out subsurface &tras completely.

6.5.4 Interreflection Scene

The performance of the three approaches on a different glabaination effect
is demonstrated in Figure 6.10. The illumination in thisreceontains reflections
of a glossy sphere as well as interreflections between thepages of a book,
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(@) (b) (©)

Figure 6.1Q A scene with strong interreflections caused by a glossy spber
tween the two pages of a book. We apply the same frequenciefoas. l{a) PS
produces ripples in the final geometry due to the reflectidniseosphere. (b) The
result by PDI is very noisy due to the modified polarizaticeminterreflections.
(c) The most accurate reconstruction is achieved using MN#e8.Figure 6.11 for
the profiles along the red lines.

mostly noticeable near the edge. These interreflectiongiljearrupt the 3D
geometry estimated by standard phase-shifting. The récmtisn based on PDI
IS so noisy that it is hard to determine how much of the infexctions actually
have been filtered out. Applying modulated phase-shiftargaves most of the
interreflections and produces the most accurate 3D shapecoRtparison, the
3D profiles of the edge are shown in Figure 6.11. Both the PSten&DI meth-
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Figure 6.11 Corner profiles of the scene in Figure 6.10. Both PS and PDixsho
significant artifacts due to the interreflections.

ods suffer from the strong interreflection, while the MPSHoetreconstructs the
corner geometry very well.

6.5.5 Two-Pass vs. Single-Pass 2D Separation

For the edge of the alabaster block, Figure 6.2 shows therdiite between
two-pass separation we used in all the presented expesmedtthe minimum-
maximum algorithm on 2D patterns [Nayar06]. In the 2D minmmaximum
approach, the direct component is estimated from the mimrand maximum
intensity values for all measurements of each pixel, whilde two-pass method
the separation is performed sequentially alongstlandz directions. Although
exactly the same input images are used, our two-pass methegpioiting the
non-linearity in the analysis results in a much clearer sdmm where the direct
component contains far less of the global subsurface sicefteomponent.
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6.6 Limitations

As demonstrated in Figure 6.6 and 6.7 the separation peafocenof the struc-
tured patterns depends on the highest frequency employedle Wibdulated
phase-shifting introduces a principled way of increasing $eparation perfor-
mance for a low-frequency input signal, the carrier freaquyeis still limited by
the projection system. The maximum reliable frequency wadproject is%
since our projector cannot project very high-frequencygeas accurately. The
projector introduces serious artifacts (interferen&e-vave artifacts) when pro-
jecting checkerboard with checker size smaller than 3. guid 6.9(c) a higher
frequency would have been needed to completely remove ladiustace scatter-
ing. Even at size 3, the projected patterns contains ndtieeartifacts, which
cause high frequency noise in the result scans. Most of #gepted results to a
small extent suffer from this problem. It is mostly notickam Figure 6.10(c),
where the smooth paper surface is polluted by small scakendihis limitation
renders modulated phase-shifting inferior to traditiqetzdse-shifting when scan-
ning opaque objects without global illumination effects.
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Conclusion and Future Work

3D scanning of complex objects, rich of interreflection, sufface scattering,
fine-scale geometric details etc., has general and contmuderests for both
computer graphics and computer vision. In this thesis, esqnted three classes
of 3D scanning methods.

e We presented a mesostructure reconstruction method thaucaessfully
handle complex real-world objects. The main observatiorwike our ap-
proach on is that specular reflection reveals effectivel-foale surface de-
tails and yields reliable visual information for mesosttuwe reconstruction.
To exploit this observation, we developed a very simpleesystinclud-
ing a camera, an LED light source, four specular spheresaasttecker-
board. The user can interactively control the light souccatrementally
capture the specularity field. The resulting dense spatulald is used
for mesostructure reconstruction. We demonstrated tleeteféness of our
method by efficiently capturing the mesostructure of a waré complex
real-world objects, including human skin, dried apricaar@e skin, jelly
candy, black leather, and dark chocolate.

In the future, we would like to use multiple cameras to capmicomplete
mesostructure model of 3D object with complex reflectanop@rties. An-

other extension of our method is a hybrid reconstructiongishape from
specularity when specular highlights are detected, andesfram photo-

metric stereo for pixels below the threshold for speculghlghts. Using

the reconstructed mesostructure to improve the compactfeBTF rep-

resentations and to realistically render highly detailedeses is a further
research direction.

e The second method is a hybrid using both phase-shifting atatipation.
A careful analysis of phase-shifting without polarizati@mombined with
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parallel polarization and with polarization differenceaging has shown
that some of the shortcomings of pure phase-shifting sudis aensitivity

to subsurface structures can be overcome. Even though Rthbabil-

ity to robustly remove all global effects due to subsurfazstering which

otherwise renders accurate 3D scanning a hard problenl|gbg@lariza-

tion sometimes provides a better SNR resulting in less n@ege maps.
Depending on the richness of subsurface structure, thaptaof the ob-

ject and the sensitivity of the camera one might choose onkead®ver the
other.

The descattering property of polarization can also be ugeother struc-
tured light techniques, such as gray code, binary code, DgnBrequences
etc. [SalviO4]. It would be also interesting to exploit thgbhid method

that can intelligently choose the right method to do reka®ID scanning for
general translucent objects. We expect there will be somledudescatter-
ing based methods that can help accurate and robust 3D taegtit of

translucent objects or even general scenes including anaitge of mate-
rials.

Traditional phase-shifting for profilometry usually emydosinusoid pat-
terns where the signal varies only in one direction. Phasgérg is one of

the most robust 3D scanning techniques but the results ratghbe cor-

rupted by global illumination effects such as subsurfaedtedng or inter-
reflections. We introduced the concept of modulated phhasgrg where

the original one-dimensional pattern is multiplied by acsetshifted high-
frequency pattern in the other direction. This modulateeuires capturing
more images but results in significantly improved robustregginst pollu-
tion due to these global illumination effects.

Compared to 3D scanning techniques based on polarizatidereafite
imaging (PDI), the modulation based phase-shifting is ¢ieessaanding with
regard to the acquisition setup. It clearly outperforms Ridlobjects with
strongly varying surface normals as well as for scenes witting inter-
reflections.

Moreover, we extended the modulation scheme to generafrieguency
functions, e.g. an ordinary photograph. This provides a pessibility to
enhance the robustness of applications where the frequedribge original
signal is rather limited.

An interesting direction for future investigation is a grsttic evaluation of
different modulation functions and modulation schemesother valuable
extension is to exploit the general modulation for novelli@agions.
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