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Abstract

Subject of this thesis is the efficient material characterization and defects detection
by means of the Doppler effect with microwaves.

The first main goal of the work is to develop a prototype of a microwave
Doppler system for Non-Destructive Testing (NDT) purposes. Therefore it is nec-
essary that the Doppler system satisfies the following requirements: non-expensive,
easily integrated into industrial process, allows fast measurements. The Doppler
system needs to include software for hardware control, measurements, and fast
signal processing.

The second main goal of the thesis is to establish and experimentally confirm
possible practical applications of the Doppler system.

The Doppler system consists of the following parts. The hardware part is
designed in a way to ensure fast measurement and easy adjustment to the different
radar types. The software part of the system contains tools for: hardware control,
data acquisition, signal processing and representing data to the user.

In this work firstly a new type of 2D Doppler amplitude imaging was developed
and formalized. Such a technique is used to derive information about the measured
object from several angles of view.

In the thesis special attention was paid to the frequency analysis of the mea-
sured signals as a means to improve spatial resolution of the radar. In the context
of frequency analysis we present 2D Doppler frequency imaging and compare it
with amplitude imaging.

In the thesis the spatial resolution ability of CW radars is examined and im-
proved. We show that the joint frequency and the amplitude signal processing
allows to significantly increase the spatial resolution of the radar.
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Kurzzusammenfassung

Das Thema dieser Dissertation ist die effiziente Materialcharakterisierung und
Fehlerdetektion durch Nutzung des Dopplereffektes mittels Mikrowellen.

Das erste Hauptziel der Arbeit ist die Entwicklung eines Prototyps eines Mikro-
wellen-Doppler-Systems im Bereich der zerstörungsfreien Prüfung. Das Doppler-
System muss folgenden Voraussetzungen erfüllen: es sollte preisgünstig sein, leicht
in industrielle Prozesse integrierbar sein und schnelle Messungen erlauben. Das
Doppler-System muss die Software für die Hardware-Kontrolle, den Messablauf
und die schnelle Signalverarbeitung beinhalten.

Das zweite Hauptziel der Dissertation ist es, mögliche praktische Anwendungs-
felder des Doppler-Systems zu identifizieren und experimentell zu bearbeiten.

Das Doppler-System besteht aus zwei Teilen. Der Hardware-Teil ist so konstru-
iert, dass er schnelle Messungen und leichte Anpassungen an verschiedene Sensor-
und Radartypen zulässt. Der Software-Teil des Systems beinhaltet Werkzeuge für:
Hardware-Kontrolle, Datenerfassung, Signalverarbeitung und Programme, um die
Daten für den Benutzer zu präsentieren.

In dieser Arbeit wurde zuerst ein neuer Typ der 2D-Doppler-Amplituden-
bildgebung entwickelt und formalisiert. Dieser Technik wird dafür benutzt, In-
formationen über die gemessenen Objekte von verschiedenen Blickpunkten aus zu
erhalten.

In dieser Doktorarbeit wird der Frequenzanalyse der gemessenen Signale beson-
dere Aufmerksamkeit geschenkt, um die Ortsauflösung des Radars zu verbessern.
Im Kontext der Frequenzanalyse wird die 2D-Doppler-Frequenzbildgebung präsen-
tiert und mit der Amplitudenbildgebung vergleichen.

In dieser Dissertation werden die räumliche Auflösungsmöglichkeiten von CW-
Radaren untersucht und verbessert. Es wird gezeigt, dass es die Frequenz- und
Amplitudensignalverarbeitung erlaubt, die Ortsauflösung des Radars erheblich zu
erhöhen.
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Extended Abstract

Subject of this thesis is the efficient material characterization and defects detection
by means of the Doppler effect with microwaves.

The first main goal of the work is to develop a prototype of a microwave
Doppler system for Non-Destructive Testing (NDT) purposes. Therefore it is nec-
essary that the Doppler system satisfies the following requirements: non-expensive,
easily integrated into industrial process, allows fast measurements. The Doppler
system needs to include software for hardware control, measurements, and fast
signal processing. The low cost of the Doppler system is reached using contin-
uous wave (CW) Doppler radars based on Gunn-transceivers. The CW radars
produce signals of low frequency. This allows the usage of non-expensive mea-
surement equipment available on the market. Since the microwaves operate in the
air, the integration of the Doppler system into industrial processes is very simple.
Thus, there is no need to couple the Doppler radar to the analyzed specimen.
The Doppler-effect only appears if there is a relative movement between specimen
and radar. Therefore it is well suited for measurements with quick radars or quick
specimens. In order to reach the high spatial resolution often needed in the domain
of non-destructive testing by using low-cost Doppler radars it is necessary to apply
highly developed signal processing algorithms with high complexity. These have
to be speeded up to ensure that the data evaluation is performed in reasonable
time.

The second main goal of the thesis is to establish and experimentally confirm
possible practical applications of the Doppler system.

The Doppler system consists of the following parts. The hardware part is
designed in a way to ensure fast measurement and easy adjustment to the different
radar types. The software part of the system contains tools for: hardware control,
data acquisition, signal processing and representing data to the user. The signal
processing tool includes algorithms which were developed to deal with Doppler
measured data. The optimized versions of the algorithms have been developed,
formalized and experimentally confirmed.

In this work firstly a new type of 2D Doppler amplitude imaging was developed
and formalized. Such a technique is used to derive information about the mea-
sured object from several angles of view. This imaging allows the user to discover
most of the defects of the analyzed specimen. Hardware realization and software
implementation for Doppler imaging are presented.

In the thesis special attention was paid to the frequency analysis of the mea-
sured signals as a means to improve spatial resolution of the radar. In the context
of frequency analysis we present 2D Doppler frequency imaging and compare it
with amplitude imaging. We also present detailed comparison study of different
algorithms which includes implementation features, testing on modelled and mea-
sured data and complexity analysis. Among others, we examine such algorithms
as: Adaptive IF estimation, Linear Least Squares problems, Polynomial-Phase
Difference techniques, and most famous, Time-Frequency Distributions.

In the thesis the spatial resolution ability of CW radars is examined and im-
proved. We show that the joint frequency and the amplitude signal processing
allows to significantly increase the spatial resolution of the radar. In that con-
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text, we introduce the Maximum Entropy Deconvolution (MED) algorithm. Its
optimized version is developed, formalized, and experimentally confirmed. The
complexity of MED is reduced, from O(n3) to O(mn2) with m ¿ n, applying
the iterative GMRES (Generalized Residual) algorithm. Here the optimal pre-
conditioning technique is developed, proved and experimentally confirmed. We
also propose possible hardware implementation of MED algorithm which is based
on the optimized Gauss-Elimination algorithm. Here we show that some proper-
ties of measured Doppler signal can be utilized to speed-up the optimized Gauss
Elimination algorithm.

In conclusion we present possible practical applications of the Doppler system.
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Erweiterte Zusammenfassung

Das Thema dieser Dissertation ist die effiziente Materialcharakterisierung und
Fehlerdetektion durch Nutzung des Dopplereffektes mittels Mikrowellen.

Das erste Hauptziel der Arbeit ist die Entwicklung eines Prototyps eines Mikro-
wellen-Doppler-Systems im Bereich der zerstörungsfreien Prüfung. Das Doppler-
System muss folgenden Voraussetzungen erfüllen: es sollte preisgünstig sein, le-
icht in industrielle Prozesse integrierbar sein und schnelle Messungen erlauben.
Das Doppler-System muss die Software für die Hardware-Kontrolle, den Mess-
ablauf und die schnelle Signalverarbeitung beinhalten. Die niedrigen Kosten
des Doppler-Systems wurden durch die Verwendung eines Dauerstrich-Doppler-
Radars (Continuous Wave (CW)-Radar) auf der Basis eines Gunn-Transceivers
(Sende-Empfangs-Einheit) erreicht. CW-Radare erzeugen Messsignaldaten mit
niedriger Frequenz. Dies erlaubt den Gebrauch von preisgünstigen auf dem Markt
verfügbaren Messgeräten. Da die Mikrowellen sich in den Luft ausbreiten, ist
die Integration des Doppler-Systems in den industriellen Prozess sehr einfach.
Eine Ankopplung des Doppler-Radars an das untersuchte Messobjekt ist nicht
notwendig. Der Doppler-Effekt tritt nur auf, wenn sich Objekt und Sensor relativ
zueinander bewegen. Er eignet sich daher gut für Messungen mit schnell bewegten
Sensoren und an schnellen Objekten. Um mit den preisgünstigen Doppler-Radaren
die in der zerstörungsfreien Prüfung oft geforderte hohe Ortsauflösung zu erre-
ichen, ist der Einsatz hochentwickelter komplexer Signalverarbeitungsalgorithmen
erforderlich. Diese müssen beschleunigt werden, um eine Datenauswertung in einer
praktikablen Zeit zu gewährleisten.

Das zweite Hauptziel der Dissertation ist es, mögliche praktische Anwendungs-
felder des Doppler-Systems zu identifizieren und experimentell zu bearbeiten.

Das Doppler-System besteht aus zwei Teilen. Der Hardware-Teil ist so konstru-
iert, dass er schnelle Messungen und leichte Anpassungen an verschiedene Sensor-
und Radartypen zulässt. Der Software-Teil des Systems beinhaltet Werkzeuge für:
Hardware-Kontrolle, Datenerfassung, Signalverarbeitung und Programme, um die
Daten für den Benutzer zu präsentieren. Das Signalverarbeitungswerkzeug bein-
haltet Algorithmen, die dafür entwickelt wurden, um die Daten, welche mit dem
Doppler-System gemessen wurden, zu bearbeiten. Die im Verlauf der Arbeit en-
twickelten optimierten Versionen der Algorithmen wurden formalisiert und exper-
imentell bestätigt.

In dieser Arbeit wurde zuerst ein neuer Typ der 2D-Doppler-Amplituden-
bildgebung entwickelt und formalisiert. Dieser Technik wird dafür benutzt, In-
formationen über die gemessenen Objekte von verschiedenen Blickpunkten aus zu
erhalten. Diese Bildgebung erlaubt es dem Benutzer, fast alle Fehler, welche das
analysierte Objekt hat, zu entdecken. Hardware -und Softwareausführungen für
die Doppler-Bildgebung werden präsentiert.

In dieser Doktorarbeit wird der Frequenzanalyse der gemessenen Signale beson-
dere Aufmerksamkeit geschenkt, um die Ortsauflösung des Radars zu verbessern.
Im Kontext der Frequenzanalyse wird die 2D-Doppler-Frequenzbildgebung präsen-
tiert und mit der Amplitudenbildgebung vergleichen. Auerdem wird eine detail-
lierte Vergleichstudie von verschiedenen Algorithmen, welche Ausführungseinzel-
heiten, Testergebnisse von simulierten und realen Daten und eine Komplexitäts-
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analyse beinhalten, präsentiert. Unter anderen wurden folgenden Algorithmen
untersucht: ”Adaptive IF estimation”, ”Polynomial-Phase Difference techniques”
und am meisten bekannt: ”Time-Frequency Distributions”.

In dieser Dissertation werden die räumliche Auflösungsmöglichkeiten von CW-
Radaren untersucht und verbessert. Es wird gezeigt, dass es die Frequenz- und
Amplitudensignalverarbeitung erlaubt, die Ortsauflösung des Radars erheblich zu
erhöhen. In diesem Zusammenhang wird der ”Maximum Entropy Deconvolution”-
Algorithmus (MED) eingeführt. Seine optimierte Version wurde im Verlauf der
Arbeit entwickelt, formalisiert und experimentell bestätigt. Die Komplexität des
MED wurde von O(n3) auf O(mn2) mit m ¿ n reduziert, wobei der iterative
GMRES-Algorithmus verwendet wurde. Im Verlauf der Dissertation wurde die
Optimale Präkonditionstechnologie entwickelt, geprüft und experimentell bestätigt.
Auerdem wurde eine mögliche Hardwareausführung des MED-Algorithmus, welche
auf dem optimiertem ”Gauss-Elimination”-Algorithmus basiert, vorgeschlagen.
Dabei wird gezeigt, dass einige Eigenschaften des gemessenen Doppler-Signals
genutzt werden können, um den optimalen Gauss-Elimination-Algorithmus zu
beschleunigen.

Im Abschluss werden mögliche praktische Anwendungen des Doppler-Systems
aufgezeigt.
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Chapter 1

Introduction

Nowadays producing and exploitation of wares is inseparably linked with their
quality control. For the last ten years in all fields of our live the quality demands
have become very high. The competitive character of the modern industry forces
manufacturers to check not every hundredth, as it was in the past, but all of the
produced items. In order not to stop the production line it is required to integrate
the high-speed quality control in the production process. For several items it is
important that their quality control is performed during the whole period of the
exploitation (e.g. turbines, planes, fuel injectors etc.).

The problem of quality control in all stages of production and exploitation
belongs to the field of non-destructive testing (NDT). NDT itself can be split into
branches where every branch deals with specific physical phenomena and materials
of specific properties. A physical phenomenon is used as an implicit mean to gather
information about the object of control. In general, in non-destructive testing, two
tasks are under consideration. The first task is developing of sensors to measure
characteristics of physical phenomena. The second one is processing of measured
data.

Nowadays a great number of sensors for different branches of NDT became
available on the market. Unfortunately, with rare exception, the sensors of high
quality are very expensive. Moreover in some cases the sensors are immobile what
makes them impossible to be integrated into an industrial process. On the other
hand, the use of cheap sensors may significantly reduce an amount of acquired
information about object or even make its quality control impossible. In some
cases the lack of the information may be compensated through the excessive data
acquisition. Then, the measured data are processed by some signal processing
algorithms. Usually, algorithms which deal with a big amount of data about the
process are computationally complex. This leads to high computational demands
and increases time of computations so that real-time quality control becomes in-
feasible.

In the work described in this thesis we develop a prototype system for efficient
non-destructive testing based on using of continuous wave (CW) radars. The
physical phenomenon we exploit to detect defects in materials is the Doppler
effect.

The sensors we suggest to use are cheap and available on the market. Since
these sensors do not provide any range information we acquire it by mechani-
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cal tracking of the actual sensor position. We also suggest an approach for fast
measurements which allows collection the information about the tested object.

We suggest an approach to represent a scope of measured data to the user in
easly understandable form. We describe (if they are already known) and develop
the signal and image processing techniques necessary for this approach.

There is a number of applications where the spatial resolution of the used
sensors is not needed to be high to satisfy the requirements. In this thesis we
represent detailed analysis of different signal processing algorithms which are used
to increase resolution. We reuse and test some of them for the use in microwave
NDT. Since the complexity of algorithms is very high we develop their fast versions
exploiting some properties of the measured data.

We also outline some practical problems where the developed system can be
applied and demonstrate the results of the performed experiments.

1.1 Definitions and Notations

We denote the set of natural numbers including zero as N and use N+ for N\{0}.
The set of integer numbers is given by Z = {. . . ,−1, 0, 1, . . .}. The sets of real and
complex numbers are denoted as R and C, respectively.

Definition 1.1.1 Let m,n ∈ Z be numbers. We define integer intervals as

[m : n] := m, . . . , n

[m : n[ := m, . . . , n− 1
]m : n] := m− 1, . . . , n

In this work we intensively operate with analog and discrete signals. Their defi-
nitions are given below.

Definition 1.1.2 A real-valued analog signal is a function x : R→ R, where
x(t) is the signal value at time t. A complex-valued analog signal is a function
x : R → C, such that x(t) = xr(t) + jxi(t). Value xr(t) is the real part of x; xi

is the imaginary part of x(t); j2 = −1 is an imaginary unit. Both xr and xi are
real-valued analog signals.

Definition 1.1.3 Let T be an arbitrary type. Thus, it can be a set of real numbers
R, complex numbers C, or arbitrary type, etc. We define Tn to be the set of
vectors of size n ∈ N+. We refer to T1×n and Tn×1 as the sets of row and
column-vectors such that T1×n,Tn×1 ⊂ Tn. An i-th entry of vector v ∈ Tn is
addressed as vi, where i ∈ [0 : n− 1].

We denote a vector by a lower case letter of a bold style. For addressing the
particular vector entry we use the same letter of a non-bold style.

Definition 1.1.4 Any column-vector can be transformed into the corresponding
row-vector and vice versa by means of the transpose operation. Let v ∈ T1×n be
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a row-vector, then

vT = (v0, v1, . . . , vn−1)
T =




v0

v1
...

vn−1




Definition 1.1.5 Let v ∈ Tn be a vector, then its length is defined as

|v | = n

Definition 1.1.6 Let T be either R or C. We define the function

abs : Tn → Rn

such that for v′ ∈ Rn, v ∈ Tn, and v′ = abs(v) we have

for all i ∈ [0 : n− 1] v′i =
√

Re(vi)2 + Im(vi)2

In the latter definition functions Re and Im stand for extraction of the real and
imaginary parts of a complex number, respectively.

Definition 1.1.7 We define the function

arg : Cn → Rn

such that for v′ ∈ Rn, v ∈ Cn, and v′ = arg(v) we have

for all i ∈ [0 : n− 1] v′i = arctan
(

Im(vi)
Re(vi)

)

Definition 1.1.8 Let v ∈ Rn be a vector. We define its second norm as

‖v‖2 =

√√√√
n−1∑

i=0

abs(vi)
2

Definition 1.1.9 A real-valued discrete signal is a function x̂ : Z→ R, where
x̂(n) is the signal value (sample) at time instant n. A complex-valued discrete
signal is a function x̂ : Z→ C.

We refer to a discrete signal defined on domain N as a vector.

Definition 1.1.10 In order to convert an analog signal into its digital represen-
tation we use the sampling procedure. Let x : R→ R be an analog signal. Then
the corresponding discrete signal x ∈ Rn is given for all k ∈ [0 : n− 1] as

xk = x(k ∆t),

where n ∈ N+ is a number of samples and ∆t ∈ R is a sampling interval.
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1.2 Microwave Non-Destructive Testing

The term microwaves is used to define electromagnetic waves or electromagnetic
radiation of frequency f with range from 300 MHz to 300 GHz. Microwaves have
many scientific and industrial applications. These include wireless communica-
tions, telemetry, biomedical engineering, food science, medicine, material process-
ing, and process control in the industry [1].

Microwave non-destructive testing (microwave NDT ) is defined as inspection
of materials and structures using microwaves without damaging or preventing the
future use of the tested object [2], [3]. These are some among others areas that
may benefit from using of microwave NDT:

• Composite inspection (accurate thickness measurement, detection of mate-
rial impact damages, and corrosion under the paint etc.)

• Material surface inspection (stress and cracks detection, surface roughness
evaluation etc.)

• Microwave imaging (imaging of surface interior)

• Medical and industrial applications (detection of buried objects, humidity
detection, detection of unhealthy skin patches)

More detailed information about microwave NDT and its applications can be found
in [4].

There is a number of physical microwaves properties which make them par-
ticulary attractive for NDT. Microwaves are able to penetrate into dielectric ma-
terials. The spatial resolution of microwaves varies with frequency f and has a
range from 1 meter to 1 millimeter. It indicates the ability of microwaves to dis-
cern closely spaced discontinuities in the material. Another important advantage
of microwaves is its easy coupling with the medium. The coupling can be easily
done, for example, through air by using an antenna.

One of serious drawbacks of microwave NDT is high equipment cost. In many
applications microwave NDT is rather a laboratory method which is difficult to
install on the production line. Often, applying advanced signal processing tech-
niques slows down the data evaluation. It makes microwave NDT impossible to
operate in real time. This thesis concerns the problem of fast computation in
microwave NDT.

1.2.1 Microwaves Propagation

Microwaves i.e. electromagnetic radiation consists of two components. These
are time-changing magnetic field and associated with it time-changing electric
field , [5, 6]. Quantitative expression of magnetic and electric fields is given by its
intensities. We define the electric field intensity or simply electric field ~E(~r, t)
as a function of spatial location ~r = (x, y, z) and time t. The spatial location is
determined by cartesian coordinates x, y, and z. Similarly we denote magnetic
field by ~H(~r, t).
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The propagation of microwaves depends on the interrelation between electric
field, magnetic field, and a medium. We understand the medium to be any en-
vironment where microwaves propagate in. It can be air, dielectric, or any other
material. Every medium is characterized by relative magnetic permeability µr ≥ 1
and relative dielectric permittivity εr ≥ 1. Parameters µr and εr express influ-
ence of the medium on magnetic and electrical fields, respectively. We assume the
medium to be isotropic, i.e. properties of the medium do not change with distance
or direction. In this case µr and εr are plain constants.

In microwave NDT it is preferable to work with media or materials which
are non-magnetic i.e. have µr = 1. Under that assumption the propagation of
microwaves only depends on electrical properties of the material. Further, we
shortly present the theory of microwave only regarding the electric field ~E.

The electromagnetic wave equation in terms of electric field ~E is given below

∂2 ~E

∂t2
=

1
µε

∂2 ~E

∂z2
(1.1)

We assume that electric field ~E(~r, t) propagates in direction z, i.e. ~r = (0, 0, z).
A total permeability µ and total permittivity ε in (1.1) are given by i) medium
constants µr and εr; and ii) vacuum (i.e. free space ) constants µ0 and ε0

µ = µr µ0

ε = εr ε0,

where vacuum permeability and permittivity are defined as µ0 = 4π × 10−7 and
ε0 = 8.854 × 10−12. Microwaves propagate in vacuum at the speed of light c0

defined as
c0 =

1√
µ0ε0

(1.2)

A solution of (1.1) is a cosine propagated in direction z:

~E(z, t) = ~E0 · cos(φ0 + 2πft− βz), (1.3)

where ~E0 = (0, Ey, 0) represents the electric field amplitude. The initial phase φ0

is an angle of the cosine function at time t = 0. The frequency of microwaves is
given by some constant f . A propagation factor β introduces an influence of the
medium on propagation velocity of ~E:

β =
2πf

c0

√
µrεr =

2πf

c
, (1.4)

where c is propagation velocity of microwaves in the medium with µr and εr.
If the medium is a free space (i.e. µr = 1, εr = 1), then the velocity in the
medium is equal to the velocity of light, i.e. c = c0, see equation (1.4). In that
case the difference of terms 2πft and βz in (1.3) is always zero since z = t c0.
This implies propagation of ~E(z, t) at time t and space location z with the initial
phase φ0. If the medium is not free space, a propagation of ~E(z, t) is delayed by
a media-dependent factor δφ which can be derived from equations (1.3) and (1.4)
as

δφ = 2πft(1−√µrεr)



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Refraction and reflection of microwaves at media boundary

Equation (1.3) can be written in general form for any direction of propaga-
tion determined by direction vector ~β = β (ex, ey, ez), where ex, ey, and ez are
normalized projections of ~β on to axis x, y, and z, correspondingly [7]:

~E(~r, t) = ~E0 cos(φ0 + 2πft− ~β · ~r ) (1.5)

In the latter expression a dot product ~β · ~r gives a projection of ~r onto ~β, i.e. a
delay of propagation of microwaves along the direction given by ~β.

1.2.2 Microwaves Refraction and Reflection

In the previous section we have introduced the mechanism of propagation of mi-
crowaves in the medium. It was shown that the velocity of propagation depends
on its permittivity and permeability. In this section we will discuss two other
mechanisms which describe the behavior of microwaves at the boundary of two
media.

Let there be two media which have different permittivities εr1 and εr1. Medium
1 is assumed to be more transparent then medium 2, i.e. εr1 < εr2 (see Figure 1.1).
Microwaves propagate in the medium 1 in direction ~β1 towards the boundary. An
incident angle between direction ~β1 and normal ~n to the boundary is θ1.

When microwaves arrive at the boundary, they split into two parts, namely
reflected and refracted ones. The first part reflects back (reflection phenomenon)
into medium 1 at direction ~β3. Analogously with Fresnel law [8, p.18] the reflection
angle θ3 is equal to the incident angle θ1.

Since properties of the media are different, the second part diffracts at the
boundary. It propagates in medium 2 along direction ~β2. That phenomenon is
known as refraction . A refraction angle θ2 is related to the incident angle θ1 by
Snell’s law [9, p.435]:

sin(θ1)
sin(θ2)

=
√

εr2√
εr1

(1.6)

Both parts (reflected and refracted) have particular electric field intensities after
the interaction at the boundary. We do not give the mathematical definition of
the intensities. This information can be found in the microwave literature, see for
reference [4–6, 10–13]. We only keep in mind that the field intensity depends on
transparency of the medium. The more transparent the medium, the higher is the
intensity of the component.
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Figure 1.2: Two-level radar operational system

1.3 Continuous Wave (CW) Radar

Generally, radars are understood as electrical devices which are used to produce
microwaves, for reference see [14]. Radars function by radiating microwaves and
detecting the returned echo from reflecting objects. Radars differ by the form of
radiated microwaves. The choice of form depends on desired information about
the target (i.e. target properties to be evaluated) such as size, spatial location,
material properties, etc. Detailed description of different types of radars such as
pulse radars, MTI radars, etc. is given in [15]. In this thesis we investigate an
application of continuous wave (CW) radars for non-destructive testing.

1.3.1 CW Radar Principle

Let us describe the principle of CW radar. A radar operational system is repre-
sented in Figure 1.2. A time-varying signal1 sin (we use term ”incident” signal)
is applied to the input of the radar. This causes activation of the electromagnetic
field Ein which is defined at spatial position ~r ∈ R3 and time t, see equation (1.5).
The field Ein propagates towards the reflecting object (target) and interacts with
it. This interaction establishes the reflected (scattered) electromagnetic field Esc

which propagates back to the radar. While radar is receiving scattered field Esc it
excites the time-varying signal ssc. According to physics CW radar produces an
output signal sout by mixing both incident sin and scattered ssc signals as given
below

sout(t) = (sin(t) + ssc(t))2 (1.7)

A radar operational system in Figure 1.2 is split into a medium level and a signal
level . On the medium level the information about targets is encoded in the
incident ~Ein and scattered ~Esc electromagnetic fields. Inside the radar both of
the fields are transformed into electrical signals (or voltage). By measuring and
further processing of these signals we retrieve specific information about the target.
For the CW radar we define the incident signal as

sin(t) = Ain cos (2πf int + ϕin) (1.8)
1under a term time-varying signal we understand an electrical signal of varying voltage
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Figure 1.3: Scheme of the Doppler experiment

In equation (1.8) an amplitude Ain is proportional to the intensity of the incident
electric field Ein; f in and ϕin are the transmission frequency and the initial phase,
respectively. In this work we use the CW radar with f in = 24 GHz.

The scattered signal ssc depends on the properties of the target. In general
case ssc is referred to be some real-valued analog signal, i.e. ssc : R→ R.

In case of CW radar the output signal sout : R → R is the only one provided
for analysis. In the following sections we discuss which information about the
target can be extracted from sout. We will also consider possible applications of
CW radar for non-destructive testing needs.

1.3.2 Doppler Effect

The Doppler effect was first explained in 1842 by Christian Doppler. The Doppler
effect is the shift in frequency of a sound wave that is perceived by an observer.
The frequency shift happens with the moving of either the sound source, or the
observer, or both.

The Doppler effect takes place for all types of radiation such as light, sound,
microwaves etc. In order to measure the Doppler effect in microwaves CW radars
were invented. In this work we introduce the Doppler effect on the signal level, i.e.
in terms of electrical signals, see Section 1.3.1. We often use expression ”signal
was sent” or ”signal was received” keeping in mind that the sending and receiving
of an electromagnetic field is meant.

The basic idea of the Doppler effect in microwaves is represented in Figure
1.3. The CW radar does not change its position whereas the target moves. We
define the speed of the target v to be a constant. This ensures linear increasing or
decreasing of the distance R between the radar and the target in time. We also
refer to it as to radar-target distance :

R(t) = R0± v(t− t0), (1.9)

where time t0 is an initial time, i.e. the time when the target begins its movement;
R0 is the initial radar-target distance. In equation (1.9) approaching of the target
is given by a ”minus” sign before v. Analogously, ”plus” sign denotes moving of
the target away from the radar.

In the following equation we define the propagation time tpr that microwaves
need to travel towards the target and back at every distance R

tpr(t) =
2R(t)

c0
(1.10)

Since we carry on the experiment in the air, the microwaves propagation speed is
equal to the speed of light in the vacuum, i.e. c0.
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According to the scheme of the experiment, the scattered signal ssc is a time-
delayed version of the incident signal sin. The time delay is equal to the propaga-
tion time tpr. The amplitude Asc of signal ssc differs from the amplitude of signal
sin due to propagation and interactions losses (see Sections 1.2.1 and 1.2.2). The
amplitude Asc also depends on radar-target distance R, geometrical shape and
material properties of the target. For simplicity we introduce Asc by means of
some function f as

Asc(t) = f(Ain, R(t), εt), (1.11)

where εt is a permittivity of a target material. The complete definition of ampli-
tude Asc can be found in literature given in Section 1.2.2. By using definitions
(1.8), (1.10) and (1.11) we define the scattered signal as

ssc(t) = Asc(t) cos(2πf in (t− tpr(t)) + ϕin). (1.12)

Let us assume that in (1.10) the initial time t0 = 0 then

ssc(t) = Asc(t) cos
(

2πf in

(
t− 2(R0 ± vt)

c0

)
+ ϕin

)

=Asc(t) cos
(

2π

(
f in ∓ f in 2v

c0

)
t + ϕin − 2πf in

c0
2R0

)

=Asc(t) cos(2πfsct + ϕsc),

(1.13)

where frequency fsc and initial phase ϕsc of the scattered signal are given as:

ϕsc = ϕin − 2πf in

c0
·2R0 (1.14)

The frequency fsc is given as:

fsc = f in∓fd = f in∓f in

(
2v

c0

)
(1.15)

Equation (1.15) introduces the nature of the Doppler effect. The target ap-
proaching or moving away from the radar causes increasing or decreasing in the
received signal frequency fsc. The frequency fd is called Doppler shift . It depends
on the transmitted frequency f in and the radar speed v.

In the experiment represented in Figure 1.3 Doppler frequency (Doppler shift)
fd stays constant because speed v is constant too. Generally, both the radar
and the target change their spatial locations. They also can move in different
directions having different non-constant speeds. In that case the distance between
the radar and the target is a non-linear function of time. In order to define the
Doppler frequency the time derivative of R is used. A more general definition of
the Doppler frequency fd is

fd(t) = ∓f in 2
c0

∂R

∂t
= ∓ 2

λin

∂R

∂t
, (1.16)

where λin is called wavelength . In equation (1.16) positive Doppler frequency
means approaching of the radar and the target, i.e. R decreases. If R increases,
then the Doppler frequency fd is negative.
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Thus, in the general case a Doppler frequency is the time-varying function
defined by equation (1.16).

From the proof given in [16, p. 522] follows that a time-varying signal s of
some time-varying frequency f can not be defined as

s(t) = cos(2πf(t) t) (1.17)

because this leads to the physical inconsistency. The equation (1.17) holds only if
f(t) has the same value for any t. In order to overcome the physical inconsistency
an integral of f is required, i.e.

s(t) = cos


2π

t∫

0

f(t) dt


 . (1.18)

Since the Doppler frequency fd is also a time-varying function let us modify the
definition of the scattered signal ssc. We substitute equation (1.15) into (1.13)
and take the integral of time-varying fd as it was shown in (1.18) so that we have

ssc(t) = Asc(t) cos


2πf int ± 2π

t∫

0

fd(t) dt + ϕsc


 (1.19)

Comparing equations (1.13) and (1.19) we note that the Doppler frequency is
not a constant rather the integral over the time. This integral introduces the
instantaneous frequency phenomenon which we discuss in details in Chapter 4.

1.3.3 Measurement of the Doppler Effect

In the previous sections we gave definitions of incident (or sent) sin and scattered
(or received) sout signals that CW radar is operating with. Practically it is difficult
to measure both sin and ssc. Usually, in hardware implementation of CW radars
the only signal which is available to be acquired is the radar output sout, see
Section 1.3.1. In order to derive sout we substitute equations (1.8) and (1.19) into
(1.7) and apply some trigonometric transformations:

sout(t) = A(t) cos


±2π

t∫

0

fd(t) dt + ϕ


 + Λ (1.20)

Derivation of equation (1.20) is represented in Appendix A.0.2. In (1.20) the first
term is also called Doppler term. It represents harmonic oscillations of the time-
varying Doppler frequency fd, some constant phase ϕ and time-varying amplitude
A. Currently we are not interested in the behavior of A. Instead, we assume
amplitude to be a real function such that A : R → R. The second term Λ
represents the multi-component sum of cosines. We discuss this term in the in the
following.

In practical applications the speed of both the radar and the target is much
lower than the speed of light c0. This ensures the Doppler frequency fd to be
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much lower than the transmitted frequency f in (see equation (1.16)), i.e. for all t
holds

fd(t)¿ f in± fd(t) (1.21)

We remind that the transmitted frequency f in is in GHz range whereas the doppler
frequency fd is only a few tens of hertz.

As we can see, equation (1.20) is a mixture of harmonic oscillations of very
high (Λ-term) and very low (Doppler term) frequencies. When sout is acquired, its
high frequency part Λ will be cut off. We discuss the acquisition (measuring) of
the Doppler signal sout in detail in Chapter 2. Using the consideration presented
above we derive the output of the CW radar as the following

s(t) = A(t) cos


±2π

t∫

0

fd(t) dt + ϕ


 (1.22)

In the latter expression in some cases we can neglect ϕ because it remains constant
since only depends on send frequency f in and initial distance R0 (for reference see
equations (1.14) and (A.5)). The ± sign can be also omitted since the cosine is
an even function.

Equation (1.22) introduces the main idea of CW radars which we will discuss in
details in Chapter 2. For now we note that CW radars are incapable to measure
any range information about the target. The only information which can be
derived from the measured signal s : R→ R is the Doppler frequency fd : R→ R
and amplitude A. The alternations of the frequency and the amplitude appear
when the distance between the target and the radar is not constant.

A simple operational principle of CW radars allows their production using
non-expensive components. Because of that reason CW radars become cheap
to be manufactured what makes them attractive for NDT. Otherwise, in many
applications only evaluation of Doppler frequency is insufficient for solving a given
problem in a proper way. This, certainly, turns CW radars to be not widely used
in NDT.

The aim of this work is to test whether CW radars are applicable for microwave
non-destructive testing in order to characterize test objects.

In the next section we shortly present radar equipment such as antenna and
waveguide.

1.4 Radar Antenna

The role of an antenna is to provide coupling between microwaves in a free space
and transmitted or received microwaves radiated by the radar. In many applica-
tions the antenna serves both as a transmitter and as a receiver. Antennas are also
used to concentrate microwaves in a particular direction. Antenna theory offers
various antenna designs. Choice of an antenna depends on its area of application
and price [17].

In microwave NDT horn antennas are widely used, see Figure 1.4(a). Physical
parameters of a horn antenna are width a, height b, and length c. Parameters a and
b determine antenna aperture A which is a surface of size a×b where microwaves
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Figure 1.4: Radar antenna

pass through. The aperture lays in the plane xy. We establish z to be a direction
of propagation of microwaves, see orientation of the coordinate system in 1.4(a).

Microwaves do not propagate through the aperture in omnidirectional manner.
The field intensity changes over the aperture surface. The antenna radiation pat-
tern determines variation of the electric field intensity. Let us assume the electric
field ~E(~r, t) is defined by the equation (1.5). Its amplitude ~E0 is not a constant but
a function of direction given by the unit vector ~r0 = ~r \‖r‖2 = {x0, y0, z0}. For con-
venience the dependency ~E0(~r0) is expressed in spherical coordinates [18, pp.102-
111] by means of triple {r0, θ, φ}, where the radius r0, zenith θ, and azimuth φ are
given as

r0 = ‖~r0‖2,

φ = arctan
(y

x

)
,

θ = arccos
(

z

r0

)
.

Since ~r0 is a unit vector we define the electric field amplitude as a function of
zenith and azimuth i.e. ~E0(θ, φ), where 0 ≤ θ≤π/2 and 0 ≤ φ≤ 2π, see Figure
1.4(b). An example of a 3D radiation pattern is shown in Figure 1.4(c). From a
radiation pattern the spatial resolution or lateral resolution of the radar can be
derived. The radiation pattern of an antenna is delivered by its manufacturer.

Let us introduce the most important parameters of a radiation pattern. We
build 2D radiation pattern ~E(θ, φ) (see Figure 1.5), such that 0 ≤ θ≤π/2 and
φ = 0. For convenience, the radiation pattern is normalized such that its highest
intensity is 1. Various parts of a radiation pattern are referred to as lobes. A
lobe is defined as a part of a radiation pattern bounded by weak intensity. Lobes
having highest intensity and oriented in the direction of propagation are called
major lobes. Minor lobes are lobes of low intensity, see Figure 1.5. They deviate
from the main direction of propagation.

Narrowness of the main lobe is defined by angle θhw that is determined from
the half-value of the field intensity (Figure 1.5). Obviously, the narrower the major
lobe is the higher is spatial resolution. In antenna design developers try to get an
antenna with a narrow major lobe and low intensity of minor lobes.

The second most important parameter of an antenna is the antenna gain G.
It determines the ability of an antenna to concentrate microwaves in a particular
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Figure 1.5: 2D radiation pattern

direction. Gain G also introduces sensitivity of an antenna to microwaves inci-
dent from a specific direction. Gain G depends on the antenna aperture A and
microwave wavelength λ

G =
4πA

λ2
(1.23)

1.4.1 Radar Cross Section

Definition 1.4.1 The target radar cross section (RCS) is the effective echoing
area of a target which isotropically radiates towards a radar all of its incident power
at the same radiation intensity [19].

We denote RCS as σ. Its mathematical formulation in terms of power densities is
defined in [19]:

σ = 4πR2 we

wi
, (1.24)

where we is the echo power density seen at the radar; and wi is the echo power
density at the target. Definitions of we and wi are given in the following section.
Equation (1.24) can be rewritten using the corresponding radiation field intensities
Ee and Ei

σ = 4πR2 |Ee|2
|Ei|2 (1.25)

1.4.2 Radar Equation

The power density wi at the target is defined as the radar initial power Pt (i.e.
transmitted echo power) which is emitted into space through antenna gain G. The
target is located in front of the antenna at distance R:

wi =
PtG

4πR2L
, (1.26)

where L introduces total system loss2.
The received echo power Pr is defined from power density of the radar we

multiplied by antenna aperture A. By using (1.23) and substituting equation
(1.26) into (1.24) we derive Pr [20]:

Pr = weA =
PtG

2λ2σ

(4π)3R4L
. (1.27)

2system loss is a term that normally includes transmission line loss, propagation loss, receiving-
system loss etc., for more information see [19, page 34]
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Figure 1.6: Far field and near field regions

Equation (1.27) is valid for the far-field region. In radar literature the far field
is defined as a region of the electromagnetic field of an antenna where the angular
field distribution is essentially independent on the distance from the antenna [17].
In many practical applications the far field is preferable since the antenna radiation
pattern is well formed and usually has one major lobe, see Section 1.4. This
increases the scattered field intensity and improves the signal to noise ratio in the
measured signal. In the far-field region microwaves can be approximated by plane
waves. A flow chart which introduces the far field region is represented in Figure
1.6(a). In literature the distance Rf where the far-field region starts is given as

Rf =
2D2

λ
,

where D = max(a, b, c) is a maximal dimension of the antenna.
There is also a number of applications where the near-field region is used. In

that region angular field distribution depends upon the distance from the antenna,
see Figure 1.6(b). In the near field the radiation pattern of the antenna is smooth
and does not form lobes. Advantage of the near field is high spatial resolution
since the antenna is close to the specimen. The range of the near-field region is
defined as

Rn = 0.62

√
D3

λ
(1.28)

In the near-field region microwaves can be approximated by spherical waves.
Often in practice it is required to find distance R ∈ [Rn : Rf ] such that R

is close as possible to Rn. This ensures high spatial resolution (since microwaves
resemble properties of microwave in near field region) and also allows the use of
many attractive properties of plane waves (since microwaves can be also approx-
imated by the plane waves). Some of these properties we will introduce in the
following chapters.

A common approach to find distance R is to measure the field intensity in
different points, step by step at the increasing distance between the radar and the
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specimen. The desired distance R is found when the measured intensity starts to
exhibit an R−4 - law. Generally, this is introduced in equation (1.27) and can be
represented as the following relation

|E(R)|2 ∝ 1
R4

, (1.29)

where E(R) is the measured intensity at the distance R.
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Chapter 2

Doppler System

2.1 CW Radars in Microwave NDT

Nowadays CW radars are widely used in different applications such as:

• intrusion alarms,

• automatic door openers,

• speed and motion detection, traffic control etc.

All these areas of application have the same in common, namely presence of mo-
tion. For example, intrusion alarm systems observe the interior of a room. When
a burglar moves, the Doppler effect appears and alarm turns on. Automatic door
openers operate in a similar way. The police uses CW radars to measure move-
ment speed of a vehicle while it is driving. In that case the Doppler frequency
shift is proportional to the speed.

Many attractive features make CW radars popular. Some of them are low
cost, small size, high sensitivity etc.

CW radars do not give any range information about the target. This reduces
areas of application of CW radars in microwave NDT. Generally, any application
that includes detection of the distance to the target is out of consideration. For
example, such problems as plastic thickness determination on tubes [21] or level
measurements [22,23] seem unlikely to be solved.

Let us discuss two main mechanisms that make possible application of CW
radars in microwave NDT. The first mechanism is causing the Doppler effect by
geometrical irregularities on the object surface. The second mechanism is alter-
nation of the object electrical permeability εr. Both mechanisms cause variation
of the electric field intensity. Among others possible areas of application of CW
radars in NDT are detection of

• metal surface cracks,

• hidden interstices in non-conductive or semi-conductive materials,

• impact damages of the materials (e.g. Glass Fiber Reinforced Polymer),

• moisture and knots in wood

17
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Figure 2.1: Raster measurement approach (distance variation measurements)

2.2 Raster Measurements

The most popular technique which is used to perform measurements is raster
measurements. The idea of that technique is simple. A radar moves stepwise in
a particular direction above a specimen. The size of a step δx is determined by
the user. At every position the radar stops and the output signal of the radar is
acquired. When the acquisition finishes, the radar moves to the next point. The
procedure ends as soon as all points are measured. Raster measurements do not
depend on a motion speed v of the radar. This implies for CW radars the Doppler
frequency fd to be zero, see equation (1.16). From equation (1.20) we derive the
output of the CW radar in case of the raster measurement as follows:

sout(t) = A(t) cos(ϕ) + Λ. (2.1)

In Appendix A.0.3 we show that under condition of zero Doppler frequency the sig-
nal sout depends on radar-target distance R0 but not on time. Such a modification
of equation (2.1) is given below:

sout(R0) = A(R0) cos
(

2π
2f in

c0
R0

)
+ C(R0), (2.2)

where f in, c0, R0 are the radar transmitted frequency, the speed of light and the
radar-target distance, respectively. In equation (2.2) the function C represents the
offset of the signal sout which also depends on R0.

The only dependence of sout on R0 may cause difficulties in defect detection.
Let us consider it by an experiment. As a specimen we use a flat metal plate.
The surface of the plate is free from any defects. We acquire the output signal
of the radar for different distances between the radar and the specimen such that
R0 ∈ [ 30mm : 100mm ] with step δx = 0.05mm. Figure 2.1 presents how sout

develops. It is a harmonic cosine oscillation with a period λin/2, see Appendix
A.0.3. We observe that amplitude of the signal sout decreases very slowly, whereas
sout oscillates fast. Thus, at different radar-target distances the amplitude may
be the same. This causes ambiguity in distance detection in the following sense.
For example, in Figure 2.1 value sout(R1) is almost equal to sout(R2) even if the
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distance difference is about 20mm. From the experiment given in Figure 2.1 we
also conclude that C changes very little with radar-target distance R0. It offsets
the signal sout at some constant value.

Insensibility of CW radars to respond to distance variation makes raster mea-
surements not really efficient in microwave NDT. Small defects such as cracks or
impact damages can be lost among other reflections from the surface. A possible
reason of it can be, for example, a small radar cross section of the defect, see
Section 1.4.

In some practical applications it is difficult to keep a constant distance between
the radar and the specimen. This may cause false defect alarms.

In the next section we will consider another measurement technique called con-
tinuous measurements. That technique sufficiently decreases most of the draw-
backs of CW radars outlined in this section.

2.3 Continuous Measurements

Two ways (or approaches) to perform continuous measurements are under consid-
eration. The difference between them is that either CW radar is perpendicular or
oblique by angle α to the analyzed surface, see Figure 2.2(a) and 2.2(b). In both
cases the radar moves in a given direction with a constant speed v so that a track
of movement is a straight line. We call it the line of scan .

We will compare both approaches by analyzing the radar response on the same
kind of defect. The defect is assumed to be a point scatterer (or point reflector)
located on the line of scan. Its main property that it reflects an incident signal
back independently on the microwave incidence angle i.e. the point scatterer has a
constant RCS. Motion of the radar in a particular direction is identical to motion
of the defect in the opposite direction. For both the perpendicular and oblique
approaches we determine sets of visible spatial positions, Ω′ and Ω′′, respectively,
when a defect is visible to the radar.

Ω′ = {x | x′1≤x≤x′2} and Ω′′ = {x | x′′1≤x≤x′′2}, (2.3)

where boundaries x′1, x
′
2 and x′′1, x

′′
2 are determined by the radar altitude h and

narrowness of the radiation pattern θhw, see Figure 2.2(c) and 2.2(d). Choice of h
will be discussed in Section 2.6. Currently we assume it to be some non-negative
value.

In both cases (perpendicular and oblique) the distance between radar and de-
fect does not change linearly. We introduce a function L : R→R which determines
variation of the radar-defect distance as

L(x) =
√

(xr − x)2 + h2,

where x ∈ Ω′ or x ∈ Ω′′ in the perpendicular or oblique case, respectively.
The Doppler spatial phase ϕd : R→ R determines the number of periods of the

transmitted frequency f in on the way towards the defect and back to the radar

ϕd(x) = −2L(x)
λ

(2.4)
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Figure 2.2: Continuous measurement approach: (a) scheme of perpendicular mea-
surement; (b) scheme of oblique measurement; (c) perpendicular measurement
flowchart; (d) oblique measurement flowchart

Figure 2.3: Simulated Doppler frequency: (a) perpendicular case; (b) oblique case

The minus sign in (2.4) is used to emphasize that distance L as well as spatial
phase ϕd decrease when the defect approaches the radar. By applying the spatial
derivative to (2.4) we derive the time-dependent Doppler frequency fd as

fd(t) =
∂ϕd

∂t
=

∂ϕd

∂x

∂x

∂t
=

∂ϕd

∂x
v (2.5)

where speed v is represented as the time derivative of spatial coordinate.
Equation (2.5) introduces the correlation between physical radar adjustments

(its altitude and radiation pattern), radar motion, and the defect position. Later
we will use this equation to understand and explain advantages and disadvantages
of perpendicular and oblique measurement approaches.

A simulated Doppler frequency computed by (2.5) in the perpendicular and
oblique cases is shown in Figures 2.3(a) and (b), respectively. As we can see the
frequency fd in the perpendicular case is much lower than in the oblique case
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Figure 2.4: First part of the experiment (metal ball): (a) signal sb
1, perpendicular

case; (b) signal sb
2, oblique case;

Figure 2.5: Second part of the experiment (metal washer): (a) signal sw
1 , perpen-

dicular case; (b) signal sw
2 , oblique case

even if the radar altitude h and speed v are the same. From this follows that
the number of oscillations of the measured signal s, defined in (1.22) is essentially
reduced. We suppose that under equal measurement conditions in the oblique
case we receive more information about the defect than in perpendicular case.

In order to check the theoretical supposition mentioned above we perform an
experiment. In the first part of the experiment we will compare an approximate
value of the Doppler frequency in both cases. In order to ensure high echo power
of the reflected signal during the whole scan we use a relatively large defect. It
is a metal ball with the diameter of 12mm. The ball is placed in the middle of
the line of scan. Measured signals in perpendicular and oblique cases (sb

1 and sb
2,

respectively) are presented in Figure 2.4(a) and (b). In both cases presence of
the defect can be detected. Without further signal processing we can see that
sb
1 has fewer oscillations than sb

2. This can be explained in terms of the Doppler
frequency. Obviously, sb

2 has the higher Doppler frequency than sb
1 what perfectly

matches to the simulation results presented in Figures 2.3(a) and (b).
Let us determine an approximate ratio of the Doppler frequencies in both

cases. We determine a fragment of sb
1 which contains, approximately, one period.

In Figure 2.4(a) we denote it as δb. The defect is placed nearly in the middle of the
interval δb. In Figure 2.4(b) we observe about five full periods which are located
inside δb. Thus, the Doppler frequency of sb

2 is about five times higher than the
frequency of sb

1. It also matches to simulations given in Figures 2.3(a) and (b).
From the first part of the experiment we conclude that in the oblique case we

receive more information about defect than in the perpendicular case. In Chapter
5 we utilize this quality of the oblique approach to increase spatial radar resolution.
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Let us introduce the second part of the experiment that illustrates the advan-
tages of the oblique approach in detection of small detects. The defect we use is
a 1mm thin washer. Its radius is about 6mm. We perform both perpendicular
and oblique measurements. Acquired signals sw

1 and sw
2 are represented in Figure

2.5(a) and (b) respectively. By analyzing signal sw
1 we can see that the presence

of the defect can not be detected. This can be explained as follows. An antenna
is perpendicular to the surface which reflects microwaves back. The washer also
reflects microwave back. Since the defect is thin, the reflection from the surface
is higher than the reflection from the defect. Therefore the contribution of the
defect into the resulting signal is negligible.

In the oblique case (Figure 2.5(b)), reflection from the surface is not captured
by the radar because of the slope. However, the defect still reflects microwaves
back to antenna since is has sharp edges. While the reflection exists, the Doppler
effect appears. The area of signal sw

2 which can be used to detect the defect is
labeled as δw.

From the experiment discussed above we conclude:

• The theoretical model to explain and analyze the Doppler effect given in
equation (2.5) is viable since it describes the experiment well.

• Oblique measurements retrieve more information about the object than per-
pendicular measurements.

• Oblique measurements are more sensitive to small defects.

2.4 Doppler Measurement System

In order to perform experiments based on the Doppler effect in microwaves, a
prototype system has been developed and built. It uses CW radars for measure-
ments. We refer to this system as to the Doppler measurement system or simply
the measurement system. These are main requirements the measurement system
have to satisfy:

• stability

• mobility

• high measurement speed

• ability to scan surfaces

Since the Doppler effect appears only with the motion, all the parts of the mea-
surement system have to maintain stability except the one that moves. In order
to keep the measured signal undamaged, any spontaneous shakings of the mea-
surement system have to be prevented.

A term mobility means the support of a universal interface to connect different
CW radars to the measurement system. The universal interface includes power
supply lines, output signals, control signals etc. The mobility also includes easy
adjustment of the spatial position of the radar.



2.4. DOPPLER MEASUREMENT SYSTEM 23

Figure 2.6: Doppler Measurement system

An ability to perform fast measurements is one of the main tasks of the mea-
surement system. Speed of the measurements depends on the power of motion
motors. It is also important to maintain a constant speed while the output signal
is being acquired.

In this work we have developed the Doppler imaging as a new imaging tech-
nique in microwave NDT. Since 2D images are more informative then 1D signals
the surface scan ability of the measurement system is required.

An accurate model of the Doppler measurement system is represented in Figure
2.6. Its skeleton is made from aluminium profiles which are joined to each other.
In order to ensure stability of the skeleton every profile is additionally joined to all
its neighbours by means of corner fastenings (not showed in Figure 2.6). At the
top of the skeleton two positioning axes are fixed (axis X and Y ). The CW Radar
can move along axes with motion speed v. The object to be tested is placed on
the surface located at the bottom of the skeleton.

In order to adjust the spatial position and orientation of the radar a radar
holder is used, see Figure 2.7. The holder is fastened to the positioning axis X
at its middle. The altitude of the radar h is adjusted by rotation of a knob which
is placed at the top of the radar holder. The range of a incidence angle α varies
from 0 to 90 degrees. The radar holder is equipped with scales for both h and
α to adjust them precisely. It is also possible to rotate the radar around the z
axis by using of a turntable. This may be helpful if there is a need to change the
direction of scan. The radar is fastened on a holding plate. It was developed as a
multipurpose part so that different radar types can be easily installed.
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Figure 2.7: Radar Holder

Figure 2.8: Motion Pattern

2.4.1 Motion Control Unit

The motion control of axes X and Y is performed by the computer. The axes
motors have an intelligent interface. Through this interface the motors can be
programmed to execute a particular sequence of motions. That sequence is de-
noted as a motion pattern.

In order to perform 2D surface scan we use a motion pattern which is shown
in Figure 2.8. The area to be scanned has size Lx × Ly. While the radar is being
moved from start point (xs, ys) to end point (xs, ys + Ly), the output signal is
acquired. When measurement ends, the radar moves to position (xs + δx, ys).
From (xs + δx, ys) to (xs + δx, ys + Ly) the measured signal is acquired again. It
repeats until the last measurement from (xs +Lx, ys) to (xs +Lx, ys +Ly) is done.
As we move the surface of interest is scanned line per line. Movement of the radar
along axis Y is been performed at a constant speed. The size of the step, i.e. δx,
depends on the size of defects and scan quality demands. In practice in order to
choose δx a trade-off between quality and speed of measurement is needed.
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Figure 2.9: Data acquisition synchronization chart

2.4.2 Data Acquisition

While the radar is moving along a line of scan the Doppler signal is being acquired,
(for reference see Section 2.4.1). Conversion of an analog sinal into its digital
representation is given by the sampling procedure (see Definition 1.1.10). In order
to perform a surface scan it is important to start data acquisition and radar
motion at the same time for all line scans. It prevents the measured data from
being shifted. To fulfill these requirements we use the synchronization technique
represented in Figure 2.9.

The computer controls the data acquisition device (DAQ) and motors (con-
trolling axis X and Y ) of the measurement system. Before a line scan is performed
the computer sends a preparation command prep in order to switch DAQ into the
waiting loop. In that state DAQ waits for a positive edge of the trigger signal
(sync) to start data acquisition. As soon as DAQ is activated (ready command),
the computer sends the scanning parameters to the axis motors (move command).
Trigger signal (sync) appears with the very first movement along the Y axis. It
causes DAQ to capture the information from the data line immediately. Data
acquisition finishes when the required number of samples is acquired. Finally,
measured data are delivered for DAQ to the computer and saved there. The
synchronization procedure repeats for every line scan.

The synchronization technique depicted in Figure 2.9 makes the process of
data acquisition independent from operation system delays, motors and DAQ
programming delays, equipment responses etc.

2.5 Doppler System

Many different stages are passed on the way from data acquisition to data rep-
resentation. These includes data acquisition itself, measurement system control,
data processing, computations etc. We organize all the stages into a Doppler sys-
tem or simply system shown in Figure 2.10. The Doppler system consists of three
main parts. These are software, measurement, and computational modules. Let
us consider each part separately.

The measurement module includes data acquisition equipment (or DAQ), Doppler
measurement system, and different radar types. We have already discussed the
measurement module in Section 2.4. It retrieves raw measured data for the further
processing.

The software module is managed by a control unit. It is a routine which is
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Figure 2.10: Doppler system

used to schedule task-dependent software. This software represents a number of
different programs which communicate between each other by means of a global
data flow. The task-dependent software includes signal processing procedures,
software to control DAQ and the Doppler measurement system, user interface
routines, distributed computation software etc. Generally, the Doppler system is
controlled by the task-dependent software.

All the auxiliary routines are referred to as tools. These are data convertors,
filter modules, simulation software etc.

The core of the software module is based on a Modular Measurement System
(MMS) that has been developed in IZFP1 for non-destructive testing purposes
[24]. Nowadays MMS maintains many industrial devices and various measuring
equipment. In this work we have developed the task-dependent software and tools
compatible with MMS.

The computational module is used to perform external computations. Two
types of communication are possible. The first is direct data flow from the mea-
surement unit to FPGA and DSP devices. The second type of communication
takes place if there are no external computational devices. This is the communi-
cation with a local network which provides the possibility to perform distributed
computations. The Doppler system offers both broad functionality and modular-
ity. This provide easy compatibility of new hardware and software modules with
existing ones.

2.6 Doppler Resolution

We define spatial resolution of a CW radar to be the minimal distance between
two defects that can be recognized as separate. In Chapter 1 we have already
mentioned that CW radars do not retrieve any range information. This makes the
determination of the target-radar distance and the size of the defect impossible. As
a consequence, if there are many defects on some specimen, we can not determine
their exact number.

1Fraunhofer Institute for Non-Destructive Testing, Germany, Saarbruecken
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Figure 2.11: CW radar spatial resolution

A radar characteristic that deals with spatial resolution is a speckle size. We
redefine it to be the area that the radar irradiates being placed in a particular
spatial position (see Figure 2.11). Every point inside a speckle is irradiated by
microwaves. A speckle is characterized by its length l′ and width w′. Both l′ and
w′ depend on radiation pattern θhw, radar latitude h, and incidence angle α, see
Figure 2.11. Expressions which we use to evaluate dimensions of a speckle given
as

l′ = h (tan(α + θhw)− tan(α− θhw))

w′ =
2h

cos(α)
tan(θhw)

(2.6)

A small size of a speckle is preferable because the number of possible reflections
is reduced within reflected area.

In Section 2.3 we discussed the advantage of oblique measurements over per-
pendicular ones. This implies an angle α to be in the interval 0 < α < π/2. Under
that condition the length of a speckle l′ is always larger than its width w′, i.e. l′

is the larger dimension.
Doppler measurements become efficient with a high Doppler frequency. In

oblique measurements in order to receive high Doppler frequency fd we have to
increase angle α. When α is large, length l′ rises so that the speckle dilates. The
same effect is caused by increasing of h. Otherwise, large h ensures receiving of
only a part of reflections that go straight back to the radar. Unfortunately, large
h leads to decreasing of the intensity of microwaves what makes it difficult to
recognize small defects. If h is too low (so that the very near field is reached),
the response of the radar to the defect can be highly unpredictable. In practice a
trade-off between angle α, altitude h, and speckle length l′ must be found. Choice
of parameters is usually done by a calibration measurement and simulation.

In the following subsection we confirm equation (2.6) practically.

2.6.1 Experiment Issue

We perform two different experiments. These are measurement with constant
angle α at varying altitude h and vice versa. In this section we only represent
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Figure 2.12: Radar speckle: (a) 2D measured radar speckle, h = 100 mm; (b)
measured and modeled l′ for all h; (c) measured and modeled w′ for all h

the first part of the experiment because the results of the second experiment are
similar. The radar altitude belongs to interval from 82mm to 136mm. Angle α is
chosen to be 45 degrees.

As a defect we use a reflector (also called scatterer) of diameter d. In order
to ensure back reflection at every h we chose d to be equal to the wavelength of
the radiated microwaves. In the experiment we perform a 2D scan according to
the schema given in Section 2.4. We determine the speckle size (i.e. l′ and w′)
from acquired 2D data for every value of h as follows. We look for samples (which
belong to the speckle) in the measured data. Thus, if for some value ξ which is
associated with a sample holds

−10db ≤ ξ ≤ 0db,

then we say that this sample is in the speckle. In the latter equation (db) stands
for decibel. The decibel is a logarithmic unit used to describe a ratio. The feature
of decibel scales is useful to describe very big ratios using numbers of modest size.
The value ξ is given as

ξ = 20 log
value of current sample

maximum value over all samples
.

In our case the lower border (i.e. −10db) is taken from antenna radiation pattern,
which is expressed in db, at the angle θhw (see Section 1.4). Then, values of all
samples belonging to the speckle assigned to 1 whereas the values of the others
to 0. An example of a 2D speckle of the measured surface at h = 100mm is given
in Figure 2.12(a). As we can see, the shape of the speckle resembles to an ellipse.
From such a 2D figure we evaluate length l′ and width w′ of the ellipse. They are
compared with corresponding length and width computed by equation (2.6).
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In Figures 2.12(b) and (c) we present the measured and modeled l′ and w′ at the
given altitude h. From these results we conclude that theoretical consideration and
the experiments correspond to each other very well. It points at the correctness
of the model we suggested to evaluate a CW radar speckle size given by equation
(2.6).

We conclude that a speckle is determined by radar altitude h, incidence angle
α, and an antenna radiation pattern θhw. If inside the speckle there is only one
defect, which reflects back, then it will be detected without any ambiguity. In
case of two and many defects detection becomes more difficult. The radar receives
reflections from many defects at the same time. Every reflection represents a
signal of different amplitude and Doppler frequency. Under these considerations we
modify the output signal of the radar given in equation (1.22) to be a superposition
over k scattered signals [25, p.8]:

s(t) =
k−1∑

0

Ak(t) cos


2π

t∫

0

fd
k (t) dt


, (2.7)

where Doppler amplitudes Ak-th and Doppler frequencies fd
k -th depend on the

position of k-th defect inside the speckle. In practice it is extremely difficult to
extract Ak-th and fk-th. Often, the measured signal s is approximated as

s(t) = A(t) cos


2π

t∫

0

fd(t) dt


 , (2.8)

where A and fd are some time-varying functions.
Let us introduce the extreme values of the Doppler frequency. The equations

(1.15) and (1.16) introduces the Doppler frequency fd which is observed at the
radar when it lies on the same line of scan as the target. The Doppler frequency
is maximal if the radar moves toward the target and is minimal if the radar moves
in the opposite direction.

In the Doppler Measurement System the radar is located above the target
so that the radar speckle is elliptical. In that case the Doppler frequency has
its maximal value fd

max when the radar starts irradiating the defect (see Figure
2.13(a) and (b), location p1). It can be shown by the following argumentation. The
frequency fd

max can be computed from fd by projection of the segment (p0, p1) onto
axis x, see Figures 2.13(b). The angle of projection is given by the sum of oblique
angle α and the angle θhw which characterize the antenna radiation pattern. Thus
we have:

fd
max = fd sin(α + θhw) =

2v

λin
sin(α + θhw) (2.9)

Let us show that the minimal value of the Doppler frequency fd
min can be observed

when the defect leaves the speckle, see location p2 in Figures 2.13 (a) and (b). In
that case the projection of the segment (p0, p2) onto x axis is given by the difference
of angles α and θhw:

fd
min =

2v

λin
sin(α− θhw) (2.10)
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Figure 2.13: Extreme Doppler frequency values

We also show that if the position of the defect deviates from the line of scan
by some angle φ (see location p3 in Figure 2.13 (a)), then the maximal Doppler
frequency decreases. In such a case a value of maximal Doppler frequency fd

max is
modified by introducing a projection of a segment (p1, p3) onto x axis as:

fd
max =

2v

λin
sin(α + θhw) cos(φ) (2.11)

In general, both the Doppler amplitude A and the Doppler frequency fd (from
equation (2.8)) can be used to determine locations of defects inside the speckle.
However, in case of many defects, the interference between cosines of amplitude
Ak and frequency fd

k is possible. This may impair the measured signal so that
detection of locations of defects will not be possible.

In Chapter 3 we will present Doppler amplitude signal processing techniques.
These techniques allow processing of the Doppler amplitude independently from
Doppler frequency. Here we will discuss advantages and disadvantages of Doppler
amplitude signal processing.

From equations (2.9), (2.10), and (2.11) we conclude that the maximal and
the minimal Doppler frequencies vary with the position of the defect inside the
speckle. The Doppler frequency is steadily dropping while the radar moves from
p1 to p2. Such a variation of the Doppler frequency seems to be useful for detection
of locations of defects. Unfortunately, because of speckle symmetry the reflection
from p3 will resemble the reflection from p4 what definitely brings in ambiguity.
A Doppler frequency processing will be discussed in Chapter 4 in detail.



Chapter 3

Doppler Imaging Technique

3.1 Definitions and Notations

Definition 3.1.1 Let Tm×n be a set of matrices of arbitrary type of size m×n
such that m,n ∈ N+. Every entry (or element) of a matrix A ∈ Tm×n is addressed
as ai,j ∈ T, where i ∈ [0 : m − 1] and j ∈ [0 : n − 1]. We assume T to be an
arbitrary data type.

In this work we denote a matrix by upper-case letter of a bold style. For addressing
the particular matrix entry we use the corresponding low-case letter of a non-bold
style.

Definition 3.1.2 Let V ∈ Tm′×n′, and A ∈ Tm×n be matrices. We define ex-
traction syntax of a submatrix from A for i1, i2, j1, j2 ∈ N, m′ = (i2−i1+1) ≤ m,
and n′ = (j2 − j1 + 1) ≤ n as

V ← A[i1 : i2][j1 : j2]
where for all i ∈ [0 : m′ − 1] and j ∈ [0 : n′ − 1]
vi,j = ai1+i,j1+j

Definition 3.1.3 We introduce update syntax which is used to overwrite a sub-
matrix of a given matrix. Let A ∈ Tm×n be a matrix to be updated with entries
from V ∈ Tm′×n′, then for some A′ ∈ Tm×n and all the indices from Definition
3.1.2 we have

A′ = A[i1 : i2][j1 : j2] ← V

where for all i ∈ [0 : m− 1] and j ∈ [0 : n− 1]

a′i,j =
{

vi−i1,j−j1 if i ∈ [i1 : i2] ∧ j ∈ [j1 : j2]
ai,j otherwise

In the following we introduce shorthands for updating of i−th row and j−th
column of matrix A ∈ Tm×n:

A[i][] ≡ A[i : i][0 : n− 1]
A[][j] ≡ A[0 : m− 1][j : j]

31
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Definition 3.1.4 Let v ∈ Tn′ and a ∈ Tn be column vectors. We define extrac-
tion syntax of subvector from a for i, j ∈ N and n′ = (j − i + 1) ≤ n as

v ← a[i : j]
where for all i′ ∈ [0 : n′ − 1]
vi′ = ai′+i

Definition 3.1.5 Let a ∈ Tn be a vector to be updated with entries from v ∈ Tn′.
We introduce vector update syntax for some a′ ∈ T1×n and all the indexes given
in Definition 3.1.4 as

a′ = a[i : j] ← v

where for all i′ ∈ [0 : n− 1]

a′i′ =
{

vi′−i if i′ ∈ [i : j]
ai otherwise

In the following we define continuous and discrete versions of the Fourier
transform. The continuous Fourier transform is used to operate with analog
signals whereas the discrete Fourier transform operates with discrete ones. A
general information about time-frequency analysis can be found in the literature
[26–28].

Definition 3.1.6 The continuous Fourier transform (FT)

Fx : R→ C

of an analog signal x : R→ T is defined as

Fx(f) =

+∞∫

−∞
x(t) e−j2πft dt,

where t and f stand for time and frequency, respectively, and T is either R or C.
Here x is a time-domain signal.

The inverse continuous Fourier transform (IFT)

F−1
x : R→ C

of an analog signal x : R→ C is defined as

F−1
x (t) =

+∞∫

−∞
x(f) ej2πft df,

where x is a frequency-domain signal.

Definition 3.1.7 Let x ∈ Tn be a time-domain discrete signal. We define the
discrete Fourier transform (DFT)

F̂x : Nn → Cn
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such that for all k ∈ [0 : n− 1]

F̂x(k) =
n−1∑

l=0

xl exp
(−j2πlk

n

)
.

The inverse discrete Fourier Transform (DIFT)

F̂x : Nn → Cn

of a frequency-domain discrete signal x ∈ Cn is defined for l ∈ [0 : n− 1] as

F̂−1
x (l) =

1
n

n−1∑

k=0

xk exp
(

j2πkl

n

)

Application of function abs to the FT is called power spectrum or energy
spectral density. It shows how the energy of a signal is distributed with fre-
quency [29].

In the following definition we introduce the Hilbert transform of a discrete
signal (for reference see [30]).

Definition 3.1.8 Let x,y ∈ Rn be discrete signals such that y = F̂x. We define
the Hilbert transform Ĥx : Rn → Cn of x for all k ∈ [0 : n− 1] as

Ĥx(k) = F̂−1
y′ (k), where y′k =





0 if k = 0,

−j yk if 1 ≤ k <
n

2
,

0 if k =
n

2
,

j yk if n/2 < k ≤ n− 1

We note that the signal y′ is the modified signal y such that in Frequency domain
positive frequencies are multiplied with −j and negative frequencies with j.

The Hilbert transform is extensively used for signal processing purposes by the
radar people. By using the Hilbert transform we can compute, for example, the
amplitude a ∈ R, a > 0 and the linear-varying phase φ ∈ Rn of a cosine signal
x ∈ Rn. Let for all k ∈ [0 : n− 1]:

xk = a cos(φk),

According to [30, page 688] and applying the Hilbert transform to the signal x we
have: {

xk = a cos(φk)
Ĥx(k) = a sin(φk)

From the latter equation we derive the amplitude a and the phase φ for any k as

a =
√

(xk)2 + (Ĥx(k))2 (3.1)
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and

φk = arctan

(
Ĥx(k)

xk

)
(3.2)

Equations (3.1) and (3.2) introduce the main idea of the Hilbert transform for
detection of the amplitude and the phase of a cosine signal. In practice the radar
signals are not truly cosine (i.e. the amplitude a is a constant and the phase φ is
a linear-varying function). Very often the amplitude and the phase are arbitrary-
varying signals. Such a situation if the amplitude and the phase may lead to
errors caused by the Hilbert transform. We discuss the condition when the Hilbert
transform fails in the following in detail.

In signal processing it is convenient to operate with so-called analytic signal
which is formed from a real signal and its Hilbert transform. The definition of the
analytic signal is given below.

Definition 3.1.9 Let x ∈ Rn be a real signal defined for all k ∈ [0 : n− 1] as

xk = ak cos(φk),

where the amplitude a ∈ Rn and the phase φ ∈ Rn are arbitrary real signals. The
analytic signal associated with x is a complex-valued signal x+ ∈ Cn such that
for all k ∈ [0 : n− 1] holds:

x+
k = xk + jĤx(k) = ak (cos(φk) + j sin(φk)) = ake

jφk (3.3)

The real part of an analytic signal is called the in-phase component, whereas its
imaginary part is referred to as the quadrature component.

The function abs applied to the analytic signal x+ retrieves the amplitude a,
which is referred to as a complex envelope or simply envelope [30, page 692]. Use
of the function abs on x+ is equivalent to equation (3.1).

The function arg applied to x+ retrieves the phase φ. In the following we will
refer it to as an instantaneous phase. Use of the function arg on x+ is equivalent
to equation (3.2).

In practice, equation (3.3) does not always hold. This problem was firstly
investigated for complex signals in [31] and [32]. It was shown that equation (3.3)
is valid if abs(F̂a) (i.e the power spectrum of the signal a) and abs(F̂φ) (i.e. the
power spectrum of the signal φ) are non-overlapped in the frequency domain, see
Figure 3.1(a). If these spectra are overlapped then the Hilbert transform will be
computed with errors. In such a case equation (3.3) is modified as

x+
k = ake

jφk ± εk,

where ε ∈ Cn is some error signal. Figure 3.1(b) introduces the example when the
amplitude and the phase power spectra are overlapped.

We will use the analytic signal and its envelope in the Doppler signal processing
in order to detect an approximate position of the defect, see Section 3.2. The
analytic signal plays an important role in frequency analysis. In Chapter 4 we also
utilize the instantaneous phase for defect detection purposes.
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Figure 3.1: An example of non-overlapped and overlapped spectra: (a) Power
spectra abs(F̂a) and abs(F̂φ) are non-overlapped; (b) Power spectra abs(F̂a)

and abs(F̂φ) are overlapped

3.1.1 Doppler Imaging

In this section we introduce a formal description of a Doppler imaging. Under
the term Doppler imaging we understand formation of 2D images from the data
derived by means of the Doppler effect in microwaves. We already discussed the 2D
scan technique in Section 2.4. The scan is performed by separate line-scans over
the measured surface. Every line-scan is performed under particular conditions.
These include motion pattern, motion speed, number of samples, sampling interval
etc. Let us define performing of a line-scan in terms of the following function.

Definition 3.1.10 Let p ∈ Rk be a vector containing all the parameters which
are used to perform Doppler measurements. We define an acquisition function

acquire : Rk × N→ Rn,

such that m-th line-scan xm ∈ Rn under parameters p is given as

xm = acquire (p,m )

In fact, line-scans can be combined into a matrix so that the measured surface is
represented as 2D image. Generally, not only measured data but also the result
of any signal processing procedure can be introduced to the user in a 2D form.

Definition 3.1.11 We summarize our discussion above and define Doppler im-
age to be a 2D representation of any Doppler data. In this work we introduce
Doppler images in terms of matrices. We refer to the entry of a Doppler image
as a pixel.

Definition 3.1.12 We call a boolean Doppler image or simply boolean im-
age any Doppler image A ∈ Bm×n, where B ∈ {1, 0}.

As the next step we define a function which forms a Doppler image from separate
line-scans.
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Figure 3.2: Multi-channel Doppler measurement system

Definition 3.1.13 Let m ∈ N+ be a number of line-scans, n ∈ N be the length
of a measured signal, A ∈ Rm×n be a Doppler image, and p ∈ Rk be a vector of
parameters which is required by the function acquire, see Definition 3.1.10. We
define a function

getData : Rk × N+ → Rm×n

such that its result
A = getData(p,m)

for all i ∈ [0 : m− 1] is defined as

A[i][] ← getData(p, i)

As we can see the function getData forms and returns the Doppler image for
constant p and m ≥ 1.

Definition 3.1.13 introduces the output of the single-channel Doppler measure-
ment system such that every line-scan in the resulting Doppler image is acquired
sequentially. This certainly increases data acquisition time. In practice in order to
accelerate measurements multi-channel Doppler measurement systems are under
consideration. Such systems are able to acquire k line-scans simultaneously, where
k denotes the number of used radars.

Realization of a multi-channel Doppler measurement system is relatively sim-
ple. A number of radars are organized into an radar array so that they are equally
spaced with distance d between them, see Figure 3.2.

As we already mentioned the quality of a Doppler image depends on the step
value between line-scans. In a multi-channel measurement system the radar array
can be shifted by the step δy along axis Y , see Figure 3.2. This helps to archive
arbitrary scan resolution of the Doppler image.

In order to detect defects (or features) of the analyzed surface, signal process-
ing of the Doppler image is required. In the following section we discuss standard
signal processing. It is a set of techniques which do not need any supplementary
computational hardware and they are fast enough to perform real-time computa-
tions. The main drawback of standard signal processing techniques is their low
ability to extract information from the measured data. As the result of this we
observe a low spatial resolution of CW radar. Later in this thesis we compare
standard signal processing techniques with advanced ones which we present in
Chapters 4 and 5.
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Figure 3.3: Signal thresholding

3.2 Standard Signal Processing Techniques

3.2.1 Threshold Evaluation

In this section we discuss a threshold evaluation technique. This implies splitting
of the input data (Doppler image) into two parts according to some condition. A
pixel belongs to the first group if it satisfies the condition. If the condition does
not hold, the pixel is put into another group.

Definition 3.2.1 Let A ∈ Rm×n be a Doppler image and ε ∈ R be some threshold
value. We define thresholding function

iThresholdb : Rm×n × R→ Bm×n

such that its result
B = iThresholdb(A, ε) (3.4)

for all i ∈ [0 : n− 1] and j ∈ [0 : m− 1] is defined as

bi,j =
{

1 if ai,j ≥ ε
0 otherwise,

where entries ai,j contain the measured doppler amplitude.

In the latter definition a pixel is labeled as 0 if its amplitude ai,j is less than the
threshold. In this case we say that the area of the measured surface associated
with the pixel does not contain any defects. Similarly, an area with defects is
associated with a pixel labeled by 1.

In practice it is not obvious how to select a proper threshold value. Thus, if the
threshold it too low then many pixels will be drawn to 1. This may lead to loosing
information about defects making all the pixels indifferent. As an example we can
consider the Doppler amplitude. Since it falls as the radar passes the defect, then
the highest amplitude will correspond to the defect location. In this case in order
to identify the defect location it is better to keep pixel values which are higher
than the threshold. In the following we introduce a function which performs this
operation.
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Definition 3.2.2 Let A ∈ R be a Doppler image and ε ∈ R be some threshold
value. We define thresholding function

iThresholdv : Rm×n × R→ Rm×n

such that its result
B = iThresholdv(A, ε)

for all i ∈ [0 : n− 1] and j ∈ [0 : m− 1] is defined as

bi,j =
{

ai,j if ai,j ≥ ε
0 otherwise

The thresholding procedure fails if the amplitude of the Doppler image significantly
varies. In that case choice of a threshold becomes a difficult task. If it is too large,
then small defects will not be detected, see Figure 3.3 for threshold value ε1 and
defect 2. A low threshold value (see ε2) causes widening of an area of already
detected defects (see area Ω1 for defect 1 ), what certainly leads to degradation of
spatial resolution.

In order to overcome this problem we use a multi-thresholding technique as
given in the following. The Doppler image is split into segments so that every
segment is processed by the thresholding procedure. An image segmentation can
be done both in manual and automatic manner.

3.2.2 Image Closing

We utilize the image closing technique in order to improve microwave Doppler
imaging. This is one of the basic image processing techniques which is also known
as morphology [33], [34]. We apply image closing to boolean Doppler images
computed by procedure iThresholdb.

Because of the oscillating nature of the Doppler signal, pixels of the image
which characterize a defect are disjoint. This complicates understanding of the
resulting image. For example, detection of defect locations and their shape become
not obvious. In order to demonstrate such a situation we perform Doppler imaging
of the specimen represented in Figure 3.4(a). It is a metal plate with round holes
of different diameters. Holes are not ordered along a centerline of the object and
they rather deviate from it with different distances. Figure 3.4(b) represents the
2D Doppler image derived by procedure iThresholdb. Even all the defects are
detected well, the data which belong to the particular defect are disjoint, see
zoomed picture.

In general the image closing procedure includes two steps. These are dilation
and erosion. Let us define these procedures.

Definition 3.2.3 Let A ∈ Bm×n be a boolean Doppler image and R ∈ N+ be
some constant. We define the dilation function as

ImgDilation : Bm×n × N+ → Bm×n
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Figure 3.4: Image thresholding: (a) specimen; (b) thresholded Doppler image

Figure 3.5: Example of dilation and erosion: (a) dilation procedure output; (b)
erosion procedure output

Let B ∈ Rm×n be an output boolean image of ImgDilation(A, R), then for all
i ∈ [0 : m− 1] and j ∈ [0 : n− 1] we have

bi,j =





∨
i′, j′∈[−R ; R]

ai+i′,j+j′ if i ∈ [R : m− 1−R] ∧
j ∈ [R : n− 1−R]

ai,j otherwise

According to Definition 3.2.3 pixels (or points) which belong to the neighborhood
[−R ; R] of some non-zero pixel (i, j) are updated by 1. An example of the dilation
procedure output is given in Figure 3.5(a). Initially this image only had four pixels
set to 1, see black dots in Figure 3.5(a). The dilation procedure updates pixels
in the neighborhood of existing black ones by 1, see white dots. The number
of updated pixels around the existing one is determined by R. Here we assume
R = 1. In Figure 3.5(a) we explicitly show the neighborhood of every initially set
pixel.

A disadvantage of the dilatation procedure is widening of the resulting area



40 CHAPTER 3. DOPPLER IMAGING TECHNIQUE

Figure 3.6: Image closing result

because separate defects might be overlapped. In order to suppress this effect we
apply the erosion procedure.

Definition 3.2.4 Let A ∈ Bm×n be a boolean Doppler image which is a result of
the dilation procedure. We define an erosion function for kernel K ∈ Kp×p

(see Definition (3.2.3)) as:

ImgErosion : Bm×n × Bp×p → Bm×n

Let B ∈ Rm×n be an output boolean image for ImgErosion(A,K), then for all
i ∈ [0 : m− 1] and j ∈ [0 : n− 1] we have:

bi,j =





R∧
i′=−R

R∧
j′=−R

ki+R,j+R ∧ ai−R,j−R if i ∈ [R : m− 1−R] ∧
j ∈ [R : n− 1−R]

0 otherwise

The erosion procedure only leaves a non-zero pixel if in its neighborhood all other
pixels are non-zero. The result of this procedure for data from Figure 3.5(a) is
represented in Figure 3.5(b). We notice that the old area shrinks to the smaller
new area.

Dilation and erosion procedures allow us to combine disjoint pixels in the
boolean image without widening of the resulting area. In the next definition we
combine dilation and erosion procedures to one function.

Definition 3.2.5 We introduce an image closing procedure for the input given
in Definitions (3.2.3) and (3.2.4) as:

ImgClosing : Bm×n × Bp×p → Bm×n, where
B = ImgClosing(A,K) = ImgErosion(ImgDilation(A,K),K)

In Figure 3.6 we represent the result of the image closing procedure which is
computed for the boolean Doppler image represented in Figure 3.4(b). As we can
see image closing combines disjoint Doppler information. This certainly improves
the resulting Doppler image, compare Figures 3.4 and 3.6.

It can be also very useful to apply the image closing procedure with different
kernel sizes. These images can be used for better understanding of structure of
defects.
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3.2.3 Image Resizing

In practice the relation of width n to height m of the Doppler image is not equal
to the relation of width Ly to height Lx of the measured surface, see Section 2.4.
Here n is the length of a line-scan in samples, m is a number of line-scans equally
spaced over Lx. On the one hand, value n should be high enough to digitalize
a Doppler signal correctly. On the other hand, high m will slow down surface
measurements.

Because of this reason we perform surface measurements for large n and small
m. Then, we process a measured Doppler image by the image resizing technique.
The goal is to transform a (m× n) image into a resized (m′ × n) image such that

Ly

Lx
=

n

m′

In digital signal processing and computer vision an image resizing technique is
known as image scaling or image zooming and shrinking. There are many different
algorithms to perform image resizing. They differ in the way of interpolation of
unknown pixel by existing ones. The most popular algorithms among others are

• nearest-neighbour interpolation

• bilinear interpolation

• bicubic interpolation

Nearest-neighbour interpolation basically makes the pixels bigger. The color of
a pixel in the new image is the color of the nearest pixel of the original image.
This technique offers pure image quality and does not introduce any anti-aliasing.
Bilinear and bicubic interpolation determines the value of a new pixel based on the
weighted average of the 4 and 16 pixels in the nearest neighbourhood, respectively.
The averaging has an anti-aliasing effect and ensures relatively smooth images.
In all the experiments we did not notice a great difference between bilinear and
bicubic interpolations. In this work we utilize bilinear interpolation1 because of its
low cost, only O(max(m′, n)2). More information about image resizing techniques
can be found in [35], [36].

3.2.4 Peak Detection

Peak search technique can be useful for feature extraction from a Doppler image.
Since a Doppler image contains line-scans, where a line-scan is considered as a
signal, we define the peak search procedure for a signal. The idea of defect detec-
tion by using the peak search is based on the evidence that the Doppler amplitude
rises while the radar passes the defect. The task of the procedure is to localize
peaks of the amplitude. Under the term peak we understand a sample with a high
amplitude value surrounded by samples with low amplitude values.

The peak search procedure is given in Definition 3.2.6. Its inputs are the
signal to be analyzed and a threshold value. Often a Doppler signal is corrupted

1here we used MathlabTMimage processing toolbox
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Figure 3.7: Peak Search Algorithm

by noise what causes spurious peaks to appear. We use the threshold value to
exclude them from the result. A graphical representation of the result of the peak
search algorithm is given in Figure 3.7.

Definition 3.2.6 We define a peak search procedure as follows:

pSearch : Rn × R→ Rn

Let x ∈ Rn be a vector containing a Doppler signal and ε ∈ R be a threshold.
Then, for all i ∈ [0 : n− 1]

pSearch(x, ε)i =





1 if ∃ j′∈[0 : i− 1] xi − xj′ ≥ ε ∧ (1)

∃ j′′∈[i + 1 : n− 1] xi − xj′′ ≥ ε ∧ (2)

∀ k′∈[j′ : i− 1] xi ≥ xk′ ∧ (3)

∀ k′′∈[i + 1 : j′′] xi ≥ xk′′ (4)

0 otherwise

In order to identify whether the current sample i is a peak we use four predicates,
see Definition 3.2.6. In line (1) we check if there exists such a sample j′ on the
left from i such that xi − xj′ is not lower than threshold ε, i.e. we define the
left border of the peak. Similarly, in line (2) we determine the right border j′′

of a peak. Often, it is not sufficient to have only first two conditions to be true,
to ensure that the processed point is a peak. An example of a fault situation is
represented in Figure 3.7. We can see that the right border j′′ of a spurious peak
is located after the real peak. In order to avoid selectin of the spurious peak as
a real one, we check whether a peak candidate (at sample i) is the maximum on
the interval [j′ : j′′], see lines (3) and (4). If these conditions hold the sample i
becomes a peak.

In our experiments we observed that the peak search procedure works well even
if an analyzed signal is corrupted by noise. In practice threshold ε is determined
experimentally. The next definition introduces a function for peak detection in a
Doppler image.
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Figure 3.8: Envelope peak search

Definition 3.2.7 We define an image peak-search function

pImgSearch : Rm×n × R→ Rm×n

which applies the linear peak search function above line by line to the Doppler
Image A ∈ Rm×n. For B = pImgSearch(A, ε) and j ∈ [0 : m− 1] we define

B[j][] ← pSearch(A[j][], ε)

If we apply the peak search to the signal represented in Figure 3.3, then many
peaks will be detected. It happens because of oscillating nature of the Doppler
signal. In order to reduce the number of oscillations we build the envelope of the
incoming signal using the Hilbert transform (see Definition 3.1.8) and apply the
algorithm to it. The result of such a modification is represented in Figure 3.8,
where the detected peaks are labeled by black dots. We note that the location of
the detected peaks almost correspond to locations of the defects.

3.3 Multi-Angle Doppler Imaging

In the current section we introduce a novel approach for measurement and pro-
cessing of the Doppler images in order to receive additional information about the
specimen.

Often, Doppler image of the specimen does not show all the defects. This is
not caused by an insufficient signal processing rather by the physics. It happens
when the reflection from a defect does not propagate back to the radar. This is
the case when the defect can not be detected even if it is situated inside the radar
speckle. Obviously, the direction of propagation of reflected microwaves depends
on geometry and shape of the particular defect.

We demonstrate such a case in the following experiment. For simplicity, we
assume the geometry of the defect to be very simple. It is a circle of diameter
d = 150mm made of thin metal wire 1mm thick. In order to ensure microwave
reflection only from a circle, we place it on a flat metal surface, which is free from
any defects, see Figure 3.9(a).
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Figure 3.9: Multi-angle Doppler imaging with simple geometry: (a) scheme at 0◦

degrees scan; (b) Doppler image of (a); (c) scheme at 0◦, 30◦, 60◦ and 90◦ degrees
scan; (d) Doppler image of (c)

The Doppler image is acquired by a surface scan from left to right in the
direction pointed by the arrow at 0◦ degrees, see Figure 3.9(b). As we can see the
circle is detected partially. The reflected signal only appears on the left and right
edges of the circle whereas the rest is lost. In order to overcome this problem we
propose to perform Doppler imaging from different view directions. In the context
of the Doppler measurement system it is implemented by rotation of the sample
around its center. We perform four surface scans, namely at 0◦, 30◦, 60◦ and 90◦

degrees, see Figure 3.9(c). For every line in the measured image we compute
the envelope. In order to compute the resulting image the processed images at
0◦, 30◦, 60◦ and 90◦ degrees are arithmetically added to each other. We present
the resulting image in Figure 3.9(d). We conclude that by further measurements
all parts of the circle will be detected.

Multi-angle Doppler imaging can be done in different ways. It depends on
type the of application, possible solutions of the problem, and cost. In general,
the method of multi-angle Doppler imaging works with any method of single-angle
Doppler imaging. In the following section we give a formal description of multi-
angle Doppler imaging which suits any system implementation. We also discuss
algorithms and functions which are required to produce the resulting image.

Let us denote a sequence to be a number of Doppler images which are obtained
by multi-angle Doppler imaging of some specimen. Every image in a sequence
corresponds to a specific angle of the scan. In order to indicate which angle is
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Figure 3.10: Image rotation procedure

associated with a Doppler image we use the following notation:

Aξ ∈ Rm×n,

where A is a Doppler image and ξ is the angle at which it was acquired.
A definition of a multi-angle Doppler imaging function is given below. Its

output is a vector which contains a sequence. We utilize a vector of Doppler images
to save the whole sequence what significantly simplifies further data processing.

Definition 3.3.1 Let p ∈ Rl be a vector of parameters required by the function
getData, see Definition 3.1.13. Let k ∈ N+ be a number of scans at different angles
ξ0, ξ1, . . . , ξk−1. The size of the acquired doppler image is (m × n). We define a
multi-angle Doppler imaging function

getDataM : Rl × N+ → (
Rm×n

)k

which returns the vector of Doppler images. For v = getDataM(p,m) and i ∈ [0 :
k − 1] we define:

vi = Aξi
i , where Aξi

i = getData(p,m)

3.3.1 Image Rotation

For further processing of a sequence of Doppler images the back-rotation is re-
quired. Under this term we understand rotation of all entries of a Doppler image
around specific one at the given angle. In Figure 3.10(a) we introduce an example
of rotation of a point (i, j) around a point (0, 0) at the angle φ. The new point
has coordinates (i′, j′). The rotation of the point (i, j) can be considered in terms
of rotation of the original plane XY . In Figure 3.10(b) we denote the rotated
plane as X ′Y ′. Using simple trigonometrical transformations and Figure 3.10(b)
we derive:

i′ = i cos(φ) + j sin(φ)
j′ = j cos(φ)− i sin(φ)

(3.5)

Below we define the procedure to perform the back rotation.
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Definition 3.3.2 Let A ∈ Rm×n be a Doppler image to be rotated around some
point (x, y) ∈ R2 and ξ ∈ R is a rotation angle. We define the image rotation
function

ImgRotate : Rm×n × R2 × R→ Rm×n

which returns the rotated Doppler image. For B = ImgRotate(A, (x, y), ξ), i ∈
[0 : m− 1] and j ∈ [0 : n− 1] we define:

bi,j =
{

ai′,j′ if i′ ∈ [0 : m− 1] ∧ j′ ∈ [0 : n− 1]
0 otherwise

where i′, j′ are computed according to affine transformation (see for reference
[37]) and equation (3.5) as

i′ = (i− x) · cos(ξ) + (j − y) · sin(ξ) + x,

j′ = (j − y) · cos(ξ)− (i− x) · sin(ξ) + y

The latter equation is an updated version of equation 3.5. Here, the rotation is
performed around an arbitrary point (x, y).

Back rotation must be performed for every image from a sequence at the rotation
angle associated with it. Let us define a function which performs back rotation of
every image in a given sequence.

Definition 3.3.3 We define a sequence rotation function

seqRotate :
(
Rm×n

)k × R2 → (
Rm×n

)k
.

Let v ∈ (Rm×n)k be a sequence such that v =
(
Aξ0

0 ,Aξ1
1 , . . . ,Aξl−1

k−1

)
and (x, y) ∈

R2 be a rotation point. For v′ = seqRotate(v, (x, y)) and i ∈ [0 : k− 1] we define:

v′i = ImgRotate(Aξi
i , (x, y),−ξi)

In Definition 3.3.3 a negative rotational angle ξ ensures back rotation.

3.3.2 Image Merging

In the current section we define the image merging function. This function com-
bines all the images from a sequence into the resulting Doppler image. The output
Doppler image depicts information about defects of a specimen scanned at differ-
ent angles of view. Generally, implementation of a particular merging procedure
depends on Doppler image content. Further in the thesis we give a definition of
arithmetical merging. It performs pixel-by-pixel arithmetical summation of the
Doppler images.

Definition 3.3.4 Let v ∈ (Rm×n)k be a sequence of back-rotated Doppler images.
We define an arithmetical summation function

lSum :
(
Rm×n

)k → Rm×n.
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Figure 3.11: An artificial specimen, plate with holes and cracks

For B = lSum(v) we define:

B =
k−1∑

i=0

vi

If the sequence of images to be merged contains boolean Doppler images, then
the definition of function lSum must be slightly updated. It can be done by
changing of the arithmetical summation on to the logical summation.

3.4 Multi-Angle Doppler Imaging Results

We perform the multi-angle Doppler imaging by measuring an artificial specimen.
It is a plate made of aluminium with artificial defects such as long cracks and holes,
see Figure 3.11. Long cracks are placed on the surface at the stepwise increasing
distances between them: from 3mm to 45mm (step is 3mm). The length, width,
and depth of cracks are 100mm, 6mm, and 6mm respectively. The holes of the
specimen have different diameters. They vary from 3mm to 24mm (step is 3mm).
The placemen of holes slightly deviates from the centerline (see Figure 3.11).

Certainly, the distribution of defects represented in Figure 3.11 is not real.
For example, it is unlikely that cracks (or defects) are nested very close to each
other over the whole specimen. In this experiment both cracks and holes will
help to investigate spatial resolution ability of the Doppler image. Thus, cracks
are used to test the resolution in scan direction X. Holes will help to investigate
the resolution ability in scan direction Y . Here we are interested wheatear the
deviation of holes from the centerline will be seen in the resulting image.

We perform the experiment in two stages. Firstly, we check what is the quality
of the doppler image when the microwaves directly irradiate the surface of the
specimen. Then, we worsen measurement conditions covering the surface of the
specimen by the semi-transparent (with regard to microwaves) material2.

In the following we present colored and binary Doppler images of the exper-
iment. The color of the image is proportional to the amplitude of the measured

2we use Polyvinyl Chloride (PVC) plate of thickness of 3mm
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Doppler signal. The highest amplitude has a red color, whereas the lowest ampli-
tude has a blue color.

In the Figures 3.12(b), (c), (d), and (e) a number of Doppler images is rep-
resented. Each image was measured without covering material at angles 0◦, 45◦,
90◦, and 135◦ degrees, respectively.

Figures 3.12(b) and (d) discover vertical and horizontal borders of the speci-
men. In the image taken at 0◦ we can perfectly see holes whereas cracks appear
partially so that only their faces are recognizable. In the image taken at 90◦ we
distinguish holes and upper and lower edges of the cracks. In Figures 3.12(c) and
(e) taken at 45◦ and 135◦ degrees we also can see holes and partially cracks.

We rotate and merge images. The resulting image is given in Figure 3.12(f).
Here, all the holes except for the very last one are perfectly detected. We can
not see the smallest hole because its size is beyond the radar detection ability.
The first six cracks are also well recognizable. Although it is difficult to separate
the following cracks we still have an evidence of defects. In Figure 3.12(g) we
present a binary Doppler image. It is computed by thresholding and closing of
Figure 3.12(f) (see Section 3.2). This gives additional information that is difficult
to recognize on the colored image. In practice, both colored and binary Doppler
images are usually considered.

As the next step we perform multi-angle Doppler imaging of the same speci-
men covered with semi-transparent material (PVC plate). The resulting colored
and binary images are presented in Figures 3.13(a) and (b), respectively. Here,
disturbances and amplitude fading are caused by the plastic plate. Figure 3.13(a)
introduces significant quality degradation in comparison with the image in Fig-
ure 3.12(f). Nevertheless in both cases almost all the surface defects are well
noticeable.

As we can see, in the experiment the cracks were not detected as well as the
holes. The reason is that the cracks are situated very close to each other. It
causes multi-reflections such that an acquired signal is heavily corrupted. We
distinguish two types of corruption. In the first case spurious oscillations appear
when reflection is caused by neighbors defects. It becomes difficult to determine
real positions of the defect but it is still possible to recognize its physical presence.
In the second case an acquired signal can be nearly zero. This can happen when
reflected signals exhibit the opposite phase to each other so that their summation
is zero. This will be interpreted as an absence of the reflected signal by the radar,
i.e. as a non-defected surface what is certainly wrong. Using this consideration we
can easily explain amplitude fading in the middle range of the cracks, see Figures
3.12(f) and 3.13(a).

In addition to disturbances of the acquired signal, Figures 3.12(f) and 3.13(a)
also demonstrate low resolution ability of standard signal processing techniques.
For example, we can see that closely spaced cracks form massive spots of defects
so that details of the structure of the defects is lost. Within standard signal
processing the resolution can not be improved. In this work we discuss a proposal
for the resolution improvement in Chapters 4 and 5.

In all the experiments multi-angle Doppler imaging discovers very good stabil-
ity and reputability of results. This certainly lets us expect its possible successful
application in practice.
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Figure 3.12: Doppler Imaging, specimen without covering: (a) specimen diagram;
(b) 0◦ - Doppler image; (c) 45◦ - Doppler image; (d) 90◦ - Doppler image; (e) 135◦

- Doppler image; (f) merged Doppler image; (g) binary Doppler image



50 CHAPTER 3. DOPPLER IMAGING TECHNIQUE

Figure 3.13: Doppler Imaging, specimen with covering, PVC plate of thickness of
3 mm; (a) merged image; (b) binary image



Chapter 4

Frequency Analysis

In this chapter we discuss Time-Frequency Signal Analysis and Processing (TF-
SAP). TFSAP includes theory and algorithms which are used for processing and
analysis of non-stationary signals, i.e. signals having time-varying amplitude and
frequency [38]. In the following we examine several TFSAP algorithms, namely a
number of Time-Frequency Distributions, Polynomial-Phase Transform, methods
of Adaptive Frequency Estimation, Least-Square techniques etc. The goal of this
Chapter is to make a comparative study of different methods in order to discover
the most suitable algorithms for Doppler signal processing.

4.1 Definitions and Notations

Definition 4.1.1 The total energy (or simply energy) Ex of a signal x is defined
as a sum of all squared sample values:

Ex =
n−1∑

i=0

xi
2

We note that in the case of continuous signals the energy is defined through the
continuous integral.

Definition 4.1.2 The power Px of the signal x is defined as its average energy
per sample:

Px =
Ex
n

=
1
n

n−1∑

i=0

xi
2

Definition 4.1.3 The signal-to-noise ratio (SNR) is 10 times the logarithm
ration of signal power to noise power and is measured in decibel (or db):

SNR = 10 log
Px

Pn
,

where x and n are the signal and the noise, respectively. We note that signal-to-
noise ration is used to estimate the influence of the noise onto the signal. Low
SNR is associated with high signal corruption, whereas high SNR implies weak
signal damage.

51
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Definition 4.1.4 The mean square error MSE of two signals is used as a
measure of their unsimilarity. Thus, the lower MSE is the more similar are the
signals. Let x and x′ be two signals, then MSE for them is

1
n

n−1∑

i=0

√
(xi − x′i)2

4.2 Instantaneous Frequency (IF)

The frequency of the cosine signal is a well defined quantity. It determines the
number of oscillations within a given time period. An example of such a signal is
a cosine signal defined as

s(t) = a(t) cos(2πft + θ), (4.1)

where f and θ are frequency and initial phase, respectively. In general, amplitude
a : R→ R is an arbitrary function of time t. In the literature signals which satisfy
equation (4.1) are called stationary signals. However, in general, real signals are
not stationary. Spectral characteristics of such signals, in particular frequency, are
time-varying. These signals are referred to as non-stationary signals. Frequency
variation of a non-stationary signal is determined by instantaneous frequency (IF).
In many situations such as seismic, telecommunication, medicine, radar, speech
processing, or biomedical applications IF is used for description of physical phe-
nomena [39].

The harmonic oscillation of non-stationary nature is written as

s(t) = a(t) cos φ(t), (4.2)

where the argument φ : R→ R is called instantaneous phase and is defined as

φ(t) = 2π

t∫

0

f(t) dt + θ. (4.3)

This leads us to the following definition of the instantaneous frequency f : R→ R:

f(t) =
1
2π

dφ

dt
(4.4)

In the following we often refer the reader to equation (4.2) even if we operate
with discrete signals. Under this circumstances we have in mind the discrete
version of equation (4.2).

In Section 1.2 we have already mentioned that CW radars are widely used in
applications connected with motion. In a great number of such applications it is
assumed that an acquired Doppler signal is stationary. In order to evaluate the
Doppler frequency of a stationary signal various algorithms were suggested [40].
Among others are such techniques as zero-crossing technique, notch-filter, CSGN
algorithm, Phase-Locked-Loop (PLL), autocorrelation technique, and maximum of
the Fourier transform.
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Doppler signals measured with the Doppler measurement system are non sta-
tionary. The instantaneous frequency of these signals carries information about
geometrical properties of a defect and its location. In order to extract this infor-
mation an exact evaluation of the Doppler frequency is required. This includes
detection of the frequency variation in time with high frequency resolution. Algo-
rithms which we mentioned above do not work with non-stationary signals prop-
erly. To overcome this problem we examine and compare a number of TFSAP
methods for instantaneous frequency (IF) analysis of real and simulated data.
Tasks which can benefit from exact Doppler frequency evaluation are:

• better understanding of the nature of the Doppler frequency

• application of the Doppler frequency approach in pattern recognition appli-
cations

The former task includes evaluation and detailed examination of Doppler fre-
quency in different measurement conditions. A latter task implies distinguishing
of defects using the instantaneous frequency as a recognition pattern. In both
cases precise Doppler frequency estimation is required. That certainly depends on
algorithm effectiveness and properties of the analyzed signal.

4.3 Doppler Signal Modeling

A concept of instantaneous frequency had been first examined in the late thirties
by Carson and Fry [41] and then in 1946 by Van der Pol [42] and Gabor [43].
Nowadays the analysis of any non-stationary signal begins from the evaluation of
its instantaneous frequency. Rising popularity of IF has caused development of
various algorithms for its extraction and evaluation.

Choice of a specific algorithm for IF extraction depends on many conditions.
These are signal type1, its SNR, instantaneous frequency behavior etc. For exam-
ple, it can be difficult for some algorithm to detect rapid IF variations. Often, at
low SNR, smoothing of the signal in the time and frequency domain is required.
All above mentioned reasons can essentially reduce the number of algorithms that
can be applied for IF extraction purposes.

All modern algorithms for IF extraction requires the analytic signal as the
input. As we already discussed the analytic signal is computed with the Hilbert
transform (for reference see Definition 3.1.8). We have also mentioned that the
Hilbert transform applied to the non-stationary signal (4.2) may introduce errors.
It happens if the amplitude power spectra abs(F̂a) and the phase power spectra
abs(F̂φ) are overlapped. Errors in the analytic signal may lead to the wrong IF
estimation.

In order to test the ability of the particular algorithm to estimate IF we pro-
pose the following approach. We model the amplitude and frequency signals such
that their behavior remain the behavior of real ones. By using modeled amplitude
and frequency we produce a discrete non-stationary signal according to equation

1the signal can be real, complex, stationary, or non-stationary etc. Many practical algorithms
are very sensitive to the type of the input signal. Thus, in practice the signal is transformed into
an appropriate type before the algorithm is applied.
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Figure 4.1: Multi-defects experiment: (a) artificial specimen; (b) Doppler acquired
signal; (c) Doppler instantaneous frequency

(4.2). Applying the Hilbert transform to that signal we compute the analytic
signal and extract its instantaneous frequency. We compare extracted and mod-
eled instantaneous frequencies and make a conclusion about applicability of the
algorithm for IF extraction purposes.

In order to observe alternation of the Doppler frequency of a real signal we per-
form measurements on an artificial specimen. This is a plate with point scatterers
equally spaced along the line of scan, see Figure 4.1(a). A large number of defects
(point scatterers) allows us to produce extremely varying Doppler frequency.

The acquired Doppler signal and its instantaneous frequency are represented
in Figures 4.1(b) and 4.1(c), respectively. As we expected, the Doppler frequency
exhibits non-trivial alternating. In order to model similar behavior of an instan-
taneous frequency a special technique is required.

4.3.1 Doppler Frequency Modeling

Literature offers different approaches for modeling of IF. According to the ap-
proach given in [44] it is proposed to model a non-stationary Doppler signal as the
following function

z(t) = e−
t2

α2 ej2πf0t, (4.5)

where f0 is the middle Doppler frequency and α is some real-valued coefficient.
From equation (4.5) we conclude that the time-varying Doppler frequency changes
linearly. Extraction of the linear instantaneous frequency is discussed in [45, 46].
Clearly, equation (4.5) can not describe the real IF signal shown in Figure 4.1(c).

In [47] Young Bok Ahn and Sing Bai Park proposed to model a power spectrum
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r of a non-stationary signal through the Gaussian centered at the frequency fm

with standard deviation σ:

r(f) =
1

σ
√

2π
exp

(
−(f − fm)2

2σ2

)
. (4.6)

In order to make the power spectrum r more real it is artificially corrupted by
noise so that the modified power spectrum P is given as

P (f) = − ln g(f)


10

SNR
10 r(f)∑

f

r(f)


 , (4.7)

where g returns random numbers uniformly distributed between zero and one. The
modeled Doppler signal z in time domain is computed from the power spectra P
applying the inverse Fourier transform as:

z(t) = F−1
P (f)

The latter modeling approach can be used to examine influence of the noise
onto the Doppler frequency. A significant drawback of the approach is that the
definition of power spectra r and P does not allow to model time-varying Doppler
frequency.

Another approach to model non-stationary signals is based on the assump-
tion that instantaneous frequency of the signal has sinusoidal form [48]. On the
one hand analysis of such signals explores the ability of algorithms to extract
dynamically-varying instantaneous frequency. On the other hand the sinusoidal
instantaneous frequency does not describe a non-trivial behavior of the frequency
of a real measured signal.

In [49] Yuanyuan Wang and Peter J. Fish proposed to model an instantaneous
frequency f by filtering the white gaussian noise, for reference see [49,50]. In the
following we denote the noise by n. An example of a white gaussian noise is shown
in Figure 4.2(a). The function which is also used in the modeling is called impulse-
response h. The function h : R × R → R defines parameters of the filter2 which
is not constant but time-varying. Since the noise n occupies the whole power
spectrum, then by its filtering with time-varying filter we achieve non-stationary
behavior of the resulting signal (i.e. filtered signal). Thus, the instantaneous
frequency is modeled as follows:

f(t) =
∫

n(t− τ)h(τ, t) dτ (4.8)

A definition of the time-varying impulse response is given in terms of the
Gaussian as follows:

h(τ, t) = a exp
(
− τ2

2σ2
t (t)

)
. (4.9)

2power spectrum of the filter, its width and the central frequency positions
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21

Figure 4.2: Modeled Doppler frequency: (a) an example of a white gaussian noise
n; (b) an example of impulse response h; (c) modeled doppler frequency f

In equation (4.9) the width σt of a gauss function depends on time. Such a time-
varying nature of σt makes it possible to model extremely non-stationary signals.
According to [51] the function σt is defined as

σt(t) =
1

2
√

2πσf (t)
, (4.10)

where σf is called the gaussian bandwidth and defines the time-varying width of
the power spectrum of h in frequency domain. In this work we assume that

σf (t) = cos(2πf ′ t) + c

where constants f ′, c ∈ R are set experimentally until the demanded form of f
appears. An example of the function h for σt computed by using the latter equation
is shown in Figure 4.2(b). As we can see it is the Gaussian which changes its width
with time according to a harmonic law.

Usually extreme values of the modeled Doppler frequency do not correspond
to the extreme values of the real Doppler frequency. Thus, the modeled Doppler
frequency must be normalized in order to match a real frequency range. The defini-
tion of the normalization function is given below. The lowest value of f is assumed
to be equal to the minimal Doppler frequency fd

min, see equation (2.10). Analo-
gously, the maximum value of f corresponds to fd

max, which is given in equation
(2.9). In Figure 4.2(c) we present the modeled and then normalized instantaneous
Doppler frequency. We notice that the modeled Doppler frequency represented
in Figure 4.2(c) behaves similarly to the real Doppler frequency represented in
Figure 4.1(c).

Definition 4.3.1 We define the normalization function

mnorm : Rn × R× R→ Rn.
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Figure 4.3: Doppler frequency normalization example: (a) modeled Doppler fre-
quency; (b) normalized Doppler frequency

Let f ∈ Rn be the modeled Doppler frequency and f∗max = max(f) and f∗min =
min(f) are its maximal and minimal values, see Figure 4.3(a). Let fmax, fmin ∈ R
be the maximum and the minimum of the normalized modeled Doppler frequency

f ′ = mnorm(f , fmax, fmin),

see Figure 4.3(b). The entries of f ′ are defined for all i ∈ [0 : n− 1] as

f ′i = fmin +
fmax − fmin

f∗max − f∗min

· (fi − fmin)

4.3.2 Doppler Amplitude Simulation

As we already discussed in the beginning of the current section the modeling of the
non-stationary Doppler signal given in equation (4.2) requires modeling not only
the instantaneous frequency f (i.e. the Doppler frequency) but also the amplitude
a. The modeling of the amplitude can be successfully done by using equation
(4.8). The only difference with frequency modeling is that we compute not the
frequency f but the amplitude a. Here, the gaussian bandwidth function σf which
is used in computation of impulse response h is linearly varying i.e.

σt(t) = a · t + b,

where coefficients a, b ∈ R are chosen by the user.
In Figures 4.4(a) and (b) we compare measured and modeled Doppler signals.

As we can see the behavior of these signals is very similar. The amplitude of both
signals rises and falls so that separate shapes appear. The frequency varies what
leads to the changing time distance between oscillations. Similar behavior of both
signals lets us to expect that the method for Doppler signal modeling was chosen
correctly.

In the following we represent comparative analysis of different algorithms for
IF estimation. We examine the ability of algorithms to extract the instantaneous
frequency of a modeled Doppler signal at different noise levels. For that reason
we add the white gaussian noise of different levels to the modeled signal given in
Figure 4.4(b). The range of Signal to Noise Ratio (SNR) changes from −10db to
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Figure 4.4: Measured and modeled Doppler signals: (a) measured Doppler signal;
(b) modeled Doppler signal; (c) modeled Doppler signal with noise, SNR=10db
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35db. In Figure 4.4(c) we represent an example of the noised modeled Doppler
signal with SNR=10db.

Algorithms to be researched take as an input the analytic signal computed from
the modeled Doppler signal with noise by using the Hilbert transform. Then, we
extract the instantaneous frequency and compare it with the modeled one, given
in Figure 4.2(c).

4.4 Frequency Estimation Techniques

4.4.1 Zero-Crossing IF estimator

In the literature it was shown that the Zero-Crossing estimator is highly inaccu-
rate at extraction of instantaneous frequency of a non-stationary signal, see for
reference [52]. Thus, for example, the variations of instantaneous frequency within
a period of the signal cannot be estimated at all. The reason why we introduce
Zero-Crossing IF estimator is the following. In many situations it is impossible to
estimate instantaneous frequency of a signal by applying the frequency extraction
algorithm to the whole signal. The only solution is to split the signal into data seg-
ments of some length and estimate IF frequency for every segment separately. We
call such an approach a segmentation technique. In this thesis we utilize the Zero-
Crossing estimator as a preprocessing technique for computation of the length of
a data segment which is used as an input by more advances algorithms.

The Zero-Crossing estimator does not require any supplementary preprocess-
ing except smoothing, see for reference [53]. Smoothing reduces spurious zero-
crossings by rejecting the higher frequencies. The Zero-crossing estimator pro-
cedure seeks in the input signal for entries which pass through zeros, i.e. zero
crossings. The Double time distance between two successive zero-crossings is re-
ciprocal to a frequency in this interval. The following definition of Zero-Crossing
procedure is based on the assumption that an input signal has at least two zero-
crossings.

Definition 4.4.1 We define a zero-crossing function

ZeroCrossing : Rn → Rm.

Let x ∈ Rn be a signal to be processed, m < n. The entries of the signal z =
ZeroCrossing(x) are defined for all i ∈ [0 : m− 1] as:

zi = k, where
(xk ≥ 0 ∧ xk+1 < 0) ∨ (xk < 0 ∧ xk+1 ≥ 0) ∧ k 6= 0 ∧ k 6= n− 1.

The predicate given above is used to find zero-crossings by checking the relation
at (k)-th and (k +1)-th samples of the input signal x. We notice that its 0-th and
(n− 1)-th samples are not considered.

We compute instantaneous frequency fx ∈ Rn of the input signal x for all
i ∈ [0 : n− 1] as

fxi =
1

2 4 t (zj+1 − zj)
if zj ≤ i < zj+1, where j ∈ [0 : m− 2] (4.11)
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Instantaneous frequency at boundaries (i.e. fx[0 : z0− 1]) and fx[zm−1 : n− 1] are
filled from their closest already computed samples.

We assume the length of a data segment w to be the average period over the
Doppler signal which is computed as follows:

w =

2
m−2∑
j=0

(zj+1 − zj)

m− 1
(4.12)

In the following we will discuss length of a data segment and the segmentation
technique in more details.

4.4.2 Adaptive IF Estimation

The adaptive IF estimation includes a great number of different techniques for
instantaneous frequency extraction. One of the basic techniques is called Phase
Locked Loop (or shortly PLL). This technique is widely used in Doppler applica-
tions such as traffic control [25]. PLL’s drawback is its inability to track rapid
changes in the instantaneous frequency. A general information about PLL tech-
nique can be found in [54,55].

Another group of adaptive IF estimators is based on linear prediction of mea-
sured data. In this work we examine the Least-Mean Square (LMS) adaptation
algorithm which was introduced in [56]. The idea of the LMS algorithm is to a
find vector of prediction coefficients gk = (gk

0 , gk
1 , . . . , gk

L−1) ∈ CL, where L ∈ N+,
for every sample xk of the input analytic signal x ∈ Cn. These coefficients are
used to compute so-called prediction sample x′k so that the difference (or error)
between predicted sample x′k and original sample xk is minimal i.e.:

min
gk∈RL

ε = (xk − x′k)
2 for all k ∈ [0 : n− 1] (4.13)

According to the definition given in [56] prediction sample x′k is computed from a
data segment x[k − L : k − 1] of length L as follows:

x′k =
L−1∑

l=0

gk
l xk−l−1, (4.14)

In general, the vector of prediction coefficients gk determines spectral charac-
teristics of k-th sample of the input analytic signal x. One of these characteristics
is the instantaneous frequency. In order to compute the k-th instantaneous fre-
quency we have to solve the following maximization task:

fxk =
p

m · 4t
such that max

p∈[0:m−1]
q(gk), (4.15)

where p ∈ N is a sample index, m ∈ N is a number of frequencies, 4t ∈ R is a
sampling interval, and q(gk) ∈ Rm is called a prediction spectrum. The predic-
tion spectrum is unique for every vector of prediction coefficients gk and can be
computed for all p ∈ [0 : m− 1] as

q(gk)
p =

∣∣∣∣∣1−
L−1∑

l=0

gk
l exp

(
−j2πp (l + 1)

m

)∣∣∣∣∣

−2

.
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The choice of a number of frequencies m depends on desired frequency resolution
of the problem (4.15). In practice m is determined experimentally. Usually it is
assumed to be some large value which ensures smoothness of prediction spectrum
qgk

.
A computation scheme for finding the prediction vector gk utilizes a steepest

descent approach. This approach works in an iterative way:

gk,j+1 = gk,j − (
µ · (xk − x′k)

)
x[k − L : k − 1], (4.16)

where µ is a convergence parameter, gk,j denotes value of gk at iteration j. The
computation of k-th prediction vector starts from the assignment gk,0 = gk−1

where gk−1 denotes prediction vector computed for the previous data sample (k−
1). The process (4.16) stops when ε becomes less or equal to some constant ε and
satisfies the following condition:

ε ≤ ε. (4.17)

Since the number of unknown coefficients L is usually small the steepest de-
scent procedure (4.16) converges quite well. A detailed analysis and theoretical
fundamentals of LMS algorithm are given in [57, pages 231-319]. A short survey
of steepest descent methods can also be found in Chapter 5 of this thesis.

Selection of length L, the initial values g0,0, and constant µ is studied in [56].
In practice, L is usually chosen experimentally analyzing measured and simulated
data. According to the latter reference we should choose

µ =
α

L
, (4.18)

where α is in range from 0.1 to 1.0. The initial value of prediction vector affects
the convergence speed of LMS algorithm. In the thesis we let g0,0 to be vector of
zeros.

An important advantage of the LMS algorithm is its ability to evaluate IF only
from L known previous samples of the input signal so that the length L is very
short3. Thus, the LMS algorithm does not require information about the whole
signal length and can evaluate IF with every new received data sample not waiting
for the end of data acquisition.

One more advantage of the LMS algorithm is its computational efficiency. This
algorithm is considerably faster than other IF algorithms we will consider later.
Unfortunately, real signals are not perfectly predictable, in particular, because of a
presence of noise. This reason causes extremely slow convergence of the algorithm
in the sense of condition (4.17). In order to prevent endless algorithm repetitions
it is stopped when a certain number of iterations maxIter is reached. Of course
this leads to wrong instantaneous frequency estimation.

We tested the LMS algorithm at different levels of noise from SNR=−10db
to SNR=35db (SNR is given in Definition 4.1.3). We added the noise to the
modeled Doppler signal4 (for reference see Sections 4.3.1 and 4.3.2) whose instan-
taneous frequency is known. By using the Hilbert transform we computed the

3L is referred to as short in comparison with, for example, length of a data segment which is
required by such techniques as the Fourier Transform, Zero-Crossing, or other algorithms we will
consider further in the thesis

4the length of the modeled Doppler signal is 1024 samples
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Figure 4.5: LMS algorithm testing

analytic signal and processed it with the LMS algorithm in order to compute the
instantaneous frequency. Afterwards, we computed the mean square error (MSE)
between modeled and computed instantaneous frequency for every noise level, see
Definition 4.1.4. In Figure 4.5 we introduce the result of the LMS algorithm for
different data segment lengths L. The test shows that the LMS is very sensitive to
the presence of noise. The noise causes incorrect estimation of the instantaneous
frequency from SNR=−10db to about SNR=20db. A sufficient low average MSE
is only reached from SNR=25db to SNR=35db. Here MSE is about 0.95Hz at the
length L = 6. Such a high noise sensitivity makes LMS useless in real Doppler
applications which are connected with instantaneous frequency estimating.

In the simulations the best frequency approximation was derived at L = 6. If
L is too low (see in the figure L = 2), then IF cannot be estimated because of the
lack of information in the prediction spectrum. Otherwise, if L is too high (see
L = 18), then IF is over-estimated, i.e. the prediction does not have pronounced
peak corresponding to the instantaneous frequency.

4.4.3 Linear Least Squares IF Estimation LLS

The Linear Least Squares algorithm (or shortly LLS) belongs to the group of
algorithms which are based on polynomial phase modeling of the analyzed signal.
This introduces a discrete instantaneous phase φ ∈ Rn defined from equation (4.2)
for i ∈ [0 : n− 1] as

φi = φ(i · 4t) = b0 + b1 i + b2 i2 + . . . + bp ip =
p∑

k=0

bk ik, (4.19)

where 4t is a sampling interval, p denotes a polynomial order and b ∈ Rp+1 is a
vector of polynomial coefficients.

A polynomial approximation of the instantaneous phase requires an implicit
assumption about the nature of the analyzed signal. For example, high p is used
to model a rapidly varying phase, whereas low p is responsible for a slow-varying
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one. In order to decide which polynomial p can be used in the case of a Doppler
signal we perform comparative analysis of real and modelled data.

By substitution of (4.19) into (4.4) we derive a definition of instantaneous
frequency in terms of polynomial coefficients:

fi =
1
2π

p∑

k=1

k bk ik−1. (4.20)

Before the LLS algorithm starts, a rough approximation of the instantaneous phase
is performed. It can be done by applying function arg (see Definitions 1.1.7 and
3.1.8) to an analytic signal z ∈ Cn, which is associated with the analyzed Doppler
signal, as

φ′ = arg (z). (4.21)

The entries of the instantaneous phase φ′ are computed for all i ∈ [0 : n − 1] as
given below

φ′i = arctan
(

Im(zi)
Re(zi)

)

The phase φ′ defined in (4.21) contains discontinuities when Re(zi) is zero. To
remove these discontinuities a phase unwrapping procedure is applied to φ′. The
definition of an unwrapping phase procedure is given in Appendix A.0.1. In the
following we denote φ to be the unwrapped version of φ′.

The LLS algorithm derives the vector of polynomial coefficients b which is
used to compute IF through equation (4.20) by solving the following system of
linear equations:

φ = Hb, (4.22)

The solution of equation (4.22) is proposed in [58, p.49] as follows:

b =
(
HTH

)−1
HT φ,

where entries of matrix H are defined for i ∈ [0 : n− 1] and j ∈ [0 : p ] as

hi,j = ij .

Let us denote a function which implements the LLS algorithm i.e. it returns
computed instantaneous frequency according to equation (4.22) such as

LLS : Rn × R→ Rn, (4.23)

where its first and second arguments are the unwrapped phase and the polynomial
order p. A general idea behind LLS is to approximate and smooth the instanta-
neous phase φ by a polynomial. Smoothing is needed since in general φ contains
errors because of two main reasons. First of all in real situations the instantaneous
phase is corrupted by noise. Thus, even small noise in the denominator of function
arg may cause significant errors in the resulting signal φ′. Clearly, errors in φ′ will
also appear in φ. The second reason of corruption of φ can be explained through
errors introduced by the Hilbert transform (for more information see Definition
3.1.8).
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Figure 4.6: Segmentation algorithm

We note, that the modeled frequency represented in Figure 4.2(c) cannot be
approximated by any polynomial along its entire length. Instead, we suggest to
split the input signal into segments and approximate each segment with some
polynomial. The segment size (window size) w is assumed to be equal to the aver-
age period computed by Zero-Crossing IF estimator, see equation (4.12). Wrong
choice of the window size w may lead to incorrect frequency estimation. Hence,
at long segments the computed instantaneous frequency (output of the LLS al-
gorithm) may be heavily over-smoothed what leads to degradation of frequency
resolution. With short segments the computed instantaneous frequency may be
detected completely wrong because of insufficient information about the analyzed
signal.

Definition 4.4.2 We define segmentation function

segLLS : Rn × R× N+ → Rn

Let φ be the unwrapped instantaneous phase of an analytic signal, w be a segment
size, and p be a polynomial order. We define the instantaneous frequency f ∈ Rn

is defined as
f = segLLS(φ, p, w),

where for all j ∈ [0 : n− 1 ] ∧ i = max(0, j − w + 1) (1)

fj =

∑
∀k∈[i:j]

LLS(φ[k : k+w−1], p )
j−k

(j−i+1) (2)

Let us consider the segmentation technique by the example given in Figure 4.6,
where w = 4. The window slides along φ one by one sample. For every segment
an instantaneous frequency is computed using LLS algorithm. Thus, at specific
sample j there will be computed at most w frequency values f ′3, f ′2, f ′1, and f ′0,
see in the figure. Then, j-th instantaneous frequency value fj is computed as their
average.

According to Definition 4.4.2 the function segLLS is executed into two stages
for every j. At first, see line (1), intervals of phase signal entries with base k ∈ [i : j]
are determined. These entries participate in the forming of k-th frequency sample.
Then, in line (2) the intervals mentioned above are processed by LLS and fj-th
frequency sample is computed.
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Figure 4.7: LLS algorithm testing

In the following we test the ability of the LLS algorithm to extract the instan-
taneous frequency. Testing methodic and the modeled data are the same we used
to test the LMS algorithm in the previous section.

In all tests the LLS algorithm without segmentation did not extract the instan-
taneous frequency correctly even at high polynomial order p for all noise levels. It
can be explained in terms of the non-trivial behavior of the modeled instantaneous
frequency given in Figure 4.2(c).

Applying the segmentation technique we achieve better performance of the LLS
algorithm. However in the tests the LLS algorithm with segmentation did not show
high resistance to noise. It only retrieves good estimation of the instantaneous
frequency at about SNR = 17db and higher.

In general the segmentation can be done in two ways. The first, is co-called
overlapped segmentation (given in Definition 4.4.2). In overlapped segmentation
the window is shifted by one sample. Such segmentation increases both the com-
putational time and resolution of the estimated frequency. The second, is co-called
non-overlapped segmentation. In non-overlapped segmentation the window slides
by its length what can significantly decrease the frequency resolution . In Figure
4.7 the average MSE difference between curves (overlapped and non-overlapped
segmentation) is about 2Hz. Such a value is significant since it may be equivalent
up to 10% of overall instantaneous frequency range variation. The overlapping
segmentation is particulary efficient for long data segments. In the following we
always use the segmentation technique for instantaneous frequency extraction.

4.4.4 Polynomial Phase Difference IF Estimator PPD

The PPD technique also belongs to polynomial phase modeling algorithms. It
can be considered as the advanced version of the conventional phase-difference
technique for instantaneous frequency estimation. Its main advantage is high
noise resistance. The phase difference technique is entirely based on equation
(4.4), where φ is the unwrapped phase. This equation requires computation of
the time derivative of φ. The approximation of the derivative in the case of discrete
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signal can be obtained by using finite differences. The most appropriate form of
these is the central finite difference (CFD) [52]. The central finite difference f∗ (i.e.
the instantaneous frequency) can be derived for every sample of an instantaneous
unwrapped phase φ ∈ Rn for all i ∈ [0 : n− 1] and sampling interval 4t as:

f∗i =





1
2π

1
4t

q∑
j=0

bj φi−q+j if q/2 ≤ i ≤ n− q/2− 1

0 otherwise
, (4.24)

where q is a derivative order, and b ∈ Rq+1 is a vector of derivative coefficients
(see Table below). The order of CFD is assumed to be even i.e. q ∈ [2, 4, . . .].
The coefficients of CFD b can be computed from discrete Taylor expansion for
particular q, for reference see [59]. Below we represent derivative coefficients for
the first three even CDF’s orders:

order q vector of coefficients b

2 −1
2 0 1

2

4 1
12 −2

3 0 2
3 − 1

12

6 − 1
60

3
20 −3

4 0 3
4 − 3

20
1
60

With high q an instantaneous frequency becomes more exactly evaluated. In
practice CFD of 4-th or 6-th order is preferable. Increasing of q above does not
affect the result, rather q/2 boundary samples become undefined, for details see
equation (4.24).

The idea of PPD technique is to find a vector of real-valued coefficients a =
(a1, a2 . . . , ap)T such that an instantaneous frequency f ∈ Rn is defined for all
i ∈ [0 : n− 1] as

fi = a1 + 2 a2 i + 3 a3 i2 + . . . + p ap ip−1, (4.25)

where p is the polynomial order (similarly to LLS algorithm). The problem of
estimation of the parameters a is solved in [52] as:

a = (XTC−1X)−1(XTC−1f∗), (4.26)

where C and X are known as covariance and PPD-core matrixes, respectively.
Similarly with the LLS algorithm a segmented version of PPD is preferable,

see Section 4.4.3. This requires reformulation of C and X for the particular data
segment size w:

Ci,j =





q−|j−i|∑
k=0

bk bk+|j−i| if |j − i| ≤ q

0 otherwise
, (4.27)

where C ∈ R(w×w) and i, j ∈ [0 : w−1]. A PPD-core matrix X ∈ R(w×p) is defined
for i ∈ [0 : w − 1] and j ∈ [1 : p] as

Xi,j = j · (i)j−1. (4.28)
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Figure 4.8: PPD algorithm testing: (a) general testing of the PPD algorithm; (b)
testing of the overlapped and non-overlapped segmentation

We do not introduce a complete definition of PPD algorithm since it can be done
analogously with LLS algorithm, see Definition 4.4.2. Here LLS function is directly
substituted by PPD function. We only notice that in the case of segmented PPD
equation (4.26) uses instead of full f∗ its particular data segment of length w.

The only difference between PPD and LLS techniques is that in PPD an in-
stantaneous frequency is fitted by the polynomial where its approximate value is
taken from finite derivative. In the LLS algorithm computation of instantaneous
frequency is not required. Instead, the unwrapped phase is approximated by a
polynomial.

In Figure 4.8(a) we test the PPD algorithm with segmentation. For SNR
higher than 5db it estimates an instantaneous frequency very well. We have ex-
amined PPD for different polynomial orders (namely 2, 3 and 4). Deviation of
the estimated IF from the original one is 1, 0.45, and 0.3Hz, respectively. The
following increasing of the polynomial order degrades IF estimation.

In Figure 4.8(b) we examine the PPD algorithm for overlapped and non-
overlapped segmentation. Similarly with the LLS algorithm the PPD with over-
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lapped segmentation shows the highest frequency resolution. The advantage of the
overlapped segmentation over non-overlapped one was observed for all polynomial
orders.

Apart from PPD and LLS there are two more algorithms which belong to the
group of polynomial phase modeling techniques. These are ML Based Polynomial
Coefficient Estimation Procedure (MLBP) and Discrete Polynomial Phase Trans-
form (DPPT). MLBP is referred to as an extremely high-cost technique. It is also
very difficult to adjust its parameters. Because of this we do not discuss MLBP
in this work. For more information reader can find its description in the following
literature [52, 59, 60] and [58, pages 45-48]. The DPPT algorithm will be defined
and examined in Section 4.4.6.

4.4.5 Time-Frequency Distribution (TFDs)

Generally, in signal processing there are two classical representations of a signal.
These are time-domain representation x : R→ C where the argument of x is time
t and the frequency-domain representation given by the Fourier Transform as
Fx : R→ C, where its argument is frequency. The purpose of TFDs is to combine
time and frequency representations so that a signal can be expressed in terms of
a function which takes time and frequency as its arguments. Let us denote px :
R×R→ R to be a TFD of a given signal x. Such a two-dimensional representation
of a signal might be very helpful in extraction of its different characteristics. These
are instantaneous frequency, number of frequency components which correspond
to particular time etc.

There is a number of properties of TFDs which are studied in detail in [61,
page 60]. We are especially interested in two of them. The first is the energy
conservation property:

Ex =

+∞∫

−∞
|x(t)|2 dt =

+∞∫

−∞
|Fx(f)|2 df =

+∞∫

−∞

+∞∫

−∞
px(t, f) dt df , (4.29)

where x is an analytic signal, Ex is its energy, and px is some TFD of a signal.
The first two terms of equation (4.29) represent conservation of energy of a signal
in time and frequency domains, respectively. The latter term implies the energy
conservation property of any Time Frequency Distribution of a given signal.

A typical Doppler signal and its TFD5 are represented in Figure 4.9(a) and (b),
respectively. Here we can see that the major part of the energy is concentrated
inside some area. Its size is determined by time and frequency intervals. Thus,
in time interval [t1 : t2] the signal is non-zero. The frequency interval [f1 : f2]
includes all the frequencies which participate in the signal formation.

The second property of TFD we are interested in is the instantaneous frequency
determination. For continuous analytic signals x, their instantaneous frequency

5this TFD was computed by using Time-Frequency Toolbox [62]
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Figure 4.9: TFD distribution: (a) real part of analytic Doppler signal: Re(z); (b)
TFD of z

fx is defined as the first moment of the particular TFD [63]:

fx(t) =

+∞∫
−∞

f px(t, f) df

+∞∫
−∞

px(t, f) df

(4.30)

In literature it has been shown that a great weakness of TFDs is a presence of
artifacts, see Figure 4.9(b). The main reason why artifacts appear can be explained
through the quadratical nature of TFDs (see definitions of TFDs below). Let the
analyzed signal x be a sum of two elementary signals a and b. The TFD computes
the square of the input signal such that x2 = (a + b)2 = a2 + b2 + 2ab. Thus the
result of this is a three-term equation such that the first two terms are simply
squared elementary signals. The third term (also called cross term) introduces
multiplication of this signals what leads to degradation of the TFD, i.e. artifacts.

Because of presence of cross-terms the instantaneous frequency computation
through equation (4.30) may be unreliable. Instead, it is suggested to estimate
instantaneous frequency as follows.

Definition 4.4.3 Let us define the maximum TFD function

maxTFD : Rm×n → Rn

Let Pz ∈ Rm×n be a TFD where m and n stand for number of frequency and time
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samples, respectively. We compute the instantaneous frequency f ∈ Rn is given as

f = maxTFD(Pz)
where for all i ∈ [0 : n− 1]
fi = j such that for all j, k ∈ [0 : m− 1] and k 6= j

pzj,i > pzk,i

The latter definition represents the search of such a frequency j at every time
instant i of the TFD so that it exhibits maximal value. In all experiments instan-
taneous frequency estimation with function maxTFD showed higher stability and
reliability than with equation (4.30).

The most popular group of TFDs belongs to Cohen’s class of distributions. A
basic TFD which is usually under consideration is the Wigner Distribution (WD)
called in honor of its discoverer. Let us discuss the principle of detection of the
instantaneous frequency of a unit-amplitude analytic signal by means of the WD.

The unit-amplitude analytic signal is defined as:

z(t) = ejφ(t),

where φ is an instantaneous phase (for reference see equation (4.3)). The instan-
taneous frequency of z is given as

f(t) =
1
2π

∂φ

∂t
. (4.31)

In [61] it is suggested to use the following approximation of the derivative ∂φ/∂t:

∂φ

∂t
≈ 1

τ

[
φ

(
t +

τ

2

)
− φ

(
t− τ

2

)]
, where τ ∈ R (4.32)

The Wigner Distribution pz : R×R→ R of the signal z is defined in [61, pages
30-31] as:

pz(t, f ′) =

+∞∫

−∞
ej2πf(t)τ e−j2πf ′τdτ (4.33)

By substitution equations (4.31) and (4.32) into equation (4.33) we derive:

pz(t, f ′) =

+∞∫

−∞
ej[φ(t+ τ

2 )−φ(t− τ
2 )] e−j2πf ′τdτ

=

+∞∫

−∞
z(t +

τ

2
) z∗(t− τ

2
) e−j2πf ′τ dτ

(4.34)

where z∗(t) denotes complex conjugate number for z(t).
An idea behind equation (4.34) is the following. The integral over all τ for the

Wigner Distribution pz at specific instance (t, f ′) has the highest value if the in-
stantaneous frequency f(t) is equal to f ′ (see equation (4.33)). This consideration
holds for all instances t, f ′ ∈ R.
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Figure 4.10: An example of the Wigner Distribution of the signal with liner-
varying instantaneous frequency: (a) a real part of the unit-amplitude artificial
signal s; (b) the linear-varying instantaneous frequency of the signal s of range
from 30 Hz to 200 Hz; (c) the Wigner Distribution ps of the signal s

In Figure 4.10(a) we introduce an example of some unit-amplitude artificial
signal s : R → C. This signal has a linear-varying frequency f : R → R of
range form 30 Hz to 200 Hz, which is shown in Figure 4.10(b). In Figure 4.10(c)
we represent the Wigner Distribution ps of the signal s. Here we can see that
ps(t, f ′) > ps(t, f ′′) for all f ′, f ′′ ∈ R such that f ′ 6= f ′′ and f ′ = f(t). The latter
inequality makes it possible to determine the instantaneous frequency of the given
signal from its Wigner Distribution.

In the literature it was shown that equation (4.34) has significant limitations.
This includes inability of WD to estimate non-linear instantaneous frequency.
Generally, WD shows low frequency resolution and high sensitivity to the cross-
terms. These limitations make difficult estimation of the instantaneous frequency
of a real Doppler signal, for reference see [64]. In order to increase performance
of WD, a natural solution is to apply smoothing windows for both frequency and
time. It has given reason for the formulation of Pseudo Wigner-Ville (PWV)
and smoothed Pseudo Wigner-Ville (SPWV) distributions. In the following we
will study different TFDs by example of PWV and SPWV since other known
distributions are defined in a similar ways. We will also compare performance
of the distributions in instantaneous frequency estimation on real and modelled
Doppler data.

As we have already mentioned, PWV can be derived from (4.34) by extension
with frequency smoothing window in the time-domain. In signal processing there
is a grate number of already defined windows. They have different shape and can
be used to adjust the smoothing to the analyzed data. In Figure 4.11(a) and (b)
we introduce the Hamming and the flat top window, respectively. As we can see,
for example, the Hamming window is only positive defined, whereas the flat top
windows also has negative values. The reader can find more information about
smoothing windows and their application in [65]. In this this work we used the
Hamming windows (Figure 4.11(a)) because it helped to reduce the artifacts the
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Figure 4.11: An example of smoothing windows (a) the Hamming window; (b)
the flat top window

best among the other windows.
By taking in to account the frequency smoothing window h in time domain

the PWV distribution is defined as:

pPWV
z (t, f) =

+∞∫

−∞
h(τ) z(t +

τ

2
) z∗(t− τ

2
) e−2πfτ dτ (4.35)

In (4.35) the range of τ is not [−∞ : +∞] rather is limited by the width of the
window function h. This increases frequency resolution at every time t when h(τ)
is large, by letting values of the signal z be irrelevant outside of the window h. A
detailed description of the windowing technique is given in [65].

In the following we show that PWV is a good choice for a relative high SNR.
If a signal to noise ratio is low, the Smoothed Pseudo Wigner-Ville distribution is
preferable. SPWV distribution is defined as

pSPWV
z (t, f) =

+∞∫

−∞
h(τ)

+∞∫

−∞
g(t′ − t) z(t′ +

τ

2
) z∗(t′ − τ

2
) dt′ e−2πfτ dτ (4.36)

The equation (4.36) represents smoothing both in frequency and time, where the
smoothing window g is a time smoothing window in the time-domain. In this
work we also let the window function g to be the Hamming window. The time-
smoothing window g works as follows. For a specific τ an averaging-like procedure
is performed for a number of samples of z around t. Then the frequency smoothing
is applied (see function h). Such a two-way smoothing technique may sufficiently
reduce the influence of the noise to an instantaneous frequency. Let us examine
it by the following example. In Figure 4.12(a), (b), and (c) we present WD,
PWVD, and SPWVD of a modelled Doppler signal. The signal is corrupted by
a white gaussian noise of 5db. The WD also looks heavily corrupted. It looks
unlikely to be possible to estimate the instantaneous frequency correctly. In Figure
4.12(b) the energy of the signal becomes more apparent but it is still corrupted
by the noise. Already at SNR of about 0db PWV distribution fails to estimate
Doppler frequency. The SPWV distribution, see Figure 4.12(c), shows the best
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Figure 4.12: Comparison between Wigner-family distributions: (a) the Wigner
distribution; (b) PWV distribution; (c) SPWV distribution
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Figure 4.13: Performance in noise of PSWV, CWD, and Spectrogram distributions

performance for noise reduction. Later we will also show that time-frequency
smoothing of SPWV also may set back the resolution of the estimated frequency.

On the basis of WD many similar time-frequency distributions have been devel-
oped. The only difference between them is an individual formulation of window
functions. In practice, functions h and g utilize properties and physical back-
ground of the process to be investigated. For example, in [66] the Choi-Williams
CW distribution was applied to enhance frequency images of magnetohydrody-
namic models in plasma observations. It was shown that CWD offers improved
frequency resolution in comparison to standard spectrogram plots.

Bilin Zhang and Shunsuke Sato have shown that combination of Choi-Williams
and Margenau-Hill kernels may be successfully applied to speech signal processing.
It makes possible to eliminate some former inevitable cross-terms [67].

In practice, in order to solve a specific task different TFDs are tested. In this
work we do not discuss all known distributions in detail. This information can be
found in [61]. In this work we will examine a number of well-known distributions
for Doppler IF extraction with different SNR. As before, for this purpose we utilize
the modelled Doppler signal.

In Figure 4.13 we can see a comparison of SPWV, CW, and Spectrogram
distributions. These distributions precisely estimate the instantaneous frequency
even at high noise, see threshold about −2db. The average MSE from 0 to 35db
is 0.76, 0.74, and 0.69Hz, respectively. There are two more distributions that
have shown similar results in the simulation. These are the Zhao-Atlas-Marks and
Born-Jordan distributions.

In the simulation we have discovered distributions which are less stable and
have worse frequency estimation than the distributions mentioned above. These
are the PWV and Pseudo Page (PP) distributions, see Figure 4.14. We can see
that PWV and PP are not as stable as SPWV. A simulation shows that the
instantaneous frequency cannot be correctly estimated up to SNR ≈ 5db. An
average MSE from 5db to 35db is 0.5Hz and 1.7Hz for PWV and PP, respectively.
Apparently, PSWV represents the best performance. By comparing PSWV and
PWV we notice that smoothing in time and frequency domains increases stability
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Figure 4.14: Performance in noise of PWV and PP distributions

but decreases frequency resolution.

4.4.6 Polynomial Phase Transform PPT

The Polynomial-Phase Transform has been discovered in the earlier 90-th. It was
suggested to use it in different engineering applications including analysis of radar
signals [68]. The PPT was introduced as a mean to estimate IF of polynomial
phase signals with constant amplitude. A definition of such a signal is given
below:

zi = b0 ejφi = b0 e
j

p∑
m=0

am (4t i)m

, (4.37)

where 4t is a sampling interval, b0 is an amplitude, φ is a discrete polynomial
instantaneous phase, and polynomial order p determines a number of polynomial
coefficients a = (a1, . . . , ap). The task of the PPT transform is to find polyno-
mial coefficients a if the measured signal z is known and then to compute the
instantaneous phase using the vector a. Before the PPT transform is applied, it
is assumed that p is known [69].

Let us define a polynomial operator DP of order p as

DPp,τ,i(z) =
p−1∏

k=0

(
zN
i−kτ

)(
p−1

p

)
, (4.38)

where (
K

k

)
=

K!
k!(K − k)!

.

In (4.38) the black triangle denotes a mapping of i-th element as

zN
i =

{
zi if k even
z∗i otherwise

, (4.39)
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and z∗i denotes the complex conjugate for zi. If in equation (4.39) index i is
negative, then we reassign value zi as follows

zi =
{

zi if i ∈ [0 : n− 1]
0 otherwise

In equation (4.38) parameter τ ∈ N is called a time delay. Its optimal value was
suggested in [70, p.36] as τ = n/p. At such values of τ PPT reaches its highest
noise resistance.

Let us define the PPT as the Fourier transform of a vector v as:

DPT z,p,τ = F̂v, (4.40)

where vector v is defined by using polynomial operator for given polynomial order
p and h = (p− 1)τ as:

v =
(
DPp,τ,h(z), DPp,τ,(h+1)(z), . . . ,DPp,τ,(n−1)(z)

)

The PPT of a polynomial order p defined in equation (4.40) is used to compute
p-th polynomial coefficient of the vector a (i.e. ap) as follows. Let n′ be the length
of the vector v at given polynomial order p and

DPT z,p,τ =
(DPT z,p,τ

0 ,DPT z,p,τ
1 , . . . ,DPT z,p,τ

n′−1

)
.

Let the index k′ ∈ [0 : n′ − 1] maximizes the vector abs(DPT z,p,τ ) such that for
all i ∈ [0 : n′ − 1] and k′ 6= i holds

abs
(DPT z,p,τ

k′
)

> abs (DPT z,p,τ
i ) (4.41)

We define the index k ∈ N which introduce explicitly whether it corresponds to
negative or positive frequency as

k :=

{
k′ if k′ ≤

⌊
n′
2

⌋

−(n′ − k′) otherwise

By using k determined from the latter equation we can compute ap as follows:

ap =
2πk

n p! (4t τ)p−1
. (4.42)

In order to find all the polynomial coefficients from vector a we proceed recur-
sively in the following way. The highest coefficient ap, from the initial signal z,
is computed as we discussed above. Then, the signal z is reassigned according to
so-called de-chirping procedure which is given in (4.43) for i ∈ [0 : n− 1] as

zi := zi e
−jap(4t i)p

= b0 e
j

p∑
m=0

am (4t i)m−jap(4t i)p+

= b0 e
j

p−1∑
m=0

am (4t i)m

(4.43)



4.5. COMPARATIVE ISSUE 77

Figure 4.15: Performance of PPT in noise

According to [70] the de-chirping procedure filters out the highest coefficient ap

of the instantaneous phase φ of signal z defined in equation (4.37). In order to
estimate the coefficient ap−1 we apply equation (4.40) to the reassigned signal
computed in equation (4.43). We stop this procedure when the coefficient a1-th is
known.

The vector of polynomial coefficients a is used to estimate the instantaneous
frequency as follows

fi =
1

4t 2π

p∑

m=1

m am(4t i)m−1. (4.44)

As long as the instantaneous frequency has a polynomial form, the performance
of PPT is good. A non-polynomial frequency behavior damages IF estimation [71].
In order to suppress errors we apply for the first time the segmentation technique
as it was discussed in Section 4.4.3. In Figure 4.15 we examine the performance
of the PPT algorithm in noise. PPT estimates an instantaneous frequency well
above 5db noise. The average MSE at polynomial order p = 2 from 5db to 35db is
0.43Hz. Simulations show high sensitivity of PPT to the value of p. Increasing of
the polynomial order impairs the noise resistance of the algorithm. At p = 4 the
PPT algorithm seems unlikely to be able to estimate the instantaneous frequency
correctly.

In the simulation we also showed that the segmentation technique improves
frequency resolution of the PPT algorithm.

4.5 Comparative Issue

In Section 4.4 we represented a number of algorithms which can be used for ex-
traction of instantaneous frequency from non-stationary signals. In the previous
sections we discussed their mathematical description, implementation aspects, and
tested their noise sensitivity on simulated data. In the current section we examine
these algorithms for real data and decide which of them is suitable for Doppler
frequency extraction.
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Figure 4.16: Comparison of PPD, PPT, and PSWV distributions (first case): (a)
Doppler signal; (b) IF estimated from the PPD, PPT, and PSWV algorithms

4.5.1 Real Signal IF Estimation

First of all we concentrate our attention on two algorithms which belong to the
polynomial phase techniques. These are the PPD and PPT algorithms, see Sec-
tions 4.4.4 and 4.4.6, respectively. For relatively low polynomial order p = 2, 3
these algorithms showed both good noise resistance and exact frequency estima-
tion.

Another group of algorithms based on Wigner-Ville Distribution also behaves
very stable at high noise. These are PSWV, CWD, Spectrogram etc, see Sections
4.4.5. Since all these algorithms use the same basic technique and the analysis
of the modeled data have not demonstrated big difference in their results we will
only check the PSWV.

In Figure 4.16(a) a real Doppler signal is represented. Here we can see closely
spaced oscillations caused by back-reflection from the measured surface. The
instantaneous frequencies defined from PPD, PPT, and PSWV are given in Figure
4.16(b). Here PPD gives the best result. It is smooth and does not contain any
spurious frequency alternations as, for example PPT (see sharp peaks pointed by
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arrows). We observed such an unreal frequency variation6 almost in all estimations
derived from the PPT technique. It happens, in particular, when a polynomial
order exceeds some acceptable value. Apart from this a frequency resolution of
PPD and PPT is almost equal.

The PSWV curve represents bad frequency resolution. It can be explained in
terms of smoothing window (function h and g, see equations (4.35) and (4.36), re-
spectively) in frequency and time domains. Since any window function introduces
averaging between neighboring samples, then the result of the windowing will be
averaged.

The example given in Figure 4.17 introduces a typical situation when PPT and
PSWV may fail. In particular, it happens when the Doppler signal does not cross
zero-value. In such a case the frequency of the regarded data segment is wrongly
interpreted to be much lower then the expected minimal Doppler frequency, see the
data segment in Figure 4.17(b) labeled as ”wrong IF estimate”. We remind that
the expected Doppler frequency values can be computed for the given experiment
according to equations (2.9) and (2.9),

In the scope of the work more than twenty unique experiments were done in
different measurement conditions. The experiments also were repeated in order to
exclude measurement errors. In all the experiments the PPD algorithm showed
the most reliable estimation of the Doppler frequency.

4.5.2 Complexity Issue

In the previous subsection we have discovered that the PPD technique may be a
good choice to estimate the instantaneous Doppler frequency. It showed the best
performance in all the experiments we have performed (see previous Section).
The only drawback is that it is not as stable to noise as the PSWV algorithm (for
reference see Figures 4.8, 4.13 and 4.14). Generally, in practice, SNR lower than
4− 5db is not very common. Of course, with really noisy signals the only solution
is the PSWV.

Let us consider the complexity of the PPD, PPT, and PSWV algorithms. The
core of PPD is given in (4.26). It is a product of C, X, and f , where f is a segment
of f∗ of size w. A covariance matrix C depends on the window size w and the
order q of the central finite difference. In practice, w is some constant. It depends
on the Doppler frequency range, which is a function of measurement conditions,
ultimate defects’ size etc. CFD order q is also a constant which mostly depends
on SNR. Its value can be estimated off-line by using simulated data. In this work
we did not notice any improvements at q > 6.

In order to compute X, window length w and polynomial order p′ are required,
see (4.28). Usually p′ is determined experimentally. In this work estimation of
instantaneous frequency was successfully done at low polynomial order. Let us as-
sume that the polynomial order is limited i.e. p′ ≤ p. Then X can be precomputed
for constant w and all p′ ∈ [1 : p ].

Let us denote by Xp′ a matrix X computed for a certain p′. Then, from (4.26),

6because of the nature of the frequency it is physically incorrect the frequency has sharp edges
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Figure 4.17: Comparison of PPD, PPT, and PSWV (second case): (a) Doppler
signal; (b) IF estimated from the PPD, PPT, and PSWV algorithms
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we have two products which can be computed as

Ap′ = (XT
p′ C

−1 Xp′)−1

Bp′ = XT
p′ C

−1
(4.45)

In order to pre-save Ap and Bp for all p the memory consumption for w > 1 is

p∑

p′=1

(
p′2 + w p′

)
≈ O(p3 + p2w) (4.46)

As we can see at low p the memory consumption is not expensive.
Let us derive the computational cost of PPD at given polynomial order p and

pre-computed Ap and Bp. We assume the offset between segments to be minimal
(i.e. one sample) so that the number of segments is s = n − w + 1. Then, the
computational cost for p < w is defined as:

s(p2 + w p) ≈ O (
n · (p2 + pw)

)
(4.47)

Since n À p and n À w, PPD is not computationally expensive.
We represent the cost of the PPT algorithm which includes computation of the

DPT operator for data segment size w and polynomial order p. We assume that
the number of segments is equal to the number of samples in the whole analyzed
signal and denote it as n. Using the discrete fast Fourier transform [72] cost of
the PPT with the de-chirping procedure is given as follows:

O(2np2w + npN log N), (4.48)

where N denotes the number of the frequencies in the discrete Fourier Transform,
see Definition 3.1.7. Since the segment size (number of samples) w is usually short,
the Fourier Transform of the segment also has w frequencies. If the frequency
resolution w is too low, the number of frequencies of the Fourier Transform can
be increased to N such that N > w. This can be done by adding zero samples at
the right hand size of the analyzed segment in the time domain. This procedure is
called zero-padding. Afterwards the Fourier Transform is applied to the reassigned
data segment. Usually N is relatively big so that the second term of (4.48) becomes
expensive. In general PPT can be considered as sub-quadratical on N .

Generally, the computation of a Time Frequency Distribution is a difficult task.
The need of efficient computation of TFD has motivated the development of a
number of algorithms and techniques. A real-time implementation of Wigner-Ville
distribution was discussed in [73]. It was concluded that the best solution to reach
high frequency and time resolutions is the use of parallel microprogrammed system.
Later in [74], this approach was enhanced by introducing FFT algorithms which
suppress multiplications with zero-crossings which are understood as non-valuable
operations. A first parallel implementation of the Choi-Williams distribution was
represented in [75]. In order to achieve real-time frequency estimation up to 5
parallel processors were used. Each processor operated according to a specific
computational scheme which was developed for this distribution [76].

Generally, the application of a Choi-Williams distribution for instantaneous
frequency estimation is restricted by rigid h and g functions. This caused the
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development of fast algorithms which can handle pseudo- and reassigned versions
of the Wigner-Ville distribution. Such implementations were introduced in [77].
In latter references first of all the authors discuss algorithm for the spectrogram
method. Then, this algorithm is generalized to Cohen’s class methods. It has been
claimed that the algorithm requires some restrictions on windows and is difficult
to be used in practice.

In the general case computation of the PSWV distribution consumes quadrat-
ical time. A possible way to speed up this algorithm is to decrease the number
of time and frequency samples of the 2D image. A clever choice of the specific
window functions h and g can also reduce computational demand.

By comparing computational efficiency, performance in noise, and reliability
of the PPD, PPT, and PSWV algorithms we conclude that the PPD algorithm
is the most efficient one for Doppler signal processing tasks. It introduces good
performance on both simulated and real data. PPD also offers quite good noise
resistance at very low computational cost.

4.5.3 Instantaneous Frequency Imaging

Doppler imaging as it was defined in Chapter 3 can be referred to as amplitude
Doppler imaging. This is because the physical quantity we use to depict defects
is the Doppler amplitude. Analogously we can define frequency Doppler imag-
ing where instantaneous Doppler frequency is used to portray the surface of a
specimen. It is estimated from the measured data using the PPD algorithm. In
Figure 4.18(a) and (b) we represent amplitude7 and frequency Doppler images at
α = 135◦.

Both images are corrupted with artifacts which are understood as measure-
ment errors. These do not have much influence on amplitude image since the error
waveform has low amplitude. Contrariwise, the frequency image shows great sen-
sitivity to these artifacts. It can be explained through oscillatory behavior of the
error waveform. Thus, the PPD algorithm detects frequency of both error and
valid signals. In order to clear the frequency image from spurious information
the amplitude image can be used. We perform this by simple re-mapping of the
frequency image for all i, j ∈ [0 : n− 1]:

ai,j :=
{

ai,j if bi,j ≥ ε
0 otherwise,

, (4.49)

where A,B ∈ Rn×n are frequency and amplitude images, respectively, and ε is
some constant (i.e. threshold).

In practice equation (4.49) does not give a great difference in comparison to the
amplitude Doppler image which was obtained by the thresholding technique. From
the experiment introduced in Figures 4.18(a) and (b) we conclude that in general
amplitude imaging is much more suitable for defect evaluation than frequency
imaging.

Although, the frequency image is sensitive to noise and is not as reliable as the
amplitude image, it carries some new information about defects. Let us introduce

7we discussed that image in the context of amplitude Doppler imaging in Chapter 3 in Figure
3.12(e)
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artifacts

artifacts

low amplitude

high frequency low frequency

Figure 4.18: Instantaneous Doppler frequency imaging: (a) amplitude image; (b)
frequency image; (c) 1D signal from the middle of Ωa (amplitude); (d) 1D signal
from the middle Ωb (frequency)
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areas Ωa and Ωb which are circled in Figures 4.18(a) and (b). The Doppler signal
and its envelope belonging to the middle of Ωa are represented in Figure 4.18(c).
The instantaneous frequency along the main axis of the ellipse Ωb is given in
Figure 4.18(d). As the radar starts irradiating the defect, the signal has some low
amplitude, whereas the frequency is high. While the radar is passing the defect
the amplitude reaches its maximal value and falls again. The frequency is steadily
decreasing with moving of the radar. It drops heavily as the radar leaves the defect.
We observe this effect with all defects represented in the picture, see yellow spots
on the frequency image. Thus the amplitude and the frequency behavior gives
us an idea that the specific combination of amplitude and frequency information
can be used to improve the Doppler imaging technique. This question will be
discussed in detail in Chapter 5.

4.6 Conclusion

In this chapter we introduced the concept of Doppler instantaneous frequency. We
discussed its nature, conditions which cause instantaneous frequency appearance
and its relation with defects. An approach for modeling of a typical Doppler sig-
nal from its instantaneous amplitude and frequency is represented. The modelled
signal is used to select the most appropriate algorithm for Doppler frequency es-
timation. Then, we examined the performance of the algorithms on the measured
data. A comparison of algorithms performance and complexity has discovered
that PPD algorithm is the most efficient one for our needs.

In Section 4.5.3 we introduced Doppler frequency imaging and compared it
with amplitude imaging. We discovered that frequency information alone can not
be used for defect detection since it is very sensitive to spurious waveforms. It is
only useful when the amplitude of the Doppler signal does not have pronounced
peaks i.e. stays relatively constant. In all other cases the amplitude information
is preferable. In the next chapter we consider a signal processing technique which
utilizes both frequency and amplitude information. There we will discuss in detail
the resolution ability of the radar and possible ways to improve it.



Chapter 5

Maximum Entropy
Deconvolution Approach

5.1 Spatial resolution of CW Radar

In Chapters 3 and 4 we discussed two approaches for Doppler signal analysis.
These approaches include processing of the Doppler amplitude and Doppler fre-
quency. We have shown that the amplitude of the Doppler signal can be suc-
cessfully used for detection of defects. There is a great number of industrial
applications where high spatial resolution of the radar is not necessary. Often, it
is good enough to make a conclusion whether a specimen contains any defects. In
such applications approximate locations of defects can be found by analyzing the
Doppler amplitude.

However, in general, analysis of the Doppler amplitude and frequency sepa-
rately, does not allow to reach high spatial resolution. In the following we examine
the resolution ability of the Doppler amplitude and frequency experimentally. We
perform a series of single-line experiments for a number of defects placed along
the line of scan at different distances between them. The defects are taken to be
point scatterers (steel balls of diameter of 8mm). The task will be to test how
well the actual distances can be computed from measured signals by analyzing
Doppler amplitude and frequency. We compute the distance between two defects
in the measured signal x ∈ Rn as

4t · v · abs(i− j), (5.1)

where xi and xj are samples which correspond to defects locations,4t is a sampling
interval, and v is a speed of the radar.

The first experiment consists of several single-line measurements for two equal
defects placed along the line of scan for different distances between them. The
amplitude of the measured signals at every distance (which we denote as L) will
be compared with the amplitude of a so-called reference signal measured for one
such defect. This comparison will help us to understand what is the influence of
the second defect on the measured signal. We present the reference signal and
its envelope in Figure 5.1(a), we recall that λ = 12mm denotes wavelength and
depends on the value of the transmitted frequency of the radar. The Doppler

85
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signals and their envelopes at distances L = 1.5λ, 2.5λ, and 6.5λ are given in
Figures 5.1(b), (c), and (d), respectively. By comparing these signals we notice
that the second defect at L = 1.5λ does not change the measured signal strongly.
The differences can be noticed in amplitude rising and time-spreading. With the
following increasing of L defects become more separable. Thus, in Figure 5.1(c) at
L = 2.5λ we notice two overlapped shapes indicating the presence of defects. By
applying the peak search algorithm to the envelope we can evaluate the distance
L′ between peaks, i.e. distance between defects. Here, peak analysis does not
retrieve the correct distance between defects. It exceeds the initial distance value
and is equal to L′ = 3.2λ. The following increasing of distance L discovers almost
full spatial separation of the defects, see Figure 5.1(d). By analyzing peaks of the
envelope we conclude that the distance L is also estimated incorrectly. In this
case it is about L′ = 6.9λ.

In the first experiment we also analyze whether the Doppler frequency (in addi-
tion to the Doppler amplitude) can be used to estimate distance between defects.
We use the PPD algorithm to compute the instantaneous frequency of the sig-
nals mentioned above. Similarly to the Doppler amplitude, the Doppler frequency
seems unlikely to be helpful in improvement of the radar spatial resolution. For
one defect (represented in Figure 5.1(e)), we observe a typical Doppler frequency
behavior. It rises first and steadily drops as the radar passes the defect. In the
case of two defects at L = 1.5λ, the frequency is different, see Figure 5.1(h). Even
if it rises just before falling down we can not estimate the number of defects. The
Doppler frequency at L = 2.5λ has two cavities but the estimated distance be-
tween the defects is also incorrect. Its value is about L′ = 2λ. At the distance
between defects L = 6.5λ both defects are well-separated. The Doppler frequency
curve in 5.1(h) is obviously (visibly) separated into two parts where each of them
corresponds to IF of one defect given in Figure 5.1(e).

The second experiment is closely to the real situation. We increase the number
of defects so that four defects are placed at equal distances L = 2.5λ along the line
of scan. In that way we heavily damage a measured signal making the radar to
receive reflection from all the defects at the same time. The signal, its envelope,
and its Doppler frequency are represented in Figure 5.2(a) and (c), respectively.
In this situation only instantaneous frequency carries valuable information about
defects. Here we can see four cavities so that distances between their minima
almost corresponds to distances between defects.

In the third experiment we slightly change conditions, see Figure 5.2(b) and
(c). Here we have three defects located at distances L = 1.25λ (between the first
and the second) and L = 1.6λ (between the second and the third). As we can see
it is not obvious to determine the number of defects and distances between them
in both amplitude and frequency curves.

From the experiments represented in Figures 5.1 and 5.2 we conclude that in
general, distinct analysis of Doppler amplitude and frequency can not be used for
improvement of spatial resolution. As we have already discussed in Chapter 4,
joint analysis of the amplitude and frequency may possibly help to overcome that
problem.
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Figure 5.1: Radar resolution experiment: (a), (e) Doppler amplitude and fre-
quency, one defect; (b), (f) Doppler amplitude and frequency, two defects,
L = 1.5λ; (c), (g) Doppler amplitude and frequency, two defects, L = 2.5λ;
(d), (h) Doppler amplitude and frequency, two defects, L = 6.5λ
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Figure 5.2: Multi-defect experiment: (a), (c) Doppler amplitude and frequency,
four equally spaced defects at L = 2.5λ; (b), (d) Doppler amplitude and frequency,
three defects at L = 1.25λ and L = 1.6λ

5.2 Signal Processing System

In the current section we present the approach which utilizes both the Doppler
amplitude and the Doppler frequency to improve spatial resolution of the radar.
Here the idea is to consider the Doppler measurement system in terms of a so-
called Finite Impulse Response system which is characterized by its input, output,
and internal functions. The input function (which describes defects) is computed
from the output function (i.e. measured signal) and the internal function (also
called transfer function or impulse response) summarizes internal properties of the
Doppler measurement system.

Definition 5.2.1 A signal processing system is any device that takes zero or
more signals as input and returns zero or more signals as output.

In the following we refer to a signal processing system as just a system. In this
thesis we do not get familiar with all possible system types. Their detailed de-
scription can be found in [78,79]. We only examine a class of systems called Finite
Impulse Response systems (or simply FIR). In order to illustrate the concept of
FIR system we use block diagrams. Each diagram is mathematically defined and
has a unique graphical notation. The most important block diagrams for basic
operations as unit delay, summation, and multiplication are given below.

Definition 5.2.2 Let b ∈ Rn be the input of the unit delay operation. We define
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Figure 5.3: Block diagrams of fundamental operations: (a) unit delay; (b) m-
inputs summation; (c) multiplication

its output c ∈ Rn to be a delayed version of b such that for all i ∈ [0 : n− 1]:

ci = b(i−1 mod n)

The block diagram of the unit delay is represented in Figure 5.3(a).

Definition 5.2.3 Similarly to Definition 5.2.2 we define summation of m ∈ N+

inputs. Thus, for an input signal b ∈ Rn, an output signal c ∈ Rn, and some
i ∈ [0 : n− 1] we have:

ci =
i+m−1∑

j=i

b(j mod n)

The block diagram of m-input summation is represented in Figure 5.3(b).

Definition 5.2.4 The multiplication operation of input signal b ∈ Rn and real-
valued constant k ∈ R is written for some i ∈ [0 : n− 1] as:

ci = k · bi,

where the corresponding block diagram is represented in Figure 5.3(c).

By using unit-delay, summation, and multiplication diagrams we construct a
FIR system. Its example implementation is presented in Figure 5.4. This FIR
system has one input and one output. Let the vector x ∈ Rn be the input of the
system. The unit delays D1, D2, . . . ,Dn−1 receive samples xτ , x(τ−1 mod n), . . . ,
x(τ−n+2 mod n) for the particular index τ ∈ [0 : n − 1]. At the same time the
summation operation takes for all i ∈ [0 : n− 1] products hi x(τ−i mod n), where hi

is an element of some real valued vector h ∈ Rn. By using definitions of unit-delay,
summation and multiplication (see Definitions 5.2.2, 5.2.3, and 5.2.4) we conclude
that the output of the system y ∈ Rn is computed for all τ ∈ [0 : n− 1] as:

yτ =
n−1∑

i=0

hi · x(τ−j mod n) (5.2)
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Figure 5.4: FIR system block diagram

From (5.2) it is clear that a FIR system uses the current and n−1 previous samples
of the input signal to compute a new instance of the output signal. The vector
h = (h0, h1, . . . , hn−1) entirely characterizes a FIR system, i.e. it determines the
rule of transforming the input into the output. In the literature h is referred to
as the impulse response or transfer function of the FIR system.

In the literature the equation (5.2) is known as positive wrapped convolution,
for reference see [80, page 72], and is written for τ ∈ [0 : n− 1] as:

yτ =
τ∑

i=0

hixτ−i +
n−1∑

i=τ+1

hixn+τ−i ≡ (h ∗ x)τ (5.3)

In the latter equation we use symbol (∗) to denote positive wrapped convolution.

Corollary 5.2.5 The impulse response of a FIR system is observed at its out-
put if the input is an unit sample [81].

Let us apply the unit sample δ ∈ Rn defined for all τ ∈ [0 : n− 1] as

δτ =
{

1 if τ = 0
0 otherwise

(5.4)

to the input of the FIR system (i.e. x = δ), see Figure 5.4. By substitution of x
into equation (5.3) we observe the impulse response at the output y of the FIR
system for all τ ∈ [0 : n− 1] as:

yτ = hτ

5.3 Deconvolution Approach

In the following sections we will study the approach (which we later call decon-
volution approach) to compute the input of the FIR system from its output and
impulse response. We remind that the input of the FIR system is a signal which
clearly determines positions of defects. For deconvolution approach we assume
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Figure 5.5: Measurement of the impulse response

that a sample of the input signal associated with position of defect has a value
”1”. If there is no defect, then the sample has a value ”0”.

In practice, the FIR system output (i.e. Doppler signal) is known, since it is
measured. In the we consider how to determine the FIR system impulse response.

5.3.1 Impulse Response Evaluation

An impulse response describes such physical aspects of microwaves as propagation,
reflection, material properties, influence of defects on measured signal etc. It also
contains information about measurement conditions such as speed, slope angle,
antenna radiation pattern etc. The high information capacity of the impulse
response makes its modeling extremely difficult. We decide to derive the impulse
response from a so-called reference measurement. This approach is very common
in NDT. It includes collection of information about some physical quantity from
artificially-made defects. Then, this information is used to classify and characterize
real specimens.

Let us consider an approach to derive the FIR impulse response h ∈ Rn. We
perform a line-scan of the specimen with one artificial defect1, where y ∈ Rn is
the measured signal. Placing the defect at the position which corresponds to the
measured sample y0 is equivalent to feeding the unit sample x = δ ∈ Rn to the
FIR system, for reference see equation (5.4). These force the impulse response
to appear at the output of the FIR system i.e. y = h. However, in practice
it is difficult to ensure to coincide the measured sample y0 and the position of
the defect. This is because the size Ω of an area irradiated by the radar is only
approximately known, see Figure 5.5. In order to overcome the above mentioned
problem we suggest the following. We place the defect somewhere inside the area
to be measured such that the defect position τ is in the interval (0 : n − 1). It
is also necessary to ensure that the defect is not seen by the radar at 0-th and
(n− 1)-th measured samples. The location of the defect at τ implies shift of the
unit sample. Hence, the new input of the FIR system x′ ∈ Rn is given as:

x′i =
{

xτ+i if 0 ≤ i ≤ (n− 1− τ)
xi−(n−τ) if (n− τ) ≤ i ≤ (n− 1)

(5.5)

1the defect is a point scatterer, for reference see Section 5.1
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By using equation (5.5) and the structure of the FIR system (see Figure 5.4) the
impulse response can be computed from the measured signal as:

hi =
{

yτ+i if 0 ≤ i ≤ (n− 1− τ)
yi−(n−τ) if (n− τ) ≤ i ≤ (n− 1)

(5.6)

From the considerations given above we conclude that in order to define the im-
pulse response of the Doppler measurement system we need to make a reference
measurement. From that measurement (signal y) we compute the impulse re-
sponse h according to equation (5.6). This impulse response is kept in data bank
and is used by deconvolution approach (also called convolution inverse) for defects
evaluation.

5.3.2 Deconvolution (Convolution Inverse)

Let us denote x ∈ Rn be the input signal of the FIR system. The input signal
characterizes defect. Some entry of the input signa is ”1” if the defect is located
at the position corresponding to that entry. The entry is 0 otherwise. In the
following we call the input signal x as characteristic signal. Let the output of the
FIR system is y ∈ Rn. The impulse response which is already pre-saved is h ∈ Rn.
By substitution of these signals into equation (5.3) we derive for all τ ∈ [0 : n− 1]

yτ = (h ∗ x)τ . (5.7)

We use the convolution theorem for positive wrapped convolution (for reference
see [80, page 72]), to represent equation (5.7) in a more convenient form. This
theorem says that the Fourier transform of the convolution of two signals is equal
to componentwise multiplication of their Fourier transformations:

F̂y(f) = F̂x(f) · F̂h(f), (5.8)

for all f ∈ [0 : n− 1].
From (5.8) we evaluate the characteristic signal x for all t ∈ [0 : n− 1] as

x′t = F̂−1

(
F̂y

F̂h

)
(t). (5.9)

Equation (5.9) represents the deconvolution procedure which solves the goal of
finding the FIR system input i.e. characteristic signal.

In practical applications equation (5.9) may fail because of the noise in a
measured signal even at high SNR. We will study this problem in the following
section.

5.3.3 Problems of Deconvolution Approach

It is well known that in practice the measured signal is always corrupted by noise.
It happens because of many reasons. These are internal noise of the radar, insta-
bility (shaking) of the Doppler measurement system, environment temperature,
any external microwave source, roughness of the measured specimen etc. In signal
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Figure 5.6: FIR system with additive noise

processing it is convenient to represent noise in form of the signal which is added
to the noise-free signal [82, 83]. In Figure 5.6 we show a flowchart which intro-
duces a FIR system with noise. Here, a noise corrupted signal y′ is the result of
summation of the ideal FIR output y and noise ξ. In Section 5.4.2 we will discuss
the nature of the noise in details.

Let us examine the influence of noise on the deconvolution approach. We
introduce x ∈ Rn to be the FIR system input which is defined as the unit-sample
shifted by bn/2c + 1, see Figure 5.7(a). This models the presence of the defect
placed in the middle of the imaginary line of scan. A modeled noise-free FIR
system output y ∈ Rn is represented in Figure 5.7(b). In this experiment y is
an arbitrary noise-free Doppler signal since the only purpose of the experiment
is to test the noise-stability of the deconvolution approach. A noise-free impulse
response h ∈ Rn is computed from y according to (5.6).

We perform deconvolution by using equation (5.9) assuming that x is unknown
and y and h are given. The result of this is represented in Figure 5.7(c). By
comparing signal from Figure 5.7(c) with the original FIR system input (given in
Figure 5.7(a)) we conclude that the deconvolution procedure retrieves FIR system
input successfully. This certainly let us expect a stability of the deconvolution
procedure (5.9) at noise-free environment.

We worsen the situation by adding noise ξ, with that SNR = 35db, to the
signal y. After this the deconvolution procedure is computed again, see Figure
5.7(d). The experiment shows that even if noise is very small the deconvolution
approach fails.

We also examine the deconvolution approach with real data, namely applying
it to the Doppler signals represented in Figures 5.1 and 5.2. In the situation of
two defects placed at distance L = 1.5λ it is extremely difficult to differentiate
true defects and spurious peaks, see Figure 5.7(e). Here real locations of defects
are labeled by dots. The situation is similar in the case of two defects placed
at L = 2.5λ and L = 6.5λ, see Figure 5.7(f) and (g), respectively. Here we can
recognize defects (also labeled by dots), but it is still not possible to differentiate
real and spurious defects. In case of four defects we are only able to recognize the
first defect while the last three defects are lost, see Figure 5.7(h).

The problem of defect detection rises because of the division in equation (5.9).
It magnifies effect of noise so that the inverse Fourier transform heavily suffers.
Mathematically this problem can also be written as follows. Let x,x′ ∈ Rn are
ideal and actual solutions. Then

(x ∗ h)τ − (x′ ∗ h)τ ≈ 0
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Figure 5.7: Deconvolution approach: (a) ideal FIR system input; (b) ideal FIR
system output; (c) deconvolution inverse (no noise); (d) deconvolution inverse
(with noise); (e) defect signal, two defects, L = 1.5λ; (f) defect signal, two defects,
L = 2.5λ; (g) defects signal, two defects, L = 6.5λ; (h) defects signal, four equally
spaced defects, L = 2.5λ
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does not imply that x− x′ ≈ 0. Thus, in general, x′ may be far from the correct
value even if the noise is small.

In order to overcome the above problem the Maximum Entropy Deconvolution
(MED) algorithm is applied. We discuss this algorithm in the following section.

5.4 Maximum Entropy Deconvolution (MED)

Maximum entropy (ME) processing includes extremely robust algorithms to an-
alyze real observed data which are corrupted by noise. ME processing based on
certain suppositions about the nature of noise and measured data in terms of
probability theory. Operations which are defined in probability theory allow to
extract noise-free signal from the noised one under suppositions which were made.

ME signal processing was originally developed in the context of optical image
processing. It is applied, in particular, to reconstruct sharp objects from noisy
images which are blurred by out-of-focus or motion effects. Examples of successive
image restoration with ME can be found in [84]. Nowadays ME has become very
popular in processing of medicine images. Thus, in [85] a restoration technique of
nuclear images is developed. It was shown that ME processing provides superior
results in comparison to the standard image processing methods. In [86] it is
reported about efficient multi-thresholding of slice images. Here ME approach
is referred to as the most important threshold selection method. Recently it was
discovered that ME is very efficient in speech recognition applications [87,88]. This
technique allows to differentiate asynchronous and overlapping speech features and
their combination.

5.4.1 Bayes’ Estimation

In Section 5.3.3 we have discussed disadvantages of the deconvolution approach.
A problem we examined was to compute the input of the FIR system by using
its noisy measured output and the impulse response. In order to overcome this
problem the MED algorithm, for Doppler signal processing, was developed.

Let (Ω,F , P ) be a probability space on the domain Ω, where (Ω,F) is a mea-
surable space, F are the measurable subsets of Ω, and P is a measure on Ω with
P (Ω) = 1, for reference see [89, p. 38-39, 78-81, and 112-114], [90]. We define the
domain Ω as a set of vector pairs

Ω = { (x,y′) | x ∈ [0 : M − 1]n, y′ ∈ Rn } = I× M̃,

where x is an ideal FIR input, y′ is a real measured signal with noise and a
constant M is, intuitively, a sum of height of all defects.

Let us define the special events Hx, Ey′ ∈ F . Let Hx = {x } × M̃ be the set
of all the experiments for some ideal input x. Later we refer Hx to as hypothesis.
Let Ey′ = I×{y′ } is the event that the measured noisy signal is y′ (the noise-free
ideal signal is y), for reference see Section 5.3.3.

The task to solve is to decide which hypothesis Hx for x ∈ I is more probable
if Ey′ is given. The solution of the task can be found by using of the Bayes’
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Theorem [89]. Let

Ω =
⋃

x∈I

Hx, (5.10)

where xi means some i-th ideal input signal. Then, for every i ∈ [0 : n− 1] holds

P (Hx |Ey′) =
P (Hx) · P (Ey′ |Hx)

P (Ey′)
(5.11)

The latter equation expresses the Bayers’ theorem for computation of co-called
posterior probability P (Hx |Ey′), i.e. the probability of the event Hx under con-
dition Ey′ is measured.

The idea of the Bayes’ estimator in (5.11) is to choose a Hxi , which maximizes
P (Hxi |Ey′). In equaiton (5.11) the denominator can be omitted sinse it is constant
for any i. Hence, the maximization task is written:

max
Hx∈Ω

P (Hx) · P (Ey′ |Hx) (5.12)

Later we discuss the computation of probabilities P (Hx) and P (Ey′ |Hx).

5.4.2 Computation of the probability P (Ey′ |Hx)

The goal of this section is to express P (Ey′ |Hx) in terms of the measured Doppler
signal. Let us denote the ideal measured signal (without noise) and the real
measured signal (with noise) as y,y′ ∈ Rn, respectively. The ideal FIR system
output y is the positive wrapped convolution for τ ∈ [0 : n− 1]

yτ = (x ∗ h)τ , (5.13)

where x,h ∈ Rn are the ideal input and the impulse response of the FIR system,
for reference see equation (5.7).

Let us define the set of real number Rε as

Rε = { ε · z | z ∈ Z},

where ε is called accuracy. By using the considerations in Section 5.3.2 concerning
the FIR system with noise n, we define

y′ = round (y + n) , (5.14)

where the function round rounds values of y′ to the nearest in R.
We assume entries ni for i ∈ [0 : n − 1] to be mutually independent normally

distributed random variable with standard deviation ε and mean 0. Then, the
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probability P (Ey′ |Hx) in equation (5.12) can be defined as:

P (Ey′ |Hx) = P
(
y′ = round(y + n)

)

= P

(
n⋂

i=1

yi = round(xi + ni)

)

= P

(
n⋂

i=1

ni ∈ y′i − yi +
[
−ε

2
:

ε

2

])

=
n−1∏

i=0

P
(
ni ∈ y′i − yi +

[
−ε

2
:

ε

2

])

≈
n−1∏

i=0

ε

σ
√

2π
exp

(
−(y′i − yi)

2σ2

)

(5.15)

Since y is computed from FIR input x (see equation 5.13), then the probability
P (Ey′ |Hx) shows how close x is to the input signal of the FIR system, which
minimize the difference between noisy real signal y′ and ideal signal y. Thus, a
small value of probability means that x is ”unlikely” to be defined correctly i.e.
y′ and y differ strongly.

5.4.3 Computations of probability P (Hx)

In the current section we give the definition of the probability P (Hx), where H is
the event that the FIR system receives some ideal input signal x.

In order to compute the probability that a particular x appears at the input
of FIR system we make the following abstraction. We know that we perform
measurements by moving the Doppler radar along the line of scan. We imagine
that the line of scan is separated into small equal pieces. We call these bins and
assume that bins are numbered. If a defect lies on the line of scan in the particular
position, then we say that the bin associated with this position is not empty. We
also assume the bins are filled by grains of sand. We number grains 1, 2, . . . , M
such that the total number of grains is M .

We describe the outcome of throwing M grains by a function

b : [0 : M − 1] → [0 : n− 1]

where b(j) is the bin hit by the j-th grain we throw. For each bin i let Pi to be
the probability that bin i is hit. We assume always one bin is hit:

n−1∑

i=0

Pi = 1

For function b we define vector

x = (x0, x1, . . . , xn−1)

by
xi = # [ j | b(j) = i],



98 CHAPTER 5. MAXIMUM ENTROPY DECONVOLUTION APPROACH

where xi is the number of grains thrown into bin i by function b. Thus, we have

n−1∑

i=0

xi = M. (5.16)

If we throw M grains independently into bins with probabilities Pi then the prob-
ability to observe the particular outcome b is

Pr(b) = P x0
0 · P x1

1 · . . . · P xn−1

n−1 . (5.17)

For each vector x satisfying (5.16) there are

M !
x0!, x1!, . . . , xn−1!

functions b providing vector x, see [91, p. 44]. Hence the probability to observe
vector x is

Pr(x) =
M !

x0!, x1!, . . . , xn−1!
· P x0

0 · P x1
1 · . . . · P xn−1

n−1 (5.18)

In application we later assume that all Pi equal to 1/ (m′n′), where m′, n′ are
dimensions of Doppler image.

5.4.4 Computation of probability P (Hx |E′y)

It is possible to rewrite the maximization task (5.12) by taking the natural loga-
rithm from its both parts without changing the problem:

max
Hx∈Ω

ln[P (Hx |Ey′) ] ∝ ln[ P (Hx)P (Ey′ |Hx) ]. (5.19)

According to the mathematical transformations proposed in [92] we rewrite equa-
tions (5.15) and (5.18) in the form which is more suitable for practical implemen-
tation:

ln[P (Ey′ |Hx) ] ∝ α χ(x,y′,h, σ) (5.20)

and
ln[ P (Hx) ] ∝ S(x,b), (5.21)

where complete definitions of functions χ, S and parameter α we be discuss in the
following.

Let Φ be the set of all possible inputs of the FIR system. Since each hypothesis
Hx ∈ Ω is associated with some unique system input x ∈ Φ, where Φ ⊂ Rn, we
can change the argument of the maximization task to x. Thus, by using equations
(5.20) and (5.21) we rewrite (5.19) in terms of χ and S functions as follows:

max
x∈Φ

Ψ(x) = − (
S(x,b) + α · χ(x,y′,h, σ)

)
, (5.22)

where α ∈ R, α ≥ 0 is the so-called regularization parameter, which we discuss
below. In the literature the function Ψ is referred to as the entropy function.
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Let us consider all the components of equation (5.22) in detail. The function
S can be derived from equation (5.18). By using the Stirling’s formula [93, pages
50-53]:

lnn! ≈ n · ln n− n +
1
2

ln(2πn)

and letting P (wi) = bi, we derive

S(x,b) =
n−1∑

i=0

xi

(
ln

(
xi

bi

)
− 1

)
. (5.23)

In the latter equation the signal b ∈ Rn is positive for all i ∈ [0 : n−1], i.e. bi > 0.
In practice all bi-th are assigned by some small values (will be discussed in detail
in Section 5.6.4).

We notice that S returns a real-valued number if for all i ∈ [0 : n−1] the value
xi is greater then 0.

The next function χ is defined as:

χ(x,h,y′, σ) =
n−1∑

i=0

(y′i − (x ∗ h)i)2

2σ2
. (5.24)

We notice that in practice the value of the standard deviation σ is usually given.
The maximization task (5.22) has two parts, namely functions S and χ. If

we only maximize χ, we will find x such that the noise-free signal2 y and the
measured signal y′ will be equal. In this case x will entirely approximate noise
which is present the in measured y′. It may cause spurious oscillations (peaks) in
x so that it will be impossible to detect positions of defects. From other side, if we
only maximize S, the measured signal y′ will not depend on characteristic signal
x, see equation (5.23). To set the desired trade-off between χ and S we use the
regularization parameter α. If α is large, then too much weight will be given to
the measured data (function χ), i.e. the effect of noise will be magnified. If α is
too small, then too much weight will be given to the entropy function S so that all
the instances of x will fall down to the default value b. Generally, α can be found
iteratively as it discussed in [92]. This, of course, requires additional computational
resources. In practice α is estimated once from the reference measurements so that
it corresponds to the particular measurement conditions. If the conditions change,
then α must be estimated again.

To find a solution of the problem (5.22) is a relatively complex task. It requires
maximization of the function in n-dimensional space. This problem will be studied
in the following sections.

5.5 Maximization of Posterior Probability

As we have already discussed, maximization of posterior probability P (E |H) is
done by looking for a vector x ∈ Rn (FIR input) which maximizes function Ψ, see

2we remind that the ideal measured noise-free signal y is defined for all i ∈ [0 : n − 1] as
yi = (x ∗ h)τ



100 CHAPTER 5. MAXIMUM ENTROPY DECONVOLUTION APPROACH

equations (5.19) and (5.22). The problem (5.22) is called optimization problem
and belongs to the optimization theory. In the next section we present some
background of optimization theory needed in the following reading.

5.5.1 Optimization Problem, Basic Definitions and Notations

Optimization theory deals with either constrained or unconstrained problems.
The unconstrained optimization problem [94, page 3] is to maximize a real-

valued function f (called objective function) of n variables. To maximize means
to find a local maximizer x∗ ∈ Rn such that

f(x∗) ≥ f(x) for all x near x∗. (5.25)

It is standard to denote this problem as

max
x

f(x). (5.26)

In general, a maximization problem (5.26) can be referred to as a minimization
problem by substituting −f instead of f . We call the optimizer the minimizer of
minimization problem or the maximizer of maximization problem.

The global maximization problem is defined as

f(x∗) ≥ f(x) for all x, (5.27)

where x∗ is a global optimizer. In practice seeking for a global maximum x∗ is a
difficult task. Usually this type of optimization problems is applied to functions
which have properties of convexity and smoothness.

The constrained maximization problem is to maximize a function f over set
U ⊂ Rn, i.e. to find a local maximizer x∗ ∈ U such that

f(x∗) ≥ f(x) for all x ∈ U near x∗. (5.28)

Similar to (5.26) we express this as

max
x∈U

f(x). (5.29)

In practice constrained problems are usually transformed into easier subproblems
that can then be solved in terms of unconstrained optimization. A standard
solution is to design a so-called penalty function which is used to define set U (i.e.
to set desired constrains), [94, 95].

Definition 5.5.1 For x ∈ Rn we define the gradient ∇f ∈ Rn of function f :
Rn → R as

∇f =
(

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn−1

)
, (5.30)

where i-th component of vector ∇f such that i ∈ [0 : n − 1] is called partial
derivative of f with respect to xi.
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Definition 5.5.2 We define the Hessian matrix (or second derivative) ∇2f ∈
Rn×n of function f : Rn → R as:

∇2fij =
∂2f

∂xi∂xj
. (5.31)

If the first and second derivatives exist and are continuous then it is said that the
function f is twice continuously differentiable.

Definition 5.5.3 Let A ∈ Rn×n be a matrix. We define the conditional num-
ber of A as

k(A) =
λ0

λn−1

where λ1 and λn−1 are the largest and lowest eigenvalues of the matrix A, respec-
tively.

5.5.2 Methods for Unconstrained Optimization

In the last thirty years a powerful collection of algorithms for unconstrained op-
timization has been developed. A broad description of these algorithms and their
properties can be found in more detail in any optimization book, e.g. see for
reference [94–101]. The choice of an algorithm to solve a specific task depends
on several problem characteristics. These include problem size (i.e. the num-
ber of variables), speed of convergence, computational demands, objective function
properties etc.

Methods for unconstrained optimization can be divided into classes according
to their operating principles:

1. Basic Methods

2. Newtonian Methods

3. Quasi-Newtonian Methods

Steepest descent methods (which belong to the first group) are probably most
important methods for unconstrained optimization. These algorithms produce a
minimizer xk iteratively as

xk+1 = xk + λk4xk, (5.32)

where 4x ∈ Rn is a vector called search direction and k = 0, 1, . . . stands for the
iteration number.

The search direction 4x in a descent method have to satisfy the following
condition:

∇f(xk)T 4xk < 0, (5.33)

i.e. it have to make an acute angle with the gradient and it is called descent direc-
tion. Condition (5.33) guarantees that function f can be reduced along direction
4xk. It is standard to take the descent direction equal to the negative gradient
of the objective function:

4xk = −∇fk.
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In equation (5.32) a constant λk is called the step length. Generally, λk is
chosen to ensure that the value of function f decreases at every iteration step.
The procedure which allows to find such a λk is called exact line search and is
defined as

min
λk>0

f
(
xk + λk4xk

)
(5.34)

In practice it is very expensive to compute the exact solution of the line search
problem given in (5.34). It may require many evaluations of objective function f .
A more practical strategy is to evaluate λk by using inexact line search. For this a
backtracking line search algorithm is proposed. In unconstrained optimization it is
considered to be very simple and quite efficient. The main idea of the backtracking
line search algorithm is to try out a candidate value of λk which satisfies a certain
condition formulated below.

Definition 5.5.4 Let f be an objective function. Let xk, 4xk, and λk be its
minimizer, search direction, and step length at the k-th iteration, respectively. We
define the backtracking line search function

btlSearch : R→ R,

by

btlSearch
(
λk

)
=

=





λk if f
(
xk + λk4xk

) ≤ f
(
xk

)
+ c1λ

k∇f
(
xk

)T 4xk

btlSearch (c2 λk) otherwise
,

where c1, c2 ∈ R are constants such that 0 < c1 < 0.5, 0 < c2 < 1.

Definition 5.5.4 is based on so-called Wolfs conditions [97, page 36]. These guar-
antee a length λk such that the objective function will be sufficiently decreased
in descent direction 4xk. Function btlSearch starts from λk = 1 (Newton step)
with following decreasing. In the literature it was shown that btlSearch eventu-
ally terminates [97, page 41].

Advantage of steepest descent methods is their computational simplicity. Usu-
ally it takes O(n) arithmetical operations to evaluate the objective function f(xk)
and the gradient ∇f(xk). In practice solving the optimization problem with de-
scent methods may be not efficient. Main disadvantages of descent methods are:

• Descent methods often exhibit linear convergence

• The choice of backtracking line search parameters c1 and c2 has a noticeable
effect on convergence. It was shown that the exact line search may improve
the convergence of steepest methods.

• The convergence rate critically depends on the conditional number of the
Hessian of the objective function, see Definition 5.5.3.
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This makes steepest descent methods often unpractical even if the problem is
moderately small.

The algorithms for unconstrained optimization which belong to the second
group are entirely based on the Newton algorithm. This algorithm operates ac-
cording to the iterative scheme given in equation (5.32). Its descent direction is
determined from the gradient and Hessian of the objective function f as

4xk = −
(
∇2f(xk)

)−1
∇f(xk). (5.35)

The Newton algorithm also uses the backtracking line search algorithm (see Defi-
nition 5.5.4) in order to optimize constant λk.

In the following we summarize the most important advantages of the Newton
algorithm:

• Convergence of the Newton algorithm is very fast. In particular, it has a
quadratic character if a current minimizer xk is close to the local minimizer
x∗. As soon as the algorithm reaches a quadratic convergence it only needs
a few iterations to produce a solution of very high accuracy.

• The Newton algorithm scales very well with problem size, i.e. these methods
are independent from the conditional number. Convergence speed of these
methods on problem of size n is similar to its performance on problem of
size m even if n À m.

• The Newton algorithm reaches global convergence if the objective function
is convex (concave)3. In [92] the concavity of the entropy function Ψ was not
presented. In Appendix A.0.4 we introduce the entropy function concavity
proof.

Even if the Newton algorithm has high convergence speed and scalability it also
has several disadvantages:

• Computation and saving of the Hessian of the objective function at every
iteration step may strongly slow down the algorithm.

• Computations of Newton step requires the matrix inverse which is compu-
tationally expensive. Its complexity is O(n3).

The third group of methods of unconstrained optimization which are referred to
as quasi-Newton methods require less computational efforts to form the search
direction. These methods utilize different computational schemes for the approxi-
mation of Hessian∇2f(xk+1)−1 from the k-th iteration. One of the most successful
algorithms is the BFGS one, named after its discovers Broyden, Fletcher, Gold-
farb, and Shanno. According to [96, page 67] the inverse of the Hessian can be
approximated by:

∇2f(xk+1)
−1

=
(
I− skyT

k

yT
k sk

)
∇2f(xk)

−1
(
I− yksT

k

yT
k sk

)
+

sksT
k

yT
k sk

. (5.36)

3depends whether the minimization or maximization of the objective function is performed
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In (5.36) vectors sk,yk ∈ Rn are defined as follows:

sk = xk+1 − xk

yk = ∇f(xk+1)−∇f(xk).

Only at the first iteration of the BFGS algorithm the computation of ∇2f(x0)−1

is required. After that the Hessian is computed by the iterative scheme (5.36).
Let us summarize properties of the BFGS algorithm. Its advantages are:

• the BFGS algorithm requires computation of the Hessian only at the very
first iteration. In practice it can be computed before the main iteration
cycle.

• the BFGS algorithm is computationally efficient. It requires O(n2) arith-
metical operations per iteration.

The following statements are referred to as disadvantages of BFGS algorithm:

• Unknown initial approximation of ∇2f(x0)−1. Since the computation of the
initial Hessian can be very expensive it is standard to use an identity matrix
instead. This may slow down the convergence of the algorithm.

• In practice the equation (5.36) may produce a very poor approximation of the
Hessian after several iterations. This problem has been studied analytically
and experimentally in the literature. It has been shown that the BFGS
algorithm corrects itself only if an adequate line search (see Definition 5.5.4)
is performed. This also may reduce the convergence speed of BFGS.

• Being applied to a practical problem the rate of convergence of the BFGS
algorithm is lower than the speed of convergence of the Newton algorithm.
It is superlinear rather than quadratical.

In the following sections we will check, which method from unconstrained
optimization is the most suitable for MED algorithm applied on Doppler signal.

5.5.3 Comparison of methods of unconstrained optimization

In this section we compare the efficiency of algorithms of unconstrained optimiza-
tion (being applied in the context of the MED algorithm) which we discussed in
Section 5.5.2. These are steepest descent, BFGS, and Newton algorithms. We
perform the comparison of algorithms in two steps. At the first step we check
which of the algorithms is able to compute the correct solution. Here we also dis-
cuss the influence of backtracking line search on the computed optimizer. At the
second step we check which of the algorithms has the highest convergence speed.

Let us consider the first comparison step. We perform a number of measure-
ments of specimens with artificial defects. The locations of defects are known.
Then, the measured data are processed with the MED algorithm for different
unconstrained optimization solvers (namely, steepest descent, BFGS and New-
ton algorithms). The position of defects are estimated from the processed data.
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We compare the quality of the estimation among the algorithms. We also verify
whether estimated location of defects coincide with real ones.

In all the experiments (for steepest descent, BFGS and Newton algorithms)
estimated positions of defects coincide with real ones. However, the computed
characteristics signals are corrupted by a number of spurious peaks which can
heavily degrade the resolution. In order to estimate which of algorithms introduces
the lesser number of spurious peaks we suggest the following. We assume that
in a very worse case each entry of the characteristic signal has a peak which is
interpreted as a defect. We count all the spurious peaks in the computed signal
and introduce it as a percentage ratio of the very worst case. If the percentage
ratio is small, then we conclude that the solution is close to the optimal i.e., real
defects can be found easily. At higher percentage ratio it is difficult to differentiate
between real and spurious peaks, hence we refer to the solution as non-optimal.

In Figure 5.8(a) we compare steepest descent, BFGS and Newton algorithms
without backtracking line search procedure. Both steepest descent and BFGS
introduce inferior performance in comparison with Newton algorithm. Neither
steepest descent nor BFGS do not reach the optimal solution what leads to about
50% of spurious peaks in the characteristic signal. In a contrary, the Newton
algorithm introduces only about 5% of spurious peaks what makes estimation of
location of the real defects more correct.

In Figure 5.8(b) we compare steepest descent, BFGS and Newton algorithms
with backtracking line search procedure. It improves the performance of the steep-
est descent algorithm. As we expected the line search ensures the better optimizer
what reduces the number of spurious peaks.

In Figure 5.8(b) we can see that the BGFS fails in seeking for the optimal
solution even if the line search is applied. A poor performance of the BFGS
algorithm is caused by the update of Hessian inverse of the entropy function in
equation (5.36). Such an update leads to very low or even zero convergence of the
algorithm.

Analyzing Figures 5.8(a), (b) we conclude that the Newton algorithm allows
to extract the best optimizer among the others algorithms. We also conclude
that the performance of the Newton algorithm does not depend on the line search
procedure.

Data represented in 5.8(a), (b) were computed with the impulse response (we
refer to as proper impulse response) measured for the same type of artificial defect
which was used in the measurement. This, certainly, makes search of solution of
MED algorithm easier. Often in practice, the form of the defects of the analyzed
specimen differs from the form of the defect which is used to measure the impulse
response (we refer to as improper impulse response). In the following we examine
behavior of the Newton algorithm with proper and improper impulse responses,
see Figures 5.8(c) and (d).

In Figure 5.8(c) the optimizer computed by Newton algorithm with the proper
impulse response is presented. Here we can clearly see the edges of the specimen
and a number of defects. The optimizer computed by the Newton algorithm with
improper impulse response is presented in Figure 5.8(d). Comparing Figures 5.8(c)
and (d) we conclude that improper impulse response worsens the optimizer making
impossible separation of closely spaced defects. However, even if the optimizer in
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Figure 5.8: Applicability of methods of unconstrained optimization: (a) steepest
descent, BGFS and Newton algorithms, no bltSearch; (b) steepest descent, BGFS
and Newton algorithms, with bltSearch; (c) Newton algorithm, proper impulse
response, with bltSearch; (d) Newton algorithm, improper impulse response, with
bltSearch; (e) steepest descent, improper impulse response, with bltSearch; (f)
steepest descent, improper impulse response, no bltSearch
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Figure 5.8(d) is not optimal, it still gives information about defects locations. This
optimizer does not contain much spurious peaks so that defects of the specimen
can be easily detected. Such a good performance of the Newton algorithm can be
explained through its convergence property. Thus, the Newton algorithm seeks for
the best optimizer for the given input data and splits more probable information
(real peaks) from less probable one (spurious peaks).

The optimizers computed by steepest descent algorithm for improper impulse
response with and without backtracking line search are presented in Figures 5.8(e)
and (f), respectively. As we can see even if the backtracking line search is used,
the steepest descent algorithm does not provide the optimizer that is as good as
the optimizer computed by Newton algorithm (compare Figures 5.8(d) and (e)).
Later we will also show that the backtracking line search seriously slows down
the steepest descent algorithm. The optimizer computed by the steepest descent
algorithm without backtracking line search is represented in Figure 5.8(f). As we
can see the search of the optimizer fails.

Let us consider the second step of the algorithms comparison. Here we com-
pare the speed of convergence of the steepest descent, BFGS, and the Newton
algorithms with applied backtracking line search.

In Figure 5.9(a) we represent how the entropy function increases with every
iteration. The Newton algorithm shows the best convergence speed. It reaches
the optimum in a few iterations. As we have already discussed in Section 5.5.2
is has quadratical speed of convergence. The steepest descent algorithm has a
significantly lower convergence than the Newton algorithm, so it approaches the
optimal solution very slowly. The BFGS algorithm gets stuck after some iterations
far away from the correct solution. In the experiments both the steepest descent
and BFGS algorithms do not terminate so that we needed to interrupt them
manually.

Another important criterion which can be used in the algorithms’ comparison
is the number of iterations required by the backtracking line search algorithm. If
it is too large, the speed of computations may enormously decrease. In such a case
even a fast algorithm like the steepest descent algorithm is not useful in practice.
In Figure 5.9(b) we represent the number of iterations of the backtracking line
search algorithm for every iteration of the main algorithm (i.e. steepest descent,
BFGS, and Newton algorithm being applied for MED).

The Newton algorithm shows the best performance. It requires only a few
iterations of backtracking line search.

The cost of the steepest descent technique increases, in particular, when the
current solution approaches to the optimum. Here, we can see that the number of
backtracking iterations rises.

The number of backtracking iterations in BFGS spontaneously jumps from
some high to some low values.

In this subsection we have compared different algorithms of unconstrained
optimization. We conclude that the Newton algorithm is the most efficient one
for our task. In all the experiments it shows very high convergence speed and
stability.
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Newton’s method

Newton’s method

Figure 5.9: Convergence speed of methods of unconstrained optimization: (a)
speed of entropy function descent; (b) backtracking line search iterations
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5.5.4 Gradient and Hessian of the Entropy Function Ψ

The Newton algorithm requires computation of gradient and Hessian of the ob-
jective function at every iteration. In the current section we derive the gradient
and the Hessian of the entropy function Ψ given in equation (5.22).

The gradient ∇Ψ ∈ Rn is defined for any x ∈ Rn as

∇Ψi =
∂Ψ
∂xi

= −
(

∂S

∂xi
+ α

∂χ

∂xi

)
= − (∇S + α∇χ) , (5.37)

where i ∈ [0 : n− 1]. The Hessian ∇2Ψ ∈ Rn×n is defined as gradient of ∇Ψ for
i, j ∈ [0 : n− 1], i.e:

∇2Ψi,j =
∂

∂xj
∇Ψ = −

(
∂2S

∂xi∂xj
+ α

∂2χ

∂xi∂xj

)
= − (∇2S + α∇2χ

)
. (5.38)

The first terms of equations (5.37) and (5.38) are the first and second partial
derivatives of S, see equation (5.23), so that

∇Si =
∂S

∂xi
= ln xi − ln bi (5.39)

and
∇2Si,j =

∂S

∂xi∂xj
=

δ(i− j)
xi

, (5.40)

where δ : Z→ R is the unit-sample. From equation (5.40) we conclude that ∇2S
is a matrix which has non-zero values only on its main diagonal. We also say that
∇2S is not defined if there is at least one zero sample in x.

By using the definition of the positive wrapped convolution given in equation
(5.3) we define the signal y ∈ Rn for all τ ∈ [0 : n− 1] as

yτ = (x ∗ h)τ =
τ∑

k=0

xτ−khk +
n−1∑

k=τ+1

xn+τ−khk, (5.41)

where signals x and h are given in equation (5.24). A partial derivative of yτ is

∂yτ

∂xi
= hk(τ,i), where k(τ, i) =

{
τ − i if τ ≥ i
τ − i + n otherwise.

(5.42)

In order to derive the gradient of χ we substitute equations (5.41) and (5.42) in
to (5.24) so that for i ∈ [0 : n− 1] we have:

∇χi =
∂χ

∂xi
=

1
2σ2

n−1∑

τ=0

∂ (y′τ − (x ∗ h)τ )
2

∂xi

=
1

2σ2

n−1∑

τ=0

∂(y′ 2τ − 2y′τyτ + y2
τ )

∂xi

=
1

2σ2

n−1∑

τ=0

(
−2y′τ

∂yτ

∂xi
+ 2yτ

∂yτ

∂xi

)

=
1
σ2

n−1∑

τ=0

hk(τ,i)(yτ − y′τ ).

(5.43)
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The Hessian of χ is defined from equation (5.43) as follows:

∇2χi,j =
∂

∂xj
∇χi =

1
σ2

n−1∑

τ=0

hk(τ,i)

(
∂yτ

∂xj
− ∂y′τ

∂xj

)
=

1
σ2

n−1∑

τ=0

hk(τ,i) hp(τ,j) (5.44)

In general, a computation of the Hessian ∇2Ψ at every iteration step of the
Newton algorithm is a challenging task. In the following section we develop an
algorithm for its fast computation.

5.5.5 Fast Hessian Computation

In the current section we prove some properties of Hessian ∇2Ψ. We also show
how the fast computation of ∇2Ψ can be done exploiting these properties.

The computation of the Hessian ∇2Ψ requires computation of ∇2S and ∇2χ
given in equations (5.40) and (5.44), respectively. The matrix ∇2χ is constant
for constant vector h, therefore the only matrix which must be updated while the
Newton algorithm iterates is ∇2S.

Since matrix ∇2χ only depends on the impulse response h, it can be precom-
puted before the algorithm starts to iterate in order to save computational time.
The number of impulse responses4 is usually restricted hence the memory cost for
presaving is not high.

In the following we prove that in order to derive ∇2χ it is only necessary to
compute its first row, i.e. vector ∇2χ[0][0 : n− 1].

Theorem 5.5.5 Let ∇2χ ∈ Rn×n be the Hessian of χ defined by equation (5.44).
We prove that each entry ∇2χi,j can be found from its first row ∇2χ[0][0 : n− 1]
such that for all i ∈ [1 : n− 1] and j ∈ [0 : n− 1]:

∇2χi,j = ∇2χ0,j′(i), where j′(i) =
{

j − i if j ≥ i
j − i + n otherwise.

(5.45)

Proof:
Let us rewrite equation (5.44) for i, j ∈ [0 : n− 1] as:

σ2 ∇2χi,j =
min(i,j)−1∑

τ=0

hn+τ−i hn+τ−j +

max(i,j)−1∑

τ=min(i,j)

hn+τ−max(i,j) hτ−min(i,j) +

n−1∑

τ=max(i,j)

hτ−i hτ−j

(5.46)

Let us introduce three claims we need to show the goal of the theorem. The first
claim represents the goal for the entries of the matrix ∇2χ which are placed above
the main diagonal:

claim1 for all i ∈ [1 : n− 2], j ∈ [i + 1 : n− 1] holds ∇2χi,j = ∇2χ0,j−i

4in practice we measure a number of impulse responses for defects of different forms
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The second claim represents the goal for the entries of the matrix ∇2χ which are
places on the main diagonal:

claim2 for all i, j ∈ [1 : n− 1] s.t. i = j holds ∇2χi,j = ∇2χ0,j−i = ∇2χ0,0

The third claim represents the goal for the entries of the matrix ∇2χ which are
placed below the main diagonal:

claim3 for all j ∈ [0 : n− 2], i ∈ [j + 1 : n− 1] holds ∇2χi,j = ∇2χ0,n+j−i

Let us show the correctness of claim1 using the definition of ∇2χ given in
(5.46) and taking into account that j > i (see conditions of claim1)):

σ2 ∇2χ0,j−i =
j−i−1∑

τ=0

hn+τ−j+i hτ +
n−1∑

τ=j−i

hτ hτ−j+i (5.47)

σ2 ∇2χi,j =
i−1∑

τ=0

hn+τ−i hn+τ−j

︸ ︷︷ ︸
t1

+
j−1∑

τ=i

hn+τ−j hτ−i

︸ ︷︷ ︸
t2

+
n−1∑

τ=j

hτ−i hτ−j

︸ ︷︷ ︸
t3

(5.48)

In (5.48) in terms t1, t2, t3, without changing the equation sense, we shift the range
of indexes of every sum by (n− i), (−i) and (−i), respectively:

σ2 ∇2χi,j =
n−1∑

τ=n−i

hτ hτ−j+i +
j−i−1∑

τ=0

hn+τ−j+i hτ +
n−i−1∑

τ=j−i

hτ hτ−j+i (5.49)

Comparing (5.47) and (5.49) we conclude that claim1 holds.
Let us show the correctness of claim2 using the definition of ∇2χ given in

(5.46) and taking into account that i = j (see definition of claim2):

σ2 ∇2χ0,j−i = ∇2χ0,0 =
n−1∑

τ=0

hτhτ (5.50)

σ2 ∇2χi,j =
i−1∑

τ=0

hn+τ−i hn+τ−i

︸ ︷︷ ︸
t1

+
n−1∑

τ=i

hτ−i hτ−i

︸ ︷︷ ︸
t2

(5.51)

In (5.51) in terms t1, t2, without changing the equation sense, we shift the range
of index of every sum at (n− i) and (−i), respectively:

σ2 ∇2χi,j =
n−1∑

τ=n−i

hτ hτ +
n−i−1∑

τ=0

hτ hτ (5.52)

Comparing (5.50) and (5.52) we conclude that claim2 holds.
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Let us show the correctness of claim3, using the definition of ∇2χ and taking
into account that j < i:

σ2 ∇2χ0,n+j−i =
n+j−i−1∑

τ=0

hτ−j+i hτ +
n−1∑

τ=n+j−i

hτ hτ−n−j+i (5.53)

σ2 ∇2χi,j =
j−1∑

τ=0

hn+τ−i hn+τ−j

︸ ︷︷ ︸
t1

+
i−1∑

τ=j

hn+τ−ihτ−j

︸ ︷︷ ︸
t2

+
n−1∑

τ=i

hτ−ihτ−j

︸ ︷︷ ︸
t3

(5.54)

In (5.54) in terms t1, t2, t3, without changing the equation sense, we shift the range
of index of every sum at (n− i), (n− i) and (−i), respectively:

σ2 ∇2χi,j =
n+j−i−1∑

τ=n−i

hτ hτ−j+i +
n−1∑

τ=n+j−i

hτ hτ−n−j+i +
n−i−1∑

τ=0

hτhτ−j+i (5.55)

Comparing (5.53) and (5.55) we conclude that claim3 holds.
Combining correctness of claims 1, 2 and 3 we reach the main goal of the the-

orem. ¥.

According to Theorem 5.5.5 we reduce the storage cost of ∇2χ from O(n2)
to O(n). We remind that typical value of n is 1024, 2048 and 4096 samples. We
note that the computational cost of Hessian ∇2Ψ can be reduced from O(n3) to
O(n) as following. First, we presave ∇2χ. Then, at every new iteration ∇2Ψ is
computed from the updated ∇2S at cost of O(n), because ∇2S is diagonal, and
the presaved ∇2χ.

5.6 Computation of Hessian Inverse

At every iteration k the Newton algorithm requires computation of the descent
vector 4xk given in equation (5.35). The computation of 4xk requires in its turn
the computation of the inverse Hessian of the objective function. Since the compu-
tation of the matrix inverse is very expensive, the Newton algorithm performs very
slowly. In the current chapter we develop a fast algorithm for the computation of
the inverse of the Hessian matrix of entropy function Ψ.

5.6.1 Methods for Computation Hessian Inverse

In the literature many different algorithms, for the computation of the matrix
inverse, were developed. Let us give a short review.

Definition 5.6.1 A square matrix is said to be singular if its determinant is
zero, i.e.

|A| ≡ det(A) = 0. (5.56)

Definition 5.6.2 The inverse of a square nonsingular matrix A is denoted by
the symbol A−1 and is defined by the relation [102, page 50]

A−1A = AA−1 = I, (5.57)
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where I is a unit matrix.

In the literature there is a number of standard algorithms to compute matrix
inverses. The practical numerical calculation of inverses is based on a so-called
triangular factorization [102, page 94]. For a nonsingular square matrix the LU
factorization is under consideration. Here L and U are the lower and upper trian-
gular matrixes of a matrix A, respectively. The inverse of A = LU is computed
in the following steps:

1. compute Y from UY = I

2. compute X from LX = Y.

The inverse of A is equal to X:

A−1 = X

If A is symmetric then another transformation can be applied [102, 135]. Here,
the matrix A is represented as a product LDLT , where D is a diagonal matrix.
In both approaches defined above the complexity of computation of A−1 is O(n3)
that is not efficient in practice.

A more efficient approach that can be applied for our task is to compute the
matrix inverse as the solution of a system of linear equations [103]. Using equations
(5.35), (5.37) and (5.38) we can write

∆xk = −∇2Ψ(xk)
−1 · ∇Ψ(xk),

what leads us to the following equation

−∇2Ψ(xk) ·∆xk = ∇Ψ(xk) (5.58)

Let the coefficient matrix A = −∇2Ψ(xk), the right-hand side vector b =
∇Ψ(xk), and vector of unknowns x = 4xk, then equation (5.58) can be written
as

Ax = b (5.59)

In mathematical analysis there are two general approaches for solving problems
similar to equation (5.59). These include so-called direct (or classical) and indirect
(or iterative) algorithms. Below we shortly discuss three main groups of the most
important algorithms:

• basic iterative algorithms (Jacobi, Gauss-Seidel, Successive Over Relaxation)

• projection or Krylov subspace algorithms (GMRES, CG, BCG, QMR etc.)

• classical algorithms (e.g. Gauss-Elimination algorithm)

The first group contains basic iterative algorithms which find solution of equa-
tion (5.59) in the following general form:

xk+1 = G · xk,
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where G ∈ Rn×n is a so-called iteration matrix. Matrix G depends on the concrete
algorithm and is some function of A and b. A stop-criterion is determined by a
residual error ‖ r ‖2, where the residual vector r is given by:

r = b−Axk. (5.60)

The convergence of basic iterative algorithms depends on the conditional num-
ber of matrix G, see [97, 104]. If the conditional number is very large5, then the
convergence of these methods dramatically decreases. Studies on the convergence
rate of basic iterative algorithms discovered a difficulty of their use in many prac-
tical applications. In particular, the number of iterations enormously grows with
the number of unknowns. In this work we have tested basic iterative algorithms
mentioned above for finding the solution of equation (5.60) as a part of the MED
algorithm. In all the tests the basic iterative algorithms failed. More information
about this group of algorithms can be found in literature [95,104].

The second group includes so-called projection (or Krylov subspace) algo-
rithms. These algorithms offer great convergence properties on large linear sys-
tems of equations [104]. The projection algorithms extract the solution of a linear
system from a subspace in an iterative fashion. In this thesis we use GMRES
algorithm to solve equation (5.59). A short description of the GMRES algorithm
is given in the following section.

The third group contains classical algorithms. In practice, these algorithms are
not as popular as iterative ones because they are computationally very expensive.
Despite that the classical algorithms extract the precise solution of a system of
linear equation what may lead to the fast convergence of the Newton algorithm.
In Section 5.7 we develop an optimized version of the Gauss-Elimination algorithm
which utilize some properties of the impulse response h.

5.6.2 Projection Algorithms

Definition 5.6.3 The vector space is a set that is closed under finite vector
addition and scalar multiplication. Euclidean n-space Rn is called a real vector
space.

Definition 5.6.4 The vector space spanned by vectors v0,v1, . . . ,vn−1 ∈ Rn is
the following set

span(v0,v1, . . . ,vn−1) ≡ { a0v0 + a1v1 + . . . + an−1vn−1 | a0, a1, . . . , an−1 ∈ R } ,

Definition 5.6.5 A basis of a vector space Rn is defined to be a subset v0,v1,
. . . ,vn−1 of vectors in Rn that are linearly independent and span vector space Rn.

The idea of a projection algorithm is to extract an approximate solution of the
problem (5.59) from a subspace of vector space. We refer to this subspace as a
search subspace Km such that Km ⊂ Rn, where m ∈ N+ is called a search subspace
dimension.

5it happens when the highest eigenvalue of G is much larger than the lowest eigenvalue of G,
i.e. λG

max À λG
min
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In general, a search subspace dimension m is not large relative to n. This,
certainly, makes projection algorithms very efficient for solving of large system of
linear equations.

5.6.3 GMRES Algorithm

GMRES (Generalized Minimum RESidual) was proposed in 1986 as a Krylov
subspace algorithm for systems Ax = b, [105] . This projection algorithm uses
search subspace K = Km and some additional constraint subspace L = Lm. The
m-th Krylov and constraint subspaces are defined as:

Km(A,v0) = span(v0, Av0, A2v0 , . . . , Am−1v0) and Lm = AKm,

with
v0 =

r0

‖r0‖2

The vector r0 in the latter equation is computed as

r0 = b−Ax0,

where x0 is the initial guess defined by the user.
In the literature the GMRES algorithm is represented as the solver for the

least square problem where for iteration m ≥ 1 holds:

min
xm∈Km

‖rm‖2 = ‖b−Axm‖2 such that xm⊥ Lm, (5.61)

The solution of the problem (5.61) can be found by solving

min
ym∈Rm

‖βe1 − H̄mym‖2. (5.62)

In equation (5.62) a constant β and vector e1 are defined in [106] as:

β = ‖r‖2,

e1 = (1, 0, . . . , 0) ∈ Rm+1,

and the matrix H̄m ∈ Rm+1×m we discuss later.
The vector xm which minimize equation (5.61) is computed from the solution

of equation (5.62) as:
xm = x0 + Vmym, (5.63)

such that x0 is the initial guess. The matrix Vm ∈ Rn×m is computed through a
so-called Arnoldi’s process [104].

The Matrix H̄m is derived by the GramSchmidt orthogonalization procedure,
see for reference [107]. In the literature this procedure is referred to as a source
of significant numerical errors. In order to reduce numerical errors an alterna-
tive implementation was outlined in [108] and called Householder transformation.
In the literature it was experimentally shown that Householder transformation
is numerically more stable than the GramSchmidt orthogonalization procedure,
specially as the limits of residual reduction are reached. The implementation of
GMRES algorithm we applied in this work is given in Appendix B.0.5.
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In [105] it was shown that using properties of matrix H̄m a problem (5.62) can
be solved very efficiently. Since m is usually small (i.e. m ¿ n) the solving of
(5.62) does not slow down the total computational speed of the GMRES algorithm.

In general, Krylov subspace algorithms and GMRES in particular do not guar-
antee reaching an acceptable solution within efficient computational time and stor-
age. For instance, the GMRES algorithm may lead to the exact arithmetic solution
only after n iterations with O(n3) operations (where n is the size of the problem).
The convergence of the GMRES algorithm depends on properties of matrix A and
vector b. In order to increase the convergence speed of the algorithm a special
operator K is developed. K needs to be such that the products K−1A and K−1b
have better properties than A and b. In the ideal case holds:

K−1Ax = I x = K−1 b, (5.64)

so that the GMRES will deliver the correct solution in one step. A system of linear
equations (5.64) is called preconditioned system and K is called preconditioner .
Certainly, in practice equality (5.64) is not reachable (at least in a fast way).
Instead, it is suggested to develop K in such a way that the matrix K−1A becomes
sparse6. Generally, it is also required that operator K has the following properties:

• K is a good approximation of A i.e. matrix K is close to A

• The cost of the construction of K is not prohibitive

• The preconditioned system becomes sparse.

In the literature there is no general theory how we can select a preconditioner
K having the properties mentioned above. Selection and construction of a good
preconditioner for a given class of problems is often based on an educated guess.
In practice preconditioners are explicitly developed for specific problems in order
to exploit their features. There is a great freedom in definition and construction
of preconditioners for Krylov subspace algorithms. This makes them very pop-
ular and successful. In this thesis we do not give an overview of already known
techniques to find preconditioner. We refer the reader to [104, 109–114] for more
information.

In the following subsection we will construct a new preconditioner which makes
the GMRES algorithm very efficient for solving the problem given in (5.59).

5.6.4 MED Preconditioner

As we have already discussed in Section 5.5.3 the Newton algorithm solves the
entropy problem (5.22) in an iterative fashion. At iteration step k the Newton
algorithm requires computation of both Hessian Ak and gradient bk. In Section
5.5.5 we have introduced the fast computation of the Hessian Ak at cost of O(n).
The solution

Ak xk = bk (5.65)

of the Newton algorithm (i.e. vector xk) at iteration k is done with the GMRES
algorithm, see Section 5.6.3. The flowchart of this process is represented in Figure
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Figure 5.10: Flowchart: GMRES linear solver inside Newton algorithm

5.10(a). After the initialization phase the Newton algorithm iterates until the
convergence is reached. Then, vector xk is provided for the further processing. In
the following we will experimentally show that the naive solution of (5.65) with
GMRES may lead to a very low computational speed. In order to increase the
speed of computations we apply the GMRES algorithm with a fast preconditioner,
which we develop in the following.

The development of GMRES preconditioner K is based on the two-sided pre-
conditioning scheme [115, page 176] formulated as:

Kk
1
−1

Ak Kk
2
−1

zk = Kk
1
−1

bk (5.66)

such that
xk = Kk

2
−1

zk and Kk = Kk
1 Kk

2.

The ideal preconditioner Kk in equation (5.66) can be computed from a so-called
LU decomposition of Hessian Ak (see for reference [103]) as

Ak = Lk Uk (5.67)

where Kk
1 = Lk and Kk

2 = Uk are lower triangular and upper triangular matrices.
Let us introduce the standard way to compute a LU -decomposition of a matrix

A such that A = LU and A,L,U ∈ Rn×n. The entries of matrices L and U are
defined for all i, k ∈ [0 : n− 1] as:

li,k =





( ai,k −
k−1∑
j=0

li,j uj,k ) /uk,k if i > k

1 if i = k
0 if i < k

(5.68)

6sparse matrix is a matrix which has many zero entries
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and

ui,k =





ai,k −
i−1∑
j=0

li,j uj,k if i ≤ k

0 otherwise
(5.69)

We notice that L is the lower triangular matrix and its upper entries are zeros.
Matrix U is the upper triangular matrix. More information about LU decompo-
sition can be found in the literature [102,103,116].

Complexity of LU decomposition O(n3). It is very expensive to perform the
decomposition at every iteration of the Newton algorithm k. Instead we suggest
to use the standard algorithm only in order to decompose the Hessian A0 into
(L0,U0) before the Newton algorithm starts to iterate. At further iterations for
k ≥ 1 matrices Lk and Uk are not computed with expensive LU decomposition
procedure rather they are updated in a very cheap way. Thus, at every iteration
with k ≥ 1 the updated preconditioner Kk is computed as:

Kk ' Ak ' Lk Uk, where Lk = L0 and Uk = (U0 + Λk). (5.70)

In equation (5.70) Λk stands for a diagonal matrix which contains the difference
between A0 and Ak on the main diagonal. According to the definition of the
Hessian of the entropy function (see Section 5.5.5), we introduce Λk in terms of
the Hessian of S function as:

Λk = Ak −A0 = ∇2Sk −∇2S0.

The matrix Λk is diagonal because all ∇2Sk are diagonal.
IF the matrix L0 is approximately equal to the matrix I i.e.

L0 ≈ I ≈ L0−1 (5.71)

the following holds:

Ak = A0 + Λk = L0 U0 + Λk = L0 (U0 + L0−1Λk) ≈ L0 (U0 + Λk). (5.72)

Theorem 5.6.6 Let A = − (∇2S +∇2χ
)

be the Hessian of the entropy function
at the 0-th iteration of the Newton algorithm. The matrixes L and U are computed
from the LU decomposition of the matrix A such that LU = A.

Let m > n and the vector x0 ∈ Rn be initialized by the following value b:

b =
1

2m α∇2χmax
, where ∇2χmax = max

i,j

(∣∣∇2χi,j

∣∣) ,∇2χmax > 1;

such that for all k ∈ [0 : n− 1] holds xk = b, see for reference (5.38), (5.40).

Let us define a set for the index i ∈ [0 : n− 2] as

Sl
i = { lj′,i′ | j′ ∈ [i + 1 : n− 1] and i′ ∈ [0 : i] }
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Figure 5.11: Elements of the set Sl
i: (a) entries of Sl

0; (b) entries of Sl
1; (c) entries

of Sl
n−2

For every i the set Sl
i contains entries of the matrix L which are located in columns

from 0 to i below the main diagonal, see Figure 5.11.

We claim that

for all l ∈ Sl
n−2 holds | l | < ε, 0 < ε < 1 (5.73)

In (5.73) ε stands for the limit value of Sl
n−2 and is given as

ε =
1

2m−n−1

Proof by induction on i that ∀ l ∈ Si : | l | ≤ ε

1. Induction base, i=0:

By definition of the set Sl
i we have:

Sl
0 = { lj′,0 | j′ ∈ [1 : n− 1] }

In order to compute the elements of Sl
0 we utilize LU decomposition ??, definition

of matrix A and definition of claim (5.73):

lj′,0
(5.68,5.69)

=
aj′,0

a0,0
=

α∇2χj′,0

2m α∇2χmax + α∇2χ0,0
(5.74)

We estimate the absolute value of lj′,0 given in (5.74) as:

∣∣ lj′,0
∣∣ ≤

(
α∇2χmax

2m α∇2χmax − α∇2χmax

)

We simplify the latter inequality as

∣∣ lj′,0
∣∣ ≤

(
1

2m − 1

)
(5.75)
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From inequality (5.75) and definition of ε we conclude that for all lj′,0 from in-
terval (5.75) holds ∣∣ lj′,0

∣∣ < ε

2. Induction step i → i + 1:

By using the definition of the LU decomposition we have

ui+1,i+1 = 2m α∇2χmax + α∇2χi+1,i+1 −
i∑

j′=0

li+1,j′ uj′,i+1

︸ ︷︷ ︸
u∗i+1,i+1

. (5.76)

We estimate the absolute value of the term u∗i+1,i+1 in (5.76). For that purpose
we use the induction hypothesis, namely

∀ l ∈ Sl
i holds | l | < ε.

Since all the elements li+1,j′ in (5.76) are from Sl
i we have

∣∣ li+1,j′
∣∣ < ε and∣∣ li+1,j′

∣∣ < 1, then

∣∣u∗i+1,i+1

∣∣ ≤

∣∣ α∇2χi+1,i+1

∣∣ +
i∑

j′=0

∣∣uj′,i+1

∣∣

 (5.77)

The sum in (5.77) can be represented in the following form:

i∑

j′=0

∣∣uj′,i+1

∣∣ = | u0,i+1 |+ | u1,i+1 |+ | u2,i+1 |+ . . . + | ui,i+1 | , (5.78)

where

| u0,i+1 | = |α∇2χ0,i+1 |
| u1,i+1 | ≤ |α∇2χ1,i+1 |+ |u0,i+1 |
| u2,i+1 | ≤ |α∇2χ2,i+1 |+ |u0,i+1 |+ | u1,i+1 |
...
| ui,i+1 | ≤ |α∇2χi,i+1 |+ |u0,i+1 |+ | u1,i+1 |+ . . . + | ui−1,i+1 |

Without changing the sense of (5.77) we substitute instead of all ∇2χi,j in (5.77)
and (5.78) the constant ∇2χmax. Under these considerations the sequence

| u0,i+1 |, | u1,i+1 |, | u2,i+1 | , . . . , | ui,i+1 |

turns to be a geometrical progression with a base 4 = 2. The prof of the latter
claim is given in Theorem 5.6.7. Since that, the sum in equation (5.78) can be
written as

α∇2χmax + 2α∇2χmax + 4α∇2χmax + . . . + 2i α∇2χmax = (2i+1 − 1)α∇2χmax

(5.79)
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By substitution (5.79) in (5.77) we have

∣∣u∗i+1,i+1

∣∣ ≤ 2i+1 α∇2χmax (5.80)

Let us consider all the new elements lj,i+1 which are computed at the (i+1)-th
step of the induction for all j ∈ [i + 2 : n− 1]:

lj,i+1 =


aj,i+1 −

i∑

j′=0

lj,j′ uj′,i+1




︸ ︷︷ ︸
l∗j,i+1

/ui+1,i+1, (5.81)

We apply similar considerations to the term l∗j,i+1 in (5.81) as we have done for
u∗i+1,i+1 in (5.76). Thus, we derive the interval for all possible values of l∗j,i+1 as

∣∣ l∗j,i+1

∣∣ ≤ (
2i+1 α∇2χmax

)
(5.82)

Let us prove that | lj,i+1 | < ε. For that we substitute in (5.81) the extreme
values of u∗i+1,i+1 and l∗j,i+1 given in equations (5.80) and (5.82) and definition of
ui+1,i+1 in (5.76). Then, we have to prove that

∣∣∣∣
2i+1 α∇2χmax

2m α∇2χmax − 2i+1 α∇2χmax

∣∣∣∣ < ε

The latter equation can be simplified as

1
2m−i−1 − 1

<
1

2m−n−1
= ε (5.83)

The inequality (5.83), what introduces the correctness of the induction step. Com-
bining the base and the induction step we prove the theorem goal (5.73) ¥.

Theorem 5.6.7 According to the sum (5.77) and our considerations about equa-
tion (5.78) we write

Uj′ =
j′−1∑

j=0

Uj + K, (5.84)

where j′ ∈ [1 : i], Uj′ =
∣∣ uj′,i+1

∣∣, K = ∇2χmax and U0=K.
We claim that a sequence U0, U1, U2, . . . , Ui is a geometrical progression with

a base 4 = 2, i.e. any element of the progression for j′ ∈ [1 : i] can be computed
from its previous element as

Uj′ = 4Uj′−1 (5.85)

Proof
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By using equation (5.84) we have for j′ ∈ [1 : i]:

Uj′ =
j′−1∑

j=0

Uj + K

=
j′−2∑

j=0

Uj + K + Uj′−1

=
j′−2∑

j=0

Uj + K +
j′−2∑

j=0

Uj + K

= 4Uj′−1 ¥

From Theorem 5.6.6 we conclude that by setting ε close to zero (i.e. big m) we
force all the elements l ∈ Sl

n−2 to be also close to zero. Hence, the matrix L0 turns
to be close to the unit matrix (i.e. L0 ≈ I) so that the assumption (5.71) holds.

In the following we compare computational efficiency of the GMRES precon-
ditioner given in (5.70) with a number of standard preconditioners. Let us denote
Kk

1 = LkUk to be a preconditioner computed from equation (5.70); Kk
2 = L0U0

to be a preconditioner computed at 0-th iteration of GMRES; Kk
3 to be diagonal

precontitioner7; and Kk
4 = I to be the unit-matrix preconditioner; index k denotes

iteration of the Newton algorithm.
In Figures 5.12(a),(c),(e) and (g) we represent the number of iterations of

GMRES algorithm which are required for each iteration of the Newton algorithm.
Figure 5.12(b),(d),(f) and (h) shows increasing of the entropy function at every
iteration of the Newton algorithm.

We observed the fastest convergence of the GMRES algorithm with precondi-
tioner Kk

1, see Figures 5.12(a) and (b). In this case only a few iterations of the
Newton algorithm are required to reach convergence. The number of GMRES
iterations per one Newton iteration is also small.

The GMRES with preconditioner Kk
3 also requires few GMRES iterations for

each Newton iteration. However, in the experiment this preconditioner does not
allow the Newton algorithm to reach convergence, see Figure 5.12(e) and (f). In
the experiment we had to interrupt the computation manually.

GMRES with Kk
2 performs extremely badly. Even if it requires a small number

of GMRES iterations (see Figure 5.12(c)) the entropy function increases very
slowly (5.12(d)). In this case convergence is also not reached.

The last preconditioner we examine is Kk
4. This preconditioner requires many

GMRES iterations per Newton iteration. It affects the speed of computations, see
slow increasing of entropy function in Figure 5.12(g) and (h).

In the following section we will compare the computational speed of the GM-
RES and Gauss elimination algorithm.

7i.e. the matrix Kk
3 has diagonal entries of ∇2Ψk on its main diagonal
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Figure 5.12: Comparison of GMRES preconditioners: (a) GMRES iterations for
Kk

1; (b) entropy function for Kk
1; (c) GMRES iterations for Kk

2; (d) entropy
function for Kk

2; (e) GMRES iterations for Kk
3; (f) entropy function for Kk

3; (g)
GMRES iterations for Kk

4; (h) entropy function for Kk
4;
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Figure 5.13: Effective size of the impulse response: (a) impulse response h of
length n with effective size m; (b) sparse structure of the Hessian

5.7 Gauss Elimination Algorithm

The GMRES algorithm which we applied for solving of the system of linear equa-
tions (5.65) is a good choice for scientific computations8 but not for the industry.
The mathematical complexity of the GMRES algorithms makes it hardly imple-
mentable in hardware9. For the hardware implementation a good substitution of
the GMRES is the Gauss Elimination algorithm (or simply GE).

The complexity of the GE algorithm is O(n3) and is equivalent to complexity
of the matrix inverse. By utilizing some properties of the impulse inverse the cost
of the GE can be reduced. In the following, at first, we introduce classical the GE
algorithm. Then we define the effective size of the impulse response h and define
the optimized Gauss elimination (OGE) algorithm.

Definition 5.7.1 Let A ∈ Rn×n be the Hessian of the entropy entropy function
Ψ given in equation (5.22). The standard way to compute matrix B ∈ Rn×n which
is the Gauss Elimination of the matrix A is defined in the following equation for
all k ∈ [0 : n− 1], i ∈ [k : n− 1] and j ∈ [k − 1 : n− 1] as:

bk
i,j =





ai,j if k = 0

bk−1
i,j − bk−1

k−1,j

(
bk−1

i,k−1

bk−1
k−1,k−1

)
, otherwise

where bk
i,j denotes the entry of the matrix B computed at the iteration step k.

The result of the Gauss Elimination algorithm is an upper triangular matrix.
Computational cost of the Gauss Elimination procedure can be reduced if

the effective size of the impulse response h is taken into account. Under the term
effective size we understand an amount of consecutive entries of h which participate
in the oscillations. The effective size can be defined by the threshold. In Figure
5.13(a) we introduce the area Ωes of length m which contains such entries. We

8High Performance Computing Clusters (HPCC), Distributed computing
9Application Specific Integrated Circuits (ASIC), Field-Programmable Gate Array (FPGA)

etc.
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note that m < n, where n is the length of h. We assign all the entries of h outside
Ωes to be zeros.

A zero-filled impulse response h turns the Hessian of the entropy function to
have sparse structure shown in Figure 5.13(b). By exploiting the sparse structure
of the Hessian we can reduce the computational cost of the GE algorithm.

Let us develop the optimized version of the Gauss Elimination algorithm
(OGE). The OGE differs from the classic algorithm only by redefining range of
indexes i and j in Definition 5.7.1. In the OGE they depend on the effective size
of the impulse response h for all k > 0 as:

i ∈
{

i ∈ [k : k + m− 2, n−m + 1 : n− 1] if k < n− 2m + 2
i ∈ [k : n− 1] otherwise

and

j ∈
{

j ∈ [k − 1 : k + m− 2, n−m + 1 : n− 1] if k < n− 2m + 2
j ∈ [k − 1 : n− 1] otherwise

The latter indexing scheme of i and j excludes zero-entries of the Hessian
matrix being used by the Gauss Elimination algorithm. Such a re-indexing reduces
the cost of GE algorithm from O(n3) to O(nm2).

5.8 Speed Comparison Issue

In the current section we compare the computational speed of the MED algorithm
for different solvers of the system of linear equations (5.65). We test the following
solvers: the GMRES with updated LU preconditioner defined in (5.70), classical
and optimized Gauss-elimination algorithms (i.e. GE and OGE, respectively). We
examine measured data of different size, namely 512, 1024, 2048, and 4096 samples.
In Figure 5.14 we present the time of computation of the MED algorithm expressed
in seconds. Here, the time required for processing of a line-scan is presented.

The MED with GMRES shows the best performance for all problem sizes. The
performance of the GE algorithm heavily decreases with problem size. Thus, in
the case of 4096 samples it requires about 48 minutes. The optimized version of
GE algorithm shows better performance than the classical version. In this test
the effective size is 150, 300, 600, and 1200 for problem sizes of 512, 1024, 2048,
and 4096 samples, respectively.

5.9 MED Algorithm Results

5.9.1 Detection of sharp defects with MED (1D case)

In the current section we test the ability of the MED algorithm to detect sharp
defects and compare it with the Doppler amplitude, Doppler frequency, and de-
convolution approaches discussed in Sections 5.1 and 5.3.3, respectively.

In Figures 5.1(b)-(h) we examined the resolution ability of the Doppler ampli-
tude and the Doppler frequency approaches applied to the signals measured for
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Figure 5.14: Speed comparison of GMRES, GE, and OGE

two defects placed at different distance between them. The result of the MED
algorithm applied to the same measured signals is represented in Figures 5.15(a)-
(c). By analyzing the signal given in Figure 5.15(a) we note that the estimated
distance between the defects is equal to the real one10, i.e. L = L′ = 1.5λ (com-
pare it with Figure 5.1(b), (f)). In Figure 5.15(a) we can also see a number of
spurious peaks. The amplitude of these peaks is much lower than the amplitude
of peaks corresponding to defects. In practice, spurious peaks can be deleted by
using the thresholding technique.

In two other cases (two defects at distanced L = 2.5λ and L = 6.5λ), the
MED algorithm also gives good results (compare Figures 5.15(b) with 5.1(c),(g)
and Figures 5.15(c) with 5.1(d),(h)) Here the estimated distances between defects
are also correct.

In the case of many defects the MED algorithm demonstrates great results.
In Figure 5.15(d) all four equally spaced defects are perfectly separated. This
result is better than than the result given in Figure 5.2(a),(c). In the case of three
defects the MED is also able to separate defects (compare 5.2(b),(d) and 5.15(e)).

Let us compare the performance of the MED algorithm and the deconvolution
approach. By comparing Figures 5.7(e),(f),(g),(h) and Figures 5.15(a),(b),(c) and
(d), we conclude that the MED algorithm is not as sensitive to the noise as the
deconvolution approach. Here we can see the MED algorithm reduces the effect
of noise what significantly increases the resolution.

5.9.2 Detection of sharp defects with MED (2D case)

In the current section we introduce the result of the experiment which shows ad-
vantages of the Doppler imaging based on the MED algorithm over the amplitude
Doppler imaging discussed in Chapter 3.

10we remind that the wavelength λ is about 12mm
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Figure 5.15: Maximum entropy deconvolution algorithm: (a) defect signal, two
defects, L = 1.5λ; (b) defect signal, two defects, L = 2.5λ; (c) defect signal, two
defects, L = 6.5λ (d) defects signal, four equally spaced defects, L = 2.5λ (e)
defects signal, three defects spaced at L = 1.25λ and L = 1.6λ
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In order to perform the experiment we designed the specimen shown in Figure
5.16(a). This is a metal rectangular basement with artificial defects on its sur-
face. Defects are made from a metal wire (thickness of 1mm) and have various
geometrical shapes and sizes.

According to our considerations in Section 3.3 we perform multi-angle Doppler
imaging from several angles of view. The measured surface scans are processed,
rotated, and merged.

The amplitude Doppler image is represented in Figure 5.16(b). Here, we can
see certain similarity with the specimen in Figure 5.16(a). Since the resolution
ability of the Doppler amplitude approach is low, we can not precisely determine
the form of defects. We only can determine the presence of defects and their
locations. As we have already discussed before, for many practical applications
this may be the only requirement.

The MED Doppler imaging introduces significant resolution improvement. In
Figure 5.16(c) the defects are separated and perfectly recognizable. By comparing
Figures 5.16(a) and 5.16(c) we also conclude that the locations of detected defects
entirely coincide with the defects of the specimen. The squared shape of the
detected circle in 5.16(c) can be explained through small number of angle scans.
In practice, it is unlikely to perform large number of angle-scans and to proceed
the acquired data in short periods of time.

In both Figures 5.16(b) and 5.16(c) disturbances on the boundaries of the
specimen are eliminated. In practice, the basement of the specimen can be chosen
large enough to split Doppler effect on the boundaries from Doppler effect on
defects.

From the experiment results represented in Figure 5.16 we conclude that the
MED algorithm can be applied best on problems with sharp defects such as cracks,
corrosion etc.

5.9.3 Detection of non-sharp defects with MED

Let us examine the ability of the MED algorithm to detect non-sharp defects. We
perform 2D scan (from down to up) of a metal gun (in the following call specimen)
which is shown in Figure 5.17(a). The amplitude Doppler image of the specimen
is given in Figure 5.17(b). Analyzing this figure we conclude that by using of the
amplitude image it is possible to detect presence of the specimen. However the
shape of the specimen is not recognizable.

Since the specimen do not have pronounced sharp defects the measured signals
are not suitable for the MED algorithm. As we have already discussed in Chapter
4 a typical behavior of the measured signal on the defect is the following. The
Doppler amplitude changes from some low value to high, while the radar passes
the defect, and then decreases again. The Doppler frequency steadily decreases.
Such an amplitude and frequency variation creates an opportunity for MED al-
gorithm to find entries in the analyzed signal which behave in a similar way (i.e.
detect defects). The pattern which describes amplitude and frequency variation
is the impulse response h. Thus, non-sharp defects causes complex varying of the
Doppler signal what leads the MED algorithm to fail. The MED Doppler image of
the specimen is shown in Figure 5.17(c). As we can see the specimen is completely
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Figure 5.16: Sharp defects defection: (a) scheme of the specimen (b) amplitude
Doppler image (c) MED Doppler image
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Figure 5.17: Non-sharp defects detection: (a) picture of the specimen (gun) (b)
amplitude Doppler image (c) MED Doppler image
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unrecognizable. The multi-angle scan of the gun will not discover improvement of
the MED algorithm.

5.10 Conclusion

In this chapter we discussed the Maximum Entropy Deconvolution (MED) algo-
rithm as a means to increase spatial resolution of the CW radar. We have shown
that the MED algorithm can be used for sharp defects detection and estimation
of their exact spatial position. In order to increase speed of computation of MED
we developed its fast version based on the GMRES iterative solver. As an al-
ternative to the GMRES algorithm we have developed an optimized version of
Gauss-Elimination algorithm which utilizes properties of the impulse response.
That version of Gauss-Elimination algorithm can be implemented in hardware
and used in industrial applications.
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Chapter 6

Conclusion

The work described in this thesis introduces a prototype of the Doppler system
for Non-Destructive Testing purposes.

In order to perform experiments a Doppler measurement System has been
developed and built, see Chapter 2. It operated in different measurement modes
such as raster and continuous measurements. The Doppler measurement system
can also be easily adjusted for measurements with different designs of radars and
antennas. The system ensures correct measurement triggering so that separately
measured signals are spatially aligned. It provides an interface for programming
of different motion patterns and for transporting the measured data to the PC. An
advantage of the Doppler measurement system is its relatively low price because
of the use of not-expensive CW-Radars.

An approach to find and estimate defects such as: material failure, irreg-
ularities, cracks, impact damages etc., is based on the Doppler amplitude and
frequency analysis. In Chapter 3 the strength and weakness of the Doppler am-
plitude processing were discussed. In this chapter, for the first time, we introduce
and formalize an 2D Multi-Angle Doppler imaging technique. This technique al-
lows to reach better defect detection. The practical experiments, which confirm
effectiveness of the 2D Multi-Angle Doppler imaging, are also presented.

Chapter 4 of the thesis is dedicated to the Doppler frequency analysis. We
begin with mathematical model of the typical Doppler signal. This model helps
us in double respect: to understand the nature of the Doppler signal and to choose
the most suitable algorithm for Doppler frequency estimation. Here a number of
modifications of standard frequency estimation techniques is proposed. Since the
algorithm for Doppler frequency evaluation needs to be fast it is of high complexity.
It is described in detail. At the end of the Chapter 4 the amplitude and frequency
Doppler imaging techniques are compared.

In order to get higher spatial resolution of the Doppler radar a joint process-
ing of the Doppler amplitude and frequency is proposed. We use the Maximum
Entropy Deconvolution algorithm as a means to resolve closely spaced defects.
Since the MED algorithm is computationally very complex we developed its fast
version, which is based on an iterative solver. All the mathematical definitions
and proofs are provided in Chapter 5. The speeding up of the MED algorithm is
experimentally confirmed on real data. At the end of the Chapter we introduce
some practical applications of the MED algorithm for processing of the Doppler
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signals.
The Doppler system is available in the Fraunhofer Institute for Non-Destructive

Testing (IZFP), Saarbrücken. This laboratory system can be used in order to per-
form Non-Destructive Testing by means of the Doppler effect with microwaves.
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Appendix

A.0.1 Phase Unwrapping

In the current section we introduce a phase unwrapping procedure (see Chapter 4).
This procedure is applied to the instantaneous phase computed through equation
(4.21) in order to remove discontinuities, see Figure A.1.

Definition A.0.1 We define a phase unwrapping procedure

pUnwrap : Rn × R→ Rn.

Let φ′ ∈ Rn be the an instantaneous phase computed through equation (4.21).
Let us denote φ ∈ Rn to be its unwrapped phase. For φ = pUnwrap(φ′, pThd ),
i ∈ [1 : n− 1], φ0 = φ′0, A(0) = 0, and a threshold value pThd ∈ R we define:

φi = φ′i + A(i), where

A(i) =
{

π + A(i− 1) if abs(φ′i − φ′i−1) ≥ pThd and
A(i− 1) otherwise

In the phase unwrapping procedure the value of pThd is usually taken to be little
bit smaller than π. It can be explained as follows. Because of digitalization errors
an instantaneous phase φ′ does not reach value −π/2 and π/2 at a discontinuity.
A discontinuity is detected whenever a difference of values of two adjacent phase
samples φ′i−1 and φ′i exceeds threshold pThd, see Figure A.1. In such a case
the value of φi is increased by π. If the next discontinuity appears, then φi is
increased by π again. In this way an unwrapped phase φ becomes a signal without
discontinuous (in our example it is a dashed line).

In the literature different algorithms for phase unwrapping were addressed.
A widely used algorithm for phase unwrapping was suggested by Tribolet [117].
It was referred to as a very reliable algorithm in speed and seismic applications.
Later, an improved version of this algorithm was developed [118]. A number of
interesting algorithms for phase unwrapping can be also found in [119,120].

A.0.2 Derivation of CW radar output, general case

In the current appendix we derive CW radar output signal, (see Chapter 1).
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Figure A.1: Phase unwrapping procedure

Let us introduce some basic trigonometrical formulae that we need to derive
CW radar output sout.

cos(α) cos(β) =
1
2
( cos(α + β) + cos(α− β) ) (A.1)

By substitution of incident signal sin from equation (1.8) and scattered signal
ssc from equations (1.13) and (1.19) into (1.7) we have for all t:

sout(t) =
(
sin(t) + ssc(t)

)2

=
(
Ain cos(2πf int + ϕin) + Asc(t) cos(2πf sc(t) + ϕsc)

)2

=
(
Ain cos(2πf int + ϕin)

)2

︸ ︷︷ ︸
t1

+


Asc(t) cos


2πf int± 2π

t∫

0

fd(t) dt + ϕsc







2

︸ ︷︷ ︸
t2

+

2 ·Ain cos
(
2πf int + ϕin

) ·Asc(t) cos


2πf int± 2π

t∫

0

fd(t) dt + ϕsc




︸ ︷︷ ︸
t3

.

(A.2)

In (A.2) terms t1 and t2 represent multiplication of cosines of the same argument.
By using (A.1) we express t1 and t2 as follows:

t1 =
(Ain)2

2
(
cos(4πf int + 2ϕin) + 1

)
(A.3)
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and

t2 =
(Asc(t))2

2


cos


4πf int± 4π

t∫

0

fd(t) dt + 2ϕsc


 + 1


 (A.4)

A simplification of t3 in (A.2) gives us

t3 =A(t) cos


4πf int± 2π

t∫

0

fd(t) dt + ϕ′


+

A(t) cos


±2π

t∫

0

fd(t) dt + ϕ


 ,

(A.5)

where
A(t) = AinAsc(t), ϕ′ = ϕsc + ϕin, and ϕ = ϕsc − ϕin.

We represent the acquired signal sout as

sout(t) = A(t) cos


±2π

t∫

0

fd(t) dt + ϕ


 + Λ, (A.6)

where
Λ = t1 + t2 + t3

A.0.3 Derivation of CW radar output, raster measurements

As we already discussed in Section 2.2 in raster measurements the Doppler fre-
quency fd is zero, i.e. for all t, fd(t) = 0. In this case the definition of CW radar
output sout given in (2.1) have to be reconsidered.

Let us omit high-frequency terms in Λ = t1+t2+t3 in Appendix A.0.2 because
they can not measured. Thus, we modify equation (A.6) as

sout(t) =
(Ain)2

2
+

(Asc(t))2

2
+ A(t) cos (ϕ)

=
(Ain)2

2
+

(Asc(t))2

2
+ A(t) cos

(
2π

2f in

c0
R0

)
.

(A.7)

In the latter equation the only signal which depends on time is Asc. In other hand
the amplitude Asc in equation (1.11) is given as some function of radar-target
distance R, electrical properties of the target εt, amplitude Ain. Since in raster
measurement R is time-independent (i.e. constant), then the signal sout is also
time-independent. However, as we can see in equation A.7, the signal sout depends
on initial radar-target distance R0.

For simplicity reason we do not introduce dependence of amplitudes Ain, Asc,
and A on media properties, material properties, physics of microwave propagation
etc. This information belongs to the field of theoretical physics and can be found in
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the literature. We define the output CW radar signal sout in raster measurements
as the following

sout(R0) = A(R0) cos
(

2π
2f in

c0
R0

)
+ C(R0), (A.8)

where C(R0) = Ain + Asc(R0).
The equation (A.8) represents a cosine oscillating with varying range. Its

period is determined by double transmitted frequency 2f in. Correspondingly, we
expect that every λin/2 a cosine changes its argument from 0 to 2π, i.e. passes
the full period. The amplitude A fades (or rises) with increasing (or decreasing)
distance according to an R−4- law (for reference see Section (1.4.2)).

We note that equation (A.8) is only a model of the measured signal sout. This
model describes a real Doppler signal only partially. In Chapter 2 we check the
viability of this equation experimentally.

A.0.4 Entropy function concavity

In the current appendix we present a proof that the entropy function Ψ defined
in equation (5.20) in Chapter 5 is concave. The concavity property ensures con-
vergence of the Newton algorithm so that it provides a correct optimizer. First,
we prove that −Ψ is convex, what lead us to the concavity of Ψ. The definition
of the convexity and some auxiliary theorems are given below.

Definition A.0.2 A convex function is a continuous function whose value at
an interior of every interval in its domain does not exceed the arithmetic mean of
its values at the ends of the interval [121].

In other words, a function f is convex on an interval [a : b] if for any two
points x1 and x2 in [a : b] and any λ such that 0 ≤ λ ≤ 1 the following holds

f (λx1 + (1− λ) x2) ≤ λ f(x1) + (1− λ)f(x2).

According to [122, page 217] the definition of convexity given in the latter equation
can be reformulated for multidimensional real-valued function f : Rn → R as

f(λx + µy) ≤ λ f(x) + µ f(y), (A.9)

where x,y ∈ Rn and λ, µ ≥ 0 with λ + µ = 1.

Theorem A.0.3 Function f is strictly convex if its second derivative exists
and is positive definite, i.e. det(∇2f > 0), for reference see [122, page 230]
and [100, page 110]

Theorem A.0.4 Let f be a continuous function. The second derivative of f is
positive definite if its eigenvalues are positive and real [123, page 131].

Theorem A.0.5 If f1(x), f2(x), . . . , fn(x) are convex functions on set C ∈ Rn,
then the function

f(x) = f1(x) + f2(x) + . . . + fn(x)

is also convex (for more information see [124, page 56])
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Let us define the auxiliary theorem which we will use in the main theorem.

Theorem A.0.6 Let us prove that inequality

(λa + µ b)2 ≤ λa2 + µ b2

holds for all a, b ∈ R, constants λ, and µ defined in equation (A.9).

Proof:

Using definition of µ we have:

(λa + (1− λ) b)2 ≤ λa2 + (1− λ) b2.

Applying elementary mathematical transformations to this inequality we derive:

λ2(a− b)2 ≤ λ(a− b)2

From the latter inequality we conclude that the claim of the theorem holds ¥.

Let us prove the concavity of the entropy function Ψ.

Theorem A.0.7 First, we prove that the function

f(x) = S(x,b) + α · χ(x,y,h, σ) (A.10)

is convex.

Proof:

We prove the theorem in two steps. At the first step we will show that the func-
tion S is convex. In the second step we prove convexity of χ. After that we apply
Theorem A.0.5 and by using first and second steps we show the goal of the theorem.

(1) The Hessian ∇2S of the function S is defined as

∇2Si,j =
δ(i− j)

xi
=




1
x0

0 . . . 0

0 1
x1

. . .
...

0 0 . . . 1
xn−1


 , (A.11)

where i, j ∈ [0 : n−1]. The latter equation shows that the hessian ∇2S is a diagonal
matrix1. According to theorem given in [125, page 281] a so-called characteristic
polynomial ∆(∇2S)(t) of a diagonal matrix ∇2S is given as

∆(∇2S)(t) = (λ0 −∇2S0,0) · (λ1 −∇2S1,1) . . . (λn−1 −∇2Sn−1,n−1).

According to [125, page 284] the eigenvalues λ1, λ2, . . . , λn−1 ∈ R of ∇2S can be
defined from the latter equation by letting ∆(∇2S) be 0 as

λ0 =
1
x0

, λ1 =
1
x1

, . . . , λn−1 =
1

xn−1
(A.12)

1i.e. all its non-diagonal entries are zeros
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Using the fact that xi > 0 (see definition of the function S in equation (5.23)) and
equation (A.12) we have that all eigenvalues are positive and real.

λ0, λ1 . . . , λn−1 > 0. (A.13)

From equation (A.13) and Theorem A.0.3 follows that the function S is convex.

(2) In the second step of the proof we show that the second part of equation (A.10),
i.e. function χ is convex. According to Definition A.0.2 the function χ is convex
if equation A.9 holds. After substitution of definition of function χ (from equation
(5.24)) and applying mathematical transformations, the goal of the second step has
the following form:

n−1∑

i=0

(y′i − (h ∗ (λx1 + (1− λ)x2))i)2 ≤

n−1∑

i=0

λ(y′i − (h ∗ x1)i)2 + (1− λ)(y′i − ((h ∗ x2)i)2

From this we derive
n−1∑

i=0

Ai ≤
n−1∑

i=0

(Bi + Ci),

where

Ai = (λ(h ∗ x1)i + (1− λ)(h ∗ x2)i)
2

Bi = λ(h ∗ x1)2

Ci = (1− λ)((h ∗ x2)i)2

Substituting in Theorem A.0.6 a and b instead of (h∗x1)i and (h∗x2)i we conclude
that for all i ∈ [0 : n− 1] hold that Ai ≤ Bi + Ci. The latter relation implies that
the claim of the second step of the theorem holds, i.e. the function χ is convex.

Combining claims 1 and 2 and using Theorem A.0.5 we conclude that function
f , which is a sum of two convex functions S and χ, is also convex ¥.

By the definition the entropy function Ψ = −f , then according to [126, page 1132]
the function Ψ is concave.
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Appendix

B.0.5 Practical GMRES algorithm implementation
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B.0.6 Practical OGE algorithm implementation
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iThresholdb, 37

abs, 3
affine transformation, 46
amplitude Doppler imaging, 82
analog signal, 2
analytic signal, 34
antenna, 11
antenna gain, 12
arbitrary type, 2
arg, 3
arithmetical summation, 46
average period, 60

back-rotation, 45
backtracking line search, 102
BFGS, 103
bicubic interpolation, 41
bilinear interpolation, 41
boolean Doppler image, 35
btlSearch, 102

central finite difference, 66
conditional number, 101
continuous measurements, 19
continuous wave radar, 7
convolution theorem, 92
covariance matrix, 66
cross-term, 69
CW radar, 7

de-chirping, 76
deconvolution, 92
descent direction, 101
dilation function, 38
discrete Fourier transform, 32
discrete signal, 3
Doppler effect, 8
Doppler frequency, 9
Doppler image, 35

Doppler imaging, 35
Doppler measurement system, 22
Doppler shift, 9
Doppler system, 25
DPPT, 68

electric field, 4
electromagnetic radiation, 4
electromagnetic waves, 4
energy conservation property, 68
energy spectral density, 33
entropy function, 98
envelope, 34
erosion function, 40
exact line search, 102

far-field region, 14
finite difference, 66
Finite Impulse Response (FIR) system,

88
FIR, 88
first moment, 69
free space, 5
frequency Doppler imaging, 82
frequency smoothing window, 71

global minimizer, 100

Hilbert transform, 33

image closing, 38
image merging, 46
image resizing, 41
ImgDilation, 38
ImgErosion, 40
impulse response, 90
in-phase component, 34
incidence angle, 23
incident angle, 6
inexact line search, 102
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instantaneous frequency, 10, 52
instantaneous phase, 34, 52
integer intervals, 2
inverse continuous Fourier transform, 32
inverse discrete Fourier Transform, 33

lateral resolution, 12
line of scan, 19
LLS, 63
local maximizer, 100
lSum, 47
LU decomposition, 117

magnetic field, 4
matrix, 31
matrix inverse, 112
Maximum Entropy Deconvolution, 95
maxTFD, 69
mean square error, 52
measurement system, 22
medium level, 7
Microwave non-destructive testing, 4
microwaves, 4
mixing, 7
MLBP, 68
mnorm, 56
morphology, 38
motion pattern, 24
MSE, 52
multi-angle Doppler imaging, 45
multi-channel Doppler measurement sys-

tems, 36
multiplication, 89

NDT, 4
near-field region, 14
nearest-neighbor interpolation, 41
non-stationary signal, 52
normalization function, 56
number of samples, 3

objective function, 100
operational system, 7
optimizer, 100

peak, 41
peak search, 41
phase unwrapping, 63

plane waves, 14
point scatterer, 19
polynomial order, 62
polynomial phase modeling, 62
positive wrapped convolution, 90
posterior probability, 96
power spectrum, 33
PPD, 65
PPF-core matrix, 66
PPT, 75
preconditioned system, 116
preconditioner, 116
prediction spectrum, 60
propagation time, 8
PWV, 71

quadrature compopnent, 34

radar, 7
radar array, 36
radar cross section, 13
radar holder, 23
radar-target distance, 8
radiation pattern, 12
raster measurements, 18
RCS, 13
reflection, 6
refraction, 6
relative dielectric permittivity, 5
relative magnetic permeability, 5

sampling, 3
sampling interval, 3
search direction, 101
second norm, 3
segLLS, 64
segmentation technique, 59
sequence rotation, 46
signal energy, 51
signal level, 7
signal power, 51
signal processing system, 88
signal-to-noise ration, 51
single-channel Doppler measurement sys-

tem, 36
singular matrix, 112
SNR, 51
spatial resolution, 4, 12, 14, 26
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speckle, 27
speckle size, 27
spherical waves, 14
SPWV, 71
stationary signal, 52
steepest descent, 61
step length, 102
submatrix extraction, 31
submatrix update, 31
subvector extraction, 32
subvector update, 32
summation, 89
surface scan, 23

TFSAP, 51
the continuous Fourier transform, 32
thresholding function, 37
time smoothing windows, 72
total permeability, 5
total permittivity, 5
transfer function, 90
transpose, 2

unit delay, 88

vacuum, 5
vector, 2
vector length, 3
vector of polynomial coefficients, 62
vector space, 114

wavelength, 9
Wigner Distribution, 70
Wolfs conditions, 102

zero-crossing, 59
zero-padding, 81
ZeroCrossing, 59
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