Integrating Deep and Shallow Natural Language
Processing Components — Representations and
Hybrid Architectures

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der
Naturwissenschaftlich-Technischen Faktgn
der Universiait des Saarlandes

Eingereicht von Dipl.-Inform. Ulrich Schafer

Saarbriicken, 10. Dezember 2006

Datum des Promotionskolloquiums: 29. Juni 2007

Dekan der Naturwissenschaftlich-Technischen Fakuliistathematik und
Informatik): Prof. Dr.-Ing. Thorsten Herfet

Vorsitzender: Prof. Dr. Andreas Zeller
Berichterstattende: Prof. Dr. Hans Uszkoreit, Prof. Dr.ligéng Wabhlster

Akad. Mitarbeiter: Dr. Stephan Busemann

Abstract

We describe basic concepts and software architecturesidéointegration of
shallow and deep (linguistics-based, semantics-ori¢miatiral language process-
ing (NLP) components. The main goal of this novel, hybriégration paradigm is
improving robustness of deep processing. After an intrtdndo constraint-based
natural language parsing, we give an overview of typicalleivgorocessing tasks.
We introduce XML standoff markup as an additional abstoactayer that eases
integration of NLP components, and propose the use of XSLa standardized
and efficient transformation language for online NLP indeign.

In the main part of the thesis, we describe our contributiortbree hybrid ar-
chitecture frameworks that make use of these fundamers&#tsoUTis a shallow
system that uses elements of deep constraint-based pgragasamely type hier-
archy and typed feature structures.HWEBOARD is the first hybrid architecture
to integrate not only part-of-speech tagging, but also rmhemity recognition and
topological parsing, with deep parsing. Finally, we prédésart of Gold, a mid-
dleware architecture that generalizesiMEBOARD into various dimensions such
as configurability, multilinguality and flexible procesgistrategies.

We describe various applications that have been implerdarsiag the hybrid
frameworks such as structured named entity recognitidiosrimation extraction,
creative document authoring support, deep question daalys well as evalua-
tions. In WHITEBOARD, e.g., it could be shown that shallow pre-processing in-
creases both coverage and efficiency of deep parsing bya faanore than two.

Heart of Gold not only forms the basis for applications thiize semantics-
oriented natural language analysis, but also constitutesrglex research instru-
ment for experimenting with novel processing strategieshlioing deep and shal-
low methods, and eases replication and comparability oftes

Zusammenfassung (kurz)

Diese Arbeit beschreibt Grundlagen und Software-Arcliitedn fir die Inte-
gration von flachen mit tiefen (linguistikbasierten und satikorientierten) Ve-
rarbeitungskomponenten fur natirliche Sprache. Dasptial dieses neuarti-
gen, hybriden Integrationparadigmas ist die VerbessedeniRobustheit der tiefen
Verarbeitung. Nach einer Einfuhrung in constraintbdsieknalyse naturlicher
Sprache geben wir einddberblick ilber typische Aufgaben flacher Sprachverar-
beitungskomponenten. Wir filhren XML Standoff-Markup alsatzliche Abstrak-
tionsebene ein, mit deren Hilfe sich Sprachverarbeitumgglonenten einfacher
integrieren lassen. Ferner schlagen wir XSLT als stansiart® und effiziente
Transformationssprache fur die Online-Integration vor.

Im Hauptteil der Arbeit stellen wir unsere Beitrage zu drgriden Architek-
turen vor, welche auf den beschriebenen Grundlagen auibaBProUT st ein
flaches System, das Elemente tiefer Verarbeitung wie Tygtukie und getypte
Merkmalsstrukturen nutzt. WITEBOARD ist das erste System, welches nicht nur
Part-of-speech-Tagging, sondern auch Eigennamenenkgrumd flaches topolo-
gisches Parsing mit tiefer Verarbeitung kombiniert. Sefblich wird Heart of Gold
vorgestellt, eine Middleware-Architektur, welcheRftEBOARD hinsichtlich ver-
schiedener Dimensionen wie Konfigurierbarkeit, Mehrspigieit und Unterstiit-
zung flexibler Verarbeitungsstrategien generalisiert.

Wir beschreiben verschiedene, mit Hilfe der hybriden Atekturen imple-
mentierte Anwendungen wie strukturierte Eigennamenenkeg, Informationsex-
traktion, Kreativitatsunterstiitzung bei der Dokumestigdlung, tiefe Frageanalyse,
sowie Evaluationen. So konnte z.B. InRFEBOARD gezeigt werden, dass durch
flache Vorverarbeitung sowohl Abdeckung als auch Effizieeg tiefen Parsers
mehr als verdoppelt werden.

Heart of Gold bildet nicht nur Grundlage fur semantikotierie Sprachan-
wendungen, sondern stellt auch eine wissenschaftlicheripntierplattform fur
weitere, neuartige Kombinationsstrategien dar, welclierudie Replizierbarkeit
und Vergleichbarkeit von Ergebnissen erleichtert.

Zusammenfassung (augihrlich)

Diese Arbeit beschreibt Grundlagen und Software-Architedn fur die In-
tegration von flachen mit tiefen, linguistikbasierten uethantikorientierten Ve-
rarbeitungskomponenten fur natirliche Sprache. Dagptial dieser hybriden
Integration ist die Verbesserung der Robustheit der tigsmarbeitung.

Nach einetUbersicht in Kapitel 1 filhren wir in Kapitel 2 allgemeine @ife
wie tiefe und flache Analyse ein und geben eine Motivationdié vorliegende
Arbeit. In Kapitel 3 fihren wir kurz in tiefe constraintbage Grammatikformal-
ismen fur natiirliche Sprache ein und stellen die kop#yésiPhrasenstrukturgram-
matik (head-driven phrase structure grammar; HPSG) vargdélien Definitionen
fur getypte Merkmalsstrukturen und Unifikation an, unddbesiben informell die
Arbeitsweise und Ergebnisse (semantische Analyse) eiR&3HParsers.

Typische Aufgaben flacher Sprachverarbeitungskomponenie Tokenisier-
ing, Chunking und Eigennamenerkennung werden in Kapitedgthrieben, um
dann auf die Beziehung zwischen flacher Verarbeitung undubekitauszeich-
nungssprachen eingehen zu kdnnen. Wir geben einen kutagssAler Geschichte
von XML und SGML sowie darauf basierender linguistisches2eichnungsstan-
dards wie TEI und (X)CES. SchlieRlich fuhren wir den Befgids Standoff-Mark-
up ein.

Kapitel 5 beginnen wir mit einer eingehenden Analyse dest-Eef-Integra-
tionsproblems, um dann technische Losungswege mit HilfeMarkup-Anfrage-
sprachen wie XPath, XSLT, XQuery, aber auch in der Literbagchriebenen An-
fragesprachen fir linguistisch annotierte Korpora andéigen. Wir begriinden un-
sere Wahl von XSLT als standardisierter und effizienter Si@mationssprache
fur die Online-Integration von Sprachverarbeitungskomgnten und zeigen bei-
spielhaft die Transformation von getypten Merkmalssuitzab.

In Kapitel 6 motivieren wir die Notwendigkeit von Architeken fur Flach-
Tief-Integration und leiten zu den drei in den Folgekapiteéschriebenen Archi-
tektur-Frameworks Uber. Im Hauptteil der Arbeit stelleir unsere Beitrage zu
drei hybriden Architekturen fir die Flach-Tief-Integmat vor, welche auf den zu-
vor beschriebenen Grundlagen aufbauen.

SProUT (Kapitel 7) ist ein flaches System, das Elemente tiefer Weitung
wie Typhierarchie und getypte Merkmalsstrukturen nutzhuptvorteil des regel-
basierten Systems ist neben der flexiblen Konfigurierbeisttukturierte Ausgabe,
welche sich in Anwendungen wie Eigennamenerkennung umdrivetionsextrak-
tion als vorteilhaft herausstellt.

Wir beschranken uns nach einer EinfuhrungSRroUT auf vom Autor en-
twickelte Teile des Systems wie Formalismus-TypUbdtprg und automatische
Evaluation, SProUT ist jedoch auch als (optionaler) Bestandteil des dritten be
schriebenen Frameworks, Heart of Gold, von Bedeutung. \afireg naher auf
die mit SProUT realisierte mehrsprachige Eigennamenerkennung ein unenge
eine Evaluation an, welche auf dem MUC-Annotationsscheenaht und state-of-
the-art-Ergebnisse zeigt, wobei die realisier&froUT-Grammatiken durch ihre

5

strukturierte Ausgabe mehr Information bereitstellen,drlrch das MUC-Schema
abgebildet wird (z.B. innere Struktur von Personennameit; dnd Ortsangaben).

Das Kapitel schliel3t mit einer Beschreibung der zahlrgi¢tmevendungen und
Projekte in den Bereichen Informationsextraktion, Eigenanerkennung und opi-
onion mining, in welcherSProUTerfolgreich eingesetzt wurde.

WHITEBOARD (Kapitel 8) ist die erste hybride Architektur, welche nichir
Part-of-speech-Tagging, sondern auch Eigennamenemkgrumd flaches topolo-
gisches Parsing mit tiefem HPSG-Parsing kombiniert. Wacheeiben ausfihrlich
die beiden Ausbaustufen der Integration (zunachst gespeech tagging und Ei-
gennamenerkennung, spater flacher topologischer Paitétilfie einer XSLT-
Kaskade). In der Evaluation von M\TEBOARD konnte gezeigt werden, dass durch
flache Vorverarbeitung sowohl Abdeckung als auch Effizieeg tiefen Parsers
mehr als verdoppelt werden. Eine Anwendung der ArchitektuBereich hy-
brider Informationsextraktion wird kurz skizziert.

In Kapitel 9 schlielich wird Heart of Gold vorgestellt, eiMiddleware-Archi-
tektur, welche WAITEBOARD hinsichtlich verschiedener Dimensionen wie Konfig-
urierbarkeit, Mehrsprachigkeit und Unterstitzung fléxitverarbeitungsstrategien
generalisiert. Wir beschreiben neben der Middleware selbbsh die wichtigsten
integrierten Komponenten fir verschiedene Sprachen ergpielhaft Konfigura-
tionen fiir robustes Parsen von deutschen, englischerapadischen Texten.

Einen besonderen Stellenwert nimmt die neuartige Intiegraiuf Basis des ro-
busten Semantikformalismus RMRS ein, welcher es erlaubt) aach dem tiefen
Parsen noch auf semantischer Ebene Informationen vedsrtge Sprachverar-
beitungskomponenten zu einer einheitlichen Strukturrunsan zu fiigen. Heart of
Gold unterstitzt die RMRS-Integration optional, fBlProUT-Eigennamen-Gram-
matiken wird ein Codegenerierungsverfahren vorgesteditches automatisch aus
den deklarativen Typbeschreibungen XSLT-Code fur digfzgits Transformationen
nach RMRS erzeugt.

Ein weiterer Abschnitt des Kapitels beschaftigt sich nat thtegration von
Ontologie-Information in tiefe Satzanalysen. Hier wird enplementierter Ansatz
vorgestellt, welcher mittels XSLT in einem offline-Verfainraus OWL-Ontologien
Lingware-Resourcen fisProUTdergestalt erzeugt, dass im tiefen Parseergebnis
Ontologieinformation (bzw. Referenzen darauf) enthadtiel.

Wir beschreiben schlie3lich verschiedene, mit Hilfe vorat@f Gold real-
isierte Anwendungen wie Kreativitatsunterstiitzung dei Dokumenterstellung,
automatische Email-Beantwortung im Bereich des custosiationship manage-
ment und tiefe Frageanalyse bei automatischer Fragebedohy auf strukturi-
erten Wissenquellen, sowie entsprechende, anwenduriggdrez Evaluationen.

Wir fassen zusammen, dass Heart of Gold aufgrund der geherisArchitek-
tur nicht nur Grundlage fir semantikorientierte Spraetemdungen bilden kann,
sondern auch eine wissenschaftliche Experimentierptattfir weitere, neuartige
Kombinationsstrategien darstellt, welche zudem Replizikeit und Vergleich-
barkeit von erzielten Ergebnissen erleichtert. Wir s@die die Arbeit mit einer
Zusammenfassung in Kapitel 10 ab.

Contents

1 Introduction 21
2 Definitions and Motivation 23
2.1 Deep and Shallow Natural Language Processing 23
2.1.1 Deep Natural Language Processing 23
2.1.2 Shallow Natural Language Processing 25
2.2 Integration ofthe Paradigms 26
2.3 Benefitsof RobustDNLP 27
3 Deep Linguistic Processing with HPSG 33
3.1 AShortiIntroductiontoHPSG 33
3.1.1 Excursus: Typed Feature Structures 34
3.1.2 HPSGandHPSGParsing 40
3.2 Performance Propertiesof HPSG 47
3.21 ParsingComplexity 47
3.2.2 Implementations and Efficiency 48
3.2.3 Robustness 48
4 Shallow Processing and Linguistic Markup 51
4.1 Shallow Natural Language Processing 51
41.1 Tokenization 52
4.1.2 Finite-State Morphology and Compound Recognition 3 5
4.1.3 Part-of-SpeechTagging 53
414 Chunking. 54
415 ShallowParsing 55
4.1.6 Named Entity Recognition. 55
417 SUMMANY o e e e e 56
4.2 Shallow Processingand XML Markup 57
421 SGML 57
422 XML 58
4.2.3 Well-Formed and Valid Documents 58
4.2.4 Strictly Structured vs. Semi-Structured Documents.. 61
425 XML as Carrier Syntax for Computer Languages 62

CONTENTS

426 XML as Open Data Structure 63
4.2.7 LinguisticMarkup, 63
4.2.8 Standards for Linguistic Markup 64
4.2.9 Further XML Standards Related to Linguistic Processi 68
4.3 XML-based Linguistic Annotation 69
4.3.1 Standoff Annotation 73
4.3.2 Related Annotation Standards 75
433 SUMMAry e e e e 77
Deep-Shallow Integration by Transformation 79
5.1 The Deep-Shallow Mapping Problem 79
511 summary e e 87
5.2 NLP Integration by Transformation 87
5.2.1 Querying Multi-level (Standoff) Annotation 88
522 Using Corpus Query Languages for NLP Component
Integration?, 91
5.3 Markup Transformation and Query with XSLT 92
53.1 Brief Introductionto XSLT 95
532 XQueryvs. XSLT o 99
5.3.3 NLP Integration and Computation with XSLT 100
5.4 Transforming XML-encoded TFS 101
5.4.1 Accessing and Transforming Feature Structure XML .01 1
5.4.2 The Role of Feature Structure XML Transformation for
the Integration of NLP Components 102
55 Summary. 105
Hybrid Architectures 107
6.1 Motivation and Requirements 107
6.2 RelatedWork 108
6.3 General XML Processing Frameworks 111
6.4 The Deep-Shallow Architectures Trilogy 113
SProUT 115
7.1 Introduction 115
7.2 ABrief Introduction toSProUT. 116
7.2.1 Motivation 116
7.2.2 Targeted Applications 116
7.2.3 RelatedWork 117
7.24 TheSProUTFormalism 118
7.2.5 Architecture and Components 125
7.3 SProUTputDTD e 127
7.4 Compile TimeTypeCheck 129
7.5 Visualization 130
7.6 Applications 131

CONTENTS 9

7.7 Bvaluation 136
7.7.1 Evaluation Snapshot of the Multilingual NE Grammars37 1
7.8 Building, Testing and Evaluation witbProUTomat 139
7.8.1 Motivation 139
782 SProUTomat. 139
7.8.3 BuildingandTesting 140
7.8.4 EvaluationwithJTaCo 141
7.8.5 Report 145
7.8.6 SummaryandOutlook 146
7.9 SProUTSummary and Relation to Deep Processing 146
8 WHITEBOARD 149
8.1 Introduction and Motivation 149
8.2 The WHITEBOARD Architecture 150
8.3 The WHITEBOARD Annotation Machine (WHAM) 150
84 WHITEBOARDI 153
84.1 Components 153
8.4.2 Integration 156
85 FirstEvaluation 157
8.6 Applications on the Basisof WHAM 158
8.6.1 WAG — Mining Answers in German Web Pages 158
8.6.2 WHIES — Integrating Shallow and Deep NLP for IE . . 159
8.7 WHITEBOARDIl. 161
8.7.1 WHAT, the WHITEBOARD Annotation Transformer . . 162
872 WHATQueryTypes 163
8.7.3 Topoparser Integration 166
8.7.4 Finding Appropriate Linguistic Structures 671
8.7.5 Architecture of the Hybrid Deep-Shallow System . . .816
8.7.6 EvaluationResults 177
877 Conclusion 179
8.7.8 Transformation for Visualization 180
88 RelatedWork o 180
89 Summary. 181
9 Heart of Gold 185
9.1 Introduction and Motivation 185
9.2 Project Context: BEFTHOUGHTand QUETAL 185
9.3 Middleware Architecture 187
931 Overview 187
9.3.2 The Module Communication Manager (MoCoMan) . . 188
9.3.3 Modulesand Components 190
9.34 NLPAnalysis 191
9.3.5 Default Processing Strategy 192

9.3.6 Session and Annotation Management 193

10 CONTENTS

937 Metadata 193
9.3.8 XML Annotation Database 193
9.3.9 Annotation Transformation Service 195
9.4 RMRS as Common Semantic Annotation Format. 196
9.5 Integrated NLP Components 202
9.5.1 Tokenization, Word and Sentence Segmentation . . .2 20
9.5.2 Partof-SpeechTagging 204
9.5.3 Chunking and Shallow Parsing 206
9.5.4 Named Entity Recognition and Information Extractionr207
9.5.5 Deep Parsing: The PetModule 216
9.5.6 Further Integrated NLP Components 222
9.5.7 Sub-Architectures with the Generic SdIModule 232
9.6 Deep-shallow integration scenarios 231
9.6.1 Sample ConfigurationforGerman 231
9.6.2 Sample Configuration for English 234
9.6.3 Sample Configuration for Japanese 235
9.7 Interfacing Ontologies 236
971 OntoNERdIE. 237
9.8 Visualization 242
9.9 Evaluation 242
9.9.1 Hybrid Parsing Evaluation 243
9.9.2 Evaluation in Application Context 247
9.10 Further Applications Based on Heartof Gold 251
9.10.1 Creative Authoring Support 251
9.10.2 Question Answering from Structured Knowledge Sesi256
9.11 Further Applications 275

9.11.1 Learning Transfer Rules for Machine Translation ... 275
9.11.2 Parsing Japanese Dictionary Definition Sentences. .276

9.11.3 Trailfinder o 276
9.11.4 SoccerSmartWeb 276
9.11.5 RMRSChatterbot 276
9.11.6 Training e 277
9.11.7 Anaphora, Coreference Resolution in Discourse . .278
9.11.8 Modern GreekGrammar 278
9.11.9 Spanish HPSG Grammar with Shallow Preprocessing 8 27
9.11.10 Parsing Debian Linux User Forum Discussions79 2
9.11.11 SciBorg e 279
9.12 Heart of Gold in International Collaboration 279
9.13 RelatedWork 280
9.14 Outlook and FutureWork 280

10 Conclusion 283

CONTENTS 11

A DTDs 285
Al ACEDTDFragment. 285
A2 TESDTD @ e 286
A3 XTDL e 286
Ad SProUTput. e 288
A5 JTok e 289
AB6 TnT . .. e 289
A7 Chunkie e 290
A8 RMRS e 290
A9 PETInputChartDTD 292
A.10 Simple PreProcessor Protocol (SPPP)DTD 293

B XSLT Stylesheets 295
B.1 Automatically Generate8ProUTto RMRS Stylesheet 295
B.2 Combining Input Annotations 296
B.3 Removing Conflicting Items in the PET Input Chart 297
B.4 Sorting and Filtering Longest RMRS Fragments 298
B.5 Sorting and Merging RDF Descriptions 929
B.6 SPPPtoPIC e 300

12

CONTENTS

List of Tables

2.1 Typical properties of deep and shallow NLP
5.1 XPath expressions (examples)

7.1 English named entity grammar evaluation
7.2 German named entity grammar evaluation

8.1 Evaluation of German HPSG inMfEBOARD I

9.1 Integrated NLP components
9.2 Evaluationon PASCALdata
9.3 Evaluation on the mobile phone descriptions corpus
9.4 Evaluation on San Francisco Chronicle articles e
9.5 Evaluation results using configuration1
9.6 Evaluation results using configuration2
9.7 Evaluation results using configuration3
9.8 First experiment German; results using configuration 2.
9.9 Second experiment German; results using configuration 1 . .
9.10 First experiment English; results using configurafion.
9.11 Second experiment English; results using configurdtia
9.12 Distribution of question types and expected answeastyp
9.13 Evaluation of question interpretation
9.14 Evaluation of answer extraction
9.15 Distribution of correct answers over question types expected

anNSWErtypeS o v
9.16 Distribution of correct answers (AnswerBus)

13

14

LIST OF TABLES

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
5.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1

A small extract of the HPSG type hierarchy

Atyped feature structureasgraph

Phrase structuretree
Phrase structure encoded in a typed feature structure.

Subcategorization Principle in Phrase Structure

An HPSG lexicon entry for generic named entities
Subcategorization Principle oL
An RMRS representation generated by HPSG parsing

Topological tree as result of shallow parsing
Training-annotation/correction-NLP analysis cycle.
XCES annotation framework (simplified)
SPPCanalysisexample
XMLified example of the Universal Transcription Format . . .

XPath axes in the XML documenttree
XSLT processingmodel, .
XML-encoded typed feature structure
Transformation oEProUTfeature structure XML to RMRS . . .

TDL syntax for type definitions
XTDL rule syntax asextension@DL
The matched input sequence for the phrase ‘nice clexet gi. .

Rule with an expanded patternonthe LHS

Final unification result for the matched noun phrase
SProUTArchitecture
Type check results in th@ProUTIDE
AVM rendering intheSProUTIDE
An event recognition rule from the SmartWeb soccer gramm .
7.10 A sample target definition: named entity grammar coatipih . .
7.11 An overview of JTaCo’s processing stages
7.12 A report generated yProUTomat

The WHITEBOARD Annotation Machine (WHAM)

15

16

LIST OF FIGURES
8.2 Index-sequential annotation structures 151
8.3 lterator-based programming interface to annotatlper!a 152
8.4 The WHIES demonstrator GUI for hybrid information extian . 161
8.5 WHAT and XSLT template library 162
8.6 XSLT-based architecture of the hybrid parser 169
8.7 Result of the topological parser (topo.bin) as binaggtr. 172
8.8 The topological tree after flattening (topo.flat) 172
8.9 The topological tree merged with chunks (topo.chunks). 173
8.10 An example chart with a bracket pairoftype 174
8.11 The extracted brackets (topo.brackets) 174
8.12 Part of the derivation tree of the deepparser 178
8.13 Part of a deep parsing result in theiWweBoARD GUI 179
8.14 Topological parse tree in Thistle editormode 180
9.1 Heart of Gold middleware architecture 186
9.2 Heart of Gold (HoG) core architecture 881
9.3 UMLdiagramofMoCoMan 189
9.4 Sample configuration forEnglish 019
9.5 UML diagram of module and application communication 191
9.6 Session and annotation management 2 19
9.7 Annotation and module configuration metadata194
9.8 MRS for ‘Every dog probably sleeps’ 198
9.9 Human-readable RMRS notation that will used in thisithes . . 201
9.10 Output of ChasenModule in PET input chart format 204
9.11 RASP analysis of ‘John gave Mary the book’ 072
9.12 RMRS generated by hybrid parsing using PetModule222
9.13 SProUTXSLT cascade in a Heart of Gold architecture instance . . 228
9.14 SDL definition of theSProUTXSLT cascade 228
9.15 RMRS generated with ChunkieRMRS 230
9.16 RMRS merged using the RmrsMerge module 232
9.17 Sample configuration of deep-shallow integration ferr@an . . . 233
9.18 Sample configuration of deep-shallow integration foglsh . . . 234
9.19 Sample configuration of deep-shallow integration &rahese . . 235
9.20 OntoNERJIE flow of information 237
9.21 LT WoRLD ontology entry for LREC 2006 (shortened) 239
9.22 A simpleSProUTrule that copies gazetteer output 240
9.23 RMRS generated froi8ProUToutput in Heartof Gold 241
9.24 Analysis results in GUI with specialized XML visualimms . . . 243
9.25 The software architecture for creative authoring 254
9.26 The software prototype for creative authoring 255
9.27 Hybrid, overall Quetal architecture 258
9.28 Architecture of Heart-of-Gold-based query analysis... 258
9.29 RMRS of HPSG analysis a®ProUTNE recognition 261
9.30 Question interpretation in HOG-QA 632

LIST OF FIGURES 17

9.31 Proto query foHow many researchers won a Nobel prize . . . 267
9.32 Natural language utterances (language-specificlotoqoueries . 268
9.33 Principles for transformation of proto queries to S&RQeries . 270
9.34 SmartWeb soccer information extraction architecture 277

18

LIST OF FIGURES

Acknowledgments

First of all, | would like to thank Hans Uszkoreit for givingatnhe opportunity to
work in the exciting DFKI environment and the chance to qumusly pursuing
the topic of my thesis in challenging projects, and for dbating valuable hints
and advice. |1 would like to thank him and Wolfgang Wabhlstertfeir willingness
to review the thesis, despite their enormous workloads.

While this thesis focuses on the computational and softaspects of linguis-
tic component integration architectures, the integraisomot limited to a software
problem. Many people have worked on related aspects sucttexsdang the deep
grammars, building efficient shallow systems and extentliegdeep parser.

An integration task such as this at the core interface betvWieguistic re-
source development, component software development atensyengineering is
inherently collaborative and would have been impossiblthavit contributions
from many people. Thus, | am indebted to my present and focokeagues
Markus Becker, Paul Buitelaar, Stephan Busemann, Ulriclhm@#er, Berthold
Crysmann, Witold Drozdzynski, Andreas Eisele, Anettarfk, Gregory Gulrajani,
Bernd Kiefer, Hans-Ulrich Krieger, Gunter Neumann, JalRiskorski, Stefania
Racioppa, Oliver Scherf, Melanie Siegel, Jorg Stefferd Baiyu Xu for fruitful
cooperation, helpful discussions and implementation work

| would also like to thank our ‘Hiwis’ Robert Barbey, DaniekBk, f)zg[]r
Demir, Andreas Freier, Thomas Klocker, and Kathrin Sprdge their efficient
and intelligent contributions.

| am grateful to several members of the international DEURHellaboration,
most notably Stephan Oepen, Dan Flickinger, Ann CopesBér,Waldron, and
Francis Bond. | am grateful for valuable comments and istarg discussions
at various meetings in Saarbriicken, Edinburgh, Lisborgzlde la Frontera, and
Fefor (Norway).

| would also like to thank Thierry Declerck for letting me dia bit into the
world of the ISO standardization processes, and relatedisifons.

Many anonymous reviewers and the audiences at the followiogkshops
and conferences have contributed valuable comments adt&ele on papers |
have presented and on which parts of this thesis are basettNAACL-2003
workshop on Software Engineering and Architectures forduage Technology
Systems, Edmonton, Canada. ACL-2003 conference, Sapfapan. LREC-
2004 conference and workshop on a Registry of Linguisti@@ztegories within

19

an Integrated Language Resources Repository Area, Lisbamygal. ESSLLI-
2004 workshop on Combining Shallow and Deep Processing &iundl Lan-
guage Processing, Nancy, France. AAAI-2005 workshop orstiareAnswering
in Restricted Domains, Pittsburgh, Pennsylvania. EACR&@orkshop on Multi-
Dimensional Markup in Natural Language Processing, Trdtaty. LREC-2006
main conference and workshop on Quality Assurance and @udkasurement
for Language and Speech Resources, Genoa, Italy. ELSN&d-&0mmer School
on Information Fusion in Natural Language Processing SysteHamburg, Ger-
many.
Finally, many thanks go to my parents whom | owe so much andytéamily

for their patience.

20

Chapter 1

Introduction

In this thesis, we describe our contributions to a new pgradior hybrid natu-
ral language processing (NLP) architectures. The idea ¢®taobine pre-existing
shallow language technology components and a deep lingyiatser by using
XML technology. The main goal is to increase robustness pfieation-oriented
deep linguistic parsing. Further possible advantages pibéing synergy gained
through NLP component combination is reduced ambiguityiaockased perfor-
mance of deep parsing.

The resulting overall systems can form the basis for a nevergd¢ion of ap-
plications that build on machine understanding of humaguage which can —to
a certain extent and by means of a formal semantics repeggantanguage — be
provided by deep linguistic parsing.

The novel applications may comprise basic techniques ssitbxéual entail-
ment, natural language question interpretation and amsgyexdvanced informa-
tion extraction, but also more complex tasks such as opimdming, creative
authoring support, business intelligence and further $&m&veb-related chal-
lenges.

Our thesis focuses on three architecture frameworks. Tsiedire,SProUT,
is shallow with respect to its basic processing model, hegrates deep and shal-
low elements on the formalism level. It provides generic XMbhut and output
interfaces and can be used for many different (shallow) NisRd.

The second framework, WITEBOARD, is an API-based sequential architec-
ture that uses XML and XSLT technology at numerous leveldhaflew process-
ing that are input to a deep parser. It has been mainly usedgéarch, evaluate and
demonstrate the feasibility and benefits of intensely leéeed shallow processing
and deep parsing.

The third framework, Heart of Gold, is a generalization ofiMWEBOARD with
respect to many dimensions such as processing modelslinguiéility, configura-
bility and networkability. Moreover, a new integration &xy based on a robust
semantics formalism that allows for underspecified repras®ns from various
deep and shallow NLP components, is supported.

21

22 CHAPTER 1. INTRODUCTION

Heart of Gold forms a middleware architecture for a wide mng applica-
tions related to the Semantic Web, and also (optionallypriporates and builds
on the first frameworkSProUT, in many of the realized multilingual integration
scenarios.

Finally, Heart of Gold not only forms the basis for applicat that make use
semantics-oriented natural language analysis, but alsstitgtes a complex re-
search instrument for experimenting with novel processitngtegies combining
deep and shallow methods that at the same time eases rigpliaati comparabil-
ity of results.

After thorough introduction of the processing and repreg@n paradigms
for deep and shallow analysis, we motivate our idea of usikti Xransformation
for flexible integration of NLP components. Then, we destrach of the three
frameworks, their use in implemented applications, andueti®ns in application
contexts such as information extraction, creative autigosupport and deep ques-
tion analysis for question answering.

The overall result of our thesis is that the implemented iayarchitectures for
combining deep and shallow processing help to drasticatlyease the robustness
of deep linguistic parsing for use in NLP application comgexand that utilizing
XML and XSLT technology eases flexible integration and corabon of NLP
components.

The thesis is structured as follows.

In Chapter 2, we begin with some general definitions and ptedke motiva-
tions for the thesis. Chapter 3 briefly and informally intnods the HPSG grammar
formalism for deep natural language processing. Chapterdduces shallow pro-
cessing, linguistic XML representations and the relatietween them. In Chapter
5, we introduce general problems of hybrid deep-shalloegrdtion and propose a
solution based on XML transformation. Chapter 6 explairs rmotivates the need
for architectures for application-oriented hybrid prcgieg.

In Chapter 7, we describe our contributions to 8feroUTplatform that com-
bines elements from deep and shallow NLP paradigms on tmeaftam level.
Chapter 8 discusses MTEBOARD, an architecture for hybrid parsing that has
been developed to research and evaluate the possible besfdfiterleaved pro-
cessing at multiple levels of language technology. In Céra@t the Heart of Gold
middleware architecture for robust, multilingual applica-oriented deep-shallow
integration as well implemented applications are presenfénally, we conclude
in Chapter 10.

Appendix A contains some of the most important document tginitions
discussed in the thesis (Chapters 4 through 9). AppendisBalis sample XSLT
stylesheets discussed in Chapter 9.

All HTTP links referred to in this thesis (including those mtiened in the
bibliography) have been verified on September 6, 2006.

Chapter 2

Definitions and Motivation

In this chapter, we briefly introduce deep and shallow natiargguage process-
ing and present an application-oriented description otdls&s and problems that
are addressed in our thesis. We then motivate the integrafiboth processing
paradigms and the possible benefits of this combination.

2.1 Deep and Shallow Natural Language Processing

2.1.1 Deep Natural Language Processing

Deep natural language processing (DNLP) systems try toyaspmuch linguis-
tic knowledge as possible to analyze natural languageamttes. The linguistic
knowledge is declaratively encoded. The general term usedmputer science is
information-based, knowledge representation-based wost@int-based process-
ing, as the knowledge about natural language is neitherdecm algorithms nor
in simple databases. Instead, the language knowledgedsageg from the (at least
in principle) quite simple algorithmdn a formal grammar with underlying (type)
theory and well-defined information fusing and consistetctogcking operations.
The analysis result of the natural languages utterancegscélly sentence-
wise) contains a collection of the knowledge that succdigsfontributed to the
analysis. The result often consists of many possible aeslger sentence reflect-
ing the uncertainty which of the syntactically possiblediags was intended — or
a rejection (failure) of the input if the linguistic knowlgd was contradictory or
insufficient with respect to the input. DNLP systems gemgiale rule-based
Rules describe constraints on the correct compositiomgtistic entities (syn-
tax) based on a linguistic grammar theory, but abstract tontrete words which

IHowever, a considerable amount of the complexity of the émq@nted systems comes from
sophisticated methods making the processing efficiengusig. compilation, optimization and sta-
tistical methodstc

2This does not mean that deep is the opposite of statistieafjuse statistical methods can well
be and are applied successfully to deep grammars and systems

23

24 CHAPTER 2. DEFINITIONS AND MOTIVATION

are encoded in a lexicon. Using syntactic analysis of a dempmar alone (with-
out semantics construction) can form the basis for apjicatsuch agrammar
checking where correct use of natural language syntax is eithemappgror a sen-
tence is rejected as ungrammatical

On the basis of the syntactic analysis, rules can also testhniecomposi-
tional construction of a natural language semantics repreationof the meaning
of a sentence. Throughout this thesis, we always measemantics representa-
tion a natural language semantics representation, an absiragijfied language
describing in dogical formthe meaning of a syntactically represented natural lan-
guage utterance, e.g. based on first order predicate logh &si the following
clause for the sentendahn gave Mary a book

past(give(John, Mary, book))

The termdeep structuravas coined by Chomsky (1965), describing the theo-
retical construct underlying several possibly simgarface formsto abstract e.g.
from syntactic variants such as ‘John gave Mary the bookTae'book was given
to Mary by John’ bearing essentially the same meaning. Chypitager replaced
the termdeep structurdoy logical formandsurface formby phonetic form How-
ever, one could think ofleep analysi@s of an algorithm that computesdaep
structure

The constructed semantics representation can then beruapglication-speci-
fic actions such as relation extraction, text summarizatoqurestion answering,
opinion detection, command interpretatieetc. Moreover, as semantics represen-
tation ideally would be language-independent (a kind oftra¢interlingua, the
pseudo-English relation names starting withrcthe example), it could also form
the basis for machine translation, i.e., the generation syfr@actic surface in the
target language.

In an ideal multilingual DNLP setting, syntax and lexicoe Enguage-specific,
while the semantics representation abstracts from thastjotsurface up to a cer-
tain extent. A simple example may illustrate the idea forgbetence

The farmer reads the newspaper.
is e.g.
c_farmerly) Ac_newspap€iz) A c_transitivereadx, y, z) A c_tensepresentx)

The same semantic representation (modulo language-speaifcepts) would
also hold for the French sentence

Le paysan lit le journal.

and the German sentence

SHowever, also for grammar checking, semantics can be béleficg. for (at least partial)
disambiguation.
“e.g. translation of natural language commands or quesitm$SQL queries on databases.

2.1. DEEP AND SHALLOW NATURAL LANGUAGE PROCESSING 25

Der Bauer liest die Zeitung.

However, this is a gross simplification as the isomorphisny meither hold
for lexical semanticsnor for e.g. more complex verbal constructions as shown in
Copestakeet al. (1995a). Bysemantic transfe(translating concepts and more
complex constructiongtg, an equivalent representation in the target language
would have to be computed in the machine translation saenari

Ideally, the same grammar for a specific language can be osetdlysis and
generation, cf. Shieber (1988); Shieletial. (1990); van Noord (1993); Neumann
(1994). In any case, due to ambiguity and richness of hunagukge, multiple
semantic representations may be valid for a sentenceiaedersa- there may be
syntactic variants for the same semantic representation.

The knowledge-intensive approach of DNLP requires comalile computa-
tional power, and has in the past sometimes been judged ag befactablé.
However, research on improving efficiency of deep procgsksas made consider-
able advances during the last years (Callmeier, 2000; Wsitk@002), and today,
efficiency is no longer a major problem for applications gsileep processing.

2.1.2 Shallow Natural Language Processing

Unlike DNLP, shallow natural language processing (SNL&/stems do not at-
tempt to achieve an exhaustive linguistic analysis. Theydasigned for specific
tasks ignoring many details in input and linguistic (gramnfilamework.

Utilizing rule-based (e.g. regular grammars) or statsshased approaches,
they are in general faster than DNLP, but only deliver flahpe, partial, non-
exhaustive representations. Examples for dedicatedoshallocessing stages (in
the order of increasing complexity) are e.g. tokenizatjmart-of-speech tagging,
chunking, named entity recognition, and shallow senteasipg. The purpose of
these shallow tasks will be described below (Section 2.3).

Due to the initial lack of efficiency and robustness of DNLBtsyns, the trend
in application-oriented language technology in the laaryevas to improve SNLP
systems. They are now capable of analyzing megabytes sfgtktin seconds, but
precision and quality barriers are so obvious (especiallglamains the systems
where not designed for or trained on) that a need for 'deepatems re-emerged
(Uszkoreit, 2002). Moreover, semantics construction of. Bffom an input sen-
tence is quite poor and imprecise in typical shallow systegmsl in many cases
insufficient for the above mentioned NLP applicatians

5The standard example being the German weadkwhich has multiple meanings, e.g. financial
institution, but also bench.

6Cf. Chapter 3 for a discussion of theoretical results.

"The abbreviation SNLP is sometimes also usedsfatistical natural language processing.g.
in Callison-Burch and Osborne (2003). Although there iscadvierlap, namelghallow statistical
language processinghe term statistical NLP excludes e.g. rule-based appesathat are comprised
by shallow NLP such as finite-state processing.

8Therefore, the somewhat derogative term sometimes useédefoesult of shallow processing is

26 CHAPTER 2. DEFINITIONS AND MOTIVATION

2.2 Integration of the Paradigms

A promising approach to improve the quality of natural laaggi text analysis is the
combination of deep and shallow processing technologiegpprocessing could
benefit from specialized and fast shallow analysis resultsfal its 'knowledge
gaps’, e.g. in the lexicon, to increase robustness.

When DNLP returns too many readings for a sentence, statisised SNLP
components could help to select the most probable readling(seover, a combi-
natorial explosion of the search space in long sentencessthrinsic for DNLP
could be avoided by filtering with the help of shallow anabise

The integration of deep and shallow NLP systems is also en@aily moti-
vated. Because of expensive, time-consuming grammar ajaveint, most deep
systems tend to be domain-independent (describing commopegies, phenom-
ena and syntactic constructions of a language), re-usabtémodular at least in
parts (cf. Bendeet al. 2003; Pollard and Sag 1994) across languages. However,
lexical and semantic coverage on specific domains (e.g. #dica domain) is
limited by the (hand-crafted) lexicon.

Shallow components could help to bridge this gap and estalitie following
task sharing. Domain-specific extensions could be cor&ibby shallow systems
in conjunction with generic entries in the deep lexicon tae filled according
to the input text, while the core linguistic and grammar tiydmased knowledge
stems from DNLP.

Because human language is productive (compound wordsepnames, new
word formation, product names) and mutating, and words rsaylze misspelled,
there may be always in a general natural language text wbadscan not even
be found in a huge lexicon. Shallow taggers can guess the types$ of such
unknown words in a text, and assign an appropriate genexicole entry with
default values as fall-back information.

Deep linguistic analysis is only one stage in the processamguage under-
standing. Full ambiguity resolution further requires disse or context informa-
tion, world and domain-specific knowledge, and also seroanterence. These
tasks are left to application-specific processing and ateobthe scope of this
thesis.

The prospective added value of integrating deep and shaltoaessing is a
more robust semantic analysis of text than is possible eéthdalone deep parsers
or shallow processors. The thesis centers around the egpagi®n languages and
architectures that are necessary to perform the integrédek.

Table 2.1 coarsely sums uppical properties of deep and shallow NLP. Of
course, the classifications are simplifying, and there aceions or cases where
the distinctions are fuzzy.

Resulting from this table, one can identify various chajles for integration
architectures of deep and shallow systems, most of which Weeascribe in more

low-level markup

2.3. BENEFITS OF ROBUST DNLP 27

| Property | Deep NLP | Shallow NLP |
Processing cost high low
Coverage low high
Behavior on ill-formed input not robust robust
Ambiguity rate high low
Syntactic analysis fine-grained| coarse-grained
Generated semantics representation rich poor
Precision high low
Partial analysis (infrequent) frequent

Table 2.1: Typical properties of deep and shallow NLP

detail in Chapter 5.

The challenges are on the one hand linguistic, such as thegadif paradigms
(partial vs. exhaustive analysis, filtering vs. monotomdehment, different gran-
ularity, namings, types, spans for a recognized entity, thedquestion how to
resolve ambiguity). On the other hand, there are technltalenges for the inte-
gration such as the fact that one would necessarily haveilw t existing com-
ponents implemented in various programming languagegrtidem of online vs.
offline integration, and finally the questions whether eipental or application-
oriented use and flexibility or efficiency should be in thesfgnound.

In search of an architecture that integrates deep and shhlld®, reading and
citing the seminal work of Cunningham (2000) ab@&gftware Architecture for
Language Engineeringg a must.

However, although his approach claims to be somewhat ws@lvand to cover
any kind of NLP, it only covers shallow language technologg anentions deep
processing, typed feature structures and HPSG on a singke (188) and in no
way attacks the specific problem for this important class IodPN

Therefore, our thesis is at large parts complementary tanidgham (2000)
and tries to attack the problems left unmentioned and uedotiiere for deep-
shallow integration.

2.3 The Benefits of Robust Deep Processing Enhanced by
Shallow Processing

Nowadays, shallow natural language processing (SNLP3$ @skperformed through
statistical or simple rule-based, typically finite-statethods, often supported by
table or database lookups, with sufficient precision andlkethese tasks are e.g.

e Tokenizatioris the task of separating words and e.g. punctuation syniols
a way appropriate for the subsequent tasks below. It isa@jlgibandled by

28 CHAPTER 2. DEFINITIONS AND MOTIVATION

regular expressions, and can range from very simple disiims (e.g. word
vS. punctuation symbol) up to quite fine-grained differatidin of token
classes. It may also include the tasksehtence boundary detectiarhich
potentially is a hard problem (e.g. abbreviations with deithin or at the
end of a sentence), therefore requiring NER (cf. below) engearsing as
well.

e Part-of-speech tagging (PoS tagging)the task of determining the class of
a word, such as noun, pronoun, verb, adjective, adetxbAgain, more or
less fine-grained classifications exist.

e Morphological analysis/stemminig the task of decomposing a inflected
word into its stem and suffix and/or prefix, even if the stemisfexe is
modified (e.g. to be - | am - | was - they were), and enumeratiagin-
flection feature value for e.g. case, gender, number, perBois task may
also include decomposition of compound words like in GeraaDutch.

e Named entity recognitioiNER) is the task of determining the type and
boundary of name words such as proper names, location ndimesex-
pressions, possibly including subtypes such as surnawven game, coun-
try, city name. As these classes of words are very prodydive cannot be
captured by lexical enumerations, they are also calfszh class words

e Phrase chunkings the task of segmenting a text into information units large
than a word and possibly comprising other chunks, e.g. ‘th#eahorse’
forms a noun phrase.

e Shallow parsings the task of analyzing sentence structure by e.g. a proba-
bilistic context-free model (PCFG parsing). This task mi&r to chunking,
but on sentence level, and may build on chunking.

Some of the state-of-the-art language technology comgsméhis ‘shallow’
kind are included in every-day applications such as woragssors, word-based
search engines, full text document indexgtg

Common to the performance of the above mentioned tasks iisitigerfec-
tion that is mainly due to insufficient resources (unknowrrdsp domain-specific
expression®tg, ambiguity in natural language, unawareness of context,the
inability to draw inferences and to use world knowledge.

However, despite these deficiencies, the described taskpesformed typi-
cally with precision and recall between 80 and 99 % which issatered accept-
able and comparable to human performance which is also mfggpéndeed (and
ignoring the fact that humans need much longer to perforniatsics).

The judgment on quality of computerized NLP deteriorategmvimore com-
plex tasks are considered. Such tasks include

2.3. BENEFITS OF ROBUST DNLP 29

¢ Information extractionfrom texts such a newspaper articles on management
position changes (succession) fill in expected template,®ay. name, com-
pany, former position, new positicstc,

e Text summarizatiarproduce in a couple of well-formed sentences an outline
of the relevant information that a larger text contains.

e Document or information retrievareturn from a document collection those
documents that contain relevant information accordingdeszription (key-
words in the trivial case).

e Text mining try to discover e.g. trends from text. Although the simijato
the term ‘data mining’ suggests that new facts (factoide)dscovered, the
widely accepted scope of text mining is restricted to simpteore specific
and specified tasks, cf. Hearst (1999).

e Question answeringfind a correct answer (e.g. a single sentence, or sum-
marizing in a few sentences) in a local text repository orlenworld-wide
web to a question a user formulates in natural language. @isally be
based on document retrieval.

e Opinion mining extract meanings uttered by people, e.g. judgments on a
product in a web forum or a newsgroup.

e Machine translationtranslate a text into a different language while preserv-
ing the meaning and style of the original.

e Textual entailment recognitionthis is the somewhat artificial, but never-
theless very interesting task of deciding, given two teagiments, whether
the meaning of one text is entailed (can be inferred) frontlaeratext. It
has applications in information extraction, informaticetrieval, question
answering and machine translation.

Further advanced applications may use combinations oéthasic tasks, e.g.
Scam seekinghe task of finding documents that contain faked inforrmasach
as illegal investment proposals in financial news (Pat2€Kk4).

While humans still need a considerable amount of time toesttese tasks,
they can (approximately) do it with precision and recall pamable to those on the
the above mentioned low-level tasks.

However, the fraction of acceptable solutions deliveredoyent NLP systems
is muchlower than for the low-level tasks. One reason is that ergpkd language
models such as trigrams or simple finite-state models ar®adly inadequate (as
more than just local information has to be considered) andatecapture the com-
plexity of the task and the necessarily involved data, enfprination extraction
can be very hard, depending on the specific task formulation.

Another reason is that training data and corpora are notadaifor many
domains and applications, and are expensive to acquire.e@nt if huge data

30 CHAPTER 2. DEFINITIONS AND MOTIVATION

collections would be used, as was the case for brute-fotde-tsased machine
translation experiments in recent years, the results watilldbe unacceptable.

A further reason why the shallow methods fail is the lack ofdarstanding’ a
text. While humans can easily detect the agent of an actiscritbed in a sentence
even if it is not mentioned explicitly, or the scope of a nemaintended by the
author, this is not possible so reliably with shallow method

Consider only the probably easiest of the above mentionedplex tasks,
namely information extraction. In a sentence such as

Things would be different if Microsoft was located in Geaygi

a shallow IE system could — wrongly — infer the informatioattMicrosoft's cor-
porate headquartersierelocated in Georgia
In the example

The National Institute for Psychobiology in Israel was éfithed in
May 1971 as the Israel Center for Psychobiology by Prof. Joel

a shallow IE system using patterns of regular expressionkl cowrongly — infer
that Israel was established in May 1971.

Many problems of this kind could be overcome by thoroughdistic analysis.
Although for further disambiguation, world knowledge anterence is necessary,
deep linguistic processing is quite reliably able to sytitatly rule out impossi-
ble interpretations, to identify the arguments of a verbddétermine the scope of
negation, and — most importantly — to compute a semantieseptation of the
meaning of a sentence.

However, this does not imply that deep linguistic procegsilways computes
‘the’ meaning of a sentence. In general, it computes a sebsdible meanings
that are licensed by the syntax of the language, and thaiasrained by word-
specific information from a lexicon.

This set is thus a superset of the interpretations a humaitdwioaw, because
humans make use of world knowledge, and context (discour@nation, that a
linguistics-based parser may not have. For a further ingatdanguage analysis, it
is therefore necessary to adjoin to the (after the) lingusstalysis a model of world
knowledge (usually called ‘ontology’) and further infortiwm resources such as
discourse model or context.

It has to be pointed out that this scenario in no way claimstpdycholinguis-
tically adequate nor does it model how language is proceisshdman brain. It
is only a model of language and reflects linguistic knowledge how it could be
made processable for natural language applications.

Finally, although we will in this thesis describe some iatging and success-
ful applications of integrated deep and shallow proces<sp in conjunction with

9The two examples are taken from the Recognizing Textual iEmat Challenge
(http://www.pascal-network.org/Challenges/RTE/).

2.3. BENEFITS OF ROBUST DNLP 31

ontologies, especially domain-specific ontologies), waaoltry to model and im-
plement thewhole process just described. In particular, we will not say aimgth
about modeling discourse, context or world knowledge, llehe semantic infer-
ence. These will be subsequent steps in the processing iwbiagovered by this
thesis. In this sense, integrated deep and shallow processionly a—however
important—initial building block for linguistics-orieatl natural language analysis
that has mainly increased robustness in focus.

32

CHAPTER 2. DEFINITIONS AND MOTIVATION

Chapter 3

Deep Linguistic Processing with
Head-Driven Phrase Structure
Grammar

In this chapter, we give a short introduction to deep lintjciigrocessing on the ba-
sis of the Head-driven Phrase Structure Grammar (HPSG) riéfytintroduce the
main concepts such as type system, typed feature structutesumption and uni-
fication, phrase structure rules, lexicon entries and s@osaputput. We conclude
with a discussion of the robustness problem of deep prougssi

3.1 A Short Introduction to HPSG

The two most important and most elaborated grammar thetiradgplay a major
role in computational linguistics today are Lexical Fuontl Grammar (LFG; Ka-
plan and Bresnan 1982) and Head-Driven Phrase Structurar@Gaa(HPSG; Pol-
lard and Sag 1987, 1994). Although many of the solutionsrdeest in this thesis
could probably be applied to other grammar theories as wellyill concentrate
on HPSG here because it is probably the most elegant, popathpredominant
grammar theory (Richter, 2000; Kirby, 1996).

HPSG is a blend of logic, inheritance-badetwledge representatidiBrach-
man, 1979), type theory and linguistic theory that not ongkes it suitable for
computer implementation but also gives the computatianglist (and grammar
writer) a powerful, well-defined and uniform representatianguage for the en-
coding of linguistic knowledge. Several development pliatfs exist that allow to
write and test HPSG grammars (Copestake, 2002; Uszlatrait 1994).

However, HPSG is not a fixed theory. Its development and relkaa still
in progress, but mostly only details are changed or addedtheogeneral setup.
Hence, HPSG implementations are also playground for relseam and experi-
mentation with formalized linguistic theories or hypotee®f language modeling
(e.g. in natural language syntax, syntax-semantic intejfa

33

34 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

HPSG is dexicalizedgrammar theory, i.e., most linguistic knowledge is en-
coded in lexicon entries. Only a relatively small numberefivgeneral and partly
even language-independent rules and principles existfate general informa-
tion flow and combination within a sentence.

Inheritance is used to ensure that the knowledge is not excosundantly.
HPSG issign-basedfollowing the ideas of de Saussure (1916), i.e., (syntactic
phonetic) form and meaning are representedraembleHPSG ismonostratalin
the sense that the same (data) structures are use to dgstuoihelogy, syntax and
semantics.

HPSG deliberately incorporates ideas from Categorial Gram(CG; Wood
1993), Discourse Representation Theory (DRT; Kamp andeRE993), Lexical-
Functional Grammar (LFG; Kaplan and Bresnan 1982), GeimethPhrase Struc-
ture Grammar (GPSG; Gazdatral. 1985), Government and Binding Theory (GB;
Chomsky 1981). However, it supersedes them in eleganthgusilely typed fea-
ture structures to implement linguistic concepts origindeveloped in its prede-
cessors rather than (as they did) presenting informal axtsoaf how linguistic
phenomena could be modeled within the theory.

In HPSG, both rules and lexicon are encoded in a uniform,-defihed data
structure calledyped feature structurerhich is based on an type hierarchy with in-
heritance (Figure 3.1), with a monotonic information-camity and consistency-
checking operation called unification. An HPSG parser mogbasically per-
forms unification of constraints encoded in typed featurecsires imposed by
the grammar and the lexicon entries triggered by the inpuiesee (the primary
domain of an HPSG parser is a sentence).

3.1.1 Excursus: Typed Feature Structures

Typed feature structures are commonly considered an apgr@pdeclarative ve-
hicle with which ‘many technical problems in language diggion and computer
manipulation of language can be solved’ (Shieber, 1992).

Feature structures are partial descriptions of (lingelistbjects. The original
term featureis related to an attribute with a binary value for a linguigtroperty
such as VOICED: +. Later, the binary values have been géredato arbitrary
atomic values, types and to recursively embedded valesattributes in a typed
feature structure may have typed feature structures ags/and so forth. This
is why attribute-value pairamay be considered the correct term, althotgbed
feature structuras the term that is established in the literature.

The idea and logic of typed feature structures are presamtgdlarified e.g. in
Pereira and Shieber (1984); Shieber (1986); Carpente2j198ewing conjunc-
tive sets of feature-value pairs asnstraintsimmediately reveals similarity with
constraint logic programming (CLP, Jaffar and Lassez 198i/Aact, numerous in-
sights and also implementation techniques have been ic#aedny and are shared
with CLP.

3.1. ASHORT INTRODUCTION TO HPSG 35

Many valuable insights on complexity, relation to other kiexge representa-
tion languagegtccame from Smolka (1989); Kasper and Rounds (1990). Rounds
and Manaster-Ramer (1987) were the first to prove that fedébgic with recursive
types is undecidable. Smolka (1989) showed that this is dube coreference
constraints.

Ait-Kaci and Nasr (1986) and Nebel and Smolka (1990) hase elarified the
relation to other knowledge representation formalism$sag KL-ONE (Brach-
man and Schmolze, 1985). In particular, they showed that-theeretical se-
mantics can be given to typed feature structures in analodhie set-theoretical
semantics of KL-ONE.

There are a couple of different characterizations of typeature structures.
Krieger (1995) gives a good overview. The following defimiits are close to those
presented in Carpenter (1992), though slightly simplified abbreviated.

In the sample of an HPSG type hierarchy shown in Figure Sghis the top
type that divides intavords andphrases which themselves fall into structures with
and without a linguistihiead Heads will be explained in Section 3.1.2.4.

sign

N

word phrase

N

non-headed-structure headed-structure

PRI

head-argument-structure

Figure 3.1: A small extract of the HPSG type hierarchy

3.1.1.1 Definition Typed Feature Structure Grammar
An HPSG grammais a tuple(T, 3, F, ©) with

e (T,J) constituting an inheritance hierarchy which can be charad as a
finite Bounded Complete Partial Order (BCPO, or finite seattide)

e F, a set of feature symbols

e a set of typed feature structur@sbeing partitioned into lexical entries and
rules

36 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

3.1.1.2 Definition Typed Feature Structure

A typed feature structur@ € © overT andF is a rooted, directed, labeled graph.
It is defined by a tupl® = (Q, qo, 7, d), where

e Qs a finite set of nodes rooted @y
e (o € Qis the root node

e T:Q— T is a total typing function assigning a type to each node in the
feature structure

e 0:F xQ— Qis apartial feature value function assigning a value to aufea

A node without outgoing feature arcs is called @om An example of a
feature structure depicted as graph is shown in Figure 3.2.

t(q, y=noun

N 74, v 4,
y %A W@g#m
q, q
—eoni LR o ~y,
g,) Sem‘ %]:)—syndfgg&q
q 5

2 .
(g,)=verb wq,)=sing

Figure 3.2: A typed feature structure as graph

A more convenient and better readable representation efitjgature struc-
tures is called a\VM, an attribute-value matrixbeingattribute a synonym for
afeaturg. A bunch of feature arcs outgoing from a typed node is vigadlin
stretched brackets, the type is written above the features:

typeO
FEATUREL typel

type2
FEATUREZ P
FEATURE3 type3
Features within typed feature structures may share valites.structure shar-
ing (or reentrancy) is indicated by a labeled (or numbered) blso called a coref-
erence, the shared value is printed next to the first ocoterehthe coreference
box:

3.1. ASHORT INTRODUCTION TO HPSG 37

sent
[noun
syn
SUBJ y
AGR [1] | PERSON 3rd
I NUMBER sing
verb
PRED
AGR [1]

In the above figure, the value under the feapath SUBJ.AGR is shared with
the value under PRED.AGR.

Throughout this thesis, we may additionally use t8g, 6,,...,6,) notation
for list-valued feature nodes. A list-valued feature noda be conceived as an
abbreviation for a feature structure of tyfons* (non-empty list) with attributes
FIRST and REST, where the value of FIRST contains a list etenaed REST
contains the rest of the list. The featureless typdl* indicates an empty list (and
hence list end under feature REST). TH@s, 6, 65) is an abbreviation for

[*cons* i
FIRST 6;
[*cons*]
FIRST 6,
REST *cons*
REST | FIRST 65
i REST *null* i

3.1.1.3 Definition Subsumption

Subsumption) between typed feature structures is defined as a transiite
symmetric and reflexive relation between two typed feattmgctures that states
whether one feature structure is more general than the. other

0 =(Q,qo, T,d) subsume®’ = (Q, ¢, T/, '), shorté J ' if and only if there
is a total functiorh : Q — Q' such that:

e h(qo) =
e 7(q) 2 7'(h(q)) Ya € Q

e h(3(f,q)) =9'(f,h(q)) Yge Qand for every featuré € F for whichd(f,q)
is defined

38 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

Informally, 6 3 0’ iff 8 is more general thafl'.

Set-theoretically, the denotation of subsumption of twaetyfeature structures
corresponds to the subset relation of the denotations affteal feature structures.

Examples for proper subsumptions are:

agr - |agr
PERSON | = | PERSON 1st
1 [agr
agr g
J | PERSON 1st
PERSON 1st :
E NUMBER sing
. - [phrase
sign
r . agr .
agr J g , if signJ phrase
AGR AGR | PERSON 1st
PERSON 1st .
L 4 i NUMBER sing
[sent 1 -
r 7 sent
agr
SUBJ agr
PERSON 1st| | J | suBJ
F - PERSON 1st
agr
PRED PRED
PERSON 1st L

3.1.1.4 Definition Unification

Unification of two typed feature structure®i1 6’ is then defined as the operation
determining the most general feature structure that isusubd by bothf and
6’. The result of unification is a failurel() if 6 and 6’ contain contradictory
information, e.g. by incompatible types under the samaifegtaths.

In other words, unification is both a satisfiability-checkiand structure build-
ing operation. The former is important to rule out impossi@dontradictory) de-
scriptions, the latter is e.g. used to build sentence strednd semantics output
compositionally from a syntactic analysis during parsifgrmal definitions for
unification are presented e.g. in Carpenter (1992), Chapter

Set-theoretically, the denotation of unification of twotfga structures corre-
sponds to the set intersection of the denotations of thereatructures.

agr
agr agr
M) = | PERSON 1st
PERSON 1st NUMBER sing .
NUMBER sing

IKay (1979) first introduced feature structure unification.

3.1. ASHORT INTRODUCTION TO HPSG 39

. - sent
sent sign
SUBJ M agr = | SUBJ agr
PRED | 29 N PERSON 1st
PRED PERSON 1st
. PRED
if signJ sent
agr agr]
PERSON 1st [M | PERSON 2nd | = L,
NUMBER sing NUMBER sing

if 1stand2ndare
incompatible (atomic) types

Unification algorithms have been presented e.g. in AitiKé@84) and Kart-
tunen and Kay (1985), many improvements and variations baes published,
e.g. by Kogure (1990); Godden (1990); Emele (1991); Tomlaib@®91, 1992);
Wroblewski (1987); Kiefeet al. (1999); Maloufet al.(2000); van Lohuizen (2000).
A good overview (of the graph-based ones) is presented im&gdr (2001).

3.1.1.5 Further Constraints on Typed Feature Structure Defiitions

There are a few restrictions to the above definitions thatallery efficient pro-
cessing without sacrificing the general spirit of the gramthaory. The fastest
HPSG implementations agree with and share these addittmmatraints (again,
formal definitions presented e.g. in Carpenter 1992).

e Bounded Complete Partial Order (BCP®@he BCPO type hierarchy condi-
tion already mentioned implies@osed type worldi.e., every pair of types
which has no explicitly defined common subtype is incompeatibhe type
inheritance hierarchy is defined by the grammar writer aptgrahich can
be automatically completed to a BCPO in polynomial time ahpite time
(broad-coverage HPSG grammars currently typically cari@000-100000

types).

e Strong typingrequires that every feature structure node in a typed featur
structure has a type.

e Appropriatenessequires each feature in a grammar to be introduced only
by a single (unique) type. This is a strict notion of apprafaness that eases
(efficient) implementation and type inference.

o Well-typednessThis condition states that for every outgoing feature arg |
feature structure that it is appropriate for its type, arel\hlue type of the
feature is subsumed by ifpproptype.

40 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

To precisely define appropriateness and welltypedness,efieeda function
calledApprop

3.1.1.6 Definition Appropriateness Function

For an inheritance hierarchy, J) and the feature sé&t of the grammar, we define
Approp: F x T — T to be a partial function, and

e Vf e F,thereis amostgeneral typaro(f) € T such thapprop(f, Intro(f))
is defined.

e furthermore, we define thatApprop(f, o) is defined andr J 1 (with 0,7 €
T), thenApprop(f, 1) is also defined anApprop(f, o) J Approp(f, 7).

3.1.1.7 Definition Welltypedness

A typed feature structur@ = (Q,qo, 7, d) is well-typed if wheneved(f,q) is de-
fined, themApprop(f, 7(q)) is defined, and such thApprop f,7(q)) 2 1(5(f,Q)).

A typed feature structure istally well-typedif every node in it is well-typed,
and for every type occurring at a node, its appropriate featare explicit.

These above definitions do not only enabipe inferencegi.e., an algorithm
to uniquely determine the type of an untyped or 'under-tygedture structure
node (node with a less specific type than the maximally ptessitcording to the
outgoing feature arcs), but also allow to implement typeckhng at definition
time (e.g. to prevent errors in hand-crafted definitionsatfo Schafer 1995), and
— even more importantly — efficient packing, unfolding andiocation algorithms,
cf. Callmeier (2001, Chapter 9). The latter is indispensdbt fast HPSG parsing.

3.1.2 HPSG and HPSG Parsing

Having introduced the basic concepts for efficient typeduieastructure unifica-
tion, we can turn back to the essentials of HPSG (partly refgrto an HPSG
introduction by Muller 2007).

An HPSG parser is a computer program similar to a context-frarser. It
takes an input sentence, looks up the lexicon entries (tigedre structures) in the
HPSG lexicon for each occurring word, puts them on a chad,agplies general
rules, consisting of typed feature structures as well (sdefmed as ‘principles’),
to the chart items. Instead of using symbol equality for carigon of chart items
such as in context-free parsing, the unification operatsoapplied to the typed
feature structures.

The result of parsing is then either a failure, signalingimgistency or ungram-
maticality of the input with respect to the grammar, or onenarre typed feature
structures remaining on the chart, containing the comgatsing result (or frag-
ments if no analysis could be computed spanning the comiplets). Ambiguity
is introduced e.g. through multiple lexicon entries for apuit word.

3.1. ASHORT INTRODUCTION TO HPSG 41

3.1.2.1 Phrase Structure

As already mentioned, HPSG at its backbone relies on phtasgige (the ‘PS’in
HPSG). Only grammatically correct words can combine to agdrwhich in turn
only combine to a sentence if licensed by the grammar. Ungraioal sequences
of words should be rejected.

Vv
’/\
NP Vv
/\
N NP Y,
Peter D N NP Y,
\ \ —— \
das Buch D N gab

| |
dem Mann

Figure 3.3: Phrase structure tree

What makes HPSG different from other (previous) grammaoribe is that
also phrase structure is encoded in typed feature strgctues, phrase structure is
not defined separately by context-free rules like in LFG&ractures (Kaplan and
Bresnan, 1982), but within typed feature structures andttay (in conjunction)
with additional feature constraints. Dominance informatis encoded in DTR
attributes (DTR for daughter). Cf. the phrase structuretiersentence fragment
‘... Peter das Buch dem Mann gab’ in Figure 3.4.

[headed-structure
PHON (Peter das Buch dem Mann gab
[headed-structure
PHON (das Buch dem Mann gab
[headed-structure
PHON (dem Mann gap
HEAD-DTR[PHON (gab)]
HEAD-DTR headed-structure
PHON (dem Mani
HEAD-DTR[PHON (Mann)] >

HEAD-DTR
NON-HEAD-DTRS

NON-HEAD-DTRS <[PHON <den)]>
PHON (das Buch
NON-HEAD-DTRS < HEAD-DTR[PHON (Buch)] >
NON-HEAD-DTRS <[PHON <da$]>

| NON-HEAD-DTRS <[PHON (Petel)]>

Figure 3.4: Phrase structure encoded in a typed featuretsteu

42 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

The corresponding tree structure with the phrase cateyasenode labels is
depicted in Figure 3.3. What rules out grammatically ineotistructures such as

*Peter gab das Buch
where an indirect object is missing, or
*Peter gab

where both direct and indirect object are missing, comens fitte lexicon entry of
the verb ‘geben’ (to give). Here, a list under the feature 148 specifies thesub-
categorizationobjects, in this case the subject 4B, the direct object NRicd
and the indirect object NBaf (with the NHcasé notation abbreviating a feature
structure with embedded category feature NP and case égainrdat/aco).

A generalSubcategorization PrincipJencoded as type constraint in the inher-
itance hierarchy of the HPSG grammar, states that the sdmmagation list must
be saturated element by element at daghd-argument-structure

head-argument-structure
SUBCAT
head-argument-structure

suBcAT append[T], ([2]))

NON-HEAD-DTRS ([2])

HEAD-DTR

This (much simplified) principle defines a binary branchitgicture, and the
SUBCAT attribute which is omitted in the example in Figurd & processed by
means of the Subcategorization Principle as sketched uré& 5.

V[SUBCAT ()]
///\
[MNP[nom V[SUBCAT ([1])]
| -
N [ZNP[acd V[suscAT (1],[2))]
Peter D N [BINP[daf] V[suBcAT (1,[2,[3])]
\ \ — \
das Buch D N gab

| |
dem Mann

Figure 3.5: Subcategorization Principle in Phrase Strectu

If no lexicon entry licenses the

*Peter gab

3.1. ASHORT INTRODUCTION TO HPSG 43

reading where the verb 'geben’ would accept empty objeb&s) this would ren-
der the sentence unacceptable by the grammar, which is@gisofor this verb
having no intransitive reading.

3.1.2.2 Generating a Semantics Description from Syntax

On the other hand, the lexicon entry with direct and indiragject for 'geben’
specified in the SUBCAT list would not only make sentencesiping candidates
for the objects acceptable, but would also at the same timstaeat (by additional
features and principles not shown here) a semantic repetgenfor the sentence
assigning 'geben’ as action, the subject as agent of theraaind the direct and
indirect object as arguments — theedicate—argument structure

In the same way, verb control is marked in the lexicon, e.gi egrbs such as
‘promise’ and 'persuade’ may take an embedded verb phraBg gWd assign the
object of the controlling verb via a specification in the SUBICist to the subject
(in case of ‘promise’) or the object (in case of 'persuadd’jhe VP (similar for
auxiliary verbs). In other words, the SUBCAT list also plarsimportant role in
the syntax-semantics interface of a grammar — and this i®biney key strengths
of HPSG over shallow approaches.

3.1.2.3 The Role of the Lexicon

A main difference of the HPSG paradigm compared to the usirdbgt-free gram-
mar approach is that the role of the CFG rules is generalzgdriy generic ‘meta-
rules’. While a pure CFG has to move specific information torfeny as possible)
rule symbols, this is avoided in HPSG.

Instead, information that would be encoded in a CFG by bigwimthe symbol
repository, is moved as much as possible to the lexicon inGiRS other words,
if one would expand (or ‘fill’) lexicon entries, quite comglstructures such as the
one shown in Figure 3.6 from the English Resource Grammak{rger, 2002)
would appear (including syntax and semantics features) iehagtill is not fully
filled for space reasons here.

It is important to understand that complexity of lexiconread is not a short-
coming, but an advantage for the structure of a grammar, sugieatly facili-
tated because redundancy is reduced by moving informatieffitiently encoded
type inheritance in the lexicon. This is in full analogy te tvell-known and re-
searched advantages of inheritance in knowledge repegssnand programming
languages. The main advantages are that it is possible teaglly encode id-
iosyncrasies in the lexicon without sacrificing the mondatiby of the base formal-
ism, (2) provide fine-grained word-specific semantics regméations, but inherit
all other information from more general types.

44

[n_proper.nale
oPT
ROOT
PHON
LEX
MODIFD
LOCAL
SYNSEM
LKEYS
NONLOC
—SIND
| PUNCT
ALTS alts.min
KEY-ARG bool
IDIOM bool
ROBUST bool
INFLECTD +
ARGS *list*
posscL -
L STEM (*top*)

CHAPTER 3.

[proper.n_synsem

bool
bool
phon
+
notmod
[local_basic
ref-ind
INSTLOC string
SORT *sort*
—PSV bool
AGR [4 | —TPC bool
DIVISIBLE bool
png
PNG GEN real_gender
L’N 3sg j|
r cat 1
POSTHD bool
HS-LEX luk
[valencefull
suBJ *null*
VAL SPEC (anti_synsermin)
comps *null*
[SPR *null*
r noun
PRD bool
CAT INV bool
AUX luk
TAM tammin
HEAD CASE case
MOD *null*
POSS -
KEYS {keys }
L KEY namedabh.rel
MC na
LHC-LEX - J
r nom-obj
[*diff-list*
qeq
< LARG [§ handle]
HCONS | LIST INSTLOC [T]string
Hare 3 handle
INSTLOC
LiasT 24
[*diff-list*
genericnamednom.relation
cTo *top*
CONT CFROM *top*
RELS LIST <|Z[ARGO
LBL
PRED namedabh.rel
CARG *top*
WLINK *cons*
LiasT [§
[hook
HOOK LTOP bas@csemarg
XARG basicsemarg
LINDEX [
LMsG no.msg
L cong cnil
lexkeys
KEYREL [7]
[non-local
QUE O-dlist
REL 0-dlist
| sSLAsH O-dlist

no_punctuation

}

[2Hist* >

quantor_wh.relation

BoDY handle

LBL handle
WLINK *list*
CFROM *top*

CTO *top*
RSTR

ARGO

PRED propergq.rel

DEEP LINGUISTIC PROCESSING WITH HPSG

Bristr >

Figure 3.6: An HPSG lexicon entry for generic named entities

3.1. ASHORT INTRODUCTION TO HPSG 45

3.1.2.4 Head-Driven Approach

Finally, the 'H’ in HPSG stems from the central role of theadsas information-
bearingnuclei of phrases that transport features and its values over gairpso-
jections (X' theory; Jackendoff 1977). Thpercolationof feature information in
the heads is forced by théead Feature Principlehat informally can be expressed
as ‘if a feature structure has a head (i.e., is of thpaded-structurer inherits
from it), then its head features are shared with the headriesbf the head daugh-
ter’ (a feature structure may bear other features than thd features that are not
percolated by this mechanism).

headed-structure
HEAD

HEAD-DTR [

headed-structur
HEAD

Examples are the case and number features of the head ndélretioane also
head features of the NP containing the noun by virtue of thedHeeature Princi-
ple. By inheritance, the Subcategorization Principlagad-argument-structura
subtype otheaded-structurgis constrained by the Head Feature Principle (of type
headed-structurg as shown in Figure 3.7.

[head-argument-structure

HEAD

SUBCAT
head-argument-structure

HEAD-DTR HEAD

SUBCAT append[2}, ([3))

| NON-HEAD-DTRS ([3))

Figure 3.7: Subcategorization Principle

During parsing, the percolation of the head features thrtougphrase struc-
tures and saturation of the subcategorization list of thenmerb are two of the
key operations that are performed only by means of typedaatidin.

They not only determine the syntactic structure of the serebut at the same
time also build the key semantic representation part of tiadyais (details will be
presented in the next section), and both are driven by themot heads.

There are many more (and more complex) principles reggjaig. word or-
der, coordination, semantics construction, quantificegiiwwhich we will not dis-
cuss here, cf. Pollard and Sag (1994); Muller (2007) foaitket

One should keep in mind that the feature structures thatultedoring pars-
ing typically get sizes of thousands of nodes because utidficés a monotonic

46 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

operation, and already the initial lexicon entries haveswerable size. A naive
implementation without optimization would render any mtran-toy-size HPSG
grammar intractable (as were the first approaches). Howéwerugh sophisti-
cated techniques, it can be avoided that efficiency posescgal barrier (except
for pathological cases), cf. Section 3.2.2.

3.1.2.5 Output: Semantic Representation

By way of the principles, an HPSG parser checks validityigfability) of the
composed structures (with the lexical entities as leavAsthe same time, con-
struction of the semantic representation as ‘output’ of sgxh sentence is per-
formed uniformly by inheritance/unification of rules, s@g@rinciples for seman-
tics construction and lexicon entries by the commutativenotonic and associa-
tive unification operation of the declaratively specifigtliistic knowledge.

The resulting semantic representation is stored in desticédatures of the
parse result and can be extracted from there (Pollard and198g). Depending
on the required information, also morpho-syntactic fezgue.g. gender, number,
tense) could be retrieved from the parse result by an apiolica

In principle, HPSG is open to produce different kinds of setita representa-
tions. Situation Semantics (Barwise and Perry, 1983) has bdginally proposed
in Pollard and Sag (1987). MRS (Minimal Recursion Seman@zpestaket al.
2005a) is a more recent and probably better suited and el@bapproach. The
key idea is to provide a language similar to predicate cak;ubut with a syntacti-
cally flat structure. Thelementary predicatgselations with arguments) are never
embedded within one another.

However, there is treatment of scope which most other flatas¢ios repre-
sentations do not provide. Scope is modeled by handle Vasiabnd constraints
over the handles can be used to select specific scopes ceddtaleave the scope
underspecified, thus providing a compact representatianulfiple semantic in-
terpretations.

Here is an example of a MRS representation of the sentence

Every dog chases some white cat.

hy : every(x, hs, ha), hs : dog(x), hy : white(y), h7 : cat(y), hs : soméy, hz, hg),
hs : chaséx,y)

Two alternative scopes could e.g. selected by settingrdighe hs andhg = hy
or ha = hg andhg = h;.

Such analysis is computed within typed feature structutemgd parsing, i.e.,
via unification, and can be retrieved from the parse result.

The advantage of the flat MRS structure is that it (i) can bestanted com-
positionally during (HPSG) syntax analysis, (ii) can beaaed in typed feature
structures, (iii) is powerful enough to represent lingaisbeaning, (iv) allows for

3.2. PERFORMANCE PROPERTIES OF HPSG a7

[TEXT Every dog chases some white cat 1
ToP hl
_everyq [_chasev T
[prop.quesm.rel | |LBL h8 | [_dogn LBL hl5
LBL hi ARGO x9 | |LBL h13| | ARGO €2tense=present
| ARGO h5 RSTR h10| | ARGO X9 | |ARGL X977
BODY h12 ARG2 X167'%°
RELS ~ L num=sg
_someq .
LeL hil8 LVE\:[M&E 29 _catn
ARGO x16 LBL h10001
ARGO e24tense=u
RSTR h19 ARGO x16
ARG1 x16
| BODY h21
HcoNs {h5geqh15h10gegh13 h19gegh22}
| ING {h22ing h1000%} |

Figure 3.8: An RMRS representation generated by HPSG parsin

underspecification, (v) can be used for both parsing andrggoe (Copestaket
al., 2005a, 1995b).

A robust variant of MRS called RMRS (robust MRS; Copestakg3}@s better
suited to support partial semantic analyses, e.g. prodogesthallow parsers. An
AVM-like, 'graphically’ represented example with two diidy differing readings
for the sentence is depicted in Figure 3.8. We will return MFS in Chapter 9.

3.2 Performance Properties of HPSG

3.2.1 Parsing Complexity

Although the HPSG formalism with typed feature structuned gariables (coref-
erences) is in general equivalent to a Turing machine (ck discussion and
references in Section 3.1.1), this is only of theoreticghBicance. A grammar
that meets the so called offline parseability constrainip{&ia and Bresnan, 1982;
Pereira and Warren, 1983; Dymetman, 1994), avoiding empudychain produc-
tions in the context-free backbone, e.g. can be guarantetedminate.

Moreover, there is much evidence that existing grammasgraztombinations
might be in the class of mildly context-sensitive grammacshiet al,, 1991), and
thus be parsable in polynomial time as is the case for oth@eoawporary grammar
formalisms.

48 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

3.2.2 Implementations and Efficiency

During the last decade, several implementations of HPSi@dlsms, parsers and
grammars have been published, ranging from very lean (tlweralow) engines
directly relying on Prolog SLD resolution up to very compeakive grammar de-
velopment environments such as LKB (Copestake, 2002) orEPAGzkoreitet
al., 1994) (both developed in LISP), with compactly encodecetiyerarchies,
quite fast parsers, and powerful analysis and inspectiois.to

A performance boost has been achieved through a collaberagiproach of
measuring performance and incrementally adding sophtsticefficiency-impro-
ving methods such as quick check, packing and unfilling (@epwl Callmeier,
2000).

The framework that resulted from this international effarhsists of the LKB
system for grammar development and debugging, the effi€lgfit HPSG parser
(Callmeier, 2000, 2001) implemented in C++ (and pure ANSbOfiemory man-
agement), TSDB (Oepen, 2001) and a couple of reference gaasnfimcluding
TSDB test suites and data), the English Resource Grammas (ERckinger
2002) being the most prominent, elaborate and best-tesied o

This ensemble currently presents itself as the most corepsiie and at the
same time most efficient HPSG implementation framework. yWainthe afore-
mentioned efficiency techniques have been implementedrfitise LISP parser an
then ported to the more efficient C implementation within PET

Parsing sentences is now possible within fractions of stcdor typical aver-
age sentence lengths, and within seconds for longer s&stedepending on the
language, grammar and various parser option settings.efhaimes also include
parse ranking, i.e., ordering multiple parses for a sest@ecording to a statistical
model trained on a corpus.

3.2.3 Robustness

While the efficiency problem of HPSG parsing seems to be dolvlat remains is
arobustness problepand this is mainly what this thesis tries to tackle. In tlas-s
tion, we motivate the robustness problem and related probknd briefly present
an outlook to the envisaged solution.

As explained on page 43, lexicon entries play a crucial rol#RSG grammars.
Although most of the information necessary to form the lerientry for a specific
word comes through inheritance, for every word that occorthe sentence to
parse, an appropriate lexicon entry has to be found. Otkepthe sentence cannot
be analyzed, i.e. no spanning chart item for larger strastsuch as phrases or the
whole sentence can be computed, nor can a compositionahses@presentation
be built of the entire sentence.

In other words, it is not possible to omit words from the infut which no
lexicon item can be found, because no analysis would belgesir if possible,
it would probably be wrong). This fact, being rooted in thapiple of how deep

3.2. PERFORMANCE PROPERTIES OF HPSG 49

processing works in general, has an important impact orstabas of HPSG pars-
ing. Every attempt to circumvent the problem by adding 'sthess’ rules to the
grammar that allow parsing incomplete input is penalizeq®)yincreased ambi-
guity (2) the unwanted effect of admitting ungrammaticglutas well.

To give an example with only a hand-crafted lexicon in ther@ar HPSG
with 35000 entries (approx. 350000 full forms) of which 280@here semi-
automatically generated, approx. 71 percent of the seatena newspaper text
fail just because of missing lexicon information (Crysmatial., 2002).

Hence the solution is to have generic lexicon entries aretfates to other
NLP components that can contribute information that is ss&ey to fill the gaps
in generic entries.

Solutions have been presented that address specific iastah¢tiPSG gram-
mars and parsers and specific shallow systems, e.g. for AlddPaaGerman
HPSG-like Grammar (Declerck and Maas, 1997), for a SpanBB® Grammar
(Marimon, 2002a), Grover and Lascarides (2001) for an EhghPSG and a PoS
tagger, and Kaplaat al. (2002) for the Xerox PARC LFG parser.

The focus of this thesis is to lift this to a more general levad provide archi-
tectures that support integration in a more principled way.

Such architectures will not only address the robustnedsigamg but also could
help to (1) reduce ambiguity by selecting readings on léxiaaeven phrase or
topological sentence structure level with the help of exieNLP components
(divide and conquer) (2) provide a means to correct or repagrammatical or
malformed input (e.g. email text, or speech analyzed by agdpeecognition sys-
tem), (3) extend the initial sequential approach (shallopcessing first as input to
deep processing) to more flexible ones, permitting also jparsing integration and
combination of parsed sentence fragments in case no fidémanuld be computed.

Furthermore, not just lexical information could be incaated, but also re-
sults from other NLP components beyond the lexical levehsas chunk parsers,
topological parserstc

50

CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

Chapter 4

Shallow Processing and
Linguistic Markup

In this chapter, we will introduce the most commonly usedgsasf shallow nat-
ural language processing and exemplify shallow repregsentformalisms. We
will introduce XML and the relation to shallow markup anddiristically anno-
tated corpora and give a motivation for the adoption of comignavailable XML
standards and implementations.

Then, we will show how linguistic representations can beodied within XML
and what the advantages are for processing, communicgtastgbility, interna-
tionalization, and storage in databases or tree banks.

We will address general representation problems arisirgpvihguistic data is
encoded in XML, e.g. (a) encoding of ambiguities/multiggadings, (b) encoding
of structure sharing and references, (c) overlapping aswbdtinuity,etcand show
how these can be solved usistndoff annotation

4.1 Shallow Natural Language Processing

Shallow natural language processing has emerged as anadilker paradigm to
traditional deep linguistic processing in the eighties aiméties. The main moti-
vation was lack of robustness and efficiency of deep NLP implgtations at that
time that made it impossible to use them for real world texts.

In contrast to deep processing, shallow processing is mrarel dominated
rather by specialized, application-oriented tasks thalngyistic theories. Mean-
while, there is broad common sense on what the differenstaskpplications of
shallow processing are. Moreover, standardized evahmtaist for many of the
different shallow tasks such as CoNLL (Tjong Kim Sang andtadz, 2000) for
chunking or MUC (Grishman and Sundheim, 1996) for namedyergcognition.

IHowever, according to Joshi and Hopely (1996), a first fisttete parser has been developed as
early as 1958.

51

52 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

The term shallow mainly relates to the resulting analyséschvcould be char-
acterized as simpler, less complex structured, partial;exthaustive compared to
what a deep parser would (ideally) provide as result.

However, the methods employed for computation can be giffereht. They
comprise machine learning (or statistical) methods, baleed (e.g. finite-state,
context-free), and combinations of these.

4.1.1 Tokenization

The simplest step in shallow processing is tokenizatioms#paration of words and
other symbols, e.g. punctuation. Tokenization is basicalpreprocessing step
to ease subsequent processing such as morphologic areysiexicon lookup.
Example:

"What should | do?”, asked Fred.

could be tokenized into

["]t, [What, [should, [1], [do]s; [?]t ["]t,] [askedy, [Fred i, [t

Additionally, a class of token such as punctuation symbapitalized, lower-
case, uppercase word is often assigned to each token. Degeandthe tokenizer,
this can be done very fine grained (even with alternativeingadwhich already
introduce ambiguity in this early analysis step) or rathearse grained with only
a few or no distinct token classes.

Tokenization may also include some simple kind of norméiliza e.g.

we'll — we will
4.5% — 4.5 percent
8pm— 20:00

7" — 7 inches

Typically, tokenization is defined by finite-state rulegg(en Grefenstette and
Tapanainen 1994). For Japanese or other Asian languadesization also in-
cludes the task of word boundary recognition which is onlggildle with lexicon
lookup —in contrast to languages based on Latin characteesarspaces and punc-
tuation separate words.

In many NLP systems, tokenizers are closely integrated thighother lin-
guistic processing components which in turn make assumptio what the input
tokenization is and how token classes are defined. Hendetatif interpretations
of how a token is defined may exist if these NLP systems are owdb

4.1. SHALLOW NATURAL LANGUAGE PROCESSING 53

4.1.2 Finite-State Morphology and Compound Recognition

Morphology describes the relation between the surface Sasfrwords and the
lexical form which consists of a lemma and the grammaticaicdption. This
can easily be modeled, at least for Indo-European languagtsfinite-state au-
tomata (Koskenniemi, 1983). The idiosyncratic informatis stored in a lexicon
(database of lemmata and hints for morphologic regulajitie

The following list enumerates the morphological readingthe German word
‘Ranke’ which could be a noun (N), adjective (A) or verb (V3, analyzed by the
SPPC system (Piskorski and Neumann, 2000).

pos="N"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="A"
pos="V"
pos="V"
pos="V"

gender="M"
gender="F"
gender="F"
gender="M"
gender="F"
gender="N"
gender="M"
gender="F"
gender="N"
gender="F"
gender="F"
gender="M"
gender="F"
gender="N"
gender="F"
gender="N"

case="DAT"
case="NOM"
case="AKK"
case="NOM"
case="NOM"
case="NOM"
case="AKK"
case="AKK"
case="AKK"
case="NOM"
case="AKK"
case="NOM"
case="NOM"
case="NOM"
case="AKK"
case="AKK"

number="SG"
number="SG"
number="SG"
number="PL"
number="PL"
number="PL"
number="PL"
number="PL"
number="PL"
number="SG"
number="SG"
number="SG"
number="SG"
number="SG"
number="SG"
number="SG"

comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"
comp="P"

tense="PRES" person="1" number="SG"
tense="SUBJUNCT-1" person="1" number="SG"
tense="SUBJUNCT-1" person="3" number="SG"

det="NONE"
det="NONE"
det="NONE"
det="NONE"
det="NONE"
det="NONE"
det="NONE"
det="NONE"
det="INDEF"
det="INDEF"
det="DEF"
det="DEF"
det="DEF"
det="DEF"
det="DEF"

pos="V" form="IMP" number="SG"

For many languages such as German, Dutch and Finnish, whieh rather
free word formation of nouns by compounding, an additiori@p of compound
segmentation is necessary. This is in many cases a regolzeg® and hence can
also be handled by finite-state rules. Exceptions such asdieetion of the ap-
propriateFugenmorphenfor a compound noun can be encoded in the lexicon, e.g.
Kindstaufevs. Kinderstube

4.1.3 Part-of-Speech Tagging

A further step towards recognizing sentence structurerisgiapeech (PoS) tag-
ging, where the class of a word (noun, verb, adjective, [B#ipa etg) is computed
for each token in the input text, and attached as a 'tag’. dretkample above, PoS
tagging would compute which of adjective (A), noun (N) orlv€Y) is the most
likely in the context of a sentence); this can help to absfiram specific lexicon
entries e.g. for subsequent parsing.

54 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

There are rule-based (e.g. Brill 1992) and statistical @g@gines (e.g. Brill and
Marcus 1992) to this task, where the best statistical taggetperform rule-based
taggers generally on unseen text, with per-token accurbeyonnd 96 percent.
The statistical approaches assign probability values medwn its context, e.g.
through Hidden Markov Models (HMM) obtained through traigitrigrams on
manually annotated text data.

The following sentence e.qg. is correctly analyzed (withaitaility 1.0 for each
tag) by the trigram-based TnT system (Brants, 2000) thabkas trained on the
NEGRA corpus for German (Sket al., 1998) and e.g. the Penn Tree Bank for
English.

Dieart Kriminalpolize'NN verfolgte,,:m diearT Bankiubery bisappr
Zurnpprarmhiederbindischeppia Grenze.

However, it is generally possible to have several possésdeings for the class
of a word, and statistics-based systems can rank the pesséudiings by means of
their trained model.

Another big advantage mainly of statistical part-of-spetaggers is that they
can be used to guess word classes of unknown words by ‘it on the
basis of surrounding tags, provided the word classes obsnding words could
be determined reliably.

4.1.4 Chunking

Chunking is another useful preprocessing and abstradipfer parsing. Chunks
are non-overlapping groups of words forming small syntagtiits (phrases) such
as noun phrases consisting of an optional determineryeliicby an optional ad-
jective, followed by a houn. Text chunking divides the infaxt into such phrases
and assigns a type such as NP for noun phrase, VP for verbepiBsfor prepo-

sitional phrase in the following example, where the chunidbrs are indicated by
square brackets:

[Die Kriminalpolizejnp [verfolgtéyp [die Bankaubetnp
[bis zur niedef&ndischen Grenzgp.

Chunking is sometimes also called chunk parsing, partiaipg, or light pars-
ing (Abney, 1991). There are different definitions in liter@ of what a chunk ex-
actly is. Sometimes, chunks are required to be non-re&yrsw., no other chunk
may be embedded within a chunk, other definitions admit thén¢e importing
e.g. inherent attachment ambiguity).

The CoNLL-2000 shared task for chunking (Tjong Kim Sang andtholz,
2000), e.g. has found out precision and recall values ainar@3 % for the best
systems on the commonly defined task based on training ainditisson the Penn
Tree Bank (English Wall Street Journal articles). Techegyfor chunking are
e.g. cascaded HMMs (Skut and Brants, 1998), Support Vectehiies (Kudo

4.1. SHALLOW NATURAL LANGUAGE PROCESSING 55

ROOT

CL V2

e

VF_TOPIC LK_VFIN MF
CHUNK_NP VVFIN CHUNK_NP CHUNK_PP
W_ART W_NN W W ART W.NN

| 1 | | W_APPRW_APPRART W_ADJA W_NN

Die Kriminalpolizei verfolgte die Bankrauber bis zur niederlandischen Grenze

Figure 4.1: Topological tree as result of shallow parsing

and Matsumoto, 2000), Cascaded Finite State Parsing (A9&%; Grefenstette,
1996) or combinations thereof.

4.1.5 Shallow Parsing

Shallow parsing is an analysis of a sentence which identtiesonstituents (verbs,
noun phrasestc), but does not specify their internal structure, nor thelie in the
whole sentence. However, in contrast to chunking, the ftionaf a sentence-
spanning structure, or substructure for the topologicédisi@n German Vorfeld,
Mittelfeld, Nachfeld) of a sentence is tried ('topologigadrsing’).

A popular way of implementing such parsers is by probafilisbntext-free
grammars (PCFG) which can be trained on annotated corpatamifl, 2000;
Dubey and Keller, 2003). Shallow parsing can thus be corsilan extension
of chunking. An example is shown in Figure 4.1.

4.1.6 Named Entity Recognition

Named entity recognition (NER) is the identification of peomames, product or
organization names, location names such as cities andr@aiim text and the
specification of the type of named entity. More or less firgrgrd variations of
the definition of what a named entity (NE) type is exist inrkiteire. A very sim-
ple classification is the one of the Message Understandinge@ances (MUC,;
Grishman and Sundheim 1996). Only basic types such as DATEZATION,
PERSON, ORGANIZATION exist:

Five unsuccessful attempts were made by a single team |eldabmy [
NewmanﬂaERSONof [SCOttSdalaloCAﬂ()N, [AI’iZ.] LocATIoN IN his
[EarthwindslorganizaTiondalloon before [Newmapkrsonabandoned
his efforts [one year ag@hre.

56 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

A modern, finer-grained classification is that of ACE (Autd@im&ontent Ex-
tractior?). Depending on the application, even finer-grained type®@f NEs
may be desirable. An example is normalization of time exgioes, where slots
for year, month, day, day of week, hour and minute could bedfidr inferred from
context or left unspecified. ThHeProUTsystem that will be described in Chapter 7
goes beyond typical NE recognition systems in that it alléev<iner-grained and
more domain-specific structured output.

4.1.7 Summary

We have briefly introduced different types and stages of@hgrocessing. Many
implementations and systems exist following the descriteadigms. Moreover,
there are also implementations that combine differentgssing stages within one
system. An example is the SPPC system (Piskorski and Neuyr@@ff) for Ger-
man (cf. Figure 4.4 for a sample output).

The advantage is increased efficiency and optimally conabamal interleaved
shallow processing stages. However, it is hard to exchangeparate stages with
other components, so the price for efficiency here is infiéib

RASP (Briscoe and Carroll, 2002) shares some similariges| focuses on
English. Other systems such as GATE (Cunningledal., 2002) provide a general
architecture for combining various shallow systems. Weé eidcuss GATE and
related systems and architectures in Chapter 6.

Simple language technology-based applications can bé dwitop of such
shallow processing systems, the outstanding being prplmabtphological anal-
ysis and named entity recognition. In contrast to deep ahtanguage parsing,
shallow processing is typically non-exhaustive and plarti&ords or groups of
words for which no information exists, will remain unanadgz Depending on the
underlying methods, probabilities may be assigned to apalyA threshold can be
used to filter out improbable readings if more than one haea bemputed.

However, there is no semantic analysis available directynfsuch shallow
systems. In the best case, some kind of underspecifiedalgethantic description
can be derived from shallow analyses. Additional knowledge computation is
necessary in order to obtain semantic analyses such asgedirgument structure
as deep processing can deliver.

The idea of combining several shallow systems in such a watyetdeep anal-
ysis can be computed seems appealing. However, attempessoddr only reach
very limited single aspects of deep analyses, and requivea hdditional work.
An example of such a single (syntactic) deep analysis asp@lgtection of long
distance dependencies, described in Dienes and Dubey)(2003

2http: //projects.ldc.upenn.edu/ace/

4.2. SHALLOW PROCESSING AND XML MARKUP 57

4.2 The Relation between Shallow Processing and XML
Representations

The partial character of shallow analysis immediately aatlirally leads to the
idea of storing shallow linguistic analysis amrkupof the analyzed text. In this
section, we discuss the relation between shallow proogssid XML represen-
tations. We start with a short introduction to and historyX®fiL and SGML.
We then present some standards for linguistic markup amdisssproblems of the
representation languages, and how they can be solved whgMXML framework.

421 SGML

The idea of augmenting electronically stored text by madaies back to William
Tunnicliffe (1967, ‘generic coding®)and ideas of the book designer Stanley Rice
(‘editorial structure tags’; also in the late 60ies). Therevmarkupitself goes
back to the earlier, pre-electronic technique of adding ualiy tags to book or
newspaper manuscripts as hints for typesetters (e.g. fnganstructions).

The ‘generic markup’ evolved into the Generalized Markumduzage (the
acronym GML also formed by the initial letters of the maintaarts names Gold-
farb, Moshier and Lorie) at IBM in 1969. Finally, Goldfarbalo GML with some
extensions to the 1ISO standard 8879 in 1986 under the namelLSGtdndard
Generalized Markup Language).

GML and SGML have been designed for the formal descriptiostafctural
constraints on text documents, mainly for interoperabdit document-processing
software (e.g. typesetting) and for document quality asste in large companies
and institutions (legal, government, military) that is chitsed in grammars called
DTDs (document type descriptions).

A DTD may e.g. enforce that a document of type book has at eastauthor,
a title and several chapters, a chapter may or may not beedivitto numbered
sections. Complex conditions can be added that e.g. puitathmanuals to obey
very detailed structural rules.

Because of the complexity of the standard, implementatf@GML process-
ing and checking software was a hard task, and SGML becamecassistory at
best in large companies and institutions, but not as a bycacttepted standard
in the originally envisaged wide range of daily use. Moreptee vision in the
foreword of Yuri Rubinsky in the SGML Handbook (Goldfarb,9D9 is still what
it was in 1990 — a vision.

‘The next five years will see a revolution in computing. Usgtkno
longer have to work at every computer task as if they had nd nee

SNo publication available; 'Many credit the start of the géaeoding movement to a presen-
tation made by William Tunnicliffe, chairman of the Grapl@ommunications Association (GCA)
Composition Committee, during a meeting at the Canadiareorent Printing Office in September
1967: his topic — the separation of information content afudnents from their format.” (Goldfarb,
1990).

58 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

ability to share data with all their other computer tasksgywill not
need to act as if the computer is simply a replacement for pajoe
will they have to appease computers or software programssbem
to be at war with one another.

(Not only) SGML failed in fulfilling this prediction, althaygh some advances
have been made into the visionary direction, and the maitribation is (still) that
SGML defines a text document format for exchange and pensistierage different
from legacy data and vendor- and platform-specific word gseor formats that
could and can be used over decades.

4.2.2 XML

The success of the World Wide Web, based on HTTP, the Hypeifarsfer Pro-
tocol, and HTML, the HyperText Markup Language (which cardbscribed by a
small SGML DTD) led to the development of XML, the eXtensiblarkup Lan-
guage. HTML had been initially developed in 1992 as a mixforedescribing
simple hypertext document structure (in the spirit of SGMLlg. by tags for ti-
tle, headings, enumerations) and formatting (bold face, tiireaks, font name and
size). HTML became a standard (recommendation’) of thelndsunded World
Wide Web Consortium (W3C) in 1994,

Because SGML was too complicated and HTML was not clear ame¢egal
enough for the upcoming need to describe the structure andraes of docu-
ments independently from its layout, XML, which is basigadl restricted, less
complicated subset of SGML, has been made a first W3C workiafj ith 1996,
and a recommendation version 1.0 in 1998.

The original goal of XML, namely separation of structurechismt markup
(XML) and layout markup (HTML, PDFetg is still not achieved in the major-
ity of currently published web pages. However, powerful amature techniques,
software and tools exist today, that will help to make XML aetreplacement for
HTML for content storage and turn the content and layout isgjoam paradigm
into reality in the (near) future.

Some introductory publications on XML claimed that XML wduhssign se-
mantics to documents by means of speaking element anduéttniames. This
notion of XML semantics is, however, not the formal semantitat is addressed
in computer science or computational linguistics. Henlee,rble of XML is for-
mally in the best case that of an abstract syntax or carrietazy and the true
semantics in the mathematical sense has to be defined otlitsid®L framework
and depending on the envisaged application domain. We @éllexamples in the
NLP and Semantic Web domain later.

4.2.3 Well-Formed and Valid Documents
The basic concepts of XML (shared with SGML) are

4.2. SHALLOW PROCESSING AND XML MARKUP 59

o text

¢ elementsalso called tags, forming the 'markup’. Elements enclese or
embed other elements and hence can form a hierarchicatustuan docu-
ments. An element name should semantically describe itentn
<heading> text</heading>

e attributes adding non-structured information (modifiers) to elerseate
specified together with the opening element:
<heading level="2">text</heading>

One of the design goals of XML (and SGML) was to make the syiath
human-readable and machine-readable, and this is proldiythe ending ele-
ment designator repeats the element name redundantly ritrasb to parenthesis
syntax in LISP s-expressions which the XML/SGML designdrgiausly did not
consider human-readable).

To distinguish elements from text, the starting and endiegnent names in
XML must be enclosed in angle brackets, the closing elensantlicated addition-
ally by a single slash after the opening angle bracket. Eralgments (elements
that do not comprise text or other elements) may be abbesl/i@t<element/>.
Angle brackets and three other characters used for markugtbde quoted when
occurring in normal text within an SGML or XML document. Thiements in an
XML document form a tree and hence must be balanced (eleroetiets must not
cross). An XML document must have a single root element.

An XML document iswell-formedif it meets these conditions (plus some other
mentioned in the standard such as Unicode-conforgtdy i.e., if it is syntactically
correct.

An XML document isvalid if it is conforming with a DTD (document type
description) that describes the structure of a class ofdeats in a grammar with
a BNF-like description of element containment, order angktition, as well as
constraints on attributes.

Such DTDs are optional, i.e., the XML recommendation resgi)XML doc-
uments to be well-formed, but they do not necessarily havgetgalid. A DTD
e.g. states which element and attribute names are admitthe idocument class,
which element is the root element, which elements may b@sedlby which other
elements (and possibly the order), which elements are nbamydar optional, and
where text is allowed within elements. Examples for NLRdedl DTDs can be
found in the DTD Appendix (page 285ff).

Instead of a DTD, a schema can be used to validate an XML daaur8ehe-
mata allow for finer-grained validity checking than DTDgj.eby user-definable
data types which do not exist in DTDs. XML Schema (by the WaNlidie Web
Consortium; Thompsost al. 2004) and Relax NG Scherhéby the OASIS con-
sortium) are the most popular schema definition languages.

“http://relaxng.org

60 CHAPTER4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

For the purposes of this thesis, DTDs are preferable, becaesare mainly
interested in the coarse structure of valid documents wdaatbe defined concisely
in DTDs, while XML Schema and Relax NG syntax which themsglaee defined
in XML syntax, are verbose, harder to read and less intuitive

Both SGML and XML provide a means for describing documenicitrre in
form of anabstract syntawia a DTD or schema. However, they do not provide
a semanticof the document schemata or instances unlike the 1ISO/IThdsral
ASN.1 (Abstract Syntax Notation; Dubuisson 2000) thatudels a semantics de-
scription in form of world-wide uniquebject identifierqOIDs).

In XML, semantics is specified only implicitly and informyalby giving ele-
ments and attributes speaking names. The XML-generatidgrenXML-parsing
ends must be guaranteed to interpret the content in the e way. However,
optionality of elements and attributes is a quite elegant twacope with the fact
that it may make sense to have XML-consuming software thigtlooks at those
pieces of XML input that it knows about, and ignores the rést(in turn may be
of interest for another consumer).

One main difference between SGML and XML is that XML makes en-
strictions with respect to the wellformedness conditidratSGML, while SGML
provides a more powerful language for describing validitydocuments. Both
properties together make XML easier to implement than SGMireover, DTDs
are mandatory in SGML, while they are optional in XML.

Further concepts of XML are

e Uniform Resource Identifiers (URIs)JRIs are used to reference external
resources (similar to HTML hyperlink references). Howevan explicit
linking mechanism is not part of the core XML standard, buté$ined in
separate standards such as XPointer (DelRosg&, 2002), XLink (DeRose
et al, 2001) or XInclude (Marsh and Orchard, 2001).

e Namespaces Namespaces are, similar to packages in programming lan-
guages, dictionaries of identifiers that make e.g. elemwitts the same
name, but in different DTDs, distinguishable. The namesparsed in an
XML document are declared at the beginning using a URI ujadefining
the namespace and a local name as reference that can thestlmessprefix
for element names, separated by colon, e.g.
<invoice xmlns:edi=’http://ecommerce.org/schema’>

<edi:price units=’Euro’>32.18</edi:price>
</invoice>

¢ ID/IDREF. ID and IDREF are special attributes for indexing and search
ing elements within an XML document. To this end, ID attrégiimust be
unique within a document. The XPath language we will desdoilow pro-
vides anid() function that can be used to access XML nodes via its unique
ID specified as argument.

4.2. SHALLOW PROCESSING AND XML MARKUP 61

e Entities Entities are abbreviations, e.g. for often repeated chbarase-
guences. Entities can be defined in a separate DTD or at thrnireg of an
XML file.

e Unicode The XML recommendation obliges implementations of XML to
support Unicode (other character sets may be supportednafi§i). This
‘greatest common denominator’ of character encoding esseug. that mul-
tilingual documents can be processed uniformly. A furthemyvimportant
property is character length. Unicode introduces (in @sttto previous en-
coding initiatives) the concept of a code vs. encoding. Bagitode char-
acter has a single, unique code, although there may beatiffencodings or
representation formats with fixed-length (UCS-2, UCS-4Jariable length
(UTF-8, UTF-16) binary representations. The existencenogégual-length
character code is very important for standoff annotatidaremces that are
based on unique text positions and string operations inilimglial applica-
tions.

The above mentioned essentials of XML syntax of course tatestonly a
partial description. The complete XML syntax is describedhe W3C recom-
mendation (Braet al., 1998). The W3C XML recommendation (the official stan-
dardization document) itself makes references to otheeidevel standards such
as Unicode for character encoding of text and elements, Em& RFC 1738 for
the Uniform Resource Identifier (URI) syntax.

4.2.4 Strictly Structured vs. Semi-Structured Documents

The XML paradigm for document markup is similar to that of SGMhe markup
is a means of structuring documents semantically (wheradsdics’ is not for-
mally defined, but informally described by the name of elethemd attributes).
An XML document even need not be based on a text. It may insteadist of
regularly structured data, such as address book entrieevehg. all information
is encoded in elements and attributes, and the marked ustexbpty’.

One of the outstanding advantages of XML is that it is sugdbl bothsemi-
structured documen{sometimes also called markup-structured, loosely-sirad,
or document-centric) containirigeterogeneous datndstructured documen(glso
calledstrictly structuredor data-centricdocuments) containingomogeneous data

Semi-structured documents are those that follow the ab@rdiomed general-
ized markup idea. Natural language text (unstructured fiama the viewpoint of
a computer scientist) is enriched with some additionalkcstining markup, indicat-
ing properties of text portions and maybe hierarchicallycttiring the document’s
content. Typical for the semi-structured paradigm are thiz@ntent (text or ele-
ments are admitted as children of an element), optional ecarsively embedded
elements, and the significance of element order. An examspleiMUC markup
for named entities as shown on page 70.

62 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

The structured data paradigm corresponds to strongly tgtptd such as tables
in relational databases or sorted graphs in object hidesar databases (Abite-
boul, 1997). Recursion, mixed content or optionality is p@&sent or only limited
(in case of optional attributes, default values can be dedlan the DTD). The or-
der of elements may be relevant to some extent. Applicattamgles are storage
of address book entries, stock quotes, flight scheduless satlers or application
data exchange through XML documents.

While strictly structured documents can be mapped to a simgthtional data-
base schema, this is generally not true for semi-structonadkup. Here, mappings
to relational database schemata are possible, but oftal refiuge, complicated
database schemata

Many XML-based standards or quasi-standards, describddTiys or XML
schemata have been defined by various institutions, comgamiconsortia, and
the number is still growing. While SGML was primarily used fext document
markup for publishing and as persistent vendor-indepentdsn storage format,
XML usage has quickly been extended to various applicatibasuse markup as
a kind of abstract syntax and container format for interliappon data exchange.

4.2.5 XML as Carrier Syntax for Computer Languages

Formally, XML can be characterized as a parenthesis granimath, 1967; Mc-
Naughton, 1967), a special form of context-free grammatk wiles of the form
N — cMc whereN andM are non-terminals, and ¢’ the parenthetic beginning
and ending elements. For this reason, XML is often used @aréer syntaxfor
programming and other formal description languages thaidcalso be expressed
in a Backus-Naur form. Examples are

e XSLT, a programming language for transforming XML docunsene will
describe later

e XML schema, an XML-encoded description of XML document fatmsim-
ilar to DTDs

e Apache ant, a scripting language similar to that of the Ulaixe tool
e SVG (Scalable Vector Graphics), a language to describ@wvgcaphics

e INKML, a data format for representing ink entered with arctmic pen or
stylus

e MathML, a specification for describing mathematics as asbfsimachine
to machine communication

5under the assumption that full text storage of XML documéstesot a serious, practical alterna-
tive because queries on the structure and content cannapbersed then without fully parsing the
data for each query.

4.2. SHALLOW PROCESSING AND XML MARKUP 63

e SMIL (Synchronized Multimedia Integration Language)

e OASIS Open Document Format for Office Applications (word qassing
etc.)

4.2.6 XML as Open Data Structure

One of the major differences between SGML and XML is that XMilidation is
optional, i.e., an XML document is processable even if no WFBchema is given
(provided that it is well-formed). Moreover, even with a DD schema, much
freedom is left by admitting optional elements and atteisut

This turns XML into a kind ofopen data structurer lingua francafor ad-hoc
markup and storage or exchange of structured informatioangfkind, such as
software configuration data or document metadata and Btigunarkup, e.g. for
rapid prototyping. However, not defining a DTD or schema gaears the risk of
violating assumptions that are made by XML-processingiso# (e.g. unexpected
element namestc).

4.2.7 Linguistic Markup

Markup (enrichment) of text withinguistic informationcomes close to the original
GML markup idea of adding tags to text and corresponds to ¢h&-structured
document paradigm of XML and SGML. The linguistic term forginually) added
markup isannotation The termlinguistic annotationcovers any descriptive or
analytic notation applied to raw language data.

Corpora are text collections, e.g. from newspapers, or speechdrgtions
etg serving as observation data.

Annotated corpora- text enriched with linguistic markup — play an important
role e.g. for machine learning and evaluation of automateglistic processing.

For machine learning, manually annotated corpora are ostedih a statistical
model (maybe on a initially small corpus). In a bootstragpivay, markup is then
generated on new text through NLP based on the trained model.

This automatically generated markup is then corrected alnor semi-auto-
matically, e.g. by repairing wrong analyses, selectingréfaelings a human would
understand, or adding information for unknown words or toresions. From the
corrected markup, an improved model can then be trainedwhioe process can
be iterated, e.g. to obtain better models for specific teatsgds or sources (cf.
Figure 4.2).

Automatic and manual (or semi-automatic) markup can thusobeeived as
an interactive process and it is therefore only natural @XI€lL as output format
for NLP components. Moreover, it is possible to exchangecamdbine linguistic
markup of NLP components via XML and XML-processing tools re @f the
central ideas underlying this thesis.

64 CHAPTER4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

initial or
improved NLP
model analysis
training
automatically
corrected generated
XML XML output

annotation

manual correction

Figure 4.2: Training-annotation/correction-NLP anadysycle

4.2.8 Standards for Linguistic Markup

There are a number of standards and proposals for lingaistiotation, some go-
ing even back to the time when XML has not yet been invented.wileoriefly
discuss some of them . Although processing of annotatedtaip not in the fo-
cus of our thesis, standards and especially XML plays an itapbrole because
NLP may have corpora at both ends — NLP components may botheiseas input
(e.g. for training statistical models) and produce marksipatput, e.g. automati-
cally annotated corpora. Thus, corpus annotation framesvaind NLP-generated
markup are bound up with each other.

However, because of the limitations of NLP components, thekap of a spe-
cific NLP component typically is only a subset of a corpus aation scheme
which often is designed to cover a broader variety of linftighenomena. Gen-
erally speaking, the same criteria that are crucial for gerannotation also are
important for NLP component output. Ide and Romary (2008) eame the con-
sistency of tag set and encoding schema, recoverabilitpuotce text, validatabil-
ity, processability, extensibility, compactness and adsldy.

4.2.8.1 Text Encoding Initiative (TEI)

In the early days of linguistic corpus annotation, SGML wasppesed and used
for corpus markup. Already in 1987, the separation of text lagout for content
markup, and the independence of systems, hardware, sefspacific data for-
mats has been the motivation for the Text Encoding Inita{VEl), a consortium

4.2. SHALLOW PROCESSING AND XML MARKUP 65

of institutions and projects related to history, literatulinguistics, philologyetg
to setup a standard for content-oriented document anantati

‘The Text Encoding Initiative (TEI) Guidelines are an imtational
and interdisciplinary standard that facilitates librasemuseums, pub-
lishers, and individual scholars represent a variety adi#try and lin-
guistic texts for online research, teaching, and preseovet
(Sperberg-McQueen and Burnard, 1994)

Text structures (DTDs) have been defined for e.g. prosegydrama, speech
transcription, dictionary, terminology, but also for luigtic information such as
part-of-speech tags or inflection, and even feature stregtuThe proposed tag
sets are very comprehensive, and organized in modular DTBs first series of
guidelines was published in 1990 as TEI P1. In 1998, TEI| hapted XML as
additional markup syntax.

Elements for linguistic markup are e.g.

e <s> for sentence-like division of a text

e <cl> for grammatical clause

e <phr> for grammatical phrase

e <w> for grammatical (not necessarily orthographic) words
e <m> for grammatical morpheme

e <c> for character

An XML example taken from the TEI P5 Guidelines (SperbergcMeen and
Burnard, 1994)

<p>
<s>
<cl type="finite declarative" function="independent">
<phr type="NP" function="subject">Nineteen fifty-four,
<cl type="finite relative declarative" function="appositive">
when <phr type="NP" function="subject">I</phr>
<phr type="VP" function="predicate'">was eighteen years old</phr>
</cl>
</phr>,
<phr type="VP" function="predicate">
<phr type="V" function="main verb">is held</phr>
<phr type="NP" function="complement">
<cl type="nonfinite" function="predicate nom.">
<phr type="V" function="copula">to be</phr>
<phr type="NP" function="predicate nom.">a crucial turning point
<phr type="PP" function="postmodifier">in
<phr type="NP" function="prep.obj.">the history
<phr type="PP" function="postmodifier">

66 CHAPTER4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

of the Afro-American</phr>
</phr>
</phr>
<phr type="PP" function="appositive postmodifier">for
<phr type="NP" function="prep.obj.">the U.S.A.
<phr type="PP" function="postmodifier">as a whole</phr>
</phr>
</phr>
</phr>
<phr type="NP" function="appositive pred.nom.">the year
<cl type="finite relative" function="adjectival">
<phr type="NP" function="subject">segregation</phr>
<phr type="VP" function="predicate">
<phr type="V" function="main verb">was outlawed</phr>
<phr type="PP" function="postmodifier">
by the U.S. Supreme Court</phr>
</phr>
</cl>
</phr>
</cl>
</phr>
</phr>.
</cl>
</s>
</p>

Although TEI is frequently referenced by other approached annotation
schemata and is one of the oldest annotation standardizafforts, many cor-
pora are not using the TEI schema, but other, simpler ad-hogtation schemata
designed for the actual, specific needs. The main reasoati$ i suffers from the
SGML sickness that in aiming at describing any phenomendrf@eseeing every
case and feature, the schema becomes complex and confefsikigtf 1998).

At the same time, TEI leaves room for more specific extensjthresefore the
term ‘guidelines’), and is organized in a modular way. Hoarethere are also as-
pects that TEI didn’t cover at all, such as semantic anratatind that are not easy
to make conforming to the guidelines. Although it is possitdl add extensions to
a TEl schema, people often end up in defining their own, TE&pendent schema,
taking TEI as a start point. In Chapter 5, we will argue wh tthbes not do much
harm from a technical perspective. However, the questioraines about the value
of a standard that is too general on the one side, and tooilitieon the other side.

4.2.8.2 CESand XCES

CES (Corpus Encoding Standard; Ide 1998) has been develspaa application
of TEI (firstly in SGML) and as part of the EAGLES (Expert Adeiy Group on
Language Engineering Standards) guidelines. As such, &BSal much stronger
focus on (linguistic) corpus annotation than TEI did. CE$e#s TEI specifi-

4.2. SHALLOW PROCESSING AND XML MARKUP 67

cations and makes them more specific where appropriate, ratidecother hand
limits the TEI scheme to include only that subset of tagsithetlevant for corpus
annotation.

Like TEI, CES has migrated to XML under the name XCES @tlal., 2000a;
Ide and Romary, 2001, 2002). The approach is in a clear wagadam-oriented,
and the basic concepts have also influenced the ISO stapaiiodi efforts for lin-
guistic annotation we will describe in the next section. »&defines an abstract
Structural Skeletorfior syntactic structures that are common to all (in the cerpu
world) possible annotation schemes, adbta Category Registrthat defines gen-
eral categories such as phrase types in a hierarchy using@D&ection 4.2.9).

Both the Structural Skeleton and the Data Categories atanitisted for a spe-
cific annotation scheme (called AML, the Annotation Markugnguage), where
e.g. the noun phrase category is defined to be an attribute walthe name of an
element as well as the rest of syntactic structure. This AMirasponds then to
and can be written as an XML DTD.

Data Category
Structural Skeleto Registry Universal Resources
Abstract Markup Data Category Concrete Resources
Language Specification

'

Concrete XML
Encoding

Figure 4.3: XCES annotation framework (simplified)

What makes XCES interesting for our needs in deep-shall@gegiation is
the abstract top-down view to annotation, the concretézag@n, and the clear
adoption of XML transformation to realize the top-down aggwh of XCES in
implementations, including concepts such as stand-ofbtation and linking of
annotation. These points will be discussed later.

4.28.3 ISO

A recent development is the ISO standardization of linguistarkup for compu-
tational linguistics, computerized lexicography, andglaage engineering, defin-
ing ‘standards by specifying principles and methods for cregtcoding, process-
ing and managing language resources, such as written carpexical corpora,
speech corpora, dictionary compiling and classificatiohesnes. These standards

68 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

will also cover the information produced by natural langeagrocessing compo-
nents in these various domaifs.

This claim makes 1SO fit into our goal of using XMlfor NLP component
integration and it turns out that the ISO working group ismhacomplementing,
and partly overlapping existing TEI approaches. TEI, esgnat specific enough
on morphology and although feature structure markup is éfioy TEI, ISO tries
to cover it in more principled and elaborated way (le¢@l., 2004).

Moreover, ISO also aims at putting more focus on multilingumaultimedia
and multimodal aspects than TEI did so far. However, thedstatization process
by the joint ISO/TEI working group (TC 37 SC 4) is still ongginand only one
(not so near) day could become the ISO DIS 24610 standardth&néocus of
ISO will also consist in standardization of non-textuablimstic resources such as
lexica which are also less covered by TEI.

4.2.9 Further XML Standards Related to Linguistic Processing

Besides morphosyntactic markup of written text, theretexieady several es-
tablished XML standards for lexicon and terminology exa@nspeech and the
Semantic Web. All of them are closely related to linguistiarkup and are worth a
short discussion here, because they play important roliésguistic processing —
and XML being their common basis, makes it easy to integtamtin the frame-
work we envisage. However, we will discuss them only briefgduse they are
not directly used and necessary for the deep-shallow iatiegr scenarios we will
focus on in this thesis.

The relation of speech, lexicon and terminology to lingaiptocessing should
be obvious, and the Semantic Web will without doubt play apartant role as
application and aim of natural language processing in tiae fudure, as will also
be discussed in Section 9.7 and 9.10.2.

Semantic Web Being promoted by the World Wide Web Consortium, the fol-
lowing knowledge representation languages for the Sem¥db are all based on
XML syntax (examples will be shown in Section 9.7 and 9.10.2)

e RDF (Resource Description Framework; Klyne and Carroll80@& sim-
ple language to describe objects (e.g. web resources) m édrsubject-
predicate-object triples ('statements’). As already flyidiscussed in Sec-
tion 4.2.2, the fact that RDF uses XML syntax does not impt enformal
semantics is defined. This is only defined in the followingrfeavorks that
themselves build on RDF.

8from http://www.tc37sc4.org
"The 1SO working group has made a clear commitment to buildatath around W3C standards’
such as XML, RDF, OWL, SOAP.

4.3. XML-BASED LINGUISTIC ANNOTATION 69

e RDF Schema (or RDF Vocabulary Description Language; Beigckind Guha
2004) is a language to describe vocabularies, similar tesein object-
oriented programming languages, and uses RDF itself asspataX,

e OWL (Web Ontology Language; Bechhofetral. 2004) with its sub-langua-
ges OWL-light, OWL-DL and OWL-full is designed to define olugies in
a description logic-like manner (Baadet al., 2003). OWL uses RDF as
base syntax in the same way RDF Schema does.

Speech

e SSML (Speech Synthesis Markup Langu3deas been designed to model
and assist the generation of synthetic speech in applisaticAspects of
speech generation such as pronunciation, volume, pittehetacan be con-
trolled across different synthesis-capable platformdgs Thn be used as the
speech front-end in NLP-based applications.

¢ \VoiceXML (Voice Extensible Markup Langua@edefines a standard for cre-
ating audio dialogs that feature synthesized speechjzadidiaudio, recogni-
tion of spoken and DTMF key input, recording of spoken inpelgphony,
and mixed-initiative conversations. Dialogs can be matielg. by creating
templates to be filled in by speech dialogs.

Lexicon and terminology interchange

e OLIF (Open Lexicon Interchange Form3tis an XML-based interchange
format for lexical and terminological information (datales), originally de-
veloped in the OTELO project (Open Translation Environnfent. Ocaliza-
tion; Lieskeet al. 2001). It is e.g. used for translation memories in induktria
machine-assisted translation of written documentations.

4.3 Common Properties and Challenges of XML-Based
Linguistic Annotation

Although some popular annotated corpora such as the Peebadik (Marcuset
al., 1994) or the German NEGRA treebank (Slkital, 1998) are in non-XML
format, the trend goes to XML annotation of corpora and evestiag non-XML
treebanks are converted to XML (cf. Teiehal. 2001). As already motivated in
Section 4.2, manual corpus annotation and automatic ammofaroduced by NLP
components are closely related, and therefore both benafit the advantages of
XML encoding such as

8http://w3c. org/TR/speech-synthesis/
®http://w3c.org/TR/voicexm120/
10http ://www.olif .net

70 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

e having a common base syntax that can be seen as a kind ofaetsyn-
tax’ generalizing over low-level syntax for grouping, ejgarenthesestc
separation of entities

e Unicode as comprehensive character encoding framewonbostipg true
multilinguality

e powerful, but — in contrast to SGML — not too complicated doemt struc-
turing grammar syntax

e optional validation of document structure

¢ wide range of existing powerful software tools for parsiediting, visual-
ization, transformation

In analogy to XML corpus annotation, XML output of NLP compmts is
becoming increasingly important and popular. Some recém tbmponents di-
rectly produce an XML corpus format as output. An examplehis tingPipe
implemented by Bob Carpenter (Carpenter, 2005), a statistiamed entity rec-
ognizer that produces XML output compatible with the MUC atation format
(Message Understanding Conference; Grishman and Sundi®8i6):

<?xml version="1.0" encoding="UTF-8"7>
<DOCUMENT>
<p>
<sent>
<ENAMEX id="6" type="PERSON">George W. Bush</ENAMEX> is the
president.
</sent>
<sent>
<ENAMEX id="6" type="MALE_PRONOUN">He</ENAMEX>
is the commander in chief of the
<ENAMEX id="7" type="LOCATION">United States of
America</ENAMEX>.
</sent>
</P>
</DOCUMENT>

Similar for taggers, e.g. the part-of-speech-tagged elasgntence

Dieart Kriminalpolize'NN verfolgte,,:m diearT Bankiaubery bisappr
Zurnpprarmhiederbindischeppia Grenze.

from Section 4.1.3 could be annotated in XML format as
<?xml version=’1.0’7>

<text>
<w id="TO0" pos="ART">Die</w>

4.3. XML-BASED LINGUISTIC ANNOTATION 71

<w id="T1" pos="NN">Kriminalpolizei</w>
<w id="T2" pos="VVFIN">verfolgte</w>
<w id="T3" pos="ART">die</w>
<w id="T4" pos="NN">Bankr&duber</w>
<w id="T5" pos="APPR">bis</w>
<w id="T6" pos="APPRART">zur</w>
<w id="T7" pos="ADJA">niederlindischen</w>
<w id="T8" pos="NN">Grenze</w>
<w id="T9" pos=".">.</w>
</text>

and furthermore enriched with chunk information

<7xml version=’1.0’7>
<text>
<chunk cat="NP">
<w id="TO0" pos="ART">Die</w>
<w 1d="T1" pos="NN">Kriminalpolizei</w>
</chunk>
<w id="T2" pos="VVFIN">verfolgte</w>
<chunk cat="NP">
<w id="T3" pos="ART">die</w>
<w i1d="T4" pos="NN">Bankr&duber</w>
</chunk>
<chunk cat="PP">
<w id="T5" pos="APPR">bis</w>
<w id="T6" pos="APPRART">zur</w>
<w 1d="T7" pos="ADJA">niederl&éndischen</w>
<w id="T8" pos="NN">Grenze</w>

</chunk>
<w id="T9" pos=".">.</w>
</text>

and finally with PCFG parser output for topological sentefielels (cf. Fig-
ure 4.1 on page 55).

<7xml version=’1.0’7>
<text>
<root>
<cl_v2>
<vf_topic>
<chunk cat="NP">
<w id="TO0" pos="ART">Die</w>
<w id="T1" pos="NN">Kriminalpolizei</w>
</chunk>
</vf_topic>
<lk_vfin>
<vvfin>
<w id="T2" pos="VVFIN">verfolgte</w>
</vvfin>

72 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

<lk_vfin>
<mf>
<chunk cat="NP">
<w id="T3" pos="ART">die</w>
<w id="T4" pos="NN">Bankrduber</w>
</chunk>
<chunk cat="PP">
<w id="T5" pos="APPR">bis</w>
<w id="T6" pos="APPRART">zur</w>
<w 1d="T7" pos="ADJA">niederléndischen</w>
<w 1d="T8" pos="NN">Grenze</w>
</chunk>
</mf>
</cl_v2>
<w id="T9" pos=".">.</w>
</root>
</text>

The tagger and chunker markup above has been generatedatiatdiy by
TnT and Chunkie (Skut and Brants, 1998), details in Sectibr29 and 9.5.3.1.

There are two things that can be seen from the examples: €8 th a natural
way of formulating hierarchical (tree) structure by emhbaddelements (chunks
embed words), i.e., the linguistic tree structure is reflddh the XML tree, (2)
markup can be optional. The chunker e.g. does not providekcimformation for
the VP (token T2 in the above sentence). This optional marifi@cts the agnostic
way in which shallow processors typically work: informatimay be partial, and
this can easily be modeled in XML by omitting tags or attrdsit

We present another example in Figure 4.4 for even deepeechéstrarchi-
cal annotation produced by the shallow processor SPPCqiBldkand Neumann,
2000) that also includes text structuring elements sucHaissentence and PARA-
GRAPH for paragraphs, and additional markup of named est{tNE) which in
turn can be part of chunks.

Although this example looks elegant in that it combinesedéht strata of lin-
guistic analysis within a nested structure, this kind ofespntation is either only
possible after full disambiguation of multiple readingsia# different analysis lev-
els (such as morphology, chunks, named entities), or — dsidrcase — if only a
single processing component produces such output thatesnthe tree structure
of the output annotation.

In the general case, if dedicated, independent NLP comp®rierg. a mor-
phology/lexicon component, named entity recognizer, dmohker) are involved in
generating XML output for the same text, the results mayaiondifferent spans
of recognized entities and multiple readings for analySd®e resulting structure
would contain crossing elements, which is not admitted it-foemed XML.

4.3. XML-BASED LINGUISTIC ANNOTATION 73

<SPPC_XML>
<PARAGRAPH>
<S>
<CHUNK type="NP">
<NE type="PERSON" subtype="UNTITLED">
<W tc="first_capital_word" pos="N" stem="george">George
</W>
<W tc="initial_capital_period">W.</W>
<W tc="first_capital_word" pos="N" stem="bush">Bush</W>
</NE>
</CHUNK>
<CHUNK type="VF_AUX_FIN">
<W tc="lowercase_word" pos="AUX" stem="sei'">ist</W>
</CHUNK>
<CHUNK type="NP">
<NE type="POSITION" subtype="POSITION">
<W tc="first_capital_word" pos="N" stem="praesident">
Praesident</w>
</NE>
</CHUNK>
<CHUNK type="NP">
<W tc="lowercase_word" pref="0" pos="PART DEF"
stem="der d-det">der</w>
<NE type="LOCATION" subtype="LOCATION_NP">
<W tc="all_capitals_word">USA</W>
</NE>
</CHUNK>
<W tc="separator_symbol">.</W>
</S>
</PARAGRAPH>
</SPPC_XML>

Figure 4.4: SPPC analysis for 'George W. Bush ist PrasidentUSA

4.3.1 Standoff Annotation

The standard solution for such casestasndoff annotatioffThompson and McK-
elvie, 1997). Instead of preserving the nested structheedifferent analysis strata
are separated into multiple output documents, and linkadviattributes or other
linking mechanisms such as XLink or XPointer, or by linkimglirectly using char-
acter spans (start and end character in original input tex&) common tokeniza-
tion. The standoff documents together form a graph. As atiari, the annotation

74 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

can go to a single output document containing differenticest.

The advantage of standoff annotation is that the resultagayichent structures
remain simple, and that any kind of linking (and also mugtifthking mechanisms)
can be applied. In most cases, the simple ID/IDREF mechasigiported by the
XML standard can be used that allows ID attributes to be dedlas unique iden-
tifiers in DTD (partial declaration of the ID attribute typessufficient, cf. the
example below) that can then be referred to as targets wiREIPD attributes or
a special XPath id function mechanism we will discuss latdre only support a
(validating) XML parser provides for these directed links/alidation for unique-
ness of ID target labels and availability of all IDREF tasyetithin the document
in an efficient way.

Example in DTD (XML Schema provides an analogous facility):

<?xml version="1.0"7>
<!DOCTYPE standoff [
<V'ATTLIST w id ID #REQUIRED >
<!ATTLIST ne parts IDREFS #REQUIRED >
1>
<standoff>
<tokens>
<w id="W0">Gerhard</w>
<w id="W1">Schrdder</w>
<tokens>

<namedentities>
<ne parts="WO Wi"/>
</namedentities>
</standoff>

The ID/IDREF mechanism shown here for intra-document higkalso works
for inter-document linking as long as the document managémdandled by the
XML processor or in XPath (described later) using @#leeument() function.

W3C has defined additional and more elaborated standartisKimg, namely
XPointer (DeRoset al,, 2002) and XLink (DeRoset al,, 2001). While XLink in-
troduces a fixed set of linking types such as bidirectiomdid] link groups, or link
titles and roles and uses URI to identify link targets, XRainvith its sub-language
XPath (Clark and DeRose, 1999) supports pointing to e.g. pbexndescriptions
of sub-document ranges. However, as most XML processingvard does not
support these extensiodsthe simple ID mechanism (or alternatively an ordinary,
dedicated attribute) is used in most cases and systems.

11A later, related term for standoff annotation used in a maneegal context than NLP ison-
current markupor extreme markugDurusau and O’Donnell, 2002). In the computational lirsgics
context, the termeulti-dimensional markypnulti-levelor multi-layered annotatiomave also been
used in recent years, both for standoff markup in multipleusieents and in a single document.

12There are multiple reasons for this, e.g. the problem o&ukffit uses and representations of the
pointer targets, and more profanely, patent issues.

4.3. XML-BASED LINGUISTIC ANNOTATION 75

4.3.2 Related Annotation Standards

Standoff annotation is also useful for annotating traeglaorpora (each language
in a separate layer), or time-aligned corpora, typicayscription of speech and
video, as in the Universal Transcription Format (UTF; ofrfsi@ds and Technol-
ogy 1998) by the US National Institute of Standards and Teldgy (NIST), cf.
Figure 4.5 for an example.

Here, a timeline is defined in the document which the anranatiakes ref-
erence to. Various existing time-aligned speech annetdtionats are discussed
in Bird and Liberman (2001) and a generalization call@edotation graphss pre-
sented. Formally, annotation graphs are labeled directgtlia graphs with a time
function that assigns to each graph node an element of thedinien(an ordered
set).

<turn speaker="Roger_Hedgecock" spkrtype="male" dialect="native"
startTime="2348.811875" endTime="2391.606000"
mode="spontaneous" fidelity="high">
<time sec="2378.629937"/> now all of those things are in doubt
after forty years of democratic rule in
<enamex type="ORGANIZATION">congress</enamex>
<time sec="2382.539437"/>
<breath/>
because
<contraction e_form="[you=>you] [’ve=>have] ">you’ve
</contraction> got quotas
<breath/>
and set-asides and rigidities in this system that keep you
<time sec="2387.353875"/>
on welfare and away from real ownership
<breath/>
and <contraction e_form="[that=>that] [’s=>is]">that’s
</contraction> a real problem in this
<overlap startTime="2391.115375" endTime="2391.606000">country
</overlap>
</turn>
<turn speaker="Gloria_Allred" spkrtype="female" dialect="native"
startTime="2391.299625" endTime="2439.820312"
mode="spontaneous" fidelity="high">
<overlap startTime="2391.299625" endTime="2391.606000">well i
</overlap> think the real problem is that uh these kinds of
republican attacks
<time sec="2395.462500"/>
i see as code words for discrimination
</turn>

Figure 4.5: XMLified example of the Universal Transcriptisarmat (UTF)

Furthermore, there is an immediate analogy between theTHRSannotation

76 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

format (Grishman, 1997) and standoff annotation. In TIPRT&)I annotations are
expressed in terms of byte offsets into the original texte bigte offsets to text
could be interpreted dsnelinebecause they form an ordered'Set

The ACE (Automatic Content Extractioff)program by the American National
Institute of Standards and Technology (NIST) generalihesdven further to text
(newswire), speech (ASR) and image (OCR) annotation in ofiB.O'he ACE
DTD defines a reference key annotation of EDT entities and R&&ions (EDT
= entity detection and tracking task, RDC = relation detettask). The ACE an-
notation format foresees markup for persons, organizstigaographical-political
entities, locations and human-made artifacts of architecind civil engineering.

An entity can be identified via a character span or sequehités(text), a time
span (if it is speech or audio-video signal), or a list of baiag box coordinates (if
it is scanned text; the position description of a word may hist af boxes because
a word may be wrapped in lines). Thus, this annotation foraiawvs for flexible
markup not only of text and OCR input, but also of speech ankimmedia streams.
The relevant fragment of the DTD can be found in the DTD Apend page 285.

Discontinuous constituents (e.g. topicalization, scriamgbclause union, pied
piping, extraposition, split NPs and PPs) are linguistiergmena that exceed the
standard XML element tree, but can be easily modeled by sthadnotation. An
example is the sentence ‘Turn the switch off’ where turn sfflie discontinuous
constituent. By linking the constituent parts via ID atiiies, e.g. as shown hépe
even distant phrase elements are tied together.

<s>

<w id="WO0">turn</w>

<w id="W1">the</w>

<w id="W2">switch</w>

<w id="W3">off</w>

<vp id="VO" constituents="WO W3"/>

<np id="NO" constituents="W1 W2"/>
</s>

An XML-independent discussion of an annotation schemerfmr Word order
languages (including discontinuous constituents) is eddressed in Skut al.
(1997).

Mengel and Lezius (2000) describe a largely linguistic thieweutral XML
format (TIGER XML) based on the non-XML NEGRA (Sket al, 1998) annota-
tion schema giving up the pure tree model in favor of an imsémt to model cross-
ing edges in the analysis. Both annotation formats allowesing edges (edgk 5
and edgel_6 in the example below).

13A disadvantage of the byte offset representation is thatesoharacter encodings may have
variable byte-length representation of characters (@gJdpanese). Here, XML technology based
on Unicode and character offset representations has asdleantage over byte offsets.

14http://projects.1dc.upenn.edu/ace/

15Typically, standoff annotation is distributed over mulkipXML documents. However, it is also
possible and sometimes convenient to put multiple standpéfrs into one XML document.

4.3. XML-BASED LINGUISTIC ANNOTATION e

<s id="s2" href="#id(n1_502)"/>

<n id="n1_500" cat="S8">
<edge id="edgel_1" label="SB" href="#id(w1_4)"/>
<edge id="edgel_2" label="HD" href="#id(w1_5)"/>

</n>

<n id="n1_501" cat="NP">
<edge id="edgel_3" label="NK" href="#id(w1_0)"/>
<edge id="edgel_4" label="NK" href="#id(wi_1)"/>
<edge id="edgel_5" label="RC" href="#id(n1_500)"/>

</n>

<n id="n1_502" cat="S">
<edge id="edgel_6" label="HD" href="#id(w1_2)"/>
<edge id="edgel_7" label="SB" href="#id(n1_501)"/>

</n>

<w id="w1_0" word="Ein" pos="ART"/>

<w id="wl_1" word="Mann" pos="NN"/>

<w id="w1_2" word="kommt" pos="VVFIN"/>

<w id="wl1_3" word="," pos=",">

<w id="wl_4" word="der" pos="PRELS"/>

<w id="w1_5" word="lacht" pos="VVFIN"/>

<w id="wl_6" word="." pos="."/>

Additional crossing edges are introduced by the SALSA esitento the TIGER
XML format (Erk and Pado, 2004) that adds semantic role &timm which can
cross syntactic boundaries.

4.3.3 Summary

In this chapter, we have examined shallow linguistic marfkughe most common
shallow natural language processing tasks. We have irtegdXML and its role
aslingua francag open data structure and abstract syntax for linguistiotation.

One of the main advantages is flexibility and extensibilitld of elements and
attributes). We have shown the close relation between cargod NLP compo-
nent output, and noticed the increasing availability ofs@nd standards for both
corpora and online natural language processors.

We have learned that the work on standardization of corpostation is also
related to standardization of NLP component output formatg. namings and
schemata for morphologic, syntactic and semantic markug tlzat the same cri-
teria that are crucial for corpus annotation also are ingpdritor NLP component
output, e.g. consistency of tag set and encoding schemayenedility of source
text, validatability, processability, extensibility, mpactness and readability.

After a discussion of the deep-shallow mapping problem ertext chapter,
we will propose how deep and shallow components can be attdjusing XML
transformations.

78 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP

Chapter 5

Deep-Shallow Integration by
Transformation

In this chapter, we first discuss general problems that avisn representations
generated by different NLP components with different gtanties, spans and with
different namings for linguistic entitiestcare combined. We focus here on deep-
shallow integration. However, some of the problem clastssaise when multi-
ple shallow systems are combined. In the second part, wemilose a technical
solution by transformation of XML annotation and discuseisovariants and al-
ternatives.

5.1 The Deep-Shallow Mapping Problem

The main goal when integrating deep and shallow naturaluagg processing
components is increased robustness of deep parsing byitexglaformation for
words (or more general, character sequences) that are ntetimed in the deep
lexicon. The type of unknown words or word sequences, eaq. be guessed by
statistical models, domain-specific expressions or tinpgessions can be parsed
efficiently and reliably with finite-state devices and rasas.

Named entities such as proper names or location names cacdignized by
statistical and/or rule-based components and with thedfedpzetteers etc. More-
over, the search space of a deep parser can also be shapedlaoed by prepro-
cessing of sentence structure, partial parsing and ramfipgssible readings for a
word class with statistical methods.

Although the list of possible advantages that could be ghlne combining
deep and shallow methods looks promising, many problemsrdtié comes to
a real integration of (pre-)existing components. For eouical reasons, deep-
shallow integration is based on the assumption that (rejdieg shallow or deep
components from scratch for a smoother integration is bepiersive and not re-
ally wanted because the components also function as stareladodules in other
application contexts that are not to be neglected. Henaanalation or mapping

79

80CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

step in between is necessary in most cases.

In the following, we will briefly discuss the main problem s$&s of deep and
shallow component integration and describe possibleisoluibn a more abstract
level. The architecture implementations described in @ra@ and 9 will provide
concrete solutions for the integration of existing NLP comgnts.

Namings, types, welltypedness Although there are ongoing standardization ef-
forts for linguistic markupetg there is no unique and common naming standard
for linguistic entities and analyses. Adjectives e.g. amad JJ, adj, ADJ, A or
adjective in different NLP components. In many cases, tigere or no one-to-
one correspondente In the former case (no correspondence), information from
shallow analysis that has no correspondence in the deepnggamay be lost.
However, it remains accessible in standoff annotation efdhallow component,
e.g. for an application. The latter case (no one-to-oneespondence) is discussed
below as granularity of classification problem.

However, it is not only the names of analyzed entities thaeha be translated
for deep-shallow integration. Efficient HPSG parsers equire feature structures
to be well-typed, i.e., only attributes with appropriatdues are admitted for a
specific type. A non-welltyped feature structure would hesuparse failure (cf.
Chapter 3).

An example is morphology information that can consist of adbuof feature-
value pairs. These have to be defined and must be well-typibe iheep grammar.

The solution is to provide (total) mappings that always nretilne appropriate
type that is admitted and expected in the target compongntbeg using translation
tables or rules.

Granularity of classification Granularity designates the number of classes an
NLP component recognizes for an entity.

A simple example for different granularities is the tokepéyin tokenization.
While some tokenizers only distinguish words from pundtraicharacters and
numbers, others provide a finer-grained classification, imgjuding ordinal and
cardinal numbers, hypotheses on sentence boundaried, asldeesses, abbrevia-
tionsetc The shallow processing system SPPC (Piskorski and Neun2&0)
e.g. distinguishes 52 token classes.

Besides separation of punctuation from words, in HPSG grararokeniza-
tion is mainly used for recognizing open word classes suatuasbers, datestc
that are mapped to lexical types. Thus, an external tokeoizanust match the
classes foreseen by the deep grammar, or a mapping mustuegato

Another example are part of speech tags. While some PoSrtagigeh as TnT
(Brants, 2000) recognize more than 20 different part-efesp types for English
and German, only a few basic categories are typically definddPSG such as

paris (2002) discusses a closely related problem of diffesgy sets in annotated corpora.

5.1. THE DEEP-SHALLOW MAPPING PROBLEM 81

noun, verb or adjective. Additional information relatedword classes may be
defined in additional features and types.

Part of speech types that could be assigned to differergedasich as adjectival
verbs as irder bebende Bergould e.g. be classified by a shallow component as
verb form and as adjective by a deep grammanwi{oe versa.

If the granularities differ between shallow and deep NLP ponents, a map-
ping between the classes has to be defined manually. The &demdnay not
always be obvious. It may be the case that different ins&betonging to one
class in the source component have to be mapped to diffelasges in the target
component andice versa

Moreover, the concept of a type hierarchy with inheritarad forms the basis
for deep (HPSG-based) grammars, has no correspondencaliovsisystems.
Hence, implications that can be expressed by using gererpél)types in a type
system of a deep grammar have to be enumerated as subtyp@s-lmenarchical
classification e.g. of shallow NLP systems.

Even if granularities of classification are similar or isapluc, the problem
remains to find the correct mapping because names and uimgeckyncepts may
differ.

Because the granularity is determined by underlying listtiresources (gram-
mars, trained models based on annotated corpora), it isallgrtoo expensive to
adapt their definitions. The solution is hence to map theifit classes by trans-
lation tables or rules created manually on the basis of tlenlying resources
(models, grammars, theories).

Partial analysis results Shallow natural language processing components typi-
cally deliver partial analysis results. The absence of atyars e.g. of a word may
denote either that the word does not belong to a class, onthatformation was
available about the word. This could be misinterpreted bgepdsystem relying
on the shallow input.

Because a deep grammar relies on the fact that each inputmstbe known,
and typically will fail to deliver a full parse of the wholems&nce in case of partial
information, this could form a problem for a deep parser thas to fill lexical
gaps by shallow input.

A fall-back could be to (a) rely on shallow input only in cadeno full deep
analysis is available (b) use fragments remaining on the geese chart in that
case. Both solutions will be discussed in Chapter 9.

An example for partial analysis is named entity recognititina word is not
marked as named entity (NE), this does not necessarily ntesnttcannot be
a named entity, because no NE recognition component haslerkmowledge
about all proper and location names.

To cope with partial information, a solution is to use the ensgecified, min-
imal information that is available as fall-back. For an eypdanwe consider the

2except inSProUT, cf. Chapter 7.

82CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

case that a word is not in the deep lexicon. Normally, a deafysis would fail
because of the gap in the parser’s chart. The analysis ofllwhaamed entity
recognizer would be used instead (which would cause a gelesiton entry for
the named entity to be put on the chart of the deep parser).

If the named entity recognizer also gives no hint on the wird, output of
a statistical part-of-speech tagger could be used as fitldlgek and a generic
lexicon entry for the guessed part-of-speech would be atiéwe chart. If infor-
mation is available neither from the shallow nor from theplaealysis, then the
deep parser could try a fragmentary deep parse.

Structural Richness Richness is related to the information complexity or struc-
tural complexity of NLP analyses (in contrast to granujawhich only comprises
the number of recognized classes).

A deep lexicon entry for a verb e.g. contains information lo@ $ubcatego-
rization frame of the verb, i.e., which kinds of object thelveequires and which
semantic roles are assigned to them, such as

_give |
POS %

AGENT giver
OBJECT given
RECIPIENT givee

for the verb to give. A shallow lexicon typically only contigithe information
that to give is a verb.

Similarly, deep grammars deliver a highly structured sgtitaanalysis of a
sentence while shallow parsers in most cases return moee®flat sentence struc-
ture, if any.

To give an example for the opposite case (structured shall@bysis), a named
entity recognition component may deliver detailed infotiora on the structure,
type and nature of a named entity,

NE_person

TITLE "Dr."

SURNAME "Reinhart"

GIVENNAME "Riihmenkorff-Bohlander"

whereas a deep grammar may only provide or foresee infosmati the span
and part-of-speech typéDr. Reinhart Rihmenkorff-Bohlande_person

Structural differences are probably the most likely cagenfitsmatches be-
tween shallow and deep analyses, e.g. chunks are typicatiyrecursive in shal-
low chunkers, while recursively branching in deep analyagd even if they were

5.1. THE DEEP-SHALLOW MAPPING PROBLEM 83

recursive also in shallow analyses, then the branchingtsiiei might be different
(left vs. right-branching).

The difficulty is to match or map structures of differing mess without loss
of information, in order to get a maximally rich structuresually, unification is
the operation that returns such structures, but becaustferedt granularities and
namings in deep and shallow analyses, the unification apenatay not always be
feasible and well-defined.

The general solution would be to map different structuressatch other depend-
ing on their type and on the basis of the underlying modetnries and grammars.
This is easier when either source or target of the mappingtistructured but con-
sists only of a single class.

Boundaries Deep and shallow analyses may differ in what is conceivedads p
of a recognized item such as a token, a phrase, a named ardif@mger structure.
This is in most cases rooted in the underlying models, tngiciorpora, grammars
or linguistic theories.

A proper name in a prepositional phrase may be recognizetbagipname as
a whole in a shallow analyzer, or without the preposition theap grammar, e.g.
in [Parigne location VS. [iN Pari$ne jocation

Another example is tokenization. While a deep grammar mayaio the word
‘sister-in-law’ as a single token in the lexicon, it may ceh®f 5 tokens when
analyzed by a shallow tokenizer, e.g.

<w>sister</w><t>-</t><w>in</w><t>-</t><w>law</w>.

The general problem here is mapping of different spans ofgmized linguistic
items. Because the span information or verbatim input gegften the only com-
mon information that two independent natural language gesiog components
share, the correct span is crucial for deep-shallow integra

The boundary problem is closely related to structural nagiichness) and
hence the solution is similar to that: Mappings must be basednderlying lin-
guistic resources such as grammars, models, theoriesséro€aot exactly match-
ing spans, structural information of the recognized ergtitan be used to extract
and map parts of analyses.

The common measuring unit for span information exchangevdmt NLP
components should be character positions (or counts) irotiginal input text
as the least common denominator. Other units such as t@lt&mizmay not be
compatible between components (cf. example above) ancheagfore not form a
reliable basis for syncing boundaries of higher-leveldiisgic items.

A further solution is to add the shallow tokenization asraliive input to deep
parsing. This may increase ambiguity slightly, but also esesolution to a single
and probably best informed place, namely to the deep parser.

3An exception to the former case is the trigram-based chuBkeinkie (Skut and Brants, 1998)
that computes recursively embedded chunks, provided hieatinderlying corpus used for training
provides such information. However, a deep grammar maysstiport chunks of any depth.

84CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

Ambiguity Ambiguity may be introduced at any level of linguistic presig,
e.g. tokenization, part-of-speech tagging, morpholddgoalysis, lexicon access,
chunking, named entity recognition, shallow parsing mayn&loduce ambiguity
as well as deep grammars (because of lexical, syntactic emdrgic ambiguity
that is inherent in deep grammars).

If several shallow components are combined, then the nuwbambiguous
analyses may multiply at each integration step. Howevey thill collapse in
many cases by coincidence of boundages On the other hand, it is also possible
to use shallow preprocessing to filter unlikely readings Xpl@ting information
a specialized component such as a statistical chunker d@prd&ome examples
for concrete ambiguities

e tokenization a dot may form the delimiter of a sentence or indicate an ab-
breviation or both at the same time

pos-tagging The same word can be a verb as well as a noun

morphology number, gender, case ambiguities

lexicon polysemy or homographs

named entitiesParis may be the given name of a person or the name of a
town

Ambiguity in deep-shallow integration is both a blessing @ancurse. On the
one side, shallow components can recognize readings fordavayntactic struc-
ture that a deep grammar and lexicon does not provide bechussource limita-
tions, and hence increase theoretically the chance thattars® can be analyzed
deeply.

On the other side, the fact that each shallow component ntegdimce ad-
ditional readings, may increase the number of items on tlep garser’s chart
and hence the search space and run time of the deep analysssolution for
this dilemma is to make decisions as early as possible inntiegriation process
whether to include an additional reading induced by shalpogprocessing or to
drop it. Heuristics on the reliability of outputs may helptive decision process.

A further aspect is reduction of ambiguities in deep pargimgugh the help of
shallow analyses. Those readings that come closest tamshatialyses could be
preferred over the others (cf. Chapter 8).

Finally, a backtracking strategy could be pursued thas taidull deep parse
with one of the readings induces by shallow components, alydfthis fails tries
the next shallow reading and so on.

Probability Both shallow and deep processing systems may come with lynder
ing probabilistic models that can be used to filter out regslire.g. below a prob-
ability threshold. However, the problem remains how to sebabilities against

5.1. THE DEEP-SHALLOW MAPPING PROBLEM 85

each other and which thresholds to choose. This is closklietkto the ambiguity
problem and probabilities may help to solve it.

We consider an example in part-of-speech tagging. Thredsioithe sentence
analyzed by the TnT tagger get multiple readings (do, sraits. The probability
gained from the trained model is indicated in gheio attribute value.

<w id="TNTO" cstart="0" cend="4">
<surface>Where</surface>
<pos tag="WRB" prio="1.000000e+00"/>
</w>
<w id="TNT1" cstart="6" cend="7">
<surface>do</surface>
<pos tag="VBP" prio="8.754433e-01"/>
<pos tag="VB" prio="1.245567e-01"/>
</w>
<w id="TNT2" cstart="9" cend="13">
<surface>apple</surface>
<pos tag="NN" prio="1.000000e+00"/>
</w>
<w id="TNT3" cstart="15" cend="20">
<surface>snails</surface>
<pos tag="NNS" prio="9.446836e-01"/>
<pos tag="VBZ" prio="5.531639e-02"/>
</w>
<w id="TNT4" cstart="22" cend="25">
<surface>live</surface>
<pos tag="VBP" prio="7.822439e-01"/>
<pos tag="JJ" prio="1.550179e-01"/>
<pos tag="VB" prio="6.273819e-02"/>
</w>
<w id="TNT5" cstart="26" cend="26">
<surface>?</surface>
<pos tag="7" prio="1.0"/>
</w>

The problem with probabilities is that there is no genera} wiacomparing or
even propagating the values from one component to another.

A simple strategy that avoids explosion of search spaceedabg multiple
readings is to take only the most probable readings at each analysis step above
a thresholdy and to omit the othersy andy being configurable values. In the
example aboven = 1,y = 0.5 would safely return the correct readings for all three
ambiguously tagged words.

Conflicts, contradictory information When different NLP components based
on different, independent linguistic resources (graminargdels, theories) are
combined, conflicts are likely to occur.

Example:'Essen ist gesund.

86CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

A named entity recognizer may recognize Essen as the nam@e@fraan city,
while the deep grammar may recognize it as a verb. In this pkarhoth readings
could be valid. Similarly, conflicts between deep and skakmmponents may
arise in tokenization, part-of-speech tagging, lexicdnurnikingetc

In general, conflicts may e.g. occur if a shallow componecogeaizes a word
or constituent different from a deep parser. A conflict reBoh might be neces-
sary that could be based on reliability assessment. If dsshalomponent cau-
tiously recognizes named entities, e.g., its voting wowddplkeferred over a deep
parser’s lexicon-based alternative reading. The reltglof deep grammars could
be judged higher e.g. for chunk or macro-sentential strastthan for shallow
parsers.

Alternatively, if the reliability of the NLP components isiciear, the contra-
dicting reading from the shallow grammar could be introdliae additional item
on the deep parser’s chart, and the parser would either gwveonflict by knowl-
edge encoded in the grammar, or by propagating the additieading to the over-
all parse result.

Errors, correctness Both rule-based and statistics-based linguistic prongssi
components make errors. The errors may be caused by erritrs resources, or
by statistical models that do not fit the actual input textategies are necessary
that try to detect and possibly correct errors in order tachpoopagation of errors
throughout a shallow-deep integration that could make teeadl results worse.

In the following example, the word 'orange’ is wrongly taggbky the TnT
tagger as noun because of deficits in its trigram model. Byyaymp correction
rules that go beyond the underlying trigram model of the ¢éadtpking into ac-
count macro sentence structure), the reading with lowdvglitity (JJ for adjec-
tive, 14%) could be made the correct analysis.

<w id="TNTO" cstart="0" cend="2">
<surface>Why</surface>
<pos tag="WRB" prio="1.000000e+00"/>
</w>
<w id="TNT1" cstart="4" cend="7">
<surface>does</surface>
<pos tag="VBZ" prio="1.000000e+00"/>
</w>
<w id="TNT2" cstart="9" cend="11">
<surface>the</surface>
<pos tag="DT" prio="1.000000e+00"/>
</w>
<w id="TNT3" cstart="13" cend="16">
<surface>moon</surface>
<pos tag="NN" prio="1.000000e+00"/>
</w>
<w id="TNT4" cstart="18" cend="21">
<surface>turn</surface>

5.2. NLP INTEGRATION BY TRANSFORMATION 87

<pos tag="NN" prio="7.511812e-01"/>
<pos tag="VB" prio="1.887845e-01"/>
<pos tag="VBP" prio="6.003432e-02"/>
</w>
<w id="TNT5" cstart="23" cend="28">
<surface>orange</surface>
<pos tag="NN" prio="8.592189e-01"/>
<pos tag="JJ" prio="1.407811e-01"/>
</w>
<w id="TNT6" cstart="29" cend="29">
<surface>?</surface>
<pos tag="7" prio="1.0"/>
</w>

The general solution is similar to conflict resolution (choae), but can be
harder because conflicts can be detected immediately, eitndes without conflicts
may remain undiscovered until deep parsing is performedveder, a conflict case
is of course always a good candidate for an error. In that, dheeoutput of the
more reliable component should be taken. If no conflict isnaligd, the input e.g.
of a shallow component may still be wrong. In order to incesesrrectness, it
would be possible to run e.g. two different part-of-speeadgérs concurrently,
and compare the results word by word. A conflict could signabtntial source
of error, and a voting mechanism could be applied to deciderie or the other
result.

5.1.1 Summary

We have discussed, on a rather abstract level, problemsdnabccur when shal-
low and deep NLP components are combined. As a generalgstrattevould be
advantageous to only map reliable, useful information aptbtreduce ambiguity.
Furthermore, facilities for translating structure and maya as well as a config-
urable and flexible should be provided to ease integratiomwi discuss concrete
solutions in the following chapters. In Chapter 9, we wilbshhow integration on
a semantics representation level (in addition to a secalestiallow-deep archi-
tecture) can partially circumvent some of the describedleras in application-
oriented contexts.

5.2 Integration of Linguistic Representations by Trans-
formation

From the similarity of markup produced by NLP components andotated cor-
pora that we observed in Chapter 4, a close relationshipwislbetween access to
NLP component output (online) and querying annotated cargaffline).

In this chapter, we examine and compare XML query languagéskaow how
NLP annotation markup can be accessed using standard XMl targuages.

88CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

We propose XSLT as a simple, but powerful, efficient and siegided trans-
formation language for online integration of NLP markup amativate the choice.

While we will postpone discussion and examples of shallowwPMbarkup XSL
transformation to later chapters where we will present enq@nted architectures,
we will concentrate in the end of this chapter on the lessais;ibut also important
task of transforming XML-encoded typed feature structurgsiag XSLT.

5.2.1 Querying Multi-level (Standoff) Annotation

The termmulti-level annotatiorhas been established as a generic term for nested
and standoff annotation of various kinds (cf. also footmeteark in Section 4.3.1)
comprising those mentioned as examples in the previougehap

For NLP component integration on the basis of multi-leveh@ation and
XML annotation in general, itis important to see how the dation can be queried,
i.e., how pieces of annotation such as part-of-speech fagsrds can be accessed,
how structural information such as what are the constigieha phrase can be ob-
tained, and how the information can be combined.

Thus, a query language providing (a) data access, (b) catigmadity of que-
ries, (c) transformation capabilities and (d) integratfaailities is being sought.
Similar requirements have been identified by Taylor (2008Qfierying linguistic
corpora. Itis obvious that properties and requirementgdopus query languages
also hold for markup integration and access produced obliéLP components.

In the following, we will briefly discuss query languages aadls for multi-
level (or general) linguistic XML annotation.

5.2.1.1 XPath

XPath 1.0 (Clark and DeRose, 1999) is a simple, but powesiugjliage that de-
scribes patterns of the XML tree structure in form of (eletreamd attribute) path

expressions. XPath is not specifically designed for linguigueries and therefore
lacks e.g. the ability to query items that exceed the XML s&gema such as over-
lapping hierarchies. Moreover, advanced constructiom$ s1$ query variables,
guantification or negation of arbitrary path componentsnatesupported. XPath
patterns may denote node sets in the XML document tree, ingstor numbers.

Examples for XPath expressions are shown in Table 5.1.

XPath provides a number of predefined basic functions fopkrarithmetics,
Boolean, string operations and document tree navigatiblings, ancestors, par-
ents, children, descendants, cf. Figure 5.1), countingesocbnverting data types
etc XPath lacks a full document integration and transfornmafacility, it can
only map XML documents to node sets or to elementary datatypeh as strings,
Booleans or numbers. However, XPath is part of XSLT and X@\discussed
later) which provide integration and transformation fitiei$.

5.2. NLP INTEGRATION BY TRANSFORMATION 89

w[position() mod 2 = 1]
wllast() = 1]

id(°’w34’)
w[@cstart="23"]

(CES

w[3]/@cstart

count (w)

count (//w)
substring(*hi’,2)
contains(’hello’,’hell’)
name ()

XPath description

chunk matches a chunk element

* matches any element

chunk|w matches chunk or w elements

chunk/w matches w element with chunk parent

last () matches last daughter element of current ng
w[3] matches the 3rd w child of the current node
/ matches the root element of the document
//w matches all w elements in the document

matches odd-numbered w daughters
matches a w daughter that is the only daugh
matches element with unique id W34
matches w element with attribute cstart="23
matches any attribute daughter

returns cstart attribute value of 3rd w daught
returns number of w daughters of current ng
returns number of all w elements in docume
returns '\’

returns true

de

ter

er
de

returns name of current element

Table 5.1: XPath expressions (examples)

descendant

descendant-or-self

Figure 5.1: XPath axes in the XML document tree

5.2.1.2 XPath 2.0 and XQuery
XPath 2.0 extends XPath 1.0 in

many ways making it a more galW@nguage,

e.g. by adding regular expressions, extended string fomality and XML schema

90CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

support.

XQuery (Boaget al., 2006), building on XPath 2.0, is an XML query lan-
guage unifying the two different strands of XML usage mamtihin Section 4.2.4,
namely XML-as-document (reflecting XML'’s original roots 83GML) and XML-
as-data (corresponding to relation database data models).

XQuery adopts from SQL the FLWOR query concept (FLWOR forftrdet-
where-order-return query structure, loosely analogou8Qh’'s SELECT-FROM-
WHERE) and combines it with XPath 2.0 to a powerful query lzage. We show
an example of a query that generates a list consisting of tibekprice and number
of authors per book.

<books>
{ for $x in doc("bookstore.xml")/bookstore/book
let $a := $x/author
where $x/price>30
order by $x/title
return <book> {$x/title} {$x/price}
<authors>{count ($a)}</authors>
</book> }
</books>

The overall query structure of XQuery looks similar to SQit, the underlying
data model is quite different. While the basic data structnmrelational databases
are flat tables, data in XML documents is hierarchically &treed. Similarly, the
query and result data structures are hierarchical. Moretve sequential order in
XML documents must be preserved from the input to the outputtires while
the order is generally undefined in relational databases.

Slightly simplifying, the XQuery expression arguments leé for, let, where,
order-by and return statements consist of XPath 2.0 expressvhich makes the
language modular and powerful. Data type definitions camiported from XML
Schema definitions via references to external resourcesedtvof XQuery use
cases is documented in a W3C working draft (Chambexial,, 2006).

5.2.1.3 Related Work

We briefly discuss related work in XML query languages foglirstic markup.
Cassidy (2002) discusses XQuery (an earlier version af #@)lise case analysis as
linguistic annotation query language and concludes thamet@) has weaknesses
in expressing sequential constraints while it is quite pdwdor querying with
hierarchical constraints.

Both XPath and XQuery are general languages for XML treesscead not
specifically designed for operating on linguistic markughveinnotation graphs and
time alignment of linguistic annotation. For that reasarjaus XPath extensions
have been proposed during the last years that attack thafisgeature.

5.2. NLP INTEGRATION BY TRANSFORMATION 91

While Bouma and Kloosterman (2002) argue that XPath is pfulvenough
for querying dependency treebanks encoded in XML (provitlatthey were con-
verted into an appropriate format), Carletaal. (2003) and Heicet al. (2004)
propose the NXT Search query language that extends XPattidiycaquery vari-
ables, regular expressions, quantification and speciglsufor querying temporal
and structural relations.

Their main argument against standard XPath is that it is swide to constrain
both structural and temporal relations within a single XRgiery and that stan-
dard XML query mechanisms would not be intuitive to linggisthe following is
a ‘cross-level’ NXT Search example from Heatal. (2004), in this case for query-
ing frame and syntactic annotations, using variab$sedxistential quantification
(exists), structural dominance)(for querying.

($£1 frame) ($£2 frame)
(exists $phrase syntax)
(exists $target word):
$f1 >"target" $target and
$£2 >"target" $target and
$f1 - $phrase and

$f2 - $phrase and

$f1 1= $f2

Another recent corpus query language is LPath (Btrdl.,, 2005). LPath lays a
special focus on subtree scoping, immediate precedencedgedalignment with
intuitive XPath syntax extensions. Moreover, translatiorSQL queries is per-
formed for efficient access to annotation stored in a retatidatabase.

Beyond XPath extensions, many other query languages forofrg) XML-
based multi-level annotations have been developed. @&irdl. (2000) discuss
an annotation graph query language. (Simplified) MMAXQLuM{, 2005) is
a query language that similarly to NXT Search supports guariables, regular
expressions and relation operators for structural qudsigdacks quantification.

Teichet al. (2001), Taylor (2003) and Lai and Bird (2004) present ovemg
and a comparison of different query languages for annotaigabra.

5.2.2 Using Corpus Query Languages for NLP Component Integr-
tion?

As shown in the previous section, besides XPath that is neegdal enough and
XQuery which is not yet a stable standard, there are manyogedg for query
languages for linguistically annotated corpora. Howeter presented approaches
specifically designed for linguistic corpus access showesdmadvantages that
make them inappropriate for NLP component integration.

Lack of portability = The proposed annotation languages, e.g. those forming an
extension to XPath, have been implemented for a specificiX&agine and can-

92CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

not be used without adaptation to e.g. XPath implementstiorother program-
ming languages, even porting to another implementatiohérsame programming
language requires additional implementation work. ThethBaplementation in
addition requires and relies on annotation stored in aioglak database.

Lack of efficiency XPath extensions such as NXT Search are reported to have
severe performance problems (which is clearly related écettpressive power of
the query language), especially when a query combinesaawput documents.
Existing optimizations e.g. of the standard XPath docunera accessing meth-
ods are highly probable to be incompatible with these XPstitnsions and there-
fore cannot be applied. In a recent experiment, Mayal. (2006) report on a
re-implementation of the NXT query language in XQuery (gsine Saxofiim-
plementation) that showed drastic speedups for some queeg.t but required a
preprocessing technique called ‘knitting’.

Limited re-usability Each of the discussed query languages comes with its own
syntax that is incompatible with the others. High learnimggts are inevitable,
and the inflation of new query language reduces the usalkiftity usefulness of
corpora in general. Partly, the query syntax has been dssitgm specific corpora

or corpora types, and may not be applicable for others. Bwcafithis, and as

a standard seems not to show up in the near future, querigemior one query
language cannot be reused.

Restricted extensibility Although some of the most important shortcomings of
standard XPath and similar query languages with respeabgaistic annotation
processing are addressed, the proposed extensions stjva fixed set of prob-
lems. Further extensions such as combining input from piali@nnotations or
computing values or annotation must be solved outside theyqanguage.

Given these common restrictions of corpus query languames their imple-
mentations), there seems to remain serious doubt whetlepasquery language
can be appropriate for online NLP component integration.

5.3 Markup Transformation and Query with XSLT

As an alternative to the highly specific but hardly exterssibbrpus query lan-
guages with their above described disadvantages, we @of8ET (eXtensible
stylesheet transformation language, Clark 1999b) for NawRmonent integration.
Already McKelvieet al. (1998); Ide (2000); Ide and Romary (2001); Carleittal.
(2002) have discussed and proposed XSLT as corpus quemnydgagnd general
purpose transformation language for linguistic annotatibor our application in

“http://saxon.sourceforge.net

5.3. MARKUP TRANSFORMATION AND QUERY WITH XSLT 93

deep-shallow NLP component integratiamline aspect andnhtegratability of the
query language play a central role, and as we will see, XSlfilifithese require-
ments well.

XSLT, as part of the XSL language family, builds on XPath and specialized
programming language for transformation of XML documents ianother XML
format, HTML, text, PDFetc

Probably because of the name (‘stylesheet’), XSLT has dfemm misunder-
stood or underestimated as a web (HTML) style definition lmug such as CSS
but this is only one aspect. XML tree transformation is aHertapplication of
XSLT that has also been proposed and used in other conteshisding electronic
business and even general (XML-based) software architeftameworks such as
the one proposed by Lowe and Noga (2002) which will be dsedgurther in
Section 9.13.

The XML to XML transformation we focus on can be seen as a qtleayex-
tracts information from XML input (annotated corpus or NLéhtponent output)
and represents it in a different way. As XSLT extends (or u¥é%ath, and is at
the same time a Turing-machine equivalent programminguag§, we believe
that it is an appropriate and powerful alternative to thecibeed corpus query
languages and well-suited for NLP component integration.

Taylor (2003) discusses several guery languages for ktigyicorpus) annota-
tion and shows, by giving translation schemata and examghlasqueries of EMU
(Cassidy and Harrington, 1996) and Tgrep2 (Rohde, 200%h, dpeery languages
that support specific data models for linguistic annotatican be translated into
XSLT queries.

The advantages we see in XSLT are:

Portability In contrast to corpus query languages, where often onlyglesim-
plementation exists, XSLT 1.0 processors have been impitadeor almost all
current programming and scripting languages. This meaastiie queries can
easily be exchanged across different platforms or impleatiems, and XSLT can
form an independent basis for annotation interchange. Tbadband quite ma-
ture implementation status of XSLT processors in varioogamming languages
and platforms makes it possible to easily implement alsmernihtegration of NLP
components through XSLT.

Efficiency Most XSLT implementations provide optimizations for XMle& and
XPath processing and the XML ID/IDREF mechanism. In XSLTadditional key
mechanism exists for constructing unique keys as in relatidatabase systems.

SCascading Style Sheetsttp: //w3c.org/Style/CSS/

6Cf. http://www.unidex.com/turing/utm.htm, where a XSLT 1.0 stylesheet is defined that
encodes a universal Turing machine and hence proves byrgotish that XSLT 1.0 is Turing-
complete.

94CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

This makes XSLT access to XML tree annotation typicallydashan straightfor-
ward DOM tree search and navigation as it is the case in moath<xtensions.

Moreover, in recent implementations such as Apache XalamXSLT pro-
cessor implemented in Java, a stylesheet compilationitfacilled XSLTC can
be enabled which compiles XSLT stylesheets iftansletsthat make transforma-
tion significantly faster (3-6 times on average, up to 1068 in specific queries,
further performance boosts can be expected in later impitatiens), and have a
much smaller memory footprint than interpreting XSLT presa's.

Recent overviews over XSLT benchmarks and comparisons aff $oces-
sors are presented in Bittner (2004) and Feiial. (2004). Although the bench-
mark cases are quite simple and limited in the stylesheeplaxity compared to
realistic natural language corpus queries, it can be sexdrihére is still room left
for optimizations, especially in the Java XSLT implemeiotad.

Re-usability Because a well-established, standardized language is psed
existing queries (stylesheets) can be re-used for new el NLP component
formats. This can help to reduce the overall amount of codiak for annotation
access. Re-usability is also possible across differepiusoiormats because of the
similarity of their document structures.

In some cases, only the names of attributes or elements ithXRaressions
need to be replaced. Libraries for typical query types camiieusing named tem-
plateg where the structure and names of elementsould be made customizable
parameters.

Extensibility In contrast to the discussed XPath extensions for linguigieries,
XSLT queries (stylesheets) can be extended by user-defut@dgines or func-
tions (Turing machine equivalent; see above). The XSLT tatapmechanism
(named and matching templates) can be used to define opsraionode sets,
strings or numbers.

The templates can take parameters with default values antetan element
nodes or other elementary XSLT/XPath data types. Queriesbeaformulated
through templates that may become necessary for new kindsragtation, and
that are not expressible in the existing linguistic XPatteegion frameworks.

Openness XSLT is open both on the input and on the output side.

Openness with respect to inpullthough XML is the obligatory input for-
mat for XSLT, XSLT is not bound to a specific DTD or schema, destyeet can
be applied to different document formats that can only beritesd by different
DTDs. An example is a stylesheet that only has relative nragicpaths such that
any DTD containing the matching elements would be approgriand evervice
versg a stylesheet may contain matches to elements that never imcone input

7XSLT 2.0 additionally has user-definable functions thatatso be included by reference.

5.3. MARKUP TRANSFORMATION AND QUERY WITH XSLT 95

document type, but which may be contained in other DTDs. iFliigependence of
a DTD may ease XML processing and transformation.

Openness with respect to outpSLT can by design be used to output other
formats than XML. However, for transformation and queryioflistic annotation,
XML should be the preferred output format. Ide (2000) prapXSLT also for the
visualization, formatting and presentation of linguistrtnotation.

Formatting XML has been (and probably still is in the majonitf applica-
tions) clearly one of the initial main motivations for intérg XSLT. Throughout
the thesis, we will (in the implementations to be presentést) make use of XSLT
stylesheets for visualization of XML output generated friamguistic components,
e.g. for trees, typed feature structures, robust semampresentations, cf. Sec-
tions 7.5, 8.7.8 and 9.8.

5.3.1 Brief Introduction to XSLT

XSLT has been introduced as part of the W3C eXtensible Stgkt(XSL) family
that forms a standard (called recommendations in the W3gofarfor defining
XML document transformation and presentation. The XSL fagomprises three
parts

e XSL Transformations (XSLT), a language for transforming XM

e the XML Path Language (XPath) an expression language useshy to
access or refer to parts of an XML document. XPath is also bsgethe
XML Linking specification XPointer and as part of XQuery.

e XSL Formatting Objects (XSL-FO), an XML vocabulary for sgging for-
matting semantics

While we already have briefly introduced XPath, we will nottfier discuss
XSL-FO. The main application of XSL-FO is layout generatitom XML sources
beyond HTML, and currently mostly the PDF language is usetitoend in (web-
based) publishing applications.

Historically, XSLT is based on DSSSL (Document Style Semcarand Spec-
ification Language), a transformation language for SGMlfingel as ISO 10179
standard (ISO/IEC, 1996). While DSSSL is a LISP dialect anduch based on
S-expression syntax, XSLT uses XML syntax, but a similarcepts, constructs
and processing model as DSSSL.

Similarly to DSSSL, XSLT uses a declarative processing rfmdiewing the
tree structure of the XML input document and very much retiasformulation
of algorithms through the use of recursion as in other fameti programming
languages. The focus of DSSSL has been SGML to SGML transtiom As
already mentioned, XSLT is more open.

8http://w3c.org/Style/XSL/

96CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

While the input of an XSL transformation must be a valid XMLcdanent, the
output may be XML, HTML, or any other format (including nogxt). The reason
for this is that XSLT has been from the beginning designed asuli-purpose
transformation language, with a strong focus on formatiggut with HTML (or
XSL-FO alternatively).

The XSLT processing model (cf. Figure 5.2) consists of an Kptocessor (or
transformer) that takes a so called XSLT stylesheet cantitihe transformation
rules and an XML input document plus optional named paramdéteg. strings
or numbers) for the stylesheet as input. The transformaiiogess produces an
output document according to what has been defined in thessiget. In XSLT 2.0,
a stylesheet can produce multiple output documents withingde transformation.

There is an alternative way of calling a stylesheet-basaustormation on an
XML document by associating the stylesheet in the XML sodweument (Clark,
1999a). This mechanism depends on the capabilities of the pédviser, browser or
transformer that opens the XML document, but many curremvbers and XSLT
processors support this now. The effect would be the sameraiing the trans-
former on the stylesheet and XML input document.

According to the stylesheet and parameters, differentutfirmats can be
generated. However, XSLT itself does not (cannot) verify torrectness of the
output syntax, except for some basic XML and HTML structdrthése are the
specified output formats.

XSLT
optional style-

parameters sheet XML
/ HTML

- @ ——w»text

— > Braille

Q‘ WAP

\ PDF
LaTeX

PostScript
RTF

content transformation

presentation

Figure 5.2: XSLT processing model

Stylesheet concept An XSLT stylesheet is an XML document with root element
xsl:stylesheet (Or the synonynxsl:transform). ‘xsl:’ indicates the name-
space which must be declared fastp: //www.w3.org/1999/XSL/Transform
for XSLT 1.0. The stylesheet contains the transformati@tructions in elements
and attributes defined in the XSLT recommendation, i.e. tidmesformation pro-
gramming language is encoded in XML syntax.

5.3. MARKUP TRANSFORMATION AND QUERY WITH XSLT 97

Optional sub-elements ofsl:stylesheet e.g. declare global parameters
(that can be passed to the stylesheets), the output fatmadther XML elements
not defined in the XSL namespace are returned as part of thitimgsoutput docu-
ment. Numerous stylesheet examples can be found in the XPpErdix starting
from page 295.

Processing model and matching templates An XSLT processor first parses
the XML input document into an internal XML tree represeigtatwhich is then
recursively traversed. During traversahatching templatesvhich are subrou-
tines are applied when they match via a specified XPath patter XML tree
fragments. The XSLT syntax element for matching templadesi:template
match="match'.

The recursive traversal can be canceled, repeated, skl@dtespecific sub-
elements) in thesl:apply-templates instruction or sorted from within match-
ing templates and loops. This mechanism provides a powanfdil(at least in the
default case of recursive tree traversal) a quasi-deatarapecification of XML
tree transformation through XPath patterns.

An optional mode attribute can be used to provide alteraatmplate code
depending on the context, e.g. to define rules for multiplgwuformats within
the same stylesheet. When a node in the XML input tree mattioes than one
template rule, a simple conflict resolution strategy appliased on a static anal-
ysis of the match expressions. Alternatively, a prioritjugacan be assigned to a
template in the stylesheet.

Named templates Named templates are subroutines or functions that can be
called via their name (independently of a match with the XMpuit tree; syn-
tax: xsl:template name="name'.), such as subroutines or functions in other
programming languages. Because of the static behaviorrafblas in XSLT (cf.
below), recursion through named templates with locallypscovariables plays an
important role.

Data model and basic data types XSLT shares with XPath the data model, i.e.,
basic data types are node set, string, Boolean, number hétlsame automatic
conversion rules between the data types.

XPath expressions as first-class citizens XPath is not only used to match XML
tree fragments in matching templates, but also for comjoumaif expressions e.g.
for string output in the result document or for testing Baeolexpressions in con-
ditional instructions.

Built-in functions Built-in functions can be used in XPath expressions for com-
putations on numbers, strings, Booleans and node setse Tinestions comprise

98CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

the typical, simple operations on the basic data types krfown other program-
ming languages, such as addition, string concatenation,

The document() function deserves a special mention. It eamsbd to include
additional external XML input documents (and via XPath or$ of them) in ad-
dition to the standard input document that is always passéuet XSL processor.
While there is only a fixed set of predefined functions avélaio XSLT 1.0, func-
tions can be defined similar to named templates in XSLT 2.6, eanployed in
XPath expressions.

Variables and parameters Variables in XSLT aren't variable. They behave like
variables in mathematics that are assigned at most oncer thidn as names for
memory cells as in most programming languages where theglwme their val-
ues. However, variables have local scopes in templates;ezndsion can be used
for countingetc Both matching and named templates may take named parameter
as in other programming languages. Moreover, the stylésised can take named
parameters from outside (e.g. the transformer call).

Conditional control structures and loops A single conditional instruction can

be expressed withs1:if and a test based on a Boolean XPath expression, more

complex case selections witls1 : choose, xs1:when, xsl:otherwise.
xsl:for-eachin conjunction with an XPath node selection expression @n b

used to define loops over tree elements.

Modularity through inclusion of external stylesheets Bothxsl:include and
xsl:import support inclusion of external stylesheets where the defirgtin the
importing stylesheets take precedence over code imporitackgl : import.

Output: text, elements, attributes, etc Elements, attributes and text can either
be output by writing them directly in the template code, orthy explicit XSLT
instructionsxsl:element, xsl:attribute, xsl:text andxsl:comment, with
XPath expressions that can be used to compute or composesvaly. through
string functions. Nodes from the input can be copied with: copy andxsl: co-
py-of with an XPath expression selecting the node(s), wkele copy-of per-
forms deep copies.

To summarize briefly, XSLT is a small but powerful, speciadizorogramming
language for XML tree transformation and query. It provigesverful, quasi-
declarative tree navigation and selection through XPapinesssion matches. Com-
pared to DOM navigation in classical programming languagesh as Java, C,
Pythonetc XSLT is a much more concise and better maintainable altieenahen
flexible adaptation to new or modified XML formats is required

5.3. MARKUP TRANSFORMATION AND QUERY WITH XSLT 99

5.3.2 XQueryvs. XSLT

The only serious, powerful and viable alternative to XSLTsee is the upcoming
XQuery standard (basing on XPath 2.0). It shares most ofdkardages we dis-
cussed for XSLT. Until the XQuery standard is established(&/3C standard) and
efficient implementations are available, XSLT is a goodraléve for which many
different implementations, partly with efficiency optimtions, already exist.

What remains to be discussed is the relation between XQuerX<. While
both share many properties and are at large parts overtappitheir applica-
tion areas, the focus and strength of XQuery seems to be thecdatric queries
(regularly structured markup), while XSLT has its advaetin document-centric
queries (semi-structured markup).

Thus, both languages have advantages and disadvantagmsdiotgpon the
type of task to perform. The same holds for efficiency whichegto a great ex-
tent also depending on the task. As in all programming laggsiasolutions for
the same problem can be formulated in many ways. Here, tiheiggilementa-
tion status of XQuery processors and also ongoing researoptimization and
compilation techniques for XSLT would render any comparisobalanced.

The current focus in research and development of both XSU&puery pro-
cessing is in fact compilation and optimization. Major iry@®ments are to be
expected in both languages.

Lenz (2003) discusses the differences and commonalitigQokery and XSLT
(the former at an earlier stage, not in the current state ¥Rhth 2.0), and illus-
trate how XQuery queries can be encoded in XSLT, supportimthiasis that most
things that can be done in XQuery are also feasible in XSLTshtavs, e.g., the
correspondence to FLWOR expressions in XSLT, namely

XQuery XSLT

FOR xsl:for-each (Or xsl:template calls)

LET xsl:variable; often not necessary because of
context node switch in thesl: for-each body

WHERE xsl:if

ORDER-BY | xsl:sort
RETURN xsl:copy(-of), xsl:value-of, xsl:element, etc

This is of course simplifying because extensions and vanatexist in both
XQuery and XSLT, but the table roughly illustrates how XQueueries could be
translated to XSLT.

Graaumans (2005) thoroughly compares the usability of XQuUESLT and
SQL/XML, an extension of the SQL ISO/ANSI standard to XML aa&tored in
a relational database. Although the author does not focudldh markup, the
study presents interesting insights into the performamue wsability of XSLT
vs. XQuery in different query tasks, both for data-oriersd document-oriented
markup.

100CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

To conclude, both XSLT and XQuery have a large common aplitarea,
and strengths exist in both frameworks. Both are being noetl and extended by
the W3C (e.g. by a common XPath 2.0 subset and XML Schema sijgmal both
have their own justification to exist. However, because efrttore general trans-
formation approach (e.g. to fundamentally re-organize Xddicument structure)
through templates and the more stable and settled standtodi and implemen-
tation status, we opt for XSLT in the rest of the thesis, kegm mind that in most
cases, one could replace an XSLT processor by an XQuerygsoc# necessary.

5.3.3 NLP Integration and Computation with XSLT

XSLT has been proposed in several natural-language pingessntexts such as
natural language generation or text-to-speech.

Wilcock (2001) discusses XSLT for natural language ger@ran pipeline ar-
chitectures, template-based generation with XSLT terapland tree-to-tree trans-
formations.

Ide et al. (2000b) discuss how a general model of lexical informatiathw
inheritance encoded in XML can be realized in different fatsnusing XSLT. Ide
(2000) also proposes XSLT for formatting and visualizimggliistic information.

Foster and White (2004) present an XSLT-based approachdimal form gen-
eration for text generation. An XSLT processor is treated &gp-down rule ex-
pander structuring and aggregating the content and peirigrlexical choice.

Schroder and Breuer (2004) use XSLT to plug together diffetext-to-speech
systems.

Coming back to the integration task of multiple NLP compdresn XML
basis, XSLT can serve as 'glue’ between the components hathdvantages men-
tioned above with respect to portability, re-usabilitytemsibility and efficiency.
XSLT also solves the problem of interlinking XML documerdsy. different anal-
yses of an input text produced by different NLP components standoff anno-
tation. This is important because no commonly adopted apteimented linking
standardexists.

We propose XSLT for the integration of deep and shallow étlanguage
components because (1) most shallow processors produceckiyut natively or
can be easily adapted to do so (2) XSLT can be used to comkindadt annota-
tion produced by multiple (shallow) natural language congrds and to combine,
translate and compute the information a deep parser rexfuine shallow prepro-
cessing (3) XSLT can be used for post-processing e.g. of aealysis results (e.g.
semantics, syntactic tree structures, typed featuretatesg) or to repair processing
results if deep processing fails.

Furthermore, because XSLT plays an important role in génévi-based
software architectures (e.g. for web publishing), pgrition in the improvements

9XPointer and XLink are W3C recommendations, but only a favd earely used implementa-
tions exist, partly because of patent issues.

5.4. TRANSFORMING XML-ENCODED TFS 101

and optimizations of implementations and porting to newfptens and program-
ming or scripting languages and the further developmenrt@standards are con-
siderable advantages over niche solutions that are spémiflanguage (corpus)
technology.

We will come back to XSLT by demonstrating applications oifithe later
architecture chapters (Chapters 7-9).

5.4 Transforming XML-encoded Typed Feature Structures

5.4.1 Accessing and Transforming Feature Structure XML

In the sections so far, we have implicitly discussed queny access to shallow
XML annotation because this is what most corpus query lagggiaim at. But
annotation access could also include deep analysis resudtgled in typed feature
structures. Typed feature structures provide a powerfuljensal representation
framework for linguistic knowledge (cf. Chapter 3), notyim deep analysis, but
also for shallow analysis results (we will describe a shakystem utilizing typed
feature structures in Chapter 7).

While it is in general inefficient to use XML to represent typeature struc-
tures during processing (e.g. for unification, subsumptiperations in HPSG
parsing), there are several applications that may benefit & standardized system-
independent typed feature structure XML, e.g. as exchamgesit for

e deep NLP component results (e.g. parser chart or partsofhdret also
shallow analysis results),

e grammar sources, XML format as ‘abstract syntax’ for insezhportability
between different formalisms or implementations,

e feature structure renderers or editors such aSRnoUT (cf. Chapter 7) or
Thistle (Calder, 2000),

o feature structure 'tree banks’ of analyzed corpora

We adopt an embedding XML representation for typed featietsires orig-
inally developed by the Text Encoding Initiative (TEI). # compact and widely
accepted (Sperberg-McQueen and Burnard, 1994). The maskajso part of
a proposal for an ISO standard on feature structure repegsanin XML ISO
TC37 SC-4 (Leect al, 2004) and also of MAF, the proposed morph-osyntactic
annotation format (Clément and Villemonte de la Clergez@05).

An in-depth justification for the naming and structure of THel feature struc-
ture DTD is presented in Langendoen and Simons (1995). Wesfbere on the
feature structure DTD subset that is able to encode the Qaticstructures of deep
systems such as LKB (Copestake, 2002), PET (Callmeier,)288@GE (Uszkoreit

102CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

et al, 1994), or the shallow syste®ProUT (Drozdzyhskiet al. 2004; cf. Chap-
ter 7) which use a subset of TDL (Krieger and Schafer, 19%4thair common
basic formalisrC.

The TFS DTD in the DTD Appendix (page 286) is structured alofad. The
FS tag encodes typed feature structure no@esncodes features. Atoms are en-
coded as typed feature structure nodes with empty feasitréllhecoref attribute
encodes coreferences (reentrancies; structure sharitgeén feature structure
nodes. An illustrative example is shown in Figure 5.3.

<FS type="synsem">
<F name="FEAT1">
<FS type="t1" coref="1">

<F name="FEAT3"> synsem
<FS type="*top*"/> t1
</F> FEAT1
FEAT3 *top*
</FS> P
</F> FEAT2

<F name="FEAT2">
<FS coref="1"/>
</F>
</FS>

Figure 5.3. XML-encoded typed feature structure (left)jhwstructure sharing be-
tween attribute§EAT1 andFEAT2 (throughcoref="1") and the corresponding
AVM notation (right)

5.4.2 The Role of Feature Structure XML Transformation for the In-
tegration of NLP Components

One of the main motivations for XML feature structure marksithe interchange
of linguistic data. This can be domdfline e.g. for the exchange of lexica, gram-
matical resources, or annotated documents.

A further application i®nlineintegration of NLP components, where several,
specialized modules contribute to improved (e.g. disaodiigd or more precise)
linguistic analyses.

In both cases, online or offline integration, different egamtations of linguis-
tic data can be involved, where feature structures canreiinm the source or the
target representation or even both.

To illustrate the use of XML transformation of feature sture markup, we
present concrete, simple examples.

10This is only the common, minimal basis of the different fotisras, each formalism has its own
extensions such as sets, disjunctions, distributed dispms, and differing interpretations of type
semantics, e.g. open world vs. closed world.

5.4. TRANSFORMING XML-ENCODED TFS 103

5.4.2.1 Feature Structure XML as Target Representation

Construction of typed feature structures from other XML rep resentations
that are e.g. produced by a shallow NLP system. Specific eltsmgth attributes
are translated to possibly nested feature-value pairs, ferginput to an HPSG
parseretc In the following example<infl num="singular"/> is translated to
the corresponding feature structure, with valiegular inserted for the XPath
expressior{@num}. Of course, also symbolic names, e.gg to singular etc
could be translated.

<xsl:template match="infl">
<FS type="infl">
<F name="NUMBER">
<FS type="{@num}"/>
</F>
</FS>
</xsl:template>

Feature structure XML as grammar exchange format or meta sytax. An
example is XTDL inSProUT(cf. Chapter 7), where a TDL-based grammar syntax
(Krieger and Schafer, 1994) is translated to an internaesentation based on fea-
ture structure XML. The internal XML representatiodTDL DTD on page 286) is
used as input for type checking and finite-state compilatietails in Section 7.4.

Feature structure XML for data exchange between NLP componets. As an
example, a morphology component could encode generatgaidiic information
in typed feature structure XML for further use in other comeuots, e.g. a parser.

5.4.2.2 Feature Structure XML as Source Representation

Extraction or projection of information encoded in typed feature structures
such as morphology to other formats or as APl accessorsae XPath expression
such as

<xsl:template match="FS[Q@type=’infl’]">
<infl num="F [@name=’NUMBER’]/FS[Q@type="num’]/Qtype"/>
</xsl:template>

is the inverse of the template example above.

AVM visualization tools or editors such as the feature structure renderer in
SProUTor Thistle (Calder, 2000) both take (different) descriptiof typed feature
structures and render a graphical representation of tieréestructure as attribute-
value matrix (AVM). Examples are depicted in Figure 7.8388.12 and 9.24.

104CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

Extraction of tree structures encoded in a complex HPSG feature structure
(parse result), e.g. for further linguistic processingetrankingetc

Extraction and transformation of semantics representatim. An example is a
transformation of typed feature structures to RMRS XML (Estpke, 2003) which
e.g. forms the basic representation for the exchange of dedpshallow NLP
results in the Heart of Gold architecture (Callmeé¢ral., 2004), cf. Figure 5.4.
Details will be discussed in Chapter 9.

<MATCHINFO rule="en_city" cstart="3" cend="7"> <rmrs cfrom="3" cto="7">

<FS type="sprout_rule"> <label vid="1"/>
<F name="0UT"> <ep cfrom="3" cto="T7">
<FS type="ne-location"> <gpred>ne-location</gpred>
<F name="LOCNAME"> <label vid="2"/>
<FS type=""Paris""/> <var sort="x" vid="2"/>
</F> -=> </ep>
<F name="LOCTYPE"> <rarg>
<FS type="city"/> <label vid="2"/>
</F> <rargname>CARG</rargname>
</Fs> <constant>"Paris"
</F> </constant>
</FS> </rarg>
</MATCHINFO> </rmrs>

Figure 5.4: Transformation @ProUTfeature structure XML to RMRS

5.4.2.3 Feature Structure XML as Both Source and Target Repsentation

Translation between different feature structure syntaxesor systems. We ex-
emplify lists that can be encoded differently in typed featstructure markup. The
XSLT template below takes a list encoded as neBIR$T-REST list typed*cons*
and translates it to the ‘flat’ XMI<1ist> element with embedded elements from
theFIRST attribute values in the input. The template works reculgioe FIRST-
REST lists of any length.

<l--
Initial template. Enclose list elements from
FIRST-REST list in <list> element

-=>
<xsl:template match=’FS[Q@type="*cons*"]’>
<xsl:element name="list">
<xsl:call-template name="listlist">
<xsl:with-param name="node" select="."/>
</xsl:call-template>
</xsl:element>
</xsl:template>

5.5. SUMMARY 105

<l--
recursive template: list all list elements
-—>

<xsl:template name="listlist">
<xsl:param name="node"/>
<xsl:copy-of select=’$node/F[@name="FIRST"]/FS’/>
<xsl:if test=’$node/F[@name="REST"]/FS/@type="*cons*"’>
<xsl:call-template name="listlist">
<xsl:with-param name="node"
select=’$node/F [@name="REST"]/FS’/>
</xsl:call-template>
</xsl:if>
</xsl:template>

Similarly, transformation can reorganize the structurenédrmation encoded
in typed feature structures, e.g. move values to a difféesattire path, or rename
features and typestc For a list of further applications of XML-based feature
structure transformation cf. Section 5 in Legal. (2004).

5.4.2.4 Reentrancies and Transformation

A general issue that arises in the case where feature gtegcite source represen-
tations is reentrancies. Here, ‘dereferencing’ is necgssathe basis of lookup in
the XML source in order to have access to every node in the BAG (or feature
path access); XML ID/IDREF declarations support fasterasas discussed al-
ready before. If cyclic reentrancies are disallowed, copyf shared values when
generating the features structure representation is gragasprobably faster way
in order to get the full access to shared values. Identitgrinétion is preserved
through the reentrancy attributeofref in the above examples) anyway.

5.5 Summary

Starting from a discussion of general problems that arisenndeep and shallow
natural language processing components are combinedasudifferent granular-
ity, namings, structure, boundaries, ambiguity and cadsfliwe have motivated the
role of transformation and query for XML-based integrat@friinguistic annota-
tion.

We have examined existing linguistic corpus query langsalyet also general
W3C-supported XML query and transformation languages siscKPath, XSLT
and XQuery, and compared them. We have motivated our chéiasimy XSLT
for online integration of NLP component output.

XSLT has advantages over similar frameworks in that vargftisient imple-
mentations exist. XSLT code is portable, re-useable antlypawen declarative.
Moreover, the extensibility and openness of XSLT as wellresdmbedding in

106CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

lively standards that are further developed also in oth&ttecds such as World
Wide Web and Semantic Web, makes it a promising framewotkfalsfuture use.
Finally, we have addressed the problem of transforming Xéticoded typed
feature structures that may play a role for deep-shalloegiaition architectures,
using XSLT.
In the remainder of the thesis, we will concentrate on dbswgivarious appli-
cations of XSLT-based NLP component integrations.

Chapter 6

Hybrid Architectures

This chapter serves the purpose of a lead-in into the coteptre thesis describ-
ing hybrid architectures. We first motivate why architeetuare needed to perform
the deep-shallow integration task. We then present an venf related work and
state of the art in general architectures for linguisticcpssing and XML-based ar-
chitectures. We conclude with an outlook to the followingethchapters in each
of which the author’s contributions to a deep-shallow ingign architecture will
be described.

6.1 Motivation and Requirements

In the preceding chapters, we have shown what the problerdsey processing
are, how shallow processing can help to improve (mainly stiess of) deep pro-
cessing, that shallow processing results can be naturadlydzd in XML, and what
the difficulties are when combining shallow and deep praongs®sults. What is
missing so far is amfrastructureor architecturethat supports the combination of
various (pre-existing) shallow and deep natural languagegssors in such a way
that the benefits from the combination can be exploited idieatons. We collect
some properties that such architectures should possess.

Flexibility and configurability. First of all, deep-shallow combination in lan-
guage processing and language technology is a new field, gnduarent appli-
cation is still experimental. Thus, a necessary propertguzh architectures is
flexibility with respect to how and which NLP components are combingd peo-
cessing order (sequential, on demand, in parallel) andrirdton (annotation)
flow. Related to this topic is the requirement tiaegration of new NLP compo-
nentsshould be easy, as should tenfiguration of NLP components

Openness, XML standoff support. Opennesgo linguistic theories and repre-
sentation formalisms is an important concern, because th@&either a commonly

107

108 CHAPTER 6. HYBRID ARCHITECTURES

accepted, universal theory of language nor formalism foPNHlowever, integra-
tion of components obeying different paradigms should besibpbe and may be
useful.

As a consequence, and as motivated in the previous chajtdis supportis
a necessary prerequisite, both KL accesdo and forXML transformationof
NLP component output and input. This also includésndoff annotatioraccess
facilities.

Online integration support. In contrast to e.g. XML-based corpus annotation
which is primarily an offline task, thenline combinatiorof NLP components has
to be supported, i.e., several NLP components, possiblfemmgnted in different
programming languages, should be supported to run in pa@llin a sequence
without interruption or manual intervention.

Multilinguality, Unicode support. Finally, while Unicode support is implied by
the XML condition just mentioned, a further issuenmltilinguality of linguistic
resources and processors that may have an impact on theeatate as well.

From this short enumeration, it is obvious that for a flexégbplication integra-
tion, these conditions cannot be metdny hoccombinations of natural language
processors, but only by well-designatthitectures In the following chapters, we
will describe three architectures, with different focysies deep-shallow integra-
tion.

6.2 Related Work

The distinction betweead hocNLP component combination vs. architecture al-
ready divides the field of existing approaches into two gneasiely general NLP
architectures (for shallow processing, without a claimgecsfically support deep
processors or deep-shallow integration), and more ordddsocintegrations of

a fixed set of deep and shallow NLP component instances (in cases for a
fixed language, too). While examples exist for both areastwias missing so far,
and hence is in the focus of this thesis, is a general ar¢hreeéor deep-shallow
integration.

In this section, we will focus on related work in general NLiehitectures.
Specific (mainlyad hog deep-shallow integrations and architectures (e.g. Grove
and Lascarides 2001; Prins and van Noord 2001; Marimon 2b0P&umet al.
2003) will be discussed in related work in Chapter 8.

Cunninghamet al. (1997) present a classification of software infrastructure
for NLP by distinguishing three models they call

¢ referential (analyses are stored as separate representations witierpaf
erences into the original text),

6.2. RELATED WORK 109

e additive(e.g. cumulative SGML/XML annotation markup), and

e abstraction-basedas in typed feature structures of deep analysis where the
analysis result consists of a closed, integrated infonagtructure for larger
text entities, typically a whole sentence).

From the requirements we formulated above for deep-shallmeessing (cf.
page 107) follows that all three of them are needed for achites integrating
deep and shallow NLP, where additive markup can be easilylated by referen-
tial storage.

TIPSTER TIPSTER (Grishman, 1997) falls into the clasg@ferentialmodels.
It mainly provides a document architecture aiming at ftatiing the integration of
shallow NLP components on very large document collectiertg, for information
extraction. The (relational) database view on the analgsislts imposes restric-
tions on the data models that are supported, but is suffifbeshallow component
analyses and has the advantage of supporting very fastsatwémsrge analyzed
document collections.

Corelli Corelli (Zajacet al, 1997; Zajac, 1998) extends TIPSTER by generaliz-
ing feature-value pairs to typed feature structures wige tgeclarations and type
checks, hence opening TIPSTER towardsdbstraction-base@pproach. How-
ever, the status and availability of the implementationrislear and the architec-
ture seems not to have been used outside the initial project.

GATE GATE (Cunninghanet al., 2002) augments TIPSTER lbgditivemarkup
extensions. GATE also introduces multilinguality, comathwmpressive amount
of resources and ready-to-use components, and has a vaicosimunity. The
lack of a declarative formalism (beyond pattern matchimg)ttie development of
e.g. domain-specific resources with the need to fall-ba€kdoJava program code
makes the system somewhat awkward and look more ad-hoc dsaaldle.

In that sense, GATE’s focus is more an architecture sheh féxible and
graphically definable NLP analysis workflows. GATE can wellused for com-
bining multiple shallow preprocessors, but as GATE congbeignores deep lin-
guistic processing, e.g. on the basis of typed featuretsies;, it is not an ideal
candidate for deep-shallow integration. GATE will also bscdssed in related
work in Chapter 7.

ALEP ALEP (Simpkins, 1994) is a parser for HPSG-like grammardemented
in Prolog that has been in a later development phase extdnded SGML in-
terface for external part-of-speech taggers and opes-glasds such as number,
time and named entity expressions (Bredenkatngl., 1996; Declerck and Maas,
1997), the, as the authors call theamessy details large-scale grammar develop-
ment.

110 CHAPTER 6. HYBRID ARCHITECTURES

ALEP foresees an explicit interface between preproceddiexf handling’ in
their terminology) and the deep parser (‘linguistic stawet). The interface con-
sists of Prolog terms that insert information gathered byuke{based) tagger and
awk or perl-encoded named entity identification and normalizatioesuto the
typed feature structures of the core ALEP parser.

Because of pre-parsing disambiguation of part-of-speeftiimation through
the tagger (and the generally slow Prolog parser), the qmtsne for a sentence
could be drastically reduced (approx. factor 5 accordinthéopaper) simply by
filtering out alternatives that would otherwise have to becpssed by time-costly
unification.

The system has been developed in the LS-GRAM and MELISSApt®jap-
plied to newspaper texts and command and control for Engigihman and Span-
ish. The ALEP system itself has two severe restrictions ritegte its use for real,
state-of-the-art HPSG grammars hard. The first one is thedfmultiple inheri-
tance in the formalism (it must be simulated through macr®@stondly, the overall
performance of the parser is extremely poor compared to negent implementa-
tions such as PET.

LT XML LT XML (Brew et al, 2000), originally developed as LT NSL for
SGML, consists of a set of C programs for combining and query{ML an-
notations. It is file-based and, besides command line toolsies with a C API.
Most of the features such as pointers, querying, transfayndounting, searching,
sorting and text stripping XML that are available as segatatls, can nowadays
be formulated more conveniently in XPath or XSLT which weog available at
the time LT NSL and LT XML were developed. In that sense, LT-XM an inter-
esting early approach edditivemarkup, but somewhat technologically overcome
by later W3C developments. There is no special handling mpa for deep pro-
cessing.

VERBMOBIL ICE VERBMOBIL ICE (INTARC Communication Environment;
Amtrup 1995) is an infrastructure for communication in dizited Al systems
that has been implemented on top of a virtualization macRivi1 (parallel vir-
tual machine). ICE provides a channel-based model for canization in hetero-
geneous networks and interfaces for programming languagesas C, C++, LISP,
Prolog and TCL. ICE formed the communication infrastruetur the speech-to-
speech translation system demonstrator and prototypee0f#RBMOBIL project
(Wahlster, 2000).

Component communication, especially for speech analysislearly in the
foreground of ICE, whereas the content combination or ntiedias left to the
underlying modules or applications. An explicit concungstrategy (time con-
straints; interruptible components; the fastest compoméns’) is interesting, but
contrary to our approach that tries to benefit from synergyeghthrough the com-
bination of results of different components, assuming they can complete their

6.3. GENERAL XML PROCESSING FRAMEWORKS 111

computation, and that one can wait for the full output of ttieeo (sentence-wise),
thus treating NLP components as black boxes that are notuptéle!. As the re-
cently developed NLP components are reasonably fast (c@upa VERBMOBIL
times), this is a realistic and not too limiting assumption.

Because of the time-critical task inB®kBMOBIL speech-to-speech translation,
deep processing had to be interrupted often before a fudkepawuld be computed.
In this case, chart fragments could be used, after topabgarting, to construct a
partial, robust analysis (Kaspetal., 1999). While thisanytimeapproach may not
lead to satisfactory semantic analyses (which is the kegfiteane expects when
employing deep analysis) in the general case, it was suffiéde short utterances
in dialog situations as addressed bgRBMOBIL.

There was also an accuracy-oriented mode for situationisowfttime con-
straints in VERBMOBIL, where deep analysis was not interrupted and could deliver
full results. However, there was no content combination ediation of NLP com-
ponent output either.

MULTIPLATFORM testbed Similarto VERBMOBIL ICE, MULTIPLATFORM test-
bed (Herzoget al,, 2003, 2004) focuses on speech input, and, in addition,i-mult
modal dialog, e.g. through gestures etc. The architectasebken developed for
the large-scale SmartKom project (Wahlster, 2006) deahity multimodal di-
alogs on various different devices from PDA, home informatystem, to public
stationary communication kiosks.

The PVM-based architecture frome®BMOBIL has been extended by a pub-
lish/subscribe message system with named message queaia; ta overcome
the bottleneck of the point-to-point communication as isgmbby the \ERBMO-
BIL architecture. An XML language M3L has been developed to gswdate the
outputs of the various components. Just as EREMOBIL, component commu-
nication is in the foreground, not the close integrationi@iedent linguistic repre-
sentations.

The architectures that will be described in the followingoters focus on writ-
ten text and document analysis with an emphasis on highgioecand detailed,
complete analyses and hence do not require or admit theasfiete constraint and
communication mechanisms implemented f@RBmMOBIL and SmartKom. How-
ever, a combination of the described approaches could liel ase later stage for
e.g. speech processing.

6.3 General XML Processing Frameworks

In this context, we can only briefly discuss some XML-basedMiL-supporting
software architecture frameworks. They have been developmpletely indepen-
dently of natural language processing, and hence lack matheaoncepts and

1As a matter of fact, none of the many pre-exsiting NLP compehae use features anytime
capabilities.

112 CHAPTER 6. HYBRID ARCHITECTURES

requirements that are needed for NLP. However, as they ddaMML represen-
tations, control flow and architecture, they could at leasid(in fact are partly)
used in the frameworks that will be described in the sequel.

TheXML Pipeline Definition Language note describes a framework for pro-
cessing XML documents with minimal conversion overhead defihable work-
flow. XML pipelines describe the processing relationshipsveen XML resources.
A pipeline documentspecifies the inputs and outputs to XML processes and a
pipeline controller uses this description to figure out the chain of processiag th
must be executed in order to get a particular result.

Apache Ant® is a build tool similar to the Unixmake tool, but is working
platform-independently as it is implemented in Java. IsUSkIL ascarrier syntax
for project and target descriptions. Besides dependersniuon of definable
targets (inherited from theake concept), Ant supports parallelism, sequence, and
XSL transformations. The definition of the workflows is dorther implicitly
using target dependencies (similar to XML pipelines, buhaut implicit flow of
information) or explicitly as in other scripting languagést will be discussed in
a testing and evaluation application in Section 7.8.

Apache Cocoort is a web publishing framework with explicit XSLT support
with a focus on dynamic multi-channel web publishing andcsseparation of
application control, logic, content, and style (layout)}t provides 'component
pipelines’, each component on the pipeline specializing articular operation.
However, a strong focus is on HTML and PDF output of the XMlc@ahed con-
tent.

XBeans(Martin, 2000) is a generic framework that uses the Javadesnin-
nology to provide a component-oriented approach to defimkfloavs on the basis
of XML DOM documents. XBeans provide a nice and elegant waynglement
distributed XML-based architectures on the basis of patlike components. Al-
though already published as open source tool in the year, 28@0technology
seems not to have reached the acceptation in the Java/XMImaoity it may
deserve.

Apache TomcaP is a Web application server implemented in Java providing
a reference implementation of the Java servlet and Javarspage technology.
Tomcat can be used to distribute application services (€lg?) over a network
architecture.

As stated above, these frameworks are too general for NLRaoemt inte-
gration (e.g., there is no support for standoff annotatitmit at least constitute
interesting related frameworks, partly with explicit XStdatures, to XML-based
software architecture.

2http://w3c.org/TR/xml-pipeline/
Shttp://ant.apache.org
4http://cocoon.apache.org
Shttp://tomcat.apache. org

6.4. THE DEEP-SHALLOW ARCHITECTURES TRILOGY 113

6.4 The Deep-Shallow Architectures Trilogy

In the three following chapters, we will present our conttibns to three architec-
tures related to deep-shallow integration.

e Chapter 7: SProUT(Drozdzyhskiet al., 2004; Beckeet al., 2002; Krieger
et al, 2004) is a recent, rule-based formalism and system with lsii. X
architecture. It differs from the other two frameworks lvelm that full
parsing in the HPSG spirit is not directly supported (in tbeise SProUT
is shallow). However, the underlying formalism shares WHEBISG the typed
feature structures and the powerful unification operatian, SProUT is
hybrid on the formalism level.

This permits highly structured information both encodedrttes and as
output result, e.g. for information extraction. Moreov&ProUT inter-
preters can be cascaded and hence support more powerfepéideanal-
yses. SProUT itself is, as a structured shallow component, part of many
multilingual deep-shallow integration scenarios we wasdribe for the third
framework, Heart of Gold.

e Chapter 8: WHITEBOARD (Neumann and Schafer, 2002; Crysmastral.,
2002; Franket al., 2003) is a sequential architecture for standoff markup,
based on XSLT. The focus lies on filtering for search spaceatamh as
input for the deep processing located at the end of the sequé&dvantages
are improved lexical and syntactic coverage and parsingdsge

WHITEBOARD is probably the most comprehensive broad-coverage deep-
shallow integration that has been implemented so far, wagpert for pars-

ing open-domain newspaper text. However, it has been fuffiantiated for
German only, and is now in many respects superseded by ttieftAme-
work, Heart of Gold.

e Chapter 9: Heart of Gold, the BEPTHOUGHT core architecture framework
(Callmeieret al., 2004; Schafer, 2006a) is a generalization ciMNEBOARD
with more flexible configuration facilities, the depth of &rsés can be cho-
sen by application clients. In addition to syntactic stdhdwarkup, a uni-
form robust semantics representation formalism (RMRS gStgke 2003) is
employed, serving e.g. as additional fall-back @adt-parsingintegration
layer.

Heart of Gold extends WITEBOARD with respect to distributability over a
network, multilinguality support, less restrictive praseng model (not just
sequential, but also concurrent NLB)¢ Thus, Heart of Gold can be charac-
terized as NLP middleware in between NLP-based applicaiio existing
NLP components. Heart of Gold includ&roUT as important, however
one of many integrated, multilingual components.

114 CHAPTER 6. HYBRID ARCHITECTURES

Chapter 7

SProUT

7.1 Introduction

The first of the three architectures to be describe8RsoUT. SProUTis different
from the other two architectures we will present in the nexd thapters in that
is does not constitute a proper, dedicated architecturgheomtegration of (pre-
existing) deep and shallow processing components, nop@sgible or intended to
parse HPSG or related deep grammars \@ifroUTalone.

Instead SProUT" is an amalgamation of two basic concepts from shallow pro-
cessing, namely finite-state methods, and from deep (@nistrased) processing,
namely typed unification based on an underlying type inalce hierarchy, com-
bined in a single, new, declarative grammar formalism.

In other words, not the architecture is hybrid, but the fdrsma. However, as
SProUT also provides a flexible architecture combining subcomptméor tok-
enization, morphological analysis and gazetteers (intaddio its grammar for-
malism), it forms a powerful general-purpose multilingnaktural language pro-
cessor that fits well into the architecture trilogy.

Although the implemented processing 8ProUT strategy is rather shallow
than deepSProUTgrammars could be combined to fulfill tasks that could well be
characterized as deep processing. Moreover, the strdatiatea model oSProUT
resembles (and in fact is inherited from) unification-bagedinmar formalisms of
deep parsers.

Thus,SProUTis ‘deeper’ and more flexible than most other shallow promesss
(that are specialized in typically a single task), and cao &le used as part of
hybrid deep-shallow integration architectures. Althogbhallow in the processing
paradigm,SProUTstands out from the crowd of typical shallow systems through
its rich declarative formalism and flexibility, and may hédpfill the gap between
classical shallow and deep natural language processors.

The development of th&ProUTformalism and implementation is joint work

1SProUTis an abbreviation for ‘Shallow Processing with Unificatimd Typed Feature Struc-
tures’.

115

116 CHAPTER 7. SPROUT

(Beckeret al, 2002; Drozdzyhskit al., 2004). After a brief introduction, we
will therefore focus on our own contributions to formalismterfaces and XML
facilities related to deep-shallow processing and XML dation transformation.
Applications of SProUT as part of hybrid deep-shallow architectures will be dis-
cussed in Chapter 9.

7.2 A Brief Introduction to SProUT

7.2.1 Motivation

The SProUTformalism combines unification of typed feature structuaed regu-
lar expressions in a rule-based framework. Regular expressnot directly avail-
able in typed feature structures, are a simple, efficienfignitive means to repre-
sent patterns over symbols with potential repetition. Tyfeature structures gen-
eralize symbols (strings) and add further informationrlmgaconstructs, namely
(1) arbitrarily nested feature-value pairs (2) types ceden a closed world inher-
itance hierarchy, (3) structure sharing between featureesgcf. Section 3.1.1).

The motivation for developing a hybrid grammar formalissmtxning both
paradigms for shallow natural language processing is wiwehe observation that
(i) simple regular expression matching over input symbiasgt(strings or abstrac-
tions thereof) is insufficient, error-prone and inappraf@ifor advanced language
technology tasks (e.g. in languages with rich morpholodjy).full parsing with
typed feature structures is computational overkill androbtust enough for sim-
ple language technology tasks such as named entity extnagtitemplate-based
information extraction.

7.2.2 Targeted Applications

Applications of SProUTare various domain-specific basic NLP techniques such as
multilingual named entity recognition with structured jput, morphological anal-
ysis and shallow parsing, but also advanced informatioraetion tasks such as
template-based information extraction, shallow relagxraction, opinion min-
ing, etc. As both formalism and implementation are generic, otheliegtions are
feasible, even outside the field of language technology.

The advantage of using unification and typed feature strestin unification-
based grammar formalisms (Kay, 1979; Pereira and WarredQ); 1Shieberet al,,
1983; Shieber, 1986)has already been motivated in Chapter 3. They provide
a monotonicand declarative representation language for linguistmatedge on
which a parser/generator or a uniform type deduction mashaacts as the infer-
ence engine.

In contrast to simple feature-value pairs with atomic valas they are used
e.g. in GATE's JAPE formalism discussed in the next sectigmed feature struc-

2A slightly more general, but often synonymously used terooisstraint-based grammar formal-
ism.

7.2. ABRIEF INTRODUCTION TO SPROUT 117

tures provide additional expressivity through (1) typedeoed in a type inheri-

tance hierarchy, (2) nested feature-value structuresai@ferences as an explicit
structure-sharing facility between feature values (cfrialdes in logic program-

ming), altogether with a well-researched set-theoreeahantics.

The well-defined unification operation, set-theoreticaltyintersection of the
denotation of two typed feature structures that is both ttoave and determines
satisfiability (compatibility), and subsumption (subseperset relation between
the denotations of two typed feature structures) provide pewerful operations
that can be used to compare and merge typed feature stmidtueemonotonic
way.

7.2.3 Related Work

Both finite-state techniques and unification-based typatlfe structures have a
long tradition in natural language processing.

The pure finite-state-based shallow processing approdehas proved to be
very efficient in terms of processing speed. The first apfitina of finite-state pro-
cessing in NLP were morphology and phonology (Koskennid®83; Karttunen,
1983; Kaplan and Kay, 1994) but have been extended later by AP tasks in-
cluding tokenization and ‘light’ parsingtc (Karttunenet al.,, 1996). Piskorski and
Neumann (2000) present SPPC, a highly efficient system hages cascades of
simple finite-state grammars, based on a small number of pasdicates. Com-
plex constraints cannot be encoded in the finite-state devithe idea of using
more complex annotations on the transitions of FS autonmegebben considered
in SMES (Neumanret al, 1997) which uses regular grammars with predicates
over morphologically analyzed tokens.

These (LISP) predicates inspect arbitrary propertiesefrthut tokens such as
part of speech or inflectional information. Van Noord anddeenann (2001) in-
troduce arbitrary predicates over symbols and discusswgperations on finite-
state acceptors and transducers. They observe that aateithtpredicates gen-
erally have fewer states and transitions. However, theudise automata only
operate on symbols of a finite input alphabet. As a drawbacisioig too many or
too complex predicates, standard optimization technique$ardly applicable.

Cascaded finite-state systems have been developed fomiion extraction.
The most successful systems provide high-level specificdéinguages for gram-
mar writing. The RsTus system (Hobbst al, 1997) uses CPSL (Common
Pattern Specification Language). The more recent GATE msy§&inningham,
2000) provides JAPE (Java Annotation Patterns Engine);wilsisimilar in spirit
to CPSL and borrows features from CPSL. A CPSL/JAPE gramroatams
pattern-action rules.

The LHS (left hand side) of a rule is a regular expression av@micfeature-
value constraints called annotations (the recognitiom) plaut without types, uni-
fication or typed feature structure concepts, while the Righi hand side) is an
annotation manipulation statemefar output production, which calls native code

118 CHAPTER 7. SPROUT

(e.g. C or Java), making rule writing difficult for non-pregnmers. Furthermore,
even though there is a mechanism for variable binding whéctesponsible for
copying values to the RHS, this mechanism is not capableardively describ-

ing structure sharing among the rule elements. The anontaiodel of GATE is

based on TIPSTER (Grishman, 1997), already discussed tioSé&c2.

Like SProUT Ellogon is a ‘multilingual, cross-platform, general-pase text
engineering environment’ (Petagisal.,, 2002). It shares with GATE the TIPSTER
annotation concept. However, while GATE provides at leastgle pattern-based
grammar formalism, Ellogon is a pure architecture and Vigation shell to com-
bine existing NLP components programmatically throughsARHoth systems do
not provide a powerful and generic declarative formalismmparable t&SProUTs
TDL andXTDL.

7.2.4 TheSProUT Formalism

The SProUT formalism consists of two part§,DL (Krieger and Schafer, 1994;
Uszkoreitet al,, 1994) for building the type hierarchy, a¥DL for the rule syn-

tax that incorporate§ DL and extends its typed feature structure part by regular
expressions, sewstc Both are grounded in a closed type world semantics ver-
sion that is shared with grammar formalisms of PET (Callmet600) and LKB
(Copestake, 2002). The closed-world semantics meansyjhed tire pairwise in-
compatible unless they are in a subtype relationship orestiarexplicitly defined
common subtype (greatest lower bound, GLB).

7.24.1 TDL

In the BNF syntax offDL (Figure 7.1)jdentifier andstring are pre-terminals de-
fined as in usual programming language syntax for identifach as class names
or variable names and strings (character sequences ethafodeuble quotes).

typedef— type":="avm"." |
type":<" type"."|
string " : <" type"."
type — identifier
avm —term{ "&" term}*
term — type| fterm| string | coref
fterm — " [" [attr-val {"," attr-val}*] "]"
attr-val — identifier avm
coref — "#"identifier

Figure 7.1:TDL syntax for type definitions

Thetypedefproduction rule is used to introduce new types. The left tygpme
is the new type to be defined, the right type name is the sypertif additional
features or feature value refinements are introduced," tk¢ must be used to

7.2. ABRIEF INTRODUCTION TO SPROUT 119

indicate the type definition, and the ampersand is used fobamation (indicating
set-denotational intersection), e.g.

ne-location := enamex & [LOCTYPE loc-type,
LOCNAME string,
AREA string].

introduces the new typee-locationas subtype of enamex and introduces three
new features LOCTYPE, LOCNAME and AREA. As can also be seemfr
this example, feature-value pairs are enclosed in squackéts and separated by
comma.

Multiple inheritance is defined by specifying a complex stype expression
on the right side, where the supertypes are again combinad tlee ampersand
symbol:

inf := fin_inf & inf_infzu & inf_prp & inf_psp.
Otherwise," : <" indicates type introduction without feature refinemer, e.
noun :< part_of_speech.

Coreferences indicate structure sharing using variabi#s avleading hash
sign, e.g.

[ATTR1 #shared_value, ATTR2 #shared_value]

In addition to what is stated in the (simplified) BNF, there abbreviation
constructs (‘syntactic sugar’) for list-valued featureustures. < and > enclose
list elements4dvm separated by comma, an abbreviation fortie* and*cons*
types for first-rest lists encoded as typed feature strastur

To this aim, besidestop*, the most general type in the type hierarchy, and
avm, the supertype of all attributed types, the following types predefined:

*avmx :< *topx*.

¥list :< *avmxk.

null :< *x1list*.

xcons* := xlist* & [FIRST *topx,
REST *topx].

In the sample definition below, th@orphtype inherits fromsign and intro-
duces three more morphological attributes with the comedimg value type re-
strictions.

morph := sign & [POS pos,
STEM string,
INFL infl,
SEGMENTATION 1list].

120 CHAPTER 7. SPROUT

Similarly, basic types such @&skenizerandgazetteeexist for each of the pre-
definedSProUTprocessing components that will be described later. Thefigex
ure illustrates a small (upper) fragment of a type hierarchy

top

T

atom *avm* *rule*

PN

tense sign infl index-avm

| /N TN

present token morph'ang tokentype

/1 /N

de en separator url

Except for the predefined typétp*, *avm*, *null* , *list* and*cons*, all
type definitions are optional and can be assigned freelyafik-specific purposes.
The type hierarchy is compiled into an efficient bit-vectoceding using the gram-
mar preprocessdtlop that is part of the PET system (Callmeier, 2000).

7.2.4.2 XTDL

The SProUT rule syntax, calledXTDL, is an extension of th& DL syntax for
defining type hierarchies, but without tiypedef production (Figure 7.1). In-
stead, it is possible to define a grammar consisting of ruldsnegular expression
patterns on the LHS that do not match simple atomic symboistyiped feature
structures (production rul@vmin the BNF in Figure 7.1).

The typed feature structure input stream is e.g. generateal tbkenizer or
other preprocessing components such as morphology or #e@zeokup module
from an input text. Alternatively, arbitrary typed featwsteuctures can be given as
input via an APl or as XML input document. TRETDL grammar is compiled and
interpreted by th&XTDL interpreter at runtime.

The LHS of anXTDL rule is a regular expression over typed feature structures
(in TDL syntax), representing the recognition pattern. The RHSistsof a single
typed feature structure specifying the output structurengequently, equality of
atomic symbols is replaced loyifiability of typed feature structures and the output
is constructed using typed feature structurefication w.r.t. the type hierarchy
defined inTDL.

The rule concept (already without the regular expressicer typed feature
structures extension) is comparablddrical rulesin unification-based grammars
such as the following from the first HPSG book (Pollard and, 38§7).

E,?_'SSN 3rdsng
3RDSNG[Z _, | PHON f3rpsndll:[2])

SYN|LOC|SUBCAT

SYN|LOC|SUBCAT SEMCONT

SEM/CONT

7.2. ABRIEF INTRODUCTION TO SPROUT 121

Such a rule, including the transport mechanism of featulieegarom the LHS
to the RHS through coreferences, and the functional opefatgsnscomputing
a phonological variant, could be directly expresseXifDL syntax, the vertical
bar| being syntactic sugar for embedded feature paths.

The implemented processing strategyasgest match The rules are applied
to the input sequence. If multiple rules apply to the sameaece of input items,
then the rule(s) with the longest matching input sequence are evaluated such
that the RHS is instantiated, and the resulting output feattructures is appended
to the output of the rule interpreter.

An XTDL rule (cf. BNF in Figure 7.2) starts with a named label for thker
name. Rules can be ‘called’ from other rules usingséek operator and indicating
the rule via its label. After the> separator, the LHS recognition part follows (a
regular expression), then the LHS/RHS separatofinally the RHS output feature
structure. Each rule is terminated by a dot.

For the LHS regular expression over typed feature strusfuhe standard op-
erators*, 7, +, {n}, {m,n} can be employed for Kleene star, optionality, Kleene
plus, n-fold repetition and range. A simple space betweerdims signifies con-
catenation (sequence of input items).

rule — rulename{":>" | ":/"} regexp"->" [avm] [fun-od "."
rulename— identifier
regexp — avm| "@seek (" rulename")" | " (" regexp")" |
regexp{regexg " | regexp{" | " regexg* |
regexp{"x" | "+" | "?"} | regexp"{"int[","int] "}"
fun-op — ", where" coref "=" fun-app{"," coref "=" fun-app*
fun-app — identifier" (" term{"," term}* ")

Figure 7.2:XTDL rule syntax as extension GiDL

We briefly exemplify the conciseness of the formalism. Thet #TDL gram-
mar rule describes a sequence of morphologically analyaeshs (of typenorph
with attributes POS and INFL). The first TFS matches one arv g¢ems () with
part-of-speectbeterminer. Then, zero or moradjective items are matched
(*). Finally, one or twaVoun items {1,2}) are consumed.

The use of a variable (e.¢case) in different places establishes a coreference
(i.e., structure sharing) between features. This exampfierees e.g. agreement
in case, number, and gender for the matched items. l.e.djgittives must have
compatible values for these features.

If the recognition pattern on the LHS successfully matclhesinput, the de-
scription on the RHS creates a feature structure of plpase The category is
shared with the categomoun of the right-most token(s) and the agreement fea-
tures result from the unification of the agreement featuféiseanorphtokens. An
extended example of morphology input items for a completéesee is depicted
on page 214.

122 CHAPTER 7. SPROUT

np :> morph & [POS Determiner,

INFL [CASE #case, NUM #number, GEN #gender]] 7
morph & [POS Adjective,

INFL [CASE #case, NUM #number, GEN #gender]] *
morph & [POS Noun & #cat,

INFL [CASE #case, NUM #number, GEN #gender]] {1,2}
-> phrase & [CAT #cat,

AGR agr & [CASE #case, NUM #number, GEN #gender]].

in AVM notation, we use the bullet] sign to indicate sequence on the LHS.
This corresponds to a whitespace in ti@DL syntax. The usage of the other
symbols for regular expressiortcshould be obvious.

[morph 77 morph '
pos Determiner POs Adjective
np > CASE [casg . CASE [casg .
INFL | NUM INFL | NUM
GEN i GEN
morph {12} [phrase 1
POs [cajNoun AT gr
CASE [casg - CASE [casg
INFL | NUM AGR
NUM
GEN i i GEN

The second example addresses the recognition of river ndrhesule matches
either expressions consisting of an (unknown) capitalizedd (via match with to-
ken typelstcapwd, followed by a noun with stemver or brook (via the English
morphology component; disjunction has a higher preced#rareconcatenation),
or Gazetteer entries of tymgazriver containing English river names represented
by the Gazetteer typgazriver.

The generated output structure of type-locationcontains a location type
river and the location name transported via the coreference dy#ilame. To
sum up, this rule recognizes both unknown river names (viateem involving
morphology lookup) and known river names (via a gazettedcima

river :> (token & [TYPE lstcapwd, SURFACE #lname]

(morph & [STEM "river", POS noun, SURFACE #key]

| morph & [STEM "brook", POS noun, SURFACE #key]))
| (gazetteer & [GTYPE gaz_river, CONCEPT #lname, DESIGNATOR #key])
-> ne-location & [LOCTYPE river, LOCNAME #lname, DESCRIPTOR #key].

in AVM notation

morph morph
token P) P
STEM "river" STEM "brook"
POS noun POS noun

SURFACE SURFACE

river:> | | TYPE 1stcapwd| e
SURFACE

7.2. ABRIEF INTRODUCTION TO SPROUT 123

gazetteer ne-location
GTYPE gazriver LOCTYPE river
| CONCEPT | LocNAME
DESIGNATOR DESCRIPTOR [key|

XTDL provides a functional operator facility that can be usedlaze func-
tion calls with values and arguments linked through coesfee constraints into
the rules. The functions can be defined in Java code that eziagsd with the
grammars. Typical applications of this operator are usdindd string operations.

Example (taken from the English named entity grammar):

;3 Dummy rule for "en_temp_unit_amount"
n_and_a_half :/
gazetteer & [GTYPE gaz_cardinal, CONCEPT #num, CSTART #cs]
token & [SURFACE "and"]
morph & [STEM "a"]
token & [SURFACE "half"]
-> interval & [TIMEX_AMOUNT #num_half, CSTART #cs],
where #num_half = Append (#num, ".5").

in AVM notation

[gazetteer i
GTYPE azcardinal token morph
n_anda half :> 9 ° ° P .
CONCEPT SURFACE "and" STEM "a"
| CSTART]
r [interval
token
TIMEX _AMOUNT [numchalf
SURFACE "half"
L CSTART

where

— Append(fu, ".5") .

whereAppend is the usual string-appending function

The rule recognizes number expressions written as e.g. atwba half’ and
copies the normalized numeric amount into the output strectin this case for
time expressions/duration) under the feature TIMBXIOUNT’, e.g. as"2.5".
In this rule, the number as text recognition is implementiedavgazetteer lookup
(first pattern).

Nonterminals not defined in th&€TDL BNF (Figure 7.2) are shared with the
TDL syntax. TheTDL BNF rule fortermis augmented irKTDL by set-valued

SThere is only a handful of elementary functional operatarsded for the later described mul-
tilingual named entity grammars. Normally, grammar wetdp not need to define new functional
operators.

124 CHAPTER 7. SPROUT

attribute values (in curly brackets) and the collect oper#itat collects values re-
peated under Kleene star or plus in a set or list on the RHS.

term — type| fterm| set| coref | collect
Set N n{u [term{n , " term}*] u}n
collect— "% "identifier

A weak form of negation is also supported, but at the toptlef/eHS pattern
expressions only, i.e., not as feature valties

The following sample rule matches (via the German morphok@mmponent)
noun phrases such as ‘der griine Baum’ or ‘den grof3en Baumarmexcludes ‘der
seltene Baum’ or ‘des seltenen Baumes'.

baum_rule :> morph & [STEM "der"]
morph & ~ [STEM "selten"] & [STEM #stem]
morph & [STEM "baum"]#
-> out & [DESCR #stem].

in AVM notation

morph
morph morph
baumrule > e— | STEM "selten" | e
STEM "der" STEM "baum"
STEM

out
— .
DESCR

In contrast to negation, sets are only admitted as featlteesa We present
an example in combination with the collect operator thalects the values under
Kleene star on the LHS of a rule in a set on the RHS. The follgwirle matches
(via the German morphology component) phrasal expressiacts as ‘die kleinen
grinen Mannchen’ and outputs the stems of the adjectivgs{"klein”, "grin” },
in a set under the DESCR attribute in the output structure.

collect_adjs :> morph & [POS det]
(morph & [POS adjective, STEM %1])=*

morph & [POS noun]

-> out & [DESCR %{1}].

in AVM notation

morph
. morph — morph out
collectadjs > e | POS adjective| e — .
POS det POS noun DESCR |{1}
STEM

4This would require extending tHEDL formalism with disjunction, a great source of inefficiency.
Instead, disjunction e.g. of morphological feature valges easily and very efficiently be expressed
using the type hierarchy.

7.2. ABRIEF INTRODUCTION TO SPROUT 125

The above rules also exemplified how morphological analyaisbe used to
write general rules that apply to a whole bunch of collocatedds, thus making
grammar writing quite comfortable.

A final remark on the examples. For the sake of simplicity dad #or showing
the application of built-in morphology and gazetteer congrgs, the rule input
was chosen to be generated by one of these ready-t&BseUT components.
However, it should be pointed out here that also generalifeattructures could
be used as input, e.g. produced by a previous componentdaatherSProUT
grammar) in a cascade, or by any other NLP component, transfbinto a format
ingestible by theSProUT interpreter. In the next section, we will show how the
architecture is set up and what general (XML) input and dutptmats exist in
order to connecSProUTwith the outside world, including applications.

7.2.5 Architecture and Components

Central to theSProUT architecture is thenterpreter, the core algorithm for ex-
ecuting theXTDL grammar that was transformed into a minimized automaton
at compile time. The interpreter tries to match input seqaerof typed feature
structures with th&XTDL grammar LHS of the grammar rules using typed feature
structure unifiability (and unification in case of a match).

[rule
morph 7 [morph 1 [morph
SURFACE nice SURFACE clever SURFACE qgirls
STEM nice STEM clever STEM girl
POS Adjective POS Adjective POS Noun
N infl ' infl ' infl
CASE nom CASE nom CASE nom
INFL NUM plural INFL NUM plural INFL NUM plural
GEN fem GEN fem GEN fem

Figure 7.3: The matched input sequence for the phrase ‘tesercgirls’

The output is the sequence of the RHSes of the successfulliedgmatch-
ing) rules that may include values from the LHSes when trarief to the RHS via
unification. The implementation of the ‘transport’ mectsmiitself is straightfor-
wardly performed by putting LHS and RHS into a single, wragpieature struc-
tures under attributes IN in a list (LHS) and OUT (RHS), stiwe sharing and
unification will do the real transport of values.

We give a short example for the noun phrase rule defined onZ@ymatching
an input sequence ‘nice clever girls’. The morphologicallgsis of that phrase as
input to the interpreter is presented in Figure 7.3, theahgickets being syntactic
sugar for a first-rest list representation.

126 CHAPTER 7. SPROUT

The morphology components 8fProUTfor European languages such as En-
glish, German, French, Italian or Spanish are based on MMpources (Petit-
pierre and Russell, 1995; Krieger and Xu, 2003). Japanepaagation and PoS
tagging is based on ChaSen (Asahara and Matsumoto, 200 sehsegmenta-
tion on ShanXi (Liu, 2001).

[rule
Jectlve Ject|ve POS Noun
infl infl
CASE
IN< INFL CASE ’ INFL CASE ’ INFL [NUM
NUM NUM GEN
GEN GEN infl
phrase
CAT
agr
ouT AR |CASE
NUM
GEN

Figure 7.4: The successfully expanded NP rule from page i82nw determiner
(pattern:?), two adjectives), and a noun{(1,2})

From the rule definition and the input token sequence, tleepneter will con-
struct a TFS with an instantiated LHS pattern as a valid esipanof the regular
expression in the rule definition (Figure 7.4).

Unification of the morphology input sequence will resulthie structure shown
in Figure 7.5, where the output of the rule application carfidoad under feature
OUT.

Figure 7.6 displays an overview over the major, standardpoomants of the
system and their connection to the interpreter. Most of ésaurces of the stan-
dard components (morphology, type hierarchy, gazetteamigar) are compiled
through specialized (mostly finite-state) compilers fdice#nt processing at run-
time.

For details on the various compilation and minimizatiorhteques developed
and implemented for th&ProUT system, we refer the reader to Kriegetral.
(2004), as we concentrate here on the I/0 embeddir®RroUT.

The common data structure for the basic components suctkesizer, mor-
phology, gazetteer andTDL grammar are typed feature structregach type
and attribute output by the components must have an apptemefinition in the
TDL type hierarchy. Otherwise, a runtime error will be signalegl, types are not
only the ‘glue’ between components and the interpreteratagt serve as a means

5This also includes the added interfaces to external mooglytdegmentizer tools for Asian lan-
guages mentioned above.

7.3. SPROUTPUT DTD 127

[rule
[morph T [morph T [morph
SURFACE nice SURFACE clever SURFACE girls
STEM nice STEM clever STEM girl
POS Adjective POS Adjective POS Noun
IN < infl ' infl ' infl >
INEL CASE [Znom INFL CASE INFL CASE
NUM [l plural NUM NUM
GEN [Blfem GEN GEN
phrase
CAT
agr
ouT AR |CASE
NUM
GEN

Figure 7.5: The final result from the unification of an expahditestance of the
noun phrase rule from page 122 with the TFS for the input ‘cleger girls’ from
Figures 7.3 and 7.4

for consistency checking (cf. Section 7.4).

The type hierarchy is compiled from thEDL sources to a compact binary
representation using thiop preprocessor of the PET system (Callmeier, 2001).
The binary representation is read by the JTFS (Java Typddreeatructures) sub-
system of SProUT implemented by Hans-Ulrich Krieger that uses the compact
encoding of the type hierarchy and provides Java classeefoesenting typed
feature structures including methods for unification arigssmption testing.

7.3 SProUTput DTD: XML and XSLT Transformation of
Results

In this section, we discuss transformation of the typedufeastructures serialized
to XML. As mentioned and motivated in the architecture digsicn above (Sec-
tion 5.4.1), XML-encoded typed feature structures can playmportant role for
interfacing and integration of components.

XML serialization and transformation is e.g. useful for {dterfacing applica-
tions and external components that do not use typed featuidiges or use other
representations of typed feature structures than the dgMamentation (JTFS) of
SProUT, (2) persistent storage of analysis results, e.g. as atitatia annotated
corpora for training statistical models; (3) for visuatiza of results in e.g. AVM
or tree representation.

128 CHAPTER 7. SPROUT

development compile time | runtime

linguistic resources | linguistic resources components

(uncompiled sources) | (compiled binaries) |
3 i | online morphology

| T
mmorph .‘ ~——"1 compiled > morphology
sources 3 morphology component

o input

: — document
tokenizer .1 =1 compiled - tokenizer
definition 3 tokenizer FSA ' > component \ *

3 ___
TDL type compiled type ‘iTF:hlijgrh;?crh& XTDL
definitions hierarchy yp y interpreter

gazetteer
tables

'

) representation
? compiled ‘ gazetteer / *
.; - gazetteer FSA component :
; | analysis
|

.i compiled
§ . XTDL FSA

Figure 7.6:SProUTArchitecture

XTDL
rules

K KSR K
|
()
’

The typed feature structures 8ProUT can be serialized (without the type
hierarchy information which is supposed to be stored eatbrin a compressed
bit-vector encoding format for efficiency reas®ng XML using an extended ver-
sion of theminimal typed feature structure DT®escribed in Section 5.4.1. We
call this format theSProUTput DTD.

The full DTD is contained in the DTD Appendix on page 288.SRroUTput
document consists of a disjunction ofAVICHINFO items, each MTCHINFO con-
taining all readings recognized for a character span (@rtapan) in the input. A
reading is simply a typed feature structure as generateddsyRroUTinterpreter,
in XML transcription.

This is basically a one-to-one mapping of the data strusfure SProUTim-
plementation uses. The same XML format and correspondifé data structure
can also be given as input to ti&ProUTinterpreter, i.e., as a stream ofAvicCH-
INFO objects. This also enables straightforwaascadingof SProUTgrammars:
One grammar can take the output of the previous grammar at inp

The XML format can be transformed into any other XML or textrfat us-
ing the built-in SProUTput XSLT transformét that provides convenient wrappers
around Java’'s XSL transformation framework that is parthef standard JAXP

6Although this is not a major concern ®ProUTwhere type hierarchies are (up to now) by far
smaller than in HPSG grammars.

“Classde .dfki.1lt. sprout.runtime.MatchInfo.

8Classde.dfki.lt. sprout.runtime.XmlTransformer.

7.4. COMPILE TIME TYPE CHECK 129

API.

An extended example for an XSL stylesheet workingSfroUTput will be
presented in Section 9.5.4.1. There, the output of the atdmthmed entity gram-
mar of SProUT (for English, German, Greek and Japanese) is transformed in
the robust semantics representation format RMRS. Theftnaning stylesheet is
generated automatically and solely on the basis offibé type definitions for the
named entity output types.

Similarly, any XML format different from thesProUTput DTD could be read
by the SProUT interpreter as input after an appropriate XSLT translatidinis
now also easy to see how new, external components could dmgrdéd with the
interpreter via the XML interface, e.g. for programmingdaages other than Java.
Together with the generic feature structure forn&®roUTput XML thus forms a
highly generic and flexible, structured XML format for inpiat and output from
the SProUTinterpreter.

7.4 Compile Time Type Check

As stated above, welltypedness of the typed feature stegis important to en-
sure correct and efficient unification operations in therpriter at runtime. It has
to be ensured, e.g., that each feature occurring in the geasiw appropriate for
the associated type, and that all types occurring a definggbitype hierarchy.

While the preprocessor for th€EDL type hierarchy isSProUT has its own
checking algorithm for the simple typed feature structusegported by the core
TDL syntax, this algorithm is not applicable to t\d DL syntax which is a su-
perset ofTDL . Therefore, a new, appropriate type check had to be deve:libyze
checksXTDL definitions for compliance with the type hierarchy definedDL .

The type check constitutes the second stage in a three-ptageocessing
phase for grammar compilation. The first stepX¥DL syntax parsing, then
the type check and generation of an intermediate XML repitesien follows on
which finally the finite state grammar compilation operates.

The first step has been implemented using JavaCC (Viswarauh&ankar,
2002), a parser generator for LL(k) grammars. K¥OL syntax as defined in the
BNF in Figure 7.2, but with refinements and elaborations mesented there for
the sake of simplicity, is defined in a LL(1) grammar with dguial contextual
constraints formulated in attached action rules.

The action rules also generate an intermediate XML reptatien; its DTD
(DTD Appendix on page 286) is called théTDL DTD. We do not go into de-
tails here as the DTD is roughly isomorphic to the BNF streestwith additional
attributes e.g. for access to character positions in thggnali XTDL source (re-
ceived through the JavaCC-generated parser) in order Wdertype check errors
with a precise location in the grammar source, as exempiifiegde SProUTIDE
screenshot in Figure 7.7.

We roughly sketch the type checking algorithm that is exetuthile the inter-

130 CHAPTER 7. SPROUT

mediate representation for finite state compilation is gated recursively during
parsing theXTDL grammar sources. The type hierarchy compiled byfthep
preprocessor is represented in JTFS and can be queriedyquigihash table ac-
cess (type-code mappings) and bit vector operations (GloBpcation, subsump-
tion checking; cf. Ait-Kacket al. 1989).

Type definition check at feature structure (CFS) nodes. The first check tests
if a type is defined in the type hierarchy. String attributuga do not have to be
present in the type hierarchy, but the value type must be atibie (‘appropriate’,
cf. page 40) with thelrDL typestring in the type hierarchy. If a type is not in the
type hierarchy, an error is signaled.

In case multiple types are specified at a feature structursS)@ode (this is
possible in the XTDL syntax), their corresponding GLB (dges& lower bound)
type is looked up in the type hierarchy (including subtygatiens). If it does not
exist, an error is signaled (because of the closed type vasddmption imposed by
the type system). If it exists, the complex type expressiaeplaced by the single
GLB type and a warning is generated for the grammar develthiadra common
subtype has been found and should be used instead in the rule.

Appropriateness and welltypedness checks. The concepts of appropriateness
and welltypedness were already defined on page 40. The a@ieness check
tests whether all features occurring in a typed featurecttre are licensed by a
TDL type definition (directly or through inheritance). A feawccurring without
a licensing type will cause an error. Welltypedness impdippropriateness. The
welltypedness check additionally tests whether the typeash attribute value is
subsumed by either the feature-introducing type definiipany possible refine-
ment following through inheritance.

The list of detected error or warnings is collected duringsipe, and presented
(at least up to the first syntax error) in such a way that thengrar writer can
immediately correct them in the editor (either built-in IE through a generic
editor interface that e.g. supports the text edémeacs) by simply clicking on
the error message (Figure 7.7). The character positioediorthe intermediate
XML representation of the grammar allows to automaticatlinpthe cursor to the
problematic location.

As a result, the implementation of the compile time type &imer algorithm
with exact error positioning has helped to drastically mderrors during and after
grammar development.

7.5 Visualization

We briefly discuss tools we have implemented for graphicatleeing of XML-
encoded typed feature structures. They have been implethdrtth as Swing

7.6. APPLICATIONS 131

(" location.sor [MUMERSOF || S OFganizationsgr || G PEFSOR_NaMes.s
[

o | S productsgr | % timesar |

1»

location_direction >
marph & [STEM "in"]
gazetteer & [CTYPE gaz_location_direction, SURFACE #dir, LANGC de]
(@seek(coumr\/ gazetteer) & [LOCNAME #name, CSTART #cs, CEND #ce])7

ne-location & [AREA #dir & number, NECSTART #cs, NECEND #ce, LOCKAME #name, RECION *top*].

ilocatiun.sgr

Editable { XML) XTDL

@ location.sar: Tyipe number is not welltyped for the value of feature AREA in Teature structure [yped ne-location, line 102 column 36
@ (ocation.sar; Feature REGION js not appropriate for tyoe ne=location, line 102 column 85,

l @ I Compiler L&E‘ﬁifé}l

Figure 7.7: Type check results in ti8ProUTIDE

components for use in the integrat&®ProUT development environment and as
Java applets for viewing in a Java-enabled browser.

The main motivation is to support convenient graphical@spntations in AVM
notation (cf. page 36) of the complex, structured analysssilts of theSProUT
interpreter and th&XTDL grammar rules that would otherwise (in text or XML
representation) make reading of the nested and interliekedtures difficult.

The implementation takes advantage of the common typedréeatructure
subset that is part of botkiTDL and SProUTput and the fact that both representa-
tion formats can be encoded in XML for output. A SAX parserayates the same
(intermediate) object representation for the graphicaineints from both XML in-
put formats KTDL DTD and SProUTput DTD), which is then used to draw (or
update) Swing primitives. Through the XML format, the featstructure repre-
sentation is decoupled from ti&ProUTruntime engine, and the visualization code
is lightweight, which is e.g. important for the Java apptepiementation.

An example of SProUTput andXTDL visualizations as part of th8ProUT
IDE is depicted in Figure 7.8.

A second way of visualization are thIEX AVMs and graphicalXTDL rules
we have seen in this chapter. These have been generated Xf@lLanstylesheet
that reads thXTDL DTD and SProUTput DTD and generatesTeX code of it.
Thanks to the modular DTD design, a single stylesheet cadid@oth DTDs, and
generate the appropriat®l£X source code.

7.6 Applications

IE systems are becoming commercially viable in supportiivgrde information
discovery and management tasks. TBRroUT platform has been adopted as the
core IE component in several EU-funded and industrial jptsjesupporting tasks

132 CHAPTER 7. SPROUT

2 SPROUT - de.spj

File Edit Search Project Resources Process Tools Help

ol=E &
]

& de.spj

A & location.sgr [v | % person_names.sar ar [% timesgr |

i = . : P ne-location
@ Ctype hierarchy (71 TYPE first_capital_word STEM "republik’ TYPE firstcapital.word | ., | LOCTYPE couniz
[} de.arm Al countryl i (token | SURFACE 3% (morph | SURFACE 1® [token | SURFACE 3= | NECSTART 2 [
@ Clarammarfies || 4 | csTART | cenp 1| CEND NECEND [
& incation sarl] LOCNAME [mamd

& umexsgr ||
#4 arganizatiol E

Rules 1
¥ cdy-gazetteer|

[he-location
9| LOCTYPE country
| LochamE [Eme |

GTYPE gaz_country
country-gazetteer > [gazetteer | LANG de

CSTART

CONCEPT [ramd
CEnD [

9 dyl S GTYPE gaz_quarter | [GTYPE gazuniversiy | | Jeotaon o
®ay: W CONCEPT [hamg @
) CONCEPT COMCEPT
9 ay: W city-gazetteer ;> (gazetieer [LANG de)| {gazetteer)| {gazetteer)= | NECSTART
= CSTART SoTaRT [STy gl NECEND (o]

3 continent o 2 CEND | CEND LOCNAME

country-gazet! | L d L
g countryl ﬂ f " ne-location

location_dire - TYPE first_capital_word LOCTYPE city

| s

& region M | f| citvr > coken E“HR;’;? Bad” |) o (token | SURFACE)= | NECSTART B |, where Fid = ConeWithBlanks (), [)
@ owver W A = | CEND NECEND

LOCNAME [mard |

= Test grammar ~ [- Graphical match representation
File

Selected text | Gkonom Ridiger Fohl =
nput text Rctive
Der Gkanom Rudiger Ponl, Mitglied das - [Component tp.] (L EH I T T _
Sachverstandigenrats zur Begutachiung der V& ExtendedGazine auT ne-person =
gesamtwirtschafiiichen Entiickiung und 2 Zm Worphology ne CONFIDENCE 0.5
Professor an der Fernuniversitat Hager, BT Tokenizer ne SURFACE string
beweist Pioniergeist. Pohl soll an der CSTART string
Martin-Luther-Universitat Wittenberg den - CEND g
s PREPOSITIONS ~list™
- - DESCRIPTOR string
Der Okenom Rediger Pohl, Mitglied des NECEND string
Sachverstandigenrats zur Begutachtung NECSTAET strim
der gesamuwirtschaftlichen Entwicklung AGE smng

und Professor an der Fernuniversivit Hagen, |7

bewalst Planiargelst. Pohi soll an dar NAME-ACEX ¥iring. -
Martin-Luther-Universitat Wittenbera den T 2L
Lenrstuhl fir Geld und Kredit bernenmen FIRST [E “top
Hicht nur clie Lehre lockt Pohl nach Osten. REAT il
Auch im Rennen um die Machfolge von GIVEN_NAME. | *cons®
Manfred Wegner, Prazicient des FIRST
neugegrandeten Instituts fir REST [~cons®
Winschattsforschung Halle (W), fiegt Pani FIRST *top®
vorrn, Wegner wird Mitte 1093 pensioniert 4 E REST Fwns
- FIRST *top®
(] Generate sproutput xmi FS path for generating xml output | | et
[search || Matches || staistics | Close SURNAME “Pohl |
P-POSITION [l "6konom” -

Figure 7.8: AVM rendering in the&SProUTIDE: XTDL visualization in the top
right panel,SProUTput in the bottom right window

such as content extraction and acquisition for text/datarrgj dynamic hyperlink-
ing, machine translation, and text summarization.

These applications yielded valuable feedback for furthgprovements and
extensions ofSProUT Grammars are usually developed utilizing the integrated
development environment with whicBProUTis shipped out. Runtime systems,
on the other side, make use ProUTs rich programming API.

The common core set of grammars used in the projects for nantég recog-
nition comprises rules and gazetteer entdg&sfor person, organization and loca-
tion names, currency and temporal expressions. While thesed entity classes
roughly are equivalent to the MUC named entity classes @jrezentioned in pre-
vious chapters, the output of recognized itemstigcturedwhereas in MUC, only
the class of the named entity is represented in the annietatio

Below, we show the four named entities recognizedSBroUTin the follow-
ing two sentences, including its structured output.

Geschaftsfuhrer Prof. Dr. hab. Peter S. van den Berg vaAs&ng

7.6. APPLICATIONS

Juli 2004 bei der Sohnlein GmbH & Co. KG tatig. Er arbeiteten

2. Juli 2004 bis 31. Mai 2005 dort.

_ne-person
SURFACE
CSTART
CEND
TITLE
GIVEN_NAME
SURNAME
P-POSITION
VARIANT

"Geschaftsfiilhrer Prof. Dr. hab. Peter S. van den Berg"

non
ngqn

("Prof. Dr. hab.")
("Peter","s.")
"van den Berg"
"Geschaftsfiihrer"

"van den Berg | Prof. Dr. hab. van den Berg

Geschaftsfiihrer van den Berg"

span

SURFACE '"seit Anfang Juli 2004"
CSTART nBT"
CEND n7T"
SPANLTYPE timespan
[point i
TEMPORAL-UNIT temporal-unit
SPEC temp-point
EROM MUC-TYPE datg
PREPOSITIONS (seit
YEAR 2004
MONTH 07
| PART-OF-MONTH beginof
point
TEMPORAL-UNIT temporal-unit
SPEC temp-point
TO MUC-TYPE date
YEAR string
MONTH string
| PART-OF-MONTH part-of-point-type

[ne-organization
SURFACE "Séhnlein GmbH & Co. KG"
CSTART ngT"
CEND "108"
PREPOSITIONS*list*
ORGTYPE org-type
ORGNAME "Séhnlein"
DESIGNATOR gmbhé& _cokg
| VARIANT

133

134 CHAPTER 7. SPROUT

[span]
SURFACE "vom 2. Juli 2004 bis 31. Mai 2005"
CSTART "130"
CEND "162"
SPAN_TYPE timespan
[point i
TEMPORAL-UNIT temporal-unit
SPEC temp-point
EROM MUC-TYPE date
PREPOSITIONS (von)
YEAR 2004
MONTH 07
| DOFM 02 i
[point i
TEMPORAL-UNIT temporal-unit
SPEC temp-point
0 MUC-TYPE da-te
PREPOSITIONS (bis)
YEAR 2005
MONTH 05
i | DOFM 31 i |

Some projects usin§ProUTextended or partly replaced the core named entity
grammars by domain-specific rules and other resources. ddelar design of the
grammars that is facilitated through the powerful type eyseased fulfilling this
requirement.

Following is an incomplete list of applications developadésearch project
context at DFKI. There are several further applications mentioned here that
have been developed by other, external research groupsoamghoies using the
SProUTsystem.

Integrating information extraction and automatic hyperli nking. EXTRALINK
(Busemanret al,, 2003) is a novel information system combing IE technologg a
automatic hyperlinking. Semantic concepts identified ®ySRroUTnamed entity
grammars are mapped onto a domain ontology that relategptnto a selection
of hyperlinks, which are directly visualized using a staxdaeb browser. E-
TRALINK showcases the extraction of relevant concepts from Gerexds in the
tourism domain, offering the direct connection to assedawveb documents on
demand.

Multilingual information extraction for AIR FOReCast in Eu rope. The EU-
funded project AIRFORCE targets at developing ideas andpomnts which

7.6. APPLICATIONS 135

support building a database of European events and treedisindg to forecast
air traffic (Busemann and Krieger, 20043ProUThas been adopted for building
up domain-specific named entity and relation extractiomgnars with language-
neutral output for automatically extracting relationsnfrofficial travel warnings,
published regularly in the Internet by the ministries foreign affairs of France,
Germany and the UK.

Multilingual IE for machine translation and text summariza tion. The EU-
funded MEMPHIS project (Kaspest al, 2004) has developed a platform for
cross-lingual premium content services, targeting maatlyportable thin clients
such as mobile phones, PDAatc. The core of the system consists of a trans-
formation layer, integrating cross-lingual informatioxtraction and summariza-
tion of source documents, translation to the customergetdanguages, a domain
ontology-based knowledge management for extracted irstiam as well as mul-
tilingual generation of documents according to the reguésts of the target de-
vices. SProUTis used primarily as a document indexing engine for tokditina
morphological analysis, and hamed entity recognition, sewbndly for boosting
the performance of text summarization and machine traoslabmponents.

Information extraction for Polish in the financial and medical domain. An
attempt in applyingSProUT in the process of constructing an Information Ex-
traction engine for Polish and adopting it to the processihlavic languages
is reported in Piskorsket al. (2004). The IE tasks focus on the identification of
typical named entities from financial texts (Piskorski, 208nd on extraction of
data about pathological changes from a medical corpus ioamjedescriptions of
mammographic examinations (Kupétal.,, 2004).

Opinion mining. The ARGOSERVER system, developed by the Italian company
Celi, analyzes on a daily basis forums and newsgroups oeréliff car manufac-
turers in order to retrieve interesting messages and tre&S@oUTis applied here
to handle the information extraction task. The extracteidiops are input to sta-
tistical post-processing, yielding, e.g. the total numiiiecomments (or attitudes)
expressed by the forum/newsgroup users in the monitoreddper

Hybrid deep and shallow methods for knowledge-intensive iformation ex-
traction. In the DEEPTHOUGHT project, English, German and Japanese named
entity recognition ofSProUTis employed in the hybrid architecture integrating
deep and shallow natural language processing componentsilivéescribe in
Chapter 9. Prototype application domains are precisenmdton extraction for
business intelligence, e-mail response management ftoroes relationship man-
agement, and creativity support for document productiod ewmilective brain-
storming (Uszkoreiet al., 2004).

136 CHAPTER 7. SPROUT

Here, theSProUTXML output is converted to the semantic formalism RMRS
(robust minimal recursion semantics) and to the deep pauis@ut chart through
XSLT stylesheets (Schafer, 2004b). The application wélldescribed in more
detail in Section 9.10.1.

Question answering with hybrid deep and shallow processing QUETAL HoG-
QA is a system for domain-restricted question answerinthfstructured knowl-
edge sources (in contrast to unstructured text sourcesgdban robust semantic
analysis in a hybrid NLP system building on the Heart of Gatthidecture we will
describe in Chapter 9. Question interpretation and answigaation is performed
in an architecture that builds on a lexical-semantic con@@structure for ques-
tion interpretation, and is interfaced with domain-speaifbncepts and properties
in a structured knowledge base.

SProUTis employed here for German and English both as a pre-pliogess
component for robust deep parsing (named entity recogiittmd a richer se-
mantics representation construction in an informationmaetion-like fashion of
domain-specific terms and named entities (Fran#l., 2006). Details will be pre-
sented in Section 9.10.2.

Customer care guestion answering. The CCA (Customer Care Automation)
project centers around a question answering system witbgdfacilities for the
telecommunication domain developed for the leading Germahile phone pro-
vider (Burkhardtet al., 2005).

SProUT is deployed in the component for shallow semantic analysih®
questions (named entity and NP/PP grammars for German)ariddexing the
question-answer database.

Information extraction in SmartWeb. In the large German Semantic Web re-
search project SmartWelgProUT is used for information extraction of soccer
match descriptions that are written in German (Buitetgaal., 2006). Match situ-
ations are output by thEProUTgrammar in frame-like feature structures capturing
information gathered over several sentences. The granmaamiodular extension
of the existing general named entity recognition rules fenspn names, location,
time expressionstc and heavily makes use of the extended gazetteer facildy an
the morphology component. An event recognition rule fromdieveloped gram-
mar is shown in Figure 7.9, cf. also the SmartWeb descriptiddection 9.11

7.7 Evaluation

As can be seen from the examples ab@&/@roUTis a very versatile NLP processor
that has been successfully deployed for many differentstaskovel challenging
research and industrial applications. To demonstrate dhgpetitiveness of the
system, we report on an evaluation of (a 2005 snapshot ofpthlingual named

7.7. EVALUATION 137

scoregoal :> syn_args & [HEAD syn_verb & [SYN_STEM goalscore & #ds,
SYN_CSTART #cs,
SYN_CEND #cel,
ARGS #args]
-> s_playeraction & [SPORTACTIONDESCR #ds,
SPORTACTIONTYPE scoregoal,
COMMITTEDBY #player_fs,
NECSTART #cs,
NECEND #cel,
where #act_subj = InList(act_subj, #args),
#nelist = FeatVal("NE_LIST", #act_subj),
#player_fs = FeatVal("NE_FS", #nelist).

Figure 7.9: An event recognition rule from the SmartWeb sogtammar

entity recognitionSProUT grammars, because evaluation corpora exist for this
task.

7.7.1 Evaluation Snapshot of the Multilingual NE Grammars

Many of the above presented applications build on nametyaatiognition gram-
mars that have been developed since the first versi@PobUTwas available. A
large portion of the different project or domain-specifiammars is shared, also
cross-lingually. In a modular way, the core grammar is edg¢ehwith domain-
specific rules depending on project-specific requiremerite. soccer grammar of
SmartWeb, e.g., builds on the common person name recagmities, but adds
further rules for player roles, match situatiom$¢ Specific gazetteer tables are
added for names, roles and domain-specific extensions.

To support true multilinguality, an effort was started tarstardize the out-
put format of the named entity grammars for the differenglaages. Although
the grammars partly have different internal structure angdumizatiod, they shall
provide the same output structures for comparable pherainehe different lan-
guages. As th&ProUTformalism does not impose an a-priori structure (types,
names, attributes, granularigtc can in general be chosen freely), this had to be
designed in an iterative process that included feedback the projects and sub-
sequent amendments.

On the other hand, the existimlg factoannotation standard MUC-6 for named
entity recognition (Grishman and Sundheim, 1996) has éjrearly been consid-
ered insufficient as it foresees much less fine-grained asdskeuctured analyses
than are possible witlsProUT. While MUC-6 e.g. only distinguishes span and
named entity type informatiorGProUTgrammars output more detailed analyses

9Either motivated by the structure of the natural languageydhe grammar development history.

138 CHAPTER 7. SPROUT

of recognized names such as the internal structure of aipaesue (title, surname,
given nameetc), the granularity of locations (city vs. region, countrymmesetc),
or normalization of metric data such as time and date.

However, in order to provide a means for comparison withtegs competing
tools, a somewhat impoverishing mapping had to be defindd(ithéhe case of
MUC-6 annotation for English) even included the eliminataf SProUTrules for
phenomena that MUC-6 does not cover.

The grammars were evaluated with the JTaCo evaluation¢bdbéction 7.8.4;
Bering et al. 2003; Bering 2004) which supports user-defined mappingsdut
different NE classes, for controlled partial overlap bedsweecognized and anno-
tated NEs, and supports user-defined mappings betweebasatt and semantics-
based annotations and output structures. Table 7.1 andiitdiic the evaluation
results in terms of precision-recall figures of the core NEngmar for English
and German, respectively. For the evaluation of the Engjisimmar, an excerpt
of circa 1MByte from the MUC-6 annotated corpus (newspapgts) was used,
whereas for German, a manually annotated corpus of Germespaper texts with
a slightly different annotation scheme has been created.

Type #entities precision recall f-measure
NUMEX-PERCENT 34 1.0 1.0 1.0
NUMEX-MONEY 103 0.971 1.0 0.986
ENAMEX-LOCATION 1398 0.959 0.987 0.973
ENAMEX-ORGANIZATION 1747 0.949 0.911 0.930
ENAMEX-PERSON 1123 0.917 0.950 0.933
TIMEX-DATE 854 0.963 0.943 0.953
TIMEX-TIME 162 1.0 0.926 0.961

Table 7.1: English named entity grammar evaluation

Type #entities precision recall f-measure
NUMEX-PERCENT 280 1.0 0.989 0.995
NUMEX-MONEY 679 1.0 0.969 0.984
NUMEX-QUANTITY 16 0.941 1.0 0.969
ENAMEX-LOCATION 784 0.982 0.989 0.985
ENAMEX-ORGANIZATION 1017 0.974 0.982 0.978
ENAMEX-PERSON 58 0.950 0.983 0.966
TIMEX-TIME 530 1.0 0.926 0.961
NUMEX-NUMBER 227 0.904 0.991 0.945

Table 7.2: German named entity grammar evaluation

As can be seen from the results, t8B€roUT grammars perform quite well
compared to typical statistical systems. Recall will preably lower on domains
for which no appropriate gazetteers are contained, e.gharchemistry domain.

7.8. BUILDING, TESTING AND EVALUATION WITH SPROUTOMAT 139

However, the strengths of the gene&®ProUT recognition approach, namely (1)
flexible adaptability to new domains, (2) concise, declegafformalism (3) clear-
cut specialized and compilable resources, (4) modulafigrammars and archi-
tecture, (5) structured and fine-grained analysis outpetiaagely neglected by the
bare figures.

Thus, SProUT is a suitable tool for high-precision and structured domain
specific named entity recognition tasks — not to forget tlat fhat the system
could be used for other purposes than just named entity ngcmgy An exam-
ple will be presented in Chapter 9 where several casc&#dUTgrammars are,
in addition to named entity recognition, also used to compushallow semantic
representation from botBProUTmorphological analysis and a statistical chunker.

7.8 Building, Testing and Evaluation with SProUTomat

In this section, we prese®ProUTomat, an automatic build, testing and evaluation
tool we have developed (Schafer and Beck, 2006; Bering ah@dfgr, 2006) for
SProUT as a means for periodical automatic testing and evaluatrainly for
immediate feedback after grammar or (re)source changées)dmito test integrity
and performance of the overall system including progranecod

7.8.1 Motivation

The development of multilingual resources for languagérietogy (LT) compo-
nents is a tedious and error-prone task. Resources for alewmmpulti-purpose,
multilingual system likeSProUT, such as tokenizers, morphologies, lexica, gram-
mars, gazetteemstcfor multiple languages can only be developed in a distribute
manner, i.e., many people work on different resources.

However, the resulting systems are supposed to deliveratme good recog-
nition quality for each language. Dependencies of resguacel subsystems may
lead to suboptimal functioning, e.g. reduced recognitates, of the overall sys-
tems in case of errors creeping in during the developmermiggs Hence, in anal-
ogy to software engineering, testing and evaluation of thelbped resources has
to be performed on a regular basis, both for quality asseré@é) and compara-
bility of results in different languages.

7.8.2 SProUTomat

SProUTomat is a tool for daily automatic building, testing t8&roUT develop-
ment and runtime system from the Java source code and forilbogndesting
and evaluating linguistic resources for English, Germaen€h, Spanish, Greek,
Japanese, Italian and Chinese named entity and informekimaction grammars
from a version control system. Although parts of the builcchranism are specific
for SProUT, most of the testing and evaluation parts could be re-usedtfer
systems.

140 CHAPTER 7. SPROUT

7.8.3 Building and Testing

SProUTomat is an extension of the build mechanism for languagentdoy com-
ponents and resources we have developed folStRUT system using Apache
Ant'. Ant is a standard open-source tool for automatic buildind packaging
complex software systems. On the basis of target desaniptioan XML configu-
ration file, Ant automatically resolves a target dependearaph and executes only
the necessary targets.

Before testing and evaluating, a system has to be built, dampiled from
the sources checked out from a source control system. Tleeplagram code
compilation of SProUTis a straightforward task best supported by Ant. The case
is, however, different for lingware sources all of which acenpiled inSProUTas
well for efficiency reasons.

While the appropriate Java code compilation tasks know wltampiled class
file is and when it has to be recompiled (source code changesndencies), this
has to be defined explicitly for lingware resources which Aatively is not aware
of. Theuptodate task of Ant (a predicate) can be used to compare source files
(.tdl'in the following example) against their compiled vers(.grm).

<uptodate property="tdl_input_is_uptodate"
srcfile="${typehierarchy}.tdl"
targetfile="${typehierarchyl}.grm"/>

For each of the different lingware types, these source fifgeddencies are
defined as are the calls to the dedica®@roUT compilers and parameters for
their compilation.

Lingware-specific targets have common parameters and piegpsuch a3ang,
project and the lingware type that are used to locate e.g. the sonccecampiled
files in the hierarchically defined directory treescanrset to specify encodings
for source files to read.

Dependencies between different lingware types are hafgiedlls to defined
sub-targets. Figure 7.10 shows the definition of ¢hepile_ne target that calls
four other compilation sub-targets. Each sub-target claspinly when necessary,
and thecompile_ne target itself depends on thier target that provides working
and up-to-date&SProUTlingware compilers.

Besides the program and lingware compilation, many othgeta exist e.g.
to generate documentation, package runtime systemstlatarttegrated develop-
ment environment (IDEgtc

Thus, using a single command, it is possible to compile thelevhystem in-
cluding code and all dependent available linguistic resesiror to update it after
changes in the sources.

The daily automatic testing and evaluation mechanism isxéamsion of the
build procedure.SProUTomat first updates all program sources and linguistic re-
sources from the version control system, and compiles tHémn.each language

Onttp://ant.apache. org

7.8. BUILDING, TESTING AND EVALUATION WITH SPROUTOMAT 141

<!--usage : ant compile_ne -Dlang=en -->
<target name="compile_ne" depends="jar"
description="Compile NER grammar.">
<property name="lang" value="en"/>
<property name="project" value=""/>
<property name="charset" value="utf-8"/>
<!-- compile type hierarchy: -->
<antcall target="compile_tdl"/>
<!-- compile tokenizer: -->
<antcall target="compile_tokenclass"/>
<l-- compile gazetteer: —-—>
<antcall target="compile_gazetteer"/>
<!-- compile XTDL grammar for NER: -—>
<antcall target="compile_grammar"/>
</target>

Figure 7.10: A sample target definition: named entity gramcoanpilation

resource to test, a reference text is then analyzed bg@reUTruntime system.
This checks for consistent (re)sources. The next step ipadson of the gener-
ated named entity and information extraction annotaticaires a gold standard.

7.8.4 Evaluation with JTaCo

SProUTomat uses a batch version of JTaCo (Bemi@l., 2003; Bering, 2004) for
the automatic evaluation and computation of precisioraltemd f-measure. For
English, the annotated corpus is e.g. taken from the MUCQuatiain data (Grish-
man and Sundheim, 1996). For other languages for which no Mhulttations
exist (e.g. German), a manually developed corpus is emgloydaCo can be
easily customized for comparison with other XML annotatiormats.

JTaCo provides unified use of variably annotated sourceriabfer testing.
The component developer provides suitably, i.e., usuaigisnanually or man-
ually marked-up reference sources on the one hand, and er marsimilar NLP

component (her&ProUT) on the other hand. JTaCo extracts the original annota-

tion from the corpus, compares this annotation with the matke component in
question generates for the same input, and generatesicsadisd reports from the
comparison results.

Since a focus of JTaCo lies on the integration of diverse mlaannotation
schemes on the one hand and differing NLP components onliee gTaCo em-
ploys a modular architecture in which its different progegstages allow indepen-
dent adaptations to varying input and different environtsedTaCo is realized as

113TaCo stands fora¥a Tayging Canparator.

142 CHAPTER 7. SPROUT

a pluggable, lightweight, mostly architecture-indeperideamework. Currently,

there are two JTaCo plug-in realizations for usage with gnans developed in
SProUT. A GUI plug-in integrated in theSProUTIDE, and a batch version inte-
grated inSProUTomat.

7.8.4.1 JTaCo’s Processing Stages

JTaCo works in four separate transformational processmges. Figure 7.11 il-
lustrates these stages, their input and the results thegraten The process starts
from an annotated written corpus against which the NLP corapbor resource
is to be tested. In the first step, JTaCo useg\anotationParsetto separate the
corpus into

e theraw text contained in the corpus (i.e., the text without any aatan)
and

e its true annotation (interchangeably also called tegerenceor manualan-
notation).

The extracted text is fed into tHearseror a similar component to test, in this
case theSProUTinterpreter, yielding the annotation to compare with thenoz
annotation. The comparison is executed ByaggingComparatar The compara-
tor’'s result in turn is used by a@utputGeneratoto select, format and output the
needed information.

provides
—

-
. s ~
v
ITaCo [ommicons |+ X
e Grammar
| AnnotationParser le— - Developer
I 1 7
| ~
~
-
~
“
Parser |
| v
#I Parsed Annotation | | True Annotation |
| TaggingComparator |< | |
| P Comparison Result
| OutputGenerator [
| P! Result Tables

Figure 7.11: An overview of JTaCo’s processing stages

7.8. BUILDING, TESTING AND EVALUATION WITH SPROUTOMAT 143

7.8.4.2 Reading the Annotated Corpus

For use at the following processing stages, JTaCo extramts the annotated cor-
pus the ‘raw’ content, i.e., the written text without any kg, on the one hand,
and the reference annotation on the other. Both the extracti the text and of
the annotation can be configured according to the specifiotation scheme. A
corpus usually not only contains the annotated textual ma&tdout also meta-
information intended for, e.g. administrative purposasctanformation has to be
excluded from the text extracted to be used for testing. dTa€ludes support for
annotations which satisfy certain regular constraintsfan¥ML annotations such
as found in MUC corpora (Grishman and Sundheim, 1996). Femwith SProUT
JTaCo transforms the XML-encoded entities into typed f@astructures.
As an illustration, consider the following MUC time expriess

<TIMEX TYPE="DATE">07-21-96</TIMEX>

The textual content consists just of the date expre€3i681-96 JTaCo trans-
forms the tag information as well as the surface and charafftets into feature-
value pairs in a feature structure:

timex

TYPE "DATE"
CSTART "27"
CEND "34"

SURFACE "07-21-96"

Here,CSTART andCEND indicate the inclusive start and end character posi-
tions of the annotated element in the ‘raw’ text, i.e., withoounting the markup.
The resulting reference annotation is the collection ofesture structures gener-
ated from the corpus. More complex, embedded annotationddvae translated
in a similar manner.

7.8.4.3 Parsing the Extracted Text

At this second processing stage, JTaCo fegsoUTwith the text retrieved from
the previous stage, ar®ProUTin turn produces some specific markup of the text.
As at the previous stage, JTaCo transforms this annotationai format which it
can compare with the reference annotation.

For the previously employed example expressidfi21-96 SProUTs named
entity recognition markup delivers structured output inXL-encoded typed
feature structure SProUTput’ DTD), whereCSTART and CEND indicate start
and end character positions of the matched named entitgimgut text:

144 CHAPTER 7. SPROUT

[point

SPEC temp-point
MUC-TYPE date
CSTART "27"

CEND "34n
SURFACE "07-21-96"
YEAR "1996"
MONTH "O7"
| DOFM "o

7.8.4.4 Comparing the Annotations

At this stage, the annotations obtained from the two previoansformation pro-
cesses are compared, i.e., the ‘manual’ annotation readtlgifrom the corpus,
and the ‘parsed’ annotation obtained through the NLP compiori-or JTaCo, an
annotation is a collection of tags, where a tag consists mesinguistic informa-
tion about a piece of text. Minimally, a tag contains

e some name, e.g. a linguistic label,
e the surface string to which the label applies,

e position information about where this string is found in toepus.

Usually, the setup uses tags which incorporate more infoomaand the re-
lation used to determine entity equality between the twatations typically de-
pends on this information. For use wiBProUT JTaCo generates an annotation
consisting of tags which are augmented with feature stradiformation. The
equality notion of these tags is defined though unification.

An important feature of JTaCo is that the comparison can bdigured to
accommodate for a variety of systematic differences in tatioms:

e The annotations may use different labels, differing pesheyen in granu-
larity. One annotation, e.g., might globally use the latrglanization while
the other uses subclasses suchragersity governmentetc

e The annotated entities may differ in their surface spang &motation, e.g.,
might consider the expressidiresident Hugo Chavédp be a named entity,
while the other might exclude the title.

¢ One annotation may contain sequences of entities whicheirotier anno-
tation correspond to one single entity. For instance, MU wsually sep-
arate a date followed by a time into two named entitiERMEX-DATE and
TIMEX-TIME), while SProUTconsiders this to be one entity.

7.8. BUILDING, TESTING AND EVALUATION WITH SPROUTOMAT 145

From: SProUTomat
Date: 20/02/2006 06:35 AM
Subject: SProUTomat -- Status: 0K

SProU

CVS update...
U src/grammar/extendedgazetteer/common/location.gaz

U src/grammar/xtdl/ne/en/location.sgr

Building runtime system and grammars... log
Testing English grammar... log result
Running JTaCo... log

JTaCo result English

1 KB SO T
- s f‘ “ I %‘&“ﬁﬁ“i
P ﬁm %M%MM -~ qﬂ i ;
0.8 - ‘; ;’ _
0.6 - -
<
>
%]
©
Q
= H
T b
0.4 - i} -
02 -) -
[
&
oL . [[[[
08/05 09/05 10/05 11/05 12/05 01/06 02/06 03/06
Date
NUMEX-PERCENT —+— ENAMEX-ORGANIZATION £ TIMEX-TIME ----e---
NUMEX-MONEY ENAMEX-PERSON
ENAMEX-LOCATION ---*--- TIMEX-DATE

Generating runtime system Javadoc
Generating Antdoc for build.xml
Generating Ant call graph diagram

Start: 20.02.2006 06:22:01
End: 20.02.2006 06:35:38

Figure 7.12: A report generated IBProUTomat (excerpt for a single language)

7.8.5 Report

After counting and comparing matches through JTaCo, a répgenerated and
emailed to the developers with an overall status (OK or ERRfORquick infor-

146 CHAPTER 7. SPROUT

mation. The report (example in Figure 7.12) also contairgmims consisting
of precision/recall/f-measure curves since beginningegbifar measurements per
language generated widgnuplot? that graphically present an overview of the
resource development progress over time. To this end, #ileation figures are
also added to a global evaluation database.

Further information sources such as Ant target and Javaologngentation as
well as a visual dependency graph representation of theadgets are also gener-
ated automatically.

7.8.6 Summary and Outlook

We have presented a comprehensive tool for automaticatingeand evaluating
linguistic resources and language technology componditts.system is in daily
use since March 2005 and successfully helps to maintainuhlityjand reliability
of the multilingual language processor with its variousteses that are developed
by many authors and used in several projects.

The tool greatly helps to improve and accelerate the deusdop - evalua-
tion/comparison - refinement - cycle (cf. Figure 4.2) ancegimotivating feed-
back (such as raising recall and precision curves over tildé)ough daily testing
has been described above, the testing and report genetatitohbe started at any
time. A complete build from scratch, testing of four langesgncluding Javadoc
and generation of the runtime system plug-in into the Heb@ald platform for
deep-shallow integration (cf. Chapteréfptakes less than 14 minutes, while only
a few seconds are required after modification of a singleureso

7.9 SProUT Summary and Relation to Deep Processing

In this chapter, we have presented our contributionSRooUT, a new declarative
formalism and system that combines finite-state with cairgtbased processing.
The advantages we see in the new approach are the (1) opefiriesgormalism
(in contrast to specialized shallow systems), (2) poténtiach, structured out-
put, (3) a highly declarative formalism with good trade-b#tween expressivity
and efficiency, (4) based on two simple, well-known basiccepts, namely typed
feature structures and regular expressions.

The usefulness of the formalism and the overall system dsawed-usability of
developed resources has been thoroughly and successutigrétrated in various
large projects, both scientific and industrial.

The structure paradigm @&ProUTgrammars (so far best visible in the named
entity grammars) shows an important and useful relatiowéen the recognition
(or matching) part of a rule and its output. The structurehefmatched LHS part

Pnttp://www.gnuplot.info

7.9. SPROUT SUMMARY AND RELATION TO DEEP PROCESSING 147

can not only be used (1) to recognize and disambiguate tfemsing the powerful

language of typed feature structures with unifiability $ebut also to (2) transport
the information that is encoded in rules to the RHS outpuicstire in such a way
that knowledge about structure implicitly encoded in thiesus preserved in the
output. This is a big advantage over classical shallow systthat often can only
determine the type and character span of a NE, but not ishaitstructure.

SProUThas advantageous properties (not only) for integratiorybrit deep-
shallow architectures. The primary use of and originalritioe for developing
SProUThas been shallow processing, e.g. for named entity re¢ogrand infor-
mation extraction. As sucl§ProUTcan be used for preprocessing words unknown
to the lexicon of a deep parser in a sequential deep-shalicivitecture. However,
SProUTgrammars can also be cascaded to produce themselves ‘derglgses.

In addition, SProUTshares with HPSG grammars the general concept of type
hierarchies and typed feature structures (and uses thetgpmabierarchy prepro-
cessor as the deep HPSG parser PET). This makes sharinggfiglic) knowl-
edge among deep and shallow grammars natural and easy. \Mor&&roUTs
information extraction-like structured output can formiaaportant supplement to
an HPSG parser’s analysis.

A tight integration ofSProUTwith HPSG, an extension to incorporate ontol-
ogy concept and structured instance informatiorSiroUT lingware resources
as well as a ‘deeper’ application of cascad&®roUTgrammars interleaved with
XSLT stylesheets will be demonstrated in Chapter 9.

13A preposition such aim, e.g., can be used to distinguish the city name Paris fronnsppeiame
Paris. Itis possible to use such context information fomttatch, but omit it in the output.

148 CHAPTER 7. SPROUT

Chapter 8

WHITEBOARD

8.1 Introduction and Motivation

The aim of the WAITEBOARD project was to develop an architecture for the inte-
gration of deep and shallow natural language processingpgoents and to inves-
tigate the benefits that could result from interleaved dgeglow processing, with

a strong focus on integration of German HPSG parsing witliashgreprocess-
ing. The targeted application scenarios comprised (cthetholanguage checking
and domain-specific information extraction.

To this aim, the coverage of the HPSG grammar for German deedlat DFKI
(main development in the BRBMOBIL project for speech dialogs) on a German
corpus of newspaper texts had to be increased through thedipvs integration.

A further research goal was to answer the question whettaloshprepro-
cessing would be able to reduce the search space of the desw pg reducing
lexical and structural ambiguity.

Finally, the benefits of integrating the full range of shallprocessing compo-
nent types (in combination or separately), e.g. part-eesh taggers, chunkers,
named entity recognition, shallow sentence parsers, weestigated.

The closely interleaved processing model could be seen astansion of the
VERBMOBIL! architecture (Wabhlster, 2000), where deep and shallow ooets
ran concurrently instead of exploiting synergy.

One of the new key architecture ideas, already formulateHdrys Uszkoreit
in the project proposal (Bredenkarapal., 1999), was to use multi-layered XML
annotation to store and retrieve multiple NLP componeniltesgluring processing.

As in the other two chapters of the architecture trilogy, akierall integration
work was a collaborative effort involving many people, and will focus here
again on the software architecture and XML-based compdn&agration, leaving
out e.g. many linguistic and other implementation details.

1WHITEBOARD, conducted 2000—2002 at DFKI, started immediately afterEMOBIL had fin-
ished. One main difference, however, is th&#RBMOBIL had speech in focus, while MV\TEBOARD
concentrates on written documents.

149

150 CHAPTER 8. WHITEBOARD

8.2 The WHITEBOARD Architecture

The WHITEBOARD architecture aims at integrating different NLP componduyts
enriching an input document througinnotations XML is used as a uniform
means of representing online and keeping persistenthin@ffthe results of the
various processing components.

Because not all interesting linguistic information can lrecly represented
within the basic XML tree structure, e.g. linguistic pherama such as corefer-
ences, ambiguous readings, and discontinuous conss{uaetWHITEBOARD ar-
chitecture employs a distributed multi-level represeortadf different annotations.
Instead of translating all markup into one format in a singML document, they
are stored in different standoff annotation layers.

The challenge for the deep-shallow integration architecivas to combine the
different NLP data representation models that charaeteteep and shallow NLP
analysis results. As already described in Section 6.2, dhey.g. defined in Cun-
ninghamet al. (1997) as a trichotomy. While a single shallow componentkonar
containsadditiveinformation, the combination of multiple (shallow) marksgpata
is typically established by references or links (standadfkap) which can be char-
acterized apositionalrepresentation.

The advantages and benefits of the standoff annotation niadel already
been motivated in Chapter 5 in detail. Linking via XML ID #itites and ‘span’ in-
formation together supports efficient access betweendayercontrast, deep anal-
ysis results encoded in typed feature structures repiageitP entities sentence-
wise in a uniform, linguistically motivated form, constittabstraction-basedep-
resentations.

The WHITEBOARD architecture solves the multiple representation problgm b
providing a multi-level chart that serves as a containeafbthree kinds of repre-
sentation. The multi-level chart is managed by and can besged via the \WITE-
BOARD Annotation Machine (WHAM) we will describe in the next secti

The initial integration scenario (WTEBOARD I, Section 8.4) comprised the
HPSG parser PET (Callmeier, 2000) with &@®8MoBIL-derived broad-coverage
grammar for German (Muller and Kasper, 2000) as the deepponent, and the
shallow (mostly finite-state/rule-based) component SHR$kOrski and Neumann,
2000) for part-of-speech tagging, sentence boundary nitog, morphological
analysis of words unknown to the HPSG lexicon and namedyemitiognition for
German.

In the second phase (MVTEBOARD I, Section 8.7), larger sub-sentential con-
structions have been integrated through shallow chunkmggt@pological parsing.

8.3 The WHITEBOARD Annotation Machine (WHAM)

The WHITEBOARD Annotation Machine (WHAM) is the core engine that provides
the necessary integration facilities as depicted in Figute For NLP-based appli-

8.3. THEWHITEBOARD ANNOTATION MACHINE (WHAM) 151

cations (top), WHAM provides (1) an interface that acceppait text documents to
be analyzed and (2) methods to access the computed analyseke NLP com-

ponent side (left), WHAM supports interfaces to integratéivgare components
producing XML-encoded NLP markup.

application

input an
WHAM specification | result
shallow C)

N

XML
(annot;

external

generic OOP
Pttt component
multi interface

layer
chart

s |V

v

internal repr.

Figure 8.1: The WIITEBOARD Annotation Machine (WHAM)

WHAM also manages the multi-level chart. For efficiency ozes the inter-
nal online storage (during processing) of shallow analyses a compact binary
encoding with index-sequential access methods. Deep sewbre kept in their
typed feature structure format, while persistent, exiesttaage optionally uses an
XML file format (TFS DTD motivated and described in Sectiod.h).

An example of a multi-level representation of shallow resig presented in
Figure 8.2. Each annotation level contains type (labebrimition for a text span.

['sentences | |
['suscLauses | = [REL CLAUSE [5 |

NAMED ENTITIES | PROPER NAME | - | weekoay | Locarion |

[Lex-morPH | us-PRASIDENT [cEORGE W. [BUSH | [DER [AM [MONTAG [IN[RIO PE[JANEIRO [EINTRAF] |EROFFNETE |

Figure 8.2: Index-sequential annotation structures

It may be useful to externally store and re-use the shallow X#&presentation
as a kind of annotated corpus, e.g. for further processiranual correction for
machine learningtc In contrast, storage of the full resulting feature streesuof
deep processing components may not be wanted for onlinessing because of
their huge size (TFS DTD as discussed above; the resultatgrie structures also

contain a ‘record’ of the structure-building unificationesations during parsing as
explained in Chapter 3).

152 CHAPTER 8. WHITEBOARD

Instead, only interesting extracted information from deepcessing such as
phrase structure, subcategorization frames, semantiesetatioretccan be trans-
formed into and stored as XML. Vice versa, it is possible toegate the index-
sequentially stored shallow chart representation from(d¢fféne) XML format in
order to provide fast access to large annotated corpora.

The WHAM interface operations (access to shallow reseiits are not only
used to interface NLP component-based applications, batfat the integration of
deep and shallow processing components itself, i.e., thkoghpart of the online
multi-level chart is also actively queried by the deep paviethe access methods
of WHAM.

Both applications and the integrated components accesg/taM results
through a generic object-oriented programming (OOP)fiaterwhich is designed
as general as possible in order to abstract from compopewifee details, while
preserving shallow and deep paradigms. The interfaceseaddtually integrated
components form subclasses of the generic interface. Nempaoents can be
integrated by implementing this interface and by specifyfirmansformation rules
for the chart.

The OOP interface provides iterators that support wallingugh the different
annotation levels (e.g. token spans, sentences, cf. F&gyBjereference and seek
operators that allow to switch to corresponding annotatimma different level (e.g.
return all tokens of the current sentence, or move to nexedantity starting from
a given token position), and accessor methods that retarmgjuistic information
contained in the chart, e.g. the type of a phrase or of a namiég. e

Similarly, general methods support navigating the typeesgsand feature
structures of the DNLP components, e.g. by returning the tygdue under a fea-
ture path or the subtype or supertype of a given type. Thdtimgwutput of the
WHAM can be accessed via the OOP interface or as XML reprasent

S = new Sentencelterator(SPPCAnalyzer, Document) ;
while (S.valid()) {
NE = new NamedEntityIterator(S);
while (NE.valid()) {
print NE.getText() + NE.getType();
NE.next();
}
S.next();
}

Figure 8.3: Iterator-based programming interface to aatiwt layers

8.4. WHITEBOARD | 153

8.4 WHITEBOARD I: Integrated components, results and
applications

In this section, we describe the components that have béegrated in the first

phase of WAITEBOARD (Crysmanret al, 2002), a first evaluation and two initial
information extraction applications that have been im@etad on the basis of the
architecture.

8.4.1 Components
8.4.1.1 Shallow Component: SPPC

Shallow preprocessing is performed by SPPC, a rule-basgdrsywhich consists
of a cascade of weighted finite-state components respengblperforming an
analysis pipeline consisting of tokenization, lexico-ptovlogical analysis, part-
of-speech filtering, named entity recognition, sentenagntary detection, chunk
and sub-clause recognition. SPPC is described in PiskarekNeumann (2000);
Neumann and Piskorski (2002).

We will briefly describe those components of SPPC which wegrated with
the deep parser.

The SPPQokenizerfirst segments words from punctuation symbols and re-
turns a (compared to other tokenizers) relatively finergrditoken classification
(52 different token classes), e.g.

<ITEM id="3" type="two_digit_number"/>

<ITEM id="4" type="four_digit_number"/>

<ITEM id="6" type="number_percent_compositum"/>
<ITEM id="7" type="decimal_number_with_period"/>
<ITEM id="8" type="number_dot_compositum"/>
<ITEM id="16" type="email_address"/>

<ITEM id="17" type="url_address"/>

<ITEM id="20" type="initial_capital_period"/>
<ITEM id="21" type="lowercase_word"/>

<ITEM id="22" type="first_capital_word"/>

<ITEM id="33" type="simple_word_dash_first_capital"/>
<ITEM id="48" type="abbreviation"/>

<ITEM id="50" type="word_followed_by_dots"/>
<ITEM id="51" type="end_of_paragraph"/>

Tokens identified as potential word forms are tmeorphologically analyzed
420 different morphological types are distinguished, @spntable as feature-value
pairs, e.qg.

<ITEM id="14" gender="M" case="GEN" number="PL"/>

<ITEM id="32" person="2" case="NOM" number="SG"/>

<ITEM id="33" person="3" gender="M" case="NOM" number="SG"/>
<ITEM id="38" tense="PRES" person="3" number="SG"/>

154

CHAPTER 8. WHITEBOARD

<ITEM id="70" tense="SUBJUNCT-1" person="3" number="PL"/>
<ITEM id="72" form="INFIN"/>
<ITEM id="91" gender="M" case="GEN" number="SG" comp="P"

det="INDEF"/>

Lexical information (list of valid readings including steipart-of-speech and
inflection information) is computed using a full-form legit of about 700000 en-
tries that has been compiled out from a stem lexicon of ab200Q0 lemmata.
After morphological processing,oS disambiguatiorules are applied which com-
pute a preferred reading for each token (the deep parseevesycan also back off
to all readings). The following 24 different PoS types amognized by SPPC

<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM

ig="1"
ig="2"
id="3"
ig="4"
id="5"
id="6"
ig="7"
id="g"
id="9"
id="10"
id="11"
id="12"
id="13"
id="14"
id="15"
id="16"
id="17"
id="18"
id="19"
id="20"
id="21"
id="22"
id="23"
id="24"

type="N"/>
type="V"/>
type="AUX"/>
type="MODV"/>
type="A"/>
type="ATTR-A"/>
type="DEF"/>
type="INDEF"/>
type="RELPRON"/>
type="PERSPRON"/>
type="REFPRON"/>
type="POSSPRON"/>
type="WHPRON" />
type="0RD"/>
type="CARD"/>
type="VPREF"/>
type="ADV"/>
type="WHADV"/>
type="COORD"/>
type="SUBORD" />
type="INTP"/>
type="PART"/>
type="PREP"/>
type="STOP-WORD"/>

Named entity recognitioiis based on simple, string-based pattern matching
techniques to recognize e.g. organizations, personstidosa temporal expres-
sions and quantities (13 NE types, 24 subtypes)

<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM
<ITEM

id="1"
ig="2"
id="3"
id="4"
id="5"
id="6"
ig="7"
id="g"

type="date"/>
type="organization"/>
type="location"/>
type="monetary"/>
type="person"/>
type="percentage"/>
type="time"/>
type="number" />

8.4. WHITEBOARD | 155

<ITEM id="9" type="address"/>

<ITEM id="10" type="person_candidate"/>

<ITEM id="11" type="organization_candidate"/>
<ITEM id="12" type="location_candidate"/>
<ITEM id="13" type="position"/>

Next, NE-specificreference resolutiolis performed through the use of a dy-
namic lexicon which stores abbreviated variants of preslipuecognized named
entities. Finally, the systergplits the text into sentencéxy applying only few,
but highly accurate contextual rules for filtering impldalsi punctuation signs.
These rules benefit directly from NE recognition which aliegerforms a re-
stricted punctuation disambiguation.

The output of SPPC comes in XML format that is transformed byAM into
the above described index-sequential format for fast nandocess through the
WHAM shallow API.

8.4.1.2 Deep Component: PET

The HPSG parser integrated in the WITEBOARD system is PET (Callmeier,
2000). Initially, PET was built to experiment with differetechniques and strate-
gies for processing unification-based grammars. The meguilystem provides
efficient implementations of the best known techniques fification and parsing
and is still the fastest parser for HPSG grammars.

While PET is basically a runtime parser for fast processintgRSG grammars,
the grammar source can be developed, tested and debugdethavlitKB system
(Copestake, 2002), that shares with PET a common TDL fosma{Krieger and
Schafer, 1994) subset and a compatible type hierarchyyged feature structure
model.

Being designed as an experimental system, the original RESEplacked open
interfaces for flexible integration with external compotsenFor instance, in the
beginning of the WAITEBOARD project, the system only accepted full-form lexica
and plain text input.

Bernd Kiefer extended the system in collaboration with ¢lirCallmeier. In-
stead of single word input, input items where then allowetidacomplex, over-
lapping and ambiguous, i.e., essentially word graphs. Bynareation of atomic
type symbols, e.g. to be able to add arbitrary symbols asreatlues, has been
implemented as well.

Finally, a flexible interface has been implemented that Afd<alls to WHAM
for the integration of morphology, tokenization and nametity recognition anal-
ysis results. As WHAM is implemented in Java, and PET in C+¢, defined
this interface in JNI (Java Native Interface). Through thgot-oriented WHAM
API layer, PET could in principle also be integrated witheatlshallow systems
than SPPC. We will discuss some shortcomings of the JNIebA8 interface in
Section 8.7 (WAITEBOARD lI).

156 CHAPTER 8. WHITEBOARD

The German HPSG grammar in WHITEBOARD is based on a large-scale gram-
mar by Miuller (1999), which was further developed in theRBMOBIL project
for translation of spoken language (Miller and Kasper, 0@t therefore covers
many constructions that occur frequently in spontaneoasdp After \ERBMO-
BIL, the grammar was adapted mainly by Berthold Crysmann togteirements
of the LKB/PET system (Copestake, 2002; Callmeier, 20009, ta written text,
i.e., extended with constructions such as free relativasela that were irrelevant
in the VERBMOBIL scenario.

The grammar consists of a rich hierarchy of 5069 lexical amagal types.
The core grammar contains 23 rule schemata, 7 special verbnrent rules, and
17 domain specific rules. All rule schemata are unary or ibheanching. The lex-
icon contains 38549 stem entries, from which more than 70% wsemi-automati-
cally acquired from the annotated NEGRA corpus (Siul., 1998).

A further semi-automatic technique has been applied toiscgamantic types
for nouns unknown to the deep lexicon using informationlaizée from GermaNet
(Hamp and Feldweg, 1997). The approach is elaborated irelSéal. (2001).
The semantic types are needed for (syntactic) disamb@udithised on semantic
information and thus help to reduce ambiguity and resteereh space for the
parser.

8.4.2 Integration

Morphology and part-of-speech tagging The morphological analyses delivered
by SPPC are mapped to the German HPSG morphology types. Tp@ngdable
has been generated by identifying the corresponding daesdure-wise. The
actual mapping is then performed automatically in ordered@ble to easily track
changes in both shallow and HPSG morphology geometry.

Shallow PoS tagging is used in two ways by the deep parsest, HPSG
lexicon entries that are marked as preferred by the shalmwponent (via their
PoS value) are assigned a higher priority than the rest., Thesorrect reading is
more likely to be found early without excluding any readinfhen no entry for
a word is found in the HPSG lexicon, a default entry based orreigc HPSG
lexicon type is automatically created based on the paspekch tag of only the
reading marked as preferred by the shallow preprocessas. stilategy increases
robustness, while preventing an increase in ambiguity.

Named entity recognition Similar to the unknown word strategy, named entities
are mapped to generic lexical types that expand to featuretstes during parsing.
In other words, a simple mapping from shallow named entitielPSG generic
types is sufficient, filling the FORM feature value with thefaae string from the
recognized named entity.

In the following example the HPSG tygmn._type personis mapped from the
shallow NE typeperson untitled.

SPPC output for the named entity:

8.5. FIRST EVALUATION 157

<NE id="NO" type="person" subtype="untitled">
<W id="W13" tc="first_capital_word">Martina</w>
<W i1d="W14" tc="first_capital_word">Regel</W>
</NE>

The HPSG feature structure generated by the extended PEface then

looks as follows. _ -
morph-type

FORM "Martina Regel"
STEM pn.type person
[nmorph-head
MAJ noun
HEAD agr-type
INFL [nagr-feat]
AGR
NUM sg

This simple strategy helps to drastically increase the reme of the HPSG
grammar on the large open class of named entities, as weeailinsthe first eval-
uation.

8.5 First Evaluation

An evaluation has been started using the NEGRA corpus, wiociains about
20,000 newspaper sentences (Skul., 1998). The main objectives were to eval-
uate the syntactic coverage of the German HPSG on Germarpaperstext and
the benefits of integrating deep and shallow analysis. Thisees of the corpus
were used in their original form without stripping, parezgtzed insertionstc

The HPSG lexicon was extended semi-automatically from &b@@00 to 35000
stems, which roughly corresponds to 350000 full forms. Thiemlexical coverage
of the deep system on the whole corpus was checked, whichegsn 28.6% of
the sentences being fully lexically analyzed. The corredpw experiment with
the integrated system yielded an improved lexical coverdgél.4%, due to the
techniques described in Section 8.4.2. This increase isctuieved by manual
lexicon extension, but only through synergy between the éeel shallow compo-
nents.

To test the syntactic coverage, the subset of the corpusvimafully covered
lexically (5878 sentences) was processed with deep apaipdy. The results are
shown in Table 8.1 in the second column. In order to evallegt@tegrated system,
20568 sentences from the corpus were processed withobefuektension of the
HPSG lexicon (see table 8.1, third column).

About 10% of the sentences that were successfully parsecedy dnalysis
only could not be parsed by the integrated system, and théauai analyses per

158 CHAPTER 8. WHITEBOARD

Deep | Integrated

sentences 20568

avg. sentence length 16.83

avg. lexical ambiguity] 2.38 1.98
avg. # analyses 16.19 18.53
analyzed sentences | 2569 4546
lexical coverage 28.6% | 71.4%
overall coverage 12.5%| 22.1%

Table 8.1: Evaluation of German HPSG indiWEBOARD |

sentence dropped from 16.2% to 8.6%, which indicates a @nolh the morphol-
ogy interface of the integrated system at the time of this évaluation.

The overall coverage increased from 12.5 to 22.1%. It hastadied that,
although the growth is impressing, the low absolute coveragnainly due to the
fact that the German HPSG at that time still was close to thRBMOBIL grammar
specialized in speech dialogs in the appointment negmtiatomain, and not yet
extended to general newspaper texts with long, complexesees etc.

8.6 Applications on the Basis of WHAM

The WHAM has been used for two initial information extraatiapplications, the
first one being shallow only, but testifying the speed of tiek-sequential stor-
age mechanism in an online template-based informatiometidn system using
Google search for document retrieval. The second one waasibiiity study for
using both deep and shallow analysis for improved precigimhrecall in restricted
domains.

8.6.1 WAG — Mining Answers in German Web Pages

The fast index-sequential interface to XML annotation ed by WHAM can
also be used for shallow-only analysis of large documenectbns. WHAM
is e.g. used in the WAG system for online information eximactfrom websites
(Neumann and Xu, 2003).

WAG is a study for a question answering system for Germantékais factoid
queries formulated as structured templates by letting $ieefill in a form, and tries
to find relevant answers in Web documents received from ertinogle searches
based on keywords in the query template.

In the system, WHAM is used to extract named entities fromWedb doc-
uments that are recognized by the shallow SPPC system. \Weahdancy is ex-
ploited to compute weights on the named entities found. @hkaed named entities

8.6. APPLICATIONS ON THE BASIS OF WHAM 159

are then used for paragraph selection and answer identficat
The system has been evaluated for person and location guestiken from a
German quiz book, e.g.

¢ Welches Pseudonym nahm Norma Jean Baker(p@fzdon)
Which pseudonym did Norma Jean Baker use?

e Wer wurde 1949 erster Ministerprasident Israel§@®rson)Who became
Israel’s first prime minister in 1949?

¢ In welcher ehemaligen Sowjetrepublik befand sich das Kaftuerk Tsch-
ernobyl?(location)
In which former soviet state was the nuclear power plant Qdteyl?

¢ In welcher europaischen Stadt nennt man die Altstadt Adfatocation)
In which European city is there an old city part called Alféma

In cases where Google returned at least one answer (17 oQtpEr2on ques-
tions; maximally 50 documents per question), the systerrhexha recall score of
0.64 for the top 3 and 0.53 for the top 1 exact answers, fotimas, and 0.43 (top
3) viz. 0.31 (top 1) for locations.

The system only needed a few seconds for the overall onlineval and ex-
traction process per template. Further details about teesyand more on the
evaluation are presented in Neumann and Xu (2003).

8.6.2 WHIES - Integrating Shallow and Deep NLP for Information
Extraction

WHAM has been used for both deep and shallow NLP in a templased infor-
mation extraction system called WHIES (Xu and Krieger, 2003

The idea of WHIES is to go further than mainstream infornratxtraction
(IE) systems that do not attempt an exhaustive deep analysi aspects of a
text, but rather try to identify and analyze only those teattipns that contain
relevant information. The shallow-only strategy warraspeed and robustness,
but performs moderately on unrestricted natural language(tf. WAG in the
section above).

Appelt and Israel (1999) argue that the current IE technoksgems to have an
upper performance level of approx. 60%. However, complexado-based infor-
mation extraction with shallow methods and highly spez@li domain-specific
fine-tuning seems to be able to break that barrier.

Moreover, from deep analyses of text the observation isghretision and re-
call could be potentially be higher on restricted domains.céntrast to shallow
methods, structured linguistic relationships can be pledisuch as grammatical
functions and referential relationships, including e asgve, control/raising, long-
distance dependencies and free word order.

160 CHAPTER 8. WHITEBOARD

Xu and Krieger (2003) present the following example coritagjrboth a passive
and a control construction (wurde gebeten, zu Glbernehmen)

e Hans Beckemwurde aufgrund des Rucktritts von Peter Muliggbeten, die
Presseabteilung zu tibernehmen.
Hans Becker was due to the resignation of Pet@HIdt asked, to take over
the press division.

e Aufgrund des Rucktritts von Peter Millerurde Hans Beckegebeten, die
Presseabteilung zu tibbernehmen.
Due to the resignation of PeteriMer Hans Becker was asked, to take over
the press division.

Relationships such as the one betwétams Beckerand the division name
Presseabteilungannot be formulated by regular expressions (in a genesal)ca
The relatively free word order of German allows reversing tinder of the two
names, by keeping the same meaning. In this sense, Germzardet’ than En-
glish for information extraction.

In a study conducted by Xu and Krieger (2003), theiMiEBOARD architecture
has been used to showcase the possible way an informaticacom application
could employ deep and shallow analyses, and to elaboragés edtere deep anal-
yses could provide information that cannot be found by shafirocessing only.

A demonstrator application for WHIES has been developedHerdomain
of management succession (Figure 8.4) using the deep atovspaogramming
interface of WHAM as fully functional back-end for hybridqmessing.

The information extraction system WHIES consists of a texepfilling com-
ponent and a template merging component.

The template filling component is hybri®attern-based template filling rules
are applied to shallow results (tokens, simple lexical #enamed entities, phrases).
Lexicalized unification-based template filling rulggerate on the MRS structures
output by the deep parser that contain predicate-arguntremctigres.

The filled templates are represented as typed feature @tesctand theem-
plate mergingcomponent combines the filled shallow and deep templatds wit
(scenario-specific) template merging rules by means otifeagtructure unifica-
tion and subsumption tests to remove non-maximally speeifigplates.

Figure 8.4 shows an example of template merging and thet fesuhe sen-
tence

Der Aufsichtsrat hat den Rucktritt von Hermann KronseWerstands-
sprecher der Krones AG, angekiindigt. Lorenz Raith wurdertdan
Kronseder zufolge gebeten, die Stelle zu Glbernehmen.

Xu and Krieger (2003) report on an initial evaluation of therBost-relevant
sentences out of a corpus of 299 documents (managemenssigeccezports taken
from a dpa/German press agency collection) showed progisitall results (0.92

8.7. WHITEBOARD Il 161

“""Whiteboard - Integration of Deep and Shallow Natural Language Processing—>

__File _An al}t _s_i-s y_g_lp

VEHE

Der Aufsichtsrat hat den Ruecktritt von Hermann Kronseder, Yorstandssprecher der Krones AG, angekuendigt
Lorenz Raith wurde Hermann Kronseder zufolge geheten, die Stelle zu uebernshmen.

Result shallow template Result merged templates
<SHALLOW: <MERGING:
<5 Jd="0" <MERGING_SEMTEMCE-
<TEMPLATE href="fs0's i
=<MATCHED _PATTERN:- <TEMPLATE href="fs0"s

<P4RT type="Token"-Ruecktritt= /PART-
<PAET type="Token"svon</FPARTs

<MUNAGENENT SUCCESSTON
<PERSON_OUT=

<PART type="NE" subtype="PERSON_NAME":Hermann Kronseder-/FART: <IE_ARGLIMENT>
</MATCHED_PATTERN: <TF_NAHE> "HERMANN_KRONSEDER "< /TE_NAME
<Mnggg§gsn;ﬁuc(ﬁssmw> </TE_ARGUMENT>-
« _AuT> </PERSON_OUT-
<TE_ARGUMENT- <POSITION:
<TE_NAME:-"HERMANN_HRONSEDER" < /TE_NAME:- <TE_ARGUHENT
/;gé ﬁngﬂ:am ~IE_NAHE:-"VORSTANDSSPRECHER "< /TE_NAME:
= _OUT= < /TE_ARGUMENT:
</MANAGEMENT_SUCCESSTOM:- </POSTTION:
</TEMPLATE> <ORGANTSATION:-
- <IE_ARGUMENT:
Result deep template < TE_MANE="KRONES _AG" </ TE_NAME:-
<DEEP> «/TE_ARGUMENT>
Lt W) </IRGANISATION:-
:isldi Y7 hrer="fsl’s </MANAGEMENT _SUCCESSTON:-
<5 id="1" href="fs Mo
<TEMPLATE hrefs"fs2"s o
MANAGEWENT_SUCCESSTON- A el

<TEMPLATE href="fs1"s

<DEEP- <MANAGEENT SUCCESSTON:

~«IE_PRED_ARGUMENT >
<IE_PRED> "UEBERNEHMEN< /IE_PRED= <PERSON_TH-=
<IE_AGENT:- <TE_ARGUMENT=
<IE_ARGUMENT coref="1"= <IE_NAME="LORENT_RAITH" < /TE_NAME-
<TE_HAME>"LORENT_RATITH" < /TE_NAME= =«IE_MODS>*NULL*/TE_MODS=
«IE_MODS>*NULL ¥« TE_MODZ> =/TE_ARGUMENT=
=/TE_ARGUMENT > +/PERSON_TNs=-
+/TE_AGENT > «/MANAGEMENT _SUCCESSTONs
<IE_THEME= <#TEMPLATE=
<IE_ARGUMENT: /5=
. «/MERGING_SENTENCE = |
<TE_HOMs *STELLE</TE_NOM: st =

Template Merging Finished. [1

Figure 8.4: The WHIES demonstrator GUI for hybrid infornoatiextraction

for deep-shallow compared to 0.31 for shallow only) for #s@plate merging task
based on deep and shallow sentence analyses.

Because of the early and immature status of the German HP&Gngar at
that time with respect to semantics representation outpdtdisambiguation of
multiple readings, the template filling task has been peréa manually, thus was
merely a simulation of what template filling of HPSG analysesld achieve in
principle.

8.7 WHITEBOARD II: Annotation Access and Transfor-
mation with WHAT

Although the first architecture prototype for deep-shaliotegration was stable,
useful, and showed impressive improvements on the NEGRpusowith respect
to lexical and overall (parsing) coverage (cf. Section 8a43hortcoming became
obvious when new components, mainly to integrate shallawpmments for phrase
and topological sentence structure, were added.

The problem was more a practical, not a principal one: Theeclotegration

162 CHAPTER 8. WHITEBOARD

of the (shallow) API within the deep parser and the postdiasemorphism of
the XML annotation and the API structure (modulo naming dftes) made the
integration of additional or alternative components adasitask that required re-
compilation of the API bridge almost every time the annotafiormat changed or
a new component had to be added. On the other side, given tieerange of dif-
ferent annotation formats and paradigms, a fully autonmatipping from arbitrary
annotation formats to API routines in a usable and useful wesy not feasible.

An additional layer of abstraction between shallow anmataind basic API
routines turned out to be necessary, filling the deep parskért, without the need
to adapt the parser’'s API for each change in shallow anwotédirmats.

As motivated extensively in Chapter 5, XSLT has been chosetraamsfor-
mation and query language for annotation access as it iqrdéige for simple
mappings, but also provides programming language poweoimplex annotation
computation and combination. The additional componerttithadded for XSLT
transformation to the WHAM is called WHAT.

8.7.1 WHAT, the WHITEBOARD Annotation Transformer

WHAT is built on top of a standard XSL transformation engitigarovides uniform
access to standoff annotation through queries that caardih used from non-
XML aware components to get access to information storetierannotation (as
an extension of XPath), or to transform (modify, enrich, geércomplete XML
annotation documents.

WHAT XSLT queries are specific for a standoff document stieet(DTD or
schema) of a component’s XML output format, i.e., they mustuoitten once for
a new component and are collected in a template library {glurE 8.5). However,
as output of e.g. different taggers is similar, the queryecoolld at least partially
be reused. WHAT queries are embedded in WHAM API calls, maimlabstract
from component-specific details such as namings of tgpes

query

v

constructed
XSLT
stylesheet

v

XSLT
processor

I
v

result

Figure 8.5: WHAT and XSLT template library

8.7. WHITEBOARD Il 163

A WHAT query consists of component name, query name, andyegpcific
parameters such as an index or identifier. To return thetrealWHAT query on
a given XML input document, the query code is looked up in ti8l X template
library for the specified component by name. The associatedDé&tylesheet is
constructed, returned and applied to the XML document byX8ET processor.
The result of stylesheet application is then returned astissver to the WHAT
query.

There are basically three kinds of results: (1) stringslgisiog non-XML out-
put), (2) references to nodes in the XML input document ventidiers, (3) XML
documents.

Formulating queries as functions, we distinguish the foitg three query sig-
natures, withtC being the componenD denoting an XML documen®* a (possi-
bly empty) sequence of parameteBsa sequence of strings, ahli a sequence of
nodes.

e V-queries. getValueC x D x P*+— &
V-queries return string values from XML attribute valuestext. The sim-
plest case is a single XPath lookup, e.g. of the gender of d eecoded in
a shallow XML annotation.

e N-queries getNodesC x D x P* —— N*
N-queries compute and return lists of node identifiers (@@nswer struc-
tural queries) that can again be used as parameters forgudrgequeries,
e.g. all named entity nodes within a token or character rapgeified as
query parameters.

e D-queries getDocumentC x D x P*— D
D-queries return transformed XML documents. This con&#itthe classi-
cal, general use of XSLT. Complex transformations that fiyp@inrich or
produce (standoff) annotation can be used for many purpRsgs as con-
verting formats, merging, modifying or computing annaias.

8.7.2 WHAT Query Types

8.7.2.1 V-Queries (getValue)

V-queries return string values from XML attribute valuestext. The simplest
case is a single XPath lookup. As an example, we determingypleeof named
entity 23 in a shallow XML annotation produced by the SPPQesgsPiskorski
and Neumann, 2000). The WHAT query

getValue("NE.type", "de.dfki.lt.sppc", 23)

would lead to the lookup of the following query in the XSLT telate library for
SPPC

164 CHAPTER 8. WHITEBOARD

<query name="getValue.NE.type" component="de.dfki.lt.sppc">
<!-- returns the type of named entity as number -->
<xsl:param name="index"/>
<xsl:template match="/WHITEBOARD/SPPC//NE[@id=$index]">
<xsl:value-of select="Q@type"/>
</xsl:template>
</query>

The query basically consists of the XPath match expres$iannhatches the
NE element with the desired id attribute, and a select expreghat returns the
value of the attributeype. On appropriate SPPC XML annotation, containing the
named entity tag e.kNE 1d="23" type="location"?>somewhere below the
root tag, this query would return the String "location”.

By adding a lookup to a translation table (through XML entsfinitions, as
part of the input document or an external XML-encoded mappable or as a call
to the component-specific template library), it would algopossible to translate
namings, e.g. in order to map NLP-component-specific tymeasato HPSG type
names.

We see from this example how WHAT helps to abstract from carept
specific DTD structure and namings by providing an annatatiolependent in-
terface. However, queries need not be that simple (in faet,query presented
could be formulated as a single XPath expression as wellhpglex computations
can be performed, e.g. through recursive hamed templétei® tan be multiple
input annotations included via the XPathcument () function, and the return value
can also be numbers, e.qg. for queries that count elementdsyetc

8.7.2.2 N-Queries (getNodes)

An important feature of WHAT is navigation within the anntida. N-queries
compute and return lists of node identifiers that can in twmused as parameters
for subsequent (e.g. V-)queries.

The sample query returns a list of node identifiers of all ndmeatities (NE
elements) that are in the given range of tokens (W element® template calls a
recursive auxiliary template that seeks the next nametyanttil the end of the W
range is reached. The WHAT query

getNodes ("W.NEinRange", "de.dfki.lt.sppc",3,19)

would lead to the lookup of the following query in the XSLT telaite library for
SPPC.

<query name="getNodes.W.NEinRange" compon.="de.dfki.lt.sppc">
<!-- returns NE nodes starting exactly at token $index to
(at most) token $index2 -->
<xsl:param name="index"/>
<xsl:param name="index2"/>

8.7. WHITEBOARD Il 165

<xsl:template match="/">
<xsl:variable name="X" select="//W[@id=$index]/ancestor::NE"/>
<xsl:if test="$X//W[1]/@id = $index">
<xsl:call-template name="checknextX">
<xsl:with-param name="nextX" select="$X"/>
<xsl:with-param name="lastW" select="$index2"/>
</xsl:call-template>
</xsl:if>
</xsl:template>

<xsl:template name="checknextX">
<!-- auxiliary template (recursive) -->
<xsl:param name="nextX"/>
<xsl:param name="lastW"/>
<xsl:variable name="Xtokens" select="$nextX//W"/>
<xsl:if test="number (substring($Xtokens[last()]/Qid, 2)) <=
number (substring($lastW, 2))">
<xsl:value-of select="$nextX/0id"/>
<xsl:text> </xsl:text>
<xsl:call-template name="checknextX">
<xsl:with-param name="nextX" select="//NE[@id=concat(’N’,
string(1l + number (substring($nextX/0@id,2))))1"/>
<xsl:with-param name="lastW" select="$lastW"/>
</xsl:call-template>
</xsl:if>
</xsl:template>
</query>

Again, the query forms an abstraction from DTD structurg, ;@ SPPC XML
output, named entity elements enclose token elements.nEkid not be the case
for another shallow component; its template would be defififidrently, but the
query call syntax would be the same.

8.7.2.3 D-Queries (getDocument)

D-queries return transformed XML input documents. Thihés ¢lassical, general
use of XSLT. Complex transformations that modify, enrichposduce (standoff)
annotation can be used for many purposes. Examples are

e conversion from a different XML format
e merging of several XML documents into one

e auxiliary document madifications, e.g. to add unique idient to elements,
sort elementgtc

e interfacing NLP applications (up to code generation for@gpamming lan-
guage compiler)

166 CHAPTER 8. WHITEBOARD

e visualization and formatting (trees, feature structukeEML, PDF, etc)

e complex computations on XML input

The last application is perhaps the most important. (Lisiti computation
and transformation can turn a WHAT query into a kind of NLP poment itself.
This is e.g. intensely used in the shallow topological fiedalspr integration we
will describe in Section 8.7.5. There, multiple queries a@pplied sequentially in
order to transform a topological field tree into a list of doasits over syntactic
spans that are used for initialization of a deep parser's.cha

We show only a short example here, an auxiliary query thariasinique iden-
tifier attributes into an arbitrary XML document without itlrébutes by recursively
walking through the document, copying all element nodedirgdanid attribute
with a unique ID value to each element node, and copying héroattributes of
the original node (in th@sl:for-each loop).

<query name="getDocument.generatelIDs">
<!-- generate unique id for each element -->
<xsl:template match="x*">
<xsl:copy>
<xsl:attribute name="id">
<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<xsl:for-each select="0x*">
<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:copy>
/xsl:template>
</query>

Moreover, this an example for a stylesheet which is comigiéteependent of
a DTD, it just works on any XML annotation and thus shows howeagie XSL
transformation rules can be.

Another example of d-queries is transformation of syntastML tree rep-
resentations into Thistle trees for visualization (arbbDfED; see Calder 2000).
While the output DTD is fixed (imposed by the arbora DTD), ikiagain not true
for the input document which can contain arbitrary elemerhes and branches
that must not be known to the stylesheet in advance. Thistielzations of syn-
tactic XML trees generated through WHAT d-queries are répeced in Figure 8.7,
8.8, and 8.9 in the next sections.

8.7.3 Topoparser Integration

As mentioned in the beginning of this section, the aim of teeoad phase of
WHITEBOARD was to integrate shallow components beyond the lexical (paet-
of-speech tagging of words unknown to the deep lexicon, amdaa entities) with

8.7. WHITEBOARD Il 167

the deep parser, to see how one can take further advantagetiall gnowledge
provided by shallow pre-processing to pre-structure tlaeckespace of the deep
parser.

The scenario we will describe has been first presented irkFetaal. (2003),
on which parts of the following description are based. Agamwe concentrate
on the architecture and technical infrastructure that mé#ke integration possible,
we only briefly touch the linguistic details here.

The key idea of the topoparser integration is structurisigaping the deep
parser's search space by bracketing information compuyed $tatistical topo-
logical field parser running ahead, i.e., those items on #&sp garser’s chart that
are ‘licensed’ by the shallow parser are ranked higher, tuiding deep parsing
towards a best-first analysis suggested by shallow analgsstraints.

On the other side, constituents which are incompatible thighprecomputed
shape are penalized by assigning a lower rank. Additiorfaiimation about pro-
posed constituents, such as categorial or feature camstrarovide further criteria
for prioritizing compatible, and penalizing incompatildenstituents in the deep
parser’s chart.

This strategy requires that the concepts of the bracketsoanpatible, i.e., they
must have a common subset of properties, minimally a charrapan and a type,
that can be mapped. In most cases, shallow parsers do natrdelore than that
(which makes it a kind of least common denominator), whilegdelPSG parsing
yields more structured and fine-grained analyses.

The bracketing information would not only include chunksngoising only a
few words, but also much larger portions of a sentence suttfeaSerman Vorfeld,
Mittelfeld, Nachfeld positional fields, in which a deep paralone would probably
become lost in longer sentences because of the wealth offietmal boundaries.

8.7.4 Finding Appropriate Linguistic Structures

Finding compatible constructions (including the defimtiaf transformations that
make non-isomorphic structures comparable) is the litiguchallenge for inte-
grated deep-shallow processing.

Although the next logical step after using lexical inforinatwould be exten-
sion to chunks, this strategy has not been followed segouEhe reason is that
chunks delivered by state-of-the-art shallow parsers ateésomorphic to deep
syntactic analyses that explicitly encode phrasal emingdstructures.

As a consequence, the boundaries of deep grammar condiingi) a. can-
not be pre-determined on the basis of a shallow chunk asglisb. Moreover, the
prevailing greedy bottom-up processing strategies appiehunk parsing do not
take into account the macro-structure of sentences. Tleethas easily trapped in
cases such as (2).

(1) a. [c There wasjp a rumor [it was going to be bought byjp a French
company g that competes in supercomputersl]]]].

168 CHAPTER 8. WHITEBOARD

b. [c| There wasfjp arumor]] [c| itwas going to be bought byjp a French
company]] | that competes in supercomputers].

(2) Fred eats);p pizza and Mary] drinks wine.

Therefore, the insight in WITEBOARD was (at least for German and English)
that state-of-the-art shallow chunk parsing does neithevige sufficient detail,
nor the required accuracy to act as a ‘guide’ for deep syintaoglysis.

Therefore, shallow analyses that determine the clausalgysdiucture of sen-
tences seem to be more promising for integration with HP $@tdpological field
modelof German syntax (Hohle, 1983) divides basic clauses irgtindt fields —
pre-, middle; and post-fields— delimited by verbal or sentential markers, which
constitute the left/right sentence brackets. This modedlafise structure is un-
derspecified, opartial as to non-sentential constituent structure, but provides a
theory-neutral model of sentenagacro-structure

The topological field model provides a pre-partitioning ofrplex sentences
that is (i) highly compatible with deep syntactic analysisd thus (i) maximally
effective to increase parsing efficiency if interleavedhwdeep syntactic analysis;
(i) partial results regarding the constituency of nomtemtial material ensure ro-
bustness, coverage, and processing efficiency.

Wauschkuhn (1996) described a topological parser of Gewnahe basis of
hand-crafted CFG rules. Braun (1999) implemented a caddiite-state gram-
mar for identifying topological fields. Becker and Frank @2) explored a corpus-
based stochastic approach to topological field parsingaayimg a non-lexicalized
PCFG on a topological corpus derived from the NEGRA treeb@tut et al.,
1998) of German.

The topological parser employed infMEBOARD was provided a tagger front-
end for free text processing, using the TnT tagger (Bra®B0R The grammar was
ported to the efficient LoPar parser of Schmid (2000).

Due to the combination of scrambling and discontinuous etubters in Ger-
man syntax, a deep parser is confronted with a high degrexalf hmbiguity that
can only be resolved at the clausal level. Highly lexicalifeameworks such as
HPSG, however, do not lend themselves naturally to a topaduavsing strategy.
Using topological analyses to guide the HPSG will thus peéxternal top-down
information for bottom-up parsing.

More details on the linguistic aspects of the topoparsexgiation are dis-
cussed in Frankt al. (2003).

8.7.5 Architecture of the Hybrid Deep-Shallow System

In this section, we describe the WHAT-based architectudetying the integrated
system, and then provide some evaluation figures in Sectibf.8

The fully online-integrated hybrid WITEBOARD topoparser architecture con-
sists of the efficient deep HPSG parser PET (Callmeier, 200i)ing tokeniza-
tion, part-of-speech, morphology, lexical, compound, edrantity, phrase chunk

8.7. WHITEBOARD Il

169
and topological sentence field analyses from shallow comsnin a sequential
architecture.

,,,,,,,,,,,,

APPLICATION ‘

Figure 8.6: XSLT-based architecture of the hybrid parser

The simplified diagram in Figure 8.6 depicts the componemiispdaces where
WHAT comes into play in the hybrid integration of deep andlisiaprocessing
components (V, N, D denote the WHAT query types, i.e., XSlahsformations).

Solid boxes indicate components that produce annotatiashetl boxes indicate
the produced XML annotation.

Solid-line arrows represent the transformations usederptiline integration.
Dashed-line arrows indicate possible access to the intéatge annotation that
could be accessed from an application (bottom box), e.g. Tthistle (Calder,
2000) tree visualizations that show the XML annotation steactures (Figure 8.7
through 8.9) have been created through WHAT D-queries othefntermediate
topo.* XML trees.

The system takes an input sentence, and runs four shalldensy®n it:

¢ the rule-based shallow SPPC (Piskorski and Neumann, 200@afmed en-

tity recognition, compound analysis for German, and molqiyoand stem-
ming of words unknown to the HPSG lexicon,

170 CHAPTER 8. WHITEBOARD

e TnT, a statistical PoS tagger (Brants, 2000),
e Chunkie, a statistical chunker based on TnT (Skut and Braegs),

e LoPar, a probabilistic context-free parser (Schmid, 20@jich takes PoS-
tagged tokens as input, and produces binary tree repréisestaf sentence
fields, e.g. topo.bin in Figure 8.7. For a motivation for mjnas. flat trees
cf. Becker and Frank (2002).

The results of these components are multiple XML standoffotations for
the input sentence. Named entity, compound, morphologitdistem information
from SPPC is used by the deep parser to initialize the chaint pvototypical fea-
ture structures that are filled with shallow informationaiingh V-queries for words
unknown to the HPSG lexicon and for named entities.

In addition, preference information on part-of-speechsiscufor prioritization
of the deep parser. Details have been described above in theBBOARD-I de-
scription (Section 8.4). PoS tagging from TnT is used astirfipu Chunkie to
produce chunking and as input for the shallow topologicaF8@arser (Frankt
al., 2003).

The examples in Figure 8.7 through 8.11 show the analyseleoGerman
sentence

Untergebracht war die Garnison in den beiden Wachlokalenptaache
und Konstablerwache. (Located was the garrison at the twardyu
houses, the main guard house and the Constabler guard House.

with a fronted verb in topic position, which the topologigarser identifies cor-
rectly. This macro-sentential information can be used teatithe deep parser’s
search space towards the correct (and rather infrequensgfraation, avoiding al-
ternative exploration of the search space.

The following XML document is the output of the topologicarper (topo.bin),
graphically represented in Figure 8.7.

<?xml version="1.0"7>
<R0OOT>
<CL fn="V2">
<VF fn="TOPIC">
<RK fn="VPART">
<VVPP>
<W id="W0">Untergebracht</w>
</VVPP>
</RK>
</VF>
<LK fn="VFIN">
<VAFIN>
<W id="W1">war</wW>
</VAFIN>
</LK>

8.7. WHITEBOARD Il 171

<MF>
<ART>
<KW id="Ww2">die</W>
</ART>
<MF>
<NN>
<W id="W3">Garnison</W>
</NN>
<MF>
<APPR>
<W id="W4">in</W>
</APPR>
<MF>
<ART>
<KW id="W5">den</W>
</ART>
<MF>
<PIDAT>
<W id="W6">beiden</W>
</PIDAT>
<MF>
<NN>
<W id="W7">Wachlokalen</W>
</NN>
<MF>
<NN>
<W id="W8">Hauptwache</W>
</NN>
<MF>
<KON>
<W id="W9">und</W>
</KON>
<MF>
<NN>
<W id="W10">Konstablerwache</W>
</NN>
</MF>
</MF>
</MF>
</MF>
</MF>
</MF>
</MF>
</MF>
</MF>
</CL>
</R0O0OT>

In order to extract this type of global constituent-basddrimation, a sequence

172 CHAPTER 8. WHITEBOARD

ROOT
CL_V2
VF_TOPIC LK_VFIN MF
RK_VPART VAFIN ART/\MF
VVIPP VIV VIV NN/\MF
VIV er diIe VIV AP{\MF
UntergeIJracht GarnIson \/I\I ART/\MF
oo e
wowo o e
beidIen vIv NN/\MF
WachIoIkaIen VI\I KON/\MF
HauptVIIache VIV NIN
urId VIV

Konstablerwache

Figure 8.7: Result of the topological parser (topo.bin) iaaty tree

ROOT
I
CLV2
VF_TOPIC LK_VFIN MF
I I
RK_VPART VAFIN
I | ART NN APPRART PIDAT NN NN KON NN
VPP W I [I I I I
I I w w w o oww w w w w
w war | I [I I I I

I die Garnison in den beiden Wachlokalen Hauptwache und Konstablerwache
Untergebracht

Figure 8.8: The topological tree after flattening (topo)flat

of D-queries is applied to flatten the binary topologicaks¢hat are output by
LoPar (result is topo.flat, Figure 8.8) and merge the treb shiallow chunk infor-

mation from Chunkie (topo.chunks, Figure 8.9). In a nexp stee apply the main
D-query which computes bracket information for the deepggafrom the merged
topological tree and chunks (topo.brackets, Figure 8.11).

In order to communicate the structural constraints fromtéipelogical parser
to the deep parser, the topological tree is scanned foraetesonfigurations by
the stylesheet code of the D-query, and the span informddiextracted for the
target HPSG constituents. The resulting ‘map constra{iigjure 8.11) encode a

8.7. WHITEBOARD Il 173

ROOT

CL_V2

VF_TOPIC LK_VFIN MF
W_VVPP VAFIN CHUNK_NP CHUNK_PP
Untergebracht Y W_ART W_NN
‘ ‘ W_APPRW_ART W_PIDAT W_NN CHUNK_CNP
war die Garnison ‘ ‘ ‘ ‘
in den beiden Wachlokalen W_NN W_KON W_NN

Hauptwache und Konstablerwache

Figure 8.9: The topological tree merged with chunks (topan&s)

bracket type name (34 different bracket types are mappati)déntifies the target
constituent and its left and right boundary, i.e., the cetecspan in the sentence.

The bracket information is used to prioritize chart eleraaitthe deep parser
that match the constituent boundaries computed by theoshphrser and chunker.
The stylesheet directly generates the names of the apptepfiPSG types (value
of the rule attributes in Figure 8.11).

Bernd Kiefer extended the PET parser in such a way that it gploik com-
puted priorities for the chart elements assigned to thesalhnstraints (brackets)
from the topological analysis, in addition to the word-lmhB®S ranking described
in WHITEBOARD-I above.

A related approach can be found in Kietsral. (2000) for parsing in a speech
translation application, where prosodic boundaries helgttucture the search
space of an HPSG parser.

Depending on the bracket type and chart edge configuraedr ¢ight-, and
fully matchingbrackets), application of corresponding HPSG rules ieeitienal-
ized or ranked higher. A parser task in the following is a gunfation of passive
and an active chart edge.

A right-matching bracket may affect the priority of parsesks whose resulting
edge will end at the right bracket of a pair such as, for examgptask that would
combine edge€ andF or C andD in Figure 8.10. Left-matching brackets work
analogously. For fully matching brackets, only tasks thatpce an edge that
matches the span of the bracket pair can be affected, suctaak #hat combines
edgesB andCin Figure 8.10.

If, in addition, specified rule as well as feature structurastraints hold, the
task is rewarded if they are positive constraints, and |mathif they are negative
ones. All tasks that produagrossingedges, i.e., where one endpoint lies strictly
inside the bracket pair and the other lies strictly outsade,penalized, e.g. a task
that combines edgesandB in Figure 8.10.

Details of the algorithm that computes these prioritiesesq@ained in Frank

174 CHAPTER 8. WHITEBOARD

[brx]brX

Figure 8.10: An example chart with a bracket pair of typd@he dashed edges are
active

et al. (2003).

The priority of a parser task is modified relative to a defauilbrity using two
confidence values, onepnt,;(bry), based on tree entropy of a topological parse
(per sentence), and oneonf, (bry), based on a measure of expected accuracy
for each bracket type. These confidence parameters takadgotunt the fact the
stochastic topological parser may deliver (partially) mg@nalyses and try to cor-
rect them. If confidence is high, the topological bracketsfally considered for
prioritization. If it is low, their impact is decreased omapletely ignored.

Both confidence values are weighted using a heuristicallgraened weight
factor y, and all these parameters together are used to either addstbtract
from the default priority, depending on whether the braeket chart configuration
triggers reward or penalty. Thus, the prioripyt) of a taskt involving a bracket
bry is computed from the default priority(t) by:

p(t) = P(t) * (14 cont,,(bry) * confy (X) *y)

<TOPO2HPSG>
<MAPC type="chunk_np+det" rule="chunk" left="W2" right="Ww3"/>
<MAPC type="chunk_pp" rule="chunk" left="W4" right="W10"/>
<MAPC type="v2_cp" rule="vfronted" left="WO" right="W10"/>
<MAPC type="vfronted_vfin-rk" rule="vfronted" left="W1" right="wi"/>
<MAPC type="vfronted_vfin+vp-rk" rule="vfronted" left="W1" right="W10"/>
<MAPC type="v2_vf" rule="vfronted" left="WO" right="W0"/>
<MAPC type="v2_vfin_pvp-rk" rule="vfronted" left="W1" right="wi"/>
</TOPO2HPSG>

Figure 8.11: The extracted brackets (topo.brackets)

Finally, the modified deep parser PET is started with a cimititilized using
V-queries to access lexical (morphology, stemming, comdeuPoS preferences)
and named entity information gathered from SPPC. The cosdphbitacket infor-
mation (Figure 8.11) is accessed through WHAT V and N-gsedigring parsing
in order to prioritize constituent analyses motivated by titpological parser and
additional syntactic information.

8.7. WHITEBOARD Il 175

The abstraction provided by WHAT facilitates exchange ef shallow input
components of PET, e.g. it would be possible to exchange sditie used com-
ponents without rewriting the deep parser’s code.

The complete input for the deep parser is encoded in a single document
(per input sentence), e.g.

<?xml version="1.0"7>
<WHITEBOARD>
<SPPC_XML version="2002-06-24" type="transformable">
<ENCODING_TABLES>

</ENCODING_TABLES>
<DOCUMENT_STATISTICS tokens="12" lexical_items="12" unknown_words="1"
words_found_in_lexicon="11" words_with_prefered_reading="9"
named_entities="0" phrases="4" sentences="1" subclauses="0"/>
<PARAGRAPH id="P0">
<S id="s0">
<CHUNK id="HO" type="6">
<W id="WO" tc="22">Untergebracht
<READINGS id="DO" pref="RO">
<R id="RO" pos="2" stem="unterbring" infl="152" code="94"/>
</READINGS>
</W>
<W id="W1" tc="21">war
<READINGS id="D1" pref="R1">
<R id="R1" pos="3" stem="sei" infl="36 37" code="54"/>
</READINGS>
</W>
</CHUNK>
<CHUNK id="H1" type="1">
<W id="W2" tc="21">die
<READINGS id="D2" pref="NONE">
<R id="R2" pos="22" stem="die" infl="" code="5"/>
<R id="R3" pos="7" stem="d-det" infl="18 21 13 23 29 16 26 30"
code="23"/>
</READINGS>
</W>
<W id="W3" tc="22">Garnison
<READINGS id="D3" pref="R4">
<R id="R4" pos="1" stem="garnison" infl="18 19 20 21"
code="13"/>
</READINGS>
</W>
</CHUNK>
<CHUNK id="H2" type="2">
<W id="W4" tc="21">in
<READINGS id="D4" pref="R5">
<R id="R5" pos="23" stem="in" infl="3 4" code="4"/>
</READINGS>
</W>
<W id="W5" tc="21">den
<READINGS id="D5" pref="NONE">
<R id="R6" pos="22" stem="den" infl="" code="5"/>

176 CHAPTER 8. WHITEBOARD

<R id="R7" pos="T7" stem="d-det" infl="7 15 25 27" code="20"/>
</READINGS>
</W>
<W id="W6" tc="21">beiden
<READINGS id="D6" pref="R8">
<R id="R8" pos="14" stem="beid" infl="334 335 336 337 338 339
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
370 371 372 373 374 375 376 377" code="159"/>
</READINGS>
</W>
<W id="W7" tc="22">Wachlokalen
<READINGS id="D7" pref="R9">
<R id="R9" pos="1" stem="wachlokal" infl="27" code="73"/>
</READINGS>
</W>
</CHUNK>
<CHUNK id="H3" type="1">
<W id="W8" tc="22">Hauptwache
<READINGS id="D8" pref="R12">
<R id="R10" pos="5" stem="wach" infl="129 130 131 132 133 134
135 136 137 138 139 140 141 142 143" code="82"/>
<R id="R11" pos="2" stem="wach" infl="43 62 63 17" code="71"/>
<R id="R12" pos="1" stem="wache" infl="18 19 20 21" code="13"/>
</READINGS>
<COMPOUND id="CO">
<SEGMENT id="M3420215" surface="haupt">
<READINGS id="D9">
<R id="R13" pos="1" stem="haupt" infl="9 10 11" code="9"/>
</READINGS>
</SEGMENT>
<SEGMENT id="M3420216" surface="wache">
<READINGS id="D10">
<R id="R14" pos="5" stem="wach" infl="129 130 131 132 133
134 135 136 137 138 139 140 141 142 143" code="82"/>
<R id="R15" pos="2" stem="wach" infl="43 62 63 17"
code="71"/>
<R id="R16" pos="1" stem="wache" infl="18 19 20 21"
code="13"/>
</READINGS>
</SEGMENT>
</COMPOUND>
</W>
<W id="W9" tc="21">und
<READINGS id="D11" pref="R17">
<R id="R17" pos="19" stem="und" infl="" code="40"/>
</READINGS>
</W>
<W i1d="W10" tc="22">Konstablerwache
<READINGS id="D12" pref="R18">
<R id="R18" pos="1" stem="konstablerwache" infl="18 19 20 21"
code="13"/>
</READINGS>
</W>

8.7. WHITEBOARD Il 177

</CHUNK>
<W id="W11" tc="1">.</W>
</S>
</PARAGRAPH>
</SPPC_XML>
<TOPO sno="0">
<TOPO2HPSG>
<MAPC id="T1" mapc="chunk_np+det" rule="chunk" left="W2" right="w3"/>
<MAPC id="T2" mapc="chunk_pp" rule="chunk" left="W4" right="W10"/>
<MAPC id="T3" mapc="v2_cp" rule="vfronted" left="WO" right="W10"/>
<MAPC id="T4" mapc="vfronted_vfin-rk" rule="vfronted" left="W1"
right="W1"/>
<MAPC id="T5" mapc="vfronted_vfin+vp-rk" rule="vfronted" left="W1"
right="W10"/>
<MAPC id="T6" mapc="v2_vf" rule="vfronted" left="WO" right="W0"/>
<MAPC id="T7" mapc="v2_vfin_pvp-rk" rule="vfronted" left="W1"
right="w1i"/>
</TOPO2HPSG>
</TOPO>
</WHITEBOARD>

The result of deep parsing including the constructed sensargpresentation
of the analyzed sentence can be accessed through the deafada of PET as
typed feature structures (Figure 8.13), or via subsequ&iiTXransformation in
other formats, extracting only partial information.

8.7.6 Evaluation Results

For the evaluation, a subset of the NEGRA corpus consistirg060 sentences
(24.57%) that were parsable by the HPSG grammar with the &gfing integra-
tion from WHITEBOARD |, was used. This test set is different from the corpus that
has been used for determining the confidence values. Avemdence length was
8.94, ignoring punctuation; average lexical ambiguity ®&5 entries per word.

As baseline, a run without topological information was parfed, yet includ-
ing PoS prioritization from tagging. A series of tests exptbthe effects of al-
ternative parameter settings. Furthermore, the impachohk information was
tested. To this end, phrasal fields determined by topolbgiaesing were fed to
the chunk parser of Skut and Brants (1998).

Extracted NP and PP bracket constraints were defined an#éthing bracket
types, to compensate for the non-embedding structure afkshuChunk brack-
ets were tested in conjunction with topological brackets$ iarisolation, using the
labeled precision value of 71.1% in Skut and Brants (1998 asiform confi-
dence weight. For all runs, the maximum number of passive®d@s set to the
comparatively high value of 70000.

For all runs, the absolute time needed to compute the firgimgavas mea-
sured. Various variants have been tried, with- 1 andy = 0.5 as confidence
weight, combined with and without both confidence valuestalleare presented
in a table (Franket al., 2003). We content ourselves here with the overall result

CHAPTER 8. WHITEBOARD

178

uapieq

HOIPHOIHITM a2 didy-pd-a diy-wa -aBe-ua -o-xp

IR T4 J- AN - sod-Jg-pad-tonu- [pe-uLtot nap
T e smemeeect | ut
ATLI-T[-8 ama a8 -1d- rep-adil-cus-afe-ua-ap-xp _
AL TR TIV-3d
ayopMmpdnory _
_ AMLI-pRaT]- TU- 3] IMLI-P O W- a4- 03-Tmou- daxd-my
AT SR - B2 -wag-eu-add)-a-aBe -3-zod-xe <
sod-Jg-pad-uou-pe - Lot T-a[uI-2-11
AMLI-T[-%

AMUI-TA T O W-Tho - Aydura

Ee-amut-1ap-fyduta

.

AMI-PI00d

amut-uonzodde

HOSTLIDD

ST D= AT [Ee-3

le[frllllr.llll[lllllll

IMLI-PeIY-TU-131

T-ama-a-1

/

L1 03385 215 autod |

suopdo 1p3 el

__wm%.._Emm.m_m>_m.._<..._0un_.0u.._0.u.:0m 191§ saan ueid :apsiyl 1]

i R R RRRRRR—————

Figure 8.12: Part of the derivation tree of the deep parser

8.7. WHITEBOARD Il 179

" Whiteboard - Integration of Deep and Shallow Natural Language Processing —
FileAnalysis _Help

EEICI]

Deep analysis typed feature structure

HAMDEL 23]
| ARG
REST | *cons*

FIRST [pron _rel]

[SORT anything JJ A

YTYPE refl

“REF ‘third _he

INST

| HAMDEL handle

REST | “cons*

FIRST | scope-adwv-1el
PRED ‘selbst
HAMDEL handle
ARG handle

REST *cons*

REST
FIRST | topic_rel
HANDEL [E8
VALUE vf
INST
FIRST glbtype7s?
HAMNDEL
AGENT
PRED 'sagen

EVENT
PROPOSITION

[E

4]

Deep Analysis finished.

Figure 8.13: Part of a deep parsing result in theWeBOARD GUI

which is a speedup of factorZ5 on average with the topoparser integration. Even
without the confidence factor, the speedup is still®2(y = 0.5).

Additional use of chunk information decreases the speeligiptly to approx.
2.15, with chunk brackets only to.d, both probably due to lower precision of
chunk brackets. A similar observation has been reporteddynizt al. (2003) for
integration of chunk and dependency parsing, they measugaah of factor 2.76
relative to a non-PoS-guided baseline, which reduces torfdc21 relative to a
PoS-prioritized baseline, as in our scenario.

8.7.7 Conclusion

In the WHITEBOARD Il phase, it could be shown that the integration of shallow
topological and deep HPSG processing results in signifigarfbormance gains, of
factor 2.25 — at a high level of deep parser efficiency. It wasas that macro-
structural constraints derived from topological parsimgpiove significantly over
chunk-based constraints. Fine-grained prioritizatioterms of confidence weights
could further improve the results.

The XML and XSLT-based architecture on the basis of WHAM andAY is
flexible and was easily extended to address robustnessibsyend lexical mat-
ters. By extracting spans for clausal fragments from tagiokd parses, in case

180 CHAPTER 8. WHITEBOARD

of deep parsing failure, the chart can be inspected for spgranalyses for sub-
sentential fragments. Fragment output of deep parsinglldsaiek result will be
further addressed in Chapter 9. Moreover, the input seatenald be simplified by
pruning adjunct sub-clauses, and trigger re-parsing optheed input, thus per-
forming a divide and conquer strategy that could help to amitle long sentences
where a deep parser often fails because of the huge seamh spa

8.7.8 Transformation for Visualization

As described in Chapter 5, XSLT can be used to transform istigumarkup for
visualization purposes. The tree visualizations in FigBu& through 8.12 have
been generated through a generic WHAT D-query transforithiagKML-encoded
topological parse tree into a Thistle visualization treal@@r, 2000).

The target SGML format (Thistle arbora DTD) can be gener#tadks to the
openness of XSLT with respect to output formats. The Thistlitor mode could
in principle be used to edit the generated tree representafiFigure 8.14). The
resulting, corrected SGML file could be used to improve theeulying stochastic
topological parser that originally generated the topalabiree.

X LT Thistle: Syntax Trees -- Interarbora File: top sgml —jofusll
File Edit Options

DBétreeton, Teormentsandtres; Ytres, Ttree, Wdauahters, 0, Tiree]

ROOT

///\

CL_¥2 CL.V1

7 LE_¥FIN MF
¥F_TOPIC LK_VFIN MF RE_TINF ‘

| e ‘ WTFIN v FEER CHUNE _AF
CHUNE PP WMFIN Wi_BPER. W_ATW CHUNK_ATP VVINE ‘
| ‘ - ‘ w er CHUNK _PP CHUNK PP W_ADV
W_APFR WNN W ick doch W DV W.PTENEG W_ADY W ‘ N |

| | | | | i W_APPRART WNN W_APPR W.ERF sefbst

Mir Stasi-Leuten will anch nicht. mely zmsmmmenarbeilen | |
Begrindung vor sich

Text: Mit Stasi-Lentent will ich doclt mzch nicht mehy iten sagt er zur Beg a1 vor sich selbst

Figure 8.14: Topological parse tree in Thistle editor mode

8.8 Related Work

WHITEBOARD was the first implemented system that integrated multipédi@iv
processing components (not only PoS tagging) with an advhrinégh-performance
deep HPSG-based parser. In additionHMEBOARD provides an architecture
framework that supports easy integration of other shallommonents by means
of XML annotation and through XSL transformation. Thesddanake the archi-
tecture superior to other, in most caseshocintegrations of specific systems.

8.9. SUMMARY 181

Another NLP architecture also called MfEBOARD has been developed at
ATR Kyoto (Boitet and Seligman, 1994). The focus of that ptgpical system
designed for speech translation was to overcome restrictid both pipeline and
blackboard architectures by postulating@ordinator that would schedule NLP
components and mediate between them. However, the AHRTPBOARD idea is
different from our WHITEBOARD in that access to NLP component results is only
possible via the coordinator. Moreover, the assumed angostgal data structures
are specific for speech processing (time-aligned lattiod)reot directly usable for
concepts such as abstraction-based deep and annotasied-tlzallow processing
results.

There exists only very little other work that considers gmgion of shallow
and deep NLP utilizing an XML-based architecture, most blgt&rover and Las-
carides (2001) for the HPSG precursor GPSG. However, thigiation efforts
are largely limited to the level of PoS tag information.

Ad hocintegrations of PoS tagging and specific HPSG grammars heee b
conducted for Dutch (Prins and van Noord, 2003) and SpaMsinihon, 2002a).

There was also integration work in deep parsing other thad®ife.g. Daunet
al. (2003) combined PoS tagging and chunking with a dependeaigep Kaplan
and King (2003) and Kaplast al. (2004) combine PoS tagging and finite-state
preprocessing with the LFG parser. The common observation their results is
that mainly PoS tagging as preprocessing increases cavearajrobustness that
the deep frameworks alone would not accomplish in an ecarallypiway. The
results we have obtained in MVTEBOARD support this observation.

8.9 Summary

In this chapter, we have presented the key architectureept&iof WHITEBOARD,
the WHITEBOARD Annotation Machine (WHAM) and the WITEBOARD Anno-
tation Transformer (WHAT). We have demonstrated an apidicascenario with
highly integrated multiple shallow preprocessors and geeser, and shown the
advantages of integrating both for increased robustnessdnition of words un-
known to the deep lexicon) and search space reduction ¢gghple-shaping of the
deep parser’s search space).

An evaluation of 5000 sentences of a German newspaper cehmuged that
the already high efficiency of deep parsing could be furthggroved by a factor
of 2.25 on average, lexical coverage increased from 28 to @idwverall parsing
coverage (full parses) from 12.5 to 22%. It has to be notetitkiese results were
obtained at a very early stage of German HPSG grammar deweldpwhere the
grammar was more elaborated on speech dialogr@MoBIL) than on general
newspaper text.

WHITEBOARD, extended with WHAT, is an open, flexible and powerful infras
tructure based on standard XSLT technology for the onlimeddftine combination
of natural language processing components, with a focusutmot limited to, hy-

182 CHAPTER 8. WHITEBOARD

brid deep and shallow architectures.

The infrastructure is portable. As the programming langusgecific wrapper
code is relatively small, the framework can be quickly pdtie any programming
language that has XSLT support (which holds for most modesgramming and
scripting languages). XSLT makes the transformation cateaple and declara-
tive which it could not be when being based on DOM maniputatioan ordinary
programming language.

The WHAT framework can easily be extended to new NLP compisnand
document DTDs. This has to be done only once for a componedT Brthrough
XSLT query library definitions, and access will be availabtemediately in all
programming languages for which a WHAT implementation tsxis

WHAT can be used to perform computations and complex tramsfbons on
XML annotation, provide uniform XML annotation access iderto abstract from
component-specific namings and DTD structure. WHAT makesadier to ex-
change results between components (e.g. to give non-XMar@aomponents ac-
cess to information encoded in XML annotation), and to dedip@ication-specific
architectures for online and offline processing of NLP XMLnatation.

Due to its flexibility, the infrastructure is well suited foapid prototyping of
hybrid NLP architectures as well as for developing NLP aggtions, and can be
used to both access NLP markup from programming languagktoaasompute or
transform it.

Besides the integration within NLP architectures desdriipethis section, the
XSLT-based infrastructure (WHAT) could also be used fogifgcing applications,
e.g. to translate to Thistle (Calder, 2000) for visualimatof linguistic analyses
and back from Thistle in editor mode, e.g. for manual, gre@hcorrection of
automatically annotated texts for trainietg

Because of the unstable standardization and implementstitus, we did not
yet make use of XQuery, an XML query language discussed ipteh®. How-
ever, the WHAT framework is open, and it might be worth coasity XQuery as
a future extension. Which engine to ask, an XSLT or an XQueoggssor, could
be encoded in eachquery> element of the template library using an additional
attribute. Similarly, extension of the current framewarkdSLT 2.0 which among
other things supports user-definable functions that canaoeqgb XPath expres-
sions, should be straightforward.

Compared taad hocintegrations of specific deep parsers with specific PoS
taggers, the XML and XSLT-based M/TEBOARD architecture approach offers
much more flexibility. This allowed to easily also integréigher levels of natural
language processing other integrated systems do not graidh as named entity
recognition or topological parsing.

However, it has to be noted that although obviously theraugetpotential in
combining many more existing shallow and deep NLP comparemd in different
ways through a general architecture such asiW¥BOARD, only some concepts
could be tried within the project, and even less could alspdged into applica-
tions utilizing the new approach.

8.9. SUMMARY 183

An interesting application of the architecture that hamtfeemulated already
in the project proposal but not tried in an implementatiorfaap is to use deep
processing to support shallow processing on demand. UBisgtrategy, e.g. in
information extraction or opinion mining, it could be pd#sito both preserve the
high robustness of shallow processing and achieve highspwacon crucial parts
of a text that could have been identified by shallow methods.

Also mainly because of time and resource limitations, tlohiggcture was not
fully instantiated for languages other than German.

A further generalization of WITEBOARD towards more robust, application-
oriented integration of deep and shallow NLP componentsdleven better suited
for high coverage and high precision in restricted domaim$ Semantic Web-
related applications will be presented in the next chapter.

184 CHAPTER 8. WHITEBOARD

Chapter 9

Heart of Gold

9.1 Introduction and Motivation

In the previous chapter, we have described an integraticitacture for deep and
shallow natural language processing components calladr®80ARD. Although
WHITEBOARD has been designed for flexible integration of componentsgran
less a single scenario for German (with and without top@ipgh has been fully
implemented. The architecture was successful in the sdérdehe benefits of
integrating deep and shallow approaches to NLP could wellcéearly be shown
in a mature and stable implementation that was robust entuglarse German
newspaper corpora and other unseen text online.

However, the focus of WITEBOARD was to demonstrate the feasibility and
evaluate the benefits of the hybrid approach from the liriguisainly syntactic,
perspective. Many aspects that would become important whep-shallow inte-
gration would be explored in real NLP-based applicatioosia not be addressed
during the WHITEBOARD project, one main reason being the fact that the German
HPSG grammar at that time did not provide a sufficiently fiomal semantics
construction.

The aspects missing in MITEBOARD with respect to architecture that had to
be addressed further comprise (1) true multilingualitgdah parallel), (2) inte-
gration support for components implemented in differeogpamming languages
other than Java and C/C++, (3) more flexible, configurablegssing order of
components, (4) fully networking-enabled architectufs, ost-parsing and fall-
back integration on a semantics representation level.

9.2 Project Context: DEEPTHOUGHT and QUETAL

The aim of the EU-funded projectEEPTHOUGHT (October 2002-October 2004)
was to investigate integrated shallow and deep processiagriultilingual, appli-

cation-oriented context. Three application scenarios eeh chosen to evalu-
ate the hybrid processing approach, (1) email responsegaarent for customer

185

186 CHAPTER 9. HEART OF GOLD

relationship management, (2) precise information extactor business intelli-
gence, (3) creativity support for document production asitective brainstorming
(Uszkoreitet al., 2004).

In addition to the more syntax-oriented MMfEBOARD approach, a new, com-
mon semantic representation format allowing for undeiifipation, RMRS (Copes-
take, 2003), was to be used as interface to applications>gidred also for com-
ponent integration. The idea is to conceive any NLP compooaiput as a (possi-
bly underspecified) semantic representation. In case a@oemp (e.g. deep pars-
ing) fails, a possibly less specific fall-back analysis obtaer component would
still be available in a compatible format.

After DEEPTHOUGHT had been finished, the framework was further developed
and extended in the QUETAL project where it has been mairdg fisr deep ques-
tion analysis in restricted domains (Fraekal., 2005, 2006; Schafer, 2006a). A
technical user documentation for Heart of Gold can be foarfsichafer (2005).

In this chapter, we describe the Core Architecture FramkewalledHeart of
Gold we have developed for EEPFTHOUGHT in detaift. The key concept of Heart
of Gold is to treat the core architecture as a flexibly congle middlewarein
between NLP-based applications and (pre-existing) NLPpmorants for which
the middleware provides interfaces (wrapper classeskigtire 9.1.

Application

i1

MIDDLE
¥VARE

~~
. 1
External NLP
components

Figure 9.1: Heart of Gold middleware architecture

1For the names cf. Adams (1979).

9.3. MIDDLEWARE ARCHITECTURE 187

We will first describe the middleware architecture, the miogtortant NLP
components for various languages we have integrated sgrfzuped according
to their functionality, then present some architectureaimses and corresponding
configurations, motivate some generic extensions, sholwaien results and im-
plemented applications, and finally conclude with an odtlamfurther develop-
ments.

9.3 Middleware Architecture

9.3.1 Overview

Heart of Gold (Callmeieet al,, 2004) is an XML-based middleware for the inte-
gration of deep and shallow natural language processingooents. It provides a
uniform and flexible infrastructure for building appliaatis that use RMRS-based
and/or XML-based natural language processing components.

The main design goals where:

o flexible integration of NLP components

e simple application interface

¢ RMRS as (optional) uniform semantic representation laggua
e open to other XML standoff annotation formats

e integration through annotation transformation

e annotation database interface for storage and retrievaraputed linguistic
analyses

e network-enabled architecture with distributed composemtd lightweight,
platform- and programming language-independent comnatiorc through
XML-RPC

e based on current standardized technology such as XML, XNPIGRXSLT,
XPath, XML:DB

Figure 9.2 depicts the general architecture. The Heart dfl @Gots as me-
diator between applications (top) and NLP components ¢bgttabstracting from
component-specific interfaces and representations. éatfins send queries (anal-
ysis requests) on text documents to the middleware whialrmgasses the queries
to one or more components according to a NLP component caafign initially
specified by the applications. The resulting annotationggjch can also be taken
from the annotation database if already computed (cacharg)then returned to
the application.

188 CHAPTER 9. HEART OF GOLD

Application
=

l =
Module Communication Manager 77T N
I‘\\ //1
| XSLT service | bt !
: External, :
: persistent |
Modules Comput_ed :> annotation |
<:‘> annotations | database |
XML,RMRS AN 7

S

|

1
External NLP
components

Figure 9.2: Heart of Gold (HoG) core architecture

9.3.2 The Module Communication Manager (MoCoMan)

The Module Communication Manager (MoCoMan) mediates betwan appli-
cation and the annotation-producing NLP components (Eigu2). MoCoMan
receives a request (text documents, sentences) from aicatppl, sends it to the
configured NLP components, receives their analysis resauitsreturns the results
back to the application. The interface to the Heart of Gdlald requests contain-
ing the following parameters

1. alanguage identifier for the language of the string to ladyaed (two-letter
ISO 639 code such as for English,de for German,ja for Japanese),

2. the text to be analyzed,
3. requested analysis depth (numerical).

An optional annotation database supports persistentggarathe computed
analyses. MoCoMan is also responsible for the order in wiiehcomponents
are triggered. The implemented default strategy is to letapplication specify
the depth of desired analysis with the query, and triggemalilules starting from

9.3. MIDDLEWARE ARCHITECTURE 189

the shallowest (e.g. tokenizer) up to the requested depth,anfall-back to the
previous component if no result was available from the camepbwith the desired
depth.

[t RocSer ver I nt er f ace

+get Conf i g(): Properties
+addHand| er (handl er Narre: Stri ng, hand! er Gbj ect : Cbj ect) : voi d

S ng, gANNI D SUring, start:int, end: i nt, depth: i nt)
551 D:String, annl D String, start:int, end:int, depth:int): int

1.0

Sessi on

Xnl Rochbdul e
XVLRPC_SERVER URL stalic final Sring

-+ RocMbdul elog: stati ¢
-xrm RpcQli ent: Xni RocQl i ent
- RpcServer el String

xnl Rpckand! er Nare: String

- xr Rpchandl er et hod: Stri ng

Annot at i onCol | ecti on

—

Annot ati on

+get Annotati onx (): String
+get Annot at i onLanguage(): String

Figure 9.3: UML diagram of MoCoMan

Applications communicate with the Heart of Gold middlewdneough the
Module Communication Manager via a Java API (Java apptingjior XML-RPC
(remote applications or applications written in programgnianguages other than
Java).

XML-RPC is a lightweight protocol for web services that ipported, through
additional libraries, by most current programming lang@sg@nd scripting lan-
guages on various platforms. It is built on top of HTTP anddastan also be used
for communication through firewalls which otherwise woulavl to be opened
for specific ports other than the standard HTTP port. Thishg XML-RPC has
been chosen for the integration of natural language promes®mponents into
the architecture. In other words, XML-RPC provides an easy/@ortable means
to network-enable both architecture components and thkcapipn interface in
Heart of Gold.

While the core architecture is implemented in Java, compksnand applica-
tions can hence be written in other programming languageésamnected through
XML-RPC.

190 CHAPTER 9. HEART OF GOLD

9.3.3 Modules and Components

Initially, an application starts an instance of the HeartGafld architecture with

a configuration setting for the required components (Figudeshows a sample
configuration for English). MoCoMan then starts (or rempt@nnects via XML-

RPC to) the appropriate components.

de.dfki.lt.hog.modules.JTokModule=conf/en/jtok.cfg
de.dfki.lt.hog.modules.TnTModule=conf/en/tnt.cfg
de.dfki.lt.hog.modules.SproutModule=conf/en/sprout.cfg
de.dfki.lt.hog.modules.RaspModule=conf/en/rasp.cfg
de.dfki.lt.hog.modules.PetModule=conf/en/pet.cfg

Figure 9.4: Sample configuration for English

Each component is initialized through MoCoMan according tmmponent-
specific configuration file (examples will be shown in the latections). More
precisely, a launcher creates the specified module clasgksegisters them in
a Registry. The module configuration, abstrdotiule and Registry classes
are courtesy of the Memphis architecture (Kasgteal.,, 2004) developed by Jorg
Steffen, but with a different processing strategy that wi aescribe below. The
init () methods of thélodule classes are executed to start the real components.
Each component has its own configuration setting.

From the viewpoint of MoCoMan, components 8ireiules (local Java-based
components) oXm1RpcModules (remote, possibly non-Java, components). l.e., in
order to integrate a new component in the architecture, gtrimherit from either
Module or Xm1RpcModule. UML diagrams in Figure 9.3 and 9.5 show the core
class structure.

The remote counterparts of &m1RpcModule are calledAdapters. A Java
class can be used to implement a remote dde@ter. Moreover, remote adapters
can also be implemented in other programming languages@ndanicate with
MoCoMan via XML-RPC.

Modules are required to return an XML (standoff) annotatsnresult. If a
component does not provide XML output, then translationnit gpossibly) from
XML is to be implemented in the Module classes. RMRS can bd aseoptional
common representation format, in this case, RMRS outputatsnbe generated
through XSL transformations.

An example for the integration of a component in this way &aSFProUTmod-
ule that uses XSLT transformations of the XML-encoded tyfeature structure
output of the named entity grammars along the ideas prasamntehapter 5 resp.
Schafer (2003) to generate an XML representation confogrto the RMRS DTD,
cf. also Section 9.4 and 9.5.4.1.

9.3. MIDDLEWARE ARCHITECTURE 191

MoCoMan

VebSer ver

XM.DBAnot at i onDat abase
e Li nkedLi st

Hasht abl e

MCoan

ce(): MbCoMan
al yse(sesl D: String, annl D: String, start:int, end:int,depth:int): String

Fil eName: String): String

sion(ses! D String, anno: String, |ang: String): String

Mdul e 1<t

+NODULE_NAVE_PROP: static final String
+NCDULE_DEPTH_PRCP: static final String
+NCDULE_LANGUAGE_PRCP: static final String
+modul eLog: static Logger

-config: Properties

- modul eName: String

- modul eDepth: i nt

- modul eLanguage: String

#i ni L(modul ePr ops: Proper ti es): voi d

#sui tabl e(1 ang: String, depth:int): bool ean
#get Config(): Properties

+pr ocess(processString: String): String
+pr ocessDOMIT ee(processTr ee: Node) : Node

Cust onivbdul e

+process(String): String

Xm Rpchbdul e

+XMLRPC_SERVER_URL: static final String
+XMLRPC_HANDLER NAVE: static final String
+XMLRPC_HANDLER METHCD: static final String
+xni Rochbdul eLog: static Logger

- xni RocQli ent: Xnl Roedl i ent

- xni RocServer Url: String

- xni RocHandl er Nane: String

- xni RocHandl er Met hod: String

#init(): void

#get Xl RocClient (): Xm Roedl i ent

+start (String: modul eName) : voi d

+pr ocess(processString: String): String

+pr ocess(akandl er Cal | : String, par ans: Vect or)
+pr ocessDOMIT ee(processNode: Node) : Node
+shut down(aMbdul eNane: String): voi d

string

~
N (results
~
progee0) IS
~
~
~

~

Adapt or

“config: Properties
- adapt or Server: ViébSer ver
- adapt or Server Port: i nt

+Adapt or (adapt or Pr ops: Pr oper L1 es)

!
!
!
!
!
!
!
!
!
|
i
!
!
!
!
!
!
!
!
!
!

+get Config(): Properties

A

[Cust onRenot eMbdul e — fuzec ust omadapt or
| 1 .
[tprocess(processstring: String): String } tesult i

Figure 9.5: UML diagram of module and application commutigca

9.3.4 NLP Analysis

After the system configuration is finished, analysis requesth parameters such
as language code and depth as described above can be palskeCiailan.

MoCoMan passes the request to the modules that are configutied archi-
tecture instance and that are appropriate for the requelseth of analysis and
language.

To this aim, MoCoMan selects modules using #he table() predicate, tak-
ing into account language and depth of analysis. The tekteis passed as input
parameter to therocess () method of the first selected component. The XML
output of a module is called annotation. Then, in a cascagepiitput annotation
of a preceding module is taken as the input annotation of aesplent module’s
process () method until all configured and (through depth and languaggable
components have returned their results.

The annotation computed by the last module is then returodbet applica-
tion. All annotations can optionally be stored in an XML d#ae; this is a global
configuration option. If a query is passed to MoCoMan thatdlesady been com-

192 CHAPTER 9. HEART OF GOLD

Annotation
collection (1
per input text)

"l""
Standoff annotations (computed by modules/components) |

Figure 9.6: Session and annotation management

puted, i.e. with the same input text and query parametees, ttie pre-computed
result is returned by MoCoMan, either from the database erHbart-of-Gold-
internal storage of limited size, depending on configuratio

9.3.5 Default Processing Strategy

The shallowest component is started first (typically a tadem, then other com-
ponents with increasing depth, up to the requested depthll-Adck is performed
to the result of the previous component if no result from tbemponent with re-
quested depth could be achieved, e.g. in case of an emptysanal the deep
parser.

Each component gets the output of the previous componemipas plus the
output from other components if configured (the default inpay be ignored by
the module). The result of the query is the result of the detep@mponent in the
sequence. Analysis results from previous components &uenegl on request by
MoCoMan (methodgetAnnotation()). A module may also produce multiple
output annotations and store them explicitly in the actiweatation collection as
a side effect.

By varying the configured depth of the modules, additionputror output an-
notationetg it is possible to flexibly adapt the processing order andringtion
flow between modules. Further, even more flexible processtirmgegies (includ-
ing parallelism and loops) can be implemented using the Stdénsion we will
describe in Section 9.5.7.

9.3. MIDDLEWARE ARCHITECTURE 193

9.3.6 Session and Annotation Management

MoCoMan provides a session management, so that differgat sessions with

multiple input documents (texts) can be created and refede(Figure 9.6). Mo-

CoMan manages a collection of sessions where each sessisistsaf a collection

of annotation collections (one annotation collection esponds to one input text
or sentence) that contain RMRS/standoff annotations céedgday the components
of the configured architecture instance.

Sessions, annotation collections and annotations anerefed through context-
unique IDs. Sessions, annotation collections and compartestations can be
stored in the optional XML annotation database.

There are MoCoMan server methdds create sessions and annotation collec-
tions in the context specified through IDs as parameters. ahinetations them-
selves are generated using i lyse () method that stores the annotations com-
puted by the configured modules in the active annotatiorectidin. The annota-
tion ID is identical with the (configurable) module name ttre@ates the annotation.
Examples for the context-unique IDs will be presented irtiSe®.3.9.

9.3.7 Metadata

Metadata on date, time, source, processing parameterggsiag options and the
component-specific configurations of the producing compbaee stored as part
of each computed annotation in<aetadata> element. Its<id> sub-element
contains processing parameters inserted by MoCoMan sunirasnt session, an-
notation collection and annotation identifiers, compomere, creation date and
processing time. The&conf> sub-element contains a copy of the configuration
settings of the module that produced the annotation. Thasvalto precisely re-
construct the environment under which an annotation waduymexd (Figure 9.7).
This is an important feature when Heart of Gold is used toteréaguistically
annotated texts for permanent storage, because it alloatdeast partially recon-
structex postthe circumstances under which an annotation has been moduc

9.3.8 XML Annotation Database

If a query that has already been computed (i.e., a known igxtitwith the same
query parameters) is passed to the MoCoMan, then the prewtechresult is re-
turned. This can be done on the basis of the data gained dasegsion, but the
Heart of Gold middleware optionally also provides a dateliaterface for XML
annotation storage. The main purpose is persistent stafagemputed annota-
tions for the automatic creation or enrichment of linguistbrporaetc

The annotation database interface uses XML3®BMich is a vendor-indepen-
dent interface to XML databases. The current implememaiges the open source

2createSession() andcreateAnnotationCollection()

Shttp://xmldb-org.sourceforge .net

194 CHAPTER 9. HEART OF GOLD

<metadata>
<id>
<entry name="created" value="2004-03-04 15:23:15"/>
<entry name="processingtime" value="00:00,90"/>
<entry name="sessionid" value="sessionl"/>
<entry name="acid" value="collectionl"/>
<entry name="component" value="Sprout"/>
</id>
<conf>
<entry name="sprout.outputpath" value="0UT"/>
<entry name="sprout.stylesheet" value="enamex2rmrs.xsl"/>
<entry name="module.name" value="Sprout"/>
<entry name="module.depth" value="1"/>
<entry name="module.language" value="en"/>
<entry name="module.rootelement" value="SPROUTPUT"/>
</conf>
</metadata>

Figure 9.7: Annotation and module configuration metadata

(but disappointingly slow) Xindice 1.#XML database. However, other XML:DB
supporting databases such as bdbxnor Tamin® could be used instead. An
interface class is provided that can be implemented in dadsupport other XML
databases.

The Heart of Gold XML database interfdceupports organization of XML
annotations reflecting the session and annotation callettee hierarchy of Mo-
CoMan. Standard operations such as inserting, deletirgctions and XML an-
notations, and a standardized query language based on ¥Hatk and DeRose,
1999) are supported. Similarly, existing annotations @¢@lso be modified using
the XUpdate query langua§ieHowever, this is currently not actively supported by
the Heart of Gold XML:DB interface, but it could become ofargst for external,
manual correction of computed annotations, e.g. for macldarning purposes.

An important feature of XML databases is indexing of XML dogent ele-
ments to guarantee efficient retrieval. Depending on thetstre of the annotation,
indexers can be defined through the database interface.e Bhesild be defined
when integrating new Modules and could be stored as paredftdule configu-
ration which in turn is part of the annotation metadata.

In the current implementation based on Xindice, the XML bate can easily

“http://xml.apache.org/xindice/
Shttp://dev.sleepycat.com
Shttp://www.tamino.com

"Abstract clasgnnotationDatabase
8http://xmldb-org.sourceforge.net/xupdate/

9.3. MIDDLEWARE ARCHITECTURE 195

be separated physically from the rest of the architectule database can reside
on a server different from the middleware server and proit&lservices through
the Apache Tomcat web application sefveFhe XML database interface of Mo-
CoMan then acts as a client to the XML database.

For most practical cases, a simple storage and retrievahaném based on
annotation ID and annotation collection ID is sufficient.cdiuld alternatively be
implemented on file system basis becoming another subcldbs abstract class
AnnotationDatabase.

9.3.9 Annotation Transformation Service

For the integration of NLP components, e.g. those not pimogicRMRS output
formats natively, XSLT can be employed to transform compbispecific XML
output, e.g. of a chunker or a named entity recognition camapy into the RMRS
format or other XML formats required by other components.

The classTransformationService provides access to the XSL transformer
of Heart of Gold. The idea is similar to WHAT in WTEBOARD, but for the
sake of conceptual clarity, we restrict transformation twatwve called d-queries
in WHAT, i.e. input and output of a transformation is reqdite be a well-formed
XML document This also makes differentiation in the programming irgees
obsolete for annotation access and thus simplifies compantegration.

The transformation is performed in the modulgi® cess () method, the XSLT
stylesheet name can be made part of the component-spedifiigwation. The
transformation service is based on a standard XSLT engittle arsingle, generic
extension for access to other annotations (in the sameatiorotollection or even
in another annotation collection, e.g. for searching anephntecedents in previ-
ous sentencesto).

Access to other annotations is provided through a ‘HoG URIthe form
hog://sid/acid/aid via the XPathdocument () function, wheresid is the ses-
sion ID, acid is the annotation collection ID, arulid is the annotation ID. The
IDs of the active session and annotation collection aremaatically passed from
the module as (default) parameters to the stylesheet.

An example for the integration of a component using anrmmatiiansforma-
tion is theSProUTmodule that uses XSLT transformations of the XML-encoded
typed feature structure output of the named entity gramiimagenerate an XML
representation conforming to the RMRS DTD, cf. Section®5below.

The XSLT stylesheets are stored in subdirectories ofxtialirectory of the
Heart of Gold distribution, ordered according to the tatgathsformation format,

e.g.
e html: HTML visualization of RMRS structures (cf. Section 9.8)

o latex: IATEX visualization of RMRS structures (cf. Section 9.8)

Shttp://tomcat .apache.org

196 CHAPTER 9. HEART OF GOLD

e pic: transformation to PET input chart format (cf. Section 8.8), partly
automatically generated, cf. description $ProUT module below (Sec-
tion 9.5.4.1)

e preproc: preprocessing of input texts in XML format, sentence 8plit
(Section 9.5.5.2)

e rmrs: transformation of e.g. NE recognizer output forma&#&(oUT, Ling-
Pipe) to RMRS, partly automatically generated, cf. desiconipof SProUT
module below (Section 9.5.4.1)

e sdl: stylesheets for XSLT transformations as part of SDL sudvgecture
processing cascades (Section 9.5.7)

e xml: auxiliary stylesheets e.g. for XML pretty-printing

9.4 RMRS as Common Semantic Annotation Format

As already mentioned above, one of the strategic ideas oDEEPTHOUGHT
project that aimed at exploring deep-shallow NLP for newpiative applications,
was to use a common, robust semantics format, RMRS, thratighe core archi-
tecture. Heart of Gold has been designed to support thisadedo provide facil-
ities for RMRS generation, transformation and visualaatiHowever, the whole
middleware architecture does not necessarily rely on RMRSnply treats it as
standoff annotation in the same way as it treats other XMinfis produced by
any integrated NLP component. In this section, we presehbe sverview over
the RMRS idea and introduce the notation we will use later on.

RMRS stands for Robust Minimal Recursion Semantics. It hgenlintro-
duced in a [EEPTHOUGHT deliverable (Copestake, 2003). The main difference
(or generalization) to the MRS flat (non-recursive) sentanfiamework (Copes-
take et al,, 2005a) is the robustness aspect, i.e., in contrast to MR&hwiras
meant as semantics representation framework for deep gassrivased on typed
feature structures, RMRSes can not onlyumelerspecifiedor scope as MRSes,
but also bepartially specified, e.g. when the arguments of a transitive or ditran-
sitive verb cannot be fully resolved by an NLP component. réfuge, RMRS is
suited for representing output also from shallow NLP congms.

The underlying idea is that in principle any shallow progeggesult, even
from a part-of-speech tagger, can be conceived as a, thpioadlerspecified, ver-
sion of a compatible deep analysis. Several componentd delil’er partial analy-
ses that could be combined into a single representationenhfarmation missing
from one component is complemented by information from la@otomponent, or
left underspecified where unresolved.

Moreover, in the deep-shallow integration scenario, aiptysanderspecified
semantics representation produced by a shallow compooatd be used as fall-
back where deep parsing of a sentence failed.

9.4. RMRS AS COMMON SEMANTIC ANNOTATION FORMAT 197

RMRS comes with an XML format which did not exist for MRS. Howee
as any MRS can be expressed as RMRS (but not necessarily asisa) yMRSes
could via this inclusion be encoded in XML as well.

MRS is currently the semantics representation format ofnlost elaborated
and popular HPSG grammar implementations such as ERG iidiek 2002), the
German HPSG grammar developed at DFKI (Crysmann, 2003)heoirtodern
Greek grammar (Kordoni and Neu, 2004). Moreover, it fornmes bblasis for the
multilingual Matrix model of HPSG grammar development (Beret al, 2003),
and is used for natural language parsing and generation hsasveansfer for
machine translation (Bonek al., 2005).

An MRS or RMRS for e.g. a natural language sentence is a Ibfgioca con-
sisting of conjunctively connecteglementary predicationEPs) each being a sin-
gle relation with associated arguments, e.g. begin®ing Each EP typically
corresponds to a lexeme, but there might also be additioRalr6t representing a
proper word, e.g. indicating question types, compotetds

Although (R)MRSes are flat, i.e., an EP is never embeddedadthanEP, there
is a notion of quantification and scope that is encoded by aaging EPs with
variables calledhandles

The handles can be used to constrain readings resulting Somme ambigu-
ities. A deep NLP component may contain more knowledge abowtto solve
such ambiguities than a shallow one. Ambiguities may beuefesolved, thus
providing compact ambiguity representation.

A small example taken from Copestageal. (2005a) may illustrate this.

Every nephew of some famous politician runs

Two scopes are valid (using a predicate calculus represamta
(a) everyk, somey, famousy) A politician(y), nephewy,y)), run))
(b) somey, famousy) A politician(y), everyk, nephewy,y), run(x)))
The MRS that represents the valid scopes is written as

(h1,{h2 : everyx,h3,h4),h5 : nephewx,y), h6 : somey, h7,h8),
h9 : politician(y), h9 : famousgy),h10 : runx)},

Hence, an MRS is a triple of top handlel(in the example), set (‘bag’) of
elementary predications, and a set of handle constraiht®rfs’). The handle
constraints are given as so-called geq constraints (wrét$e=g) which stands for
equality modulo quantifiers, and expresses scopal sulaiioin

A geq constraint always relates a handle in an argumentigogit an EP) to
a label, where the argument is either directly filled by thHeelaor one or more
quantifiers ‘float’ in between handle and label, i.e., thesladf a quantifier fills the
argument position and the body argument of that quantifiéiiésl either by the
label, or by the label of another quantifier, which in turn thas/e the label directly

198 CHAPTER 9. HEART OF GOLD

or indirectly in its body. More formal definitions are presathin Copestaket al.
(2005a).

As they were designed for, MRSes can be straightforwardépeed in typed
feature structures in a typars with three attributesHOOK, RELS and HCONS
HOOK contains the top handle (handles are encoded using skLsitaring) RELS
contains a list of EPs which themselves bear (label) and differenARG1-ARGN
attributes (quantifiers havereSTRrestrictor and a8oDyY attribute).

The ARG role features represent argument relations numbered diogoto
their relative obliqgueness. Basic predicate-argumenttire is expressed by co-
indexation of the argument’s inherent variable (or, in tasecof propositional or
scopal arguments, its label) with the appropriate roleufeadf the predicate. Vari-
ables are either individual (x) or event (e) variables.

The HCONS attribute is again list-valued, with structured geq caxiats of
type geqwith attributesHARG andLARG™C.

The MRS in Figure 9.8 is an example taken from Copestdlad. (2005a) of
the sentence

Every dog probably sleeps

(h1,{h2: everyx,h4,h5),h6 : dog(x), h7 : probablyh8),h9 : sleegx)},

mrs
hook

HOOK | GTOP [Ihandle
LTOP [7]handle

_everyrel

LBL [2handle| | _dogrel _probablyrel | | _sleeprel
RELS< ARGO [gJref-ind |,| LBL [6]handle|,| LBL ;| LBL [9] >

RSTR [4handle| | ARGO ARG1 ARG1

BODY [§handle

aeq aeq aeq
HCONS < HARG ;| HARG ;| HARG >
L LARG LARG [6] LARG [9)

Figure 9.8: MRS for ‘Every dog probably sleeps’

RMRS is a modification of MRS that allows for partial analystking into
account the fact that several natural language processols contribute to refined
constraints on an initially underspecified semantic regrion, the maximally

10AIthoughRELSandHcoONSsare set-valued in the formalism, implementations typjcapresent
them in (difference) lists, as most of the modern typed feasiructure implementations do not
support sets for efficiency reasons.

9.4. RMRS AS COMMON SEMANTIC ANNOTATION FORMAT 199

specific representation being equivalent to the MRS reptaien (as they are e.g.
produced by deep parsing).
To this aim, the following modifications were made from MRS

e A concept of variable equality is added, i.e., it is possiioleset different
variables equal as soon as constraints that justify thig bha@en computed
during processing. In the MRS version, variables had to theeeequal or
distinct from the beginning.

e An explicit naming convention for relation (EP) names isedithat allows
to infer e.g. part-of-speech types (introduced as minyrgdecified RMRS
by a PoS tagger) from the relation names.

e Predicate arguments that were fixed in MRS are made relatioaltow for
variable arity of predicate arguments (‘Parsons styleg, enstead of2 :
on(€,ey) in MRS, one would writd2 : on(¢'), ARG1(12,e), ARG2(12,y).

o Implicit conjunction of elementary predications (expexsvith identical la-
bels in MRS) is made explicit through introduction of a spé@non-lexical)
relation CONJ (for conjunction). Additional in-g (fan group) relations
express this membership in a conjunctively connected god&Ps.

e Finally, some morpho-syntactic features such as tens@&legenumber are
added as additional constraints to variables.

These additions are reflected in the RMRS DTD (DTD Appendigep290).
The surface attributes inrmrs andep elements contain related input text added
for illustration in the following RMRS example for the sente ‘Every dog prob-
ably sleeps’.

<?xml version="1.0"7>
<rmrs-list>
<rmrs cfrom="0" cto="24" surface="Every dog probably sleeps">
<label vid="1"/>
<ep cfrom="0" cto="24" surface="Every dog probably sleeps">
<gpred>prop-or-ques_m_rel</gpred>
<label vid="1"/>
<var sort="e" vid="2" tense="present"/>
</ep>
<ep cfrom="0" cto="4" surface="Every">
<realpred lemma="every" pos="q"/>
<label vid="6"/>
<var sort="x" vid="7" pers="3" num="sg"/>
</ep>
<ep cfrom="6" cto="8" surface="dog">
<realpred lemma="dog" pos="n" sense="1"/>
<label vid="10"/>
<var sort="x" vid="7" pers="3" num="sg"/>

200 CHAPTER 9. HEART OF GOLD

</ep>
<ep cfrom="10" cto="17" surface="probably">
<realpred lemma="probable" pos="a
<label vid="11"/>
<var sort="u" vid="13"/>
</ep>
<ep cfrom="19" cto="24" surface="sleeps">
<realpred lemma="sleep" pos="v" sense="1"/>
<label vid="14"/>
<var sort="e" vid="2" tense="present'"/>
</ep>
<rarg>
<rargname>MARG</rargname>
<label vid="1"/>
<var sort="h" vid="3"/>
</rarg>
<rarg>
<rargname>RSTR</rargname>
<label vid="6"/>
<var sort="h" vid="8"/>
</rarg>
<rarg>
<rargname>B0ODY</rargname>
<label vid="6"/>
<var sort="h" vid="9"/>
</rarg>
<rarg>
<rargname>ARG1</rargname>
<label vid="11"/>
<var sort="h" vid="12"/>
</rarg>
<rarg>
<rargname>ARG1</rargname>
<label vid="14"/>
<var sort="x" vid="7" pers="3" num="sg"/>
</rarg>
<hcons hreln="qeq">
<hi>
<var sort="h" vid="3"/>
</hi>
<lo>
<label vid="11"/>
</lo>
</hcons>
<hcons hreln="qgeq">
<hi>
<var sort="h" vid="8"/>
</hi>
<lo>

" sense="1"/>

9.4. RMRS AS COMMON SEMANTIC ANNOTATION FORMAT 201

<label vid="10"/>
</1lo>
</hcons>
<hcons hreln="qeq">
<hi>
<var sort="h" vid="12"/>
</hi>
<lo>
<label vid="14"/>
</lo>
</hcons>
</rmrs>
</rmrs-list>

The AVM-like notation format in Figure 9.9 will be used in ttiellowing
RMRS examples. It is more compact and similar to MRS in ongttvariables
etg and gives a better readable overview of the RMRS struct@imilarly to
typed feature structures, square brackets indicate amcipn of constraints, in
this case handle and arguments for elementary predications

[TEXT Every dog probably sleeps

TOP hl
- _everyq
-or- rel -
Eg_p orh(iuesm e LBL h6| | _dogn
ARGO 62 ARGO X7 | |LBL h10
MARG h3 RSTR h8| | ARGO x7
RELS - BODY h9

[_probablea] [-sleepv

LeL hil1l LBL hl4
ARGO ul3 ARGO e2tense=present
|ARG1 h12 | | ARGL X722

HcoNs {h3geghll h8geghl0hl2geqhl4}
e {}]

Figure 9.9: Human-readable RMRS notation that will usedhis thesis

CONJ is always assumed as relation for the IN-G elementshdrHeart of
Gold system, there is also an interactive visualizationlifador RMRS using
HTML and JavaScript that helps to quickly find and inspectalde occurrences
through colors and highlighting (not visible here on paper)

The HTML and JavaScript code is generated directly from tMRS XML
document using an XSLT stylesheet. ThEK code of the AVM-/MRS-like visu-
alizations in our thesis is generated analogously via a X8lfhough in RMRS,
the concept of character position of a word in the originglintext is crucial for

202 CHAPTER 9. HEART OF GOLD

identifying, combining® and sorting the EPs, this property is omitted (for space
reason) in the AVM-like notation we will use from now on.

9.5 Integrated NLP Components

Table 9.1 lists the NLP components that have been integiatedhe Heart of
Gold so far, ordered by their suggested depth (middle tabllenm), a parame-
ter assigned to each component’s default configuratioingdtiat can be altered
according to specific configuration needs.

Component NLP Type Depth | Languages Implementation
JTok tokenizer 10 de, en, it,. .. Java
ChaSen Japanese morph. 10 ja C

™nT statistical tagger| 20 de, en,... C
Treetagger statistical tagger| 20 en, de, es, it,...| C

Chunkie stat. chunker 30 de, en,... C
ChunkieRMRS| chunk RMRSes | 35 de, en XSLT, SDL
LingPipe statistical NER | 40 en, es,... Java

SDL sub-architectures e SDL/Java
Sleepy shallow parser | 40 de OCaml
SProUT shallow NLP 40 de, el, en, ja,...| Java

Corcy coref resolver 45 en Python
RASP shallow NLP 50 en C, Lisp

PET HPSG parser 100 | de, el,en,ja,...| C, C++, Lisp
RMRSmerge | RMRS merger 110 | de, en,... XSLT, SDL

Table 9.1: Integrated NLP components

In the following sections, we will describe only the most ionfant most and
interesting components to give a representative overnviedered by their NLP
task type (roughly corresponding also to their suggestéalittalepth).

9.5.1 Tokenization, Word and Sentence Segmentation

The main purpose of tokenizer components is to provide a camiokenization
for those modules that require it. Normally, Unicode cheaacounts (or positions)
are taken as the least common unit, as they are independdiffeoént concepts of
what constitutes a token. The character counts also forrbdkis for combining
standoff and RMRS annotations. Because tokenization ig mioless an auxiliary
task and only used by a few components, there is no speciakrsion to the
RMRS format as it exists for most other NLP tasks.

|n Section 9.5.7.5, we will show how multiple RMRSes geneddiy different components can
be combined.

9.5. INTEGRATED NLP COMPONENTS 203

9.5.1.1 JTokModule

JTok, developed at DFKI by Jorg Steffen, is used for the psepof tokenization
and sentence boundary recognition for European languagesently, English,
German and ltalian are supported; it can be easily adaptedvtolanguages by
copying and adapting XML configuration files.

JTok is implemented in Java and integrated directly as Jax@ula in Heart
of Gold, inheriting from thedodule class. The first part of the configuration file
contains 4 configuration settings that are obligatory fomaddules,name (which
is used also as identifier for the produced XML output anmmta), depth (in-
teger), ISO 639 two-letteranguage code indicating the language the configured
module supports (for each language, a separate configufdéas required), and
therootelement name of the XML output annotation.

The remaining configuration settings are specific for JToHl,ia this case only
consist of the path to the JToK configuration file (the configion per language
specifying resourcestccoming with the JTok distribution).

A sample configuration file for English (conf/en/jtok.cfgllbws.

module.name=JTok

module.depth=10

module.language=en

module.rootelement=jtok

#

config file for JTok API
jtok.configfile=components/jtok/conf/jtok.cfg

In Heart of Gold, the native XML format that JTok generatesrigloyed. The
output DTD (DTD Appendix, page 289) reflects the three stniicy elements that
are recognized by JTok, paragraphs (e.g. line breaks fragmal input text), text
units (e.g. sentences), and tokens (words, numbers, @tiwstl

9.5.1.2 ChasenModule

ChaSen (Asahara and Matsumoto, 2000) (default depth: 1f)rpes morpholog-
ical analysis and word boundary recognition for Japanedes rmodule runs the
open source ChaSen system and, through the flexible Cha$mirt oanfiguration
mechanism, the output format of ChasenModule directly @on$ to the PET in-
put chart DTD (cf. DTD Appendix on page 292 and descriptiothef PetModule
in Section 9.5.5).

ChasenModule is a good example for compatibility problefrexternal com-
ponents that are solved in the module code that wraps amektétP component.
In this case, the problem is caused by the inability of ChaBeeturn Unicode
character positions that are required for standoff animstatombination. By con-
vention, the start and end character positions for eacmtake contained in the
CSTART and CEND attributes that refer to the original inpaitt Unicode is

204 CHAPTER 9. HEART OF GOLD

<pet-input-chart=
<metadata>
<ig>
<entry name="created" value="Tue, Z5 Apr Z00E 11:25:55 +0200" =
<entry name="processingtime” value="71 millseconds"/=
<entry name="sessionid" value="session1"/>
<entry name="acid" value="collection1"/=
<entry name="component” value="ChaZen"/>
<entry name="diagnosis" value="0K"/>
<entry name="empty" value="false"/>
<fid=>
<conf>
<entry name="chasen.options" value="-r conf’.chasenrc-xml"/=
<entry name="module.depth” value="10">
<entry name="module.rootelement” value="pet-input-chart"/=
<entry name="chasen.inputencoding” value="EUC-JP"{=
<entry name="chasen.llbs" value="components/chasen/lib"/=
<entry name="module language” value="ja"/>
<entry name="chasen.inputannatation" value="rawtext"/>
<entry name="chasen.outputencoding” value="ELC-JP"/=
<entry name="chasen.binary" value="components/chasen/binrunchasen'i=
<entry name="module.name” value="Cha3Jen'/=
<fconf=
<fmetadata>
< id="CHAD" cstart="0" cend="2">
=surface=T 2 </surface=

<pos tag="Z - BT — MR +n-n" prio="1269"/>

<=
=y id="CHA1" cstart="2" cend="3">
<surface={.</surface=
<pos tag="BNET{EENER+n-n" prio="0"/>
<f=

<w Id="CHAZ" cstart="3" cend="6">
<surface=7 47 2/ </surface=
<pos tag="45 3 —f&+n-n" prio="3378"¢>
<f=
= id="CHA3" cstart="6" cend="7">
<surface=-#</surface=
<pos tag="ENETHERN SR — iR +n-n" prio="0"7>
<f=
<y id="CHA4" cstart="7" cend="10">
<surface={~ I} &=surface>
<pos tag="E57 Bar+— - EE T prio="1854"/>
<f=
</pet-input-chart>

Figure 9.10: Output of ChasenModule in PET input chart farma

the only sensible character set for multilingual framevwsoslich as Heart of Gold
because each character has equal length (although diffameadings exist).
While Heart of Gold expects these character positions totiedde character
counts, ChaSen (at least in the version integrated in Héa&gbl) outputs only
byte offsets related to the EUC-JP 8 bit multi-byte encodlinges internally, even
if Heart of Gold takes over the transcoding between EUC-gPUaricode. There-
fore, the ChasenModule contains code that corrects thactearcounts according
to knowledge about the encodings available from standasl Uaicode classes.

9.5.2 Part-of-Speech Tagging

Statistical Part-of-Speech (PoS) taggers are used in stedmw integration (1) to
give lexical items in the deep lexicon a higher priority oe tfieep parser’s chart

9.5. INTEGRATED NLP COMPONENTS 205

that correspond to the most probable reading determinetiébgtatistical tagger,
(2) to guess the word class of unknown words (if they cannotidtermined as
named entity by a hamed entity recognition component),guaigeneric lexicon
entry inserted into the deep parser’s chart.

The strategy employed in the Heart of Gold implementatidhéssame as de-
scribed in Chapter 8 for WITEBOARD except that the new PET input chart XML
format is used (cf. description in Section 9.5.5 below). dmtigular, similarly to
WHITEBOARD, it is possible to insert multiple analyses (readings) faoad with
priorities (e.g. taken from the trained model) into the deapser’s chart where
the parser can resolve these ambiguities with the help ofitlep grammar. We
present a single example for an integrated tagger, TnT, lren¢her taggers have
been integrated as will be listed in Section 9.5.6.

9.5.2.1 TnTModule

TnT is a statistical, trigram-based part-of-speech taggeants, 2000). Statistical
models have been trained for German on NEGRA (&tuatl., 1998), and for En-
glish on the Penn Treebank (Marceisal., 1994). Further languages could be and
have already been trained, e.g. Portuguese by a group anitierklty of Lisbon,
and also additional corpora for English and German.

TnTModule (default depth: 20) sends text tokenized usiegifokModule to
TnT and converts the native (non-XML) output of TnT to bothsomorphic XML
format and the PET input chart format (Section 9.5.5.2). ThEModule DTD is
shown in the DTD Appendix (page 289).

Configuration file conf/en/tnt.cfg for English with Penn &bank model:

module.name=TnT

module.depth=20

module.language=en

module.rootelement=tnt

#

path to tnt startscript
tnt.script=components/tnt/scripts/tnt.sh

command line options for tnt

tnt.options=-z20 -v0 models/wsj

input encoding

tnt.inputencoding=1S0-8859-1

output encoding

tnt.outputencoding=IS0-8859-1

name of generated PET input chart XML annotation
tnt.piXMLoutputannotation=TnTpiXML

#

root element name of PET input chart XML annotation
tnt.piXMLrootelement=pet-input-chart

An example of the TnT output XMLified by TnTModule follows. Aex-
ample of the additionally generated PET input chart formmatliistrated in Sec-

206 CHAPTER 9. HEART OF GOLD

tion 9.5.5.2.

<tnt>
<metadata>...</metadata>
<tokens>

<w str="How" cstart="0" cend="2">
<p pos="WRB" p="1.000000e+00"/>

</w>

<w str="cold" cstart="4" cend="7">
<p pos="NN" p="6.513877e-01"/>
<p pos="JJ" p="3.486123e-01"/>

</w>

<w str="should" cstart="9" cend="14">
<p pos="MD" p="1.000000e+00"/>

</w>

<w str="a" cstart="16" cend="16">
<p pos="DT" p="1.000000e+00"/>

</w>

<w str="refrigerator" cstart="18" cend="29">
<p pos="NN" p="1.000000e+00"/>

</w>

<w str="be" cstart="31" cend="32">
<p pos="VB" p="1.000000e+00"/>

</w>
<w str="7" cstart="33" cend="33">
<p pos="." p="1.000000e+00"/>
</w>
</tokens>
</tnt>

9.5.3 Chunking and Shallow Parsing
9.5.3.1 ChunkieModule

Chunkie (Skut and Brants, 1998) is a statistical, trigraamdual chunker built upon
TnT. It potentially can deliver recursive chunks (in costréo most other chun-
kers). ChunkieModule (default depth: 30) uses JTok toksitn as input and re-
turns XML output of Chunkie chunk analyses including thestdd PoS tags from
TnT. As for TnT, models are available e.g. for English (Pereebank; Marcust
al. 1994) and German (NEGRA; Skat al. 1998).

The output DTD of the module is specified in the DTD Appendipage 290,
an example can be found on page 71.

RMRS construction of Chunkie output is implemented in thgasate Chunkie-
RMRS module we will describe later in Section 9.5.7.4. Then@ieRMRS mod-
ule also enriches Chunkie output with morphological infation from SProUT
analyses.

The ChunkieRMRS annotation can be used as fall-back anmoiatcase deep
parsing fails, but Chunkie output is not fed into the deep@abecause of partial

9.5. INTEGRATED NLP COMPONENTS 207

chunk incompatibilities with the HPSG grammars (cf. alsotida 8.7).

9.5.3.2 RaspModule

RASP is a robust statistical parser for English developédlamd LISP on the basis
of the ANLT system (Briscoe and Carroll, 2002). RASP dekvBRMRS output of
medium NLP depth, including (partial) predicate-argum&micture. RASP uses
its own tokenization, morphology and named entity recagmjtthus is employed
in the Heart of Gold integration as a black box.

RASP has an integrated, optional RMRS output facility. Résgule (default
depth: 50) uses this method to generate and forward the RNtB&wges that are
merely augmented witkmetadata> information by the wrapper code.

As we illustrate for the sentence ‘John gave Mary the bookFigure 9.11,
RASP correctly assigns predicate-argument structureghwikialso why RASP is
a good shallow fall-back component in case deep parsing fail

[TEXT John gave Mary the book]
ToP h32
i proper.g.rel namedrel _givev
prpstnmrel | | LBL hl 8L h3 LBL h6
LBL h32 ARGO x2 ARGO X2 ARGO €7 tense=past
| ARGO h35 RSTR h4 CARG john ARG1 X2
BODY h5 ARG2 X9
apposrel proper.g-rel _theq
RELS LBL h25| |LBL h8 T:[nedr:ello LBL hil3
ARGO e26| | ARGO x9 ARGO X9 ARGO x14
ARG1 x9 RSTR hll CARG mary RSTR h20
| ARG2 x14| | BODY h12 BoDY h21
[_bookn]
LeL hil5
ARGO x14
HCONS {h3;5qeqh6, hiqeth,hllqethQ h20qeqgh15}
| ING {h25ing h10}]

Figure 9.11: RASP analysis of ‘John gave Mary the book’

9.5.4 Named Entity Recognition and Information Extraction
9.5.4.1 SproutModule

The SProUT system (Drozdzyhsket al, 2004), a flexible multilingual, shallow
processing component that combines finite state and ty@edréestructure tech-
nology and includes morphologic resources and named egriitg;nmars for ten

208 CHAPTER 9. HEART OF GOLD

languages, as described in Chapter 7, is integrated as & ¢fgaold module as
well.

SProUT plays an important role in the multilingual deep-shallowegration
scenarios, mainly for general and domain-specific namety @atognition for (1)
preparation of generic named entity lexical entries fordbep parser through the
PET input chart format (cf. Section 9.5.5.2) and (2) infotioraextraction through
generating finer-grained structured representations aafgrized named entities
than are provided by the general-purpose HPSG grammar,aasihg them by as
additional RMRS structures to the applications.

As SProUTis implemented in Java, SproutModule (default depth: 40% an
instance of theSProUTinterpreter via theSProUTruntime API with a configured
grammar and other resources within the same virtual machime®ugh the flexible
configuration,SProUT can also be used in Heart of Gold for other purposes than
named entity recognition, cf. also Section 9.5.7.4 for aaneple.

Further applications for which already appropriate gramsnaad resources ex-
ist are e.g. morphological analysis for various languagekidling compound seg-
mentation for German and Dutch, sentence boundary recogrinaphora resolu-
tion, shallow parsing and domain-specific template-basémrnation extraction.
Thanks to the flexible formalism and the modular framewoukihfer NLP tasks
could be implemented as well.

Automatic stylesheet generation at compile time A special feature and advan-
tage of theSProUT integration in Heart of Gold is the automatic generation of
transformation stylesheets from the declaratively defimgighut specifications of
SProUTgrammars we will describe in this section. This feature alglo play an
important role for the ontology integration we will desarilm Section 9.7.

While many shallow named entity recognition (NER) systerome with a
small, fixed and hard-wired set of recognized named entigsye.g. those defined
by MUC-6; Grishman and Sundheim 1996FroUTallows to flexibly add new or
more fine-grained output structures.

The output of a named entity grammar, a sequence of matchathreexpres-
sions over typed feature structures, is itself a typed feastructure (details and
examples are explained in Chapter 7). As the output types twalze declared in
the associated type hierarchy of the named entity gramntasspossible to use
this information in order to generate XSLT code at compiteeti We have im-
plemented an algorithm that generates XSLT mapping codu fte TDL type
definitions.

The generated stylesheets map at runtime the XML outputedbB8roUTrun-
time system to (1) generic HPSG lexicon entries via the Pputichart format
(Section 9.5.5.2) for use in the deep parser, and to (2) RMRStares with more
structured and fine-grained, information extraction-NeR analyses that comple-
ment the deep sentence analysis with additional informatiat might be relevant
for applications.

9.5. INTEGRATED NLP COMPONENTS 209

In the rest of this section, we will discuss an example of hbig thapping
works. The code generator is implemented in ¥aemd can be called via the
Heart of Goldant build targetgenerate xsl. It takes (per language) two files as
input, the type hierarchy of thBProUTnamed entity grammar to map, efficiently
encoded in a binary representation produced byp, and a mapping table that
mapsSProUTnamed entity type names from t&&roUTtype hierarchy to generic
HPSG lexicon types.

Generation of the RMRS transformation stylesheet RMRS relation names are
constructed from th&ProUTfeature names plusrel suffix. The entries of the
mappings file are of the form

typesprouT = tYP&psc

SProUTtypes not mentioned in the mappings are not mapped by theajede
stylesheets. If &ProUTNE type is to be translated to RMRS, but not to the PET
input chart format, then the RHS of the mapping must be lefbtgmHere is an
example of such a mapping table for English; the German, IGaed Japanese
versions are very similar.

ne-person=generic_name
ne-location=generic_name
ne-organization=generic_name
ne-product=generic_name
ne-address=generic_email
numex=generic_number
money=generic_money
duration=generic_time
span=generic_time
timex=generic_time
point=generic_time
percentage=generic_number
ne-sciencearea=generic_name
ne-prize=generic_name
ne-occupation=generic_name
ne-tech=generic_name
ne-technology=generic_name
ne-project=generic_name
ne-event=generic_name
ne-term=generic_mass_count_noun

An output type (part of th&ProUTnamed entity grammars) is defined in TDL
as follows, additional attributes are inserted via inlaee from theenamexsu-
pertype and further supertypes.

12Classde . dfki.1t. hog.util.SproutRmrsTransformerGenerator

210 CHAPTER 9. HEART OF GOLD

ne-product := enamex & [PRODUCT-NAME string,
PRODUCT-MODEL string,
PRODUCT-VARIANT string].

whereenamex has, besides the SURFACE, CSTART and CEND attributes
for original text string, character start and end positji@so VARIANT and DE-
SCRIPTOR string-valued attributes for alternatives argtdption text.

All these attribute values are, if they contain informatimore specific than
their default values, mapped to corresponding RMRS relatamnnected with the
identified named entity by the generated XSLT code.

The generated RMRS transformation stylesheets compigse8&00 lines of
XSLT code (essentially a big case statement over the 20reiffenamed entity
output types of theSProUT grammars) for the English NER grammar enhanced
with LT WORLD ontology information (Section 9.7), and approx. 4600 lifes
the standard NER grammar.

A fragment of the generated RMRS transformation code is gkéed in the
XSLT Appendix on page 295.

Generation of the PET input chart transformation styleshe¢ A separate style-
sheet is generated at compile time for producing PET inpattantries for rec-
ognized named entities, and mapped to generic HPSG typasafoed entities
(right hand side of the mapping table above), including spformation. In the
current mapping, features such as PRODUCT-NAME are omitiedhey have
no correspondence in the HPSG grammar. In principle, atdweriinformation
could be transported by means of the flexible feature-palirevmechanism (cf.
Section 9.5.5.2).

Transformation at runtime To illustrate the transformed analyses, we show a
simple example here for the sentence ‘The first user liked\thiga 6810." where
SProUTrecognizes a named entity ‘Nokia 6810°. A more comprehenskample
employing LT WORLD ontology instance information will be shown in Section 9.7.
The SProUToutput (SProUTput’) DTD is defined in Chapter 7.

The following output is produced b8ProUTfor the sample sentence.

<SPROUTPUT>
<DISJ id="DIO">
<MATCHINFO id="MIO" rule="en_cell_phone_gazetteer"
cstart="25" cend="34">
<FS type="ne-product">
<F name="VARIANT">
<FS type="xtopx"/>
</F>
<F name="SURFACE">
<FS type="string"/>
</F>

9.5. INTEGRATED NLP COMPONENTS 211

<F name="CSTART">
<FS type="string"/>
</F>
<F name="CEND">
<FS type="string"/>
</F>
<F name="PREPOSITIONS">
<FS type="#*listx"/>
</F>
<F name="DESCRIPTOR">
<FS type="string"/>
</F>
<F name="NECEND">
<FS type="string"/>
</F>
<F name="NECSTART">
<FS type="string"/>
</F>
<F name="PRODUCT-VARIANT">
<FS type="string"/>
</F>
<F name="PRODUCT-MODEL">
<FS type="string"/>
</F>
<F name="PRODUCT-NAME">
<FS type=""Nokia 6810""/>
</F>
</FS8>
</MATCHINFO>
</DISJ>
</SPROUTPUT>

The automatically generated stylesheettypes-sprout2rmrs.xsl men-
tioned in the SproutModule configuration file below transisrtheSProUToutput
into the following RMRS.

<rmrs-list>
<rmrs cfrom="25" cto="34" reading="0" surface="Nokia 6810">

<label vid="100"/>

<ep cfrom="25" cto="34" surface="Nokia 6810">
<gpred>ne-product_rel</gpred>
<label vid="100"/>
<var sort="x" vid="100"/>

</ep>

<rarg>
<label vid="100"/>
<rargname>CARG</rargname>
<constant>Nokia 6810</constant>

</rarg>

212 CHAPTER 9. HEART OF GOLD

<ep cfrom="25" cto="34" surface="Nokia 6810">
<gpred>product-name_rel</gpred>
<label vid="110"/>
<var sort="x" vid="110"/>

</ep>

<rarg>
<label vid="110"/>
<rargname>CARG</rargname>
<constant>Nokia 6810</constant>

</rarg>

<rarg>
<label vid="110"/>
<rargname>ARG1</rargname>
<var sort="x" vid="100"/>

</rarg>

</rmrs>
</rmrs-list>

The automatically generated stylesheeitypes-sprout2pic.xsl mentio-
ned in the SproutModule configuration file below transforims $ProUT output
into the following PET input chart entry.

<pet-input-chart>
<w id="SPR1.1" cstart="25" cend="34" constant="yes" prio="0.5">
<surface>Nokia 6810</surface>
<typeinfo id="TIN1.1" baseform="no">
<stem>$generic_name</stem>
</typeinfo>
</w>
</pet-input-chart>

The wholeSProUT runtime subsystem for use in the Heart of Gold Sprout-
Module is generated from th@ProUTsources using a single build targgtrout-
2hog that is part of the automatic build system f8ProUT (Schafer and Beck,
2006) we will describe in Section 7.8. The generated subsysbmprises the run-
time jar, four named entity grammars for Greek, English,@ar and Japanese,
and eight ChunkieRMRS cascade grammars for German andsBngli. Sec-
tion 9.5.7.4). AdditionalSProUTresources can be easily included by extending
thesprout2hog target.

The following configuration file conf/en/sprout.cfg comsithe SproutModule
configuration for the English named entity grammar inclgdihe automatically
generated mapping stylesheets.

module.name=Sprout
module.depth=40
module.language=en
module.rootelement=SPROUTPUT
#

9.5. INTEGRATED NLP COMPONENTS 213

config file for SProUT runtime API
sprout.configfile=components/sprout/Project/de.cfg

#

stylesheet for transformation of FS-XML to RMRS
sprout.stylesheet=xsl/rmrs/de_types-sprout2rmrs.xsl

#

feature path to output structure

if undefined, the root FS (including IN and OUT) is returned
feature separator in the path can be . or | (as in TFS API)
sprout.outputpath=

#

name of raw text input annotation for Sprout
sprout.inputtextannotation=rawtext

#

name of feature structure output annotation
sprout.outputfsannotation=SproutFS

--- The following configurations are for PET input chart mode only
The subsequent settings are ignored if sprout.output4pic is unset

name of output annotation for PET input chart (pic) format

no pic annotation is generated if this value is omitted
sprout.output4pic=SProUTpiXML

#

stylesheet for transformation of Sproutput to PET XML input chart
(ignored if sprout.output4dpic is not set)
sprout.stylesheet4pic=xsl/pic/de_types-sprout2pixml.xsl

#

--- End of configurations for PET input chart mode ---

#
#
#
#
#
#

Using SProUT Morphology analyses In this section, we describe ha8ProUT
resources other than the above described named entity gremnwan be utilized in
Heart of Gold through the generic SproutModule. We take maoiggy as example.

Although the morphological analysis 8ProUTis utilized in most of the ex-
isting named entity grammars, the morphological analys&ure structures are
normally not copied to the output, as only matched namedienghould be part
of the output structure of a named entity grammar.

Using a singleSProUT(XTDL) grammar rule, it is possible to make the mor-
phology analyses also available in Heart of Géid

morphcopy :> morph & #1 -> #1.

As morphinherits fromtoken the output also includes tokenization informa-
tion. We exemplify the analysis for the input sentence “Wahitges dem Papst?’,
transcribed to AVM notation below.

L3Alternatively, copying morphology information to the outpcan also be configured in the
SProUTgrammar-specific configuration file as an interpreter option

214 CHAPTER 9. HEART OF GOLD

It has to be noted that the morphology output is not disanateg) but re-
flects the complete content of ti8ProUTmorphology and lexicon component for
German, in this case based on MiI&PH (Petitpierre and Russell, 1995).

' morph ' morph
POS adverb POS conj
infl_adverb infl_conj
INFL SPELLINGADVERB unchange INFL SPELLING.CONJ unchange
STTSOPENADVERB adv | STTS.CLOSE.CONJ kokom
SURFACE "Wie" SURFACE "Wie"
STEM "wie" STEM "wie"
CSTART "O" CSTART "O"
| CEND non | [CEND non
[morph 7 [morph]
POs verb POS verb
[infl_verb i [infl_verb]
MODE_VERB imperative MODE_VERB indicative
NUMBER.VERB plural NUMBER_VERB plural
INEL PERSONVERB p2 INEL PERSONVERB p2
SPELLING.VERB unchanged SPELLING.VERB unchanged
STTSOPENVERB wvimp | STTSOPENVERB wvfin
TENSEVERB present TENSEVERB present
| VFORM_VERB fin | VFORM_VERB fin
SURFACE "geht" SURFACE "geht"
STEM "gehen" STEM "gehen"
CSTART "4 CSTART "4"
L CEND e 1 LcenD nn]
[morph 1
POS verb [morph T
[infl_verb i POS pron
MODE_VERB indicative [infl_pron 1
NUMBER_VERB singular CASE_PRON acchom
INFL PERSONVERB p3 INFL GENDERPRON neutrum
SPELLING.VERB unchanged NUMBER_PRON singular
STTSOPENVERB wvfin ' PERSONPRON p3
TENSEVERB present STTS.CLOSEPRON pper
| VFORM_VERB fin SURFACE "es"
SURFACE "geht" STEM "es"
STEM "gehen" CSTART "9"
CSTART "4" | CEND "on |
L CEND e]

9.5. INTEGRATED NLP COMPONENTS

[morph
POS det
[infl_det 1
CASEDET dat
INFL GENDERDET neutrum
NUMBER_DET singular
STTSCLOSEDET art
SUBTYPEDET art-def
SURFACE "dem" i
STEM "das"
CSTART "12"
| CEND "4
[morph
POS det
[infl_det 1
CASEDET dat
INFL GENDERDET masc
NUMBER_DET singular
STTS.CLOSEDET art
SUBTYPEDET art-def
SURFACE "dem" i
STEM "der"
CSTART "12"
| CEND "4
[morph
POS noun
infl_noun
accdat
INFL CASENOUN gennom
GENDERNOUN neutrum
NUMBER_-NOUN plural
SURFACE "dem"
STEM "deutsche_mark"
CSTART "12"
| CEND "4

[morph
POS pron
infl_pron
CASE_PRON dat
INFL GENDERPRON neutrum
NUMBER_PRON singular

STTS.CLOSEPRON pdsprels
SURFACE "dem"

STEM "das"
CSTART "12"
| CEND "4n
morph
POS pron
infl_pron
CASE_PRON dat
INFL GENDERPRON masc
NUMBER_PRON singular

STTS.CLOSEPRON pdsprels
SURFACE "dem"

STEM "der"
CSTART "12"
L CEND "4
morph
POS noun
infl_noun
CASE_NOUN acc.datnom
INFL GENDERNOUN masc

NUMBER_NOUN singular
SPELLING.NOUN unchanged
SURFACE "Papst"

STEM "papst"
CSTART "16"
| CEND "20"

215

Similarly, output of othelSProUTcomponents such as coreference matcher or
compound segmentation could be made available in Heart tof, @sing Sprout-
Module plus an appropriate configuration file fo62roUTgrammar instance.

9.5.4.2 LingPipeModule

LingPipe* is a statistical named entity recognition system includiogeference
resolution with existing trained models for various langes (incl. English, Ger-
man, Spanish) and special domains such as genomes. Ling&ipée (default

Carpenter (2005}ttp: //www.alias-i.com/lingpipe/

216 CHAPTER 9. HEART OF GOLD

depth: 40) runs the original LingPipe Java distributiont tisaavailable as open
source code, and transforms the native MUC-like XML outputrfat (cf. Chap-
ter 7) into both the RMRS and the PET input chart format usif®l K available
via the Heart of Gold'ransformationService. This is similar to SproutMod-
ule, but instead of automatically generated transformattglesheets, simple fixed
stylesheets for the few MUC named entity types are provided.

9.5.5 Deep Parsing: The PetModule
9.5.5.1 Introduction

PET is a highly efficient deep parser for HPSG grammars. Itiees developed
in C and C++ at Saarland University and DFKI (Callmeier, 20000 addition
to the version that has been used in thelM\eEBOARD integration, PET has been
augmented with the RMRS output module from LKB (Copestakif)2} jointly
developed by Stephan Oepen, Ann Copestake, Dan Flickiktjech Callmeier
and Bernd Kiefer. Through this extension, PET can nativatpot RMRS markup.

Furthermore, Bernd Kiefer added the PET input chart XML eafsr incorpo-
rating output of shallow preprocessors that we will descbhblow. The PET input
chart replaces the WHAT-based programming interface dextrin Chapter 8,
providing more flexibility by moving the annotation transfmation out of the PET
system into the architecture. In this sense, PET becomes.Brebimponent as the
other components in Heart of Gold, with XML input and outmierfaces.

Because one of the envisaged improvements of Heart of Gald \WHITE-
BOARD was to add multilinguality support, the whole module codat thraps
the core PET component in the architecture has been madky tughfigurable.
Similar to other modules such as SproutModule, configunaisoseparated into
two steps. One is the configuration for the resource (i.e. gdammar) with de-
pending settings for the parser, and one is configuratiothfsmodule instance,
including pre- and post-processing stylesheets, encabitgngs, and the link to
the resource-specific configuration file.

Following is a sample configuration for PetModule with thegsh Resource
Grammar (ERG; Flickinger 2002). Dependencies of TnT &RioUT prepro-
cessing via PET input chart are configured as well as RMRSub@tpaximally 3
readings sorted according to a parse selection model)dimgjdfragments (in case
deep parsing did not find a fully spanning analysis) that ared according to their
lengths and cut to the maximally 5 RMRSes with the longesh s@anfiguration
details are explained as comments in the following example.

module.name=PET
module.depth=100
module.language=en
module.rootelement=pet
#

path to cheap binary

9.5. INTEGRATED NLP COMPONENTS 217

pet.binary=components/pet/bin/cheap

#

additional library search path for cheap

pet.libs=components/pet/1lib

#

working directory (where the grammar is)

pet.grammardir=components/pet/german

#

prefix for grammar file

pet.grammarprefix=german

#

command line options for cheap

pet.options=-tok=xml_counts -mrs=xml -default-les -1imit=70000 \
-results=3 -packing -partial

#

character set encoding for PET input

pet.inputencoding=UTF-8

#

character set encoding for PET output

pet.outputencoding=UTF-8

#

input annotation(s), comma-separated

use either "rawtext" or PET XML input chart (e.g. LingPipepiXML)

formats in accordance with pet.options

pet.inputannotation=TnTpiXML, SProUTpiXML

#

stylesheet for XML input chart combination

pet.combinestylesheet=xsl/pic/combinepixml.xsl

#

stylesheet for preprocessing the PET input chart

There will be no transformation/filtering if this option is unset

pet.preprocstylesheet=xsl/pic/remove-subspan-items.xsl

#

stylesheet for post-processing (filtering) of partial RMRSes

return only the n longest fragments

return all (=no stylesheet application) if unset

pet.postprocstylesheet=xsl/rmrs/extract-longest-fragment.xsl

#

stylesheet parameter: number of fragments to return

return all (=no stylesheet application) if unset

pet.postprocfragments=5

Besides ERG, many other available HPSG grammars have besgrated
through specific configurations, most of them during trEEBTHOUGHT project,
e.g. German (Crysmann, 2003), Jacy for Japanese (SiegeBamder, 2002),
Greek (Kordoni and Neu, 2004) and Norwegian (Hekdial, 2004).

218 CHAPTER 9. HEART OF GOLD

9.5.5.2 PET input chart format: interface between shallow peprocessing
and deep parsing

The PET input chart XML format (cf. DTD Appendix on page 292steen de-
signed and implemented to provide a generic input formaafidtinds of prepro-
cessing components that could contribute to useful inftiondor deep parsing.
This includes not only part-of-speech tagging (with rankeaidings to guide the
deep parser faster to probable analyses) and named ecbtyigon as already re-
alized in the WHITEBOARD integration, but also larger, arbitrary structures based
on multiple tokens, also overlapping and in parallel.

Introduction of information from shallow preprocessingpithe deep parser’s
chart is realized by specifying the input items includingharmacter position (or
count). Several components can add items with concurrearacter spans, pro-
vided that the underlying ‘characterization’ is identjc already discussed above.
This corresponds to standoff markup unified in a single atiwot, i.e., the input
chart must consist of a single XML document. There is a pregssing XSLT
stylesheet shipped with Heart of Gold that concatenatefipfeuXML input chart
documents into a single one (see below).

In addition, the PET input chart format also supports ‘iti@t of feature val-
ues under arbitrary feature paths. Using these, it is plessibinsert chunk, phrase
or subclause boundaries as well as morphological or othertsted information
from outside into the HPSG grammar.

Following is a sample PET input chart for the sentence ‘DidnBeKiefer
present a paper at ACL 2003?". This is one possibility to dedhe input chart,
treating multi-word named entities as single, not furthenctured objects as it is
done by TntModule and SproutModule; a second one would bettoduce<ne>
tags referring to thew> tokens for multi-token expressions such as named entities,
phrasestc

<?xml version="1.0"7>
<pet-input-chart>
<w id="TNTO" cstart="0" cend="2">
<surface>Did</surface>
<pos tag="VBD" prio="1.000000e+00"/>
</w>
<w id="TNT1" cstart="4" cend="8">
<surface>Bernd</surface>
<pos tag="NNP" prio="1.000000e+00"/>
</w>
<w id="TNT2" cstart="10" cend="15">
<surface>Kiefer</surface>
<pos tag="NNP" prio="1.000000e+00"/>
</w>
<w id="TNT3" cstart="17" cend="23">
<surface>present</surface>
<pos tag="VB" prio="6.187941e-01"/>
<pos tag="JJ" prio="2.305826e-01"/>

9.5. INTEGRATED NLP COMPONENTS 219

<pos tag="VBP" prio="5.459771e-02"/>
<pos tag="RB" prio="5.275342e-02"/>
<pos tag="NN" prio="4.327213e-02"/>

</w>

<w id="TNT4" cstart="25" cend="25">
<surface>a</surface>
<pos tag="DT" prio="1.000000e+00"/>

</w>

<w id="TNT5" cstart="27" cend="31">
<surface>paper</surface>
<pos tag="NN" prio="1.000000e+00"/>

</w>

<w id="TNT6" cstart="33" cend="34">
<surface>at</surface>
<pos tag="IN" prio="1.000000e+00"/>

</w>

<w id="TNT7" cstart="36" cend="38">
<surface>ACL</surface>
<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT8" cstart="40" cend="43">
<surface>2003</surface>
<pos tag="CD" prio="1.000000e+00"/>
<typeinfo id="TYI8" baseform="no">

<stem>$generic_number</stem>

</typeinfo>

</w>

<w id="TNT9" cstart="44" cend="44" constant="yes">
<surface>?</surface>
<pos tag="?7" prio="1.0"/>

</w>

<w id="SPR2.1" cstart="4" cend="15" constant="yes" prio="0.5">
<surface>Bernd Kiefer</surface>
<typeinfo id="TIN2.1" baseform="no">
<stem>$generic_name</stem>
</typeinfo>

</w>

<w id="SPR3.1" cstart="36" cend="43" constant="yes" prio="0.5">
<surface>ACL 2003</surface>
<typeinfo id="TIN3.1" baseform="no">
<stem>$generic_name</stem>
</typeinfo>

</w>

</pet-input-chart>

The generated input chart consists of words tagged by TmEatenated (XML-
wise) with named entities recognized SProUT, according to the PET config-
uration file shown above (configuration lip@et.inputannotation). 'piXML’
stands for PET input chart XML. The stylesheet configuredenpédt . combine-

220 CHAPTER 9. HEART OF GOLD

stylesheet combines (XML-wise concatenates) arbitrarily many inpohata-
tions specified by their annotation IDs. The stylesheet@®uan be found in the
XSLT Appendix on page 296.

In the above example, multiple information is given for theamed entities
Bernd Kieferand ACL 2003 one from the tagger TnTid attributeSTNT1, TNT2,
TNT7 andTNT8), and one from the named entity compon8#roUT (idsSPR2.1
andSPR3.1). Resolution of the multiple information is left to the deparser by
passing both to it via the XML input chart.

A further, optional preprocessing stylesheet may remowlapping or con-
flicting readings, e.g. to override tags from the tagger baake a reliable named
entity alternative. The decision which reading to eliméebuld be based on con-
fidence values assigned by the producing component. Themaatylesheet on
page 297 in the XSLT Appendix may illustrate how this can beedim XSLT.

The mapping to HPSG types is part of the input chart (viz. thiesheets that
generate them), with the exception of part-of-speech tage. mapping between
PoS tags and corresponding HPSG types has to be part of thedrigjuration.
Here is an example for a mapping from TnT PoS tag names (BfRG PoS

types (right).

posmapping :=
JJ $generic_adj
JJR $generic_adj_compar
JJS $generic_adj_superl
NN $generic_sg_noun
NN $generic_mass_noun
NNS $generic_pl_noun
NNPS $generic_pl_noun
NNP $generic_name
FW $generic_mass_noun
RB $generic_adverb
VB $generic_trans_verb_bse
VBD $generic_trans_verb_past
VBG $generic_trans_verb_prp
VBN $generic_trans_verb_psp
VBP $generic_trans_verb_presn3sg
VBZ $generic_trans_verb_pres3sg.

All other mappings, as shown e.g. for t&€roUTintegration in Section 9.5.4.1,
should take place when the PET input chart format is gerndratg. in mapping
stylesheets or auxiliary mapping tables read by the stgletsh

The benefits of the shallow preprocessing just describeering of increased
coverage will be discussed in the evaluation section.

There is ongoing research and development under the umlofatie DELPH-
IN collaboration (cf. Section 9.12) with the goal to come ugwva uniform, gener-
alized preprocessor framework for both the LKB and the PEStesy. The reason
for this standardization effort is that resource and apgibm development would

9.5. INTEGRATED NLP COMPONENTS 221

benefit from providing identical deep-shallow integratimehavior in both devel-
opment (LKB) and runtime (PET/Heart of Gold) framework, ehhis currently not
the case as LKB currently comes with a different shallow pregssing interface
(SPPP, cf. Section 9.11.9).

The idea is that both HPSG parsing frameworks should shasenanon XML
format, briefly sketched in Waldroet al. (2006) that is based on explicit lattice
as in the morpho-syntactic annotation format (MAF; Clétremd Villemonte de
la Clergerie 2005), and also allows for typed feature stmecinput instead of the
set of feature path-value 'injections’ into chart elemegmtsvided by the PET input
chart. This would also include the input of RMRS XML which,w®ver, can be
represented as TFS and is thus only a syntactic variant.

The envisaged new format is largely just additional symntaeigar as compared
to the PET input chart format, but with the additional bentbfit it could become
input to both LKB and PET.

Thanks to the felicitous design of the PET system, PetMorulgrgely inde-
pendent of the statistical parse ranking, automaticalyued lexicon extensions,
the TSDB test interface (Oepen, 2001) and extensions fdonpeance improve-
ments such as packing. Most of these features can be corfigsreart of the
command line options or the PET configuration file(s). As aseguence, almost
all of these features can hence also be used when PET is eathadd Heart of
Gold-based application.

We finally exemplify RMRS output for the sentence ‘Did Bernigf€r present
a paper at ACL 20037’ in Figure 9.12, returned by the hybridlysis through
PetModule.

We see that both nhamed entities occurring in the sentench, camsisting of
two words, are treated as singhamedrels here. Later, we will see examples
of how these EPs can be enriched with further structuredubditpm a SProUT
named entity grammar augmented with ontology informat®ection 9.7).

9.5.5.3 Pre- and Post-processing Stylesheets

A very flexible mechanism in PetModule (also shown in the aboenfiguration
example) is the configurable pre- and post-processingssight option. A prepro-
cessing stylesheet can be used to introduce additional ledge about resources
or components (or configuration-related combinationseth@rand their specific
integration behavior. It is e.g. possible to filter or rekkaonflicting chart ele-
ments to reduce ambiguity or correct predictable errorsoimmonents based on
input context. An example has already been presented aboteef case of filter-
ing unwanted overlapping analyses from different comptsen

PET can also output RMRS fragments in case no full parse dosldom-
puted for the whole input sentence. Such partial output camadndled in the
post-processing stylesheet. This is e.g. useful to sorfikadfragments in order
to reduce the (potentially huge) output size and restritt ihe mosin promising
ones. These could by an application be treated as if they fultgarses and thus

222 CHAPTER 9. HEART OF GOLD

[TEXT Did Bernd Kiefer present a paper at ACL 2003?

TOP hil
- . - roper.g.rel namedrel
basicint.m.rel | | prpstnm_rel properq
LBL h6 LBL h10
LBL hil LBL h10001
ARGO x8 ARGO x8
ARGO e2 ARGO e2
RSTR h7 Bernd
MARG hl MARG h5 CARG .
- - -4 | BobYy h9 Kiefer
[_presentv)
LBL hil1 -aq _ -atp
ARGO e2tnsompast| | LBL 14| | _papetn LBL h10002
RELS ARGL XSff::: ARGO x12| |LBL h17| [ARGO e19tense=u
) 12per823 RSTR h15| | ARGO x12| | ARG €2
ARGE XZ%um=sg | | goby h16] ARG2 X187
| ARG3 ul3
[rg_rel
properq.re namedrel
LBL h20
LBL h23
ARGO x18
ARGO x18
RSTR h21 CARG acl 2003
| BODY h22 -

HcoNs {h5gegh11 h7 geqh10hl15qeqhl7,h21geqh23}
LING {h1ingh10001h11ing h10002

Figure 9.12: RMRS generated by hybrid parsing using PetNéodu

provide a further important means to increase robustnedeey parsing. A sim-
ple implementation of such a fragment filter is shown in thee K@ppendix on
page 298.

9.5.6 Further Integrated NLP Components

There are further integrated NLP components for which Hefu®old module
classes have been implemented. We will not describe themiheatetail as they
are currently not so relevant for deep-shallow integratiand similar to other
described modules. Details on DTDs and configuration carobed in Schafer
(2005).

PicModule (default depth: 10)

PicModule is a very simple module that generates Pet InpatrtGhrmat (Sec-
tion 9.5.5) from raw input text. It has been developed for ititegration of the
Modern Greek named entity gramm&RroUT) with PET. As there was no PoS
tagger for Modern Greek, a module had to be developed tharges the in-

9.5. INTEGRATED NLP COMPONENTS 223

put chart from raw text in order to provide XML input for thosekens that are
no named entities (and that are therefore omitted inReoUT system output).
However, thanks to Unicode, the module is independent oéksamd could also
be used for other languages.

TreeTaggerModule (default depth: 20)

TreeTagger (Schmid, 1994) is a statistical PoS tagger wipparted language re-
sources for German, English, Spanish, Italian (othersdcbaltrained). In Heart
of Gold, it is primarily used as tagger for Sleepy (see below)

CorcyModule (default depth: 45)

Corcy is a coreference resolver for English implemented/théh byOzgiir Demir

on the basis of a paper of Cardie and Wagstaff (1999). Coreg asheuristic
clustering algorithm to determine coreference relatiggshit uses TnT, Chunkie
and WordNet (Milleret al, 1993). Both LingPipe an&ProUT provide further

algorithms for coreference resolution.

SleepyModule (default depth: 50)
Sleepy (Dubey and Keller, 2003) is a probabilistic shall@awser for German im-
plemented in OCaml. SleepyModule uses output of the TregSradpodule.

9.5.7 Sub-Architectures with the Generic SdIModule
9.5.7.1 Motivation

The SDL module enhances Heart of Gold with a compilable NLElutecontrol
flow for sub-architectures, i.e., enabling declarativecgmation of modules that
are composed of other modules. An application are e.g. dasa (shallow) NLP
modules and XSL transformations.

Although the described mainly sequential control flow apptoin Heart of
Gold for NLP modules by defining a depth and canonical pracgssrder based
upon, augmented with potentially multiple input and muéiputput annotations in
each processing step, was flexible enough for deep-shatitmgrations for many
languages, it turned out that some envisaged, RMRS-retdtaliow processing
applications required additional features such as loogkpamallelism — which
SDL supports.

SDL (System Description Language) has been developed éndiently of
Heart of Gold by Krieger (2003). SDL generates Java code dofadatively de-
fined architectures of NLP systems obeying a class inteifapesed by the SDL
framework. The initial intention was to be able to declasdti define cascaded
SProUTgrammars, e.g. for shallow chunk parsing.

In this section, we briefly introduce SDL, describe how theegee SdiModule
has been integrated to provide the possibility to defineauhitectures for Heart

224 CHAPTER 9. HEART OF GOLD

of Gold, and finally present two implemented instances, maRMRS construc-
tion from shallow chunks, and XSLT cascades for combinadfomultiple RMRS
annotations from different modules.

9.5.7.2 SDL

The idea of SDL (Krieger, 2003) is to declaratively specifffcav of information
(input and output) between NLP modules or, more generatiffyvare modules.
Together, these modules fornsgsten(or architecture) with an overall input and
output that is compiled into a single Java class defintfioifo implement a con-
crete system, the modules need to fulfill a Java interfac, péisic operations for
setting input, clearing internal state, starting compaoitgtand setting output.

For maximal flexibility, mediators can be defined that argoesible for the
communication between modules.

The declarative specification of the architecture is a simgpression consist-
ing of symbolic module names connected via operators, @sigiament of these
symbolic module names to Java class names, constructomargs, and some
processing options.

The basic connecting operators that can be used to defingliteature are

e + (sequence one module starts after the previous module has finisld, t
ing its output as own input. The input of the sequence is itpuhe first
module. Instead of a single module, each element in the segumuld also
be a complex description. A mediator can be defined optipriail encap-
sulating communication between different modules. Thedéeimediator
seq () implements the identity function.

e | (parallelism): multiple modules or complex descriptions thereof are-exe
cuted in parallel in separate threads in Java. A mediatobeaefined that
collects the outputs and combines them into a single outpjgich which
then becomes the output of the whole expression. The defaedliator
par () combines the objects in an array.

e x (unrestricted iteratiolt a module or a complex description is executed in
a loop until its output remains unchanged. This can be usedptement
a kind of ‘fixpoint computation’. A defaulfix () mediator is defined for
fixpoint computation that can also be replaced by a modubeiBp imple-
mentation.

Formally, a set of syntactically well-formed module degtiansD in SDL is
inductively defined based on an initial $étof (atomic) modules as follows.

e mcM=meD

I5which is then in Heart of Gold executed as a separate, coafiggisub-architecture embedded
in the generic SdiModule.

9.5. INTEGRATED NLP COMPONENTS 225

e dy,dbeD=d+dreD
e dp,....dg e D= (| dg,...,dx) €D

edeD=(xd)eD

The prefix notation with parentheses is used for|thad « operator to avoid
grouping ambiguities.

Based on the inductively defined syntax for SDL descripti@angrecise formal
semantics can be assigned, using functional compositidhdéasequence operator,
Cartesian product for parallelism, and fixpoint semanticgHe iteration operator.
Details as well as the full SDL BNF syntax are presented ire¢@r (2003).

Compilation of an SDL description into a Java class is donailmply call-
ing the compiler clasge.dfki.1lt.sdl.Sd1 with the SDL description file name
as argument. The SDL compiler generates a Java source fitgtnwhn then be
compiled into a Java class.

9.5.7.3 SdIModule (Heart of Gold)

SdiModule is a generic wrapper for SDL sub-architectures ¢lan be plugged in
into the Heart of Gold. SdIModule acts as any other Heart dfl@mdule in that it
takes a (configurable) XML annotation as input, and retumsudput annotation.

The name of the embedded SDL Java class containing the arguithitec-
ture description (previous section) is part of the SdiIMedenfiguration (option
namesdlclassname). The class is compiled at compile time with the Heart of
Gold build tool®, and executed at runtime in the SdiIModule code using Java re-
flection. The following code fragment is part of the generitthMEodule.

// initialize SDL cascade
this.sdl0bject=(Modules)Class.forName(sdlclassname) .newInstance();

Heart of Gold modules are different from SDL modules in thmegyt support
more flexible runtime configuration, e.g. the module ordeeiermined at runtime
and not at compile time as in SDL. Moreover, the explicit suppf multiple input
and output annotations is less strict than foreseen in SDL.

This, and the fact that Heart of Gold had been augmentedJatierSdiMod-
ule, is the reason why SDL modules are not the same as Hearldfrtodules.
They do not need be, as there is also a facility that can be tosedsily include
any annotation computed by other Heart of Gold componersbih modules via
XSLT and the below described HoG URI, i.e. without having npilement the
module as SDL module.

SDL modules have been defined so far 8roUTand XSLT —SProUTbe-
cause it is highly flexible and can be used to implement raksed transformation

16Theant targetsdl executes the SDL compiler.

226 CHAPTER 9. HEART OF GOLD

and annotation enrichment based on typed feature strgctata efficiently en-
coded type hierarchies, and XSLT because it is, as alreadiyated also in pre-
vious chapters, a powerful language for accessing, tremgfig and combining
XML NLP annotations.

Through SDL descriptions, complex sub-architectures éonlgining and en-
riching annotations can be defined declaratively, comgsif two base modules,
SDL SProUTmodule and SDL XSLT module.

SDL SProUT module The SDLSProUTmodules execute th8ProUTruntime
system as does the Heart of Gold SproutModule. Although #neycontained in
different classes, the runtime system of the Heart of Gold@&Module can share
its external resources with tHeProUT SDL module. The configuration mecha-
nism for SProUTresources and its components is the same (single configurati
file in module description), e.g.

de.dfki.lt.sdl.sprout.SproutModulesTextDom("sproutproject.cfg")

Depending on thesProUT runtime project configuration, the module either
takes raw text or XML annotation in th8ProUTput format as input and in any
case returns XMLSProUTput format (cf. DTD Appendix on page 288, example
on page 210).

SDL XSLT module This module applies a configurable XSLT stylesheet to the
input annotation and returns the transformation result.

Parameters can be passed to the stylesheet as part of theeSBription (ini-
tialization parameter for the SDL XSLT module), e.g.

de.dfki.lt.sdl.xslt.XsltModulesDomDom("stylesheet.xsl",
"paraml", "valuel")

IntheEncapsulated variants (cf. next paragraph), the special parameted"
(for annotation ID) can be passed as parameter to specifynaotation name
(Heart of Gold module name). Th&ransformationService complements this
ID to a full HoG URI of the formhog://sid/acid/aid by adding session and
annotation collection ID from the current context. This im@gsm provides a
powerful means to incorporate or combine other annotatitynsmically created
during the active Heart of Gold session by other componévitseover, the SDL
XSLT module can be used to transform any XML format into theety feature
structure XML format and vice versa (e.g. as first and lagiestaf an SDL cas-
cade).

AnnotationEncapsulator SDL modules foilSProUTand XSLT use an auxiliary
objectAnnotationEncapsulator to encapsulate Heart of Gold annotation plus
metadata. The reason for this is that SDL components carotdkex single object

9.5. INTEGRATED NLP COMPONENTS 227

as input parameter, while access to metadata, sessiorxtantt other facilities
provided by Heart of Gold is necessary in addition to acdesshnotation.

An example for important necessary information is the sesand annotation
collection context as well as access to ThensformationService object using
thehog:// URI syntax described above and in Section 9.3.9. Both SdiN&od
sample applications we will show later make use of this URINg this facility, it
is also possible to access annotation computed by commofanivhich no SDL
integration exists, the only prerequisite is that they havee executed before the
SDL sub-architecture runs (e.g. Chunkie in the ChunkieRMBSade example
below).

The AnnotationEncapsulator also provides abstraction from the annota-
tion representation format. Both tl&ProUTand the XSLT engines support XML
represented as DOM and as String. Subclasses dfdtieles implementations
support both variants, also mixed for input and output

de.dfki.lt.sdl.xslt.XsltModulesDomDomEncapsulated
de.dfki.lt.sdl.xslt.XsltModulesDomStringEncapsulated
de.dfki.lt.sdl.xslt.XsltModulesStringDomEncapsulated
de.dfki.lt.sdl.xslt.XsltModulesStringStringEncapsulated

However, because of the quite huge and relatively slow DOMehourrently
used in standard Java, there is no significant differencesifopnance between
using DOM and XML as String representations. This may chawvigen switching
to a different XSLT/XML implementation.

Besides these extensions, the encapsulated XSLT SDL nwthridédeart of
Gold behave in the same way the normal, Heart of Gold-indgg@nXSLT mod-
ules behave that we have implemented for SDL (in fact thegribfrom them).

9.5.7.4 Example 1: Architecture of the Chunkie RMRS Cascade

The idea of the Chunkie RMRS cascade developed in Fedrd. (2004) is to
‘raise’ shallow, statistically computed chunks, combiveith morphological in-
formation, to RMRS structures using an elegant, unificatiased approach.

As motivated in Section 9.4, RMRS representations froml@ivaiomponents
can be used as fall-back analyses in case deep parsingHaigever, the output
of a shallow chunker basically only extends to syntactycalassifying a group of
words, as it is based on part-of-speech-tagged input. VEhatdsing is functional
information that could be used to identify arguments e.g.a oerb. However,
in case-marking languages such as German, and to a lesset aldo English,
morphological information can be used to disambiguate tdopsts.

The idea of theSProUT-XSLT cascade is to combine the chunk analyses from a
probabilistic chunker with morphological information ngityped feature structure

1"The SDLSProUTmodule variants additionally support also raw input texadttition to anno-
tations which themselves correspond to the XML TFS input enaidSProUT.

228 CHAPTER 9. HEART OF GOLD

unification, i.e., a unification (or constraint)-based aagh. Through agreement
constraints, chunks can be morphologically disambigyaaed thus exactly the
partial (underspecified) argument identification that ik @xpressible in RMRS
(in contrast to MRS) is performed.

Using SProUTs XTDL syntax, morphological agreement can be elegantty an
compactly stated using disjunction as is the followingyvgeneral projection prin-
ciple.

agr :> lex & [NODE [M-ID #mid]]=*

(lex & [NODE [M-ID #mid], M-SYN [CAT nn, AGR #agr]l] |
lex & [NODE [M-ID #mid], M-SYN [CAT adja, AGR #agr]] |
lex & [NODE [M-ID #mid], M-SYN [CAT art, AGR #agrl])
lex & [NODE [M-ID #mid]]*

-> phrase & [NODE [ID #mid], M-SYN [AGR #agrl].

The example rule matches a sequence of lexical nodes, aauligisés agree-
ment between a single daughter node (right hand side of thg and its mother
node (left hand side, indicated via tMe feature name prefix) for one of the three
categoriesin, adja or art.

Heart of Gold NLP architecture instance

input sentence ——» ——» ...other NLP components . ..

\

RMRS result

[
XSLT ‘

SProUT XSLT » | SProuT »| XSLT » | SProuT -
rmrs_morph pos_filter mrs_lex

nodeid_cat rmrs_phrase
SDL-defined SProUT-XSLT cascade sub—architectuw

Figure 9.13:SProUTXSLT cascade in a Heart of Gold architecture instance

XSLT

rmrs_final fs2rmrsxml reorder

SProUT ‘,

The implemented cascade, displayed in Figure 9.14 (withrtHtgaGold inte-
gration illustrated graphically in Figure 9.13), consistdour SProUT grammar
instances with four interleaved XSLT transformations.
chunkiermrs = (sprout_rmrs_morph + xslt_pos_filter + sprout_rmrs_lex

+ (* xslt_nodeid_cat + sprout_rmrs_phrase)
+ sprout_rmrs_final + xslt_fs2rmrsxml + xslt_reorder)

sprout_rmrs_morph
xslt_pos_filter
sprout_rmrs_lex
xslt_nodeid_cat

sprout_rmrs_phrase =
= SproutModulesdDomDom("rmrs-final.cfg")

sprout_rmrs_final
xslt_fs2rmrsxml
xslt_reorder

= SproutModulesTextDom("rmrs-morph.cfg")

XsltModulesDomDom("posfilter.xsl", "aid", "Chunkie")

= SproutModulesDomDom("rmrs-lex.cfg")

XsltModulesDomDom("nodeinfo.xsl", "aid", "Chunkie")
SproutModulesDomDom("rmrs-phrase.cfg")

XsltModulesDomDom("fs2rmrsxml.xsl")

= XsltModulesDomString("reorderrmrsdtrs.xsl")

Figure 9.14: SDL definition of th&ProUTXSLT cascade (chunkiermrs.sdl)

9.5. INTEGRATED NLP COMPONENTS 229

The first stepsprout_rmrs morph, runs theSProUT interpreter configured
for morphological analysis on the raw text input. The resalttains the morphol-
ogy information in XML-encoded typed feature structureshsas those shown on
page 214. These are input to stex2lt_pos_filter, which adds the Chunkie
category for each word within a chunk span. The XML-encodrd& analyses are
accessed through the above described Heart of GoldtationEncapsulator
andTransformationService from ChunkieModule (cf. Section 9.5.3.1), using
a Heart of Gold URI withaid="Chunkie".

The merged result is input to the neSProUT cascadegprout _rmrs_lex,
which maps PoS-specific encodings of agreement featuregd¢aeral agreement
feature, and defines basic lexical semantics (relatio)) dogy the RMRS genera-
tion. Step 4xs1t_nodeid_cat, inserts node IDs (defined by spans), mother node
ID and category as imposed by the chunkeprout _rmrs phrase implements
RMRS semantics composition for NP and PP chunks. The reeuapiplication of
phrase composition rules is defined by means of the SDL staatyp.

Step 6,sprout_rmrs_final, collects the elements of the semantic sets of the
(chunk) daughters into the semantic sets of the phrase the®ProUTcollect
operator. Step 7 and 8 are auxiliary XSL transformatiorslt_fs2rmrsxml
transforms the raw RMRS encoded as typed feature structimesompatibility
with SProUTI/O) into the RMRS DTD format, and finallgs1lt reorder rear-
ranges the RMRS elements as imposed by the RMRS DTD.

The chunkiermrs.sdl file shown in Figure 9.14 is compilechgshe SDL com-
piler to a Java class. The following configuration file chemniirs.cfg for the Heart
of Gold module then mainly contains the name of the Java elibkshe compiled
cascade code (configuration lin@l.classname).

module.name=ChunkieRmrs

module.depth=35

module.language=en

module.rootelement=chunkiermrs

#

name of input annotation (raw text for first cascade/SProUT)
sdl.inputannotation=rawtext

class name of compiled SDL definition

(same as class name at beginning of .sdl file)

can be compiled using ’ant sdl’
sdl.classname=de.dfki.lt.hog.sdlgen.chunkiermrs_en

To give a small example for German (the cascade is definedgmaly to
English), we show Chunkie XML output below and the gener&bdnkie RMRS
for the sentence ‘Florian liebt den griinen Frosch.’ in Fég®.15.

<s id="S0" cstart="0" cend="30">
<w pos="NN" cstart="0" cend="6">Florian</w>
<w pos="VVFIN" cstart="8" cend="12">liebt</w>
<chunk cat="NP" cstart="14" cend="30">

230 CHAPTER 9. HEART OF GOLD
<w pos="ART" cstart="14" cend="16">den</w>
<w pos="ADJA" cstart="18" cend="23">griinen</w>
<w pos="NN" cstart="25" cend="30">Frosch</w>
</chunk>
</s>
[TEXT Florian liebt den griinen Frosch. i
_der_art_defrel
[florian.u] [_liebenverb.main LBL hé
tBL hi| |LBL h3 ARGO X5
ARGO x1| | ARGO e3eePeeet | | RSTR h5
RELS BoDY h8
[_grun.adjectiveadja| T froschnoun
LBL h9 LBL h12
ARGO e9 person=person
ARGO X5number=singular|
_ARGl x5 gender=masc
HCONS {h5gegh9}
LING {h12ing h9} i
Figure 9.15: RMRS generated with ChunkieRMRS
9.5.7.5 Example 2: Architecture of the RMRSmerge Cascade

Another instance of an SDL-based sub-architecture is th&RiMerge cascade for
combining two RMRSes. The cascade consists of 5 XSL tramsftions mainly
developed by Anette Frank. It merges a secondary RMRS aiomtdypically
from a named entity recognition component suctE&oUTor LingPipe, into a
configurable primary RMRS annotation, typically from RASPRET, by using
character span information and adjusting RMRS variables.

The

result is a single RMRS combining all information obgairfrom the input

RMRSes. The primary annotation is configured in the SdiMedohfiguration file

rmrsme

rge.cfg, the secondary annotation is configurabpmesmneter in the SDL

definition rmrsmerge.sdl (parameter to the merging stgeth

The

following examples illustrate merging of PET aB8roUTRMRSes. We

define a depth of 110 to ensure that the RMRSmerge modulerisdstfter PET

(default

module
module
module.
module

depth 100) in the module configuration file rmrsreecty:

.name=RmrsMerge
.depth=110

language=en

.rootelement=merged-rmrs

common modules settings end here —-----
of input annotation (e.g. PET or RASP)

9.6. DEEP-SHALLOW INTEGRATION SCENARIOS 231

sdl.inputannotation=PET

class name of compiled SDL definition

(same as class name at beginning of .sdl file)
can be compiled using ’ant rmrsmerge’
sdl.classname=de.dfki.lt.hog.sdlgen.rmrsmerge

The SDL definition (rmrsmerge.sdl) for the XSLT cascade is

rmrsmerge = (rmrs_ep_rargs2rels + adjust_nespans + merge_ne2petrasp +
rmrs_rels2ep_rargs + reorder_rmrs_dtrs)

rmrs_ep_rargs2rels = XsltModulesStringDom("rmrs_ep_rargs2rels.xsl")

adjust_nespans = XsltModulesDomDom("adjust_nespans.xsl","aid","Sprout")

merge_ne2petrasp = XsltModulesDomDom("merge-ne-to-rasp.xsl","aid","Sprout")

rmrs_rels2ep_rargs = XsltModulesDomDom("rmrs_rels2ep_rargs.xsl")

reorder_rmrs_dtrs = XsltModulesDomString("reorderrmrsdtrs.Xsl",

"aid","xmltext")

Figure 9.16 depicts an example of a merged RMRS for the semtBrid Bernd
Kiefer present a paper at ACL 2003?". The first two rowssf s contain the deep
RMRS, the third row contains the fine-grained RMRS producgd&BroUT for
the person name, the last row contains the RMRS for ‘ACL 2003ie SProUT
RMRSes are linked with the deep RMRS wiandx18.

9.6 Sample configuration scenarios for robust deep-shallow
integration

In this section, we describe three sample Heart of Gold aessinfigurations of
robust deep-shallow integration, for German, English amhdese. We do not list
the details for the respective module configurations, asetlage roughly (modulo
language-specific variations) those we presented in thellmagscriptions above,
and differ only in minor details such as language code. Itiqdar, the configured
module depths that determine the processing order areigdemtith the default
values shown in the previous sections. Similar configunatioave been used for
the evaluations we will describe in Section 9.9.

9.6.1 Sample Configuration for German

The MoCoMan configuration file for the robust deep-shallotegnation workflow
illustrated in Figure 9.17 contains the following linesdfionf/de/deepshallow.cfg):

de.dfki.lt.hog.modules.JTokModule=conf/de/jtok.cfg
de.dfki.lt.hog.modules.TnTModule=conf/de/tnt.cfg
de.dfki.lt.hog.modules.ChunkieModule=conf/de/chunkie.cfg
de.dfki.lt.hog.modules.Sd1lModule=conf/de/chunkiermrs.cfg
de.dfki.lt.hog.modules.SproutModule=conf/de/sprout.cfg
de.dfki.lt.hog.modules.PetModule=conf/de/pet.cfg
de.dfki.lt.hog.modules.Sd1lModule=conf/de/rmrsmerge.cfg

232 CHAPTER 9. HEART OF GOLD

[TEXT Did Bernd Kiefer present a paper at ACL 2003? 1
Tor hl
_presentv
"basicint.m.rel] [prpstnm.rel proper.g.rel | | namedrel LBL hll
sl hl LBL h1001 LBL h6 LBL hi10 ARGO €2 tense=past
ARGO €2 ARGO €2 ARGO x8 ARGO x8 ARGL x8 "
MARG hl MARG h5 RSTR h7 CARG Bernd num=sg
- BoDY h9 Kiefer ARG2 Xlzpers:S
ARG3 ul3
[_aq -atp proper.g_rel
LBL h14| | _papern LeL h1002 LBL h20 namedrel
ARGO x12| |LBL h17| | ARGO elftense=u| | \rg0 x18 LeL h23
RSTR h15| | ARGO x12| | ARGL €2 RSTR h21 ARGO Xl|82003
| Boby hl6 ArG2 x1870T° 9 | | BoDY h22 CARG aC
r | ne-objid.rel ne-conceptel surnamerel
RELS ne-perzcigg LBL hi51 LeL hi152 LBL h153
;iLGO . ARGO x151 ARGO X152 ARGO x153
. CARG 0bj-62893| | CARG Active_Perso CARG Kiefer
CARG Bernd Kiefer
- ARG1 x8 ARG1 x8 ARG1 x8
[givennamerel ne-eventel ne-abbidrel ne-objid.rel
LeL hi54 LsL h430 LBL h431 LBL h432
ARGO x154 ARGO x18 ARGO x431 ARGO x432
CARG Bernd CARG ACL 2003 CARG ACL 2003| | CARG 0bj_64300
L ARG x8 ARG1 x18 ARG1 x18
[ne-conceptel eventnameel
LBL h433 LBL h434
ARGO x433 ARGO x434
CARG Active_Conferencg | CARG ACL 2003
L ARGL x18 ARG1 x18
HcoNs {h5geqh11h7 qeqh10,h15qeqhl7,h21qeqh23}
| ING {hling h1001h11ing h1002 |

Figure 9.16: RMRS merged using the RmrsMerge module

The raw input sentence text is sent to the JTok tokenizetlidep) andSProUT
(depth 40), becaus€ProUT comes with its own tokenizer with a finer-grained
token classification. Chunkie (depth 30) and TnT (depth 2® ihne tokenized
output from JTok as input, Chunkie output (proprietary XMirrhat) is used as
secondary input for the ChunkieRMRS cascade (depth 355hwhiturn consists
of 4 SProUT instances and 4 XSLT stylesheets as explained in Sectior.9.5
The output of the cascade (RMRS format) can be used as shialleback result
in case the deep parser fails to parse the input sentence.

TnT output as well as the recognized named entities f&PnoUT are trans-
formed into the PET input chart format. The configurationetHPET input charts
to merge (using the default combinepixml.xsl stylesheminfpage 296) is part of
pet.cfg:

9.6. DEEP-SHALLOW INTEGRATION SCENARIOS 233

pet.inputannotation=TnTpiXML, SProUTpiXML

PET has depth 100, and because the RMRS merging cascadesroodsisting
of the 5 XSLT stylesheets explained in Section 9.5.7.5 hashd€l0, it can take
the RMRS outputs of PET an8ProUTand generate a unified RMRS of them as
described in the previous section.

An application will then get either the merged PEProUTRMRS or as fall-
back the shallow ChunkieRMRS. Whether PET returns fragsmenhot, is a mat-
ter of configuration in pet.cfg. The overall system instatites provides a much
more robust analysis than the deep parser alone and alloves idde range of
possible combinations just as a matter of configuration &&o the evaluation

Section 9.9).
=)
text

| JTok | | sProuT |
Chunkie nT

PET XML
input chart

ChunkieRMRS
SDL cascade

[g iy g

PET

RMRSmerge
SDL cascade
o~
fallback
merged
shallow
RMRS RMRS

Figure 9.17: Sample configuration of deep-shallow intégnaor German

234 CHAPTER 9. HEART OF GOLD

9.6.2 Sample Configuration for English

The configuration for English (Figure 9.18) centered aroimedEnglish Resource
HPSG Grammar (ERG) is exactly analogous to Gerfjaexcept that there is an
additional RASP module (depth 50) with native RMRS outpat tten be used as
shallow fall-back as alternative to ChunkieRMRS. As exeai in Section 9.5.3.2,
RASP can, in contrast to ChunkieRMRS, deliver filled pretdieargument struc-

tures in the RMRS.
=
text

| JTok | SProUT | RASP
Chunkie TnT

PET XML
input chart
=

ChunkieRMRS
SDL cascade
(g Bpglinglinglncline
RMRS RMRS
RMRSmerge
SDL cascade
[Wia Vg Nnglng lng

fallback
shallow
RMRS1

v y
fallback
merged
shallow
LRSS RMRS2

Figure 9.18: Sample configuration of deep-shallow integnafior English

The configuration file is conf/en/deepshallow.cfg:

de.dfki.lt.hog.modules.JTokModule=conf/en/jtok.cfg
de.dfki.lt.hog.modules.TnTModule=conf/en/tnt.cfg
de.dfki.lt.hog.modules.ChunkieModule=conf/en/chunkie.cfg
de.dfki.lt.hog.modules.Sd1lModule=conf/en/chunkiermrs.cfg
de.dfki.lt.hog.modules.SproutModule=conf/en/sprout.cfg

18 e. same modules and components with lingware for Engtistead of German.

9.6. DEEP-SHALLOW INTEGRATION SCENARIOS 235

de.dfki.lt.hog.modules.RaspModule=conf/en/rasp.cfg
de.dfki.lt.hog.modules.PetModule=conf/en/pet.cfg
de.dfki.lt.hog.modules.Sd1lModule=conf/en/rmrsmerge.cfg

9.6.3 Sample Configuration for Japanese

As there is no chunker, no shallow parser and a differenteiaggailable for
Japanese, the configuration (Figure 9.19) is quite diftefiem that for English
and German. However, as a Japanese nhamed entity recoggigiommar exists for
SProUT the SProUTmodule can operate in the same way the English and German
configurations do, delivering PET input chart format thrlotigansformation.

ChaSen acts as segmentizer and tagger, and via configudateatly produces
the PET input chart format. As in the English and German condigons, ChaSen
output is concatenated witBProUT NER output before being parsed with PET
running the Jacy HPSG grammar (Siegel and Bender, 2002y tisinfollowing
line in the pet.cfg configuration file.

pet.inputannotation=ChaSen, SProUTpiXML

| Chasen | | SProUT |

PET XML
input chart

RMRSmerge
SDL cascade
[N g ngling lng

merged
RMRS

Figure 9.19: Sample configuration of deep-shallow intégnafor Japanese

236 CHAPTER 9. HEART OF GOLD

Similarly, the final module is the RMRSmerge cascade withtldéd0, com-
bining SProUTand HPSG analyses. The session configuration file conf§pfde
shallow.cfg for Japanese is defined as follows.

de.dfki.lt.hog.modules.ChasenModule=conf/ja/chasen.cfg
de.dfki.lt.hog.modules.SproutModule=conf/ja/sprout.cfg
de.dfki.lt.hog.modules.PetModule=conf/ja/pet.cfg

de.dfki.lt.hog.modules.Sd1lModule=conf/ja/rmrsmerge.cfg

As already mentioned in Section 9.5.1.2, character positgalculation pro-
vided by the ChasenModule is crucial for correct alignmert energing of the
different RMRSes from ChaSe&ProUTand PET.

9.7 Interfacing Ontologies

This section is dedicated to an extension of the Heart of Goldarticular,SProUT)
lingware with ontology information, an important featurbem aiming at high pre-
cision and recall in domain-specific texts and Semantic Viigieations.

The extended lingware can be used to improve hybrid pravgs$siHeart of
Gold by combining named entity recognition and informatotraction for recog-
nizing domain-specific names, terms and expressions wiémargl, open-domain
broad-coverage HPSG grammar.

We describe an implemented process we call OntoNERdIEaf8ch2006b)
that maps OWL/RDF-encoded ontologies with large, dynallyicaaintained in-
stance data to named entity recognition (NER) and infoirmnagxtraction (IE) en-
gine resources, preserving hierarchical concept infdonand links back to the
ontology concepts and instances.

Applications of the approach are e.g. ontology-based Hyduiestion analysis
(described in Section 9.10.2 viz. Fraekal.(2006)), automatic typed hyperlinking
of instances and concepts occurring in documents alondrtbée in (Busemanet
al., 2003), or other innovative applications that combine SaiaVeb and lan-
guage technology.

In any case, the links from recognized instances back taesritr the ontology
can be used for advanced navigation and queries in the domadleled by the
ontology. The NER/IE resources are kept up-to-date andrin syth the growing
ontology (instance) data.

The approach has been implemented for the ontology on |gegieghnology
that works at the back-end of the LT &®LD web portat® (Uszkoreitet al,, 2003),
but could be easily adapted to other domains, ontologiesysteéms, because it is
already almost fully automated.

LT WoRLD is an ontology-based virtual information center on the vdgdec-
trum of Human Language Technology (HLT), providing infotioa about people,
technologies, products, resources, projects, and om@#ons in this area. The

Bnttp://www.lt-world.org

9.7. INTERFACING ONTOLOGIES 237

service is free and is provided by the German Research Clentartificial Intel-
ligence (DFKI) to the R&D community, potential users of laage technologies,
students and other interested parties.

We useSProUT (Chapter 7) as named entity recognition and information ex-
traction tool because it comes with (1) a type system anditfgegture structures as
basic data structures with a closed type world and stricltypeldness and appro-
priateness conditions, (2) a powerful and declarative maehanism with regular
expressions over typed feature structures, (3) a gazetiegule with fine-grained,
customizable classification of recognized entities. MeeedSProUTcomes with
additional, configurable modules such as tokenizer and nodogy, that can be
exploited in the rule system, e.g. to use context or morpiockb variation for
improved NER.

The SProUTruntime component, extended with the ontology informatsn
we will describe below, has been integrated as NER and IE oae into the
Heart of Gold framework.

result: analysed
text with links
into ontology

lingware compilation

offline (compile time) online (run time)

Figure 9.20: OntoNERdIE flow of information

9.7.1 OntoNERdIE

In the following, we describe the processing steps of OntRNIE. Following the
general motivation presented in Chapter 5 resp. Schad&3)2the approach heav-
ily relies on XSLT transformation of the XML representatiormats. However,
this time, the use of XSLT is restricted to offline processimdy.

238 CHAPTER 9. HEART OF GOLD

9.7.1.1 Making Implicitly Encoded Inheritance Information in the Ontology
Explicit

Starting from the OWL representation of the ontology, favahaining inference
rules are applied through the open source RDF database &8samrder to make

all subClass0f relations explicit (details in Frangt al. 2006). This is only done
in order to avoid inferences for subtype queries that wotleimvise have to be
performed presumably less efficiently at later procesdiages, e.g. through XSLT
transformations.

9.7.1.2 Merging rdf:Descriptions

The resulting RDF file is processed with a small but soplagtid XSLT stylesheet
(rdfsort.xsl,in the XSLT Appendix on page 299) mergings : Descriptions
that are distributed over the file but belong together. Thisnecessary prerequisite
for the subsequent extraction steps, and, as it cannot denmepted by a simple
xsl:sort statement, has to be coded as a proper, dedicated stylesheet

The result for a single instancepj 89404, is shown in Figure 9.21. The
rdfsort.xsl stylesheet make use of the XSké&y declaration and of thgene-
rate-id() method to look up and merge all descriptions with the sabwait or
nodeid attribute.

9.7.1.3 Extracting Inheritance Statements and Convertingo TDL Defini-
tions

The second stylesheetdf2tdl.xsl) converts the RDlsubClass0f statements
from the output of the previous step into a set of TDL type dedins that can
be immediately imported by th8ProUTNER grammar, e.g. currently 1260 type
definitions for the same number efibClass0f statements in the LT WWRLD
ontology.

Following are two type definitions (out of 1260) that haverbgenerated from
the OWL input file using thedf2tdl .xs1 stylesheet.

Active_Conference := Conferences & Backend_Events.
Natural_Language_Parsing := Written_Language & Language_Analysis.

This is of course a lossy conversion because not all remopported by an
OWL (DL or full) ontology such asinion0f, disjointWith, etc are mapped.
However, for named entity (NE) classifications, thebClass0f taxonomy map-
pings are sufficient. Moreover, the efficiently encoded thgarchy inSProUT
makes the subclass queries very fast at runtime. Otheromgatould be formu-
lated as direct (though slower) ontology queries from thiioled NLP analysis
results (RMRSes) using ti#8JID mechanism described in the next step.

20http://www.openrdf.org

9.7. INTERFACING ONTOLOGIES 239

<rdf:Description rdf:about="http://www.lt-world.org/ltw.owl#obj_89404">

<rdf :type rdf:resource="http://www.lt-world.org/ltw.owl#
Active_Conference"/>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Machine Translation</dc_keyword>

<homepageURL rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#string">
http://www.lrec-conf.org/lrec2006/</homepageURL>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
NLP Tools</dc_keyword>

<dateStart rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
2006-05-24</dateStart>

<paperDeadline rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
2005-10-14</paperDeadline>

<eventNameVariant rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
LREC 2006</eventNameVariant>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Semantic Web</dc_keyword>

<takesPlaceInCountry rdf:resource="http://www.lt-world.org/ltw.owl#
1t-world_Individual_334"/>

<eventNameVariant rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
5th Conference on Language Resources and Evaluation</eventNameVariant>

<name rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#string">
5th Conference on Language Resources and Evaluation</name>

<locatedIn rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Magazzini del Cotone Conference Center, Genoa</locatedIn>

<eventName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
5th Conference on Language Resources and Evaluation</eventName>

<dc_language rdf:resource="http://www.lt-world.org/ltw.owl#lt-world_
Individual_105"/>

<dateEnd rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#string">
2006-05-26</dateEnd>

<eventNameAbbreviation rdf:datatype="http://www.w3.org/2001/XMLSchema#
string">LREC 2006</eventNameAbbreviation>

</rdf :Description>

Figure 9.21: LT WORLD ontology entry for LREC 2006 (shortened)

9.7.1.4 Generating Gazetteer Entries

Another stylesheetrif2gaz.xsl) selects statements from the RDF input file
about instances of relevant concepts mdd : type and converts them to gazetteer
source files for theSProUT gazetteer compiler. In the following example, two of
the approx. 20000 converted entries for LTORLD are shown.

Martin Kay | GTYPE: 1lt_person | SNAME: "Kay" | GNAME: "Martin"
CONCEPT: Active_Person | OBJID: "obj_65046"

LREC 2006 | GTYPE: 1lt_event | GABBID: "LREC 2006" |
CONCEPT: Active_Conference | OBJID: "obj_89404"

240 CHAPTER 9. HEART OF GOLD

The attributeCONCEPT contains the TDL type from the previous step. For con-
venience, several ontology concepts are mapped manuallyaa of the configu-
ration of the stylesheet) to only a few NE classes (undeibateGTYPE), hamely
person, organization, event, project, product and tedyyoplus some properties
for LT WORLD.

This has the advantage that NER context rules from exiSfgUTgrammars
can be re-uséd for better robustness and disambiguation, e.g. to recegmit
only Martin Kay, but also Prof. Kay, Dr. Kay, Mr. Kay with or #iout firsthname
and including morphological variation.

The following SProUTrule (XTDL syntax) simply copies the slots of a matched
gazetteer entry for events (e.g. a conference) to the oatpatrecognized named
entity.

[gazetteer
GTYPE It event ne-event
_ EVENTNAME [namé
SURFACE [name
lt-event > — | CONCEPT
CONCEPT |concep
- OBJID
OBJID GABBID
abpre
L GABBID i

Figure 9.22: A simpleéSProUTrule that copies gazetteer output

0BJID contains the object identifier of the instance in the ontplddhis can be
used as link back to the full knowledge stored in the ontalegy. for subsequent
queries such as 'Who else participated in project [with @Batj_4789]?’ etc, for-
mulated in an ontology query language. How such naturaldagg questions can
be automatically translated to ontology queries will beradded in Section 9.10.2.

9.7.1.5 Named Entity Recognition at Runtime

The output ofSProUT for a recognized NE is a typed feature structure (e.g. in
XML format) containing the RHS of the rule as shown in the pwas step with
the copied gazetteer data shown there (Figure 9.22) plug saditional meta-
information such as character span, NE tepe

A mapping to a deep HPSG grammar for hybrid processing careifermed
by means of the XSLT stylesheet automatically generatau thee SProUTtype
hierarchy as shown in Section 9.5.4.1.

At run time, the generated stylesheet would e.g. productotlosving item for
LREC 2006 on the deep parser’s input chart (HPSG t$generic_event).

<w id="SPR3.1" cstart="48" cend="56" constant="yes">
<surface>LREC 2006</surface>

21Alternatively, a fully automatic, but maybe too fine-graint 1 mapping of all concepts could
be performed.

9.7. INTERFACING ONTOLOGIES 241

<typeinfo id="TIN3.1" baseform="no">
<stem>$generic_event</stem>
</typeinfo>
</w>

The transformation output then contains only the NER infation that is re-
quired by the deep parser (character span and generic HRp@Gatya chart item
to be generated). Alternatively (e.g. if no hybrid deepHshaprocessing is per-
formed), the full output from &ProUTruntime system could be used instead.

9.7.1.6 Information Extraction at Runtime

Similar to the NER mapping from the previous section, He&iGold can also
automatically generate XSLT stylesheets that producelericdobust semantics
representation format (RMRS, Section 9.4) at runtime from3ProUT results.
An example is shown in Figure 9.23. Heohjid, surname givennameand other
structured information from the ontology instance is preseé in the representa-
tion. The advantage is that this RMRS can also be comlergubstwith analyses
from other deep or shallow NLP components (cf. Section &©5.&.g. partial
analyses when a full parse fails.

[TEXT Prof. Martin Kay]
ToP hO
- REL concept REL objid
REL ne-person
LBL h6 LeL h7v
LBL hoO
ARGO X0 ARGO x6 ARGO X7
. CARG Active_Perso CARG 0bj_65046
CARG Prof. Martin Kay
RELS J ARG1 x0 ARG1 x0
[REL surnamg [REL givenname] [REL title
LBL h8 LBL h9 LBL hl0
ARGO x8 ARGO x9 ARGO x10
CARG Kay CARG Martin CARG Prof.
| ARG1 X0 ARG1 x0 ARG1 x0
HCONS {}
| ING {}]

Figure 9.23: RMRS generated froBProUToutput in Heart of Gold

An example of a full, hybrid RMRS generated with input fromt@HERdIE
and merged deep and shallow RMRS is reproduced in Figure 9.16

9.7.1.7 Summary

We have described OntoNERdIE, an XSLT-based procedureniaps ontology
instances and concepts to NER and IE resources. The predeflg automatic for

242 CHAPTER 9. HEART OF GOLD

instances and only requires manual filtering of interestimgcepts and properties.
The key features and advantage we see are that lingwaregcesare kept in sync
with information from dynamically expanding ontologieshuthat instances from
the ontology are precisely and efficiently recognized in NieR IE.

Existing multilingual NER and IE grammars can be (re-)used exploit con-
text information for augmented precision. The ontologyagt information can
be exploited in NER and IE rules. Links from recognized ins&s back into the
ontology are preserved for subsequent ontology querielerapplications. The
improved NER can be utilized for hybrid deep-shallow anialyis Heart of Gold,
and richer, IE-like information can be provided in a struetl robust semantics
output format.

9.8 Visualization

Information visualization is indispensable for the ingpmtof complex NLP anal-
yses. Although RMRS already is a gross simplification of tbmplex nested
feature structures that are returned by the HPSG parsesglatihcts from syntac-
tic details that contributed to the analysis, at the same pnoviding the semantic
details that might be of interest to an application, thealdd- and handle-based
structure is still somewhat confusing for a human reader.

Therefore, we developed a stylesheet that transforms an&Rixtia an HTML
with Javascript document in the MRS look (with EP args groupeAVM-like
matrices) that highlights corresponding variable/haratieurrences and the cor-
responding part of the input text when the user moves the enoussor over an
RMRS region (Figure 9.24). The same transformation semiaeis used for an-
notation transformation thus also is responsible for \Vigation transformation
(cf. Section 9.3.9).

Furthermore, stylesheets for general XML document viga#bn (taken from
the Apache Tomcat project) and a Swing-based Java browpkat épr visualizing
typed feature structures encoded in XML are part of the H#faBold system.

Finally, stylesheets that producdX code for AVM-like visualizations from
RMRS and TFS-XML can be used for written documentations. (asgd in this
thesis; Schafer 2004a).

9.9 Evaluation

At the end of the BEPTHOUGHT project, an evaluation of hybrid processing in
Heart of Gold has been conducted. This evaluation has bemmumted in Beer-
mannet al. (2004), from which most of the content of this section is tak&he
hybrid parsing evaluation concentrated on the Heart of ®MRS output alone,
with robustness in focus, while the application evaluatimriuded an analysis of
the usefulness of Heart of Gold output for NLP-based apiiina (business intel-
ligence and automatic email response management).

9.9.

’* SDLs-RMRS-final - Mozilla

EVALUATION

243

[}

ICE D]
@[JTok

[emr [Chunkis | % 5DLs-RM [GhunkieR 5 Spowt [SprowtR | UingPipe [RASERML [PET

[aFErEvRs | D ‘

[[ep-arg0 /% Chunkie - Mozilla <2>
= e it & Dl ICH|
ep-rel-art_indef CFROM [3" ep-body -
LB b cTo o] LB Ib -<chunkie>
REL “which" VAR B[rer-var waR [[rer-var| +=metadata:
VAR [ref-var B PNG | png PNG -=chunks>
PNG | png NUMBER singular -<5id="50" cstart 0" cend 43"
NUMBER singular GENDER neutrur
GENDER. neutrum PERSON p3 i
L PERSON p3 ARGO [[rer-var N BODY hole art= >wh|ch</w =
CFROM ["3* PNG [pnz CFROM ["3* . h<wkpns NN cstart="8" cend "15"=country=</w=
cTo @7 NUMBER singular cTo @7 =fchun
B GENDER mentrum B w pos="vBD" cstart="17" cend="13">did=</w>
PERSON p3 w pos="MMNP" cstart="21" cend="ZE">NLPXML-<fw
b - W pos= i "31">2008</w>
" PET RMRS - Mozilla W p0S= “>take</ur>
3 DEEE! < pos="NN" cstart "38" cend="42" >p|ane</w>
TEXT Inwhich country did NLPXIL 2004 take place? W pos="§PUNCT" cstart="43" cend="43"+7<hu=
TOP W1 =
|
g hich, Sentences from input file guestions.txt:
basic_int m_rel WHCa G pamed abb ral i o
8L m prpstn_m_rel || LBL A8 LBL hio Lgimw,f; sl[LaL s |[fmatis the canital of Somalia Y
LBL 73 || ARGO &€ sme-u ng, s i What is the email address of Martin Kay? &
RELS { ARGD =2 ARGD 2| apt ez ||ARGD s || pp X || ARGD KTEser=2 | lin which country did NLPXML 2004 take place?
M e Fiivincs Who is the head of the United Nations?
MARG %3l iara e XGpones || RSTR 077 || o MO0 loapg :
TPC &demseas ARGZ ™ wes || BODY 472 2004 | insert selected sentence
ponrch
[ivihich sountry did NLFXME 2004 take place? 0 dept
HCONS {hE geqhg, h11 geg h13, h16 geq h15, h22 geg hza} 40
60
NG 80
{hmnm ing hB} A j
< 1 I Analyze sentence End
D= & B o [Frig

9.9.

Figure 9.24: Analysis results in GUI with specialized XMlsualizations

1 Hybrid Parsing Evaluation

The hybrid parsing evaluation employed and compared thesattdf Gold con-
figuration modes, with and without partial, deep analySeand using or not using
part-of-speech tagging and named entity recognition.

e Configuration 1 Heart of Gold configured to provide the deepest result pos-

sible for each sentence. PET uses both part-of-speech etigsrdd by TnT
and named entities detected B¥roUTas input and delivers partial parses
in case no spanning analysis is available.

Configuration 2 Heart of Gold configured to provide the deepest result pos-
sible for each sentence. PET uses both part-of-speech etigsrdd by TnT
and named entities detected ®roUTas input, but does not deliver partial
parses, i.e. no success in case no spanning analysis stdeall

Configuration 3 Heart of Gold configured to provide only complete analyses
from PET and RASP alone. No information from shallower medi(part-
of-speech tagging, named entity recognition) is used.

These configurations correspond to subsets of the sampfestiediow in-

tegration scenarios presented in Section 9.6, but withoeitRMRSmerge and

22Fyll analyses covering the complete input sentences deslsgianninganalyses in the follow-

ing.

244 CHAPTER 9. HEART OF GOLD

ChunkieRMRS modules that were not yet implemented at the tins evaluation
was performed.

9.9.1.1 Evaluation on PASCAL Challenge Data (English)

The training data of the PASCAL challenge (Iresetral,, 2005) contains declar
ative English sentences of various domains. 581 test seggenf the PASCAL
corpus were sent to Heart of Gold using configuration 1 asriestabove. Ta-
ble 9.2 shows the coverage of PET and RASP. A RASP result ysretiirned as

fall-back answer, i.e., when the deep parser does not ratuamalysis.

configuration| sentenceg PET spanning | RASP total
PET fall-back | results

1 581 442 139 581

1 100% 76.06% 23.92% | 100%

2 581 134 447 581

2 100% 23.06% | 76.94% | 100%

3 581 37 14 544 581

3 100% 6.37% 2.41% 93.63% | 100%

Table 9.2: Evaluation on PASCAL data

As expected, annotations could be computed for all senterither by PET
or RASP. RASP is very robust and able to produce analysedifsertences for
which PET does not return a result (e.g. because of misskigole entries for
some verbs). In this domain, which is quite diverse in lex@d#ices, it could
be shown that the usage of default lexicon entries for reizegrpart-of-speeches
and named entities heavily influences the performance ofi¢lep linguistic pro-
cessing. Without these, PET delivers results in only 6.37%® sentences and
spanning results in only 2.41%, while with the input, theerage of PET rises up
to 76.06% for partial analyses and 23.06% for spanning t®sul

9.9.1.2 Mobile Phone Product Description Corpus

692 sentences (many of them fragments and lists) of mobdagproduct descrip-
tions collected from Internet sites were sent to the Heafsall using the three
configurations described above. Results are shown in Table 9

The lexicons were tuned to this domain, such that PET was sugeessful
than in the former domain, in the cases of using or not usirfguitelexicon en-
tries. Sitill, it could be shown that the usage of PoS and NH&nmation from
shallower modules increases the performance of PET enatynrom 9.36% to
20.23%. The data contains many lists and tables the deep HRS@nar is not
quite prepared for. It shows how the overall processinggaimm being able to
fall back to partial parses or (underspecified) RASP results

245

9.9. EVALUATION

configuration| sentenceg PET spanning | RASP total
PET fall-back | results

1 692 631 61 692

1 100% 91.18% 8.82% 100%

2 692 140 552 692

2 100% 20.23% | 79.77% | 100%

3 692 296 65 396 692

3 100% 42.77% | 9.39% 57.23% | 100%

Table 9.3: Evaluation on the mobile phone descriptionsu®rp

9.9.1.3 Newspaper Corpus

48 sentences of a (business news) article in the San Frarchlaonicle of 2004-
07-27 were sent to the Heart of Gold. The results are listdalote 9.4.

configuration| sentenceg PET spanning | RASP total
PET fall-back | results

1 48 31 17 48

1 100% 64.58% 35.42% | 100%
2 48 6 42 48

2 100% 12.50% | 87.50% | 100%
3 48 5 1 43 48

3 100% 10.42% | 2.08% 89.58% | 100%

Table 9.4: Evaluation on San Francisco Chronicle articles

This text is completely out of the training domain and therefsignificantly
shows the effect of default lexicon entries.

9.9.1.4 AllCorpora

Tables 9.5, 9.6 and 9.7 show the three corpora and the cavefadj three config-

urations in sum.

9.9.1.5 Conclusions

First of all, the strategy to use the deepest available relslivered by the Heart
of Gold core architecture guarantees results for all sestem different domains.
These results are comparable and compatible to each otbaudmthey are for-
mulated in the same framework, RMRS. It therefore seemsibge€ombine very
robust modules such as RASP with deeper modules such as PET.

246 CHAPTER 9. HEART OF GOLD
corpus sentenceg PET RASP
fall-back

Pascal 581 442 139
Mobile Phone| 692 631 61
Newspaper | 48 31 17
All 1321 1104 217

100% 83.57% | 16.43%

Table 9.5: Evaluation results using configuration 1

corpus sentenceg spanning | RASP
PET fall-back
Pascal 581 134 447
Mobile Phone| 692 140 552
Newspaper | 48 6 42
All 1321 280 1041
100% 21.20% | 78.80%

Table 9.6: Evaluation results using configuration 2

In different domains, closer and farther away from the dgwelent domain
in lexicon as well as syntactic structures, it could be shthat the depth of re-
sults increases enormously when using the results of Pg8itagnd named entity
recognition in deep linguistic processing. Over all dorsagpanning HPSG (PET)
processing increased from 6.06% up to 21.20%.

corpus sentenceg PET spanning | RASP
PET fall-back
Pascal 581 37 14 544
Mobile Phone| 692 296 65 396
Newspaper | 48 5 1 43
All 1321 338 80 983
100% 25.59% | 6.06% 74.41%

Table 9.7: Evaluation results using configuration 3

9.9. EVALUATION 247

9.9.1.6 Hybrid Processing and the (Early) German HPSG Gramrar

The large-scale HPSG grammar for German (Muller and Ka@880; Crysmann,
2003) developed at DFKI has been integrated into the Hea@adfl during the
2nd quarter of 2004. This evaluation is also described irrfBaanet al. (2004).
The main task of this integration effort was the adaptatioth® semantic output to
current (R)MRS standards. Furthermore, interface typdsw@appings have been
provided to integrate shallow NLP analyses into the deepgpathereby ensur-
ing robustness. As for English, named entities recognize&®BroUT and PoS
information from TnT are used to address the unknown-wootlpm.

In order to assess the gains in robustness offered by thgraneel deep-shallow
processing adopted by Heart of Gold, an experiment on undatn measuring
the coverage obtained with and without deep-shallow iatémm, was run. As
test data, 200 questions from the German section of the CI0BB ghultilingual
question answering competition, were used. The corpus weseg@ both by a
stand-alone PET and by the version integrated into Heariotd.G

The standalone PET system (baseline) was able to delivdl paiise for 34
sentences only (17%). Inspection of the error log revedlatithe most common
source for parse failure was lexical in nature: in 77.5% efitiput sentences, at
least one lexical item was unknown. Abstracting away froedtoblems of lexical
coverage, syntactic coverage was around 80% (34/42),ugththese figures are
certainly not reliable, owing to the size of the data set.

Deep-shallow integration drastically improved on theseirgg: by feeding
NER and PoS tag information into the deep parser, coverage weto 73%
(146/200), a figure comparable to those achieved on corporatfich the gram-
mar had been optimized (e.g.E¥BMOBIL data: VM-CDO1: 74.1%; VM-CD15:
78.4%).

The results obtained by the German Heart of Gold also compeltdo a sim-
ulation of an ‘ideal’ NER component. Manual substitutionNfs resulted in an
overall coverage of 56.5% (113/200). Owing to the fact thdussitution was re-
stricted to named entities, lexical coverage was still ands accounting for 30%
(60/100) of parse failures. Relative to the 140 sentenctd®owi lexical errors, we
measured a syntactic coverage of around 80%.

To conclude, the integrated shallow-deep approach emthbgieleart of Gold,
and, most notably, the combination of NER and PoS mappingsep to be highly
successful in improving the robustness of the deep pars&@domman as well.

9.9.2 Evaluation in Application Context
9.9.2.1 Evaluation of the Auto-Response Application (Geran, English)

The underlying scenario targets at email response manageorecustomer re-
lationship management. The application developed andiated by the project
partner Xtramind GmbH provided information extraction dtianalities for the
following scenarios in the content domain of a mobile phoravigder: product

248 CHAPTER 9. HEART OF GOLD

ordering, mix-ups in deliveries of products, and replaceinoé defective products.
It took as input one or more e-mails (German and/or Englisk)aelivered filled
scenario templates as output.

These templates were the result of several hybrid proagpssEps such as
named entity recognition, shallow and deep analysis, ecgate resolution, map-
ping of results from the preceding analysis on domain spdeifmplates, and merg-
ing operations on the partially filled templates resultindjlied scenario templates.
The final scenario templates were of the following types:Ei¢hange (2) Order-
ing (3) Mix-up. In cases where no merging operations can jkee, the partially
filled templates were presented to the user.

An email corpus was constructed using relevant anonymiastbmer emails.
Since the evaluation of the component was performed mantiadl data set used
for the evaluation was rather limited: 87 emails for Germiaah 84 for English. On
average, each email contained 4 sentences. Hence, the Gdat@aset consisted
of 348 sentences and the English data set of 336 sentences.

Input e-mails were processed by the system that returned 8ltenario tem-
plates as output. The system identified the customer usengrédicate-argument
structure from the deep analysis and by performing a dorspétific coreference
resolution between certain pronouns and potential angeded A person writ-
ing an e-mail, e.g. referring to herself or himself by 'I' ané’ etc presumably
mentions her name either in the complimentary close or iratltress part of the
e-mail. Products were identified by predicate-argumeitticels and named entity
recognition. The predicates triggered the process of ¢hgdke correct scenario
template.

The evaluation compared two different result sets for Gararad English us-
ing two different preprocessing levels configured in theddetGold. The deep
processing used in the application and for evaluation spmeds to configuration
2 described in Section 9.9.1 above. Since the applicatidrtdnbe applied in real
world contexts, robustness was a necessary preconditiah¢@nfiguration 3 (no
shallow preprocessing for deep parsing) was not considatredl, nor was con-
figuration 1 (including also partial results from deep pssigeg in case of parsing
failure).

The usage of part-of-speech tags delivered by TnT and namiieé® detected
by SProUTas input guaranteed the robustness requirement. Thetbepplica-
tion has been evaluated with PET using part-of-speech tajs@amed entities for
preprocessing in Heart of Gold. For German, the chunk taGieinkie has been
used as shallow fall-back component. For English, the tathedlow parser RASP
has been used as fall-back. Both have been integrated usiag &f Gold as well.

The configurations that have been used for the evaluatior (gronly deep
analysis, (2) deep analysis with shallow fall-back. Ptieaisrecall, and f-score
were measured for the scenario templates delivered by tterayby manually
comparing them against gold standard template annotatiptisee email corpus
mentioned above.

Two different types of evaluation were performed: a tengladsed evaluation

9.9. EVALUATION 249

and a feature-based evaluation. During template-basddagiean, a template was
judged correct if and only if all required template featunese correctly filled and
the type of the template was correct. During feature-basatliation, all feature
values were evaluated separately. Each single slot waggudgher as correct
or false. The relevant features for all three template typere the following:
template type, product list (each product counting singhyare than one), product
feature list (each feature counting singly if more than poe¥tomer, provider.

First experiment (German) The first experiment shows figures using mainly
deep analysis and, as fall-back solution, shallow prongs&onfiguration 2; Ta-
ble 9.8).

Precision| Recall f-score
Template-based evaluatign50.35 % | 45.74 % | 47.93 %
Feature-based evaluation| 60.46 % | 56.38% | 58.34 %

Table 9.8: First experiment German; results using configura

Second Experiment (German) The second experiment uses only deep analysis

as preprocessing (configuration 1; Table 9.9).

Precision| Recall f-score
Template-based evaluatign62.25 % | 36.95 % | 46.30 %
Feature-based evaluation| 68.43 % | 46.65 %| 54.76 %

Table 9.9: Second experiment German; results using coafigarl

First Experiment (English) The first experiment shows figures using mainly
deep analysis and, as fall-back solution, shallow prongs@onfiguration 2; Ta-
ble 9.10).

Precision| Recall f-score
Template-based evaluatign57.25 % | 30.58 % | 39.86 %
Feature-based evaluation| 83.19 % | 47.13 %| 60.17 %

Table 9.10: First experiment English; results using coméiggan 2

Second Experiment (English) The second experiment uses only deep analysis
as preprocessing (configuration 1; Table 9.11).

The evaluators concluded that precision and recall valoegefature-based
evaluation were always higher than those for templateeb@saluation due to

250 CHAPTER 9. HEART OF GOLD

Precision| Recall f-score
Template-based evaluatiqgrd48.13 % | 38.52 % | 67.56 %
Feature-based evaluation 75.45% | 61.17 %| 42.70 %

Table 9.11: Second experiment English; results using cowraigpn 1

the fact that in many cases templates contained only one orirteorrect fea-
ture values. During template-based evaluation these tdegplvere regarded as
completely incorrect. This fact explained the differenedw®en accuracy values
considering whole templates and feature values, respctiv

The precision value when using only deep analysis was hitjlagr the preci-
sion value when combining deep and shallow analysis, wkdheahigher f-score
in the first experiment for both evaluation types indicatiedt the combined ap-
proach delivered better results altogether.

The usage of shallow preprocessing mainly supported theifidation of or-
dering templates. This was mainly due to the difficulty ofogmizing templates
of type exchange or mix-up when using only shallow processin these cases
accurate recognition of predicate argument structure weassary precondition
for making decisions such as 'What are the features of thdyat@' or 'Which
product has been ordered and which product must be replaced?

Moreover, the relevant agreement features were not al@ilatthe domain-
specific coreference resolution between pronouns androestaames as potential
antecedent, or nouns and product named entities as pétenteecedent. On the
other hand, shallow processing delivered correct templiatsome cases (mainly
order templates) for which the deep analysis could not peogitemplate at all.

9.9.2.2 Summary

The application-oriented evaluations of the hybrid paysionfiguration of Heart
of Gold performed during the EEPFTHOUGHT project showed promising results.
However, as in the latter case (email response applicatiombaseline had already
been a hybrid system and not a deep parser. The reason fig thi the advan-
tages of the hybrid approach are so evident that it seenra droapplication point
of view) to be useless to still consider isolated deep pag&iuations.

On the other hand, all evaluations cited here were performeelatively early
stages of grammar development (esp. German HPSG) and aBowslcompo-
nents (e.g.SProUTgrammars) are much more developed now, and the good re-
sults from Chapter 7 did not enter in these earlier hybriduations. To sum up,
there is much evidence from this evaluation that hybrid @sstg in Heart of Gold
considerably improves robustness of NLP processing fdi@gtjpns, and that the
results would be much better now than they had been duregPDHOUGHT. The
next section also illuminates recent developments in uar@her applications.

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 251

9.10 Further Applications Based on Heart of Gold

The integration of deep and shallow processing opens patdot a wide range
of applications. We give an overview of implemented and sayed applica-
tions based on the presented integration scenarios in ldé&old. We start
with two quite detailed application descriptions, namelyativity support in doc-
ument production (Section 9.10.1) and question answeramg tructured knowl-
edge sources (Section 9.10.2). Further applications, uzted by colleagues in
Saarbriicken and at other sites, will be briefly present&kition 9.11.

9.10.1 Creative Authoring Support

The research performed in theEBPFTHOUGHT project aimed at demonstrating
the potential of deep linguistic processing if added to texgsshallow methods
ensuring robustness. The approach has been used to dest®itke feasibility
of three ambitious applications, of which we have alreadscdbed one in the
previous section. The creative authoring applicationd@ook be evaluated because
of its nature and time limits in the project, but as it congés an original approach
that had been implemented in a fully functional prototypmagisieart of Gold, we
will briefly describe it in this section.

The aim of the application is to suppameative document productidtszko-
reit et al, 2004). To this end, it combines functionality for documediting with
advanced semantic information retrieval and question arieg. We describe the
prototype and the methodology developed for combining éspective virtues of
different processing methods. Using some examples, wellwgtrate the collab-
oration of NLP components on the basis of Heart of Gold.

9.10.1.1 Motivation

When new ideas are produced, discussed, and presentede gtaportion of the
effort goes into looking up and combining existing piecesnéérmation. The
reasons for this are simple: (i) the completely new ideasfacis only constitute
a tiny fraction of the total content and (ii) we cannot keelptla cited facts and
sources in our memory.

If the lookup of facts, sources, references, pictures capdstormed with
greater ease and speed, the creative process gains imyneneéliciency. If the
authors are not constantly interrupted by searches andyifdan spend more time
on the truly creative portions of the task, the quality ofasults will also improve.

Everyone who has ever authored a document remembers theousmisrup-
tions in situations when information is missing and it ha®¢olooked up. Only
a few years ago, one had to consult books, journals, andvaschb find the re-
quired data. Today, much of the lookup can be done on thenkit@r on other
electronically accessible repositories. Neverthelasg]@okup is disruptive.

252 CHAPTER 9. HEART OF GOLD

Experienced writers do not stop the creative process eashdome piece of
information is missing, but rather insert a note for lateskiop. The basic idea
is that this lookup can be performed automatically. This bhappen while the
author continues to write, or even after hours. While searuh presentation are
automated, the selection and the actual creative tasksfate the human author.

The need for looking up information also occurs when complets or other
figures are composed. Only in rare cases does the author negtl to draw the
pictorial elements from scratch. Today, symbols, iconstbelographical elements
are readily available in clip art collections, graphicshres, or on the web. Again,
one can delay the search for missing elements by insertingneny shape such as
an empty rectangle or a circle together with a note.

9.10.1.2 Sample Scenario

In a creative meeting, the participants collectively depeh marketing plan for
mobile phones. The moderator stands in front of the grouere the contribu-
tions onto an electronic flip chart (e.g. a SmartBoard) bynmees# electronic pen
and microphone. She or he might want to insert informaticsuathe functional-
ity of a Nokia 8890 and — using her microphone — dictates tlestpn ‘Does the
Nokia 8890 possess Bluetooth?’ to the application and thushgs the button for
‘search’.

While the discussion continues, the system searches fanhser. Whenever
a search is completed, the question will turn into green @y depending whether
an answer has been found or not. If a green question is cliekednu appears that
lists the most highly ranked answer candidates. The answeaisin links to their
source, such that a browser window can be opened that cemtaire information
about the topic (say, in this case, a web page on the feattingkia 8890).

Next, the moderator may want to insert a picture of the phates the flip
chart. In this case, the analyzed query is compared withyseglof natural lan-
guage descriptions of pictures (such as ‘this is a pictuth@MNokia 8890’), and
the best matches will be in the menu to choose.

9.10.1.3 Linguistic Challenges

The described application opens up a bag of challenges daisitic processing.
Answering questions requires information of varying gtarty. On the one hand,
the analysis of query and possible answers must be robustayltcontain named
entities, which requires more robust processing than caandéded by deep pars-
ing.

As also speech input is allowed, the processing must be aloeal with spo-
ken language and recognition errors. On the other hand,nhlysas must be as
exact as possible. Recognition of negation scope and @tedizgument relations
is necessary in more complex queries such as ‘I want a piofuaeNokia phone,
but not the Nokia 8890’ or ‘show me a picture of the Nokia 888d a table of the

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 253

features of the Siemens S55'. Modification anchors are meexdecide, if in the
case of ‘I want a large picture of the Nokia 8890’ the user wantarge picture or
a picture of the large phone.

To account for robustness and exactness of analysis theimeaghhat pro-
cesses gueries and answers uses an intelligent combirwtibeep and shallow
NLP modules as well as standard web-based QA systems askadilistrategy.
AnswerBus (Zheng, 2002) has been used for the latter purpose

9.10.1.4 Application Architecture and Implementation with Heart of Gold

The key idea to overcome the outlined problem is the integrakploitation of lin-
guistic components that allow analysis at different leeélgranularity. In this way
robustness and efficiency of shallow processing is comhaitttthe increased ac-
curacy provided by deep analysis. The integration is tatdd by the choice of
RMRS as common semantic representation language thatsaflexibility in the
level of detail that is specified.

Heart of Gold is used with the configuration and componenideasribed in
Section 9.6.2 to reassemble partial output from multipkegonents into one co-
herent representation.

Once a query has been entered by the user, it is sent to thedfi&old. From
there, the search engine gets back the RMRS-annotated diigng the repository
of RMRS annotated texts, pictures and graphics, it extrsictilar annotations
and composes the result for presentation. It then sendsetiudt to the text and
presentation editor module via the application server.

The Creative Authoring Support Application consists of tbkowing main
modules:

e An editor for text and graphics display and input, requestis® function-
ality and information insertion functionality, as well gsegch recognition
interaction.

e A server hosting the application logic.

e An information search engine with the functionality of infeation extrac-
tion from RMRSes and interaction with the linguistic coreamiae and the
stored annotated texts, graphics and pictures.

e A connection to a speech recognition system.

A schematic overview of the overall architecture is demidteFigure 9.25.

The application uses a client-server architecture, whezauiser client, imple-
mented using Macromedia Flash, is usable in any common wehskr via the
network. The application server and the search engine hame implemented in
Python. Two ways of connecting speech recognition to theesyare supported.

254 CHAPTER 9. HEART OF GOLD

~—Nutrimat

Text & Presentation Document Collection
Editor (Client) with RMRS

annotations

Application Logic Search & Retrieval
(Server) Engine
.
Speech Linguistic Core
Recognition Machinery (HoG)

Figure 9.25: The software architecture for creative auigor

The straightforward setup uses a client-side recognitimine, e.g. a dictation
system that is installed on the user's machine. Speech mlibut any local in-
stallation is possible using a server-side recognitionrengvhere the audio signal
is transmitted to the server and handed to the recognitiotulepas displayed in
the diagram.

The information search is based on a collection of textshibhae been RMRS-
annotated through hybrid analysis in Heart of Gold, picused graphics. The
query is sent to Heart of Gold and returned with RMRS annmiatiBased on
this annotation, a search on the RMRS-annotated text, rpetand graphics is
performed, using information extraction techniques.

When a search is initiated in the user interface through mar& text and
pushing a search button, the query is sent to the applicitigin server, which
in turn interacts with the search engine, and sends the daghe search engine,
accompanied by query context and requested result typasigs, texts or links).
Search results can be texts, pictures or documents. Thegra@tated with a
description (string), and a URL. They are presented to tlkee s selection in a
pull-down menu.

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 255

‘German goal-keeper
Oliver Kahn

Figure 9.26: The software prototype for creative authoring

9.10.1.5 Conclusion

A new application for creativity support in document authgrhas been imple-
mented with Heart of Gold as backbone. The user is assisteshiposing a text,
possibly enriched with pictures taken from a local repaogitwr the web. Domain-
specific questions and commands related to the content afadbement can be
answered on the basis of the repository, thus helping thetageerform the au-
thoring task faster and with fewer disruptions.

The application uses robust semantic representation (RMRiBed from a
hybrid combination of deep and shallow NLP components. Timi@ation ben-
efits from robustness and efficiency of the shallow compaeag well as from
increased accuracy provided by the deep HPSG parser.

The underlying XML-based, network-enabled Heart of Goldhéecture is
open and generic, and can be used to integrate additionalddbiponents and
build the foundation for various other applications. In d¢onation with ontolo-
gies, the existing framework could be extended and form #isésldor further chal-
lenging applications in the context of the Semantic Web, @nghich will see in
the following section.

256 CHAPTER 9. HEART OF GOLD

9.10.2 Question Answering from Structured Knowledge Soures

Heart of Gold is used to provide deep question analysis iInQLETAL cross-
lingual question answering (QA) system for structured kieolge sources in re-
stricted domains.

In this section, we report on how Heart of Gold, basicallyhwtiie standard
configurations for German and English as described in Se&i6.1 and 9.6.2,
plus some domain-specific extensions, automatically pa@ted using the On-
toNERdIE approach described in Section 9.7, is employeddonaplex question
answering system. The system is described in more detaitankfet al. (2005,
2006), from which most of the following sections are exteact Again, our con-
tribution is the architecture for hybrid deep-shallow gse on the basis of Heart
of Gold, and our aim is to show within an elaborated scenamies RMRS output
from Heart of Gold can be utilized in an NLP-based applicatio

9.10.2.1 Motivation and Overview

There is increasing need for question answering in resttidbmains, due to sev-
eral reasons: First, where open-domain QA exploits the tivedilinformation on
the Web, it is also confronted with the problem of reliagiliinformation on the
Web may be contradictory, outdated, or utterly wrong. Sdcdime utilization of
formalized knowledge in a restricted domain can improveusay, since both
questions and potential answers may be analyzed w.r.t. etkrbwledge base
(cf., e.g. Fleischmaet al, 2003). Third, there is a need for accurate specialized
information management solutions in both business igtice and public admin-
istration.

QA systems for restricted domains may be designed to retaegwers from
so-called unstructured data (free texts), semi-strudtdega (such as XML-anno-
tated texts), or structured data (databases). Whenewetigied data can be ex-
ploited, this option offers clear advantages over open@#tHowever, despite a
tendency towards deeper analysis, current techniques ia@Atill knowledge-
lean, in exploiting data redundancy and paraphrasing tgobs. That is, textual
QA works on the assumption that the answer to a question ikcilpstated in
some textual passage, which is typically not the case inctsi domains.

Question answering applied to restricted domains is thezahteresting and
challenging in two important respects. Restricted domégnsl to be small and
stable enough to permit careful knowledge and data modd#irigrms of struc-
tured knowledge bases, and can therefore serve as certif@thiation sources.
More importantly though, QA in restricted domains requiteshniques that cru-
cially differ from the techniques that are currently apglia open-domain textual
QA. Since document volumes tend to be small, textual QA tieglas cannot ex-
ploit data redundancy. Further, both in domain-restrictedual QA and QA from
structured knowledge sources, we cannot expect the anewsagiven question to
be explicitly stated.

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 257

Since the question is the primary source of information tealithe search for
the answer, a careful and high-quality analysis of the dgure$ of utmost impor-
tance in the area of domain-restricted QA. Most importarsilyce questions shall
be answered where the answer is not literally stated in tigenying document
or knowledge base, a semantic interpretation of the questimeeded that can
be tightly connected to the domain knowledge sources angrtteess of answer
extraction.

The approach to domain-restricted QA from structured kedgé sources pre-
sented here starts from these considerations. We focusesydidguistic analysis
of the question, with a conceptual-semantic interpratatibthe question relative
to the chosen application domain. By relying on Heart of Gaddcore linguistic
processing architecture, and RMRS as common semanticserpedion format,
the approach naturally extends to multilingual QA scersagiad provides a natural
interface to the underlying knowledge bases, enablingdlexstrategies for answer
extraction.

In this section, we present an overview of the architectncethe base compo-
nents of the domain-restricted QA system, and the overatesy architecture, the
QUETAL QA system, in which the domain-restricted architecturenibedded.

We then introduce the main aspects of domain modeling foajpmication do-
mains: Nobel prizes and Language Technology. We then deshyibrid question
analysis based on Heart of Gold. We start from HPSG analyspsestions, which
are enriched with a conceptual-semantic representatanctn be further modi-
fied by domain-specific inference rules, and are extendedutblimgual question
answering.

Subsequently, we briefly describe the interface betweestigueinterpretation
and domain ontologies for query processing. A mapping imddfbetween the
domain-specific concepts used in semantic question irtipon and the concepts
in the underlying domain ontology. This mapping is used toaet so-callegroto
queriesfrom the semantic representation of the question. Protoiepiare ab-
stract query patterns in a higher-level query languagestteatiranslated to concrete
database or ontology query language constructs in the aesivaction phase. Fi-
nally, we report on an evaluation of the prototype system.

9.10.2.2 Architecture for Domain-Restricted QA

The Architecture for domain-restricted QA is a sub-systeina anore general,

hybrid question answering architecture that incorporatel open-domain ques-
tion answering on unstructured text (e.g. from the web; Nesumand Sacaleanu
2004), and closed-domain question answering on structkmed/ledge sources
(Figure 9.27).

The hypothesis underlying thed@TAL architecture design is that QA systems
perform best if they combine virtues of domain-specialiaed open-domain QA,
accessing structured, semi-structured, and unstruclkuredledge bases.

The core idea is that, instead of providing specific infoioraportals (with

258 CHAPTER 9. HEART OF GOLD

NL Question =——p» QA Controller ————3P» NL Answer
XS Q)
s> Q-Obj A-Obj {&1,,&
7 o O &

Question Analysis Search and Answer Extraction

Ling Q Inter-
Analysis | pretation

Answer Preparation

Figure 9.27: Hybrid, overall Quetal architecture

system-specific user interfaces), the Quetal system swadsingle and uniform
natural language-based access to different informatiorces that exhibit different
degrees of structuring.

The sub-system for domain-restricted QA performs a dedpystoquestion
analysis on the basis of Heart of Gold.

HoG-QA Shallow/Deep QA Controller
Question Analysis (RMRS) |4 Question
Question Interpretation
Computation of Proto Queries !

Q-Object w/
Proto Query

Search and Query Construction < J

Answer

Extraction l

+ DB

* Ontologies l é \ A-Object

Nobel Prizes 1

LT-World Answer Processing

Figure 9.28: Architecture of Heart-of-Gold-based querglgsis

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 259

The semantic representations generated by the Heart of @elthen inter-
preted and a question object is generated that containsta guery (cf. Fig-
ure 9.28). This proto query can be viewed as an implementatidependent,
‘higher-level’ representation of a database or ontologgrgu From this, an in-
stance of a specific database or ontology query is construmte sent to the
database or ontology. From the result(s) returned by theegumformation source,
an answer object is generated which forms the basis for qubsé natural lan-
guage answer generation (which we will not describe hereiacurrently based
on template-based shallow generated not related to oratesljin Heart of Gold).

9.10.2.3 Ontologies as Structured Knowledge Sources

Domain ontologies play a crucial role in the structured Qprapch. They are used
as the interface between question analysis and answecgxrand also form the
formalized, queryable knowledge source itself — not oniptigh concepts stored
in the ontology, but also through instance data such as gsopames, events,
locationsetc

To demonstrate flexibility and modularity of the approaetn bntologies, LT
WORLD on language technology and a considerably smaller Nobzg prtology,
have been chosen for the prototype system.

The Nobel prize ontology has been designed by Feiyu Xu. Itaios simple
concepts such dXxize, laureate, prize-area, organization, monetary value,
person,prize-area,location,date, time, nobel-prize-winning,nobel-prize-
awarding, nobel-prize-nomination, plus various sub-concepts.

The LT WORLD domain is much bigger, containing more than 600 concepts
(classes), 200 properties, and 20000 instances (appraxuaia00000 RDF triples
in sum), of which parts have been extracted semi-autontigtitam diverse web
sites and data bases. The LTO®LD ontology has originally been developed for a
comprehensive web portal (Uszkoreital. 2003;http://wuw.lt-world.org)
on Human Language Technology, providing information alpgmdgple, technolo-
gies, products, resources, projects, and organizatiotigsimrea.

Entries for real projects, person names, events or orgamizareinstancesof
the ontology concepts. For example, people actively wgrkinLanguage Tech-
nology are modeled in the ontology as instances of the caénegpave_Person.
Active_Person IS a subclass oflayers_and_Teams wWhich has further subclasses
such a®rojects Or Organizations.

The employed LT VORLD ontology is encoded in the Web ontology language
OWL (Bechhoferet al,, 2004). OWL makes use of constructs from RDF (Klyne
and Carroll, 2004) and RDFS (Brickley and Guha, 2004) suchdasresource,
rdfs:subClass0f, Or rdfs:domain, but its two variants OWL Lite and OWL DL
restrict the expressive power of RDFS, thereby ensuringldbiity. What makes
OWL unique (as compared to RDFS) is the fact that it can desasources
in more detail and that it comes with a well-defined modebtk&cal semantics,
based on description logic (Baadsral., 2003).

260 CHAPTER 9. HEART OF GOLD

9.10.2.4 Querying the Ontology

Because of the large amount of instance data, the LlGRW ontology was stored

in an RDF database system (Geial,, 2004; Haaset al, 2004). The basic idea
is that even though OWL ontologies are employed, the inftiondhat is stored is

still RDF on the syntactic level. Therefore, a good candidatan RDF database
system which can interpret the semantics of OWL and RDFStearis such as

rdfs:subClass0f Ol owl:equivalentClass.

For the structured QA system, the LTOKMLD ontology has thus been stored
in Sesamelttp://www.openrdf .org), an open-source middleware framework
for storing and retrieving RDF data (Broeksegaal, 2002; Aduna B.V., 2004).
Sesame partially supports the semantics of RDFS and OWLircots via en-
tailment rules that compute ‘missing’ RDF triples in a fordrzhaining style at
compile time.

These predefined rules can be altered and the XML rule file eaaxtended,
according to the users’ needs. Termination is guarantegibag as) no new
classes or instances are introduced.

Since sets of RDF statements represent RDF graphs, quenjarghation in
an RDF framework means to specify path expressions. Sesamesavith a pow-
erful query language, SeRQL (Broekstra and Kampman, 2008¢h turned out to
be sufficiently powerful in order to retrieve the right odgeérom the LT WORLD
ontology. The query syntax and structure is similar to retetl database query
languages (cf. examples later).

9.10.2.5 Hybrid NLP for Question Analysis

Natural language question processing starts with gengntastic and semantic
analysis on the basis of HPSG parsing in the Heart of Golditeathre. For in-
creased robustness, the HPSG parser is seamlessly ietégri#th the information
extraction systenSProUT(Drozdzyhskiet al., 2004).

SProUTperforms named entity recognition (NER) on the basis of catiion-
based finite-state transduction rules and gazetteersi@hNE grammars for En-
glish and German). It provides structured representatoatis for general named
entity classes and domain-specific terms and named entities

The lingware resources f@ProUTwere extended by the automatic OntoN-
ERdIE ontology mapping (Schafer, 2006b) as described ati@e9.7 with con-
cepts and instances from LT &&LD, where recognized instances also return an
object identifier as unique pointer into the ontology (for @mmple cf. Sec-
tion 9.7).

Furthermore, the part-of-speech tagger TnT helps to giressvord class of
unknown words other than named entities. The hybrid intemrascenario used
roughly corresponds to the configurations described in@eeét6 for German and
English.

HPSG parsing in Heart of Gold delivers semantic represen&in the for-

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 261

TEXT In which year did Nadine Gordimer win the Nobel prize for kitire?

Top hl
_) _which.q
TBthrEIl prpstnm_rel 'ngip h13 LeL hi8 _yearn
LBL h5 ARGO x15P°"=3 | | 5| h22
ARGO h5 ARGO 10 ARGO e7 tense=u num=sg ARGO X15
TPC €7 ARG1 e2tense=past| | RSTR h19
a BoDY h21
namedabhrel properg.rel | [-win_v _theq compoundel
LeL h24 LteL h27 ||LBL h10002| |LBL h33||LBL h37
ARGO x25npfr;5:‘:g ARGO x25 | | ARGO €2 ARGO x31| | ARGO e40tense=u
Nadine RSTR h28 ARG1 x25 RSTR h34| | ARG1 x31
CARG ~ rdimer | | BODY h30 | | ARG2 x31 BoDy h36| | ARG2 x39
RELS
[properg.rel for-p
FL)BL _hzil namedrel _prize.n LBL h10004 namedabhrel
LBL h45 LBL h10003| [ARGO e5ltense=u| | LBL h52
ARGO x39 ors=3
RSTR ha2 ARGO x39 ARGO x31 ARG1 X31npum:—s ARGO x49
CARG Nobel| | ARG1 u48 ers_f CARG Literature
| BODY h44 | ARG2 x49P°">
num=sg
[properg_rel
LBL h54
ARGO x49
RSTR h55
| BODY h57 |

HCONs {h10gegh13 h19geqh22 h28geqh24,h34geqh37,h42geqh45h55geqh52}
LING {h10002ing h13 h37ing h10004h37 ing h10003

[TEXT Nadine Gordimer 1 [TEXT Literature]
ToP hO TOoP hO
[ne-person-rel [ne-sciencearea-rd|
LBL hO LBL hoO
ARGO x0 ARGO x0
| CARG Nadine Gordime | CARG Literature
RELS [surname-rel givenname-rel RELS [areaclassify-rel
LBL h8 LBL h9 LBL h4
ARGO x8 ARGO X9 ARGO x4
CARG Gordimer| | cARG Nadine CARG Literature
| ARG1 x0 ARG1 x0 | ARG1 x0
HCONS {} HCONS {}
v {} I lne)]

Figure 9.29: RMRS of HPSG analysis (top) aBBroUTNE recognition (bottom)

262 CHAPTER 9. HEART OF GOLD

malism of Robust Minimal Recursion Semantics (RMRS; Cades2003), as also
already described in Section 9.4.

We exemplify an RMRS generated by Heart of Gold of a questioRigure
9.29. It can, roughly, be read as an interrogative prosi@int_m.rel) with a
wh-quantified modifierin which yeat, where the modified everg2is a winning
relation, its logical subjechRG1 refers to an individuak25 with proper name
‘Nadine Gordimer and whose logical object31is represented as a definite quan-
tified (_the.gq) compound noundompoundrel) composed of a head noun relation
prize.n and a proper name relatiorNobel).

The former is modified by the PHRor Literature, where the preposition’s
ARG1 refers to the variable of the modifi®&31), and itsARG2 to the variable
for ‘Literature’, which is recognized, by NE recognition, as a proper naméen t
domain of Nobel prizes. As seen in the bottom structures, é&¢ggnition delivers
EPs for the main NE relation types (here-person-reland ne-sciencearea-rgl
together with more fine-grained information, suclsamameandgivennamere-
lations. The latter are represented as modifiers, takinghB@®0 variable of the
main relation as value of thedRG1 argument.

The RMRSes of thesProUTNER component are available as highly struc-
tured, IE-like NE representations, decomposing, for imsta a complex person
name intosurnameand givennamerelations. The identified NE classes are fur-
ther mapped to coarse-grained HPSG NE-types (sesedabh.rel), which are
directly delivered to the HPSG parser to enhance robustness

Both these highly structured RMRS representations and dlaese-grained
HPSG types are produced at runtime by XSLT stylesheets thatgomatically
generated at compile time from the output structure spatifics of SProUTNE
types as part of the Heart of Gold framework as described ¢tic8e9.5.4.1.

9.10.2.6 Question Interpretation

The challenge of the question interpretation phase is tmexfrom a general
semantics representation of the question encoded in RM&&utkried variable
along with sortal information for this queried variablee #xpected answer type
(EAT) for later database or ontology query construction.

The RMRS analysis of questions as delivered by HPSG parsiadkarthe
proposition with the semantic relatiant_m.rel for interrogative message type
(Figure 9.29). In wh-questions, interrogative pronourtsoiiuce sortal relations
for the queried constituent, such psrsonrel (who), thing rel (what), timerel
(when),etc For wh-phrases with nominal heads, the semantic relativoduced
by the noun constrains the semantic type of the queried ibosist (seeyear nin
Figure 9.29). Imperative sentences such.&s all persons who work on Informa-
tion Extraction. introduce an imperative message typg_m.rel.

The question interpretation module provided by Anette ktakes as input the
RMRS representations of the question as delivered by hyrédlysis in the Heart
of Gold: the RMRS produced by the English or German HPSG maread the

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD

RMRSes for recognized named entities (Figure 9.30).

263

Computation of Proto Queries

HoG-QA
Question Analysis
RMRS from RMRS from
domain-independent || general & domain-
HPSG parsing specific NER

RMRS with
frame-semantic
representation

Mapping of frames
to domain concepts

. 2

. .

Question Interpretation

Enriching RMRS by

— identification of queried variable

— expected answer type

— projection of a lexical-conceptual
(frame-semantic) representation

Extraction of query constraints
— select and where conditions
— quantificational constraints
— path constraints

2

Proto Query

Figure 9.30: Question interpretation in HoOG-QA

Interpretation rules are formulated and applied usingdhm rewriting system
of Crouch (2005) that refer to (partial) argument structurethe RMRS in order
to identify and mark the queried varialievar of the question.

Furthermore, the ontological type of the queried variabledmputed, which
provides important semantic constraints for answer ettrac Pronominal wh-
phrases introduce a semantic relation for the queried hlariguch aperson lo-
cation or reason For these general concepts, as well as for wh-phrases dheade
by common nouns, a concept lookup is performed, either bypingpa general
ontological class using WordNet (Milleat al,, 1993), or by directly mapping the
lexeme to its corresponding domain concept.

For the example displayed in Figure 9.29, this yields thdteacl semantic
constraints:g_var(x15) and EAT(x15, 'year’) with x15 the variable correspond-
ing to ‘year’. These additional constraints are encoded in the RMRS byokay
elementary predicationE#s) g_focusand EAT.rel, as seen below. In botbprs
the value of theaRGO feature identifies the queried variablEAT_rel in addition
encodes the featur®oRT, which takes as value the sortal type determined for the
queried variable.

REL g._focus |[REL EATcrel
ARGO x15 ARGO x15
SORT year

The RMRS as logical form of the question now explicitly enesdhe queried

264 CHAPTER 9. HEART OF GOLD

variable, along with ontological restrictions as addiéibsortal constraints. The
remainingeps in the RMRS define relational constraints on the requesfedia-
tion. In our example, we are looking for the time when a Nobi&dgowas won, by
a person namedNadine Gordimer where the area wad.iteraturé. These are the
key relational constraints that need to be satisfied wheievaig the answer from
the underlying knowledge base.

It is the task of question interpretation to identify theskational constraints
on the basis of the semantic representation of the queslioase constraints can
then be translated to a search query in the formal query &geyof the underlying
knowledge base. We perform this task in three steps: We firgttethe RMRS
with a frame-based lexical-conceptual representation.

On the basis of a pre-defined set of domain-relevant framésaas we ex-
tract from this enriched representation relational casts for query construction.
These relational constraints, defined in a so-cgtledo query can then be trans-
lated to a search query with corresponding domain-spemificepts and proper-
ties, to retrieve the requested information from the knogtebase.

The motivation for this approach is two-fold: First, the jeciion of a frame-
based lexical-conceptual structure yields a normalizethsgic representation that
naturally accounts for linguistic variants, or paraphsaséquestions. It further
constitutes a natural approach for multilingual and cioggial question answer-
ing in restricted domains.

Second, by defining a set of domain-relevant frames and weasan establish
a modular interface between the linguistically determileeccal-conceptual repre-
sentation of the question and the concepts of the underkiiogvledge bases. On
the basis of a mapping between domain-relevant frames amesponding con-
cepts in the domain ontologies, we can efficiently identiigd @xtract the domain-
relevant constraints from the semantic representatioheofjtiestion.

These constraints are encoded in a proto query that is haveetb the answer
extraction process. The use of abstract proto queries givasclean interface that
abstracts away from the syntax and functionality of the b query languages.

9.10.2.7 Projection of a Frame-Semantic Representation

The RMRS of the question is enriched with a lexical-concalpuojection, follow-
ing the theory of Frame Semantics, as pursued in the Fran@ahjeict (Bakeret
al., 1998). FrameNet is building a lexical database of franmaes#ic descriptions
for English verbs, nouns, and adjectives.

A framemodels a conceptual situation with a number of conceptipecles
that identify the participants in the situation. Each frdises a number ofexical
unitsthat can evoke the corresponding frame.

An important motivation for using a frame-semantic prapctis that — due
to their design as lexical-conceptual semantic structuréiames account very
naturally for the normalization of paraphrases. For ilasbn, consider the se-
mantically equivalent paraphrases in (a), which are alf tgpical expressions for

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 265

requesting information from a database about Nobel prizgs,in questions such
asWhen did Marie Curie win the Nobel prize for Physics?

a. (win/ be awarded / obtain / get / be winner of) a prize

HPSG semantic representations in terms of (R)MRS, howavertailored to
account for structural semantic properties such as quamgiéoping and predicate-
argument structure, and thus still reflect the various difie argument structures
involved, as illustrated in (b).

b. Different argument structures in RMRS representation

REL win/get/ REL award REL prize
obtain ARGO el REL winner ARGO Xx2

ARGO el V |ARG1 ul |V |ARGO x1

ARGl x1 ARG2 X2 ARGl X2

ARG2 X2 ARG3 x1

Following related work in Frank and Erk (2004), the RMRS esantations
are enriched with a frame-semantic projection, by mapgiegdifferent argument
structures of verbs or nouns to their corresponding frametsire, which states
the name of the frame and its frame-specific roles. An examiptrich a frame
assignment rule is given in (c).

¢. RMRS-based frame assignment rule

REL win GETTING el

ARGO el | |REL prize SOURCE ul| |AWARD x2
ARGL X1 | |ARGO x2 | |THEME x2| |LAUREATE - x1
ARG2 X2 RECIPIENT x1| LPOMAIN U3

(d) displays the frame-semantic representation obtaioethé partial RMRS
variants in (b).

d. Conceptual (frame-semantic) representation

GETTING el| [AWARD X2
SOURCE ul| [LAUREATE x1
THEME X2| | DOMAIN u3

RECIPIENT X1

The frame-semantic representations are further enrichegplying forward-
chaining inference rules. The purpose is to fill gaps betwber(generic) frames
and some domain-specific knowledge, but also to assign msiaritiated argu-
ments, and furthermore to correct mismatches between therige domain-in-
dependent linguistic analysis and the structure of the ilyidg knowledge base.

We only give a simple, illustrative example here. More dstand further
examples can be found in Frarkal. (2006).

266 CHAPTER 9. HEART OF GOLD

The sample rule below maps the temporal modifier of the wipewent to the
TIME role of theGETTING frame, i.e., the time of receiving an award is equal to
the time (attribute) of the award. This information woultietwise not be explicit
in the frame-enriched representation of the question.

GETTING el| |[AWARD X2| = |AWARD X2
THEME x2| | TIME u2 TIME t1
TIME t1

9.10.2.8 Proto Query Construction

Besides the frame-enriched and by inference rules augohdtiRS, a further
mapping from domain-relevant frames and roles to concepthe underlying
knowledge bases is necessary and performed using the yalneaationed term-
rewriting system. These additional constraints will beeoconstraints for the
query construction.

From the frame-semantic structure and the query consiragingto queries will
be constructed. A basic distinction for the constructiorstofictured query terms
is the distinction between queried vs. constraining cotscapd attributes.

For the extraction ofjueried conceptave select those domain-relevant frames
and roles that correspond to the queried variatpled) in the logical form, repre-
sented as therRGc0 argument of the_focusrelation (cf. Section 9.10.2.6).

We further extract the corresponding ontological resomg encoded as the
expected answer type BAT_rel. We extract all remaining (non-queried) domain-
relevant frames and roles, which provide additional caists on the queried con-
cepts. Again, we extract ontological restrictions, herierms of their named entity
type, as encoded by the RMRS structures provided by namég exttognition in
the Heart of Gold.

Subsequent rules further identify the value of the cornstrai general the main
predicate (relation) or CARG (constant name) associatéid the role’s variable,
such as 'Marie Curie’ in (b), or time constants for tempo@igtraints.

Proto queries may be complex, that is, they may be decompatseiddividual
sub-queries with specially marked dependencies. Therefdl conditions that
pertain to a single sub-query are marked by a common suly-dqueex (@id).

We exemplify a short proto-query for the questionwhich areas did Marie
Curie win a Nobel prize?

<PROTO-QUERY id="1">
<SELECT-COND gid="0" rel="award" attr="domain"
sort="FieldofStudy">
<WHERE-COND qid="0" rel="award" attr="laureate" netype="person"
val="Marie Curie">
</PROTO-QUERY>

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 267

Quantificational questions Question answering from structured knowledge ba-
ses is particularly well suited to answer questions for Whie answer is not ex-
plicitly represented in the document or knowledge baserrust be inferred from
the available information. Prime examples are cardinaiiixantificational or com-
parative questions, as below.

1. How many researchers won a Nobel prize for Physics beforé491
2. Which institution has published most papers between 206(8047?

3. Which nation has won more Nobel prizes in Physics than the?U.S

To account for these quantificational aspects, we emplogiaperoto query
conditions 0P-COND and QUANT-COND. These constructs go beyond the formal
power of ontology query languages such as SeRQL, but caahslated to special
post-processing operations in the answer extraction phase

The quantificational conditions are strongly determinedhs semantic rep-
resentation of the question, e.g. for the scope bba manyquestion. It is for
this reason that the computation of proto queries is tightlygrated with question
interpretation (see Figure 9.30, 9.31).

<PROTO-QUERY id="1">
<SELECT-COND qid="0" rel="award" attr="laureate" sort=""/>
<WHERE-COND qid="0" rel="award" attr="time" netype=""
valfunc="before" valarg="1911"/>
<WHERE-COND qid="0" rel="award" attr="domain"
netype="sciencearea" val="Physics"/>
<0P-COND oprel="card" domain-type="answer" domain-id="0"/>
</PROTO-QUERY>

Figure 9.31: Proto query fadow many researchers won a Nobel prize for Physics
before 19117

9.10.2.9 Multi- and Cross-Linguality

The frame- and RMRS-based approach to question interigretadturally extends
to multilingual and cross-lingual QA scenarios. Since fesrare defined as lexical-
conceptual structures, they are to a large extent langimaiggendent. Thus, ques-
tion interpretation in terms of a frame-semantic represéont effectively imple-
ments a kind of 'interlingua’ approach for question answngrithe frame-semantic
representations serve as a language-independent imt¢oflte underlying knowl-
edge bases.

As illustrated in Figure 9.32, HPSG grammars for differeaviguages — in
our scenario, English and German — provide semantic stegtin a uniform
formalism, (R)MRS. The language-specific relations in ¢hesmantic forms are

268 CHAPTER 9. HEART OF GOLD

RMRS (en) RMRS (ge)
Il Il

RMRS (en) — frames RMRS (ge) — frames
ags ags

domain-specific frames & inferences

Il

computation of proto-query

L1l

term translation (en <> ge)

Figure 9.32: Natural language utterances (languagefgpeto proto-queries:
frame-semantic representations as interlingua for nmgtilal QA

translated by language- and lexeme-specific frame projectiles to a common,
language-independent frame-semantic representation.

The remaining parts of the question interpretation and angatraction pro-
cesses are then uniform across languages. Domain-speddierice rules refer
to the common frame-semantic representations, thus tleegmlied to the same
type of intermediate structures in question interpretatiorespective of whether
they were produced by German or English HPSG grammars. &lypithe subse-
quent rules for the extraction of proto queries uniformleigte on the language-
independent frame-semantic representations (see S€clior.8).

For cross-lingual QA from structured knowledge sources,pedorm term
translation for instances (named entities) and domaioiipgéerms of the knowl-
edge base that can appear as values in search queries ctwsfrom the ques-
tion’s representation.

Actually, very moderate development effort was requirecemviporting the
question processing module from English to German.

9.10.2.10 Answer Extraction

The answer extraction phase, provided by Hans-Ulrich Kriggnainly consists of
translating the proto query to a database or ontology querguage expression
and sending it to the database or ontology.

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 269

For the database case, the answer extraction took placectatiamal database
and the translation of the proto queries was quite strasglvtrd from the similar
constructs, e.g. th@ELECT-COND corresponding to a SQEELECT statement, and
the WHERE-COND corresponding to a SQUHERE clause.

We will therefore skip the SQL translation part which is désed in more
detail in Franket al. (2006), and turn to the more challenging ontology query lan-
guage part, again skipping some details that can be fouingiarticle, by showing
how a proto query can be mapped to an expression in the quegydge SeRQL
of Sesame.

Based on the mapping from domain-specific frames and rokégiproto query
conditions to domain concepts and properties (see Sectidh28), we first per-
form a translation of the values etl, attr, andpath attributes to the corre-
sponding domain concepts and attributes of the LT Worldlogto Thus, each
relation (value ofrel) now denotes a concept in the ontology and each attribute
(value ofattr) denotes an OWL property.

In a SeRQL query, instances of a concept are identified byabies in the
subject position of an RDF triple. The concept itself isestian the object position,
and subject and object are connectedrhy: type — this is exactly the way how
instances of a specific concept are represented in the ROFdiéBesame. For
example,

<SELECT-COND qid=".." rel="Organizations" attr="locatedIn" ... />

leads to the introduction of the following RDF tripler(is a fresh variableltw the
LT WORLD namespace):

{_r} rdf:type {ltw:0rganizations}

Since attributes such ascatedIn refer to properties of a concept, we obtain
a further triple:

{_r} 1tw:locatedIn {_q}

The propertylocatedIn connects instances of the main con@fpfanizations
via the root variabler with the queried information. The queried information is
bound to a new question variablg that will be returned. It is marked by the
SELECT clause in a SeRQL query:

SELECT {_q}
FROM {_r} rdf:type {ltw:0rganizations},
{_r} ltw:locatedIn {_q} ...

Figure 9.33 contains the main principles of the transfoiomafrom proto que-
ries to SeRQL queries. To illustrate the transformation@ples, we consider the
question'Who is working in the Quetal projectAwith its (simplified) proto query
that contains 8ELECT and a singl&HERE condition:

270 CHAPTER 9. HEART OF GOLD

(1) for eachSELECT-COND andWHERE-COND
— each relation denotes a concept
— each attribute denotes a property
— each unique relation introduces a newt variable
(2) eachsELECT-COND introduces a newueryvariable
(3) eachWHERE-COND introduces a newocal variable
(4) guarantee that the RDF triples form a connected graph
— if path constraints are specified, link the root variables
— otherwise, introduce nepropertyvariables linking the roots
(5) finally applyOP-COND to the result table (if needed)

Figure 9.33: Principles for transformation of proto quetie SeRQL queries

<PROTO-QUERY>

<SELECT-COND rel="Active_Person" attr=""/>

<WHERE-COND rel="Active_Project" attr="projectName" val="Quetal"/>
</PROTO-QUERY>

Given this proto query, the following SeRQL query is genedat

SELECT DISTINCT _qO
FROM {_r1} rdf:type {ltw:Active_Person},
{_r2} rdf:type {ltw:Active_Project},
{_r1} ltw:name {_qol},
{_r2} 1ltw:projectName {_13},
[{_r1} _p4 {_r2} 1,
[{_r2} _p5 {_r1}]
WHERE (NOT (_p4 = NULL) AND (_p5 = NULL)) AND (_13 LIKE "Quetal")

Further details and optimizations are described in Fegdrat. (2006).

The answers from the database or ontology are encoded incastrdanswer
object similar to the query object that embodies the original @mautery (Figure
9.28).

An answer object refers to the query id of the query objectdistinguishes
between potential conflicting answers (sev&dalUES tags) and list-based answers
(a single result, consisting of several pieces; sewaBUE tags). Similar to ques-
tion objects, the answer objects serve as XML interchangetstres in the QA
architecture. That is, the same type of structure is retuime MySQL for the
Nobel prize domain and Sesame in the LTORLD domain.

As an example, the answer object generated for the questiba is working
in the Quetal project?from the LT WORLD ontology is

<AOBJ id="id18" msg="answer" query-id="QO01" lang="EN">
<ANSWER type="complex" score="1.0">

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 271

<VALUES>
<VALUE>Anette Frank</VALUE>
<VALUE>Berthold Crysmann</VALUE>
<VALUE>Bogdan Sacaleanu</VALUE>
<VALUE>Feiyu Xu</VALUE>
<VALUE>Giinter Neumann</VALUE>
<VALUE>Hans Uszkoreit</VALUE>
<VALUE>Hans-Ulrich Krieger</VALUE>
<VALUE>Ulrich Schifer</VALUE>

</VALUES>

</ANSWER>
</A0BJ>

9.10.2.11 Evaluation

In this section, we report on an initial evaluation of the tptgpe system for
domain-restricted QA from structured knowledge sourcesy#tem-internal eval-
uation assesses the quality and efficiency of questionpirgttion and answer
extraction. In addition, a comparative evaluation of thendm-restricted system
to the web-based open-domain textual QA system AnswerBluen@, 2002) has
been performed. This, in conjunction with a detailed cfasstion of question
types, allows to assess the added value of a specialize@idaastricted QA com-
ponent in a hybrid system architectfre

The comparative evaluation to AnswerBus restricts us tatipmes in English;
we further chose the Nobel prize domain, as information atios domain is ap-
propriately covered by the WWW. We compiled a set of 100 Egtijuestions
about the Nobel prize domain, in part adapted or inspirenh filoe FAQ sections
of Nobel prize web portals.

Question classification The question types in the test set range from factual and
list questions to different types of cardinality and quiicaitional questions. Ta-
ble 9.12 shows a detailed overview of the different questypes and their distri-
bution over the sample set, along with a classification ofgihestions’ expected
answer types, again with quantitative distribution (thgety are overlapping, so the
figures do not sum up to 100%).

The questions are varied in terms of paraphrases (verbahamihal para-
phrases, interrogative, non-interrogatives or embeddedtipns, such d&ive me
a list of..., ‘Could you tell me in which year),.and according to different types
of constraints to be used in question interpretation an@ansxtraction, such as

23The textual QA system of QeTAL obtained the best results in the 2004 cross-lingual CLEF
task (Neumann and Sacaleanu, 2004). However, at the tim@hfation, it was not yet extended to
web-based QA. Since we do not yet have access to appropriatge document bases for our two
domains, it seemed most appropriate to choose an indepenpensource web-based QA system
and to perform the comparative evaluation in the Nobel mt@ain, for which enough information
can be found on the Web.

272 CHAPTER 9. HEART OF GOLD

question type in % || expected answer typan %
factual 58 | time 13
list 15 || person, organization 54
definition 2 currency 3
cardinality (how many) 22 || prize area 14
gquantificational (most) 24 || nation 12
event quantification 2 achievement 1
embedded questions | 17

Table 9.12: Distribution of question types and expectedvansypes

(relational) temporal constrainti(before/since/after 1999gender female prize
winnerg, prize areas, as well as countries, locations, and aiffifiat

Question processing and interpretation For the 100 questions the average run-
time (real time) per question was 3.74 seconds for full @processing from text
input to answer object output, on a Intel Xeon 2.5 GHz Linuxhiae. Answer
extraction (ontology query in Sesame with the complete LORAMD data) alone
took 125 milliseconds per query object on average. For faestjons, the linguis-
tic analysis failed, i.e. Heart of Gold could not return aglaealysis.

The question sample contains 18 questions that instartiai¢ypes of event
guantification which are not yet accounted for by the quastiterpretation mod-
ule. For the qualitative evaluation, we accordingly digtish between the full
question sample as basis for evaluation, displayed in therfiw of Figure 9.13,
while the figures in the second row are computed on the basied2 questions
that can currently be considered as in-scope phenomena.

The HPSG grammars used were equipped with stochastic mtmetarse
selection (Oepeset al,, 2002a) that are, however, general and not trained for the
specific domain or question answering as such. In the cusetntp, the question
interpretation module applies to the three highest-ramiesdantic HPSG analyses,
and delivers a separate question object for each of them.

Table 9.13 contains an overview of the distribution of corneroto queries
over the highest-ranked parses (columns 2-4), as well asubmll number of
correct proto queries across the three highest-rankegssasa(columns 5-7). Of
the overall set of 100 questions, 46% return the correcopgoery for the highest-
ranked parse, 41% and 32%, respectively, for the seconchaddanks; restricted
to the in-scope phenomena, the figures raise to 56.1%, 50%udrespectively.

In many cases, question interpretation extracts a corretd guery from more
than one of the three best parses: For 18% of all questior¥® (f2he in-scope
samples) we obtain the correct proto query from all threegmconsidered. 24%
(29.3%) return two correct proto queries; for 17% (20.7%g obtain a single

9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 273

correct pg in | number of corregtoverall proto query results
n parse (in %) pg’s per q (in %) (with voting)
1st 2nd 3rd] 3 2 1 corr. uncert. wrong no pg
full sample |46.0 41.0 32.018.0 24.0 17.0 |58.0 3.0 15.0 24.0
in-scope only| 56.1 50.0 39.022.0 29.3 20.7 |[69.5 24 7.3 195

Table 9.13: Evaluation of question interpretation (pgtpmquery)

correct proto query from the three highest-ranked analyses

Since we are considering the three best parses, we can appting scheme
to determine which one of possible alternative proto qgeesend to the answer
extraction module. In cases of non-conflicting multipleutess voting is not nec-
essary. However, we often obtain proto queries that ar@pant less specific than
another proto query result for the same question, whichédeaald lead to wrong
answers.

In those cases where the partial query is subsumed by bethaiive analyses,
or by a single alternative analysis out of two resulting prgaieries, we ignore the
partial query, in favor of the more specific one. In 67,9% otakes that involve
partial queries (28 on the full corpus), this strategy yseddcorrect proto query.

In cases where a proto query is subsumed by only one of twmatiee proto
queries, we mark the result as uncertain. This occurs in 3284Rof cases. For
24% (19.5%) of the questions, all analyses return an emutip ppuery, and are
thus to be regarded as out of system coverage. These casstharalue to prob-
lems in the semantic analysis (failed or wrong parses orepsgtection), or in the
question interpretation process.

As seen in Figure 9.13, the overall ratio of correct protorgasethat result from
the voting and filtering process is 58% (69.5%). With 15% %).3we achieve a
moderate error rate, opposed to a higher rate of cases wieesgstem signals that
it is uncertain (3%/2.4%) or unable to answer the questidf(29.5%).

Overall, then, the system features relatively high preaighat is balanced
against a low error rate and reduced recall. This tendenegpscially welcome
for a domain-restricted QA system that is confronted witfhhilser expectations
regarding the reliability of the answers delivered.

Another outcome of the evaluation is that a high percentdffeeaunanswered
questions failed because the correct parse was not protigiednough by stochas-
tic parse selection. This could be improved by retrainirgsiochastic disambigua-
tion model on typical question samples instead of the useeu@®lated corpus.

Answer extraction We evaluated the answer extraction module on the basis of
the 58 correct proto queries that were selected by the vptiogedure. Table 9.14
presents the results: for 74.1% of the proto queries thecoanswer was returned;

274

CHAPTER 9. HEART OF GOLD

correct incorrect no answer
abs. #| 43 4 11
in % 74.1 6.9 19.0

Table 9.14: Evaluation of answer extraction (based on 5&cbproto queries)

question type in % (in-scope)| expected answer typen %
factual 53.4 (64.6) || time 46.2
list 40.0 (42.0) || person, organization 40.7
definition 100.0 (100.0)|| currency 0.0
cardinality (how many) 18.2 (22.0) || prize area 42.9
quantificational (most] 25.0 (54.5) || nation 58.3
event quantification 100.0 (100.0)|| achievement 0.0
embedded questions 47.1 (47.1)

Table 9.15: Distribution of correct answers over questigres and expected an-
swer types

in 6.9% the answer was wrong; for 19%, finally, no answer wagmed.

Error analysis for the 4 incorrect answers yielded a singlgomcause of er-
ror (wrong answer type identification). For missing answeesidentified several
causes that need to be adjusted: mismatches of concepadatmappings, wrong
table selection and out of scope phenomena.

Table 9.15 details the distribution of correct answers alifferent question
types, with restriction to in-scope phenomena in pareethes

Comparison to AnswerBus In order to assess the added value of a domain-
restricted QA component, we compare the results of our cupetotype system
to the results delivered by the open-domain textual QA systaswerBus (Zheng,
2002). We collected the three highest-ranked answersieduyy AnswerBus, and
evaluated the returned answers (Table 9.16).

The coverage on our 100 question sample is rather poor: figr IP6 of
the questions it delivered a correct answer within the fiiste ranks. Detailed

correct for top n results
1st 2nd 3rd overal
9.0 80 80 150

correct for question types
fact card quant embedde
224 45 42 5.9

in %

Table 9.16: Distribution of correct answers (AnswerBus)

9.11. FURTHER APPLICATIONS 275

analysis of the distribution of results over question typbews that AnswerBus

fares moderately well for factual questions, but shows paosformance for other

question types, such as cardinality, quantificational polpedded questions. Of the
remaining question types, none could be answered.

9.10.2.12 Conclusion

We have described a novel approach for domain-restrictedfr@# structured
knowledge sources, building on deep semantic analysiseofjtiestion provided
by Heart of Gold, with a modular interface between lingaaily motivated se-
mantic representations and domain-specific models, instefnontologies or do-
main databases. The architecture embodies a flexibleasttb various types of
knowledge storage devices and their corresponding queguéges.

Compared to earlier work on research in natural languagefates to databases
(cf. Copestake and Sparck Jones (1990) for an overview)gwsiexistingbroad-
coverage HPSG grammar for deep question analysis, framarge structures,
proto-query construction, ontologies and ontology quengliages in a modular
architectures is new and adds some new, also engineetigngfaen advantages (re-
usability, portability to new domains and knowledge soste).

Heart of Gold plays a crucial role not only for the multilirajubroad-coverage
deep analysis of questions which is domain-independentugmoge, but also for
the flexible, automatic integration of domain-specific kienige resources via e.g.
named entity recognition moduleSRProUTwith lingware resources derived from
ontologies using OntoNERJIE in the presented scenario).

The evaluations, although performed on a preliminary, giypical system,
show clear improvements compared to classical shallow QAnigues.

9.11 Further Applications

In this section, we briefly describe further applicationdiefart of Gold that have
been conducted (or are still being conducted) by colleggaes other external
institutions.

9.11.1 Learning Transfer Rules for Machine Translation

Michael Jellinghaus at Saarland University has starteckveor using Heart of
Gold for generating RMRS structures from multi-lingualhariscribed European
Parliament speeches. The RMRSes (German and Englishdtiansl of the same
speeches) are to be used for machine learning of transé o machine transla-
tion based on RMRSes. Given the powerful, multilingual nieddire architecture
of Heart of Gold, the automatic annotation of the speechstiaptions can be, at
least technically, be regarded as a simple by-product. |&igds for this task are
the open domain and relatively long sentences of the trénestspeeches that will
presumably result in many readings per analyzed sentence.

276 CHAPTER 9. HEART OF GOLD

9.11.2 Parsing Japanese Dictionary Definition Sentences

Basically using ChaSen, the Japanese HPSG grammar JACYe(%ied Bender,
2002) and other tools form Heart of Gold, a group of reseascheNTT parsed a
large amount of Japanese definition sentences from a macadable dictionary
with considerably high coverage (Nichas al,, 2005). Possible applications are
question answering, information extraction, ontology ydapon, etc

9.11.3 Trailfinder (Travel Information Application, Norwe gian)

NTNU (University) Trondheim and Businesscape (compangdndheim have de-
veloped an application using the Norwegian HPSG grammarSblarce, also
available from the DELPH-IN repository, cf. Section 9.1%nig at extracting
information from hiking route descriptions and supplyindor a web portal. The
Heart of Gold machinery produces RMRSes which are mappedstandardized
information matrices. The input grammar has a speciallgbiped semantics cop-
ing with aspects of paths and movement, extending the aligiore grammar. The
application is described in Hellat al. (2004) and has been developed further since
then.

9.11.4 Soccer SmartWeb

SmartWeb is a multi-modal dialog system deriving answearmfunstructured re-
sources such as the Web, from automatically acquired kmimeldases and from
web services. Heart of Gold is used in SOBA, the SmartWeb IGgyeBased An-
notation system (Buitelaast al, 2006). SOBA automatically populates a knowl-
edge base by information extraction from soccer match tearavailable on the
web. The extracted information is defined with respect to @] the underly-
ing SmartWeb Integrated Ontology (Obedeal,, 2006) in order to be smoothly
integrated into the rest of the system.

The current implementation uses Heart of Gold in a configumatonsisting of
SProUTwith a specialized soccer information extraction grammaswyell as Tree-
Tagger and Sleepy for German shallow parsing. Figure 9.8dr{gsy of Anette
Frank) depicts a schema of the workflow of the overall exivacprocess and
where Heart of Gold comes into play. In this context, Gregdnjrajani has writ-
ten a SOAP binding for the MoCoMan class (in analogy to the XRIRC server
class) that is used to provide a SOAP-based web service.

9.11.5 RMRS Chatterbot

Tina Kluwer at University of Cologne has developed an atéwve chatterbot on
the basis of RMRS generated by Heart of Gold (Kliwer, 206&art of Gold is
embedded in a J2EE (Java 2 Enterprise Edition) applicagoves that connects
to Heart of Gold via XML-RPC. Hybrid RMRSes, produced by Ha#HrGold in

9.11. FURTHER APPLICATIONS 277

sentence
split (JTok) <fileid> txt

Hog:

Jtok,
Treetagger,
Sleepy

bt st [extractgt |
—update.xs! extract-gf.xsl

sleepy-n.xml args-n.xml
treetagger-n.xml

args-all.xml

args2fs.xsl

<fileid>_syn_arg.xml

sleepy_gram Sproutput_NE_event.xml

sprout_runtime_sys: sleepy

Sproutﬁut_NE.xml

%{ NE_gram

Figure 9.34: SmartWeb soccer information extraction aechire

a configuration as described in Section 9.6.2 for Englishsexd for an AIML in-
terpreter (Program #). AIML is an XML format for describing complex patterns
and templates for simulating a human discourse.

The advantage of using RMRS instead of plain (English) reité AIML pat-
terns — as they are typically used in current AIML applicasie- is that they pro-
vide a further level of abstraction through the semantipsasentation, including
also morphological information. Because the architecttina Kliwer has devel-
oped is general, as is AIML, the system could presumably @sal to implement
RMRS-based chatterbots in other languages for which Hé&bdl integrations
exist such as German, Japanese,

9.11.6 Training

The shallow only part of Heart of Gold (mainly taggers andrdtars for English

and German) have been successfully used for training irdestcamp in summer
2005 in Switzerland, by Manfred Pinkal, Aljoscha Burchd&tarland University)
and Michael Kohlhase (International University, Bremefhe author has also
used Heart of Gold for an invited course on XML-based intégneof natural lan-

guage processing components at the 12th European Sumnul $chLanguage
and Speech Communication, Information Fusion in Naturaiguege Systems, in
Hamburg, July 2006.

2nttp://waw.alicebot . org

278 CHAPTER 9. HEART OF GOLD

9.11.7 Anaphora, Coreference Resolution in Discourse

Nuria Bertomeu at Saarland University is using Heart of GotdPhD research on
anaphora resolution and handling elliptical questions ire€jion Answering sys-
tems. The hog://-URI mechanism of Heart of Gold can be easiiployed to refer
back to previous annotations, e.g. the sentence prior toutrent sentence can be
reached vighog://sid/{acid-1}/aid, whereacid-1 is the annotation collec-
tion ID minus one. If numerical annotation collection IDs @i least collection
IDs ending with an ordered number), increased by 1 for eantesee, are used,
then the expression exactly refers to the targeted senteinege e.g. antecedents
of anaphora could be found.

9.11.8 Modern Greek Grammar

Julia Gorius (née Neu) at Saarland University has develapdviodern Greek
named entity grammar iSProUTas well as, in cooperation with Valia Kordoni,
a deep HPSG grammar for Modern Greek. Both resources haveifitegrated
using Heart of Gold (Neu, 2004; Kordoni and Neu, 2004), tlee, configuration
consists ofSProUT, PET and a simple tokenizer that produces PET XML input
chart items from Greek words for compatibility wiProUToutput in PET input
chart format.

9.11.9 Spanish HPSG Grammar with Shallow Preprocessing

Montserrat Marimon at Universitat Pompeu Fabra, Barcel@eurrently migrat-

ing her large-scale HPSG grammar of Spanish originally logesl for ALEP (Ma-
rimon, 2002b) to LKB/PET and integrating it with shallow gweocessors (FreeL-
ing; Atseriaset al. 2006). We have implemented a preliminary version of a FreeL-
ingModule to integrate these resources in Heart of Gold.

The main difference to the other HPSG grammars integratéar s® that mor-
phological analysis is performed in the shallow preproogsphase (FreelLing) as
well, whereas it is part of the HPSG grammars in all other laggs integrated so
far.

Through the PET input chart, the information is given to teemlgrammar. As
the FreeLing interface has been written first for the LKB egstaind itsSimple Pre-
Processing ProtocolSPPP, cf. DTD Appendix on page 293), an XSLT stylesheet
(sppp2pic.xsl, cf. XSLT Appendix on page 300) translates into the PET input
chart format.

SPPP example (English):

<segment>
<token form="kim" from="0" to="2">
<analysis stem="kim"/>
</token>
<token form="sleeps." from="4" to="10">

9.12. HEART OF GOLD IN INTERNATIONAL COLLABORATION 279

<analysis stem="sleep">
<rule id="plur_noun_infl_rule" form="sleeps"/>
<rule id="punct_period_rule" form="sleeps."/>
</analysis>
<analysis stem="sleep" probability="0.5" pos="VP">
<rule id="third_sg_fin_verb_infl_rule" form="sleeps"/>
<rule id="punct_period_rule" form="sleeps."/>
</analysis>
</token>
</segment>

9.11.10 Parsing Debian Linux User Forum Discussions (Engin)

Timothy Baldwin (University of Melbourne) has started ajpuod that aims at pars-
ing Linux User Forum Discussions on the web using Heart ofdQulith ERG
and shallow preprocessing for increased robustness) eonatically provide bet-
ter searchability and answers to questions already disduss

9.11.11 SciBorg

The project SciBorg (‘Extracting the Science from Scieatffublications’), started
in October 2005 at the University of Cambridge in cooperatigth the Nature
Publishing Group, the Royal Society of Chemistry, and thertational Union of
Crystallography. The project aims at automatic knowledgeaetion form scien-
tific publications, in particular chemistry. According to@estakeet al. (2005b),
Heart of Gold, at least some of the already integrated coemisrmsuch as RASP
and PET, is under consideration as integration platfornchiill also and anyway
be based on RMRS. In the course of the project, the implerientaf the com-
mon preprocessor format for PET and LKB, as briefly sketcheskction 9.5.5.2,
is also foreseen.

9.12 Heart of Gold in International Collaboration

Heart of Gold has been made publicly available as open sdoateunder the
umbrella of the DELPH-IN collaboration (Oepenal.,, 2002b).

DELPH-IN (Deep Processing with HPSG initiatf?e has been founded in the
context of the EU-funded projectHEPTHOUGHT by its project partners, and cur-
rently consists of various computer science and computatiinguistics research
labs at Cambridge University (UK), DFKI Saarbriicken, KguHee University
(Korea), LORIA Nancy, NTT Communication Science Laborat@apan) Norwe-
gian University of Science and Technology, Saarland UsiterStanford Univer-
sity (US), Tokyo University, University of Oslo, Univergibf Sussex (UK), and
University of Washington.

2http://www.delph-in.net, http://wiki.delph-in.net

280 CHAPTER 9. HEART OF GOLD

The areas of collaborative research comprise robustnessnbiguation and
specificity of HPSG processing, and multilingual grammagieeering.

Besides the application-oriented runtime middleware HefaBold, a compre-
hensive suite of open source grammar development systeB)(LHPSG parser
(PET), HPSG grammars for various languages, evaluatioohima translation and
visualization tools as well as corpora and treebanks isighdad under open source
licenses and at the same time under continuous furtheraj@weint by the member
institutions.

9.13 Related Work

We have already discussed NLP architecturesaahitbcdeep-shallow integrations
in Section 6.2. Except some general language technolodytectures already
mentioned above, there is currently no NLP architecturepaoable to Heart of
Gold. While Heart of Gold is unique in that it provides a higldonfigurable,
network-enabled middleware for the integration of XML staff annotation, pro-
vides facilities for XSL transformation and RMRS supporinagl as a fully inte-
grated efficient HPSG parser, other solutions are eithemitfle ad hocintegra-
tions for hybrid deep-shallow processing (mostly only ufPts tagging fed into
a deep parser), or they do not support deep parsing and ate hehsuitable for
hybrid processing.

Lowe and Noga (2002) present a further framework that gesenention here.
It has been developed completely independently of langtedmology, but bears
some similarity with the Heart of Gold middleware we progés&éwe and Noga
(2002) describe a generic XML-based, network-enabled Imidate architecture
for re-usable components that explicitly makes use of XSt Rdapter language
between components. It has been proposed as a generic wadela the spirit of
CORBA, DCOM or EJB. As the flexible configuration aspect forlNécomponents
is not foreseen, nor is the concept and support of standaibtation, it cannot
be really judged as a ‘concurrent’ approach. However, itwatl be conceived
as a supporting, independent argument that the XML and X&ised middleware
approach makes sense in the software architecture laralscap

9.14 Outlook and Future Work

The Heart of Gold middleware, as described in this chaplimagh only started
three years ago, has quickly grown to now constitute a ceralidly powerful
framework for flexible integration of numerous deep andlshaprocessing com-
ponents for various languages.

Moreover, the implementation of innovative new applicasian the basis of
Heart of Gold at many different sites all over the world aslas| in most cases,

28n fact, it has been developed almost in parallel with He&iGold, and at the time Heart of
Gold was designed and implemented, we were not aware ofréisfvork.

9.14. OUTLOOK AND FUTURE WORK 281

application-oriented evaluations have shown the usefsloéthe approach mainly
for increased robustness and uniform semantics outputhafdii}LP analyses.

The idea is that Heart of Gold, as one of the open source tavimidadable
from the DELPH-IN web page, will become a standard frameworlapplication-
oriented deep-shallow integration. In this section, wélwikfly sketch some ideas
and plans for future developments.

First of all, one goal is the integration of new languages ldh& components
as in the ongoing effort for integration the Spanish HPS@ngnar as described in
Section 9.11.9. Further next candidates could be e.g. Rrand Chinese as soon
as mature HPSGs exist for these languages. The idea is sioabthler languages
than German, English and Japanese, for which the robustniesged integration
is already quite advanced, could benefit from lessons |daamel methods and
combinations developed for these three pioneering laregiag

As sketched in Section 9.5.5.2, there are plans to replaceutient PET input
chart format by a (mainly) syntactic variant, in order to\pde a common, gen-
eral interface format for both LKB as development and PETuatime system. In
most cases, this will be possible via adding or adaptingtiegis<SL transforma-
tion stylesheets. The benefit of the uniform preprocesdeirface is mainly for
grammar development in LKB, that currently makes testind éevelopment on
unseen text (without full lexicon coverage) uncomfortable

A further interesting extension, though largely languaggource-dependent,
is adding a kind of divide and conquer strategy for struotyiriong sentences,
e.g. contained subclauses, before sending them to the @esgr.pThis could for
German be performed by re-using and adapting tha¥BOARD topoparser in-
tegration in Heart of Gold (through cascades of largelyseduXSLT stylesheets),
and adapting structural mappings to the current German HR&Gmar.

For other languages, however, the appropriate shallow@cepsors, lingware
resources and mappings will still have to be developed arttifiled. We expect
this to be a promising approach to increase coverage of daspg on very long
sentences as they occur in some newspapers, literatureatic works such as
the present one.

Post-parsing reassembling (or repair) of fragmentaryyaeal is another ex-
tension that could further improve robustness for apptioat The currently im-
plemented, simple approach uses an XSLT stylesheet fongdragments output
by the deep parser in the RMRS format according to their kenlgtreturns then
longest fragments as a first quick solution, but shallow iepies and heuristics
could also be used to try to reconstruct what a deep parsddwdrally do.

Knowledge from ontologies, injected via the described QIERdIE mapping
using SProUT into the deep parser’s input chart could also be employeplam-
mars as additional source for disambiguation. This woutdrekgrammar seman-
tics by both world knowledge and domain-specific knowledgd may help to
reduce ambiguity and increase precision of the analysjzubut

Similarly and at the same time, this would develop Heart ofldGorther to-
wards a platform for the Semantic Web. A further byprodugiliaption of Heart

282 CHAPTER 9. HEART OF GOLD

of Gold could be the automatic generation of (e.g. RMRS-pé#aed corpora, op-
tionally supported by the database interface, e.g. for inadbarning and machine

translation respectively.

Chapter 10

Conclusion

In this thesis, we have described our contributions to fraomks for integrating
shallow and precision-oriented deep natural languagespsitg components.

We have addressed this complex problem by introducing aimaaiion layer
through XML. Using XML technology, we are able to employ nfald available
tools including XML transformation and query languages.

We have examined related XML corpus query languages andiagmadba novel
framework for XSLT-basednlineintegration of NLP components, as started in the
WHITEBOARD annotation transformer (WHAT) and continued and streasdlim
theHeart of Goldtransformation service.

The major result of the synergy gained through hybrid ddegl@v integra-
tion areincreased robustnesmnd performance We could show that the coverage
of pre-existing HPSG grammars could be more than doubledi¢jir shallow pre-
processing by part-of-speech tagging and named entitygnition. This result of
course varies depending on the domain, status of grammerseaaurce®tc In
WHITEBOARD, it could be shown that using shallow topological parsingiees
processing (for German) can speed up deep parsing by a t€Q@d25.

Besides the immediately measurable gains, the XML- and X&iSed inte-
gration frameworks also improve soft factors such as fléxiand modularity of
component integration and maintainability and re-usghdf lingware resources.

While the WHITEBOARD architecture mainly provided an API for access to
results of NLP components organized in a strict sequeneepithcessing model
has been made much more flexible in the successor framdweakt of Goldthat
forms a highly configurableniddlewarein between NLP components and NLP-
based applications.

Furthermore, our XML approach also drastically eases fimgtial NLP pro-
cessing andtandoff markupandling through its standardized Unicode-based char-
acter model.

Heart of Gold is superior to other NLP integration framevgoitk that it sup-
ports configurable, multilingual web services and suppartaf common, though
optional, semantic representation format, RMRS, that d¢sm lae used for post-

283

284 CHAPTER 10. CONCLUSION

parsing integration of NLP analyses preserving and inangasbustness and pre-
cision.

Besides solving the central integration problem, we hase pfoposed gener-
alizable solutions for lingware and component building tasiing SProUTomat),
ontology lingware integration (OntoNERdIE) and XML-bagefbrmation visual-
ization tools for complex NLP representations.

Finally, we would like to stress the role &ProUTin conjunction with Heart
of Gold. In many implemented applicationSProUTis utilized as one of the key
components of Heart of Gold, sometimes even multi@RroUT grammars for
different NLP purposes at the same time for a single languafgesee both frame-
works together as a strong couple that supports rapid davelnt of application-
oriented component integrations.

While SProUT named entity and information extraction grammars allow to
quickly add domain-specific knowledge (domain modelingiighfer eased by do-
main ontology import via the OntoNERJIE tool), the genedalmain-independent
language engineering part can be handled by HPSG gramnarsabe, e.g. for
English, German and Japanese, reached a quite matureasiajggssibly assisted
by a statistical part-of-speech tagger that helps to ifieatiknown words.

The presented frameworks layed the foundations for a neargéan of XML-
based application-oriented NLP integration scenariosluding advanced infor-
mation extraction and question answering. Domain-adéptithe economic ad-
vantage of sharing resources such as shallow and deep Exitthe surplus of
getting rich and robust semantic analyses with high precisonstitute the poten-
tial benefit for further novel applications.

It has to be pointed out that much more is possible both on theegsing
strategy and on the application side than has been tried sadids described here.
Many more combinatory variants are possible even on the lodghe components
and resources that have been integrated so far, but alsoclwdiimg additional
ones. From the evaluations and results obtained so far,amextrapolate that is
will be a promising way to go.

The main scientific contribution of our thesis is the deveiept of generic
framework that serves as a complex research instrumenixfmrienenting with
novel processing strategies combining deep and shallowadst Moreover, it
also supports the development of new applications that rms&ef instantiations
of the implemented processing strategies.

A scientific contribution is also the fact that the architeetmay form a com-
mon basis and scientific platform for comparing and rephcatesults that have
been achieved by experimenting with various combinatidnisybrid processing
instances.

With the advancement of knowledge technologies (knowledgessentation,
ontologies, ontology databases, inference engines) isdhtext of the Semantic
Web, there will be increasing need for deep, accurate sécremalysis of natural
language. Robust hybrid NLP can help to brigde the gap betwatiral language
and semantic processing.

Appendix A

DTDs

In this appendix, we display some DTDs, mainly those of XMtnfiats produced
or used by components integrated in Heart of Gold (Chapter 9)

A.1 ACE DTD Fragment

Following is a fragment of the ACE DTD discussed in Chaptewith standoff
pointers for character span, two-dimensional boundingeb@nd timespan.

<!-- extract from ACE RDC DTD by John C. Henderson of MITRE
http://www.nist.gov/speech/tests/ace/resources/ace-rdc.v2.0.1.4dtd -->

<!ELEMENT name (bblist|charspan|charseq|timespan)>

<!-- The extent is the maximal subset of the signal permitted in
judging correctness, and the head is the minimal subset. -->

<!ELEMENT extent (bblist|charspan|charseq|timespan)>

<!ELEMENT head (bblist|charspan|charseq|timespan)>

<!-- A list of bounding boxes is needed to describe wrapped words in
an image. -->

<!ELEMENT bblist (pixelboundingbox)+>

<!-- Alternate habits for describing bounding boxes.

Both can be supported because the tags wrap the elements.
(x1,y1) will presumably be upper left point and

(x2,y2) will be lower right point (suggested by English
reading order). -->

<!ELEMENT pixelboundingbox (x1,((x2,y1,y2)|(y1,x2,y2)))>
<!-- A character SPAN (charspan) is a pair of indices that wraps
the signal being annotated in text. This means that the first

index points to the imaginary gap *before* the first character
and the second index points to the imaginary gap *after* the

285

286 APPENDIXA. DTDS

final character in the span.

A character SEQUENCE (charseq) is a pair of indices pointing to
the first and last character of the text being annotated. This
means that the first index points to the first character of the
text being annotated (which is the same as pointing to the
imaginary gap *before* the first character), and the second index
points to the last character in the annotated text (the imaginary

gap *beforex the last character in the annotated text). —-->

<!ELEMENT charspan (start,end)>
<!ELEMENT charseq (start,end)>
<!ELEMENT timespan (start,end)>
<!ELEMENT x1 (#PCDATA) >
<!ELEMENT x2 (#PCDATA) >
<!ELEMENT y1 (#PCDATA) >
<!ELEMENT y2 (#PCDATA) >
<!ELEMENT start (#PCDATA) >
<!ELEMENT end (#PCDATA) >
A.2 TFSDTD

A minimalistic, recursive DTD for encoding typed featurésiustures in XML as
discussed in Section 5.4.1, Structure and names of elemdrataibutes are simi-
lar to the TEI feature structure DTD (Langendoen and Simb885).

<?7xml version="1.0" 7>

<!-- minimal typed feature structure DTD -->
<!-- an FS (feature structure) node may contain features -->
<!-- atoms have an empty feature list -->

<!ELEMENT FS (Fx) >
<V'ATTLIST FS type NMTOKEN #IMPLIED
coref NMTOKEN #IMPLIED >

<!-- a feature has a name (attribute) and FS (feature structure) -->
<l-- as value -->

<!ELEMENT F (FS) >

<!ATTLIST F name NMTOKEN #REQUIRED >

A3 XTDL

This is the DTD of the internabProUT XTDL grammar formalism representation,
e.g. used for grammar compilation and compile time type klifjpage 129). The
DTD is largely isomorphic to the XTDL BNF shown in Figure 7.2 page 121.

<?7xml version="1.0"7>
<!-- SPROUT Grammar XML DTD Version 2004
AUTHOR : {krieger,scherf,uschaefer,witold}@dfki.de

A.3. XTDL

VERSION: 2.1

DATE:

2003-12-19

NOTES: CFS is restricted by the parser in the following way.
Negation and seek are allowed only on the toplevel and only on the LHS.

Sets are allowed only as values of features, but not on the toplevel.
COLLECT with no type attribute is only allowed on the LHS of a rule,
COLLECT with type set or list is only allowed on the RHS of a rule.

287

Elements SEEK, TYPE, FN and F are augmented by the XTDL parser with an

additional attribute pos containing "beginLine beginColumn endLine
endColumn" of the name of the rule, type, function and feature in the
XTDL source code. The same attribute is also generated for the RULE
element. Here, the attribute indicates start and end position of the

complete rule definition. -=>

<!ENTITY % rvalue "DISJ | CONCAT | N-TIMES | RANGE |

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ATTLIST

<!ELEMENT

<VATTLIST

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT

<!ATTLIST

<!ELEMENT

<!ELEMENT

ZERO-ONE | CFS | SEEK" >
SPROUT-GRAMMAR (RULES) >
RULES (RULE | DUMMY_RULE)+ >
RULE (LHS, RHS?, FNCN?) >
RULE name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >

DUMMY_RULE (LHS, RHS?, FNCN?) >
DUMMY_RULE name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >
LHS (%rvalue;)+ >
RHS (CFS) >
FNCN (FN)+ >
FN (CFS)+ >
FN name NMTOKEN #REQUIRED

coref NMTOKEN #IMPLIED
pos NMTOKENS #IMPLIED >

DISJ ((%rvalue;), (%rvalue;)+) >

CONCAT ((%rvalue;), (%rvalue;)+) >

N-TIMES (%rvalue;) >
N-TIMES num NMTOKEN #REQUIRED >

RANGE (Yrvalue;) >
RANGE start NMTOKEN #REQUIRED
end NMTOKEN #REQUIRED >

STAR (%rvalue;) >

PLUS (%rvalue;) >

STAR | PLUS

288 APPENDIXA. DTDS

<!ELEMENT ZERO-ONE (Yrvalue;) >

<!ELEMENT SEEK (CFS?) >
<IATTLIST SEEK name NMTOKEN #REQUIRED
pos NMTOKENS #IMPLIED >

<!ELEMENT SET (CFS | SET)+ >
<!ELEMENT CFS (TYPE | FS | SET | COREF | COLLECT)* >

<!ELEMENT FS (F x>
<IATTLIST FS neg (true) #IMPLIED >

<!ELEMENT F (CFs) >
<IATTLIST F name NMTOKEN #REQUIRED
pos NMTOKENS #IMPLIED >

<!ELEMENT TYPE (#PCDATA) >
<IATTLIST TYPE neg (true) #IMPLIED
pos NMTOKENS #IMPLIED >

<!ELEMENT COREF (#PCDATA) >
<VATTLIST COREF dct NMTOKEN #IMPLIED
pos NMTOKENS #IMPLIED >

<!ELEMENT COLLECT (#PCDATA) >
<!ATTLIST COLLECT type (listl|set) #IMPLIED >

A.4 SProUTput

The generic output format of thBProUT interpreter is the typed feature struc-
ture DTD (TFS DTD, cf. Appendix A.2), augmented with setued feature val-
ues, and embedded in meta-information eleMAMCHINFO, containing token and
character span of the matched input sequence as well astteeaidgheXTDL rule
that generated the output (Section 7.3).

<?xml version="1.0"7>

<!-- Sproutput DTD Version 2004
AUTHOR : uschaefer@dfki.de
VERSION: 2.1
DATE: 2004-01-21 -->

<!ELEMENT SPROUTPUT (DISJ)* >

<!ELEMENT DISJ (MATCHINFO)+ >
<!ATTLIST DISJ id ID >

<!ELEMENT MATCHINFO (FS) >
<!ATTLIST MATCHINFO id ID #IMPLIED
rule NMTOKEN #IMPLIED

A.5. JTOK 289

cstart NMTOKEN #IMPLIED
cend NMTOKEN #IMPLIED
start NMTOKEN #IMPLIED
end NMTOKEN #IMPLIED >

<!ELEMENT FS (F)* >
<V'ATTLIST FS type NMTOKEN #REQUIRED
coref NMTOKEN #IMPLIED >

<!ELEMENT F (FS | SET) >
<IATTLIST F name NMTOKEN #REQUIRED >

<!ELEMENT SET (FS | SET)* >
<IATTLIST SET coref NMTOKEN #IMPLIED >

A5 JTok

JTok comes with a native XML output functionality that is ddgy JTokModule
(Section 9.5.1.1) for generating the module output, augetenith the<metadata>
element.

<?7xml version="1.0"7>
<!-- JTok DTD -->

<!ELEMENT jtok (metadata p*) >

<!-- paragraphs -->
<!ELEMENT p (tu)+ >

<!-- text units, i.e., sentences etc. -->
<!ELEMENT tu (Token)+ >
<IATTLIST tu id ID >

<!-- token information -->

<!ELEMENT Token EMPTY >

<!ATTLIST Token string CDATA #REQUIRED
type NMTOKEN #REQUIRED
offset NMTOKEN #REQUIRED
length NMTOKEN #REQUIRED >

A6 TnT

As the statistical tagger TnT Brants (2000) does not prodiMé output natively,
the following PoS tag DTD is implemented in the TnTModule afdtt of Gold
(Section 9.5.2.1).

<?xml version="1.0"7>
<!=- TnT DTD -->

<!ELEMENT tnt (metadata tokens) >

290 APPENDIXA. DTDS

<IELEMENT tokens (w)* >

<!-- each token <w> may have several PoS tags <p> assigned -->
<!ELEMENT w (p)* >
<!ATTLIST w str CDATA #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED >

<!-- PoS tag, p attribute contains probability -->
<!ELEMENT p EMPTY >
<!ATTLIST p pos NMTOKEN #REQUIRED

p CDATA #REQUIRED >

A.7 Chunkie

The statistical chunker Chunkie (Skut and Brants, 199&)fitdoes not deliver
XML output. The DTD below is generated by the Heart of Gold GkiaModule
(XML example on page 71).

<?xml version="1.0"7>
<!-- Chunkie DTD -->

<!ELEMENT chunkie (chunks) >
<!ELEMENT chunks (s)* >

<!-- <s>entence -->
<!ELEMENT s (w | chunk)*
<IATTLIST s id ID
cstart NMTOKEN #REQUIRED
cend NMTOKEN #REQUIRED >

A\

<!-- <w>ord/token with PoS tag -->

<!ELEMENT w (#PCDATA) >

<!ATTLIST w pos NMTOKEN #REQUIRED
cstart NMTOKEN #REQUIRED
cend NMTOKEN #REQUIRED >

<!-- <chunk> -->

<!ELEMENT chunk (w)+ >

<IATTLIST chunk cat NMTOKEN #REQUIRED
cstart NMTOKEN #REQUIRED
cend NMTOKEN #REQUIRED >

A.8 RMRS

This is a snapshot of the RMRS DTD published by Ann Copestakent from
http://lingo.stanford.edu:8000/rmrs.dtd (as of 2004-07-21). The ad-

A.8. RMRS 291

mitted values list of theogn-st attribute of thevar element is shortened here.
RMRS is described in Section 9.4.

<?7xml version="1.0"7>
<!-- RMRS DTD -->

<!ELEMENT rmrs-list (rmrs)x*>

<!ELEMENT rmrs (label, (eplrargl|ing|hcons)*)>
<!ATTLIST rmrs

cfrom CDATA #REQUIRED

cto CDATA #REQUIRED >

<!ELEMENT ep ((realpredl|gpred), label, var)>
<IATTLIST ep

cfrom CDATA #REQUIRED

cto CDATA #REQUIRED >

<!ELEMENT realpred EMPTY>
<VATTLIST realpred
lemma CDATA #REQUIRED
pos (vinljlrlplglclxlu) #REQUIRED
sense CDATA #IMPLIED >
<!ELEMENT gpred (#PCDATA)>
<!ELEMENT label EMPTY>
<IATTLIST label
vid CDATA #REQUIRED >

<!ELEMENT var EMPTY>
<IATTLIST var
sort (xlelh|ull) #REQUIRED
vid CDATA #REQUIRED
num (sglpllu) #IMPLIED
pers (112]3|1-or-3|u) #IMPLIED
gender (m|f|n|m-or-f|u) #IMPLIED
divisible (plus|minus|u) #IMPLIED
cogn-st (type-id|uniq-id|fam|activ]|...|u) #IMPLIED
tense (past|present|future|non-past|u) #IMPLIED
telic (plus|minus|u) #IMPLIED
protracted (plus|minus|u) #IMPLIED
stative (plus|minus|u) #IMPLIED
incept (plus|minus|u) #IMPLIED
imr (plus|minus|u) #IMPLIED
boundedness (plus|minus|u) #IMPLIED
refdistinct (plus|minus|u) #IMPLIED >

<!ELEMENT rarg (rargname, label, (var|constant))>
<!ELEMENT rargname (#PCDATA)>

<!ELEMENT constant (#PCDATA)>

<IELEMENT ing (ing-a, ing-b)>

<!ELEMENT ing-a (var)>

<!ELEMENT ing-b (var)>

<!ELEMENT hcons (hi, lo)>

<VATTLIST hcons

292 APPENDIXA. DTDS

hreln (geqllheq|outscopes) #REQUIRED >
<!ELEMENT hi (var)>
<!ELEMENT lo (labell|var)>

A.9 PET Input Chart DTD

The PET input chart XML format is explained with examples at&on 9.5.5.2.

<?7xml version="1.0"7>
<!-- PET input chart DTD Version 2004-12-21 -->
<!-- {Bernd.Kiefer,Ulrich.Schaefer}@dfki.de -->

<!ELEMENT pet-input-chart (w | ne)* >

<!-- base input token constant "yes" means: do not analyze,
i.e., if the tag contains no typeinfo, no lexical item
will be built by the token-—>
<!ELEMENT w (surface, path*, pos*, typeinfox) >
<!ATTLIST w id ID #REQUIRED
cstart NMTOKEN #REQUIRED
cend NMTOKEN #REQUIRED
prio CDATA #IMPLIED
constant (yes | no) "no" >

<!-- The surface string -->
<!ELEMENT surface (#PCDATA) >

<!-- numbers that encode valid paths through the input graph (optional) -->
<!ELEMENT path EMPTY >
<!ATTLIST path num NMTOKEN #REQUIRED >

<!-- every typeinfo generates a lexical token -->
<!ELEMENT typeinfo (stem, infl*, fsmod*) >
<!ATTLIST typeinfo id ID #REQUIRED
prio CDATA #IMPLIED
baseform (yes | no) "yes" >
<!-- Baseform yes: lexical base form; no: type name -->

<!-- lexical base form or type name -->
<!ELEMENT stem (#PCDATA) >

<!-- type name of an inflection rule-->
<!ELEMENT infl EMPTY >
<!'ATTLIST infl name CDATA #REQUIRED >

<!-- put type value under path into the lexical feature structure -->
<!ELEMENT fsmod EMPTY >
<!ATTLIST fsmod path CDATA #REQUIRED

value CDATA #REQUIRED >

<!-- part-of-speech tags with priorities -->
<!ELEMENT pos EMPTY >

A.10. SIMPLE PREPROCESSOR PROTOCOL (SPPP) DTD 293

<!'ATTLIST pos tag CDATA #REQUIRED
prio CDATA #IMPLIED >

<!-- structured input items, mostly to encode named entities -->
<!ELEMENT ne (ref+, pos*, typeinfo+) >
<!ATTLIST ne id ID #REQUIRED

prio CDATA #IMPLIED >

<!-- reference to a base token -->
<!ELEMENT ref EMPTY >
<I!ATTLIST ref dtr IDREF #REQUIRED >

A.10 Simple PreProcessor Protocol (SPPP) DTD

The SPPP format has been implemented in LKB as preprocessoat. XML

documents with this DTD can be transformed by the XSLT shdes from Ap-
pendix B.6 into the PET input chart format (Appendix A.9). Axample is pre-
sented in Section 9.11.9.

<?xml version="1.0"7>
<!-- SPPP DTD -->

<!ELEMENT segment (token)* >
<!ELEMENT token (analysis)* >
<!ATTLIST token form CDATA #REQUIRED
from NMTOKEN #REQUIRED
to NMTOKEN #REQUIRED >
<!ELEMENT analysis (rule)* >
<VATTLIST analysis stem CDATA #REQUIRED
probability NMTOKEN #IMPLIED
pos NMTOKEN #IMPLIED >
<!ELEMENT rule EMPTY >
<!ATTLIST rule id NMTOKEN #REQUIRED
form CDATA #REQUIRED >

294 APPENDIXA. DTDS

Appendix B

XSLT Stylesheets

This appendix contains some of the discussed XSLT stylé¢stismn Chapter 9.
The complete files (plus additional ones) are also contaiméde Heart of Gold
source code distribution in thes1 subdirectory.

B.1 Automatically GeneratedSProUT to RMRS Stylesheet

This is a fragment of the code generated by Heart of Gold fersthgle attribute
PRODUCT-NAME of the named entity grammar for products. TH&LX code
is taken from the automatically generated stylesheetypes-sprout2rmrs.xsl.
The complete stylesheet comprises approx. 8700 lines & (®elction 9.5.4.1).

<xsl:variable name=’PRODUCT-NAME’
select="FS[@type="ne-product"] /F[@name="PRODUCT-NAME"] /FS/@type’/>
<xsl:if test=’ ($PRODUCT-NAME!="string") and ($PRODUCT-NAME!="")’>
<xsl:element name=’ep’>
<xsl:attribute name=’cfrom’>
<xsl:value-of select=’$cfrom’/>
</xsl:attribute>
<xsl:attribute name=’cto’>
<xsl:value-of select=’$cto’/>
</xsl:attribute>
<xsl:attribute name=’surface’>
<xsl:value-of select=’$rsurface’/>
</xsl:attribute>

<xsl:element name=’gpred’>
<xsl:value-of select=’"product—name_rel"’/>
</xsl:element>
<xsl:element name=’label’>
<xsl:attribute name=’vid’>
<xsl:value-of select=’$offset + 10’/>
</xsl:attribute>
</xsl:element>
<xsl:element name=’var’>
<xsl:attribute name=’sort’>

295

296 APPENDIX B. XSLT STYLESHEETS

<xsl:value-of select=’"x"’/>
</xsl:attribute>
<xsl:attribute name=’vid’>
<xsl:value-of select=’$offset + 10°/>
</xsl:attribute>
</xsl:element>
</xsl:element>

<xsl:element name=’rarg’>
<xsl:element name=’label’>
<xsl:attribute name=’vid’>
<xsl:value-of select=’$offset + 10°/>
</xsl:attribute>
</xsl:element>
<xsl:element name=’rargname’>
<xsl:value-of select=’"CARG"’/>
</xsl:element>
<xsl:element name=’constant’>
<xsl:value-of select="translate($PRODUCT-NAME, ’"’, ’’)"/>
</xsl:element>
</xsl:element>

<xsl:element name=’rarg’>
<xsl:element name=’label’>
<xsl:attribute name=’vid’>
<xsl:value-of select=’$offset + 10’/>
</xsl:attribute>
</xsl:element>
<xsl:element name=’rargname’>
<xsl:value-of select=’"ARG1"’/>
</xsl:element>
<xsl:element name=’var’>
<xsl:attribute name=’sort’>
<xsl:value-of select=’"x"’/>
</xsl:attribute>
<xsl:attribute name=’vid’>
<xsl:value-of select=’$offset’/>
</xsl:attribute>
</xsl:element>
</xsl:element>
</xsl:if>

B.2 Combining Input Annotations

The combinepixml.xsl stylesheet is called from the PetModule (Section 9.5.5).
It XML-wise concatenates multiple PET input chart docursehit can be speci-
fied as a list of HoG URIs (or XML file names) in the global stylest parameter
urilist.

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

B.3. REMOVING CONFLICTING ITEMS IN THE PET INPUT CHART 297

<!--Combine different PET XML input chart documents into one document,
omitting metadata element and its children. Within a living HoG,
the parameter urilist should countain a comma-separated
list of HoG annotation names e.g. hog://sessionl/acoll/TnTpiXML
-—=>

<xsl:output method="xml"/>
<xsl:strip-space elements="x*"/>

<xsl:param name="urilist">TnTpiXML.xml,SProUTpiXML.xml</xsl:param>

<xsl:template match="/">
<xsl:element name="pet-input-chart">
<xsl:for-each select="0x">
<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:call-template name="insert-documents">
<xsl:with-param name="urilist" select="$urilist"/>
</xsl:call-template>
</xsl:element>
<xsl:apply-templates/>
</xsl:template>

<xsl:template name="insert-documents">
<xsl:param name="urilist"/>
<xsl:choose>
<xsl:when test="contains($urilist,’,’)">
<xsl:variable name="car" select="substring-before($urilist,’,’)"/>
<xsl:copy-of select="document ($car)/pet-input-chart/w"/>
<xsl:copy-of select="document($car)/pet-input-chart/ne"/>
<xsl:call-template name="insert-documents">
<xsl:with-param name="urilist"
select="substring-after($urilist,’,’)"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:copy-of select="document($urilist)/pet-input-chart/w"/>
<xsl:copy-of select="document($urilist)/pet-input-chart/ne"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.3 Removing Conflicting Items in the PET Input Chart

As the previous one, this stylesheet can be called from ttMdeiile (Section 9.5.5)
as a preprocessing filter.

298 APPENDIX B. XSLT STYLESHEETS

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- Removal of PET input chart items in contained spans -->
<!-- (to overcome bug in cheap with PET input chart -->

<xsl:output method="xml"/>
<xsl:strip-space elements="x*"/>

<xsl:template match="/pet-input-chart">
<xsl:element name="pet-input-chart">
<xsl:for-each select="@x">
<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:apply-templates select="w"/>
</xsl:element>
</xsl:template>

<xsl:template match="w">
<xsl:variable name="cstart" select="@cstart"/>
<xsl:variable name="cend" select="@cend"/>
<!-- remove Token if start or end is between start and end of a
right NE -->
<xsl:if test="not(following-sibling::w[(@cstart <= $cstart)
and ($cstart <= @cend)] or
following-sibling: :w[(Q@cstart <= $cend) and
($cend <= @cend)])">
<xsl:copy-of select="."/>
</xsl:if>
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.4 Sorting and Filtering Longest RMRS Fragments

This stylesheet takes fragmentary RMRS output from PET &tter parser could
not compute a full spanning analysis for a sentence. It soetfragments accord-
ing to their length, and outputs only tindongest. Discussion on page 221.

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform"
version="1.0">

<!-- Extract longest RMRS fragment -->
<!-- parameter fragments: number of fragments to return -->

<!-- Created 2005-04-25 -->

<xsl:output method="xml"/>

B.5. SORTING AND MERGING RDF DESCRIPTIONS 299

<xsl:param name="fragments" select="5"/>

<xsl:template match="/pet">
<xsl:copy>
<xsl:for-each select="@x">
<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:apply-templates select="metadata"/>
<xsl:for-each select="rmrs">
<xsl:sort select="number(ep/@cto) - number(ep/@cfrom)"
data-type="number" order="descending"/>
<xsl:if test="position() <= $fragments">
<xsl:copy-of select="."/>
</xsl:if>
<xsl:apply-templates/>
</xsl:for-each>
</xsl:copy>
</xsl:template>

<xsl:template match="metadata">
<xsl:copy-of select="."/>
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.5 Sorting and Merging RDF Descriptions

The following stylesheet, part of the initial OntoNERdIHlivle transformation
tool (Section 9.7.1.2) sorts and mergedf : descriptions distributed over an
RDF file, but bearing the same rdf:about (and rdf:nodelDjlattes. The input
RDF file must contain unabbreviated RDF (without QName abatiens).

<?xml version="1.0"7>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://wuw.w3.0rg/1999/XSL/Transform"
xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#">

<!-- Date: 2005-10-07 -->

<!-- Author: Ulrich.Schaefer@dfki.de -->

<!-- Description: rdfsort.xsl sorts and merges distributed
rdf :Description
elements with same rdf:about (and rdf:nodeID) attributes
Input DTD: RDF input file without (Name abbreviations
Output: RDF (with grouped Descriptions) -->

<xsl:output method="xml"/>

<xsl:key name="aboutkeys" match="rdf:Description" use="Qrdf:about"/>
<xsl:key name="nodekeys" match="rdf:Description" use="Q@rdf:nodeID"/>

300 APPENDIX B. XSLT STYLESHEETS

<!-- root template -->
<xsl:template match="/rdf:RDF">
<xsl:copy>
<!-- copy namespace and other top attributes -->
<xsl:copy-of select="@x"/>

<!-- walk through rdf:Description elements with rdf:about
attributes -->
<xsl:for-each select="rdf:Description[generate-id(.)=
generate-id(key(’aboutkeys’, @rdf:about)[1])]">
<xsl:sort select="Q@rdf:about"/>
<xsl:copy>
<xsl:copy-of select="@x"/>
<xsl:for-each select="key(’aboutkeys’, @rdf:about)">
<xsl:copy-of select="x"/>
</xsl:for-each>
</xsl:copy>
</xsl:for-each>

<!-- walk through rdf:Description elements with rdf:nodeID
attributes -->
<xsl:for-each select="rdf:Description[generate-id(.)=
generate-id(key(’nodekeys’, @rdf:nodeID)[1])]">
<xsl:sort select="Qrdf:nodeID"/>
<xsl:copy>
<xsl:copy-of select="@x"/>
<xsl:for-each select="key(’nodekeys’, Q@rdf:nodeID)">
<xsl:copy-of select="x"/>
</xsl:for-each>
</xsl:copy>
</xsl:for-each>
</xsl:copy>
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.6 SPPPtoPIC

This stylesheet transforms the LKB Simple PreProcessaio@ob(SPPP) XML
format into the PET input chart, used for morphological poepssing of the Span-
ish HPSG grammar (cf. Section 9.11.9).

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform"
version="1.0">

<!-- Transform LKB sppp format (http://wiki.delph-in.net/moin/LkbSppp)
<!-- to PET XML input chart format

B.6. SPPP TO PIC 301

<!-- (http://wiki.delph-in.net/moin/PetInput, XML input)
<!-- Version: $Id: sppp2pic.xsl,v 1.3 2006/06/29 13:04:02 uschaefer $ -->

<xsl:output method="xml"/>
<xsl:strip-space elements="x"/>
<xsl:param name="metadata"><metadata/></xsl:param>

<xsl:template match="/">
<xsl:element name="pet-input-chart">
<xsl:copy-of select="$metadata"/>
<xsl:for-each select="@x">
<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>

<xsl:template match="token">
<xsl:apply-templates select="analysis">
<xsl:with-param name="cstart" select="Qfrom"/>
<xsl:with-param name="cend" select="Q@to"/>
<xsl:with-param name="tokenno" select="position()"/>
<xsl:with-param name="surface" select="@form"/>
</xsl:apply-templates>
</xsl:template>

<xsl:template match="analysis">
<xsl:param name="cstart" select="-1"/>
<xsl:param name="cend" select="-1"/>
<xsl:param name="tokenno" select="0"/>
<xsl:param name="surface" select="’SURFACE’"/>
<xsl:param name="idsuffix" select="concat($tokenno,’.’,position())"/>
<w id="{concat (’FLW’, $idsuffix)}" cstart="{$cstart}" cend="{$cend}">
<xsl:choose>
<xsl:when test="count(*)=0 and not(@pos)">
<xsl:attribute name="constant">
<xsl:value-of select="’yes’"/>
</xsl:attribute>
<surface><xsl:value-of select="$surface"/></surface>
<typeinfo id="{concat(’FLT’,$tokenno,’.’,position())}"
baseform="no">
<stem><xsl:value-of select="@stem"/></stem>
</typeinfo>
</xsl:when>
<xsl:otherwise>
<surface><xsl:value-of select="$surface"/></surface>
</xsl:otherwise>
</xsl:choose>
<xsl:if test="Qtag">
<pos tag="{@tag}">
<xsl:if test="@probability">
<xsl:attribute name="prio">
<xsl:value-of select="@probability"/>
</xsl:attribute>

302 APPENDIX B. XSLT STYLESHEETS

</xsl:if>
</pos>
</xsl:if>
<xsl:apply-templates select="rule">
<xsl:with-param name="idsuffix" select="$idsuffix"/>
</xsl:apply-templates>
</w>
</xsl:template>

<xsl:template match="rule">
<xsl:param name="idsuffix" select="0"/>
<xsl:param name="stem" select="NOSTEM"/>
<typeinfo id="{concat(’FLR’,$idsuffix, ’.’, position())}" baseform="no">
<stem><xsl:value-of select="@form"/></stem>
<infl name="{@id}"/>
</typeinfo>
</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

Bibliography

Serge Abiteboul. Querying semi-structured dataldBT, pages 1-18, 1997.

Steven Abney. Parsing by chunks. In Robert C. Berwick, StékeAbney, and
Carol Tenny, editorsRrinciple-Based Parsing: Computation and Psycholinguis-
tics, pages 257-278. Kluwer Academic Publishers, Boston, 1991.

Steven Abney. Partial parsing via finite-state cascadesPrdgeedings of the
ESSLLI 96 Robust Parsing Workshd®96.

Douglas AdamsThe Hitchhiker's Guide to the GalaxBallantine Books, London,
UK, 1979.

Aduna B.V.User Guide for Sesam&004. http://www.openrdf.org.

Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programmlagguage with
built-in inheritance.Journal of Logic Programming3(3):185-215, 1986.

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Rodesr. Efficient imple-
mentation of lattice operation®&CM Transactions on Programming Languages
and Systemd 1(1):115-146, January 1989.

Hassan Ait-KaciA Lattice-Theoretic Approach to Computation Based on a @Galc
lus of Partially-Ordered Type$hD thesis, University of Pennsylvania, Philadel-
phia, PA, 1984.

Jan W. Amtrup. ICE-INTARC communication environment usgugle and ref-
erence manual version 1.3. Technical report, Universitahburg, 1995. Verb-
mobil Technisches Dokument 14.

Douglas E. Appelt and David Israelntroduction to information extraction tech-
nology. IJCAI-99 Tutorial, Stockholm, Sweden, 1999.

Masayuki Asahara and Yuji Matsumoto. Extended models ant tior high-
performance part-of-speech taggerPimceedings of COLING-200@000.

Jordi Atserias, Bernardino Casas, Eli Comelles, Merit@ahzalez, Lluis Padro,
and Muntsa Padrd. FreeLing 1.3: Syntactic and semantiécesrin an open-
source NLP library. IfProceedings of the 5th International Conference on Lan-

303

304 BIBLIOGRAPHY

guage Resources and Evaluation LREC-20@ges 2281-2286, Genoa, Italy,
2006.

Franz Baader, Diego Calvanese, Deborah McGuinness, RaNgldi, and Peter
Patel-Schneider, editor§he Description Logic HandboolCambridge Univer-
sity Press, 2003.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. ThekBley FrameNet
project. InProceedings of COLING-ACL 199Blontréal, Canada, 1998.

Jon Barwise and John Perituations and AttitudedMIT Press, Cambridge, MA,
1983.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, lan HksroPeborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea.SD&8VL web ontol-
ogy language reference, W3C recommendation, 2004. WortteW¥eb Con-
sortium, http://w3c.org/TR/owl-ref/.

Markus Becker and Anette Frank. A Stochastic Topologicas&eof German. In
Proceedings of COLING 20Qpages 71-77, Taipei, Taiwan, 2002.

Markus Becker, Witold Drozdzyfski, Hans-Ulrich Kriegdakub Piskorski, Ul-
rich Schafer, and Feiyu Xu. SProUT - shallow processindhwyped feature
structures and unification. IRroceedings of the International Conference on
Natural Language Processing (ICON 200®)umbai, India, 2002.

Dorothee Beermann, Berthold Crysmann, Petter Haugereits Hellan, Dario
Gonella, Daniela Kurz, Giampaolo Mazzini, Oliver Plaehmg &elanie Siegel.
DEEPTHOUGHT deliverable 5.10. Technical report, TheeEPTHOUGHT con-
sortium, 2004.

Emily Bender, Dan Flickinger, Frederik Fouvry, and MelaSiegel, editorsPro-
ceedings of the ESSLLI 2003 Workshop on Ideas and Strafegikhiltilingual
Grammar DevelopmenVienna, Austria, 8 2003.

Christian Bering and Ulrich Schafer. JTaCo & SProUTomatitoatic testing
and evaluation of multilingual language technology resesrand components.
In Proceedings of the Workshop on Quality Assurance and Qudktasurement
for Language and Speech Resources in Conjunction with LREG-pages 42—
47, Genoa, Italy, 5 2006.

Christian Bering, Witold Drozdzyhski, Gregor Erbachlata Guasch, Petr Ho-
mola, Sabine Lehmann, Hong Li, Hans-Ulrich Krieger, Jakigkétski, Ulrich
Schafer, Atsuko Shimada, Melanie Siegel, Feiyu Xu, andobae Ziegler-
Eisele. Corpora and evaluation tools for multilingual ndnestity grammar
development. IfProceedings of Multilingual Corpora Workshop at Corpus-Lin
guistics 2003pages 42-52, Lancaster, 3 2003.

BIBLIOGRAPHY 305

Christian Bering. JTaCo user guide. Technical report, [8adrUniversity, Com-
putational Linguistics Department, Saarbriicken, Geymap04.

Steven Bird and Mark Liberman. A formal framework for lingtic annotation.
Speech CommunicatipB83(1,2):23-60, 2001.

Steven Bird, Peter Buneman, and Wang-Chiew Tan. Towardsgy danguage
for annotation graphs. IRroceedings of LREC-200pages 807-814, Athens,
Greece, 2000.

Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, andhyiféheng. Ex-
tending XPath to support linguistic queries. Pmoceedings of Programming
Language Technologies for XML (PLANXRnges 35-46, Long Beach, Califor-
nia, 1 2005.

Torsten Bittner. Performance evaluation for XSLT proaags2004. Studienarbeit,
University of Rostock, Germany.

Scott Boag, Don Chamberlin, Mary F. Fernandez, DanielaeSku, Jonathan
Robie, and Jérdme Siméon. XQuery 1.0: An XML query lamga
W3C candidate recommendation, 2006. World Wide Web Coiosort
http://w3c.org/TR/xquery/.

Christian Boitet and Mark Seligman. The "Whiteboard” atebiure: a way to
integrate heterogeneous components of NLP systemdPrdoeedings of the
15th Conference on Computational Linguistigges 426—430, Morristown,
NJ, USA, 1994. Association for Computational Linguistics.

Francis Bond, Stephan Oepen, Melanie Siegel, Ann Copestakd Dan
Flickinger. Open source machine translation with DELPH-IN Proceedings
of the Open-Source Machine Translation Workshop at the Matbhine Trans-
lation Summitpages 15-22, Phuket, Thailand, September 2005.

Gosse Bouma and Geert Kloosterman. Querying dependembatikes with XML.
In Proceedings of LREC-200®ages 1686—-1691, Las Palmas, Gran Canaria,
2002.

Ronald J. Brachman and James G. Schmolze. An overview oflth®@ KE knowl-
edge representation syste@ognitive Scienced:171-216, 1985.

Ronald J. Brachman. On the epistomological status of secastworks. Asso-
ciative Networkspages 3-50, 1979.

Thorsten Brants. TnT - A Statistical Part-of-Speech TagdaerProceedings of
EurospeechRhodes, Greece, 2000.

Christian Braun. Flaches und robustes Parsen deutschege8fe. Master's
thesis, Saarland University, 1999.

306 BIBLIOGRAPHY

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extemsidrkup lan-
guage (XML) 1.0 second edition, 1998. World Wide Web Corisort
http://w3c.org/ TR/REC-xml/.

Andrew Bredenkamp, Thierry Declerck, Frederik Fouvry, 8nddley Music. Ef-
ficient integrated tagging of word constructs. Pmoceedings of COLING-96
pages 1028-1031, Copenhagen, Denmark, 1996.

Andrew Bredenkamp, Bernd Kiefer, Stefan Miller, Glinteiushann, Jakub Pisko-
rski, Melanie Siegel, and Hans Uszkoreit. WEBOARD — multi-level annota-
tion for dynamic free text processing, project proposafa9

Chris Brew, David McKelvie, Richard Tobin, Henry Thompsamd Andrei
Mikheev. The XML Library LT XML. User documentation and referencalgui
LTG, University of Edinburgh, 2000.

Dan Brickley and Ramanathan V. Guha. RDF vocabulary desamifanguage 1.0:
RDF Schema, W3C recommendation 10, 2004. World Wide Web @tus,
http://w3c.org/TR/rdf-schema/.

Eric Brill and Mitch Marcus. Tagging an unfamiliar text withinimal human su-
pervision. InProceedings of the AAAI Symposium on Probabilistic Apgreac
to Natural Languagepages 10-16. American Association for Artificial Intelli
gence (AAAI), 1992.

Eric Brill. A simple rule-based part-of-speech tagger. Pimceedings of ANLP-
92, 3rd Conference on Applied Natural Language Procesgiages 152—-155,
Trento, Italy, 1992.

Edward J. Briscoe and John Carroll. Robust accurate $tatistnnotation of gen-
eral text. InProceedings of LREC-200pages 1499-1504, Las Palmas, Gran
Canaria, 2002.

Jeen Broekstra and Arjohn Kampman. The SeRQL query langu20@s.
http://www.openrdf.org/doc/SeRQLmanual.html.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelenan®s=sA generic
architecture for storing and querying RDF and RDF schemaPraceedings
ISWC 2001 pages 54-68. Springer, 2002.

Paul Buitelaar, Thomas Eigner, Greg Gulrajani, Alexanddru®z, Melanie Siegel,
Nicolas Weber, Philip Cimiano, Gunter Ladwig, Matthias mtel, and Hong-
gang Zhu. Generating and visualizing a soccer knowlegde. ha®roceedings
of the EACL-2006 Demo Sessipiisento, Italy, 4 2006.

Felix Burkhardt, Joachim Stegmann, and Markus van Ballgga® voiceportal
enhanced by semantic processing and affect awarened3rod¢eedings of Gl
Jahrestagung2005.

BIBLIOGRAPHY 307

Stephan Busemann and Hans-Ulrich Krieger. Resources amhiteies for Multi-
lingual Information Extraction. IfProceedings of the 4th International Confer-
ence on Language Resources and Evaluation (LRE&)es 1923-1926, 2004.

Stephan Busemann, Witold Drozdzyhski, Hans-Ulrichelggr, Jakub Piskorski,
Ulrich Schafer, Hans Uszkoreit, and Feiyu Xu. Integratinfprmation ex-
traction and automatic hyperlinking. FProceedings of ACL-2003, Interactive
Posters/Demonstrationpages 117-120, Sapporo, Japan, 2003.

Joe CalderThistle: Diagram Display Engines and Editorsl CRC, University of
Edinburgh, 2000.

Chris Callison-Burch and Miles Osborn&tatistical Natural Language Process-
ing, chapter 7. CSLI Publications, 2003.

Ulrich Callmeier, Andreas Eisele, Ulrich Schafer, and dw¢ Siegel. The
DeepThought core architecture framework. Rmoceedings of LREC-2004
pages 1205-1208, Lisbon, Portugal, 2004.

Ulrich Callmeier. PET — A platform for experimentation wifficient HPSG pro-
cessing techniquedatural Language Engineering(1):99-108, 2000.

Ulrich Callmeier. Efficient parsing with large-scale urdfiion grammars. Master’s
thesis, Saarland University, Computer Science Departri266tL.

Claire Cardie and Kiri Wagstaff. Noun phrase coreferencelastering. InPro-
ceedings of the Joint Conference on Empirical Methods irutdht_anguage
Processing and Very Large Corpora, Association for Comiomal Linguistics
pages 82-89, 1999.

Jean Carletta, David McKelvie, Amy Isard, Andreas Mengeérign Klein, and
Morten Baun Mgller. A generic approach to software suppartihguistic an-
notation using XML. In G. Sampson and D. McCarthy, editd®gadings in
Corpus LinguisticsLondon and NY, 2002. Continuum International.

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan Kilgdudy Robertson, and
Holger Voormann. The NITE XML toolkit: flexible annotatioorf multi-modal
language dataBehavior Research Methods, Instruments, and Computegs, sp
cial issue on Measuring Behavignages 353-363, 2003.

Bob CarpenterThe Logic of Typed Feature Structurésacts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge?.199

Bob Carpenter. LingPipe 2.0 APl documentation, 2005. Hew.alias-i.com/
lingpipe/.
Steve Cassidy and Jonathan Harrington. EMU: An enhancedrbiécal speech

data management system. Pmoceedings of the 6th Australian International
Conference on Speech Science and Technpl®f6.

308 BIBLIOGRAPHY

Steve Cassidy. XQuery as an annotation query language: eagseanalysis. In
Proceedings of LREC-200gages 2055-2060, Las Palmas, Gran Canaria, 2002.

Don Chamberlin, Peter Fankhauser, Daniela Florescu, khas#archiori, and
Jonathan Robie. XML query use cases, W3C working draft, 20@érld Wide
Web Consortium, http://w3c.org/TR/xquery-use-cases/.

Noam A. ChomskyAspects of the Theory of SyntaMIT Press, 1965.
Noam A. ChomskyLectures on Government and Bindirfgpris, Dordrecht, 1981.

James Clark and Steve DeRose. XML path language (XPathprer©, W3C rec-
ommendation, 1999. World Wide Web Consortium, http:/ M8y TR/xpath/.

James Clark. Associating style sheets with XML documentsioe 1.0, W3C
recommendation, 1999. World Wide Web Consortium, htt@éwrg/TR/xml-
stylesheet/.

James Clark. XSL transformations (XSLT) version 1.0, W3€omemendation,
1999. World Wide Web Consortium, http://w3c.org/TR/xslt/

Lionel Clement ancEric Villemonte de la Clergerie. MAF: a morphosyntactic
annotation framework. IRroceedings of the 2nd Language & Technology Con-
ference (LT'05) pages 90-94, Poznan, Poland, 2005.

Ann Copestake and Karen Sparck Jones. Natural languagtaogs to databases.
Knowledge Engineering(4):225-249, 1990.

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Rienamand Ivan Sag.
Translation using minimal recursion semantics.Phoceedings of the Sixth In-
ternational Conference on Theoretical and Methodologisaiues in Machine
Translation Leuven, Belgium, 1995.

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Rielnamand Ivan Sag.
Translation using Minimal Recursion Semantics.Pimceedings of the 6th In-
ternational Conference on Theoretical and Methodologisaiues in Machine
Translation (TMI-95) Leuven, Belgium, July 1995.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Polldtthimal recursion
semantics: an introductiodournal of Research on Language and Computation
3(2-3):281-332, 2005.

Ann Copestake, Simone Teufel, Peter Murray-Rust, and Aradid?. Extracting
the science from scientific publications, SciBorg projecipmsal, public ver-
sion, 2005. http://www.cl.cam.ac.uk/"aacl10/escienddip.pdf.

Ann Copestakelmplementing Typed Feature Structure Gramm&SLI publica-
tions, Stanford, CA, 2002.

BIBLIOGRAPHY 309

Ann Copestake. Report on the design of RMRS. Technical R&dodb, Univer-
sity of Cambridge, Cambridge, UK, 2003.

Richard Crouch. Packed rewriting for mapping semanticsRo k Proceedings
IWCS Tilburg, The Netherlands, 2005.

Berthold Crysmann, Anette Frank, Bernd Kiefer, Stefan IbtiilJakub Piskorski,
Ulrich Schafer, Melanie Siegel, Hans Uszkoreit, Feiyu Kiarkus Becker, and
Hans-Ulrich Krieger. An Integrated Architecture for Deeple&shallow Process-
ing. In Proceedings of ACL 2002hiladelphia, PA, 2002.

Berthold Crysmann. On the efficient implementation of Gerwerb placement in
HPSG. InProceedings of RANLP-200Borovets, Bulgaria, 2003.

Hamish Cunningham, Kevin Humphreys, Robert Gaizauskas,Yanck Wilks.
Software infrastructure for natural language processingProceedings of the
5th Conference on Applied Natural Language Processiages 237-244, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, andnia Tablan.
GATE: A framework and graphical development environmemtrédbust NLP
tools and applications. IRroceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistic3002.

Hamish CunninghamSoftware Architecture for Language EngineeriiRhD the-
sis, University of Sheffield, 2000.

Michael Daum, Kilian Foth, and Wolfgang Menzel. Constradatsed Integration
of Deep and Shallow Parsing Techniques.Phoceedings of EACL 20038u-
dapest, 2003.

Ferdinand de Saussur€ours de linguistique @érale Payot, Lausanne et Paris,
1916. Translation by Roy Harris: Course in General Lingcsst1983, London,
Duckworth.

Thierry Declerck and Heinz-Dieter Maas. The integratiom giart-of-speech tag-
ger into the ALEP platform. IfProceedings of the 3rd ALEP User Group Work-
shop Saarbriicken, Germany, 1997.

Steve DeRose, Eve Maler, and David Orchard. XML linking lzeqge (XLink),
2001. World Wide Web Consortium, http://w3c.org/TR/xlink

Steve DeRose, Eve Maler, and Ron Daniel Jr. XML pointer laggu(XPointer),
2002. World Wide Web Consortium, http://w3c.org/TR/xptr/

Peter Dienes and Amit Dubey. Deep syntactic processing mboong shallow
methods. InProceedings of the 41st Annual Meeting of the Association fo
Computational Linguistics, ACL-200Sapporo, Japan, 2003.

310 BIBLIOGRAPHY

Witold Drozdzyhski, Hans-Ulrich Krieger, Jakub Piskkr, Ulrich Schafer, and
Feiyu Xu. Shallow processing with unification and typed dieatstructures —
foundations and application&unstliche Intelligenz2004(1):17-23, 2004.

Amit Dubey and Frank Keller. Parsing German with sisterehéapendencies. In
Proceedings of the 41st Annual Meeting of the AssociatiofCtonputational
Linguistics Sapporo, Japan, 2003.

Olivier Dubuisson.ASN.1 Communication between Heterogeneous Syshédars
gan Kaufmann, 2000.

Patrick Durusau and Matthew Brook O’Donnell. Concurrentrkop for XML
documents. IProceedings of XML Europe 2002002.

Marc Dymetman. A simple transformation for offline-pargafgrammars and its
termination properties. IGOLING, pages 1226-1230, 1994.

Martin Emele. Unification with lazy non-redundant copyimg Proceedings of the
29th Annual Meeting of the Association for Computationadguistics pages
323-330, 1991.

Katrin Erk and Sebastian Pad6. A powerful and versatile Xfdtmat for rep-
resenting role-semantic annotation. Rroceedings of LREC-200f¢ages 799—
802, Lisbhon, Portugal, 2004.

Michael Fleischman, Eduard Hovy, and Abdessamad Echir@ffiine strategies
for online question answering: Answering questions befbey are asked. In
Erhard Hinrichs and Dan Roth, editoBroceedings of the 41st Annual Meeting
of the Association for Computational Linguistigages 1-7, 2003.

Dan Flickinger. On building a more efficient grammar by exjplg types. In
Dan Flickinger, Stephan Oepen, Hans Uszkoreit, and Junfistjii, editors,
Collaborative Language Engineering. A Case Study in Efftd@rammar-based
Processingpages 1-17. CSLI Publications, 2002.

Mary Ellen Foster and Michael White. Techniques for texnpiag with XSLT.
In Proceedings of the 4th NLPXML Worksh&arcelona, Spain, 2004.

Anette Frank and Katrin Erk. Towards an LFG syntax-semaniierface for
Frame Semantics annotation. In A. Gelbukh, edi@amputational Linguistics
and Intelligent Text ProcessingNCS, Springer, 2004.

Anette Frank, Markus Becker, Berthold Crysmann, Bernd &iefand Ulrich
Schafer. Integrated shallow and deep parsing: TopP mde®3 InProceed-
ings of ACL-2003pages 104-111, Sapporo, Japan, 2003.

Anette Frank, Kathrin Spreyer, Witold Drozdzynski, Kadlrich Krieger, and Ul-
rich Schafer. Constraint-based RMRS construction fromllelv grammars.

BIBLIOGRAPHY 311

In Stefan Milller, editor,Proceedings of the HPSG-2004 Conference, Center
for Computational Linguistics, Katholieke Universiteilven pages 393—-413.
CSLI Publications, Stanford, CA, 2004.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszkiré&erthold Crys-
mann, Brigitte Jorg, and Ulrich Schafer. Querying stowet knowledge
sources. IProceedings of AAAI-05. Workshop on Question Answeringein R
stricted Domainspage 10, Pittsburgh, Pennsylvania, 7 2005.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans UszkpreBerthold
Crysmann, and Ulrich Schéafer. Question answering fronucstred
knowledge sources. Journal of Applied Logic, Special Issue on Ques-
tions and Answers: Theoretical and Applied Perspectivds3), 2006.
doi:10.1016/j.jal.2005.12.006.

Manuel Frih, Philipp Hauser, and Michael Marks. Bewegturon XSLT-
Prozessoren. Technical report, Institut fur Parallelel Merteilte Systeme
(IPVS), Abteilung Anwendersoftware (AS), Universitauggart, Stuttgart, Ger-
many, 2004. Fachstudie Nr. 32.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan Sagneralized Phrase
Structure GrammarHarvard University Press, Cambridge, MA, 1985.

Kurt Godden. Lazy unification. IRroceedings of the 28th Annual Meeting of the
Association for Compulational Linguistics (AGLlpages 180-187, Pittsburgh,
PA, 1990.

Charles F. GoldfarbThe SGML HandbookClarendon Press, Oxford, 1990.

Joris GraaumansUsability of XML Query LanguagesPhD thesis, Dutch Re-
search School for Information and Knowledge Systems, Utrethe Nether-
lands, 2005. SIKS Dissertation Series No. 2005-16.

Gregory Grefenstette and Pasi Tapanainen. What is a worak, iwla sentence?
problems of tokenization. IRroceedings of the 3rd International Conference
on Computational Lexicographfdudapest, Hungary, 1994.

Gregory Grefenstette. Light parsing as finite state filgeriln Workshop on Ex-
tended finite state models of language, ECAI-1®&lapest, Hungary, 1996.

Ralph Grishman and Beth Sundheim. Message understandirigrence - 6: A
brief history. InProceedings of COLING-9®ages 466—471, 1996.

Ralph Grishman. TIPSTER text architecture design docunwemsion 3.2.
Technical report, DARPA, 1997. http://www-nlpir.nist\gcelated projects/tip-
ster/docs/arch31.doc.

312 BIBLIOGRAPHY

Claire Grover and Alexis Lascarides. XML-based data prajpar for robust deep
parsing. InProceedings of ACL/EACL 200fpages 252—-259, Toulouse, France,
2001.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. An evaluatioknofvledge base
systems for large OWL datasets. Pmoceedings of ISWC 200Springer, 2004.

Peter Haase, Jeen Broekstra, Andreas Eberhart, and RafomeA comparison
of RDF query languages. Rroceedings ISWC 200Bages 502-517. Springer,
2004.

Birgit Hamp and Helmut Feldweg. GermaNet - a lexical-setcanét for Ger-
man. InProceedings of ACL workshop Automatic Information Exicacand
Building of Lexical Semantic Resources for NLP Applicatidvadrid, 1997.

Marti A. Hearst. Untangling text data mining. Rroceedings of the 37th Annual
Meeting of the Association for Computational Linguisticsiversity of Mary-
land, Australia, June 1999.

Ulrich Heid, Holger Voormann, Jan-Torsten Milde, Ulrike GG&atrin Erk, and
Sebastian Pad6. Querying both time-aligned and hier@atborpora with NXT
search. InProceedings of the 4th International Conference on LanguRg-
sources and Evaluation LREC-2QQ#hges 1455-1458, Lisbon, Portugal, 2004.

Lars Hellan, Dorothee Beermann, Jon Atle Gulla, and Atlegea Trailfinder: A
case study in extracting spatial information using deeguage processing. In
Ton van der Wouden, Michaela Pol3, Hilke Reckman, and Critn@€rs, editors,
Computational Linguistics in the Netherlands 2004: Seléqgtapers from the
fiteenth CLIN meetingpages 121-131, Utrecht, Netherlands, 2004.

Gerd Herzog, Heinz Kirchmann, Stefan Merten, Alassaneydiand Peter Poller.
MULTIPLATFORM Testbed: An integration platform for multiodal dialog
systems. InProceedings of the HLT-NAACL 2003 Workshop on Software En-
gineering and Architecture of Language Technology Sys(&B<S) pages
75-82, Edmonton, Canada, 2003.

Gerd Herzog, Heinz Kirchmann, Stefan Merten, Alassane ydi&eter Poller,
and Tilman Becker. Large-scale software integration fakep language and
multimodal dialog systemsNatural Language Engineerind 0(3/4):283-305,
2004.

Jerry Hobbs, Douglas Appelt, John Bear, David Israel, MedGameyama, Mark
Stickel, and Mabry Tyson. Fastus: A cascaded finite-statesttucer for extract-
ing information from natural-language text. In E. Roche &nfchabes, editors,
Finite State Devices for Natural Language ProcessMgT Press, 1997.

BIBLIOGRAPHY 313

Tilman Hohle. Topologische Felder. Unpublished mangscruniversity of
Cologne, http://www.linguistik.uni-tuebingen.de/hésmanuskripte/Topologi-
scheFelder.pdf, 1983.

Nancy Ide and Laurent Romary. A common framework for syitaanotation.
In Proceedings of ACL-20Q0pages 298-305, Toulouse, 2001.

Nancy Ide and Laurent Romary. Standards for language res®unProceediungs
of LREC-2002pages 59-65, Las Palmas, Gran Canaria, 2002.

Nancy Ide, Patrice Bonhomme, and Laurent Romary. XCES: AriL.tidsed en-
coding standard for linguistic corpora. Rroceediungs of LREC-200Pages
825-830, Athens, Greece, 2000.

Nancy Ide, Adam Kilgarriff, and Laurent Romary. A formal nebaf dictionary
structure and content, 2000.

Nancy Ide. Encoding linguistic corpora. Rroceedings of the 6th Workshop on
Very Large Corporapages 9—17, 1998.

Nancy Ide. The XML framework and its implications for the dpment of nat-
ural language processing tools. MRmoceedings of the COLING Workshop on
Using Toolsets and Architectures to Build NLP Systdmgembourg, 2000.

Neil Ireson, Fabio Ciravegna, Mary Elaine Califf, Dayneitag, Nicholas Kush-
merick, and Alberto Lavelli. Evaluating machine learnirg information ex-
traction. InProc. Int. Conf. Machine Learnin@005.

ISO/IEC. ISO/IEC 10179:1996. document style semanticsspetification lan-
guage (DSSSL), 1996. International Standard, Internati@rganization for
Standardization, International Electrotechnical Consinis.

Ray JackendoffX’-Syntax: A Study of Phrase StructumIT Press, Cambridge,
Massachusetts, 1977.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic anogning. InProceedings
of the 14th ACM Symposium on Principles of Programming Laggg pages
111-119, 1987.

Aravind K. Joshi and Phil Hopely. A parser from antiquitiatural Language
Engineering 2(4):291-294, 1996.

Aravind K. Joshi, K. Vijay-Shanker, and David Weir. The cergence of mildly
context-sensitive grammar formalisms. In P. Sells, Shigb#1., and T. Warsow,
editors,Foundational Issues in Natural Language Processpages 31-81. MIT
Press, Cambridge, MA, USA, 1991.

Hans Kamp and Uwe Reylé&rom Discourse to LogicKluwer, Dordrecht, 1993.

314 BIBLIOGRAPHY

Ronald Kaplan and Joan Bresnan. Lexical-functional gramwdormal system
for grammatical representation. In Joan Bresnan, editog, Mental Represen-
tation of Grammatical Relationpages 173-281. MIT Press, Cambridge, Mass,
1982.

Ronald M. Kaplan and Martin Kay. Regular models of phonatabiule systems.
Computational Linguistics20(3):331-378, 1994.

Ronald M. Kaplan and Tracy Holloway King. Low-level markupdalarge-scale
LFG grammar processing. Proceedings of the LFG03 Conferenpages 238—
249. CSLI publications, 2003.

Ronald M. Kaplan, Tracy Holloway King, and John Maxwell. Adiag existing
grammars: The XLE experience. Rroceedings of the COLING-2002 Work-
shop on Grammar Engineering and Evaluatigages 29-35, 2002.

Ronald M. Kaplan, John T. Maxwell 1ll, Tracy Holloway King,nd Richard
Crouch. Integrating finite-state technology with deep LR@ngmars. InPro-
ceedings of the ESSLLI 2004 workshop on Combining Shall@Deep Pro-
cessing for NLPpages 11-20, Nancy, France, 2004.

Lauri Karttunen and Martin Kay. Structure sharing with binaees. InProceed-
ings of the 23rd Annual Meeting of the Association for Coratiomhal Linguis-
tics, pages 133-136A, Chicago, lllinois, USA, 1985.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefemesteitd Anne Schiller.
Regular expressions for language engineerigtural Language Engineering
2(4):305-328, 1996.

Lauri Karttunen. KIMMO: A general morphological processdexas Linguistic
Forum, 22:163-186, 1983.

Robert T. Kasper and William C. Rounds. The logic of unifioatin grammar.
Linguistics and Philosophyl3:35-58, 1990.

Walter Kasper, Bernd Kiefer, Hans-Ulrich Krieger, Chrter J. Rupp, and
Karsten L. Worm. Charting the depths of robust speech parséimProceedings
of the 37th Annual Meeting of the Association for Computetid_inguistics
(ACL’99), June 20-26pages 405-412, University of Maryland, College Park,
USA, 1999.

Walter Kasper, Jorg Steffen, Jakub Piskorski, and Pauteladr. Integrated
language technologies for multilingual information seed in the MEMPHIS
project. InProceedings of LREC-2004isbon, Portugal, 2004.

Martin Kay. Functional grammar. In C. Chiarello et al., ediProceedings of the
5th Annual Meeting of the Berkeley Linguistics Sogipages 142—-158, Berke-
ley, Cal, 1979.

BIBLIOGRAPHY 315

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and RoblM#d. A bag of useful
techniques for efficient and robust parsing. Aroceedings of the 37th Annual
Meeting of the Association for Computational LinguistiB§L-99 pages 473—
480, 1999.

Bernd Kiefer, Hans-Ulrich Krieger, and Mark-Jan NederhBfficient and robust
parsing of word hypotheses graphs. In Wolfgang Wahlstetpred/erbmobil:
Foundations of Speech-to-Speech Translathatificial Intelligence, pages 280—
295. Springer, Berlin, Germany, 2000.

Simon Kirby. Function, Selection and Innateness — The emerge of Landuaige
versals PhD thesis, University of Edinburgh, 1996.

Tina Kluwer. Semantische Auszeichnungen in sprachver@iden Prozessket-
tensystemen. Magister artium thesis, Institut fur spiieleh Informationsverar-
beitung, Universitat Koln, 2006.

Graham Klyne and Jeremy J. Carroll. Resource descriptiamdwork (RDF):
Concepts and abstract syntax, W3C recommendation, 2004ld Wide Web
Consortium, http://w3c.org/TR/rdf-concepts/.

Donald E. Knuth. A characterization of parenthesis langsagnformation and
Control, 11(3):269-289, 1967.

Kiyoshi Kogure. Strategic lazy incremental copy graph @atfion. InProceedings
of the 13th International Conference on Computational Listcs, COLING-
90, pages 223-228, 1990.

Valia Kordoni and Julia Neu. Deep analysis of modern GreeRrbceedings of the
1st International Joint Conference on Natural Languagedessing (IJCNLP-
04), Hainan Island, China, 2004.

Kimmo Koskenniemi. Two-level model for morphological ayss. In A. Bundy,
editor, Proceedings of the 8th International Joint Conference ofifigial Intel-
ligence pages 683-685, Karlsruhe, Germany, 1983.

Hans-Ulrich Krieger and Ulrich Schafer. TDL — A type degtion language for
constraint-based grammars.Rroceedings of the 15th International Conference
on Computational Linguistics, COLING-9dages 893—-899, 1994. An enlarged
version of this paper is available as DFKI Research ReporBRR7.

Hans-Ulrich Krieger and Feiyu Xu. A type-driven method fontpacting MMorph
resources. IfProceedings of RANLP 200Bages 220-224, 2003.

Hans-Ulrich Krieger, Witold Drozdzynhski, Jakub Piskkr, Ulrich Schafer, and
Feiyu Xu. A bag of useful techniques for unification-basedtdistate trans-
ducers. InProceedings of KONVENS-200dages 105-112, Vienna, Austria, 9
2004.

316 BIBLIOGRAPHY

Hans-Ulrich Krieger. TDL — A Type Description Language for Constraint-Based
Grammars. Foundations, Implementation, and ApplicatioR&D thesis, Uni-
versitat des Saarlandes, Department of Computer SciSaaebriicken, 1995.

Hans-Ulrich Krieger. SDL — A description language for builgl NLP systems.
In Proceedings of the HLT-NAACL Workshop on the Software Ergimg and
Architecture of Language Technology Systems, SEAbAges 84-91, 2003.

Taku Kudo and Yuji Matsumoto. Use of support vector learrfimgchunk identi-
fication. InProceedings of CoNLL-20QQisbon, Portugal, 2000.

Anna Kups€, Malgorzata Marciniak, Agnieszka Mykowieclkend Jakub Pisko-
rski. Intelligent content extraction from Polish medicaports. Ininterna-
tional Workshop on Intelligent Media Technology for Cominative Intelli-
gence, Warsaw, Polan@ 2004.

Catherine Lai and Steven Bird. Querying and updating tnelehiaA critical sur-
vey and requirements analysis. Bmoceedings of the Australasian Language
Technology Workshopages 139-146, Sydney, Australia, 2004.

D. Terence Langendoen and Gary F. Simons. A rationale fof El@ecommen-
dations for feature structure markup. In Nancy Ide and Jezons, editors,
Computers and the Humanities 29(&luwer Acad. Publ., The Text Encoding
Initiative: Background and Context, Dordrecht, 1995. Rapr

Kiyong Lee, Lou Burnard, Laurent Romary, Eric de la Clerggtilrich Schéafer,
Thierry Declerck, Syd Bauman, Harry Bunt, Lionel Cléemefamaz Erjavec,
Azim Roussanaly, and Claude Roux. Towards an internatistaaidard on fea-
ture structure representation (2). Pmoceedings of the LREC-2004 workshop
on A Registry of Linguistic Data Categories within an Intgd Language Re-
sources Repository Arepages 63—70, Lisbon, Portugal, 2004.

Evan Lenz. XQuery: Reinventing the wheel?, 2003. http:Mwxanlportfolio.com/
xquery.html.

Christian Lieske, Susan McCormick, and Gregor Thurmaire ®pen lexicon in-
terchange format (OLIF) comes of age. Machine Translation Summit VI|II
2001.

Kaiying Liu. Research of automatic Chinese word segmeantatin International
Workshop on Innovative Language Technology and Chinesemiation Pro-
cessing (ILT&CIP-2001)2001.

Welf Lowe and Markus L. Noga. A lightweight XML-based middlare architec-
ture. InProceedings of IASTED Al 200Ensbruck, Feb 2002. ACTA Press.

Robert Malouf, John Carroll, and Ann Copestake. Efficieatdiee structure oper-
ations without compilationNatural Language Engineering(1):29-46, 2000.
Special Issue on Efficient Processing with HPSG.

BIBLIOGRAPHY 317

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Makiewicz. Building a
large annotated corpus of English: The Penn treeb&uknputational Linguis-
tics, 19(2):313-330, 1994.

Montserrat Marimon. Integrating shallow linguistic presig into a unification-
based Spanish grammar. 189th International Conference on Computational
Linguistics (COLING-2002)Taipei, Taiwan, 2002.

Montserrat Marimon.On Distributing the analysis process of a broad-coverage
unification-based grammar of SpanishPhD thesis, Institut de ciéncies de
I'educacio, Universitat Politecnica de Catalunya, Bdwoa, Spain, 2002.

Jonathan Marsh and David Orchard. XML inclusions (XIncjudrsion 1.0, 2001.
World Wide Web Consortium, http://w3c.org/TR/xinclude/.

Bruce Martin. Distributed Xbean applications. Rroceedings of the 2nd Inter-
national Symposium on Distributed Objects and ApplicatidBEEE Computer
Society Press, September 2000.

Neil Mayo, Jonathan Kilgour, and Jean Carletta. Towarddtamative implemen-
tation of NXT’s query language via XQuery. Froceedings of the EACL-2006
Workshop on Multi-dimensional Markup in Natural Languaged@ssingpages
27-34, Trento, Italy, 4 2006.

David McKelvie, Chris Brew, and Henry Thompson. Using SGM.a basis
for data-intensive natural language processiigmputers and the Humanities
31(5), 1998.

Robert McNaughton. Parenthesis grammarsACM 14(3):490-500, 1967.

Andreas Mengel and Wolfgang Lezius. An XML-based represent format for
syntactically annotated corpora. Rroceediungs of LREC-200pages 121—
126, Athens, Greece, 2000.

George A. Miller, Richard Beckwith, Christiane Fellbaumermk Gross, and
Katherine J. Miller. Five papers on WordNet. Technical rgp8ognitive Sci-
ence Laboratory, Princeton University, 1993.

Stefan Muller and Walter Kasper. HPSG analysis of German. Wblfgang
Walhlster, editorVerbmobil: Foundations of Speech-to-Speech Translafon
tificial Intelligence, pages 238-253. Springer, Berlinyi@any, 2000.

Stefan Muller. Deutsche Syntax deklarativ. Head-Driven Phrase Strud&nam-
mar fur das DeutscheMax Niemeyer Verlag, Tubingen, 1999.

Christoph Miiller. A flexible stand-off data model with quéanguage for multi-
level annotation. IfProceedings of the ACL-2005 Interactive Poster and Demon-
stration Sessiongages 109-112, Ann Arbor, 2005.

318 BIBLIOGRAPHY

Stefan Miller.Head-Driven Phrase Structure Grammar — Eine Bimfung Stauf-
fenburg Verlag, Tubingen, 2007. to appear.

Bernhard Nebel and Gert Smolka. Representation and rewswriih attributive
descriptions.Sorts and Types in Atrtificial Intelligencé18:112—-139, 1990.

Julia Neu. Deep and shallow processing of modern Greek inlélimgual con-
text. Master’s thesis, Saarland University, Computafidmaguistics Depart-
ment, Saarbriicken, Germany, 2004.

Gunter Neumann and Jakub Piskorski. A shallow text pracgssore engine.
Journal of Computational Intelligencd8(3), 2002.

Gunter Neumann and Bogdan Sacaleanu. Experiments on Rdhu@uestion
Interpretation and Multi-layered Document Annotation &Cross-Language
Question/Answering System. IRroceedings of the Working Notes for the
CLEF-2004 WorkshgBath, UK, 2004.

Gunter Neumann and Ulrich Schafer. AW EBOARD - eine XML-basierte Ar-
chitektur fur die Analyse natirlichsprachlicher TexteStefan Janichen, editor,
Proceedings of Online 2002, 25th European Congress Faifémhnical Com-
munication Disseldorf volume C, pages 635.01-635.12, Dusseldorf, Deutsch-
land, 2002. Online GmbH Kongresse und Messen fiir techais@mmunika-
tion.

Gunter Neumann and Feiyu Xu. Mining answers in German weiegpalnPro-
ceedings of IEEE/WIC WI-2008lalifax, Canada, 10 2003.

Gunter Neumann, Rolf Backofen, Judith Baur, Markus Beck&d Christian
Braun. An information extraction core system for real wdd@drman text pro-
cessing. Insth International Conference of Applied Natural Languagages
208-215, 1997.

Gunter NeumannA Uniform Computational Model for Natural Language Parsing
and Generation PhD thesis, Universitat des Saarlandes, Saarbriickéd,. 1

Eric Nichols, Francis Bond, and Daniel Flickinger. Robustobogy acquisition
from machine-readable dictionaries. Pnoceedings of the International Joint
Conference on Atrtificial Intelligence IJCAI-200%ages 1111-1116, Edinburgh,
2005.

Daniel Oberle, Anupriya Ankolekar, Pascal Hitzler, Phili€imiano, Michael
Sintek, Malte Kiesel, Babak Mougouie, S. Vembu, S. Baumahassimo Ro-
manelli, Paul Buitelaar, R. Engel, Daniel Sonntag, NorBaithinger, Berenike
Loos, Rainer Porzel, H.-P. Zorn, V. Micelli, C. Schmidt, Ntar Weiten,
F. Burkhardt, and J. Zhou. DOLCE ergo SUMO: On foundatiomal domain
models in SWIntO (SmartWeb integrated ontology)). Techinieport, AIFB,
University of Karlsruhe, 7 2006.

BIBLIOGRAPHY 319

Stephan Oepen and Ulrich Callmeier. Measure for measuresePa&ross-
fertilization. Towards increased component comparatditd exchange. IRro-
ceedings of the 6th International Workshop on Parsing Teldgy (IWPT '00),
February 23-25pages 183-194, Trento, Italy, 2000.

Stephan Oepen, Ezra Callahan, Dan Flickinger, ChristopheManning, and
Kristina Toutanova. LinGO Redwoods: A rich and dynamic laaek for HPSG.
In Beyond PARSEVAL Workshop at the 3rd International Conferem Lan-
guage Resources and Evaluation, LREC-20G& Palmas, Spain, 2002.

Stephan Oepen, Dan Flickinger, Jun-ichi Tsujii, and Harskoieit, editors.Col-
laborative Language Engineering. A Case Study in Efficieran@nar-based
Processing CSLI Publications, Stanford, CA, 2002.

Stephan Oepen.[incr tsdb()] — competence and performance laboratory. User
manual. Technical report, Computational Linguistics, rizam University,
Saarbriicken, Germany, 2001.

National Institute of Standards and Technology. A univetrsanscription format
(UTF) annotation specification for evaluation of spokenglaage technology
corpora, 1998. http://www.nist.gov/speech/tests/breviss 99/utf-1.0-v2.ps.

Garance Paris. Interaction between tag set design andlingual information
extraction. Bachelor’s thesis, Computational Lingustizepartment, Saarland
University, 2002.

Jon Patrick. Text mining for finanical scams on the Interive§.J. Simoff and G.J.
Williams, editors Proceedings of the 3rd Australasian Data Mining Conference
pages 33-38, 2004.

Fernando C.N. Pereira and Stuart M. Shieber. The semarftiggammar for-
malisms seen as computer languagesProceedings of the 10th International
Conference on Computational Linguistiggges 123-129, 1984.

Fernando C.N. Pereira and David H.D. Warren. Definite clguasnmars for lan-
guage analysis — a survey of the formalism and a comparistimamgmented
transition networksArtificial Intelligence 13:231-278, 1980.

Fernando C.N. Pereira and David H.D. Warren. Parsing asctiedu In Proceed-
ings of the 21th Annual Meeting of the Association for Compatal Linguis-
tics, pages 137-144, Cambridge, MA, 6 1983. MIT.

Georgios Petasis, Vangelis Karkaletsis, Georgios Paguon Androutsopoulos,
and Constantine D. Spyropoulos. Ellogon: A New Text EngiimgePlatform.
In Proceedings of LREC-200Rages 72—-78, Canary island, Spain, 2002.

Dominique Petitpierre and Graham Russell. MMORPH — the emtithorphology
program. Technical report, ISSCO, University of Genev&®519

320 BIBLIOGRAPHY

Jakub Piskorski and Ginter Neumann. An intelligent textastion and naviga-
tion system. InProceedings of the 6th International Conference on Compute
Assisted Information Retrieval RIAO-2Q@aris, France, 2000.

Jakub Piskorski, Petr Homola, Malgorzata Marciniak, Agai@a Mykowiecka,
Adam Przepibérkowski, and Marcin Wolifski. Informatiorteaction for Polish
using the SProUT platform. IRroceedings of Intelligent Information Systems
Zakopane, Poland, 2004.

Jakub Piskorski. Named-entity recognition for Polish wiAroUT. In Leonard
Bolc, Zbigniew Michalewicz, and Toyoaki Nishida, editotsgcture Notes in
Computer Science Vol 3490 / 2005: Intelligent Media Teabgylfor Commu-
nicative Intelligence: 2nd International Workshop, Wars&oland, September
13-14, 2004. Revised Selected Pappegjes 122—-133. Springer, 10 2005.

Carl Pollard and Ivan A. Saginformation-Based Syntax and Semantics. Vol. I
Fundamentals CSLI Lecture Notes, Number 13. Center for the Study of Lan-
guage and Information, Stanford, CA, 1987.

Carl Pollard and Ivan A. Sag-Head-Driven Phrase Structure Grammabtudies
in Contemporary Linguistics. University of Chicago Pre&Skicago, 1994.

Robbert Prins and Gertjan van Noord. Unsupervised posrggaproves parsing
accuracy and parsing efficiency. Rroceedings of IWPBeijing, 2001.

Robbert Prins and Gertjan van Noord. Reinforcing parsdepaces through tag-
ging. Journal Traitement Automatique des Langues, Special kssie/olutions
in Parsing, 44(3):121-139, 2003.

Frank Richter. A Mathematical Formalism for Linguistic Theories with an-Ap
plication in Head-Driven Phrase Structure GrammaPhD thesis, Universitat
Tlbingen, 2000.

Douglas L. T. RohdeTGrep2 User Manual version 1.18IT, Cambridge, MA,
2005. http://tedlab.mit.edu/"dr/Tgrep2/tgrep2.pdf.

William C. Rounds and Alexis Manaster-Ramer. A logical i@nsof functional
grammar. InProceedings of the 25th Annual Meeting of the Association fo
Computational Linguisticgpages 89-96, 1987.

Ulrich Schafer and Daniel Beck. Automatic testing and eaabn of multilingual
language technology resources and componen®tdeeedings of the 5th Inter-
national Conference on Language Resources and EvaluaiRi1-2006 pages
173-178, Genoa, ltaly, 5 2006.

Ulrich Schafer. Parameterized type expansion in the featructure formalism
TDL. Master’s thesis, Universitat des Saarlandes, Saakien, 1995.

BIBLIOGRAPHY 321

Ulrich Schafer. WHAT: An XSLT-based infrastructure foetmtegration of natural
language processing components.Phoceedings of the Workshop on the Soft-
ware Engineering and Architecture of LT Systems (SEALTE);MAACLO3
pages 9-16, Edmonton, Canada, 2003.

Ulrich Schafer. Typesetting XTDL Grammars and Typed Feature Structurds wit
FS2LaTeX DFKI GmbH, Language Technology Lab, Saarbriicken, Geyman
11 2004. User manual, http://www.dfki.de/"uschaefetétex/.

Ulrich Schafer. Using XSLT for the integration of deep afhltow natural lan-
guage processing components Piioceedings of the ESSLLI 2004 workshop on
Combining Shallow and Deep Processing for NpBges 31-40, Nancy, France,
2004.

Ulrich Schafer. Heart of Gold — an XML-based middleware for the integration
of deep and shallow natural language processing componéiser and Devel-
oper DocumentationDFKI Language Technology Lab, Saarbriicken, Germany,
2005. http://heartofgold.dfki.de/doc/heartofgoldgimit.

Ulrich Schafer. Middleware for creating and combining tidimensional NLP
markup. InProceedings of the EACL-2006 Workshop on Multi-dimengiona
Markup in Natural Language Processingages 81-84, Trento, Italy, 4 2006.

Ulrich Schafer. OntoNERdIE — mapping and linking ontokxyito named entity
recognition and information extraction resources. Pimceedings of the 5th
International Conference on Language Resources and EtfaituaREC-2006
pages 1756-1761, Genoa, Italy, 5 2006.

Helmut Schmid. Probabilistic part-of-speech tagging gslacision trees. IRro-
ceedings of International Conference on New Methods in uagg Processing
Manchester, UK, 1994.

Helmut SchmidLoPar: Design and ImplementatiotMS, University of Stuttgart,
Stuttgart, 2000. Arbeitspapiere des SFB 340, Nr. 149.

Marc Schroder and Stefan Breuer. XML representation laggs as a way of
interconnecting TTS modules. Rroceedings of ICSLP Q4deju, Korea, 2004.

Stuart M. Shieber, Hans Uszkoreit, Fernando Pereira, Jabesson, and Mabry
Tyson. The formalism and implementation of PATR-II. In Bard J. Grosz and
Mark E. Stickel, editorsResearch on Interactive Acquisition and Use of Know-
ledge pages 39-79. Al Center, SRI International, Menlo Park, 88yember
1983.

Stuart M. Shieber, Gertjan van Noord, Fernando C.N. Peramd R.C. Moore.
Semantic-head-driven GenerationComputational Linguistics16(1):30-42,
1990.

322 BIBLIOGRAPHY

Stuart M. ShieberAn Introduction to Unification-Based Approaches to Grammar
CSLI Lecture Notes, Number 4. Center for the Study of Languatd Informa-
tion, Stanford, CA, 1986.

Stuart M. Shieber. A Uniform Architecture for Parsing andn@mtion. InPro-
ceedings of the 12th International Conference on Compriati Linguistics
pages 614-619, 1988.

Stuart M. Shieber.Constraint-Based Grammar FormalismsMIT Press, Cam-
bridge, MA, 1992.

Melanie Siegel and Emily M. Bender. Efficient deep procassifiJapanese. In
Proceedings of the 3rd Workshop on Asian Language Resoarwtd$nterna-
tional Standardization. COLING 2002 Post-Conference 8o, August 31
Taipei, Taiwan, 2002.

Melanie Siegel, Feiyu Xu, and Gunter Neumann. Customigegmanet for the
Use in Deep Linguistic Processing. Rroceedings of the NAACL Workshop
Wordnet and Other Lexical Resourc&sttsburgh, USA, 2001.

Neil K. Simpkins. An open architecture for language engimge In Proceedings
of the 1st Language Engineering ConvenjiBaris, France, 1994.

Wojciech Skut and Thorsten Brants. Chunk tagger: statistecognition of noun
phrases. IFESSLLI-1998 Workshop on Automated Acquisition of Syntax an
Parsing Saarbriicken, Germany, 1998.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and HangKdseit. An anno-
tation scheme for free word order languages. In Paul Jaeuli®r, Proceed-
ings of the 5th Conference on Applied Natural Language Pasiogg ANLP-97
Washington, DC, 1997. Morgan Kaufmann Publishers.

Wojciech Skut, Thorsten Brants, and Hans Uszkoreit. A lisiieally interpreted
corpus of german newspaper text. Rroceedings of the ESSLLI Workshop on
Recent Advances in Corpus Annotati@aarbriicken, Germany, 1998.

Gert Smolka. Feature constraint logic for unification graamsn IWBS Report 93,
IWBS, IBM Germany, Stuttgart, November 1989. Also in JolroaLogic
Programming, 12:51-87, 1992.

C. Michael Sperberg-McQueen and Lou Burnard, edita®uidelines for Elec-
tronic Text Encoding and InterchangeText Encoding Initiative, Chicago and
Oxford, 1994.

Claire Louise Taylor. XSLT as a linguistic query languag@02. Honours the-
sis, Department of Computer Science and Software Engmggedniversity of
Melbourne, Australia.

BIBLIOGRAPHY 323

Elke Teich, Silvia Hansen, and Peter Fankhauser. Repiegemtd querying multi-
layer annotated corpora. Rroceedings of the IRCS Workshop on Linguistic
Databasespages 228-237, Philadelphia, 2001.

Henry S. Thompson and David McKelvie. Hyperlink semantios $tandoff
markup of read-only documents. Rroceedings of SGML-EU-1997997.

Henry S. Thompson, David Beech, Murray Maloney, and Noahdé&ohn. XML
Schema Part 1: Structures, Second Edition, 2004. World Wiele Consortium,
http://w3c.org/TR/xmlschema-1/.

Erik Tjong Kim Sang and Sabine Buchholz. Introduction to @eNLL-2000
shared task: Chunking. Proceedings of CoNLL-200Qisbon, Portugal, 2000.

Hideto Tomabechi. Quasi-destructive graph unification. Pfaceedings of the
29th Annual Meeting of the Association for Computationadguistics pages
315-322, 1991.

Hideto Tomabechi. Quasi-destructive graph unificatiorhwsiructure-sharing. In
Proceedings of the 14th COLIN@ages 440-446, 1992.

Hans Uszkoreit, Rolf Backofen, Stephan Busemann, AbdekeK&uagne, Eliza-
beth Hinkelman, Walter Kasper, Bernd Kiefer, Hans-Ulricheger, Klaus Net-
ter, Gunter Neumann, Stephan Oepen, and Stephen P. Spacki&CO — an
HPSG-based NLP system and its application for appointmemeduling. In
Proceedings of the 15th International Conference on Coatfmutal Linguistics
(COLING’94), August 5-9volume 1, pages 436—440, Kyoto, Japan, 1994,

Hans Uszkoreit, Brigitte Jorg, and Gregor Erbach. An amuptbased knowledge
portal for language technology. roceedings of ENABLER/ELSNET Work-
shop Paris, 2003.

Hans Uszkoreit, Ulrich Callmeier, Andreas Eisele, Ulriath&fer, Melanie Siegel,
and Jakob Uszkoreit. Hybrid robust deep and shallow semanticessing for
creativity support in document production. Pmoceedings of KONVENS-2004
pages 209-216, Vienna, Austria, 9 2004.

Hans Uszkoreit. New Chances for Deep Linguistic Procesdm@roceedings of
COLING 2002 pages xiv—xxvii, Taipei, Taiwan, 2002.

Marcel P. van Lohuizen. Memory-efficient and thread-safesgdestructive graph
unification. InProceedings of ACL-200@ages 352—-359, 2000.

Gertjan van Noord and Dale Gerdemann. Finite state traesslweith predicates
and identity. Grammars 4(3):263—-286, 2001.

Gertjan van Noord.Reversibility in Natural Language Processing?hD thesis,
University of Utrecht, 1993.

324 BIBLIOGRAPHY

Sreeni Viswanadha and Sriram Sankar. Java compiler con(déeaCC) — The
Java parser generator, 2002. Sun Microsystems, htt@dfadev.java.net.

Wolfgang Wahlster, editonerbmobil: Foundations of Speech-to-Speech Transla-
tion. Artificial Intelligence. Springer, Berlin, Germany, 2000

Wolfgang Wahlster, editorSmartKom: Foundations of Multimodal Dialogue Sys-
tems Springer, Berlin, 2006.

Ben Waldron, Ann Copestake, Ulrich Schafer, and Bernd éiefPreprocessing
and tokenisation standards in DELPH-IN tools.Froceedings of the 5th Inter-
national Conference on Language Resources and EvaluaiRi1-2006 pages
2263-2268, Genoa, Italy, 5 2006.

Oliver Wauschkuhn. Ein Werkzeug zur partiellen syntakigst Analyse deutscher
Textkorpora. In D. Gibbon, editoRroceedings of the 3rd KONVENS Confer-
ence pages 356—-368, Berlin, 1996. Mouton de Gruyter.

Graham Wilcock. Pipelines, templates and transformati®idL for natural lan-
guage generation. IRroceedings of the 1st NLP and XML Workshop, NLPRS-
2001, pages 1-8, Tokyo, Japan, 2001.

Andreas Witt. TEI-based XML-applications: Transcripgorn Joint Conference
of the ALLC and ACH (ALLCACH98pebrecen, Hungary, 1998.

Mary McGee Wood Categorial GrammarsRoutledge, London, 1993.

David A. Wroblewski. Nondestructive graph unification.Rroceedings of the 6th
AAAI Conferencgpages 582-589, 1987.

Feiyu Xu and Hans-Ulrich Krieger. Integrating shallow areed NLP for infor-
mation extraction. IrProceedings of RANLP 200Bages 513-517, Borovets,
Bulgaria, 2003.

Rémi Zajac, Mark Casper, and Nigel Sharples. An open Higid architecture
for reuse and integration of heterogeneous NLP componén®roceedings of
the 5th Conference on Applied Natural Language Processiages 245-252,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers In

Rémi Zajac. Annotation management for large-scale NLP.Proceedings of
ESSLLI-98 Workshop on Recent Advances in Corpus Annqgt&aarbriicken,
Germany, 1998.

Zhiping Zheng. AnswerBus question answering system.Hlman Language
Technology Conference (HLT-200Zan Diego, CA, 2002.

