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Abstract

We describe basic concepts and software architectures for the integration of
shallow and deep (linguistics-based, semantics-oriented) natural language process-
ing (NLP) components. The main goal of this novel, hybrid integration paradigm is
improving robustness of deep processing. After an introduction to constraint-based
natural language parsing, we give an overview of typical shallow processing tasks.
We introduce XML standoff markup as an additional abstraction layer that eases
integration of NLP components, and propose the use of XSLT asa standardized
and efficient transformation language for online NLP integration.

In the main part of the thesis, we describe our contributionsto three hybrid ar-
chitecture frameworks that make use of these fundamentals.SProUT is a shallow
system that uses elements of deep constraint-based processing, namely type hier-
archy and typed feature structures. WHITEBOARD is the first hybrid architecture
to integrate not only part-of-speech tagging, but also named entity recognition and
topological parsing, with deep parsing. Finally, we present Heart of Gold, a mid-
dleware architecture that generalizes WHITEBOARD into various dimensions such
as configurability, multilinguality and flexible processing strategies.

We describe various applications that have been implemented using the hybrid
frameworks such as structured named entity recognition, information extraction,
creative document authoring support, deep question analysis, as well as evalua-
tions. In WHITEBOARD, e.g., it could be shown that shallow pre-processing in-
creases both coverage and efficiency of deep parsing by a factor of more than two.

Heart of Gold not only forms the basis for applications that utilize semantics-
oriented natural language analysis, but also constitutes acomplex research instru-
ment for experimenting with novel processing strategies combining deep and shal-
low methods, and eases replication and comparability of results.
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Zusammenfassung (kurz)

Diese Arbeit beschreibt Grundlagen und Software-Architekturen für die Inte-
gration von flachen mit tiefen (linguistikbasierten und semantikorientierten) Ve-
rarbeitungskomponenten für natürliche Sprache. Das Hauptziel dieses neuarti-
gen, hybriden Integrationparadigmas ist die Verbesserungder Robustheit der tiefen
Verarbeitung. Nach einer Einführung in constraintbasierte Analyse natürlicher
Sprache geben wir einen̈Uberblick über typische Aufgaben flacher Sprachverar-
beitungskomponenten. Wir führen XML Standoff-Markup alszusätzliche Abstrak-
tionsebene ein, mit deren Hilfe sich Sprachverarbeitungskomponenten einfacher
integrieren lassen. Ferner schlagen wir XSLT als standardisierte und effiziente
Transformationssprache für die Online-Integration vor.

Im Hauptteil der Arbeit stellen wir unsere Beiträge zu dreihybriden Architek-
turen vor, welche auf den beschriebenen Grundlagen aufbauen. SProUT ist ein
flaches System, das Elemente tiefer Verarbeitung wie Typhierarchie und getypte
Merkmalsstrukturen nutzt. WHITEBOARD ist das erste System, welches nicht nur
Part-of-speech-Tagging, sondern auch Eigennamenerkennung und flaches topolo-
gisches Parsing mit tiefer Verarbeitung kombiniert. Schließlich wird Heart of Gold
vorgestellt, eine Middleware-Architektur, welche WHITEBOARD hinsichtlich ver-
schiedener Dimensionen wie Konfigurierbarkeit, Mehrsprachigkeit und Unterstüt-
zung flexibler Verarbeitungsstrategien generalisiert.

Wir beschreiben verschiedene, mit Hilfe der hybriden Architekturen imple-
mentierte Anwendungen wie strukturierte Eigennamenerkennung, Informationsex-
traktion, Kreativitätsunterstützung bei der Dokumenterstellung, tiefe Frageanalyse,
sowie Evaluationen. So konnte z.B. in WHITEBOARD gezeigt werden, dass durch
flache Vorverarbeitung sowohl Abdeckung als auch Effizienz des tiefen Parsers
mehr als verdoppelt werden.

Heart of Gold bildet nicht nur Grundlage für semantikorientierte Sprachan-
wendungen, sondern stellt auch eine wissenschaftliche Experimentierplattform für
weitere, neuartige Kombinationsstrategien dar, welche zudem die Replizierbarkeit
und Vergleichbarkeit von Ergebnissen erleichtert.
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Zusammenfassung (ausf̈uhrlich)

Diese Arbeit beschreibt Grundlagen und Software-Architekturen für die In-
tegration von flachen mit tiefen, linguistikbasierten und semantikorientierten Ve-
rarbeitungskomponenten für natürliche Sprache. Das Hauptziel dieser hybriden
Integration ist die Verbesserung der Robustheit der tiefenVerarbeitung.

Nach einerÜbersicht in Kapitel 1 führen wir in Kapitel 2 allgemeine Begriffe
wie tiefe und flache Analyse ein und geben eine Motivation für die vorliegende
Arbeit. In Kapitel 3 führen wir kurz in tiefe constraintbasierte Grammatikformal-
ismen für natürliche Sprache ein und stellen die kopfbasierte Phrasenstrukturgram-
matik (head-driven phrase structure grammar; HPSG) vor. Wir geben Definitionen
für getypte Merkmalsstrukturen und Unifikation an, und beschreiben informell die
Arbeitsweise und Ergebnisse (semantische Analyse) eines HPSG-Parsers.

Typische Aufgaben flacher Sprachverarbeitungskomponenten wie Tokenisier-
ing, Chunking und Eigennamenerkennung werden in Kapitel 4 beschrieben, um
dann auf die Beziehung zwischen flacher Verarbeitung und Dokumentauszeich-
nungssprachen eingehen zu können. Wir geben einen kurzen Abriss der Geschichte
von XML und SGML sowie darauf basierender linguistischer Auszeichnungsstan-
dards wie TEI und (X)CES. Schließlich führen wir den Begriff des Standoff-Mark-
up ein.

Kapitel 5 beginnen wir mit einer eingehenden Analyse des Flach-Tief-Integra-
tionsproblems, um dann technische Lösungswege mit Hilfe von Markup-Anfrage-
sprachen wie XPath, XSLT, XQuery, aber auch in der Literaturbeschriebenen An-
fragesprachen für linguistisch annotierte Korpora aufzuzeigen. Wir begründen un-
sere Wahl von XSLT als standardisierter und effizienter Transformationssprache
für die Online-Integration von Sprachverarbeitungskomponenten und zeigen bei-
spielhaft die Transformation von getypten Merkmalsstrukturen.

In Kapitel 6 motivieren wir die Notwendigkeit von Architekturen für Flach-
Tief-Integration und leiten zu den drei in den Folgekapiteln beschriebenen Archi-
tektur-Frameworks über. Im Hauptteil der Arbeit stellen wir unsere Beiträge zu
drei hybriden Architekturen für die Flach-Tief-Integration vor, welche auf den zu-
vor beschriebenen Grundlagen aufbauen.

SProUT (Kapitel 7) ist ein flaches System, das Elemente tiefer Verarbeitung
wie Typhierarchie und getypte Merkmalsstrukturen nutzt. Hauptvorteil des regel-
basierten Systems ist neben der flexiblen Konfigurierbeit die strukturierte Ausgabe,
welche sich in Anwendungen wie Eigennamenerkennung und Informationsextrak-
tion als vorteilhaft herausstellt.

Wir beschränken uns nach einer Einführung inSProUT auf vom Autor en-
twickelte Teile des Systems wie Formalismus-Typüberprüfung und automatische
Evaluation,SProUT ist jedoch auch als (optionaler) Bestandteil des dritten be-
schriebenen Frameworks, Heart of Gold, von Bedeutung. Wir gehen näher auf
die mit SProUT realisierte mehrsprachige Eigennamenerkennung ein und geben
eine Evaluation an, welche auf dem MUC-Annotationsschema beruht und state-of-
the-art-Ergebnisse zeigt, wobei die realisiertenSProUT-Grammatiken durch ihre
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strukturierte Ausgabe mehr Information bereitstellen, als durch das MUC-Schema
abgebildet wird (z.B. innere Struktur von Personennamen, Zeit- und Ortsangaben).

Das Kapitel schließt mit einer Beschreibung der zahlreicher Anwendungen und
Projekte in den Bereichen Informationsextraktion, Eigennamenerkennung und opi-
onion mining, in welchenSProUTerfolgreich eingesetzt wurde.

WHITEBOARD (Kapitel 8) ist die erste hybride Architektur, welche nichtnur
Part-of-speech-Tagging, sondern auch Eigennamenerkennung und flaches topolo-
gisches Parsing mit tiefem HPSG-Parsing kombiniert. Wir beschreiben ausführlich
die beiden Ausbaustufen der Integration (zunächst part-of-speech tagging und Ei-
gennamenerkennung, später flacher topologischer Parser mit Hilfe einer XSLT-
Kaskade). In der Evaluation von WHITEBOARD konnte gezeigt werden, dass durch
flache Vorverarbeitung sowohl Abdeckung als auch Effizienz des tiefen Parsers
mehr als verdoppelt werden. Eine Anwendung der Architekturim Bereich hy-
brider Informationsextraktion wird kurz skizziert.

In Kapitel 9 schließlich wird Heart of Gold vorgestellt, eine Middleware-Archi-
tektur, welche WHITEBOARD hinsichtlich verschiedener Dimensionen wie Konfig-
urierbarkeit, Mehrsprachigkeit und Unterstützung flexibler Verarbeitungsstrategien
generalisiert. Wir beschreiben neben der Middleware selbst auch die wichtigsten
integrierten Komponenten für verschiedene Sprachen und beispielhaft Konfigura-
tionen für robustes Parsen von deutschen, englischen und japanischen Texten.

Einen besonderen Stellenwert nimmt die neuartige Integration auf Basis des ro-
busten Semantikformalismus RMRS ein, welcher es erlaubt, auch nach dem tiefen
Parsen noch auf semantischer Ebene Informationen verschiedener Sprachverar-
beitungskomponenten zu einer einheitlichen Struktur zusammen zu fügen. Heart of
Gold unterstützt die RMRS-Integration optional, fürSProUT-Eigennamen-Gram-
matiken wird ein Codegenerierungsverfahren vorgestellt,welches automatisch aus
den deklarativen Typbeschreibungen XSLT-Code für die Laufzeit-Transformationen
nach RMRS erzeugt.

Ein weiterer Abschnitt des Kapitels beschäftigt sich mit der Integration von
Ontologie-Information in tiefe Satzanalysen. Hier wird ein implementierter Ansatz
vorgestellt, welcher mittels XSLT in einem offline-Verfahren aus OWL-Ontologien
Lingware-Resourcen fürSProUTdergestalt erzeugt, dass im tiefen Parseergebnis
Ontologieinformation (bzw. Referenzen darauf) enthaltensind.

Wir beschreiben schließlich verschiedene, mit Hilfe von Heart of Gold real-
isierte Anwendungen wie Kreativitätsunterstützung beider Dokumenterstellung,
automatische Email-Beantwortung im Bereich des customer relationship manage-
ment und tiefe Frageanalyse bei automatischer Fragebeantwortung auf strukturi-
erten Wissenquellen, sowie entsprechende, anwendungsbezogene Evaluationen.

Wir fassen zusammen, dass Heart of Gold aufgrund der generischen Architek-
tur nicht nur Grundlage für semantikorientierte Sprachanwendungen bilden kann,
sondern auch eine wissenschaftliche Experimentierplattform für weitere, neuartige
Kombinationsstrategien darstellt, welche zudem Replizierbarkeit und Vergleich-
barkeit von erzielten Ergebnissen erleichtert. Wir schließen die Arbeit mit einer
Zusammenfassung in Kapitel 10 ab.
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Chapter 1

Introduction

In this thesis, we describe our contributions to a new paradigm for hybrid natu-
ral language processing (NLP) architectures. The idea is tocombine pre-existing
shallow language technology components and a deep linguistic parser by using
XML technology. The main goal is to increase robustness of application-oriented
deep linguistic parsing. Further possible advantages of exploiting synergy gained
through NLP component combination is reduced ambiguity andincreased perfor-
mance of deep parsing.

The resulting overall systems can form the basis for a new generation of ap-
plications that build on machine understanding of human language which can – to
a certain extent and by means of a formal semantics representation language – be
provided by deep linguistic parsing.

The novel applications may comprise basic techniques such as textual entail-
ment, natural language question interpretation and answering, advanced informa-
tion extraction, but also more complex tasks such as opinionmining, creative
authoring support, business intelligence and further Semantic Web-related chal-
lenges.

Our thesis focuses on three architecture frameworks. The first one,SProUT,
is shallow with respect to its basic processing model, but integrates deep and shal-
low elements on the formalism level. It provides generic XMLinput and output
interfaces and can be used for many different (shallow) NLP tasks.

The second framework, WHITEBOARD, is an API-based sequential architec-
ture that uses XML and XSLT technology at numerous levels of shallow process-
ing that are input to a deep parser. It has been mainly used to research, evaluate and
demonstrate the feasibility and benefits of intensely interleaved shallow processing
and deep parsing.

The third framework, Heart of Gold, is a generalization of WHITEBOARD with
respect to many dimensions such as processing models, multilinguality, configura-
bility and networkability. Moreover, a new integration layer, based on a robust
semantics formalism that allows for underspecified representations from various
deep and shallow NLP components, is supported.
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Heart of Gold forms a middleware architecture for a wide range of applica-
tions related to the Semantic Web, and also (optionally) incorporates and builds
on the first framework,SProUT, in many of the realized multilingual integration
scenarios.

Finally, Heart of Gold not only forms the basis for applications that make use
semantics-oriented natural language analysis, but also constitutes a complex re-
search instrument for experimenting with novel processingstrategies combining
deep and shallow methods that at the same time eases replication and comparabil-
ity of results.

After thorough introduction of the processing and representation paradigms
for deep and shallow analysis, we motivate our idea of using XML transformation
for flexible integration of NLP components. Then, we describe each of the three
frameworks, their use in implemented applications, and evaluations in application
contexts such as information extraction, creative authoring support and deep ques-
tion analysis for question answering.

The overall result of our thesis is that the implemented hybrid architectures for
combining deep and shallow processing help to drastically increase the robustness
of deep linguistic parsing for use in NLP application contexts, and that utilizing
XML and XSLT technology eases flexible integration and combination of NLP
components.

The thesis is structured as follows.
In Chapter 2, we begin with some general definitions and present the motiva-

tions for the thesis. Chapter 3 briefly and informally introduces the HPSG grammar
formalism for deep natural language processing. Chapter 4 introduces shallow pro-
cessing, linguistic XML representations and the relation between them. In Chapter
5, we introduce general problems of hybrid deep-shallow integration and propose a
solution based on XML transformation. Chapter 6 explains and motivates the need
for architectures for application-oriented hybrid processing.

In Chapter 7, we describe our contributions to theSProUTplatform that com-
bines elements from deep and shallow NLP paradigms on the formalism level.
Chapter 8 discusses WHITEBOARD, an architecture for hybrid parsing that has
been developed to research and evaluate the possible benefits of interleaved pro-
cessing at multiple levels of language technology. In Chapter 9, the Heart of Gold
middleware architecture for robust, multilingual application-oriented deep-shallow
integration as well implemented applications are presented. Finally, we conclude
in Chapter 10.

Appendix A contains some of the most important document typedefinitions
discussed in the thesis (Chapters 4 through 9). Appendix B displays sample XSLT
stylesheets discussed in Chapter 9.

All HTTP links referred to in this thesis (including those mentioned in the
bibliography) have been verified on September 6, 2006.



Chapter 2

Definitions and Motivation

In this chapter, we briefly introduce deep and shallow natural language process-
ing and present an application-oriented description of thetasks and problems that
are addressed in our thesis. We then motivate the integration of both processing
paradigms and the possible benefits of this combination.

2.1 Deep and Shallow Natural Language Processing

2.1.1 Deep Natural Language Processing

Deep natural language processing (DNLP) systems try to apply as much linguis-
tic knowledge as possible to analyze natural language utterances. The linguistic
knowledge is declaratively encoded. The general term used in computer science is
information-based, knowledge representation-based or constraint-based process-
ing, as the knowledge about natural language is neither encoded in algorithms nor
in simple databases. Instead, the language knowledge is separated from the (at least
in principle) quite simple algorithms1 in a formal grammar with underlying (type)
theory and well-defined information fusing and consistencychecking operations.

The analysis result of the natural languages utterances (typically sentence-
wise) contains a collection of the knowledge that successfully contributed to the
analysis. The result often consists of many possible analyses per sentence reflect-
ing the uncertainty which of the syntactically possible readings was intended – or
a rejection (failure) of the input if the linguistic knowledge was contradictory or
insufficient with respect to the input. DNLP systems generally are rule-based2.

Rules describe constraints on the correct composition of linguistic entities (syn-
tax) based on a linguistic grammar theory, but abstract fromconcrete words which

1However, a considerable amount of the complexity of the implemented systems comes from
sophisticated methods making the processing efficient using e.g. compilation, optimization and sta-
tistical methodsetc.

2This does not mean that deep is the opposite of statistical, because statistical methods can well
be and are applied successfully to deep grammars and systems.

23



24 CHAPTER 2. DEFINITIONS AND MOTIVATION

are encoded in a lexicon. Using syntactic analysis of a deep grammar alone (with-
out semantics construction) can form the basis for applications such asgrammar
checking, where correct use of natural language syntax is either approved or a sen-
tence is rejected as ungrammatical3.

On the basis of the syntactic analysis, rules can also describe thecomposi-
tional construction of a natural language semantics representationof the meaning
of a sentence. Throughout this thesis, we always mean bysemantics representa-
tion a natural language semantics representation, an abstract,simplified language
describing in alogical form the meaning of a syntactically represented natural lan-
guage utterance, e.g. based on first order predicate logic such as the following
clause for the sentenceJohn gave Mary a book.

past(give(John, Mary, book))

The termdeep structurewas coined by Chomsky (1965), describing the theo-
retical construct underlying several possibly similarsurface forms, to abstract e.g.
from syntactic variants such as ‘John gave Mary the book’ or ‘The book was given
to Mary by John’ bearing essentially the same meaning. Chomsky later replaced
the termdeep structureby logical formandsurface formby phonetic form. How-
ever, one could think ofdeep analysisas of an algorithm that computes adeep
structure.

The constructed semantics representation can then be used in application-speci-
fic actions such as relation extraction, text summarization, question answering,
opinion detection, command interpretation4 etc. Moreover, as semantics represen-
tation ideally would be language-independent (a kind of neutral interlingua, the
pseudo-English relation names starting with cin the example), it could also form
the basis for machine translation, i.e., the generation of asyntactic surface in the
target language.

In an ideal multilingual DNLP setting, syntax and lexicon are language-specific,
while the semantics representation abstracts from the syntactic surface up to a cer-
tain extent. A simple example may illustrate the idea for thesentence

The farmer reads the newspaper.

is e.g.

c farmer(y)∧c newspaper(z)∧c transitiveread(x,y,z)∧c tensepresent(x)

The same semantic representation (modulo language-specific concepts) would
also hold for the French sentence

Le paysan lit le journal.

and the German sentence
3However, also for grammar checking, semantics can be beneficial, e.g. for (at least partial)

disambiguation.
4e.g. translation of natural language commands or questionsinto SQL queries on databases.
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Der Bauer liest die Zeitung.

However, this is a gross simplification as the isomorphism may neither hold
for lexical semantics5 nor for e.g. more complex verbal constructions as shown in
Copestakeet al. (1995a). Bysemantic transfer(translating concepts and more
complex constructionsetc), an equivalent representation in the target language
would have to be computed in the machine translation scenario.

Ideally, the same grammar for a specific language can be used for analysis and
generation, cf. Shieber (1988); Shieberet al. (1990); van Noord (1993); Neumann
(1994). In any case, due to ambiguity and richness of human language, multiple
semantic representations may be valid for a sentence andvice versa– there may be
syntactic variants for the same semantic representation.

The knowledge-intensive approach of DNLP requires considerable computa-
tional power, and has in the past sometimes been judged as being intractable6.
However, research on improving efficiency of deep processing has made consider-
able advances during the last years (Callmeier, 2000; Uszkoreit, 2002), and today,
efficiency is no longer a major problem for applications using deep processing.

2.1.2 Shallow Natural Language Processing

Unlike DNLP, shallow natural language processing (SNLP7) systems do not at-
tempt to achieve an exhaustive linguistic analysis. They are designed for specific
tasks ignoring many details in input and linguistic (grammar) framework.

Utilizing rule-based (e.g. regular grammars) or statistics-based approaches,
they are in general faster than DNLP, but only deliver flat, simple, partial, non-
exhaustive representations. Examples for dedicated shallow processing stages (in
the order of increasing complexity) are e.g. tokenization,part-of-speech tagging,
chunking, named entity recognition, and shallow sentence parsing. The purpose of
these shallow tasks will be described below (Section 2.3).

Due to the initial lack of efficiency and robustness of DNLP systems, the trend
in application-oriented language technology in the last years was to improve SNLP
systems. They are now capable of analyzing megabytes of texts within seconds, but
precision and quality barriers are so obvious (especially on domains the systems
where not designed for or trained on) that a need for ’deeper’systems re-emerged
(Uszkoreit, 2002). Moreover, semantics construction of SNLP from an input sen-
tence is quite poor and imprecise in typical shallow systems, and in many cases
insufficient for the above mentioned NLP applications8.

5The standard example being the German wordBankwhich has multiple meanings, e.g. financial
institution, but also bench.

6Cf. Chapter 3 for a discussion of theoretical results.
7The abbreviation SNLP is sometimes also used forstatistical natural language processing, e.g.

in Callison-Burch and Osborne (2003). Although there is a big overlap, namelyshallow statistical
language processing, the term statistical NLP excludes e.g. rule-based approaches that are comprised
by shallow NLP such as finite-state processing.

8Therefore, the somewhat derogative term sometimes used forthe result of shallow processing is
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2.2 Integration of the Paradigms

A promising approach to improve the quality of natural language text analysis is the
combination of deep and shallow processing technologies. Deep processing could
benefit from specialized and fast shallow analysis results and fill its ’knowledge
gaps’, e.g. in the lexicon, to increase robustness.

When DNLP returns too many readings for a sentence, statistics-based SNLP
components could help to select the most probable reading(s). Moreover, a combi-
natorial explosion of the search space in long sentences that is intrinsic for DNLP
could be avoided by filtering with the help of shallow analyses.

The integration of deep and shallow NLP systems is also economically moti-
vated. Because of expensive, time-consuming grammar development, most deep
systems tend to be domain-independent (describing common properties, phenom-
ena and syntactic constructions of a language), re-usable,and modular at least in
parts (cf. Benderet al. 2003; Pollard and Sag 1994) across languages. However,
lexical and semantic coverage on specific domains (e.g. the medical domain) is
limited by the (hand-crafted) lexicon.

Shallow components could help to bridge this gap and establish the following
task sharing. Domain-specific extensions could be contributed by shallow systems
in conjunction with generic entries in the deep lexicon thatare filled according
to the input text, while the core linguistic and grammar theory-based knowledge
stems from DNLP.

Because human language is productive (compound words, proper names, new
word formation, product names) and mutating, and words may also be misspelled,
there may be always in a general natural language text words that can not even
be found in a huge lexicon. Shallow taggers can guess the wordtypes of such
unknown words in a text, and assign an appropriate generic lexicon entry with
default values as fall-back information.

Deep linguistic analysis is only one stage in the process of language under-
standing. Full ambiguity resolution further requires discourse or context informa-
tion, world and domain-specific knowledge, and also semantic inference. These
tasks are left to application-specific processing and are out of the scope of this
thesis.

The prospective added value of integrating deep and shallowprocessing is a
more robust semantic analysis of text than is possible with standalone deep parsers
or shallow processors. The thesis centers around the representation languages and
architectures that are necessary to perform the integration task.

Table 2.1 coarsely sums uptypical properties of deep and shallow NLP. Of
course, the classifications are simplifying, and there are exceptions or cases where
the distinctions are fuzzy.

Resulting from this table, one can identify various challenges for integration
architectures of deep and shallow systems, most of which we will describe in more

low-level markup.
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Property Deep NLP Shallow NLP

Processing cost high low
Coverage low high
Behavior on ill-formed input not robust robust
Ambiguity rate high low
Syntactic analysis fine-grained coarse-grained
Generated semantics representation rich poor
Precision high low
Partial analysis (infrequent) frequent

Table 2.1: Typical properties of deep and shallow NLP

detail in Chapter 5.
The challenges are on the one hand linguistic, such as the different paradigms

(partial vs. exhaustive analysis, filtering vs. monotonic enrichment, different gran-
ularity, namings, types, spans for a recognized entity, andthe question how to
resolve ambiguity). On the other hand, there are technical challenges for the inte-
gration such as the fact that one would necessarily have to build on existing com-
ponents implemented in various programming languages, theproblem of online vs.
offline integration, and finally the questions whether experimental or application-
oriented use and flexibility or efficiency should be in the foreground.

In search of an architecture that integrates deep and shallow NLP, reading and
citing the seminal work of Cunningham (2000) aboutSoftware Architecture for
Language Engineeringis a must.

However, although his approach claims to be somewhat universal and to cover
any kind of NLP, it only covers shallow language technology and mentions deep
processing, typed feature structures and HPSG on a single page (108) and in no
way attacks the specific problem for this important class of NLP.

Therefore, our thesis is at large parts complementary to Cunningham (2000)
and tries to attack the problems left unmentioned and unsolved there for deep-
shallow integration.

2.3 The Benefits of Robust Deep Processing Enhanced by
Shallow Processing

Nowadays, shallow natural language processing (SNLP) tasks are performed through
statistical or simple rule-based, typically finite-state methods, often supported by
table or database lookups, with sufficient precision and recall. These tasks are e.g.

• Tokenizationis the task of separating words and e.g. punctuation symbolsin
a way appropriate for the subsequent tasks below. It is typically handled by
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regular expressions, and can range from very simple distinctions (e.g. word
vs. punctuation symbol) up to quite fine-grained differentiation of token
classes. It may also include the task ofsentence boundary detectionwhich
potentially is a hard problem (e.g. abbreviations with dotswithin or at the
end of a sentence), therefore requiring NER (cf. below) or even parsing as
well.

• Part-of-speech tagging (PoS tagging)is the task of determining the class of
a word, such as noun, pronoun, verb, adjective, adverbetc. Again, more or
less fine-grained classifications exist.

• Morphological analysis/stemmingis the task of decomposing a inflected
word into its stem and suffix and/or prefix, even if the stem’s surface is
modified (e.g. to be - I am - I was - they were), and enumerating the in-
flection feature value for e.g. case, gender, number, person. This task may
also include decomposition of compound words like in Germanor Dutch.

• Named entity recognition(NER) is the task of determining the type and
boundary of name words such as proper names, location names,time ex-
pressions, possibly including subtypes such as surname, given name, coun-
try, city name. As these classes of words are very productive, and cannot be
captured by lexical enumerations, they are also calledopen class words.

• Phrase chunkingis the task of segmenting a text into information units larger
than a word and possibly comprising other chunks, e.g. ‘the white horse’
forms a noun phrase.

• Shallow parsingis the task of analyzing sentence structure by e.g. a proba-
bilistic context-free model (PCFG parsing). This task is similar to chunking,
but on sentence level, and may build on chunking.

Some of the state-of-the-art language technology components of this ‘shallow’
kind are included in every-day applications such as word processors, word-based
search engines, full text document indexingetc.

Common to the performance of the above mentioned tasks is their imperfec-
tion that is mainly due to insufficient resources (unknown words, domain-specific
expressionsetc), ambiguity in natural language, unawareness of context, and the
inability to draw inferences and to use world knowledge.

However, despite these deficiencies, the described tasks are performed typi-
cally with precision and recall between 80 and 99 % which is considered accept-
able and comparable to human performance which is also not perfect indeed (and
ignoring the fact that humans need much longer to perform thetasks).

The judgment on quality of computerized NLP deteriorates when more com-
plex tasks are considered. Such tasks include
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• Information extraction: from texts such a newspaper articles on management
position changes (succession) fill in expected template slots, e.g. name, com-
pany, former position, new positionetc.

• Text summarization: produce in a couple of well-formed sentences an outline
of the relevant information that a larger text contains.

• Document or information retrieval: return from a document collection those
documents that contain relevant information according to adescription (key-
words in the trivial case).

• Text mining: try to discover e.g. trends from text. Although the similarity to
the term ‘data mining’ suggests that new facts (factoids) are discovered, the
widely accepted scope of text mining is restricted to simpler, more specific
and specified tasks, cf. Hearst (1999).

• Question answering: find a correct answer (e.g. a single sentence, or sum-
marizing in a few sentences) in a local text repository or on the world-wide
web to a question a user formulates in natural language. QA istypically be
based on document retrieval.

• Opinion mining: extract meanings uttered by people, e.g. judgments on a
product in a web forum or a newsgroup.

• Machine translation: translate a text into a different language while preserv-
ing the meaning and style of the original.

• Textual entailment recognition: this is the somewhat artificial, but never-
theless very interesting task of deciding, given two text fragments, whether
the meaning of one text is entailed (can be inferred) from another text. It
has applications in information extraction, information retrieval, question
answering and machine translation.

Further advanced applications may use combinations of these basic tasks, e.g.
Scam seeking, the task of finding documents that contain faked information such
as illegal investment proposals in financial news (Patrick,2004).

While humans still need a considerable amount of time to solve these tasks,
they can (approximately) do it with precision and recall comparable to those on the
the above mentioned low-level tasks.

However, the fraction of acceptable solutions delivered bycurrent NLP systems
is muchlower than for the low-level tasks. One reason is that e.g. simple language
models such as trigrams or simple finite-state models are obviously inadequate (as
more than just local information has to be considered) and cannot capture the com-
plexity of the task and the necessarily involved data, e.g. information extraction
can be very hard, depending on the specific task formulation.

Another reason is that training data and corpora are not available for many
domains and applications, and are expensive to acquire. Buteven if huge data
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collections would be used, as was the case for brute-force table-based machine
translation experiments in recent years, the results wouldstill be unacceptable.

A further reason why the shallow methods fail is the lack of ‘understanding’ a
text. While humans can easily detect the agent of an action described in a sentence
even if it is not mentioned explicitly, or the scope of a negation intended by the
author, this is not possible so reliably with shallow methods.

Consider only the probably easiest of the above mentioned complex tasks,
namely information extraction. In a sentence such as9

Things would be different if Microsoft was located in Georgia,

a shallow IE system could – wrongly – infer the information that Microsoft’s cor-
porate headquarterswerelocated in Georgia.
In the example

The National Institute for Psychobiology in Israel was established in
May 1971 as the Israel Center for Psychobiology by Prof. Joel,

a shallow IE system using patterns of regular expressions could – wrongly – infer
that Israel was established in May 1971.

Many problems of this kind could be overcome by thorough linguistic analysis.
Although for further disambiguation, world knowledge and inference is necessary,
deep linguistic processing is quite reliably able to syntactically rule out impossi-
ble interpretations, to identify the arguments of a verb, todetermine the scope of
negation, and – most importantly – to compute a semantic representation of the
meaning of a sentence.

However, this does not imply that deep linguistic processing always computes
‘the’ meaning of a sentence. In general, it computes a set of possible meanings
that are licensed by the syntax of the language, and that are constrained by word-
specific information from a lexicon.

This set is thus a superset of the interpretations a human would draw, because
humans make use of world knowledge, and context (discourse)information, that a
linguistics-based parser may not have. For a further improved language analysis, it
is therefore necessary to adjoin to the (after the) linguistic analysis a model of world
knowledge (usually called ‘ontology’) and further information resources such as
discourse model or context.

It has to be pointed out that this scenario in no way claims to be psycholinguis-
tically adequate nor does it model how language is processedin human brain. It
is only a model of language and reflects linguistic knowledgeand how it could be
made processable for natural language applications.

Finally, although we will in this thesis describe some interesting and success-
ful applications of integrated deep and shallow processing(also in conjunction with

9The two examples are taken from the Recognizing Textual Entailment Challenge
(http://www.pascal-network.org/Challenges/RTE/).
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ontologies, especially domain-specific ontologies), we donot try to model and im-
plement thewholeprocess just described. In particular, we will not say anything
about modeling discourse, context or world knowledge, let alone semantic infer-
ence. These will be subsequent steps in the processing chainnot covered by this
thesis. In this sense, integrated deep and shallow processing is only a–however
important–initial building block for linguistics-oriented natural language analysis
that has mainly increased robustness in focus.
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Chapter 3

Deep Linguistic Processing with
Head-Driven Phrase Structure
Grammar

In this chapter, we give a short introduction to deep linguistic processing on the ba-
sis of the Head-driven Phrase Structure Grammar (HPSG). We briefly introduce the
main concepts such as type system, typed feature structures, subsumption and uni-
fication, phrase structure rules, lexicon entries and semantics output. We conclude
with a discussion of the robustness problem of deep processing.

3.1 A Short Introduction to HPSG

The two most important and most elaborated grammar theoriesthat play a major
role in computational linguistics today are Lexical Functional Grammar (LFG; Ka-
plan and Bresnan 1982) and Head-Driven Phrase Structure Grammar (HPSG; Pol-
lard and Sag 1987, 1994). Although many of the solutions described in this thesis
could probably be applied to other grammar theories as well,we will concentrate
on HPSG here because it is probably the most elegant, popularand predominant
grammar theory (Richter, 2000; Kirby, 1996).

HPSG is a blend of logic, inheritance-basedknowledge representation(Brach-
man, 1979), type theory and linguistic theory that not only makes it suitable for
computer implementation but also gives the computational linguist (and grammar
writer) a powerful, well-defined and uniform representation language for the en-
coding of linguistic knowledge. Several development platforms exist that allow to
write and test HPSG grammars (Copestake, 2002; Uszkoreitet al., 1994).

However, HPSG is not a fixed theory. Its development and research is still
in progress, but mostly only details are changed or added, not the general setup.
Hence, HPSG implementations are also playground for research on and experi-
mentation with formalized linguistic theories or hypotheses of language modeling
(e.g. in natural language syntax, syntax-semantic interface).

33
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HPSG is alexicalizedgrammar theory, i.e., most linguistic knowledge is en-
coded in lexicon entries. Only a relatively small number of very general and partly
even language-independent rules and principles exist thatdefine general informa-
tion flow and combination within a sentence.

Inheritance is used to ensure that the knowledge is not encoded redundantly.
HPSG issign-basedfollowing the ideas of de Saussure (1916), i.e., (syntactic,
phonetic) form and meaning are represented asensemble. HPSG ismonostratalin
the sense that the same (data) structures are use to describephonology, syntax and
semantics.

HPSG deliberately incorporates ideas from Categorial Grammar (CG; Wood
1993), Discourse Representation Theory (DRT; Kamp and Reyle 1993), Lexical-
Functional Grammar (LFG; Kaplan and Bresnan 1982), Generalized Phrase Struc-
ture Grammar (GPSG; Gazdaret al.1985), Government and Binding Theory (GB;
Chomsky 1981). However, it supersedes them in elegantly using solely typed fea-
ture structures to implement linguistic concepts originally developed in its prede-
cessors rather than (as they did) presenting informal accounts of how linguistic
phenomena could be modeled within the theory.

In HPSG, both rules and lexicon are encoded in a uniform, well-defined data
structure calledtyped feature structurewhich is based on an type hierarchy with in-
heritance (Figure 3.1), with a monotonic information-combining and consistency-
checking operation called unification. An HPSG parser program basically per-
forms unification of constraints encoded in typed feature structures imposed by
the grammar and the lexicon entries triggered by the input sentence (the primary
domain of an HPSG parser is a sentence).

3.1.1 Excursus: Typed Feature Structures

Typed feature structures are commonly considered an appropriate, declarative ve-
hicle with which ‘many technical problems in language description and computer
manipulation of language can be solved’ (Shieber, 1992).

Feature structures are partial descriptions of (linguistic) objects. The original
term featureis related to an attribute with a binary value for a linguistic property
such as VOICED: +. Later, the binary values have been generalized to arbitrary
atomic values, types and to recursively embedded values, i.e. attributes in a typed
feature structure may have typed feature structures as values and so forth. This
is why attribute-value pairsmay be considered the correct term, althoughtyped
feature structureis the term that is established in the literature.

The idea and logic of typed feature structures are presentedand clarified e.g. in
Pereira and Shieber (1984); Shieber (1986); Carpenter (1992). Viewing conjunc-
tive sets of feature-value pairs asconstraintsimmediately reveals similarity with
constraint logic programming (CLP, Jaffar and Lassez 1987). In fact, numerous in-
sights and also implementation techniques have been influenced by and are shared
with CLP.
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Many valuable insights on complexity, relation to other knowledge representa-
tion languagesetccame from Smolka (1989); Kasper and Rounds (1990). Rounds
and Manaster-Ramer (1987) were the first to prove that feature logic with recursive
types is undecidable. Smolka (1989) showed that this is due to the coreference
constraints.

Aı̈t-Kaci and Nasr (1986) and Nebel and Smolka (1990) have also clarified the
relation to other knowledge representation formalisms such as KL-ONE (Brach-
man and Schmolze, 1985). In particular, they showed that a set-theoretical se-
mantics can be given to typed feature structures in analogy to the set-theoretical
semantics of KL-ONE.

There are a couple of different characterizations of typed feature structures.
Krieger (1995) gives a good overview. The following definitions are close to those
presented in Carpenter (1992), though slightly simplified and abbreviated.

In the sample of an HPSG type hierarchy shown in Figure 3.1,sign is the top
type that divides intowords andphrases which themselves fall into structures with
and without a linguistichead. Heads will be explained in Section 3.1.2.4.

Figure 3.1: A small extract of the HPSG type hierarchy

3.1.1.1 Definition Typed Feature Structure Grammar

An HPSG grammaris a tuple〈T,⊒,F,Θ〉 with

• 〈T,⊒〉 constituting an inheritance hierarchy which can be characterized as a
finite Bounded Complete Partial Order (BCPO, or finite semi-lattice)

• F, a set of feature symbols

• a set of typed feature structuresΘ being partitioned into lexical entries and
rules



36 CHAPTER 3. DEEP LINGUISTIC PROCESSING WITH HPSG

3.1.1.2 Definition Typed Feature Structure

A typed feature structureθ ∈ Θ overT andF is a rooted, directed, labeled graph.
It is defined by a tupleθ = 〈Q,q0,τ ,δ 〉, where

• Q is a finite set of nodes rooted atq0

• q0 ∈ Q is the root node

• τ : Q → T is a total typing function assigning a type to each node in the
feature structure

• δ : F×Q→Q is a partial feature value function assigning a value to a feature

A node without outgoing feature arcs is called anatom. An example of a
feature structure depicted as graph is shown in Figure 3.2.

Figure 3.2: A typed feature structure as graph

A more convenient and better readable representation of typed feature struc-
tures is called anAVM, an attribute-value matrix(beingattribute a synonym for
a feature). A bunch of feature arcs outgoing from a typed node is visualized in
stretched brackets, the type is written above the features:
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Features within typed feature structures may share values.This structure shar-
ing (or reentrancy) is indicated by a labeled (or numbered) box, also called a coref-
erence, the shared value is printed next to the first occurrence of the coreference
box:
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In the above figure, the value under the featurepathSUBJ.AGR is shared with
the value under PRED.AGR.

Throughout this thesis, we may additionally use the〈θ1,θ2, . . . ,θn〉 notation
for list-valued feature nodes. A list-valued feature node can be conceived as an
abbreviation for a feature structure of type*cons* (non-empty list) with attributes
FIRST and REST, where the value of FIRST contains a list element, and REST
contains the rest of the list. The featureless type*null* indicates an empty list (and
hence list end under feature REST). Thus〈θ1,θ2,θ3〉 is an abbreviation for
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3.1.1.3 Definition Subsumption

Subsumption (⊒) between typed feature structures is defined as a transitive, anti-
symmetric and reflexive relation between two typed feature structures that states
whether one feature structure is more general than the other.

θ = 〈Q,q0,τ ,δ 〉 subsumesθ ′ = 〈Q′,q′0,τ ′,δ ′〉, shortθ ⊒ θ ′ if and only if there
is a total functionh : Q→ Q′ such that:

• h(q0) = q′0

• τ(q) ⊒ τ ′(h(q)) ∀q∈ Q

• h(δ ( f ,q)) = δ ′( f ,h(q)) ∀q∈Qand for every featuref ∈F for whichδ ( f ,q)
is defined
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Informally, θ ⊒ θ ′ iff θ is more general thanθ ′.
Set-theoretically, the denotation of subsumption of two typed feature structures

corresponds to the subset relation of the denotations of thetyped feature structures.
Examples for proper subsumptions are:
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3.1.1.4 Definition Unification

Unification of two typed feature structuresθ ⊓ θ ′ is then defined as the operation
determining the most general feature structure that is subsumed by bothθ and
θ ′. The result of unification is a failure (⊥) if θ and θ ′ contain contradictory
information, e.g. by incompatible types under the same feature paths.

In other words, unification is both a satisfiability-checking and structure build-
ing operation. The former is important to rule out impossible (contradictory) de-
scriptions, the latter is e.g. used to build sentence structure and semantics output
compositionally from a syntactic analysis during parsing.Formal definitions for
unification are presented e.g. in Carpenter (1992), Chapter31.

Set-theoretically, the denotation of unification of two feature structures corre-
sponds to the set intersection of the denotations of the feature structures.

[

agr

PERSON 1st

]

⊓

[

agr

NUMBER sing

]

=







agr

PERSON 1st

NUMBER sing







1Kay (1979) first introduced feature structure unification.
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Unification algorithms have been presented e.g. in Aı̈t-Kaci (1984) and Kart-
tunen and Kay (1985), many improvements and variations havebeen published,
e.g. by Kogure (1990); Godden (1990); Emele (1991); Tomabechi (1991, 1992);
Wroblewski (1987); Kieferet al.(1999); Maloufet al.(2000); van Lohuizen (2000).
A good overview (of the graph-based ones) is presented in Callmeier (2001).

3.1.1.5 Further Constraints on Typed Feature Structure Definitions

There are a few restrictions to the above definitions that allow very efficient pro-
cessing without sacrificing the general spirit of the grammar theory. The fastest
HPSG implementations agree with and share these additionalconstraints (again,
formal definitions presented e.g. in Carpenter 1992).

• Bounded Complete Partial Order (BCPO)The BCPO type hierarchy condi-
tion already mentioned implies aclosed type world, i.e., every pair of types
which has no explicitly defined common subtype is incompatible. The type
inheritance hierarchy is defined by the grammar writer as graph which can
be automatically completed to a BCPO in polynomial time at compile time
(broad-coverage HPSG grammars currently typically contain 50000–100000
types).

• Strong typingrequires that every feature structure node in a typed feature
structure has a type.

• Appropriatenessrequires each feature in a grammar to be introduced only
by a single (unique) type. This is a strict notion of appropriateness that eases
(efficient) implementation and type inference.

• Well-typedness: This condition states that for every outgoing feature arc in a
feature structure that it is appropriate for its type, and the value type of the
feature is subsumed by itsApproptype.
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To precisely define appropriateness and welltypedness, we define a function
calledApprop:

3.1.1.6 Definition Appropriateness Function

For an inheritance hierarchy〈T,⊒〉 and the feature setF of the grammar, we define
Approp: F ×T → T to be a partial function, and

• ∀ f ∈F, there is a most general typeIntro( f )∈T such thatApprop( f , Intro( f ))
is defined.

• furthermore, we define that ifApprop( f ,σ) is defined andσ ⊒ τ (with σ ,τ ∈
T), thenApprop( f ,τ) is also defined andApprop( f ,σ) ⊒ Approp( f ,τ).

3.1.1.7 Definition Welltypedness

A typed feature structureθ = 〈Q,q0,τ ,δ 〉 is well-typed if wheneverδ ( f ,q) is de-
fined, thenApprop( f ,τ(q)) is defined, and such thatApprop( f ,τ(q))⊒ τ(δ ( f ,q)).

A typed feature structure istotally well-typedif every node in it is well-typed,
and for every type occurring at a node, its appropriate features are explicit.

These above definitions do not only enabletype inference, i.e., an algorithm
to uniquely determine the type of an untyped or ’under-typed’ feature structure
node (node with a less specific type than the maximally possible according to the
outgoing feature arcs), but also allow to implement type checking at definition
time (e.g. to prevent errors in hand-crafted definitions, cf. also Schäfer 1995), and
– even more importantly – efficient packing, unfolding and unification algorithms,
cf. Callmeier (2001, Chapter 9). The latter is indispensable for fast HPSG parsing.

3.1.2 HPSG and HPSG Parsing

Having introduced the basic concepts for efficient typed feature structure unifica-
tion, we can turn back to the essentials of HPSG (partly referring to an HPSG
introduction by Müller 2007).

An HPSG parser is a computer program similar to a context-free parser. It
takes an input sentence, looks up the lexicon entries (typedfeature structures) in the
HPSG lexicon for each occurring word, puts them on a chart, and applies general
rules, consisting of typed feature structures as well (somedefined as ‘principles’),
to the chart items. Instead of using symbol equality for comparison of chart items
such as in context-free parsing, the unification operation is applied to the typed
feature structures.

The result of parsing is then either a failure, signaling inconsistency or ungram-
maticality of the input with respect to the grammar, or one ormore typed feature
structures remaining on the chart, containing the completeparsing result (or frag-
ments if no analysis could be computed spanning the completeinput). Ambiguity
is introduced e.g. through multiple lexicon entries for an input word.
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3.1.2.1 Phrase Structure

As already mentioned, HPSG at its backbone relies on phrase structure (the ‘PS’ in
HPSG). Only grammatically correct words can combine to a phrase, which in turn
only combine to a sentence if licensed by the grammar. Ungrammatical sequences
of words should be rejected.
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Figure 3.3: Phrase structure tree

What makes HPSG different from other (previous) grammar theories is that
also phrase structure is encoded in typed feature structures. I.e., phrase structure is
not defined separately by context-free rules like in LFG’s c-structures (Kaplan and
Bresnan, 1982), but within typed feature structures and together (in conjunction)
with additional feature constraints. Dominance information is encoded in DTR
attributes (DTR for daughter). Cf. the phrase structure forthe sentence fragment
‘. . . Peter das Buch dem Mann gab’ in Figure 3.4.
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Figure 3.4: Phrase structure encoded in a typed feature structure
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The corresponding tree structure with the phrase categories as node labels is
depicted in Figure 3.3. What rules out grammatically incorrect structures such as

*Peter gab das Buch.

where an indirect object is missing, or

*Peter gab.

where both direct and indirect object are missing, comes from the lexicon entry of
the verb ‘geben’ (to give). Here, a list under the feature SUBCAT specifies thesub-
categorizationobjects, in this case the subject NP[nom], the direct object NP[acc]
and the indirect object NP[dat] (with the NP[case] notation abbreviating a feature
structure with embedded category feature NP and case feature nom/dat/acc).

A generalSubcategorization Principle, encoded as type constraint in the inher-
itance hierarchy of the HPSG grammar, states that the subcategorization list must
be saturated element by element at eachhead-argument-structure:

















head-argument-structure

SUBCAT 1

HEAD-DTR

[

head-argument-structure

SUBCAT append(1 ,
〈

2
〉

)

]

NON-HEAD-DTRS
〈

2
〉

















This (much simplified) principle defines a binary branching structure, and the
SUBCAT attribute which is omitted in the example in Figure 3.4 is processed by
means of the Subcategorization Principle as sketched in Figure 3.5.

V[SUBCAT 〈〉]

1 NP[nom]

N

Peter

V[SUBCAT 〈1 〉]

2 NP[acc]

D

das

N

Buch

V[SUBCAT 〈1 , 2 〉]

3 NP[dat]

D

dem

N

Mann

V[SUBCAT 〈1 , 2 , 3 〉]

gab

Figure 3.5: Subcategorization Principle in Phrase Structure

If no lexicon entry licenses the

*Peter gab.
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reading where the verb ’geben’ would accept empty objects, then this would ren-
der the sentence unacceptable by the grammar, which is appropriate for this verb
having no intransitive reading.

3.1.2.2 Generating a Semantics Description from Syntax

On the other hand, the lexicon entry with direct and indirectobject for ’geben’
specified in the SUBCAT list would not only make sentences providing candidates
for the objects acceptable, but would also at the same time construct (by additional
features and principles not shown here) a semantic representation for the sentence
assigning ’geben’ as action, the subject as agent of the action, and the direct and
indirect object as arguments – thepredicate–argument structure.

In the same way, verb control is marked in the lexicon, e.g. equi verbs such as
’promise’ and ’persuade’ may take an embedded verb phrase (VP) and assign the
object of the controlling verb via a specification in the SUBCAT list to the subject
(in case of ’promise’) or the object (in case of ’persuade’) of the VP (similar for
auxiliary verbs). In other words, the SUBCAT list also playsan important role in
the syntax-semantics interface of a grammar – and this is oneof they key strengths
of HPSG over shallow approaches.

3.1.2.3 The Role of the Lexicon

A main difference of the HPSG paradigm compared to the usual context-free gram-
mar approach is that the role of the CFG rules is generalized to very generic ‘meta-
rules’. While a pure CFG has to move specific information to (as many as possible)
rule symbols, this is avoided in HPSG.

Instead, information that would be encoded in a CFG by blowing up the symbol
repository, is moved as much as possible to the lexicon in HPSG. In other words,
if one would expand (or ‘fill’) lexicon entries, quite complex structures such as the
one shown in Figure 3.6 from the English Resource Grammar (Flickinger, 2002)
would appear (including syntax and semantics features) – which still is not fully
filled for space reasons here.

It is important to understand that complexity of lexicon entries is not a short-
coming, but an advantage for the structure of a grammar, and is greatly facili-
tated because redundancy is reduced by moving information to efficiently encoded
type inheritance in the lexicon. This is in full analogy to the well-known and re-
searched advantages of inheritance in knowledge representation and programming
languages. The main advantages are that it is possible to (1)easily encode id-
iosyncrasies in the lexicon without sacrificing the monotonicity of the base formal-
ism, (2) provide fine-grained word-specific semantics representations, but inherit
all other information from more general types.
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Figure 3.6: An HPSG lexicon entry for generic named entities
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3.1.2.4 Head-Driven Approach

Finally, the ’H’ in HPSG stems from the central role of theheadsas information-
bearingnuclei of phrases that transport features and its values over phraseal pro-
jections (X’ theory; Jackendoff 1977). Thepercolationof feature information in
the heads is forced by theHead Feature Principlethat informally can be expressed
as ‘if a feature structure has a head (i.e., is of typeheaded-structureor inherits
from it), then its head features are shared with the head features of the head daugh-
ter’ (a feature structure may bear other features than the head features that are not
percolated by this mechanism).
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headed-structure

HEAD 1

HEAD-DTR
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headed-structure

HEAD 1

]
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Examples are the case and number features of the head noun that become also
head features of the NP containing the noun by virtue of the Head Feature Princi-
ple. By inheritance, the Subcategorization Principle, ahead-argument-structure, a
subtype ofheaded-structure, is constrained by the Head Feature Principle (of type
headed-structure), as shown in Figure 3.7.
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Figure 3.7: Subcategorization Principle

During parsing, the percolation of the head features throughout phrase struc-
tures and saturation of the subcategorization list of the main verb are two of the
key operations that are performed only by means of typed unification.

They not only determine the syntactic structure of the sentence, but at the same
time also build the key semantic representation part of the analysis (details will be
presented in the next section), and both are driven by the notion of heads.

There are many more (and more complex) principles regulating e.g. word or-
der, coordination, semantics construction, quantification etcwhich we will not dis-
cuss here, cf. Pollard and Sag (1994); Müller (2007) for details.

One should keep in mind that the feature structures that are built during pars-
ing typically get sizes of thousands of nodes because unification is a monotonic
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operation, and already the initial lexicon entries have considerable size. A naı̈ve
implementation without optimization would render any more-than-toy-size HPSG
grammar intractable (as were the first approaches). However, through sophisti-
cated techniques, it can be avoided that efficiency poses a principal barrier (except
for pathological cases), cf. Section 3.2.2.

3.1.2.5 Output: Semantic Representation

By way of the principles, an HPSG parser checks validity (satisfiability) of the
composed structures (with the lexical entities as leaves).At the same time, con-
struction of the semantic representation as ‘output’ of a parsed sentence is per-
formed uniformly by inheritance/unification of rules, special principles for seman-
tics construction and lexicon entries by the commutative, monotonic and associa-
tive unification operation of the declaratively specified linguistic knowledge.

The resulting semantic representation is stored in dedicated features of the
parse result and can be extracted from there (Pollard and Sag, 1994). Depending
on the required information, also morpho-syntactic features (e.g. gender, number,
tense) could be retrieved from the parse result by an application.

In principle, HPSG is open to produce different kinds of semantics representa-
tions. Situation Semantics (Barwise and Perry, 1983) has been originally proposed
in Pollard and Sag (1987). MRS (Minimal Recursion Semantics; Copestakeet al.
2005a) is a more recent and probably better suited and elaborated approach. The
key idea is to provide a language similar to predicate calculus, but with a syntacti-
cally flat structure. Theelementary predicates(relations with arguments) are never
embedded within one another.

However, there is treatment of scope which most other flat semantics repre-
sentations do not provide. Scope is modeled by handle variables, and constraints
over the handles can be used to select specific scopes or relaxed to leave the scope
underspecified, thus providing a compact representation ofmultiple semantic in-
terpretations.

Here is an example of a MRS representation of the sentence

Every dog chases some white cat.

h1 : every(x,h3,hA),h3 : dog(x),h7 : white(y),h7 : cat(y),h5 : some(y,h7,hB),
h4 : chase(x,y)

Two alternative scopes could e.g. selected by setting either hA = h5 andhB = h4

or hA = h4 andhB = h1.
Such analysis is computed within typed feature structures during parsing, i.e.,

via unification, and can be retrieved from the parse result.
The advantage of the flat MRS structure is that it (i) can be constructed com-

positionally during (HPSG) syntax analysis, (ii) can be encoded in typed feature
structures, (iii) is powerful enough to represent linguistic meaning, (iv) allows for
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Figure 3.8: An RMRS representation generated by HPSG parsing

underspecification, (v) can be used for both parsing and generation (Copestakeet
al., 2005a, 1995b).

A robust variant of MRS called RMRS (robust MRS; Copestake 2003) is better
suited to support partial semantic analyses, e.g. producedby shallow parsers. An
AVM-like, ’graphically’ represented example with two slightly differing readings
for the sentence is depicted in Figure 3.8. We will return to RMRS in Chapter 9.

3.2 Performance Properties of HPSG

3.2.1 Parsing Complexity

Although the HPSG formalism with typed feature structures and variables (coref-
erences) is in general equivalent to a Turing machine (cf. the discussion and
references in Section 3.1.1), this is only of theoretical significance. A grammar
that meets the so called offline parseability constraint (Kaplan and Bresnan, 1982;
Pereira and Warren, 1983; Dymetman, 1994), avoiding empty and chain produc-
tions in the context-free backbone, e.g. can be guaranteed to terminate.

Moreover, there is much evidence that existing grammar-parser combinations
might be in the class of mildly context-sensitive grammars (Joshiet al., 1991), and
thus be parsable in polynomial time as is the case for other contemporary grammar
formalisms.
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3.2.2 Implementations and Efficiency

During the last decade, several implementations of HPSG formalisms, parsers and
grammars have been published, ranging from very lean (but rather slow) engines
directly relying on Prolog SLD resolution up to very comprehensive grammar de-
velopment environments such as LKB (Copestake, 2002) or PAGE (Uszkoreitet
al., 1994) (both developed in LISP), with compactly encoded type hierarchies,
quite fast parsers, and powerful analysis and inspection tools.

A performance boost has been achieved through a collaborative approach of
measuring performance and incrementally adding sophisticated efficiency-impro-
ving methods such as quick check, packing and unfilling (Oepen and Callmeier,
2000).

The framework that resulted from this international effortconsists of the LKB
system for grammar development and debugging, the efficientPET HPSG parser
(Callmeier, 2000, 2001) implemented in C++ (and pure ANSI C for memory man-
agement), TSDB (Oepen, 2001) and a couple of reference grammars (including
TSDB test suites and data), the English Resource Grammar (ERG; Flickinger
2002) being the most prominent, elaborate and best-tested one.

This ensemble currently presents itself as the most comprehensive and at the
same time most efficient HPSG implementation framework. Many of the afore-
mentioned efficiency techniques have been implemented firstin the LISP parser an
then ported to the more efficient C implementation within PET.

Parsing sentences is now possible within fractions of seconds for typical aver-
age sentence lengths, and within seconds for longer sentences, depending on the
language, grammar and various parser option settings. These runtimes also include
parse ranking, i.e., ordering multiple parses for a sentence according to a statistical
model trained on a corpus.

3.2.3 Robustness

While the efficiency problem of HPSG parsing seems to be solved, what remains is
a robustness problem, and this is mainly what this thesis tries to tackle. In this sec-
tion, we motivate the robustness problem and related problems and briefly present
an outlook to the envisaged solution.

As explained on page 43, lexicon entries play a crucial role in HPSG grammars.
Although most of the information necessary to form the lexicon entry for a specific
word comes through inheritance, for every word that occurs in the sentence to
parse, an appropriate lexicon entry has to be found. Otherwise, the sentence cannot
be analyzed, i.e. no spanning chart item for larger structures such as phrases or the
whole sentence can be computed, nor can a compositional semantics representation
be built of the entire sentence.

In other words, it is not possible to omit words from the inputfor which no
lexicon item can be found, because no analysis would be possible (or if possible,
it would probably be wrong). This fact, being rooted in the principle of how deep
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processing works in general, has an important impact on robustness of HPSG pars-
ing. Every attempt to circumvent the problem by adding ’robustness’ rules to the
grammar that allow parsing incomplete input is penalized by(1) increased ambi-
guity (2) the unwanted effect of admitting ungrammatical input as well.

To give an example with only a hand-crafted lexicon in the German HPSG
with 35000 entries (approx. 350000 full forms) of which 25000 where semi-
automatically generated, approx. 71 percent of the sentence in a newspaper text
fail just because of missing lexicon information (Crysmannet al., 2002).

Hence the solution is to have generic lexicon entries and interfaces to other
NLP components that can contribute information that is necessary to fill the gaps
in generic entries.

Solutions have been presented that address specific instances of HPSG gram-
mars and parsers and specific shallow systems, e.g. for ALEP and a German
HPSG-like Grammar (Declerck and Maas, 1997), for a Spanish HPSG Grammar
(Marimon, 2002a), Grover and Lascarides (2001) for an English HPSG and a PoS
tagger, and Kaplanet al. (2002) for the Xerox PARC LFG parser.

The focus of this thesis is to lift this to a more general leveland provide archi-
tectures that support integration in a more principled way.

Such architectures will not only address the robustness problem, but also could
help to (1) reduce ambiguity by selecting readings on lexical, or even phrase or
topological sentence structure level with the help of external NLP components
(divide and conquer) (2) provide a means to correct or repairungrammatical or
malformed input (e.g. email text, or speech analyzed by a speech recognition sys-
tem), (3) extend the initial sequential approach (shallow processing first as input to
deep processing) to more flexible ones, permitting also post-parsing integration and
combination of parsed sentence fragments in case no full parse could be computed.

Furthermore, not just lexical information could be incorporated, but also re-
sults from other NLP components beyond the lexical level such as chunk parsers,
topological parsersetc.
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Chapter 4

Shallow Processing and
Linguistic Markup

In this chapter, we will introduce the most commonly used tasks of shallow nat-
ural language processing and exemplify shallow representation formalisms. We
will introduce XML and the relation to shallow markup and linguistically anno-
tated corpora and give a motivation for the adoption of commonly available XML
standards and implementations.

Then, we will show how linguistic representations can be encoded within XML
and what the advantages are for processing, communication,portability, interna-
tionalization, and storage in databases or tree banks.

We will address general representation problems arising when linguistic data is
encoded in XML, e.g. (a) encoding of ambiguities/multiple readings, (b) encoding
of structure sharing and references, (c) overlapping and discontinuity,etcand show
how these can be solved usingstandoff annotation.

4.1 Shallow Natural Language Processing

Shallow natural language processing has emerged as an alternative paradigm to
traditional deep linguistic processing in the eighties andnineties1. The main moti-
vation was lack of robustness and efficiency of deep NLP implementations at that
time that made it impossible to use them for real world texts.

In contrast to deep processing, shallow processing is driven and dominated
rather by specialized, application-oriented tasks than bylinguistic theories. Mean-
while, there is broad common sense on what the different tasks or applications of
shallow processing are. Moreover, standardized evaluations exist for many of the
different shallow tasks such as CoNLL (Tjong Kim Sang and Buchholz, 2000) for
chunking or MUC (Grishman and Sundheim, 1996) for named entity recognition.

1However, according to Joshi and Hopely (1996), a first finite-state parser has been developed as
early as 1958.

51
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The term shallow mainly relates to the resulting analyses, which could be char-
acterized as simpler, less complex structured, partial, non-exhaustive compared to
what a deep parser would (ideally) provide as result.

However, the methods employed for computation can be quite different. They
comprise machine learning (or statistical) methods, rule-based (e.g. finite-state,
context-free), and combinations of these.

4.1.1 Tokenization

The simplest step in shallow processing is tokenization, the separation of words and
other symbols, e.g. punctuation. Tokenization is basically a preprocessing step
to ease subsequent processing such as morphologic analysisand lexicon lookup.
Example:

”What should I do?”, asked Fred.

could be tokenized into

” t1 What t2 should t3 I t4 do t5 ? t6 ” t7 , t8 askedt9 Fred t10 . t11

Additionally, a class of token such as punctuation symbol, capitalized, lower-
case, uppercase word is often assigned to each token. Depending on the tokenizer,
this can be done very fine grained (even with alternative readings which already
introduce ambiguity in this early analysis step) or rather coarse grained with only
a few or no distinct token classes.

Tokenization may also include some simple kind of normalization, e.g.

we’ll → we will
4.5%→ 4.5 percent
8pm→ 20:00
7” → 7 inches

Typically, tokenization is defined by finite-state rules (e.g. in Grefenstette and
Tapanainen 1994). For Japanese or other Asian languages, tokenization also in-
cludes the task of word boundary recognition which is only possible with lexicon
lookup – in contrast to languages based on Latin characters where spaces and punc-
tuation separate words.

In many NLP systems, tokenizers are closely integrated withthe other lin-
guistic processing components which in turn make assumptions on what the input
tokenization is and how token classes are defined. Hence, different interpretations
of how a token is defined may exist if these NLP systems are combined.
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4.1.2 Finite-State Morphology and Compound Recognition

Morphology describes the relation between the surface forms of words and the
lexical form which consists of a lemma and the grammatical description. This
can easily be modeled, at least for Indo-European languages, with finite-state au-
tomata (Koskenniemi, 1983). The idiosyncratic information is stored in a lexicon
(database of lemmata and hints for morphologic regularities).

The following list enumerates the morphological readings of the German word
‘Ranke’ which could be a noun (N), adjective (A) or verb (V), as analyzed by the
SPPC system (Piskorski and Neumann, 2000).

pos="N" gender="M" case="DAT" number="SG"

pos="A" gender="F" case="NOM" number="SG" comp="P" det="NONE"

pos="A" gender="F" case="AKK" number="SG" comp="P" det="NONE"

pos="A" gender="M" case="NOM" number="PL" comp="P" det="NONE"

pos="A" gender="F" case="NOM" number="PL" comp="P" det="NONE"

pos="A" gender="N" case="NOM" number="PL" comp="P" det="NONE"

pos="A" gender="M" case="AKK" number="PL" comp="P" det="NONE"

pos="A" gender="F" case="AKK" number="PL" comp="P" det="NONE"

pos="A" gender="N" case="AKK" number="PL" comp="P" det="NONE"

pos="A" gender="F" case="NOM" number="SG" comp="P" det="INDEF"

pos="A" gender="F" case="AKK" number="SG" comp="P" det="INDEF"

pos="A" gender="M" case="NOM" number="SG" comp="P" det="DEF"

pos="A" gender="F" case="NOM" number="SG" comp="P" det="DEF"

pos="A" gender="N" case="NOM" number="SG" comp="P" det="DEF"

pos="A" gender="F" case="AKK" number="SG" comp="P" det="DEF"

pos="A" gender="N" case="AKK" number="SG" comp="P" det="DEF"

pos="V" tense="PRES" person="1" number="SG"

pos="V" tense="SUBJUNCT-1" person="1" number="SG"

pos="V" tense="SUBJUNCT-1" person="3" number="SG"

pos="V" form="IMP" number="SG"

For many languages such as German, Dutch and Finnish, which allow rather
free word formation of nouns by compounding, an additional step of compound
segmentation is necessary. This is in many cases a regular process and hence can
also be handled by finite-state rules. Exceptions such as theselection of the ap-
propriateFugenmorphemfor a compound noun can be encoded in the lexicon, e.g.
Kindstaufevs. Kinderstube.

4.1.3 Part-of-Speech Tagging

A further step towards recognizing sentence structure is part of speech (PoS) tag-
ging, where the class of a word (noun, verb, adjective, preposition etc) is computed
for each token in the input text, and attached as a ’tag’. In the example above, PoS
tagging would compute which of adjective (A), noun (N) or verb (V) is the most
likely in the context of a sentence); this can help to abstract from specific lexicon
entries e.g. for subsequent parsing.
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There are rule-based (e.g. Brill 1992) and statistical approaches (e.g. Brill and
Marcus 1992) to this task, where the best statistical taggers outperform rule-based
taggers generally on unseen text, with per-token accuracy of around 96 percent.
The statistical approaches assign probability values per word in its context, e.g.
through Hidden Markov Models (HMM) obtained through training trigrams on
manually annotated text data.

The following sentence e.g. is correctly analyzed (with probability 1.0 for each
tag) by the trigram-based TnT system (Brants, 2000) that hasbeen trained on the
NEGRA corpus for German (Skutet al., 1998) and e.g. the Penn Tree Bank for
English.

DieART KriminalpolizeiNN verfolgteVFIN dieART Bankr̈auberNN bisAPPR

zurAPPRARTniederl̈andischenADJA GrenzeNN.

However, it is generally possible to have several possible readings for the class
of a word, and statistics-based systems can rank the possible readings by means of
their trained model.

Another big advantage mainly of statistical part-of-speech taggers is that they
can be used to guess word classes of unknown words by ‘interpolating’ on the
basis of surrounding tags, provided the word classes of surrounding words could
be determined reliably.

4.1.4 Chunking

Chunking is another useful preprocessing and abstraction step for parsing. Chunks
are non-overlapping groups of words forming small syntactic units (phrases) such
as noun phrases consisting of an optional determiner, followed by an optional ad-
jective, followed by a noun. Text chunking divides the inputtext into such phrases
and assigns a type such as NP for noun phrase, VP for verb phrase, PP for prepo-
sitional phrase in the following example, where the chunk borders are indicated by
square brackets:

[Die Kriminalpolizei]NP [verfolgte]VP [die Bankr̈auber]NP

[bis zur niederl̈andischen Grenze]PP.

Chunking is sometimes also called chunk parsing, partial parsing, or light pars-
ing (Abney, 1991). There are different definitions in literature of what a chunk ex-
actly is. Sometimes, chunks are required to be non-recursive, i.e., no other chunk
may be embedded within a chunk, other definitions admit this (hence importing
e.g. inherent attachment ambiguity).

The CoNLL-2000 shared task for chunking (Tjong Kim Sang and Buchholz,
2000), e.g. has found out precision and recall values at around 93 % for the best
systems on the commonly defined task based on training and test data on the Penn
Tree Bank (English Wall Street Journal articles). Techniques for chunking are
e.g. cascaded HMMs (Skut and Brants, 1998), Support Vector Machines (Kudo
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Figure 4.1: Topological tree as result of shallow parsing

and Matsumoto, 2000), Cascaded Finite State Parsing (Abney, 1996; Grefenstette,
1996) or combinations thereof.

4.1.5 Shallow Parsing

Shallow parsing is an analysis of a sentence which identifiesthe constituents (verbs,
noun phrases,etc), but does not specify their internal structure, nor their role in the
whole sentence. However, in contrast to chunking, the formation of a sentence-
spanning structure, or substructure for the topological fields (in German Vorfeld,
Mittelfeld, Nachfeld) of a sentence is tried (’topologicalparsing’).

A popular way of implementing such parsers is by probabilistic context-free
grammars (PCFG) which can be trained on annotated corpora (Schmid, 2000;
Dubey and Keller, 2003). Shallow parsing can thus be considered an extension
of chunking. An example is shown in Figure 4.1.

4.1.6 Named Entity Recognition

Named entity recognition (NER) is the identification of proper names, product or
organization names, location names such as cities and countries in text and the
specification of the type of named entity. More or less fine-grained variations of
the definition of what a named entity (NE) type is exist in literature. A very sim-
ple classification is the one of the Message Understanding Conferences (MUC;
Grishman and Sundheim 1996). Only basic types such as DATE, LOCATION,
PERSON, ORGANIZATION exist:

Five unsuccessful attempts were made by a single team led by [Larry
Newman]PERSONof [Scottsdale]LOCATION, [Ariz.]LOCATION, in his
[Earthwinds]ORGANIZATIONballoon before [Newman]PERSONabandoned
his efforts [one year ago]DATE.
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A modern, finer-grained classification is that of ACE (Automatic Content Ex-
traction2). Depending on the application, even finer-grained typologies of NEs
may be desirable. An example is normalization of time expressions, where slots
for year, month, day, day of week, hour and minute could be filled or inferred from
context or left unspecified. TheSProUTsystem that will be described in Chapter 7
goes beyond typical NE recognition systems in that it allowsfor finer-grained and
more domain-specific structured output.

4.1.7 Summary

We have briefly introduced different types and stages of shallow processing. Many
implementations and systems exist following the describedparadigms. Moreover,
there are also implementations that combine different processing stages within one
system. An example is the SPPC system (Piskorski and Neumann, 2000) for Ger-
man (cf. Figure 4.4 for a sample output).

The advantage is increased efficiency and optimally combined and interleaved
shallow processing stages. However, it is hard to exchange or separate stages with
other components, so the price for efficiency here is inflexibility.

RASP (Briscoe and Carroll, 2002) shares some similarities,and focuses on
English. Other systems such as GATE (Cunninghamet al., 2002) provide a general
architecture for combining various shallow systems. We will discuss GATE and
related systems and architectures in Chapter 6.

Simple language technology-based applications can be built on top of such
shallow processing systems, the outstanding being probably morphological anal-
ysis and named entity recognition. In contrast to deep natural language parsing,
shallow processing is typically non-exhaustive and partial. Words or groups of
words for which no information exists, will remain unanalyzed. Depending on the
underlying methods, probabilities may be assigned to analyses. A threshold can be
used to filter out improbable readings if more than one have been computed.

However, there is no semantic analysis available directly from such shallow
systems. In the best case, some kind of underspecified, partial semantic description
can be derived from shallow analyses. Additional knowledgeand computation is
necessary in order to obtain semantic analyses such as predicate-argument structure
as deep processing can deliver.

The idea of combining several shallow systems in such a way that a deep anal-
ysis can be computed seems appealing. However, attempts made so far only reach
very limited single aspects of deep analyses, and require a lot of additional work.
An example of such a single (syntactic) deep analysis aspectis detection of long
distance dependencies, described in Dienes and Dubey (2003).

2http://projects.ldc.upenn.edu/ace/
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4.2 The Relation between Shallow Processing and XML
Representations

The partial character of shallow analysis immediately and naturally leads to the
idea of storing shallow linguistic analysis asmarkupof the analyzed text. In this
section, we discuss the relation between shallow processing and XML represen-
tations. We start with a short introduction to and history ofXML and SGML.
We then present some standards for linguistic markup and discuss problems of the
representation languages, and how they can be solved withinthe XML framework.

4.2.1 SGML

The idea of augmenting electronically stored text by markupdates back to William
Tunnicliffe (1967, ‘generic coding’)3 and ideas of the book designer Stanley Rice
(‘editorial structure tags’; also in the late 60ies). The word markup itself goes
back to the earlier, pre-electronic technique of adding manually tags to book or
newspaper manuscripts as hints for typesetters (e.g. formatting instructions).

The ‘generic markup’ evolved into the Generalized Markup Language (the
acronym GML also formed by the initial letters of the main author’s names Gold-
farb, Moshier and Lorie) at IBM in 1969. Finally, Goldfarb took GML with some
extensions to the ISO standard 8879 in 1986 under the name SGML (Standard
Generalized Markup Language).

GML and SGML have been designed for the formal description ofstructural
constraints on text documents, mainly for interoperability of document-processing
software (e.g. typesetting) and for document quality assurance in large companies
and institutions (legal, government, military) that is described in grammars called
DTDs (document type descriptions).

A DTD may e.g. enforce that a document of type book has at leastone author,
a title and several chapters, a chapter may or may not be divided into numbered
sections. Complex conditions can be added that e.g. put technical manuals to obey
very detailed structural rules.

Because of the complexity of the standard, implementation of SGML process-
ing and checking software was a hard task, and SGML became a success story at
best in large companies and institutions, but not as a broadly accepted standard
in the originally envisaged wide range of daily use. Moreover, the vision in the
foreword of Yuri Rubinsky in the SGML Handbook (Goldfarb, 1990) is still what
it was in 1990 – a vision.

‘The next five years will see a revolution in computing. Userswill no
longer have to work at every computer task as if they had no need or

3No publication available; ’Many credit the start of the generic coding movement to a presen-
tation made by William Tunnicliffe, chairman of the GraphicCommunications Association (GCA)
Composition Committee, during a meeting at the Canadian Government Printing Office in September
1967: his topic – the separation of information content of documents from their format.’ (Goldfarb,
1990).
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ability to share data with all their other computer tasks, they will not
need to act as if the computer is simply a replacement for paper, nor
will they have to appease computers or software programs that seem
to be at war with one another.’

(Not only) SGML failed in fulfilling this prediction, although some advances
have been made into the visionary direction, and the main contribution is (still) that
SGML defines a text document format for exchange and persistent storage different
from legacy data and vendor- and platform-specific word processor formats that
could and can be used over decades.

4.2.2 XML

The success of the World Wide Web, based on HTTP, the HyperText Transfer Pro-
tocol, and HTML, the HyperText Markup Language (which can bedescribed by a
small SGML DTD) led to the development of XML, the eXtensibleMarkup Lan-
guage. HTML had been initially developed in 1992 as a mixturefor describing
simple hypertext document structure (in the spirit of SGML,e.g. by tags for ti-
tle, headings, enumerations) and formatting (bold face, line breaks, font name and
size). HTML became a standard (’recommendation’) of the newly founded World
Wide Web Consortium (W3C) in 1994.

Because SGML was too complicated and HTML was not clear and powerful
enough for the upcoming need to describe the structure and semantics of docu-
ments independently from its layout, XML, which is basically a restricted, less
complicated subset of SGML, has been made a first W3C working draft in 1996,
and a recommendation version 1.0 in 1998.

The original goal of XML, namely separation of structured content markup
(XML) and layout markup (HTML, PDF,etc) is still not achieved in the major-
ity of currently published web pages. However, powerful andmature techniques,
software and tools exist today, that will help to make XML a true replacement for
HTML for content storage and turn the content and layout separation paradigm
into reality in the (near) future.

Some introductory publications on XML claimed that XML would assign se-
mantics to documents by means of speaking element and attribute names. This
notion of XML semantics is, however, not the formal semantics that is addressed
in computer science or computational linguistics. Hence, the role of XML is for-
mally in the best case that of an abstract syntax or carrier syntax, and the true
semantics in the mathematical sense has to be defined outsidethe XML framework
and depending on the envisaged application domain. We will see examples in the
NLP and Semantic Web domain later.

4.2.3 Well-Formed and Valid Documents

The basic concepts of XML (shared with SGML) are
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• text

• elements, also called tags, forming the ’markup’. Elements enclose text or
embed other elements and hence can form a hierarchical structure on docu-
ments. An element name should semantically describe its content:
<heading> text</heading>

• attributes, adding non-structured information (modifiers) to elements are
specified together with the opening element:
<heading level="2"> text</heading>

One of the design goals of XML (and SGML) was to make the syntaxboth
human-readable and machine-readable, and this is probablywhy the ending ele-
ment designator repeats the element name redundantly (in contrast to parenthesis
syntax in LISP s-expressions which the XML/SGML designers obviously did not
consider human-readable).

To distinguish elements from text, the starting and ending element names in
XML must be enclosed in angle brackets, the closing element is indicated addition-
ally by a single slash after the opening angle bracket. Emptyelements (elements
that do not comprise text or other elements) may be abbreviated as<element/>.
Angle brackets and three other characters used for markup have to be quoted when
occurring in normal text within an SGML or XML document. The elements in an
XML document form a tree and hence must be balanced (element borders must not
cross). An XML document must have a single root element.

An XML document iswell-formedif it meets these conditions (plus some other
mentioned in the standard such as Unicode-conformityetc), i.e., if it is syntactically
correct.

An XML document isvalid if it is conforming with a DTD (document type
description) that describes the structure of a class of documents in a grammar with
a BNF-like description of element containment, order and repetition, as well as
constraints on attributes.

Such DTDs are optional, i.e., the XML recommendation requires XML doc-
uments to be well-formed, but they do not necessarily have tobe valid. A DTD
e.g. states which element and attribute names are admitted in the document class,
which element is the root element, which elements may be enclosed by which other
elements (and possibly the order), which elements are mandatory or optional, and
where text is allowed within elements. Examples for NLP-related DTDs can be
found in the DTD Appendix (page 285ff).

Instead of a DTD, a schema can be used to validate an XML document. Sche-
mata allow for finer-grained validity checking than DTDs, e.g. by user-definable
data types which do not exist in DTDs. XML Schema (by the WorldWide Web
Consortium; Thompsonet al. 2004) and Relax NG Schema4 (by the OASIS con-
sortium) are the most popular schema definition languages.

4http://relaxng.org
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For the purposes of this thesis, DTDs are preferable, because we are mainly
interested in the coarse structure of valid documents whichcan be defined concisely
in DTDs, while XML Schema and Relax NG syntax which themselves are defined
in XML syntax, are verbose, harder to read and less intuitive.

Both SGML and XML provide a means for describing document structure in
form of anabstract syntaxvia a DTD or schema. However, they do not provide
a semanticsof the document schemata or instances unlike the ISO/ITU standard
ASN.1 (Abstract Syntax Notation; Dubuisson 2000) that includes a semantics de-
scription in form of world-wide uniqueobject identifiers(OIDs).

In XML, semantics is specified only implicitly and informally by giving ele-
ments and attributes speaking names. The XML-generating and the XML-parsing
ends must be guaranteed to interpret the content in the appropriate way. However,
optionality of elements and attributes is a quite elegant way to cope with the fact
that it may make sense to have XML-consuming software that only looks at those
pieces of XML input that it knows about, and ignores the rest (that in turn may be
of interest for another consumer).

One main difference between SGML and XML is that XML makes more re-
strictions with respect to the wellformedness conditions than SGML, while SGML
provides a more powerful language for describing validity of documents. Both
properties together make XML easier to implement than SGML.Moreover, DTDs
are mandatory in SGML, while they are optional in XML.

Further concepts of XML are

• Uniform Resource Identifiers (URIs). URIs are used to reference external
resources (similar to HTML hyperlink references). However, an explicit
linking mechanism is not part of the core XML standard, but isdefined in
separate standards such as XPointer (DeRoseet al., 2002), XLink (DeRose
et al., 2001) or XInclude (Marsh and Orchard, 2001).

• Namespaces. Namespaces are, similar to packages in programming lan-
guages, dictionaries of identifiers that make e.g. elementswith the same
name, but in different DTDs, distinguishable. The namespaces used in an
XML document are declared at the beginning using a URI uniquely defining
the namespace and a local name as reference that can then be used as a prefix
for element names, separated by colon, e.g.
<invoice xmlns:edi=’http://ecommerce.org/schema’>

<edi:price units=’Euro’>32.18</edi:price>

</invoice>

• ID/IDREF. ID and IDREF are special attributes for indexing and search-
ing elements within an XML document. To this end, ID attributes must be
unique within a document. The XPath language we will describe below pro-
vides anid() function that can be used to access XML nodes via its unique
ID specified as argument.
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• Entities. Entities are abbreviations, e.g. for often repeated character se-
quences. Entities can be defined in a separate DTD or at the beginning of an
XML file.

• Unicode. The XML recommendation obliges implementations of XML to
support Unicode (other character sets may be supported optionally). This
‘greatest common denominator’ of character encoding ensures e.g. that mul-
tilingual documents can be processed uniformly. A further very important
property is character length. Unicode introduces (in contrast to previous en-
coding initiatives) the concept of a code vs. encoding. EachUnicode char-
acter has a single, unique code, although there may be different encodings or
representation formats with fixed-length (UCS-2, UCS-4) orvariable length
(UTF-8, UTF-16) binary representations. The existence of an equal-length
character code is very important for standoff annotation references that are
based on unique text positions and string operations in multilingual applica-
tions.

The above mentioned essentials of XML syntax of course constitute only a
partial description. The complete XML syntax is described in the W3C recom-
mendation (Brayet al., 1998). The W3C XML recommendation (the official stan-
dardization document) itself makes references to other, lower-level standards such
as Unicode for character encoding of text and elements, and IETF RFC 1738 for
the Uniform Resource Identifier (URI) syntax.

4.2.4 Strictly Structured vs. Semi-Structured Documents

The XML paradigm for document markup is similar to that of SGML. The markup
is a means of structuring documents semantically (where ’semantics’ is not for-
mally defined, but informally described by the name of elements and attributes).
An XML document even need not be based on a text. It may insteadconsist of
regularly structured data, such as address book entries where e.g. all information
is encoded in elements and attributes, and the marked up textis ’empty’.

One of the outstanding advantages of XML is that it is suitable for bothsemi-
structured documents(sometimes also called markup-structured, loosely-structured,
or document-centric) containingheterogeneous dataandstructured documents(also
calledstrictly structuredordata-centricdocuments) containinghomogeneous data.

Semi-structured documents are those that follow the above mentioned general-
ized markup idea. Natural language text (unstructured datafrom the viewpoint of
a computer scientist) is enriched with some additional structuring markup, indicat-
ing properties of text portions and maybe hierarchically structuring the document’s
content. Typical for the semi-structured paradigm are mixed content (text or ele-
ments are admitted as children of an element), optional and recursively embedded
elements, and the significance of element order. An example is the MUC markup
for named entities as shown on page 70.
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The structured data paradigm corresponds to strongly typeddata, such as tables
in relational databases or sorted graphs in object hierarchies or databases (Abite-
boul, 1997). Recursion, mixed content or optionality is notpresent or only limited
(in case of optional attributes, default values can be declared in the DTD). The or-
der of elements may be relevant to some extent. Application examples are storage
of address book entries, stock quotes, flight schedules, sales orders or application
data exchange through XML documents.

While strictly structured documents can be mapped to a simple relational data-
base schema, this is generally not true for semi-structuredmarkup. Here, mappings
to relational database schemata are possible, but often result in huge, complicated
database schemata5.

Many XML-based standards or quasi-standards, described byDTDs or XML
schemata have been defined by various institutions, companies or consortia, and
the number is still growing. While SGML was primarily used for text document
markup for publishing and as persistent vendor-independent text storage format,
XML usage has quickly been extended to various applicationsthat use markup as
a kind of abstract syntax and container format for inter-application data exchange.

4.2.5 XML as Carrier Syntax for Computer Languages

Formally, XML can be characterized as a parenthesis grammar(Knuth, 1967; Mc-
Naughton, 1967), a special form of context-free grammars with rules of the form
N → cMc′ whereN andM are non-terminals, andc, c′ the parenthetic beginning
and ending elements. For this reason, XML is often used as acarrier syntaxfor
programming and other formal description languages that could also be expressed
in a Backus-Naur form. Examples are

• XSLT, a programming language for transforming XML documents we will
describe later

• XML schema, an XML-encoded description of XML document formats sim-
ilar to DTDs

• Apache ant, a scripting language similar to that of the Unixmake tool

• SVG (Scalable Vector Graphics), a language to describe vector graphics

• InkML, a data format for representing ink entered with an electronic pen or
stylus

• MathML, a specification for describing mathematics as a basis for machine
to machine communication

5under the assumption that full text storage of XML documentsis not a serious, practical alterna-
tive because queries on the structure and content cannot be supported then without fully parsing the
data for each query.
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• SMIL (Synchronized Multimedia Integration Language)

• OASIS Open Document Format for Office Applications (word processing
etc.)

4.2.6 XML as Open Data Structure

One of the major differences between SGML and XML is that XML validation is
optional, i.e., an XML document is processable even if no DTDor schema is given
(provided that it is well-formed). Moreover, even with a DTDor schema, much
freedom is left by admitting optional elements and attributes.

This turns XML into a kind ofopen data structureor lingua francafor ad-hoc
markup and storage or exchange of structured information ofany kind, such as
software configuration data or document metadata and linguistic markup, e.g. for
rapid prototyping. However, not defining a DTD or schema always bears the risk of
violating assumptions that are made by XML-processing software (e.g. unexpected
element namesetc).

4.2.7 Linguistic Markup

Markup (enrichment) of text withlinguistic informationcomes close to the original
GML markup idea of adding tags to text and corresponds to the semi-structured
document paradigm of XML and SGML. The linguistic term for (manually) added
markup isannotation. The termlinguistic annotationcovers any descriptive or
analytic notation applied to raw language data.

Corpora are text collections, e.g. from newspapers, or speech transcriptions
etc, serving as observation data.

Annotated corpora– text enriched with linguistic markup – play an important
role e.g. for machine learning and evaluation of automated linguistic processing.

For machine learning, manually annotated corpora are used to train a statistical
model (maybe on a initially small corpus). In a bootstrapping way, markup is then
generated on new text through NLP based on the trained model.

This automatically generated markup is then corrected manually or semi-auto-
matically, e.g. by repairing wrong analyses, selecting thereadings a human would
understand, or adding information for unknown words or constructions. From the
corrected markup, an improved model can then be trained. Thewhole process can
be iterated, e.g. to obtain better models for specific text classes or sources (cf.
Figure 4.2).

Automatic and manual (or semi-automatic) markup can thus beconceived as
an interactive process and it is therefore only natural to use XML as output format
for NLP components. Moreover, it is possible to exchange andcombine linguistic
markup of NLP components via XML and XML-processing tools – one of the
central ideas underlying this thesis.
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Figure 4.2: Training-annotation/correction-NLP analysis cycle

4.2.8 Standards for Linguistic Markup

There are a number of standards and proposals for linguisticannotation, some go-
ing even back to the time when XML has not yet been invented. Wewill briefly
discuss some of them . Although processing of annotated corpora is not in the fo-
cus of our thesis, standards and especially XML plays an important role because
NLP may have corpora at both ends – NLP components may both usethem as input
(e.g. for training statistical models) and produce markup as output, e.g. automati-
cally annotated corpora. Thus, corpus annotation frameworks and NLP-generated
markup are bound up with each other.

However, because of the limitations of NLP components, the markup of a spe-
cific NLP component typically is only a subset of a corpus annotation scheme
which often is designed to cover a broader variety of linguistic phenomena. Gen-
erally speaking, the same criteria that are crucial for corpus annotation also are
important for NLP component output. Ide and Romary (2002) e.g. name the con-
sistency of tag set and encoding schema, recoverability of source text, validatabil-
ity, processability, extensibility, compactness and readability.

4.2.8.1 Text Encoding Initiative (TEI)

In the early days of linguistic corpus annotation, SGML was proposed and used
for corpus markup. Already in 1987, the separation of text and layout for content
markup, and the independence of systems, hardware, software-specific data for-
mats has been the motivation for the Text Encoding Initiative (TEI), a consortium
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of institutions and projects related to history, literature, linguistics, philologyetc,
to setup a standard for content-oriented document annotation.

‘The Text Encoding Initiative (TEI) Guidelines are an international
and interdisciplinary standard that facilitates libraries, museums, pub-
lishers, and individual scholars represent a variety of literary and lin-
guistic texts for online research, teaching, and preservation.’
(Sperberg-McQueen and Burnard, 1994)

Text structures (DTDs) have been defined for e.g. prose, verse, drama, speech
transcription, dictionary, terminology, but also for linguistic information such as
part-of-speech tags or inflection, and even feature structures. The proposed tag
sets are very comprehensive, and organized in modular DTDs.The first series of
guidelines was published in 1990 as TEI P1. In 1998, TEI has adopted XML as
additional markup syntax.

Elements for linguistic markup are e.g.

• <s> for sentence-like division of a text

• <cl> for grammatical clause

• <phr> for grammatical phrase

• <w> for grammatical (not necessarily orthographic) words

• <m> for grammatical morpheme

• <c> for character

An XML example taken from the TEI P5 Guidelines (Sperberg-McQueen and
Burnard, 1994)

<p>

<s>

<cl type="finite declarative" function="independent">

<phr type="NP" function="subject">Nineteen fifty-four,

<cl type="finite relative declarative" function="appositive">

when <phr type="NP" function="subject">I</phr>

<phr type="VP" function="predicate">was eighteen years old</phr>

</cl>

</phr>,

<phr type="VP" function="predicate">

<phr type="V" function="main verb">is held</phr>

<phr type="NP" function="complement">

<cl type="nonfinite" function="predicate nom.">

<phr type="V" function="copula">to be</phr>

<phr type="NP" function="predicate nom.">a crucial turning point

<phr type="PP" function="postmodifier">in

<phr type="NP" function="prep.obj.">the history

<phr type="PP" function="postmodifier">
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of the Afro-American</phr>

</phr>

</phr>

-

<phr type="PP" function="appositive postmodifier">for

<phr type="NP" function="prep.obj.">the U.S.A.

<phr type="PP" function="postmodifier">as a whole</phr>

</phr>

</phr>

</phr>

-

<phr type="NP" function="appositive pred.nom.">the year

<cl type="finite relative" function="adjectival">

<phr type="NP" function="subject">segregation</phr>

<phr type="VP" function="predicate">

<phr type="V" function="main verb">was outlawed</phr>

<phr type="PP" function="postmodifier">

by the U.S. Supreme Court</phr>

</phr>

</cl>

</phr>

</cl>

</phr>

</phr>.

</cl>

</s>

</p>

Although TEI is frequently referenced by other approaches and annotation
schemata and is one of the oldest annotation standardization efforts, many cor-
pora are not using the TEI schema, but other, simpler ad-hoc annotation schemata
designed for the actual, specific needs. The main reason is that TEI suffers from the
SGML sickness that in aiming at describing any phenomenon and foreseeing every
case and feature, the schema becomes complex and confusing (cf. Witt 1998).

At the same time, TEI leaves room for more specific extensions(therefore the
term ‘guidelines’), and is organized in a modular way. However, there are also as-
pects that TEI didn’t cover at all, such as semantic annotation, and that are not easy
to make conforming to the guidelines. Although it is possible to add extensions to
a TEI schema, people often end up in defining their own, TEI-independent schema,
taking TEI as a start point. In Chapter 5, we will argue why this does not do much
harm from a technical perspective. However, the question remains about the value
of a standard that is too general on the one side, and too inflexible on the other side.

4.2.8.2 CES and XCES

CES (Corpus Encoding Standard; Ide 1998) has been developedas an application
of TEI (firstly in SGML) and as part of the EAGLES (Expert Advisory Group on
Language Engineering Standards) guidelines. As such, CES lays a much stronger
focus on (linguistic) corpus annotation than TEI did. CES extends TEI specifi-
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cations and makes them more specific where appropriate, and on the other hand
limits the TEI scheme to include only that subset of tags thatis relevant for corpus
annotation.

Like TEI, CES has migrated to XML under the name XCES (Ideet al., 2000a;
Ide and Romary, 2001, 2002). The approach is in a clear way top-down-oriented,
and the basic concepts have also influenced the ISO standardization efforts for lin-
guistic annotation we will describe in the next section. XCES defines an abstract
Structural Skeletonfor syntactic structures that are common to all (in the corpus
world) possible annotation schemes, and aData Category Registrythat defines gen-
eral categories such as phrase types in a hierarchy using RDF(cf. Section 4.2.9).

Both the Structural Skeleton and the Data Categories are instantiated for a spe-
cific annotation scheme (called AML, the Annotation Markup Language), where
e.g. the noun phrase category is defined to be an attribute value or the name of an
element as well as the rest of syntactic structure. This AML corresponds then to
and can be written as an XML DTD.

Universal Resources

Concrete Resources

Structural Skeleton

Data Category

Data Category

Registry

Concrete XML
Encoding

Abstract Markup
Language Specification

Figure 4.3: XCES annotation framework (simplified)

What makes XCES interesting for our needs in deep-shallow integration is
the abstract top-down view to annotation, the concrete realization, and the clear
adoption of XML transformation to realize the top-down approach of XCES in
implementations, including concepts such as stand-off annotation and linking of
annotation. These points will be discussed later.

4.2.8.3 ISO

A recent development is the ISO standardization of linguistic markup for compu-
tational linguistics, computerized lexicography, and language engineering, defin-
ing ‘standards by specifying principles and methods for creating, coding, process-
ing and managing language resources, such as written corpora, lexical corpora,
speech corpora, dictionary compiling and classification schemes. These standards
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will also cover the information produced by natural language processing compo-
nents in these various domains.’6.

This claim makes ISO fit into our goal of using XML7 for NLP component
integration and it turns out that the ISO working group is mainly complementing,
and partly overlapping existing TEI approaches. TEI, e.g. is not specific enough
on morphology and although feature structure markup is defined by TEI, ISO tries
to cover it in more principled and elaborated way (Leeet al., 2004).

Moreover, ISO also aims at putting more focus on multilingual, multimedia
and multimodal aspects than TEI did so far. However, the standardization process
by the joint ISO/TEI working group (TC 37 SC 4) is still ongoing, and only one
(not so near) day could become the ISO DIS 24610 standard. Another focus of
ISO will also consist in standardization of non-textual linguistic resources such as
lexica which are also less covered by TEI.

4.2.9 Further XML Standards Related to Linguistic Processing

Besides morphosyntactic markup of written text, there exist already several es-
tablished XML standards for lexicon and terminology exchange, speech and the
Semantic Web. All of them are closely related to linguistic markup and are worth a
short discussion here, because they play important roles inlinguistic processing –
and XML being their common basis, makes it easy to integrate them in the frame-
work we envisage. However, we will discuss them only briefly because they are
not directly used and necessary for the deep-shallow integration scenarios we will
focus on in this thesis.

The relation of speech, lexicon and terminology to linguistic processing should
be obvious, and the Semantic Web will without doubt play an important role as
application and aim of natural language processing in the near future, as will also
be discussed in Section 9.7 and 9.10.2.

Semantic Web Being promoted by the World Wide Web Consortium, the fol-
lowing knowledge representation languages for the Semantic Web are all based on
XML syntax (examples will be shown in Section 9.7 and 9.10.2).

• RDF (Resource Description Framework; Klyne and Carroll 2004), a sim-
ple language to describe objects (e.g. web resources) in form of subject-
predicate-object triples (’statements’). As already briefly discussed in Sec-
tion 4.2.2, the fact that RDF uses XML syntax does not imply that a formal
semantics is defined. This is only defined in the following frameworks that
themselves build on RDF.

6from http://www.tc37sc4.org
7The ISO working group has made a clear commitment to build ‘onand around W3C standards’

such as XML, RDF, OWL, SOAP.
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• RDF Schema (or RDF Vocabulary Description Language; Brickley and Guha
2004) is a language to describe vocabularies, similar to classes in object-
oriented programming languages, and uses RDF itself as basesyntax,

• OWL (Web Ontology Language; Bechhoferet al.2004) with its sub-langua-
ges OWL-light, OWL-DL and OWL-full is designed to define ontologies in
a description logic-like manner (Baaderet al., 2003). OWL uses RDF as
base syntax in the same way RDF Schema does.

Speech

• SSML (Speech Synthesis Markup Language8) has been designed to model
and assist the generation of synthetic speech in applications. Aspects of
speech generation such as pronunciation, volume, pitch, rate,etccan be con-
trolled across different synthesis-capable platforms. This can be used as the
speech front-end in NLP-based applications.

• VoiceXML (Voice Extensible Markup Language9) defines a standard for cre-
ating audio dialogs that feature synthesized speech, digitized audio, recogni-
tion of spoken and DTMF key input, recording of spoken input,telephony,
and mixed-initiative conversations. Dialogs can be modeled e.g. by creating
templates to be filled in by speech dialogs.

Lexicon and terminology interchange

• OLIF (Open Lexicon Interchange Format10) is an XML-based interchange
format for lexical and terminological information (databases), originally de-
veloped in the OTELO project (Open Translation Environmentfor LOcaliza-
tion; Lieskeet al.2001). It is e.g. used for translation memories in industrial
machine-assisted translation of written documentations.

4.3 Common Properties and Challenges of XML-Based
Linguistic Annotation

Although some popular annotated corpora such as the Penn Treebank (Marcuset
al., 1994) or the German NEGRA treebank (Skutet al., 1998) are in non-XML
format, the trend goes to XML annotation of corpora and even existing non-XML
treebanks are converted to XML (cf. Teichet al. 2001). As already motivated in
Section 4.2, manual corpus annotation and automatic annotation produced by NLP
components are closely related, and therefore both benefit from the advantages of
XML encoding such as

8http://w3c.org/TR/speech-synthesis/
9http://w3c.org/TR/voicexml20/

10http://www.olif.net
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• having a common base syntax that can be seen as a kind of ‘abstract syn-
tax’ generalizing over low-level syntax for grouping, e.g.parenthesesetc,
separation of entities

• Unicode as comprehensive character encoding framework supporting true
multilinguality

• powerful, but – in contrast to SGML – not too complicated document struc-
turing grammar syntax

• optional validation of document structure

• wide range of existing powerful software tools for parsing,editing, visual-
ization, transformation

In analogy to XML corpus annotation, XML output of NLP components is
becoming increasingly important and popular. Some recent NLP components di-
rectly produce an XML corpus format as output. An example is the LingPipe
implemented by Bob Carpenter (Carpenter, 2005), a statistical named entity rec-
ognizer that produces XML output compatible with the MUC annotation format
(Message Understanding Conference; Grishman and Sundheim1996):

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT>

<P>

<sent>

<ENAMEX id="6" type="PERSON">George W. Bush</ENAMEX> is the

president.

</sent>

<sent>

<ENAMEX id="6" type="MALE_PRONOUN">He</ENAMEX>

is the commander in chief of the

<ENAMEX id="7" type="LOCATION">United States of

America</ENAMEX>.

</sent>

</P>

</DOCUMENT>

Similar for taggers, e.g. the part-of-speech-tagged example sentence

DieART KriminalpolizeiNN verfolgteVFIN dieART Bankr̈auberNN bisAPPR

zurAPPRARTniederl̈andischenADJA GrenzeNN.

from Section 4.1.3 could be annotated in XML format as

<?xml version=’1.0’?>

<text>

<w id="T0" pos="ART">Die</w>
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<w id="T1" pos="NN">Kriminalpolizei</w>

<w id="T2" pos="VVFIN">verfolgte</w>

<w id="T3" pos="ART">die</w>

<w id="T4" pos="NN">Bankräuber</w>

<w id="T5" pos="APPR">bis</w>

<w id="T6" pos="APPRART">zur</w>

<w id="T7" pos="ADJA">niederländischen</w>

<w id="T8" pos="NN">Grenze</w>

<w id="T9" pos=".">.</w>

</text>

and furthermore enriched with chunk information

<?xml version=’1.0’?>

<text>

<chunk cat="NP">

<w id="T0" pos="ART">Die</w>

<w id="T1" pos="NN">Kriminalpolizei</w>

</chunk>

<w id="T2" pos="VVFIN">verfolgte</w>

<chunk cat="NP">

<w id="T3" pos="ART">die</w>

<w id="T4" pos="NN">Bankräuber</w>

</chunk>

<chunk cat="PP">

<w id="T5" pos="APPR">bis</w>

<w id="T6" pos="APPRART">zur</w>

<w id="T7" pos="ADJA">niederländischen</w>

<w id="T8" pos="NN">Grenze</w>

</chunk>

<w id="T9" pos=".">.</w>

</text>

and finally with PCFG parser output for topological sentencefields (cf. Fig-
ure 4.1 on page 55).

<?xml version=’1.0’?>

<text>

<root>

<cl_v2>

<vf_topic>

<chunk cat="NP">

<w id="T0" pos="ART">Die</w>

<w id="T1" pos="NN">Kriminalpolizei</w>

</chunk>

</vf_topic>

<lk_vfin>

<vvfin>

<w id="T2" pos="VVFIN">verfolgte</w>

</vvfin>
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<lk_vfin>

<mf>

<chunk cat="NP">

<w id="T3" pos="ART">die</w>

<w id="T4" pos="NN">Bankräuber</w>

</chunk>

<chunk cat="PP">

<w id="T5" pos="APPR">bis</w>

<w id="T6" pos="APPRART">zur</w>

<w id="T7" pos="ADJA">niederländischen</w>

<w id="T8" pos="NN">Grenze</w>

</chunk>

</mf>

</cl_v2>

<w id="T9" pos=".">.</w>

</root>

</text>

The tagger and chunker markup above has been generated automatically by
TnT and Chunkie (Skut and Brants, 1998), details in Section 9.5.2.1 and 9.5.3.1.

There are two things that can be seen from the examples: (1) there is a natural
way of formulating hierarchical (tree) structure by embedding elements (chunks
embed words), i.e., the linguistic tree structure is reflected in the XML tree, (2)
markup can be optional. The chunker e.g. does not provide chunk information for
the VP (token T2 in the above sentence). This optional markupreflects the agnostic
way in which shallow processors typically work: information may be partial, and
this can easily be modeled in XML by omitting tags or attributes.

We present another example in Figure 4.4 for even deeper nested hierarchi-
cal annotation produced by the shallow processor SPPC (Piskorski and Neumann,
2000) that also includes text structuring elements such as Sfor sentence and PARA-
GRAPH for paragraphs, and additional markup of named entities (NE) which in
turn can be part of chunks.

Although this example looks elegant in that it combines different strata of lin-
guistic analysis within a nested structure, this kind of representation is either only
possible after full disambiguation of multiple readings ofthe different analysis lev-
els (such as morphology, chunks, named entities), or – as in this case – if only a
single processing component produces such output that ensures the tree structure
of the output annotation.

In the general case, if dedicated, independent NLP components (e.g. a mor-
phology/lexicon component, named entity recognizer, and chunker) are involved in
generating XML output for the same text, the results may contain different spans
of recognized entities and multiple readings for analyses.The resulting structure
would contain crossing elements, which is not admitted in well-formed XML.
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<SPPC_XML>

<PARAGRAPH>

<S>

<CHUNK type="NP">

<NE type="PERSON" subtype="UNTITLED">

<W tc="first_capital_word" pos="N" stem="george">George

</W>

<W tc="initial_capital_period">W.</W>

<W tc="first_capital_word" pos="N" stem="bush">Bush</W>

</NE>

</CHUNK>

<CHUNK type="VF_AUX_FIN">

<W tc="lowercase_word" pos="AUX" stem="sei">ist</W>

</CHUNK>

<CHUNK type="NP">

<NE type="POSITION" subtype="POSITION">

<W tc="first_capital_word" pos="N" stem="praesident">

Praesident</W>

</NE>

</CHUNK>

<CHUNK type="NP">

<W tc="lowercase_word" pref="0" pos="PART DEF"

stem="der d-det">der</W>

<NE type="LOCATION" subtype="LOCATION_NP">

<W tc="all_capitals_word">USA</W>

</NE>

</CHUNK>

<W tc="separator_symbol">.</W>

</S>

</PARAGRAPH>

</SPPC_XML>

Figure 4.4: SPPC analysis for ’George W. Bush ist Präsidentder USA’

4.3.1 Standoff Annotation

The standard solution for such cases isstandoff annotation(Thompson and McK-
elvie, 1997). Instead of preserving the nested structure, the different analysis strata
are separated into multiple output documents, and linked via ID attributes or other
linking mechanisms such as XLink or XPointer, or by linking indirectly using char-
acter spans (start and end character in original input text)or a common tokeniza-
tion. The standoff documents together form a graph. As a variation, the annotation
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can go to a single output document containing different sections11.
The advantage of standoff annotation is that the resulting document structures

remain simple, and that any kind of linking (and also multiple linking mechanisms)
can be applied. In most cases, the simple ID/IDREF mechanismsupported by the
XML standard can be used that allows ID attributes to be declared as unique iden-
tifiers in DTD (partial declaration of the ID attribute typesis sufficient, cf. the
example below) that can then be referred to as targets with IDREF attributes or
a special XPath id function mechanism we will discuss later.The only support a
(validating) XML parser provides for these directed links is validation for unique-
ness of ID target labels and availability of all IDREF targets within the document
in an efficient way.

Example in DTD (XML Schema provides an analogous facility):

<?xml version="1.0"?>

<!DOCTYPE standoff [

<!ATTLIST w id ID #REQUIRED >

<!ATTLIST ne parts IDREFS #REQUIRED >

]>

<standoff>

<tokens>

<w id="W0">Gerhard</w>

<w id="W1">Schröder</w>

<tokens>

...

<namedentities>

<ne parts="W0 W1"/>

</namedentities>

</standoff>

The ID/IDREF mechanism shown here for intra-document linking also works
for inter-document linking as long as the document management is handled by the
XML processor or in XPath (described later) using thedocument() function.

W3C has defined additional and more elaborated standards forlinking, namely
XPointer (DeRoseet al., 2002) and XLink (DeRoseet al., 2001). While XLink in-
troduces a fixed set of linking types such as bidirectional links, link groups, or link
titles and roles and uses URI to identify link targets, XPointer with its sub-language
XPath (Clark and DeRose, 1999) supports pointing to e.g. complex descriptions
of sub-document ranges. However, as most XML processing software does not
support these extensions12, the simple ID mechanism (or alternatively an ordinary,
dedicated attribute) is used in most cases and systems.

11A later, related term for standoff annotation used in a more general context than NLP iscon-
current markupor extreme markup(Durusau and O’Donnell, 2002). In the computational linguistics
context, the termsmulti-dimensional markup, multi-levelor multi-layered annotationhave also been
used in recent years, both for standoff markup in multiple documents and in a single document.

12There are multiple reasons for this, e.g. the problem of different uses and representations of the
pointer targets, and more profanely, patent issues.
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4.3.2 Related Annotation Standards

Standoff annotation is also useful for annotating translated corpora (each language
in a separate layer), or time-aligned corpora, typically transcription of speech and
video, as in the Universal Transcription Format (UTF; of Standards and Technol-
ogy 1998) by the US National Institute of Standards and Technology (NIST), cf.
Figure 4.5 for an example.

Here, a timeline is defined in the document which the annotation makes ref-
erence to. Various existing time-aligned speech annotation formats are discussed
in Bird and Liberman (2001) and a generalization calledannotation graphsis pre-
sented. Formally, annotation graphs are labeled directed acyclic graphs with a time
function that assigns to each graph node an element of the timeline (an ordered
set).

<turn speaker="Roger_Hedgecock" spkrtype="male" dialect="native"

startTime="2348.811875" endTime="2391.606000"

mode="spontaneous" fidelity="high"> ...

<time sec="2378.629937"/> now all of those things are in doubt

after forty years of democratic rule in

<enamex type="ORGANIZATION">congress</enamex>

<time sec="2382.539437"/>

<breath/>

because

<contraction e_form="[you=>you][’ve=>have]">you’ve

</contraction> got quotas

<breath/>

and set-asides and rigidities in this system that keep you

<time sec="2387.353875"/>

on welfare and away from real ownership

<breath/>

and <contraction e_form="[that=>that][’s=>is]">that’s

</contraction> a real problem in this

<overlap startTime="2391.115375" endTime="2391.606000">country

</overlap>

</turn>

<turn speaker="Gloria_Allred" spkrtype="female" dialect="native"

startTime="2391.299625" endTime="2439.820312"

mode="spontaneous" fidelity="high">

<overlap startTime="2391.299625" endTime="2391.606000">well i

</overlap> think the real problem is that %uh these kinds of

republican attacks

<time sec="2395.462500"/>

i see as code words for discrimination ...

</turn>

Figure 4.5: XMLified example of the Universal TranscriptionFormat (UTF)

Furthermore, there is an immediate analogy between the TIPSTER annotation
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format (Grishman, 1997) and standoff annotation. In TIPSTER, all annotations are
expressed in terms of byte offsets into the original text. The byte offsets to text
could be interpreted astimelinebecause they form an ordered set13.

The ACE (Automatic Content Extraction)14 program by the American National
Institute of Standards and Technology (NIST) generalizes this even further to text
(newswire), speech (ASR) and image (OCR) annotation in one DTD. The ACE
DTD defines a reference key annotation of EDT entities and RDCrelations (EDT
= entity detection and tracking task, RDC = relation detection task). The ACE an-
notation format foresees markup for persons, organizations, geographical-political
entities, locations and human-made artifacts of architecture and civil engineering.

An entity can be identified via a character span or sequence (if it is text), a time
span (if it is speech or audio-video signal), or a list of bounding box coordinates (if
it is scanned text; the position description of a word may be alist of boxes because
a word may be wrapped in lines). Thus, this annotation formatallows for flexible
markup not only of text and OCR input, but also of speech and multimedia streams.
The relevant fragment of the DTD can be found in the DTD Appendix on page 285.

Discontinuous constituents (e.g. topicalization, scrambling, clause union, pied
piping, extraposition, split NPs and PPs) are linguistic phenomena that exceed the
standard XML element tree, but can be easily modeled by standoff annotation. An
example is the sentence ‘Turn the switch off’ where turn off is the discontinuous
constituent. By linking the constituent parts via ID attributes, e.g. as shown here15,
even distant phrase elements are tied together.

<s>

<w id="W0">turn</w>

<w id="W1">the</w>

<w id="W2">switch</w>

<w id="W3">off</w>

<vp id="V0" constituents="W0 W3"/>

<np id="N0" constituents="W1 W2"/>

</s>

An XML-independent discussion of an annotation scheme for free word order
languages (including discontinuous constituents) is e.g.addressed in Skutet al.
(1997).

Mengel and Lezius (2000) describe a largely linguistic theory-neutral XML
format (TIGER XML) based on the non-XML NEGRA (Skutet al., 1998) annota-
tion schema giving up the pure tree model in favor of an instrument to model cross-
ing edges in the analysis. Both annotation formats allow crossing edges (edge1 5
and edge1 6 in the example below).

13A disadvantage of the byte offset representation is that some character encodings may have
variable byte-length representation of characters (e.g. for Japanese). Here, XML technology based
on Unicode and character offset representations has a clearadvantage over byte offsets.

14http://projects.ldc.upenn.edu/ace/
15Typically, standoff annotation is distributed over multiple XML documents. However, it is also

possible and sometimes convenient to put multiple standofflayers into one XML document.
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<s id="s2" href="#id(n1_502)"/>

<n id="n1_500" cat="S">

<edge id="edge1_1" label="SB" href="#id(w1_4)"/>

<edge id="edge1_2" label="HD" href="#id(w1_5)"/>

</n>

<n id="n1_501" cat="NP">

<edge id="edge1_3" label="NK" href="#id(w1_0)"/>

<edge id="edge1_4" label="NK" href="#id(w1_1)"/>

<edge id="edge1_5" label="RC" href="#id(n1_500)"/>

</n>

<n id="n1_502" cat="S">

<edge id="edge1_6" label="HD" href="#id(w1_2)"/>

<edge id="edge1_7" label="SB" href="#id(n1_501)"/>

</n>

<w id="w1_0" word="Ein" pos="ART"/>

<w id="w1_1" word="Mann" pos="NN"/>

<w id="w1_2" word="kommt" pos="VVFIN"/>

<w id="w1_3" word="," pos=",">

<w id="w1_4" word="der" pos="PRELS"/>

<w id="w1_5" word="lacht" pos="VVFIN"/>

<w id="w1_6" word="." pos="."/>

Additional crossing edges are introduced by the SALSA extension to the TIGER
XML format (Erk and Padó, 2004) that adds semantic role annotation which can
cross syntactic boundaries.

4.3.3 Summary

In this chapter, we have examined shallow linguistic markupfor the most common
shallow natural language processing tasks. We have introduced XML and its role
aslingua franca, open data structure and abstract syntax for linguistic annotation.

One of the main advantages is flexibility and extensibility (role of elements and
attributes). We have shown the close relation between corpora and NLP compo-
nent output, and noticed the increasing availability of tools and standards for both
corpora and online natural language processors.

We have learned that the work on standardization of corpus annotation is also
related to standardization of NLP component output formats, e.g. namings and
schemata for morphologic, syntactic and semantic markup, and that the same cri-
teria that are crucial for corpus annotation also are important for NLP component
output, e.g. consistency of tag set and encoding schema, recoverability of source
text, validatability, processability, extensibility, compactness and readability.

After a discussion of the deep-shallow mapping problem in the next chapter,
we will propose how deep and shallow components can be integrated using XML
transformations.



78 CHAPTER 4. SHALLOW PROCESSING AND LINGUISTIC MARKUP



Chapter 5

Deep-Shallow Integration by
Transformation

In this chapter, we first discuss general problems that arisewhen representations
generated by different NLP components with different granularities, spans and with
different namings for linguistic entitiesetcare combined. We focus here on deep-
shallow integration. However, some of the problem classes also arise when multi-
ple shallow systems are combined. In the second part, we willpropose a technical
solution by transformation of XML annotation and discuss some variants and al-
ternatives.

5.1 The Deep-Shallow Mapping Problem

The main goal when integrating deep and shallow natural language processing
components is increased robustness of deep parsing by exploiting information for
words (or more general, character sequences) that are not contained in the deep
lexicon. The type of unknown words or word sequences, e.g., can be guessed by
statistical models, domain-specific expressions or time expressions can be parsed
efficiently and reliably with finite-state devices and resources.

Named entities such as proper names or location names can be recognized by
statistical and/or rule-based components and with the helpof gazetteers etc. More-
over, the search space of a deep parser can also be shaped and reduced by prepro-
cessing of sentence structure, partial parsing and rankingof possible readings for a
word class with statistical methods.

Although the list of possible advantages that could be gained by combining
deep and shallow methods looks promising, many problems occur if it comes to
a real integration of (pre-)existing components. For economical reasons, deep-
shallow integration is based on the assumption that (re)designing shallow or deep
components from scratch for a smoother integration is both expensive and not re-
ally wanted because the components also function as standalone modules in other
application contexts that are not to be neglected. Hence, a translation or mapping
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step in between is necessary in most cases.
In the following, we will briefly discuss the main problem classes of deep and

shallow component integration and describe possible solutions on a more abstract
level. The architecture implementations described in Chapters 8 and 9 will provide
concrete solutions for the integration of existing NLP components.

Namings, types, welltypedness Although there are ongoing standardization ef-
forts for linguistic markupetc, there is no unique and common naming standard
for linguistic entities and analyses. Adjectives e.g. are named JJ, adj, ADJ, A or
adjective in different NLP components. In many cases, thereis no or no one-to-
one correspondence1. In the former case (no correspondence), information from
shallow analysis that has no correspondence in the deep grammar may be lost.
However, it remains accessible in standoff annotation of the shallow component,
e.g. for an application. The latter case (no one-to-one correspondence) is discussed
below as granularity of classification problem.

However, it is not only the names of analyzed entities that have to be translated
for deep-shallow integration. Efficient HPSG parsers e.g. require feature structures
to be well-typed, i.e., only attributes with appropriate values are admitted for a
specific type. A non-welltyped feature structure would result in parse failure (cf.
Chapter 3).

An example is morphology information that can consist of a bunch of feature-
value pairs. These have to be defined and must be well-typed inthe deep grammar.

The solution is to provide (total) mappings that always return the appropriate
type that is admitted and expected in the target component, e.g. by using translation
tables or rules.

Granularity of classification Granularity designates the number of classes an
NLP component recognizes for an entity.

A simple example for different granularities is the token type in tokenization.
While some tokenizers only distinguish words from punctuation characters and
numbers, others provide a finer-grained classification, e.g. including ordinal and
cardinal numbers, hypotheses on sentence boundaries, email addresses, abbrevia-
tions etc. The shallow processing system SPPC (Piskorski and Neumann, 2000)
e.g. distinguishes 52 token classes.

Besides separation of punctuation from words, in HPSG grammars tokeniza-
tion is mainly used for recognizing open word classes such asnumbers, datesetc
that are mapped to lexical types. Thus, an external tokenization must match the
classes foreseen by the deep grammar, or a mapping must be provided.

Another example are part of speech tags. While some PoS taggers such as TnT
(Brants, 2000) recognize more than 20 different part-of-speech types for English
and German, only a few basic categories are typically definedin HPSG such as

1Paris (2002) discusses a closely related problem of different tag sets in annotated corpora.
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noun, verb or adjective. Additional information related toword classes may be
defined in additional features and types.

Part of speech types that could be assigned to different classes such as adjectival
verbs as inder bebende Bergcould e.g. be classified by a shallow component as
verb form and as adjective by a deep grammar (orvice versa).

If the granularities differ between shallow and deep NLP components, a map-
ping between the classes has to be defined manually. The boundaries may not
always be obvious. It may be the case that different instances belonging to one
class in the source component have to be mapped to different classes in the target
component andvice versa.

Moreover, the concept of a type hierarchy with inheritance that forms the basis
for deep (HPSG-based) grammars, has no correspondence in shallow systems2.
Hence, implications that can be expressed by using general (super)types in a type
system of a deep grammar have to be enumerated as subtypes in non-hierarchical
classification e.g. of shallow NLP systems.

Even if granularities of classification are similar or isomorphic, the problem
remains to find the correct mapping because names and underlying concepts may
differ.

Because the granularity is determined by underlying linguistic resources (gram-
mars, trained models based on annotated corpora), it is normally too expensive to
adapt their definitions. The solution is hence to map the different classes by trans-
lation tables or rules created manually on the basis of the underlying resources
(models, grammars, theories).

Partial analysis results Shallow natural language processing components typi-
cally deliver partial analysis results. The absence of an analysis e.g. of a word may
denote either that the word does not belong to a class, or thatno information was
available about the word. This could be misinterpreted by a deep system relying
on the shallow input.

Because a deep grammar relies on the fact that each input wordmust be known,
and typically will fail to deliver a full parse of the whole sentence in case of partial
information, this could form a problem for a deep parser thattries to fill lexical
gaps by shallow input.

A fall-back could be to (a) rely on shallow input only in case of no full deep
analysis is available (b) use fragments remaining on the deep parse chart in that
case. Both solutions will be discussed in Chapter 9.

An example for partial analysis is named entity recognition. If a word is not
marked as named entity (NE), this does not necessarily mean that it cannot be
a named entity, because no NE recognition component has complete knowledge
about all proper and location names.

To cope with partial information, a solution is to use the underspecified, min-
imal information that is available as fall-back. For an example, we consider the

2except inSProUT, cf. Chapter 7.
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case that a word is not in the deep lexicon. Normally, a deep analysis would fail
because of the gap in the parser’s chart. The analysis of a shallow named entity
recognizer would be used instead (which would cause a generic lexicon entry for
the named entity to be put on the chart of the deep parser).

If the named entity recognizer also gives no hint on the word,the output of
a statistical part-of-speech tagger could be used as final fall-back and a generic
lexicon entry for the guessed part-of-speech would be addedto the chart. If infor-
mation is available neither from the shallow nor from the deep analysis, then the
deep parser could try a fragmentary deep parse.

Structural Richness Richness is related to the information complexity or struc-
tural complexity of NLP analyses (in contrast to granularity which only comprises
the number of recognized classes).

A deep lexicon entry for a verb e.g. contains information on the subcatego-
rization frame of the verb, i.e., which kinds of object the verb requires and which
semantic roles are assigned to them, such as

















give

POS v

AGENT giver

OBJECT given

RECIPIENT givee

















for the verb to give. A shallow lexicon typically only contains the information
that to give is a verb.

Similarly, deep grammars deliver a highly structured syntactic analysis of a
sentence while shallow parsers in most cases return more or less flat sentence struc-
ture, if any.

To give an example for the opposite case (structured shallowanalysis), a named
entity recognition component may deliver detailed information on the structure,
type and nature of a named entity,











NE person

TITLE "Dr."

SURNAME "Reinhart"

GIVENNAME "Rühmenkorff-Bohlander"











whereas a deep grammar may only provide or foresee information on the span
and part-of-speech type:[Dr. Reinhart Rühmenkorff-Bohlander]NE person.

Structural differences are probably the most likely case for mismatches be-
tween shallow and deep analyses, e.g. chunks are typically non-recursive in shal-
low chunkers, while recursively branching in deep analyses, and even if they were



5.1. THE DEEP-SHALLOW MAPPING PROBLEM 83

recursive also in shallow analyses, then the branching structure might be different
(left vs. right-branching)3.

The difficulty is to match or map structures of differing richness without loss
of information, in order to get a maximally rich structure. Usually, unification is
the operation that returns such structures, but because of different granularities and
namings in deep and shallow analyses, the unification operation may not always be
feasible and well-defined.

The general solution would be to map different structures toeach other depend-
ing on their type and on the basis of the underlying models, theories and grammars.
This is easier when either source or target of the mapping is not structured but con-
sists only of a single class.

Boundaries Deep and shallow analyses may differ in what is conceived as part
of a recognized item such as a token, a phrase, a named entity or a larger structure.
This is in most cases rooted in the underlying models, training corpora, grammars
or linguistic theories.

A proper name in a prepositional phrase may be recognized as proper name as
a whole in a shallow analyzer, or without the preposition in adeep grammar, e.g.
in [Paris]NE location vs. [in Paris]NE location

Another example is tokenization. While a deep grammar may contain the word
‘sister-in-law’ as a single token in the lexicon, it may consist of 5 tokens when
analyzed by a shallow tokenizer, e.g.

<w>sister</w><t>-</t><w>in</w><t>-</t><w>law</w>.
The general problem here is mapping of different spans of recognized linguistic

items. Because the span information or verbatim input text is often the only com-
mon information that two independent natural language processing components
share, the correct span is crucial for deep-shallow integration.

The boundary problem is closely related to structural mapping (richness) and
hence the solution is similar to that: Mappings must be basedon underlying lin-
guistic resources such as grammars, models, theories. In case of not exactly match-
ing spans, structural information of the recognized entities can be used to extract
and map parts of analyses.

The common measuring unit for span information exchange between NLP
components should be character positions (or counts) in theoriginal input text
as the least common denominator. Other units such as tokenization may not be
compatible between components (cf. example above) and can therefore not form a
reliable basis for syncing boundaries of higher-level linguistic items.

A further solution is to add the shallow tokenization as alternative input to deep
parsing. This may increase ambiguity slightly, but also moves resolution to a single
and probably best informed place, namely to the deep parser.

3An exception to the former case is the trigram-based chunkerChunkie (Skut and Brants, 1998)
that computes recursively embedded chunks, provided that the underlying corpus used for training
provides such information. However, a deep grammar may still support chunks of any depth.
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Ambiguity Ambiguity may be introduced at any level of linguistic processing,
e.g. tokenization, part-of-speech tagging, morphological analysis, lexicon access,
chunking, named entity recognition, shallow parsing may all introduce ambiguity
as well as deep grammars (because of lexical, syntactic and semantic ambiguity
that is inherent in deep grammars).

If several shallow components are combined, then the numberof ambiguous
analyses may multiply at each integration step. However, they will collapse in
many cases by coincidence of boundariesetc. On the other hand, it is also possible
to use shallow preprocessing to filter unlikely readings by exploiting information
a specialized component such as a statistical chunker can deliver. Some examples
for concrete ambiguities

• tokenization: a dot may form the delimiter of a sentence or indicate an ab-
breviation or both at the same time

• pos-tagging: The same word can be a verb as well as a noun

• morphology: number, gender, case ambiguities

• lexicon: polysemy or homographs

• named entities: Paris may be the given name of a person or the name of a
town

Ambiguity in deep-shallow integration is both a blessing and a curse. On the
one side, shallow components can recognize readings for a word or syntactic struc-
ture that a deep grammar and lexicon does not provide becauseof resource limita-
tions, and hence increase theoretically the chance that a sentence can be analyzed
deeply.

On the other side, the fact that each shallow component may introduce ad-
ditional readings, may increase the number of items on the deep parser’s chart
and hence the search space and run time of the deep analysis. The solution for
this dilemma is to make decisions as early as possible in the integration process
whether to include an additional reading induced by shallowpreprocessing or to
drop it. Heuristics on the reliability of outputs may help inthe decision process.

A further aspect is reduction of ambiguities in deep parsingthrough the help of
shallow analyses. Those readings that come closest to shallow analyses could be
preferred over the others (cf. Chapter 8).

Finally, a backtracking strategy could be pursued that tries a full deep parse
with one of the readings induces by shallow components, and only if this fails tries
the next shallow reading and so on.

Probability Both shallow and deep processing systems may come with underly-
ing probabilistic models that can be used to filter out readings, e.g. below a prob-
ability threshold. However, the problem remains how to set probabilities against
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each other and which thresholds to choose. This is closely related to the ambiguity
problem and probabilities may help to solve it.

We consider an example in part-of-speech tagging. Three words in the sentence
analyzed by the TnT tagger get multiple readings (do, snails, live). The probability
gained from the trained model is indicated in theprio attribute value.

<w id="TNT0" cstart="0" cend="4">

<surface>Where</surface>

<pos tag="WRB" prio="1.000000e+00"/>

</w>

<w id="TNT1" cstart="6" cend="7">

<surface>do</surface>

<pos tag="VBP" prio="8.754433e-01"/>

<pos tag="VB" prio="1.245567e-01"/>

</w>

<w id="TNT2" cstart="9" cend="13">

<surface>apple</surface>

<pos tag="NN" prio="1.000000e+00"/>

</w>

<w id="TNT3" cstart="15" cend="20">

<surface>snails</surface>

<pos tag="NNS" prio="9.446836e-01"/>

<pos tag="VBZ" prio="5.531639e-02"/>

</w>

<w id="TNT4" cstart="22" cend="25">

<surface>live</surface>

<pos tag="VBP" prio="7.822439e-01"/>

<pos tag="JJ" prio="1.550179e-01"/>

<pos tag="VB" prio="6.273819e-02"/>

</w>

<w id="TNT5" cstart="26" cend="26">

<surface>?</surface>

<pos tag="?" prio="1.0"/>

</w>

The problem with probabilities is that there is no general way of comparing or
even propagating the values from one component to another.

A simple strategy that avoids explosion of search space caused by multiple
readings is to take only then most probable readings at each analysis step above
a thresholdy and to omit the others,n and y being configurable values. In the
example above,n = 1,y = 0.5 would safely return the correct readings for all three
ambiguously tagged words.

Conflicts, contradictory information When different NLP components based
on different, independent linguistic resources (grammars, models, theories) are
combined, conflicts are likely to occur.

Example:‘Essen ist gesund.’



86CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

A named entity recognizer may recognize Essen as the name of aGerman city,
while the deep grammar may recognize it as a verb. In this example, both readings
could be valid. Similarly, conflicts between deep and shallow components may
arise in tokenization, part-of-speech tagging, lexicon, chunkingetc.

In general, conflicts may e.g. occur if a shallow component recognizes a word
or constituent different from a deep parser. A conflict resolution might be neces-
sary that could be based on reliability assessment. If a shallow component cau-
tiously recognizes named entities, e.g., its voting would be preferred over a deep
parser’s lexicon-based alternative reading. The reliability of deep grammars could
be judged higher e.g. for chunk or macro-sentential structures than for shallow
parsers.

Alternatively, if the reliability of the NLP components is unclear, the contra-
dicting reading from the shallow grammar could be introduced as additional item
on the deep parser’s chart, and the parser would either solvethe conflict by knowl-
edge encoded in the grammar, or by propagating the additional reading to the over-
all parse result.

Errors, correctness Both rule-based and statistics-based linguistic processing
components make errors. The errors may be caused by errors inthe resources, or
by statistical models that do not fit the actual input text. Strategies are necessary
that try to detect and possibly correct errors in order to avoid propagation of errors
throughout a shallow-deep integration that could make the overall results worse.

In the following example, the word ’orange’ is wrongly tagged by the TnT
tagger as noun because of deficits in its trigram model. By applying correction
rules that go beyond the underlying trigram model of the tagger (taking into ac-
count macro sentence structure), the reading with lower probability (JJ for adjec-
tive, 14%) could be made the correct analysis.

<w id="TNT0" cstart="0" cend="2">

<surface>Why</surface>

<pos tag="WRB" prio="1.000000e+00"/>

</w>

<w id="TNT1" cstart="4" cend="7">

<surface>does</surface>

<pos tag="VBZ" prio="1.000000e+00"/>

</w>

<w id="TNT2" cstart="9" cend="11">

<surface>the</surface>

<pos tag="DT" prio="1.000000e+00"/>

</w>

<w id="TNT3" cstart="13" cend="16">

<surface>moon</surface>

<pos tag="NN" prio="1.000000e+00"/>

</w>

<w id="TNT4" cstart="18" cend="21">

<surface>turn</surface>
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<pos tag="NN" prio="7.511812e-01"/>

<pos tag="VB" prio="1.887845e-01"/>

<pos tag="VBP" prio="6.003432e-02"/>

</w>

<w id="TNT5" cstart="23" cend="28">

<surface>orange</surface>

<pos tag="NN" prio="8.592189e-01"/>

<pos tag="JJ" prio="1.407811e-01"/>

</w>

<w id="TNT6" cstart="29" cend="29">

<surface>?</surface>

<pos tag="?" prio="1.0"/>

</w>

The general solution is similar to conflict resolution (cf. above), but can be
harder because conflicts can be detected immediately, whileerrors without conflicts
may remain undiscovered until deep parsing is performed. However, a conflict case
is of course always a good candidate for an error. In that case, the output of the
more reliable component should be taken. If no conflict is signaled, the input e.g.
of a shallow component may still be wrong. In order to increase correctness, it
would be possible to run e.g. two different part-of-speech taggers concurrently,
and compare the results word by word. A conflict could signal apotential source
of error, and a voting mechanism could be applied to decide for one or the other
result.

5.1.1 Summary

We have discussed, on a rather abstract level, problems thatmay occur when shal-
low and deep NLP components are combined. As a general strategy, it would be
advantageous to only map reliable, useful information and try to reduce ambiguity.
Furthermore, facilities for translating structure and namings as well as a config-
urable and flexible should be provided to ease integration. We will discuss concrete
solutions in the following chapters. In Chapter 9, we will show how integration on
a semantics representation level (in addition to a sequential shallow-deep archi-
tecture) can partially circumvent some of the described problems in application-
oriented contexts.

5.2 Integration of Linguistic Representations by Trans-
formation

From the similarity of markup produced by NLP components andannotated cor-
pora that we observed in Chapter 4, a close relationship follows between access to
NLP component output (online) and querying annotated corpora (offline).

In this chapter, we examine and compare XML query languages and show how
NLP annotation markup can be accessed using standard XML query languages.
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We propose XSLT as a simple, but powerful, efficient and standardized trans-
formation language for online integration of NLP markup andmotivate the choice.

While we will postpone discussion and examples of shallow NLP markup XSL
transformation to later chapters where we will present implemented architectures,
we will concentrate in the end of this chapter on the less obvious, but also important
task of transforming XML-encoded typed feature structuresusing XSLT.

5.2.1 Querying Multi-level (Standoff) Annotation

The termmulti-level annotationhas been established as a generic term for nested
and standoff annotation of various kinds (cf. also footnoteremark in Section 4.3.1)
comprising those mentioned as examples in the previous chapter.

For NLP component integration on the basis of multi-level annotation and
XML annotation in general, it is important to see how the annotation can be queried,
i.e., how pieces of annotation such as part-of-speech tags of words can be accessed,
how structural information such as what are the constituents of a phrase can be ob-
tained, and how the information can be combined.

Thus, a query language providing (a) data access, (b) compositionality of que-
ries, (c) transformation capabilities and (d) integrationfacilities is being sought.
Similar requirements have been identified by Taylor (2003) for querying linguistic
corpora. It is obvious that properties and requirements forcorpus query languages
also hold for markup integration and access produced onlineby NLP components.

In the following, we will briefly discuss query languages andtools for multi-
level (or general) linguistic XML annotation.

5.2.1.1 XPath

XPath 1.0 (Clark and DeRose, 1999) is a simple, but powerful language that de-
scribes patterns of the XML tree structure in form of (element and attribute) path
expressions. XPath is not specifically designed for linguistic queries and therefore
lacks e.g. the ability to query items that exceed the XML treeschema such as over-
lapping hierarchies. Moreover, advanced constructions such as query variables,
quantification or negation of arbitrary path components arenot supported. XPath
patterns may denote node sets in the XML document tree, or strings or numbers.
Examples for XPath expressions are shown in Table 5.1.

XPath provides a number of predefined basic functions for simple arithmetics,
Boolean, string operations and document tree navigation (siblings, ancestors, par-
ents, children, descendants, cf. Figure 5.1), counting nodes, converting data types
etc. XPath lacks a full document integration and transformation facility, it can
only map XML documents to node sets or to elementary data types such as strings,
Booleans or numbers. However, XPath is part of XSLT and XQuery (discussed
later) which provide integration and transformation facilities.
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XPath description
chunk matches a chunk element
* matches any element
chunk|w matches chunk or w elements
chunk/w matches w element with chunk parent
last() matches last daughter element of current node
w[3] matches the 3rd w child of the current node
/ matches the root element of the document
//w matches all w elements in the document
w[position() mod 2 = 1] matches odd-numbered w daughters
w[last() = 1] matches a w daughter that is the only daughter
id(’W34’) matches element with unique id W34
w[@cstart=’23’] matches w element with attribute cstart=’23’
@* matches any attribute daughter
w[3]/@cstart returns cstart attribute value of 3rd w daughter
count(w) returns number of w daughters of current node
count(//w) returns number of all w elements in document
substring(’hi’,2) returns ’i’
contains(’hello’,’hell’) returns true
name() returns name of current element

Table 5.1: XPath expressions (examples)

Figure 5.1: XPath axes in the XML document tree

5.2.1.2 XPath 2.0 and XQuery

XPath 2.0 extends XPath 1.0 in many ways making it a more powerful language,
e.g. by adding regular expressions, extended string functionality and XML schema
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support.
XQuery (Boaget al., 2006), building on XPath 2.0, is an XML query lan-

guage unifying the two different strands of XML usage mentioned in Section 4.2.4,
namely XML-as-document (reflecting XML’s original roots inSGML) and XML-
as-data (corresponding to relation database data models).

XQuery adopts from SQL the FLWOR query concept (FLWOR for thefor-let-
where-order-return query structure, loosely analogous toSQL’s SELECT-FROM-
WHERE) and combines it with XPath 2.0 to a powerful query language. We show
an example of a query that generates a list consisting of booktitle, price and number
of authors per book.

<books>

{ for $x in doc("bookstore.xml")/bookstore/book

let $a := $x/author

where $x/price>30

order by $x/title

return <book> {$x/title} {$x/price}

<authors>{count($a)}</authors>

</book> }

</books>

The overall query structure of XQuery looks similar to SQL, but the underlying
data model is quite different. While the basic data structure in relational databases
are flat tables, data in XML documents is hierarchically structured. Similarly, the
query and result data structures are hierarchical. Moreover, the sequential order in
XML documents must be preserved from the input to the output structures while
the order is generally undefined in relational databases.

Slightly simplifying, the XQuery expression arguments of the for, let, where,
order-by and return statements consist of XPath 2.0 expressions which makes the
language modular and powerful. Data type definitions can by imported from XML
Schema definitions via references to external resources. A wealth of XQuery use
cases is documented in a W3C working draft (Chamberlinet al., 2006).

5.2.1.3 Related Work

We briefly discuss related work in XML query languages for linguistic markup.
Cassidy (2002) discusses XQuery (an earlier version of it) in a use case analysis as
linguistic annotation query language and concludes that XQuery has weaknesses
in expressing sequential constraints while it is quite powerful for querying with
hierarchical constraints.

Both XPath and XQuery are general languages for XML tree access and not
specifically designed for operating on linguistic markup with annotation graphs and
time alignment of linguistic annotation. For that reason, various XPath extensions
have been proposed during the last years that attack that specific feature.
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While Bouma and Kloosterman (2002) argue that XPath is powerful enough
for querying dependency treebanks encoded in XML (providedthat they were con-
verted into an appropriate format), Carlettaet al. (2003) and Heidet al. (2004)
propose the NXT Search query language that extends XPath by adding query vari-
ables, regular expressions, quantification and special support for querying temporal
and structural relations.

Their main argument against standard XPath is that it is impossible to constrain
both structural and temporal relations within a single XPath query and that stan-
dard XML query mechanisms would not be intuitive to linguists. The following is
a ‘cross-level’ NXT Search example from Heidet al.(2004), in this case for query-
ing frame and syntactic annotations, using variables ($), existential quantification
(exists), structural dominance (^) for querying.

($f1 frame)($f2 frame)

(exists $phrase syntax)

(exists $target word):

$f1 >"target" $target and

$f2 >"target" $target and

$f1 ^ $phrase and

$f2 ^ $phrase and

$f1 != $f2

Another recent corpus query language is LPath (Birdet al., 2005). LPath lays a
special focus on subtree scoping, immediate precedence andedge alignment with
intuitive XPath syntax extensions. Moreover, translationto SQL queries is per-
formed for efficient access to annotation stored in a relational database.

Beyond XPath extensions, many other query languages for (not only) XML-
based multi-level annotations have been developed. Birdet al. (2000) discuss
an annotation graph query language. (Simplified) MMAXQL (M¨uller, 2005) is
a query language that similarly to NXT Search supports queryvariables, regular
expressions and relation operators for structural queries, but lacks quantification.

Teichet al. (2001), Taylor (2003) and Lai and Bird (2004) present overviews
and a comparison of different query languages for annotatedcorpora.

5.2.2 Using Corpus Query Languages for NLP Component Integra-
tion?

As shown in the previous section, besides XPath that is not powerful enough and
XQuery which is not yet a stable standard, there are many proposals for query
languages for linguistically annotated corpora. However,the presented approaches
specifically designed for linguistic corpus access show some disadvantages that
make them inappropriate for NLP component integration.

Lack of portability The proposed annotation languages, e.g. those forming an
extension to XPath, have been implemented for a specific XPath engine and can-
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not be used without adaptation to e.g. XPath implementations in other program-
ming languages, even porting to another implementation in the same programming
language requires additional implementation work. The LPath implementation in
addition requires and relies on annotation stored in a relational database.

Lack of efficiency XPath extensions such as NXT Search are reported to have
severe performance problems (which is clearly related to the expressive power of
the query language), especially when a query combines several input documents.
Existing optimizations e.g. of the standard XPath documenttree accessing meth-
ods are highly probable to be incompatible with these XPath extensions and there-
fore cannot be applied. In a recent experiment, Mayoet al. (2006) report on a
re-implementation of the NXT query language in XQuery (using the Saxon4 im-
plementation) that showed drastic speedups for some query types, but required a
preprocessing technique called ‘knitting’.

Limited re-usability Each of the discussed query languages comes with its own
syntax that is incompatible with the others. High learning costs are inevitable,
and the inflation of new query language reduces the usabilityand usefulness of
corpora in general. Partly, the query syntax has been designed for specific corpora
or corpora types, and may not be applicable for others. Because of this, and as
a standard seems not to show up in the near future, queries written for one query
language cannot be reused.

Restricted extensibility Although some of the most important shortcomings of
standard XPath and similar query languages with respect to linguistic annotation
processing are addressed, the proposed extensions solve only a fixed set of prob-
lems. Further extensions such as combining input from multiple annotations or
computing values or annotation must be solved outside the query language.

Given these common restrictions of corpus query languages (and their imple-
mentations), there seems to remain serious doubt whether a corpus query language
can be appropriate for online NLP component integration.

5.3 Markup Transformation and Query with XSLT

As an alternative to the highly specific but hardly extensible corpus query lan-
guages with their above described disadvantages, we propose XSLT (eXtensible
stylesheet transformation language, Clark 1999b) for NLP component integration.
Already McKelvieet al.(1998); Ide (2000); Ide and Romary (2001); Carlettaet al.
(2002) have discussed and proposed XSLT as corpus query language and general
purpose transformation language for linguistic annotation. For our application in

4http://saxon.sourceforge.net
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deep-shallow NLP component integration,onlineaspect andintegratability of the
query language play a central role, and as we will see, XSLT fulfills these require-
ments well.

XSLT, as part of the XSL language family, builds on XPath and is a specialized
programming language for transformation of XML documents into another XML
format, HTML, text, PDFetc.

Probably because of the name (‘stylesheet’), XSLT has oftenbeen misunder-
stood or underestimated as a web (HTML) style definition language such as CSS5,
but this is only one aspect. XML tree transformation is a further application of
XSLT that has also been proposed and used in other contexts, including electronic
business and even general (XML-based) software architecture frameworks such as
the one proposed by Löwe and Noga (2002) which will be discussed further in
Section 9.13.

The XML to XML transformation we focus on can be seen as a querythat ex-
tracts information from XML input (annotated corpus or NLP component output)
and represents it in a different way. As XSLT extends (or uses) XPath, and is at
the same time a Turing-machine equivalent programming language6, we believe
that it is an appropriate and powerful alternative to the specialized corpus query
languages and well-suited for NLP component integration.

Taylor (2003) discusses several query languages for linguistic (corpus) annota-
tion and shows, by giving translation schemata and examples, that queries of EMU
(Cassidy and Harrington, 1996) and Tgrep2 (Rohde, 2005), both query languages
that support specific data models for linguistic annotation, can be translated into
XSLT queries.

The advantages we see in XSLT are:

Portability In contrast to corpus query languages, where often only a single im-
plementation exists, XSLT 1.0 processors have been implemented for almost all
current programming and scripting languages. This means that the queries can
easily be exchanged across different platforms or implementations, and XSLT can
form an independent basis for annotation interchange. The broad and quite ma-
ture implementation status of XSLT processors in various programming languages
and platforms makes it possible to easily implement also online integration of NLP
components through XSLT.

Efficiency Most XSLT implementations provide optimizations for XML tree and
XPath processing and the XML ID/IDREF mechanism. In XSLT, anadditional key
mechanism exists for constructing unique keys as in relational database systems.

5Cascading Style Sheets;http://w3c.org/Style/CSS/
6Cf. http://www.unidex.com/turing/utm.htm, where a XSLT 1.0 stylesheet is defined that

encodes a universal Turing machine and hence proves by construction that XSLT 1.0 is Turing-
complete.



94CHAPTER 5. DEEP-SHALLOW INTEGRATION BY TRANSFORMATION

This makes XSLT access to XML tree annotation typically faster than straightfor-
ward DOM tree search and navigation as it is the case in most XPath extensions.

Moreover, in recent implementations such as Apache Xalan-J, an XSLT pro-
cessor implemented in Java, a stylesheet compilation facility called XSLTC can
be enabled which compiles XSLT stylesheets intoTransletsthat make transforma-
tion significantly faster (3-6 times on average, up to 1000 times in specific queries,
further performance boosts can be expected in later implementations), and have a
much smaller memory footprint than interpreting XSLT processors.

Recent overviews over XSLT benchmarks and comparisons of XSLT proces-
sors are presented in Bittner (2004) and Frühet al. (2004). Although the bench-
mark cases are quite simple and limited in the stylesheet complexity compared to
realistic natural language corpus queries, it can be seen that there is still room left
for optimizations, especially in the Java XSLT implementations.

Re-usability Because a well-established, standardized language is used, pre-
existing queries (stylesheets) can be re-used for new corpora and NLP component
formats. This can help to reduce the overall amount of codingwork for annotation
access. Re-usability is also possible across different corpus formats because of the
similarity of their document structures.

In some cases, only the names of attributes or elements in XPath expressions
need to be replaced. Libraries for typical query types can bebuilt using named tem-
plates7 where the structure and names of elementsetccould be made customizable
parameters.

Extensibility In contrast to the discussed XPath extensions for linguistic queries,
XSLT queries (stylesheets) can be extended by user-defined subroutines or func-
tions (Turing machine equivalent; see above). The XSLT template mechanism
(named and matching templates) can be used to define operations on node sets,
strings or numbers.

The templates can take parameters with default values and can return element
nodes or other elementary XSLT/XPath data types. Queries can be formulated
through templates that may become necessary for new kinds ofannotation, and
that are not expressible in the existing linguistic XPath extension frameworks.

Openness XSLT is open both on the input and on the output side.
Openness with respect to input: Although XML is the obligatory input for-

mat for XSLT, XSLT is not bound to a specific DTD or schema, a stylesheet can
be applied to different document formats that can only be described by different
DTDs. An example is a stylesheet that only has relative matching paths such that
any DTD containing the matching elements would be appropriate, and evenvice
versa, a stylesheet may contain matches to elements that never occur in one input

7XSLT 2.0 additionally has user-definable functions that canalso be included by reference.
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document type, but which may be contained in other DTDs. Thisindependence of
a DTD may ease XML processing and transformation.

Openness with respect to output: XSLT can by design be used to output other
formats than XML. However, for transformation and query of linguistic annotation,
XML should be the preferred output format. Ide (2000) propose XSLT also for the
visualization, formatting and presentation of linguisticannotation.

Formatting XML has been (and probably still is in the majority of applica-
tions) clearly one of the initial main motivations for inventing XSLT. Throughout
the thesis, we will (in the implementations to be presented)also make use of XSLT
stylesheets for visualization of XML output generated fromlinguistic components,
e.g. for trees, typed feature structures, robust semanticsrepresentations, cf. Sec-
tions 7.5, 8.7.8 and 9.8.

5.3.1 Brief Introduction to XSLT

XSLT has been introduced as part of the W3C eXtensible Stylesheet (XSL) family8

that forms a standard (called recommendations in the W3C jargon) for defining
XML document transformation and presentation. The XSL family comprises three
parts

• XSL Transformations (XSLT), a language for transforming XML

• the XML Path Language (XPath) an expression language used byXSLT to
access or refer to parts of an XML document. XPath is also usedby the
XML Linking specification XPointer and as part of XQuery.

• XSL Formatting Objects (XSL-FO), an XML vocabulary for specifying for-
matting semantics

While we already have briefly introduced XPath, we will not further discuss
XSL-FO. The main application of XSL-FO is layout generationfrom XML sources
beyond HTML, and currently mostly the PDF language is used tothis end in (web-
based) publishing applications.

Historically, XSLT is based on DSSSL (Document Style Semantics and Spec-
ification Language), a transformation language for SGML, defined as ISO 10179
standard (ISO/IEC, 1996). While DSSSL is a LISP dialect and as such based on
S-expression syntax, XSLT uses XML syntax, but a similar concepts, constructs
and processing model as DSSSL.

Similarly to DSSSL, XSLT uses a declarative processing model following the
tree structure of the XML input document and very much relieson formulation
of algorithms through the use of recursion as in other functional programming
languages. The focus of DSSSL has been SGML to SGML transformation. As
already mentioned, XSLT is more open.

8http://w3c.org/Style/XSL/
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While the input of an XSL transformation must be a valid XML document, the
output may be XML, HTML, or any other format (including non-text). The reason
for this is that XSLT has been from the beginning designed as amulti-purpose
transformation language, with a strong focus on formatted output with HTML (or
XSL-FO alternatively).

The XSLT processing model (cf. Figure 5.2) consists of an XSLT processor (or
transformer) that takes a so called XSLT stylesheet containing the transformation
rules and an XML input document plus optional named parameters (e.g. strings
or numbers) for the stylesheet as input. The transformationprocess produces an
output document according to what has been defined in the stylesheet. In XSLT 2.0,
a stylesheet can produce multiple output documents within asingle transformation.

There is an alternative way of calling a stylesheet-based transformation on an
XML document by associating the stylesheet in the XML sourcedocument (Clark,
1999a). This mechanism depends on the capabilities of the XML parser, browser or
transformer that opens the XML document, but many current browsers and XSLT
processors support this now. The effect would be the same as running the trans-
former on the stylesheet and XML input document.

According to the stylesheet and parameters, different output formats can be
generated. However, XSLT itself does not (cannot) verify the correctness of the
output syntax, except for some basic XML and HTML structure if these are the
specified output formats.

Figure 5.2: XSLT processing model

Stylesheet concept An XSLT stylesheet is an XML document with root element
xsl:stylesheet (or the synonymxsl:transform). ‘xsl:’ indicates the name-
space which must be declared ashttp://www.w3.org/1999/XSL/Transform

for XSLT 1.0. The stylesheet contains the transformation instructions in elements
and attributes defined in the XSLT recommendation, i.e., thetransformation pro-
gramming language is encoded in XML syntax.
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Optional sub-elements ofxsl:stylesheet e.g. declare global parameters
(that can be passed to the stylesheets), the output formatetc. Other XML elements
not defined in the XSL namespace are returned as part of the resulting output docu-
ment. Numerous stylesheet examples can be found in the XSLT Appendix starting
from page 295.

Processing model and matching templates An XSLT processor first parses
the XML input document into an internal XML tree representation which is then
recursively traversed. During traversal,matching templateswhich are subrou-
tines are applied when they match via a specified XPath pattern the XML tree
fragments. The XSLT syntax element for matching templates is xsl:template

match="match".
The recursive traversal can be canceled, repeated, selected (via specific sub-

elements) in thexsl:apply-templates instruction or sorted from within match-
ing templates and loops. This mechanism provides a powerfuland (at least in the
default case of recursive tree traversal) a quasi-declarative specification of XML
tree transformation through XPath patterns.

An optional mode attribute can be used to provide alternative template code
depending on the context, e.g. to define rules for multiple output formats within
the same stylesheet. When a node in the XML input tree matchesmore than one
template rule, a simple conflict resolution strategy applies based on a static anal-
ysis of the match expressions. Alternatively, a priority value can be assigned to a
template in the stylesheet.

Named templates Named templates are subroutines or functions that can be
called via their name (independently of a match with the XML input tree; syn-
tax: xsl:template name="name".), such as subroutines or functions in other
programming languages. Because of the static behavior of variables in XSLT (cf.
below), recursion through named templates with locally scoped variables plays an
important role.

Data model and basic data types XSLT shares with XPath the data model, i.e.,
basic data types are node set, string, Boolean, number with the same automatic
conversion rules between the data types.

XPath expressions as first-class citizensXPath is not only used to match XML
tree fragments in matching templates, but also for computation of expressions e.g.
for string output in the result document or for testing Boolean expressions in con-
ditional instructions.

Built-in functions Built-in functions can be used in XPath expressions for com-
putations on numbers, strings, Booleans and node sets. These functions comprise
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the typical, simple operations on the basic data types knownfrom other program-
ming languages, such as addition, string concatenation,etc.

The document() function deserves a special mention. It can be used to include
additional external XML input documents (and via XPath portions of them) in ad-
dition to the standard input document that is always passed to the XSL processor.
While there is only a fixed set of predefined functions available in XSLT 1.0, func-
tions can be defined similar to named templates in XSLT 2.0, and employed in
XPath expressions.

Variables and parameters Variables in XSLT aren’t variable. They behave like
variables in mathematics that are assigned at most once rather than as names for
memory cells as in most programming languages where they canchange their val-
ues. However, variables have local scopes in templates, andrecursion can be used
for countingetc. Both matching and named templates may take named parameters
as in other programming languages. Moreover, the stylesheet itself can take named
parameters from outside (e.g. the transformer call).

Conditional control structures and loops A single conditional instruction can
be expressed withxsl:if and a test based on a Boolean XPath expression, more
complex case selections withxsl:choose, xsl:when, xsl:otherwise.

xsl:for-each in conjunction with an XPath node selection expression can be
used to define loops over tree elements.

Modularity through inclusion of external stylesheets Bothxsl:include and
xsl:import support inclusion of external stylesheets where the definitions in the
importing stylesheets take precedence over code imported with xsl:import.

Output: text, elements, attributes,etc Elements, attributes and text can either
be output by writing them directly in the template code, or bythe explicit XSLT
instructionsxsl:element, xsl:attribute, xsl:text andxsl:comment, with
XPath expressions that can be used to compute or compose values e.g. through
string functions. Nodes from the input can be copied withxsl:copy andxsl:co-
py-of with an XPath expression selecting the node(s), wherexsl:copy-of per-
forms deep copies.

To summarize briefly, XSLT is a small but powerful, specialized programming
language for XML tree transformation and query. It providespowerful, quasi-
declarative tree navigation and selection through XPath expression matches. Com-
pared to DOM navigation in classical programming languagessuch as Java, C,
Pythonetc, XSLT is a much more concise and better maintainable alternative when
flexible adaptation to new or modified XML formats is required.
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5.3.2 XQuery vs. XSLT

The only serious, powerful and viable alternative to XSLT wesee is the upcoming
XQuery standard (basing on XPath 2.0). It shares most of the advantages we dis-
cussed for XSLT. Until the XQuery standard is established (as a W3C standard) and
efficient implementations are available, XSLT is a good alternative for which many
different implementations, partly with efficiency optimizations, already exist.

What remains to be discussed is the relation between XQuery and XSLT. While
both share many properties and are at large parts overlapping in their applica-
tion areas, the focus and strength of XQuery seems to be the data-centric queries
(regularly structured markup), while XSLT has its advantages in document-centric
queries (semi-structured markup).

Thus, both languages have advantages and disadvantages depending on the
type of task to perform. The same holds for efficiency which varies to a great ex-
tent also depending on the task. As in all programming languages, solutions for
the same problem can be formulated in many ways. Here, the early implementa-
tion status of XQuery processors and also ongoing research in optimization and
compilation techniques for XSLT would render any comparison unbalanced.

The current focus in research and development of both XSLT and XQuery pro-
cessing is in fact compilation and optimization. Major improvements are to be
expected in both languages.

Lenz (2003) discusses the differences and commonalities ofXQuery and XSLT
(the former at an earlier stage, not in the current state withXPath 2.0), and illus-
trate how XQuery queries can be encoded in XSLT, supporting his thesis that most
things that can be done in XQuery are also feasible in XSLT. Heshows, e.g., the
correspondence to FLWOR expressions in XSLT, namely

XQuery XSLT
FOR xsl:for-each (or xsl:template calls)
LET xsl:variable; often not necessary because of

context node switch in thexsl:for-each body
WHERE xsl:if

ORDER-BY xsl:sort

RETURN xsl:copy(-of), xsl:value-of, xsl:element, etc.

This is of course simplifying because extensions and variations exist in both
XQuery and XSLT, but the table roughly illustrates how XQuery queries could be
translated to XSLT.

Graaumans (2005) thoroughly compares the usability of XQuery, XSLT and
SQL/XML, an extension of the SQL ISO/ANSI standard to XML data stored in
a relational database. Although the author does not focus onNLP markup, the
study presents interesting insights into the performance and usability of XSLT
vs. XQuery in different query tasks, both for data-orientedand document-oriented
markup.
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To conclude, both XSLT and XQuery have a large common application area,
and strengths exist in both frameworks. Both are being continued and extended by
the W3C (e.g. by a common XPath 2.0 subset and XML Schema support) and both
have their own justification to exist. However, because of the more general trans-
formation approach (e.g. to fundamentally re-organize XMLdocument structure)
through templates and the more stable and settled standardization and implemen-
tation status, we opt for XSLT in the rest of the thesis, keeping in mind that in most
cases, one could replace an XSLT processor by an XQuery processor if necessary.

5.3.3 NLP Integration and Computation with XSLT

XSLT has been proposed in several natural-language processing contexts such as
natural language generation or text-to-speech.

Wilcock (2001) discusses XSLT for natural language generation in pipeline ar-
chitectures, template-based generation with XSLT templates, and tree-to-tree trans-
formations.

Ide et al. (2000b) discuss how a general model of lexical information with
inheritance encoded in XML can be realized in different formats using XSLT. Ide
(2000) also proposes XSLT for formatting and visualizing linguistic information.

Foster and White (2004) present an XSLT-based approach for logical form gen-
eration for text generation. An XSLT processor is treated asa top-down rule ex-
pander structuring and aggregating the content and performing lexical choice.

Schröder and Breuer (2004) use XSLT to plug together different text-to-speech
systems.

Coming back to the integration task of multiple NLP components on XML
basis, XSLT can serve as ’glue’ between the components with the advantages men-
tioned above with respect to portability, re-usability, extensibility and efficiency.
XSLT also solves the problem of interlinking XML documents,e.g. different anal-
yses of an input text produced by different NLP components with standoff anno-
tation. This is important because no commonly adopted and implemented linking
standardexists9.

We propose XSLT for the integration of deep and shallow natural language
components because (1) most shallow processors produce XMLoutput natively or
can be easily adapted to do so (2) XSLT can be used to combine standoff annota-
tion produced by multiple (shallow) natural language components and to combine,
translate and compute the information a deep parser requires from shallow prepro-
cessing (3) XSLT can be used for post-processing e.g. of deepanalysis results (e.g.
semantics, syntactic tree structures, typed feature structures) or to repair processing
results if deep processing fails.

Furthermore, because XSLT plays an important role in general XML-based
software architectures (e.g. for web publishing), participation in the improvements

9XPointer and XLink are W3C recommendations, but only a few, and rarely used implementa-
tions exist, partly because of patent issues.
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and optimizations of implementations and porting to new platforms and program-
ming or scripting languages and the further development of the standards are con-
siderable advantages over niche solutions that are specificfor language (corpus)
technology.

We will come back to XSLT by demonstrating applications of itin the later
architecture chapters (Chapters 7–9).

5.4 Transforming XML-encoded Typed Feature Structures

5.4.1 Accessing and Transforming Feature Structure XML

In the sections so far, we have implicitly discussed query and access to shallow
XML annotation because this is what most corpus query languages aim at. But
annotation access could also include deep analysis resultsencoded in typed feature
structures. Typed feature structures provide a powerful, universal representation
framework for linguistic knowledge (cf. Chapter 3), not only in deep analysis, but
also for shallow analysis results (we will describe a shallow system utilizing typed
feature structures in Chapter 7).

While it is in general inefficient to use XML to represent typed feature struc-
tures during processing (e.g. for unification, subsumptionoperations in HPSG
parsing), there are several applications that may benefit from a standardized system-
independent typed feature structure XML, e.g. as exchange format for

• deep NLP component results (e.g. parser chart or parts thereof, but also
shallow analysis results),

• grammar sources, XML format as ‘abstract syntax’ for increased portability
between different formalisms or implementations,

• feature structure renderers or editors such as inSProUT (cf. Chapter 7) or
Thistle (Calder, 2000),

• feature structure ’tree banks’ of analyzed corpora

We adopt an embedding XML representation for typed feature structures orig-
inally developed by the Text Encoding Initiative (TEI). It is compact and widely
accepted (Sperberg-McQueen and Burnard, 1994). The markupis also part of
a proposal for an ISO standard on feature structure representation in XML ISO
TC37 SC-4 (Leeet al., 2004) and also of MAF, the proposed morph-osyntactic
annotation format (Clément and Villemonte de la Clergerie, 2005).

An in-depth justification for the naming and structure of theTEI feature struc-
ture DTD is presented in Langendoen and Simons (1995). We focus here on the
feature structure DTD subset that is able to encode the basicdata structures of deep
systems such as LKB (Copestake, 2002), PET (Callmeier, 2000), PAGE (Uszkoreit
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et al., 1994), or the shallow systemSProUT (Drożdżyńskiet al. 2004; cf. Chap-
ter 7) which use a subset of TDL (Krieger and Schäfer, 1994) as their common
basic formalism10.

The TFS DTD in the DTD Appendix (page 286) is structured as follows. The
FS tag encodes typed feature structure nodes,F encodes features. Atoms are en-
coded as typed feature structure nodes with empty feature list. Thecoref attribute
encodes coreferences (reentrancies; structure sharing) between feature structure
nodes. An illustrative example is shown in Figure 5.3.

<FS type="synsem">

<F name="FEAT1">

<FS type="t1" coref="1">

<F name="FEAT3">

<FS type="*top*"/>

</F>

</FS>

</F>

<F name="FEAT2">

<FS coref="1"/>

</F>

</FS>











synsem

FEAT1 1

[

t1
FEAT3 *top*

]

FEAT2 1











Figure 5.3: XML-encoded typed feature structure (left) with structure sharing be-
tween attributesFEAT1 andFEAT2 (throughcoref="1") and the corresponding
AVM notation (right)

5.4.2 The Role of Feature Structure XML Transformation for the In-
tegration of NLP Components

One of the main motivations for XML feature structure markupis the interchange
of linguistic data. This can be doneoffline, e.g. for the exchange of lexica, gram-
matical resources, or annotated documents.

A further application isonline integration of NLP components, where several,
specialized modules contribute to improved (e.g. disambiguated or more precise)
linguistic analyses.

In both cases, online or offline integration, different representations of linguis-
tic data can be involved, where feature structures can either form the source or the
target representation or even both.

To illustrate the use of XML transformation of feature structure markup, we
present concrete, simple examples.

10This is only the common, minimal basis of the different formalisms, each formalism has its own
extensions such as sets, disjunctions, distributed disjunctions, and differing interpretations of type
semantics, e.g. open world vs. closed world.
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5.4.2.1 Feature Structure XML as Target Representation

Construction of typed feature structures from other XML rep resentations
that are e.g. produced by a shallow NLP system. Specific elements with attributes
are translated to possibly nested feature-value pairs, e.g. for input to an HPSG
parseretc. In the following example,<infl num="singular"/> is translated to
the corresponding feature structure, with valuesingular inserted for the XPath
expression{@num}. Of course, also symbolic names, e.g.sg to singular etc
could be translated.

<xsl:template match="infl">

<FS type="infl">

<F name="NUMBER">

<FS type="{@num}"/>

</F>

</FS>

</xsl:template>

Feature structure XML as grammar exchange format or meta syntax. An
example is XTDL inSProUT(cf. Chapter 7), where a TDL-based grammar syntax
(Krieger and Schäfer, 1994) is translated to an internal representation based on fea-
ture structure XML. The internal XML representation (XTDL DTD on page 286) is
used as input for type checking and finite-state compilation; details in Section 7.4.

Feature structure XML for data exchange between NLP components. As an
example, a morphology component could encode generated linguistic information
in typed feature structure XML for further use in other components, e.g. a parser.

5.4.2.2 Feature Structure XML as Source Representation

Extraction or projection of information encoded in typed feature structures
such as morphology to other formats or as API accessors, e.g.an XPath expression
such as

<xsl:template match="FS[@type=’infl’]">

<infl num="F[@name=’NUMBER’]/FS[@type=’num’]/@type"/>

</xsl:template>

is the inverse of the template example above.

AVM visualization tools or editors such as the feature structure renderer in
SProUTor Thistle (Calder, 2000) both take (different) descriptions of typed feature
structures and render a graphical representation of the feature structure as attribute-
value matrix (AVM). Examples are depicted in Figure 7.8, 8.13, 8.12 and 9.24.
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Extraction of tree structures encoded in a complex HPSG feature structure
(parse result), e.g. for further linguistic processing, treebankingetc.

Extraction and transformation of semantics representation. An example is a
transformation of typed feature structures to RMRS XML (Copestake, 2003) which
e.g. forms the basic representation for the exchange of deepand shallow NLP
results in the Heart of Gold architecture (Callmeieret al., 2004), cf. Figure 5.4.
Details will be discussed in Chapter 9.

<MATCHINFO rule="en_city" cstart="3" cend="7"> <rmrs cfrom="3" cto="7">

<FS type="sprout_rule"> <label vid="1"/>

<F name="OUT"> <ep cfrom="3" cto="7">

<FS type="ne-location"> <gpred>ne-location</gpred>

<F name="LOCNAME"> <label vid="2"/>

<FS type="&quot;Paris&quot;"/> <var sort="x" vid="2"/>

</F> --> </ep>

<F name="LOCTYPE"> <rarg>

<FS type="city"/> <label vid="2"/>

</F> <rargname>CARG</rargname>

</FS> <constant>"Paris"

</F> </constant>

</FS> </rarg>

</MATCHINFO> </rmrs>

Figure 5.4: Transformation ofSProUTfeature structure XML to RMRS

5.4.2.3 Feature Structure XML as Both Source and Target Representation

Translation between different feature structure syntaxesor systems. We ex-
emplify lists that can be encoded differently in typed feature structure markup. The
XSLT template below takes a list encoded as nestedFIRST-REST list typed*cons*
and translates it to the ‘flat’ XML<list> element with embedded elements from
theFIRST attribute values in the input. The template works recursively on FIRST-
REST lists of any length.

<!-- ======================================

Initial template. Enclose list elements from

FIRST-REST list in <list> element

======================================= -->

<xsl:template match=’FS[@type="*cons*"]’>

<xsl:element name="list">

<xsl:call-template name="listlist">

<xsl:with-param name="node" select="."/>

</xsl:call-template>

</xsl:element>

</xsl:template>
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<!-- ======================================

recursive template: list all list elements

======================================= -->

<xsl:template name="listlist">

<xsl:param name="node"/>

<xsl:copy-of select=’$node/F[@name="FIRST"]/FS’/>

<xsl:if test=’$node/F[@name="REST"]/FS/@type="*cons*"’>

<xsl:call-template name="listlist">

<xsl:with-param name="node"

select=’$node/F[@name="REST"]/FS’/>

</xsl:call-template>

</xsl:if>

</xsl:template>

Similarly, transformation can reorganize the structure ofinformation encoded
in typed feature structures, e.g. move values to a differentfeature path, or rename
features and typesetc. For a list of further applications of XML-based feature
structure transformation cf. Section 5 in Leeet al. (2004).

5.4.2.4 Reentrancies and Transformation

A general issue that arises in the case where feature structures are source represen-
tations is reentrancies. Here, ‘dereferencing‘ is necessary on the basis of lookup in
the XML source in order to have access to every node in the DAG (e.g. for feature
path access); XML ID/IDREF declarations support faster access as discussed al-
ready before. If cyclic reentrancies are disallowed, copying of shared values when
generating the features structure representation is an easy and probably faster way
in order to get the full access to shared values. Identity information is preserved
through the reentrancy attribute (coref in the above examples) anyway.

5.5 Summary

Starting from a discussion of general problems that arise when deep and shallow
natural language processing components are combined, suchas different granular-
ity, namings, structure, boundaries, ambiguity and conflicts, we have motivated the
role of transformation and query for XML-based integrationof linguistic annota-
tion.

We have examined existing linguistic corpus query languages, but also general
W3C-supported XML query and transformation languages suchas XPath, XSLT
and XQuery, and compared them. We have motivated our choice of using XSLT
for online integration of NLP component output.

XSLT has advantages over similar frameworks in that variousefficient imple-
mentations exist. XSLT code is portable, re-useable and partly even declarative.
Moreover, the extensibility and openness of XSLT as well as the embedding in
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lively standards that are further developed also in other contexts such as World
Wide Web and Semantic Web, makes it a promising framework also for future use.

Finally, we have addressed the problem of transforming XML-encoded typed
feature structures that may play a role for deep-shallow integration architectures,
using XSLT.

In the remainder of the thesis, we will concentrate on describing various appli-
cations of XSLT-based NLP component integrations.



Chapter 6

Hybrid Architectures

This chapter serves the purpose of a lead-in into the core part of the thesis describ-
ing hybrid architectures. We first motivate why architectures are needed to perform
the deep-shallow integration task. We then present an overview of related work and
state of the art in general architectures for linguistic processing and XML-based ar-
chitectures. We conclude with an outlook to the following three chapters in each
of which the author’s contributions to a deep-shallow integration architecture will
be described.

6.1 Motivation and Requirements

In the preceding chapters, we have shown what the problems ofdeep processing
are, how shallow processing can help to improve (mainly robustness of) deep pro-
cessing, that shallow processing results can be naturally encoded in XML, and what
the difficulties are when combining shallow and deep processing results. What is
missing so far is aninfrastructureor architecturethat supports the combination of
various (pre-existing) shallow and deep natural language processors in such a way
that the benefits from the combination can be exploited in applications. We collect
some properties that such architectures should possess.

Flexibility and configurability. First of all, deep-shallow combination in lan-
guage processing and language technology is a new field, and any current appli-
cation is still experimental. Thus, a necessary property ofsuch architectures is
flexibility with respect to how and which NLP components are combined, e.g. pro-
cessing order (sequential, on demand, in parallel) and information (annotation)
flow. Related to this topic is the requirement thatintegration of new NLP compo-
nentsshould be easy, as should beconfiguration of NLP components.

Openness, XML standoff support. Opennessto linguistic theories and repre-
sentation formalisms is an important concern, because there is neither a commonly

107
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accepted, universal theory of language nor formalism for NLP. However, integra-
tion of components obeying different paradigms should be possible and may be
useful.

As a consequence, and as motivated in the previous chapters,XML supportis
a necessary prerequisite, both forXML accessto and forXML transformationof
NLP component output and input. This also includesstandoff annotationaccess
facilities.

Online integration support. In contrast to e.g. XML-based corpus annotation
which is primarily an offline task, theonline combinationof NLP components has
to be supported, i.e., several NLP components, possibly implemented in different
programming languages, should be supported to run in parallel or in a sequence
without interruption or manual intervention.

Multilinguality, Unicode support. Finally, while Unicode support is implied by
the XML condition just mentioned, a further issue ismultilinguality of linguistic
resources and processors that may have an impact on the architecture as well.

From this short enumeration, it is obvious that for a flexibleapplication integra-
tion, these conditions cannot be met byad hoccombinations of natural language
processors, but only by well-designedarchitectures. In the following chapters, we
will describe three architectures, with different focuses, for deep-shallow integra-
tion.

6.2 Related Work

The distinction betweenad hocNLP component combination vs. architecture al-
ready divides the field of existing approaches into two areas, namely general NLP
architectures (for shallow processing, without a claim to specifically support deep
processors or deep-shallow integration), and more or lessad hoc integrations of
a fixed set of deep and shallow NLP component instances (in most cases for a
fixed language, too). While examples exist for both areas, what was missing so far,
and hence is in the focus of this thesis, is a general architecture for deep-shallow
integration.

In this section, we will focus on related work in general NLP architectures.
Specific (mainlyad hoc) deep-shallow integrations and architectures (e.g. Grover
and Lascarides 2001; Prins and van Noord 2001; Marimon 2002a,b; Daumet al.
2003) will be discussed in related work in Chapter 8.

Cunninghamet al. (1997) present a classification of software infrastructures
for NLP by distinguishing three models they call

• referential (analyses are stored as separate representations with pointer ref-
erences into the original text),
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• additive(e.g. cumulative SGML/XML annotation markup), and

• abstraction-based(as in typed feature structures of deep analysis where the
analysis result consists of a closed, integrated information structure for larger
text entities, typically a whole sentence).

From the requirements we formulated above for deep-shallowprocessing (cf.
page 107) follows that all three of them are needed for architectures integrating
deep and shallow NLP, where additive markup can be easily simulated by referen-
tial storage.

TIPSTER TIPSTER (Grishman, 1997) falls into the class ofreferentialmodels.
It mainly provides a document architecture aiming at facilitating the integration of
shallow NLP components on very large document collections,e.g. for information
extraction. The (relational) database view on the analysisresults imposes restric-
tions on the data models that are supported, but is sufficientfor shallow component
analyses and has the advantage of supporting very fast access to large analyzed
document collections.

Corelli Corelli (Zajacet al., 1997; Zajac, 1998) extends TIPSTER by generaliz-
ing feature-value pairs to typed feature structures with type declarations and type
checks, hence opening TIPSTER towards theabstraction-basedapproach. How-
ever, the status and availability of the implementation is unclear and the architec-
ture seems not to have been used outside the initial project.

GATE GATE (Cunninghamet al., 2002) augments TIPSTER byadditivemarkup
extensions. GATE also introduces multilinguality, comes with impressive amount
of resources and ready-to-use components, and has a vivid user community. The
lack of a declarative formalism (beyond pattern matching) for the development of
e.g. domain-specific resources with the need to fall-back toC or Java program code
makes the system somewhat awkward and look more ad-hoc than desirable.

In that sense, GATE’s focus is more an architecture shell with flexible and
graphically definable NLP analysis workflows. GATE can well be used for com-
bining multiple shallow preprocessors, but as GATE completely ignores deep lin-
guistic processing, e.g. on the basis of typed feature structures, it is not an ideal
candidate for deep-shallow integration. GATE will also be discussed in related
work in Chapter 7.

ALEP ALEP (Simpkins, 1994) is a parser for HPSG-like grammars implemented
in Prolog that has been in a later development phase extendedby an SGML in-
terface for external part-of-speech taggers and open-class words such as number,
time and named entity expressions (Bredenkampet al., 1996; Declerck and Maas,
1997), the, as the authors call them,messy detailsin large-scale grammar develop-
ment.
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ALEP foresees an explicit interface between preprocessing(‘text handling’ in
their terminology) and the deep parser (‘linguistic structure’). The interface con-
sists of Prolog terms that insert information gathered by a (rule-based) tagger and
awk or perl-encoded named entity identification and normalization rules into the
typed feature structures of the core ALEP parser.

Because of pre-parsing disambiguation of part-of-speech information through
the tagger (and the generally slow Prolog parser), the parsing time for a sentence
could be drastically reduced (approx. factor 5 according tothe paper) simply by
filtering out alternatives that would otherwise have to be processed by time-costly
unification.

The system has been developed in the LS-GRAM and MELISSA projects ap-
plied to newspaper texts and command and control for English, German and Span-
ish. The ALEP system itself has two severe restrictions thatmake its use for real,
state-of-the-art HPSG grammars hard. The first one is the lack of multiple inheri-
tance in the formalism (it must be simulated through macros). Secondly, the overall
performance of the parser is extremely poor compared to morerecent implementa-
tions such as PET.

LT XML LT XML (Brew et al., 2000), originally developed as LT NSL for
SGML, consists of a set of C programs for combining and querying XML an-
notations. It is file-based and, besides command line tools,comes with a C API.
Most of the features such as pointers, querying, transforming, counting, searching,
sorting and text stripping XML that are available as separate tools, can nowadays
be formulated more conveniently in XPath or XSLT which were not available at
the time LT NSL and LT XML were developed. In that sense, LT-XML is an inter-
esting early approach toadditivemarkup, but somewhat technologically overcome
by later W3C developments. There is no special handling or support for deep pro-
cessing.

VERBMOBIL ICE VERBMOBIL ICE (INTARC Communication Environment;
Amtrup 1995) is an infrastructure for communication in distributed AI systems
that has been implemented on top of a virtualization machinePVM (parallel vir-
tual machine). ICE provides a channel-based model for communication in hetero-
geneous networks and interfaces for programming languagessuch as C, C++, LISP,
Prolog and TCL. ICE formed the communication infrastructure in the speech-to-
speech translation system demonstrator and prototype of the VERBMOBIL project
(Wahlster, 2000).

Component communication, especially for speech analysis,is clearly in the
foreground of ICE, whereas the content combination or mediation is left to the
underlying modules or applications. An explicit concurrency strategy (time con-
straints; interruptible components; the fastest component ‘wins’) is interesting, but
contrary to our approach that tries to benefit from synergy gained through the com-
bination of results of different components, assuming thatthey can complete their
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computation, and that one can wait for the full output of the other (sentence-wise),
thus treating NLP components as black boxes that are not interruptible1. As the re-
cently developed NLP components are reasonably fast (compared to VERBMOBIL

times), this is a realistic and not too limiting assumption.
Because of the time-critical task in VERBMOBIL speech-to-speech translation,

deep processing had to be interrupted often before a full parse could be computed.
In this case, chart fragments could be used, after topological sorting, to construct a
partial, robust analysis (Kasperet al., 1999). While thisanytimeapproach may not
lead to satisfactory semantic analyses (which is the key benefit one expects when
employing deep analysis) in the general case, it was sufficient for short utterances
in dialog situations as addressed by VERBMOBIL.

There was also an accuracy-oriented mode for situations without time con-
straints in VERBMOBIL, where deep analysis was not interrupted and could deliver
full results. However, there was no content combination or mediation of NLP com-
ponent output either.

M ULTIPLATFORM testbed Similar to VERBMOBIL ICE, MULTIPLATFORM test-
bed (Herzoget al., 2003, 2004) focuses on speech input, and, in addition, multi-
modal dialog, e.g. through gestures etc. The architecture has been developed for
the large-scale SmartKom project (Wahlster, 2006) dealingwith multimodal di-
alogs on various different devices from PDA, home information system, to public
stationary communication kiosks.

The PVM-based architecture from VERBMOBIL has been extended by a pub-
lish/subscribe message system with named message queues, mainly to overcome
the bottleneck of the point-to-point communication as imposed by the VERBMO-
BIL architecture. An XML language M3L has been developed to encapsulate the
outputs of the various components. Just as in VERBMOBIL, component commu-
nication is in the foreground, not the close integration of different linguistic repre-
sentations.

The architectures that will be described in the following chapters focus on writ-
ten text and document analysis with an emphasis on high precision and detailed,
complete analyses and hence do not require or admit the special time constraint and
communication mechanisms implemented for VERBMOBIL and SmartKom. How-
ever, a combination of the described approaches could be useful at a later stage for
e.g. speech processing.

6.3 General XML Processing Frameworks

In this context, we can only briefly discuss some XML-based orXML-supporting
software architecture frameworks. They have been developed completely indepen-
dently of natural language processing, and hence lack many of the concepts and

1As a matter of fact, none of the many pre-exsiting NLP components we use features anytime
capabilities.
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requirements that are needed for NLP. However, as they deal with XML represen-
tations, control flow and architecture, they could at least (and in fact are partly)
used in the frameworks that will be described in the sequel.

TheXML Pipeline Definition Language note2 describes a framework for pro-
cessing XML documents with minimal conversion overhead anddefinable work-
flow. XML pipelines describe the processing relationships between XML resources.
A pipeline documentspecifies the inputs and outputs to XML processes and a
pipelinecontroller uses this description to figure out the chain of processing that
must be executed in order to get a particular result.

Apache Ant3 is a build tool similar to the Unixmake tool, but is working
platform-independently as it is implemented in Java. It uses XML ascarrier syntax
for project and target descriptions. Besides dependency resolution of definable
targets (inherited from themake concept), Ant supports parallelism, sequence, and
XSL transformations. The definition of the workflows is done either implicitly
using target dependencies (similar to XML pipelines, but without implicit flow of
information) or explicitly as in other scripting languages. Ant will be discussed in
a testing and evaluation application in Section 7.8.

Apache Cocoon4 is a web publishing framework with explicit XSLT support
with a focus on dynamic multi-channel web publishing and strict separation of
application control, logic, content, and style (layout). It provides ’component
pipelines’, each component on the pipeline specializing ona particular operation.
However, a strong focus is on HTML and PDF output of the XML-encoded con-
tent.

XBeans(Martin, 2000) is a generic framework that uses the Java beans tech-
nology to provide a component-oriented approach to define workflows on the basis
of XML DOM documents. XBeans provide a nice and elegant way toimplement
distributed XML-based architectures on the basis of pattern-like components. Al-
though already published as open source tool in the year 2000, the technology
seems not to have reached the acceptation in the Java/XML community it may
deserve.

Apache Tomcat5 is a Web application server implemented in Java providing
a reference implementation of the Java servlet and Java server page technology.
Tomcat can be used to distribute application services (e.g.NLP) over a network
architecture.

As stated above, these frameworks are too general for NLP component inte-
gration (e.g., there is no support for standoff annotation), but at least constitute
interesting related frameworks, partly with explicit XSLTfeatures, to XML-based
software architecture.

2http://w3c.org/TR/xml-pipeline/
3http://ant.apache.org
4http://cocoon.apache.org
5http://tomcat.apache.org
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6.4 The Deep-Shallow Architectures Trilogy

In the three following chapters, we will present our contributions to three architec-
tures related to deep-shallow integration.

• Chapter 7: SProUT(Drożdżyńskiet al., 2004; Beckeret al., 2002; Krieger
et al., 2004) is a recent, rule-based formalism and system with an XML
architecture. It differs from the other two frameworks below in that full
parsing in the HPSG spirit is not directly supported (in thatsense,SProUT
is shallow). However, the underlying formalism shares withHPSG the typed
feature structures and the powerful unification operation,i.e., SProUT is
hybrid on the formalism level.

This permits highly structured information both encoded inrules and as
output result, e.g. for information extraction. Moreover,SProUT inter-
preters can be cascaded and hence support more powerful (‘deeper’) anal-
yses. SProUT itself is, as a structured shallow component, part of many
multilingual deep-shallow integration scenarios we will describe for the third
framework, Heart of Gold.

• Chapter 8: WHITEBOARD (Neumann and Schäfer, 2002; Crysmannet al.,
2002; Franket al., 2003) is a sequential architecture for standoff markup,
based on XSLT. The focus lies on filtering for search space reduction as
input for the deep processing located at the end of the sequence. Advantages
are improved lexical and syntactic coverage and parsing speedup.

WHITEBOARD is probably the most comprehensive broad-coverage deep-
shallow integration that has been implemented so far, with support for pars-
ing open-domain newspaper text. However, it has been fully instantiated for
German only, and is now in many respects superseded by the third frame-
work, Heart of Gold.

• Chapter 9: Heart of Gold, the DEEPTHOUGHT core architecture framework
(Callmeieret al., 2004; Schäfer, 2006a) is a generalization of WHITEBOARD

with more flexible configuration facilities, the depth of analysis can be cho-
sen by application clients. In addition to syntactic standoff markup, a uni-
form robust semantics representation formalism (RMRS; Copestake 2003) is
employed, serving e.g. as additional fall-back andpost-parsingintegration
layer.

Heart of Gold extends WHITEBOARD with respect to distributability over a
network, multilinguality support, less restrictive processing model (not just
sequential, but also concurrent NLP),etc. Thus, Heart of Gold can be charac-
terized as NLP middleware in between NLP-based applications and existing
NLP components. Heart of Gold includesSProUT as important, however
one of many integrated, multilingual components.
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Chapter 7

SProUT

7.1 Introduction

The first of the three architectures to be described isSProUT. SProUT is different
from the other two architectures we will present in the next two chapters in that
is does not constitute a proper, dedicated architecture forthe integration of (pre-
existing) deep and shallow processing components, nor is itpossible or intended to
parse HPSG or related deep grammars withSProUTalone.

Instead,SProUT1 is an amalgamation of two basic concepts from shallow pro-
cessing, namely finite-state methods, and from deep (constraint-based) processing,
namely typed unification based on an underlying type inheritance hierarchy, com-
bined in a single, new, declarative grammar formalism.

In other words, not the architecture is hybrid, but the formalism. However, as
SProUT also provides a flexible architecture combining subcomponents for tok-
enization, morphological analysis and gazetteers (in addition to its grammar for-
malism), it forms a powerful general-purpose multilingualnatural language pro-
cessor that fits well into the architecture trilogy.

Although the implemented processing ofSProUT strategy is rather shallow
than deep,SProUTgrammars could be combined to fulfill tasks that could well be
characterized as deep processing. Moreover, the structured data model ofSProUT
resembles (and in fact is inherited from) unification-basedgrammar formalisms of
deep parsers.

Thus,SProUTis ‘deeper’ and more flexible than most other shallow processors
(that are specialized in typically a single task), and can also be used as part of
hybrid deep-shallow integration architectures. Althoughshallow in the processing
paradigm,SProUTstands out from the crowd of typical shallow systems through
its rich declarative formalism and flexibility, and may helpto fill the gap between
classical shallow and deep natural language processors.

The development of theSProUT formalism and implementation is joint work

1SProUT is an abbreviation for ‘Shallow Processing with Unificationand Typed Feature Struc-
tures’.
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(Beckeret al., 2002; Drożdżyńskiet al., 2004). After a brief introduction, we
will therefore focus on our own contributions to formalism,interfaces and XML
facilities related to deep-shallow processing and XML annotation transformation.
Applications ofSProUTas part of hybrid deep-shallow architectures will be dis-
cussed in Chapter 9.

7.2 A Brief Introduction to SProUT

7.2.1 Motivation

TheSProUTformalism combines unification of typed feature structuresand regu-
lar expressions in a rule-based framework. Regular expressions, not directly avail-
able in typed feature structures, are a simple, efficient andintuitive means to repre-
sent patterns over symbols with potential repetition. Typed feature structures gen-
eralize symbols (strings) and add further information-bearing constructs, namely
(1) arbitrarily nested feature-value pairs (2) types ordered in a closed world inher-
itance hierarchy, (3) structure sharing between feature values (cf. Section 3.1.1).

The motivation for developing a hybrid grammar formalism combining both
paradigms for shallow natural language processing is driven by the observation that
(i) simple regular expression matching over input symbols (text strings or abstrac-
tions thereof) is insufficient, error-prone and inappropriate for advanced language
technology tasks (e.g. in languages with rich morphology).(ii) full parsing with
typed feature structures is computational overkill and notrobust enough for sim-
ple language technology tasks such as named entity extraction or template-based
information extraction.

7.2.2 Targeted Applications

Applications ofSProUTare various domain-specific basic NLP techniques such as
multilingual named entity recognition with structured output, morphological anal-
ysis and shallow parsing, but also advanced information extraction tasks such as
template-based information extraction, shallow relationextraction, opinion min-
ing, etc. As both formalism and implementation are generic, other applications are
feasible, even outside the field of language technology.

The advantage of using unification and typed feature structures in unification-
based grammar formalisms (Kay, 1979; Pereira and Warren, 1980; Shieberet al.,
1983; Shieber, 1986)2 has already been motivated in Chapter 3. They provide
a monotonicand declarative representation language for linguistic knowledge on
which a parser/generator or a uniform type deduction mechanism acts as the infer-
ence engine.

In contrast to simple feature-value pairs with atomic values as they are used
e.g. in GATE’s JAPE formalism discussed in the next section,typed feature struc-

2A slightly more general, but often synonymously used term isconstraint-based grammar formal-
ism.
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tures provide additional expressivity through (1) types ordered in a type inheri-
tance hierarchy, (2) nested feature-value structures (3) coreferences as an explicit
structure-sharing facility between feature values (cf. variables in logic program-
ming), altogether with a well-researched set-theoreticalsemantics.

The well-defined unification operation, set-theoreticallyan intersection of the
denotation of two typed feature structures that is both constructive and determines
satisfiability (compatibility), and subsumption (subset/superset relation between
the denotations of two typed feature structures) provide two powerful operations
that can be used to compare and merge typed feature structures in a monotonic
way.

7.2.3 Related Work

Both finite-state techniques and unification-based typed feature structures have a
long tradition in natural language processing.

The pure finite-state-based shallow processing approacheshave proved to be
very efficient in terms of processing speed. The first applications of finite-state pro-
cessing in NLP were morphology and phonology (Koskenniemi,1983; Karttunen,
1983; Kaplan and Kay, 1994) but have been extended later to many NLP tasks in-
cluding tokenization and ‘light’ parsing,etc(Karttunenet al., 1996). Piskorski and
Neumann (2000) present SPPC, a highly efficient system, which uses cascades of
simple finite-state grammars, based on a small number of basic predicates. Com-
plex constraints cannot be encoded in the finite-state device. The idea of using
more complex annotations on the transitions of FS automata has been considered
in SMES (Neumannet al., 1997) which uses regular grammars with predicates
over morphologically analyzed tokens.

These (LISP) predicates inspect arbitrary properties of the input tokens such as
part of speech or inflectional information. Van Noord and Gerdemann (2001) in-
troduce arbitrary predicates over symbols and discuss various operations on finite-
state acceptors and transducers. They observe that automata with predicates gen-
erally have fewer states and transitions. However, the discussed automata only
operate on symbols of a finite input alphabet. As a drawback ofusing too many or
too complex predicates, standard optimization techniquesare hardly applicable.

Cascaded finite-state systems have been developed for information extraction.
The most successful systems provide high-level specification languages for gram-
mar writing. The FASTUS system (Hobbset al., 1997) uses CPSL (Common
Pattern Specification Language). The more recent GATE system (Cunningham,
2000) provides JAPE (Java Annotation Patterns Engine), which is similar in spirit
to CPSL and borrows features from CPSL. A CPSL/JAPE grammar contains
pattern-action rules.

The LHS (left hand side) of a rule is a regular expression overatomicfeature-
value constraints called annotations (the recognition part), but without types, uni-
fication or typed feature structure concepts, while the RHS (right hand side) is an
annotation manipulation statementfor output production, which calls native code
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(e.g. C or Java), making rule writing difficult for non-programmers. Furthermore,
even though there is a mechanism for variable binding which is responsible for
copying values to the RHS, this mechanism is not capable of declaratively describ-
ing structure sharing among the rule elements. The annotation model of GATE is
based on TIPSTER (Grishman, 1997), already discussed in Section 6.2.

Like SProUT, Ellogon is a ‘multilingual, cross-platform, general-purpose text
engineering environment’ (Petasiset al., 2002). It shares with GATE the TIPSTER
annotation concept. However, while GATE provides at least asimple pattern-based
grammar formalism, Ellogon is a pure architecture and visualization shell to com-
bine existing NLP components programmatically through APIs. Both systems do
not provide a powerful and generic declarative formalism comparable toSProUT’s
TDL andXTDL .

7.2.4 TheSProUT Formalism

The SProUT formalism consists of two parts,TDL (Krieger and Schäfer, 1994;
Uszkoreitet al., 1994) for building the type hierarchy, andXTDL for the rule syn-
tax that incorporatesTDL and extends its typed feature structure part by regular
expressions, setsetc. Both are grounded in a closed type world semantics ver-
sion that is shared with grammar formalisms of PET (Callmeier, 2000) and LKB
(Copestake, 2002). The closed-world semantics means that types are pairwise in-
compatible unless they are in a subtype relationship or share an explicitly defined
common subtype (greatest lower bound, GLB).

7.2.4.1 TDL

In the BNF syntax ofTDL (Figure 7.1),identifier andstring are pre-terminals de-
fined as in usual programming language syntax for identifierssuch as class names
or variable names and strings (character sequences enclosed in double quotes).

typedef→ type":=" avm"." |
type":<" type"."|
string ":<" type"."

type → identifier
avm → term{ "&" term}∗

term → type| fterm | string | coref
fterm → "[" [attr-val {"," attr-val}∗ ] "]"
attr-val → identifier avm
coref → "#"identifier

Figure 7.1:TDL syntax for type definitions

Thetypedefproduction rule is used to introduce new types. The left typename
is the new type to be defined, the right type name is the supertype. If additional
features or feature value refinements are introduced, the":=" must be used to
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indicate the type definition, and the ampersand is used for combination (indicating
set-denotational intersection), e.g.

ne-location := enamex & [LOCTYPE loc-type,

LOCNAME string,

AREA string].

introduces the new typene-locationas subtype of enamex and introduces three
new features LOCTYPE, LOCNAME and AREA. As can also be seen from
this example, feature-value pairs are enclosed in square brackets and separated by
comma.

Multiple inheritance is defined by specifying a complex supertype expression
on the right side, where the supertypes are again combined using the ampersand
symbol:

inf := fin_inf & inf_infzu & inf_prp & inf_psp.

Otherwise,":<" indicates type introduction without feature refinement, e.g.

noun :< part_of_speech.

Coreferences indicate structure sharing using variables with a leading hash
sign, e.g.

[ATTR1 #shared_value, ATTR2 #shared_value]

In addition to what is stated in the (simplified) BNF, there are abbreviation
constructs (‘syntactic sugar’) for list-valued feature structures. < and> enclose
list elements (avm) separated by comma, an abbreviation for the*list* and*cons*
types for first-rest lists encoded as typed feature structures.

To this aim, besides*top* , the most general type in the type hierarchy, and
*avm*, the supertype of all attributed types, the following typesare predefined:

*avm* :< *top*.

*list* :< *avm*.

*null* :< *list*.

*cons* := *list* & [FIRST *top*,

REST *top*].

In the sample definition below, themorph type inherits fromsign and intro-
duces three more morphological attributes with the corresponding value type re-
strictions.

morph := sign & [POS pos,

STEM string,

INFL infl,

SEGMENTATION list].
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Similarly, basic types such astokenizerandgazetteerexist for each of the pre-
definedSProUTprocessing components that will be described later. The next fig-
ure illustrates a small (upper) fragment of a type hierarchy.

*rule*

present token morph

de en separator url

atom

tokentype

*top*

*avm*

infl

lang

index-avmsigntense

Except for the predefined types*top* , *avm*, *null* , *list* and *cons*, all
type definitions are optional and can be assigned freely for task-specific purposes.
The type hierarchy is compiled into an efficient bit-vector encoding using the gram-
mar preprocessorflop that is part of the PET system (Callmeier, 2000).

7.2.4.2 XTDL

The SProUT rule syntax, calledXTDL , is an extension of theTDL syntax for
defining type hierarchies, but without thetypedef production (Figure 7.1). In-
stead, it is possible to define a grammar consisting of rules with regular expression
patterns on the LHS that do not match simple atomic symbols, but typed feature
structures (production ruleavmin the BNF in Figure 7.1).

The typed feature structure input stream is e.g. generated by a tokenizer or
other preprocessing components such as morphology or a gazetteer lookup module
from an input text. Alternatively, arbitrary typed featurestructures can be given as
input via an API or as XML input document. TheXTDL grammar is compiled and
interpreted by theXTDL interpreter at runtime.

The LHS of anXTDL rule is a regular expression over typed feature structures
(in TDL syntax), representing the recognition pattern. The RHS consists of a single
typed feature structure specifying the output structure. Consequently, equality of
atomic symbols is replaced byunifiability of typed feature structures and the output
is constructed using typed feature structureunification w.r.t. the type hierarchy
defined inTDL .

The rule concept (already without the regular expression over typed feature
structures extension) is comparable tolexical rulesin unification-based grammars
such as the following from the first HPSG book (Pollard and Sag, 1987).













base
PHON 1
3RDSNG 2
SYN|LOC|SUBCAT 3
SEM|CONT 4













→









3rdsng
PHON f3RDSNG(1 , 2 )
SYN|LOC|SUBCAT 3
SEM|CONT 4








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Such a rule, including the transport mechanism of feature values from the LHS
to the RHS through coreferences, and the functional operator f3RDSNGcomputing
a phonological variant, could be directly expressed inXTDL syntax, the vertical
bar| being syntactic sugar for embedded feature paths.

The implemented processing strategy islongest match: The rules are applied
to the input sequence. If multiple rules apply to the same sequence of input items,
then the rule(s) with the longest matching input sequence win, are evaluated such
that the RHS is instantiated, and the resulting output feature structures is appended
to the output of the rule interpreter.

An XTDL rule (cf. BNF in Figure 7.2) starts with a named label for the rule
name. Rules can be ‘called’ from other rules using theseek operator and indicating
the rule via its label. After the:> separator, the LHS recognition part follows (a
regular expression), then the LHS/RHS separator->, finally the RHS output feature
structure. Each rule is terminated by a dot.

For the LHS regular expression over typed feature structures, the standard op-
erators*, ?, +, {n}, {m,n} can be employed for Kleene star, optionality, Kleene
plus, n-fold repetition and range. A simple space between the terms signifies con-
catenation (sequence of input items).

rule → rulename{":>" | ":/"} regexp"->" [avm] [ fun-op] "."
rulename→ identifier
regexp → avm| "@seek(" rulename")" | "(" regexp")" |

regexp{regexp}+ | regexp{"|" regexp}+ |
regexp{"*" | "+" | "?"} | regexp"{" int [ "," int ] "}"

fun-op → ", where" coref "=" fun-app{"," coref "=" fun-app}∗

fun-app → identifier"(" term{"," term}∗ ")"

Figure 7.2:XTDL rule syntax as extension ofTDL

We briefly exemplify the conciseness of the formalism. The first XTDL gram-
mar rule describes a sequence of morphologically analyzed tokens (of typemorph
with attributes POS and INFL). The first TFS matches one or zero items (?) with
part-of-speechDeterminer. Then, zero or moreAdjective items are matched
(*). Finally, one or twoNoun items ({1,2}) are consumed.

The use of a variable (e.g.#case) in different places establishes a coreference
(i.e., structure sharing) between features. This example enforces e.g. agreement
in case, number, and gender for the matched items. I.e., all adjectives must have
compatible values for these features.

If the recognition pattern on the LHS successfully matches the input, the de-
scription on the RHS creates a feature structure of typephrase. The category is
shared with the categoryNoun of the right-most token(s) and the agreement fea-
tures result from the unification of the agreement features of themorphtokens. An
extended example of morphology input items for a complete sentence is depicted
on page 214.
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np :> morph & [POS Determiner,

INFL [CASE #case, NUM #number, GEN #gender ]] ?

morph & [POS Adjective,

INFL [CASE #case, NUM #number, GEN #gender ]] *

morph & [POS Noun & #cat,

INFL [CASE #case, NUM #number, GEN #gender ]] {1,2}

-> phrase & [CAT #cat,

AGR agr & [CASE #case, NUM #number, GEN #gender ]].

in AVM notation, we use the bullet (•) sign to indicate sequence on the LHS.
This corresponds to a whitespace in theXTDL syntax. The usage of the other
symbols for regular expressionsetcshould be obvious.

np :>















morph

POS Determiner

INFL







CASE case

NUM number

GEN gender





















?

•















morph

POS Adjective

INFL







CASE case

NUM number

GEN gender





















∗

•















morph
POS catNoun

INFL







CASE case

NUM number

GEN gender





















{1,2}

→



















phrase
CAT cat

AGR











agr

CASE case

NUM number

GEN gender





























.

The second example addresses the recognition of river names. The rule matches
either expressions consisting of an (unknown) capitalizedword (via match with to-
ken type1stcapwd), followed by a noun with stemriver or brook (via the English
morphology component; disjunction has a higher precedencethan concatenation),
or Gazetteer entries of typegaz river containing English river names represented
by the Gazetteer typegaz river.

The generated output structure of typene-locationcontains a location type
river and the location name transported via the coreference symbol #lname. To
sum up, this rule recognizes both unknown river names (via a pattern involving
morphology lookup) and known river names (via a gazetteer match).

river :> (token & [TYPE 1stcapwd, SURFACE #lname]

(morph & [STEM "river", POS noun, SURFACE #key]

| morph & [STEM "brook", POS noun, SURFACE #key]))

| (gazetteer & [GTYPE gaz_river, CONCEPT #lname, DESIGNATOR #key])

-> ne-location & [LOCTYPE river, LOCNAME #lname, DESCRIPTOR #key].

in AVM notation

river :>

















token
TYPE 1stcapwd

SURFACE lname






•





















morph

STEM "river"

POS noun

SURFACE key











|











morph

STEM "brook"

POS noun

SURFACE key






























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|











gazetteer

GTYPE gazriver

CONCEPT lname

DESIGNATOR key











→











ne-location

LOCTYPE river

LOCNAME lname

DESCRIPTOR key











.

XTDL provides a functional operator facility that can be used to place func-
tion calls with values and arguments linked through coreference constraints into
the rules. The functions can be defined in Java code that is associated with the
grammars. Typical applications of this operator are user-defined string operations.

Example (taken from the English named entity grammar):

;; Dummy rule for "en_temp_unit_amount"

n_and_a_half :/

gazetteer & [GTYPE gaz_cardinal, CONCEPT #num, CSTART #cs]

token & [SURFACE "and"]

morph & [STEM "a"]

token & [SURFACE "half"]

-> interval & [TIMEX_AMOUNT #num_half, CSTART #cs],

where #num_half = Append(#num, ".5").

in AVM notation

n anda half :>











gazetteer

GTYPE gazcardinal

CONCEPT num

CSTART cs











•

[

token

SURFACE "and"

]

•

[

morph

STEM "a"

]

•

[

token
SURFACE "half"

]

→







interval

TIMEX AMOUNT num half

CSTART cs







where

num half = Append
(

num ,".5"
)

.

whereAppend is the usual string-appending function3.
The rule recognizes number expressions written as e.g. ‘twoand a half’ and

copies the normalized numeric amount into the output structure (in this case for
time expressions/duration) under the feature TIMEXAMOUNT’, e.g. as"2.5".
In this rule, the number as text recognition is implemented via a gazetteer lookup
(first pattern).

Nonterminals not defined in theXTDL BNF (Figure 7.2) are shared with the
TDL syntax. TheTDL BNF rule for term is augmented inXTDL by set-valued

3There is only a handful of elementary functional operators needed for the later described mul-
tilingual named entity grammars. Normally, grammar writers do not need to define new functional
operators.
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attribute values (in curly brackets) and the collect operator that collects values re-
peated under Kleene star or plus in a set or list on the RHS.

term → type| fterm | set| coref | collect
set → "{" [term{"," term}∗] "}"
collect→ "%"identifier

A weak form of negation is also supported, but at the top-level of LHS pattern
expressions only, i.e., not as feature values4.

The following sample rule matches (via the German morphology component)
noun phrases such as ‘der grüne Baum’ or ‘den großen Bäumen’, but excludes ‘der
seltene Baum’ or ‘des seltenen Baumes’.

baum_rule :> morph & [STEM "der"]

morph & ~ [STEM "selten"] & [STEM #stem]

morph & [STEM "baum"]#

-> out & [DESCR #stem ].

in AVM notation

baumrule :>

[

morph
STEM "der"

]

•¬







morph
STEM "selten"

STEM stem






•

[

morph
STEM "baum"

]

→

[

out
DESCR stem

]

.

In contrast to negation, sets are only admitted as feature values. We present
an example in combination with the collect operator that collects the values under
Kleene star on the LHS of a rule in a set on the RHS. The following rule matches
(via the German morphology component) phrasal expressionssuch as ‘die kleinen
grünen Männchen’ and outputs the stems of the adjectives,e.g.{”klein”, ”grün” },
in a set under the DESCR attribute in the output structure.

collect_adjs :> morph & [POS det]

(morph & [POS adjective, STEM %1])*

morph & [POS noun]

-> out & [DESCR %{1}].

in AVM notation

collect adjs :>

[

morph

POS det

]

•







morph

POS adjective
STEM 1







∗

•

[

morph

POS noun

]

→

[

out

DESCR {1}

]

.

4This would require extending theTDL formalism with disjunction, a great source of inefficiency.
Instead, disjunction e.g. of morphological feature values, can easily and very efficiently be expressed
using the type hierarchy.
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The above rules also exemplified how morphological analysiscan be used to
write general rules that apply to a whole bunch of collocatedwords, thus making
grammar writing quite comfortable.

A final remark on the examples. For the sake of simplicity and also for showing
the application of built-in morphology and gazetteer components, the rule input
was chosen to be generated by one of these ready-to-useSProUT components.
However, it should be pointed out here that also general feature structures could
be used as input, e.g. produced by a previous component (e.g.anotherSProUT
grammar) in a cascade, or by any other NLP component, transformed into a format
ingestible by theSProUT interpreter. In the next section, we will show how the
architecture is set up and what general (XML) input and output formats exist in
order to connectSProUTwith the outside world, including applications.

7.2.5 Architecture and Components

Central to theSProUT architecture is theinterpreter, the core algorithm for ex-
ecuting theXTDL grammar that was transformed into a minimized automaton
at compile time. The interpreter tries to match input sequences of typed feature
structures with theXTDL grammar LHS of the grammar rules using typed feature
structure unifiability (and unification in case of a match).







































rule

IN

〈































morph
SURFACE nice
STEM nice
POS Adjective

INFL











infl
CASE nom
NUM plural
GEN fem









































,































morph
SURFACE clever
STEM clever
POS Adjective

INFL











infl
CASE nom
NUM plural
GEN fem









































,































morph
SURFACE girls
STEM girl
POS Noun

INFL











infl
CASE nom
NUM plural
GEN fem









































〉







































Figure 7.3: The matched input sequence for the phrase ‘nice clever girls’

The output is the sequence of the RHSes of the successfully applied (match-
ing) rules that may include values from the LHSes when transported to the RHS via
unification. The implementation of the ‘transport’ mechanism itself is straightfor-
wardly performed by putting LHS and RHS into a single, wrapping feature struc-
tures under attributes IN in a list (LHS) and OUT (RHS), structure sharing and
unification will do the real transport of values.

We give a short example for the noun phrase rule defined on page122 matching
an input sequence ‘nice clever girls’. The morphological analysis of that phrase as
input to the interpreter is presented in Figure 7.3, the angle brackets being syntactic
sugar for a first-rest list representation.
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The morphology components ofSProUT for European languages such as En-
glish, German, French, Italian or Spanish are based on MMorph resources (Petit-
pierre and Russell, 1995; Krieger and Xu, 2003). Japanese segmentation and PoS
tagging is based on ChaSen (Asahara and Matsumoto, 2000), Chinese segmenta-
tion on ShanXi (Liu, 2001).
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Figure 7.4: The successfully expanded NP rule from page 122 with no determiner
(pattern:?), two adjectives (*), and a noun ({1,2})

From the rule definition and the input token sequence, the interpreter will con-
struct a TFS with an instantiated LHS pattern as a valid expansion of the regular
expression in the rule definition (Figure 7.4).

Unification of the morphology input sequence will result in the structure shown
in Figure 7.5, where the output of the rule application can befound under feature
OUT.

Figure 7.6 displays an overview over the major, standard components of the
system and their connection to the interpreter. Most of the resources of the stan-
dard components (morphology, type hierarchy, gazetteer, grammar) are compiled
through specialized (mostly finite-state) compilers for efficient processing at run-
time.

For details on the various compilation and minimization techniques developed
and implemented for theSProUT system, we refer the reader to Kriegeret al.
(2004), as we concentrate here on the I/O embedding ofSProUT.

The common data structure for the basic components such as tokenizer, mor-
phology, gazetteer andXTDL grammar are typed feature structures5. Each type
and attribute output by the components must have an appropriate definition in the
TDL type hierarchy. Otherwise, a runtime error will be signaled. I.e., types are not
only the ‘glue’ between components and the interpreter, butalso serve as a means

5This also includes the added interfaces to external morphology/segmentizer tools for Asian lan-
guages mentioned above.
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Figure 7.5: The final result from the unification of an expanded instance of the
noun phrase rule from page 122 with the TFS for the input ‘niceclever girls’ from
Figures 7.3 and 7.4

for consistency checking (cf. Section 7.4).
The type hierarchy is compiled from theTDL sources to a compact binary

representation using theflop preprocessor of the PET system (Callmeier, 2001).
The binary representation is read by the JTFS (Java Typed Feature Structures) sub-
system ofSProUT implemented by Hans-Ulrich Krieger that uses the compact
encoding of the type hierarchy and provides Java classes forrepresenting typed
feature structures including methods for unification and subsumption testing.

7.3 SProUTput DTD: XML and XSLT Transformation of
Results

In this section, we discuss transformation of the typed feature structures serialized
to XML. As mentioned and motivated in the architecture description above (Sec-
tion 5.4.1), XML-encoded typed feature structures can playan important role for
interfacing and integration of components.

XML serialization and transformation is e.g. useful for (1)interfacing applica-
tions and external components that do not use typed feature structures or use other
representations of typed feature structures than the Java implementation (JTFS) of
SProUT; (2) persistent storage of analysis results, e.g. as automatically annotated
corpora for training statistical models; (3) for visualization of results in e.g. AVM
or tree representation.
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Figure 7.6:SProUTArchitecture

The typed feature structures ofSProUT can be serialized (without the type
hierarchy information which is supposed to be stored externally in a compressed
bit-vector encoding format for efficiency reasons6) to XML using an extended ver-
sion of theminimal typed feature structure DTDdescribed in Section 5.4.1. We
call this format theSProUTput DTD.

The full DTD is contained in the DTD Appendix on page 288. ASProUTput
document consists of a disjunction of MATCHINFO items, each MATCHINFO con-
taining all readings recognized for a character span (or token span) in the input. A
reading is simply a typed feature structure as generated by theSProUTinterpreter,
in XML transcription.

This is basically a one-to-one mapping of the data structures7 theSProUT im-
plementation uses. The same XML format and corresponding JTFS data structure
can also be given as input to theSProUT interpreter, i.e., as a stream of MATCH-
INFO objects. This also enables straightforwardcascadingof SProUTgrammars:
One grammar can take the output of the previous grammar as input.

The XML format can be transformed into any other XML or text format us-
ing the built-inSProUTput XSLT transformer8 that provides convenient wrappers
around Java’s XSL transformation framework that is part of the standard JAXP

6Although this is not a major concern inSProUTwhere type hierarchies are (up to now) by far
smaller than in HPSG grammars.

7Classde.dfki.lt.sprout.runtime.MatchInfo.
8Classde.dfki.lt.sprout.runtime.XmlTransformer.



7.4. COMPILE TIME TYPE CHECK 129

API.
An extended example for an XSL stylesheet working onSProUTput will be

presented in Section 9.5.4.1. There, the output of the standard named entity gram-
mar of SProUT (for English, German, Greek and Japanese) is transformed into
the robust semantics representation format RMRS. The transforming stylesheet is
generated automatically and solely on the basis of theTDL type definitions for the
named entity output types.

Similarly, any XML format different from theSProUTput DTD could be read
by the SProUT interpreter as input after an appropriate XSLT translation. It is
now also easy to see how new, external components could be integrated with the
interpreter via the XML interface, e.g. for programming languages other than Java.
Together with the generic feature structure format,SProUTput XML thus forms a
highly generic and flexible, structured XML format for inputto and output from
theSProUT interpreter.

7.4 Compile Time Type Check

As stated above, welltypedness of the typed feature structures is important to en-
sure correct and efficient unification operations in the interpreter at runtime. It has
to be ensured, e.g., that each feature occurring in the grammars is appropriate for
the associated type, and that all types occurring a defined inthe type hierarchy.

While the preprocessor for theTDL type hierarchy isSProUT has its own
checking algorithm for the simple typed feature structuressupported by the core
TDL syntax, this algorithm is not applicable to theXTDL syntax which is a su-
perset ofTDL . Therefore, a new, appropriate type check had to be developed that
checksXTDL definitions for compliance with the type hierarchy defined inTDL .

The type check constitutes the second stage in a three-stagepreprocessing
phase for grammar compilation. The first step isXTDL syntax parsing, then
the type check and generation of an intermediate XML representation follows on
which finally the finite state grammar compilation operates.

The first step has been implemented using JavaCC (Viswanadhaand Sankar,
2002), a parser generator for LL(k) grammars. TheXTDL syntax as defined in the
BNF in Figure 7.2, but with refinements and elaborations not presented there for
the sake of simplicity, is defined in a LL(1) grammar with additional contextual
constraints formulated in attached action rules.

The action rules also generate an intermediate XML representation; its DTD
(DTD Appendix on page 286) is called theXTDL DTD. We do not go into de-
tails here as the DTD is roughly isomorphic to the BNF structure, with additional
attributes e.g. for access to character positions in the original XTDL source (re-
ceived through the JavaCC-generated parser) in order to provide type check errors
with a precise location in the grammar source, as exemplifiedin theSProUT IDE
screenshot in Figure 7.7.

We roughly sketch the type checking algorithm that is executed while the inter-
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mediate representation for finite state compilation is generated recursively during
parsing theXTDL grammar sources. The type hierarchy compiled by theflop

preprocessor is represented in JTFS and can be queried quickly via hash table ac-
cess (type-code mappings) and bit vector operations (GLB computation, subsump-
tion checking; cf. Aı̈t-Kaciet al.1989).

Type definition check at feature structure (CFS) nodes. The first check tests
if a type is defined in the type hierarchy. String attribute values do not have to be
present in the type hierarchy, but the value type must be compatible (‘appropriate’,
cf. page 40) with theTDL typestring in the type hierarchy. If a type is not in the
type hierarchy, an error is signaled.

In case multiple types are specified at a feature structure (CFS) node (this is
possible in the XTDL syntax), their corresponding GLB (greatest lower bound)
type is looked up in the type hierarchy (including subtype relations). If it does not
exist, an error is signaled (because of the closed type worldassumption imposed by
the type system). If it exists, the complex type expression is replaced by the single
GLB type and a warning is generated for the grammar developerthat a common
subtype has been found and should be used instead in the rule.

Appropriateness and welltypedness checks.The concepts of appropriateness
and welltypedness were already defined on page 40. The appropriateness check
tests whether all features occurring in a typed feature structure are licensed by a
TDL type definition (directly or through inheritance). A feature occurring without
a licensing type will cause an error. Welltypedness impliesappropriateness. The
welltypedness check additionally tests whether the type ofeach attribute value is
subsumed by either the feature-introducing type definitionor any possible refine-
ment following through inheritance.

The list of detected error or warnings is collected during parsing, and presented
(at least up to the first syntax error) in such a way that the grammar writer can
immediately correct them in the editor (either built-in IDEor through a generic
editor interface that e.g. supports the text editoremacs) by simply clicking on
the error message (Figure 7.7). The character position stored in the intermediate
XML representation of the grammar allows to automatically point the cursor to the
problematic location.

As a result, the implementation of the compile time type checking algorithm
with exact error positioning has helped to drastically reduce errors during and after
grammar development.

7.5 Visualization

We briefly discuss tools we have implemented for graphical rendering of XML-
encoded typed feature structures. They have been implemented both as Swing
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Figure 7.7: Type check results in theSProUTIDE

components for use in the integratedSProUT development environment and as
Java applets for viewing in a Java-enabled browser.

The main motivation is to support convenient graphical representations in AVM
notation (cf. page 36) of the complex, structured analysis results of theSProUT
interpreter and theXTDL grammar rules that would otherwise (in text or XML
representation) make reading of the nested and interlinkedstructures difficult.

The implementation takes advantage of the common typed feature structure
subset that is part of bothXTDL andSProUTput and the fact that both representa-
tion formats can be encoded in XML for output. A SAX parser generates the same
(intermediate) object representation for the graphical elements from both XML in-
put formats (XTDL DTD andSProUTput DTD), which is then used to draw (or
update) Swing primitives. Through the XML format, the feature structure repre-
sentation is decoupled from theSProUTruntime engine, and the visualization code
is lightweight, which is e.g. important for the Java applet implementation.

An example ofSProUTput andXTDL visualizations as part of theSProUT
IDE is depicted in Figure 7.8.

A second way of visualization are the LATEX AVMs and graphicalXTDL rules
we have seen in this chapter. These have been generated via anXSLT stylesheet
that reads theXTDL DTD andSProUTput DTD and generates LATEX code of it.
Thanks to the modular DTD design, a single stylesheet can handle both DTDs, and
generate the appropriate LATEX source code.

7.6 Applications

IE systems are becoming commercially viable in supporting diverse information
discovery and management tasks. TheSProUTplatform has been adopted as the
core IE component in several EU-funded and industrial projects, supporting tasks
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Figure 7.8: AVM rendering in theSProUT IDE: XTDL visualization in the top
right panel,SProUTput in the bottom right window

such as content extraction and acquisition for text/data mining, dynamic hyperlink-
ing, machine translation, and text summarization.

These applications yielded valuable feedback for further improvements and
extensions ofSProUT. Grammars are usually developed utilizing the integrated
development environment with whichSProUT is shipped out. Runtime systems,
on the other side, make use ofSProUT’s rich programming API.

The common core set of grammars used in the projects for namedentity recog-
nition comprises rules and gazetteer entriesetc for person, organization and loca-
tion names, currency and temporal expressions. While thesenamed entity classes
roughly are equivalent to the MUC named entity classes already mentioned in pre-
vious chapters, the output of recognized items isstructuredwhereas in MUC, only
the class of the named entity is represented in the annotation.

Below, we show the four named entities recognized bySProUT in the follow-
ing two sentences, including its structured output.

Geschäftsführer Prof. Dr. hab. Peter S. van den Berg war seit Anfang
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Juli 2004 bei der Söhnlein GmbH & Co. KG tätig. Er arbeitetevom
2. Juli 2004 bis 31. Mai 2005 dort.
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Some projects usingSProUTextended or partly replaced the core named entity
grammars by domain-specific rules and other resources. The modular design of the
grammars that is facilitated through the powerful type system eased fulfilling this
requirement.

Following is an incomplete list of applications developed in research project
context at DFKI. There are several further applications notmentioned here that
have been developed by other, external research groups and companies using the
SProUTsystem.

Integrating information extraction and automatic hyperli nking. EXTRAL INK

(Busemannet al., 2003) is a novel information system combing IE technology and
automatic hyperlinking. Semantic concepts identified by theSProUTnamed entity
grammars are mapped onto a domain ontology that relates concepts to a selection
of hyperlinks, which are directly visualized using a standard web browser. EX-
TRAL INK showcases the extraction of relevant concepts from German texts in the
tourism domain, offering the direct connection to associated web documents on
demand.

Multilingual information extraction for AIR FOReCast in Eu rope. The EU-
funded project AIRFORCE targets at developing ideas and components which
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support building a database of European events and trends, helping to forecast
air traffic (Busemann and Krieger, 2004).SProUThas been adopted for building
up domain-specific named entity and relation extraction grammars with language-
neutral output for automatically extracting relations from official travel warnings,
published regularly in the Internet by the ministries for foreign affairs of France,
Germany and the UK.

Multilingual IE for machine translation and text summariza tion. The EU-
funded MEMPHIS project (Kasperet al., 2004) has developed a platform for
cross-lingual premium content services, targeting mainlyat portable thin clients
such as mobile phones, PDAs,etc. The core of the system consists of a trans-
formation layer, integrating cross-lingual information extraction and summariza-
tion of source documents, translation to the customers’ target languages, a domain
ontology-based knowledge management for extracted information as well as mul-
tilingual generation of documents according to the requirements of the target de-
vices. SProUT is used primarily as a document indexing engine for tokenization,
morphological analysis, and named entity recognition, andsecondly for boosting
the performance of text summarization and machine translation components.

Information extraction for Polish in the financial and medical domain. An
attempt in applyingSProUT in the process of constructing an Information Ex-
traction engine for Polish and adopting it to the processingof Slavic languages
is reported in Piskorskiet al. (2004). The IE tasks focus on the identification of
typical named entities from financial texts (Piskorski, 2005) and on extraction of
data about pathological changes from a medical corpus containing descriptions of
mammographic examinations (Kupśćet al., 2004).

Opinion mining. The ARGOSERVER system, developed by the Italian company
Celi, analyzes on a daily basis forums and newsgroups on different car manufac-
turers in order to retrieve interesting messages and trends. SProUT is applied here
to handle the information extraction task. The extracted opinions are input to sta-
tistical post-processing, yielding, e.g. the total numberof comments (or attitudes)
expressed by the forum/newsgroup users in the monitored period.

Hybrid deep and shallow methods for knowledge-intensive information ex-
traction. In the DEEPTHOUGHT project, English, German and Japanese named
entity recognition ofSProUT is employed in the hybrid architecture integrating
deep and shallow natural language processing components wewill describe in
Chapter 9. Prototype application domains are precise information extraction for
business intelligence, e-mail response management for customer relationship man-
agement, and creativity support for document production and collective brain-
storming (Uszkoreitet al., 2004).
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Here, theSProUTXML output is converted to the semantic formalism RMRS
(robust minimal recursion semantics) and to the deep parser’s input chart through
XSLT stylesheets (Schäfer, 2004b). The application will be described in more
detail in Section 9.10.1.

Question answering with hybrid deep and shallow processing. QUETAL HoG-
QA is a system for domain-restricted question answering from structured knowl-
edge sources (in contrast to unstructured text sources), based on robust semantic
analysis in a hybrid NLP system building on the Heart of Gold architecture we will
describe in Chapter 9. Question interpretation and answer extraction is performed
in an architecture that builds on a lexical-semantic conceptual structure for ques-
tion interpretation, and is interfaced with domain-specific concepts and properties
in a structured knowledge base.

SProUT is employed here for German and English both as a pre-processing
component for robust deep parsing (named entity recognition) and a richer se-
mantics representation construction in an information extraction-like fashion of
domain-specific terms and named entities (Franket al., 2006). Details will be pre-
sented in Section 9.10.2.

Customer care question answering. The CCA (Customer Care Automation)
project centers around a question answering system with dialog facilities for the
telecommunication domain developed for the leading Germanmobile phone pro-
vider (Burkhardtet al., 2005).

SProUT is deployed in the component for shallow semantic analysis of the
questions (named entity and NP/PP grammars for German) and for indexing the
question-answer database.

Information extraction in SmartWeb. In the large German Semantic Web re-
search project SmartWeb,SProUT is used for information extraction of soccer
match descriptions that are written in German (Buitelaaret al., 2006). Match situ-
ations are output by theSProUTgrammar in frame-like feature structures capturing
information gathered over several sentences. The grammar is a modular extension
of the existing general named entity recognition rules for person names, location,
time expressionsetc, and heavily makes use of the extended gazetteer facility and
the morphology component. An event recognition rule from the developed gram-
mar is shown in Figure 7.9, cf. also the SmartWeb descriptionin Section 9.11

7.7 Evaluation

As can be seen from the examples above,SProUTis a very versatile NLP processor
that has been successfully deployed for many different tasks in novel challenging
research and industrial applications. To demonstrate the competitiveness of the
system, we report on an evaluation of (a 2005 snapshot of) themultilingual named
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scoregoal :> syn_args & [HEAD syn_verb & [SYN_STEM goalscore & #ds,

SYN_CSTART #cs,

SYN_CEND #ce],

ARGS #args]

-> s_playeraction & [SPORTACTIONDESCR #ds,

SPORTACTIONTYPE scoregoal,

COMMITTEDBY #player_fs,

NECSTART #cs,

NECEND #ce],

where #act_subj = InList(act_subj, #args),

#nelist = FeatVal("NE_LIST", #act_subj),

#player_fs = FeatVal("NE_FS", #nelist).

Figure 7.9: An event recognition rule from the SmartWeb soccer grammar

entity recognitionSProUT grammars, because evaluation corpora exist for this
task.

7.7.1 Evaluation Snapshot of the Multilingual NE Grammars

Many of the above presented applications build on named entity recognition gram-
mars that have been developed since the first version ofSProUTwas available. A
large portion of the different project or domain-specific grammars is shared, also
cross-lingually. In a modular way, the core grammar is extended with domain-
specific rules depending on project-specific requirements.The soccer grammar of
SmartWeb, e.g., builds on the common person name recognition rules, but adds
further rules for player roles, match situations,etc. Specific gazetteer tables are
added for names, roles and domain-specific extensions.

To support true multilinguality, an effort was started to standardize the out-
put format of the named entity grammars for the different languages. Although
the grammars partly have different internal structure and organization9, they shall
provide the same output structures for comparable phenomena in the different lan-
guages. As theSProUT formalism does not impose an a-priori structure (types,
names, attributes, granularityetc can in general be chosen freely), this had to be
designed in an iterative process that included feedback from the projects and sub-
sequent amendments.

On the other hand, the existingde factoannotation standard MUC-6 for named
entity recognition (Grishman and Sundheim, 1996) has already early been consid-
ered insufficient as it foresees much less fine-grained and less structured analyses
than are possible withSProUT. While MUC-6 e.g. only distinguishes span and
named entity type information,SProUTgrammars output more detailed analyses

9Either motivated by the structure of the natural language orby the grammar development history.
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of recognized names such as the internal structure of a person name (title, surname,
given nameetc), the granularity of locations (city vs. region, country namesetc),
or normalization of metric data such as time and date.

However, in order to provide a means for comparison with existing, competing
tools, a somewhat impoverishing mapping had to be defined that (in the case of
MUC-6 annotation for English) even included the elimination of SProUTrules for
phenomena that MUC-6 does not cover.

The grammars were evaluated with the JTaCo evaluation tool (cf. Section 7.8.4;
Bering et al. 2003; Bering 2004) which supports user-defined mappings between
different NE classes, for controlled partial overlap between recognized and anno-
tated NEs, and supports user-defined mappings between text-based and semantics-
based annotations and output structures. Table 7.1 and 7.2 contain the evaluation
results in terms of precision-recall figures of the core NE grammar for English
and German, respectively. For the evaluation of the Englishgrammar, an excerpt
of circa 1MByte from the MUC-6 annotated corpus (newspaper texts) was used,
whereas for German, a manually annotated corpus of German newspaper texts with
a slightly different annotation scheme has been created.

Type #entities precision recall f-measure
NUMEX-PERCENT 34 1.0 1.0 1.0
NUMEX-MONEY 103 0.971 1.0 0.986
ENAMEX-LOCATION 1398 0.959 0.987 0.973
ENAMEX-ORGANIZATION 1747 0.949 0.911 0.930
ENAMEX-PERSON 1123 0.917 0.950 0.933
TIMEX-DATE 854 0.963 0.943 0.953
TIMEX-TIME 162 1.0 0.926 0.961

Table 7.1: English named entity grammar evaluation

Type #entities precision recall f-measure
NUMEX-PERCENT 280 1.0 0.989 0.995
NUMEX-MONEY 679 1.0 0.969 0.984
NUMEX-QUANTITY 16 0.941 1.0 0.969
ENAMEX-LOCATION 784 0.982 0.989 0.985
ENAMEX-ORGANIZATION 1017 0.974 0.982 0.978
ENAMEX-PERSON 58 0.950 0.983 0.966
TIMEX-TIME 530 1.0 0.926 0.961
NUMEX-NUMBER 227 0.904 0.991 0.945

Table 7.2: German named entity grammar evaluation

As can be seen from the results, theSProUT grammars perform quite well
compared to typical statistical systems. Recall will presumably lower on domains
for which no appropriate gazetteers are contained, e.g. in the chemistry domain.
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However, the strengths of the generalSProUT recognition approach, namely (1)
flexible adaptability to new domains, (2) concise, declarative formalism (3) clear-
cut specialized and compilable resources, (4) modularity of grammars and archi-
tecture, (5) structured and fine-grained analysis output, are largely neglected by the
bare figures.

Thus, SProUT is a suitable tool for high-precision and structured domain-
specific named entity recognition tasks – not to forget the fact that the system
could be used for other purposes than just named entity recognition. An exam-
ple will be presented in Chapter 9 where several cascadedSProUTgrammars are,
in addition to named entity recognition, also used to compute a shallow semantic
representation from bothSProUTmorphological analysis and a statistical chunker.

7.8 Building, Testing and Evaluation withSProUTomat

In this section, we presentSProUTomat, an automatic build, testing and evaluation
tool we have developed (Schäfer and Beck, 2006; Bering and Schäfer, 2006) for
SProUT as a means for periodical automatic testing and evaluation,mainly for
immediate feedback after grammar or (re)source changes, but also to test integrity
and performance of the overall system including program code.

7.8.1 Motivation

The development of multilingual resources for language technology (LT) compo-
nents is a tedious and error-prone task. Resources for a complex, multi-purpose,
multilingual system likeSProUT, such as tokenizers, morphologies, lexica, gram-
mars, gazetteersetc for multiple languages can only be developed in a distributed
manner, i.e., many people work on different resources.

However, the resulting systems are supposed to deliver the same good recog-
nition quality for each language. Dependencies of resources and subsystems may
lead to suboptimal functioning, e.g. reduced recognition rates, of the overall sys-
tems in case of errors creeping in during the development process. Hence, in anal-
ogy to software engineering, testing and evaluation of the developed resources has
to be performed on a regular basis, both for quality assurance (QA) and compara-
bility of results in different languages.

7.8.2 SProUTomat

SProUTomat is a tool for daily automatic building, testing theSProUTdevelop-
ment and runtime system from the Java source code and for compiling, testing
and evaluating linguistic resources for English, German, French, Spanish, Greek,
Japanese, Italian and Chinese named entity and informationextraction grammars
from a version control system. Although parts of the build mechanism are specific
for SProUT, most of the testing and evaluation parts could be re-used for other
systems.
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7.8.3 Building and Testing

SProUTomat is an extension of the build mechanism for language technology com-
ponents and resources we have developed for theSProUT system using Apache
Ant10. Ant is a standard open-source tool for automatic building and packaging
complex software systems. On the basis of target descriptions in an XML configu-
ration file, Ant automatically resolves a target dependencygraph and executes only
the necessary targets.

Before testing and evaluating, a system has to be built, i.e., compiled from
the sources checked out from a source control system. The Java program code
compilation ofSProUT is a straightforward task best supported by Ant. The case
is, however, different for lingware sources all of which arecompiled inSProUTas
well for efficiency reasons.

While the appropriate Java code compilation tasks know whata compiled class
file is and when it has to be recompiled (source code changes, dependencies), this
has to be defined explicitly for lingware resources which Antnatively is not aware
of. Theuptodate task of Ant (a predicate) can be used to compare source files
(.tdl in the following example) against their compiled version (.grm).

<uptodate property="tdl_input_is_uptodate"

srcfile="${typehierarchy}.tdl"

targetfile="${typehierarchy}.grm"/>

For each of the different lingware types, these source file dependencies are
defined as are the calls to the dedicatedSProUT compilers and parameters for
their compilation.

Lingware-specific targets have common parameters and properties such aslang,
project and the lingware type that are used to locate e.g. the source and compiled
files in the hierarchically defined directory trees, orcharset to specify encodings
for source files to read.

Dependencies between different lingware types are handledby calls to defined
sub-targets. Figure 7.10 shows the definition of thecompile_ne target that calls
four other compilation sub-targets. Each sub-target compiles only when necessary,
and thecompile_ne target itself depends on thejar target that provides working
and up-to-dateSProUT lingware compilers.

Besides the program and lingware compilation, many other targets exist e.g.
to generate documentation, package runtime systems, startthe integrated develop-
ment environment (IDE)etc.

Thus, using a single command, it is possible to compile the whole system in-
cluding code and all dependent available linguistic resources, or to update it after
changes in the sources.

The daily automatic testing and evaluation mechanism is an extension of the
build procedure.SProUTomat first updates all program sources and linguistic re-
sources from the version control system, and compiles them.For each language

10http://ant.apache.org
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<!--usage : ant compile_ne -Dlang=en -->

<target name="compile_ne" depends="jar"

description="Compile NER grammar.">

<property name="lang" value="en"/>

<property name="project" value=""/>

<property name="charset" value="utf-8"/>

<!-- compile type hierarchy: -->

<antcall target="compile_tdl"/>

<!-- compile tokenizer: -->

<antcall target="compile_tokenclass"/>

<!-- compile gazetteer: -->

<antcall target="compile_gazetteer"/>

<!-- compile XTDL grammar for NER: -->

<antcall target="compile_grammar"/>

</target>

Figure 7.10: A sample target definition: named entity grammar compilation

resource to test, a reference text is then analyzed by theSProUT runtime system.
This checks for consistent (re)sources. The next step is comparison of the gener-
ated named entity and information extraction annotation against a gold standard.

7.8.4 Evaluation with JTaCo

SProUTomat uses a batch version of JTaCo (Beringet al., 2003; Bering, 2004) for
the automatic evaluation and computation of precision, recall and f-measure. For
English, the annotated corpus is e.g. taken from the MUC evaluation data (Grish-
man and Sundheim, 1996). For other languages for which no MUCannotations
exist (e.g. German), a manually developed corpus is employed. JTaCo can be
easily customized for comparison with other XML annotationformats.

JTaCo provides unified use of variably annotated source material for testing.
The component developer provides suitably, i.e., usually semi-manually or man-
ually marked-up reference sources on the one hand, and a parser or similar NLP
component (hereSProUT) on the other hand. JTaCo extracts the original annota-
tion from the corpus, compares this annotation with the markup the component in
question generates for the same input, and generates statistics and reports from the
comparison results11.

Since a focus of JTaCo lies on the integration of diverse manual annotation
schemes on the one hand and differing NLP components on the other, JTaCo em-
ploys a modular architecture in which its different processing stages allow indepen-
dent adaptations to varying input and different environments. JTaCo is realized as

11JTaCo stands for Java Tagging Comparator.
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a pluggable, lightweight, mostly architecture-independent framework. Currently,
there are two JTaCo plug-in realizations for usage with grammars developed in
SProUT: A GUI plug-in integrated in theSProUT IDE, and a batch version inte-
grated inSProUTomat.

7.8.4.1 JTaCo’s Processing Stages

JTaCo works in four separate transformational processing stages. Figure 7.11 il-
lustrates these stages, their input and the results they generate. The process starts
from an annotated written corpus against which the NLP component or resource
is to be tested. In the first step, JTaCo uses anAnnotationParserto separate the
corpus into

• the raw text contained in the corpus (i.e., the text without any annotation)
and

• its true annotation (interchangeably also called thereferenceor manualan-
notation).

The extracted text is fed into theParseror a similar component to test, in this
case theSProUT interpreter, yielding the annotation to compare with the manual
annotation. The comparison is executed by aTaggingComparator. The compara-
tor’s result in turn is used by anOutputGeneratorto select, format and output the
needed information.

jTaCo

AnnotationParser

Parser

TaggingComparator

OutputGenerator

Annotated Corpus

True Annotation

Raw Text

Parsed Annotation

Comparison Result

Result Tables

Grammar
Developer

provides

Figure 7.11: An overview of JTaCo’s processing stages
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7.8.4.2 Reading the Annotated Corpus

For use at the following processing stages, JTaCo extracts from the annotated cor-
pus the ‘raw’ content, i.e., the written text without any markup, on the one hand,
and the reference annotation on the other. Both the extraction of the text and of
the annotation can be configured according to the specific annotation scheme. A
corpus usually not only contains the annotated textual material, but also meta-
information intended for, e.g. administrative purposes. Such information has to be
excluded from the text extracted to be used for testing. JTaCo includes support for
annotations which satisfy certain regular constraints andfor XML annotations such
as found in MUC corpora (Grishman and Sundheim, 1996). For use withSProUT,
JTaCo transforms the XML-encoded entities into typed feature structures.

As an illustration, consider the following MUC time expression:

<TIMEX TYPE="DATE">07-21-96</TIMEX>

The textual content consists just of the date expression07-21-96. JTaCo trans-
forms the tag information as well as the surface and character offsets into feature-
value pairs in a feature structure:















timex

TYPE "DATE"

CSTART "27"

CEND "34"

SURFACE "07-21-96"















Here,CSTART andCEND indicate the inclusive start and end character posi-
tions of the annotated element in the ‘raw’ text, i.e., without counting the markup.
The resulting reference annotation is the collection of allfeature structures gener-
ated from the corpus. More complex, embedded annotations would be translated
in a similar manner.

7.8.4.3 Parsing the Extracted Text

At this second processing stage, JTaCo feedsSProUTwith the text retrieved from
the previous stage, andSProUT in turn produces some specific markup of the text.
As at the previous stage, JTaCo transforms this annotation into a format which it
can compare with the reference annotation.

For the previously employed example expression,07-21-96, SProUT’s named
entity recognition markup delivers structured output in anXML-encoded typed
feature structure (‘SProUTput’ DTD), whereCSTART and CEND indicate start
and end character positions of the matched named entity in the input text:
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































point
SPEC temp-point

MUC-TYPE date
CSTART "27"

CEND "34"

SURFACE "07-21-96"

YEAR "1996"

MONTH "07"

DOFM "21"

































7.8.4.4 Comparing the Annotations

At this stage, the annotations obtained from the two previous transformation pro-
cesses are compared, i.e., the ‘manual’ annotation read directly from the corpus,
and the ‘parsed’ annotation obtained through the NLP component. For JTaCo, an
annotation is a collection of tags, where a tag consists of some linguistic informa-
tion about a piece of text. Minimally, a tag contains

• some name, e.g. a linguistic label,

• the surface string to which the label applies,

• position information about where this string is found in thecorpus.

Usually, the setup uses tags which incorporate more information, and the re-
lation used to determine entity equality between the two annotations typically de-
pends on this information. For use withSProUT, JTaCo generates an annotation
consisting of tags which are augmented with feature structure information. The
equality notion of these tags is defined though unification.

An important feature of JTaCo is that the comparison can be configured to
accommodate for a variety of systematic differences in annotations:

• The annotations may use different labels, differing perhaps even in granu-
larity. One annotation, e.g., might globally use the labelorganization, while
the other uses subclasses such asuniversity, government, etc.

• The annotated entities may differ in their surface spans. One annotation, e.g.,
might consider the expressionPresident Hugo Chavezto be a named entity,
while the other might exclude the title.

• One annotation may contain sequences of entities which in the other anno-
tation correspond to one single entity. For instance, MUC will usually sep-
arate a date followed by a time into two named entities (TIMEX-DATE and
TIMEX-TIME), while SProUTconsiders this to be one entity.
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From: SProUTomat

Date: 20/02/2006 06:35 AM

Subject: SProUTomat -- Status: OK

CVS update...

U src/grammar/extendedgazetteer/common/location.gaz

U src/grammar/xtdl/ne/en/location.sgr

Building runtime system and grammars... log

Testing English grammar... log result

Running JTaCo... log

JTaCo result English

 0

 0.2

 0.4

 0.6

 0.8

 1

08/05 09/05 10/05 11/05 12/05 01/06 02/06 03/06

F
M

ea
su

re

Date

 

NUMEX-PERCENT
NUMEX-MONEY

ENAMEX-LOCATION

ENAMEX-ORGANIZATION
ENAMEX-PERSON

TIMEX-DATE

TIMEX-TIME

Generating runtime system Javadoc

Generating Antdoc for build.xml

Generating Ant call graph diagram

Start: 20.02.2006 06:22:01

End: 20.02.2006 06:35:38

Figure 7.12: A report generated bySProUTomat (excerpt for a single language)

7.8.5 Report

After counting and comparing matches through JTaCo, a report is generated and
emailed to the developers with an overall status (OK or ERROR) for quick infor-
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mation. The report (example in Figure 7.12) also contains diagrams consisting
of precision/recall/f-measure curves since beginning of regular measurements per
language generated withgnuplot12 that graphically present an overview of the
resource development progress over time. To this end, the evaluation figures are
also added to a global evaluation database.

Further information sources such as Ant target and Javadoc documentation as
well as a visual dependency graph representation of the Ant targets are also gener-
ated automatically.

7.8.6 Summary and Outlook

We have presented a comprehensive tool for automatically testing and evaluating
linguistic resources and language technology components.The system is in daily
use since March 2005 and successfully helps to maintain the quality and reliability
of the multilingual language processor with its various resources that are developed
by many authors and used in several projects.

The tool greatly helps to improve and accelerate the development - evalua-
tion/comparison - refinement - cycle (cf. Figure 4.2) and gives motivating feed-
back (such as raising recall and precision curves over time). Although daily testing
has been described above, the testing and report generationcould be started at any
time. A complete build from scratch, testing of four languages including Javadoc
and generation of the runtime system plug-in into the Heart of Gold platform for
deep-shallow integration (cf. Chapter 9)etctakes less than 14 minutes, while only
a few seconds are required after modification of a single resource.

7.9 SProUT Summary and Relation to Deep Processing

In this chapter, we have presented our contributions toSProUT, a new declarative
formalism and system that combines finite-state with constraint-based processing.
The advantages we see in the new approach are the (1) opennessof the formalism
(in contrast to specialized shallow systems), (2) potentially rich, structured out-
put, (3) a highly declarative formalism with good trade-offbetween expressivity
and efficiency, (4) based on two simple, well-known basic concepts, namely typed
feature structures and regular expressions.

The usefulness of the formalism and the overall system as well as re-usability of
developed resources has been thoroughly and successfully demonstrated in various
large projects, both scientific and industrial.

The structure paradigm ofSProUTgrammars (so far best visible in the named
entity grammars) shows an important and useful relation between the recognition
(or matching) part of a rule and its output. The structure of the matched LHS part

12http://www.gnuplot.info
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can not only be used (1) to recognize and disambiguate items13 using the powerful
language of typed feature structures with unifiability tests, but also to (2) transport
the information that is encoded in rules to the RHS output structure in such a way
that knowledge about structure implicitly encoded in the rules is preserved in the
output. This is a big advantage over classical shallow systems that often can only
determine the type and character span of a NE, but not its internal structure.

SProUThas advantageous properties (not only) for integration in hybrid deep-
shallow architectures. The primary use of and original intention for developing
SProUThas been shallow processing, e.g. for named entity recognition and infor-
mation extraction. As such,SProUTcan be used for preprocessing words unknown
to the lexicon of a deep parser in a sequential deep-shallow architecture. However,
SProUTgrammars can also be cascaded to produce themselves ‘deeper’ analyses.

In addition,SProUTshares with HPSG grammars the general concept of type
hierarchies and typed feature structures (and uses the sametype hierarchy prepro-
cessor as the deep HPSG parser PET). This makes sharing of (linguistic) knowl-
edge among deep and shallow grammars natural and easy. Moreover, SProUT’s
information extraction-like structured output can form animportant supplement to
an HPSG parser’s analysis.

A tight integration ofSProUTwith HPSG, an extension to incorporate ontol-
ogy concept and structured instance information inSProUT lingware resources
as well as a ‘deeper’ application of cascadedSProUTgrammars interleaved with
XSLT stylesheets will be demonstrated in Chapter 9.

13A preposition such asin, e.g., can be used to distinguish the city name Paris from a person name
Paris. It is possible to use such context information for thematch, but omit it in the output.
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Chapter 8

WHITEBOARD

8.1 Introduction and Motivation

The aim of the WHITEBOARD project was to develop an architecture for the inte-
gration of deep and shallow natural language processing components and to inves-
tigate the benefits that could result from interleaved deep-shallow processing, with
a strong focus on integration of German HPSG parsing with shallow preprocess-
ing. The targeted application scenarios comprised (controlled) language checking
and domain-specific information extraction.

To this aim, the coverage of the HPSG grammar for German developed at DFKI
(main development in the VERBMOBIL project for speech dialogs) on a German
corpus of newspaper texts had to be increased through deep-shallow integration.

A further research goal was to answer the question whether shallow prepro-
cessing would be able to reduce the search space of the deep parser by reducing
lexical and structural ambiguity.

Finally, the benefits of integrating the full range of shallow processing compo-
nent types (in combination or separately), e.g. part-of-speech taggers, chunkers,
named entity recognition, shallow sentence parsers, were investigated.

The closely interleaved processing model could be seen as anextension of the
VERBMOBIL1 architecture (Wahlster, 2000), where deep and shallow components
ran concurrently instead of exploiting synergy.

One of the new key architecture ideas, already formulated byHans Uszkoreit
in the project proposal (Bredenkampet al., 1999), was to use multi-layered XML
annotation to store and retrieve multiple NLP component results during processing.

As in the other two chapters of the architecture trilogy, theoverall integration
work was a collaborative effort involving many people, and we will focus here
again on the software architecture and XML-based componentintegration, leaving
out e.g. many linguistic and other implementation details.

1WHITEBOARD, conducted 2000–2002 at DFKI, started immediately after VERBMOBIL had fin-
ished. One main difference, however, is that VERBMOBIL had speech in focus, while WHITEBOARD

concentrates on written documents.

149
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8.2 The WHITEBOARD Architecture

The WHITEBOARD architecture aims at integrating different NLP componentsby
enriching an input document throughannotations. XML is used as a uniform
means of representing online and keeping persistently (offline) the results of the
various processing components.

Because not all interesting linguistic information can be directly represented
within the basic XML tree structure, e.g. linguistic phenomena such as corefer-
ences, ambiguous readings, and discontinuous constituents, the WHITEBOARD ar-
chitecture employs a distributed multi-level representation of different annotations.
Instead of translating all markup into one format in a singleXML document, they
are stored in different standoff annotation layers.

The challenge for the deep-shallow integration architecture was to combine the
different NLP data representation models that characterize deep and shallow NLP
analysis results. As already described in Section 6.2, theyare e.g. defined in Cun-
ninghamet al. (1997) as a trichotomy. While a single shallow component markup
containsadditiveinformation, the combination of multiple (shallow) markupstrata
is typically established by references or links (standoff markup) which can be char-
acterized aspositionalrepresentation.

The advantages and benefits of the standoff annotation modelhave already
been motivated in Chapter 5 in detail. Linking via XML ID attributes and ‘span’ in-
formation together supports efficient access between layers. In contrast, deep anal-
ysis results encoded in typed feature structures representing NLP entities sentence-
wise in a uniform, linguistically motivated form, constitute abstraction-basedrep-
resentations.

The WHITEBOARD architecture solves the multiple representation problem by
providing a multi-level chart that serves as a container forall three kinds of repre-
sentation. The multi-level chart is managed by and can be accessed via the WHITE-
BOARD Annotation Machine (WHAM) we will describe in the next section.

The initial integration scenario (WHITEBOARD I, Section 8.4) comprised the
HPSG parser PET (Callmeier, 2000) with a VERBMOBIL-derived broad-coverage
grammar for German (Müller and Kasper, 2000) as the deep component, and the
shallow (mostly finite-state/rule-based) component SPPC (Piskorski and Neumann,
2000) for part-of-speech tagging, sentence boundary recognition, morphological
analysis of words unknown to the HPSG lexicon and named entity recognition for
German.

In the second phase (WHITEBOARD II, Section 8.7), larger sub-sentential con-
structions have been integrated through shallow chunking and topological parsing.

8.3 The WHITEBOARD Annotation Machine (WHAM)

The WHITEBOARD Annotation Machine (WHAM) is the core engine that provides
the necessary integration facilities as depicted in Figure8.1. For NLP-based appli-
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cations (top), WHAM provides (1) an interface that accepts input text documents to
be analyzed and (2) methods to access the computed analyses.On the NLP com-
ponent side (left), WHAM supports interfaces to integrate software components
producing XML-encoded NLP markup.

shallow
NLP

components

NLP
deep

components internal repr.

layer
multi

chart

annot.

XML

external repr.
generic OOP
component
interface

WHAM

application

specification
input and

result

Figure 8.1: The WHITEBOARD Annotation Machine (WHAM)

WHAM also manages the multi-level chart. For efficiency reasons, the inter-
nal online storage (during processing) of shallow analysesuses a compact binary
encoding with index-sequential access methods. Deep analyses are kept in their
typed feature structure format, while persistent, external storage optionally uses an
XML file format (TFS DTD motivated and described in Section 5.4.1).

An example of a multi-level representation of shallow results is presented in
Figure 8.2. Each annotation level contains type (label) information for a text span.

Figure 8.2: Index-sequential annotation structures

It may be useful to externally store and re-use the shallow XML representation
as a kind of annotated corpus, e.g. for further processing, manual correction for
machine learningetc. In contrast, storage of the full resulting feature structures of
deep processing components may not be wanted for online processing because of
their huge size (TFS DTD as discussed above; the resulting feature structures also
contain a ‘record’ of the structure-building unification operations during parsing as
explained in Chapter 3).
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Instead, only interesting extracted information from deepprocessing such as
phrase structure, subcategorization frames, semantic representationetccan be trans-
formed into and stored as XML. Vice versa, it is possible to generate the index-
sequentially stored shallow chart representation from the(offline) XML format in
order to provide fast access to large annotated corpora.

The WHAM interface operations (access to shallow resultsetc) are not only
used to interface NLP component-based applications, but also for the integration of
deep and shallow processing components itself, i.e., the shallow part of the online
multi-level chart is also actively queried by the deep parser via the access methods
of WHAM.

Both applications and the integrated components access theWHAM results
through a generic object-oriented programming (OOP) interface which is designed
as general as possible in order to abstract from component-specific details, while
preserving shallow and deep paradigms. The interfaces of the actually integrated
components form subclasses of the generic interface. New components can be
integrated by implementing this interface and by specifying transformation rules
for the chart.

The OOP interface provides iterators that support walking through the different
annotation levels (e.g. token spans, sentences, cf. Figure8.3), reference and seek
operators that allow to switch to corresponding annotations on a different level (e.g.
return all tokens of the current sentence, or move to next named entity starting from
a given token position), and accessor methods that return the linguistic information
contained in the chart, e.g. the type of a phrase or of a named entity.

Similarly, general methods support navigating the type system and feature
structures of the DNLP components, e.g. by returning the type value under a fea-
ture path or the subtype or supertype of a given type. The resulting output of the
WHAM can be accessed via the OOP interface or as XML representation.

S = new SentenceIterator(SPPCAnalyzer, Document);

while (S.valid()) {

NE = new NamedEntityIterator(S);

while (NE.valid()) {

print NE.getText() + NE.getType();

NE.next();

}

S.next();

}

Figure 8.3: Iterator-based programming interface to annotation layers
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8.4 WHITEBOARD I: Integrated components, results and
applications

In this section, we describe the components that have been integrated in the first
phase of WHITEBOARD (Crysmannet al., 2002), a first evaluation and two initial
information extraction applications that have been implemented on the basis of the
architecture.

8.4.1 Components

8.4.1.1 Shallow Component: SPPC

Shallow preprocessing is performed by SPPC, a rule-based system which consists
of a cascade of weighted finite-state components responsible for performing an
analysis pipeline consisting of tokenization, lexico-morphological analysis, part-
of-speech filtering, named entity recognition, sentence boundary detection, chunk
and sub-clause recognition. SPPC is described in Piskorskiand Neumann (2000);
Neumann and Piskorski (2002).

We will briefly describe those components of SPPC which we integrated with
the deep parser.

The SPPCtokenizerfirst segments words from punctuation symbols and re-
turns a (compared to other tokenizers) relatively fine-grained token classification
(52 different token classes), e.g.

<ITEM id="3" type="two_digit_number"/>

<ITEM id="4" type="four_digit_number"/>

<ITEM id="6" type="number_percent_compositum"/>

<ITEM id="7" type="decimal_number_with_period"/>

<ITEM id="8" type="number_dot_compositum"/>

<ITEM id="16" type="email_address"/>

<ITEM id="17" type="url_address"/>

<ITEM id="20" type="initial_capital_period"/>

<ITEM id="21" type="lowercase_word"/>

<ITEM id="22" type="first_capital_word"/>

<ITEM id="33" type="simple_word_dash_first_capital"/>

<ITEM id="48" type="abbreviation"/>

<ITEM id="50" type="word_followed_by_dots"/>

<ITEM id="51" type="end_of_paragraph"/>

Tokens identified as potential word forms are thenmorphologically analyzed.
420 different morphological types are distinguished, representable as feature-value
pairs, e.g.

<ITEM id="14" gender="M" case="GEN" number="PL"/>

<ITEM id="32" person="2" case="NOM" number="SG"/>

<ITEM id="33" person="3" gender="M" case="NOM" number="SG"/>

<ITEM id="38" tense="PRES" person="3" number="SG"/>
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<ITEM id="70" tense="SUBJUNCT-1" person="3" number="PL"/>

<ITEM id="72" form="INFIN"/>

<ITEM id="91" gender="M" case="GEN" number="SG" comp="P"

det="INDEF"/>

Lexical information (list of valid readings including stem, part-of-speech and
inflection information) is computed using a full-form lexicon of about 700000 en-
tries that has been compiled out from a stem lexicon of about 120000 lemmata.
After morphological processing,PoS disambiguationrules are applied which com-
pute a preferred reading for each token (the deep parser, however, can also back off
to all readings). The following 24 different PoS types are recognized by SPPC

<ITEM id="1" type="N"/>

<ITEM id="2" type="V"/>

<ITEM id="3" type="AUX"/>

<ITEM id="4" type="MODV"/>

<ITEM id="5" type="A"/>

<ITEM id="6" type="ATTR-A"/>

<ITEM id="7" type="DEF"/>

<ITEM id="8" type="INDEF"/>

<ITEM id="9" type="RELPRON"/>

<ITEM id="10" type="PERSPRON"/>

<ITEM id="11" type="REFPRON"/>

<ITEM id="12" type="POSSPRON"/>

<ITEM id="13" type="WHPRON"/>

<ITEM id="14" type="ORD"/>

<ITEM id="15" type="CARD"/>

<ITEM id="16" type="VPREF"/>

<ITEM id="17" type="ADV"/>

<ITEM id="18" type="WHADV"/>

<ITEM id="19" type="COORD"/>

<ITEM id="20" type="SUBORD"/>

<ITEM id="21" type="INTP"/>

<ITEM id="22" type="PART"/>

<ITEM id="23" type="PREP"/>

<ITEM id="24" type="STOP-WORD"/>

Named entity recognitionis based on simple, string-based pattern matching
techniques to recognize e.g. organizations, persons, locations, temporal expres-
sions and quantities (13 NE types, 24 subtypes)

<ITEM id="1" type="date"/>

<ITEM id="2" type="organization"/>

<ITEM id="3" type="location"/>

<ITEM id="4" type="monetary"/>

<ITEM id="5" type="person"/>

<ITEM id="6" type="percentage"/>

<ITEM id="7" type="time"/>

<ITEM id="8" type="number"/>
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<ITEM id="9" type="address"/>

<ITEM id="10" type="person_candidate"/>

<ITEM id="11" type="organization_candidate"/>

<ITEM id="12" type="location_candidate"/>

<ITEM id="13" type="position"/>

Next, NE-specificreference resolutionis performed through the use of a dy-
namic lexicon which stores abbreviated variants of previously recognized named
entities. Finally, the systemsplits the text into sentencesby applying only few,
but highly accurate contextual rules for filtering implausible punctuation signs.
These rules benefit directly from NE recognition which already performs a re-
stricted punctuation disambiguation.

The output of SPPC comes in XML format that is transformed by WHAM into
the above described index-sequential format for fast random access through the
WHAM shallow API.

8.4.1.2 Deep Component: PET

The HPSG parser integrated in the WHITEBOARD system is PET (Callmeier,
2000). Initially, PET was built to experiment with different techniques and strate-
gies for processing unification-based grammars. The resulting system provides
efficient implementations of the best known techniques for unification and parsing
and is still the fastest parser for HPSG grammars.

While PET is basically a runtime parser for fast processing of HPSG grammars,
the grammar source can be developed, tested and debugged with the LKB system
(Copestake, 2002), that shares with PET a common TDL formalism (Krieger and
Schäfer, 1994) subset and a compatible type hierarchy and typed feature structure
model.

Being designed as an experimental system, the original PET parser lacked open
interfaces for flexible integration with external components. For instance, in the
beginning of the WHITEBOARD project, the system only accepted full-form lexica
and plain text input.

Bernd Kiefer extended the system in collaboration with Ulrich Callmeier. In-
stead of single word input, input items where then allowed tobe complex, over-
lapping and ambiguous, i.e., essentially word graphs. Dynamic creation of atomic
type symbols, e.g. to be able to add arbitrary symbols as feature values, has been
implemented as well.

Finally, a flexible interface has been implemented that usesAPI calls to WHAM
for the integration of morphology, tokenization and named entity recognition anal-
ysis results. As WHAM is implemented in Java, and PET in C++, we defined
this interface in JNI (Java Native Interface). Through the object-oriented WHAM
API layer, PET could in principle also be integrated with other shallow systems
than SPPC. We will discuss some shortcomings of the JNI-based API interface in
Section 8.7 (WHITEBOARD II).
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The German HPSG grammar in WHITEBOARD is based on a large-scale gram-
mar by Müller (1999), which was further developed in the VERBMOBIL project
for translation of spoken language (Müller and Kasper, 2000). It therefore covers
many constructions that occur frequently in spontaneous speech. After VERBMO-
BIL , the grammar was adapted mainly by Berthold Crysmann to the requirements
of the LKB/PET system (Copestake, 2002; Callmeier, 2000), and to written text,
i.e., extended with constructions such as free relative clauses that were irrelevant
in the VERBMOBIL scenario.

The grammar consists of a rich hierarchy of 5069 lexical and phrasal types.
The core grammar contains 23 rule schemata, 7 special verb movement rules, and
17 domain specific rules. All rule schemata are unary or binary branching. The lex-
icon contains 38549 stem entries, from which more than 70% were semi-automati-
cally acquired from the annotated NEGRA corpus (Skutet al., 1998).

A further semi-automatic technique has been applied to acquire semantic types
for nouns unknown to the deep lexicon using information available from GermaNet
(Hamp and Feldweg, 1997). The approach is elaborated in Siegel et al. (2001).
The semantic types are needed for (syntactic) disambiguation based on semantic
information and thus help to reduce ambiguity and restrict search space for the
parser.

8.4.2 Integration

Morphology and part-of-speech tagging The morphological analyses delivered
by SPPC are mapped to the German HPSG morphology types. The mapping table
has been generated by identifying the corresponding classes feature-wise. The
actual mapping is then performed automatically in order to be able to easily track
changes in both shallow and HPSG morphology geometry.

Shallow PoS tagging is used in two ways by the deep parser. First, HPSG
lexicon entries that are marked as preferred by the shallow component (via their
PoS value) are assigned a higher priority than the rest. Thus, the correct reading is
more likely to be found early without excluding any reading.When no entry for
a word is found in the HPSG lexicon, a default entry based on a generic HPSG
lexicon type is automatically created based on the part-of-speech tag of only the
reading marked as preferred by the shallow preprocessor. This strategy increases
robustness, while preventing an increase in ambiguity.

Named entity recognition Similar to the unknown word strategy, named entities
are mapped to generic lexical types that expand to feature structures during parsing.
In other words, a simple mapping from shallow named entitiesto HPSG generic
types is sufficient, filling the FORM feature value with the surface string from the
recognized named entity.

In the following example the HPSG typepn type personis mapped from the
shallow NE typeperson untitled.

SPPC output for the named entity:
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<NE id="N0" type="person" subtype="untitled">

<W id="W13" tc="first_capital_word">Martina</W>

<W id="W14" tc="first_capital_word">Regel</W>

</NE>

The HPSG feature structure generated by the extended PET interface then
looks as follows. 
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This simple strategy helps to drastically increase the coverage of the HPSG
grammar on the large open class of named entities, as we will see in the first eval-
uation.

8.5 First Evaluation

An evaluation has been started using the NEGRA corpus, whichcontains about
20,000 newspaper sentences (Skutet al., 1998). The main objectives were to eval-
uate the syntactic coverage of the German HPSG on German newspaper text and
the benefits of integrating deep and shallow analysis. The sentences of the corpus
were used in their original form without stripping, parenthesized insertions,etc.

The HPSG lexicon was extended semi-automatically from about 10000 to 35000
stems, which roughly corresponds to 350000 full forms. Then, the lexical coverage
of the deep system on the whole corpus was checked, which resulted in 28.6% of
the sentences being fully lexically analyzed. The corresponding experiment with
the integrated system yielded an improved lexical coverageof 71.4%, due to the
techniques described in Section 8.4.2. This increase is notachieved by manual
lexicon extension, but only through synergy between the deep and shallow compo-
nents.

To test the syntactic coverage, the subset of the corpus thatwas fully covered
lexically (5878 sentences) was processed with deep analysis only. The results are
shown in Table 8.1 in the second column. In order to evaluate the integrated system,
20568 sentences from the corpus were processed without further extension of the
HPSG lexicon (see table 8.1, third column).

About 10% of the sentences that were successfully parsed by deep analysis
only could not be parsed by the integrated system, and the number of analyses per
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Deep Integrated
# sentences 20568
avg. sentence length 16.83
avg. lexical ambiguity 2.38 1.98
avg. # analyses 16.19 18.53
analyzed sentences 2569 4546
lexical coverage 28.6% 71.4%
overall coverage 12.5% 22.1%

Table 8.1: Evaluation of German HPSG in WHITEBOARD I

sentence dropped from 16.2% to 8.6%, which indicates a problem in the morphol-
ogy interface of the integrated system at the time of this first evaluation.

The overall coverage increased from 12.5 to 22.1%. It has to be noted that,
although the growth is impressing, the low absolute coverage is mainly due to the
fact that the German HPSG at that time still was close to the VERBMOBIL grammar
specialized in speech dialogs in the appointment negotiation domain, and not yet
extended to general newspaper texts with long, complex sentences etc.

8.6 Applications on the Basis of WHAM

The WHAM has been used for two initial information extraction applications, the
first one being shallow only, but testifying the speed of the index-sequential stor-
age mechanism in an online template-based information extraction system using
Google search for document retrieval. The second one was a feasibility study for
using both deep and shallow analysis for improved precisionand recall in restricted
domains.

8.6.1 WAG – Mining Answers in German Web Pages

The fast index-sequential interface to XML annotation provided by WHAM can
also be used for shallow-only analysis of large document collections. WHAM
is e.g. used in the WAG system for online information extraction from websites
(Neumann and Xu, 2003).

WAG is a study for a question answering system for German thattakes factoid
queries formulated as structured templates by letting the user fill in a form, and tries
to find relevant answers in Web documents received from online Google searches
based on keywords in the query template.

In the system, WHAM is used to extract named entities from theWeb doc-
uments that are recognized by the shallow SPPC system. Web redundancy is ex-
ploited to compute weights on the named entities found. The ranked named entities
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are then used for paragraph selection and answer identification.
The system has been evaluated for person and location questions taken from a

German quiz book, e.g.

• Welches Pseudonym nahm Norma Jean Baker an?(person)
Which pseudonym did Norma Jean Baker use?

• Wer wurde 1949 erster Ministerpräsident Israels?(person)Who became
Israel’s first prime minister in 1949?

• In welcher ehemaligen Sowjetrepublik befand sich das Kernkraftwerk Tsch-
ernobyl?(location)
In which former soviet state was the nuclear power plant Chernobyl?

• In welcher europäischen Stadt nennt man die Altstadt Alfama? (location)
In which European city is there an old city part called Alfama?

In cases where Google returned at least one answer (17 out of 20 person ques-
tions; maximally 50 documents per question), the system reached a recall score of
0.64 for the top 3 and 0.53 for the top 1 exact answers, for locations, and 0.43 (top
3) viz. 0.31 (top 1) for locations.

The system only needed a few seconds for the overall online retrieval and ex-
traction process per template. Further details about the system and more on the
evaluation are presented in Neumann and Xu (2003).

8.6.2 WHIES – Integrating Shallow and Deep NLP for Information
Extraction

WHAM has been used for both deep and shallow NLP in a template-based infor-
mation extraction system called WHIES (Xu and Krieger, 2003).

The idea of WHIES is to go further than mainstream information extraction
(IE) systems that do not attempt an exhaustive deep analysisof all aspects of a
text, but rather try to identify and analyze only those text portions that contain
relevant information. The shallow-only strategy warrantsspeed and robustness,
but performs moderately on unrestricted natural language text (cf. WAG in the
section above).

Appelt and Israel (1999) argue that the current IE technology seems to have an
upper performance level of approx. 60%. However, complex scenario-based infor-
mation extraction with shallow methods and highly specialized, domain-specific
fine-tuning seems to be able to break that barrier.

Moreover, from deep analyses of text the observation is thatprecision and re-
call could be potentially be higher on restricted domains. In contrast to shallow
methods, structured linguistic relationships can be provided such as grammatical
functions and referential relationships, including e.g. passive, control/raising, long-
distance dependencies and free word order.
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Xu and Krieger (2003) present the following example containing both a passive
and a control construction (wurde gebeten, zu übernehmen).

• Hans Beckerwurde aufgrund des Rücktritts von Peter Müllergebeten, die
Presseabteilung zu übernehmen.
Hans Becker was due to the resignation of Peter Müller asked, to take over
the press division.

• Aufgrund des Rücktritts von Peter Müllerwurde Hans Beckergebeten, die
Presseabteilung zu übernehmen.
Due to the resignation of Peter M̈uller Hans Becker was asked, to take over
the press division.

Relationships such as the one betweenHans Beckerand the division name
Presseabteilungcannot be formulated by regular expressions (in a general case).
The relatively free word order of German allows reversing the order of the two
names, by keeping the same meaning. In this sense, German is ‘harder’ than En-
glish for information extraction.

In a study conducted by Xu and Krieger (2003), the WHITEBOARD architecture
has been used to showcase the possible way an information extraction application
could employ deep and shallow analyses, and to elaborate cases where deep anal-
yses could provide information that cannot be found by shallow processing only.

A demonstrator application for WHIES has been developed forthe domain
of management succession (Figure 8.4) using the deep and shallow programming
interface of WHAM as fully functional back-end for hybrid processing.

The information extraction system WHIES consists of a template filling com-
ponent and a template merging component.

The template filling component is hybrid.Pattern-based template filling rules
are applied to shallow results (tokens, simple lexical items, named entities, phrases).
Lexicalized unification-based template filling rulesoperate on the MRS structures
output by the deep parser that contain predicate-argument structures.

The filled templates are represented as typed feature structures, and thetem-
plate mergingcomponent combines the filled shallow and deep templates with
(scenario-specific) template merging rules by means of feature structure unifica-
tion and subsumption tests to remove non-maximally specifictemplates.

Figure 8.4 shows an example of template merging and the result for the sen-
tence

Der Aufsichtsrat hat den Rücktritt von Hermann Kronseder,Vorstands-
sprecher der Krones AG, angekündigt. Lorenz Raith wurde Hermann
Kronseder zufolge gebeten, die Stelle zu übernehmen.

Xu and Krieger (2003) report on an initial evaluation of the 50 most-relevant
sentences out of a corpus of 299 documents (management succession reports taken
from a dpa/German press agency collection) showed promising recall results (0.92
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Figure 8.4: The WHIES demonstrator GUI for hybrid information extraction

for deep-shallow compared to 0.31 for shallow only) for the template merging task
based on deep and shallow sentence analyses.

Because of the early and immature status of the German HPSG grammar at
that time with respect to semantics representation output and disambiguation of
multiple readings, the template filling task has been performed manually, thus was
merely a simulation of what template filling of HPSG analysescould achieve in
principle.

8.7 WHITEBOARD II: Annotation Access and Transfor-
mation with WHAT

Although the first architecture prototype for deep-shallowintegration was stable,
useful, and showed impressive improvements on the NEGRA corpus with respect
to lexical and overall (parsing) coverage (cf. Section 8.4), a shortcoming became
obvious when new components, mainly to integrate shallow components for phrase
and topological sentence structure, were added.

The problem was more a practical, not a principal one: The close integration
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of the (shallow) API within the deep parser and the postulated isomorphism of
the XML annotation and the API structure (modulo naming of entities) made the
integration of additional or alternative components a tedious task that required re-
compilation of the API bridge almost every time the annotation format changed or
a new component had to be added. On the other side, given the wide range of dif-
ferent annotation formats and paradigms, a fully automaticmapping from arbitrary
annotation formats to API routines in a usable and useful waywas not feasible.

An additional layer of abstraction between shallow annotation and basic API
routines turned out to be necessary, filling the deep parser’s chart, without the need
to adapt the parser’s API for each change in shallow annotation formats.

As motivated extensively in Chapter 5, XSLT has been chosen as transfor-
mation and query language for annotation access as it is declarative for simple
mappings, but also provides programming language power forcomplex annotation
computation and combination. The additional component that is added for XSLT
transformation to the WHAM is called WHAT.

8.7.1 WHAT, the WHITEBOARD Annotation Transformer

WHAT is built on top of a standard XSL transformation engine.It provides uniform
access to standoff annotation through queries that can either be used from non-
XML aware components to get access to information stored in the annotation (as
an extension of XPath), or to transform (modify, enrich, merge) complete XML
annotation documents.

WHAT XSLT queries are specific for a standoff document structure (DTD or
schema) of a component’s XML output format, i.e., they must be written once for
a new component and are collected in a template library (cf. Figure 8.5). However,
as output of e.g. different taggers is similar, the query code could at least partially
be reused. WHAT queries are embedded in WHAM API calls, mainly to abstract
from component-specific details such as namings of typesetc.

 

XML 
standoff 
markup 

component-
specific XSLT 

template library 

constructed 
XSLT 

stylesheet 

query  

result  

XSLT 
processor 

WHAT 

Figure 8.5: WHAT and XSLT template library
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A WHAT query consists of component name, query name, and query-specific
parameters such as an index or identifier. To return the result of a WHAT query on
a given XML input document, the query code is looked up in the XSLT template
library for the specified component by name. The associated XSLT stylesheet is
constructed, returned and applied to the XML document by theXSLT processor.
The result of stylesheet application is then returned as theanswer to the WHAT
query.

There are basically three kinds of results: (1) strings (including non-XML out-
put), (2) references to nodes in the XML input document via identifiers, (3) XML
documents.

Formulating queries as functions, we distinguish the following three query sig-
natures, withC being the component,D denoting an XML document,P∗ a (possi-
bly empty) sequence of parameters,S∗ a sequence of strings, andN∗ a sequence of
nodes.

• V-queries. getValue:C×D×P∗ 7−→ S∗

V-queries return string values from XML attribute values ortext. The sim-
plest case is a single XPath lookup, e.g. of the gender of a word encoded in
a shallow XML annotation.

• N-queries. getNodes:C×D×P∗ 7−→ N∗

N-queries compute and return lists of node identifiers (e.g.to answer struc-
tural queries) that can again be used as parameters for subsequent queries,
e.g. all named entity nodes within a token or character rangespecified as
query parameters.

• D-queries. getDocument:C×D×P∗ 7−→ D
D-queries return transformed XML documents. This constitutes the classi-
cal, general use of XSLT. Complex transformations that modify, enrich or
produce (standoff) annotation can be used for many purposessuch as con-
verting formats, merging, modifying or computing annotations.

8.7.2 WHAT Query Types

8.7.2.1 V-Queries (getValue)

V-queries return string values from XML attribute values ortext. The simplest
case is a single XPath lookup. As an example, we determine thetype of named
entity 23 in a shallow XML annotation produced by the SPPC system (Piskorski
and Neumann, 2000). The WHAT query

getValue("NE.type", "de.dfki.lt.sppc", 23)

would lead to the lookup of the following query in the XSLT template library for
SPPC
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<query name="getValue.NE.type" component="de.dfki.lt.sppc">

<!-- returns the type of named entity as number -->

<xsl:param name="index"/>

<xsl:template match="/WHITEBOARD/SPPC//NE[@id=$index]">

<xsl:value-of select="@type"/>

</xsl:template>

</query>

The query basically consists of the XPath match expression that matches the
NE element with the desired id attribute, and a select expression that returns the
value of the attributetype. On appropriate SPPC XML annotation, containing the
named entity tag e.g.<NE id="23" type="location"?> somewhere below the
root tag, this query would return the String ”location”.

By adding a lookup to a translation table (through XML entitydefinitions, as
part of the input document or an external XML-encoded mapping table or as a call
to the component-specific template library), it would also be possible to translate
namings, e.g. in order to map NLP-component-specific type names to HPSG type
names.

We see from this example how WHAT helps to abstract from component-
specific DTD structure and namings by providing an annotation-independent in-
terface. However, queries need not be that simple (in fact, the query presented
could be formulated as a single XPath expression as well). Complex computations
can be performed, e.g. through recursive named templates, there can be multiple
input annotations included via the XPathdocument() function, and the return value
can also be numbers, e.g. for queries that count elements, words,etc.

8.7.2.2 N-Queries (getNodes)

An important feature of WHAT is navigation within the annotation. N-queries
compute and return lists of node identifiers that can in turn be used as parameters
for subsequent (e.g. V-)queries.

The sample query returns a list of node identifiers of all named entities (NE
elements) that are in the given range of tokens (W elements).The template calls a
recursive auxiliary template that seeks the next named entity until the end of the W
range is reached. The WHAT query

getNodes("W.NEinRange", "de.dfki.lt.sppc",3,19)

would lead to the lookup of the following query in the XSLT template library for
SPPC.

<query name="getNodes.W.NEinRange" compon.="de.dfki.lt.sppc">

<!-- returns NE nodes starting exactly at token $index to

(at most) token $index2 -->

<xsl:param name="index"/>

<xsl:param name="index2"/>
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<xsl:template match="/">

<xsl:variable name="X" select="//W[@id=$index]/ancestor::NE"/>

<xsl:if test="$X//W[1]/@id = $index">

<xsl:call-template name="checknextX">

<xsl:with-param name="nextX" select="$X"/>

<xsl:with-param name="lastW" select="$index2"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

<xsl:template name="checknextX">

<!-- auxiliary template (recursive) -->

<xsl:param name="nextX"/>

<xsl:param name="lastW"/>

<xsl:variable name="Xtokens" select="$nextX//W"/>

<xsl:if test="number(substring($Xtokens[last()]/@id, 2)) <=

number(substring($lastW, 2))">

<xsl:value-of select="$nextX/@id"/>

<xsl:text> </xsl:text>

<xsl:call-template name="checknextX">

<xsl:with-param name="nextX" select="//NE[@id=concat(’N’,

string(1 + number(substring($nextX/@id,2))))]"/>

<xsl:with-param name="lastW" select="$lastW"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

</query>

Again, the query forms an abstraction from DTD structure, e.g. in SPPC XML
output, named entity elements enclose token elements. Thisneed not be the case
for another shallow component; its template would be defineddifferently, but the
query call syntax would be the same.

8.7.2.3 D-Queries (getDocument)

D-queries return transformed XML input documents. This is the classical, general
use of XSLT. Complex transformations that modify, enrich orproduce (standoff)
annotation can be used for many purposes. Examples are

• conversion from a different XML format

• merging of several XML documents into one

• auxiliary document modifications, e.g. to add unique identifiers to elements,
sort elementsetc.

• interfacing NLP applications (up to code generation for a programming lan-
guage compiler)
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• visualization and formatting (trees, feature structures,HTML, PDF,etc)

• complex computations on XML input

The last application is perhaps the most important. (Linguistic) computation
and transformation can turn a WHAT query into a kind of NLP component itself.
This is e.g. intensely used in the shallow topological field parser integration we
will describe in Section 8.7.5. There, multiple queries areapplied sequentially in
order to transform a topological field tree into a list of constraints over syntactic
spans that are used for initialization of a deep parser’s chart.

We show only a short example here, an auxiliary query that inserts unique iden-
tifier attributes into an arbitrary XML document without id attributes by recursively
walking through the document, copying all element nodes, adding anid attribute
with a unique ID value to each element node, and copying all other attributes of
the original node (in thexsl:for-each loop).

<query name="getDocument.generateIDs">

<!-- generate unique id for each element -->

<xsl:template match="*">

<xsl:copy>

<xsl:attribute name="id">

<xsl:value-of select="generate-id()"/>

</xsl:attribute>

<xsl:for-each select="@*">

<xsl:copy-of select="."/>

</xsl:for-each>

<xsl:apply-templates/>

</xsl:copy>

/xsl:template>

</query>

Moreover, this an example for a stylesheet which is completely independent of
a DTD, it just works on any XML annotation and thus shows how generic XSL
transformation rules can be.

Another example of d-queries is transformation of syntactic XML tree rep-
resentations into Thistle trees for visualization (arboraDTD; see Calder 2000).
While the output DTD is fixed (imposed by the arbora DTD), thisis again not true
for the input document which can contain arbitrary element names and branches
that must not be known to the stylesheet in advance. Thistle visualizations of syn-
tactic XML trees generated through WHAT d-queries are reproduced in Figure 8.7,
8.8, and 8.9 in the next sections.

8.7.3 Topoparser Integration

As mentioned in the beginning of this section, the aim of the second phase of
WHITEBOARD was to integrate shallow components beyond the lexical level (part-
of-speech tagging of words unknown to the deep lexicon, and named entities) with
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the deep parser, to see how one can take further advantage of partial knowledge
provided by shallow pre-processing to pre-structure the search space of the deep
parser.

The scenario we will describe has been first presented in Frank et al. (2003),
on which parts of the following description are based. Again, as we concentrate
on the architecture and technical infrastructure that makes the integration possible,
we only briefly touch the linguistic details here.

The key idea of the topoparser integration is structuring (shaping) the deep
parser’s search space by bracketing information computed by a statistical topo-
logical field parser running ahead, i.e., those items on the deep parser’s chart that
are ‘licensed’ by the shallow parser are ranked higher, thusguiding deep parsing
towards a best-first analysis suggested by shallow analysisconstraints.

On the other side, constituents which are incompatible withthe precomputed
shape are penalized by assigning a lower rank. Additional information about pro-
posed constituents, such as categorial or feature constraints, provide further criteria
for prioritizing compatible, and penalizing incompatibleconstituents in the deep
parser’s chart.

This strategy requires that the concepts of the brackets arecompatible, i.e., they
must have a common subset of properties, minimally a character span and a type,
that can be mapped. In most cases, shallow parsers do not deliver more than that
(which makes it a kind of least common denominator), while deep HPSG parsing
yields more structured and fine-grained analyses.

The bracketing information would not only include chunks comprising only a
few words, but also much larger portions of a sentence such asthe German Vorfeld,
Mittelfeld, Nachfeld positional fields, in which a deep parser alone would probably
become lost in longer sentences because of the wealth of hypothetical boundaries.

8.7.4 Finding Appropriate Linguistic Structures

Finding compatible constructions (including the definition of transformations that
make non-isomorphic structures comparable) is the linguistic challenge for inte-
grated deep-shallow processing.

Although the next logical step after using lexical information would be exten-
sion to chunks, this strategy has not been followed seriously. The reason is that
chunks delivered by state-of-the-art shallow parsers are not isomorphic to deep
syntactic analyses that explicitly encode phrasal embedding structures.

As a consequence, the boundaries of deep grammar constituents in (1) a. can-
not be pre-determined on the basis of a shallow chunk analysis (1) b. Moreover, the
prevailing greedy bottom-up processing strategies applied in chunk parsing do not
take into account the macro-structure of sentences. They are thus easily trapped in
cases such as (2).

(1) a. [CLThere was [NP a rumor [CL it was going to be bought by [NP a French
company [CL that competes in supercomputers]]]]].
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b. [CLThere was [NPa rumor]] [CL it was going to be bought by [NPa French
company]] [CL that competes in supercomputers].

(2) Fred eats [NP pizza and Mary] drinks wine.

Therefore, the insight in WHITEBOARD was (at least for German and English)
that state-of-the-art shallow chunk parsing does neither provide sufficient detail,
nor the required accuracy to act as a ‘guide’ for deep syntactic analysis.

Therefore, shallow analyses that determine the clausal macro-structure of sen-
tences seem to be more promising for integration with HPSG. Thetopological field
modelof German syntax (Höhle, 1983) divides basic clauses into distinct fields –
pre-, middle-, andpost-fields– delimited by verbal or sentential markers, which
constitute the left/right sentence brackets. This model ofclause structure is un-
derspecified, orpartial as to non-sentential constituent structure, but provides a
theory-neutral model of sentencemacro-structure.

The topological field model provides a pre-partitioning of complex sentences
that is (i) highly compatible with deep syntactic analysis,and thus (ii) maximally
effective to increase parsing efficiency if interleaved with deep syntactic analysis;
(iii) partial results regarding the constituency of non-sentential material ensure ro-
bustness, coverage, and processing efficiency.

Wauschkuhn (1996) described a topological parser of Germanon the basis of
hand-crafted CFG rules. Braun (1999) implemented a cascaded finite-state gram-
mar for identifying topological fields. Becker and Frank (2002) explored a corpus-
based stochastic approach to topological field parsing, by training a non-lexicalized
PCFG on a topological corpus derived from the NEGRA treebank(Skut et al.,
1998) of German.

The topological parser employed in WHITEBOARD was provided a tagger front-
end for free text processing, using the TnT tagger (Brants, 2000). The grammar was
ported to the efficient LoPar parser of Schmid (2000).

Due to the combination of scrambling and discontinuous verbclusters in Ger-
man syntax, a deep parser is confronted with a high degree of local ambiguity that
can only be resolved at the clausal level. Highly lexicalized frameworks such as
HPSG, however, do not lend themselves naturally to a top-down parsing strategy.
Using topological analyses to guide the HPSG will thus provide external top-down
information for bottom-up parsing.

More details on the linguistic aspects of the topoparser integration are dis-
cussed in Franket al. (2003).

8.7.5 Architecture of the Hybrid Deep-Shallow System

In this section, we describe the WHAT-based architecture underlying the integrated
system, and then provide some evaluation figures in Section 8.7.6.

The fully online-integrated hybrid WHITEBOARD topoparser architecture con-
sists of the efficient deep HPSG parser PET (Callmeier, 2000)utilizing tokeniza-
tion, part-of-speech, morphology, lexical, compound, named entity, phrase chunk
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and topological sentence field analyses from shallow components in a sequential
architecture.

input sentence

APPLICATION

phrase chunks

SPPC

LoPar Chunkie

PET

TnT

NE, morphology

topo.brackets

PoS tags

topo.bin

topo.flat

topo.chunks

D

D

D

V,N

D

deep result (typed FS)

D,V,N

Figure 8.6: XSLT-based architecture of the hybrid parser

The simplified diagram in Figure 8.6 depicts the components and places where
WHAT comes into play in the hybrid integration of deep and shallow processing
components (V, N, D denote the WHAT query types, i.e., XSLT transformations).
Solid boxes indicate components that produce annotation, dashed boxes indicate
the produced XML annotation.

Solid-line arrows represent the transformations used in the online integration.
Dashed-line arrows indicate possible access to the intermediate annotation that
could be accessed from an application (bottom box), e.g. theThistle (Calder,
2000) tree visualizations that show the XML annotation treestructures (Figure 8.7
through 8.9) have been created through WHAT D-queries out ofthe intermediate
topo.* XML trees.

The system takes an input sentence, and runs four shallow systems on it:

• the rule-based shallow SPPC (Piskorski and Neumann, 2000) for named en-
tity recognition, compound analysis for German, and morphology and stem-
ming of words unknown to the HPSG lexicon,
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• TnT, a statistical PoS tagger (Brants, 2000),

• Chunkie, a statistical chunker based on TnT (Skut and Brants, 1998),

• LoPar, a probabilistic context-free parser (Schmid, 2000), which takes PoS-
tagged tokens as input, and produces binary tree representations of sentence
fields, e.g. topo.bin in Figure 8.7. For a motivation for binary vs. flat trees
cf. Becker and Frank (2002).

The results of these components are multiple XML standoff annotations for
the input sentence. Named entity, compound, morphologicaland stem information
from SPPC is used by the deep parser to initialize the chart with prototypical fea-
ture structures that are filled with shallow information through V-queries for words
unknown to the HPSG lexicon and for named entities.

In addition, preference information on part-of-speech is used for prioritization
of the deep parser. Details have been described above in the WHITEBOARD-I de-
scription (Section 8.4). PoS tagging from TnT is used as input for Chunkie to
produce chunking and as input for the shallow topological PCFG parser (Franket
al., 2003).

The examples in Figure 8.7 through 8.11 show the analyses of the German
sentence

Untergebracht war die Garnison in den beiden Wachlokalen Hauptwache
und Konstablerwache. (Located was the garrison at the two guard
houses, the main guard house and the Constabler guard house.)

with a fronted verb in topic position, which the topologicalparser identifies cor-
rectly. This macro-sentential information can be used to direct the deep parser’s
search space towards the correct (and rather infrequent) construction, avoiding al-
ternative exploration of the search space.

The following XML document is the output of the topological parser (topo.bin),
graphically represented in Figure 8.7.

<?xml version="1.0"?>

<ROOT>

<CL fn="V2">

<VF fn="TOPIC">

<RK fn="VPART">

<VVPP>

<W id="W0">Untergebracht</W>

</VVPP>

</RK>

</VF>

<LK fn="VFIN">

<VAFIN>

<W id="W1">war</W>

</VAFIN>

</LK>
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<MF>

<ART>

<W id="W2">die</W>

</ART>

<MF>

<NN>

<W id="W3">Garnison</W>

</NN>

<MF>

<APPR>

<W id="W4">in</W>

</APPR>

<MF>

<ART>

<W id="W5">den</W>

</ART>

<MF>

<PIDAT>

<W id="W6">beiden</W>

</PIDAT>

<MF>

<NN>

<W id="W7">Wachlokalen</W>

</NN>

<MF>

<NN>

<W id="W8">Hauptwache</W>

</NN>

<MF>

<KON>

<W id="W9">und</W>

</KON>

<MF>

<NN>

<W id="W10">Konstablerwache</W>

</NN>

</MF>

</MF>

</MF>

</MF>

</MF>

</MF>

</MF>

</MF>

</MF>

</CL>

</ROOT>

In order to extract this type of global constituent-based information, a sequence
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Figure 8.7: Result of the topological parser (topo.bin) as binary tree
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Figure 8.8: The topological tree after flattening (topo.flat)

of D-queries is applied to flatten the binary topological trees that are output by
LoPar (result is topo.flat, Figure 8.8) and merge the tree with shallow chunk infor-
mation from Chunkie (topo.chunks, Figure 8.9). In a next step, we apply the main
D-query which computes bracket information for the deep parser from the merged
topological tree and chunks (topo.brackets, Figure 8.11).

In order to communicate the structural constraints from thetopological parser
to the deep parser, the topological tree is scanned for relevant configurations by
the stylesheet code of the D-query, and the span informationis extracted for the
target HPSG constituents. The resulting ‘map constraints’(Figure 8.11) encode a
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Figure 8.9: The topological tree merged with chunks (topo.chunks)

bracket type name (34 different bracket types are mapped) that identifies the target
constituent and its left and right boundary, i.e., the concrete span in the sentence.

The bracket information is used to prioritize chart elements of the deep parser
that match the constituent boundaries computed by the shallow parser and chunker.
The stylesheet directly generates the names of the appropriate HPSG types (value
of the rule attributes in Figure 8.11).

Bernd Kiefer extended the PET parser in such a way that it can exploit com-
puted priorities for the chart elements assigned to the phrasal constraints (brackets)
from the topological analysis, in addition to the word-based PoS ranking described
in WHITEBOARD-I above.

A related approach can be found in Kieferet al. (2000) for parsing in a speech
translation application, where prosodic boundaries help to structure the search
space of an HPSG parser.

Depending on the bracket type and chart edge configuration (left-, right-, and
fully matchingbrackets), application of corresponding HPSG rules is either penal-
ized or ranked higher. A parser task in the following is a configuration of passive
and an active chart edge.

A right-matching bracket may affect the priority of parser tasks whose resulting
edge will end at the right bracket of a pair such as, for example, a task that would
combine edgesC andF or C andD in Figure 8.10. Left-matching brackets work
analogously. For fully matching brackets, only tasks that produce an edge that
matches the span of the bracket pair can be affected, such as atask that combines
edgesB andC in Figure 8.10.

If, in addition, specified rule as well as feature structure constraints hold, the
task is rewarded if they are positive constraints, and penalized if they are negative
ones. All tasks that producecrossingedges, i.e., where one endpoint lies strictly
inside the bracket pair and the other lies strictly outside,are penalized, e.g. a task
that combines edgesA andB in Figure 8.10.

Details of the algorithm that computes these priorities areexplained in Frank
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Figure 8.10: An example chart with a bracket pair of typex. The dashed edges are
active

et al. (2003).
The priority of a parser task is modified relative to a defaultpriority using two

confidence values, one,confent(brx), based on tree entropy of a topological parse
(per sentence), and one,confpr(brx), based on a measure of expected accuracy
for each bracket type. These confidence parameters take intoaccount the fact the
stochastic topological parser may deliver (partially) wrong analyses and try to cor-
rect them. If confidence is high, the topological brackets are fully considered for
prioritization. If it is low, their impact is decreased or completely ignored.

Both confidence values are weighted using a heuristically determined weight
factor γ , and all these parameters together are used to either add to or subtract
from the default priority, depending on whether the bracketand chart configuration
triggers reward or penalty. Thus, the priorityp(t) of a taskt involving a bracket
brx is computed from the default priority ˜p(t) by:

p(t) = p̃(t)∗ (1±confent(brx)∗confpr(x)∗ γ)

<TOPO2HPSG>

<MAPC type="chunk_np+det" rule="chunk" left="W2" right="W3"/>

<MAPC type="chunk_pp" rule="chunk" left="W4" right="W10"/>

<MAPC type="v2_cp" rule="vfronted" left="W0" right="W10"/>

<MAPC type="vfronted_vfin-rk" rule="vfronted" left="W1" right="W1"/>

<MAPC type="vfronted_vfin+vp-rk" rule="vfronted" left="W1" right="W10"/>

<MAPC type="v2_vf" rule="vfronted" left="W0" right="W0"/>

<MAPC type="v2_vfin_pvp-rk" rule="vfronted" left="W1" right="W1"/>

</TOPO2HPSG>

Figure 8.11: The extracted brackets (topo.brackets)

Finally, the modified deep parser PET is started with a chart initialized using
V-queries to access lexical (morphology, stemming, compounds, PoS preferences)
and named entity information gathered from SPPC. The computed bracket infor-
mation (Figure 8.11) is accessed through WHAT V and N-queries during parsing
in order to prioritize constituent analyses motivated by the topological parser and
additional syntactic information.
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The abstraction provided by WHAT facilitates exchange of the shallow input
components of PET, e.g. it would be possible to exchange someof the used com-
ponents without rewriting the deep parser’s code.

The complete input for the deep parser is encoded in a single XML document
(per input sentence), e.g.

<?xml version="1.0"?>

<WHITEBOARD>

<SPPC_XML version="2002-06-24" type="transformable">

<ENCODING_TABLES>

...

</ENCODING_TABLES>

<DOCUMENT_STATISTICS tokens="12" lexical_items="12" unknown_words="1"

words_found_in_lexicon="11" words_with_prefered_reading="9"

named_entities="0" phrases="4" sentences="1" subclauses="0"/>

<PARAGRAPH id="P0">

<S id="S0">

<CHUNK id="H0" type="6">

<W id="W0" tc="22">Untergebracht

<READINGS id="D0" pref="R0">

<R id="R0" pos="2" stem="unterbring" infl="152" code="94"/>

</READINGS>

</W>

<W id="W1" tc="21">war

<READINGS id="D1" pref="R1">

<R id="R1" pos="3" stem="sei" infl="36 37" code="54"/>

</READINGS>

</W>

</CHUNK>

<CHUNK id="H1" type="1">

<W id="W2" tc="21">die

<READINGS id="D2" pref="NONE">

<R id="R2" pos="22" stem="die" infl="" code="5"/>

<R id="R3" pos="7" stem="d-det" infl="18 21 13 23 29 16 26 30"

code="23"/>

</READINGS>

</W>

<W id="W3" tc="22">Garnison

<READINGS id="D3" pref="R4">

<R id="R4" pos="1" stem="garnison" infl="18 19 20 21"

code="13"/>

</READINGS>

</W>

</CHUNK>

<CHUNK id="H2" type="2">

<W id="W4" tc="21">in

<READINGS id="D4" pref="R5">

<R id="R5" pos="23" stem="in" infl="3 4" code="4"/>

</READINGS>

</W>

<W id="W5" tc="21">den

<READINGS id="D5" pref="NONE">

<R id="R6" pos="22" stem="den" infl="" code="5"/>
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<R id="R7" pos="7" stem="d-det" infl="7 15 25 27" code="20"/>

</READINGS>

</W>

<W id="W6" tc="21">beiden

<READINGS id="D6" pref="R8">

<R id="R8" pos="14" stem="beid" infl="334 335 336 337 338 339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

370 371 372 373 374 375 376 377" code="159"/>

</READINGS>

</W>

<W id="W7" tc="22">Wachlokalen

<READINGS id="D7" pref="R9">

<R id="R9" pos="1" stem="wachlokal" infl="27" code="73"/>

</READINGS>

</W>

</CHUNK>

<CHUNK id="H3" type="1">

<W id="W8" tc="22">Hauptwache

<READINGS id="D8" pref="R12">

<R id="R10" pos="5" stem="wach" infl="129 130 131 132 133 134

135 136 137 138 139 140 141 142 143" code="82"/>

<R id="R11" pos="2" stem="wach" infl="43 62 63 17" code="71"/>

<R id="R12" pos="1" stem="wache" infl="18 19 20 21" code="13"/>

</READINGS>

<COMPOUND id="C0">

<SEGMENT id="M3420215" surface="haupt">

<READINGS id="D9">

<R id="R13" pos="1" stem="haupt" infl="9 10 11" code="9"/>

</READINGS>

</SEGMENT>

<SEGMENT id="M3420216" surface="wache">

<READINGS id="D10">

<R id="R14" pos="5" stem="wach" infl="129 130 131 132 133

134 135 136 137 138 139 140 141 142 143" code="82"/>

<R id="R15" pos="2" stem="wach" infl="43 62 63 17"

code="71"/>

<R id="R16" pos="1" stem="wache" infl="18 19 20 21"

code="13"/>

</READINGS>

</SEGMENT>

</COMPOUND>

</W>

<W id="W9" tc="21">und

<READINGS id="D11" pref="R17">

<R id="R17" pos="19" stem="und" infl="" code="40"/>

</READINGS>

</W>

<W id="W10" tc="22">Konstablerwache

<READINGS id="D12" pref="R18">

<R id="R18" pos="1" stem="konstablerwache" infl="18 19 20 21"

code="13"/>

</READINGS>

</W>
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</CHUNK>

<W id="W11" tc="1">.</W>

</S>

</PARAGRAPH>

</SPPC_XML>

<TOPO sno="0">

<TOPO2HPSG>

<MAPC id="T1" mapc="chunk_np+det" rule="chunk" left="W2" right="W3"/>

<MAPC id="T2" mapc="chunk_pp" rule="chunk" left="W4" right="W10"/>

<MAPC id="T3" mapc="v2_cp" rule="vfronted" left="W0" right="W10"/>

<MAPC id="T4" mapc="vfronted_vfin-rk" rule="vfronted" left="W1"

right="W1"/>

<MAPC id="T5" mapc="vfronted_vfin+vp-rk" rule="vfronted" left="W1"

right="W10"/>

<MAPC id="T6" mapc="v2_vf" rule="vfronted" left="W0" right="W0"/>

<MAPC id="T7" mapc="v2_vfin_pvp-rk" rule="vfronted" left="W1"

right="W1"/>

</TOPO2HPSG>

</TOPO>

</WHITEBOARD>

The result of deep parsing including the constructed semantics representation
of the analyzed sentence can be accessed through the chart interface of PET as
typed feature structures (Figure 8.13), or via subsequent XSLT transformation in
other formats, extracting only partial information.

8.7.6 Evaluation Results

For the evaluation, a subset of the NEGRA corpus consisting of 5060 sentences
(24.57%) that were parsable by the HPSG grammar with the PoS tagging integra-
tion from WHITEBOARD I, was used. This test set is different from the corpus that
has been used for determining the confidence values. Averagesentence length was
8.94, ignoring punctuation; average lexical ambiguity was3.05 entries per word.

As baseline, a run without topological information was performed, yet includ-
ing PoS prioritization from tagging. A series of tests explored the effects of al-
ternative parameter settings. Furthermore, the impact of chunk information was
tested. To this end, phrasal fields determined by topological parsing were fed to
the chunk parser of Skut and Brants (1998).

Extracted NP and PP bracket constraints were defined as left-matching bracket
types, to compensate for the non-embedding structure of chunks. Chunk brack-
ets were tested in conjunction with topological brackets and in isolation, using the
labeled precision value of 71.1% in Skut and Brants (1998) asa uniform confi-
dence weight. For all runs, the maximum number of passive edges was set to the
comparatively high value of 70000.

For all runs, the absolute time needed to compute the first reading was mea-
sured. Various variants have been tried, withγ = 1 andγ = 0.5 as confidence
weight, combined with and without both confidence values. Details are presented
in a table (Franket al., 2003). We content ourselves here with the overall result
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Figure 8.12: Part of the derivation tree of the deep parser
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Figure 8.13: Part of a deep parsing result in the WHITEBOARD GUI

which is a speedup of factor 2.25 on average with the topoparser integration. Even
without the confidence factor, the speedup is still 2.19 (γ = 0.5).

Additional use of chunk information decreases the speedup slightly to approx.
2.15, with chunk brackets only to 1.0, both probably due to lower precision of
chunk brackets. A similar observation has been reported by Daumet al. (2003) for
integration of chunk and dependency parsing, they measureda gain of factor 2.76
relative to a non-PoS-guided baseline, which reduces to factor 1.21 relative to a
PoS-prioritized baseline, as in our scenario.

8.7.7 Conclusion

In the WHITEBOARD II phase, it could be shown that the integration of shallow
topological and deep HPSG processing results in significantperformance gains, of
factor 2.25 – at a high level of deep parser efficiency. It was shown that macro-
structural constraints derived from topological parsing improve significantly over
chunk-based constraints. Fine-grained prioritization interms of confidence weights
could further improve the results.

The XML and XSLT-based architecture on the basis of WHAM and WHAT is
flexible and was easily extended to address robustness issues beyond lexical mat-
ters. By extracting spans for clausal fragments from topological parses, in case
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of deep parsing failure, the chart can be inspected for spanning analyses for sub-
sentential fragments. Fragment output of deep parsing as fall-back result will be
further addressed in Chapter 9. Moreover, the input sentence could be simplified by
pruning adjunct sub-clauses, and trigger re-parsing on thepruned input, thus per-
forming a divide and conquer strategy that could help to copewith long sentences
where a deep parser often fails because of the huge search space.

8.7.8 Transformation for Visualization

As described in Chapter 5, XSLT can be used to transform linguistic markup for
visualization purposes. The tree visualizations in Figure8.8 through 8.12 have
been generated through a generic WHAT D-query transformingthe XML-encoded
topological parse tree into a Thistle visualization tree (Calder, 2000).

The target SGML format (Thistle arbora DTD) can be generatedthanks to the
openness of XSLT with respect to output formats. The Thistleeditor mode could
in principle be used to edit the generated tree representations (Figure 8.14). The
resulting, corrected SGML file could be used to improve the underlying stochastic
topological parser that originally generated the topological tree.

Figure 8.14: Topological parse tree in Thistle editor mode

8.8 Related Work

WHITEBOARD was the first implemented system that integrated multiple shallow
processing components (not only PoS tagging) with an advanced, high-performance
deep HPSG-based parser. In addition, WHITEBOARD provides an architecture
framework that supports easy integration of other shallow components by means
of XML annotation and through XSL transformation. These facts make the archi-
tecture superior to other, in most casesad hocintegrations of specific systems.
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Another NLP architecture also called WHITEBOARD has been developed at
ATR Kyoto (Boitet and Seligman, 1994). The focus of that prototypical system
designed for speech translation was to overcome restrictions of both pipeline and
blackboard architectures by postulating acoordinator that would schedule NLP
components and mediate between them. However, the ATR WHITEBOARD idea is
different from our WHITEBOARD in that access to NLP component results is only
possible via the coordinator. Moreover, the assumed and supported data structures
are specific for speech processing (time-aligned lattice) and not directly usable for
concepts such as abstraction-based deep and annotation-based shallow processing
results.

There exists only very little other work that considers integration of shallow
and deep NLP utilizing an XML-based architecture, most notably Grover and Las-
carides (2001) for the HPSG precursor GPSG. However, their integration efforts
are largely limited to the level of PoS tag information.

Ad hoc integrations of PoS tagging and specific HPSG grammars have been
conducted for Dutch (Prins and van Noord, 2003) and Spanish (Marimon, 2002a).

There was also integration work in deep parsing other than HPSG, e.g. Daumet
al. (2003) combined PoS tagging and chunking with a dependency parser. Kaplan
and King (2003) and Kaplanet al. (2004) combine PoS tagging and finite-state
preprocessing with the LFG parser. The common observation from their results is
that mainly PoS tagging as preprocessing increases coverage and robustness that
the deep frameworks alone would not accomplish in an economically way. The
results we have obtained in WHITEBOARD support this observation.

8.9 Summary

In this chapter, we have presented the key architecture concepts of WHITEBOARD,
the WHITEBOARD Annotation Machine (WHAM) and the WHITEBOARD Anno-
tation Transformer (WHAT). We have demonstrated an application scenario with
highly integrated multiple shallow preprocessors and a deep parser, and shown the
advantages of integrating both for increased robustness (recognition of words un-
known to the deep lexicon) and search space reduction (shallow pre-shaping of the
deep parser’s search space).

An evaluation of 5000 sentences of a German newspaper corpusshowed that
the already high efficiency of deep parsing could be further improved by a factor
of 2.25 on average, lexical coverage increased from 28 to 71%and overall parsing
coverage (full parses) from 12.5 to 22%. It has to be noted that these results were
obtained at a very early stage of German HPSG grammar development, where the
grammar was more elaborated on speech dialog (VERBMOBIL) than on general
newspaper text.

WHITEBOARD, extended with WHAT, is an open, flexible and powerful infras-
tructure based on standard XSLT technology for the online and offline combination
of natural language processing components, with a focus on,but not limited to, hy-
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brid deep and shallow architectures.
The infrastructure is portable. As the programming language-specific wrapper

code is relatively small, the framework can be quickly ported to any programming
language that has XSLT support (which holds for most modern programming and
scripting languages). XSLT makes the transformation code portable and declara-
tive which it could not be when being based on DOM manipulation in an ordinary
programming language.

The WHAT framework can easily be extended to new NLP components and
document DTDs. This has to be done only once for a component orDTD through
XSLT query library definitions, and access will be availableimmediately in all
programming languages for which a WHAT implementation exists.

WHAT can be used to perform computations and complex transformations on
XML annotation, provide uniform XML annotation access in order to abstract from
component-specific namings and DTD structure. WHAT makes iteasier to ex-
change results between components (e.g. to give non-XML-aware components ac-
cess to information encoded in XML annotation), and to defineapplication-specific
architectures for online and offline processing of NLP XML annotation.

Due to its flexibility, the infrastructure is well suited forrapid prototyping of
hybrid NLP architectures as well as for developing NLP applications, and can be
used to both access NLP markup from programming languages and to compute or
transform it.

Besides the integration within NLP architectures described in this section, the
XSLT-based infrastructure (WHAT) could also be used for interfacing applications,
e.g. to translate to Thistle (Calder, 2000) for visualization of linguistic analyses
and back from Thistle in editor mode, e.g. for manual, graphical correction of
automatically annotated texts for trainingetc.

Because of the unstable standardization and implementation status, we did not
yet make use of XQuery, an XML query language discussed in Chapter 5. How-
ever, the WHAT framework is open, and it might be worth considering XQuery as
a future extension. Which engine to ask, an XSLT or an XQuery processor, could
be encoded in each<query> element of the template library using an additional
attribute. Similarly, extension of the current framework to XSLT 2.0 which among
other things supports user-definable functions that can be part of XPath expres-
sions, should be straightforward.

Compared toad hoc integrations of specific deep parsers with specific PoS
taggers, the XML and XSLT-based WHITEBOARD architecture approach offers
much more flexibility. This allowed to easily also integratefurther levels of natural
language processing other integrated systems do not provide, such as named entity
recognition or topological parsing.

However, it has to be noted that although obviously there is huge potential in
combining many more existing shallow and deep NLP components and in different
ways through a general architecture such as WHITEBOARD, only some concepts
could be tried within the project, and even less could also bepoured into applica-
tions utilizing the new approach.
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An interesting application of the architecture that has been formulated already
in the project proposal but not tried in an implementation sofar, is to use deep
processing to support shallow processing on demand. Using this strategy, e.g. in
information extraction or opinion mining, it could be possible to both preserve the
high robustness of shallow processing and achieve high precision on crucial parts
of a text that could have been identified by shallow methods.

Also mainly because of time and resource limitations, the architecture was not
fully instantiated for languages other than German.

A further generalization of WHITEBOARD towards more robust, application-
oriented integration of deep and shallow NLP components that is even better suited
for high coverage and high precision in restricted domains and Semantic Web-
related applications will be presented in the next chapter.
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Chapter 9

Heart of Gold

9.1 Introduction and Motivation

In the previous chapter, we have described an integration architecture for deep and
shallow natural language processing components called WHITEBOARD. Although
WHITEBOARD has been designed for flexible integration of components, more or
less a single scenario for German (with and without topo-parsing) has been fully
implemented. The architecture was successful in the sense that the benefits of
integrating deep and shallow approaches to NLP could well and clearly be shown
in a mature and stable implementation that was robust enoughto parse German
newspaper corpora and other unseen text online.

However, the focus of WHITEBOARD was to demonstrate the feasibility and
evaluate the benefits of the hybrid approach from the linguistic, mainly syntactic,
perspective. Many aspects that would become important whendeep-shallow inte-
gration would be explored in real NLP-based applications, could not be addressed
during the WHITEBOARD project, one main reason being the fact that the German
HPSG grammar at that time did not provide a sufficiently functional semantics
construction.

The aspects missing in WHITEBOARD with respect to architecture that had to
be addressed further comprise (1) true multilinguality (also in parallel), (2) inte-
gration support for components implemented in different programming languages
other than Java and C/C++, (3) more flexible, configurable processing order of
components, (4) fully networking-enabled architecture, (5) post-parsing and fall-
back integration on a semantics representation level.

9.2 Project Context: DEEPTHOUGHT and QUETAL

The aim of the EU-funded project DEEPTHOUGHT (October 2002-October 2004)
was to investigate integrated shallow and deep processing in a multilingual, appli-
cation-oriented context. Three application scenarios hadbeen chosen to evalu-
ate the hybrid processing approach, (1) email response management for customer

185



186 CHAPTER 9. HEART OF GOLD

relationship management, (2) precise information extraction for business intelli-
gence, (3) creativity support for document production and collective brainstorming
(Uszkoreitet al., 2004).

In addition to the more syntax-oriented WHITEBOARD approach, a new, com-
mon semantic representation format allowing for underspecification, RMRS (Copes-
take, 2003), was to be used as interface to applications and explored also for com-
ponent integration. The idea is to conceive any NLP component output as a (possi-
bly underspecified) semantic representation. In case a component (e.g. deep pars-
ing) fails, a possibly less specific fall-back analysis of another component would
still be available in a compatible format.

After DEEPTHOUGHT had been finished, the framework was further developed
and extended in the QUETAL project where it has been mainly used for deep ques-
tion analysis in restricted domains (Franket al., 2005, 2006; Schäfer, 2006a). A
technical user documentation for Heart of Gold can be found in Schäfer (2005).

In this chapter, we describe the Core Architecture Framework calledHeart of
Gold we have developed for DEEPTHOUGHT in detail1. The key concept of Heart
of Gold is to treat the core architecture as a flexibly configurable middlewarein
between NLP-based applications and (pre-existing) NLP components for which
the middleware provides interfaces (wrapper classes), cf.Figure 9.1.

Figure 9.1: Heart of Gold middleware architecture

1For the names cf. Adams (1979).
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We will first describe the middleware architecture, the mostimportant NLP
components for various languages we have integrated so far,grouped according
to their functionality, then present some architecture instances and corresponding
configurations, motivate some generic extensions, show evaluation results and im-
plemented applications, and finally conclude with an outlook to further develop-
ments.

9.3 Middleware Architecture

9.3.1 Overview

Heart of Gold (Callmeieret al., 2004) is an XML-based middleware for the inte-
gration of deep and shallow natural language processing components. It provides a
uniform and flexible infrastructure for building applications that use RMRS-based
and/or XML-based natural language processing components.

The main design goals where:

• flexible integration of NLP components

• simple application interface

• RMRS as (optional) uniform semantic representation language

• open to other XML standoff annotation formats

• integration through annotation transformation

• annotation database interface for storage and retrieval ofcomputed linguistic
analyses

• network-enabled architecture with distributed components and lightweight,
platform- and programming language-independent communication through
XML-RPC

• based on current standardized technology such as XML, XML-RPC, XSLT,
XPath, XML:DB

Figure 9.2 depicts the general architecture. The Heart of Gold acts as me-
diator between applications (top) and NLP components (bottom), abstracting from
component-specific interfaces and representations. Applications send queries (anal-
ysis requests) on text documents to the middleware which in turn passes the queries
to one or more components according to a NLP component configuration initially
specified by the applications. The resulting annotation(s), which can also be taken
from the annotation database if already computed (caching), are then returned to
the application.
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Figure 9.2: Heart of Gold (HoG) core architecture

9.3.2 The Module Communication Manager (MoCoMan)

The Module Communication Manager (MoCoMan) mediates between an appli-
cation and the annotation-producing NLP components (Figure 9.2). MoCoMan
receives a request (text documents, sentences) from an application, sends it to the
configured NLP components, receives their analysis results, and returns the results
back to the application. The interface to the Heart of Gold allows requests contain-
ing the following parameters

1. a language identifier for the language of the string to be analyzed (two-letter
ISO 639 code such asen for English,de for German,ja for Japanese),

2. the text to be analyzed,

3. requested analysis depth (numerical).

An optional annotation database supports persistent storage of the computed
analyses. MoCoMan is also responsible for the order in whichthe components
are triggered. The implemented default strategy is to let the application specify
the depth of desired analysis with the query, and trigger allmodules starting from
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the shallowest (e.g. tokenizer) up to the requested depth, with a fall-back to the
previous component if no result was available from the component with the desired
depth.

MoCoMan

-config: Properties

-mocoServer: WebServer

-mocoBase: XMLDBAnnotationDatabase

-queryQueue: LinkedList

-sessions: Hashtable

-instance: MoCoMan

+getInstance(): MoCoMan

+analyse(sesID:String,annID:String,start:int,end:int,depth:int): String

+createSession(configFileName:String): String

+createAnnotationForSession(sesID:String,anno:String,lang:String): String
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Figure 9.3: UML diagram of MoCoMan

Applications communicate with the Heart of Gold middlewarethrough the
Module Communication Manager via a Java API (Java applications) or XML-RPC
(remote applications or applications written in programming languages other than
Java).

XML-RPC is a lightweight protocol for web services that is supported, through
additional libraries, by most current programming languages and scripting lan-
guages on various platforms. It is built on top of HTTP and hence can also be used
for communication through firewalls which otherwise would have to be opened
for specific ports other than the standard HTTP port. This is why XML-RPC has
been chosen for the integration of natural language processing components into
the architecture. In other words, XML-RPC provides an easy and portable means
to network-enable both architecture components and the application interface in
Heart of Gold.

While the core architecture is implemented in Java, components and applica-
tions can hence be written in other programming languages and connected through
XML-RPC.
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9.3.3 Modules and Components

Initially, an application starts an instance of the Heart ofGold architecture with
a configuration setting for the required components (Figure9.4 shows a sample
configuration for English). MoCoMan then starts (or remotely connects via XML-
RPC to) the appropriate components.

de.dfki.lt.hog.modules.JTokModule=conf/en/jtok.cfg

de.dfki.lt.hog.modules.TnTModule=conf/en/tnt.cfg

de.dfki.lt.hog.modules.SproutModule=conf/en/sprout.cfg

de.dfki.lt.hog.modules.RaspModule=conf/en/rasp.cfg

de.dfki.lt.hog.modules.PetModule=conf/en/pet.cfg

Figure 9.4: Sample configuration for English

Each component is initialized through MoCoMan according toa component-
specific configuration file (examples will be shown in the later sections). More
precisely, a launcher creates the specified module classes and registers them in
a Registry. The module configuration, abstractModule and Registry classes
are courtesy of the Memphis architecture (Kasperet al., 2004) developed by Jörg
Steffen, but with a different processing strategy that we will describe below. The
init() methods of theModule classes are executed to start the real components.
Each component has its own configuration setting.

From the viewpoint of MoCoMan, components areModules (local Java-based
components) orXmlRpcModules (remote, possibly non-Java, components). I.e., in
order to integrate a new component in the architecture, it must inherit from either
Module or XmlRpcModule. UML diagrams in Figure 9.3 and 9.5 show the core
class structure.

The remote counterparts of anXmlRpcModule are calledAdapters. A Java
class can be used to implement a remote JavaAdapter. Moreover, remote adapters
can also be implemented in other programming languages and communicate with
MoCoMan via XML-RPC.

Modules are required to return an XML (standoff) annotationas result. If a
component does not provide XML output, then translation to and (possibly) from
XML is to be implemented in the Module classes. RMRS can be used as optional
common representation format, in this case, RMRS output canalso be generated
through XSL transformations.

An example for the integration of a component in this way is theSProUTmod-
ule that uses XSLT transformations of the XML-encoded typedfeature structure
output of the named entity grammars along the ideas presented in Chapter 5 resp.
Schäfer (2003) to generate an XML representation conforming to the RMRS DTD,
cf. also Section 9.4 and 9.5.4.1.



9.3. MIDDLEWARE ARCHITECTURE 191
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Figure 9.5: UML diagram of module and application communication

9.3.4 NLP Analysis

After the system configuration is finished, analysis requests with parameters such
as language code and depth as described above can be passed toMoCoMan.

MoCoMan passes the request to the modules that are configuredin the archi-
tecture instance and that are appropriate for the requesteddepth of analysis and
language.

To this aim, MoCoMan selects modules using thesuitable() predicate, tak-
ing into account language and depth of analysis. The text is then passed as input
parameter to theprocess() method of the first selected component. The XML
output of a module is called annotation. Then, in a cascade, the output annotation
of a preceding module is taken as the input annotation of a subsequent module’s
process() method until all configured and (through depth and language)suitable
components have returned their results.

The annotation computed by the last module is then returned to the applica-
tion. All annotations can optionally be stored in an XML database; this is a global
configuration option. If a query is passed to MoCoMan that hasalready been com-
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  Session Annotation 
collection (1 
per input text) 

Standoff annotations (computed by modules/components) 

Figure 9.6: Session and annotation management

puted, i.e. with the same input text and query parameters, then the pre-computed
result is returned by MoCoMan, either from the database or the Heart-of-Gold-
internal storage of limited size, depending on configuration.

9.3.5 Default Processing Strategy

The shallowest component is started first (typically a tokenizer), then other com-
ponents with increasing depth, up to the requested depth. A fall-back is performed
to the result of the previous component if no result from the component with re-
quested depth could be achieved, e.g. in case of an empty analysis of the deep
parser.

Each component gets the output of the previous component as input plus the
output from other components if configured (the default input may be ignored by
the module). The result of the query is the result of the deepest component in the
sequence. Analysis results from previous components are returned on request by
MoCoMan (methodgetAnnotation()). A module may also produce multiple
output annotations and store them explicitly in the active annotation collection as
a side effect.

By varying the configured depth of the modules, additional input or output an-
notationetc, it is possible to flexibly adapt the processing order and information
flow between modules. Further, even more flexible processingstrategies (includ-
ing parallelism and loops) can be implemented using the SDL extension we will
describe in Section 9.5.7.
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9.3.6 Session and Annotation Management

MoCoMan provides a session management, so that different input sessions with
multiple input documents (texts) can be created and referenced (Figure 9.6). Mo-
CoMan manages a collection of sessions where each session consists of a collection
of annotation collections (one annotation collection corresponds to one input text
or sentence) that contain RMRS/standoff annotations computed by the components
of the configured architecture instance.

Sessions, annotation collections and annotations are referenced through context-
unique IDs. Sessions, annotation collections and computedannotations can be
stored in the optional XML annotation database.

There are MoCoMan server methods2 to create sessions and annotation collec-
tions in the context specified through IDs as parameters. Theannotations them-
selves are generated using theanalyse() method that stores the annotations com-
puted by the configured modules in the active annotation collection. The annota-
tion ID is identical with the (configurable) module name thatcreates the annotation.
Examples for the context-unique IDs will be presented in Section 9.3.9.

9.3.7 Metadata

Metadata on date, time, source, processing parameters, processing options and the
component-specific configurations of the producing component are stored as part
of each computed annotation in a<metadata> element. Its<id> sub-element
contains processing parameters inserted by MoCoMan such ascurrent session, an-
notation collection and annotation identifiers, componentname, creation date and
processing time. The<conf> sub-element contains a copy of the configuration
settings of the module that produced the annotation. This allows to precisely re-
construct the environment under which an annotation was produced (Figure 9.7).
This is an important feature when Heart of Gold is used to create linguistically
annotated texts for permanent storage, because it allows toat least partially recon-
structex postthe circumstances under which an annotation has been produced.

9.3.8 XML Annotation Database

If a query that has already been computed (i.e., a known inputtext with the same
query parameters) is passed to the MoCoMan, then the pre-computed result is re-
turned. This can be done on the basis of the data gained duringa session, but the
Heart of Gold middleware optionally also provides a database interface for XML
annotation storage. The main purpose is persistent storageof computed annota-
tions for the automatic creation or enrichment of linguistic corporaetc.

The annotation database interface uses XML:DB3 which is a vendor-indepen-
dent interface to XML databases. The current implementation uses the open source

2createSession() andcreateAnnotationCollection()
3http://xmldb-org.sourceforge.net
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<metadata>

<id>

<entry name="created" value="2004-03-04 15:23:15"/>

<entry name="processingtime" value="00:00,90"/>

<entry name="sessionid" value="session1"/>

<entry name="acid" value="collection1"/>

<entry name="component" value="Sprout"/>

</id>

<conf>

<entry name="sprout.outputpath" value="OUT"/>

<entry name="sprout.stylesheet" value="enamex2rmrs.xsl"/>

<entry name="module.name" value="Sprout"/>

<entry name="module.depth" value="1"/>

<entry name="module.language" value="en"/>

<entry name="module.rootelement" value="SPROUTPUT"/>

</conf>

</metadata>

Figure 9.7: Annotation and module configuration metadata

(but disappointingly slow) Xindice 1.1b4 XML database. However, other XML:DB
supporting databases such as bdbxml5 or Tamino6 could be used instead. An
interface class is provided that can be implemented in orderto support other XML
databases.

The Heart of Gold XML database interface7 supports organization of XML
annotations reflecting the session and annotation collection tree hierarchy of Mo-
CoMan. Standard operations such as inserting, deleting collections and XML an-
notations, and a standardized query language based on XPath(Clark and DeRose,
1999) are supported. Similarly, existing annotations could also be modified using
the XUpdate query language8. However, this is currently not actively supported by
the Heart of Gold XML:DB interface, but it could become of interest for external,
manual correction of computed annotations, e.g. for machine learning purposes.

An important feature of XML databases is indexing of XML document ele-
ments to guarantee efficient retrieval. Depending on the structure of the annotation,
indexers can be defined through the database interface. These should be defined
when integrating new Modules and could be stored as part of the Module configu-
ration which in turn is part of the annotation metadata.

In the current implementation based on Xindice, the XML database can easily

4http://xml.apache.org/xindice/
5http://dev.sleepycat.com
6http://www.tamino.com
7Abstract classAnnotationDatabase
8http://xmldb-org.sourceforge.net/xupdate/
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be separated physically from the rest of the architecture. The database can reside
on a server different from the middleware server and provideits services through
the Apache Tomcat web application server9. The XML database interface of Mo-
CoMan then acts as a client to the XML database.

For most practical cases, a simple storage and retrieval mechanism based on
annotation ID and annotation collection ID is sufficient. Itcould alternatively be
implemented on file system basis becoming another subclass of the abstract class
AnnotationDatabase.

9.3.9 Annotation Transformation Service

For the integration of NLP components, e.g. those not providing RMRS output
formats natively, XSLT can be employed to transform component-specific XML
output, e.g. of a chunker or a named entity recognition component, into the RMRS
format or other XML formats required by other components.

The classTransformationService provides access to the XSL transformer
of Heart of Gold. The idea is similar to WHAT in WHITEBOARD, but for the
sake of conceptual clarity, we restrict transformation to what we called d-queries
in WHAT, i.e. input and output of a transformation is required to be a well-formed
XML document. This also makes differentiation in the programming interfaces
obsolete for annotation access and thus simplifies component integration.

The transformation is performed in the module’sprocess()method, the XSLT
stylesheet name can be made part of the component-specific configuration. The
transformation service is based on a standard XSLT engine, with a single, generic
extension for access to other annotations (in the same annotation collection or even
in another annotation collection, e.g. for searching anaphora antecedents in previ-
ous sentencesetc).

Access to other annotations is provided through a ‘HoG URI’ of the form
hog://sid/acid/aid via the XPathdocument() function, wheresid is the ses-
sion ID, acid is the annotation collection ID, andaid is the annotation ID. The
IDs of the active session and annotation collection are automatically passed from
the module as (default) parameters to the stylesheet.

An example for the integration of a component using annotation transforma-
tion is theSProUTmodule that uses XSLT transformations of the XML-encoded
typed feature structure output of the named entity grammarsto generate an XML
representation conforming to the RMRS DTD, cf. Section 9.5.4.1 below.

The XSLT stylesheets are stored in subdirectories of thexsl directory of the
Heart of Gold distribution, ordered according to the targettransformation format,
e.g.

• html : HTML visualization of RMRS structures (cf. Section 9.8)

• latex: LATEX visualization of RMRS structures (cf. Section 9.8)

9http://tomcat.apache.org
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• pic: transformation to PET input chart format (cf. Section 9.5.5.2), partly
automatically generated, cf. description ofSProUT module below (Sec-
tion 9.5.4.1)

• preproc: preprocessing of input texts in XML format, sentence splitting
(Section 9.5.5.2)

• rmrs : transformation of e.g. NE recognizer output formats (SProUT, Ling-
Pipe) to RMRS, partly automatically generated, cf. description of SProUT
module below (Section 9.5.4.1)

• sdl: stylesheets for XSLT transformations as part of SDL sub-architecture
processing cascades (Section 9.5.7)

• xml: auxiliary stylesheets e.g. for XML pretty-printing

9.4 RMRS as Common Semantic Annotation Format

As already mentioned above, one of the strategic ideas of theDEEPTHOUGHT

project that aimed at exploring deep-shallow NLP for new, innovative applications,
was to use a common, robust semantics format, RMRS, throughout the core archi-
tecture. Heart of Gold has been designed to support this ideaand to provide facil-
ities for RMRS generation, transformation and visualization. However, the whole
middleware architecture does not necessarily rely on RMRS,it simply treats it as
standoff annotation in the same way as it treats other XML formats produced by
any integrated NLP component. In this section, we present a short overview over
the RMRS idea and introduce the notation we will use later on.

RMRS stands for Robust Minimal Recursion Semantics. It has been intro-
duced in a DEEPTHOUGHT deliverable (Copestake, 2003). The main difference
(or generalization) to the MRS flat (non-recursive) semantics framework (Copes-
take et al., 2005a) is the robustness aspect, i.e., in contrast to MRS which was
meant as semantics representation framework for deep grammars based on typed
feature structures, RMRSes can not only beunderspecifiedfor scope as MRSes,
but also bepartially specified, e.g. when the arguments of a transitive or ditran-
sitive verb cannot be fully resolved by an NLP component. Therefore, RMRS is
suited for representing output also from shallow NLP components.

The underlying idea is that in principle any shallow processing result, even
from a part-of-speech tagger, can be conceived as a, typically underspecified, ver-
sion of a compatible deep analysis. Several components could deliver partial analy-
ses that could be combined into a single representation where information missing
from one component is complemented by information from another component, or
left underspecified where unresolved.

Moreover, in the deep-shallow integration scenario, a possibly underspecified
semantics representation produced by a shallow component could be used as fall-
back where deep parsing of a sentence failed.
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RMRS comes with an XML format which did not exist for MRS. However,
as any MRS can be expressed as RMRS (but not necessarily vice versa), MRSes
could via this inclusion be encoded in XML as well.

MRS is currently the semantics representation format of themost elaborated
and popular HPSG grammar implementations such as ERG (Flickinger, 2002), the
German HPSG grammar developed at DFKI (Crysmann, 2003), or the modern
Greek grammar (Kordoni and Neu, 2004). Moreover, it forms the basis for the
multilingual Matrix model of HPSG grammar development (Benderet al., 2003),
and is used for natural language parsing and generation as well as transfer for
machine translation (Bondet al., 2005).

An MRS or RMRS for e.g. a natural language sentence is a logical form con-
sisting of conjunctively connectedelementary predications(EPs) each being a sin-
gle relation with associated arguments, e.g. beginning(x,y). Each EP typically
corresponds to a lexeme, but there might also be additional EPs not representing a
proper word, e.g. indicating question types, compoundsetc.

Although (R)MRSes are flat, i.e., an EP is never embedded in another EP, there
is a notion of quantification and scope that is encoded by augmenting EPs with
variables calledhandles.

The handles can be used to constrain readings resulting fromscope ambigu-
ities. A deep NLP component may contain more knowledge abouthow to solve
such ambiguities than a shallow one. Ambiguities may be leftunresolved, thus
providing compact ambiguity representation.

A small example taken from Copestakeet al. (2005a) may illustrate this.

Every nephew of some famous politician runs.

Two scopes are valid (using a predicate calculus representation):
(a) every(x, some(y, famous(y) ∧ politician(y), nephew(x,y)), run(x))
(b) some(y, famous(y) ∧ politician(y), every(x, nephew(x,y), run(x)))
The MRS that represents the valid scopes is written as

〈h1,{h2 : every(x,h3,h4),h5 : nephew(x,y),h6 : some(y,h7,h8),
h9 : politician(y),h9 : famous(y),h10 : run(x)},

{h1 =q h10,h7 =q h9,h3 =q h5}〉

Hence, an MRS is a triple of top handle (h1 in the example), set (‘bag’) of
elementary predications, and a set of handle constraints (‘hcons’). The handle
constraints are given as so-called qeq constraints (written as=q) which stands for
equality modulo quantifiers, and expresses scopal subordination.

A qeq constraint always relates a handle in an argument position (in an EP) to
a label, where the argument is either directly filled by the label, or one or more
quantifiers ‘float’ in between handle and label, i.e., the label of a quantifier fills the
argument position and the body argument of that quantifier isfilled either by the
label, or by the label of another quantifier, which in turn must have the label directly
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or indirectly in its body. More formal definitions are presented in Copestakeet al.
(2005a).

As they were designed for, MRSes can be straightforwardly encoded in typed
feature structures in a typemrs with three attributes,HOOK, RELS and HCONS.
HOOK contains the top handle (handles are encoded using structure sharing),RELS

contains a list of EPs which themselves bearLBL (label) and differentARG1–ARGN

attributes (quantifiers have aRESTRrestrictor and aBODY attribute).
The ARG role features represent argument relations numbered according to

their relative obliqueness. Basic predicate-argument structure is expressed by co-
indexation of the argument’s inherent variable (or, in the case of propositional or
scopal arguments, its label) with the appropriate role feature of the predicate. Vari-
ables are either individual (x) or event (e) variables.

The HCONS attribute is again list-valued, with structured qeq constraints of
typeqeqwith attributesHARG andLARG10.

The MRS in Figure 9.8 is an example taken from Copestakeet al. (2005a) of
the sentence

Every dog probably sleeps.

〈h1,{h2 : every(x,h4,h5),h6 : dog(x),h7 : probably(h8),h9 : sleep(x)},
{h1 =q h7,h4 =q h6,h8 =q h9}〉
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Figure 9.8: MRS for ‘Every dog probably sleeps’

RMRS is a modification of MRS that allows for partial analyses, taking into
account the fact that several natural language processors could contribute to refined
constraints on an initially underspecified semantic representation, the maximally

10AlthoughRELSandHCONSare set-valued in the formalism, implementations typically represent
them in (difference) lists, as most of the modern typed feature structure implementations do not
support sets for efficiency reasons.
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specific representation being equivalent to the MRS representation (as they are e.g.
produced by deep parsing).

To this aim, the following modifications were made from MRS

• A concept of variable equality is added, i.e., it is possibleto set different
variables equal as soon as constraints that justify this have been computed
during processing. In the MRS version, variables had to be either equal or
distinct from the beginning.

• An explicit naming convention for relation (EP) names is added that allows
to infer e.g. part-of-speech types (introduced as minimally specified RMRS
by a PoS tagger) from the relation names.

• Predicate arguments that were fixed in MRS are made relationsto allow for
variable arity of predicate arguments (‘Parsons style’), e.g. instead ofl2 :
on(e′,e,y) in MRS, one would writel2 : on(e′),ARG1(l2,e),ARG2(l2,y).

• Implicit conjunction of elementary predications (expressed with identical la-
bels in MRS) is made explicit through introduction of a special (non-lexical)
relation CONJ (for conjunction). Additional in-g (forin group) relations
express this membership in a conjunctively connected groupof EPs.

• Finally, some morpho-syntactic features such as tense, gender, number are
added as additional constraints to variables.

These additions are reflected in the RMRS DTD (DTD Appendix, page 290).
Thesurface attributes inrmrs andep elements contain related input text added
for illustration in the following RMRS example for the sentence ‘Every dog prob-
ably sleeps’.

<?xml version="1.0"?>

<rmrs-list>

<rmrs cfrom="0" cto="24" surface="Every dog probably sleeps">

<label vid="1"/>

<ep cfrom="0" cto="24" surface="Every dog probably sleeps">

<gpred>prop-or-ques_m_rel</gpred>

<label vid="1"/>

<var sort="e" vid="2" tense="present"/>

</ep>

<ep cfrom="0" cto="4" surface="Every">

<realpred lemma="every" pos="q"/>

<label vid="6"/>

<var sort="x" vid="7" pers="3" num="sg"/>

</ep>

<ep cfrom="6" cto="8" surface="dog">

<realpred lemma="dog" pos="n" sense="1"/>

<label vid="10"/>

<var sort="x" vid="7" pers="3" num="sg"/>
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</ep>

<ep cfrom="10" cto="17" surface="probably">

<realpred lemma="probable" pos="a" sense="1"/>

<label vid="11"/>

<var sort="u" vid="13"/>

</ep>

<ep cfrom="19" cto="24" surface="sleeps">

<realpred lemma="sleep" pos="v" sense="1"/>

<label vid="14"/>

<var sort="e" vid="2" tense="present"/>

</ep>

<rarg>

<rargname>MARG</rargname>

<label vid="1"/>

<var sort="h" vid="3"/>

</rarg>

<rarg>

<rargname>RSTR</rargname>

<label vid="6"/>

<var sort="h" vid="8"/>

</rarg>

<rarg>

<rargname>BODY</rargname>

<label vid="6"/>

<var sort="h" vid="9"/>

</rarg>

<rarg>

<rargname>ARG1</rargname>

<label vid="11"/>

<var sort="h" vid="12"/>

</rarg>

<rarg>

<rargname>ARG1</rargname>

<label vid="14"/>

<var sort="x" vid="7" pers="3" num="sg"/>

</rarg>

<hcons hreln="qeq">

<hi>

<var sort="h" vid="3"/>

</hi>

<lo>

<label vid="11"/>

</lo>

</hcons>

<hcons hreln="qeq">

<hi>

<var sort="h" vid="8"/>

</hi>

<lo>



9.4. RMRS AS COMMON SEMANTIC ANNOTATION FORMAT 201

<label vid="10"/>

</lo>

</hcons>

<hcons hreln="qeq">

<hi>

<var sort="h" vid="12"/>

</hi>

<lo>

<label vid="14"/>

</lo>

</hcons>

</rmrs>

</rmrs-list>

The AVM-like notation format in Figure 9.9 will be used in thefollowing
RMRS examples. It is more compact and similar to MRS in omitting variables
etc, and gives a better readable overview of the RMRS structure.Similarly to
typed feature structures, square brackets indicate a conjunction of constraints, in
this case handle and arguments for elementary predications.
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Figure 9.9: Human-readable RMRS notation that will used in this thesis

CONJ is always assumed as relation for the IN-G elements. In the Heart of
Gold system, there is also an interactive visualization facility for RMRS using
HTML and JavaScript that helps to quickly find and inspect variable occurrences
through colors and highlighting (not visible here on paper).

The HTML and JavaScript code is generated directly from the RMRS XML
document using an XSLT stylesheet. The LATEX code of the AVM-/MRS-like visu-
alizations in our thesis is generated analogously via a XSLT. Although in RMRS,
the concept of character position of a word in the original input text is crucial for
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identifying, combining11 and sorting the EPs, this property is omitted (for space
reason) in the AVM-like notation we will use from now on.

9.5 Integrated NLP Components

Table 9.1 lists the NLP components that have been integratedinto the Heart of
Gold so far, ordered by their suggested depth (middle table column), a parame-
ter assigned to each component’s default configuration setting that can be altered
according to specific configuration needs.

Component NLP Type Depth Languages Implementation

JTok tokenizer 10 de, en, it,. . . Java
ChaSen Japanese morph. 10 ja C
TnT statistical tagger 20 de, en,. . . C
Treetagger statistical tagger 20 en, de, es, it,. . . C
Chunkie stat. chunker 30 de, en,. . . C
ChunkieRMRS chunk RMRSes 35 de, en XSLT, SDL
LingPipe statistical NER 40 en, es,. . . Java
SDL sub-architectures . . . SDL/Java
Sleepy shallow parser 40 de OCaml
SProUT shallow NLP 40 de, el, en, ja,. . . Java
Corcy coref resolver 45 en Python
RASP shallow NLP 50 en C, Lisp
PET HPSG parser 100 de, el, en, ja,. . . C, C++, Lisp
RMRSmerge RMRS merger 110 de, en,. . . XSLT, SDL

Table 9.1: Integrated NLP components

In the following sections, we will describe only the most important most and
interesting components to give a representative overview,ordered by their NLP
task type (roughly corresponding also to their suggested default depth).

9.5.1 Tokenization, Word and Sentence Segmentation

The main purpose of tokenizer components is to provide a common tokenization
for those modules that require it. Normally, Unicode character counts (or positions)
are taken as the least common unit, as they are independent ofdifferent concepts of
what constitutes a token. The character counts also form thebasis for combining
standoff and RMRS annotations. Because tokenization is more or less an auxiliary
task and only used by a few components, there is no special conversion to the
RMRS format as it exists for most other NLP tasks.

11In Section 9.5.7.5, we will show how multiple RMRSes generated by different components can
be combined.
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9.5.1.1 JTokModule

JTok, developed at DFKI by Jörg Steffen, is used for the purpose of tokenization
and sentence boundary recognition for European languages.Currently, English,
German and Italian are supported; it can be easily adapted tonew languages by
copying and adapting XML configuration files.

JTok is implemented in Java and integrated directly as Java module in Heart
of Gold, inheriting from theModule class. The first part of the configuration file
contains 4 configuration settings that are obligatory for all modules,name (which
is used also as identifier for the produced XML output annotations), depth (in-
teger), ISO 639 two-letterlanguage code indicating the language the configured
module supports (for each language, a separate configuration file is required), and
therootelement name of the XML output annotation.

The remaining configuration settings are specific for JTok, and in this case only
consist of the path to the JToK configuration file (the configuration per language
specifying resourcesetccoming with the JTok distribution).

A sample configuration file for English (conf/en/jtok.cfg) follows.

module.name=JTok

module.depth=10

module.language=en

module.rootelement=jtok

#

# config file for JTok API

jtok.configfile=components/jtok/conf/jtok.cfg

In Heart of Gold, the native XML format that JTok generates isemployed. The
output DTD (DTD Appendix, page 289) reflects the three structuring elements that
are recognized by JTok, paragraphs (e.g. line breaks from original input text), text
units (e.g. sentences), and tokens (words, numbers, punctuation).

9.5.1.2 ChasenModule

ChaSen (Asahara and Matsumoto, 2000) (default depth: 10) performs morpholog-
ical analysis and word boundary recognition for Japanese. The module runs the
open source ChaSen system and, through the flexible ChaSen output configuration
mechanism, the output format of ChasenModule directly conforms to the PET in-
put chart DTD (cf. DTD Appendix on page 292 and description ofthe PetModule
in Section 9.5.5).

ChasenModule is a good example for compatibility problems of external com-
ponents that are solved in the module code that wraps an external NLP component.
In this case, the problem is caused by the inability of ChaSento return Unicode
character positions that are required for standoff annotation combination. By con-
vention, the start and end character positions for each token are contained in the
CSTART and CEND attributes that refer to the original input text. Unicode is



204 CHAPTER 9. HEART OF GOLD

Figure 9.10: Output of ChasenModule in PET input chart format

the only sensible character set for multilingual frameworks such as Heart of Gold
because each character has equal length (although different encodings exist).

While Heart of Gold expects these character positions to be Unicode character
counts, ChaSen (at least in the version integrated in Heart of Gold) outputs only
byte offsets related to the EUC-JP 8 bit multi-byte encodingit uses internally, even
if Heart of Gold takes over the transcoding between EUC-JP and Unicode. There-
fore, the ChasenModule contains code that corrects the character counts according
to knowledge about the encodings available from standard Java Unicode classes.

9.5.2 Part-of-Speech Tagging

Statistical Part-of-Speech (PoS) taggers are used in deep-shallow integration (1) to
give lexical items in the deep lexicon a higher priority on the deep parser’s chart
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that correspond to the most probable reading determined by the statistical tagger,
(2) to guess the word class of unknown words (if they cannot bedetermined as
named entity by a named entity recognition component), using a generic lexicon
entry inserted into the deep parser’s chart.

The strategy employed in the Heart of Gold implementation isthe same as de-
scribed in Chapter 8 for WHITEBOARD except that the new PET input chart XML
format is used (cf. description in Section 9.5.5 below). In particular, similarly to
WHITEBOARD, it is possible to insert multiple analyses (readings) for aword with
priorities (e.g. taken from the trained model) into the deepparser’s chart where
the parser can resolve these ambiguities with the help of thedeep grammar. We
present a single example for an integrated tagger, TnT, here. Further taggers have
been integrated as will be listed in Section 9.5.6.

9.5.2.1 TnTModule

TnT is a statistical, trigram-based part-of-speech tagger(Brants, 2000). Statistical
models have been trained for German on NEGRA (Skutet al., 1998), and for En-
glish on the Penn Treebank (Marcuset al., 1994). Further languages could be and
have already been trained, e.g. Portuguese by a group at the University of Lisbon,
and also additional corpora for English and German.

TnTModule (default depth: 20) sends text tokenized using the JTokModule to
TnT and converts the native (non-XML) output of TnT to both anisomorphic XML
format and the PET input chart format (Section 9.5.5.2). TheTnTModule DTD is
shown in the DTD Appendix (page 289).

Configuration file conf/en/tnt.cfg for English with Penn Treebank model:

module.name=TnT

module.depth=20

module.language=en

module.rootelement=tnt

#

# path to tnt startscript

tnt.script=components/tnt/scripts/tnt.sh

# command line options for tnt

tnt.options=-z20 -v0 models/wsj

# input encoding

tnt.inputencoding=ISO-8859-1

# output encoding

tnt.outputencoding=ISO-8859-1

# name of generated PET input chart XML annotation

tnt.piXMLoutputannotation=TnTpiXML

#

# root element name of PET input chart XML annotation

tnt.piXMLrootelement=pet-input-chart

An example of the TnT output XMLified by TnTModule follows. Anex-
ample of the additionally generated PET input chart format is illustrated in Sec-
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tion 9.5.5.2.

<tnt>

<metadata>...</metadata>

<tokens>

<w str="How" cstart="0" cend="2">

<p pos="WRB" p="1.000000e+00"/>

</w>

<w str="cold" cstart="4" cend="7">

<p pos="NN" p="6.513877e-01"/>

<p pos="JJ" p="3.486123e-01"/>

</w>

<w str="should" cstart="9" cend="14">

<p pos="MD" p="1.000000e+00"/>

</w>

<w str="a" cstart="16" cend="16">

<p pos="DT" p="1.000000e+00"/>

</w>

<w str="refrigerator" cstart="18" cend="29">

<p pos="NN" p="1.000000e+00"/>

</w>

<w str="be" cstart="31" cend="32">

<p pos="VB" p="1.000000e+00"/>

</w>

<w str="?" cstart="33" cend="33">

<p pos="." p="1.000000e+00"/>

</w>

</tokens>

</tnt>

9.5.3 Chunking and Shallow Parsing

9.5.3.1 ChunkieModule

Chunkie (Skut and Brants, 1998) is a statistical, trigram-based chunker built upon
TnT. It potentially can deliver recursive chunks (in contrast to most other chun-
kers). ChunkieModule (default depth: 30) uses JTok tokenization as input and re-
turns XML output of Chunkie chunk analyses including the selected PoS tags from
TnT. As for TnT, models are available e.g. for English (Penn Treebank; Marcuset
al. 1994) and German (NEGRA; Skutet al.1998).

The output DTD of the module is specified in the DTD Appendix onpage 290,
an example can be found on page 71.

RMRS construction of Chunkie output is implemented in the separate Chunkie-
RMRS module we will describe later in Section 9.5.7.4. The ChunkieRMRS mod-
ule also enriches Chunkie output with morphological information from SProUT
analyses.

The ChunkieRMRS annotation can be used as fall-back annotation in case deep
parsing fails, but Chunkie output is not fed into the deep parser because of partial
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chunk incompatibilities with the HPSG grammars (cf. also Section 8.7).

9.5.3.2 RaspModule

RASP is a robust statistical parser for English developed inC and LISP on the basis
of the ANLT system (Briscoe and Carroll, 2002). RASP delivers RMRS output of
medium NLP depth, including (partial) predicate-argumentstructure. RASP uses
its own tokenization, morphology and named entity recognition, thus is employed
in the Heart of Gold integration as a black box.

RASP has an integrated, optional RMRS output facility. RaspModule (default
depth: 50) uses this method to generate and forward the RMRS structures that are
merely augmented with<metadata> information by the wrapper code.

As we illustrate for the sentence ‘John gave Mary the book’ inFigure 9.11,
RASP correctly assigns predicate-argument structure, which is also why RASP is
a good shallow fall-back component in case deep parsing fails.
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Figure 9.11: RASP analysis of ‘John gave Mary the book’

9.5.4 Named Entity Recognition and Information Extraction

9.5.4.1 SproutModule

The SProUT system (Drożdżyńskiet al., 2004), a flexible multilingual, shallow
processing component that combines finite state and typed feature structure tech-
nology and includes morphologic resources and named entitygrammars for ten
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languages, as described in Chapter 7, is integrated as a Heart of Gold module as
well.

SProUT plays an important role in the multilingual deep-shallow integration
scenarios, mainly for general and domain-specific named entity recognition for (1)
preparation of generic named entity lexical entries for thedeep parser through the
PET input chart format (cf. Section 9.5.5.2) and (2) information extraction through
generating finer-grained structured representations of recognized named entities
than are provided by the general-purpose HPSG grammar, and passing them by as
additional RMRS structures to the applications.

As SProUT is implemented in Java, SproutModule (default depth: 40) runs an
instance of theSProUT interpreter via theSProUTruntime API with a configured
grammar and other resources within the same virtual machine. Through the flexible
configuration,SProUTcan also be used in Heart of Gold for other purposes than
named entity recognition, cf. also Section 9.5.7.4 for an example.

Further applications for which already appropriate grammars and resources ex-
ist are e.g. morphological analysis for various languages including compound seg-
mentation for German and Dutch, sentence boundary recognition, anaphora resolu-
tion, shallow parsing and domain-specific template-based information extraction.
Thanks to the flexible formalism and the modular framework, further NLP tasks
could be implemented as well.

Automatic stylesheet generation at compile time A special feature and advan-
tage of theSProUT integration in Heart of Gold is the automatic generation of
transformation stylesheets from the declaratively definedoutput specifications of
SProUTgrammars we will describe in this section. This feature willalso play an
important role for the ontology integration we will describe in Section 9.7.

While many shallow named entity recognition (NER) systems come with a
small, fixed and hard-wired set of recognized named entity types (e.g. those defined
by MUC-6; Grishman and Sundheim 1996),SProUTallows to flexibly add new or
more fine-grained output structures.

The output of a named entity grammar, a sequence of matched regular expres-
sions over typed feature structures, is itself a typed feature structure (details and
examples are explained in Chapter 7). As the output types have to be declared in
the associated type hierarchy of the named entity grammars,it is possible to use
this information in order to generate XSLT code at compile time. We have im-
plemented an algorithm that generates XSLT mapping code from the TDL type
definitions.

The generated stylesheets map at runtime the XML output of theSProUTrun-
time system to (1) generic HPSG lexicon entries via the PET input chart format
(Section 9.5.5.2) for use in the deep parser, and to (2) RMRS structures with more
structured and fine-grained, information extraction-likeNER analyses that comple-
ment the deep sentence analysis with additional information that might be relevant
for applications.
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In the rest of this section, we will discuss an example of how this mapping
works. The code generator is implemented in Java12 and can be called via the
Heart of Goldant build targetgenerate xsl. It takes (per language) two files as
input, the type hierarchy of theSProUTnamed entity grammar to map, efficiently
encoded in a binary representation produced byflop, and a mapping table that
mapsSProUTnamed entity type names from theSProUTtype hierarchy to generic
HPSG lexicon types.

Generation of the RMRS transformation stylesheet RMRS relation names are
constructed from theSProUT feature names plusrel suffix. The entries of the
mappings file are of the form

typeSProUT = typeHPSG

SProUTtypes not mentioned in the mappings are not mapped by the generated
stylesheets. If aSProUTNE type is to be translated to RMRS, but not to the PET
input chart format, then the RHS of the mapping must be left empty: Here is an
example of such a mapping table for English; the German, Greek and Japanese
versions are very similar.

ne-person=generic_name

ne-location=generic_name

ne-organization=generic_name

ne-product=generic_name

ne-address=generic_email

numex=generic_number

money=generic_money

duration=generic_time

span=generic_time

timex=generic_time

point=generic_time

percentage=generic_number

ne-sciencearea=generic_name

ne-prize=generic_name

ne-occupation=generic_name

ne-tech=generic_name

ne-technology=generic_name

ne-project=generic_name

ne-event=generic_name

ne-term=generic_mass_count_noun

An output type (part of theSProUTnamed entity grammars) is defined in TDL
as follows, additional attributes are inserted via inheritance from theenamexsu-
pertype and further supertypes.

12Classde.dfki.lt.hog.util.SproutRmrsTransformerGenerator
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ne-product := enamex & [PRODUCT-NAME string,

PRODUCT-MODEL string,

PRODUCT-VARIANT string].

whereenamex has, besides the SURFACE, CSTART and CEND attributes
for original text string, character start and end positions, also VARIANT and DE-
SCRIPTOR string-valued attributes for alternatives and description text.

All these attribute values are, if they contain informationmore specific than
their default values, mapped to corresponding RMRS relations connected with the
identified named entity by the generated XSLT code.

The generated RMRS transformation stylesheets comprise e.g. 8700 lines of
XSLT code (essentially a big case statement over the 20 different named entity
output types of theSProUT grammars) for the English NER grammar enhanced
with LT WORLD ontology information (Section 9.7), and approx. 4600 linesfor
the standard NER grammar.

A fragment of the generated RMRS transformation code is exemplified in the
XSLT Appendix on page 295.

Generation of the PET input chart transformation stylesheet A separate style-
sheet is generated at compile time for producing PET input chart entries for rec-
ognized named entities, and mapped to generic HPSG types fornamed entities
(right hand side of the mapping table above), including spaninformation. In the
current mapping, features such as PRODUCT-NAME are omitted, as they have
no correspondence in the HPSG grammar. In principle, also richer information
could be transported by means of the flexible feature-path-value mechanism (cf.
Section 9.5.5.2).

Transformation at runtime To illustrate the transformed analyses, we show a
simple example here for the sentence ‘The first user liked theNokia 6810.’ where
SProUTrecognizes a named entity ‘Nokia 6810’. A more comprehensive example
employing LT WORLD ontology instance information will be shown in Section 9.7.
TheSProUToutput (’SProUTput’) DTD is defined in Chapter 7.

The following output is produced bySProUTfor the sample sentence.

<SPROUTPUT>

<DISJ id="DI0">

<MATCHINFO id="MI0" rule="en_cell_phone_gazetteer"

cstart="25" cend="34">

<FS type="ne-product">

<F name="VARIANT">

<FS type="*top*"/>

</F>

<F name="SURFACE">

<FS type="string"/>

</F>
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<F name="CSTART">

<FS type="string"/>

</F>

<F name="CEND">

<FS type="string"/>

</F>

<F name="PREPOSITIONS">

<FS type="*list*"/>

</F>

<F name="DESCRIPTOR">

<FS type="string"/>

</F>

<F name="NECEND">

<FS type="string"/>

</F>

<F name="NECSTART">

<FS type="string"/>

</F>

<F name="PRODUCT-VARIANT">

<FS type="string"/>

</F>

<F name="PRODUCT-MODEL">

<FS type="string"/>

</F>

<F name="PRODUCT-NAME">

<FS type="&quot;Nokia 6810&quot;"/>

</F>

</FS>

</MATCHINFO>

</DISJ>

</SPROUTPUT>

The automatically generated stylesheeten types-sprout2rmrs.xsl men-
tioned in the SproutModule configuration file below transforms theSProUToutput
into the following RMRS.

<rmrs-list>

<rmrs cfrom="25" cto="34" reading="0" surface="Nokia 6810">

<label vid="100"/>

<ep cfrom="25" cto="34" surface="Nokia 6810">

<gpred>ne-product_rel</gpred>

<label vid="100"/>

<var sort="x" vid="100"/>

</ep>

<rarg>

<label vid="100"/>

<rargname>CARG</rargname>

<constant>Nokia 6810</constant>

</rarg>
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<ep cfrom="25" cto="34" surface="Nokia 6810">

<gpred>product-name_rel</gpred>

<label vid="110"/>

<var sort="x" vid="110"/>

</ep>

<rarg>

<label vid="110"/>

<rargname>CARG</rargname>

<constant>Nokia 6810</constant>

</rarg>

<rarg>

<label vid="110"/>

<rargname>ARG1</rargname>

<var sort="x" vid="100"/>

</rarg>

</rmrs>

</rmrs-list>

The automatically generated stylesheeten types-sprout2pic.xsl mentio-
ned in the SproutModule configuration file below transforms the SProUT output
into the following PET input chart entry.

<pet-input-chart>

<w id="SPR1.1" cstart="25" cend="34" constant="yes" prio="0.5">

<surface>Nokia 6810</surface>

<typeinfo id="TIN1.1" baseform="no">

<stem>$generic_name</stem>

</typeinfo>

</w>

</pet-input-chart>

The wholeSProUT runtime subsystem for use in the Heart of Gold Sprout-
Module is generated from theSProUTsources using a single build targetsprout-

2hog that is part of the automatic build system forSProUT (Schäfer and Beck,
2006) we will describe in Section 7.8. The generated subsystem comprises the run-
time jar, four named entity grammars for Greek, English, German and Japanese,
and eight ChunkieRMRS cascade grammars for German and English (cf. Sec-
tion 9.5.7.4). AdditionalSProUT resources can be easily included by extending
thesprout2hog target.

The following configuration file conf/en/sprout.cfg contains the SproutModule
configuration for the English named entity grammar including the automatically
generated mapping stylesheets.

module.name=Sprout

module.depth=40

module.language=en

module.rootelement=SPROUTPUT

#
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# config file for SProUT runtime API

sprout.configfile=components/sprout/Project/de.cfg

#

# stylesheet for transformation of FS-XML to RMRS

sprout.stylesheet=xsl/rmrs/de_types-sprout2rmrs.xsl

#

# feature path to output structure

# if undefined, the root FS (including IN and OUT) is returned

# feature separator in the path can be . or | (as in TFS API)

sprout.outputpath=

#

# name of raw text input annotation for Sprout

sprout.inputtextannotation=rawtext

#

# name of feature structure output annotation

sprout.outputfsannotation=SproutFS

#

# --- The following configurations are for PET input chart mode only

# The subsequent settings are ignored if sprout.output4pic is unset

#

# name of output annotation for PET input chart (pic) format

# no pic annotation is generated if this value is omitted

sprout.output4pic=SProUTpiXML

#

# stylesheet for transformation of Sproutput to PET XML input chart

# (ignored if sprout.output4pic is not set)

sprout.stylesheet4pic=xsl/pic/de_types-sprout2pixml.xsl

#

# --- End of configurations for PET input chart mode ---

UsingSProUT Morphology analyses In this section, we describe howSProUT
resources other than the above described named entity grammars can be utilized in
Heart of Gold through the generic SproutModule. We take morphology as example.

Although the morphological analysis ofSProUT is utilized in most of the ex-
isting named entity grammars, the morphological analysis feature structures are
normally not copied to the output, as only matched named entities should be part
of the output structure of a named entity grammar.

Using a singleSProUT(XTDL ) grammar rule, it is possible to make the mor-
phology analyses also available in Heart of Gold13:

morphcopy :> morph & #1 -> #1.

As morph inherits fromtoken, the output also includes tokenization informa-
tion. We exemplify the analysis for the input sentence ‘Wie geht es dem Papst?’,
transcribed to AVM notation below.

13Alternatively, copying morphology information to the output can also be configured in the
SProUTgrammar-specific configuration file as an interpreter option.
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It has to be noted that the morphology output is not disambiguated, but re-
flects the complete content of theSProUTmorphology and lexicon component for
German, in this case based on MMORPH (Petitpierre and Russell, 1995).
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Similarly, output of otherSProUTcomponents such as coreference matcher or
compound segmentation could be made available in Heart of Gold, using Sprout-
Module plus an appropriate configuration file for aSProUTgrammar instance.

9.5.4.2 LingPipeModule

LingPipe14 is a statistical named entity recognition system includingcoreference
resolution with existing trained models for various languages (incl. English, Ger-
man, Spanish) and special domains such as genomes. LingPipeModule (default

14Carpenter (2005),http://www.alias-i.com/lingpipe/
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depth: 40) runs the original LingPipe Java distribution that is available as open
source code, and transforms the native MUC-like XML output format (cf. Chap-
ter 7) into both the RMRS and the PET input chart format using XSLT available
via the Heart of GoldTransformationService. This is similar to SproutMod-
ule, but instead of automatically generated transformation stylesheets, simple fixed
stylesheets for the few MUC named entity types are provided.

9.5.5 Deep Parsing: The PetModule

9.5.5.1 Introduction

PET is a highly efficient deep parser for HPSG grammars. It hasbeen developed
in C and C++ at Saarland University and DFKI (Callmeier, 2000). In addition
to the version that has been used in the WHITEBOARD integration, PET has been
augmented with the RMRS output module from LKB (Copestake, 2002) jointly
developed by Stephan Oepen, Ann Copestake, Dan Flickinger,Ulrich Callmeier
and Bernd Kiefer. Through this extension, PET can natively output RMRS markup.

Furthermore, Bernd Kiefer added the PET input chart XML parser for incorpo-
rating output of shallow preprocessors that we will describe below. The PET input
chart replaces the WHAT-based programming interface described in Chapter 8,
providing more flexibility by moving the annotation transformation out of the PET
system into the architecture. In this sense, PET becomes an NLP component as the
other components in Heart of Gold, with XML input and output interfaces.

Because one of the envisaged improvements of Heart of Gold over WHITE-
BOARD was to add multilinguality support, the whole module code that wraps
the core PET component in the architecture has been made highly configurable.
Similar to other modules such as SproutModule, configuration is separated into
two steps. One is the configuration for the resource (i.e., the grammar) with de-
pending settings for the parser, and one is configuration forthe module instance,
including pre- and post-processing stylesheets, encodingsettings, and the link to
the resource-specific configuration file.

Following is a sample configuration for PetModule with the English Resource
Grammar (ERG; Flickinger 2002). Dependencies of TnT andSProUT prepro-
cessing via PET input chart are configured as well as RMRS output (maximally 3
readings sorted according to a parse selection model) including fragments (in case
deep parsing did not find a fully spanning analysis) that are sorted according to their
lengths and cut to the maximally 5 RMRSes with the longest span. Configuration
details are explained as comments in the following example.

module.name=PET

module.depth=100

module.language=en

module.rootelement=pet

#

# path to cheap binary
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pet.binary=components/pet/bin/cheap

#

# additional library search path for cheap

pet.libs=components/pet/lib

#

# working directory (where the grammar is)

pet.grammardir=components/pet/german

#

# prefix for grammar file

pet.grammarprefix=german

#

# command line options for cheap

pet.options=-tok=xml_counts -mrs=xml -default-les -limit=70000 \

-results=3 -packing -partial

#

# character set encoding for PET input

pet.inputencoding=UTF-8

#

# character set encoding for PET output

pet.outputencoding=UTF-8

#

# input annotation(s), comma-separated

# use either "rawtext" or PET XML input chart (e.g. LingPipepiXML)

# formats in accordance with pet.options

pet.inputannotation=TnTpiXML,SProUTpiXML

#

# stylesheet for XML input chart combination

pet.combinestylesheet=xsl/pic/combinepixml.xsl

#

# stylesheet for preprocessing the PET input chart

# There will be no transformation/filtering if this option is unset

pet.preprocstylesheet=xsl/pic/remove-subspan-items.xsl

#

# stylesheet for post-processing (filtering) of partial RMRSes

# return only the n longest fragments

# return all (=no stylesheet application) if unset

pet.postprocstylesheet=xsl/rmrs/extract-longest-fragment.xsl

#

# stylesheet parameter: number of fragments to return

# return all (=no stylesheet application) if unset

pet.postprocfragments=5

Besides ERG, many other available HPSG grammars have been integrated
through specific configurations, most of them during the DEEPTHOUGHT project,
e.g. German (Crysmann, 2003), Jacy for Japanese (Siegel andBender, 2002),
Greek (Kordoni and Neu, 2004) and Norwegian (Hellanet al., 2004).
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9.5.5.2 PET input chart format: interface between shallow preprocessing
and deep parsing

The PET input chart XML format (cf. DTD Appendix on page 292) has been de-
signed and implemented to provide a generic input format forall kinds of prepro-
cessing components that could contribute to useful information for deep parsing.
This includes not only part-of-speech tagging (with rankedreadings to guide the
deep parser faster to probable analyses) and named entity recognition as already re-
alized in the WHITEBOARD integration, but also larger, arbitrary structures based
on multiple tokens, also overlapping and in parallel.

Introduction of information from shallow preprocessing into the deep parser’s
chart is realized by specifying the input items including a character position (or
count). Several components can add items with concurrent character spans, pro-
vided that the underlying ‘characterization’ is identical, as already discussed above.
This corresponds to standoff markup unified in a single annotation, i.e., the input
chart must consist of a single XML document. There is a preprocessing XSLT
stylesheet shipped with Heart of Gold that concatenates multiple XML input chart
documents into a single one (see below).

In addition, the PET input chart format also supports ‘injection’ of feature val-
ues under arbitrary feature paths. Using these, it is possible to insert chunk, phrase
or subclause boundaries as well as morphological or other structured information
from outside into the HPSG grammar.

Following is a sample PET input chart for the sentence ‘Did Bernd Kiefer
present a paper at ACL 2003?’. This is one possibility to encode the input chart,
treating multi-word named entities as single, not further structured objects as it is
done by TntModule and SproutModule; a second one would be to introduce<ne>
tags referring to the<w> tokens for multi-token expressions such as named entities,
phrasesetc.

<?xml version="1.0"?>

<pet-input-chart>

<w id="TNT0" cstart="0" cend="2">

<surface>Did</surface>

<pos tag="VBD" prio="1.000000e+00"/>

</w>

<w id="TNT1" cstart="4" cend="8">

<surface>Bernd</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT2" cstart="10" cend="15">

<surface>Kiefer</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT3" cstart="17" cend="23">

<surface>present</surface>

<pos tag="VB" prio="6.187941e-01"/>

<pos tag="JJ" prio="2.305826e-01"/>
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<pos tag="VBP" prio="5.459771e-02"/>

<pos tag="RB" prio="5.275342e-02"/>

<pos tag="NN" prio="4.327213e-02"/>

</w>

<w id="TNT4" cstart="25" cend="25">

<surface>a</surface>

<pos tag="DT" prio="1.000000e+00"/>

</w>

<w id="TNT5" cstart="27" cend="31">

<surface>paper</surface>

<pos tag="NN" prio="1.000000e+00"/>

</w>

<w id="TNT6" cstart="33" cend="34">

<surface>at</surface>

<pos tag="IN" prio="1.000000e+00"/>

</w>

<w id="TNT7" cstart="36" cend="38">

<surface>ACL</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT8" cstart="40" cend="43">

<surface>2003</surface>

<pos tag="CD" prio="1.000000e+00"/>

<typeinfo id="TYI8" baseform="no">

<stem>$generic_number</stem>

</typeinfo>

</w>

<w id="TNT9" cstart="44" cend="44" constant="yes">

<surface>?</surface>

<pos tag="?" prio="1.0"/>

</w>

<w id="SPR2.1" cstart="4" cend="15" constant="yes" prio="0.5">

<surface>Bernd Kiefer</surface>

<typeinfo id="TIN2.1" baseform="no">

<stem>$generic_name</stem>

</typeinfo>

</w>

<w id="SPR3.1" cstart="36" cend="43" constant="yes" prio="0.5">

<surface>ACL 2003</surface>

<typeinfo id="TIN3.1" baseform="no">

<stem>$generic_name</stem>

</typeinfo>

</w>

</pet-input-chart>

The generated input chart consists of words tagged by TnT, concatenated (XML-
wise) with named entities recognized bySProUT, according to the PET config-
uration file shown above (configuration linepet.inputannotation). ’piXML’
stands for PET input chart XML. The stylesheet configured under pet.combine-
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stylesheet combines (XML-wise concatenates) arbitrarily many input annota-
tions specified by their annotation IDs. The stylesheet source can be found in the
XSLT Appendix on page 296.

In the above example, multiple information is given for the named entities
Bernd KieferandACL 2003, one from the tagger TnT (id attributesTNT1, TNT2,
TNT7 andTNT8), and one from the named entity componentSProUT, (idsSPR2.1
andSPR3.1). Resolution of the multiple information is left to the deepparser by
passing both to it via the XML input chart.

A further, optional preprocessing stylesheet may remove overlapping or con-
flicting readings, e.g. to override tags from the tagger thathave a reliable named
entity alternative. The decision which reading to eliminate could be based on con-
fidence values assigned by the producing component. The example stylesheet on
page 297 in the XSLT Appendix may illustrate how this can be done in XSLT.

The mapping to HPSG types is part of the input chart (viz. the stylesheets that
generate them), with the exception of part-of-speech tags.The mapping between
PoS tags and corresponding HPSG types has to be part of the PETconfiguration.
Here is an example for a mapping from TnT PoS tag names (left) to ERG PoS
types (right).

posmapping :=

JJ $generic_adj

JJR $generic_adj_compar

JJS $generic_adj_superl

NN $generic_sg_noun

NN $generic_mass_noun

NNS $generic_pl_noun

NNPS $generic_pl_noun

NNP $generic_name

FW $generic_mass_noun

RB $generic_adverb

VB $generic_trans_verb_bse

VBD $generic_trans_verb_past

VBG $generic_trans_verb_prp

VBN $generic_trans_verb_psp

VBP $generic_trans_verb_presn3sg

VBZ $generic_trans_verb_pres3sg.

All other mappings, as shown e.g. for theSProUTintegration in Section 9.5.4.1,
should take place when the PET input chart format is generated, e.g. in mapping
stylesheets or auxiliary mapping tables read by the stylesheets.

The benefits of the shallow preprocessing just described in terms of increased
coverage will be discussed in the evaluation section.

There is ongoing research and development under the umbrella of the DELPH-
IN collaboration (cf. Section 9.12) with the goal to come up with a uniform, gener-
alized preprocessor framework for both the LKB and the PET system. The reason
for this standardization effort is that resource and application development would
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benefit from providing identical deep-shallow integrationbehavior in both devel-
opment (LKB) and runtime (PET/Heart of Gold) framework, which is currently not
the case as LKB currently comes with a different shallow preprocessing interface
(SPPP, cf. Section 9.11.9).

The idea is that both HPSG parsing frameworks should share a common XML
format, briefly sketched in Waldronet al. (2006) that is based on explicit lattice
as in the morpho-syntactic annotation format (MAF; Clément and Villemonte de
la Clergerie 2005), and also allows for typed feature structure input instead of the
set of feature path-value ’injections’ into chart elementsprovided by the PET input
chart. This would also include the input of RMRS XML which, however, can be
represented as TFS and is thus only a syntactic variant.

The envisaged new format is largely just additional syntactic sugar as compared
to the PET input chart format, but with the additional benefitthat it could become
input to both LKB and PET.

Thanks to the felicitous design of the PET system, PetModuleis largely inde-
pendent of the statistical parse ranking, automatically acquired lexicon extensions,
the TSDB test interface (Oepen, 2001) and extensions for performance improve-
ments such as packing. Most of these features can be configured as part of the
command line options or the PET configuration file(s). As a consequence, almost
all of these features can hence also be used when PET is embedded in a Heart of
Gold-based application.

We finally exemplify RMRS output for the sentence ‘Did Bernd Kiefer present
a paper at ACL 2003?’ in Figure 9.12, returned by the hybrid analysis through
PetModule.

We see that both named entities occurring in the sentence, each consisting of
two words, are treated as singlenamedrels here. Later, we will see examples
of how these EPs can be enriched with further structured output from aSProUT
named entity grammar augmented with ontology information (Section 9.7).

9.5.5.3 Pre- and Post-processing Stylesheets

A very flexible mechanism in PetModule (also shown in the above configuration
example) is the configurable pre- and post-processing stylesheet option. A prepro-
cessing stylesheet can be used to introduce additional knowledge about resources
or components (or configuration-related combinations thereof) and their specific
integration behavior. It is e.g. possible to filter or re-rank conflicting chart ele-
ments to reduce ambiguity or correct predictable errors in components based on
input context. An example has already been presented above for the case of filter-
ing unwanted overlapping analyses from different components.

PET can also output RMRS fragments in case no full parse couldbe com-
puted for the whole input sentence. Such partial output can be handled in the
post-processing stylesheet. This is e.g. useful to sort andfilter fragments in order
to reduce the (potentially huge) output size and restrict itto the mostn promising
ones. These could by an application be treated as if they werefull parses and thus
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Figure 9.12: RMRS generated by hybrid parsing using PetModule

provide a further important means to increase robustness ofdeep parsing. A sim-
ple implementation of such a fragment filter is shown in the XSLT Appendix on
page 298.

9.5.6 Further Integrated NLP Components

There are further integrated NLP components for which Heartof Gold module
classes have been implemented. We will not describe them here in detail as they
are currently not so relevant for deep-shallow integration, and similar to other
described modules. Details on DTDs and configuration can be found in Schäfer
(2005).

PicModule (default depth: 10)
PicModule is a very simple module that generates Pet Input Chart format (Sec-
tion 9.5.5) from raw input text. It has been developed for theintegration of the
Modern Greek named entity grammar (SProUT) with PET. As there was no PoS
tagger for Modern Greek, a module had to be developed that generates the in-
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put chart from raw text in order to provide XML input for thosetokens that are
no named entities (and that are therefore omitted in theSProUT system output).
However, thanks to Unicode, the module is independent of Greek and could also
be used for other languages.

TreeTaggerModule (default depth: 20)
TreeTagger (Schmid, 1994) is a statistical PoS tagger with supported language re-
sources for German, English, Spanish, Italian (others could be trained). In Heart
of Gold, it is primarily used as tagger for Sleepy (see below).

CorcyModule (default depth: 45)
Corcy is a coreference resolver for English implemented in Python byÖzgür Demir
on the basis of a paper of Cardie and Wagstaff (1999). Corcy uses a heuristic
clustering algorithm to determine coreference relationships. It uses TnT, Chunkie
and WordNet (Milleret al., 1993). Both LingPipe andSProUT provide further
algorithms for coreference resolution.

SleepyModule (default depth: 50)
Sleepy (Dubey and Keller, 2003) is a probabilistic shallow parser for German im-
plemented in OCaml. SleepyModule uses output of the TreeTaggerModule.

9.5.7 Sub-Architectures with the Generic SdlModule

9.5.7.1 Motivation

The SDL module enhances Heart of Gold with a compilable NLP module control
flow for sub-architectures, i.e., enabling declarative specification of modules that
are composed of other modules. An application are e.g. cascades of (shallow) NLP
modules and XSL transformations.

Although the described mainly sequential control flow approach in Heart of
Gold for NLP modules by defining a depth and canonical processing order based
upon, augmented with potentially multiple input and multiple output annotations in
each processing step, was flexible enough for deep-shallow integrations for many
languages, it turned out that some envisaged, RMRS-relatedshallow processing
applications required additional features such as loops and parallelism – which
SDL supports.

SDL (System Description Language) has been developed independently of
Heart of Gold by Krieger (2003). SDL generates Java code for declaratively de-
fined architectures of NLP systems obeying a class interfaceimposed by the SDL
framework. The initial intention was to be able to declaratively define cascaded
SProUTgrammars, e.g. for shallow chunk parsing.

In this section, we briefly introduce SDL, describe how the generic SdlModule
has been integrated to provide the possibility to define sub-architectures for Heart
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of Gold, and finally present two implemented instances, namely RMRS construc-
tion from shallow chunks, and XSLT cascades for combinationof multiple RMRS
annotations from different modules.

9.5.7.2 SDL

The idea of SDL (Krieger, 2003) is to declaratively specify aflow of information
(input and output) between NLP modules or, more generally, software modules.
Together, these modules form asystem(or architecture) with an overall input and
output that is compiled into a single Java class definition15. To implement a con-
crete system, the modules need to fulfill a Java interface, with basic operations for
setting input, clearing internal state, starting computation, and setting output.

For maximal flexibility, mediators can be defined that are responsible for the
communication between modules.

The declarative specification of the architecture is a single expression consist-
ing of symbolic module names connected via operators, plus assignment of these
symbolic module names to Java class names, constructor arguments, and some
processing options.

The basic connecting operators that can be used to define an architecture are

• + (sequence): one module starts after the previous module has finished, tak-
ing its output as own input. The input of the sequence is inputto the first
module. Instead of a single module, each element in the sequence could also
be a complex description. A mediator can be defined optionally for encap-
sulating communication between different modules. The default mediator
seq() implements the identity function.

• | (parallelism): multiple modules or complex descriptions thereof are exe-
cuted in parallel in separate threads in Java. A mediator canbe defined that
collects the outputs and combines them into a single output object, which
then becomes the output of the whole expression. The defaultmediator
par() combines the objects in an array.

• ∗ (unrestricted iteration): a module or a complex description is executed in
a loop until its output remains unchanged. This can be used toimplement
a kind of ‘fixpoint computation’. A defaultfix() mediator is defined for
fixpoint computation that can also be replaced by a module-specific imple-
mentation.

Formally, a set of syntactically well-formed module descriptionsD in SDL is
inductively defined based on an initial setM of (atomic) modules as follows.

• m∈ M ⇒ m∈ D

15which is then in Heart of Gold executed as a separate, configurable sub-architecture embedded
in the generic SdlModule.
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• d1,d2 ∈ D ⇒ d1 +d2 ∈ D

• d1, . . . ,dk ∈ D ⇒ (| d1, . . . ,dk) ∈ D

• d ∈ D ⇒ (∗d) ∈ D

The prefix notation with parentheses is used for the| and∗ operator to avoid
grouping ambiguities.

Based on the inductively defined syntax for SDL descriptions, a precise formal
semantics can be assigned, using functional composition for the sequence operator,
Cartesian product for parallelism, and fixpoint semantics for the iteration operator.
Details as well as the full SDL BNF syntax are presented in Krieger (2003).

Compilation of an SDL description into a Java class is done bysimply call-
ing the compiler classde.dfki.lt.sdl.Sdl with the SDL description file name
as argument. The SDL compiler generates a Java source file which can then be
compiled into a Java class.

9.5.7.3 SdlModule (Heart of Gold)

SdlModule is a generic wrapper for SDL sub-architectures that can be plugged in
into the Heart of Gold. SdlModule acts as any other Heart of Gold module in that it
takes a (configurable) XML annotation as input, and returns an output annotation.

The name of the embedded SDL Java class containing the compiled architec-
ture description (previous section) is part of the SdlModule configuration (option
namesdlclassname). The class is compiled at compile time with the Heart of
Gold build tool16, and executed at runtime in the SdlModule code using Java re-
flection. The following code fragment is part of the generic SdlModule.

// initialize SDL cascade

this.sdlObject=(Modules)Class.forName(sdlclassname).newInstance();

Heart of Gold modules are different from SDL modules in that they support
more flexible runtime configuration, e.g. the module order isdetermined at runtime
and not at compile time as in SDL. Moreover, the explicit support of multiple input
and output annotations is less strict than foreseen in SDL.

This, and the fact that Heart of Gold had been augmented laterwith SdlMod-
ule, is the reason why SDL modules are not the same as Heart of Gold modules.
They do not need be, as there is also a facility that can be usedto easily include
any annotation computed by other Heart of Gold components inSDL modules via
XSLT and the below described HoG URI, i.e. without having to implement the
module as SDL module.

SDL modules have been defined so far forSProUTand XSLT –SProUTbe-
cause it is highly flexible and can be used to implement rule-based transformation

16Theant targetsdl executes the SDL compiler.
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and annotation enrichment based on typed feature structures with efficiently en-
coded type hierarchies, and XSLT because it is, as already motivated also in pre-
vious chapters, a powerful language for accessing, transforming and combining
XML NLP annotations.

Through SDL descriptions, complex sub-architectures for combining and en-
riching annotations can be defined declaratively, consisting of two base modules,
SDL SProUTmodule and SDL XSLT module.

SDL SProUT module The SDLSProUTmodules execute theSProUTruntime
system as does the Heart of Gold SproutModule. Although theyare contained in
different classes, the runtime system of the Heart of Gold SproutModule can share
its external resources with theSProUT SDL module. The configuration mecha-
nism for SProUT resources and its components is the same (single configuration
file in module description), e.g.

de.dfki.lt.sdl.sprout.SproutModulesTextDom("sproutproject.cfg")

Depending on theSProUT runtime project configuration, the module either
takes raw text or XML annotation in theSProUTput format as input and in any
case returns XMLSProUTput format (cf. DTD Appendix on page 288, example
on page 210).

SDL XSLT module This module applies a configurable XSLT stylesheet to the
input annotation and returns the transformation result.

Parameters can be passed to the stylesheet as part of the SDL description (ini-
tialization parameter for the SDL XSLT module), e.g.

de.dfki.lt.sdl.xslt.XsltModulesDomDom("stylesheet.xsl",

"param1", "value1")

In theEncapsulated variants (cf. next paragraph), the special parameter"aid"

(for annotation ID) can be passed as parameter to specify an annotation name
(Heart of Gold module name). TheTransformationService complements this
ID to a full HoG URI of the formhog://sid/acid/aid by adding session and
annotation collection ID from the current context. This mechanism provides a
powerful means to incorporate or combine other annotationsdynamically created
during the active Heart of Gold session by other components.Moreover, the SDL
XSLT module can be used to transform any XML format into the typed feature
structure XML format and vice versa (e.g. as first and last stage of an SDL cas-
cade).

AnnotationEncapsulator SDL modules forSProUTand XSLT use an auxiliary
objectAnnotationEncapsulator to encapsulate Heart of Gold annotation plus
metadata. The reason for this is that SDL components can takeonly a single object
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as input parameter, while access to metadata, session context and other facilities
provided by Heart of Gold is necessary in addition to access the annotation.

An example for important necessary information is the session and annotation
collection context as well as access to theTransformationService object using
the hog:// URI syntax described above and in Section 9.3.9. Both SdlModule
sample applications we will show later make use of this URI. Using this facility, it
is also possible to access annotation computed by components for which no SDL
integration exists, the only prerequisite is that they haveto be executed before the
SDL sub-architecture runs (e.g. Chunkie in the ChunkieRMRScascade example
below).

The AnnotationEncapsulator also provides abstraction from the annota-
tion representation format. Both theSProUTand the XSLT engines support XML
represented as DOM and as String. Subclasses of theModules implementations
support both variants, also mixed for input and output17.

de.dfki.lt.sdl.xslt.XsltModulesDomDomEncapsulated

de.dfki.lt.sdl.xslt.XsltModulesDomStringEncapsulated

de.dfki.lt.sdl.xslt.XsltModulesStringDomEncapsulated

de.dfki.lt.sdl.xslt.XsltModulesStringStringEncapsulated

However, because of the quite huge and relatively slow DOM model currently
used in standard Java, there is no significant difference in performance between
using DOM and XML as String representations. This may changewhen switching
to a different XSLT/XML implementation.

Besides these extensions, the encapsulated XSLT SDL modules for Heart of
Gold behave in the same way the normal, Heart of Gold-independent XSLT mod-
ules behave that we have implemented for SDL (in fact they inherit from them).

9.5.7.4 Example 1: Architecture of the Chunkie RMRS Cascade.

The idea of the Chunkie RMRS cascade developed in Franket al. (2004) is to
‘raise’ shallow, statistically computed chunks, combinedwith morphological in-
formation, to RMRS structures using an elegant, unification-based approach.

As motivated in Section 9.4, RMRS representations from shallow components
can be used as fall-back analyses in case deep parsing fails.However, the output
of a shallow chunker basically only extends to syntactically classifying a group of
words, as it is based on part-of-speech-tagged input. What is missing is functional
information that could be used to identify arguments e.g. ofa verb. However,
in case-marking languages such as German, and to a lesser extent also English,
morphological information can be used to disambiguate constituents.

The idea of theSProUT-XSLT cascade is to combine the chunk analyses from a
probabilistic chunker with morphological information using typed feature structure

17The SDLSProUTmodule variants additionally support also raw input text inaddition to anno-
tations which themselves correspond to the XML TFS input mode of SProUT.
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unification, i.e., a unification (or constraint)-based approach. Through agreement
constraints, chunks can be morphologically disambiguated, and thus exactly the
partial (underspecified) argument identification that is only expressible in RMRS
(in contrast to MRS) is performed.

UsingSProUT’s XTDL syntax, morphological agreement can be elegantly and
compactly stated using disjunction as is the following, very general projection prin-
ciple.

agr :> lex & [NODE [M-ID #mid]]*

( lex & [NODE [M-ID #mid], M-SYN [CAT nn, AGR #agr]] |

lex & [NODE [M-ID #mid], M-SYN [CAT adja, AGR #agr]] |

lex & [NODE [M-ID #mid], M-SYN [CAT art, AGR #agr]] )

lex & [NODE [M-ID #mid]]*

-> phrase & [NODE [ID #mid], M-SYN [AGR #agr]].

The example rule matches a sequence of lexical nodes, and establishes agree-
ment between a single daughter node (right hand side of the rule) and its mother
node (left hand side, indicated via theM- feature name prefix) for one of the three
categoriesnn, adja or art.

Heart of Gold NLP architecture instance

input sentence Chunkie

nodeid_cat
SProUT SProUT

rmrs_final
XSLT SProUT XSLT XSLT XSLT

rmrs_phrase reorderfs2rmrsxmlrmrs_lex

RMRS result

pos_filter
SProUT
rmrs_morph

 . . . other NLP components . . .

SDL−defined SProUT−XSLT cascade sub−architecture

Figure 9.13:SProUTXSLT cascade in a Heart of Gold architecture instance

The implemented cascade, displayed in Figure 9.14 (with Heart of Gold inte-
gration illustrated graphically in Figure 9.13), consistsof four SProUT grammar
instances with four interleaved XSLT transformations.

chunkiermrs = ( sprout_rmrs_morph + xslt_pos_filter + sprout_rmrs_lex

+ (* xslt_nodeid_cat + sprout_rmrs_phrase )

+ sprout_rmrs_final + xslt_fs2rmrsxml + xslt_reorder )

sprout_rmrs_morph = SproutModulesTextDom("rmrs-morph.cfg")

xslt_pos_filter = XsltModulesDomDom("posfilter.xsl", "aid", "Chunkie")

sprout_rmrs_lex = SproutModulesDomDom("rmrs-lex.cfg")

xslt_nodeid_cat = XsltModulesDomDom("nodeinfo.xsl", "aid", "Chunkie")

sprout_rmrs_phrase = SproutModulesDomDom("rmrs-phrase.cfg")

sprout_rmrs_final = SproutModulesdDomDom("rmrs-final.cfg")

xslt_fs2rmrsxml = XsltModulesDomDom("fs2rmrsxml.xsl")

xslt_reorder = XsltModulesDomString("reorderrmrsdtrs.xsl")

Figure 9.14: SDL definition of theSProUTXSLT cascade (chunkiermrs.sdl)
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The first step,sprout rmrs morph, runs theSProUT interpreter configured
for morphological analysis on the raw text input. The resultcontains the morphol-
ogy information in XML-encoded typed feature structures such as those shown on
page 214. These are input to step 2,xslt pos filter, which adds the Chunkie
category for each word within a chunk span. The XML-encoded chunk analyses are
accessed through the above described Heart of GoldAnnotationEncapsulator

andTransformationService from ChunkieModule (cf. Section 9.5.3.1), using
a Heart of Gold URI withaid="Chunkie".

The merged result is input to the nextSProUT cascade,sprout rmrs lex,
which maps PoS-specific encodings of agreement features to ageneral agreement
feature, and defines basic lexical semantics (relation, arg0) for the RMRS genera-
tion. Step 4,xslt nodeid cat, inserts node IDs (defined by spans), mother node
ID and category as imposed by the chunker.sprout rmrs phrase implements
RMRS semantics composition for NP and PP chunks. The recursive application of
phrase composition rules is defined by means of the SDL star operator.

Step 6,sprout rmrs final, collects the elements of the semantic sets of the
(chunk) daughters into the semantic sets of the phrase usingtheSProUTcollect
operator. Step 7 and 8 are auxiliary XSL transformations.xslt fs2rmrsxml

transforms the raw RMRS encoded as typed feature structures(for compatibility
with SProUT I/O) into the RMRS DTD format, and finallyxslt reorder rear-
ranges the RMRS elements as imposed by the RMRS DTD.

The chunkiermrs.sdl file shown in Figure 9.14 is compiled using the SDL com-
piler to a Java class. The following configuration file chunkiermrs.cfg for the Heart
of Gold module then mainly contains the name of the Java classwith the compiled
cascade code (configuration linesdl.classname).

module.name=ChunkieRmrs

module.depth=35

module.language=en

module.rootelement=chunkiermrs

#

# name of input annotation (raw text for first cascade/SProUT)

sdl.inputannotation=rawtext

# class name of compiled SDL definition

# (same as class name at beginning of .sdl file)

# can be compiled using ’ant sdl’

sdl.classname=de.dfki.lt.hog.sdlgen.chunkiermrs_en

To give a small example for German (the cascade is defined analogously to
English), we show Chunkie XML output below and the generatedChunkie RMRS
for the sentence ‘Florian liebt den grünen Frosch.’ in Figure 9.15.

<s id="S0" cstart="0" cend="30">

<w pos="NN" cstart="0" cend="6">Florian</w>

<w pos="VVFIN" cstart="8" cend="12">liebt</w>

<chunk cat="NP" cstart="14" cend="30">
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<w pos="ART" cstart="14" cend="16">den</w>

<w pos="ADJA" cstart="18" cend="23">grünen</w>

<w pos="NN" cstart="25" cend="30">Frosch</w>

</chunk>

</s>
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Figure 9.15: RMRS generated with ChunkieRMRS

9.5.7.5 Example 2: Architecture of the RMRSmerge Cascade

Another instance of an SDL-based sub-architecture is the RMRSmerge cascade for
combining two RMRSes. The cascade consists of 5 XSL transformations mainly
developed by Anette Frank. It merges a secondary RMRS annotation, typically
from a named entity recognition component such asSProUTor LingPipe, into a
configurable primary RMRS annotation, typically from RASP or PET, by using
character span information and adjusting RMRS variables.

The result is a single RMRS combining all information obtained from the input
RMRSes. The primary annotation is configured in the SdlModule configuration file
rmrsmerge.cfg, the secondary annotation is configurable asparameter in the SDL
definition rmrsmerge.sdl (parameter to the merging stylesheet).

The following examples illustrate merging of PET andSProUTRMRSes. We
define a depth of 110 to ensure that the RMRSmerge module is started after PET
(default depth 100) in the module configuration file rmrsmerge.cfg:

module.name=RmrsMerge

module.depth=110

module.language=en

module.rootelement=merged-rmrs

# ----- common modules settings end here -----

# name of input annotation (e.g. PET or RASP)
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sdl.inputannotation=PET

# class name of compiled SDL definition

# (same as class name at beginning of .sdl file)

# can be compiled using ’ant rmrsmerge’

sdl.classname=de.dfki.lt.hog.sdlgen.rmrsmerge

The SDL definition (rmrsmerge.sdl) for the XSLT cascade is

rmrsmerge = ( rmrs_ep_rargs2rels + adjust_nespans + merge_ne2petrasp +

rmrs_rels2ep_rargs + reorder_rmrs_dtrs )

rmrs_ep_rargs2rels = XsltModulesStringDom("rmrs_ep_rargs2rels.xsl")

adjust_nespans = XsltModulesDomDom("adjust_nespans.xsl","aid","Sprout")

merge_ne2petrasp = XsltModulesDomDom("merge-ne-to-rasp.xsl","aid","Sprout")

rmrs_rels2ep_rargs = XsltModulesDomDom("rmrs_rels2ep_rargs.xsl")

reorder_rmrs_dtrs = XsltModulesDomString("reorderrmrsdtrs.xsl",

"aid","xmltext")

Figure 9.16 depicts an example of a merged RMRS for the sentence ‘Did Bernd
Kiefer present a paper at ACL 2003?’. The first two rows ofRELS contain the deep
RMRS, the third row contains the fine-grained RMRS produced by SProUT for
the person name, the last row contains the RMRS for ‘ACL 2003’. TheSProUT
RMRSes are linked with the deep RMRS viax8 andx18.

9.6 Sample configuration scenarios for robust deep-shallow
integration

In this section, we describe three sample Heart of Gold session configurations of
robust deep-shallow integration, for German, English and Japanese. We do not list
the details for the respective module configurations, as these are roughly (modulo
language-specific variations) those we presented in the module descriptions above,
and differ only in minor details such as language code. In particular, the configured
module depths that determine the processing order are identical with the default
values shown in the previous sections. Similar configurations have been used for
the evaluations we will describe in Section 9.9.

9.6.1 Sample Configuration for German

The MoCoMan configuration file for the robust deep-shallow integration workflow
illustrated in Figure 9.17 contains the following lines (file conf/de/deepshallow.cfg):

de.dfki.lt.hog.modules.JTokModule=conf/de/jtok.cfg

de.dfki.lt.hog.modules.TnTModule=conf/de/tnt.cfg

de.dfki.lt.hog.modules.ChunkieModule=conf/de/chunkie.cfg

de.dfki.lt.hog.modules.SdlModule=conf/de/chunkiermrs.cfg

de.dfki.lt.hog.modules.SproutModule=conf/de/sprout.cfg

de.dfki.lt.hog.modules.PetModule=conf/de/pet.cfg

de.dfki.lt.hog.modules.SdlModule=conf/de/rmrsmerge.cfg
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Figure 9.16: RMRS merged using the RmrsMerge module

The raw input sentence text is sent to the JTok tokenizer (depth 10) andSProUT
(depth 40), becauseSProUT comes with its own tokenizer with a finer-grained
token classification. Chunkie (depth 30) and TnT (depth 20) use the tokenized
output from JTok as input, Chunkie output (proprietary XML format) is used as
secondary input for the ChunkieRMRS cascade (depth 35), which in turn consists
of 4 SProUT instances and 4 XSLT stylesheets as explained in Section 9.5.7.4.
The output of the cascade (RMRS format) can be used as shallowfall-back result
in case the deep parser fails to parse the input sentence.

TnT output as well as the recognized named entities fromSProUTare trans-
formed into the PET input chart format. The configuration which PET input charts
to merge (using the default combinepixml.xsl stylesheet from page 296) is part of
pet.cfg:
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pet.inputannotation=TnTpiXML,SProUTpiXML

PET has depth 100, and because the RMRS merging cascade module consisting
of the 5 XSLT stylesheets explained in Section 9.5.7.5 has depth 110, it can take
the RMRS outputs of PET andSProUTand generate a unified RMRS of them as
described in the previous section.

An application will then get either the merged PET/SProUTRMRS or as fall-
back the shallow ChunkieRMRS. Whether PET returns fragments or not, is a mat-
ter of configuration in pet.cfg. The overall system instancethus provides a much
more robust analysis than the deep parser alone and allows for a wide range of
possible combinations just as a matter of configuration (cf.also the evaluation
Section 9.9).

Figure 9.17: Sample configuration of deep-shallow integration for German
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9.6.2 Sample Configuration for English

The configuration for English (Figure 9.18) centered aroundthe English Resource
HPSG Grammar (ERG) is exactly analogous to German18, except that there is an
additional RASP module (depth 50) with native RMRS output that can be used as
shallow fall-back as alternative to ChunkieRMRS. As explained in Section 9.5.3.2,
RASP can, in contrast to ChunkieRMRS, deliver filled predicate-argument struc-
tures in the RMRS.

Figure 9.18: Sample configuration of deep-shallow integration for English

The configuration file is conf/en/deepshallow.cfg:

de.dfki.lt.hog.modules.JTokModule=conf/en/jtok.cfg

de.dfki.lt.hog.modules.TnTModule=conf/en/tnt.cfg

de.dfki.lt.hog.modules.ChunkieModule=conf/en/chunkie.cfg

de.dfki.lt.hog.modules.SdlModule=conf/en/chunkiermrs.cfg

de.dfki.lt.hog.modules.SproutModule=conf/en/sprout.cfg

18i.e. same modules and components with lingware for English instead of German.



9.6. DEEP-SHALLOW INTEGRATION SCENARIOS 235

de.dfki.lt.hog.modules.RaspModule=conf/en/rasp.cfg

de.dfki.lt.hog.modules.PetModule=conf/en/pet.cfg

de.dfki.lt.hog.modules.SdlModule=conf/en/rmrsmerge.cfg

9.6.3 Sample Configuration for Japanese

As there is no chunker, no shallow parser and a different tagger available for
Japanese, the configuration (Figure 9.19) is quite different from that for English
and German. However, as a Japanese named entity recognitiongrammar exists for
SProUT, theSProUTmodule can operate in the same way the English and German
configurations do, delivering PET input chart format through transformation.

ChaSen acts as segmentizer and tagger, and via configurationdirectly produces
the PET input chart format. As in the English and German configurations, ChaSen
output is concatenated withSProUT NER output before being parsed with PET
running the Jacy HPSG grammar (Siegel and Bender, 2002) using the following
line in the pet.cfg configuration file.

pet.inputannotation=ChaSen,SProUTpiXML

Figure 9.19: Sample configuration of deep-shallow integration for Japanese
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Similarly, the final module is the RMRSmerge cascade with depth 110, com-
bining SProUTand HPSG analyses. The session configuration file conf/ja/deep-
shallow.cfg for Japanese is defined as follows.

de.dfki.lt.hog.modules.ChasenModule=conf/ja/chasen.cfg

de.dfki.lt.hog.modules.SproutModule=conf/ja/sprout.cfg

de.dfki.lt.hog.modules.PetModule=conf/ja/pet.cfg

de.dfki.lt.hog.modules.SdlModule=conf/ja/rmrsmerge.cfg

As already mentioned in Section 9.5.1.2, character position recalculation pro-
vided by the ChasenModule is crucial for correct alignment and merging of the
different RMRSes from ChaSen,SProUTand PET.

9.7 Interfacing Ontologies

This section is dedicated to an extension of the Heart of Gold(in particular,SProUT)
lingware with ontology information, an important feature when aiming at high pre-
cision and recall in domain-specific texts and Semantic Web applications.

The extended lingware can be used to improve hybrid processing in Heart of
Gold by combining named entity recognition and informationextraction for recog-
nizing domain-specific names, terms and expressions with a general, open-domain
broad-coverage HPSG grammar.

We describe an implemented process we call OntoNERdIE (Sch¨afer, 2006b)
that maps OWL/RDF-encoded ontologies with large, dynamically maintained in-
stance data to named entity recognition (NER) and information extraction (IE) en-
gine resources, preserving hierarchical concept information and links back to the
ontology concepts and instances.

Applications of the approach are e.g. ontology-based hybrid question analysis
(described in Section 9.10.2 viz. Franket al.(2006)), automatic typed hyperlinking
of instances and concepts occurring in documents along the lines in (Busemannet
al., 2003), or other innovative applications that combine Semantic Web and lan-
guage technology.

In any case, the links from recognized instances back to entries in the ontology
can be used for advanced navigation and queries in the domainmodeled by the
ontology. The NER/IE resources are kept up-to-date and in sync with the growing
ontology (instance) data.

The approach has been implemented for the ontology on language technology
that works at the back-end of the LT WORLD web portal19 (Uszkoreitet al., 2003),
but could be easily adapted to other domains, ontologies andsystems, because it is
already almost fully automated.

LT WORLD is an ontology-based virtual information center on the widespec-
trum of Human Language Technology (HLT), providing information about people,
technologies, products, resources, projects, and organizations in this area. The

19http://www.lt-world.org
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service is free and is provided by the German Research Centerfor Artificial Intel-
ligence (DFKI) to the R&D community, potential users of language technologies,
students and other interested parties.

We useSProUT (Chapter 7) as named entity recognition and information ex-
traction tool because it comes with (1) a type system and typed feature structures as
basic data structures with a closed type world and strict welltypedness and appro-
priateness conditions, (2) a powerful and declarative rulemechanism with regular
expressions over typed feature structures, (3) a gazetteermodule with fine-grained,
customizable classification of recognized entities. Moreover, SProUTcomes with
additional, configurable modules such as tokenizer and morphology, that can be
exploited in the rule system, e.g. to use context or morphological variation for
improved NER.

The SProUT runtime component, extended with the ontology informationas
we will describe below, has been integrated as NER and IE component into the
Heart of Gold framework.

Figure 9.20: OntoNERdIE flow of information

9.7.1 OntoNERdIE

In the following, we describe the processing steps of OntoNERdIE. Following the
general motivation presented in Chapter 5 resp. Schäfer (2003), the approach heav-
ily relies on XSLT transformation of the XML representationformats. However,
this time, the use of XSLT is restricted to offline processingonly.
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9.7.1.1 Making Implicitly Encoded Inheritance Information in the Ontology
Explicit

Starting from the OWL representation of the ontology, forward-chaining inference
rules are applied through the open source RDF database Sesame20 in order to make
all subClassOf relations explicit (details in Franket al.2006). This is only done
in order to avoid inferences for subtype queries that would otherwise have to be
performed presumably less efficiently at later processing stages, e.g. through XSLT
transformations.

9.7.1.2 Merging rdf:Descriptions

The resulting RDF file is processed with a small but sophisticated XSLT stylesheet
(rdfsort.xsl, in the XSLT Appendix on page 299) mergingrdf:Descriptions
that are distributed over the file but belong together. This is a necessary prerequisite
for the subsequent extraction steps, and, as it cannot be implemented by a simple
xsl:sort statement, has to be coded as a proper, dedicated stylesheet.

The result for a single instance,obj 89404, is shown in Figure 9.21. The
rdfsort.xsl stylesheet make use of the XSLTkey declaration and of thegene-
rate-id() method to look up and merge all descriptions with the sameabout or
nodeid attribute.

9.7.1.3 Extracting Inheritance Statements and Convertingto TDL Defini-
tions

The second stylesheet (rdf2tdl.xsl) converts the RDFsubClassOf statements
from the output of the previous step into a set of TDL type definitions that can
be immediately imported by theSProUTNER grammar, e.g. currently 1260 type
definitions for the same number ofsubClassOf statements in the LT WORLD

ontology.
Following are two type definitions (out of 1260) that have been generated from

the OWL input file using therdf2tdl.xsl stylesheet.

Active_Conference := Conferences & Backend_Events.

Natural_Language_Parsing := Written_Language & Language_Analysis.

This is of course a lossy conversion because not all relations supported by an
OWL (DL or full) ontology such asunionOf, disjointWith, etc are mapped.
However, for named entity (NE) classifications, thesubClassOf taxonomy map-
pings are sufficient. Moreover, the efficiently encoded typehierarchy inSProUT
makes the subclass queries very fast at runtime. Other relations could be formu-
lated as direct (though slower) ontology queries from the obtained NLP analysis
results (RMRSes) using theOBJID mechanism described in the next step.

20http://www.openrdf.org
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<rdf:Description rdf:about="http://www.lt-world.org/ltw.owl#obj_89404">

<rdf:type rdf:resource="http://www.lt-world.org/ltw.owl#

Active_Conference"/>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Machine Translation</dc_keyword>

<homepageURL rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://www.lrec-conf.org/lrec2006/</homepageURL>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

NLP Tools</dc_keyword>

<dateStart rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

2006-05-24</dateStart>

<paperDeadline rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

2005-10-14</paperDeadline>

<eventNameVariant rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

LREC 2006</eventNameVariant>

<dc_keyword rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Semantic Web</dc_keyword>

<takesPlaceInCountry rdf:resource="http://www.lt-world.org/ltw.owl#

lt-world_Individual_334"/>

<eventNameVariant rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

5th Conference on Language Resources and Evaluation</eventNameVariant>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

5th Conference on Language Resources and Evaluation</name>

<locatedIn rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Magazzini del Cotone Conference Center, Genoa</locatedIn>

<eventName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

5th Conference on Language Resources and Evaluation</eventName>

<dc_language rdf:resource="http://www.lt-world.org/ltw.owl#lt-world_

Individual_105"/>

<dateEnd rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

2006-05-26</dateEnd>

<eventNameAbbreviation rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">LREC 2006</eventNameAbbreviation>

</rdf:Description>

Figure 9.21: LT WORLD ontology entry for LREC 2006 (shortened)

9.7.1.4 Generating Gazetteer Entries

Another stylesheet (rdf2gaz.xsl) selects statements from the RDF input file
about instances of relevant concepts viardf:type and converts them to gazetteer
source files for theSProUTgazetteer compiler. In the following example, two of
the approx. 20000 converted entries for LT WORLD are shown.

Martin Kay | GTYPE: lt_person | SNAME: "Kay" | GNAME: "Martin" |

CONCEPT: Active_Person | OBJID: "obj_65046"

LREC 2006 | GTYPE: lt_event | GABBID: "LREC 2006" |

CONCEPT: Active_Conference | OBJID: "obj_89404"
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The attributeCONCEPT contains the TDL type from the previous step. For con-
venience, several ontology concepts are mapped manually (as part of the configu-
ration of the stylesheet) to only a few NE classes (under attributeGTYPE), namely
person, organization, event, project, product and technology plus some properties
for LT WORLD.

This has the advantage that NER context rules from existingSProUTgrammars
can be re-used21 for better robustness and disambiguation, e.g. to recognize not
only Martin Kay, but also Prof. Kay, Dr. Kay, Mr. Kay with or without firstname
and including morphological variation.

The followingSProUTrule (XTDL syntax) simply copies the slots of a matched
gazetteer entry for events (e.g. a conference) to the outputas a recognized named
entity.

lt-event :>


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






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


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
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




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





.

Figure 9.22: A simpleSProUTrule that copies gazetteer output

OBJID contains the object identifier of the instance in the ontology. This can be
used as link back to the full knowledge stored in the ontology, e.g. for subsequent
queries such as ’Who else participated in project [with OBJID obj 4789]?’ etc, for-
mulated in an ontology query language. How such natural language questions can
be automatically translated to ontology queries will be addressed in Section 9.10.2.

9.7.1.5 Named Entity Recognition at Runtime

The output ofSProUT for a recognized NE is a typed feature structure (e.g. in
XML format) containing the RHS of the rule as shown in the previous step with
the copied gazetteer data shown there (Figure 9.22) plus some additional meta-
information such as character span, NE typeetc.

A mapping to a deep HPSG grammar for hybrid processing can be performed
by means of the XSLT stylesheet automatically generated from theSProUT type
hierarchy as shown in Section 9.5.4.1.

At run time, the generated stylesheet would e.g. produce thefollowing item for
LREC 2006 on the deep parser’s input chart (HPSG type$generic event).

<w id="SPR3.1" cstart="48" cend="56" constant="yes">

<surface>LREC 2006</surface>

21Alternatively, a fully automatic, but maybe too fine-grained 1:1 mapping of all concepts could
be performed.
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<typeinfo id="TIN3.1" baseform="no">

<stem>$generic_event</stem>

</typeinfo>

</w>

The transformation output then contains only the NER information that is re-
quired by the deep parser (character span and generic HPSG type for a chart item
to be generated). Alternatively (e.g. if no hybrid deep-shallow processing is per-
formed), the full output from aSProUTruntime system could be used instead.

9.7.1.6 Information Extraction at Runtime

Similar to the NER mapping from the previous section, Heart of Gold can also
automatically generate XSLT stylesheets that produce a richer, robust semantics
representation format (RMRS, Section 9.4) at runtime from the SProUT results.
An example is shown in Figure 9.23. Here,objid, surname, given nameand other
structured information from the ontology instance is preserved in the representa-
tion. The advantage is that this RMRS can also be combinedex postwith analyses
from other deep or shallow NLP components (cf. Section 9.5.7.5), e.g. partial
analyses when a full parse fails.
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Figure 9.23: RMRS generated fromSProUToutput in Heart of Gold

An example of a full, hybrid RMRS generated with input from OntoNERdIE
and merged deep and shallow RMRS is reproduced in Figure 9.16.

9.7.1.7 Summary

We have described OntoNERdIE, an XSLT-based procedure thatmaps ontology
instances and concepts to NER and IE resources. The process is fully automatic for
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instances and only requires manual filtering of interestingconcepts and properties.
The key features and advantage we see are that lingware resources are kept in sync
with information from dynamically expanding ontologies such that instances from
the ontology are precisely and efficiently recognized in NERand IE.

Existing multilingual NER and IE grammars can be (re-)used that exploit con-
text information for augmented precision. The ontology concept information can
be exploited in NER and IE rules. Links from recognized instances back into the
ontology are preserved for subsequent ontology queries in the applications. The
improved NER can be utilized for hybrid deep-shallow analysis in Heart of Gold,
and richer, IE-like information can be provided in a structured, robust semantics
output format.

9.8 Visualization

Information visualization is indispensable for the inspection of complex NLP anal-
yses. Although RMRS already is a gross simplification of the complex nested
feature structures that are returned by the HPSG parser, andabstracts from syntac-
tic details that contributed to the analysis, at the same time providing the semantic
details that might be of interest to an application, the variable- and handle-based
structure is still somewhat confusing for a human reader.

Therefore, we developed a stylesheet that transforms an RMRS into an HTML
with Javascript document in the MRS look (with EP args grouped in AVM-like
matrices) that highlights corresponding variable/handleoccurrences and the cor-
responding part of the input text when the user moves the mouse cursor over an
RMRS region (Figure 9.24). The same transformation servicethat is used for an-
notation transformation thus also is responsible for visualization transformation
(cf. Section 9.3.9).

Furthermore, stylesheets for general XML document visualization (taken from
the Apache Tomcat project) and a Swing-based Java browser applet for visualizing
typed feature structures encoded in XML are part of the Heartof Gold system.

Finally, stylesheets that produce LATEX code for AVM-like visualizations from
RMRS and TFS-XML can be used for written documentations (e.g. used in this
thesis; Schäfer 2004a).

9.9 Evaluation

At the end of the DEEPTHOUGHT project, an evaluation of hybrid processing in
Heart of Gold has been conducted. This evaluation has been documented in Beer-
mannet al. (2004), from which most of the content of this section is taken. The
hybrid parsing evaluation concentrated on the Heart of GoldRMRS output alone,
with robustness in focus, while the application evaluationincluded an analysis of
the usefulness of Heart of Gold output for NLP-based applications (business intel-
ligence and automatic email response management).
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Figure 9.24: Analysis results in GUI with specialized XML visualizations

9.9.1 Hybrid Parsing Evaluation

The hybrid parsing evaluation employed and compared three Heart of Gold con-
figuration modes, with and without partial, deep analyses22, and using or not using
part-of-speech tagging and named entity recognition.

• Configuration 1. Heart of Gold configured to provide the deepest result pos-
sible for each sentence. PET uses both part-of-speech tags delivered by TnT
and named entities detected bySProUTas input and delivers partial parses
in case no spanning analysis is available.

• Configuration 2. Heart of Gold configured to provide the deepest result pos-
sible for each sentence. PET uses both part-of-speech tags delivered by TnT
and named entities detected bySProUTas input, but does not deliver partial
parses, i.e. no success in case no spanning analysis is available.

• Configuration 3. Heart of Gold configured to provide only complete analyses
from PET and RASP alone. No information from shallower modules (part-
of-speech tagging, named entity recognition) is used.

These configurations correspond to subsets of the sample deep-shallow in-
tegration scenarios presented in Section 9.6, but without the RMRSmerge and

22Full analyses covering the complete input sentences are called spanninganalyses in the follow-
ing.
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ChunkieRMRS modules that were not yet implemented at the time this evaluation
was performed.

9.9.1.1 Evaluation on PASCAL Challenge Data (English)

The training data of the PASCAL challenge (Iresonet al., 2005) contains declar-
ative English sentences of various domains. 581 test sentences of the PASCAL
corpus were sent to Heart of Gold using configuration 1 as described above. Ta-
ble 9.2 shows the coverage of PET and RASP. A RASP result is only returned as
fall-back answer, i.e., when the deep parser does not returnan analysis.

configuration sentences PET spanning
PET

RASP
fall-back

total
results

1 581 442 139 581
1 100% 76.06% 23.92% 100%
2 581 134 447 581
2 100% 23.06% 76.94% 100%
3 581 37 14 544 581
3 100% 6.37% 2.41% 93.63% 100%

Table 9.2: Evaluation on PASCAL data

As expected, annotations could be computed for all sentences, either by PET
or RASP. RASP is very robust and able to produce analyses for all sentences for
which PET does not return a result (e.g. because of missing lexicon entries for
some verbs). In this domain, which is quite diverse in lexical choices, it could
be shown that the usage of default lexicon entries for recognized part-of-speeches
and named entities heavily influences the performance of thedeep linguistic pro-
cessing. Without these, PET delivers results in only 6.37% of the sentences and
spanning results in only 2.41%, while with the input, the coverage of PET rises up
to 76.06% for partial analyses and 23.06% for spanning results.

9.9.1.2 Mobile Phone Product Description Corpus

692 sentences (many of them fragments and lists) of mobile phone product descrip-
tions collected from Internet sites were sent to the Heart ofGold using the three
configurations described above. Results are shown in Table 9.3.

The lexicons were tuned to this domain, such that PET was moresuccessful
than in the former domain, in the cases of using or not using default lexicon en-
tries. Still, it could be shown that the usage of PoS and NER information from
shallower modules increases the performance of PET enormously from 9.36% to
20.23%. The data contains many lists and tables the deep HPSGgrammar is not
quite prepared for. It shows how the overall processing gains from being able to
fall back to partial parses or (underspecified) RASP results.
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configuration sentences PET spanning
PET

RASP
fall-back

total
results

1 692 631 61 692
1 100% 91.18% 8.82% 100%
2 692 140 552 692
2 100% 20.23% 79.77% 100%
3 692 296 65 396 692
3 100% 42.77% 9.39% 57.23% 100%

Table 9.3: Evaluation on the mobile phone descriptions corpus

9.9.1.3 Newspaper Corpus

48 sentences of a (business news) article in the San Francisco Chronicle of 2004-
07-27 were sent to the Heart of Gold. The results are listed inTable 9.4.

configuration sentences PET spanning
PET

RASP
fall-back

total
results

1 48 31 17 48
1 100% 64.58% 35.42% 100%
2 48 6 42 48
2 100% 12.50% 87.50% 100%
3 48 5 1 43 48
3 100% 10.42% 2.08% 89.58% 100%

Table 9.4: Evaluation on San Francisco Chronicle articles

This text is completely out of the training domain and therefore significantly
shows the effect of default lexicon entries.

9.9.1.4 All Corpora

Tables 9.5, 9.6 and 9.7 show the three corpora and the coverage of all three config-
urations in sum.

9.9.1.5 Conclusions

First of all, the strategy to use the deepest available result delivered by the Heart
of Gold core architecture guarantees results for all sentences in different domains.
These results are comparable and compatible to each other because they are for-
mulated in the same framework, RMRS. It therefore seems useful to combine very
robust modules such as RASP with deeper modules such as PET.
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corpus sentences PET RASP
fall-back

Pascal 581 442 139
Mobile Phone 692 631 61
Newspaper 48 31 17
All 1321 1104 217

100% 83.57% 16.43%

Table 9.5: Evaluation results using configuration 1

corpus sentences spanning
PET

RASP
fall-back

Pascal 581 134 447
Mobile Phone 692 140 552
Newspaper 48 6 42
All 1321 280 1041

100% 21.20% 78.80%

Table 9.6: Evaluation results using configuration 2

In different domains, closer and farther away from the development domain
in lexicon as well as syntactic structures, it could be shownthat the depth of re-
sults increases enormously when using the results of PoS tagging and named entity
recognition in deep linguistic processing. Over all domains, spanning HPSG (PET)
processing increased from 6.06% up to 21.20%.

corpus sentences PET spanning
PET

RASP
fall-back

Pascal 581 37 14 544
Mobile Phone 692 296 65 396
Newspaper 48 5 1 43
All 1321 338 80 983

100% 25.59% 6.06% 74.41%

Table 9.7: Evaluation results using configuration 3
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9.9.1.6 Hybrid Processing and the (Early) German HPSG Grammar

The large-scale HPSG grammar for German (Müller and Kasper, 2000; Crysmann,
2003) developed at DFKI has been integrated into the Heart ofGold during the
2nd quarter of 2004. This evaluation is also described in Beermannet al. (2004).
The main task of this integration effort was the adaptation of the semantic output to
current (R)MRS standards. Furthermore, interface types and mappings have been
provided to integrate shallow NLP analyses into the deep parser, thereby ensur-
ing robustness. As for English, named entities recognized by SProUT and PoS
information from TnT are used to address the unknown-word problem.

In order to assess the gains in robustness offered by the integrated deep-shallow
processing adopted by Heart of Gold, an experiment on unseendata, measuring
the coverage obtained with and without deep-shallow integration, was run. As
test data, 200 questions from the German section of the CLEF 2003 multilingual
question answering competition, were used. The corpus was parsed both by a
stand-alone PET and by the version integrated into Heart of Gold.

The standalone PET system (baseline) was able to deliver a full parse for 34
sentences only (17%). Inspection of the error log revealed that the most common
source for parse failure was lexical in nature: in 77.5% of the input sentences, at
least one lexical item was unknown. Abstracting away from the problems of lexical
coverage, syntactic coverage was around 80% (34/42), although these figures are
certainly not reliable, owing to the size of the data set.

Deep-shallow integration drastically improved on these figures: by feeding
NER and PoS tag information into the deep parser, coverage went up to 73%
(146/200), a figure comparable to those achieved on corpora for which the gram-
mar had been optimized (e.g. VERBMOBIL data: VM-CD01: 74.1%; VM-CD15:
78.4%).

The results obtained by the German Heart of Gold also comparewell to a sim-
ulation of an ‘ideal’ NER component. Manual substitution ofNEs resulted in an
overall coverage of 56.5% (113/200). Owing to the fact that substitution was re-
stricted to named entities, lexical coverage was still an issue, accounting for 30%
(60/100) of parse failures. Relative to the 140 sentences without lexical errors, we
measured a syntactic coverage of around 80%.

To conclude, the integrated shallow-deep approach embodied by Heart of Gold,
and, most notably, the combination of NER and PoS mappings, proves to be highly
successful in improving the robustness of the deep parser for German as well.

9.9.2 Evaluation in Application Context

9.9.2.1 Evaluation of the Auto-Response Application (German, English)

The underlying scenario targets at email response management for customer re-
lationship management. The application developed and evaluated by the project
partner Xtramind GmbH provided information extraction functionalities for the
following scenarios in the content domain of a mobile phone provider: product
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ordering, mix-ups in deliveries of products, and replacement of defective products.
It took as input one or more e-mails (German and/or English) and delivered filled
scenario templates as output.

These templates were the result of several hybrid processing steps such as
named entity recognition, shallow and deep analysis, coreference resolution, map-
ping of results from the preceding analysis on domain specific templates, and merg-
ing operations on the partially filled templates resulting in filled scenario templates.
The final scenario templates were of the following types: (1)Exchange (2) Order-
ing (3) Mix-up. In cases where no merging operations can takeplace, the partially
filled templates were presented to the user.

An email corpus was constructed using relevant anonymized customer emails.
Since the evaluation of the component was performed manually, the data set used
for the evaluation was rather limited: 87 emails for German and 84 for English. On
average, each email contained 4 sentences. Hence, the German data set consisted
of 348 sentences and the English data set of 336 sentences.

Input e-mails were processed by the system that returned filled scenario tem-
plates as output. The system identified the customer using the predicate-argument
structure from the deep analysis and by performing a domain-specific coreference
resolution between certain pronouns and potential antecedents. A person writ-
ing an e-mail, e.g. referring to herself or himself by ’I’ or ’me’ etc presumably
mentions her name either in the complimentary close or in theaddress part of the
e-mail. Products were identified by predicate-argument relations and named entity
recognition. The predicates triggered the process of choosing the correct scenario
template.

The evaluation compared two different result sets for German and English us-
ing two different preprocessing levels configured in the Heart of Gold. The deep
processing used in the application and for evaluation corresponds to configuration
2 described in Section 9.9.1 above. Since the application had to be applied in real
world contexts, robustness was a necessary precondition, and configuration 3 (no
shallow preprocessing for deep parsing) was not consideredat all, nor was con-
figuration 1 (including also partial results from deep processing in case of parsing
failure).

The usage of part-of-speech tags delivered by TnT and named entities detected
by SProUTas input guaranteed the robustness requirement. Thereforethe applica-
tion has been evaluated with PET using part-of-speech tags and named entities for
preprocessing in Heart of Gold. For German, the chunk taggerChunkie has been
used as shallow fall-back component. For English, the robust shallow parser RASP
has been used as fall-back. Both have been integrated using Heart of Gold as well.

The configurations that have been used for the evaluation were (1) only deep
analysis, (2) deep analysis with shallow fall-back. Precision, recall, and f-score
were measured for the scenario templates delivered by the system by manually
comparing them against gold standard template annotationsin the email corpus
mentioned above.

Two different types of evaluation were performed: a template-based evaluation
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and a feature-based evaluation. During template-based evaluation, a template was
judged correct if and only if all required template featureswere correctly filled and
the type of the template was correct. During feature-based evaluation, all feature
values were evaluated separately. Each single slot was judged either as correct
or false. The relevant features for all three template typeswere the following:
template type, product list (each product counting singly if more than one), product
feature list (each feature counting singly if more than one), customer, provider.

First experiment (German) The first experiment shows figures using mainly
deep analysis and, as fall-back solution, shallow processing (configuration 2; Ta-
ble 9.8).

Precision Recall f-score
Template-based evaluation50.35 % 45.74 % 47.93 %
Feature-based evaluation 60.46 % 56.38% 58.34 %

Table 9.8: First experiment German; results using configuration 2

Second Experiment (German) The second experiment uses only deep analysis
as preprocessing (configuration 1; Table 9.9).

Precision Recall f-score
Template-based evaluation62.25 % 36.95 % 46.30 %
Feature-based evaluation 68.43 % 46.65 % 54.76 %

Table 9.9: Second experiment German; results using configuration 1

First Experiment (English) The first experiment shows figures using mainly
deep analysis and, as fall-back solution, shallow processing (configuration 2; Ta-
ble 9.10).

Precision Recall f-score
Template-based evaluation57.25 % 30.58 % 39.86 %
Feature-based evaluation 83.19 % 47.13 % 60.17 %

Table 9.10: First experiment English; results using configuration 2

Second Experiment (English) The second experiment uses only deep analysis
as preprocessing (configuration 1; Table 9.11).

The evaluators concluded that precision and recall values for feature-based
evaluation were always higher than those for template-based evaluation due to
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Precision Recall f-score
Template-based evaluation48.13 % 38.52 % 67.56 %
Feature-based evaluation 75.45 % 61.17 % 42.70 %

Table 9.11: Second experiment English; results using configuration 1

the fact that in many cases templates contained only one or two incorrect fea-
ture values. During template-based evaluation these templates were regarded as
completely incorrect. This fact explained the difference between accuracy values
considering whole templates and feature values, respectively.

The precision value when using only deep analysis was higherthan the preci-
sion value when combining deep and shallow analysis, whereas the higher f-score
in the first experiment for both evaluation types indicated that the combined ap-
proach delivered better results altogether.

The usage of shallow preprocessing mainly supported the identification of or-
dering templates. This was mainly due to the difficulty of recognizing templates
of type exchange or mix-up when using only shallow processing. In these cases
accurate recognition of predicate argument structure was anecessary precondition
for making decisions such as ’What are the features of the product?’ or ’Which
product has been ordered and which product must be replaced?’.

Moreover, the relevant agreement features were not available in the domain-
specific coreference resolution between pronouns and customer names as potential
antecedent, or nouns and product named entities as potential antecedent. On the
other hand, shallow processing delivered correct templates in some cases (mainly
order templates) for which the deep analysis could not provide a template at all.

9.9.2.2 Summary

The application-oriented evaluations of the hybrid parsing configuration of Heart
of Gold performed during the DEEPTHOUGHT project showed promising results.
However, as in the latter case (email response application), the baseline had already
been a hybrid system and not a deep parser. The reason for thisis that the advan-
tages of the hybrid approach are so evident that it seems (from an application point
of view) to be useless to still consider isolated deep parserevaluations.

On the other hand, all evaluations cited here were performedat relatively early
stages of grammar development (esp. German HPSG) and also shallow compo-
nents (e.g.SProUT grammars) are much more developed now, and the good re-
sults from Chapter 7 did not enter in these earlier hybrid evaluations. To sum up,
there is much evidence from this evaluation that hybrid processing in Heart of Gold
considerably improves robustness of NLP processing for applications, and that the
results would be much better now than they had been during DEEPTHOUGHT. The
next section also illuminates recent developments in various other applications.
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9.10 Further Applications Based on Heart of Gold

The integration of deep and shallow processing opens potential for a wide range
of applications. We give an overview of implemented and envisaged applica-
tions based on the presented integration scenarios in Heartof Gold. We start
with two quite detailed application descriptions, namely creativity support in doc-
ument production (Section 9.10.1) and question answering from structured knowl-
edge sources (Section 9.10.2). Further applications, conducted by colleagues in
Saarbrücken and at other sites, will be briefly presented inSection 9.11.

9.10.1 Creative Authoring Support

The research performed in the DEEPTHOUGHT project aimed at demonstrating
the potential of deep linguistic processing if added to existing shallow methods
ensuring robustness. The approach has been used to demonstrate the feasibility
of three ambitious applications, of which we have already described one in the
previous section. The creative authoring application could not be evaluated because
of its nature and time limits in the project, but as it constitutes an original approach
that had been implemented in a fully functional prototype using Heart of Gold, we
will briefly describe it in this section.

The aim of the application is to supportcreative document production(Uszko-
reit et al., 2004). To this end, it combines functionality for documentediting with
advanced semantic information retrieval and question answering. We describe the
prototype and the methodology developed for combining the respective virtues of
different processing methods. Using some examples, we willillustrate the collab-
oration of NLP components on the basis of Heart of Gold.

9.10.1.1 Motivation

When new ideas are produced, discussed, and presented, a large proportion of the
effort goes into looking up and combining existing pieces ofinformation. The
reasons for this are simple: (i) the completely new ideas andfacts only constitute
a tiny fraction of the total content and (ii) we cannot keep all the cited facts and
sources in our memory.

If the lookup of facts, sources, references, pictures can beperformed with
greater ease and speed, the creative process gains immensely in efficiency. If the
authors are not constantly interrupted by searches and if they can spend more time
on the truly creative portions of the task, the quality of theresults will also improve.

Everyone who has ever authored a document remembers the numerous disrup-
tions in situations when information is missing and it has tobe looked up. Only
a few years ago, one had to consult books, journals, and archives to find the re-
quired data. Today, much of the lookup can be done on the Internet or on other
electronically accessible repositories. Nevertheless, any lookup is disruptive.
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Experienced writers do not stop the creative process each time some piece of
information is missing, but rather insert a note for later lookup. The basic idea
is that this lookup can be performed automatically. This canhappen while the
author continues to write, or even after hours. While searchand presentation are
automated, the selection and the actual creative tasks are left to the human author.

The need for looking up information also occurs when complexcharts or other
figures are composed. Only in rare cases does the author really need to draw the
pictorial elements from scratch. Today, symbols, icons or other graphical elements
are readily available in clip art collections, graphics archives, or on the web. Again,
one can delay the search for missing elements by inserting a dummy shape such as
an empty rectangle or a circle together with a note.

9.10.1.2 Sample Scenario

In a creative meeting, the participants collectively develop a marketing plan for
mobile phones. The moderator stands in front of the group entering the contribu-
tions onto an electronic flip chart (e.g. a SmartBoard) by means of electronic pen
and microphone. She or he might want to insert information about the functional-
ity of a Nokia 8890 and – using her microphone – dictates the question ‘Does the
Nokia 8890 possess Bluetooth?’ to the application and then pushes the button for
‘search’.

While the discussion continues, the system searches for theanswer. Whenever
a search is completed, the question will turn into green or red, depending whether
an answer has been found or not. If a green question is clicked, a menu appears that
lists the most highly ranked answer candidates. The answerscontain links to their
source, such that a browser window can be opened that contains more information
about the topic (say, in this case, a web page on the features of Nokia 8890).

Next, the moderator may want to insert a picture of the phone set on the flip
chart. In this case, the analyzed query is compared with analyses of natural lan-
guage descriptions of pictures (such as ‘this is a picture ofthe Nokia 8890’), and
the best matches will be in the menu to choose.

9.10.1.3 Linguistic Challenges

The described application opens up a bag of challenges to linguistic processing.
Answering questions requires information of varying granularity. On the one hand,
the analysis of query and possible answers must be robust. Itmay contain named
entities, which requires more robust processing than can beprovided by deep pars-
ing.

As also speech input is allowed, the processing must be able to deal with spo-
ken language and recognition errors. On the other hand, the analysis must be as
exact as possible. Recognition of negation scope and predicate-argument relations
is necessary in more complex queries such as ‘I want a pictureof a Nokia phone,
but not the Nokia 8890’ or ‘show me a picture of the Nokia 8890 and a table of the
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features of the Siemens S55’. Modification anchors are needed to decide, if in the
case of ‘I want a large picture of the Nokia 8890’ the user wants a large picture or
a picture of the large phone.

To account for robustness and exactness of analysis the machinery that pro-
cesses queries and answers uses an intelligent combinationof deep and shallow
NLP modules as well as standard web-based QA systems as a fall-back strategy.
AnswerBus (Zheng, 2002) has been used for the latter purpose.

9.10.1.4 Application Architecture and Implementation with Heart of Gold

The key idea to overcome the outlined problem is the integrated exploitation of lin-
guistic components that allow analysis at different levelsof granularity. In this way
robustness and efficiency of shallow processing is combinedwith the increased ac-
curacy provided by deep analysis. The integration is facilitated by the choice of
RMRS as common semantic representation language that allows flexibility in the
level of detail that is specified.

Heart of Gold is used with the configuration and components asdescribed in
Section 9.6.2 to reassemble partial output from multiple components into one co-
herent representation.

Once a query has been entered by the user, it is sent to the Heart of Gold. From
there, the search engine gets back the RMRS-annotated query. Using the repository
of RMRS annotated texts, pictures and graphics, it extractssimilar annotations
and composes the result for presentation. It then sends the result to the text and
presentation editor module via the application server.

The Creative Authoring Support Application consists of thefollowing main
modules:

• An editor for text and graphics display and input, request sending function-
ality and information insertion functionality, as well as speech recognition
interaction.

• A server hosting the application logic.

• An information search engine with the functionality of information extrac-
tion from RMRSes and interaction with the linguistic core machine and the
stored annotated texts, graphics and pictures.

• A connection to a speech recognition system.

A schematic overview of the overall architecture is depicted in Figure 9.25.
The application uses a client-server architecture, where the user client, imple-

mented using Macromedia Flash, is usable in any common web browser via the
network. The application server and the search engine have been implemented in
Python. Two ways of connecting speech recognition to the system are supported.
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Figure 9.25: The software architecture for creative authoring

The straightforward setup uses a client-side recognition engine, e.g. a dictation
system that is installed on the user’s machine. Speech inputwithout any local in-
stallation is possible using a server-side recognition engine, where the audio signal
is transmitted to the server and handed to the recognition module, as displayed in
the diagram.

The information search is based on a collection of texts thathave been RMRS-
annotated through hybrid analysis in Heart of Gold, pictures and graphics. The
query is sent to Heart of Gold and returned with RMRS annotation. Based on
this annotation, a search on the RMRS-annotated text, pictures and graphics is
performed, using information extraction techniques.

When a search is initiated in the user interface through marking a text and
pushing a search button, the query is sent to the applicationlogic server, which
in turn interacts with the search engine, and sends the queryto the search engine,
accompanied by query context and requested result types (pictures, texts or links).
Search results can be texts, pictures or documents. They areannotated with a
description (string), and a URL. They are presented to the user for selection in a
pull-down menu.
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Figure 9.26: The software prototype for creative authoring

9.10.1.5 Conclusion

A new application for creativity support in document authoring has been imple-
mented with Heart of Gold as backbone. The user is assisted incomposing a text,
possibly enriched with pictures taken from a local repository or the web. Domain-
specific questions and commands related to the content of thedocument can be
answered on the basis of the repository, thus helping the user to perform the au-
thoring task faster and with fewer disruptions.

The application uses robust semantic representation (RMRS) gained from a
hybrid combination of deep and shallow NLP components. The application ben-
efits from robustness and efficiency of the shallow components, as well as from
increased accuracy provided by the deep HPSG parser.

The underlying XML-based, network-enabled Heart of Gold architecture is
open and generic, and can be used to integrate additional NLPcomponents and
build the foundation for various other applications. In combination with ontolo-
gies, the existing framework could be extended and form the basis for further chal-
lenging applications in the context of the Semantic Web, oneof which will see in
the following section.



256 CHAPTER 9. HEART OF GOLD

9.10.2 Question Answering from Structured Knowledge Sources

Heart of Gold is used to provide deep question analysis in theQUETAL cross-
lingual question answering (QA) system for structured knowledge sources in re-
stricted domains.

In this section, we report on how Heart of Gold, basically with the standard
configurations for German and English as described in Section 9.6.1 and 9.6.2,
plus some domain-specific extensions, automatically incorporated using the On-
toNERdIE approach described in Section 9.7, is employed in acomplex question
answering system. The system is described in more detail in Frank et al. (2005,
2006), from which most of the following sections are extracted. Again, our con-
tribution is the architecture for hybrid deep-shallow analysis on the basis of Heart
of Gold, and our aim is to show within an elaborated scenario how RMRS output
from Heart of Gold can be utilized in an NLP-based application.

9.10.2.1 Motivation and Overview

There is increasing need for question answering in restricted domains, due to sev-
eral reasons: First, where open-domain QA exploits the wealth of information on
the Web, it is also confronted with the problem of reliability: information on the
Web may be contradictory, outdated, or utterly wrong. Second, the utilization of
formalized knowledge in a restricted domain can improve accuracy, since both
questions and potential answers may be analyzed w.r.t. to the knowledge base
(cf., e.g. Fleischmanet al., 2003). Third, there is a need for accurate specialized
information management solutions in both business intelligence and public admin-
istration.

QA systems for restricted domains may be designed to retrieve answers from
so-called unstructured data (free texts), semi-structured data (such as XML-anno-
tated texts), or structured data (databases). Whenever structured data can be ex-
ploited, this option offers clear advantages over open textQA. However, despite a
tendency towards deeper analysis, current techniques in QAare still knowledge-
lean, in exploiting data redundancy and paraphrasing techniques. That is, textual
QA works on the assumption that the answer to a question is explicitly stated in
some textual passage, which is typically not the case in restricted domains.

Question answering applied to restricted domains is therefore interesting and
challenging in two important respects. Restricted domainstend to be small and
stable enough to permit careful knowledge and data modelingin terms of struc-
tured knowledge bases, and can therefore serve as certified information sources.
More importantly though, QA in restricted domains requirestechniques that cru-
cially differ from the techniques that are currently applied in open-domain textual
QA. Since document volumes tend to be small, textual QA techniques cannot ex-
ploit data redundancy. Further, both in domain-restrictedtextual QA and QA from
structured knowledge sources, we cannot expect the answer to a given question to
be explicitly stated.
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Since the question is the primary source of information to direct the search for
the answer, a careful and high-quality analysis of the question is of utmost impor-
tance in the area of domain-restricted QA. Most importantly, since questions shall
be answered where the answer is not literally stated in the underlying document
or knowledge base, a semantic interpretation of the question is needed that can
be tightly connected to the domain knowledge sources and theprocess of answer
extraction.

The approach to domain-restricted QA from structured knowledge sources pre-
sented here starts from these considerations. We focus on a deep linguistic analysis
of the question, with a conceptual-semantic interpretation of the question relative
to the chosen application domain. By relying on Heart of Goldas core linguistic
processing architecture, and RMRS as common semantic representation format,
the approach naturally extends to multilingual QA scenarios and provides a natural
interface to the underlying knowledge bases, enabling flexible strategies for answer
extraction.

In this section, we present an overview of the architecture and the base compo-
nents of the domain-restricted QA system, and the overall system architecture, the
QUETAL QA system, in which the domain-restricted architecture is embedded.

We then introduce the main aspects of domain modeling for twoapplication do-
mains: Nobel prizes and Language Technology. We then describe hybrid question
analysis based on Heart of Gold. We start from HPSG analyses of questions, which
are enriched with a conceptual-semantic representation that can be further modi-
fied by domain-specific inference rules, and are extended to multilingual question
answering.

Subsequently, we briefly describe the interface between question interpretation
and domain ontologies for query processing. A mapping is defined between the
domain-specific concepts used in semantic question interpretation and the concepts
in the underlying domain ontology. This mapping is used to extract so-calledproto
queriesfrom the semantic representation of the question. Proto queries are ab-
stract query patterns in a higher-level query language thatare translated to concrete
database or ontology query language constructs in the answer extraction phase. Fi-
nally, we report on an evaluation of the prototype system.

9.10.2.2 Architecture for Domain-Restricted QA

The Architecture for domain-restricted QA is a sub-system of a more general,
hybrid question answering architecture that incorporatesboth open-domain ques-
tion answering on unstructured text (e.g. from the web; Neumann and Sacaleanu
2004), and closed-domain question answering on structuredknowledge sources
(Figure 9.27).

The hypothesis underlying the QUETAL architecture design is that QA systems
perform best if they combine virtues of domain-specializedand open-domain QA,
accessing structured, semi-structured, and unstructuredknowledge bases.

The core idea is that, instead of providing specific information portals (with
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Figure 9.27: Hybrid, overall Quetal architecture

system-specific user interfaces), the Quetal system provides a single and uniform
natural language-based access to different information sources that exhibit different
degrees of structuring.

The sub-system for domain-restricted QA performs a deep, robust question
analysis on the basis of Heart of Gold.

Figure 9.28: Architecture of Heart-of-Gold-based query analysis
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The semantic representations generated by the Heart of Goldare then inter-
preted and a question object is generated that contains a proto query (cf. Fig-
ure 9.28). This proto query can be viewed as an implementation-independent,
‘higher-level’ representation of a database or ontology query. From this, an in-
stance of a specific database or ontology query is constructed and sent to the
database or ontology. From the result(s) returned by the queried information source,
an answer object is generated which forms the basis for subsequent natural lan-
guage answer generation (which we will not describe here as it is currently based
on template-based shallow generated not related to or integrated in Heart of Gold).

9.10.2.3 Ontologies as Structured Knowledge Sources

Domain ontologies play a crucial role in the structured QA approach. They are used
as the interface between question analysis and answer extraction and also form the
formalized, queryable knowledge source itself – not only through concepts stored
in the ontology, but also through instance data such as people’s names, events,
locationsetc.

To demonstrate flexibility and modularity of the approach, two ontologies, LT
WORLD on language technology and a considerably smaller Nobel prize ontology,
have been chosen for the prototype system.

The Nobel prize ontology has been designed by Feiyu Xu. It contains simple
concepts such asprize, laureate, prize-area, organization, monetary value,
person,prize-area,location,date, time, nobel-prize-winning,nobel-prize-
awarding, nobel-prize-nomination, plus various sub-concepts.

The LT WORLD domain is much bigger, containing more than 600 concepts
(classes), 200 properties, and 20000 instances (approx. unique 400000 RDF triples
in sum), of which parts have been extracted semi-automatically from diverse web
sites and data bases. The LT WORLD ontology has originally been developed for a
comprehensive web portal (Uszkoreitet al. 2003;http://www.lt-world.org)
on Human Language Technology, providing information aboutpeople, technolo-
gies, products, resources, projects, and organizations inthis area.

Entries for real projects, person names, events or organization areinstancesof
the ontology concepts. For example, people actively working in Language Tech-
nology are modeled in the ontology as instances of the concept Active Person.
Active Person is a subclass ofPlayers and Teams which has further subclasses
such asProjects or Organizations.

The employed LT WORLD ontology is encoded in the Web ontology language
OWL (Bechhoferet al., 2004). OWL makes use of constructs from RDF (Klyne
and Carroll, 2004) and RDFS (Brickley and Guha, 2004) such asrdf:resource,
rdfs:subClassOf, or rdfs:domain, but its two variants OWL Lite and OWL DL
restrict the expressive power of RDFS, thereby ensuring decidability. What makes
OWL unique (as compared to RDFS) is the fact that it can describe resources
in more detail and that it comes with a well-defined model-theoretical semantics,
based on description logic (Baaderet al., 2003).
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9.10.2.4 Querying the Ontology

Because of the large amount of instance data, the LT WORLD ontology was stored
in an RDF database system (Guoet al., 2004; Haaseet al., 2004). The basic idea
is that even though OWL ontologies are employed, the information that is stored is
still RDF on the syntactic level. Therefore, a good candidate is an RDF database
system which can interpret the semantics of OWL and RDFS constructs such as
rdfs:subClassOf or owl:equivalentClass.

For the structured QA system, the LT WORLD ontology has thus been stored
in Sesame (http://www.openrdf.org), an open-source middleware framework
for storing and retrieving RDF data (Broekstraet al., 2002; Aduna B.V., 2004).
Sesame partially supports the semantics of RDFS and OWL constructs via en-
tailment rules that compute ‘missing’ RDF triples in a forward-chaining style at
compile time.

These predefined rules can be altered and the XML rule file can be extended,
according to the users’ needs. Termination is guaranteed as(long as) no new
classes or instances are introduced.

Since sets of RDF statements represent RDF graphs, queryinginformation in
an RDF framework means to specify path expressions. Sesame comes with a pow-
erful query language, SeRQL (Broekstra and Kampman, 2003),which turned out to
be sufficiently powerful in order to retrieve the right objects from the LT WORLD

ontology. The query syntax and structure is similar to relational database query
languages (cf. examples later).

9.10.2.5 Hybrid NLP for Question Analysis

Natural language question processing starts with generic syntactic and semantic
analysis on the basis of HPSG parsing in the Heart of Gold architecture. For in-
creased robustness, the HPSG parser is seamlessly integrated with the information
extraction systemSProUT(Drożdżyńskiet al., 2004).

SProUTperforms named entity recognition (NER) on the basis of unification-
based finite-state transduction rules and gazetteers (standard NE grammars for En-
glish and German). It provides structured representationsboth for general named
entity classes and domain-specific terms and named entities.

The lingware resources forSProUT were extended by the automatic OntoN-
ERdIE ontology mapping (Schäfer, 2006b) as described in Section 9.7 with con-
cepts and instances from LT WORLD, where recognized instances also return an
object identifier as unique pointer into the ontology (for anexample cf. Sec-
tion 9.7).

Furthermore, the part-of-speech tagger TnT helps to guess the word class of
unknown words other than named entities. The hybrid integration scenario used
roughly corresponds to the configurations described in Section 9.6 for German and
English.

HPSG parsing in Heart of Gold delivers semantic representations in the for-
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Figure 9.29: RMRS of HPSG analysis (top) andSProUTNE recognition (bottom)
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malism of Robust Minimal Recursion Semantics (RMRS; Copestake 2003), as also
already described in Section 9.4.

We exemplify an RMRS generated by Heart of Gold of a question in Figure
9.29. It can, roughly, be read as an interrogative proposition (int m rel) with a
wh-quantified modifier ‘in which year’, where the modified evente2 is a winning
relation, its logical subjectARG1 refers to an individualx25, with proper name
‘Nadine Gordimer’, and whose logical objectx31is represented as a definite quan-
tified ( the q) compound noun (compoundrel) composed of a head noun relation
prize n and a proper name relation (‘Nobel’).

The former is modified by the PP ‘for Literature’, where the preposition’s
ARG1 refers to the variable of the modifié (x31), and itsARG2 to the variable
for ‘Literature’, which is recognized, by NE recognition, as a proper name in the
domain of Nobel prizes. As seen in the bottom structures, NE recognition delivers
EPs for the main NE relation types (here,ne-person-relandne-sciencearea-rel),
together with more fine-grained information, such assurnameandgiven namere-
lations. The latter are represented as modifiers, taking theARG0 variable of the
main relation as value of theirARG1 argument.

The RMRSes of theSProUT NER component are available as highly struc-
tured, IE-like NE representations, decomposing, for instance, a complex person
name intosurnameandgiven namerelations. The identified NE classes are fur-
ther mapped to coarse-grained HPSG NE-types (seenamedabb rel), which are
directly delivered to the HPSG parser to enhance robustness.

Both these highly structured RMRS representations and the coarse-grained
HPSG types are produced at runtime by XSLT stylesheets that are automatically
generated at compile time from the output structure specifications ofSProUTNE
types as part of the Heart of Gold framework as described in Section 9.5.4.1.

9.10.2.6 Question Interpretation

The challenge of the question interpretation phase is to extract from a general
semantics representation of the question encoded in RMRS the queried variable
along with sortal information for this queried variable, the expected answer type
(EAT), for later database or ontology query construction.

The RMRS analysis of questions as delivered by HPSG parsing marks the
proposition with the semantic relationint m rel for interrogative message type
(Figure 9.29). In wh-questions, interrogative pronouns introduce sortal relations
for the queried constituent, such aspersonrel (who), thing rel (what), time rel
(when),etc. For wh-phrases with nominal heads, the semantic relation introduced
by the noun constrains the semantic type of the queried constituent (seeyear n in
Figure 9.29). Imperative sentences such as‘List all persons who work on Informa-
tion Extraction.’ introduce an imperative message typeimp m rel.

The question interpretation module provided by Anette Frank takes as input the
RMRS representations of the question as delivered by hybridanalysis in the Heart
of Gold: the RMRS produced by the English or German HPSG parsers, and the
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RMRSes for recognized named entities (Figure 9.30).

Figure 9.30: Question interpretation in HoG-QA

Interpretation rules are formulated and applied using the term rewriting system
of Crouch (2005) that refer to (partial) argument structures in the RMRS in order
to identify and mark the queried variableq var of the question.

Furthermore, the ontological type of the queried variable is computed, which
provides important semantic constraints for answer extraction. Pronominal wh-
phrases introduce a semantic relation for the queried variable, such asperson, lo-
cation, or reason. For these general concepts, as well as for wh-phrases headed
by common nouns, a concept lookup is performed, either by mapping a general
ontological class using WordNet (Milleret al., 1993), or by directly mapping the
lexeme to its corresponding domain concept.

For the example displayed in Figure 9.29, this yields the additional semantic
constraints:q var(x15) andEAT(x15, ’year’), with x15 the variable correspond-
ing to ‘year’. These additional constraints are encoded in the RMRS by wayof
elementary predications (EPs) q focusand EAT rel, as seen below. In bothEPs
the value of theARG0 feature identifies the queried variable.EAT rel in addition
encodes the featureSORT, which takes as value the sortal type determined for the
queried variable.

[

REL q focus
ARG0 x15

]





REL EAT rel
ARG0 x15
SORT year





The RMRS as logical form of the question now explicitly encodes the queried
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variable, along with ontological restrictions as additional sortal constraints. The
remainingEPs in the RMRS define relational constraints on the requested informa-
tion. In our example, we are looking for the time when a Nobel prize was won, by
a person named ‘Nadine Gordimer’, where the area was ‘Literature’. These are the
key relational constraints that need to be satisfied when retrieving the answer from
the underlying knowledge base.

It is the task of question interpretation to identify these relational constraints
on the basis of the semantic representation of the question.These constraints can
then be translated to a search query in the formal query language of the underlying
knowledge base. We perform this task in three steps: We first enrich the RMRS
with a frame-based lexical-conceptual representation.

On the basis of a pre-defined set of domain-relevant frames and roles we ex-
tract from this enriched representation relational constraints for query construction.
These relational constraints, defined in a so-calledproto query, can then be trans-
lated to a search query with corresponding domain-specific concepts and proper-
ties, to retrieve the requested information from the knowledge base.

The motivation for this approach is two-fold: First, the projection of a frame-
based lexical-conceptual structure yields a normalized semantic representation that
naturally accounts for linguistic variants, or paraphrases of questions. It further
constitutes a natural approach for multilingual and cross-lingual question answer-
ing in restricted domains.

Second, by defining a set of domain-relevant frames and roleswe can establish
a modular interface between the linguistically determinedlexical-conceptual repre-
sentation of the question and the concepts of the underlyingknowledge bases. On
the basis of a mapping between domain-relevant frames and corresponding con-
cepts in the domain ontologies, we can efficiently identify and extract the domain-
relevant constraints from the semantic representation of the question.

These constraints are encoded in a proto query that is handedover to the answer
extraction process. The use of abstract proto queries givesus a clean interface that
abstracts away from the syntax and functionality of the back-end query languages.

9.10.2.7 Projection of a Frame-Semantic Representation

The RMRS of the question is enriched with a lexical-conceptual projection, follow-
ing the theory of Frame Semantics, as pursued in the FrameNetproject (Bakeret
al., 1998). FrameNet is building a lexical database of frame-semantic descriptions
for English verbs, nouns, and adjectives.

A framemodels a conceptual situation with a number of concept-specific roles
that identify the participants in the situation. Each framelists a number oflexical
units that can evoke the corresponding frame.

An important motivation for using a frame-semantic projection is that – due
to their design as lexical-conceptual semantic structures– frames account very
naturally for the normalization of paraphrases. For illustration, consider the se-
mantically equivalent paraphrases in (a), which are all very typical expressions for



9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 265

requesting information from a database about Nobel prizes,e.g. in questions such
asWhen did Marie Curie win the Nobel prize for Physics?

a. ( win / be awarded / obtain / get / be winner of ) a prize

HPSG semantic representations in terms of (R)MRS, however,are tailored to
account for structural semantic properties such as quantifier scoping and predicate-
argument structure, and thus still reflect the various different argument structures
involved, as illustrated in (b).

b. Different argument structures in RMRS representation
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]

Following related work in Frank and Erk (2004), the RMRS representations
are enriched with a frame-semantic projection, by mapping the different argument
structures of verbs or nouns to their corresponding frame structure, which states
the name of the frame and its frame-specific roles. An exampleof such a frame
assignment rule is given in (c).

c. RMRS-based frame assignment rule








REL win
ARG0 e1
ARG1 x1
ARG2 x2









[

REL prize
ARG0 x2

]

⇒









GETTING e1
SOURCE u1
THEME x2
RECIPIENT x1













AWARD x2
LAUREATE x1
DOMAIN u3





(d) displays the frame-semantic representation obtained for the partial RMRS
variants in (b).

d. Conceptual (frame-semantic) representation



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GETTING e1
SOURCE u1
THEME x2
RECIPIENT x1













AWARD x2
LAUREATE x1
DOMAIN u3





The frame-semantic representations are further enriched by applying forward-
chaining inference rules. The purpose is to fill gaps betweenthe (generic) frames
and some domain-specific knowledge, but also to assign non-instantiated argu-
ments, and furthermore to correct mismatches between the generic, domain-in-
dependent linguistic analysis and the structure of the underlying knowledge base.

We only give a simple, illustrative example here. More details and further
examples can be found in Franket al. (2006).
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The sample rule below maps the temporal modifier of the winning event to the
TIME role of theGETTING frame, i.e., the time of receiving an award is equal to
the time (attribute) of the award. This information would otherwise not be explicit
in the frame-enriched representation of the question.





GETTING e1
THEME x2
TIME t1





[

AWARD x2
TIME u2

]

⇒
[

AWARD x2
TIME t1

]

9.10.2.8 Proto Query Construction

Besides the frame-enriched and by inference rules augmented RMRS, a further
mapping from domain-relevant frames and roles to concepts in the underlying
knowledge bases is necessary and performed using the already mentioned term-
rewriting system. These additional constraints will become constraints for the
query construction.

From the frame-semantic structure and the query constraints, proto queries will
be constructed. A basic distinction for the construction ofstructured query terms
is the distinction between queried vs. constraining concepts and attributes.

For the extraction ofqueried concepts, we select those domain-relevant frames
and roles that correspond to the queried variable (q var) in the logical form, repre-
sented as theARG0 argument of theq focusrelation (cf. Section 9.10.2.6).

We further extract the corresponding ontological restrictions encoded as the
expected answer type inEAT rel. We extract all remaining (non-queried) domain-
relevant frames and roles, which provide additional constraints on the queried con-
cepts. Again, we extract ontological restrictions, here interms of their named entity
type, as encoded by the RMRS structures provided by named entity recognition in
the Heart of Gold.

Subsequent rules further identify the value of the constraint, in general the main
predicate (relation) or CARG (constant name) associated with the role’s variable,
such as ’Marie Curie’ in (b), or time constants for temporal constraints.

Proto queries may be complex, that is, they may be decomposedinto individual
sub-queries with specially marked dependencies. Therefore, all conditions that
pertain to a single sub-query are marked by a common sub-query index (qid).

We exemplify a short proto-query for the questionIn which areas did Marie
Curie win a Nobel prize?

<PROTO-QUERY id="1">

<SELECT-COND qid="0" rel="award" attr="domain"

sort="FieldofStudy">

<WHERE-COND qid="0" rel="award" attr="laureate" netype="person"

val="Marie Curie">

</PROTO-QUERY>
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Quantificational questions Question answering from structured knowledge ba-
ses is particularly well suited to answer questions for which the answer is not ex-
plicitly represented in the document or knowledge base, butmust be inferred from
the available information. Prime examples are cardinality, quantificational or com-
parative questions, as below.

1. How many researchers won a Nobel prize for Physics before 1911?

2. Which institution has published most papers between 2000 and 2004?

3. Which nation has won more Nobel prizes in Physics than the U.S.?

To account for these quantificational aspects, we employ special proto query
conditionsOP-COND and QUANT-COND. These constructs go beyond the formal
power of ontology query languages such as SeRQL, but can be translated to special
post-processing operations in the answer extraction phase.

The quantificational conditions are strongly determined bythe semantic rep-
resentation of the question, e.g. for the scope of ahow manyquestion. It is for
this reason that the computation of proto queries is tightlyintegrated with question
interpretation (see Figure 9.30, 9.31).

<PROTO-QUERY id="1">

<SELECT-COND qid="0" rel="award" attr="laureate" sort=""/>

<WHERE-COND qid="0" rel="award" attr="time" netype=""

valfunc="before" valarg="1911"/>

<WHERE-COND qid="0" rel="award" attr="domain"

netype="sciencearea" val="Physics"/>

<OP-COND oprel="card" domain-type="answer" domain-id="0"/>

</PROTO-QUERY>

Figure 9.31: Proto query forHow many researchers won a Nobel prize for Physics
before 1911?

9.10.2.9 Multi- and Cross-Linguality

The frame- and RMRS-based approach to question interpretation naturally extends
to multilingual and cross-lingual QA scenarios. Since frames are defined as lexical-
conceptual structures, they are to a large extent language-independent. Thus, ques-
tion interpretation in terms of a frame-semantic representation effectively imple-
ments a kind of ’interlingua’ approach for question answering: the frame-semantic
representations serve as a language-independent interface to the underlying knowl-
edge bases.

As illustrated in Figure 9.32, HPSG grammars for different languages – in
our scenario, English and German – provide semantic structures in a uniform
formalism, (R)MRS. The language-specific relations in these semantic forms are
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Figure 9.32: Natural language utterances (language-specific) to proto-queries:
frame-semantic representations as interlingua for multilingual QA

translated by language- and lexeme-specific frame projection rules to a common,
language-independent frame-semantic representation.

The remaining parts of the question interpretation and answer extraction pro-
cesses are then uniform across languages. Domain-specific inference rules refer
to the common frame-semantic representations, thus they are applied to the same
type of intermediate structures in question interpretation, irrespective of whether
they were produced by German or English HPSG grammars. Similarly, the subse-
quent rules for the extraction of proto queries uniformly operate on the language-
independent frame-semantic representations (see Section9.10.2.8).

For cross-lingual QA from structured knowledge sources, weperform term
translation for instances (named entities) and domain-specific terms of the knowl-
edge base that can appear as values in search queries constructed from the ques-
tion’s representation.

Actually, very moderate development effort was required when porting the
question processing module from English to German.

9.10.2.10 Answer Extraction

The answer extraction phase, provided by Hans-Ulrich Krieger, mainly consists of
translating the proto query to a database or ontology query language expression
and sending it to the database or ontology.



9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 269

For the database case, the answer extraction took place on a relational database
and the translation of the proto queries was quite straightforward from the similar
constructs, e.g. theSELECT-COND corresponding to a SQLSELECT statement, and
theWHERE-COND corresponding to a SQLWHERE clause.

We will therefore skip the SQL translation part which is described in more
detail in Franket al. (2006), and turn to the more challenging ontology query lan-
guage part, again skipping some details that can be found in the article, by showing
how a proto query can be mapped to an expression in the query language SeRQL
of Sesame.

Based on the mapping from domain-specific frames and roles inthe proto query
conditions to domain concepts and properties (see Section 9.10.2.8), we first per-
form a translation of the values ofrel, attr, andpath attributes to the corre-
sponding domain concepts and attributes of the LT World ontology. Thus, each
relation (value ofrel) now denotes a concept in the ontology and each attribute
(value ofattr) denotes an OWL property.

In a SeRQL query, instances of a concept are identified by variables in the
subject position of an RDF triple. The concept itself is stated in the object position,
and subject and object are connected byrdf:type – this is exactly the way how
instances of a specific concept are represented in the RDF base of Sesame. For
example,

<SELECT-COND qid=".." rel="Organizations" attr="locatedIn" ... />

leads to the introduction of the following RDF triple (r is a fresh variable,ltw the
LT WORLD namespace):

{_r} rdf:type {ltw:Organizations}

Since attributes such aslocatedIn refer to properties of a concept, we obtain
a further triple:

{_r} ltw:locatedIn {_q}

The propertylocatedInconnects instances of the main conceptOrganizations

via the root variabler with the queried information. The queried information is
bound to a new question variableq that will be returned. It is marked by the
SELECT clause in a SeRQL query:

SELECT {_q}

FROM {_r} rdf:type {ltw:Organizations},

{_r} ltw:locatedIn {_q} ...

Figure 9.33 contains the main principles of the transformation from proto que-
ries to SeRQL queries. To illustrate the transformation principles, we consider the
question‘Who is working in the Quetal project?’, with its (simplified) proto query
that contains aSELECT and a singleWHERE condition:
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(1) for eachSELECT-COND andWHERE-COND
– each relation denotes a concept
– each attribute denotes a property
– each unique relation introduces a newroot variable

(2) eachSELECT-COND introduces a newqueryvariable
(3) eachWHERE-COND introduces a newlocal variable
(4) guarantee that the RDF triples form a connected graph

– if path constraints are specified, link the root variables
– otherwise, introduce newpropertyvariables linking the roots

(5) finally applyOP-COND to the result table (if needed)

Figure 9.33: Principles for transformation of proto queries to SeRQL queries

<PROTO-QUERY>

<SELECT-COND rel="Active_Person" attr=""/>

<WHERE-COND rel="Active_Project" attr="projectName" val="Quetal"/>

</PROTO-QUERY>

Given this proto query, the following SeRQL query is generated:

SELECT DISTINCT _q0

FROM {_r1} rdf:type {ltw:Active_Person},

{_r2} rdf:type {ltw:Active_Project},

{_r1} ltw:name {_qo},

{_r2} ltw:projectName {_l3},

[ {_r1} _p4 {_r2} ],

[ {_r2} _p5 {_r1} ]

WHERE (NOT (_p4 = NULL) AND (_p5 = NULL)) AND (_l3 LIKE "Quetal")

Further details and optimizations are described in Franket al. (2006).
The answers from the database or ontology are encoded in a structuredanswer

object, similar to the query object that embodies the original proto query (Figure
9.28).

An answer object refers to the query id of the query object anddistinguishes
between potential conflicting answers (severalVALUES tags) and list-based answers
(a single result, consisting of several pieces; severalVALUE tags). Similar to ques-
tion objects, the answer objects serve as XML interchange structures in the QA
architecture. That is, the same type of structure is returned by MySQL for the
Nobel prize domain and Sesame in the LT WORLD domain.

As an example, the answer object generated for the question‘Who is working
in the Quetal project?’from the LT WORLD ontology is

<AOBJ id="id18" msg="answer" query-id="Q01" lang="EN">

<ANSWER type="complex" score="1.0">



9.10. FURTHER APPLICATIONS BASED ON HEART OF GOLD 271

<VALUES>

<VALUE>Anette Frank</VALUE>

<VALUE>Berthold Crysmann</VALUE>

<VALUE>Bogdan Sacaleanu</VALUE>

<VALUE>Feiyu Xu</VALUE>

<VALUE>Günter Neumann</VALUE>

<VALUE>Hans Uszkoreit</VALUE>

<VALUE>Hans-Ulrich Krieger</VALUE>

<VALUE>Ulrich Schäfer</VALUE>

</VALUES>

</ANSWER>

</AOBJ>

9.10.2.11 Evaluation

In this section, we report on an initial evaluation of the prototype system for
domain-restricted QA from structured knowledge sources. Asystem-internal eval-
uation assesses the quality and efficiency of question interpretation and answer
extraction. In addition, a comparative evaluation of the domain-restricted system
to the web-based open-domain textual QA system AnswerBus (Zheng, 2002) has
been performed. This, in conjunction with a detailed classification of question
types, allows to assess the added value of a specialized, domain-restricted QA com-
ponent in a hybrid system architecture23.

The comparative evaluation to AnswerBus restricts us to questions in English;
we further chose the Nobel prize domain, as information about this domain is ap-
propriately covered by the WWW. We compiled a set of 100 English questions
about the Nobel prize domain, in part adapted or inspired from the FAQ sections
of Nobel prize web portals.

Question classification The question types in the test set range from factual and
list questions to different types of cardinality and quantificational questions. Ta-
ble 9.12 shows a detailed overview of the different questiontypes and their distri-
bution over the sample set, along with a classification of thequestions’ expected
answer types, again with quantitative distribution (the types are overlapping, so the
figures do not sum up to 100%).

The questions are varied in terms of paraphrases (verbal andnominal para-
phrases, interrogative, non-interrogatives or embedded questions, such as‘Give me
a list of...’, ‘Could you tell me in which year...’), and according to different types
of constraints to be used in question interpretation and answer extraction, such as

23The textual QA system of QUETAL obtained the best results in the 2004 cross-lingual CLEF
task (Neumann and Sacaleanu, 2004). However, at the time of evaluation, it was not yet extended to
web-based QA. Since we do not yet have access to appropriately large document bases for our two
domains, it seemed most appropriate to choose an independent open-source web-based QA system
and to perform the comparative evaluation in the Nobel prizedomain, for which enough information
can be found on the Web.
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question type in % expected answer typein %
factual 58 time 13
list 15 person, organization 54
definition 2 currency 3
cardinality (how many) 22 prize area 14
quantificational (most) 24 nation 12
event quantification 2 achievement 1
embedded questions 17

Table 9.12: Distribution of question types and expected answer types

(relational) temporal constraints (in/before/since/after 1999), gender (female prize
winners), prize areas, as well as countries, locations, and affiliations.

Question processing and interpretation For the 100 questions the average run-
time (real time) per question was 3.74 seconds for full online processing from text
input to answer object output, on a Intel Xeon 2.5 GHz Linux machine. Answer
extraction (ontology query in Sesame with the complete LT WORLD data) alone
took 125 milliseconds per query object on average. For four questions, the linguis-
tic analysis failed, i.e. Heart of Gold could not return a deep analysis.

The question sample contains 18 questions that instantiatetwo types of event
quantification which are not yet accounted for by the question interpretation mod-
ule. For the qualitative evaluation, we accordingly distinguish between the full
question sample as basis for evaluation, displayed in the first row of Figure 9.13,
while the figures in the second row are computed on the basis ofthe 82 questions
that can currently be considered as in-scope phenomena.

The HPSG grammars used were equipped with stochastic modelsfor parse
selection (Oepenet al., 2002a) that are, however, general and not trained for the
specific domain or question answering as such. In the currentset-up, the question
interpretation module applies to the three highest-rankedsemantic HPSG analyses,
and delivers a separate question object for each of them.

Table 9.13 contains an overview of the distribution of correct proto queries
over the highest-ranked parses (columns 2-4), as well as theoverall number of
correct proto queries across the three highest-ranked analyses (columns 5-7). Of
the overall set of 100 questions, 46% return the correct proto query for the highest-
ranked parse, 41% and 32%, respectively, for the second and third ranks; restricted
to the in-scope phenomena, the figures raise to 56.1%, 50% and39%, respectively.

In many cases, question interpretation extracts a correct proto query from more
than one of the three best parses: For 18% of all questions (22% of the in-scope
samples) we obtain the correct proto query from all three parses considered. 24%
(29.3%) return two correct proto queries; for 17% (20.7%), we obtain a single
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correct pq in number of correctoverall proto query results
nth parse (in %) pq’s per q (in %) (with voting)
1st 2nd 3rd 3 2 1 corr. uncert. wrong no pq

full sample 46.0 41.0 32.018.0 24.0 17.0 58.0 3.0 15.0 24.0
in-scope only 56.1 50.0 39.022.0 29.3 20.7 69.5 2.4 7.3 19.5

Table 9.13: Evaluation of question interpretation (pq=proto query)

correct proto query from the three highest-ranked analyses.
Since we are considering the three best parses, we can apply avoting scheme

to determine which one of possible alternative proto queries to send to the answer
extraction module. In cases of non-conflicting multiple results, voting is not nec-
essary. However, we often obtain proto queries that are partial, or less specific than
another proto query result for the same question, which hence could lead to wrong
answers.

In those cases where the partial query is subsumed by both alternative analyses,
or by a single alternative analysis out of two resulting proto queries, we ignore the
partial query, in favor of the more specific one. In 67,9% of all cases that involve
partial queries (28 on the full corpus), this strategy yields a correct proto query.

In cases where a proto query is subsumed by only one of two alternative proto
queries, we mark the result as uncertain. This occurs in 3% (2.4%) of cases. For
24% (19.5%) of the questions, all analyses return an empty proto query, and are
thus to be regarded as out of system coverage. These cases areeither due to prob-
lems in the semantic analysis (failed or wrong parses or parse selection), or in the
question interpretation process.

As seen in Figure 9.13, the overall ratio of correct proto queries that result from
the voting and filtering process is 58% (69.5%). With 15% (7.3%), we achieve a
moderate error rate, opposed to a higher rate of cases where the system signals that
it is uncertain (3%/2.4%) or unable to answer the question (24%/19.5%).

Overall, then, the system features relatively high precision that is balanced
against a low error rate and reduced recall. This tendency isespecially welcome
for a domain-restricted QA system that is confronted with high user expectations
regarding the reliability of the answers delivered.

Another outcome of the evaluation is that a high percentage of the unanswered
questions failed because the correct parse was not promotedhigh enough by stochas-
tic parse selection. This could be improved by retraining the stochastic disambigua-
tion model on typical question samples instead of the used QA-unrelated corpus.

Answer extraction We evaluated the answer extraction module on the basis of
the 58 correct proto queries that were selected by the votingprocedure. Table 9.14
presents the results: for 74.1% of the proto queries the correct answer was returned;
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correct incorrect no answer
abs. # 43 4 11
in % 74.1 6.9 19.0

Table 9.14: Evaluation of answer extraction (based on 58 correct proto queries)

question type in % (in-scope) expected answer typein %
factual 53.4 (64.6) time 46.2
list 40.0 (42.0) person, organization 40.7
definition 100.0 (100.0) currency 0.0
cardinality (how many) 18.2 (22.0) prize area 42.9
quantificational (most) 25.0 (54.5) nation 58.3
event quantification 100.0 (100.0) achievement 0.0
embedded questions 47.1 (47.1)

Table 9.15: Distribution of correct answers over question types and expected an-
swer types

in 6.9% the answer was wrong; for 19%, finally, no answer was returned.
Error analysis for the 4 incorrect answers yielded a single minor cause of er-

ror (wrong answer type identification). For missing answerswe identified several
causes that need to be adjusted: mismatches of concept-database mappings, wrong
table selection and out of scope phenomena.

Table 9.15 details the distribution of correct answers overdifferent question
types, with restriction to in-scope phenomena in parentheses.

Comparison to AnswerBus In order to assess the added value of a domain-
restricted QA component, we compare the results of our current prototype system
to the results delivered by the open-domain textual QA system AnswerBus (Zheng,
2002). We collected the three highest-ranked answers returned by AnswerBus, and
evaluated the returned answers (Table 9.16).

The coverage on our 100 question sample is rather poor: for only 15% of
the questions it delivered a correct answer within the first three ranks. Detailed

correct for top n results correct for question types
1st 2nd 3rd overall fact card quant embedded

in % 9.0 8.0 8.0 15.0 22.4 4.5 4.2 5.9

Table 9.16: Distribution of correct answers (AnswerBus)
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analysis of the distribution of results over question typesshows that AnswerBus
fares moderately well for factual questions, but shows poorperformance for other
question types, such as cardinality, quantificational, or embedded questions. Of the
remaining question types, none could be answered.

9.10.2.12 Conclusion

We have described a novel approach for domain-restricted QAfrom structured
knowledge sources, building on deep semantic analysis of the question provided
by Heart of Gold, with a modular interface between linguistically motivated se-
mantic representations and domain-specific models, in terms of ontologies or do-
main databases. The architecture embodies a flexible interface to various types of
knowledge storage devices and their corresponding query languages.

Compared to earlier work on research in natural language interfaces to databases
(cf. Copestake and Sparck Jones (1990) for an overview), using anexistingbroad-
coverage HPSG grammar for deep question analysis, frame-semantic structures,
proto-query construction, ontologies and ontology query languages in a modular
architectures is new and adds some new, also engineering-oriented advantages (re-
usability, portability to new domains and knowledge sources etc).

Heart of Gold plays a crucial role not only for the multilingual, broad-coverage
deep analysis of questions which is domain-independent on purpose, but also for
the flexible, automatic integration of domain-specific knowledge resources via e.g.
named entity recognition modules (SProUTwith lingware resources derived from
ontologies using OntoNERdIE in the presented scenario).

The evaluations, although performed on a preliminary, prototypical system,
show clear improvements compared to classical shallow QA techniques.

9.11 Further Applications

In this section, we briefly describe further applications ofHeart of Gold that have
been conducted (or are still being conducted) by colleagues, and other external
institutions.

9.11.1 Learning Transfer Rules for Machine Translation

Michael Jellinghaus at Saarland University has started work on using Heart of
Gold for generating RMRS structures from multi-lingually transcribed European
Parliament speeches. The RMRSes (German and English translations of the same
speeches) are to be used for machine learning of transfer rules for machine transla-
tion based on RMRSes. Given the powerful, multilingual middleware architecture
of Heart of Gold, the automatic annotation of the speech transcriptions can be, at
least technically, be regarded as a simple by-product. Challenges for this task are
the open domain and relatively long sentences of the transcribed speeches that will
presumably result in many readings per analyzed sentence.
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9.11.2 Parsing Japanese Dictionary Definition Sentences

Basically using ChaSen, the Japanese HPSG grammar JACY (Siegel and Bender,
2002) and other tools form Heart of Gold, a group of researchers at NTT parsed a
large amount of Japanese definition sentences from a machine-readable dictionary
with considerably high coverage (Nicholset al., 2005). Possible applications are
question answering, information extraction, ontology population,etc.

9.11.3 Trailfinder (Travel Information Application, Norwe gian)

NTNU (University) Trondheim and Businesscape (company), Trondheim have de-
veloped an application using the Norwegian HPSG grammar (NorSource, also
available from the DELPH-IN repository, cf. Section 9.12) aiming at extracting
information from hiking route descriptions and supplying it for a web portal. The
Heart of Gold machinery produces RMRSes which are mapped onto standardized
information matrices. The input grammar has a specially developed semantics cop-
ing with aspects of paths and movement, extending the original core grammar. The
application is described in Hellanet al.(2004) and has been developed further since
then.

9.11.4 Soccer SmartWeb

SmartWeb is a multi-modal dialog system deriving answers from unstructured re-
sources such as the Web, from automatically acquired knowledge bases and from
web services. Heart of Gold is used in SOBA, the SmartWeb Ontology-Based An-
notation system (Buitelaaret al., 2006). SOBA automatically populates a knowl-
edge base by information extraction from soccer match reports as available on the
web. The extracted information is defined with respect to SWIntO, the underly-
ing SmartWeb Integrated Ontology (Oberleet al., 2006) in order to be smoothly
integrated into the rest of the system.

The current implementation uses Heart of Gold in a configuration consisting of
SProUTwith a specialized soccer information extraction grammar,as well as Tree-
Tagger and Sleepy for German shallow parsing. Figure 9.34 (courtesy of Anette
Frank) depicts a schema of the workflow of the overall extraction process and
where Heart of Gold comes into play. In this context, GregoryGulrajani has writ-
ten a SOAP binding for the MoCoMan class (in analogy to the XML-RPC server
class) that is used to provide a SOAP-based web service.

9.11.5 RMRS Chatterbot

Tina Klüwer at University of Cologne has developed an interactive chatterbot on
the basis of RMRS generated by Heart of Gold (Klüwer, 2006).Heart of Gold is
embedded in a J2EE (Java 2 Enterprise Edition) application server that connects
to Heart of Gold via XML-RPC. Hybrid RMRSes, produced by Heart of Gold in
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Figure 9.34: SmartWeb soccer information extraction architecture

a configuration as described in Section 9.6.2 for English, isused for an AIML in-
terpreter (Program D24). AIML is an XML format for describing complex patterns
and templates for simulating a human discourse.

The advantage of using RMRS instead of plain (English) text in the AIML pat-
terns – as they are typically used in current AIML applications – is that they pro-
vide a further level of abstraction through the semantics representation, including
also morphological information. Because the architectureTina Klüwer has devel-
oped is general, as is AIML, the system could presumably alsoused to implement
RMRS-based chatterbots in other languages for which Heart of Gold integrations
exist such as German, Japanese,etc.

9.11.6 Training

The shallow only part of Heart of Gold (mainly taggers and chunkers for English
and German) have been successfully used for training in a student camp in summer
2005 in Switzerland, by Manfred Pinkal, Aljoscha Burchardt(Saarland University)
and Michael Kohlhase (International University, Bremen).The author has also
used Heart of Gold for an invited course on XML-based integration of natural lan-
guage processing components at the 12th European Summer School on Language
and Speech Communication, Information Fusion in Natural Language Systems, in
Hamburg, July 2006.

24http://www.alicebot.org
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9.11.7 Anaphora, Coreference Resolution in Discourse

Nuria Bertomeu at Saarland University is using Heart of Goldfor PhD research on
anaphora resolution and handling elliptical questions in Question Answering sys-
tems. The hog://-URI mechanism of Heart of Gold can be easilyemployed to refer
back to previous annotations, e.g. the sentence prior to thecurrent sentence can be
reached viahog://sid/{acid-1}/aid, whereacid-1 is the annotation collec-
tion ID minus one. If numerical annotation collection IDs (or at least collection
IDs ending with an ordered number), increased by 1 for each sentence, are used,
then the expression exactly refers to the targeted sentence, where e.g. antecedents
of anaphora could be found.

9.11.8 Modern Greek Grammar

Julia Gorius (née Neu) at Saarland University has developed a Modern Greek
named entity grammar inSProUTas well as, in cooperation with Valia Kordoni,
a deep HPSG grammar for Modern Greek. Both resources have been integrated
using Heart of Gold (Neu, 2004; Kordoni and Neu, 2004), i.e.,the configuration
consists ofSProUT, PET and a simple tokenizer that produces PET XML input
chart items from Greek words for compatibility withSProUToutput in PET input
chart format.

9.11.9 Spanish HPSG Grammar with Shallow Preprocessing

Montserrat Marimon at Universitat Pompeu Fabra, Barcelona, is currently migrat-
ing her large-scale HPSG grammar of Spanish originally developed for ALEP (Ma-
rimon, 2002b) to LKB/PET and integrating it with shallow pre-processors (FreeL-
ing; Atseriaset al.2006). We have implemented a preliminary version of a FreeL-
ingModule to integrate these resources in Heart of Gold.

The main difference to the other HPSG grammars integrated sofar is that mor-
phological analysis is performed in the shallow preprocessing phase (FreeLing) as
well, whereas it is part of the HPSG grammars in all other languages integrated so
far.

Through the PET input chart, the information is given to the deep grammar. As
the FreeLing interface has been written first for the LKB system and itsSimple Pre-
Processing Protocol(SPPP, cf. DTD Appendix on page 293), an XSLT stylesheet
(sppp2pic.xsl, cf. XSLT Appendix on page 300) translates into the PET input
chart format.

SPPP example (English):

<segment>

<token form="kim" from="0" to="2">

<analysis stem="kim"/>

</token>

<token form="sleeps." from="4" to="10">
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<analysis stem="sleep">

<rule id="plur_noun_infl_rule" form="sleeps"/>

<rule id="punct_period_rule" form="sleeps."/>

</analysis>

<analysis stem="sleep" probability="0.5" pos="VP">

<rule id="third_sg_fin_verb_infl_rule" form="sleeps"/>

<rule id="punct_period_rule" form="sleeps."/>

</analysis>

</token>

</segment>

9.11.10 Parsing Debian Linux User Forum Discussions (English)

Timothy Baldwin (University of Melbourne) has started a project that aims at pars-
ing Linux User Forum Discussions on the web using Heart of Gold (with ERG
and shallow preprocessing for increased robustness) to automatically provide bet-
ter searchability and answers to questions already discussed.

9.11.11 SciBorg

The project SciBorg (‘Extracting the Science from Scientific Publications’), started
in October 2005 at the University of Cambridge in cooperation with the Nature
Publishing Group, the Royal Society of Chemistry, and the International Union of
Crystallography. The project aims at automatic knowledge extraction form scien-
tific publications, in particular chemistry. According to Copestakeet al. (2005b),
Heart of Gold, at least some of the already integrated components such as RASP
and PET, is under consideration as integration platform which will also and anyway
be based on RMRS. In the course of the project, the implementation of the com-
mon preprocessor format for PET and LKB, as briefly sketched in section 9.5.5.2,
is also foreseen.

9.12 Heart of Gold in International Collaboration

Heart of Gold has been made publicly available as open sourcetool under the
umbrella of the DELPH-IN collaboration (Oepenet al., 2002b).

DELPH-IN (Deep Processing with HPSG initiative25) has been founded in the
context of the EU-funded project DEEPTHOUGHT by its project partners, and cur-
rently consists of various computer science and computational linguistics research
labs at Cambridge University (UK), DFKI Saarbrücken, Kyung Hee University
(Korea), LORIA Nancy, NTT Communication Science Laboratory (Japan) Norwe-
gian University of Science and Technology, Saarland University, Stanford Univer-
sity (US), Tokyo University, University of Oslo, University of Sussex (UK), and
University of Washington.

25http://www.delph-in.net, http://wiki.delph-in.net
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The areas of collaborative research comprise robustness, disambiguation and
specificity of HPSG processing, and multilingual grammar engineering.

Besides the application-oriented runtime middleware Heart of Gold, a compre-
hensive suite of open source grammar development system (LKB), HPSG parser
(PET), HPSG grammars for various languages, evaluation, machine translation and
visualization tools as well as corpora and treebanks is published under open source
licenses and at the same time under continuous further development by the member
institutions.

9.13 Related Work

We have already discussed NLP architectures andad hocdeep-shallow integrations
in Section 6.2. Except some general language technology architectures already
mentioned above, there is currently no NLP architecture comparable to Heart of
Gold. While Heart of Gold is unique in that it provides a highly configurable,
network-enabled middleware for the integration of XML standoff annotation, pro-
vides facilities for XSL transformation and RMRS support aswell as a fully inte-
grated efficient HPSG parser, other solutions are either inflexible ad hocintegra-
tions for hybrid deep-shallow processing (mostly only up toPoS tagging fed into
a deep parser), or they do not support deep parsing and are hence not suitable for
hybrid processing.

Löwe and Noga (2002) present a further framework that deserves mention here.
It has been developed completely independently of languagetechnology, but bears
some similarity with the Heart of Gold middleware we propose26. Löwe and Noga
(2002) describe a generic XML-based, network-enabled middleware architecture
for re-usable components that explicitly makes use of XSLT as adapter language
between components. It has been proposed as a generic middleware in the spirit of
CORBA, DCOM or EJB. As the flexible configuration aspect for NLP components
is not foreseen, nor is the concept and support of standoff annotation, it cannot
be really judged as a ‘concurrent’ approach. However, it canwell be conceived
as a supporting, independent argument that the XML and XSLT-based middleware
approach makes sense in the software architecture landscape.

9.14 Outlook and Future Work

The Heart of Gold middleware, as described in this chapter, although only started
three years ago, has quickly grown to now constitute a considerably powerful
framework for flexible integration of numerous deep and shallow processing com-
ponents for various languages.

Moreover, the implementation of innovative new applications on the basis of
Heart of Gold at many different sites all over the world as well as, in most cases,

26In fact, it has been developed almost in parallel with Heart of Gold, and at the time Heart of
Gold was designed and implemented, we were not aware of this framework.
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application-oriented evaluations have shown the usefulness of the approach mainly
for increased robustness and uniform semantics output of hybrid NLP analyses.

The idea is that Heart of Gold, as one of the open source tools downloadable
from the DELPH-IN web page, will become a standard frameworkfor application-
oriented deep-shallow integration. In this section, we will briefly sketch some ideas
and plans for future developments.

First of all, one goal is the integration of new languages andNLP components
as in the ongoing effort for integration the Spanish HPSG grammar as described in
Section 9.11.9. Further next candidates could be e.g. French and Chinese as soon
as mature HPSGs exist for these languages. The idea is that also other languages
than German, English and Japanese, for which the robustness-oriented integration
is already quite advanced, could benefit from lessons learned and methods and
combinations developed for these three pioneering languages.

As sketched in Section 9.5.5.2, there are plans to replace the current PET input
chart format by a (mainly) syntactic variant, in order to provide a common, gen-
eral interface format for both LKB as development and PET as runtime system. In
most cases, this will be possible via adding or adapting existing XSL transforma-
tion stylesheets. The benefit of the uniform preprocessor interface is mainly for
grammar development in LKB, that currently makes testing and development on
unseen text (without full lexicon coverage) uncomfortable.

A further interesting extension, though largely language resource-dependent,
is adding a kind of divide and conquer strategy for structuring long sentences,
e.g. contained subclauses, before sending them to the deep parser. This could for
German be performed by re-using and adapting the WHITEBOARD topoparser in-
tegration in Heart of Gold (through cascades of largely re-used XSLT stylesheets),
and adapting structural mappings to the current German HPSGgrammar.

For other languages, however, the appropriate shallow preprocessors, lingware
resources and mappings will still have to be developed or identified. We expect
this to be a promising approach to increase coverage of deep parsing on very long
sentences as they occur in some newspapers, literature or scientific works such as
the present one.

Post-parsing reassembling (or repair) of fragmentary analyses is another ex-
tension that could further improve robustness for applications. The currently im-
plemented, simple approach uses an XSLT stylesheet for sorting fragments output
by the deep parser in the RMRS format according to their length. It returns then
longest fragments as a first quick solution, but shallow techniques and heuristics
could also be used to try to reconstruct what a deep parser would ideally do.

Knowledge from ontologies, injected via the described OntoNERdIE mapping
usingSProUT, into the deep parser’s input chart could also be employed ingram-
mars as additional source for disambiguation. This would extend grammar seman-
tics by both world knowledge and domain-specific knowledge and may help to
reduce ambiguity and increase precision of the analysis output.

Similarly and at the same time, this would develop Heart of Gold further to-
wards a platform for the Semantic Web. A further byproduct application of Heart
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of Gold could be the automatic generation of (e.g. RMRS-) annotated corpora, op-
tionally supported by the database interface, e.g. for machine learning and machine
translation respectively.



Chapter 10

Conclusion

In this thesis, we have described our contributions to frameworks for integrating
shallow and precision-oriented deep natural language processing components.

We have addressed this complex problem by introducing an abstraction layer
through XML. Using XML technology, we are able to employ manifold available
tools including XML transformation and query languages.

We have examined related XML corpus query languages and developed a novel
framework for XSLT-basedonlineintegration of NLP components, as started in the
WHITEBOARD annotation transformer (WHAT) and continued and streamlined in
theHeart of Goldtransformation service.

The major result of the synergy gained through hybrid deep-shallow integra-
tion areincreased robustnessandperformance. We could show that the coverage
of pre-existing HPSG grammars could be more than doubled through shallow pre-
processing by part-of-speech tagging and named entity recognition. This result of
course varies depending on the domain, status of grammars and resourcesetc. In
WHITEBOARD, it could be shown that using shallow topological parsing aspre-
processing (for German) can speed up deep parsing by a factorof 2.25.

Besides the immediately measurable gains, the XML- and XSLT-based inte-
gration frameworks also improve soft factors such as flexibility and modularity of
component integration and maintainability and re-usability of lingware resources.

While the WHITEBOARD architecture mainly provided an API for access to
results of NLP components organized in a strict sequence, the processing model
has been made much more flexible in the successor frameworkHeart of Goldthat
forms a highly configurablemiddlewarein between NLP components and NLP-
based applications.

Furthermore, our XML approach also drastically eases multilingual NLP pro-
cessing andstandoff markuphandling through its standardized Unicode-based char-
acter model.

Heart of Gold is superior to other NLP integration frameworks in that it sup-
ports configurable, multilingual web services and support for a common, though
optional, semantic representation format, RMRS, that can also be used for post-
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parsing integration of NLP analyses preserving and increasing robustness and pre-
cision.

Besides solving the central integration problem, we have also proposed gener-
alizable solutions for lingware and component building andtesting (SProUTomat),
ontology lingware integration (OntoNERdIE) and XML-basedinformation visual-
ization tools for complex NLP representations.

Finally, we would like to stress the role ofSProUT in conjunction with Heart
of Gold. In many implemented applications,SProUT is utilized as one of the key
components of Heart of Gold, sometimes even multipleSProUT grammars for
different NLP purposes at the same time for a single language. We see both frame-
works together as a strong couple that supports rapid development of application-
oriented component integrations.

While SProUT named entity and information extraction grammars allow to
quickly add domain-specific knowledge (domain modeling is further eased by do-
main ontology import via the OntoNERdIE tool), the general,domain-independent
language engineering part can be handled by HPSG grammars that have, e.g. for
English, German and Japanese, reached a quite mature state,and possibly assisted
by a statistical part-of-speech tagger that helps to identify unknown words.

The presented frameworks layed the foundations for a new generation of XML-
based application-oriented NLP integration scenarios, including advanced infor-
mation extraction and question answering. Domain-adaptivity, the economic ad-
vantage of sharing resources such as shallow and deep lexicaand the surplus of
getting rich and robust semantic analyses with high precision constitute the poten-
tial benefit for further novel applications.

It has to be pointed out that much more is possible both on the processing
strategy and on the application side than has been tried so far and is described here.
Many more combinatory variants are possible even on the basis of the components
and resources that have been integrated so far, but also by including additional
ones. From the evaluations and results obtained so far, one can extrapolate that is
will be a promising way to go.

The main scientific contribution of our thesis is the development of generic
framework that serves as a complex research instrument for experimenting with
novel processing strategies combining deep and shallow methods. Moreover, it
also supports the development of new applications that makeuse of instantiations
of the implemented processing strategies.

A scientific contribution is also the fact that the architecture may form a com-
mon basis and scientific platform for comparing and replicating results that have
been achieved by experimenting with various combinations of hybrid processing
instances.

With the advancement of knowledge technologies (knowledgerepresentation,
ontologies, ontology databases, inference engines) in thecontext of the Semantic
Web, there will be increasing need for deep, accurate semantic analysis of natural
language. Robust hybrid NLP can help to brigde the gap between natural language
and semantic processing.
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DTDs

In this appendix, we display some DTDs, mainly those of XML formats produced
or used by components integrated in Heart of Gold (Chapter 9).

A.1 ACE DTD Fragment

Following is a fragment of the ACE DTD discussed in Chapter 4,with standoff
pointers for character span, two-dimensional bounding boxes and timespan.

<!-- extract from ACE RDC DTD by John C. Henderson of MITRE

http://www.nist.gov/speech/tests/ace/resources/ace-rdc.v2.0.1.dtd -->

<!ELEMENT name (bblist|charspan|charseq|timespan)>

<!-- The extent is the maximal subset of the signal permitted in

judging correctness, and the head is the minimal subset. -->

<!ELEMENT extent (bblist|charspan|charseq|timespan)>

<!ELEMENT head (bblist|charspan|charseq|timespan)>

<!-- A list of bounding boxes is needed to describe wrapped words in

an image. -->

<!ELEMENT bblist (pixelboundingbox)+>

<!-- Alternate habits for describing bounding boxes.

Both can be supported because the tags wrap the elements.

(x1,y1) will presumably be upper left point and

(x2,y2) will be lower right point (suggested by English

reading order). -->

<!ELEMENT pixelboundingbox (x1,((x2,y1,y2)|(y1,x2,y2)))>

<!-- A character SPAN (charspan) is a pair of indices that wraps

the signal being annotated in text. This means that the first

index points to the imaginary gap *before* the first character

and the second index points to the imaginary gap *after* the
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final character in the span.

A character SEQUENCE (charseq) is a pair of indices pointing to

the first and last character of the text being annotated. This

means that the first index points to the first character of the

text being annotated (which is the same as pointing to the

imaginary gap *before* the first character), and the second index

points to the last character in the annotated text (the imaginary

gap *before* the last character in the annotated text). -->

<!ELEMENT charspan (start,end)>

<!ELEMENT charseq (start,end)>

<!ELEMENT timespan (start,end)>

<!ELEMENT x1 (#PCDATA)>

<!ELEMENT x2 (#PCDATA)>

<!ELEMENT y1 (#PCDATA)>

<!ELEMENT y2 (#PCDATA)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

A.2 TFS DTD

A minimalistic, recursive DTD for encoding typed features structures in XML as
discussed in Section 5.4.1, Structure and names of element and attributes are simi-
lar to the TEI feature structure DTD (Langendoen and Simons,1995).

<?xml version="1.0" ?>

<!-- minimal typed feature structure DTD -->

<!-- an FS (feature structure) node may contain features -->

<!-- atoms have an empty feature list -->

<!ELEMENT FS ( F* ) >

<!ATTLIST FS type NMTOKEN #IMPLIED

coref NMTOKEN #IMPLIED >

<!-- a feature has a name (attribute) and FS (feature structure) -->

<!-- as value -->

<!ELEMENT F ( FS ) >

<!ATTLIST F name NMTOKEN #REQUIRED >

A.3 XTDL

This is the DTD of the internalSProUT XTDLgrammar formalism representation,
e.g. used for grammar compilation and compile time type check (page 129). The
DTD is largely isomorphic to the XTDL BNF shown in Figure 7.2 on page 121.

<?xml version="1.0"?>

<!-- SPROUT Grammar XML DTD Version 2004

AUTHOR : {krieger,scherf,uschaefer,witold}@dfki.de
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VERSION: 2.1

DATE: 2003-12-19

NOTES: CFS is restricted by the parser in the following way.

Negation and seek are allowed only on the toplevel and only on the LHS.

Sets are allowed only as values of features, but not on the toplevel.

COLLECT with no type attribute is only allowed on the LHS of a rule,

COLLECT with type set or list is only allowed on the RHS of a rule.

Elements SEEK, TYPE, FN and F are augmented by the XTDL parser with an

additional attribute pos containing "beginLine beginColumn endLine

endColumn" of the name of the rule, type, function and feature in the

XTDL source code. The same attribute is also generated for the RULE

element. Here, the attribute indicates start and end position of the

complete rule definition. -->

<!ENTITY % rvalue "DISJ | CONCAT | N-TIMES | RANGE | STAR | PLUS |

ZERO-ONE | CFS | SEEK" >

<!ELEMENT SPROUT-GRAMMAR ( RULES ) >

<!ELEMENT RULES ( RULE | DUMMY_RULE )+ >

<!ELEMENT RULE ( LHS, RHS?, FNCN? ) >

<!ATTLIST RULE name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >

<!ELEMENT DUMMY_RULE ( LHS, RHS?, FNCN? ) >

<!ATTLIST DUMMY_RULE name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >

<!ELEMENT LHS ( %rvalue; )+ >

<!ELEMENT RHS ( CFS ) >

<!ELEMENT FNCN ( FN )+ >

<!ELEMENT FN ( CFS )+ >

<!ATTLIST FN name NMTOKEN #REQUIRED

coref NMTOKEN #IMPLIED

pos NMTOKENS #IMPLIED >

<!ELEMENT DISJ ( ( %rvalue; ), ( %rvalue; )+ ) >

<!ELEMENT CONCAT ( ( %rvalue; ), ( %rvalue; )+ ) >

<!ELEMENT N-TIMES ( %rvalue; ) >

<!ATTLIST N-TIMES num NMTOKEN #REQUIRED >

<!ELEMENT RANGE ( %rvalue; ) >

<!ATTLIST RANGE start NMTOKEN #REQUIRED

end NMTOKEN #REQUIRED >

<!ELEMENT STAR ( %rvalue; ) >

<!ELEMENT PLUS ( %rvalue; ) >
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<!ELEMENT ZERO-ONE ( %rvalue; ) >

<!ELEMENT SEEK ( CFS? ) >

<!ATTLIST SEEK name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >

<!ELEMENT SET ( CFS | SET )+ >

<!ELEMENT CFS ( TYPE | FS | SET | COREF | COLLECT )* >

<!ELEMENT FS ( F )* >

<!ATTLIST FS neg (true) #IMPLIED >

<!ELEMENT F ( CFS ) >

<!ATTLIST F name NMTOKEN #REQUIRED

pos NMTOKENS #IMPLIED >

<!ELEMENT TYPE ( #PCDATA ) >

<!ATTLIST TYPE neg (true) #IMPLIED

pos NMTOKENS #IMPLIED >

<!ELEMENT COREF ( #PCDATA ) >

<!ATTLIST COREF dct NMTOKEN #IMPLIED

pos NMTOKENS #IMPLIED >

<!ELEMENT COLLECT ( #PCDATA ) >

<!ATTLIST COLLECT type (list|set) #IMPLIED >

A.4 SProUTput

The generic output format of theSProUT interpreter is the typed feature struc-
ture DTD (TFS DTD, cf. Appendix A.2), augmented with set-valued feature val-
ues, and embedded in meta-information elementMATCHINFO, containing token and
character span of the matched input sequence as well as the name of theXTDL rule
that generated the output (Section 7.3).

<?xml version="1.0"?>

<!-- Sproutput DTD Version 2004

AUTHOR : uschaefer@dfki.de

VERSION: 2.1

DATE: 2004-01-21 -->

<!ELEMENT SPROUTPUT ( DISJ )* >

<!ELEMENT DISJ ( MATCHINFO )+ >

<!ATTLIST DISJ id ID >

<!ELEMENT MATCHINFO ( FS ) >

<!ATTLIST MATCHINFO id ID #IMPLIED

rule NMTOKEN #IMPLIED
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cstart NMTOKEN #IMPLIED

cend NMTOKEN #IMPLIED

start NMTOKEN #IMPLIED

end NMTOKEN #IMPLIED >

<!ELEMENT FS ( F )* >

<!ATTLIST FS type NMTOKEN #REQUIRED

coref NMTOKEN #IMPLIED >

<!ELEMENT F ( FS | SET ) >

<!ATTLIST F name NMTOKEN #REQUIRED >

<!ELEMENT SET ( FS | SET )* >

<!ATTLIST SET coref NMTOKEN #IMPLIED >

A.5 JTok

JTok comes with a native XML output functionality that is used by JTokModule
(Section 9.5.1.1) for generating the module output, augmented with the<metadata>
element.

<?xml version="1.0"?>

<!-- JTok DTD -->

<!ELEMENT jtok ( metadata p* ) >

<!-- paragraphs -->

<!ELEMENT p ( tu )+ >

<!-- text units, i.e., sentences etc. -->

<!ELEMENT tu ( Token )+ >

<!ATTLIST tu id ID >

<!-- token information -->

<!ELEMENT Token EMPTY >

<!ATTLIST Token string CDATA #REQUIRED

type NMTOKEN #REQUIRED

offset NMTOKEN #REQUIRED

length NMTOKEN #REQUIRED >

A.6 TnT

As the statistical tagger TnT Brants (2000) does not produceXML output natively,
the following PoS tag DTD is implemented in the TnTModule of Heart of Gold
(Section 9.5.2.1).

<?xml version="1.0"?>

<!-- TnT DTD -->

<!ELEMENT tnt ( metadata tokens ) >
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<!ELEMENT tokens ( w )* >

<!-- each token <w> may have several PoS tags <p> assigned -->

<!ELEMENT w ( p )* >

<!ATTLIST w str CDATA #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED >

<!-- PoS tag, p attribute contains probability -->

<!ELEMENT p EMPTY >

<!ATTLIST p pos NMTOKEN #REQUIRED

p CDATA #REQUIRED >

A.7 Chunkie

The statistical chunker Chunkie (Skut and Brants, 1998) itself does not deliver
XML output. The DTD below is generated by the Heart of Gold ChunkieModule
(XML example on page 71).

<?xml version="1.0"?>

<!-- Chunkie DTD -->

<!ELEMENT chunkie ( chunks ) >

<!ELEMENT chunks ( s )* >

<!-- <s>entence -->

<!ELEMENT s ( w | chunk )* >

<!ATTLIST s id ID

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED >

<!-- <w>ord/token with PoS tag -->

<!ELEMENT w ( #PCDATA ) >

<!ATTLIST w pos NMTOKEN #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED >

<!-- <chunk> -->

<!ELEMENT chunk ( w )+ >

<!ATTLIST chunk cat NMTOKEN #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED >

A.8 RMRS

This is a snapshot of the RMRS DTD published by Ann Copestake taken from
http://lingo.stanford.edu:8000/rmrs.dtd (as of 2004-07-21). The ad-
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mitted values list of thecogn-st attribute of thevar element is shortened here.
RMRS is described in Section 9.4.

<?xml version="1.0"?>

<!-- RMRS DTD -->

<!ELEMENT rmrs-list (rmrs)*>

<!ELEMENT rmrs (label, (ep|rarg|ing|hcons)*)>

<!ATTLIST rmrs

cfrom CDATA #REQUIRED

cto CDATA #REQUIRED >

<!ELEMENT ep ((realpred|gpred), label, var)>

<!ATTLIST ep

cfrom CDATA #REQUIRED

cto CDATA #REQUIRED >

<!ELEMENT realpred EMPTY>

<!ATTLIST realpred

lemma CDATA #REQUIRED

pos (v|n|j|r|p|q|c|x|u) #REQUIRED

sense CDATA #IMPLIED >

<!ELEMENT gpred (#PCDATA)>

<!ELEMENT label EMPTY>

<!ATTLIST label

vid CDATA #REQUIRED >

<!ELEMENT var EMPTY>

<!ATTLIST var

sort (x|e|h|u|l) #REQUIRED

vid CDATA #REQUIRED

num (sg|pl|u) #IMPLIED

pers (1|2|3|1-or-3|u) #IMPLIED

gender (m|f|n|m-or-f|u) #IMPLIED

divisible (plus|minus|u) #IMPLIED

cogn-st (type-id|uniq-id|fam|activ|...|u) #IMPLIED

tense (past|present|future|non-past|u) #IMPLIED

telic (plus|minus|u) #IMPLIED

protracted (plus|minus|u) #IMPLIED

stative (plus|minus|u) #IMPLIED

incept (plus|minus|u) #IMPLIED

imr (plus|minus|u) #IMPLIED

boundedness (plus|minus|u) #IMPLIED

refdistinct (plus|minus|u) #IMPLIED >

<!ELEMENT rarg (rargname, label, (var|constant))>

<!ELEMENT rargname (#PCDATA)>

<!ELEMENT constant (#PCDATA)>

<!ELEMENT ing (ing-a, ing-b)>

<!ELEMENT ing-a (var)>

<!ELEMENT ing-b (var)>

<!ELEMENT hcons (hi, lo)>

<!ATTLIST hcons
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hreln (qeq|lheq|outscopes) #REQUIRED >

<!ELEMENT hi (var)>

<!ELEMENT lo (label|var)>

A.9 PET Input Chart DTD

The PET input chart XML format is explained with examples in Section 9.5.5.2.

<?xml version="1.0"?>

<!-- PET input chart DTD Version 2004-12-21 -->

<!-- {Bernd.Kiefer,Ulrich.Schaefer}@dfki.de -->

<!ELEMENT pet-input-chart ( w | ne )* >

<!-- base input token constant "yes" means: do not analyze,

i.e., if the tag contains no typeinfo, no lexical item

will be built by the token-->

<!ELEMENT w ( surface, path*, pos*, typeinfo* ) >

<!ATTLIST w id ID #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED

prio CDATA #IMPLIED

constant (yes | no) "no" >

<!-- The surface string -->

<!ELEMENT surface ( #PCDATA ) >

<!-- numbers that encode valid paths through the input graph (optional) -->

<!ELEMENT path EMPTY >

<!ATTLIST path num NMTOKEN #REQUIRED >

<!-- every typeinfo generates a lexical token -->

<!ELEMENT typeinfo ( stem, infl*, fsmod* ) >

<!ATTLIST typeinfo id ID #REQUIRED

prio CDATA #IMPLIED

baseform (yes | no) "yes" >

<!-- Baseform yes: lexical base form; no: type name -->

<!-- lexical base form or type name -->

<!ELEMENT stem ( #PCDATA ) >

<!-- type name of an inflection rule-->

<!ELEMENT infl EMPTY >

<!ATTLIST infl name CDATA #REQUIRED >

<!-- put type value under path into the lexical feature structure -->

<!ELEMENT fsmod EMPTY >

<!ATTLIST fsmod path CDATA #REQUIRED

value CDATA #REQUIRED >

<!-- part-of-speech tags with priorities -->

<!ELEMENT pos EMPTY >
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<!ATTLIST pos tag CDATA #REQUIRED

prio CDATA #IMPLIED >

<!-- structured input items, mostly to encode named entities -->

<!ELEMENT ne ( ref+, pos*, typeinfo+ ) >

<!ATTLIST ne id ID #REQUIRED

prio CDATA #IMPLIED >

<!-- reference to a base token -->

<!ELEMENT ref EMPTY >

<!ATTLIST ref dtr IDREF #REQUIRED >

A.10 Simple PreProcessor Protocol (SPPP) DTD

The SPPP format has been implemented in LKB as preprocessor format. XML
documents with this DTD can be transformed by the XSLT stylesheet from Ap-
pendix B.6 into the PET input chart format (Appendix A.9). Anexample is pre-
sented in Section 9.11.9.

<?xml version="1.0"?>

<!-- SPPP DTD -->

<!ELEMENT segment ( token )* >

<!ELEMENT token ( analysis )* >

<!ATTLIST token form CDATA #REQUIRED

from NMTOKEN #REQUIRED

to NMTOKEN #REQUIRED >

<!ELEMENT analysis ( rule )* >

<!ATTLIST analysis stem CDATA #REQUIRED

probability NMTOKEN #IMPLIED

pos NMTOKEN #IMPLIED >

<!ELEMENT rule EMPTY >

<!ATTLIST rule id NMTOKEN #REQUIRED

form CDATA #REQUIRED >
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Appendix B

XSLT Stylesheets

This appendix contains some of the discussed XSLT stylesheets from Chapter 9.
The complete files (plus additional ones) are also containedin the Heart of Gold
source code distribution in thexsl subdirectory.

B.1 Automatically GeneratedSProUT to RMRS Stylesheet

This is a fragment of the code generated by Heart of Gold for the single attribute
PRODUCT-NAME of the named entity grammar for products. The XSLT code
is taken from the automatically generated stylesheeten types-sprout2rmrs.xsl.
The complete stylesheet comprises approx. 8700 lines of code (Section 9.5.4.1).

<xsl:variable name=’PRODUCT-NAME’

select=’FS[@type="ne-product"]/F[@name="PRODUCT-NAME"]/FS/@type’/>

<xsl:if test=’($PRODUCT-NAME!="string") and ($PRODUCT-NAME!="")’>

<xsl:element name=’ep’>

<xsl:attribute name=’cfrom’>

<xsl:value-of select=’$cfrom’/>

</xsl:attribute>

<xsl:attribute name=’cto’>

<xsl:value-of select=’$cto’/>

</xsl:attribute>

<xsl:attribute name=’surface’>

<xsl:value-of select=’$rsurface’/>

</xsl:attribute>

<xsl:element name=’gpred’>

<xsl:value-of select=’"product-name_rel"’/>

</xsl:element>

<xsl:element name=’label’>

<xsl:attribute name=’vid’>

<xsl:value-of select=’$offset + 10’/>

</xsl:attribute>

</xsl:element>

<xsl:element name=’var’>

<xsl:attribute name=’sort’>
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<xsl:value-of select=’"x"’/>

</xsl:attribute>

<xsl:attribute name=’vid’>

<xsl:value-of select=’$offset + 10’/>

</xsl:attribute>

</xsl:element>

</xsl:element>

<xsl:element name=’rarg’>

<xsl:element name=’label’>

<xsl:attribute name=’vid’>

<xsl:value-of select=’$offset + 10’/>

</xsl:attribute>

</xsl:element>

<xsl:element name=’rargname’>

<xsl:value-of select=’"CARG"’/>

</xsl:element>

<xsl:element name=’constant’>

<xsl:value-of select="translate($PRODUCT-NAME, ’&quot;’, ’’)"/>

</xsl:element>

</xsl:element>

<xsl:element name=’rarg’>

<xsl:element name=’label’>

<xsl:attribute name=’vid’>

<xsl:value-of select=’$offset + 10’/>

</xsl:attribute>

</xsl:element>

<xsl:element name=’rargname’>

<xsl:value-of select=’"ARG1"’/>

</xsl:element>

<xsl:element name=’var’>

<xsl:attribute name=’sort’>

<xsl:value-of select=’"x"’/>

</xsl:attribute>

<xsl:attribute name=’vid’>

<xsl:value-of select=’$offset’/>

</xsl:attribute>

</xsl:element>

</xsl:element>

</xsl:if>

B.2 Combining Input Annotations

Thecombinepixml.xsl stylesheet is called from the PetModule (Section 9.5.5).
It XML-wise concatenates multiple PET input chart documents that can be speci-
fied as a list of HoG URIs (or XML file names) in the global stylesheet parameter
urilist.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
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<!--Combine different PET XML input chart documents into one document,

omitting metadata element and its children. Within a living HoG,

the parameter urilist should countain a comma-separated

list of HoG annotation names e.g. hog://session1/acol1/TnTpiXML

-->

<xsl:output method="xml"/>

<xsl:strip-space elements="*"/>

<xsl:param name="urilist">TnTpiXML.xml,SProUTpiXML.xml</xsl:param>

<xsl:template match="/">

<xsl:element name="pet-input-chart">

<xsl:for-each select="@*">

<xsl:copy-of select="."/>

</xsl:for-each>

<xsl:call-template name="insert-documents">

<xsl:with-param name="urilist" select="$urilist"/>

</xsl:call-template>

</xsl:element>

<xsl:apply-templates/>

</xsl:template>

<xsl:template name="insert-documents">

<xsl:param name="urilist"/>

<xsl:choose>

<xsl:when test="contains($urilist,’,’)">

<xsl:variable name="car" select="substring-before($urilist,’,’)"/>

<xsl:copy-of select="document($car)/pet-input-chart/w"/>

<xsl:copy-of select="document($car)/pet-input-chart/ne"/>

<xsl:call-template name="insert-documents">

<xsl:with-param name="urilist"

select="substring-after($urilist,’,’)"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:copy-of select="document($urilist)/pet-input-chart/w"/>

<xsl:copy-of select="document($urilist)/pet-input-chart/ne"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.3 Removing Conflicting Items in the PET Input Chart

As the previous one, this stylesheet can be called from the PetModule (Section 9.5.5)
as a preprocessing filter.
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<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<!-- Removal of PET input chart items in contained spans -->

<!-- (to overcome bug in cheap with PET input chart -->

<xsl:output method="xml"/>

<xsl:strip-space elements="*"/>

<xsl:template match="/pet-input-chart">

<xsl:element name="pet-input-chart">

<xsl:for-each select="@*">

<xsl:copy-of select="."/>

</xsl:for-each>

<xsl:apply-templates select="w"/>

</xsl:element>

</xsl:template>

<xsl:template match="w">

<xsl:variable name="cstart" select="@cstart"/>

<xsl:variable name="cend" select="@cend"/>

<!-- remove Token if start or end is between start and end of a

right NE -->

<xsl:if test="not(following-sibling::w[(@cstart <= $cstart)

and ($cstart <= @cend)] or

following-sibling::w[(@cstart <= $cend) and

($cend <= @cend)])">

<xsl:copy-of select="."/>

</xsl:if>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.4 Sorting and Filtering Longest RMRS Fragments

This stylesheet takes fragmentary RMRS output from PET where the parser could
not compute a full spanning analysis for a sentence. It sortsthe fragments accord-
ing to their length, and outputs only then longest. Discussion on page 221.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<!-- Extract longest RMRS fragment -->

<!-- parameter fragments: number of fragments to return -->

<!-- Created 2005-04-25 -->

<xsl:output method="xml"/>
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<xsl:param name="fragments" select="5"/>

<xsl:template match="/pet">

<xsl:copy>

<xsl:for-each select="@*">

<xsl:copy-of select="."/>

</xsl:for-each>

<xsl:apply-templates select="metadata"/>

<xsl:for-each select="rmrs">

<xsl:sort select="number(ep/@cto) - number(ep/@cfrom)"

data-type="number" order="descending"/>

<xsl:if test="position() <= $fragments">

<xsl:copy-of select="."/>

</xsl:if>

<xsl:apply-templates/>

</xsl:for-each>

</xsl:copy>

</xsl:template>

<xsl:template match="metadata">

<xsl:copy-of select="."/>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.5 Sorting and Merging RDF Descriptions

The following stylesheet, part of the initial OntoNERdIE offline transformation
tool (Section 9.7.1.2) sorts and mergesrdf:descriptions distributed over an
RDF file, but bearing the same rdf:about (and rdf:nodeID) attributes. The input
RDF file must contain unabbreviated RDF (without QName abbreviations).

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!-- Date: 2005-10-07 -->

<!-- Author: Ulrich.Schaefer@dfki.de -->

<!-- Description: rdfsort.xsl sorts and merges distributed

rdf:Description

elements with same rdf:about (and rdf:nodeID) attributes

Input DTD: RDF input file without QName abbreviations

Output: RDF (with grouped Descriptions) -->

<xsl:output method="xml"/>

<xsl:key name="aboutkeys" match="rdf:Description" use="@rdf:about"/>

<xsl:key name="nodekeys" match="rdf:Description" use="@rdf:nodeID"/>
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<!-- root template -->

<xsl:template match="/rdf:RDF">

<xsl:copy>

<!-- copy namespace and other top attributes -->

<xsl:copy-of select="@*"/>

<!-- walk through rdf:Description elements with rdf:about

attributes -->

<xsl:for-each select="rdf:Description[generate-id(.)=

generate-id(key(’aboutkeys’, @rdf:about)[1])]">

<xsl:sort select="@rdf:about"/>

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:for-each select="key(’aboutkeys’, @rdf:about)">

<xsl:copy-of select="*"/>

</xsl:for-each>

</xsl:copy>

</xsl:for-each>

<!-- walk through rdf:Description elements with rdf:nodeID

attributes -->

<xsl:for-each select="rdf:Description[generate-id(.)=

generate-id(key(’nodekeys’, @rdf:nodeID)[1])]">

<xsl:sort select="@rdf:nodeID"/>

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:for-each select="key(’nodekeys’, @rdf:nodeID)">

<xsl:copy-of select="*"/>

</xsl:for-each>

</xsl:copy>

</xsl:for-each>

</xsl:copy>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>

B.6 SPPP to PIC

This stylesheet transforms the LKB Simple PreProcessor Protocol (SPPP) XML
format into the PET input chart, used for morphological preprocessing of the Span-
ish HPSG grammar (cf. Section 9.11.9).

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<!-- Transform LKB sppp format (http://wiki.delph-in.net/moin/LkbSppp)

<!-- to PET XML input chart format
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<!-- (http://wiki.delph-in.net/moin/PetInput, XML input)

<!-- Version: $Id: sppp2pic.xsl,v 1.3 2006/06/29 13:04:02 uschaefer $ -->

<xsl:output method="xml"/>

<xsl:strip-space elements="*"/>

<xsl:param name="metadata"><metadata/></xsl:param>

<xsl:template match="/">

<xsl:element name="pet-input-chart">

<xsl:copy-of select="$metadata"/>

<xsl:for-each select="@*">

<xsl:copy-of select="."/>

</xsl:for-each>

<xsl:apply-templates/>

</xsl:element>

</xsl:template>

<xsl:template match="token">

<xsl:apply-templates select="analysis">

<xsl:with-param name="cstart" select="@from"/>

<xsl:with-param name="cend" select="@to"/>

<xsl:with-param name="tokenno" select="position()"/>

<xsl:with-param name="surface" select="@form"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="analysis">

<xsl:param name="cstart" select="-1"/>

<xsl:param name="cend" select="-1"/>

<xsl:param name="tokenno" select="0"/>

<xsl:param name="surface" select="’SURFACE’"/>

<xsl:param name="idsuffix" select="concat($tokenno,’.’,position())"/>

<w id="{concat(’FLW’, $idsuffix)}" cstart="{$cstart}" cend="{$cend}">

<xsl:choose>

<xsl:when test="count(*)=0 and not(@pos)">

<xsl:attribute name="constant">

<xsl:value-of select="’yes’"/>

</xsl:attribute>

<surface><xsl:value-of select="$surface"/></surface>

<typeinfo id="{concat(’FLT’,$tokenno,’.’,position())}"

baseform="no">

<stem><xsl:value-of select="@stem"/></stem>

</typeinfo>

</xsl:when>

<xsl:otherwise>

<surface><xsl:value-of select="$surface"/></surface>

</xsl:otherwise>

</xsl:choose>

<xsl:if test="@tag">

<pos tag="{@tag}">

<xsl:if test="@probability">

<xsl:attribute name="prio">

<xsl:value-of select="@probability"/>

</xsl:attribute>
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</xsl:if>

</pos>

</xsl:if>

<xsl:apply-templates select="rule">

<xsl:with-param name="idsuffix" select="$idsuffix"/>

</xsl:apply-templates>

</w>

</xsl:template>

<xsl:template match="rule">

<xsl:param name="idsuffix" select="0"/>

<xsl:param name="stem" select="NOSTEM"/>

<typeinfo id="{concat(’FLR’,$idsuffix, ’.’, position())}" baseform="no">

<stem><xsl:value-of select="@form"/></stem>

<infl name="{@id}"/>

</typeinfo>

</xsl:template>

<xsl:template match="text()"/>

</xsl:stylesheet>
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rich Schäfer, and Feiyu Xu. SProUT - shallow processing with typed feature
structures and unification. InProceedings of the International Conference on
Natural Language Processing (ICON 2002), Mumbai, India, 2002.

Dorothee Beermann, Berthold Crysmann, Petter Haugereid, Lars Hellan, Dario
Gonella, Daniela Kurz, Giampaolo Mazzini, Oliver Plaehn, and Melanie Siegel.
DEEPTHOUGHT deliverable 5.10. Technical report, The DEEPTHOUGHT con-
sortium, 2004.

Emily Bender, Dan Flickinger, Frederik Fouvry, and MelanieSiegel, editors.Pro-
ceedings of the ESSLLI 2003 Workshop on Ideas and Strategiesfor Multilingual
Grammar Development, Vienna, Austria, 8 2003.
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Schäfer. Integrated shallow and deep parsing: TopP meets HPSG. InProceed-
ings of ACL-2003, pages 104–111, Sapporo, Japan, 2003.

Anette Frank, Kathrin Spreyer, Witold Drożdżyński, Hans-Ulrich Krieger, and Ul-
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Günter Neumann and Ulrich Schäfer. WHITEBOARD - eine XML-basierte Ar-
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