
Dependency Structures and

Lexicalized Grammars

Marco Kuhlmann

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenscha�en

der Naturwissenscha�lich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken 2007

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenscha�en

der Naturwissenscha�lich-Technischen Fakultäten

der Universität des Saarlandes,

eingereicht von

Marco Kuhlmann, B. Sc., M. Sc.,

geboren am 16. Oktober 1977 in Rinteln

berichterstatter:
Prof. Dr. Gert Smolka

Prof. Dr. Manfred Pinkal

Prof. Aravind K. Joshi

dekan:
Prof. Dr.-Ing.�orsten Herfet

prüfungsausschuss:
Prof. Dr. Raimund Seidel

Prof. Dr. Gert Smolka

Prof. Dr. Manfred Pinkal

Dr. Tilman Becker

tag des kolloquiums:
24. September 2007

Textfassung vom 2. November 2007

Copyright © 2007 Marco Kuhlmann

mathematiksatz: Johannes Küster, typoma, Holzkirchen
schriften: Minion, Cronos, typoma® MnMath

Abstract

In this dissertation, I show that both the generative capacity and the parsing complexity

of lexicalized grammar formalisms are systematically related to structural properties of

the dependency structures that these formalisms can induce. Dependency structures
model the syntactic dependencies among the words of a sentence. I identify three

empirically relevant classes of dependency structures, and show how they can be

characterized both in terms of restrictions on the relation between dependency and

word-order and within an algebraic framework. In the second part of the dissertation,

I develop natural notions of automata and grammars for dependency structures, show

how these yield in�nite hierarchies of ever more powerful dependency languages, and
classify several grammar formalisms with respect to the languages in these hierarchies

that they are able to characterize.�ese results provide fundamental insights into the

relation between dependency structures and lexicalized grammars.

iii

Acknowledgements

�is dissertation reports the major results of roughly four years of research. Among the

many people who have contributed to it, there are some to whom I owe a particularly

large debt of gratitude.

My �rst thanks goes to my supervisor, Gert Smolka. He granted me the freedom

to develop my own ideas, encouraged me to strive for simplicity in their presentation,

and provided guidance and advice. I also thank Manfred Pinkal and Aravind Joshi for

accepting to give their expert opinion on this dissertation, and to Raimund Seidel and

Tilman Becker for agreeing to join my examination committee.

Guido Tack, asmy o�ce-mate, had to su�er frommymeanderings on a large number

of sometimes errant ideas related to this dissertation. I thank him for the patience he

had with me, for his valuable feedback, and most of all, for his friendship. My student,

now colleague Mathias Möhl bore with me in endless discussions, and made essential

contributions to this work. Joachim Niehren introduced me to tree automata and the

algebraic perspective on formal languages. Without him, the machinery used in this

dissertation would be far less canonical. �anks also go to my coauthors: Mathias,

Manuel Bodirsky, Robert Grabowski, and Joakim Nivre. Joachim, Bernhard Fisseni,

Sebastian Maneth, and Martin Plátek provided me with the opportunity to present

preliminary results of my work to their research groups.

�e research reported in this dissertation was carried out in the context of the

chorus project, which is part of the Collaborative Research Centre 378, ‘Resource-

adaptive cognitive processes’, and funded by the Deutsche Forschungsgemeinscha�,

dfg.�roughout my doctoral studies, I have also been associated to the International

Research Training Group 715, ‘Language technology and cognitive systems’, likewise

funded by the dfg. In both contexts, I have been privileged to work and study together

with Ralph Debusmann, Alexander Koller, and Stefan�ater. Alexander deserves a

special thanks for his constant enthusiasm about our research, which has been a source

of motivation for me ever since I �rst met him as a freshman.

During the last �ve years, my desk was in the Programming Systems Lab at Saarland

University. I thank the other members of the Lab for creating a pleasant working

environment—both the current members and those who have worked here during my

time at the Lab: Gert, Guido, Mathias, Ralph, Mark Kaminski, Sandra Neumann, and

Jan Schwinghammer; Joachim, Ondřej Bojar,�orsten Brunklaus, Denys Duchier, Leif

Kornstaedt, Didier Le Botlan, Tim Priesnitz, Andreas Rossberg, Gábor Szokoli, Lutz

Straßburger, and Ann van de Veire.�anks also go to our student assistants Robert

Künnemann and Christophe Boutter.

v

Beyond the people I have already mentioned, there were many more who have

listened patiently, answered thoroughly, and been helpful during the composition of

this dissertation in all kinds of ways. I speci�cally want to mention Carlos Areces,

Jason Baldridge, Achim Blumensath, Cem Bozsahin, Paul Bra�ort, Matthias Buch-

Kromann, Balder ten Cate, Lukas Champollion, Joan Chen-Main, David Chiang,

Michael Daniels, Arno Eigenwillig, Jason Eisner, Phillippe Flajolet, Mary Harper,

Günter Hotz, Laura Kallmeyer, Anna Kasprzik, Stephan Kepser, Geert-Jan Kruij�,

Ivana Kruij�-Korbayová, Markéta Lopatková, Detmar Meurers, Jens Michaelis, Uwe

Mönnich, Timo von Oertzen, Gerald Penn, Fernando Pereira, Giorgio Satta, Yves

Schabes, Tatjana Sche�er, Ingo Schröder, Sabine Schulte im Walde, Stuart Shieber,

Oliver Suhre, Martin Volk, David Weir, Anssi Yli-Jyrä, and Zdeněk Žabokrtský. Gert,

Mathias, Joachim, Ralph, Stefan, and Jiří have all read dra�s of parts of this dissertation,

and given valuable feedback.

�e �nal phase of the write-up made me appreciate how extremely fortunate I am to

be surrounded by a large number of supportive friends and colleagues, such as Colin

Bannard, Chris Callison-Burch, DanielleMatthews, Ulrike and Sebastian Padó,Monika

Schwarz, and Markus Zacharski. A very special thanks goes to Lars Charbonnier, for

his friendship and support during the last ten years.

Finally, I want to express my love and gratitude to my families: to Eva, Richard,

Karin, Per, Britta, and Gunnar; to Renate, Eckhard, Maike, Jochen, Christian, Silke,

Hannah, and Tilman; to my aunts, uncles, and cousins; to my grandmothers Meta and

Waltraud; to my siblings Marina, Ulrike, and Christoph, to my parents Heidrun and

Klaus-Gerd, and most of all to my wife, Antje. �ank you for who you are, and for

accepting me for who I am.

Saarbrücken, November 2007 Marco Kuhlmann

vi

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Overview of the dissertation . 7

2 Preliminaries 13

3 Projective dependency structures 19
3.1 Projectivity . 19

3.2 Algebraic framework . 22

3.3 Algorithmic problems . 30

3.4 Empirical evaluation . 32

4 Dependency structures of bounded degree 35
4.1 �e block-degree measure . 35

4.2 Algebraic framework . 39

4.3 Algorithmic problems . 45

4.4 Empirical evaluation . 50

5 Dependency structures without crossings 51
5.1 Weakly non-projective dependency structures 51

5.2 Well-nested dependency structures 55

5.3 Empirical evaluation . 61

6 Structures and grammars 63
6.1 Context-free grammars . 63

6.2 Linear Context-Free Rewriting Systems 68

6.3 Coupled Context-Free Grammars . 75

6.4 Tree Adjoining Grammar . 79

7 Regular dependency languages 83
7.1 Regular sets of dependency structures 83

7.2 Pumping lemmata . 91

7.3 Constant growth . 97

vii

Contents

8 Generative capacity and parsing complexity 103
8.1 Projection of string languages . 103

8.2 String languages and structural properties 107

8.3 Parsing complexity . 113

9 Conclusion 121

Bibliography 125

viii

chapter 1 | Introduction

�e central thesis of this dissertation is, that the generative capacity and the parsing

complexity of lexicalized grammar formalisms are systematically related to structural

properties of the dependency graphs that these formalisms can induce. To back up

this thesis, I develop the formal theory of dependency structures, show how combining
these structures with a regular means of composition yields in�nite hierarchies of ever

more powerful dependency languages, and classify several grammar formalisms with
respect to the languages in these hierarchies that they are able to characterize.

1.1 | Motivation

�e principal goal of this dissertation is to connect two research areas in computational

linguistics: the search for grammar formalisms with adequate generative capacity, and

the search for dependency representations with well-balanced structural �exibility. In

this section, I review these two research areas, state my principal goal more precisely,

and motivate the speci�c research questions that I want to address.

1.1.1 | Grammar formalisms and generative capacity

Grammar formalisms are mathematical devices that are developed to give explicit

descriptions of linguistic theories. Following Pullum and Scholz (2005), we can classify

them into two broad categories: generative frameworks, which consist of rules that
specify how linguistic expressions are composed, andmodel-theoretic frameworks, in
which linguistic expressions are characterized as the denotations of logical formulae. In

this dissertation, we focus on generative formalisms, even though many of the results

that we present also have direct implications for model-theoretic frameworks.

One of the fundamental questions that we can ask about a grammar formalism

is, whether it adequately models natural language. In generative frameworks, we

can answer this question by studying the generative capacity of the formalism: if we
interpret grammars as generators of sets of linguistic structures (such as strings, trees,

or predicate-argument structures), then we can call a grammar formalism adequate, if

it allows us to write grammars that generate exactly those structures that we consider

relevant for the description of natural language.�e outcome of such an assessment

depends on the type of linguistic structures that we base it on: a formalism may be

adequate with respect to one type, but inadequate with respect to another. Another

fundamental question therefore is, on which type of linguistic expressions should we

base our measure of generative capacity?

1

1 Introduction

s → subj likes obj

subj → Dan

obj → mod parsnips

mod → fresh

s

subj likes obj

Dan mod parsnips

fresh

Figure 1.1: A context-free grammar and a parse tree generated by this grammar

To focus the discussion, let us consider the case of context-free grammars. For these

grammars, there are two standard measures of generative capacity: we can interpret

them as generators of sets of strings (string-generative capacity), or as generators of sets
of parse trees (tree-generative capacity). Figure 1.1 shows a toy context-free grammar
together with a parse tree for a simple English sentence. Strings and parse trees are

closely related. In particular, for each string generated by a context-free grammar, there

is at least one parse tree from which this string can be recovered by reading the leaves

of the tree from le� to right.

It is widely accepted today that context-free grammars are not adequate for the

description of natural language. Independently of each other, Huybregts (1984) and

Shieber (1985) showed that certain constructions in Swiss German require grammar

formalisms that adequately model these constructions to generate the so-called copy

language, which is beyond the string-generative capacity (and, a forteriori, the tree-
generative capacity) of context-free grammars. If we accept this analysis, then we must

conclude that context-free grammars are tooweak, and that we should look out formore

powerful formalisms. Unfortunately, the �rst class of formal languages in the Chomsky

hierarchy that does contain the copy language, the class of context-sensitive languages,
is too big a leap: it contains many languages that are considered to be beyond human

capacity (such as the set of all prime numbers), and while context-free grammars can

be parsed in polynomial time, the parsing problem of context-sensitive grammars is

pspace-complete. For such problems, it is widely suspected that they cannot be solved

in (deterministic or non-deterministic) polynomial time.

In search of a class of grammars that extends context-free grammar by the minimal

amount of generative power that is needed to account for natural language, several

so-calledmildly context-sensitive grammar formalisms have been developed; perhaps
best-known among these is Tree Adjoining Grammar (tag) (Joshi and Schabes, 1997).

�e class of string languages generated by tags contains the copy language, but unlike

general context-sensitive grammars, tags can be parsed in polynomial time. More

important here than their increased string-generative capacity however, is their stronger

power as generators of dependency structures.

2

1.1 Motivation

Dan likes fresh parsnips

Figure 1.2: A dependency structure

1.1.2 | Dependency representations and structural flexibility

Syntactic representations based on word-to-word dependencies have a long tradition

in descriptive linguistics; for a historical overview, refer to Kruij�, 2005. In recent years,

dependency representations have also become increasingly used in computational tasks,

such as information extraction (Culotta and Sorensen, 2004), machine translation

(Quirk et al., 2005), and parsing (Nivre et al., 2007).�e basic assumptions behind the

notion of dependency are summarized in the following sentences from the seminal

work of Tesnière (1959, ch. 1, §§ 2–4, and ch. 2, §§ 1–2):1

�e sentence is an organized whole; its constituent parts are the words. Every word that
functions as part of a sentence is no longer isolated as in the dictionary: the mind per-
ceives connections between the word and its neighbours; the totality of these connections
forms the sca�olding of the sentence. �e structural connections establish relations of
dependency among the words. Each such connection in principle links a superior term
and an inferior term. �e superior term receives the name governor (régissant); the
inferior term receives the name dependent (subordonné).

We can represent the dependency relations among the words of a sentence as a graph.

More speci�cally, the dependency structure for a sentence w = w1 · · · wn is the directed

graph on the set of positions of w that contains an edge i → j if and only if w j
depends on wi . In this way, just like strings and parse trees, dependency structures

can capture information about certain aspects of the linguistic structure of a sentence.

As an example, consider Figure 1.2. In this graph, the edge between the word likes and
the word Dan may be understood to encode the syntactic information that Dan is the
subject of likes ; similarly, the edge between likes and parsnips may be interpreted as
saying that parsnips is the direct object. When visualizing dependency structures, we
represent (occurrences of) words by circles, and dependencies among them by arrows:

the source of an arrowmarks the governor of the corresponding dependency, the target

marks the dependent. Furthermore, following Hays (1964), we use dotted lines (and

call them projection lines) to indicate the le�-to-right ordering of the words in the
sentence. Note that these lines do not belong to the graph structure as such.

1�e English translation (by myself) is based on Tesnière (1980).

3

1 Introduction

grammar formalisms

context-free

grammar

mildly context-sensitive

grammar formalisms

context-sensitive

grammar

dependency structures

projective

dependency structures

mildly non-projective

dependency structures

non-projective

dependency structures

Figure 1.3: The big picture

With the concept of a dependency structure at hand, we can express linguistic

universals in terms of structural constraints on graphs. �e most widely used such
constraint is to require the dependencies to form a tree.�is requirement captures the

stipulations that no word should depend on itself, not even transitively, that each word

should have at most one governor, and that a dependency analysis should cover all the

words in the sentence.�e structure in Figure 1.2 satis�es the treeness constraint. More

generally, all dependency structures that we consider in this dissertation form trees.

Another well-known constraint on dependency structures is projectivity. In contrast
to treeness, which imposes restrictions on dependency as such, projectivity concerns

the relation between dependency and the le�-to-right order of the words in the sentence.

Speci�cally, it requires each dependency subtree to cover a contiguous region of the

sentence. Projectivity is interesting because the close relation between dependency

and word order that it enforces can be exploited in parsing algorithms (Eisner and

Satta, 1999). However, in recent literature, there is a growing interest in non-projective
dependency structures, in which a subtree may be spread out over a discontinuous
region of the sentence. Such representations naturally arise in the syntactic analysis

of linguistic phenomena such as extraction, topicalization and extraposition; they are

particularly frequent in the analysis of languages with �exible word order, such as

Czech (Holan et al., 1998; Veselá et al., 2004). Unfortunately, most formal results on

non-projectivity are rather discouraging. In particular, non-projective dependency

parsing is np-complete (Neuhaus and Bröker, 1997; McDonald and Satta, 2007).

In search of a balance between the bene�t of more expressivity and the penalty

of increased processing complexity, several authors have proposed structural con-

straints that relax the projectivity restriction, but at the same time ensure that the

resulting classes of graphs are computationally well-behaved (Yli-Jyrä, 2003; Nivre,

2006a; Havelka, 2007a). Such constraints identify classes of what we may callmildly
non-projective dependency structures (see Figure 1.3).

4

1.1 Motivation

s → subj likes obj

subj → Dan obj → mod parsnips

mod → fresh Dan likes fresh parsnips

Figure 1.4: Lexicalized derivations induce dependency structures

1.1.3 | Lexicalized grammars induce dependency structures

Let us return to the discussion of generative grammars. An interesting property of

the context-free grammar in Figure 1.1 is that it is lexicalized: every production of
the grammar contains exactly one terminal symbol, the anchor of that production
(Schabes et al., 1988). Lexicalized grammars play a signi�cant role in contemporary

linguistic theories and practical applications. Crucially, every lexicalized grammar can

be understood as a generator for sets of dependency graphs, in the following sense.

Consider a derivation d of a terminal string a by means of a context-free grammar.
A derivation tree for d is a tree in which the nodes are labelled with (occurrences
of) the productions used in d , and the edges indicate how these productions were
combined. To give an example, the le� half of Figure 1.4 shows the unique derivation

tree of our example grammar. If the underlying grammar is lexicalized, then there

is a one-to-one correspondence between the nodes in the derivation tree and the

positions in the derived string a : every production that participates in the derivation
contributes exactly one terminal symbol to this string. If we now order the nodes of the

derivation tree according to the string positions of their corresponding anchors, then

what we get is a dependency structure. For our example, this procedure results in the

structure depicted in Figure 1.2. We say that this dependency structure is induced by
the derivation d .�e notion of induction identi�es the dependency relation with the
derivation relation, which is sensible for grammars in which all syntactic dependencies

are speci�ed locally within the elementary structures of the grammar, such as Tree

Adjoining Grammar (Frank, 2002; but see Candito and Kahane, 1998).

Not all practically relevant dependency structures can be induced by derivations

in lexicalized context-free grammars. A classic example is provided by the structural

di�erence between the verb-argument dependencies in German andDutch subordinate

clauses, as shown in Figure 1.5: context-free grammar can only characterize the ‘nested’,

projective dependencies of German (le�), but not the ‘cross-serial’, non-projective

assignments of Dutch (right). However, these structures can be induced by lexicalized

tag (Joshi, 1985).�e principal goal of this dissertation is to make the relations between

grammars and the dependency structures that they induce precise.

5

1 Introduction

. . . dass Jan Marie Wim lesen helfen sah . . . omdat Jan Marie Wim zag helpen lezen

Figure 1.5: Nested and cross-serial dependencies

1.1.4 | Questions asked

�e main research question of this dissertation is,

Which grammars induce which sets of dependency structures?

An answer to this question is interesting for at least two reasons. First, it allows us to

use dependency structures as the basis of an alternative measure for the generative

capacity of a grammar formalism.�is is attractive, as dependency structures are more

informative than strings, but less formalism-speci�c and more intuitively accessible

than parse trees (cf. Kallmeyer, 2006). Second, an answer to the question allows us to

tap the rich resource of formal results about grammar formalisms and transfer them

to work on dependency representations. In particular, it could allow us to import the

expertise in developing parsing algorithms for lexicalized grammar formalisms into

the �eld of dependency parsing (cf. McDonald and Satta, 2007).

In spite of the apparent connection between the generative capacity of a grammar

formalism and the structural properties of the dependency graphs that this formalism

can induce, there have been only few results that link the two research areas. A funda-

mental reason for the lack of such bridging results is that, while structural constraints

on dependency graphs are internal properties in the sense that they concern the nodes
of the graph and their connections, grammars take an external perspective on the
objects that they manipulate—the internal structure of an object is determined by the

internal structure of its constituent parts and the operations that are used to combine

them. An example for the di�erence between the two views is given by the di�erent

perspectives on trees that we �nd in graph theory and universal algebra. In graph

theory, a tree is a special graph with an internal structure that meets certain constraints;

in algebra, trees are abstract objects that can be composed and decomposed using a

certain set of operations. One of the central technical questions that we need to answer

in order to connect grammars and structures is, how classes of dependency graphs can

be given an algebraic structure. An important result into this direction is Gaifman’s

(1965) proof that the string languages that are generated by his projective dependency

formalism are exactly the context-free languages. One of the technical objectives of

this dissertation is to generalize this result from projective structures and context-free

grammars tomildly non-projective dependency structures andmildly context-sensitive

grammar formalisms.

6

1.2 Overview of the dissertation

1.2 | Overview of the dissertation

�is dissertation consists of two parts. In the �rst part, we develop an algebraic frame-

work within which lexicalized grammars can be compared based on the structural

properties of the dependency graphs that they induce. In the second part, we de-

rive a natural notion of regular sets of dependency structures, and use it to study the

connection between structural properties such as projectivity on the one hand, and

language-theoretic properties such as string-generative capacity and parsing complexity

on the other.

1.2.1 | Dependency structures

In the �rst part of the dissertation, we study dependency structures.�ese structures

clearly separate two relations: the dependency relation, which we call governance, and
the total order on the nodes of the graph, which we call precedence. We discuss three
interesting classes of mildly non-projective dependency structures, compare them to

other classes in the literature, and evaluate their practical relevance using data from

dependency treebanks.

Structural constraints
�e �rst two classes of dependency structures that we consider in this dissertation have

been studied before. Projective dependency structures (Chapter 3), as alreadymentioned,
are characterized by the structural constraint that each subtree must form an interval

with respect to the total order on the nodes. As an example, consider the dependency

structure depicted in Figure 1.6a: each of the subtrees forms an interval with respect

to the precedence relation. In dependency structures of bounded degree (Chapter 4),
the projectivity constraint is relaxed in such a way that dependency subtrees can be

distributed over more than one, but still a �xed number of intervals. For example, in the

structure depicted in Figure 1.6c, both the subtree rooted at the node 2 and the subtree

rooted at the node 3 span two intervals. We call the maximal number of intervals per

subtree the block-degree of the structure, and use it to quantify the non-projectivity of
dependency graphs.

�e third class of dependency structures that we investigate, the class of well-nested
dependency structures (Chapter 5), is original to this work. Well-nestedness is the
structural constraint that pairs of disjoint dependency subtreesmust not cross, meaning

that there must not be nodes i1 , i2 in the �rst subtree and nodes j1 , j2 in the second
such that i1 < j1 < i2 < j2 . �e dependency structure depicted in Figure 1.6e is
well-nested, while the structure depicted in Figure 1.6c is not. Well-nested dependency

structures are closely related to several other combinatorial structures, such as non-

crossing partitions and Dyck languages. We discuss an empirical evaluation that shows

that they are also practically relevant: virtually all dependency analyses in two large

and widely-used dependency treebanks obey the well-nestedness constraint.

7

1 Introduction

1 2 3 4 5

(a) D1

〈012〉

〈01〉

〈0〉

〈01〉

〈0〉

(b) t1

1 2 3 4 5

(c) D2

〈01212〉

〈0, 1〉

〈0〉

〈0, 1〉

〈0〉

(d) t2

1 2 3 4 5

(e) D3

〈0121〉

〈0, 1〉

〈0〉

〈01〉

〈0〉

(f) t3

Figure 1.6: A zoo of dependency structures, and their corresponding terms

8

1.2 Overview of the dissertation

Algebraic framework

One of the major contributions of this dissertation is an algebraic framework in which

projective, block-restricted and well-nested dependency structures can be understood

as the outcome of compositional processes. Under this view, structural constraints do

not apply to a fully speci�ed dependency graph, but are inherent in the composition

operations by which the graph is constructed; this provides a bridge between depen-

dency structures and generative grammar. We formalize the algebraic framework in

two steps. In the �rst step, we show that dependency structures can be encoded into

terms over a certain signature of order annotations in such a way that the three di�erent
classes of dependency structures discussed above stand in one-to-one correspondence

with terms over speci�c subsets of this signature. In the second step, we de�ne the

concept of a dependency algebra. In these algebras, order annotations are interpreted as
composition operations on dependency structures. We prove that each dependency

algebra is isomorphic to the corresponding term algebra, which means that the com-

position of dependency structures can be freely simulated by the usual composition

operations on terms, such as substitution.

To give an intuition for the algebraic framework, the right half of Figure 1.6 shows

the terms corresponding to the dependency structures in the le� half. Each order

annotation in these terms encodes node-speci�c information about the precedence

relation. As an example, the symbol 〈0, 1〉 in Figure 1.6d represents the information that

the corresponding subtree in Figure 1.6c consists of two intervals (the two components

of the tuple 〈0, 1〉), with the root node (represented by the symbol 0) situated in the

le� interval, and the subtree rooted at the �rst child (represented by the symbol 1)

in the right interval. Under this encoding, the block-degree measure corresponds

to the maximal number of components per tuple, and the well-nestedness condition

corresponds to the absence of certain ‘forbidden substrings’ in the individual order

annotations, such as the substring 1212 in the term in Figure 1.6d.

Structures and grammars

In Chapter 6, we apply the algebraic framework to classify the dependency structures

induced by various lexicalized grammar formalisms. �e key to this classi�cation

is the insight that the notion of induction can be formalized as the interpretation

of the derivations of a grammar in a suitable dependency algebra. Based on this

formalization, we can generalize Gaifman’s (1965) result that projective dependency

structures correspond to lexicalized context-free grammars into the realm of the mildly

context-sensitive: the classes of block-restricted dependency structures correspond

to Linear Context-Free Rewriting Systems (Vijay-Shanker et al., 1987; Weir, 1988),

the classes of well-nested block-restricted structures correspond to Coupled Context-

Free Grammar (Hotz and Pitsch, 1996). As a special case, the class of well-nested

dependency structures with a block-degree of at most 2 is characteristic for derivations

in Lexicalized Tree Adjoining Grammar (Joshi and Schabes, 1997).

9

1 Introduction

1.2.2 | Dependency languages

In the second part of the dissertation, we li� our results from individual dependency

structures to sets of such structures, or dependency languages.�e key to this transfer
is the formal concept of regular sets of dependency structures (Chapter 7), which we

de�ne as the recognizable subsets of dependency algebras (Mezei and Wright, 1967).

From this de�nition, we obtain natural notions of automata and grammars on the basis

of which we can reason about the language-theoretic properties of regular dependency

languages.

Automata and grammars
Given the isomorphism between dependency algebras and term algebras, we can

derive a natural automaton model for dependency structures from the concept of a tree
automaton (�atcher andWright, 1968).�is method in fact applies to all kinds of data
structures that are constructible using a �nite set of operations; for example, successful

applications of the approach have previously led to stepwise tree automata for the data

model of xml (Carme et al., 2004) and feature automata for unranked unordered

trees (Niehren and Podelski, 1993). From the notion of an automaton, we are led to

the concept of a regular dependency grammar. By and large, grammars and automata
are two sides of the same coin: we get a grammar from an automaton by interpreting

the transition rules of the automaton as a directed rewriting system. Using regular

dependency grammars, we show a powerful pumping lemma for regular dependency

languages, and prove that these languages are semilinear (Parikh, 1966), which is also

characteristic for languages generated by mildly context-sensitive grammar formalisms.

String-generative capacity and parsing complexity
In the last technical chapter of the dissertation (Chapter 8), we investigate the connec-

tions between structural constraints, string-generative capacity, and parsing complexity.

We show how the block-degree measure gives rise to an in�nite hierarchy of ever more

powerful string languages, and how enforcing the well-nestedness of the underlying

dependency structures leads to a proper decrease of string-generative power on nearly

all levels of this hierarchy. In proving these results, we see how string languages can

‘enforce’ the presence of structures with certain properties in the corresponding de-

pendency languages. As an example, for every natural number k , we identify a string
language L(k) that requires every regular set of dependency structures with block-de-
gree at most k that projects L(k) to contain structures that are not well-nested. Finally,
we show that both the block-degree measure and the well-nestedness condition have

direct implications for the parsing complexity of regular dependency languages. We

prove that, while the parsing problem of regular dependency languages is polynomial

in the length of the input string, the problem in which we take the grammar to be

part of the input is np-complete. Interestingly, for well-nested dependency languages,

parsing is polynomial even with the size of the grammar taken into account.

10

1.2 Overview of the dissertation

1.2.3 | Contributions

In summary, the dissertation makes two main contributions:

(1) an algebraic theory of mildly non-projective dependency structures and regular

sets of such structures (dependency languages), and

(2) a classi�cation of mildly context-sensitive, lexicalized grammar formalisms in

terms of the dependency structures that these formalisms induce.

�e algebraic theory complements previous work on dependency representations in

that it enables us to link structural constraints such as projectivity, block-degree and

well-nestedness to language-theoretic properties such as string-generative capacity

and parsing complexity.�e classi�cation of grammar formalisms in terms of their

ability to induce dependency structures yields a new, practically useful measure of

generative capacity. Both results provide fundamental insights into the relation between

dependency structures and lexicalized grammars.

1.2.4 | Published results

Some of the results reported in this dissertation have already been published in joint

work with coauthors, in particular with my student, now colleague Mathias Möhl. For

the present text, I have extended and streamlined the presentation of our results.

Well-nested Drawings as Models of Syntactic Structure. Tenth Conference on Formal
Grammar and NinthMeeting onMathematics of Language. Edinburgh, uk, 2005. Joint

work with Manuel Bodirsky and Mathias Möhl.

Lexicalised Con�guration Grammars. Second International Workshop on Constraint
Solving and Language Processing. Sitges, Spain, 2005. Joint work with Robert Grabow-

ski and Mathias Möhl.

Extended Cross-Serial Dependencies in Tree Adjoining Grammars. Eighth International
Workshop on Tree Adjoining Grammars and Related Formalisms (tag+8). Sydney,

Australia, 2006. Joint work with Mathias Möhl.

Mildly Non-Projective Dependency Structures. 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics (coling-acl), Main Conference Poster Sessions. Sydney, Australia, 2006.

Joint work with Joakim Nivre.

Mildly Context-Sensitive Dependency Languages. 45th Annual Meeting of the Associa-
tion for Computational Linguistics (acl). Prague, Czech Republic, 2007. Joint work

with Mathias Möhl.

�e String-Generative Capacity of Regular Dependency Languages. Twel�h Conference
on Formal Grammar. Dublin, Ireland, 2007. Joint work with Mathias Möhl.

11

chapter 2 | Preliminaries

In this chapter, I provide a compact review of the basic terminology and notation that

we will use in this dissertation. I invite the reader to browse through these preliminaries

and return to them whenever some notation or terminology is unclear.

Our formal toolkit is drawn from four main sources:�e terminology for mathemat-

ical structures and the relations between these structures come from universal algebra

(Denecke and Wismath, 2001).�e speci�c formalization of dependency structures

takes an order-theoretic perspective (Davey and Priestley, 2001), but also alludes to

graph theory (Diestel, 2005). To describe and manipulate structures and sets of struc-

tures, we make use of terms and term languages, and of the usual operations de�ned

on them (Gécseg and Steinby, 1997). Note that we use the word ‘term’ for the syntactic

object, and the word ‘tree’ when referring to the order-theoretic and graph-theoretic

structures.

Basic notations

We write N for the set of positive natural numbers, and de�ne N0 := N ∪ {0} . Given

a natural number n ∈ N , we write [n] to refer to the set {m ∈ N | m ≤ n } . Note that

by this de�nition, [0] = 0 . We put [n]0 := [n] ∪ {0} . For a set A , we write |A| for the
cardinality of A , and P(A) for the power set of A .

We use the notations A∗
and A+

to refer to the sets of all and all non-empty strings

over the set A , respectively. We treat strings as vectors: the notation ai refers to the
i th element of the string a .�e length of a string a is denoted by |a| ; the empty string
is denoted by ε .�e concatenation of two strings x and y is written as x y ; only where
this could create confusion, we use the alternative notation x · y . An alphabet is a �nite,
non-empty set of symbols.

Indexed sets and sorted sets

Let I be a non-empty set. An I -indexed set is a total function with domain I . We use
the notation 〈 xi | i ∈ I 〉 to refer to an I -indexed set, where xi denotes the image of i .
We freely identify the set of all indexed sets with index set [n] , n ∈ N , with the set
of all n-tuples, and with the set of all strings of length n . An I -indexed family is an
I -indexed set with a set-valued codomain. For indexed families, the usual set-theoretic
operation are de�ned index-wise. In particular, if A and B both are I -indexed families,
then A × B = 〈A i × Bi | i ∈ I 〉 .

13

2 Preliminaries

Let S be a non-empty collection of sorts. An S-sorted set consists of a non-empty set A
and a type assignment typeA : A → S+

. We write SA for the collection of sorts that

underlies A . When the sorted set under consideration is irrelevant or clear from the
context, we write a : s instead of typeA(a) = s ; this is to be read as ‘a has type s in A ’.
�e set of all elements of A with type s is denoted by As . In the following, let A and B
be sorted sets. We write 〈A, B〉 for the sorted set A × B in which 〈a, b〉 : typeA(a) , for
all a ∈ A , b ∈ B . For an element a : ss with s ∈ S∗

and s ∈ S , the length of s is called
the rank of a , and is denoted by rankA(a) . If |S| = 1 , the type of an element a ∈ A is
uniquely determined by its rank; in this case, the set A is called a ranked set, and the
set of all elements with rank k is denoted by Ak . We freely treat S-indexed sets A as
S-sorted sets by stipulating that typeA(a) = s if and only if a ∈ As .

Structures

We now de�ne the notion of a mathematical structure. Let Σ be a sorted set, now
called a signature. A (concrete) Σ -structure is a pair

A = ��AA
s
!!!!!!! s ∈ SΣ , 〈R

A
σ | σ ∈ Σ 〉� ,

where the �rst component is an SΣ -indexed family of non-empty sets, called the

domains of A , and the second component is a Σ -indexed family of relations over the
domains such that RA

σ ⊆ AA
s1 × · · · × AA

sn , for every symbol σ : s1 · · · sn . We use the
notation dom(A) to refer to the domains of A . For structures with small signatures

over a single sort, we use the compact notation (AA
s ; R

A
1 , . . . , R

A
n) , leaving the signature

implicit. A structure is �nite, if both its signature and all of its domains are �nite sets.

Given two Σ -structures A and B , a homomorphism from A to B is an indexed family

〈 hs | s ∈ SΣ 〉 in which, for each given sort s ∈ SΣ , the object hs is a total function
hs : dom(A)s → dom(B)s with the property that

(a1 , . . . , an) ∈ RA
σ â⇒ �hs(a1), . . . , hs(an)� ∈ RB

σ ,

for every σ : s1 · · · sn , ai ∈ dom(A)si , and i ∈ [n] .�e notation h : A → B refers to a

homomorphism between Σ -structures A and B , treating it as a single mapping rather

than as an indexed family of mappings. Furthermore, to avoid subscript clutter, for

s ∈ SΣ and a ∈ dom(A)s , we write h(a) rather than hs(a) for the image of a under
the homomorphism h , assuming that h keeps type discipline. A homomorphism
is called epi or an epimorphism, if every member function is injective; it is called
mono or amonomorphism, if every member function is surjective; it is called iso or an
isomorphism, if every member function is bijective. We do not distinguish between
structures A and B for which there exists an isomorphism h : A → B . Speci�cally, a

Σ -structure is an equivalence class of concrete Σ -structures modulo isomorphism.

14

Ordered sets

An ordered set is a structure with a single binary relation that is re�exive, transitive, and
anti-symmetric. Let R = (A ; ²) be an ordered set, and let a, b ∈ A . We write a ≺ b to
assert that a ² b , and a Ö= b . We say that a immediately precedes b (with respect to ²)
if a ² b and there is no element c ∈ A such that a ² c ² b .�e up-closure and the
down-closure of a are de�ned as �a� := { c ∈ A | a ² c } and �a� := { c ∈ A | c ² a } ,
respectively. For a given subset B ⊆ A , we say that R is total on B , if a ² b or b ² a
holds for all a, b ∈ B .�e structure R is called a chain, if it is total on A ; it is called a
forest, if it is total on all down-closures; it is called a tree, if it is a forest and additionally
contains an element r , the root node of R , with the property that �r� = A .

Observe that what we call ‘forests’ and ‘trees’ are the re�exive-transitive closures of

the corresponding objects from graph theory.�e elements of the domains of trees

are called nodes. We use the symbols u , v and w for variables that range over nodes.

Let T = (V ; �) be a tree. If u � v , we say that u dominates v . We write u → v

if u immediately precedes v with respect to dominance; this relation corresponds
to the edge relation in the formalization of trees as special directed graphs. We use

the standard genealogical terminology to refer to relations between nodes in a tree:

If u → v , then we say that v is a child of u , and, symmetrically, that u is the parent
of v . Distinct children of the same node are called siblings. We use the term yield as a
synonym for the down-closure of u ; notice that u � v if and only if v ∈ �u� .�e set
of descendants and ancestors of u are de�ned as �u� − {u} and �u� − {u} , respectively.
Two nodes u and v are disjoint, if �u� ∩ �v� = 0 . Each pair v,w of disjoint nodes has

a greatest common ancestor u ; for this situation, we write v ⊥u w .

For chains, we de�ne the notion of an interval: the interval with endpoints a and b is
the set [a, b] := ��a� ∩ �b�� ∪ ��a� ∩ �b�� . We also put (a, b) := [a, b] − {a, b} . A set
is convex, if it is an interval.

Dependency structures

We now de�ne dependency structures. Dependency structures are trees with a total
order on their nodes.�ey di�er from ordered trees, where the order relation is only
de�ned on the children of each node, but not on the set of all nodes of the tree.

De�nition A dependency structure is a structure D with two binary relations: one 201

relation forms a tree, the second relation forms a chain on dom(D) . ñ

�e tree relation of a dependency structure is called governance, the total order is called
precedence. Just like in trees, the elements of the domains of dependency structures
are called nodes. Given a dependency structure D , for nodes u, v ∈ dom(D) , we write

u � v to assert that u governs v , and u ² v to assert that u precedes v in D . To talk
about dependency structures, we import all terminology for trees and chains.

15

2 Preliminaries

1 2 3 4

Figure 2.1: A dependency structure

Example Figure 2.1 shows how we visualize dependency structures. A picture of a202

dependency structure contains the nodes of the structure (drawn as circles), edges
(drawn as pointed arrows), and projection lines (drawn as dotted lines). Speci�cally, we
draw an edge between two nodes u and v if and only if u → v .�e nodes are ordered

from le�-to-right; we place u before v if and only if u ≺ v .�e projection lines are

used to make the le�-to-right order more explicit. ñ

When discussing algorithms that operate on dependency structures, we assume a

concrete representation of these structures as a collection of objects, where each object u
has access to at least the object representing its parent node, parent[u] , and its position
in the precedence order among all the nodes of the structure, pos[u] . We also make the
(reasonable) assumption that both attributes can be accessed in constant time. With

this representation mind, it is straightforward that the following auxiliary mappings

can be constructed in time linear in the size of the structure: a mapping children[u]
that maps each object u to the set of objects representing the children of u ; a mapping
node[i] that maps each position i (where i ranges over the size of the structure) to
the object u for which pos[u] = i . Similarly, it is straightforward that the following
iterations over the nodes in the structure can be supported in linear time: top-down,

bottom-up, le�-to-right.

Algebraic structures and terms

A Σ -structure A = �〈AA
s | s ∈ SΣ 〉, 〈 f A

σ | σ ∈ Σ 〉� is called algebraic or an algebra, if
for every symbol σ : s1 · · · sms , the relation f A

σ is a total function, meaning that for every

i ∈ [m] and ai ∈ AA
si , there is exactly one a ∈ AA

s such that (a1 , . . . , am , a) ∈ f A
σ . In

the context of algebras, we use the notation σ : s1 × · · ·× sm → s instead of σ : s1 · · · sms ,
and call m the arity of the symbol σ and the corresponding function fσ .

Let Σ be a sorted set.�e set of terms over Σ is the smallest SΣ -indexed family TΣ
such that if σ : s1× · · ·× sm → s and ti ∈ TΣ, si for all i ∈ [m] , then σ(t1 , . . . , tm) ∈ TΣ, s .
Let t ∈ TΣ be a term.�e set of nodes of t , nod(t) , is the subset of N

∗
that is de�ned

by the equation nod�σ(t1 , . . . , tm)� := {ε}∪ � i ·u !!!!!!! i ∈ [m] ∧ u ∈ nod(ti) � .�e empty
string ε represents the root node of t , and the string i · u represents the i th child
of the node u .�e subterm of t at node u is denoted by t/u , the substitution of the

16

term s at node u in t is denoted by t[u ← s] , and the label of t at node u is denoted
by t(u) . We also put alph(t) := � t(u) !!!!!!! u ∈ nod(t) � , which thereby denotes the set
of all labels in t . A context over Σ is a pair (t , u) , where t ∈ TΣ is a term, and u is a
leaf node in t . We write CΣ for the set of all contexts over Σ , and make free use of
all term-related concepts even for contexts. Given a context (c, u) ∈ CΣ and a term

t ∈ TΣ, s with s = typeΣ�c(u)� , we write c · t for the term obtained as c[u ← t] .

�e term algebra over Σ is the algebra A in which dom(A) = TΣ , and in which each
function f A

σ is interpreted as a term constructor in the obvious way. We use the

notation TΣ for both the set of terms over Σ and the term algebra over Σ . For every
signature Σ and every Σ -algebra A , there is a uniquely determined homomorphism

" ·$A : TΣ → A that evaluates terms in TΣ as values in A .

17

chapter 3 | Projective dependency structures

�e exact relation between dependency and word order is a major point of debate in

dependency theory. Over the years, various authors have made proposals for formal

constraints to restrict this relation. In this chapter, we study the best-known of these

proposals, projectivity.

Structure of the chapter. We start by reviewing three standard characterizations of
projectivity (Section 3.1), and then introduce a new, algebraic characterization (Sec-

tion 3.2).�is gives rise to an e�cient algorithm to test whether a given dependency

structure is projective (Section 3.3). We use this algorithm to evaluate the practical

relevance of projectivity on data from three dependency treebanks (Section 3.4).

3.1 | Projectivity

Figure 3.1 shows pictures of �ve dependency structures. One of these, Figure 3.1d, is

di�erent from the others in that it displays crossing edges—the edge 1 → 3 crosses the

projection line of node 2 .�e projectivity condition is o�en summarized in the slogan

that ‘it disallows dependency structures with pictures that contain crossing edges’.�is

is a nice mnemonic, but whether a dependency edge crosses a projection line or not of

course mainly is a matter of how we draw dependency structures, not a property of
the structures themselves. For example, Figure 3.1d can be re-drawn without crossing

edges if node 2 is moved to a vertical position below node 1 (see Figure 3.2d), while

Figure 3.1b and Figure 3.1c exhibit crossing edges when modi�ed such that node 2 is

positioned above the root node (see Figure 3.2b and Figure 3.2c). It is clear then that to

obtain a precise characterization of projectivity, we need a de�nition that formalizes

the idea of crossing edges without referring to di�erences in visualization.

1 2 3

(a) D1

1 2 3

(b) D2

1 2 3

(c) D3

1 2 3

(d) D4

1 2 3

(e) D5

Figure 3.1: Five (of nine) dependency structures with three nodes

19

3 Projective dependency structures

1 2 3

(a) D1

1 2 3

(b) D2

1 2 3

(c) D3

1 2 3

(d) D4

1 2 3

(e) D5

Figure 3.2: Alternative pictures for the dependency structures from Figure 3.1

3.1.1 | Projectivity in the sense of Harper and Hays

A crucial di�erence between the pictures in Figure 3.1 and the alternative versions in

Figure 3.2 is that in the former, all tree edges point downwards, while in the latter, some

of them also point upwards. Let us call a picture of a dependency structure canonical,
if the vertical position of each node is chosen according to its level of depth in the tree,

with the root node taking the highest position.

Example Figure 3.3 shows canonical and non-canonical pictures of the dependency301

structures D2 and D4 .�e horizontal lines visualize the depth levels. ñ

In canonical pictures of dependency structures, all tree edges point to the next level

of depth. As a consequence, an edge u → v can cross the projection line of a node w

only if the vertical position of u is the same as or below the vertical position of w . To
ban crossing edges in canonical pictures, it is su�cient then to require the node u to
govern the node w ; this guarantees that the vertical position of u is strictly above the
vertical position of w .�e requirement is made formal in the following implication,

attributed to Kenneth Harper and David Hays (Marcus, 1967):

u → v ∧ w ∈ (u, v) â⇒ u � w (3.1)

We introduce some useful terminology: Let u, v,w be witnesses for the premises of
the implication (3.1). We then say that the edge u → v covers the node w , and call an
edge that covers a node but does not govern it a non-projective edge. A dependency
structure is projective if and only if it does not contain non-projective edges.

1 2 3 1 2 3

(a) D2

1 2 3 1 2 3

(b) D4

Figure 3.3: Canonical and non-canonical pictures of two dependency structures

20

3.1 Projectivity

Example �e edge 1 → 3 in Figure 3.1d and Figure 3.2d is non-projective, as it covers 302

the node 2 , but does not govern it. All other edges depicted in Figure 3.1 and Figure 3.2

are projective. ñ

3.1.2 | Projectivity in the sense of Lecerf and Ihm

�e characterization of projectivity in the sense of Harper and Hays links projectivity

to edges.�e second characterization that we consider, attributed to Yves Lecerf and

Peter Ihm (Marcus, 1967), anchors projectivity at paths:

u � v ∧ w ∈ (u, v) â⇒ u � w (3.2)

Note that the only di�erence between this requirement and (3.1) is the �rst premise

of the implication: projectivity in the sense of Lecerf and Ihm requires not only every

edge, but every (directed) path from a node u to a node v to cover only nodes w

that are governed by u . Since every path consists of a �nite sequence of edges, the
characterizations of projectivity in the sense of Harper and Hays and in the sense of

Lecerf and Ihm are fully equivalent (Marcus, 1967, chapter 6,�eorem 10).

3.1.3 | Projectivity in the sense of Fitialov

Wenow present a third characterization of projectivity.�is characterization formalizes

the observation that in a projective dependency analysis, a word and its (transitive)

dependents form a contiguous substring of the full sentence. It is usually attributed to

Sergey Fitialov (Marcus, 1967).

u � v1 ∧ u � v2 ∧ w ∈ (v1 , v2) â⇒ u � w (3.3)

�is condition is equivalent to the preceding two (Marcus, 1967, chapter 6,�eorem 11).

Using our terminology for chains, we can rephrase it more succinctly as follows:

De�nition A dependency structure D is called projective, if every yield in D is convex 303

with respect to precedence. ñ

�is is the formulation that we adopt as our formal de�nition of projectivity. We

write D1 to refer to the class of all projective dependency structures.

Example (continued) In the dependency structure shown in Figure 3.1d, the yield of 304

the node 1 (the set {1, 3}) does not form a convex set: the node 2 is missing from it.

All other yields in Figure 3.1 are convex.�erefore, the only non-projective dependency

structure in Figure 3.1 is structure D4 . ñ

21

3 Projective dependency structures

3.1.4 | Related work

 While the fundamental intuitions behind projectivity are already inherent in work

on machine translation from the 1950s, the characterizations in the sense of Harper

and Hays and in the sense of Lecerf and Ihm appear to be the �rst formal de�nitions of

the condition; they were both published in 1960. Marcus (1967) collects and compares

several de�nitions of projectivity that circulated in the second half of the 1960s. In

particular, he proves the equivalence of the characterizations of projectivity in the

senses of Harper and Hays, Lecerf and Ihm, and Fitialov.

 �ere are several other equivalent characterizations of projectivity; we only name

two here.�e following formulation is due to Robinson (1970, p. 260); it is sometimes

referred to as the ‘adjacency principle’, a term that appears to have been coined by

Hudson (1984, p. 98): ‘If A depends directly on B and some element C intervenes
between them (in linear order of string), then C depends directly on A or on B
or on some other intervening element.’ Havelka (2005) presents an original edge-

centric characterization of projectivity based on the di�erence between the depth of

the dependent node of a dependency edge and the material covered by it, and uses it as

the basis for an algorithm to test whether a given dependency structure is projective.

 Veselá et al. (2004) propose a characterization of projectivity based on ‘forbidden

elementary con�gurations’ in a dependency structure, but the condition that they

de�ne still allows some non-projective structures:

forbidden: allowed:

 �e characterization of projectivity in terms of convex yields sheds some light on the

relation between dependency grammar and phrase-structure grammar: If one accepts

that yields reconstruct the notion of constituents that is familiar from phrase-structure

grammars, then the projectivity condition amounts to the standard requirement that

a constituent should be contiguous. In this sense, projective dependency structures

are closely related to standard phrase-structure trees.�is correspondence was �rst

investigated by Hays (1960).�e survey by Dikovsky and Modina (2000, section 3.2)

summarizes some of the formal results obtained since then.

3.2 | Algebraic framework

We have characterized projectivity as a relational property of dependency structures.

�e immediate value of this characterization is that it is empirically transparent: from

a canonical picture of a given dependency structure, we can immediately see whether
it is projective.

22

3.2 Algebraic framework

Pre-Order-Collect(u)
1 L ← nil

2 L ← L · [u]
3 foreach v in children[u]
4 do L ← L · Pre-Order-Collect(v)

5 return L

Post-Order-Collect(u)
1 L ← nil

2 foreach v in children[u]
3 do L ← L · Post-Order-Collect(v)

4 L ← L · [u]
5 return L

Table 3.1: Pre-order and post-order traversal of a children-ordered tree

What is not clear at this point is how the projectivity constraint can be �tted into the

framework of generative grammar, where a dependency structure is not given directly,

but speci�ed as the outcome of a derivational process. In this section, we clarify this

issue: We equip the class of projective dependency structures with a set of algebraic

operations. Each application of an operation can be understood as the application of a

single production of a generative grammar. Our setup guarantees that all operations

only yield projective structures, and that all projective structures can be decomposed

into elementary operations. In this way, every projective dependency structure can be

understood as the outcome of a complete derivation in a generative grammar with a

suitable set of algebraic operations.

3.2.1 | Tree traversal strategies

To convey the basic intuitions behind our algebraic setting, we start this section by

looking at tree traversal strategies. A tree traversal is the process of systematically
visiting all nodes of a tree. Two well-known strategies for tree traversal are pre-order
traversal and post-order traversal of children-ordered trees. For the sake of concreteness,
let us assume that a children-ordered tree is represented as a collection of nodes,

where each node u is annotated with a list children[u] of its children. We can then
specify procedures to collect the nodes of a tree as in Table 3.1.1 �e result of a call

to Pre-Order-Collect(u) or Post-Order-Collect(u) is a list of the nodes in the
tree rooted at the node u ; each node of the tree occurs in this list exactly once.

1�e format of our pseudo-code follows Cormen et al. (2001). We write [x] for the singleton list that

contains the element x , and L1 · L2 for the concatenation of two lists L1 and L2 .

23

3 Projective dependency structures

1

2

3

4

5

(a) tree

1 2 3 4 5

(b) D6 (pre-order traversal)

4 3 2 5 1

(c) D7 (post-order traversal)

Figure 3.4: Dependency structures obtained by tree traversals of a children-ordered tree

Both Pre-Order-Collect and Post-Order-Collect extend the orders among

the children of each node into a global order, de�ned on all nodes of the tree. When

we impose this global order on the nodes of the tree that was traversed, we obtain a

dependency structure.�is observation is formalized in the following de�nitions.

De�nition Let T be a tree. A linearization of T is a list of nodes of T in which each305

node occurs exactly once. �e dependency structure induced by a linearization u
of T is the structure in which the governance relation is isomorphic to T , and the
precedence relation is isomorphic to u . ñ

Example Figure 3.4a shows a children-ordered tree. �e pre-order linearization of306

this tree yields the node sequence 12345 . When we impose this order on the nodes in

the tree, we obtain the dependency structure D6 shown in Figure 3.4b. In contrast, the

post-order linearization of the children-ordered tree yields the node sequence 43251 ;

this induces the dependency structure D7 shown in Figure 3.4c. ñ

We now sketch our plan for the remainder of this section: Our �rst goal is to �nd a

traversal strategy and a class of order-annotated trees that fully characterize the class of

projective dependency structures—traversals should only induce projective structures,

and every projective structure should be inducible by some traversal. In a second step,

we formalize this framework by regarding the set of all order annotations as an algebraic

signature, order-annotated trees as terms over this signature, and tree traversal as the

evaluation of these terms in an algebra over dependency structures.

With this roadmap in mind, let us see how far pre-order and post-order traversal

take us. One property that both strategies have in common is that they visit the nodes

in each subtree as a contiguous block. As a consequence, every dependency structure

that is induced by pre-order or post-order traversal is projective. On the other hand,

not every projective dependency structure can be obtained as the pre-order or post-

order interpretation of a children-ordered tree. Speci�cally, all structures induced by

pre-order traversal are monotonic in the sense that u � v implies that u ² v , while

all structures obtained by post-order traversal are anti-monotonic.�e fundamental

24

3.2 Algebraic framework

Treelet-Order-Collect(u)
1 L ← nil

2 foreach v in order[u]
3 do if v = u
4 then L ← L · [u]
5 else L ← L · Treelet-Order-Collect(v)

6 return L

Table 3.2: Traversal of a treelet-ordered tree

reason for these speci�c properties is that in both pre-order and post-order traversal,

the position of a node relative to its children is hardwired: it is not speci�ed in the

order annotations, but in the traversal strategy itself.

3.2.2 | Traversal of treelet-ordered trees

To overcome the restrictions of pre-order and post-order traversal, we include the

position of a node relative to its children in the order annotations, and make the

traversal strategy sensitive to this information. Let us call the local tree formed by a

node u and its children (if there are any) the treelet rooted at u , and let us say that a
tree is treelet-ordered, if each of its nodes is annotated with a total order on the nodes
in the treelet rooted at that node. Table 3.2 gives the pseudo-code of a procedure that

traverses a treelet-ordered tree and returns a list of its nodes. We assume that each

node u in the tree is annotated with a list order[u] that contains the nodes in the treelet
rooted at u in the intended order.

Example Figure 3.5a visualizes a treelet-ordered tree; the sequences at the ends of the 307

dotted lines represent the annotated orders.�e traversal of this tree according to the

procedure in Table 3.2 yields the sequence 24315 . When we impose this order on the

nodes in the tree, we obtain the dependency structure D8 shown in Figure 3.5b. Note

that this structure is neither monotonic nor anti-monotonic. ñ

1

2

3

4

5

215

23

43

4

5

(a) tree

2 4 3 1 5

(b) D8 (treelet-order traversal)

Figure 3.5: A treelet-ordered tree and its corresponding dependency structure

25

3 Projective dependency structures

We now show that treelet-ordered trees and our procedure for their traversal are

expressive enough to fully characterize the class of projective dependency structures.

What is more, distinct treelet-ordered trees induce distinct structures. In our proofs,

we use two functions on treelet-ordered trees: the function lin that maps each tree to

its linearization according to Treelet-Order-Collect , and the function dep that

maps each tree T to the dependency structure induced by lin(T) . We then have

u � v in dep(T) if and only if u dominates v in T , and

u ² v in dep(T) if and only if u precedes v in lin(T).

�e next three lemmata show that the function dep forms a bijection between the set

of all treelet-ordered trees and the set of all projective dependency structures.

Lemma Let T be a treelet-ordered tree.�en dep(T) is projective. ñ308

Proof. Let T be a treelet-ordered tree, and let u be the root node of T . We show
that every yield of T is convex with respect to the total order on the nodes of T that
is represented by the linearization lin(T) . Our proof proceeds by induction on the
depth d of T .

✴ Assume that d = 0 . In this case, the node u is the only node in T , and we have
order[u] = [u] . �erefore, lin(T) = [u] , and dep(T) is the trivial dependency
structure.�e yield �u� , like all singleton sets, is convex with respect to lin(T) .

✴ Assume that d > 0 . In this case, the tree T can be decomposed into the node u
and the collection of subtrees rooted at the children of u . Let w Ö= u be a node
in T , and let v be the uniquely determined child of u that dominates w . By the
induction hypothesis, wemay assume that the yield �w� is convex with respect to the

linearization that was computed by the recursive call Treelet-Order-Collect(v) .

�e result lin(T) of the call Treelet-Order-Collect(u) is a concatenation of
these linearizations and the singleton list [u] ; thus, the yield �w� is convex even

with respect to lin(T) . �e yield �u� , being the set of all nodes in T , is trivially
convex with respect to lin(T) . ñ

For the next lemma, we introduce an important auxiliary concept.

De�nition Let D be a dependency structure, and let u be a node in D . �e set of309

constituents of u is de�ned as C(u) := �{u}� ∪ � �v� !!!!!!! u → v � . ñ

Lemma For every projective dependency structure D , there is a treelet-ordered tree T310

such that D = dep(T) . ñ

Proof. Let D be a projective dependency structure with root node u . We show how to
construct a treelet-ordered tree T such that D = lin(T) . Note that the tree structure

26

3.2 Algebraic framework

underlying T is isomorphic to the tree structure underlying D .�erefore, it su�ces
to show that we can �nd appropriate order annotations for the nodes in T such that
lin(T) corresponds to the precedence relation in D . We proceed by induction on the
depth d of the tree structure underlying D .

✴ Assume that d = 0 . In this case, we have only one choice to assign an order

annotation to u , order[u] = [u] . With this annotation, we indeed have lin(T) = [u] .

✴ Assume that d > 0 . In this case, the node u has an out-degree of n > 0 . �e

set C(u) of constituents of u forms a partition of the yield �u� . Furthermore,
every constituent is convex with respect to the order underlying D : the set {u}
trivially so, and each set �v� because the structure D is projective. We can also
verify that for every constituent C ∈ C(u) , the restriction D|C forms a projective

dependency structure on C . �us, by the induction hypothesis, we may assume
that for every child v of u , we can annotate the subtree T/v such that dep(T/v) =
D|�v� . What remains to be shown is that we can annotate u such that the call
Treelet-Order-Collect(u) arranges the constituents C(u) according to their
relative precedence in D .

Generic procedure to extract the order annotations from a dependency structure.
To construct the order annotation for the node u , let π : �u� → �u� be the function
that maps u to itself and every other node v ∈ �u� to the uniquely determined child
of u that governs v . Now, let L be the list of all nodes in D in the order of their
precedence, and let L ′

be the list obtained from L by replacing each node w with
the node π(w) if w ∈ �u� , and the symbol Å if w ∉ �u� . Finally, let order[u] be
the list obtained from L ′

by collapsing all adjacent occurrences of the same symbol

into a single occurrence, and removing all leading and trailing symbols Å . For this
order annotation of u , we can verify that the call Treelet-Order-Traversal(u)
returns the constituents C(u) in the order that they have in D . ñ

Example (continued) For the dependency structure D7 shown in Figure 3.5b, the 311

construction described in the proof yields

for node 1: L = 24315 L ′ = 22215 order[1] = 215 ,

for node 2: L = 24315 L ′ = 233 ÅÅ order[2] = 23 ,

for node 3: L = 24315 L ′ = Å 43 ÅÅ order[3] = 43 ,

for node 4: L = 24315 L ′ = Å 4 ÅÅÅ order[4] = 4 ,

for node 5: L = 24315 L ′ = ÅÅÅÅ 5 order[5] = 5 .

Note that these are the order annotations shown in Figure 3.5a. ñ

Lemma For every projective dependency structure D , there is at most one treelet- 312

ordered tree T such that dep(T) = D . ñ

27

3 Projective dependency structures

Proof. Let D be a projective dependency structure, and let T be a treelet-ordered tree
such that dep(T) = D . Now let T ′

be another treelet-ordered tree, distinct from T ,
and consider the dependency structure dep(T ′) . We distinguish two cases: If the tree

structures underlying T and T ′
are non-isomorphic, then dep(T) and dep(T ′) are

non-isomorphic as well. Otherwise, the tree T ′
di�ers from T with respect to some

order annotation.�en the call to Treelet-Order-Collect returns a di�erent order

for T than for T ′
; hence, dep(T) and dep(T ′) are non-isomorphic. ñ

3.2.3 | Order annotations

We now translate our framework into the language of terms: we regard the list-based

order annotations that we used in Treelet-Order-Collect as a ranked set Ω , and
treelet-ordered trees as terms over this set.�is allows us to reinterpret the function dep

as a bijection between TΩ and the class of projective dependency structures.
While our list-based order annotations were sequences of (pointers to) concrete

nodes in a treelet-ordered tree, the ranked set Ω should be de�ned independently of
any particular term over this set.�erefore, we add a layer of indirection: each order

annotation in Ω refers to nodes not directly, but by names for these nodes; these names
are then resolved given the term structure. Speci�cally, let T be a treelet-ordered tree
with root node u . We need two auxiliary sequences: the vector v = v1 · · · vm obtained

from order[u] by removing the node u , and the string ı obtained from order[u] by
replacing every child of u by its position in v , and u itself by the symbol 0 . �e
vector v orders the children of u ; this order will become the le�-to-right order on the
children of u in our term representation. �e string ı provides an ‘abstract’ order
annotation that makes use of node names rather than concrete nodes: the name 0

denotes the root node of the treelet rooted at u , a name i ∈ [m] denotes the i th node
in the sequence v .�e term t(T) corresponding to T is then de�ned recursively as

t(T) := 〈ı〉�t(T/v1), . . . , t(T/vm)� .

In this de�nition, the string 〈ı〉 is understood as a term constructor of rank m . We
write Ωm for the set of all such constructors, and put Ω := ⋃m∈NΩm . Every term

over Ω encodes a treelet-ordered tree in the way that we have just described, and every
such tree can be encoded into a term. In this way, we can view the function dep as a

bijection dep : TΩ → D1 in the obvious way. We put term := dep
−1
.

Example Figure 3.6 shows the term for the treelet-ordered tree from Figure 3.5a. ñ313

3.2.4 | Dependency algebras

Using the ranked set Ω and the bijection dep : TΩ → D1 between terms over Ω and
projective dependency structures, we now give the set D1 an algebraic structure: with

every order annotation, we associate an operation on projective dependency structures.

28

3.2 Algebraic framework

〈102〉

〈01〉

〈10〉

〈0〉

〈0〉

Figure 3.6: The term for the treelet-ordered tree from Figure 3.5a

De�nition Let m ∈ N0 , and let ω ∈ Ωm be an order annotation. �e composition 314

operation corresponding to ω is the function fω : Dm
1 → D1 de�ned as

fω(D1 , . . . ,Dm) := dep�ω�term(D1), . . . , term(Dm)�� . ñ

Composition operations are well-de�ned because the function dep is bijective. Each

composition operation fω simulates a single step of the treelet-order traversal: given a
sequence of argument structures, it returns the dependency structure that is obtained

by taking the disjoint union of the arguments, adding a new root node, and arranging

the nodes of the arguments and the root node in the order speci�ed by ω .

Example Figure 3.7 shows some examples for the results of composition operations. 315

�e composition of zero arguments, f〈0〉 , is the trivial dependency structure with one
node (Figure 3.7a). Starting from this structure, more and more complex dependency

structures can be built (Figures 3.7b–3.7d). ñ

We now have everything we need to de�ne our algebraic setting. In the following

de�nition, we use the function dep li�ed to sets in the obvious way.

De�nition Let Σ ⊆ Ω be a �nite set of order annotations. �e dependency algebra 316

over Σ is the Σ -algebra that has dep(TΣ) as its carrier set, and interprets each symbol
ω ∈ Σ by the composition operation corresponding to ω . ñ

1

(a) D0

1 2

(b) D9 = f〈01〉(D0)

1 2 3 4

(c) f〈102〉(D9 ,D0)

1 2 3 4

(d) f〈102〉(D0 ,D9)

Figure 3.7: Examples for composition operations

29

3 Projective dependency structures

By de�nition, dependency algebras are isomorphic to term algebras:

�eorem Let Σ ⊆ Ω be a �nite set of order annotations.�en the dependency algebra317

over Σ is isomorphic to the term algebra over Σ , TΣ . ñ

Proof. Let D be the dependency algebra over Σ .�e restriction h of dep to the set
of all terms over Σ is a bijection between TΣ and the set dep(TΣ) , the carrier of D .

Furthermore, from the de�nition of the composition operations we see that h forms a
Σ -homomorphism between the term algebra TΣ and D :

h�ω(t1 , . . . , tm)� = h�ω�h−1�h(t1)�, . . . , h
−1�h(tm)���= fω�h(t1), . . . , h(tm)� .

Hence, TΣ and D are isomorphic. ñ

One convenient consequence of the isomorphism between dependency algebras and

their corresponding term algebras is that we can make use of all the terminology and

notations available for terms when reasoning about dependency structures.

3.3 | Algorithmic problems

We now address three algorithmic problems associated to projectivity: the problems of

encoding a projective dependency structure into its corresponding term, the symmetric

problem of decoding a term into a dependency structure, and the problem of deciding

whether a given dependency structure is projective.

3.3.1 | Encoding and decoding

�e encoding problem for projective dependency structures is to compute, for a given

dependency structure D , the term term(D) . Since the tree relation of a dependency

structure and its corresponding term are isomorphic, the crucial task when encoding

a projective structure into a term is to extract the order annotations for the nodes

of the structure. A naïve procedure to solve this task is inherent in our proof of the

result that the function dep is onto (page 27). �is procedure can be implemented

to run in time O(n2) , where n is the number of nodes in D . Each order annotation
re�ects the restriction of the precedence relation to the nodes in the treelet rooted

at u . Consequently, each list order[u] contains the nodes in the treelet rooted at u
in the order in which they appear in D . It is not hard to see that we can populate
all of these lists in a single iteration over the nodes in the order of their precedence.

Pseudo-code for the procedure is given in Table 3.3. Assuming that all elementary

operations on D take constant time, and that an iteration takes time O(n) , extracting
the order annotations and hence encoding can be done in time O(n) as well.

Lemma Let D be a dependency structure with n nodes.�en the term term(D) can318

be computed in time O(n) . ñ

30

3.3 Algorithmic problems

Extract-Order-Annotations(D)

1 foreach u in D
2 do order[u] ← nil

3 foreach u in D � in the order of their precedence in D
4 do if parent[u] Ö= undefined � u is an inner node
5 then order[parent[u]] ← order[parent[u]] · [u]
6 order[u] ← order[u] · [u]

Table 3.3: Extracting the order annotations for a projective dependency structure

�e problem of decoding a term t ∈ TΩ into its corresponding dependency structure
is solved by the tree-traversal procedure that we gave in Table 3.2. Assuming that all

elementary operations of that procedure take constant time, it is clear that the full

precedence relation can be constructed in time linear in the size of the input term.

Lemma Let t ∈ TΩ be a term with n nodes.�en the projective dependency structure 319

dep(t) can be computed in time O(n) . ñ

3.3.2 | Testing whether a dependency structure is projective

�e isomorphism between projective dependency structures and terms over Ω gives
rise to a simple and e�cient algorithm for testing whether a given structure is projective.

Note that nothing in our encoding procedure hinges on the input structure being

projective. At the same time, only for projective structures this encoding produces terms

that can be decoded back into the original structures.�erefore, the following algorithm

is a correct test for projectivity of a given input structure D : encode D into the term
term(D) , decode term(D) into the dependency structure D ′ := dep�term(D)� , and
test whether D ′

and D are isomorphic. �is test will succeed if and only if D is
projective. Since encoding and decoding are linear-time operations, and since checking

that two dependency structures are isomorphic is a linear-time operations as well, we

obtain the following result:

Lemma Let D be a dependency structure with n nodes.�e question whether D is 320

projective can be decided in time O(n) . ñ

3.3.3 | Related work

 Havelka (2005) presents two algorithms for testing whether a given dependency

structure is projective.�e �rst algorithm, very much like ours, makes use of the one-

to-one correspondence between projective dependency structures and treelet-ordered

trees.�e second algorithm searches for certain types of non-projective dependency

edges. Both algorithms run in linear time.

31

3 Projective dependency structures

 Another projectivity test is proposed byMöhl (2006). It uses a post-order traversal of

the input dependency structure to compute, for each node u , a bit vector representing
the yield of u , and a�erwards checks whether this bit vector represents a convex set.
�e number of bit vector operations used by this procedure is linear in the size of the

input structure. It is di�cult however to compare this machine-dependent measure

with the asymptotic runtime that we have given for our algorithm.

3.4 | Empirical evaluation

In this section, we evaluate the practical relevance of the projectivity condition. Should

it turn out that all interesting dependency structures of natural language utterances are

projective, then that result would indicate that theories that do not obey the projectivity

restriction fail to re�ect a deeper truth about the nature of dependency. Of course, we

cannot hope to ever have access to ‘all interesting dependency structures’. However,

we can estimate the empirical adequacy of projectivity by looking at representative

samples of practically relevant data.

3.4.1 | The projectivity hypothesis

Before we describe our experimental setup, we take a brief look at the historical assess-

ment of projectivity as a constraint on dependency analyses.

Early work on formal dependency grammar shows conviction that projectivity has

the status of a linguistic universal. To witness, Marcus (1967, p. 230) cites Lecerf, who

claimed that ‘almost 100 percent of French strings are projective.�e same seems to be

true for German, Italian, Danish, and other languages’.�is rather radical projectivity
hypothesis is disputable even without empirical evaluation. In particular, one should
note that projectivity is a property of theory-speci�c analyses of sentences, not of the
sentences themselves. Consequently, not ‘almost 100 percent of French strings’, but

at most all of their dependency analyses can be projective. �is fundamental �aw

of the argument may have been varnished over by the supremacy in the 1960s of

dependency grammar formalisms that embraced projectivity as a central grammatical

principle (Hays, 1964; Gaifman, 1965): there simply was no dependency grammar

beyond ‘projective dependency grammar’. In the linguistic schools of Eastern Europe,

where the objects of linguistic description are languages with a word order far less rigid

than English, the status of projectivity as a linguistic universal was early mistrusted

(see e.g. Kunze, 1972; Pericliev and Ilarionov, 1986; Dikovsky and Modina, 2000).�is

assessment eventually became accepted even in theWestern literature, and today, ‘most

theoretical formulations of dependency grammar regard projectivity as the norm,

but also recognize the need for non-projective representations of certain linguistic

constructions, e.g., long-distance dependencies’ (Nivre, 2006b).

32

3.4 Empirical evaluation

ddt pdt 1.0 pdt 2.0

projective 3 730 84.95% 56 168 76.85% 52 805 77.02%

non-projective 661 15.05% 16 920 23.15% 15 757 22.98%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

Table 3.4: The number of projective dependency structures in three treebanks

With the availability of large corpora of dependency analyses, dependency treebanks,
we are able today to complement theoretical considerations concerning projectivity by

collecting data on its practical relevance: the data that we are evaluating forms the basis
for many current applications that build on dependency-based representations, and

the degree of projectivity in this data may have direct consequences for the design of

these applications. Furthermore, under the assumption that the treebank data forms a

representative sample of the set of useful dependency structures, these data also provide

an indirect evaluation of the empirical adequacy of projectivity.

3.4.2 | Experimental setup

Our experiments are based on data from the PragueDependency Treebank (pdt) (Hajič

et al., 2001, 2006) and the Danish Dependency Treebank (ddt) (Kromann, 2003).�e

pdt was used in two versions: version 1.0 contains 1.5M, version 2.0 contains 1.9M

tokens of newspaper text. Sentences in the pdt are annotated in three layers according to

the theoretical framework of Functional Generative Description (Hajičová et al., 2004).

Our experiments concern only the analytical layer, and are based on the dedicated

training section of the treebank.�e ddt comprises 100k words of text selected from

the Danish parole corpus, with annotation of primary and secondary dependencies

based on Discontinuous Grammar (Kromann, 2005). Only primary dependencies are

considered in the experiments, which are based on the pseudo-randomized training

portion of the treebank.2 A total number of 19 analyses in the ddt were excluded

because they contained annotation errors.

3.4.3 | Results and discussion

�e results of our experiments are given in Table 3.4; we report the number and

percentage of structures in each data set that satisfy or violate the projectivity condition.

Under the assumption that the three treebanks constitute a representative sample

of the set of practically relevant dependency structures, our experiments clearly show

that non-projectivity cannot be ignored without also ignoring a signi�cant portion of

2 Since the ddt does not have a dedicated training section, it is custom practice to create such a section

by splitting the entire data into blocks of 10 analyses each, and keeping blocks 1 to 8 for training.

33

3 Projective dependency structures

real-world data. For the ddt, we see that about 15% of all analyses are non-projective;

for the pdt, the number is even higher, around 23% in both versions of the treebank.

Neither theoretical frameworks nor practical applications that are con�ned to projective

analyses can account for these analyses, and hence cannot achieve perfect recall even as

an ideal goal. In a quali�cation of this interpretation, one should note that projectivity

fares much better under an evaluation metric that is based on the set of individual

edges, rather than on the set of complete analyses: less than 2% of the edges in the pdt

data, and just around 1% of the edges in the ddt data are non-projective (McDonald

et al., 2005; Nivre and Nilsson, 2005).

3.4.4 | Related work

 Our experiments con�rm the �ndings of recent studies on data-driven parsing of

non-projective dependency grammar (McDonald et al., 2005; Nivre and Nilsson, 2005).

�ey are particularly similar in vein to a study presented byNivre (2006a). Nivre’s main

objective was to evaluate, how large a proportion of the structures found in the ddt and

the pdt can be parsed using several restricted versions of the ‘Fundamental Algorithm’

for dependency parsing (Covington, 2001). Using a version of that algorithm that only

recognizes projective structures, and employing the treebanks as oracles to resolve

ambiguities, Nivre e�ectively tested for projectivity. For the pdt part of the data, our

results are identical to his, which in turn agree with counts previously reported by

Zeman (2004, p. 95).�e minor deviation between our results and Nivre’s for the ddt

part of the data is explained by the 19 analyses that we excluded because they contained

annotation errors. Havelka (2007a) provides data on the frequency of non-projective

structures in data sets for Arabic, Bulgarian, Czech, Danish, Dutch, German, Japanese,

Portuguese, Slovene, Spanish, Swedish, and Turkish. Notice however, that some of

these data sets are no dependency treebanks, but result from the automatic conversion

of treebanks that were originally annotated using constituent structures.

 A qualitative rather than quantitative approach towards the evaluation of projectivity

was taken by Pericliev and Ilarionov (1986). �ey used a hand-written dependency

grammar for Bulgarian to create example sentences for all non-projective structures

with 4 nodes (every larger non-projective structure contains such a structure) and

found that about 85% of these structures could be instantiated with a grammatical

sentence.3 Just as our experiments, this result indicates that projectivity cannot be

used as a language-theoretic universal. Nevertheless, Pericliev and Ilarionov concede

that most non-projective analyses in Bulgarian correspond to word orders that are

stylistically marked.

3 Pericliev and Ilarionov are misled in assuming that ‘the total number of non-projective situations

[in dependency structures with 4 nodes] is 32’ (p. 57): since the number of unrestricted dependency

structures with 4 nodes is 64, and the corresponding number of projective structures is 30, there are in

fact 34 non-projective dependency structures with four nodes.

34

chapter 4 | Dependency structures of bounded degree

As we have seen in the previous chapter, the phenomenon of non-projectivity cannot

be ignored in practical applications. At the same time, the step from projectivity

to unrestricted non-projectivity is quite a dramatic one. In this chapter, we study

non-projective dependency structures under a gradual relaxation of projectivity, the

block-degree restriction.

Structure of the chapter. Following our program from the previous chapter, we �rst
characterize the class of dependency structures with restricted block-degree in terms

of a structural constraint (Section 4.1), then build an algebraic framework for this class

(Section 4.2), next present an e�cient algorithm that encodes dependency structures

into terms (Section 4.3), and �nally evaluate the practical relevance of the block-degree

restriction on treebank data (Section 4.4).

4.1 | The block-degree measure

In projective dependency structures, each yield forms a set that is convex with respect

to the precedence relation. In non-projective structures, yields may be discontinuous.

In this section, we develop a formal measure that allows us to classify dependency

structures based on their degree of non-projectivity: the minimal number of convex

sets needed to cover all nodes of a yield.

4.1.1 | Blocks and block-degree

�e formal cornerstone of our measure is the notion of a congruence relation on a chain.
In general, congruence relations (or simply: congruences) are equivalence relations

that are compatible with certain properties of the underlying mathematical structure.

For chains, a natural notion of congruence is obtained by requiring each equivalence

class to form a convex set.

De�nition Let C = (A ; ²) be a chain, and let S ⊆ A be a set. An equivalence relation 401

on S is called a congruence on S , if each of its classes is convex with respect to C . ñ

Example Let C6 be the set [6] , equipped with the standard order on natural numbers, 402

and consider the set S1 := {1, 2, 3} .�ere are four possible congruence relations on S1 .
Using shades to mark the elements of S1 , and boxes to mark equivalence classes, these
relations can be visualized as in Figure 4.1a. Similarly, there are two possible congruence

relations on the set S2 := {2, 3, 6} (depicted in Figure 4.1b), and one congruence on

the set S3 := {1, 3, 6} (Figure 4.1c). ñ

35

4 Dependency structures of bounded degree

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(a) S1 = {1, 2, 3}

1 2 3 4 5 6

1 2 3 4 5 6

(b) S2 = {2, 3, 6}

1 2 3 4 5 6

(c) S3 = {1, 3, 6}

Figure 4.1: Examples for congruence relations

�e quotient of a set S by a congruence relation forms a partition of S in which every
class is convex; we call such partitions convex partitions. Congruences on the same
chain can be compared with respect to the coarseness of their quotients: given a set S
and two partitions Π1 ,Π2 of S , we say that Π1 is coarser than Π2 (and that Π2 is �ner
than Π1), if for every class C2 ∈ Π2 , there is a class C1 ∈ Π1 such that C2 ⊆ C1 .�e

set of convex partitions of a given set together with the ‘coarser-than’ relation forms a

complete lattice. As a consequence, there is a coarsest congruence on a given set.

Example (continued) �e lowermost congruence relation in Figure 4.1a is the coarsest403

congruence on the set S1 in C6 (all other congruence relations on S1 have more
equivalence classes), the topmost relation is the �nest congruence on S1 . ñ

�e coarsest congruence relation on a set can also be characterized directly:

Lemma Let C = (A ; ²) be a chain, and let S ⊆ A be a set. De�ne a binary relation404

on S by putting a ≡S b if and only if ∀ c ∈ [a, b]. c ∈ S . �en ≡S is the coarsest

congruence relation on S . ñ

�e cardinality of the quotient of a set S modulo the coarsest congruence relation on S
provides us with a way to measure the ‘non-convexity’ of S : the more convex sets we
need to cover all the elements of S , the less convex it is.

De�nition Let C = (A ; ²) be a chain, and let S ⊆ A be a set. A block of S with respect405

to C is an element of the quotient S/≡S .�e block-degree of S with respect to C is the

cardinality of the set S/≡S , that is, the number of di�erent blocks of S . ñ

Example (continued) In the pictures in Figure 4.1, the blocks of a set are visualized as406

contiguous shaded regions, and the block-degree corresponds to the number of these

regions.�e block-degree of the set S1 in C6 is 1 : the coarsest congruence relation

on S1 has only one block. More generally, every convex set has block-degree 1 .�e
block-degree of the set S2 is 2 : there is no way to cover S2 with less than 2 blocks.

Finally, the block-degree of the set S3 is 3 . ñ

36

4.1 The block-degree measure

Rather than counting the number of blocks of a set, we can also count the number of

discontinuities or gaps between the blocks. Formally, these concepts can be de�ned on
the complement of a set relative to its convex hull.

De�nition Let C = (A ; ²) be a chain, and let S ⊆ A be a set. �e convex hull of S , 407

H(S) , is the smallest convex superset of S .�e elements of the set S := H(S) − S are
called holes in S . ñ

Applying the de�nition of blocks and block-degree to sets of holes, we say that a gap
in S is a class in the quotient S/≡S , and the gap-degree of S is the cardinality of the
quotient S/≡S .�e gap-degree of a set is obtained as its block-degree, minus 1 .

Example (continued) We return to Figure 4.1, where gaps are visualized as contiguous 408

non-shaded regions between blocks.�e convex hull of the set S1 is the set S1 itself;
thus, the set S1 is empty, and there are no gaps in S .�e convex hull of the set S2 is
H(S2) = {2, 3, 4, 5, 6} , and the set {4, 5} is the set of holes in S2 .�is set also forms a
gap in S2 , so the gap-degree of S2 is 1 . Finally, for the set S3 we have H(S3) = [6] and

S3 = {2, 4, 5} ; the gap-degree of S3 is 2 . ñ

In the following, we usually talk about blocks and block-degree, but all our results

could also be expressed in terms of gaps and the gap-degree measure.

4.1.2 | A hierarchy of non-projective dependency structures

We now apply the block-degree measure to dependency structures. With the de�nition

of projectivity in mind, the interesting congruences on dependency structures are the

coarsest congruences on their yields: two nodes v1 , v2 belong to the same block of a

yield �u� , if all nodes between v1 and v2 belong to �u� as well.�e maximal number
of blocks per yield is a measure for the non-projectivity of a dependency structure.

De�nition Let D be a dependency structure, and let u be a node of D . �e set of 409

blocks of u is the set �u�/≡�u� , where the congruence relation ≡�u� is de�ned relative

to the precedence relation underlying D . ñ

De�nition Let D be a dependency structure. �e block-degree of a node u of D 410

is the number of blocks of u . �e block-degree of D is the maximum among the
block-degrees of its nodes. ñ

Example Figure 4.2 shows two examples of non-projective dependency structures. 411

For both structures, consider the yield of the node 2 . In structure D1 , the yield �2�

falls into two blocks, {2, 3} and {6} . Since this is also the maximal number of blocks

per yield, the block-degree of D1 is 2 . In structure D2 , the yield �2� consists of three

blocks, {1} , {3} , and {6} ; the block-degree of D2 is 3 . ñ

37

4 Dependency structures of bounded degree

1 2 3 4 5 6

(a) D1 , block-degree 2

1 2 3 4 5 6

(b) D2 , block-degree 3

Figure 4.2: Two non-projective dependency structures

Let us say that a dependency structure is block k , if its block-degree is at most k . We
write Dk for the class of all dependency structures that are block k . It is immediate
from this de�nition that the class Dk is a proper subclass of the class Dk+1 , for all

k ∈ N . It is also immediate that a dependency structure is projective if and only if it
belongs to the class D1 .�us, the block-degreemeasure induces an in�nite hierarchy of

ever more non-projective dependency structures, with the class of projective structures

at the lowest level of this hierarchy. �is is interesting because it allows us to scale

the complexity of our formal models with the complexity of the data: the transition

from projectivity to full non-projectivity becomes gradual. A crucial question is, of

course, whether block-degree is a useful measure in practice. To answer this question,

we evaluate the practical relevance of the block-degree measure in Section 4.4.

4.1.3 | Related work

 �e gap-degree measure (and hence, the block-degree measure) is intimately related

to the notion of node-gaps complexity, due to Holan et al. (1998). Node-gaps complexity
was originally introduced as a complexity measure for derivations in a dependency

grammar formalism. Later, it was also applied to the empirically more transparent

results of these derivations, objects essentially the same as our dependency structures.
In this latter application, node-gaps complexity and gap-degree are identical. Note

however that some authors (Hajičová et al., 2004; Zeman, 2004) use the term ‘gap’

to refer to a node—rather than a set of nodes—between two blocks of a yield.�is is

what we have called a ‘hole’ in De�nition 407. Havelka (2007a) de�nes the ‘gap’ of a

dependency edge u → v as the set of holes in the set �u� ∩ (u, v) .

 We can view the block-degree of a set as a descriptive complexity measure, similar

to Kolmogorov complexity in algorithmic information theory: Once a chain (A ; ²) is
given, a convex subset of A can be represented by a pair of elements from A , namely
the minimal and the maximal element of the set. In this way, even very large sets

can be represented with little information. However, the higher the block-degree of

a set, the more elements of A we need to represent it, and the less bene�t an interval
representation has over an explicit representation.

38

4.2 Algebraic framework

1 2 3 4 5 6

(a) block degree 3, edge degree 1

1 2 3 4 5 6

(b) block degree 2, edge degree 2

Figure 4.3: Block degree and edge degree are incomparable

 �e block-degree measure quanti�es the non-projectivity of a dependency structure

by counting the number of contiguous blocks in the yields of the structure. A similar

measure, based on edges, was introduced by Nivre (2006a). For an edge e = u → v in

a dependency structure D , let us write Fe for the forest that results from restricting

the governance relation in D to the nodes in the open interval (u, v) .�e degree of the
edge e (in the sense of Nivre) is the number of those components in Fe that are not

governed by u in D ; the degree of D is the maximum among the degrees of its edges.
�is degree measure is incomparable to our block-degree measure. To see this, consider

the two dependency structures depicted in Figure 4.3.�e le� structure (Figure 4.3a)

has block-degree 3 and edge-degree 1 , as the open interval (3, 6) that corresponds to

the edge 3 → 6 contains one component not governed by 3 , and this is the maximal

number of components per edge. On the other hand, the right structure (Figure 4.3b)

has block-degree 2 and edge-degree 2 , as the edge interval (2, 5) contains two distinct

components not governed by the node 2 .

4.2 | Algebraic framework

In this section, we generalize the algebraic framework developed in Section 3.2 to

dependency structures with restricted block-degree.

4.2.1 | Traversal of block-ordered trees

One of the essential properties of our procedure for the traversal of treelet-ordered

trees is that for each node u of the input tree T , the call Treelet-Order-Collect(u)
returns a linearization of the nodes in the subtree of T that is rooted at u .�is property
ensures that we can interpret the result of a call as a dependency structure, but at the

same time constrains this structure to be projective. We now develop a procedure

Block-Order-Collect that returns a linearization not of a complete yield, but only

of some given block of that yield. To do so, we allow the procedure to be called on a

node more than once: the i th call on u produces a linearization of the i th block of u ,
where blocks are assumed to be numbered in the order of their precedence.

39

4 Dependency structures of bounded degree

Block-Order-Collect(u)
1 L ← nil ; calls[u] ← calls[u] + 1

2 foreach v in order[u][calls[u]]
3 do if v = u
4 then L ← L · [u]
5 else L ← L · Block-Order-Collect(v)

6 return L

Table 4.1: Traversal of a block-ordered tree

Figure 4.1 shows pseudo-code for an implementation of Block-Order-Collect .

�e implementation assumes the existence of a global array calls that records for each
node u the number of times that the procedure has been called on u . It further assumes
that each node u is annotated with lists order[u][i] of nodes in the treelet rooted at u .

Example Figure 4.4 shows an order-annotated tree and the dependency structure412

induced by its traversal according to the procedure in Table 4.1 when called on the

root node of that tree. We assume that the array calls is initialized with all zeros.�e
tuples at the ends of the dotted lines represent the annotated orders. Speci�cally, the list

order[u][i] can be found as the i th component of the tuple annotated at the node u .
To give an example, the order annotations for the node 2 are order[2][1] = 23 and

order[2][2] = 3 . ñ

Our �rst aim in this section is to show that suitably annotated trees together with the

procedure Block-Order-Collect are expressive enough to fully characterize the

class of dependency structures with �nite block-degree—just as treelet-ordered trees

and our procedure for traversing them are expressive enough to fully characterize the

class of projective structures. More speci�cally, we want to show that trees in which

no node is annotated with more than k lists are expressive enough to characterize the
class of structures with block-degree at most k .

1

2

3

4

5

〈1252〉

〈23, 3〉

〈4, 3〉

〈4〉

〈4〉

(a) tree

1 2 4 5 3

(b) D3 (block-order traversal)

Figure 4.4: A block-ordered tree and its corresponding dependency structure

40

4.2 Algebraic framework

For our proofs to go through, we need to be more speci�c about the exact form

of the order annotations in the inputs to Block-Order-Collect . Without further

constraints, the procedure may fail to induce dependency structures:

✴ Assume that two distinct calls Block-Order-Collect(u) return lists that con-
tain the node u , or that a single call returns a list that contains the node u more
than once. In both of these cases, the result of the traversal does not qualify as

a linearization of the input tree. A similar situation arises if none of the calls

Block-Order-Collect(u) returns a list that contains the node u .

✴ Assume that Block-Order-Collect(u) is called more o�en than the number
of lists annotated at u . In this case, the results of some of the calls are unde�ned.
Similarly, if Block-Order-Collect(u) is called less o�en than there are lists
annotated at u , then the linearization may be incomplete.

To prevent these problems, we require the inputs to Block-Order-Collect to be

well-typed, in the following sense: For each node u , let k(u) be the number of lists
annotated at u . We require that, in union, these lists contain exactly one occurrence
of the node u , and exactly k(v) occurrences of the node v , for all children v of u .
�ese restrictions ensure that the mapping from trees to dependency structures is

well-de�ned. It is not necessarily injective:

✴ Assume that some list order[u][i] is empty. �en we can modify the order
annotations without altering the induced dependency structure as follows: delete

the list order[u][i] , and reindex the remaining annotations at u accordingly.

✴ Assume that some list order[u][i] contains two adjacent occurrences of some
child v of u .�en we can modify the order annotations without altering the
induced dependency structure as follows: delete the second occurrence, append

the corresponding order annotation to the annotation corresponding to the �rst

occurrence, and reindex the remaining order annotations at v accordingly.

To prevent these ambiguities, we require that no list order[u][i] is empty, and that no
list order[u][i] contains two or more adjacent occurrences of the same node v . We
call trees that satisfy all of these requirements block-ordered trees.

4.2.2 | Segmented dependency structures

�ere is one more thing that we need to take care of. Consider a block-ordered

tree in which the root node is annotated with more than one list of nodes. When

we call Block-Order-Collect on the root node of this tree, all but the �rst of

these lists are ignored, and hence, the linearization of the tree is incomplete, and

fails to induce a dependency structure. One way to remedy this problem is to re-

quire the root nodes of block-ordered trees to be annotated with exactly one list;

41

4 Dependency structures of bounded degree

but this would break inductive arguments like the one that we used in the proof of

Lemma 308. We therefore opt for another solution, motivated by the following ob-

servation: Let T be a block-ordered tree with root node r , and let u be a non-root
node of T . For notational convenience, put k := k(u) . �e well-typedness condi-
tions ensure that the calls to Block-Order-Collect on u can be understood as
a tuple � vi

!!!!!!! i ∈ [k] of lists of nodes, where vi is the result of the i th call to
Block-Order-Collect(u) , for i ∈ [k] , and v1 · · · vk forms a linearization of the
subtree rooted at u . Only for the root node r , the procedure is called only once, inde-
pendently of the number of annotated lists. In order to do away with this asymmetry,

we stipulate that the call of Block-Order-Collect on r should return the k(r)-tu-
ple �Block-Order-Collect(r)i

!!!!!!! i ∈ [k(r)] , where Block-Order-Collect(r)i
stands for the i th call to the node r . Of course, in order for this to make sense, we
need to say what such an output should mean in the context of dependency structures.

�is gives rise to the notion of segmented dependency structures, which essentially are
dependency structures where even the root nodes can have block-degrees greater than

one.

De�nition Let D = (V ; �, ²) be a dependency structure, and let ≡ be a congruence413

relation on D .�e segmentation of D by ≡ is the structure D ′ := (V ; �, ², R) , where R
is a new ternary relation on V de�ned as follows:

(u, v1 , v2) ∈ R :⇐⇒ v1 ≡ v2 ∧ ∀w ∈ [v1 , v2]. w ∈ �u� .

�e elements of the set V/≡ are called the segments of D ′
. ñ

We write v1 ≡u v2 instead of (u, v1 , v2) ∈ R .

Example Figure 4.5 shows how we visualize segmented dependency structures: we use414

boxes to group nodes that belong to the same segment; all other congruences ≡u are

uniquely determined by this choice. As an example, 4 ≡1 3 holds in D4 because both 4

and 3 lie in the same segment of D4 , and all nodes between them are governed by the

node 1 . At the same time, 4 Ö≡2 3 holds in D4 : while both 4 and 3 belong to the same

segment of D4 , the node 5 , which is situated between 4 and 3 , is not governed by 2 .

�e non-congruence 4 Ö≡2 3 also holds in the substructure D4/2 , this time because 4

and 3 do not even lie in the same segment. ñ

For each node u , the relation ≡u is the coarsest congruence on �u� that is �ner than ≡ .
Based on this observation, we adapt our de�nition of blocks (De�nition 409):

De�nition Let D be a segmented dependency structure, and let u be a node of D .415

�e set of blocks of u is the set �u�/≡u . ñ

In segmented dependency structures with just one segment, this de�nition coincides

with the old one. In other structures, the new de�nition ensures that elements from

di�erent segments belong to di�erent blocks of all nodes of the structure.

42

4.2 Algebraic framework

1 2 4 5 3

(a) D4 ≅ D3

2 4 3

(b) D4/2

4 3

(c) D4/3

4

(d) D4/4

Figure 4.5: Segmented dependency structures

We call the number of segments of a segmented dependency structure the sort of
that structure, and write D≡

k for the class of all segmented dependency structures of

sort k . By our de�nition of block-degree, the block-degree of a segmented dependency
structure is at least as high as its sort.�e class D≡

1 is essentially the same as the class D

of all dependency structures, and it will be convenient not to distinguish them to

carefully. We now connect segmented dependency structures to our modi�ed tree

traversal.

De�nition Let T be a tree, and let k ∈ N . A linearization of T with k components 416

is a k -tuple L = � ui
!!!!!!! i ∈ [k] such that u := u1 · · · uk is a list of the nodes of T in

which each node occurs exactly once.�e segmented dependency structure induced by
a linearization L of T is the structure in which the governance relation is isomorphic
to T , the precedence relation is isomorphic to u , and the segments are isomorphic to
the tuple components of L . ñ

We can now show the correspondents of the Lemmata 308, 310, and 312 for projective

structures. To do so, we regard the functions lin and dep as sorted functions: given a
block-ordered tree T in which the root node is annotated with k lists, the function lin

maps T to the linearization of T with k components that is computed by the traversal
of the input tree according to Block-Order-Collect , and the function dep maps T
to the segmented dependency structure of sort k that is induced by lin(T) . Apart from
this change, the proofs carry over without larger modi�cations. We therefore get the

following Lemma:

Lemma For every segmented dependency structure D , there exists exactly one block- 417

ordered tree T such that dep(T) = D . Furthermore, if T is a block-ordered tree in
which each node is annotated with at most k lists, for some k ∈ N , then dep(T) is a
segmented dependency structure with block-degree at most k . ñ

4.2.3 | Order annotations

Next we take the step from the algorithmic to the algebraic and encode block-ordered

trees as terms over an extended set of order annotations.�is encoding is a relatively

43

4 Dependency structures of bounded degree

〈0121〉

〈01, 1〉

〈1, 0〉

〈0〉

〈0〉

Figure 4.6: The term for the block-ordered tree from Figure 4.4

straightforward generalization of the procedure that we presented in Section 3.2.3.�e

major novelty comes from the requirement that we need to ensure that all decodings

of terms satisfy the well-typedness conditions. To do so, we now understand the set Ω
of order annotations as a sorted set; as sorts, we use the natural numbers.
Let T be a block-ordered tree with root node u , and put k := k(u) . We need the

following auxiliary sequences: �rst, the vector v = v1 · · · vm obtained from the concate-

nation order[u][1] · · · order[u][k] of the list-based order annotations by removing the
node u and all but the �rst occurrence of each other node; second, for each j ∈ [k] ,
the string ı j obtained from the list order[u][j] by replacing every child of u by its
position in v , and u itself by the symbol 0 . For each j ∈ [m] , put k j := k(v j) .�e
term t(T) corresponding to T is then de�ned recursively as

t(T) := 〈ı1 , . . . , ık〉�t(T/v1), . . . , t(T/vm)� .

In this de�nition, the string 〈ı1 , . . . , ık〉 is understood as a term constructor of type
k1 × · · · × km → k . From now on, we use Ω to denote the set of all such constructors.
We de�ne the degree of a symbol ω ∈ Ω , deg(ω) , as the maximum over its input and
output sorts, and put Ω(k) := �ω ∈ Ω !!!!!!! deg(ω) ≤ k � . Note that, by this de�nition,
the set Ω(k) is exactly what we need in order to encode the set of all block-ordered
trees with up to k lists per node, and therefore, the set of all segmented dependency
structures with block-degree at most k . Speci�cally, the set Ω(1) is essentially identical

to our previous de�nition of Ω for projective dependency structures.

Example For the dependency structure D3 shown in Figure 4.4, the generic procedure418

to extract the order annotations from a dependency structure described in the proof of

Lemma 310 (page 27) yields the following list-based order annotations:

for node 1: L = 12453 , L ′ = 12252 , order[1] = 1252 ;

for node 2: L = 12453 , L ′ = Å 23 Å 3 , order[2] = 23 Å 3 ;

for node 3: L = 12453 , L ′ = ÅÅ 4 Å 3 , order[3] = 4 Å 3 ;

for node 4: L = 12453 , L ′ = ÅÅ 4 ÅÅ , order[4] = 4 ;

for node 5: L = 12453 , L ′ = ÅÅÅ 5 Å , order[5] = 5 .

44

4.3 Algorithmic problems

If we read the values of the strings order[u] as tuples, where the symbol Å separates
tuple components, we obtain the annotations shown in Figure 4.4. From these, by the

construction above, we construct the following order annotations:

〈0121〉 : 2 × 1 → 1 , 〈01, 1〉 : 2 → 2 , 〈1, 0〉 : 1 → 1 , 〈0〉 : 1 .

Figure 4.6 shows a term built over these constructors; this term encodes the block-

ordered tree from Figure 4.4. ñ

4.2.4 | Dependency structure algebras

We have now reached a situation very similar to the situation at the beginning of

Section 3.2.4: we have identi�ed a sorted set Ω and a sorted bijection dep : TΩ → D≡

between terms over Ω and segmented dependency structures.�is means that we can
give the set D≡

an algebraic structure.

De�nition Let ω : k1× · · ·×km → k be an order annotation.�e composition operation 419

corresponding to ω is the function fω : D≡
k1 × · · · × D≡

km → D≡
k de�ned as

fω(D1 , . . . ,Dm) := dep�ω�term(D1), . . . , term(Dm)�� . ñ

Each composition operation fω simulates a single step of the block-order traversal:
given a sequence of argument structures, it returns the segmented dependency structure

that can be decomposed into the given argument structures in the way that is speci�ed

by the order annotation ω .

De�nition Let Σ ⊆ Ω be a �nite set of order annotations. �e dependency algebra 420

over Σ is the Σ -algebra that has the SΣ -indexed set � dep(Σi)
!!!!!!! i ∈ [k] as its carrier,

and interprets each ω ∈ Σ by the composition operation corresponding to ω . ñ

�eorem Let Σ ⊆ Ω be a �nite set of order annotations. �en the dependency 421

structure algebra over Σ is isomorphic to the (many-sorted) term algebra over Σ . ñ

4.3 | Algorithmic problems

In this section, paralleling Section 3.3, we address three of the algorithmic problems

related to our algebraic view on non-projective dependency structures: decoding,

encoding, and computing the block-degree for a given dependency structure. �e

decoding problem is essentially solved by the procedure Block-Order-Collect that

we gave in Table 4.1. �e main contribution of this section is an e�cient algorithm

to encode a non-projective dependency structure into a term. �e algorithm that

computes the block-degree is a straightforward extension of the encoding algorithm.

45

4 Dependency structures of bounded degree

1 2 3 4 5

a b c d e

(a, 1, 5)

(a, 1, 1) (b, 2, 3)

(b, 2, 2) (e, 3, 3)

(c, 3, 3)

(c, 3, 3)

(d , 4, 4)

(d , 4, 4)

(b, 5, 5)

(e, 5, 5)

(e, 5, 5)

Figure 4.7: A non-projective dependency structure and the corresponding span tree

4.3.1 | Encoding

On page 27, we described a generic procedure to extract the order annotations from

a dependency structure. A naïve implementation of this procedure takes time cubic

in the number of nodes of the input structure.�e algorithm that we present in this

section may perform signi�cantly better; it runs in time linear in the number of blocks

in the input structure, of which there are at most quadratically many, but o�en less.
�e crucial component of our encoding algorithm is a procedure that transforms

the input structure into a certain tree representation called span tree, from which all
order annotations can be easily read o�.�e span tree T for a dependency structure D
is a labelled, ordered tree in which each node has one of two types: it can be a block
node or an anchor.�e block nodes of T stand in one-to-one correspondence with
the blocks of D ; the anchors stand in one-to-one correspondence with the singletons.
For a node u of T , we write S(u) for the set of nodes in D that corresponds to u .�e
dominance relation of T represents an inclusion relation in D : u strictly dominates v
if and only if S(u) ⊇ S(v) and either u is a block node and v is an anchor, or both u
and v are block nodes. By this relation, all block nodes are inner nodes, and all anchors

are leaf nodes in T . �e precedence relation of T represents a precedence relation
in D : u strictly precedes v if and only if all nodes in S(u) precede all nodes in S(v) .

Example Figure 4.7 shows the dependency structure from Figure 4.4 and the span tree422

for this structure. Consider the root node of the structure, the node a .�e yield of a
consists of a single block, which contains all the nodes of the structure, positions 1 to 5

in the precedence order.�is information is represented in the span tree in that the

root node of this tree is labelled with the triple (a, 1, 5) .�e block of a decomposes
into four components; read in their order of precedence, these are: the singleton {a} ,
the �rst block of the node b , the block of the node d , and the second block of b . Note
that, since b contributes two blocks to the block of a , we �nd two nodes of the form
(b, i , j) as children of (a, 1, 5) in the span tree. Note furthermore that the precedence
order on the components of the block of a is re�ected by the sibling order on their
corresponding nodes in the span tree. ñ

46

4.3 Algorithmic problems

Step(u)
1 T ← ⋃{ trees[v] | v ∈ children[u] } ∪ {(u, pos[u], pos[u], nil)}
2 foreach (w, i , j , S) in T
3 do right[i] ← j ; sub[i] ← if i = pos[u] then [(u, pos[u], pos[u])] else S
4 foreach (w, i , j , S) in T
5 do k ← j + 1

6 while right[k] Ö= ⊥
7 do right[i] ← right[k] ; sub[i] ← sub[i] · sub[k]
8 right[k] ← ⊥ ; sub[k] ← ⊥ ; k ← right[i] + 1

9 foreach (w, i , j , S) in T
10 do if right[i] Ö= ⊥
11 then trees[u] ← trees[u] ∪ {(u, i , right[i], sub[i])}
12 right[i] ← ⊥ ; sub[i] ← ⊥

Table 4.2: Constructing the span tree for a dependency structure

We now describe the general structure of an algorithm that transforms a dependency

structure into its span tree. We assume that the input structure is given to us as

a collection of nodes, where each node u is equipped with a set children[u] of its
children and an integer pos[u] that represents the position of u with respect to the
precedence relation. Our algorithm can be separated into two phases:

✴ In the �rst phase, we allocate two global data structures: an array right that will
map the le� endpoints of blocks to their right endpoints, and an array sub that
will record the component structures of blocks. Each element of these arrays is

initialized to the void value, which we write as ⊥ .

✴ In the second phase of the algorithm, we perform a post-order traversal of the

input structure. For each node u , we compute a set trees[u] that contains the
span trees for the blocks of the yield of u . An element of trees[u] is a four-tuple of
the form (w, i , j , S) , where w is a node in the treelet rooted at u , the position i
is the le� endpoint of the span represented by the tree, the position j is the
right endpoint, and the list S contains the trees for the components in their
le�-to-right order. If u is a leaf node, then trees[u] consists of the single tree
�u, pos[u], pos[u], [(u, pos[u], pos[u], nil)]� . If u is an inner node, then the set
trees[u] is obtained by exhaustivemerging of this trivial tree and the span trees
that were constructed for the children of u . Two trees can be merged if they
correspond to adjacent spans of positions.

In the following, we concentrate on the procedure Step(u) that processes a single
node u during the post-order traversal; pseudo-code for this procedure is given in

47

4 Dependency structures of bounded degree

Table 4.2. In line 1, we collect the trees for the subblocks of u . In lines 2–3, we register
these trees in the global data structures—in particular, for each tree (w, i , j , S) , we
register the position j as the right endpoint of a span that starts at position i . In lines
4–8, we merge the spans of adjacent trees into larger spans: we try each tree as a trigger

to merge all right-adjacent spans into a new span, removing all traces of the old spans

(line 8).�e result of a merger spans the positions from the le� endpoint of the trigger

to the right endpoint of the span that was right-adjacent to it. In lines 9–12, we construct

the set trees[u] from the spans that remain a�er merging, and remove all traces from
the global data structures.

We now look at the asymptotic complexity of the algorithm.�e following invariant

is essential for the analysis (and for the correctness proof, which we will omit):

Every element right[i] that receives a non-void value during a call to the procedure Step
is void again when this call �nishes.

�is can be seen as follows.�e only places in a call to Step where non-void values

are assigned to right are in lines 3 and 7. �e assignment in line 3 is witnessed by a
tree from the set T , which is not altered a�er line 1; the assignment in line 7 merely
overwrites a previous assignment. For all trees in T , it is checked in line 10 whether
the element right[i] is assigned, and if so, the element is made void.�erefore, every
element of right is void when a call to Step �nishes. Since every element is void before
the �rst call to Step , and is not altered in between calls to Step , it is void both before

and a�er any call to Step . A similar argument holds for the array sub .

Lemma Let D be a dependency structure with n nodes and gaps.�en the span423

tree corresponding to D can be constructed in time O(n +) . ñ

Proof. Let us assume that we can use the algorithm that we have outlined above to
construct the span tree for D .�e algorithm breaks down into two phases: the initial-
ization of the global data structures, and the tree traversal with calls to Step .�e �rst

phase takes time O(n) ; the second phase can be implemented to take time linear in
the sum over the times taken by the calls to Step . We show that each such call can be

implemented to take time linear in the number of subblocks of the visited node.�e

total number of subblocks is asymptotically identical to the number of blocks in the

input structure, which is n + : each node has one more block than gaps.
Fix some node u of D , and consider the call Step(u) . Let m be the number of

subblocks of u ; this number is obtained as the number of blocks of the children
of u , plus 1 for the trivial block containing the singleton u . Note that m = |T | . We
now check the runtime of the constructs in Table 4.2:�e assignment in line 1 can be

implemented to run in time O(m) ; all other elementary operations can be implemented

to run in time O(1) . Each of the foreach loops is executed O(m) times. Finally, we

analyze the runtime of the while loop. During each iteration of that loop, one of the

48

4.3 Algorithmic problems

elements of right is made void. Because of the invariant given above, all elements of
right are void before the call Step(u) , and since only m �elds of right are initialized
in line 3, the while loop cannot make more than m iterations during a single call to
Step . Putting everything together, we see that every call to Step takes time O(m) . ñ

�is �nishes our discussion of the transformation of the input dependency structure

into a span tree. We now explain how to read o� the order annotations from this tree.

�is can be done in a single pre-order traversal.1 We �rst initialize an array order[u]
that maps nodes to their order annotations. For each non-leaf node (u, i , j , S) in the
span tree, we construct a list L that contains the �rst components of the children of
that node in their le�-to-right order, and add this list to the array order[u] . At the
end of the tree traversal, each list order[u] contains the full order annotation for the
node u .

Example (continued) Consider the root node of the span tree depicted in Figure 4.7, 424

the node (a, 1, 5) . �e children of this node are (a, 1, 1) , (b, 2, 3) , (d , 4, 4) , and
(b, 5, 5) . �e corresponding order annotation is order[a] = 〈abdb〉 . Similarly, for
node b , we get order[b] = 〈be, e〉 . �is yields the order annotations 〈0121〉 and
〈01, 1〉 , which can also be found at the corresponding nodes of the term for the encoded

dependency structure (Figure 4.6). ñ

In conclusion, we get the following result:

Lemma Let D be a dependency structure with n nodes and gaps.�en the term 425

term(D) can be computed in time O(n +) . ñ

Note that, in a dependency structure with block-degree k , the number n + of blocks
is bounded by the number k · n .�erefore, a coarser bound on the complexity of our
encoding algorithm is O(k · n) .

4.3.2 | Computing the block-degree of a dependency structure

It is very easy to extend the encoding algorithm into an algorithm that computes the

block-degree of a dependency structure. Since there is a direct correspondence between

the block-degree of a node u in a dependency structure D and the degree of the order
annotation at u in the term term(D) that encodes D (see our discussion on page 44),
it su�ces to compute the encoding and count the relevant numbers.�is can be done

in time O(n +) .

Lemma Let D be a dependency structure with n nodes and gaps.�en the block- 426

degree of D can be computed in time O(n +) . ñ

1Note that, given that the order in the span tree re�ects the precedence order of the blocks in the

dependency structure, during a pre-order traversal we visit the blocks from le�-to-right.

49

4 Dependency structures of bounded degree

block-degree ddt pdt 1.0 pdt 2.0

1 (projective) 3 730 84.95% 56 168 76.85% 52 805 77.02%

2 654 14.89% 16 608 22.72% 15 467 22.56%

3 7 0.16% 307 0.42% 288 0.42%

4 – – 4 0.01% 1 < 0.01%
5 – – 1 < 0.01% 1 < 0.01%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

Table 4.3: Dependency structures of various block-degrees in three treebanks

It is also possible to parameterize the algorithm that constructs the span tree for the

input structure by a constant k such that it terminates as soon as it discovers that the
tree to be constructed contains at least one node with a block-degree that exceeds k .
In this way, a test whether a given dependency structure has block-degree k can be
carried out in time O(k · n) .

4.4 | Empirical evaluation

Using the algorithms developed in the previous section, we now evaluate the coverage

of di�erent block-degrees on treebank data. Speci�cally, we check how many and

how large a percentage of the structures in the three treebanks that we used in the

experiments reported in Section 3.4 have a block-degree of exactly k , for increasing
values of k . Table 4.3 shows the results of the evaluation.�e numbers and percentages
for block-degree 1 reiterate the results for projective dependency structures from

Table 3.4; the counts for structures with block-degree greater than 1 partition the

�gures for non-projective structures in that table.

�e general impression that we get from the experiments is that even a small step

beyond projectivity su�ces to cover virtually all of the data in the three treebanks.

Speci�cally, it is su�cient to go up to block-degree 2 : the structures with block-degree

greater than 2 account for less than half a percent of the data in any treebank.�ese

�ndings con�rm similar results for other measures of non-projectivity, such as Nivre’s

degree (Nivre, 2006a) and Havelka’s level types (Havelka, 2007a). Together, they clearly
indicate that to contrast only projective and non-projective structuresmay be too coarse

a distinction, and that it may be worthwhile to study classes of dependency structures

with intermediate degrees of non-projectivity.�e class of dependency structures with

block-degree at most 2 appears to be a promising starting point.

50

chapter 5 | Dependency structures without crossings

�e block-degree of a dependency structure is a quantitative property—it measures the

independence of governance and precedence along an in�nite scale of possible values.

In this chapter, we study well-nestedness, a property related not to the degree, but to the
form of non-projectivity in dependency structures.

Structure of the chapter. To motivate the well-nestedness restriction, we �rst look at
another structural constraint, weak non-projectivity, and investigate its entanglement
with the block-degree measure (Section 5.1). From there we are led to the relational

and the algebraic characterization of well-nestedness, and to an e�cient test for this

property (Section 5.2). At the end of the chapter, we evaluate and compare the empirical

adequacy of weak non-projectivity and well-nestedness (Section 5.3).

5.1 | Weakly non-projective dependency structures

Let us go back to our motivation of projectivity in Chapter 3. Recall that we had to

re�ne the slogan that projectivity should ‘disallow dependency analyses with pictures

that contain crossing edges’ because some pictures of dependency structures with
crossing edges can be ‘�xed’ by changing the vertical positions of some nodes—to

witness, consider the two pictures of the non-projective structure D1 that are shown

in Figures 5.1a and 5.1b. In this section, we return to our original slogan, and take a

closer look at dependency structures that can be redrawn without crossing edges. We

call such structures weakly non-projective, a term that we borrow from the Russian
tradition of dependency grammar (Dikovsky and Modina, 2000).

1 2 3 4

(a) D1

1 2 3 4

(b) D1

1 2 3 4

(c) D2

Figure 5.1: Three pictures of non-projective dependency structures. The structure shown in
pictures (a) and (b) is weakly non-projective; the structure shown in picture (c) contains
overlapping edges.

51

5 Dependency structures without crossings

1 2 3 4

(a) D1

1 2 3 4

(b) D2

Figure 5.2: Alternative pictures for the dependency structures from Figure 5.1

5.1.1 | Definition of weak non-projectivity

In Chapter 3, we used the term ‘crossing edge’ to refer to a dependency edge that

crosses a projection line.�ere is another natural meaning: that a ‘crossing edge’ is a

dependency edge that crosses another edge. We formalize this situation as follows.

De�nition Let C = (A ; ²) be a chain. Two C-intervals B and C overlap, if501

minB ≺ minC ≺ max B ≺ maxC or minC ≺ minB ≺ maxC ≺ max B .

We write B � C to assert that B and C overlap.

De�nition Let D be a dependency structure. Two edges v1 → v2 , w1 → w2 in D502

overlap, if [v1 , v2] and [w1 ,w2] overlap as intervals. ñ

De�nition A dependency structure D is called weakly non-projective, if it does not503

contain overlapping edges. ñ

Example �e structure D2 depicted in Figure 5.1c is not weakly non-projective: the504

edges 1 → 3 and 2 → 4 overlap. On the other hand, the structure D1 depicted in

Figures 5.1a and 5.1b does not contain overlapping edges; it is weakly non-projective.

�e di�erence between the two structures can be seen more clearly when drawing them

with undirected edges as in Figure 5.2. ñ

A dependency structure that contains overlapping edges cannot be drawn without

edges that cross a projection line. Conversely, the only non-projective edges u → v that

a weakly non-projective dependency structure can contain are such that all ancestors

of the node u and all nodes governed by these ancestors, except for the nodes also
governed by u , fall into the interval [u, v] . Such structures can be redrawn by moving
the material in the gap of the edge to vertical positions below the node u .

Example (continued) �e picture in Figure 5.1a contains one edge that crosses a pro-505

jection line: the edge 1 → 4 . When we take the set of all ancestors of 1 (the set {2})

and all nodes governed by these ancestors ({1, 2, 3, 4}), minus the nodes also governed

by 1 ({1, 4}), we obtain the set {2, 3} . By moving these nodes to vertical positions

below the node 1 , we get to the picture in Figure 5.1b. ñ

52

5.1 Weakly non-projective dependency structures

r u h v r v h u u h v r v h u r

Figure 5.3: The four cases in the proof of Lemma 506

5.1.2 | Relation to the block-degree measure

We now show that, from the perspective of the block-degree measure, weak non-

projectivity is a weak extension of projectivity indeed: it does not even take us up one

step in the block-degree hierarchy. We �rst prove an auxiliary lemma.

Lemma Let D be a weakly non-projective dependency structure.�en every gap in D 506

contains the root node of D . ñ

Proof. We show the contrapositive of the statement: If at least one gap in D does not
contain the root node, then D is not weakly non-projective. Let D be a dependency
structure with a gap that does not contain the root node. We can then choose four pair-

wise distinct nodes r, u, h, v as follows: Choose r to be the root node of D . Choose u
to be a node such that G is a gap of u and r ∉ G ; since the root node does not have a
gap, it is certain that r Ö= u . Choose h ∈ G ; we then have h ∉ �u� and h Ö= r . Choose v
to be a node governed by u such that h ∈ (u, v) ; since the root node is governed
only by itself, we have v Ö= r . Based on the relative precedences of the nodes, we now
distinguish four cases, shown schematically in Figure 5.3. In all four cases, some edges

on the paths from r to h and from u to v overlap. ñ

Note that the converse of Lemma 506 does not hold: there are dependency structures
that are not weakly non-projective, but in which all gaps contain the root node. As an

example, consider the structure D2 depicted in Figure 5.1c.

Lemma Every weakly non-projective dependency structure has a block-degree of at 507

most 2 . Furthermore, there is at least one dependency structure with block-degree 2

that is not weakly non-projective. ñ

Proof. To see the inclusion, let D be weakly non-projective. By Lemma 506, we know
that every gap in D contains the root node. Since distinct gaps of one and the same
node are set-wise disjoint, this implies that no node in D can have more than one gap.
�erefore, the structure D has a block-degree of at most 2 . To see that the inclusion is
proper, consider again structure D2 in Figure 5.1c: this structure has block-degree 2 ,

but contains overlapping edges. ñ

53

5 Dependency structures without crossings

1

〈0, 1〉

2

〈101〉

3

〈01〉

4

〈0〉

(a) D3

1

〈01〉

2

〈0, 1〉

3

〈101〉

4

〈0〉

(b) D2 (repeated)

Figure 5.4: Weak non-projectivity is algebraically opaque

Weak non-projectivity appears like a very interesting constraint at �rst sight, as it

expresses the intuition that ‘crossing edges are bad’, but still allows a limited form of

non-projectivity. On the other hand, the property stated in Lemma 506 seems rather

peculiar. To get a better understanding of the explanatory force of weak non-projectivity,

we evaluate its empirical relevance in Section 5.3.

5.1.3 | Algebraic opaqueness

From the perspective of our algebraic setting, there is a fundamental di�erence between

weak non-projectivity and the block-degree restriction. Recall from Section 4.3.2, that

in order to check whether a dependency structure D has block-degree at most k , it
su�ces to check whether the corresponding term term(D) only contains symbols from

the sub-signature Ω(k) of order annotations with degree at most k . In this sense, the
block-degree measure is transparent: it is directly related to the set of composition
operations used to build a structure.�e class of weakly non-projective dependency

structures cannot be characterized in the same way. To see this, consider Figure 5.4,

which shows a weakly non-projective structure (D3) and a structure that is not weakly

non-projective (D2). Both of these structures are composed using the same set of

algebraic operations.

5.1.4 | Related work

 In the Western literature, weak non-projectivity is more widely known as planarity
(Sleator and Temperley, 1993). Unfortunately, the latter term clashes with the concept

of planarity known from graph theory, for at least two reasons: First, while a planar

graph is a graph that can be drawn into the plane such that no edges intersect, a ‘planar’

dependency structure is a graph that is drawn into the half plane above the words of the
sentence. Second, to show that a graph is planar in the graph-theoretic sense, its nodes

may be rearranged on the plane in any arbitrary way; in the context of dependency

structures, the order of the nodes is �xed. Due to these incompatibilities, it seems wise

to avoid the term ‘planarity’, and use a less biased name instead.

54

5.2 Well-nested dependency structures

 Projectivity andweak non-projectivity are closely related. Some authors in fact de�ne
projectivity by requiring the weak non-projectivity of the structure that is obtained

when the dependency structure proper is extended by an arti�cial root node, preceding

all other nodes (see e.g. McDonald et al., 2005). In Link Grammar for example, the

arti�cial root node is called the wall, ‘an invisible word which the [parser] program
inserts at the beginning of every sentence’ (Sleator and Temperley, 1991). As a corollary

of Lemma 506, every weakly non-projective dependency structure in which the root

node occupies the le�most position in the precedence order is projective. Another way

to enforce the projectivity of weakly non-projective dependency structures is to require

that no edge covers the root node (Hudson, 1984; Mel’čuk, 1988).

 Yli-Jyrä (2003) proposes a generalization of weak non-projectivity, and evaluates

its empirical adequacy using data from the Danish Dependency Treebank. He calls a

dependency structure m-planar, if its governance relation can be partitioned into m
sets, called planes, such that each of the substructures induced by such a plane is weakly
non-projective. Since every dependency structure is m-planar for some su�ciently
large m (put each edge onto a separate plane), an interesting question in the context
of multiplanarity is about theminimal values for m that occur in real-world data. To
answer this question, one not only needs to show that a dependency structure can be
decomposed into m weakly non-projective structures, but also, that this decomposition
is the onewith the smallest possible number of planes. Up to now, no tractable algorithm

to �nd the minimal decomposition has been given, so it is not clear how to evaluate the

signi�cance of the concept as such.�e evaluation presented by Yli-Jyrä (2003) makes

use of additional constraints that are su�cient to make the decomposition unique.

 In combinatorics, weakly non-projective dependency structures are known as non-
crossing rooted trees.�eir number is given by sequence a001764 in Sloane (2007).1
Using Lemma 506, we see that every projective dependency structure can be decom-

posed into two halves—one with the root node at the right border, one with the root

node at the le�—such that each half is a non-crossing rooted tree. One can then ob-

tain the number of projective dependency structures as the convolution of sequence

a001764 with itself; this is sequence a006013 in Sloane (2007).

5.2 | Well-nested dependency structures

In this section, we develop the notion of well-nestedness. Well-nestedness is similar to
weak non-projectivity in that it disallows certain ‘crossings’, but di�erent in that it is

transparent at the level of our algebraic signatures. We �rst introduced well-nestedness

in Bodirsky et al. (2005). It was subsequently studied in detail by Möhl (2006).

1 Sequence a001764 actually gives the number of non-crossing unrooted trees. In order to get the right

numbers for weakly non-projective structures, one has to read the sequence with an o�set of 1 .

55

5 Dependency structures without crossings

1 2 3 4 5

(a) D4

1 2 3 4 5

(b) D5

Figure 5.5: Two dependency structures: one well-nested, the other one ill-nested

5.2.1 | Definition of well-nestedness

�e de�nition of well-nestedness specializes the de�nition of weak non-projectivity

in that it bans overlapping edges only if they belong to disjoint subtrees. Overlapping

con�gurations in which one of the edges governs the other are allowed.

De�nition Adependency structure D is calledwell-nested, if the following implication508

holds for all edges v1 → v2 , w1 → w2 in D :

[v1 , v2] � [w1 ,w2] â⇒ v1 � w1 ∨ w1 � v1 .

Dependency structures that are not well-nested are called ill-nested. ñ

Wewrite Dwn for the class of all well-nested dependency structures. From the de�nition,

it is straightforward that every weakly non-projective dependency structure is also

well-nested. As the following example shows, the converse does not hold.

Example Figure 5.5 shows pictures of two non-projective dependency structures. Struc-509

ture D4 is not weakly non-projective, as the edges 1 → 3 and 2 → 5 overlap; however,

it is well-nested, as 1 � 2 . Structure D5 is not even well-nested: the spans 2 → 4 and

3 → 5 overlap, but 2 and 3 belong to disjoint subtrees. ñ

In contrast to weak non-projectivity, well-nestedness is independent of the block-

degree measure: it is not hard to see that for every block-degree k > 1 , there are both

well-nested and ill-nested dependency structures of degree k . Projective structures
are both weakly non-projective and well-nested. In summary, we obtain the following

hierarchy of classes of dependency structures:

projective ¤ weakly non-projective ¤ well-nested ¤ unrestricted .

5.2.2 | Non-crossing partitions

Our next aim is to show that well-nestedness is algebraically transparent. To do so,

we develop an alternative relational characterization of well-nestedness based on the

notion of non-crossing partitions.

56

5.2 Well-nested dependency structures

1

2

34

5

6

(a) Π1

1

2

34

5

6

(b) Π2

1

2

34

5

6

(c) Π3

Figure 5.6: Two non-crossing and one crossing partition

De�nition Let C = (A ; ²) be a chain. A partition Π of A is called non-crossing, if 510

whenever there exist four elements a1 ≺ b1 ≺ a2 ≺ b2 in A such that a1 and a2 belong
to the same class of Π , and b1 and b2 belong to the same class of Π , then these two
classes coincide. A partition that is not non-crossing is called crossing. ñ

Non-crossing partitions enjoy a number of interesting formal properties. In particular,

the number of non-crossing partitions of a chain with n elements is the Catalan number,
Cn = 1

n+1�
2n
n � , and by this property, non-crossing partitions are connected to a large

family of mathematical structures—such as binary trees, Catalan paths in the plane,

pattern-avoiding permutations, and (most important in the context of this study) well-

bracketed strings and children-ordered trees. Consequently, non-crossing partitions

appear in a large number of mathematical applications. Simion (2000) provides a

comprehensive overview.

Example Consider the following partitions on the chain �[6] ; ≤� : 511

Π1 = �{1}, {2, 3, 4}, {5, 6}� , Π2 = �{1}, {2, 3, 6}, {4, 5}� ,

Π3 = �{1}, {2, 4, 6}, {3, 5}� .

Both Π1 and Π2 are non-crossing. Partition Π3 is crossing, as witnessed by the

sequence 2 < 3 < 4 < 5 : the elements 2 and 4 and the elements 3 and 5 belong to the

same class of Π2 , but these two classes do not coincide. ñ

Example Let n ∈ N . A neat way to visualize a partition Π on the canonical chain 512

�[n] ; ≤� goes as follows: Consider a regular n-gon inscribed into a circle, and assume
that the points where the n-gon touches the circle are numbered clockwise from 1 to n .
Now, for every class of Π of size k , connect the corresponding points on the circle
with straight lines to form a convex k -gon.�e partition Π is non-crossing if and only
if no of these k -gons intersect. Figure 5.6 shows such pictures for the partitions from
example 511. ñ

We now use non-crossing partitions to characterize well-nestedness.

57

5 Dependency structures without crossings

Lemma A dependency structure D is well-nested if and only if for every node u of D ,513

the set C(u) of constituents of u (see De�nition 309) is non-crossing with respect to
the chain C := ��u� ; ²|�u�� . ñ

Proof. We prove the contrapositive of the claim: a dependency structure D is ill-nested
if and only if there exists a node u ∈ dom(D) such that the partition C(u) forms a
crossing partition with respect to C .�e proof falls into two parts.

⇒ Assume that D is ill-nested. In this case there exist overlapping edges v1 → v2
and w1 → w2 such that v1 ⊥ w1 . Let u be the greatest (farthest from the root
node) common ancestor of v1 and w1 .�e node sets {v1 , v2} and {w1 ,w2} belong

to the yields of distinct children of u , and hence, to distinct constituents of u .
Furthermore, the intervals [v1 , v2] and [w1 ,w2] overlap with respect to C .�us

we deduce that C(u) is crossing with respect to C .

⇐ Let u ∈ dom(D) be a node, and assume that the partition C(u) is crossing with
respect to C . In this case, there exist two distinct constituents Cv and Cw in C(u)
and elements v1 , v2 ∈ Cv , w1 ,w2 ∈ Cw such that [v1 , v2] � [w1 ,w2] . By the

de�nition of � , both Cv and Cw have a cardinality of at least 2 ; therefore, they

correspond to the yields of distinct and hence disjoint children of the node u , say
Cv = �v� and Cw = �w� . For every arrangement of the nodes v1 , v2 and w1 ,w2 ,

we can choose edges v ′1 → v ′2 in �v� and w ′
1 → w ′

2 in �w� such that these edges

overlap. Furthermore, by construction we have v1 ⊥ w2 , and hence, v
′
1 ⊥ w ′

1 .

�us we deduce that D is ill-nested. ñ

Example (continued) Consider the constituents of the root nodes in Figure 5.5:514

D4 : C(1) = �{1}, {2, 5}, {3, 4}� D5 : C(1) = �{1}, {2, 4}, {3, 5}�

�e �rst of these partitions is crossing, the second non-crossing. ñ

Lemma 513 shows that by restricting ourselves to composition operations that arrange

their arguments into non-crossing partitions, we produce exactly the well-nested

dependency structures. In this sense, well-nestedness is a transparent property.

5.2.3 | Algebraic characterization

Wenow give an explicit characterization of the composition operations that generate the

well-nested dependency structures. More speci�cally, we state a syntactic restriction on

order annotations that identi�es a sub-signature Ωwn of Ω such that the dependency
structures that are obtained as the values of the terms over Ωwn are exactly the well-

nested dependency structures.�e syntactic restriction ensures that all constituents

form non-crossing partitions.

58

5.2 Well-nested dependency structures

〈0121〉

〈0, 1〉

〈0〉

〈01〉

〈0〉

(a) D4

〈01212〉

〈0, 1〉

〈0〉

〈0, 1〉

〈0〉

(b) D5

Figure 5.7: Terms for the dependency structures in Figure 5.5

Let x ∈ A∗
be a string. We say that x contains the string y as a scattered substring,

if, for some k ∈ N , x can be written as

x = z0 · y1 · z1 · · · zk−1 · yk · zk ,

where z0 · · · zk ∈ A∗
, and y1 · · · yk = y .

De�nition An order annotation ω ∈ Ω is called well-nested, if it does not contain a 515

string of the form i j i j as a scattered substring, for i Ö= j ∈ N . ñ

We write Ωwn for the set of all well-nested order annotations.

Example �e order annotation 〈0121〉 is well-nested, the annotation 〈01212〉 is not: 516

it contains the string 1212 as a scattered substring. Figure 5.7 shows terms that make

use of the two order annotations; these terms evaluate to the dependency structures

shown in Figure 5.5. ñ

We now present the main result of this section:

�eorem A dependency structure D is well-nested if and only if term(D) ∈ TΩwn
. ñ 517

Proof. �is is a corollary of Lemma 513.�e presence of the scattered substring i j i j
implies that for some node u , there exist distinct constituents C1 ,C2 ∈ C(u) and nodes
v1 , v2 ∈ C1 , w1 ,w2 ∈ C2 such that v1 ≺ w1 ≺ v2 ≺ w2 ; then, C(u) would be crossing.
Conversely, the encoding algorithm translates every constituent set that is crossing into

an order annotation that contains the forbidden pattern. ñ

5.2.4 | Testing whether a dependency structure is well-nested

Given that the class of well-nested dependency structures forms a subclass of the class

of all dependency structures, the algorithmic problems of encoding and decoding can

be solved using the algorithms that we have presented in Section 4.3. Here we address

the problem of testing whether a given dependency structure D is well-nested.

59

5 Dependency structures without crossings

1 2 3 4 5

Figure 5.8: Pseudo-projectivity in the sense of Nasr (1995)

Lemma Let D be a dependency structure with n nodes and gaps. �e question518

whether D is well-nested can be decided in time O(n +) . ñ

Proof. To check whether D is well-nested, we �rst encode D into a term using the
algorithm presented in Section 4.3; this takes time O(n +) . In a traversal over this
term, we then check whether any of the order annotations contains the forbidden

scattered substring (see�eorem 517); using a stack data structure, this can be done in

time linear in the accumulated size of the order annotations, which is again O(n+) . By
�eorem 517, the structure D is well-nested if and only if we do not �nd the forbidden
substring. ñ

Similar to the situation in Lemma 425, we can also bound the complexity of the algo-

rithm as O(k · n) , where k is the block-degree of D .

5.2.5 | Related work

 Nasr (1995) proposes a restriction on non-projective dependency structures that he

calls the pseudo-projectivity principle.2 Formally, ‘a dependency [edge] is pseudo-projec-
tive, if its dependent D is not situated, in the linear sequence, between two dependents
of a node that is not an ancestor of D .’ Pseudo-projectivity is incomparable with
both weak non-projectivity and well-nestedness. To see this, consider the dependency

structure in Figure 5.8. �e edge 3 → 4 in this structure is not pseudo-projective,

as the node 4 is situated between two dependents (1 and 5) of a node that is not an

ancestor of 4 (the node 2). On the other hand, the structure is weakly non-projec-

tive, and therefore well-nested.�e structure D5 (Figure 5.5b) is not well-nested, but

pseudo-projective.

 �e �rst algorithms for a well-nestedness test were presented by Möhl (2006). His

�rst algorithm is based on a characterization of well-nestedness in terms of interleaving
yields.�e algorithm performs a tree traversal of the input structure, in which it �rst
computes the yield of each node, and then checks for each pair of sibling nodes whether

their yields interleave. In doing so, it uses O(m2 ·n) operations on bit vectors, where m

2�is principle should not be confused with the notion of pseudo-projectivity introduced by Kahane

et al. (1998), and subsequently used in (Gerdes and Kahane, 2001).

60

5.3 Empirical evaluation

all dependency structures

ddt pdt 1.0 pdt 2.0

projective 3 730 84.95% 56 168 76.85% 52 805 77.02%

weakly non-proj. 3 794 86.40% 60 048 82.16% 56 367 82.21%

well-nested 4 386 99.89% 73 010 99.89% 68 481 99.88%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

non-projective dependency structures only

ddt pdt 1.0 pdt 2.0

weakly non-proj. 64 9.68% 3 880 22.93% 3 562 22.61%

well-nested 597 90.32% 16 842 99.54% 15 676 99.49%

total 661 100.00% 16 920 100.00% 15 757 100.00%

Table 5.1: The number of weakly non-projective and well-nested dependency structures in
three treebanks

is the out-degree of D . Möhl’s second algorithm is build on the notion of the gap graph.
�e gap graph for a dependency structure is an extension of the governance relation

by information about interleaving yields. Möhl shows that a dependency structure D
is well-nested if and only if the gap graph for D contains a cycle.�e size of the gap
graph for a dependency structure D is tightly bounded by the square of the size of D ,
and the existence of a cycle in a graph can be checked in time linear in the size of that

graph. Consequently, the run-time of Möhl’s second algorithm is O(n2) .

 Havelka (2007b) studies the relationship between well-nestedness and the level
types of non-projective edges (Havelka, 2005) and presents an algorithm that tests for
well-nestedness in time O(n2) .

5.3 | Empirical evaluation

To conclude this chapter, we now evaluate and compare the empirical adequacy of

weak non-projectivity and well-nestedness on the treebank data.�e corresponding

counts and percentages are given in Table 5.1.

�e experimental results for weak non-projectivity mirror its formal restrictiveness:

enforcing weak non-projectivity excludes more than 75% of the non-projective data

in both versions of the pdt, and 90% of the data in the ddt. Given these �gures,

weak non-projectivity appears to be of little use as a generalization of projectivity.�e

relatively large di�erence in coverage between the two treebanks may at least partially

61

5 Dependency structures without crossings

be explained with their di�erent annotation schemes for sentence-�nal punctuation:

In the ddt, sentence-�nal punctuation marks are annotated as dependents of the main

verb of a dependency subtree.�is places severe restrictions on permitted forms of

non-projectivity in the remaining sentence, as every discontinuity that includes the

main verb must also include the dependent punctuation marks (see the discussion

in Section 5.1). On the other hand, in the pdt, a sentence-�nal punctuation mark is

annotated as a separate root node with no dependents. (Analyses in the pdtmay be

forests.)�is scheme does not restrict the remaining discontinuities at all.

In contrast to weak non-projectivity, the well-nestedness constraint appears to con-

stitute a very attractive extension of projectivity. For one thing, the almost perfect

coverage of well-nestedness on both ddt and pdt (around 99.89%) could by no means

be expected on purely combinatorial grounds: only 7% of all possible dependency

structures for sentences of length 17 (the average sentence length in the pdt), and only

slightly more than 5% of all possible dependency structures for sentences of length 18

(the average sentence length in the ddt) are well-nested.3 Similar results have been

reported on other data sets (Havelka, 2007a). Moreover, a cursory inspection of the few

problematic cases at least in the ddt indicates that violations of the well-nestedness

constraint may, at least in part, be due to properties of the annotation scheme, such

as the analysis of punctuation in quotations. However, a more detailed analysis of the

data from both treebanks is needed before any stronger conclusions can be drawn

concerning well-nestedness.

3�e number of unrestricted dependency structures on n nodes is given by sequence a000169, the

number of well-nested dependency structures is given by sequence a113882 in Sloane (2007).�e latter

sequence was discovered by the author and Manuel Bodirsky. It can be calculated using a recursive

formula derivable from the correspondence indicated in Example 512.

62

chapter 6 | Structures and grammars

In the last three chapters, we have developed an algebraic framework for dependency

structures. We now put this framework to use and classify several lexicalized grammar

formalisms with respect to the classes of dependency structures that are induced by

derivations in these formalisms.

Structure of the chapter. Each section of this chapter associates a grammar formalism
with a class of dependency structures:

section formalism class

Section 6.1 Context-Free Grammar (CFG) D1

Section 6.2 Linear Context-Free Rewriting Systems (LCFRS(k)) Dk

Section 6.3 Coupled Context-Free Grammar (CCFG(k)) Dk ∩ Dwn

Section 6.4 Tree Adjoining Grammar (TAG) D2 ∩ Dwn

6.1 | Context-free grammars

Let us go back to the notion of induction that we sketched in Chapter 1. Consider a
derivation d of a terminal string by means of a context-free grammar. A derivation tree
for d is a tree in which the nodes are labelled with (occurrences of) the productions
used in the derivation, and the edges indicate how these productions were combined.

If the underlying grammar is lexicalized, then there is a one-to-one correspondence

between the nodes in the derivation tree and the positions in the derived string: every

production that participates in the derivation contributes exactly one terminal symbol

to this string. If we now order the nodes of the derivation tree according to the string

positions of their corresponding anchors, then we get a dependency structure. We say

that this dependency structure is induced by the derivation d . Induction identi�es the
governance relation of the induced dependency structure with the derivation relation,

and the precedence relation with the le�-to-right order in the derived string: the

dependency structure contains an edge u → v if and only if the production that

corresponds to the node v was used to rewrite some non-terminal in the production

that corresponds to the node u ; the node u precedes the node v if and only if the
anchor contributed by the production that corresponds to u precedes the anchor
contributed by the production that corresponds to v . In this section, we formalize the

correspondence between derivations and induced dependency structures and show

that the class of dependency structures that can be induced by context-free grammars

is exactly the class of projective dependency structures.

63

6 Structures and grammars

6.1.1 | Definition

We start with the familiar de�nition of a context-free grammar.

De�nition A context-free grammar is a construct G = (N , T , S , P) , where N and T601

are alphabets of non-terminal and terminal symbols, respectively, S ∈ N is a distin-
guished start symbol, and P ⊆ N × (N ∪ T)∗ is a �nite set of productions. ñ

We use indexed symbols (NG , TG , SG , PG) to refer to the components of a speci�c
context-free grammar G .

Example To illustrate the ideas and constructions of this section, we use the following602

grammar G = (N , T , S , P) as a running example:

N = {S , B } , T = {a, b} , P = {S → aSB , S → aB , B → b} .

�is grammar generates the string language { anbn | n ∈ N } . ñ

Following the approach of Goguen et al. (1977), we treat context-free grammars as

many-sorted algebras, in the following way. Let G = (N , T , S , P) be a context-free
grammar. For every string x ∈ (N ∪ T)∗ , we de�ne resN (x) to be the restriction of x
to letters in N . Speci�cally, resN is the homomorphism from (N ∪ T)∗ to N∗

that is

de�ned by resN (A) := A for A ∈ N , and resN (a) := ε for a ∈ T . We now turn the
set P of productions of G into an N -sorted set Σ(G) by de�ning

typeΣ(G)(A → x) := resN (x) · A ,

for every production A → x in P . �e set TΣ(G) of terms over the sorted set Σ(G)

forms an N -sorted algebra. �is algebra represents the set of all derivations of G :
the sortedness enforces the i th child of a node labelled with a production p to be
labelled with a production that can be used to rewrite the i th non-terminal in p .
More formally, there is a one-to-one correspondence between TΣ(G) and the set of all

le�most derivations in G .�e set TΣ(G), S of all terms of sort S (the start symbol of
the grammar) then corresponds to the set of all complete derivations in G . We call
TΣ(G) the derivation algebra for G , and the terms TΣ(G) the derivation trees of G .

Example (continued) For our example grammar, we get the following sorted set:603

[S → aSB] : S × B → S , [S → aB] : B → S , [B → b] : B .

(We enclose productions in square brackets to avoid ambiguities.) A derivation tree of

the grammar is shown in the le� half of Figure 6.1. ñ

De�nition A context-free grammar is called lexicalized, if each of its productions604

contains exactly one terminal symbol, called the anchor of that production. ñ

We only consider lexicalized grammars. Each production in such a grammar has the

form A → A1 · · ·Ak−1 · a · Ak · · ·Am , for some m ∈ N0 and k ∈ [m + 1] . Note that

our example grammar is lexicalized.

64

6.1 Context-free grammars

S → aSB

S → aSB

S → aB

B → b

B → b

B → b

a a a b b b

Figure 6.1: A derivation in a lexicalized context-free grammar

6.1.2 | String semantics

An immediate bene�t of our algebraic take on context-free grammars is that we can use

every Σ(G)-algebra A as a semantic domain for the derivations of G : since TΣ(G) is a

term algebra, it gives us the unique homomorphism " ·$A : TΣ(G) → A that evaluates

the derivation trees of G in A . In this way it is straightforward to derive the usual

notion of the string language generated by a grammar G :

De�nition Let G be a context-free grammar. �e string algebra for G is the Σ(G)- 605

algebra A in which dom(A)A = T+
G , for all A ∈ NG , and

fp(a1 , . . . , am) = a1 · · · ak−1 · a · ak · · · am ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am in Σ(G) .�e string language
generated by G is the set L(G) := �TΣ(G), SG�A . ñ

Each composition operation fp of the string algebra for a grammar G concatenates
the anchor of p and the strings obtained from the subderivations in the order speci�ed
by the production p .�is implements the usual rewriting semantics for context-free
grammars. In the following, given a derivation tree t ∈ TΣ(G) of some cfg G , we write
"t$S for the evaluation of that tree in the string algebra for G . We also extend this
notation to sets of derivation trees in the obvious way.

Example (continued) �e right half of Figure 6.1 shows the string corresponding to 606

the evaluation of the derivation that is shown in the le� half in the string algebra for

our example grammar. ñ

6.1.3 | Linearization semantics

In a lexicalized context-free grammar, there is a one-to-one correspondence between

the nodes in a derivation t and the positions of the string "t$S : every production
participating in a derivation contributes exactly one terminal to the derived string.

65

6 Structures and grammars

Example (continued) In Figure 6.1, the one-to-one correspondence between the nodes607

of the derivation tree and the positions of the string is indicated by dashed lines. ñ

We now show how to compute the mapping between nodes in the derivation and

positions in the derived string that forms the basis of our notion of induction. To

do so, we evaluate derivations t not in the string algebra, but in an algebra of term
linearizations. A term linearization is a list of the nodes of a term in which each node
occurs exactly once. In the following, we write V := N∗

for the set of all nodes in

terms; V∗
then stands for the set of all strings over nodes. To avoid ambiguity, we use

the symbol ◦ for the concatenation operation on N (which builds nodes), and · for

the concatenation operation on V (which builds strings of nodes). For every i ∈ N ,
let pfxi be the function that pre�xes every node u in a given string by the number i .
More formally, pfxi is the string homomorphism from V to V that is de�ned by
pfxi(u) = i ◦ u .

De�nition Let G be a context-free grammar.�e linearization algebra for G is the608

Σ(G)-algebra A in which dom(A)A = V+
, for all A ∈ NG , and

fp(u1 , . . . , um) = pfx1(u1) · · · pfxk−1(uk−1) · ε · pfxk(uk) · · · pfxm(um) ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am in Σ(G) .�e linearization
language generated by G is the set Λ(G) := �TΣ(G), SG�A . ñ

Each composition operation fp of a linearization algebra concatenates a root node
(representing the anchor of p) and the appropriately pre�xed linearizations for the
subderivations in the same order as they would be concatenated in the string algebra.

Since the grammar G is lexicalized, the result of the evaluation in the linearization
algebra de�nes a bijection between the set nod(t) of nodes in the derivation tree t , and
the set pos("t$S) of positions in the derived string. Similar to the case of string algebras,
for a derivation tree t ∈ TΣ(G) of some cfg G , we write "t$L for the evaluation of the
tree t in the linearization algebra for G .

Example (continued) For the derivation tree t shown in Figure 6.1, we get609

"t$L = ε · 1 · 11 · 111 · 12 · 2 .

�is linearization de�nes a mapping from the set nod(t) of nodes in t to the set
pos("t$S) of positions in the derived string and back in the obvious way. Notice that,
if we read the anchors of the productions in the derivation tree in the order speci�ed

by this linearization, then we obtain the string "t$S . ñ

6.1.4 | Dependency semantics

With the mapping between nodes in the derivation tree and positions in the derived

string at hand, we can now formalize the notion of induction:

66

6.1 Context-free grammars

ε 1 11 111 12 2

(a) induced dependency structure

〈012〉

〈012〉

〈01〉

〈0〉

〈0〉

〈0〉

(b) relabelled term

Figure 6.2: The dependency structure induced by the derivation in Figure 6.1

De�nition Let G be a context-free grammar, and let t ∈ TΣ(G) be a derivation tree. 610

�e dependency structure induced by t is the structure D := �nod(t) ; �, ²� where

u � v if and only if u dominates v in t, and

u ² v if and only if u precedes v in "t$L. ñ

Example Figure 6.2a shows the dependency structure induced by the derivation given 611

in Figure 6.1. To illustrate the correspondence with the linearization, we have labelled

the nodes with their addresses in the derivation tree. ñ

It is straightforward that the linearization semantics of derivations in cfgs directly

mirrors our procedure for the traversal of treelet-ordered trees from Section 3.2.2. More

speci�cally, we can understand the productions of a cfg as order annotations, and each

derivation tree as a treelet-ordered tree.�e behaviour of Treelet-Order-Collect

is re�ected in the evaluation of derivation trees in their corresponding linearization

algebras. Taken together, this allows us to show that the class of dependency structures

that is induced by lexicalized context-free grammars is exactly the class of projective de-

pendency structures. In the following, we write D(CFG) for the class of all dependency

structures that can be induced by a context-free grammar.

�eorem D(CFG) = D1 ñ 612

Proof. �e proof of this statement is essentially identical to the proofs of Lemma 308
and Lemma 310. ñ

On a formal level, the translation between derivation trees of a cfg and projective

dependency structures (represented by their corresponding terms) can be understood

as a simple form of relabelling. Speci�cally, we can replace each production by an order
annotation as follows, while maintaining the typing information:

A → A1 · · ·Ak−1 · a · Ak · · ·Am ←→ �1 · · · (k − 1) · 0 · k · · ·m .

67

6 Structures and grammars

�e two terms are equivalent with respect to their linearization semantics.�e only

information that we loose is the label of the anchor, but that information is irrelevant

with respect to induction anyway. (In Chapter 8, we will consider labelled dependency

structures, where this information can be preserved.) As the essence of our discussion,

we can de�ne a dependency semantics for context-free grammars as follows. For

each production p of a given context-free grammar G , let us write relab(p) for the
relabelling de�ned above.

De�nition Let G be a context-free grammar. �e dependency algebra for G is the613

Σ(G)-algebra D in which dom(D)A = D1 , for all A ∈ NG , and

fp(D1 , . . . ,Dm) = dep��relab(p)��term(D1), . . . , term(Dm)�� ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am . �e dependency language
generated by G is the set D(G) := �TΣ(G), SG�D . ñ

6.2 | Linear Context-Free Rewriting Systems

We now extend our results from context-free grammars to the class of Linear Context-

Free Rewriting Systems, lcfrs (Vijay-Shanker et al., 1987; Weir, 1988).�is class was

proposed as a generalization of a broad range of mildly context-sensitive formalisms.

In this section, we show that the dependency structures induced by lcfrs are exactly

the dependency structures of bounded degree. More speci�cally, we see that the block-

degreemeasure for dependency structures is the structural correspondent of the fan-out
measure that is used to identify sub-classes of lcfrs.

6.2.1 | Definition

Linear Context-Free Rewriting Systems can be understood as generalizations of context-

free grammars in which derivations evaluate to tuples of strings. Our formal de�nition

of lcfrs is essentially the same as the de�nitions proposed by Vijay-Shanker et al.

(1987) and Satta (1992). In contrast to these, we make use of an explicit typing regime;

this will simplify both the presentation and our formal arguments.

De�nition Let A be an alphabet, and let m ∈ N0 , and � ki
!!!!!!! i ∈ [m] ∈ Nm

, and614

k ∈ N . A generalized concatenation function over A of type k1 × · · · × km → k is a
function

f : (A∗)k1 × · · · × (A∗)km → (A∗)k

that can be de�ned by an equation of the form

f �〈x1,1 , . . . , x1,k1〉, . . . , 〈xm,1 , . . . , xm,km〉� = 〈 y1 , . . . , yk〉 ,

where y1 · · · yk is a string over the variables on the le�-hand side of the equation and
the alphabet A in which each variable xi, j , i ∈ [m] , j ∈ [ki] , appears exactly once. ñ

68

6.2 Linear Context-Free Rewriting Systems

�e semantics of a generalized concatenation function of type k1 × · · · × km → k is
that it takes m tuples of strings and arranges the components of these tuples and a
constant number of symbols from the alphabet A into a new k -tuple.�e arity of the
i th argument tuple is speci�ed by the sort ki . We regard generalized concatenation
functions as syntactic objects and identify them with their de�ning equations. We call

the right-hand sides of these equations the bodies of the (de�ning equations of) the
corresponding generalized concatenation functions.

De�nition A linear context-free rewriting system is a construct G = (N , T , S , P) , 615

where N is an alphabet of non-terminal symbols, each of which is associated with a
number φ(A) ∈ N called the fan-out of A ; T is an alphabet of terminal symbols; S ∈ N
is a distinguished start symbol with φ(S) = 1 ; and P is a �nite set of productions of the
form A → f (A1 , . . . , Am) , m ∈ N0 , where A, A i ∈ N , i ∈ [m] , and f is a generalized
concatenation function over T of type φ(A1) × · · · × φ(Am) → φ(A) . ñ

Example �e following productions de�ne an lcfrs. We use this lcfrs as our running 616

example in this section.

S → f1(A) f1�〈x1,1〉� := 〈x1,1b〉

S → f2(A, B) f2�〈x1,1〉, 〈x2,1 , x2,2〉� := 〈x1,1x2,1bx2,2〉

A → f3 f3 := 〈a〉

B → f4(A, B) f4�〈x1,1〉, 〈x2,1 , x2,2〉� := 〈x1,1x2,1 , bx2,2〉

B → f5(A) f5�〈x1,1〉� := 〈x1,1 , b〉

�is lcfrs generates the string language { anbn | n ∈ N } . ñ

Our algebraic view on grammars generalizes to lcfrs without greater problems. Let

G = (N , T , S , P) be an lcfrs. We turn the set P of productions of G into a sorted set
Σ(G) by de�ning typeΣ(G)�A → f (A1 , . . . , Am)� := A1 · · ·Am·A , for every production
A → f (A1 , . . . , Am) in P . Just as in the case of context-free grammars, the set of all
terms over Σ(G) forms an N -sorted algebra that represents the set of all derivation
trees of G .

Example (continued) For our example grammar, we get the following set Σ(G) : 617

�S → f1(A)� : A → S , �S → f2(A, B)� : A × B → S , [A → f3] : A ,

�B → f4(A, B)� : A × B → B , �B → f5(A)� : A → B .

A corresponding derivation tree is shown in Figure 6.3a. ñ

�e concept of lexicalization is as for context-free grammars:

De�nition An lcfrs is called lexicalized, if each of its productions contains exactly 618

one terminal symbol. ñ

69

6 Structures and grammars

S → f2(A, B)

A → f3 B → f4(A, B)

A → f3 B → f5(A)

A → f3

(a) derivation tree

1 21 221 ε 2 22

(b) dependency structure

Figure 6.3: A derivation tree of an LCFRS, and the induced dependency structure

6.2.2 | String semantics

We now give lcfrs their usual string semantics.�e string language generated by an

lcfrs can be de�ned in terms of the evaluation of its derivation trees in an algebra

over tuples of strings over the terminal alphabet.�e arity of these tuples is speci�ed

by the fan-out of the non-terminal symbols that derive them. In the following, we use

the Greek letters α and γ to refer to tuple components.

De�nition Let G = (N , T , S , P) be an lcfrs. �e string algebra for G is the Σ(G)-619

algebra A in which dom(A)A = (T∗)k , for all A ∈ N and k = φ(A) , and

fp(α1 , . . . , αm) = γ� xi, j ← αi, j
!!!!!!! i ∈ [m] ∧ j ∈ [ki] � ,

for each production p = A → f (A1 , . . . , Am) with f : k1 × · · · × km → k and body γ .
�e string language generated by G is the set

L(G) := � a !!!!!!! ∃ t ∈ TΣ(G), S . 〈a〉 ∈ "t$A � . ñ

Each composition operation fp of the string algebra uses the body of the production p
to construct a new tuple of strings.�is tuple is obtained by replacing, for every i ∈ [m]

and j ∈ [ki] , the variable xi, j with the j th component of the i th argument tuple.�e
string language generated by the lcfrs is obtained by extracting the strings from the

(necessarily unitary) tuples derived from the start symbol of the grammar. We use the

notation "t$S as for context-free grammars.

6.2.3 | Non-essential concatenation functions

Unfortunately, the construction of the linearization semantics of lcfrs does not go

through as smoothly as in the case of cfg.�e fundamental problem is the fact that

the mapping from derivation trees to strings is not injective in the case of lcfrs—to

phrase it as a slogan, in lcfrs there are ‘more derivations than denotations’. At the

root of this problem we �nd two types of ambiguity in lcfrs:

70

6.2 Linear Context-Free Rewriting Systems

(1) �e �rst type of ambiguity concerns concatenation functions like

f = 〈a, ε〉 and f �〈x , y〉� = 〈axy〉 .

Such function de�nitions cannot be translated into order annotations. In fact,

we speci�cally excluded them in our de�nition of block-ordered trees (page 41)

because they are essentially super�uous from the perspective of the linearization

semantics: in the �rst function, the second component of the result does not

contain any string material and could have been omitted to begin with; in the

second de�nition, the two argument components are concatenated and would

not have needed to be distributed over two components from the start.

(2) �e second amibguity is inherent in the syntactic de�nition of lcfrs. In each

derivation tree of a cfg, the le�-to-right order on the subterms corresponds the

le�-to-right order on the material derived in these subterms. In lcfrs, this is

not necessarily the case. Consider the following productions:

A → f1(B ,C) f1�〈x1,1〉, 〈x2,1〉� := 〈ax1,1x2,1〉

A → f2(C , B) f2�〈x1,1〉, 〈x2,1〉� := 〈ax2,1x1,2〉

For each pair of strings a1 , a2 , both of the following two derivations evaluate to
the same string a1 · a2 :

�A → f1(B ,C)��〈a1〉, 〈a2〉� , �A → f2(C , B)��〈a2〉, 〈a1〉� .

Let us call the body of a concatenation function f : k1 × · · ·× km → k monotone1,
if (i) the variables of the form xi,1 , i ∈ [m] , are numbered in increasing sequence

from le�-to-right, such that the i th occurrence of such a variable has the name
xi,1 ; (ii) for each i ∈ [m] , the variables of the form xi, j , j ∈ [ki] , are numbered
in increasing sequence from le�-to-right, such that the j th occurrence of such
a variable has the name xi, j . By requiring every de�nition of a concatenation
function to be monotone, we can avoid the order ambiguity of our example: we

simply disallow the de�nition of the function f2 .

Let us call concatenation functions that fall into one of the two classes described above

non-essential. We will now state a lemma (and give a rather technical and arduous
proof) that will allow us to assumewithout loss of generality that an lcfrs is free of non-

essential functions. For those functions that remain, the de�nitions of a linearization

semantics go through without further problems.

To prove the lemma, we make use of more complicated versions of the relabelling

function that we used for context-free grammars. Such a general relabelling is a function

from terms over some input alphabet Σ into terms over an output alphabet ∆ ; it works

1 A slightly weaker condition of the same name is discussed by Kracht, 2003, p. 408.

71

6 Structures and grammars

by replacing, at each node u of the term, the label from the input alphabet by some
label from the output alphabet. Both labels must have the same type.�e choice of the

output label is conditioned on the input label, and on some �nite-state information

coming from the children (bottom-up) or the parent (top-down) of u . Our formal
de�nition in addition allows the relabelling to perform a permutation of subterms.

De�nition A bottom-up relabelling is a construct M = (Q , Σ , ∆, R) , where Q is a �nite620

set of states, Σ and ∆ are sorted alphabets of input and output symbols, respectively,
and R is a �nite set of rules such that for every symbol σ :Σ s1 × · · · × sm → s and all
states q1 , . . . , qm ∈ Q , R contains exactly one rule of the form

σ�〈q1 , x1〉, . . . , 〈qm , xm〉� → �q, δ(xπ(1) , . . . , xπ(m)) ,

where q ∈ Q , δ :∆ s1 × · · · × sm → s , and π is some permutation [m] → [m] . Dually,

a top-down relabelling has rules of the form

�q, σ(x1 , . . . , xm) → δ�〈qπ(1) , xπ(1)〉, . . . , 〈qπ(m) , xπ(m)〉� . ñ

�e derivation relation induced by a bottom-up relabelling is the binary relation on the
set T〈Q,T∆〉∪Σ that is obtained by interpreting the rules of the relabelling as rewriting

rules in the obvious way (for details, see Engelfriet, 1975; Engelfriet and Maneth, 2002).

Similarly, a top-down relabelling gives rise to a relation on the set T〈Q,TΣ〉∪∆ . In the proof

of the next lemma, we will give (informal) descriptions of relabellings by specifying

their state sets and explaining the behaviour of their translation rules.

Lemma Let k ∈ N . For each lexicalized lcfrs G ∈ LCFRS(k) , there exists a lexicalized621

lcfrs G ′ ∈ LCFRS(k) such that the derivation trees of G and G ′
are isomorphic

modulo relabelling, "G$S = "G ′$S , and G ′
only contains essential concatenation

functions. ñ

Proof. Let k ∈ N , and let G ∈ LCFRS(k) be a lexicalized lcfrs. Furthermore, assume
that the rank of G is bounded by m , for some m ∈ N0 . We de�ne three relabellings

on the set of derivation trees of G that transform each derivation tree t into a term
over an alphabet ∆ that does not contain the non-essential functions.

(1) �e �rst transformation is a top-down relabelling. As the set of states, use the

set of all permutations π : [k ′] → [k ′] , for k ′ ∈ [k] , and start with the identity
permutation on the set [1] . Given a state q and a production p with body α ,
replace α by the tuple α ′

that is obtained from α by permuting the components
of α according to the permutation q , and re-index the variables in p from le�
to right. Let π : [m] → [m] be the permutation that maps each i ∈ [m] to the

position of the variable xi,1 from α in the total order on all variables of the form
x j,1 in α ′

, j ∈ [m] . For each i ∈ [m] , let qi : [ki] → [ki] be the permutation
that maps each j ∈ [ki] to the position of the variable xi, j from α in the total
order on all variables of the form xi, j ′ in α ′

, j ′ ∈ [ki] .

72

6.2 Linear Context-Free Rewriting Systems

(2) �e second transformation is a top-down relabelling. As the set of states, use

the set of all subsets of [k] . Start with the empty set. Given a state q and a
production p with body α , replace α by the tuple a ′

that is obtained from α
by (i) merging, for every i ∈ q , the i th component of α with the (i + 1)st

component, and (ii) deleting, for every i ∈ [m] and j ∈ [ki] , each maximal
substring of variables of the form xi, j ′ , j < j ′ ≤ ki , that is adjacent to xi, j ; then
re-index the variables of p from le� to right. For each i ∈ [m] let qi be the set
of all indices j ∈ [ki] such that the variable xi, j was removed in step (ii), and
let π be the identity permutation.

(3) �e third transformation is a bottom-up relabelling. As the set of states, use the

set of all subsets of [m ′]× [k ′] , for m ′ ∈ [m] , k ′ ∈ [k] . Start with the empty set.
Given a production p with body α and states 〈 qi | i ∈ [m] 〉 for the subterms,

replace α by the tuple α ′
that is obtained from α by (i) deleting all variables xi, j ,

where i ∈ [m] and j ∈ qi , and (ii) deleting all empty components; then, re-index
the variables of p from le�-to-right. Let π : [m] → [m] be the permutation that

maps each i ∈ [m] to the position of the variable xi,1 from α in the total order
on all variables of the form x j,1 in α ′

, j ∈ [m] . Let q be the set of indices of all
components deleted in step (ii).

None of these transformations alters the term structure of the original derivation tree

(apart from the permutation of subterms, which is inessential with respect to tree-

isomorphism), or the string derived from the tree: by induction on the derivation

tree t , we can verify that its string semantics remain invariant under the relabelling.ñ

6.2.4 | Linearization semantics

With all non-essential concatenation functions out of our way, we are now ready to

de�ne the linearization semantics for lcfrs.

De�nition Let G be an lcfrs.�e linearization algebra for G is the Σ(G)-algebra A 622

in which dom(A)A = (V+)k , for all A ∈ NG and k = φ(A) , and

fp(α1 , . . . , αm) = γ[a ← ε]� xi, j ← pfxi(αi, j)
!!!!!!! i ∈ [m] ∧ j ∈ [ki] � ,

for each production p = A → f (A1 , . . . , Am) with f : k1 × · · · × km → k , anchor
a ∈ T and body γ .�e linearization language generated by G is the set

Λ(G) := � u !!!!!!! t ∈ TΣ(G), SG ∧ 〈u〉 ∈ "t$A � . ñ

Each composition operation fp of a linearization algebra uses the body of the de�ning
equation of p to concatenate a root node (representing the anchor of p) and the
appropriately pre�xed linearizations for the subderivations in the same order as they

would be concatenated in the string algebra.

73

6 Structures and grammars

Example (continued) For the derivation tree t shown in Figure 6.3a, we get the lin-623

earization "t$L = 1 · 21 · 221 · ε · 2 · 22 . ñ

6.2.5 | Dependency semantics

We now de�ne a dependency semantics for lcfrs.

De�nition Let G be an lcfrs, and let t ∈ TΣ(G) be a derivation tree.�e dependency624

structure induced by t is the segmented structure D := �nod(t) ; �, ², ≡� where

u � v if and only if u dominates v in t,

u ² v if and only if u precedes v in "t$L, and

u ≡ v if and only if u and v appear in the same component of "t$L. ñ

Example (continued) �e derivation tree t shown in Figure 6.3a induces the depen-625

dency structure shown in Figure 6.3b. Note that, while the string language generated

by the lcfrs is the same as the string language generated by the cfg in the previous

section, the dependency structure is fundamentally di�erent. Just as in the case of

context-free grammar, however, the generated string "t$S can be recovered from the
linearization by reading the anchors of t in the order speci�ed by "t$L . ñ

Inspecting the linearization semantics, we see that there is a obvious similarity between

the bodies of the generalized concatenation functions used in an lcfrs and the order

annotations that we used for block-ordered trees: the j th occurrence of the symbol i
in our order annotations has the same semantics as the variable xi, j in the body of a
generalized concatenation function. Under this view, the linearization semantics of

lcfrsmirrors the behaviour of the procedure Block-Order-Collect that we gave

in Section 4.2.1. Just as in the case of projective dependency structures, the following

theorem can be shown by replicating the proofs of Lemma 417. In the following, we

write LCFRS(k) for the class of all lcfrs in which the fan-out of the non-terminal
symbols is bounded by k .

�eorem ∀k ∈ N. D�LCFRS(k)� = Dk ñ626

We can also de�ne a relabelling function that translates between productions of an

lcfrs and order annotations:

relab(p) := α[a ← 0]� xi, j ← i !!!!!!! i ∈ [m] ∧ j ∈ [φ(A i)] � ,

for every production p = A → f (A1 , . . . , Am) with anchor a and body α . Based
on this function, the concept of a dependency algebra for an lcfrs can be de�ned

analogously to the corresponding de�nition for context-free grammars (De�nition 613).

74

6.3 Coupled Context-Free Grammars

6.2.6 | Related work

�e string languages generated by lcfrs have many characterizations; among other

things, they are generated by Multiple Context-Free Grammars (Seki et al., 1991),

and they are the images of regular tree languages under deterministic tree-walking

transducers (Weir, 1992) and under �nite-copying top-down tree transducers (van Vugt,

1996).�ey can also be characterized as the yield languages of rational tree relations

(Raoult, 1997).

6.3 | Coupled Context-Free Grammars

In this section, we look at the dependency structures that are induced by derivations

in Coupled Context-Free Grammars (ccfgs) (Guan, 1992; Hotz and Pitsch, 1996).

�is formalism can be understood as a variant of lcfrs where rewriting rules are

restricted to words over a Dyck language, that is, a language that consists of balanced

strings of parentheses.2 We show that this syntactic restriction enforces the dependency

structures induced by ccfg derivations to be well-nested.

6.3.1 | Definition

We start with a formal de�nition of ccfgs. Our de�nition deviates from the one given

by Hotz and Pitsch (1996) in that we treat ‘parentheses’ as symbols from a ranked set.

De�nition Let Π be a ranked alphabet.�e alphabet of components of Π is the set 627

comp(Π) := � 〈π , i〉 ∈ Π ×N !!!!!!! 1 ≤ i ≤ rankΠ(π) � . ñ

In the following, if no confusion can arise, we write πi instead of 〈π , i〉 .

De�nition Let Π be a ranked alphabet, and let A be an alphabet.�e extended semi- 628

Dyck set over Π and A is the smallest set ED(Π , A) ⊆ (comp(Π) ∪ A)∗ that is closed
under the inference rules given in Table 6.1. ñ

Example Consider the ranked alphabet Π := { ◦ } where rankΠ(◦) = 2 .�e compo- 629

nents of Π can be understood as opening and closing brackets, respectively. Speci�cally,
let us write [instead of 〈◦ , 1〉 , and] instead of 〈◦ , 2〉 . �en the set ED�Π , {a, b}�
consists of the set of all well-bracketed words over {a, b}∗ . For example, the strings
[a][b] and a[a[ba]][a] belong to this set, while the strings [[a] and [b]a] do not. ñ

One important property of an extended semi-Dyck set ED(Π , A) that we will make
use of is that, modulo the associativity of the concatenation rule and the introduction

of super�uous empty strings, every string x ∈ ED(Π , A) has a unique decomposition
in terms of the rules given in Table 6.1.

2Dyck languages are named a�er the German mathematicianWalther von Dyck (1856–1934), whose

surname rhymes with ‘week’ rather than ‘spike’.

75

6 Structures and grammars

ε ∈ ED(Π , A)

a ∈ A

a ∈ ED(Π , A)

x ∈ ED(Π , A) y ∈ ED(Π , A)

x · y ∈ ED(Π , A)

π ∈ Π1

〈π , 1〉 ∈ ED(Π , A)

x1 ∈ ED(Π , A) · · · xk ∈ ED(Π , A) π ∈ Πk+1

〈π , 1〉 · x1 · 〈π , 2〉 · · · 〈π , k〉 · xk · 〈π , k + 1〉 ∈ ED(Π , A)

Table 6.1: Inference rules for the extended semi-Dyck set

De�nition A coupled context-free grammar is a construct G = (Π , T , S , P) , where Π630

is a ranked alphabet of non-terminal symbols, T is an alphabet of terminal symbols,
S ∈ Π1 is a distinguished start symbol, and P is a �nite, non-empty set of productions
of the form A → 〈x1 , . . . , xk〉 , where k ∈ N , A ∈ Πk , and x1 · · · xk ∈ ED(Π , T) . ñ

Example We use the following ccfg G as our running example. �e alphabet of631

non-terminal symbols is ΠG := {S/1, R/2, B/1,C/1,D/1} ; the alphabet of terminal

symbols is TG := {a, b, c, d } . �e start symbol of G is SG := S . Finally, the set of
productions is de�ned as follows. (We omit subscripts for non-terminals with rank 1 .)

S → 〈aR1BCR2D〉 | 〈aBCD〉

R → 〈aR1B ,CR2D〉 | 〈aB ,CD〉

B → 〈b〉 , and similarly for C and D. ñ

We now show how to construct the derivation algebra for a coupled context-free

grammar G = (Π , T , S , P) . For every string x ∈ �comp(Π) ∪ T�∗ , we de�ne resΠ(x)
to be the restriction of x to the �rst components of Π . More speci�cally, resΠ is the
homomorphism from �comp(Π) ∪ T�∗ to Π∗

that is de�ned by resΠ�〈π , 1〉� = π for
π ∈ Π , and resΠ(x) = ε for all other symbols. We turn the set P of productions of G
into a Π -sorted set Σ(G) by de�ning

typeΣ(G)�A → 〈x1 , . . . , xk〉� := resΠ(x1 · · · xk) · A ,

for every production A → 〈x1 , . . . , xk〉 , where A ∈ Πk .�e set of derivation trees of G
is de�ned as for cfg and lcfrs.

Example Figure 6.4 shows a derivation tree for our example grammar. ñ632

�e notion of lexicalization is de�ned as usual:

De�nition A ccfg is called lexicalized, if each of its productions contains exactly one633

terminal symbol. ñ

Notice that the example grammar is lexicalized.

76

6.3 Coupled Context-Free Grammars

S → 〈aR1BCR2D〉

R → 〈aR1B ,CR2D〉

R → 〈aB ,CD〉

B → 〈b〉 C → 〈c〉 D → 〈d〉

B → 〈b〉 C → 〈c〉 D → 〈d〉

B → 〈b〉 C → 〈c〉 D → 〈d〉

Figure 6.4: A derivation tree for a CCFG

6.3.2 | String semantics

�e basic reading of a production p in a ccfg is, that like a production in an lcfrs
it describes a generalized concatenation function that arranges material derived in

subderivations into a new tuple. However, in order to de�ne the semantics of ccfgs

precisely, we need to make explicit which components on the right-hand side α of p
‘belong together’ in the sense that they should be replaced with material derived

in the same subderivation. In lcfrs, this correspondence is encoded by means of

appropriately named variables: the variable xi, j in α is a placeholder for the j th
component of the i th argument of the generalized concatenation function used in p
(see De�nition 619). In ccfg, due to the Dyck-ness restriction on the productions, the

correspondence can be le� more implicit.

Let us say that two occurrences of components in the right-hand side α of a pro-
duction p in a ccfg are synchronized, if they were introduced in the same inference
step in the derivation of α according to the rules given in Table 6.1. Given that every
right-hand side α has a unique such derivation (modulo inessential ambiguities), the
synchronization relation is well-de�ned; it de�nes an equivalence relation on the set of

all occurrences of components in α . We can then index the synchronized sets of com-
ponents according to the position of their le�most member (a component of the form

〈π , 1〉), and use the components from the i th group in this sequence as placeholders
for the material from the i th subderivation. More formally, we can rewrite α into an
explicit version exp(α) by replacing the j th element of the i th synchronized group of
component occurrences by the variable symbol xi, j . Based on this explicit version, we
can de�ne the string semantics of ccfgs as in the case of lcfrs:

De�nition Let G = (Π , T , S , P) be a ccfg. �e string algebra for G is the Σ(G)- 634

algebra A in which dom(A)A = (T∗)k , for all A ∈ Πk , and

fp(α1 , . . . , αm) = exp(γ)� xi, j ← αi, j
!!!!!!! i ∈ [m] ∧ j ∈ [ki] � ,

for each production p = A → γ .�e string language generated by G is the set

L(G) := � a !!!!!!! ∃ t ∈ TΣ(G), S . 〈a〉 ∈ "t$A � . ñ

77

6 Structures and grammars

Example (continued) Our example grammar generates the context-sensitive string635

language { anbncndn | n ∈ N } . ñ

It is straightforward that every ccfg can be translated into an lcfrs that generates the

same string language. In this translation, both the alphabet of non-terminal symbols,

the alphabet of terminal symbols, and the start symbol remain unchanged; the only

thing that we need to adapt is the form of the production rules, which can be done

in the way that we just explained. In this sense, we can view ccfgs as a syntactically

restricted form of lcfrs. We can then de�ne the linearization semantics of ccfgs as

for lcfrs.

6.3.3 | Dependency semantics

Given that every ccfg can be seen as a special lcfrs, it is clear that ccfgs cannot

induce more dependency structures than lcfrs. In particular, we have the following

lemma, which relates the block-degree of the induced dependency structures to the

maximal rank of the inducing ccfg. Let us write CCFG(k) for the class of all ccfgs in
which the maximal rank of a non-terminal is k .

Lemma ∀k ∈ N. D�CCFG(k)� ⊆ Dk ñ636

We now show that ccfgs in fact induce a proper subclass of the dependency structures

inducible by lcfrs: every dependency structure induced by a ccfg is well-nested.

Lemma D(CCFG) ⊆ Dwn ñ637

Proof. Let G = (Π , T , S , P) be a ccfg, and let t = p(t1 , . . . , tm) be a derivation tree
of G , where p : k1 × · · · × km → k and ti ∈ TΣ(G), ki , for all i ∈ [m] . �e proof

proceeds by induction on the depth of t . Consider the linearization "t$L of t ; this
linearization has the form "t$L = 〈u1 , . . . , uk〉 . Now assume that there exist four
nodes v1 = ui x1 , v2 = ui x2 and w1 = u j y1 , w2 = u j y2 in t such that v1 → v2 ,

w1 → w2 , and [v1 , v2] � [w1 ,w2] . Furthermore, and without loss of generality, assume

that min(v1 , v2) ≺ min(w1 ,w2) .�en the string u1 · · · uk contains a substring of the
form

ui x1 · · · u j y1 · · · ui x2 · · · u j y2 ,

for some u ∈ nod(t) , i , j ∈ N , and x1 , x2 , y1 , y2 ∈ V
∗
. Distinguish two cases: If u Ö= ε ,

then both v1 , v2 and w1 ,w2 belong to a proper subterm of t , and by the induction
hypothesis, we may assume that v1 � w1 or w1 � v1 . So assume that u = ε .�e right-
hand side of the production p has the form 〈γ1 , . . . , γk〉 , and the string γ := γ1 · · · γk
is formed according to the inference rules given in Table 6.1. Given the speci�c form of

the string u1 · · · uk , the string γ contains a substring of the form

〈πi , i1〉 · · · 〈π j , j1〉 · · · 〈πi , i2〉 · · · 〈π j , j2〉 ,

78

6.4 Tree Adjoining Grammar

for some πi , π j ∈ Π and 1 ≤ i1 < i2 ≤ rankΠ(πi) , 1 ≤ j1 < j2 ≤ rankΠ(π j) , where i
is the le�-to-right index of the synchronized group of (occurrences of) components to

which 〈πi , i1〉 and 〈πi , i2〉 belong, and j is the corresponding index for 〈π j , j1〉 and
〈π j , j2〉 . By the inferences rules in Table 6.1, it is then clear that all four occurrences are
synchronized; consequently, i = j , and either v1 � w1 or w1 � v1 holds.�is shows

that the dependency structure induced by t is well-nested. ñ

As in the case of cfgs and lcfrs, the converses of the preceding lemmata are easy to

show. We thus obtain a characterization of ccfg in terms of the dependency structures

that it can induce as follows:

�eorem ∀k ∈ N. D�CCFG(k)� = Dk ∩ Dwn ñ 638

6.4 | Tree Adjoining Grammar

To conclude this chapter, we now look at the dependency structures that are induced

by derivations in Tree Adjoining Grammars (tag) (Joshi et al., 1975; Joshi and Schabes,

1997). In contrast to lcfrs and ccfgs, tags manipulate trees rather than strings.

6.4.1 | Definition

�e building blocks of a tag are called elementary trees.�ese are children-ordered
trees in which each node has one of three types: it can be an anchor (or terminal node),
a non-terminal node, or a foot node. Anchors and foot nodes are required to be leaves;
non-terminal nodes may be either leaves or inner nodes. Each elementary tree can

have at most one foot node. Elementary trees without a foot node are called initial trees;
the remaining trees are called auxiliary trees. A tag grammar is lexicalized, if each of
its elementary trees contains exactly one anchor (Schabes et al., 1988). Trees in tag

can be combined using two operations (see Figure 6.5): substitution combines a tree τ
with an initial tree τ ′

by identifying a non-terminal leaf node u of τ with the root
node of τ ′

(Figure 6.5a); adjunction identi�es an inner node u of a tree τ with the
root node of an auxiliary tree τ ′

; the subtree of τ that is rooted at u is excised from τ
and inserted below the foot node v of τ ′

(Figure 6.5b). Combination operations are

disallowed at root and foot nodes.

Example Figure 6.6 shows an example for how tags are speci�ed. �e grammar 639

contains 5 elementary trees, named τ1 to τ5 .�e elementary trees τ1–τ4 are initial
trees.�e tree τ5 is an auxiliary tree; the foot node of this tree is marked with a star.
Note that this grammar is lexicalized. By adjoining the tree τ5 into the tree τ1 , and
then repeatedly into the tree resulting from this �rst adjunction, we can produce the

string language { anbncndn | n ∈ N } .�is language is beyond the string-generative

capacity of context-free grammars. ñ

79

6 Structures and grammars

u u

(a) substitution

u

v

u

v

(b) adjunction

Figure 6.5: Combination operations in TAG

Just as in the case of the other grammar formalisms that we have looked at in this

section, tag derivation trees record information about how elementary structures
are combined. Formally, derivation trees can be seen as terms over the signature of

elementary trees; this set is �nite for any given tag.�e root of each derivation tree is

an initial tree. By repeated applications of the substitution and adjunction operations,

larger and larger trees are built from this tree. tag derived trees represent the results
of complete derivations: they are standard children-ordered trees made up from the

accumulated material of the elementary trees participating in the derivation. Just as

in the case of lexicalized cfg there was a one-to-one correspondence between the

nodes of the derivation tree and the positions of the derived string, in lexicalized tags

there is a one-to-one correspondence between the nodes of the derivation tree and the

leaves of the derived tree.�us, in just the same way as derivations in cfg and lcfrs,

derivations in tag induce dependency structures.�e major question that we have

to answer in the context of tags is how to de�ne the linearization semantics of the

derivation trees. Essentially the same question needs to be addressed when trying to

relate tag to other mildly context-sensitive grammar formalisms. (See Boullier, 1999

for a formal version of the construction that we discuss here.)

Example (continued) Figure 6.7 shows a derivation tree for our example grammar640

and the dependency structure that is induced by this derivation. ñ

S

a S

B C

D

τ1

B

b

τ2

C

c

τ3

D

d

τ4

S

a S

B + C

D

τ5

Figure 6.6: A TAG grammar

80

6.4 Tree Adjoining Grammar

τ1

τ5

τ5

τ2 τ3 τ4

τ2 τ3 τ4

τ2 τ3 τ4

(a) derivation tree

a a a b b b c c c d d d

(b) dependency structure

Figure 6.7: A TAG derivation, and the induced dependency structure

6.4.2 | Linearization semantics

To understand the linearization semantics of a tag elementary tree τ , we must read
it with the derived tree in mind that would result from a derivation starting at τ . Let
us do so for the elementary tree τ1 that is shown in Figure 6.6. Since combination
operations are disallowed at the root nodes of elementary trees, we see that the le�most

leaf in the derived tree that we produce as the result of the derivation is the anchor

of τ1 , which is labelled with the symbol a . Now assume that an auxiliary tree adjoins
at the central node of τ1 , the node that is labelled with S .�en in the derived tree, all
the material in the le� half of the adjoined tree precedes the material that is dominated

by the adjunction site in τ1 , while all the material in the right half succeeds it (see
again Figure 6.5b). Speci�cally, let us write S1 for the material derived from the le�
half of the auxiliary tree, and S2 for the material in the right half.�en S1 precedes
the material that gets substituted into the nodes labelled with B and C in τ1 , and this
material in turn precedes S2 . Finally, at the right edge of the derived tree that we build
from τ1 , we �nd the material substituted into the node labelled with D . To summarize,
we have the following linear sequence of tree material:

a S1 B C S2 D .

Using reasoning similar to this, we see that every elementary tree speci�es a gen-

eralized concatenation function over tuples of arity at most 2 : for sub-derivations

that correspond to adjunctions, there is not one single slot per subderivation, but two;

the �rst of these slots is �lled by the material in the le� half of the adjoined tree, the

second slot by the right half of the corresponding tree. A crucial observation now is

that the linearization of the elementary trees always produces strings from an extended

semi-Dyck set. More speci�cally, there can never be two distinct adjunction sites A
and B such that the linearization of the corresponding elementary tree yields the se-
quence A1 · · ·B1 · · ·A2 · · ·B2 .�is is so because all material that is situated between
the two slots of a given adjunction corresponds to material that in the elementary tree

is dominated by that adjunction site.�e forbidden sequence then would mean that

81

6 Structures and grammars

both A dominates B , and B dominates A , which is only possible if A = B . Hence,
from the linearization point of view, tag corresponds to the class CCFG(2) of Coupled

Context-Free Grammars with rank at most 2 .

�eorem D(TAG) = D2 ∩ Dwn ñ641

�is result was �rst shown by Bodirsky et al. (2005).

6.4.3 | Related work

 �e same reasoning that we have used for the linearization semantics is needed

when designing le�-to-right parsing algorithms for tags (Joshi and Schabes, 1997). It

was also used by Guan (1992) to link tags to ccfgs of rank at most 2

 Tree Adjoining Grammars are special forms of Ranked Node Rewriting Grammars

(Abe, 1988) and Context-Free Tree Grammars (Mönnich, 1997; Fujiyoshi and Kasai,

2000; Kepser andMönnich, 2006). Our results carry over to these extended formalisms.

In particular, k -adic (non-deleting) Linear Context-Free Tree Grammars correspond
to ccfgs with rank at most k , and induce well-nested dependency structures with
block-degree at most k .

Summary

In this chapter, we have presented a classi�cation of lexicalized grammar formalisms in

terms of the dependency structures that these formalisms can induce. Our classi�cation

provides a new measure for the generative capacity of a grammar formalism that

is attractive as an alternative to both string-generative capacity and tree-generative

capacity: dependency structures are more informative than strings, but less formalism-

speci�c than parse trees (see Kallmeyer, 2006, for a similar argument).

Together with the treebank studies that we presented in the previous three chapters,

our classi�cation also provides new insights into the practical relevance of grammar

formalisms: If we accept our conclusion that the class of projective dependency struc-

tures is insu�cient to cover all the data in the three treebanks that we looked at, then by

�eorem 612, the same holds for lexicalized context-free grammars. At the same time,

our treebank studies revealed that only a small step beyond projectivity is necessary to

cover virtually all of the practically relevant data. Together with�eorem 626, we can

interpret this result as saying that we only need lcfrs with a very small fan-out, say

the class LCFRS(2) . Perhaps most interestingly, we �nd that close to 99.5% of all the

dependency analyses in the treebanks are well-nested and have a block-degree of at

most 2 . Given�eorem 641, this means that one should at least in theory be able to

write a tag that induces all the structures in the three treebanks.

82

chapter 7 | Regular dependency languages

In the �rst part of this dissertation, we have looked at formal properties of individual

dependency structures. In this chapter, we turn our attention to sets of such structures,

or dependency languages. Speci�cally, we investigate the languages that arise when we
equip dependency structures with a ‘regular’ means of syntactic composition.

Structure of the chapter. We start by de�ning regular dependency languages as the
recognizable subsets in dependency algebras and provide natural notions of automata

and grammars for this class of languages (Section 7.1). We then develop a powerful

pumping lemma for regular dependency languages (Section 7.2) and apply it to show

that the languages in this class are of constant growth, a property characteristic for

mildly context-sensitive languages (Section 7.3).

7.1 | Regular sets of dependency structures

�e primary goal of this dissertation is to illuminate the connections between language-

theoretic properties such as generative capacity and parsing complexity on the one

hand, and graph-theoretic properties such as block-degree and well-nestedness on the

other. Speci�cally, we started with the question,

Which grammars induce which sets of dependency structures?

At this point, we have already come quite close to an answer to this question. Consider

the class of lexicalized context-free grammars (lcfg) for example. In the previous

chapter, we have seen that lcfg is linked to projectivity in the sense that every lcfg

can induce only projective structures, and every such structure can be induced by some

lcfg. However, this result does not yet provide a full answer to our question, which

asks about classes of languages, not classes of structures.�e step from structures to
languages is non-trivial: it is not true that every set of projective dependency structures
can be induced by an lcfg; in particular, the set of lcfgs is denumerable, the set of all

subsets of D1 is not. In this chapter, we identify a class of dependency languages that

can be induced by the grammar formalisms that we have discussed. We call this class
the regular dependency languages. As we will see, the condition of regularity provides
the missing link between grammar formalisms and dependency structures.

7.1.1 | Algebraic recognizability

We de�ne regularity by referring to the concept of algebraic recognizability.�is notion
was introduced by Mezei and Wright (1967), following previous work by Richard

83

7 Regular dependency languages

Büchi, John Doner, Calvin Elgot, and James�atcher. It generalizes the de�nitions

of regular string languages to arbitrary abstract algebras and provides a canonical

way to characterize regular sets of objects. Recognizability was originally de�ned for

single-sorted algebras. Here we use a many-sorted version, due to Courcelle (1996).

De�nition Let A be a Σ -algebra, and let s ∈ SΣ be a sort. A set L ⊆ dom(A)s is701

called recognizable, if there exists a �nite Σ -algebra B , a homomorphism h : A → B ,

and a set F ⊆ dom(B)s such that L = h−1(F) . ñ

We want to call a set of dependency structures ‘regular’, if it is recognizable in some

dependency algebra D . In this case, since D is initial, we do not have a choice about

the homomorphism h in the above de�nition: it is the uniquely determined evaluation
homomorphism "·$B .�is leads to the following de�nition of regularity:

De�nition Let D be a dependency algebra with signature Σ , and let i ∈ SΣ be a sort.702

A set L ⊆ dom(D)i is called regular, if there exists a �nite Σ -algebra B and a set

F ⊆ dom(B)i such that L = "F$−1B . ñ

�e pair M = (B, F) is called a (deterministic, complete) automaton for L . We can
understand the signature of B as an input alphabet, the domains dom(B) as sets of

states, the (�nitely many) possible combinations of input and output values for the
composition operations of B as a transition function, and the set F as a set of �nal states
of M .�e behaviour of M can be described as follows: A run of M is a bottom-up

traversal of a dependency structure D during which each node u gets labelled with a
state q ∈ dom(B) .�e label for u is chosen conditional on both the local order at u
(represented by an order annotation σ ∈ Σ), and the state labels at the children of u .
More speci�cally, when M visits a node u that is annotated with a symbol σ , and the
children of the node u have previously been labelled with states q1 , . . . , qm , then the
automaton labels u with the state fσ(q1 , . . . , qm) .�e automaton M recognizes D if,
at the end of the run, the root node of D is labelled with a state q ∈ F .

Example To illustrate the de�nition of regularity, we show that, for every dependency703

algebra D with signature Σ , every k ∈ SΣ , and every set G ⊆ { fσ | σ ∈ Σ } , the

set L of those structures of sort k that are composed using only operations from
the set G is regular. We do so by constructing an automaton M = (B, F) for L as
follows. For each sort i ∈ SΣ , the state set dom(B)i is the set {1, 0} . For each order

annotation σ : s1 × · · · × sm → s in Σ and each tuple 〈b1 , . . . , bm〉 of values, we put
fσ(b1 , . . . , bm) := �∧m

i=1 bi� ∧ b , where b = 1 if and only if fσ ∈ G . As the set of �nal
states F , we choose {1} ⊆ dom(B)k . For each dependency structure D ∈ dom(D) , the

evaluation of D in B returns 1 if and only if it was composed using only composition

operations from the set G . �us, the set "F$−1D contains exactly those dependency

structures with this property that have sort k . ñ

84

7.1 Regular sets of dependency structures

REGD(D1) = REGD(D1 ∩ Dwn)

REGD(D2)

REGD(D3)

REGD(D4)

REGD(D2 ∩ Dwn)

REGD(D3 ∩ Dwn)

REGD(D4 ∩ Dwn)

Figure 7.1: The hierarchy of regular dependency languages

We write REGD for the class of all regular dependency languages. For a given class D

of dependency structures, we write REGD(D) for the class of all regular dependency

languages that are subsets of D .

7.1.2 | Elementary properties

We now review some of the elementary formal properties of regular dependency

languages. All of these properties are immediate consequences of our de�nitions and

general results about recognizable subsets.

Lemma �e empty set is a regular dependency language. Furthermore, REGD is closed 704

under union, intersection, di�erence, and inverse homomorphisms. ñ

Proof. See e.g. Courcelle (1996), Proposition 4.6. ñ

Lemma �e following relations hold for all k ∈ N : 705

✴ REGD(Dk) ¤ REGD(Dk+1)

✴ REGD(Dk ∩ Dwn) ¤ REGD(Dk+1 ∩ Dwn)

✴ REGD(D1) = REGD(D1 ∩ Dwn)

✴ k Ö= 1 â⇒ REGD(Dk ∩ Dwn) ¤ REGD(Dk) ñ

Proof. Each of the classes of dependency structures mentioned in this lemma coincides
with a speci�c sub-signature of the set Ω of all order annotations. All relations therefore
can be reduced to the corresponding relations on the signatures. ñ

�is lemma is visualized in Figure 7.1. It shows that the structural restrictions imposed

by the block-degree measure and the well-nestedness condition induce two in�nite,

related hierarchies of ever more expressive regular dependency languages.�e only

point where these two hierarchies coincide is the case k = 1 .

85

7 Regular dependency languages

Finite degree Since each regular dependency language is built using a �nite set of

composition operations (a �nite signature), and since there is a direct correspondence

between the type of a composition operation and the measures of out-degree and

block-degree, no regular dependency language can be unbounded in either measure.

De�nition Let L ⊆ D be a dependency language. We say that L is of �nite degree, if706

there are a numbers m ∈ N0 , k ∈ N such that no structure in L has an out-degree of
more than m or a block-degree of more than k . ñ

Lemma Every regular dependency language is of �nite degree. ñ707

�e property that regular dependency languages are of �nite out-degree separates

them from dependency frameworks that allow an arbitrary number of children per

node (see e.g. Duchier and Debusmann, 2001).�e restriction to �nite block-degree

formalizes the rather informal notion of ‘limited cross-serial dependencies’ that is

characteristic for mildly context-sensitive language (Joshi, 1985). At the same time,

this restriction implies that regular dependency languages are not able to account for

linguistic phenomena that require arbitrary degrees of non-projectivity, such as the

phenomenon of scrambling in German subordinate clauses (Becker et al., 1992).

Connectionwith regular term languages Recall from�eorem 421 that every depen-

dency algebra is isomorphic to its corresponding term algebra.�erefore the following

lemma applies:

Lemma Let D be a dependency algebra with signature Σ , and let i ∈ SΣ be a sort.708

�en a set L ⊆ dom(D)i is regular if and only if term(L) is TΣ -recognizable. ñ

�e major bene�t of this connection is that it allows us to study dependency languages

using the tools and results of the well-developed formal theory of recognizable term

languages, which is more widely known as the class of regular term languages.�is is a
very natural and robust class with many di�erent characterizations: it is recognized by

�nite tree automata, generated by regular term grammars, and de�nable in monadic

second-order logic (Gécseg and Steinby, 1997). For our purposes, the characterization

in terms of grammars is the most convenient. It allows us to characterize regular

dependency languages as the images of the term languages generated by regular term

grammars over the signature Ω of order annotations.

7.1.3 | Regular term grammars

A term grammar speci�es a rewriting system for terms over an alphabet of terminal and
non-terminal symbols. In each step of the rewriting process, a non-terminal symbol is

replaced by a term; this yields a new term. Regular term grammars are the generative

correspondents of the algebraic automata from De�nition 702: Essentially, they are

86

7.1 Regular sets of dependency structures

obtained by reading the composition functions of an automaton as a directed rewrite

system—whenever an automaton de�nes fσ(q1 , . . . , qm) = q , the corresponding term
grammar contains a rule q → fσ(q1 , . . . , qm) ; the states of the automaton become the
non-terminal symbols of the grammar. Regular term grammars are distinguished from

other term grammars by the restriction that non-terminal symbols may occur only at

the leaves of a term, which implies that derivations correspond to sequences of simple

substitution operations, just as in context-free grammars.1 To formalize this restriction,

we introduce the following notation:

De�nition Let S be a set of sorts. Let Σ be an S-sorted set, and let A be an S- 709

indexed family of sets.�e set of terms over Σ indexed by A , denoted by TΣ(A) , is
the S-indexed set of all terms over Σ ∪ A . ñ

Regular term grammars are usually de�ned for single-sorted algebras (Gécseg and

Steinby, 1997; Denecke andWismath, 2001); here we adapt their de�nition to the many-

sorted case.�is extension is straightforward: instead of one non-terminal alphabet

and set of productions, we need one such alphabet and set of productions per sort.

�e set of productions is set up such that a given non-terminal symbol can only be

rewritten by a term of the same sort.

De�nition Let S be a �nite set of sorts. A regular term grammar (over S) is a construct 710

G = (N , Σ , S , P) , where N is an S-indexed family of non-terminal alphabets, Σ is an
S-sorted terminal alphabet, S ∈ N is a distinguished start symbol, and P ⊆ N × TΣ(N)

is a �nite, S-indexed family of sets of productions. ñ

We use indexed symbols (NG , ΣG , SG , PG) to refer to the components of speci�c
regular term grammars G . For a production p = (A, t) , we call A the le�-hand side
and t the right-hand side of p . Just as in conventional string grammars, we usually
write A → t instead of (A, t) . �e derivation relation associated to a regular term
grammar G = (N , Σ , S , P) is the binary relation ⇒G on TΣ(N) that is de�ned by the

following inference rule:

t ∈ TΣ(N) t/u = A (A → t ′) ∈ P

t ⇒G t[u ← t ′]

Using this relation, the de�nition of the term language generated by G is completely
analogous to the de�nition of the language generated by a string grammar—it is the

set of all terms without non-terminals that can eventually be derived from the trivial

term formed by the start symbol of the grammar: L(G) = { t ∈ TΣ | S ⇒∗
G t } . Two

grammars are equivalent, if they generate the same language. Notice that all terms in
the language generated by a regular term grammar are of one and the same sort; this is

the sort of the start symbol S .

1 In fact, one can show that a language is context-free if and only if it is the frontier of a set of terms

generated by a regular term grammar (Gécseg and Steinby, 1997, p. 33).

87

7 Regular dependency languages

De�nition A regular term grammar G = (N , Σ , S , P) over S is called normalized, if711

every production has the form A → σ(A1 , . . . , Am) , where A ∈ Ns , σ : s1×· · ·×sm → s ,
and A i ∈ Nsi , for every i ∈ [m] and some sort s ∈ S . ñ

Lemma For every regular term grammar, there exists an equivalent regular term712

grammar that is normalized. ñ

Proof. A proof of this result can be found in Gécseg and Steinby (1997).�e proof is a
standard grammar transformation, as is it also known from context-free grammars:

we delete rules of the form A → B and rules where the right-hand side is a term with
a depth greater than 1 , and replace them by new rules and non-terminal symbols that

jointly simulate the old rules. ñ

7.1.4 | Regular dependency grammars

We now de�ne regular dependency grammars as regular term grammars that generate
term languages over the signature Ω of order annotations.�is restriction ensures that
termsmanipulated by regular dependency grammars can be interpreted as (segmented)

dependency structures.

De�nition Let k ∈ N . A regular dependency grammar of degree k is a construct713

G = (N , S , P) , where N is a [k]-indexed family of non-terminal alphabets, S ∈ N is
a distinguished start symbol, and P ⊆ N × TΩ(k)(N) is a �nite, [k]-indexed family of
sets of productions. ñ

For a given regular dependency grammar G , let Σ be the �nite subset of order anno-
tations that occurs in the productions of G ; then the construct (N , Σ , S , P) forms a
regular term grammar. Based on this observation, we make free use of all terminology

for regular term grammars when talking about regular dependency grammars. We will

only work with regular dependency grammars in which S ∈ N1 .�is restriction en-

sures that the languages generated by regular dependency grammars can be interpreted

as sets of proper dependency structures.

De�nition Let G be a regular dependency grammar.�e dependency language gener-714

ated by G is the set D(G) := dep�L(G)� . ñ

Example To illustrate the de�nitions, we give two examples of regular dependency715

grammars.�e dependency languages generated by these grammars mimic the verb-

argument relations found in German and Dutch subordinate clauses, respectively

(Huybregts, 1984; Shieber, 1985; Rambow, 1994): grammar G1 generates structures with

nested dependencies, grammar G2 generates structures with crossing dependencies.

Figure 7.2 shows terms generated by these grammars, and the corresponding structures.

88

7.1 Regular sets of dependency structures

〈120〉

〈0〉 〈120〉

〈0〉 〈10〉

〈0〉 . . . dass Jan Marie Wim lesen helfen sah

(a) Grammar G1

〈1202〉

〈0〉 〈12, 02〉

〈0〉 〈1, 0〉

〈0〉 . . . omdat Jan Marie Wim zag helpen lezen

(b) Grammar G2

Figure 7.2: Terms and structures generated by two regular dependency grammars

Grammar G1 := (N1 , S , P1) (degree 1)

N1 := �1 Ü→ {S ,N ,V }�

P1 := �S → 〈120〉(N ,V), V → 〈120〉(N ,V), V → 〈10〉(N), N → 〈0〉�

Grammar G2 := (N2 , S , P2) (degree 2)

N2 := �1 Ü→ {S ,N }, 2 Ü→ {V }�

P2 := �S → 〈1202〉(N ,V), V → 〈12, 02〉(N ,V), V → 〈1, 0〉(N), N → 〈0〉� ñ

We now state the main result of this section:

�eorem A dependency language is regular if and only if it is generated by a regular 716

dependency grammar. ñ

Proof. �is is a direct consequence of the isomorphism between regular dependency
languages and regular term languages (Lemma 708) and the standard result that a term

language is regular if and only if it is generated by a regular term grammar. A proof of

this result can be found in Denecke and Wismath (2001); it proceeds by translating

every regular term grammar into an equivalent algebraic automaton and vice versa.

�e major di�erence between grammars and automata is that automata are complete

89

7 Regular dependency languages

and deterministic (exactly one value per function-argument pairing), while grammars

may be incomplete and indeterministic (more than one rule per non-terminal).�ese

di�erences can be removed by grammar normalizations on the one hand, and a standard

subset construction for automata on the other. ñ

7.1.5 | Dependency languages and lexicalized grammars

With the concept of regularity at hand, we can now li� our results from the previous

chapter to the level of languages. Given a class G of grammars, let us write D(G) for

the class of all dependency languages induced by grammars in G .

�eorem �e following statements hold for all k ∈ N :717

(1) REGD(Dk) = D�LCFRS(k)�

(2) REGD(Dk ∩ Dwn) = D�CCFG(k)� ñ

To put it into words:�e dependency languages induced by the class of lcfrs with

fan-out at most k are exactly the regular dependency languages over dependency
structures with block-degree at most k . Similarly, the dependency languages induced
by the class of ccfgs with rank at most k are exactly the regular dependency languages
over well-nested dependency structures with block-degree at most k .

Proof. �e proof falls into two parts:

⊇ Let G be a lexicalized lcfrs.�e set of derivation trees of G forms a regular term
language over some �nite signature of concatenation functions. By Lemma 621, we

can transform this language into an equivalent (modulo relabelling) term language L
that only uses essential concatenation functions. Crucially, the elimination of non-

essential functions uses bottom-up and top-down relabellings, which preserve

regularity (Engelfriet, 1975); therefore, the transformed language L still is a regular
term language, say L ⊆ TΣ . We have furthermore seen (on page 74) how to de�ne a
bijective function relab : Σ → Ω from the set of essential concatenation functions
to the set of order annotations such that a derivation t ∈ TΣ induces the dependency
structure dep�relab(t)� , for all t ∈ L . Since the mapping relab is injective, we can
translate L into a regular term language L ′

over some �nite signature ∆ ⊆ Ω , and
hence, modulo decoding, into a regular dependency language.

⊆ Let G be a regular dependency grammar. We can construct an lcfrs G ′
such that

the derivations of G ′
induce the dependency language generated by G by reversing

the above relabelling on a per-rule basis.

In both directions, the relabelling maintains the signature restrictions: essential con-

catenation functions of fan-out k are translated into order annotations of degree k ,
and vice versa.�e relabelling also maintains the well-nestedness restriction. ñ

90

7.2 Pumping lemmata

7.2 | Pumping lemmata

Since even in�nite regular term languages (and hence: regular dependency languages)

can be represented by �nite grammars, these languages, very much like regular or

context-free string languages, must have a periodic structure. In this section, we

prove a number of novel pumping lemmata for regular term languages that make this

observation precise.�ese lemmata provide the keys to our results about the growth

of regular dependency languages (Section 7.3) and their string-generative capacity

(Section 8.2).

7.2.1 | The pumping lemma for regular term languages

Recall the standard pumping lemma for context-free string languages:

For every context-free language L ⊆ A∗ , there is a number p ∈ N such that any string
z ∈ L of length at least p can be written as z = uvwxy such that 1 ≤ |vx| , |vwx| ≤ p ,
and uvnwxn y ∈ L , for every n ∈ N0 .

�is result is usually proved using a combinatorial argument about the derivations of a

grammar that generates the language L . Essentially the same argument can be used to
show a pumping lemma for regular term grammars (see e.g. Proposition 5.2 in Gécseg

and Steinby, 1997):

Lemma For every regular term language L ⊆ TΣ , there is a number p ∈ N such that 718

any term t ∈ L of size at least p can be written as t = c ′ · c · t ′ such that 1 ≤ |c| ≤ p ,
|c · t ′| ≤ p , and c ′ · cn · t ′ ∈ L , for every n ∈ N0 . ñ

�e number p in this lemma is called pumping number.�e phrase ‘the term t can
be written as t = c ′ · c · t ′ ’ is an abbreviation for the formal assertion that ‘there
exist contexts c ′ ∈ CΣ and c ∈ CΣ and a term t ′ ∈ TΣ such that t = c ′ · c · t ′ ’.�e
contrapositive of the pumping lemma speci�es a strategy for proofs that a certain term

language is not regular:

To show that a term language L ⊆ TΣ is non-regular, show that, for all p ∈ N , there
exists a term t ∈ L of size at least p such that for all partitions t = c ′ · c · t ′ in which
1 ≤ |c| ≤ p and |c · t ′| ≤ p , there is an n ∈ N0 such that c

′ · cn · t ′ ∉ L .

We can think of such a proof as a game against an imagined adversary. Our objective

in this game is to prove that a given term language L is non-regular; our adversary’s
objective is to foil us. �e game consists of four alternating turns: In the �rst turn,

Adversarymust choose a number p ∈ N . In the second turn, we must respond to
this choice by providing a term t ∈ L of size at least p . In the third turn, Adversary
must choose a decomposition of t into fragments c ′ · c · t ′ such that 1 ≤ |c| ≤ p
and |c · t ′| ≤ p . In the fourth turn, we must provide a number n ∈ N0 such that

91

7 Regular dependency languages

f

a

a

n n

(a) L1

f

a

a

k

m n

(b) L2

Figure 7.3: Two term languages that are not regular

c ′ · cn · t ′ ∉ L . If our last turn succeeds, we win the game; otherwise, Adversary wins.
�e language L is non-regular, if we have a winning strategy for this game.

Example Consider the following term language (see Figure 7.3a for a schema):719

L1 := � f (n · a, n · a) !!!!!!! n ∈ N0 �

We show that L1 is non-regular by stating a winning strategy for the game associated
with L1 . Assume that Adversary has chosen the number p ∈ N .�en we can always
win the game by responding with the term t = f (p ·a, p ·a) . It is clear that t is a valid
term in L1 , and that |t| ≥ p . In whatever way Adversary decomposes t into segments
c ′ · c · t ′ , the term s := c ′ · c2 · t ′ does not belong to L1 . In particular, if c lies below
the ‘branching point’ of t (the node labelled with the symbol f), then the lengths of
the two branches in s are out of sync.�us we deduce that L1 is non-regular. ñ

Unfortunately, Lemma 718 sometimes is too blunt a tool to show the non-regularity of

a term language, as the following example demonstrates.

Example Consider the following term language (see Figure 7.3b for a schema):720

L2 := � k · f (m · a, n · a) !!!!!!! k ,m, n ∈ N0 ∧ (k Ö= 0 â⇒ m = n) �

�e terms in L2 can be classi�ed into two categories: A term in which k Ö= 0 can be

regarded as a term from L1 that is pre�xed with a non-empty chain of nodes labelled
with the symbol . In a term in which k = 0 however, the lengths of the two branches

are not required to be synchronized as in L1 .
�e language L2 is non-regular (as we will show at the end of this section), but it is

impossible to prove this using Lemma 718. To see this, assume that Adversary has

chosen the number p ∈ N in the game associated to L2 .�en whatever term t ∈ L2

92

7.2 Pumping lemmata

u1

u2

u3

u4

u5

u6

u7

v1

v2

v3

k · X

f (•) = x̂

f (◦) Ö= x̂

h(u3) = 2

h(u4) = 1

h(u6) = 0

Figure 7.4: An example for the situation in the proof of Lemma 721

we provide, Adversary can win the game: if k = 0 , he can decompose t as c ′ · c · t ′

such that c lies somewhere below the branching point of t ; if k Ö= 0 , he can choose c
such that it lies on the pre�x above the branching point. In both cases, both deleting

and repeating c yield only valid terms in L2 . ñ

7.2.2 | Ogden’s lemma for regular term languages

Our goal in this section is to develop a pumping lemma for regular term languages

that is more powerful than Lemma 718 and allows us to prove (among other things)

that the language L2 in the example above is non-regular.�is lemma (Lemma 723)
can be seen as the natural correspondent of Ogden’s lemma for context-free languages

(Ogden, 1968). While Lemma 718 merely asserts that a pumpable context does exist

somewhere in the term, our lemma gives us a way to delimit the exact region. �is
added �exibility proves to be very useful in the application of the lemma.

Lemma Let Σ be a �nite signature. For every term language L ⊆ TΣ , every non-empty, 721

�nite set X , and every k ∈ N , there is a number p(X , k) ∈ N such that for any term
t ∈ L with size |t| ≥ p(X , k) and any function f : nod(t) → X , there exist a strictly
increasing sequence v of k + 1 nodes of t and an object x̂ ∈ X such that
(1) ∀ i ∈ [k + 1]. f (vi) = x̂ ;
(2) ∀ i ∈ [k + 1]. |t/vi| ≤ p(X , k) ; and
(3) ∀ i ∈ [k]. 1 ≤ |t/vi| − |t/vi+1| ≤ p(X , k) . ñ

Proof. �e proof is based on the elementary observation that the size of a term with
rank at most m and depth at most d is bounded by the value (m, d) := ∑d

i=0 m
i
. Put

mΣ := maxσ∈Σ rankΣ(σ) ; this value is an upper bound for the rank of the terms in L .
We will show that we can choose p(X , k) := �mΣ , k · |X|� .

✴ Let t ∈ L be a term with |t| ≥ p(X , k) ; in this case, t has a depth of at least k · |X| .
Let u be a maximal path in t , and for every node u on u , let h(u) denote the
number of those nodes u ′

on u that succeed u and for which f (u ′) = f (u) holds

93

7 Regular dependency languages

before:

f

a

a

a�er: f

marked

interesting

Figure 7.5: A term before and after the transformation from the proof of Lemma 722

(see Figure 7.4). Since |u| > k · |X| , there is at least one element x ∈ X and at least
k + 1 nodes u on u for which f (u) = x , and hence, there is at least one node u
on u for which h(u) = k . Without loss of generality, assume that u is the greatest
node with this property, and let v be the sub-sequence of u that is formed by u and
the k nodes u ′

on u that succeed u and for which f (u ′) = f (u) holds.

✴ We now check that the sequence v satis�es the required properties. Condition (1) is
satis�ed with x̂ := f (u) , and the �rst half of condition (3) is satis�ed by construction.
For the remaining conditions, consider the node v1 .�is node is succeeded on u
by exactly k nodes v ′ with f (v ′) = f (vi) , and at most k · �|X| − 1� nodes v ′ with
f (v ′) Ö= f (vi) . Since the path u is maximal in t , the depths of the nodes on u
coincide with their depths in t . We therefore have d(v1) ≤ k + k · �|X|− 1� = k · |X| .
Using the relation between depth and size, we then see that |t/v1| ≤ p(X , k) . Since
every node on v is at most as deep as v1 , the claim is proved. ñ

Lemma For every normalized regular term grammar G and every k ∈ N , there is a722

number p(k) ∈ N such that for any term t ∈ L(G) in which at least p(k) nodes are
marked as distinguished, there exists a non-terminal A ∈ NG such that every derivation

of t can be written as

S ⇒∗
G c ′ · A ⇒∗

G c ′ · c1 · A ⇒∗
G · · · ⇒∗

G c ′ · c1 · · · ck · A ⇒∗
G c ′ · c1 · · · ck · t

′ = t

such that at most p(k) nodes in t ′ and at least one and at most p(k) nodes in ci are
marked, for every index i ∈ [k] .

Proof. Let G be a normalized regular term grammar, and let k ∈ N . We will show that
we can choose p(k) := p�|NG |, k� , where the latter value is the number asserted by
Lemma 721. We start with some terminology. Let t ∈ L(G) be a term. We call a node

u ∈ nod(t) interesting, if either it is marked, or at least two of its children dominate a
marked node. We call t interesting, if at least one of its nodes is interesting.

94

7.2 Pumping lemmata

✴ We de�ne a partial function τ on the term language L(G) as follows. For an in-

teresting term t ∈ L(G) , construct the term τ(t) by exhaustive application of the
following transformations to nodes u (see Figure 7.5): if u is unmarked and does
not have a child that dominates a marked node, delete the subterm rooted at u ; if u
is unmarked and has exactly one child v that dominates a marked node, replace u
with the subterm rooted at v . We can verify the following properties:

(a) �e dominance relation of τ(t) is isomorphic to the restriction of the domi-
nance relation of t to the interesting nodes of t .

(b) �e rank of the term τ(t) is bounded by the rank of t .�is ensures that the
image of L(G) under τ is a term language over a �nite signature.

✴ Let t ∈ L(G) be a term in which at least p(k) nodes are marked as distinguished,
and let d be a derivation of t . De�ne a function f : nod(t) → NG such that, for

every node u ∈ nod(t) , the symbol f (u) is the le�-hand side of the production
that was applied to introduce u into t . �is function is well-de�ned because G
is normalized, and there thus is a one-to-one correspondence between the nodes

in t and the rewriting steps in d .�e restriction of f to the interesting nodes in t
de�nes a function : nod�τ(t)� → NG .�en by Lemma 721, there exists a strictly

increasing sequence v of k + 1 nodes in τ(t) and a non-terminal A ∈ NG such that

✴ ∀ i ∈ [k + 1]. (vi) = A ;
✴ ∀ i ∈ [k + 1]. |t/vi| ≤ p(k) ; and
✴ ∀ i ∈ [k]. 1 ≤ |t/vi| − |t/vi+1| ≤ p(k) .

Because of the isomorphism property (a) above, this implies that there exists a

strictly increasing sequence w of k + 1 nodes in t such that f (wi) = A holds for
all i ∈ [k + 1] . We use this sequence to identify contexts and subterms in t as
follows: Let c ′ be the context identi�ed by the root node of t and the node wi . For

every i ∈ [k] , let ci be the context identi�ed by the nodes wi and wi+1 ; then by

the isomorphism property (a), this context contains at least one and at most p(k)
interesting nodes. Finally, put t ′ := t/vk+1 ; then again by isomorphism, this term
contains at most p(k) interesting nodes.

✴ We now check the required properties. To see that both every context ci (i ∈ [k])
and the term t ′ contains at most p(k) marked nodes, it su�ces to notice that the
number of interesting nodes is an upper bound for the number of marked nodes.

To see that every context ci (i ∈ [k]) contains at least one marked node, let u be
one of the interesting nodes in ci , and assume that u is not itself marked. In this
case, at least two of its children dominate a marked node. At most one of these

marked nodes is dominated by the hole of ci ; the other marked node is a node in ci .
Finally, since f (w) = A holds for all nodes w in the sequence w , and because of the
one-to-one correspondence between the nodes in t and the rewriting steps in d ,
the derivation d can indeed be linearized into the required form. ñ

95

7 Regular dependency languages

S

A

A

c ′

c

t ′

d1

d2

d3

S

A

A

A

d1

d2

d2

d3

Figure 7.6: Surgery on derivation trees

Instantiating the previous lemma, we obtain our main result:

Lemma For every regular term language L ⊆ TΣ , there is a number p ∈ N such that723

any term t ∈ L in which at least p nodes are marked as distinguished can be written as
t = c ′ · c · t ′ such that at least one and at most p nodes in c are marked, at most p
nodes in c · t ′ are marked, and c ′ · cn · t ′ ∈ L , for all n ∈ N0 . ñ

Note that, in the special case where all nodes of a term are marked as distinguished,

this lemma is equivalent to Lemma 718.

Proof. Let L ⊆ TΣ be a regular term language, and let G be a normalized regular tree
grammar with L(G) = L . We will show that we can choose p := p(1) , where the latter
value is the number asserted by Lemma 722. Let t ∈ L(G) be a term in which at least p
nodes are marked as distinguished.�en by Lemma 722, every derivation of t can be
written as S ⇒∗

G c ′ · A ⇒∗
G c ′ · c · A ⇒∗

G c ′ · c · t ′ = t such that the context c contains
at least one and at most p marked nodes and the term t ′ contains at most p marked
nodes.�is means that the derivation can be partitioned into three sub-derivations

S ⇒∗
G c ′ · A (d1) , A ⇒∗

G c · A (d2) , and A ⇒∗
G t ′ (d3)

(see the schema in the le� half of Figure 7.6). Iterating the second of these sub-deriva-

tions n times (where n may be zero), we obtain a new valid derivation (see the schema
in the right half of Figure 7.6). ñ

�e contrapositive of Lemma 723 corresponds to the following modi�ed game for

term languages L : In the �rst turn, Adversarymust choose a number p ∈ N . In the
second turn, we choose a term t ∈ L and mark at least p nodes in t . In the third turn,
Adversary chooses a decomposition t = c ′ · c · t ′ such that at least one and at most p
nodes in c and at most p nodes in c · t ′ are marked. In the fourth and �nal turn, we
must choose a number n ∈ N0 such that c

′ · cn · t ′ ∈ L .

Example (continued) Using Lemma 723, we are now ready to show that the lan-724

96

7.3 Constant growth

guage L2 from the example above is non-regular: we show that we have a winning
strategy for the game associated with L2 . Assume that Adversary has chosen the
number p ∈ N . �en we can always win the game by responding with the term
t = 1� f (p · a, p · a)� and marking all nodes in the subterm rooted at the branching
point as distinguished. In whatever way Adversary decomposes t into segments
c ′ · c · t ′ such that c contains at least one marked node, the context c contains at least
one node below the branching point.�en, the term s := c ′ · c2 · t ′ does not belong
to L2 . ñ

7.3 | Constant growth

We have claimed (in our discussion of Lemma 707) that the block-degree restriction

inherent to regular dependency languages formalizes the notion of ‘limited cross-serial

dependencies’ that is characteristic for the class of mildly context-sensitive languages.

In this section, we show that regular dependency languages also have another charac-

teristic property of this class, constant growth.�is property is usually attributed to
string languages (Joshi, 1985); here, we de�ne it for term languages.

7.3.1 | Constant growth and semilinearity

Informally, a language has the constant growth property, if there are no arbitrarily long

leaps in its size progression. More formally, let L be a term language, and let n be the
sequence of distinct sizes of terms in L , sorted in ascending order. If L is of constant
growth, then adjacent elements of n di�er by at most a constant (see Kracht, 2003,
De�nition 5.1).

De�nition A term language L ⊆ TΣ is of constant growth, if either L is �nite, or there 725

is a number c ∈ N such that for each term t ∈ L , there exists a term t ′ ∈ L such that
|t| < |t ′| ≤ |t| + c . ñ

Example We look at an example for a term language that does not have the constant 726

growth property. Let Σ be a signature, and let L be the set of all complete binary
terms over Σ . Given a term ti ∈ L with size |ti| , a ‘next larger’ term ti+1 ∈ L is
obtained by adding two children to every leaf in ti .�is procedure results in a linear
size progression: we see that |ti+1| = 2 · |ti| + 1 . In particular, there is no number c
such that |ti+1| ≤ |ti| + c holds for all indices i ∈ N . ñ

Constant growth is closely related to a property known as semilinearity (Parikh, 1966).
�is property is concerned with the interpretation of the elements of a language as

multisets of labels. For the following de�nition, given a term t ∈ TΣ and a symbol
σ ∈ Σ , we write #σ(t) for the number of occurrences of σ in t .

97

7 Regular dependency languages

De�nition Let Σ be a signature, and put n := |Σ| . We �x an (arbitrary) order on Σ727

and write σi for the i th symbol with respect to this order, for i ∈ [n] . �e Parikh
mapping for terms over Σ (with respect to this order) is the function ψΣ : TΣ → Nn

0
de�ned as

ψΣ(t) := �#σ1(t), . . . , #σn(t) .

We extend ψΣ to languages L ⊆ TΣ by putting ψΣ(L) := �ψΣ(t)
!!!!!!! t ∈ L � . ñ

�e order on Σ with respect to which a Parikh mapping is de�ned is convenient for
our formal treatment of semilinearity, but irrelevant for our results.�erefore, we refer

to the Parikh mapping for terms over Σ .
�e Parikh mapping reduces a term to the multiset of its labels. A measure that

is preserved under this reduction is the size of a term. More speci�cally, de�ne the

following norm on Nn
0 : ‖x‖ := ∑n

i=1 xi . �en for all terms t ∈ TΣ , it holds that
"""""""ψΣ(t)

""""""" = |t| .�e relevance of this observation is that it allows us to recast constant
growth as a property of the image of a term language under its Parikh mapping.

Lemma A term language L ⊆ TΣ is of constant growth if and only if either ψΣ(L) is728

�nite, or there is a number c ∈ N such that for each term t ∈ L , there exists a term
t ′ ∈ L such that """""""ψΣ(t)

""""""" <
"""""""ψΣ(t

′)""""""" ≤
"""""""ψΣ(t)

""""""" + c . ñ

We now give a formal de�nition of semilinearity. To do so, we equip each set Nn
0 with

two operations: component-wise addition of two vectors (x + y), and multiplication
of a vector by a scalar a ∈ N0 (a · x).

De�nition Let n ∈ N . A set S ⊆ Nn
0 is called linear, if there exists a vector x0 ∈ N

n
0 ,729

a number k ∈ N0 , and an indexed set � xi ∈ N
n
0
!!!!!!! i ∈ [k] of vectors such that

S = � x0 +∑k
i=1 ci · xi

!!!!!!!!! ci ∈ N0 � .

A set is called semilinear, if it is a �nite union of linear sets. A language L ⊆ TΣ is called
linear (semilinear), if ψΣ(L) is a linear (semilinear) set of vectors. ñ

Each element of a semilinear language is the outcome of one of a �nite number of

generative processes. Such a process is speci�ed by a single ‘base structure’ and a

�nite set of ‘additives’. Its outcome is the set of all structures that can be obtained

by combining the base structure with any number (including zero) of one or more

additives. In this way, semilinearity is closely related to pumpability.

Lemma Each semilinear term language has the constant growth property. ñ730

Proof. Let L ⊆ TΣ be a term language. Put n := |Σ| , and P := ψΣ(L) . We show that,
if P is linear or semilinear, then it satis�es the conditions of Lemma 728.

98

7.3 Constant growth

✴ Assume that P is linear. In this case, there exists a vector x0 ∈ Nn
0 , a number

k ∈ N0 , and an indexed set � xi ∈ N
n
0
!!!!!!! i ∈ [k] of base vectors such that

P = � x0 +∑k
i=1 ai · xi

!!!!!!!!! ai ∈ N0 � .

A vector x ∈ Nn
0 is called null, if ‖x‖ = 0 . Distinguish two cases: If all base vectors

are null, then P is �nite. Otherwise, let x be a base vector that is not null and for
which ‖x‖ is minimal among all non-null base vectors. Put c := ‖x‖ , and let y ∈ P .
Since P is linear, the vector z := y + x is an element of P . Since x is not null, we
have ‖ y‖ < ‖z‖ ≤ ‖ y‖ + c .

✴ Now, assume that P is semilinear. In this case, there exists a number m ∈ N and
an indexed family � Pi

!!!!!!! i ∈ [m] of linear sets such that P = ⋃i∈[m] Pi . Assume
that P is non-�nite. For every i ∈ [m] for which the set Pi is non-�nite, let ci be
the number constructed in the previous item. Put c := maxi∈[m] ci , and let y ∈ P .
�en there exists an index i ∈ [m] such that y ∈ Pi , and by the previous item, there
exists a vector z ∈ Pi ⊆ P such that ‖ y‖ < ‖z‖ ≤ ‖ y‖ + ci ≤ ‖ y‖ + c .

Using Lemma 728, we conclude that L has the constant-growth property. ñ

7.3.2 | Regular term languages are semilinear

We now show that regular term languages are semilinear. Semilinearity of a language is

routinely proven by providing an encoding of that language into a context-free language

with the same Parikh image, and referring to Parikh’s theorem (Parikh, 1966):

Proposition Every context-free language is semilinear. ñ 731

Unfortunately, the standard proof of this theorem is rather opaque. In particular, it does

not elucidate the close connection between semilinearity and pumpability.�erefore,

we give a direct proof of the semilinearity of regular term languages, following a similar

proof for context-free languages (Goldstine, 1977).

�eorem Every regular term language is semilinear. ñ 732

Proof. Let L be a regular term language, and let G be a normalized regular term
grammar with L(G) = L . For each set M ⊆ NG of non-terminals that contains SG , let
LM ⊆ L(G) be the subset of L(G) that consists of all terms t ∈ L(G) for which there is

at least one derivation SG ⇒∗
G t that uses exactly the non-terminals in M . Since there

are only �nitely many such sets LM , and since their union is L(G) , it su�ces to show

that every set LM is semilinear.�erefore, let us �x a set M ⊆ NG , and put m := |M|

and p := p(m) , where the latter value is the constant from Lemma 722. We write Ã¢

for the restriction of the derivation relation ⇒G to derivations that use only rules of

99

7 Regular dependency languages

t

S

A

A

A

A

A

A

s

S

A

A

A

A

A

A

A

c0

c1

c j−1
c j
c j+1

cm

t ′

Figure 7.7: Semilinearity

the form A → t , where A ∈ M and t ∈ TΣ(M) . By the de�nition of LM , it then holds
that t ∈ LM if and only if S Ã¢∗ t . Put

T := � t ∈ LM
!!!!!!! |t| < p � ,

C := � c ∈ CΣ
!!!!!!! 1 ≤ |c| ≤ p ∧ ∃A ∈ M. A Ã¢∗ c · A � , and

X := �ψΣ(t) +∑c∈C ac · ψΣ(c)
!!!!!!!!! t ∈ T ∧ ac ∈ N0 � .

We start by noticing that the set X is semilinear: it is a �nite union of linear sets, one
for each term t ∈ T . To prove that the set LM is semilinear, we show that ψΣ(LM) = X .

⊆ Let t ∈ LM be a term. We show that ψΣ(t) ∈ X by induction on the size |t| of t .
First assume that |t| < p . In this case, we see that t ∈ T , and ψΣ(t) ∈ X by the
de�nition of X . Now assume that |t| ≥ p . In this case, if we mark all nodes in t as
distinguished, then by Lemma 722, each derivation S Ã¢∗ t can be written as

S Ã¢∗ c0 · A Ã¢∗ c0 · c1 · A Ã¢∗ · · · Ã¢∗ c0 · c1 · · · cm · A Ã¢∗ c0 · c1 · · · cm · t ′ ,

where A ∈ M , c0 ∈ CΣ , ci ∈ C for all i ∈ [m] , and t ′ ∈ TΣ . (See the le� half of
Figure 7.7.) Let us write di for the sub-derivation A Ã¢∗ ci · A , and let M

′ ⊆ M be

the set of those non-terminals in M − {A} that are used in some sub-derivation di ,
i ∈ [m] . For each B ∈ M ′

, choose some i ∈ [m] such that B is used in di .�en,
since |M ′| < m , some j ∈ [m] is not chosen at all.�erefore, if the corresponding

sub-derivation d j is deleted, every non-terminal in M (including A) is still present
in the resulting derivation. In this way, we obtain a new valid derivation for a term

100

7.3 Constant growth

s ∈ LM with |s| < |t| . (See the right half of Figure 7.7.) By the induction hypothesis,
we may assume that ψΣ(s) ∈ X . We see that ψΣ(t) = ψΣ(s) + ψΣ(c j) , and so,
ψΣ(t) ∈ LM .�us, in all cases, we have shown that ψΣ(LM) ⊆ X .

⊇ Let x ∈ X be a vector. By the de�nition of X , there exists a term t ∈ T and an
indexed set � ac ∈ N0

!!!!!!! c ∈ C such that x = ψΣ(t) + ∑c∈C ac · ψΣ(c) . We show
that there exists a term s ∈ LM with ψΣ(s) = x by induction on n := ∑c∈C ac . First,
assume that n = 0 . In this case, we have x = ψΣ(t) , and since t ∈ LM , we deduce
that ψΣ(t) ∈ X . Now, assume that n > 0 . In this case, there exists a context c ∈ C
and a vector x ′ ∈ X such that x = x ′ + ψΣ(c) , and by the induction hypothesis, we
may assume that there exists a term t ′ ∈ LM with x ′ = ψΣ(t

′) . From the de�nition

of C , we see that there is a non-terminal A ∈ M and a derivation A Ã¢∗ c · A .
Since the derivation S Ã¢∗ t ′ uses every non-terminal B ∈ M (including A), it can
be written as S Ã¢∗ c ′ · A Ã¢∗ c ′ · t ′′ = t ′ , for some context c ′ ∈ CΣ and term

t ′′ ∈ TΣ(M) . In particular, we have A Ã¢∗ t ′′ . Plugging everything together, we
can construct a valid derivation for a new term s ∈ LM :

S Ã¢∗ c ′ · A Ã¢∗ c ′ · c · A Ã¢∗ c ′ · c · t ′′ = s .

We see that x = x ′ + ψΣ(c) = ψΣ(t
′) + ψΣ(c) = ψΣ(s) .�us, in all cases, we have

shown that X ⊆ ψΣ(LM) . ñ

Corollary Every regular term language has the constant-growth property. ñ 733

As an immediate consequence of this corollary and the isomorphism between regular

dependency languages and regular term languages (Lemma 708), we obtain the main

result of this section:

�eorem Every regular dependency language is of constant growth. ñ 734

7.3.3 | Related work

 To claim that every formal language that adequately models natural language should

have the constant growth property is not claiming very much: Kracht (2003) remarks

that ‘it seems that for every natural language [L] there is a number dL such that for
every n ≥ dL there is a string of length n in L ’. Semilinearity, on the other hand,
may be too strong a restriction to impose on mathematical models of natural language:

Michaelis and Kracht (1997) show that an in�nite progression of ‘case stacking’ in Old

Georgian2 would mean that this language is not semilinear. However, since there are

no speakers of Old Georgian, there is no possibility to test whether this theoretical

progression is actually possible.

2Old Georgian is an extinct Caucasian language that was spoken roughly between the 4th and 11th

century ad. It has a rich literary tradition.

101

7 Regular dependency languages

 �e class of semilinear subsets of Nn
0 is interesting in its own right. Among other

things, it is closed under union, intersection, and complement. More generally, Gins-

burg and Spanier (1966) show that a subset of Nn
0 is semilinear if and only if it is

de�nable in Presburger arithmetic3.�e class of languages with semilinear Parikh im-

ages forms an abstract family of languages, except that it is not closed under intersection

with regular string languages (Kracht, 2003,�eorem 2.93).

3 Presburger arithmetic is the �rst-order theory of the natural numbers with addition. It was named in

honour of Mojżesz Presburger (1904–1943), who proved its decidability in 1929.

102

chapter 8 | Generative capacity and parsing complexity

In this chapter, we complete our study of regular dependency languages by investigating

their string-generative capacity and parsing complexity. Speci�cally, we study the

connection between these two measures and the structural constraints discussed in

the �rst part of this dissertation.

Structure of the chapter. We start by explaining how regular dependency grammars
can be extended to generators of sets of strings (Section 8.1). We then show that, for

the string languages generated by these extended grammars, the block-degree measure

induces an in�nite hierarchy of expressivity, and that the well-nestedness restriction

properly decreases expressivity on nearly all levels of this hierarchy (Section 8.2). Finally,

we discuss the complexity of the parsing problem of the string languages generated

by regular dependency grammars. In particular, we show that the well-nestedness

condition can make the change between tractable and intractable parsing (Section 8.3).

8.1 | Projection of string languages

Up to this point, dependency structures were de�ned solely in terms of their governance

and precedence relations. However, for many practical applications we are interested

in labelled structures, where apart from the nodes and the edges, we also have ways
to encode non-structural information such as word forms, grammatical functions, or

edge probabilities. In this section, we extend our notion of dependency structures and

dependency languages to accommodate such information. In particular, we show how

dependency grammars can be understood as generators of string languages.

8.1.1 | Labelled dependency structures

�e extension to labelled structures is straightforward:

De�nition Let A be some alphabet. An A-labelled dependency structure is a pair 801

(D , lab) , where D is a dependency structure, and lab : dom(D) → A is a total function
on the nodes of D , called the labelling function. ñ

Just as unlabelled dependency structures can be represented as terms over the alpha-

bet Ω of order-annotations, A -labelled dependency structures can be represented
as terms over the product alphabet 〈Ω, A〉 in which each constructor 〈ω, a〉 inherits
the type of ω . For terms over this alphabet, we can extend the function dep in the

natural way: the �rst component of a term constructor 〈ω, a〉 carries the information

103

8 Generative capacity and parsing complexity

a b c

〈〈101〉, b〉

〈〈0, 1〉, a〉

〈〈0〉, c〉

(a) D1

a b c

〈〈1, 01〉, b〉

〈〈0, 1〉, a〉

〈〈0〉, c〉

(b) D2

Figure 8.1: Two labelled dependency structures and their terms

about the dependency structure as such, the second component determines the label

for the root node of the structure. In this way, each term over the signature 〈Ω, A〉
denotes an A -labelled dependency structure. It is straightforward to extend our notion
of dependency algebra accordingly. We can also de�ne a string semantics for labelled

dependency structures as follows. Recall that we use the notation i# j to refer to the
j th occurrence of a symbol i in an order annotation.

De�nition Let Σ ⊆ Ω be a �nite set of order annotations, and let A be an alphabet.802

�e string algebra over Σ and A is the 〈Σ , A〉-algebra in which dom(A)i = (A+)i , for

every 1 ≤ i ≤ deg(Σ) , and

f〈ω,a〉(α1 , . . . , αm) = ω[0 ← a]� i# j ← αi, j
!!!!!!! i ∈ [m] ∧ j ∈ [ki] � ,

for each constructor 〈ω, a〉 : k1 × · · · × km → k in 〈Ω, A〉 . ñ

Let 〈Σ , A〉 be some �nite signature, where Σ ⊆ Ω . Given a term d over this signature,
we write "d$S for the evaluation of d in the string algebra over Σ and A and say that
the labelled dependency structure that is denoted by d projects "d$S . Notice that,
if d denotes a dependency structure of sort k , then the projection of d is a k -tuple
of (non-empty) strings over the alphabet A . For the case k = 1 , we identify the set of

one-component tuples of strings with the set of strings.

Example Figure 8.1 shows two examples for labelled (segmented) dependency struc-803

tures and their corresponding terms. Note that, in pictures of labelled structures, we

annotate labels at the end of the corresponding projection lines. ñ

8.1.2 | String-generating regular dependency grammars

With our algebraic framework in mind, it is straightforward to extend regular de-

pendency grammars into generators of string languages (via projection). �e only

thing that we need to add to the existing signature is the alphabet of labels, now called

(surface) terminal symbols.

104

8.1 Projection of string languages

De�nition Let k ∈ N . A string-generating regular dependency grammar of degree k 804

is a construct G = (N , T , S , P) , where N is a [k]-indexed family of non-terminal
alphabets, T is an alphabet of terminal symbols, S ∈ N is a distinguished start symbol,
and P ⊆ N × T〈Ω(k),A〉(N) is a k -indexed family of �nite sets of productions. ñ

�e derivation relation and the notion of the dependency language generated by a

grammar are de�ned as usual, except that we are now dealing with labelled structures.

�e string algebra corresponding to a string-generating regular dependency gram-

mar G is the string algebra over ΣG and TG , where ΣG is the collection of those order
annotations ω ∈ Ω(k) that occur in the productions of G .

De�nition Let G be a string-generating regular dependency grammar. �e string 805

language projected by G is de�ned as "G$S := � "d$S
!!!!!!! d ∈ L(G) � . ñ

Example We give examples for two regular dependency grammars that generate the 806

string language { anbn | n ∈ N } . �e dependency structures generated by the �rst

grammar are projective (‘nested dependencies’), the structures generated by the second

grammar may have block-degree 2 (‘cross-serial dependencies’). Both grammars use

the same terminal-alphabet {a, b} . We only state the productions of the grammars;
sample terms and generated dependency structures are shown in Figure 8.2.

G1 (projective dependency structures):

S → �〈012〉, a�S , 〈〈0〉, b〉� S → �〈01〉, a�〈〈0〉, b〉�

G2 (dependency structures with block-degree 2):

S → �〈0121〉, a�R, 〈〈0〉, b〉� S → �〈01〉, a�〈〈0〉, b〉�

R → �〈01, 21〉, a�R, 〈〈0〉, b〉� R → �〈0, 1〉, a�〈〈0〉, b〉�

8.1.3 | String-generative capacity

It is apparent that our results on the equivalences between the dependency languages

induced by various lexicalized grammar formalisms on the one hand and classes of

regular dependency languages over mildly non-projective dependency structures on

the other hand can be transferred to string languages without any problems: the

linearization semantics that we used for the unlabelled structures is fully compatible

with the string semantics that we now use for labelled structures. However, one thing to

note is, that all our results crucially depend on the grammars being lexicalized, meaning

that each production in these grammars contributes an overt lexical item to the derived

string—without this restriction, the notion of ‘induced dependency structure’ as we

have used it here is ill-de�ned. Nevertheless, for some of the formalisms that we have

studied, lexicalization is not really a restriction a�er all:

105

8 Generative capacity and parsing complexity

〈〈012〉, a〉

〈〈012〉, a〉

〈〈01〉, a〉

〈〈0〉, b〉

〈〈0〉, b〉

〈〈0〉, b〉

a a a b b b

(a) G1 (nested dependencies)

〈〈0121〉, a〉

〈〈01, 21〉, a〉

〈〈0, 1〉, a〉

〈〈0〉, b〉

〈〈0〉, b〉

〈〈0〉, b〉

a a a b b b

(b) G2 (cross-serial dependencies)

Figure 8.2: Derivations in two string-generating grammars

Lemma �e string languages projected by REGD(D1) are exactly the context-free807

languages.1 ñ

Proof. �is follows from our previous results in combination with the result that every
context-free grammar can be put into a lexicalized normal form, such as Greibach

normal form (Greibach, 1965) or Rosenkrantz normal form (Rosenkrantz, 1967). One

caveat is that this transformation changes the structure of the derivation trees, and

thus the dependency structures that we get out from these lexicalized grammars do

not necessarily encode the same syntactic dependencies as the original grammar. ñ

Lemma �e string languages projected by REGD(D2 ∩ Dwn) are exactly the string808

languages generated by tags. ñ

Proof. �is follows from our previous results in combination with the results that every
tag can be put into a lexicalized normal form (Schabes, 1990). ñ

For lcfrs and ccfg, the problems whether every grammar can be put into some

lexicalized normal form are open.�ese problemsmake an interesting topic for research

for themselves, but are beyond the scope of this dissertation.

1�ere is one minor di�erence:�e context-free language that contains only the empty word cannot be

projected by any regular dependency language.

106

8.2 String languages and structural properties

8.2 | String languages and structural properties

In this section, we study the impact of structural constraints on the string-generative

capacity of regular dependency languages. We present two results: �rst, that the string-

language hierarchy known for lcfrs can be recovered in our framework by controlling

the block-degree parameter; second, that additionally requiring well-nestedness leads

to a proper decrease in generative capacity on nearly all levels of this hierarchy.

String-language hierarchies are usually proven using formalism-speci�c pumping

lemmata. For more powerful formalisms, pumping arguments tend to become rather

di�cult and technical (see Seki et al., 1991 or Guan, 1992) because they need to reason

about the combinatorial structure of the derivation and the order of the derivedmaterial

at the same time. Our hierarchy proofs are novel in that they clearly separate these

two issues: for the combinatorial aspect of the argument, we use only one powerful

pumping lemma (Lemma 723); to reason about the order of the derived material, we

use our knowledge about structural properties. With this proof technique, we can

show that certain string languages ‘enforce’ certain structural properties in regular

dependency languages that project them.�e usefulness of this approach is witnessed

by our result about the language hierarchy for well-nested languages, which solves an

open problem concerning the relation between lcfrs and ccfg.

8.2.1 | Masked strings

To prepare our proofs, we �rst show two elementary results about congruence relations

on strings. Recall (from De�nition 401) that a congruence relation on a chain C is an

equivalence relation in which all blocks are convex with respect to C . Congruences on

strings can be represented as lists of pairwise disjoint intervals of positions.

De�nition Let s ∈ A∗
be a string, and let n ∈ N0 . A mask for s of length n is a 809

list M = [i1 , j1] · · · [in , jn] of pairwise disjoint intervals of positions in s such that
jk < ik+1 , for all k ∈ [n − 1] . It is understood that ik ≤ jk , for all k ∈ [n] . ñ

We call the intervals [i , j] the blocks of the mask M , and write |M| to denote their

number. In slight abuse of notation, we write B ∈ M , if B is a block of M . Given a
string s and a mask M for s , the set of positions corresponding to M is de�ned as

pos�[i1 , j1] · · · [in , jn]� := � i ∈ pos(s) !!!!!!! ∃k ∈ [n]. i ∈ [ik , jk] � .

For a set P of positions in a given string s , we put P̄ := pos(s) − P , and write [P] for
the smallest mask for s such that pos(M) = P . We say that P contributes to a block B
of some mask, if P ∩ B Ö= 0 . Finally, for masks M with an even number of blocks, we

de�ne the fusion of M as

F�[i1 , j1][i
′
1 , j

′
1] · · · [in , jn][i

′
n , j

′
n]� := [i1 , j

′
1] · · · [in , j

′
n] .

107

8 Generative capacity and parsing complexity

k1 l1 kn ln

[P̄] [P] [P̄] [P̄] [P] [P̄]

M M M M

i1 j1 i ′1 j ′1 in jn i ′n j ′n

Figure 8.3: The situation in the proof of Lemma 810

Lemma Let s ∈ A∗
be a string, let M be a mask for s with an even number of blocks,810

and let P be a set of positions in s such that both P and P̄ contribute to every block
of M .�en !!!!!!![P]

!!!!!!! ≥ |M|/2 . Furthermore, if !!!!!!![P]
!!!!!!! ≤ |M|/2 , then P ⊆ pos�F(M)� . ñ

Proof. For every block B ∈ [P] , let n(B) be the number of blocks in M that B con-
tributes to. We make two observations: First, since P contributes to each block of M ,
|M| ≤ ∑B∈[P] n(B) . Second, since P̄ contributes to each block of M , no block B ∈ [P]
can fully contain a block of M ; therefore, n(B) ≤ 2 holds for all blocks B ∈ [P] .
Putting these two observations together, we deduce that

|M| ≤ ∑B∈[P] n(B) ≤ ∑B∈[P] 2 = 2 · !!!!!!![P]
!!!!!!! .

For the second part of the lemma, let

M = [i1 , j1][i
′
1 , j

′
1] · · · [in , jn][i

′
n , j

′
n] and [P] = [k1 , l1] · · · [kn , ln] .

�en, each block of [P] contributes to exactly two blocks of M . More precisely, for
each h ∈ [n] , the block [kh , lh] of [P] contributes to the blocks [ih , jh] and [i ′h , j

′
h]

of M . (�is situation is depicted in Figure 8.3.) Because P̄ also contributes to [ih , jh]
and [i ′h , j

′
h] , the interval [kh , lh] is a proper subset of [ih , j

′
h] , which is a block of the

fusion F(M) . Hence, P ⊆ pos�F(M)� . ñ

8.2.2 | Enforcing a given block-degree

We now show our �rst result: for every natural number k ∈ N , there exists a string
language L(k) that forces every regular dependency language that projects L(k) to
contain structures of block-degree k . For our proof, we use the string languages from
the in�nite family

COUNT(k) := � an1b
n
1 · · · a

n
kb

n
k
!!!!!!! n ∈ N � .

We note that the language COUNT(1) is homomorphic to the context-free language

{ anbn | n ∈ N } for which we have seen regular dependency grammars in Example 806,

and that for every k > 1 , the language COUNT(k) is not context-free; this can be easily
proved using the standard pumping lemma for context-free languages.

108

8.2 String languages and structural properties

a1 a1 a1 b1 b1 b1 a2 a2 a2 b2 b2 b2

Figure 8.4: A dependency structure for the language COUNT(2)

Example �e following grammar generates a dependency language that projects the 811

string language COUNT(2) ; it is not hard to see how to modify the grammar so that it

generates languages COUNT(k) , for k > 2 .�e grammar is essentially identical to the

tag grammar that we gave in Figure 6.6. We only list the productions.

S → �〈012314〉, a1�R, 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

S → �〈0123〉, a1�〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

R → �〈012, 314〉, a1�R, 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

R → �〈01, 23〉, a1�〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

Figure 8.4 shows a dependency structure generated by this grammar. We note that the

structure is well-nested. ñ

In the following proofs, we freely identify (segmented) labelled dependency structures

with their corresponding terms. Given a term d ∈ T〈Ω,A〉 , we use the notation alph(d)
to refer to the set of all labels from the alphabet A in d .

Lemma Let k ∈ N . Every regular dependency language that projects COUNT(k) 812

contains structures with a block-degree of at least k . ñ

Proof. Let L ∈ REGD be a regular dependency language that projects COUNT(k) . For
notational convenience, put X := � xi

!!!!!!! x ∈ {a, b} ∧ i ∈ [k] � .

✴ We start with a simple auxiliary observation: Let s1 and s2 be two strings in "L$S .
If |s1| < |s2| , then every symbol from X occurs more o�en in s2 than in s1 .

✴ Let p be the pumping number from Lemma 718, and let d1 ∈ L be a dependency
structure with "d1$S = an1b

n
1 · · · a

n
kb

n
k , where n = �p/2k� . Due to the isomorphism

between "d1$S and the precedence relation of d1 , we have |d1| = 2k · n ≥ p . In
this case, Lemma 718 asserts that d1 can be written as d1 = c ′ · c · t ′ such that c
contains at least one node, and d2 := c ′ · c · c · t ′ belongs to L (see the upper
part of Figure 8.5). Now, let u be the uniquely determined node in d2 for which

109

8 Generative capacity and parsing complexity

P̄ P P̄ · · · P̄ P P̄

Ba1 Bb1 · · · Bak Bbk

a1 · · · a1 b1 · · · b1 · · · ak · · · ak bk · · · bk

d2 u

t ′

c

c

c ′

Figure 8.5: The situation in the proof of Lemma 812

d2/u = c · t ′ holds. As a consequence of the �rst item and the construction of d2 , we
deduce that every symbol from X occurs in c . Hence, X ⊆ alph(c) ⊆ alph(d2/u) .

✴ We now show that u has block-degree k . Let M = Ba1Bb1 · · ·BakBbk be the uniquely

determinedmask for "d2$S in which each block Bxi contains exactly those positions

that correspond to occurrences of the symbol xi (see the lower part of Figure 8.5),
and let P be the set of those positions that correspond to the yield �u� . Since every
symbol from X occurs in both P and its complement, both sets contribute to every
block of M . With the �rst part of Lemma 810, we deduce that !!!!!!![P]

!!!!!!! ≥ k . Due to the
isomorphism between "d2$S and the precedence relation of d2 , this means that the
yield �u� is distributed over at least k blocks in d2 . ñ

8.2.3 | Enforcing ill-nestedness

We now show that even the well-nestedness constraint has an impact on the string-

generative capacity of regular dependency languages. More speci�cally, for every

natural number k ∈ N , there exists a string language L(k) that forces every regular
dependency language over structures with a block-degree of at most k that projects
L(k) to contain ill-nested structures. For our proof, we use the languages from the
family

RESP(k) := � am1 b
m
1 c

n
1 d

n
1 · · · a

m
k b

m
k c

n
k d

n
k
!!!!!!! m, n ∈ N � .

Similar to COUNT(k) , the language RESP(k) is projected by a regular dependency
language over the class Dk of dependency structures with block-degree at most k .

110

8.2 String languages and structural properties

a1 a1 a1 b1 b1 b1 c1 c1 d1 d1 a2 a2 a2 b2 b2 b2 c2 c2 d2 d2

Figure 8.6: A dependency structure for the language RESP(2)

Example �e following grammar generates a dependency language that projects the 813

string language RESP(2) .

S → �〈01234153〉, a1�R1 , 〈〈0〉, b1〉, R2 , 〈〈0〉, a2〉, 〈〈0〉, b2〉�

S → �〈012342〉, a1�〈〈0〉, b1〉, R2 , 〈〈0〉, a2〉, 〈〈0〉, b2〉�

R1 → �〈012, 314〉, a1�R1 , 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

R1 → �〈01, 23〉, a1�〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉�

R2 → �〈012, 314〉, c1�R2 , 〈〈0〉, d1〉, 〈〈0〉, c2〉, 〈〈0〉, d2〉�

R2 → �〈01, 23〉, c1�〈〈0〉, d1〉, 〈〈0〉, c2〉, 〈〈0〉, d2〉�

Figure 8.6 shows a dependency structure generated by this grammar. Note that this

structure is ill-nested.�is is mirrored in the grammar by the fact that the �rst order

annotation contains the forbidden substring 1313 . ñ

Lemma Let k > 1 . Every regular dependency language L ∈ REGD(Dk) that projects 814

RESP(k) contains ill-nested structures. ñ

Proof. Let L ∈ REGD(Dk) be a regular dependency language that projects RESP(k) .
De�ne the following two sets of symbols:

X := � xi
!!!!!!! x ∈ {a, b} ∧ i ∈ [k] � , and Y := � yi

!!!!!!! y ∈ {c, d } ∧ i ∈ [k] � .

✴ We start with a simple observation: Let d1 and d2 be dependency structures con-
tained in L . If at least one symbol from X occurs more o�en in d2 than in d1 , then
every symbol from X does. A symmetric argument holds for Y .

111

8 Generative capacity and parsing complexity

F(MX) F(MX) · · ·

Ba1 Bb1 Ba2 Bb2 · · ·

a1 · · · a1 b1 · · · b1 c1 · · · c1 d1 · · · d1 a2 · · · a2 b2 · · · b2 · · ·

Figure 8.7: Enforcing ill-nestedness

✴ Let p be the pumping number from Lemma 723, and let d ∈ L be a dependency
structure with "d$S = am1 b

m
1 c

n
1 d

n
1 · · · a

m
k b

m
k c

n
k d

n
k , where m = n = �p/2k� . By this

choice, the structure d contains 2k ·m ≥ p occurrences of symbols from X , and
equally many occurrences of symbols from Y .

✴ Lemma 723 asserts that the structure d can be written as d = c ′ · c · t ′ such that the
context c contains at least one occurrence of a symbol from X , and the ‘pumped’
structure dX := c ′ · c · c · t ′ is contained in L . Let uX be the uniquely determined
node in d for which d/uX = c · t ′ . We want to show that alph(d/uX) = X .

⊇ Since c contains at least one occurrence of a symbol from X , at least one symbol
from X occurs more o�en in dX than in d . �en, by our observation above,
every symbol from X occurs more o�en in dX than in d . By the construction
of dX , this implies that X ⊆ alph(c) ⊆ alph(d/uX) .

⊆ Let MX = Ba1Bb1 · · ·BakBbk be the uniquely determined mask for "dX$S in
which each block Bxi contains exactly those positions that are labelled with the

symbol xi . Furthermore, let u be the uniquely determined node in dX for which
dX/u = c · t ′ , and let P be the set of those positions in "dX$S that correspond to
the yield �u� . We now apply Lemma 810: given that X ⊆ alph(dX/u) , both the
set P and its complement contribute to every block of M ; given that d2 ∈ Dk ,

we have
!!!!!!![P]

!!!!!!! ≤ k . From this, we deduce that P ⊆ pos�F(MX)� . Since every
position in the set pos�F(MX)� is labelled with a symbol from X (see Figure 8.7),
we conclude that alph(dX/u) = alph(d/uX) ⊆ X .

✴ Put Y := � xi
!!!!!!! x ∈ {c, d } ∧ i ∈ [k] � . In symmetry to the argument above, we can

show the existence of a node uY in d1 for which alph(d1/uY) = Y .

✴ Due to the isomorphism between "d1$S and the precedence relation of d1 , the yields
�uX� and �uY� interleave. Since the sets X and Y are disjoint, neither uX � uY
nor uY � uX holds. We conclude that d1 is ill-nested. ñ

8.2.4 | Hierarchies of string languages

We are now ready to present the main result of this section: the hierarchy on regular

dependency languages from Lemma 705 carries over to string languages.

112

8.3 Parsing complexity

�eorem �e following relations hold for all k ∈ N : 815

✴ �REGD(Dk)�S ¤ �REGD(Dk+1)�S

✴ �REGD(Dk ∩ Dwn)�S ¤ �REGD(Dk+1 ∩ Dwn)�S

✴ �REGD(D1)�S = �REGD(D1 ∩ Dwn)�S

✴ k Ö= 1 â⇒ �REGD(Dk ∩ Dwn)�S ¤ �REGD(Dk)�S

Proof. �e inclusions in the �rst two items as well as the third item are immediate
consequences of Lemma 705.�e properness of the inclusions and the last item follow

from Lemmata 812 and 814 and the facts that COUNT(k) ∈ �REGD(Dk ∩ Dwn)�S and
RESP(k) ∈ �REGD(Dk)�S , as witnessed by the grammars we gave above. ñ

�e hierarchy established by the �rst item corresponds to the string-language hierarchy

known for lcfrs (Weir, 1988; Groenink, 1997) and other formalisms that generate

the same string languages (see e.g. Engelfriet et al., 1980; Seki et al., 1991; van Vugt,

1996; Rambow and Satta, 2004).�e result established by the fourth item is original

to this dissertation: given the weak equivalence between REGD(Dk) and LCFRS(k)
on the one hand and REGD(Dk ∩ Dwn) and CCFG(k) on the other, it shows that the
generative power of ccfg is strictly below that of lcfrs.

8.2.5 | Related work

 �e language RESP(2) was �rst considered by Weir (1988), who speculated that it

separates the string-languages generated by lcfrs with fan-out 2 from the languages

generated by tag.�is was subsequently proved by Seki et al. (1991).

 Gramatovici and Plátek (2006) study a string-language hierarchy on a dependency

formalism in which derivations can be controlled by the node-gaps complexity param-

eter that we discussed in Section 4.1.3.

8.3 | Parsing complexity

�e parsing problem of regular dependency languages is the problem to �nd, given a

grammar and a string of terminal symbols, (a compact description of) the set of all

dependency structures generated by the grammar that project the string. In this section,

we show that regular dependency languages can be parsed in time polynomial in the

length of the input string, but that the parsing problem in which the grammar is part

of the input is np-complete even for a �xed block-degree. However, we also show that

the same problem becomes polynomial when grammars are restricted to well-nested

order annotations, and hence, to well-nested dependency languages. Together with the

treebank evaluation that we presented in Chapter 5, this result provides strong evidence

that our interest in the well-nestedness condition is justi�ed.

113

8 Generative capacity and parsing complexity

8.3.1 | Membership problems

Instead of looking at the parsing problem of regular dependency languages directly, we

restrict ourselves to a slightly simpler problem: the problem to decide, given a grammar

and a string, whether the grammar generates any dependency structure at all that

projects the string. �is problem is the membership problem of the projected string
language. For the vast majority of the algorithms that solve membership problems for

generative grammars, including the ones that we discuss here, there are standard ways

to extend them into full parsers, so the restriction to the membership problem is minor.

�e membership problem comes in two variants, depending on whether we consider

the grammar to be part of the input to the problem or not:

De�nition �e (standard) membership problem for a regular dependency grammar G816

is the following decision problem: given a string a , is a ∈ �L(G)�S ? �e uniform
membership problem for a class G of regular dependency grammars is the following

decision problem: given a grammar G ∈ G and a string a , is a ∈ �L(G)�S ? ñ

�e uniform membership problem is at least as di�cult as the standard membership

problem, but it may be more di�cult. In particular, every polynomial-time algorithm

that solves the uniform membership problem also solves the standard membership

problem in polynomial time. On the other hand, an algorithm for the standard mem-

bership problem may take an amount of time that is exponential in size factors that

depend on the grammar. In this case, it does not yield a polynomial-time algorithm for

the universal membership problem.

In the computer science literature, the run-time of parsing algorithms is usually given

as a function of the length of the input string, which is informative only for the standard

membership problem. One of the reasons for the disinterest in the size of the grammar

may be that, in many applications, grammars are small, and the candidate string is

long—consider the grammar of a programming language for example, which usually

only �lls a few pages, but may be used in compilers that process ten thousands lines

of code.�is situation does not apply to computational linguistics, where rather the

opposite is true: sentences are short, not more than a hundred words, while grammars

are huge, with several hundreds of thousands of entries. �us, for the parsing of

natural language, the important measure in the analysis of parsing algorithms is not

the length of the input string, but the size of the grammar (cf. Lee, 2002).�is holds

true in particular when we consider lexicalized grammars, where all productions are

specialized for individual words. At the same time, these grammars have the advantage

that parsing needs to consider only those productions that are associated with the

words in the input string (Schabes et al., 1988). While this strategy reduces the parsing

time in all practical cases, it also introduces an additional factor into the complexity

analysis of parsing algorithms that depends on the length of the input string (cf. Eisner

and Satta, 1999).

114

8.3 Parsing complexity

A := � �a, [i , i]� ∈ T × B !!!!!!!!! ai = a �

I := � [A,M] ∈ N × B∗ !!!!!!!!! |M| = deg(A) �

G := ��S , [1, n]��

Figure 8.8: Axioms, items and goals for the grammatical deduction system

8.3.2 | The standard membership problem

As our �rst technical result of this section, we now show that the standard membership

problem for regular dependency grammars is polynomial. To prove this, we construct a

generic recognition algorithm for a regular dependency grammar G in the framework
of deductive parsing (Shieber et al., 1995). Let us write kG for the degree of G (which
corresponds to the maximal block-degree among the structures in the language gener-

ated by G), and mG for the maximal rank of G (which corresponds to the maximal
out-degree of the language generated by G).

Lemma �e membership problem of string languages that are projected by regular 817

dependency languages is in time O�|P| · ne� , where e = kG · (mG + 1) . ñ

Proof. Let L be a regular dependency language, and let a a string over some alphabet.
Furthermore, let G = (N , T , S , P) be a normalized regular dependency grammar that
generates L . To decide whether a ∈ "L$S , we construct a grammatical deduction system
for G , and use a generic implementation of this system in the framework of deductive
parsing (Shieber et al., 1995).

✴ Put n := |a| , and let B ⊆ [n] × [n] be the set of all intervals of positions in the
string a . A grammatical deduction system consists of four components: a set A of

axioms, a set I of items, a set G ⊆ I of goal items, and a �nite collection of inference
rules over A and I . �e sets of axioms, items and goal items of our deduction

system are de�ned in Figure 8.8.

�e axioms represent the information about which position in a is labelled by which
terminal symbol. An item �A, [i1 , j1] · · · [ik , jk]� asserts that there is a dependency
structure d ∈ L(G) such that "d$S = �ai1 · · · a j1 , . . . , aik · · · a jk ; in particular, the
goal item asserts that a ∈ "L$S .�e set of inference rules is constructed as follows.
For each production A → 〈ω, a〉(A1 , . . . , Am) with ω : k1 × · · · × km → k , we use
an inference rule of the form

[a, b0,1] [A1 , b1,1 · · · b1,k1] · · · [Am , bm,1 · · · bm,km]

[A, b1 · · · bk]

115

8 Generative capacity and parsing complexity

�is rule is subject to the following side conditions, which re�ect the semantics

of the order annotation ω . Assume that ω = 〈ı1 , . . . , ık〉 . We write ℓx for the le�
endpoint of the interval bx , and rx for the corresponding right endpoint.

r0,1 = ℓ0,1 ⇐â (8.1)

ℓi2 , j2 = ri1 , j1 + 1 ⇐â ∃h ∈ [k]. ıh = x · i1# j1 · i2# j2 · y (8.2)

ℓh = ℓi, j ⇐â ıh = i# j · x (8.3)

rh = ri, j ⇐â ıh = x · i# j (8.4)

�e �rst condition re�ects the semantics of the axioms. �e second condition

ensures that blocks that are adjacent in ω correspond to intervals of positions that
are adjacent in a .�e third and fourth condition ensure that blocks that are extremal
in ω correspond to extremal intervals in a . Taken together, the conditions ensure
that each inference rule is sound with respect to the intended semantics. �eir

completeness is obvious.�us, we have a ∈ "L$S if and only if starting from the
axioms, we can deduce the goal item.

✴ �e asymptotic runtime of the generic, chart-based implementation of the gram-

matical deduction system for G is O�|P| · ne� , where e is the maximal number of
free variables per inference rule that range over the domain [n] (see McAllester,
2002). To determine e , we inspect the schema for the inference rules above.�e
total number of variables over [n] in this schema is 2+2k +∑m

i=1 2ki . Each non-free
variable is determined by exactly one of the side conditions.�erefore, to determine

the number of free variables in the rule schema, it su�ces to count the instantiations

of the schemata for the side conditions, and to subtract this number from the total

number of variables. Schema 8.1 has 1 instantiation. Schemata 8.3 and 8.4 each

have k instantiations; this is the number of le�most and rightmost positions in the
blocks of ω , respectively. Finally, schema 8.2 has 1 − k +∑m

i=1 ki instantiations: the
string ı has 1 +∑m

i=1 ki positions; k of these mark the end of a block and thus do
not have a neighbouring symbol.�en the number of free variables is

�2 + 2k +
m
∑
i=1

2ki� − �1 + 2k + 1 − k +
m
∑
i=1

ki� = k +
m
∑
i=1

ki ≤ kG · (mG + 1) .

�us, e ≤ kG · (mG + 1) . ñ

�eorem �e membership problem of "REGD$S is in ptime. ñ818

�is result, together with our previous result about the constant growth of the languages

in REGD (�eorem 734), allows us to call regular dependency languages mildly context-

sensitive, according to Joshi’s (1985) characterization.

116

8.3 Parsing complexity

8.3.3 | The uniformmembership problem

�e complexity of the generic parsing algorithm for regular dependency languages

that we gave in the previous section is exponential both in the degree and in the rank

of the grammar that is being processed. �is means that we are punished both for

languages with a high degree of non-projectivity, and for languages with a high number

of dependents per node. A natural question to ask is, whether we can get substantially

better than this. Unfortunately, at least in the general case, the answer to this question

is probably negative: in this section, we show that the uniform membership problem

for the class of regular dependency grammars is np-complete. Given the close con-

nection between regular dependency grammars and lcfrs, this result does not come

entirely unexpected: Satta (1992) showed that the uniform membership problem of

both lcfrs with restricted fan-out (our block-degree) and restricted rank is np-hard.

Unfortunately, we cannot directly apply his reduction (of the 3sat problem) to the

membership problem of regular dependency languages, as this reduction makes essen-

tial use of concatenation functions with empty components, which we have excluded

(see Section 6.2.3).

Instead, we provide a polynomial reduction of the exact cover problem to the

uniform membership problem of regular dependency grammars, uniform-regd. An

instance of exact cover is given by a �nite set U and a �nite collection F ⊆ P(U) of

subsets of U .�e decision to make is, whether there is a subset C ⊆ F such that the

sets in C are disjoint, and their union is U .

Lemma exact cover ≤p uniform-regd ñ 819

Proof. Let I = (U , F) be any instance of the exact cover problem. Put n := |U | ,

and m := |F| , and assume that the elements of U and F are numbered from 1 to n
and 1 to m , respectively. We write ui to refer to the i th element of U , and Si to refer
to the i th element of F with respect to these numberings.�e main idea behind the

following reduction is to construct a regular dependency grammar G = (N , T , S , P)
and a string a such that each dependency structure that is generated by G and projects a
represents a partition C ⊆ F of U .�e string a has the form $ · x1 · · · xm · x , where
the substring x is a representation of the set U , and each substring xi , i ∈ [m] ,

controls whether the set Si is included in C .�e grammar G is designed such that
each substring xi can be derived in only two possible ways and only as the projection
of the �rst block of a dependency structure with block-degree 2 ; the second block of

this structure projects material in the string x . In this way, each derivation corresponds
to a guess which sets of F to include into C .�e string x is set up to ensure that this
guess is consistent.

We �rst describe the construction of the string a . Each string xi , i ∈ [m] , has the

form $y1# · · · #yn$, where for all j ∈ [n] , y j = u j if u j ∈ Si , and y j = ū j otherwise.

�e string a then has the form $ · x1 · · · xm · ūm1 u1ū
m
1 · · · ūmn unū

m
n .

117

8 Generative capacity and parsing complexity

Next, we describe the construction of the grammar.�e non-terminal and terminal

alphabets are de�ned as follows:

N := �1 Ü→ {S }, 2 Ü→ � [Si , u j]
!!!!!!! i ∈ [m] ∧ j ∈ [n] ��

T := {$, #} ∪ � ui
!!!!!!! i ∈ [n] � ∪ � ūi

!!!!!!! i ∈ [n] �

�e start symbol is S . Before we give the set of production, we introduce the following
abbreviating notation: for every terminal symbol a ∈ T , put

〈aa, a ′〉 := �〈01, 1〉, a�〈a, a ′〉� 〈a, a〉 := �〈0, 1〉, a�〈a〉�

〈aa〉 := �〈01〉, a�〈a〉� 〈a〉 := �〈0〉, a

Now for each set S ∈ F , each element u ∈ U , and all i , j ∈ [m] , we introduce the

following productions:

[S , u] → 〈$u, ūiuū j〉 [S , u] → 〈$ū, ū〉 (�rst selected/not selected)

[S , u] → 〈#u, ūiuū j〉 [S , u] → 〈#ū, ū〉 (selected/not selected)

[S , u] → 〈#u$, ūiuū j〉 [S , u] → 〈#ū$, ū〉 (last selected/not selected)

We also need the production S → �〈0x y〉, $�[S1 , u1], . . . , [Sm , un]� , where x is the
row-wise reading of the n × m-matrix in which each cell (i , j) , i ∈ [n] , j ∈ [m] ,

contains the value i + n · (j − 1) , and y is the column-wise reading of this matrix.
We now claim that each substring xi , i ∈ [m] , can be derived in only two possible

ways: either by rules from the group ‘selected’, or by rules from the group ‘not selected’.

Within such a group, each terminal can only be generated by exactly one rule, depending

on the position of the terminal in the sub-string (�rst, inner, last) and the form of the

terminal (u, ū). In this way, each derivation of xi corresponds to a choice whether Sk
should be part of C or not. If it is chosen, the second components of the rules consume

the single terminal u in the right half of the string, along with all ‘garbage’ (in the
form of super�uous symbols ū) adjacent to it. No terminal u in the right half of the
string can be consumed twice; this re�ects the fact that the Sk must be disjoint. If the
derivation is complete, all terminals on the right side have been consumed; this re�ects

the fact that the union of the Sk makes the complete set. ñ

Note that the grammar constructed in the proof of this lemma has degree 2 , but that

its maximal rank grows with the input.

Example Figure 8.9 shows an example for the encoding in the proof of Lemma 819 for820

the instance U = {u1 , u2} , F = �{u1}, {u2}� . ñ

�eorem �e uniform string membership problem for the class of normalized regular821

dependency grammars is np-complete. ñ

118

8.3 Parsing complexity

$ $ u1 # ū2 $ $ ū1 # u2 $ ū1 u1 ū1 ū2 u2 ū2

Figure 8.9: The encoding in the proof of Lemma 819

Proof. Lemma 819 establishes the np-hardness of the problem; the grammar that we
used for the reduction is normalized. To see that the problem is in np, we notice

that the length of a derivation in a normalized regular dependency grammar directly

corresponds to the length of the input sentence.�erefore, we can check whether a

given candidate derivation is valid in polynomial time: if the derivation is longer then

the sentence, we reject it; otherwise, we compute the string value of the derivation

using a variant of the tree traversal algorithm that we presented in Table 4.1. ñ

8.3.4 | Recognition of well-nested languages

�e np-completeness of the uniform membership problem of regular dependency

grammars makes it unlikely that we can �nd parsing algorithms that are considerably

more e�cient than the generic algorithm that we gave in the proof of Lemma 817,

not even for grammars of some �xed degree. In this respect, regular dependency

grammars are fundamentally di�erent from cfg or even tag, where the maximal rank

of the productions of the grammar does not enter into the runtime as an exponential

factor. Satta (1992), who made the same observation about lcfrs, argued that the

fundamental reason for the leap between polynomial parsing for cfg and tag and the

np-hardness result for LCFRS(2) could be due to the presence of what he called ‘crossing

con�gurations’ in the derivations of LCFRS(2) . He concluded that to bridge the gap

in parsing complexity, ‘the addition of restrictions on crossing con�gurations should

be seriously considered for the class LCFRS ’. We now show that the well-nestedness

condition could well be such a restriction: the uniform membership problem for

well-nested regular dependency grammars is in ptime.

�eorem Let k ∈ N .�e uniform membership problem for the class of well-nested 822

regular dependency grammars of degree k can be solved in time O�|G|2 · n3k� . ñ

Proof. Every string-generating regular dependency grammar G of degree k that makes
use of well-nested order annotations only can be transformed into a ccfg G ′

of rank k
that is equivalent to G with respect to the generated dependency language, and hence,
with respect to the generated string language.�is transformation can be done in time

119

8 Generative capacity and parsing complexity

linear in the size of the grammar, and without an increase in size: essentially, we replace

all productions of the dependency grammar by their equivalents under the relabelling

that we presented in Section 6.3.�e membership problem of G ′
can be decided in

time O�|G ′|2 · n3k� (Hotz and Pitsch, 1996), where |G ′| is the size of the grammar.

Consequently, the membership problem of G can be decided in time O�|G|2 · n3k� .ñ

Together with the treebank evaluation that we presented in Chapter 5, this result

is strong evidence that the well-nestedness condition is a very relevant condition

on dependency structures indeed. A promising objective of future research is to

understand the fundamental di�erences between well-nested and ill-nested grammars

in more detail. In particular, it would be interesting to see how the generic algorithm

for the parsing of regular dependency grammars can be modi�ed to make use of the

well-nestedness condition, and to give a more �ne-grained complexity analysis that

reverences the lexicalized nature of dependency grammars.

8.3.5 | Related work

Besides the result that we present here, there are several other results that show that

grammar-driven dependency parsing can be intractable. Neuhaus and Bröker (1997)

use a reduction of the vertex cover problem to prove that the uniform membership

problem for a class of linguistically adequate, minimal dependency grammars is np-

complete. Koller and Striegnitz (2002) show a corresponding result for the formalism

Topological Dependency Grammar (Duchier and Debusmann, 2001) using a reduction

of hamilton cycle.

120

chapter 9 | Conclusion

�e primary goal of this dissertationwas to connect two research areas in computational

linguistics: the search for grammar formalisms with adequate generative capacity, and

the search for dependency representations with well-balanced structural �exibility. In

this chapter, we summarize our main contributions to this goal, and identify some

avenues for future research.

Summary

In the �rst part of the dissertation, we studied three classes of dependency structures:

projective, block-restricted, and well-nested structures. Each of these classes were

originally de�ned in terms of a structural constraint on dependency graphs. Bridging

the gap between dependency representations and generative grammar, we comple-

mented this graph-based perspective with an algebraic framework that encapsulates

the structural constraints in the composition operations by which dependency graphs

can combine. An important technical result on the way to the algebraic framework was

the encoding of dependency structures into terms over a signature of order annotations
in such a way that the three classes that we considered could be characterized through

the subsets of this signature that are identi�ed by their encodings. With the one-to-one

correspondence between dependency structures and terms, we were able to de�ne

the concept of a dependency algebra and show that these algebras are isomorphic to
their corresponding term algebras. �e relevance of this result is that composition

operations on dependency structures can be simulated by corresponding operations

on terms, which provide us with a well-studied and convenient data structure.

At the end of the �rst part of the dissertation, we put our algebraic framework to use

and classi�ed several lexicalized mildly context-sensitive grammar formalisms with

respect to the dependency structures that they induce. Taking the algebraic approach as

we did, we could formalize the notion of induction as the evaluation of derivations trees

in linearization algebras. We showed the following results:�e class of dependency
structures that is induced by Context-Free Grammar is the class of projective depen-

dency structures. Linear Context-Free Rewriting Systems (lcfrs) induce the class of

block-restricted dependency structures; more speci�cally, the maximal block-degree

of a dependency structure induced by an lcfrs is directly correlated to the measure

of ‘fan-out’ that is used to sub-classify these systems. Adding well-nestedness to the

block-degree restriction corresponds to the step from lcfrs to Coupled Context-Free

Grammar (ccfg). As a special case, the class of well-nested dependency structures

121

9 Conclusion

with a block-degree of at most 2 is exactly the class of dependency structures that is

induced by Tree Adjoining Grammar (tag). With these connections, we have e�ec-

tively quanti�ed the generative capacity of lexicalized grammar formalisms along an

in�nite hierarchy of ever more non-projective dependency structures.�is measure

is attractive as an alternative to string-generative capacity and tree-generative capac-

ity because dependency representations are more informative than strings, but less

formalism-speci�c than parse trees.

�e algebraic perspective on dependency structures also led to e�cient algorithms

for deciding whether a given structure is projective or well-nested, or has a certain

block-degree. We used these algorithms to evaluate the empirical relevance of the

three structural constraints on data from three widely-used dependency treebanks.

�e outcome of these experiments was, that while the class of projective dependency

structures is clearly insu�cient for many practical applications, one only needs to go a

small step beyond projectivity in order to cover virtually all of the data. In particular,

the class of tag-inducible dependency structures covers close to 99.5% of all the

analyses in both the Danish Dependency Treebank (Kromann, 2003) and two versions

of the Prague Dependency Treebank (Hajič et al., 2001, 2006), the largest corpus of

dependency analyses currently available.

In the second part of the dissertation, we developed the theory of regular sets of

dependency structures, or regular dependency languages. Our approach to de�ne the
notion of ‘regularity’ for dependency structures was completely canonical: the regular

dependency languages are the recognizable subsets of dependency algebras in the

sense of Mezei and Wright (1967). By this de�nition, we obtained natural notions of

automata and grammars for dependency structures on the basis of which we were able

to study language-theoretic properties. We proved a powerful pumping lemma for

regular dependency languages, and used it to show that they are semi-linear, a property

also characteristic for mildly context-sensitive languages. As another application of our

pumping lemma, we showed that, under the constraint of regularity, there is a direct

correspondence between block-degree and well-nestedness on the one hand, and string-

generative capacity on the other. More speci�cally, the block-degree parameter induces

an in�nite hierarchy of ever more powerful string languages, and on almost every

level of this hierarchy, the string languages that correspond to well-nested dependency

structures form a strict subclass.

Finally, we investigated the parsing complexity of regular dependency languages.

While the restriction to a �xed block-degree is su�cient to render the parsing problem

polynomial in the length of the input sentence, we found that it does not su�ce for

practical applications: the parsing problem where the size of the grammar is taken into

account is np-complete for unrestricted regular dependency grammars. Interestingly,

the corresponding problem for well-nested grammars is polynomial. Together with

our treebank studies, this results provides further evidence that the well-nestedness

constraint has relevance for practical applications.

122

Outlook

�ere are several aspects of the work reported in this dissertation, both theoretical and

practical, that can be elaborated in future research.

Qualitative evaluation of structural constraints �e treebank evaluation reported in

Chapters 3–5 was a purely quantitative evaluation: we simply counted the struc-

tures that satis�ed or did not satisfy a given structural constraint. While this

was helpful in getting an estimate of the practical relevance of the structural

constraints that we discussed in this dissertation, it would be highly desirable

to complement our results with a qualitative analysis of the treebank data. In

particular, it would be very interesting to see whether there is any systematic

connection between structural constraints and speci�c linguistic phenomena or

typological properties.

MSO-de�nable sets of dependency structures We have characterized regular depen-
dency languages both in terms of algebraic automata and in terms of regular

grammars. For the class of regular term languages, there is another well-known

characterization: a term language is regular if and only if it can be de�ned by a

formula of monadic second-order logic (�atcher and Wright, 1968). It should

be possible to obtain such a characterization even for regular dependency lan-

guages. Based on our de�nition of (expanded) dependency structures, a natural

choice for the atomic predicates of the logic are x � y (governance), x ² y
(precedence), and x ≡z y (congruence).

Unranked dependency languages A major limitation in the practical applicability of
regular dependency languages is the fact that every such language has bounded

out-degree (Lemma 707).�is implies that regular dependency languages cannot

account for phenomena in which a given word accepts an arbitrary number of

modi�ers, such as nouns accept chains of adjectives. It would be interesting to

extend the concept of regularity to sets of unranked trees.�is would require

us to �nd a di�erent algebraic structure for dependency structures, in which

structures can not only combine along a vertical dimension, essentially using

substitution operations, but also along a horizontal dimension, essentially using

concatenation, like in the work of Carme et al., 2004.

Application to parsing Recent work on data-driven dependency parsing has shown
that parsing with unrestricted non-projective dependency graphs is intractable

under all but the simplest probability models (McDonald and Pereira, 2006;

McDonald and Satta, 2007). On the other hand, projective dependency parsers

combine favourably with more complicated models. It would be interesting to

see whether the structural constraints that we have discussed in this dissertation

123

9 Conclusion

can be exploited to obtain e�cient yet well-informed parsing algorithms even

for certain classes of non-projective dependency graphs. An attractive such class

to look at is the class of well-nested dependency structures with a block-degree

of at most 2 . As we mentioned above, this class covers close to 99.5% of the data

in the three treebanks that we evaluated it on. At the same time, we showed that

this class corresponds to the dependency structures induced by Tree Adjoining

Grammar (Section 6.4). �us, it should be possible to tap the literature on

e�cient parsing algorithms for lexicalized tag to develop parsing algorithms for

this class of dependency representations.

124

Bibliography

Abe, Naoki. Feasible learnability of formal grammars and the theory of natural lan-

guage acquisition. In Twel�h International Conference on Computational Linguistics
(coling), pages 1–6, Budapest, Hungary, 1988.
doi: 10.3115/991635.991636. 82

Becker, Tilman, Rambow, Owen, and Niv, Michael. �e derivational generative power

of formal systems, or: Scrambling is beyond lcfrs. ircs Report 92-38, University of

Pennsylvania, Philadelphia, usa, 1992. 86

Bodirsky, Manuel, Kuhlmann, Marco, and Möhl, Mathias. Well-nested drawings as

models of syntactic structure. In Tenth Conference on Formal Grammar and Ninth
Meeting on Mathematics of Language, Edinburgh, uk, 2005. 55 and 82

Boullier, Pierre. On tag parsing. In Traitement Automatique des Langues Naturelles
(taln), pages 75–84, Cargèse, France, 1999. 80

Candito, Marie-Hélène and Kahane, Sylvain. Can the tag derivation tree represent

a semantic graph? An answer in the light of Meaning-Text �eory. In Fourth
Workshop on Tree-Adjoining Grammars and Related Formalisms (tag+4), pages
21–24, Philadelphia, usa, 1998. 5

Carme, Julien, Niehren, Joachim, and Tommasi, Marc. Querying unranked trees with

stepwise tree automata. In van Oostrom, Vincent, editor, Rewriting Techniques and
Applications. 15th International Conference, rta 2004, Aachen, Germany, June 3–5,
2004. Proceedings, volume 3091 of Lecture Notes in Computer Science, pages 105–118.
Springer, 2004.

doi: 10.1007/b98160. 10 and 123

Cormen, �omas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Cli�ord.

Introduction to Algorithms. mit Press, 2nd edition, 2001. 23

Courcelle, Bruno. Basic notions of universal algebra for language theory and graph

grammars. �eoretical Computer Science, 163(1–2):1–54, 1996.
doi: 10.1016/0304-3975(95)00145-X. 84 and 85

Covington, Michael A. A fundamental algorithm for dependency parsing. In 39th
Annual acm Southeast Conference, pages 95–102, Athens, ga, usa, 2001. 34

125

http://dx.doi.org/10.3115/991635.991636
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1016/0304-3975(95)00145-X

Bibliography

Culotta, Aron and Sorensen, Je�rey. Dependency tree kernels for relation extraction.

In 42nd Annual Meeting of the Association for Computational Linguistics (acl), pages
423–429, Barcelona, Spain, 2004.

doi: 10.3115/1218955.1219009. 3

Davey, Brian A. and Priestley, Hilary A. Introduction to Lattices and Order. Cambridge
University Press, 2nd edition, 2001. 13

Denecke, Klaus andWismath, Shelly L.Universal Algebra andApplications in�eoretical
Computer Science. Chapman and Hall/crc, 2001. 13, 87, and 89

Diestel, Reinhard. Graph�eory, volume 173 ofGraduate Texts inMathematics. Springer,
3rd edition, 2005.

url: http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/. 13

Dikovsky, Alexander and Modina, Larissa. Dependencies on the other side of the

curtain. Traitement automatique des langues, 41(1):67–96, 2000. 22, 32, and 51

Duchier, Denys and Debusmann, Ralph. Topological dependency trees: A constraint-

based account of linear precedence. In 39th Annual Meeting of the Association for
Computational Linguistics (acl), pages 180–187, Toulouse, France, 2001.
doi: 10.3115/1073012.1073036. 86 and 120

Eisner, Jason and Satta, Giorgio. E�cient parsing for bilexical context-free grammars

and Head Automaton Grammars. In 37th Annual Meeting of the Association for
Computational Linguistics (acl), pages 457–464, College Park, md, usa, 1999.
doi: 10.3115/1034678.1034748. 4 and 114

Engelfriet, Joost. Bottom-up and top-down tree transformations – a comparison.

�eory of Computing Systems, 9(2):198–231, 1975.
doi: 10.1007/BF01704020. 72 and 90

Engelfriet, Joost and Maneth, Sebastian. Output string languages of compositions of

deterministic macro tree transducers. Journal of Computer and System Sciences, 64
(2):350–395, 2002.

doi: 10.1006/jcss.2001.1816. 72

Engelfriet, Joost, Rozenberg, Grzegorz, and Slutzki, Giora. Tree transducers, L systems,

and two-way machines. Journal of Computer and System Sciences, 20(2):150–202,
1980.

doi: 10.1016/0022-0000(80)90058-6. 113

Frank, Robert. Phrase Structure Composition and Syntactic Dependencies. Number 38
in Current Studies in Linguistics. mit Press, 2002. 5

126

http://dx.doi.org/10.3115/1218955.1219009
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/
http://dx.doi.org/10.3115/1073012.1073036
http://dx.doi.org/10.3115/1034678.1034748
http://dx.doi.org/10.1007/BF01704020
http://dx.doi.org/10.1006/jcss.2001.1816
http://dx.doi.org/10.1016/0022-0000(80)90058-6

Bibliography

Fujiyoshi, Akio and Kasai, Takumi. Spinal-formed context-free tree grammars. �eory
of Computing Systems, 33(1):59–83, 2000.
doi: 10.1007/s002249910004. 82

Gaifman, Haim. Dependency systems and phrase-structure systems. Information and
Control, 8:304–337, 1965. 6, 9, and 32

Gécseg, Ferenc and Steinby, Magnus. Tree languages. In Rozenberg, Grzegorz and Sa-

lomaa, Arto, editors,Handbook of Formal Languages, volume 3, pages 1–68. Springer,
1997. 13, 86, 87, 88, and 91

Gerdes, Kim and Kahane, Sylvain. Word order in German: A formal dependency

grammar using a topological hierarchy. In 39th Annual Meeting of the Association
for Computational Linguistics (acl), pages 220–227, Toulouse, France, 2001.
doi: 10.3115/1073012.1073041. 60

Ginsburg, Seymour and Spanier, Edwin H. Semigroups, Presburger formulas, and

languages. Paci�c Journal of Mathematics, 16(2):285–296, 1966.
url: http://projecteuclid.org/euclid.pjm/1102994974. 102

Goguen, Joseph A.,�atcher, James W., Wagner, Eric G., andWright, Jesse B. Initial

algebra semantics and continuous algebras. Journal of the Association for Computing
Machinery, 24(1):68–95, 1977.
doi: 10.1145/321992.321997. 64

Goldstine, Jonathan. A simpli�ed proof of Parikh’s theorem. Discrete Mathematics, 19
(3):235–239, 1977.

doi: 10.1016/0012-365X(77)90103-0. 99

Gramatovici, Radu and Plátek, Martin. A natural in�nite hierarchy by free-order

dependency grammars. In Information Technologies – Applications and�eory, pages
51–56, Bystrá dolina, Slovak Republic, 2006. 113

Greibach, Sheila. A new normal-form theorem for context-free phrase structure

grammars. Journal of the Association for Computing Machinery, 12(1):42–52, 1965.
doi: 10.1145/321250.321254. 106

Groenink, Annius V. Surface without Structure. Word Order and Tractability Issues in
Natural Language Analysis. PhD thesis, Utrecht University,�e Netherlands, 1997.
 113

Guan, Yonggang. Klammergrammatiken, Netzgrammatiken und Interpretationen von
Netzen. Doctoral dissertation, Saarland University, Saarbrücken, Germany, 1992.
75, 82, and 107

127

http://dx.doi.org/10.1007/s002249910004
http://dx.doi.org/10.3115/1073012.1073041
http://projecteuclid.org/euclid.pjm/1102994974
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1016/0012-365X(77)90103-0
http://dx.doi.org/10.1145/321250.321254

Bibliography

Hajič, Jan, Hladka, Barbora Vidova, Panevová, Jarmila, Hajičová, Eva, Sgall, Petr, and

Pajas, Petr. Prague Dependency Treebank 1.0. Linguistic Data Consortium, 2001T10,

2001. 33 and 122

Hajič, Jan, Panevová, Jarmila, Hajičová, Eva, Sgall, Petr, Pajas, Petr, Štěpánek, Jan,

Havelka, Jiří, and Mikulová, Marie. Prague Dependency Treebank 2.0. Linguistic

Data Consortium, 2006T01, 2006. 33 and 122

Hajičová, Eva, Havelka, Jiří, Sgall, Petr, Veselá, Kateřina, and Zeman, Daniel. Issues of

projectivity in the Prague Dependency Treebank. Prague Bulletin of Mathematical
Linguistics, 81:5–22, 2004. 33 and 38

Havelka, Jiří. Projectivity in totally ordered rooted trees. Prague Bulletin ofMathematical
Linguistics, 84:13–30, 2005. 22, 31, and 61

Havelka, Jiří. Beyond projectivity: Multilingual evaluation of constraints and measures

on non-projective structures. In 45th Annual Meeting of the Association for Compu-
tational Linguistics (acl), pages 608–615, Prague, Czech Republic, 2007a.
url: http://www.aclweb.org/anthology/P/P07/P07-1077.pdf. 4, 34, 38, 50, and 62

Havelka, Jiří. Relationship between non-projective edges, their level types, and well-

nestedness. InHuman Language Technologies:�e Conference of the North American
Chapter of the Association for Computational Linguistics (hlt-naacl), pages 61–64,
Rochester, ny, usa, 2007b.

url: http://www.aclweb.org/anthology/N07-2016. 61

Hays, David G. Grouping and dependency theory. In National Symposium on Machine
Translation, pages 258–266, Englewood Cli�s, ny, usa, 1960. 22

Hays, David G. Dependency theory: A formalism and some observations. Language,
40(4):511–525, 1964.

doi: 10.2307/411934. 3 and 32

Holan, Tomáš, Kuboň, Vladislav, Oliva, Karel, and Plátek, Martin. Two useful measures

ofword order complexity. InWorkshop onProcessing ofDependency-BasedGrammars,
pages 21–29, Montréal, Canada, 1998. 4 and 38

Hotz, Günter andPitsch, Gisela. Onparsing coupled-context-free languages.�eoretical
Computer Science, 161(1–2):205–233, 1996.
doi: 10.1016/0304-3975(95)00114-X. 9, 75, and 120

Hudson, Richard. Word Grammar. Basil Blackwell, Oxford, uk, 1984. 22 and 55

Huybregts, Riny. �e weak inadequacy of context-free phrase structure grammars. In

de Haan, Ger, Trommelen, Mieke, and Zonneveld, Wim, editors, Van periferie naar
kern, pages 81–99. Foris, Dordrecht,�e Netherlands, 1984. 2 and 88

128

http://www.aclweb.org/anthology/P/P07/P07-1077.pdf
http://www.aclweb.org/anthology/N07-2016
http://dx.doi.org/10.2307/411934
http://dx.doi.org/10.1016/0304-3975(95)00114-X

Bibliography

Joshi, Aravind K. Tree Adjoining Grammars: Howmuch context-sensitivity is required

to provide reasonable structural descriptions? In Natural Language Parsing, pages
206–250. Cambridge University Press, 1985. 5, 86, 97, and 116

Joshi, Aravind K. and Schabes, Yves. Tree-Adjoining Grammars. In Rozenberg,

Grzegorz and Salomaa, Arto, editors, Handbook of Formal Languages, volume 3,
pages 69–123. Springer, 1997. 2, 9, 79, and 82

Joshi, Aravind K., Levy, Leon S., and Takahashi, Masako. Tree Adjunct Grammars.

Journal of Computer and System Sciences, 10(2):136–163, 1975. 79

Kahane, Sylvain, Nasr, Alexis, and Rambow, Owen. Pseudo-projectivity: A polyno-

mially parsable non-projective dependency grammar. In 36th Annual Meeting of
the Association for Computational Linguistics and 18th International Conference on
Computational Linguistics (coling-acl), pages 646–652, Montréal, Canada, 1998.
doi: 10.3115/980451.980953. 60

Kallmeyer, Laura. Comparing lexicalized grammar formalisms in an empirically ade-

quate way:�e notion of generative attachment capacity. In International Conference
on Linguistic Evidence, pages 154–156, Tübingen, Germany, 2006. 6 and 82

Kepser, Stephan and Mönnich, Uwe. Closure properties of linear context-free tree

languages with an application to optimality theory. �eoretical Computer Science,
354(1):82–97, 2006.

doi: 10.1016/j.tcs.2005.11.024. 82

Koller, Alexander and Striegnitz, Kristina. Generation as dependency parsing. In 40th
Annual Meeting of the Association for Computational Linguistics (acl), pages 17–24,
Philadelphia, usa, 2002.

doi: 10.3115/1073083.1073088. 120

Kracht, Marcus. �e Mathematics of Language, volume 63 of Studies in Generative
Grammar. Mouton de Gruyter, 2003. 71, 97, 101, and 102

Kromann, Matthias Trautner. �e Danish Dependency Treebank and the underlying

linguistic theory. In Second Workshop on Treebanks and Linguistic�eories (tlt),
pages 217–220, Växjö, Sweden, 2003. 33 and 122

Kromann, Matthias Trautner. Discontinuous Grammar. A Model of Human Parsing and
Language Acquisition. Dr. ling. merc. dissertation, Copenhagen Business School,
Copenhagen, Denmark, 2005.

url: http://www.id.cbs.dk/∼mtk/thesis/. 33

Kruij�, Geert-Jan M. Dependency grammar. In Encyclopedia of Language and Linguis-
tics, pages 444–450. Elsevier, 2nd edition, 2005. 3

129

http://dx.doi.org/10.3115/980451.980953
http://dx.doi.org/10.1016/j.tcs.2005.11.024
http://dx.doi.org/10.3115/1073083.1073088
http://www.id.cbs.dk/~mtk/thesis/

Bibliography

Kunze, Jürgen. Die Auslassbarkeit von Satzteilen bei koordinativen Verbindungen im
Deutschen. Akademie-Verlag, Berlin, Germany, 1972. 32

Lee, Lillian. Fast context-free grammar parsing requires fast Boolean matrix multipli-

cation. Journal of the Association for Computing Machinery, 49(1):1–15, 2002.
doi: 10.1145/505241.505242. 114

Marcus, Solomon. Algebraic Linguistics: Analytical Models, volume 29 ofMathematics
in Science and Engineering. Academic Press, New York, usa, 1967. 20, 21, 22, and 32

McAllester, David. On the complexity analysis of static analyses. Journal of the Associ-
ation for Computing Machinery, 49(4):512–537, 2002.
doi: 10.1145/581771.581774. 116

McDonald, Ryan and Pereira, Fernando. Online learning of approximate dependency

parsing algorithms. In Eleventh Conference of the European Chapter of the Association
for Computational Linguistics (eacl), pages 81–88, Trento, Italy, 2006. 123

McDonald, Ryan and Satta, Giorgio. On the complexity of non-projective data-driven

dependency parsing. In Tenth International Conference on Parsing Technologies
(iwpt), pages 121–132, Prague, Czech Republic, 2007.
url: http://www.aclweb.org/anthology/W/W07/W07-2216. 4, 6, and 123

McDonald, Ryan, Pereira, Fernando, Ribarov, Kiril, and Hajič, Jan. Non-projective

dependency parsing using spanning tree algorithms. In Human Language Technol-
ogy Conference (hlt) and Conference on Empirical Methods in Natural Language
Processing (emnlp), pages 523–530, Vancouver, Canada, 2005.
doi: 10.3115/1220575.1220641. 34 and 55

Mel’čuk, Igor. Dependency Syntax:�eory and Practice. State University of New York
Press, Albany, usa, 1988. 55

Mezei, Jorge E. andWright, Jesse B. Algebraic automata and context-free sets. Infor-
mation and Control, 11(1–2):3–29, 1967.
doi: 10.1016/S0019-9958(67)90353-1. 10, 83, and 122

Michaelis, Jens and Kracht, Marcus. Semilinearity as a syntactic invariant. In Logical
Aspects of Computational Linguistics. First International Conference, lacl 1996, Nancy,
France, September 23–25, 1996. Selected Papers, volume 1328 of Lecture Notes in
Computer Science, pages 329–345. Springer, 1997.
doi: 10.1007/BFb0052165. 101

Möhl, Mathias. Drawings as models of syntactic structure:�eory and algorithms.

Diploma thesis, Saarland University, Saarbrücken, Germany, 2006. 32, 55, 60,

and 61

130

http://dx.doi.org/10.1145/505241.505242
http://dx.doi.org/10.1145/581771.581774
http://www.aclweb.org/anthology/W/W07/W07-2216
http://dx.doi.org/10.3115/1220575.1220641
http://dx.doi.org/10.1016/S0019-9958(67)90353-1
http://dx.doi.org/10.1007/BFb0052165

Bibliography

Mönnich, Uwe. Adjunction as substitution. an algebraic formulation of regular, context-

free, and tree-adjoining languages. In�ird Conference on Formal Grammar, pages
169–178, Aix-en-Provence, France, 1997. 82

Nasr, Alexis. A formalism and a parser for lexicalised dependency grammars. In Fourth
InternationalWorkshop on Parsing Technologies (iwpt), pages 186–195, Prague, Czech
Republic, 1995. 60

Neuhaus, Peter and Bröker, Norbert.�e complexity of recognition of linguistically

adequate dependency grammars. In 35th Annual Meeting of the Association for
Computational Linguistics (acl), pages 337–343, Madrid, Spain, 1997.
doi: 10.3115/979617.979660. 4 and 120

Niehren, Joachim and Podelski, Andreas. Feature automata and recognizable sets

of feature trees. In Gaudel, Marie-Claude and Jouannaud, Jean-Pierre, editors,

tapsoft 1993:�eory and Practice of So�ware Development. Fourth International
Joint Conference caap/fase, Orsay, France, April 13–17, 1993. Proceedings, volume 668
of Lecture Notes in Computer Science, pages 356–375. Springer, 1993.
doi: 10.1007/3-540-56610-4_76. 10

Nivre, Joakim. Constraints on non-projective dependency parsing. In Eleventh Confer-
ence of the European Chapter of the Association for Computational Linguistics (eacl),
pages 73–80, Trento, Italy, 2006a. 4, 34, 39, and 50

Nivre, Joakim. Inductive Dependency Parsing, volume 34 of Text, Speech and Language
Technology. Springer, 2006b. 32

Nivre, Joakim and Nilsson, Jens. Pseudo-projective dependency parsing. In 43rd
Annual Meeting of the Association for Computational Linguistics (acl), pages 99–106,
Ann Arbor, usa, 2005.

doi: 10.3115/1219840.1219853. 34

Nivre, Joakim, Hall, Johan, Kübler, Sandra, McDonald, Ryan, Nilsson, Jens, Riedel,

Sebastian, and Yuret, Deniz.�e Conll 2007 shared task on dependency parsing. In

Joint Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning (emnlp-Conll), pages 915–932, Prague, Czech
Republic, 2007.

url: http://www.aclweb.org/anthology/D/D07/D07-1096. 3

Ogden,William. A helpful result for proving inherent ambiguity. Mathematical Systems
�eory, 2(3):191–194, 1968.
doi: 10.1007/BF01694004. 93

131

http://dx.doi.org/10.3115/979617.979660
http://dx.doi.org/10.1007/3-540-56610-4_76
http://dx.doi.org/10.3115/1219840.1219853
http://www.aclweb.org/anthology/D/D07/D07-1096
http://dx.doi.org/10.1007/BF01694004

Bibliography

Parikh, Rohit J. On context-free languages. Journal of the Association for Computing
Machinery, 13(4):570–581, 1966.
doi: 10.1145/321356.321364. 10, 97, and 99

Pericliev, Vladimir and Ilarionov, Ilarion. Testing the projectivity hypothesis. In Sixth
International Conference on Computational Linguistics (coling), pages 56–58, Bonn,
Germany, 1986.

doi: 10.3115/991365.991380. 32 and 34

Pullum, Geo�rey K. and Scholz, Barbara C. Contrasting applications of logic in

natural language syntactic description. In Twel�h International Congress on Logic,
Methodology and Philosophy of Science, pages 481–503, London, uk, 2005. 1

Quirk, Chris, Menezes, Arul, and Cherry, Colin. Dependency treelet translation:

Syntactically informed phrasal smt. In 43rd Annual Meeting of the Association for
Computational Linguistics (acl), pages 271–279, Ann Arbor, usa, 2005.
doi: 10.3115/1219840.1219874. 3

Rambow, Owen. Formal and Computational Aspects of Natural Language Syntax. PhD
thesis, University of Pennsylvania, Philadelphia, usa, 1994.

url: http://wwwlib.umi.com/dissertations/fullcit/9427601. 88

Rambow, Owen and Satta, Giorgio. A two-dimensional hierarchy for parallel rewriting

systems. Technical Report ircs-94-02, University of Pennsylvania, Philadelphia,

usa, 2004. 113

Raoult, Jean-Claude. Rational tree relations. Bulletin of the Belgian Mathematical
Society, 4:149–176, 1997. 75

Robinson, Jane J. Dependency structures and transformational rules. Language, 46(2):
259–285, 1970.

doi: 10.2307/412278. 22

Rosenkrantz, Daniel J. Matrix equations and normal forms for context-free grammars.

Journal of the Association for Computing Machinery, 14(3):501–507, 1967.
doi: 10.1145/321406.321412. 106

Satta, Giorgio. Recognition of Linear Context-Free Rewriting Systems. In 30th Annual
Meeting of the Association for Computational Linguistics (acl), pages 89–95, Newark,
de, usa, 1992.

doi: 10.3115/981967.981979. 68, 117, and 119

Schabes, Yves. Mathematical and Computational Aspects of Lexicalized Grammars. PhD
thesis, University of Pennsylvania, Philadelphia, usa, 1990.

url: http://wwwlib.umi.com/dissertations/fullcit/9101213. 106

132

http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.3115/991365.991380
http://dx.doi.org/10.3115/1219840.1219874
http://wwwlib.umi.com/dissertations/fullcit/9427601
http://dx.doi.org/10.2307/412278
http://dx.doi.org/10.1145/321406.321412
http://dx.doi.org/10.3115/981967.981979
http://wwwlib.umi.com/dissertations/fullcit/9101213

Bibliography

Schabes, Yves, Abeillé, Ann, and Joshi, Aravind K. Parsing strategies with ‘lexicalized’

grammars: Application to Tree Adjoining Grammars. In Twel�h International Con-
ference on Computational Linguistics (coling), pages 578–583, Budapest, Hungary,
1988.

doi: 10.3115/991719.991757. 5, 79, and 114

Seki, Hiroyuki, Matsumura, Takashi, Fujii, Mamoru, and Kasami, Tadao. On Multiple

Context-Free Grammars. �eoretical Computer Science, 88(2):191–229, 1991.
doi: 10.1016/0304-3975(91)90374-B. 75, 107, and 113

Shieber, StuartM. Evidence against the context-freeness of natural language. Linguistics
and Philosophy, 8(3):333–343, 1985.
doi: 10.1007/BF00630917. 2 and 88

Shieber, Stuart M., Schabes, Yves, and Pereira, Fernando. Principles and implementa-

tion of deductive parsing. Journal of Logic Programming, 24(1–2):3–36, 1995.
doi: 10.1016/0743-1066(95)00035-I. 115

Simion, Rodica. Noncrossing partitions. Discrete Mathematics, 217(1–3):367–409,
2000.

doi: 10.1016/S0012-365X(99)00273-3. 57

Sleator, Daniel and Temperley, Davy. Parsing English with a Link Grammar. Technical

report, Carnegie Mellon University, Pittsburgh, usa, 1991.

url: http://arxiv.org/abs/cmp-lg/9508004v1. 55

Sleator, Daniel and Temperley, Davy. Parsing English with a Link Grammar. In�ird
International Workshop on Parsing Technologies (iwpt), pages 277–292, Tilburg,�e
Netherlands, and Durbuy, Belgium, 1993. 54

Sloane, Neil J. A. �e on-line encyclopedia of integer sequences, 2007.

url: http://www.research.att.com/∼njas/sequences/. 55 and 62

Tesnière, Lucien. Éléments de syntaxe structurale. Klinksieck, Paris, France, 1959. 3

Tesnière, Lucien. Grundzüge der strukturalen Syntax. Klett-Cotta, Stuttgart, Germany,
1980. 3

�atcher, James W. and Wright, Jesse B. Generalized �nite automata theory with an

application to a decision problem of second-order logic. Mathematical Systems
�eory, 2(1):57–81, 1968.
doi: 10.1007/BF01691346. 10 and 123

van Vugt, Nikè. Generalized context-free grammars. Master’s thesis, Universiteit

Leiden,�e Netherlands, 1996. 75 and 113

133

http://dx.doi.org/10.3115/991719.991757
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1016/0743-1066(95)00035-I
http://dx.doi.org/10.1016/S0012-365X(99)00273-3
http://arxiv.org/abs/cmp-lg/9508004v1
http://www.research.att.com/~njas/sequences/
http://dx.doi.org/10.1007/BF01691346

Bibliography

Veselá, Kateřina, Havelka, Jiří, and Hajičová, Eva. Condition of projectivity in the un-

derlying dependency structures. In 20th International Conference on Computational
Linguistics (coling), pages 289–295, Geneva, Switzerland, 2004.
doi: 10.3115/1220355.1220397. 4 and 22

Vijay-Shanker, K., Weir, David J., and Joshi, Aravind K. Characterizing structural

descriptions produced by various grammatical formalisms. In 25th Annual Meeting
of the Association for Computational Linguistics (acl), pages 104–111, Stanford, ca,
usa, 1987.

doi: 10.3115/981175.981190. 9 and 68

Weir, David J. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania, Philadelphia, usa, 1988.

url: http://wwwlib.umi.com/dissertations/fullcit/8908403. 9, 68, and 113

Weir, David J. Linear context-free rewriting systems and deterministic tree-walking

transducers. In 30th Annual Meeting of the Association for Computational Linguistics
(acl), pages 136–143, Newark, de, usa, 1992.
doi: 10.3115/981967.981985. 75

Yli-Jyrä, Anssi. Multiplanarity – a model for dependency structures in treebanks. In

Second Workshop on Treebanks and Linguistic�eories (tlt), pages 189–200, Växjö,
Sweden, 2003. 4 and 55

Zeman, Daniel. Parsing with a Statistical Dependency Model. PhD thesis, Charles
University, Prague, Czech Republic, 2004. 34 and 38

134

http://dx.doi.org/10.3115/1220355.1220397
http://dx.doi.org/10.3115/981175.981190
http://wwwlib.umi.com/dissertations/fullcit/8908403
http://dx.doi.org/10.3115/981967.981985

	Introduction
	Motivation
	Overview of the dissertation

	Preliminaries
	Projective dependency structures
	Projectivity
	Algebraic framework
	Algorithmic problems
	Empirical evaluation

	Dependency structures of bounded degree
	The block-degree measure
	Algebraic framework
	Algorithmic problems
	Empirical evaluation

	Dependency structures without crossings
	Weakly non-projective dependency structures
	Well-nested dependency structures
	Empirical evaluation

	Structures and grammars
	Context-free grammars
	Linear Context-Free Rewriting Systems
	Coupled Context-Free Grammars
	Tree Adjoining Grammar

	Regular dependency languages
	Regular sets of dependency structures
	Pumping lemmata
	Constant growth

	Generative capacity and parsing complexity
	Projection of string languages
	String languages and structural properties
	Parsing complexity

	Conclusion
	Bibliography

