
Analysis of Communication
Topologies by Partner

Abstraction

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften (Dr.-Ing.) der
Naturwissenschaftlich-Technischen Fakultäten der

Universität des Saarlandes

von
Diplom-Informatiker

Jörg Bauer

Saarbrücken
September 2006

ii

Tag des Kolloquiums: 13.12.2006

Dekan: Prof. Dr.-Ing. Thorsten Herfet

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Holger Hermanns
Universität des Saarlandes, Saarbrücken

Gutachter: Prof. Dr. Reinhard Wilhelm
Universität des Saarlandes, Saarbrücken

Prof. Dr. Werner Damm
Carl von Ossietzky Universität, Oldenburg

Prof. Dr. Arend Rensink
University of Twente, Enschede

Akademischer
Mitarbeiter: Dr. Jan Schwinghammer

Abstract

Dynamic communication systems are hard to verify due to inherent un-
boundedness. Unbounded creation and destruction of objects and a dynam-
ically evolving communication topology are characteristic features. Promi-
nent examples include traffic control systems based on wireless communi-
cation and ad hoc networks. As dynamic communication systems have to
meet safety-critical requirements, this thesis develops appropriate specifica-
tion and verification techniques for them. It is shown that earlier attempts
at doing so have failed.

Partner graph grammars are presented as an adequate specification for-
malism for dynamic communication systems. They form a novel variant
of the single pushout approach to algebraic graph transformation equipped
with a special kind of negative application conditions: Partner constraints
that allow to reason about communication partners are specifically tailored
to dynamic communication systems.

A novel verification technique based on abstract interpretation of partner
graph grammars is proposed. It is based on a two-layered abstraction that
keeps precise information about objects and the kinds of their communication
partners. The analysis is formally proven sound. Some statically checkable
cases are defined for which the analysis results are even complete.

The analysis has been implemented in the hiralysis tool. A complex
case study – car platooning originally developed in the California PATH
project – is modeled using partner graph grammars. An experimental eval-
uation using the tool discovered many flaws in the PATH specification of
car platooning that had not been discovered earlier due to insufficient spec-
ification and verification methods. Many interesting properties can be au-
tomatically proven for a corrected implementation of car platooning using
hiralysis.

iii

iv

Zusammenfassung

Aufgrund ihres unbeschränkten Verhaltens sind dynamisch kommunizie-
rende Systeme schwierig zu verifizieren. Sie zeichnen sich durch unbegrenztes
Erzeugen und Zerstören von Objekten sowie eine sich ständig ändernde Kom-
munikationstopologie aus. Funkbasierte Verkehrskontrollsysteme und draht-
lose Ad-hoc Netzwerke sind bekannte Beispiele dynamisch kommunizierender
Systeme. Da diese außerdem sicherheitskritischen Anforderungen genügen
müssen, werden in dieser Arbeit Spezifikations- und Verifikationsmethoden
für dynamisch kommunizierende Systeme entwickelt. Es wird gezeigt, dass
frühere Versuche in dieser Richtung fehlgeschlagen sind.

Partner-Graphgrammatiken stellen einen geeigneten Formalismus zur Be-
schreibung solcher Systeme dar. Sie bilden eine neue Form des “single
pushout” Ansatzes für algebraische Graphtransformationen erweitert um be-
sondere negative Anwendungsbedingungen. “Partner constraints”, die spe-
ziell für die Spezifikation dynamisch kommunizierender Systeme entwickelt
wurden, erlauben, Nebenbedingungen an Objekte und ihre Kommunikations-
partner zu formulieren.

Es wird eine neuartige Verifikationstechnik vorgeschlagen, die auf der
abstrakten Interpretation von Partner-Graphgrammatiken beruht. Diese
fußt auf einer Abstraktion, die präzise Informationen über Objekte und ihre
Kommunikationspartner erhält. Die Analyse wird korrekt bewiesen, und
es werden statisch erkennbare Fälle aufgezeigt, in denen die Analyse sogar
vollständige Resultate liefert.

Die Analyse wurde in dem hiralysis Werkzeug implementiert. Eine
komplexe Fallstudie – “car platooning”, welche ursprünglich im Rahmen des
California PATH Projektes entwickelt wurde – wird durch Partner-Graph-
grammatiken modelliert. Eine experimentelle Auswertung mithilfe des Werk-
zeugs deckte zahlreiche Fehler in der ursprünglichen Modellierung auf, welche
ihre Ursache in unzureichenden Spezifikations- und Verifikationsmethoden
haben. Viele interessante Eigenschaften eines verbesserten Modells konnten
mittels hiralysis automatisch bewiesen werden.

v

vi

Extended Abstract

This thesis deals with the specification and verification of dynamic commu-
nication systems. Such systems are pervasive; traffic-control systems based
on wireless communication and ad hoc networks are prominent examples of
them. They have to meet safety-critical requirements. They are hard to
verify, though, because they consist of an unbounded and constantly chang-
ing number of objects. Moreover, communication links among these objects
are constantly changing, i.e., there is an evolving communication topology.
The goal of this thesis is thus to specify dynamically evolving communication
topologies and to specify and verify properties of them.

A running example used throughout this thesis is based on car platoon-
ing maneuver protocols as they were defined in the context of the California
PATH project. This project is concerned with maximizing traffic throughput
on highways, while, at the same time, reducing energy costs by exploiting
driving in slipstreams. Cars heading for the same direction are supposed to
drive close to each other, in order to meet these goals. Such a set of closely
spaced cars is called a platoon. Platoons can perform maneuvers like merg-
ing or splitting. Platoon maneuver protocols were designed within PATH.
However, it will be shown, that both the specification and the verification of
platoon maneuver protocols in the original PATH project are inappropriate
and erroneous, because many features typical of a dynamic communication
system were not considered.

A new formalism for the specification of dynamic communication systems,
in particular car platoon maneuver protocols, is proposed in this thesis. It is
called partner graph grammars, because

• It is a variant of the single pushout approach to algebraic graph trans-
formation.

• The notion of partners is employed to develop a novel kind of negative
application conditions: partner constraints.

The partners of an object are those objects to which it has communication
links. It is conjectured that the possible behavior of an object is determined

vii

viii

by the state of the object itself and the states of its partners. This observa-
tion is exploited by the newly developed concept of partner constraints. As a
part of a partner graph grammar, a partner constraint restricts the applica-
bility of a graph transformation rule by constraining the possible partners of
objects. This feature proves essential for modeling dynamic communication
systems. Compared to general negative application conditions, it is less ex-
pressive. On the other hand, it is tailored to the application domain and still
amenable to formal verification. The usefulness of partner graph grammars
is demonstrated by augmenting the standard platoon maneuver protocols by
features like message queues or unreliable communication links. In order to
formally express properties of partner graph grammars, a new logic, GL, is
developed. All interesting properties of partner graph grammars in general
and of the platoon example in particular are expressible in GL.

Apart from the specification of dynamic communication systems and their
properties, this thesis is also concerned with their verification. Technically,
the verification amounts to an abstract interpretation of partner graph gram-
mars. It is based on the notion of partner abstraction. Partner abstraction
is a novel, two-layered abstraction based on the notion of partner equiva-
lence. Just like partner constraints, partner equivalence is motivated by the
observation about the behavior of an object being determined by the object
itself and its communication partners. Two objects are considered partner
equivalent, if they are in the same state and if the sets of states of their com-
munication partners are equal. This means that partner equivalent objects
will show an equal behavior.

Partner abstraction based abstract interpretation allows to statically com-
pute a sound over-approximation of all possible communication topologies
that can be generated by a partner graph grammar. Furthermore, statically
checkable criteria are given, when an analysis result is even complete. Com-
pleteness results can be established for at least some of the platoon maneuver
protocol implementations. Finally, strong property preservation results are
obtained. They make statements about which properties of a partner graph
grammar – specified in GL – are preserved in the abstract interpretation of
the partner graph grammar.

Partner abstraction based abstract interpretation of partner graph gram-
mars has been implemented in the hiralysis tool. It is used to perform an
experimental evaluation of the platoon maneuver protocols. With the help of
the tool, a number of flaws in the PATH specification are discovered, correct
versions are developed and proven correct.

Ausführliche Zusammenfassung

Diese Arbeit behandelt die Spezifikation und Verifikation dynamisch kom-
munizierender Systeme. Diese Systeme sind allgegenwärtig. Funkbasierte
Verkehrskontrollsysteme und drahtlose Ad-hoc Netzwerke sind nur zwei Bei-
spiele. Häufig müssen sie sicherheitsrelevanten Anforderungen genügen. Dy-
namisch kommunizierende Systeme sind jedoch schwierig zu verifizieren, da
sich sowohl die Anzahl der Objekte innerhalb eines Systems als auch die
Kommunikationsverbindungen zwischen Objekten ständig ändern und von
unbeschränkter Größe sind. Ziel dieser Arbeit ist deshalb, sich dynamisch
ändernde Kommunikationstopologien und ihre Eigenschaften formal zu spez-
ifizieren und zu verifizieren.

Protokolle für Platoon-Manöver, wie sie im Rahmen des California PATH
Projektes definiert wurden, bilden die wesentliche Fallstudie dieser Arbeit.
Das PATH Projekt strebt eine Optimierung des Verkehrsflusses auf Autobah-
nen bei gleichzeitig geringerem Energieverbrauch durch Windschattenfahren
an. Dies wird durch Kolonnenbildung erreicht, wobei Kolonnen als Platoons
bezeichnet werden. Platoons können sich vereinen und teilen. Protokolle für
diese Abläufe wurden im Rahmen von PATH entwickelt. Es zeigt sich je-
doch, dass sowohl die Spezifikation als auch die Verifikation dieser Protokolle
unangemessen und fehlerbehaftet ist, da viele typische Merkmale dynamisch
kommunizierender Systeme außer Acht gelassen werden.

In dieser Arbeit wird ein neuer Ansatz zur Spezifikation und Verifika-
tion dynamisch kommunizierender Systeme vorgeschlagen. Er heißt Partner-
Graphgrammatik, weil

• er eine besondere Form einer Graphgrammatik, sprich des “single push-
out” Ansatzes für algebraische Graphtransformationen, ist.

• der Begriff des Partners genutzt wir, um eine neue Form negativer
Anwendungsbedingungen, “partner constraints”, zu entwickeln.

Die Partner eines Objektes sind diejenigen, mit denen es kommuniziert. Das
Verhalten eines Objektes wird von seinem eigenen und dem Zustand seiner

ix

x

Partner bestimmt. Auf Spezifikationsseite wird dies durch “partner con-
straints” ausgenutzt. Als Teil einer Partner-Graphgrammatik beschränken
solche Nebenbedingungen die Anwendbarkeit von Transformationsregeln, was
durch Anforderungen an die Partner von Objekten erreicht wird. Dies ist von
herausragender Bedeutung für die Benutzbarkeit von Partner-Graphgram-
matiken. Trotz geringerer Ausdrucksstärke im Vergleich zu allgemeinen neg-
ativen Anwendungsbedingungen, sind “partner constraints” ideal zur Spez-
ifikation dynamisch kommunizierender Systeme und gleichzeitig zugänglich
für formale Verifikation. Die Nützlichkeit von Partner-Graphgrammatiken
wird durch die Erweiterung der Platoon Fallstudie um explizite Nachricht-
enwarteschlangen und fehleranfällige Kommunikationsverbindungen demon-
striert. Eine neue Logik, GL, wird entwickelt, um Eigenschaften von Partner-
Graphgrammatiken formal aufzuschreiben. Alle interessanten Eigenschaften
von Partner-Graphgrammatiken im Allgemeinen und von Platoons im Beson-
deren sind in GL ausdrückbar.

Neben der Spezifikation dynamisch kommunizierender Systeme befasst
sich diese Arbeit auch mit ihrer Verifikation. Technisch läuft dies auf ab-
strakte Interpretation von Partner-Graphgrammatiken hinaus. Diese basiert
auf Partnerabstraktion, welche eine neuartige, zweistufige Abstraktion defi-
niert. Diese beruht ihrerseits auf dem Begriff der Partneräquivalenz. Genau
wie bei “partner constraints” macht man sich das Prinzip zunutze, dass
das Verhalten eines Objekts von seinem eigenen und dem Zustand seiner
Partner bestimmt wird. Zwei Objekte heißen partneräquivalent, wenn sie
im selben Zustand sind, und wenn die Mengen der Zustände ihrer Partner
übereinstimmen.

Mithilfe abstrakter Interpretation beruhend auf Partnerabstraktion kann
eine korrekte Überapproximation aller möglichen Kommunikationstopologien
einer Partner-Graphgrammatik statisch berechnet werden. Zudem werden
statisch überprüfbare Bedingungen angegeben, unter denen eine abstrakte
Interpretation sogar vollständig ist. Vollständigkeitsresultate können zu-
mindest für manche der Platoonimplementierungen nachgewiesen werden.
Schließlich werden in dieser Arbeit Sätze über die Erhaltung von in GL
aufgeschriebenen Eigenschaften bewiesen. Diese Sätze machen Aussagen
darüber welche Eigenschaften konkreter Partner-Graphgrammatiken von der
abstrakten Interpretation erhalten werden.

Die abstrakte Interpretation von Partner-Graphgrammatiken ist in dem
hiralysis Werkzeug realisiert worden. Mithilfe dieses Werkzeugs wird eine
experimentelle Auswertung der Platoon Protokolle vorgenommen. Dadurch
wurden zahlreiche Fehler in der ursprünglichen PATH Spezifikation aufge-
deckt, sowie korrekte Protokolle entwickelt und als korrekt bewiesen.

Acknowledgement

First of all, I need to thank my advisor, Reinhard Wilhelm, for giving me
the opportunity to do research under his guidance. This thesis would not
have been possible without him. In particular, I want to thank him for his
support during the hard times, for getting introduced to many interesting
people, and for letting me participate in interesting Dagstuhl seminars.

I want to thank Mooly Sagiv for inviting me to Tel Aviv and for joined
research that used to be as intense as running with him. Among Mooly’s
students, I would like to thank Noam and Greta.

My research did not really kick-off, until I got involved in the AVACS
project that supported me with grants. There, I met Bernd and Tobe who
have been my closest collaborators for almost three years. Also, we discovered
the much appreciated platoon case study. Ina used to support us in the S2
project, but decided to leave it too early. Also, I want to thank the remaining
crew of S2.

I want to express my gratitude to Hanne Riis Nielson and Flemming Niel-
son for taking care of my scientific life before and after the time at Reinhard
Wilhelm’s chair.

Finally, my thanks go to the reviewers of this thesis for reading the result
of my efforts.

There is a life beside research, so I thank my family for lifelong support.
Many people made my time at this chair worthwhile. Christian Probst gave
me a hearty welcome and remained a friend throughout. Thanks to Dante,
DaWall, Eiermatz, FunkyBunch, Magic, and Mari I enjoyed hilarious lunch
breaks for most of the time. Sewi and Taker deserve my thanks for demanding
badminton session, whereas most of the BB crew has been mentioned.

Last but not least, I want to express my utmost gratitude to Eva. She
knows why.

xi

xii

Contents

1 Introduction 1
1.1 A Problem . 2
1.2 . . . and its Solution . 4

2 Specification of Evolving Graphs 7
2.1 Partner Graph Grammars . 7

2.1.1 Multisets . 8
2.1.2 Graph Preliminaries 8
2.1.3 Transformation Rules 11
2.1.4 Partner Constraints . 16
2.1.5 Partner Graph Grammars 18
2.1.6 Special Cases and Shorthands 20

2.2 GL: Reasoning about Graph Grammars 25
2.3 Relation to Algebraic Graph Transformation 30

3 Case Studies 35
3.1 Car Platooning . 36

3.1.1 Idealized Platoons . 40
3.1.2 Asynchronous Communication 47
3.1.3 Faulty Channels . 56

3.2 Further Applications . 59

4 Partner Abstraction 63
4.1 Abstract Interpretation . 63

4.1.1 Introduction to Abstract Interpretation 64
4.1.2 Partner Abstraction of Single Graphs 66
4.1.3 Materialization . 74
4.1.4 Abstract Matches . 76
4.1.5 Abstract Transformers 82

4.2 Abstract Transition Systems 85
4.2.1 Cluster Evolution . 85

xiii

xiv CONTENTS

4.2.2 Node Evolution . 87
4.3 Completeness Results . 89

4.3.1 Completeness Notions 90
4.3.2 Friendly Systems . 91
4.3.3 Cluster Completeness 93
4.3.4 Decidability of the Word Problem 103

4.4 Property Preservation . 104
4.4.1 Property Preservation and Partner Abstraction 105
4.4.2 Invariants . 106
4.4.3 Extensions . 108

4.5 Evaluation of Case Studies . 109
4.5.1 Implementation: hiralysis 110
4.5.2 Car Platooning . 113
4.5.3 Experiences . 118

4.6 Extensions . 120
4.6.1 Counting Clusters . 121
4.6.2 Generalized Clusters 124

5 Related Work 129

6 Conclusion 135
6.1 Contribution . 135
6.2 Outlook . 138

A Proofs 141

B Tool Samples 159

Chapter 1

Introduction

This thesis solves the problem of specification and verification of dynamic
communication systems. In the beginning, it is elaborated on what dynamic
communication systems are and why they and their properties are hard to
specify. Once specified, properties of dynamic communication systems are
very hard to verify, too. The application domain of dynamic communication
systems is illustrated by a complex case study originally developed in the
California PATH project. The achievements of this thesis are strengthened by
the fact, that the PATH project could neither satisfactorily specify nor verify
this particular case study. In contrast, this thesis presents a solution in terms
of a novel specification formalism, a novel formalism for specifying properties
of dynamic communication systems, and a novel verification technique. On
top of that, the verification technique is implemented and proven useful by
a number of experiments.

Dynamic communication systems are characterized by an unbounded
number of dynamically created, stateful, linked objects. Other prominent
examples of such systems are heap manipulating programs, distributed algo-
rithms, and ad-hoc networks. The latter example is in fact an instance of
a dynamic communication system, because it exhibits all the characterizing
features:

1. Disappearance and unbounded creation of objects.

2. Wireless, unreliable communication among objects.

3. A dynamically evolving communication topology.

In contrast, heap-manipulating programs are mostly characterized by (1,3)
and hardly by (2), whereas distributed algorithms are not so much depen-
dent on (1). Moreover, state changes in heap-manipulating programs or

1

2 CHAPTER 1. INTRODUCTION

distributed algorithms happen in a much more disciplined manner compared
to dynamic communication systems.

A communication topology of a dynamic communication system is a global
state of the system. It describes all the objects currently present in the system
and their interconnections. Each object itself has a local state. Changes to
the communication topology happen frequently during a run of a dynamic
communication system. They are caused by communication among objects,
local computations by objects, appearances of new objects, disappearances
of existing objects, or creation and destruction of communication links.

The semantics of a dynamic communication system is described as a tran-
sition system, where transitions occur between communication topologies. A
more abstract semantics, later called the graph semantics, abstracts from the
transitions and merely collects all communication topologies that may occur
during any run of a dynamic communication system.

Properties (1), (2), and (3) inflict major problems on both the specifica-
tion and the verification of dynamic communication systems. The semantics
of a dynamic communication system will typically be a transition system
of infinite size. Even worse, there will mostly be no a priori bound on the
size of each communication topology within the transition system. This the-
sis presents a novel technique that addresses both the specification and the
verification of dynamic communication systems.

1.1 A Problem . . .

The running example used throughout this thesis presents a prototypical
instance of a dynamic communication system. It is taken from the California
PATH project [HESV91], the relevant part of which is concerned with cars
driving on a highway. In order to make better use of the given space, cars
heading for the same direction are supposed to drive very close to each other
building platoons. Platoons can perform actions like merging or splitting.

Note that in the context of platoons, the general term communication
link is often replaced by the term channel, because the latter is used in the
original PATH specification of platoon maneuvers. A platoon consists of a
leader, the foremost car, along with a number of followers. A leader without
any followers is called free agent and is considered a special platoon. Within
a platoon there are channels between the leader and each of its followers.
Inter-platoon communication occurs only between leaders.

As an example of a maneuver involving two platoons, consider the platoon
merge maneuver. It allows two approaching platoons to merge. The merge

1.1. A PROBLEM . . . 3

rl

fa

B

fa
A

ldr

flw flw

D

fa

F

flw

flw

flw

flw

flw

flw

flw

flw

fl

E

ldrC

Fig. 1.1: The representation of a communication topology as directed, node-
labeled graph, where the label of a node is written inside the node. The node
label represents the local state of an object, here a car. The labels used here
stand for free agent (fa), leader (ldr), follower (flw), rear leader (rl), and front
leader (fl). Subgraphs A, B, and F represent platoons of one free agent each.
C and D represent platoons of three and four cars, respectively, whereas E
depicts a snapshot during a merge maneuver.

maneuver is initiated by opening a channel between two distinct platoon
leaders, i.e., leaders or free agents. Then, the rear leader passes its followers,
if any, one by one to the front leader. Finally, when there are no followers
left to the rear leader, it becomes itself a follower to the front leader.

A communication topology as it may occur during a run of the platoon
dynamic communication system is depicted in Figure 1.1. Examples of in-
teresting properties that could be investigated in the platoon case study are
the following: Are there two cars that consider each other to be their leader?
Will a merge maneuver always terminate? If a merge maneuver terminates,
will it yield the right result? Do cars always have one unique leader, unless
they are free agents? Does the merge protocol work in the presence of faulty
channels? These properties will be addressed and verified later on.

In contrast, all the specification and verification methods developed in
[HESV91] are inappropriate, because they consider static scenarios with a
fixed number of cars and only limited concurrency. This will be dwelled
on at each recurrence of the case study, which will be stated formally in
Section 3.1. The failure of a big project like PATH to develop appropriate
methods for dealing with dynamic communication systems stresses both the
complexity of the problem and the achievements of this work.

4 CHAPTER 1. INTRODUCTION

1.2 . . . and its Solution

So far, the goal of this thesis has been formulated in terms of dynamic com-
munication systems, i.e., application driven. This section states the problem
on a more technical level. At the same time, it indicates some solutions and
presents an outline of the thesis.

Chapter 2 introduces a novel specification technique for dynamic com-
munication systems. Communication topologies are naturally interpreted as
node- and edge-labeled, directed graphs. Changes to the communication
topology can thus be naturally described as the application of a graph trans-
formation rule. Such a rule consists of a left graph and a right graph. If the
left graph is found in some graph G the application of a rule replaces the
occurrence of the left graph by the right graph. A set of such rules combined
with an initial graph defines a graph grammar. Graph grammars have a rich
underlying theory, and [Roz97] is a good starting point for further reading.

This thesis defines a new kind of graph grammar, a partner graph gram-
mar. It is named after its distinguishing feature: partner constraints. Partner
constraints are a special instance of negative application conditions used in
standard graph grammars. They augment left graphs of transformation rules
and restrict the applicability of the rule by explicitly stating conditions, when
a rule shall not be applied. Partner constraints restrict the applicability of
rules by putting constraints on the adjacent nodes of nodes occurring in left
graphs of transformation rules. In other words, they constrain the possi-
ble communication partners of an object, making them an ideal tool for the
application domain of dynamic communication systems.

Although negative application conditions are not novel, partner con-
straints present a restricted instance of them, that has great expressive power
and is at the same time amenable to formal verification. Graph grammars
become hardly usable, if they lack any kind of negative application condi-
tions as is the case for the competing technique proposed in [RD06]. Other
advantages of partner graph grammars include their constructive definition
and their ease of use as compared to standard graph grammars. The rela-
tion of partner graph grammars and standard graph grammars is clarified in
Section 2.3.

A new logic, GL, is developed, in order to formally express sophisticated
properties of partner graph grammars. All properties of the case studies are
expressible and are in fact expressed in this logic. Technically, it is based on
the computation tree logic CTL, which is augmented with novel features to
conveniently reason about partner graph grammars.

Chapter 3 formally states the platoon case study in terms of partner

1.2. . . . AND ITS SOLUTION 5

graph grammars. Additionally, the inappropriateness of the original platoon
specification and verification within the PATH project is uncovered. The
platoon scenario is extended by adding features like asynchronous commu-
nication based on message queues and the possibility of unreliable channels.
Partner graph grammars lend themselves to the specification of applications
from domains other than pure dynamic communication systems. This issue is
elaborated on in Section 3.2, where also the limits of partner graph grammar
based specification and verification are conceded.

Chapter 4 constitutes the technical core and the major contributions of
this thesis. In the beginning, it defines a static analysis of partner graph
grammars based on the technique of abstract interpretation [CC77, CC79].
Abstract interpretation has been applied in many domains. Originally de-
veloped for static program analysis, it has now been applied to such diverse
fields as worst-case execution time determination [FH05] or systems biology
[NNP04].

As partner graph grammars yield a semantics of unbounded size, abstrac-
tion needs to be applied to make provably correct statements about them.
More precisely, the abstract interpretation proposed here statically computes
an over-approximation of bounded size of the graph semantics of a given part-
ner graph grammar. The graph semantics of a partner graph grammar is the
set of all graphs that are generated by the grammar. The over-approximation
is called the abstract graph semantics of the partner graph grammar. Recall
that the graph semantics is the set of all graphs that can be generated by a
partner graph grammar. The analysis is proven to be sound.

The abstract interpretation is based on a novel two-layered abstraction
of graphs called partner abstraction – the abstraction twin of partner con-
straints that are used for specification. Partner abstraction itself is based
on partner equivalence. From a dynamic communication system’s point of
view, two objects are considered equal, if they are in the same state and if
the sets of states of their communication partners are equal to each other.
This information determines the successor state of an object within a com-
munication topology making partner equivalence the ideal abstraction for the
analysis of dynamic communication systems. Technically, the first layer of
abstraction is quotient graph building wrt. partner equivalence per connected
component of a graph. The second layer of abstraction summarizes all con-
nected components that are isomorphic after the first abstraction step. This
is motivated by the fact, that objects that are not even indirectly connected
by communication links cannot influence each others’ behavior.

After the definition of abstract graphs, updates on abstract graphs need
to be defined. This requires the notion of an abstract match, where a match

6 CHAPTER 1. INTRODUCTION

determines whether the left graph of a rule matches another graph. As nodes
are summarized to obtain abstract graphs, abstract matches must be different
from concrete matches. A central theorem of this work identifies cases, where
abstract matches are in fact equivalent to concrete matches. More precisely,
in these cases a rule matches an abstract graph Ĝ, if and only if it matches
all graphs G that have Ĝ as their abstraction.

Based on the matching theorem, the notion of completeness of an abstract
graph semantics is defined in Section 4.3. Informally, an analysis is complete,
if it does not lose any relevant information. The corresponding theorem
is a major achievement. It provides statically checkable sufficient criteria
for the completeness of an abstract graph semantics. These completeness
results are surprising and could not have been expected before, considering
the complexity of partner graph grammars.

Furthermore, the completeness results imply strong property preservation
results discussed in Section 4.4. They are another essential contribution of
this work. That section investigates which GL properties are preserved by
the abstract interpretation of partner graph grammars and proves theorems
about this preservation.

The abstract interpretation has been implemented in the hiralysis tool.
It was applied to a significant set of experiments from the platoon case study.
The evaluation of these experiments is reported in Section 4.5. Many inter-
esting properties could be proven automatically using the hiralysis tool.
All the results stated above present novel research applied to a case study
not amenable to formal verification so far. Related approaches are discussed
in Chapter 5.

Chapter 2

Specification of Evolving
Graphs

Partner graph grammars are introduced as an adequate specification formal-
ism for dynamic communication systems. They are a variant of standard,
single-pushout based algebraic graph transformation systems. The relation
to the latter will be clarified at the end of this chapter. Besides, the logic GL
is introduced in this chapter. It allows to reason about properties of partner
graph grammars.

2.1 Partner Graph Grammars

This section starts by introducing some multiset notation. Quite often, it will
become necessary to reason about multisets in this thesis. Some preliminary
notation for reasoning about graphs is introduced, before the crucial ingredi-
ent of any graph grammar is presented, transformation rules. Transformation
rules are initially given in a simple form and are afterwards augmented with
special negative application conditions called partner constraints. A set of
transformation rules together with an initial graph will constitute a partner
graph grammar. The abstract graph semantics of a partner graph gram-
mar will be defined to be the set of all graphs generated by a partner graph
grammar. If this set is equipped with the direct derivation relation between
graphs, a graph transition system is obtained. This section concludes by
introducing some syntactic sugar on top of partner graph grammars. This
includes shorthand notations for transformation rules and for partner con-
straints.

7

8 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

2.1.1 Multisets

Formally, multisets are sets equipped with a mapping from elements to nat-
ural numbers denoting multiplicities. Although multisets are not used with
that meaning in this work, some similar notation is introduced to ease and
clarify formalizations. The additional notation centers around the notion of
disjoint set union. For sets M and M ′, M ∪̇M ′ denotes the disjoint union of
these sets. It is obtained by implicitly renaming elements in the intersection
of M and M ′ such that they become distinguishable. The formal details of
the renaming are left unspecified. Double braces are used to enumerate the
elements of such “multisets”, e.g., {{1, 1, 2}} denotes a set of three elements.
Two of these were 1 originally, but are implicitly renamed to be distinguish-
able, e.g., by indexing, while their original identity is maintained. Other
operators used in this context resemble the standard set operators equipped
with an index m. Examples include ∈m, ⊆m, ∩m, or ℘m and have the obvi-
ous meaning. For brevity, the term multiset will be used at some points to
denote these special notions.

2.1.2 Graph Preliminaries

A few basic notions and notations for reasoning about finite, directed, node
and edge labeled graphs – for simplicity mostly called graphs – are introduced
to begin with. Only graphs over a finite set of node labels and a finite set of
edge labels are considered in this work.

Definition 2.1.1 (Graphs) Let n ≥ 1, N a finite set of node labels and
E = {β1, . . . , βn} a finite set of edge labels. A graph over N and E is a
n+ 2-tuple (V,Eβ1 , . . . , Eβn , `), where

• V is a finite set of nodes

• Eβi ⊆ V × V is a set of βi-labeled edges for each 1 ≤ i ≤ n, and

• ` : V → N is a node labeling,

The set of all graphs over N and E is written G(N , E). For a given graph G
the sets VG, Eβ

G, and the mapping `G denote G’s set of nodes, set of β-labeled
edges, and node labeling, respectively. Let W be a set. The set of all graphs
G over N and E, where VG ⊆ W is written G(N , E ,W).

For brevity, the node labeling of a graph is omitted, if the set of node
labels is a singleton. If not stated otherwise, N and E are assumed to be

2.1. PARTNER GRAPH GRAMMARS 9

Metavariables Typical Domains Description

G, H, P , Q G(N , E) graphs
u, v, w, x, y, z VG, VH nodes

e, (u, v) Eβ
G, Eβ

H β-labeled edges
ν, µ N node labels
β, δ, ε E edge labels

f , g, h, m VG → VH morphisms

Tab. 2.1: Frequently used metavariables reasoning about graphs. All of them
may occur indexed or primed.The sets N and E can be arbitrary.

arbitrary finite label sets in the following. Metavariables ranging over graphs,
node and edge labels, as well as nodes and edges are summarized in Table 2.1.

Most of the abstractions that will be defined later rely on the notion
of quotient graph building. Quotient graphs are defined with respect to an
equivalence relation on the nodes of the underlying graph. The nodes of the
quotient graph are then the equivalence classes corresponding to the equiv-
alence relation. In order to have meaningful node labels in the quotient
graph, only a certain class of equivalence relations is considered. Two equiv-
alent nodes must have the same labels. This requirement is crucial for the
well-definedness of the node labeling in Definition 2.1.2.

Definition 2.1.2 (Quotient Graphs) Let G ∈ G(N , E) be a graph. If
R ⊆ V × V is an equivalence relation, and u R v implies `G(u) = `G(v),
then the set of nodes equivalent to u is called the equivalence class of u wrt.
R – written [u]R. The graph H with

• VH = {[v]R | v ∈ VG},

• Eβ
H = {([v]R, [v′]R) | (v, v′) ∈ Eβ

G} for each β ∈ E, and

• `H = λ[v]R.`G(v)

is called the quotient graph of G with respect to R and written G/R.

Consider Figure 2.1. The graph P in (a) displays an invalid (because of
two adjacent red nodes) red-black tree. Formally, the sets of node and edge
labels of P are {red, bl} and {left, right}, respectively, representing a pointer
to the left (right) child of a node. Furthermore,

VP = {u1, u2, u3, u4, u5}
E

left
P = {(u1, u2), (u2, u4)} E

right
P = {(u1, u3), (u2, u5)}

`P = [u1 7→ red, u2 7→ red, u3 7→ bl, u4 7→ bl, u5 7→ bl]

10 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

red

red bl

bl bl

u1

u2

u4 u5

u3

P

{u3, u4, u5}

bl

P/∼=

red

{u1, u2}

(a) (b)

Fig. 2.1: A graph and its quotient graph. Nodes are drawn as circles with their
labels inside. The graph P in (a) displays an invalid red-black tree and features
two node labels, red and bl, and two edge labels, left (represented as solid edges)
and right (dashed). In figures, edge labels are mostly distinguished by line styles.
Node identities are written next to circles. The quotient graph in (b) is built wrt.
the equivalence relation ∼= containing exactly the pairs of equally labeled nodes.

In part (b), the quotient graph P/∼= is shown, where u ∼= v ⇔ `P (u) =
`P (v). Note that nodes are equivalence classes, i.e. identified sets of elements
of VP .

The notion of connected graphs to be defined next is standard. It is worth
noting, however, that Definition 2.1.3 defines connectedness regardless of the
direction of edges – as opposed to strong connectedness.

Definition 2.1.3 (Connected Graphs) Let G ∈ G(N , E) be a graph. Two
nodes u, v ∈ VG are connected, written u ∼c v, if there exist u1, . . . , un ∈ VG

such that u = u1, v = un, and for all 1 ≤ i < n exists a βi ∈ E such that
(ui, ui+1) ∈ Eβi

G or (ui+1, ui) ∈ Eβi

G .
The graph G is connected, if all its nodes are pairwise connected, i.e. if

|VG/∼c| = 1.
The set Gc(N , E) ⊂ G(N , E) is the set of all connected graphs over N

and E.

Morphisms are label- and structure-preserving mappings between the
node sets of graphs. They are crucial for defining graph grammars. Injective
morphisms are used to define the subgraph relation.

Definition 2.1.4 (Graph Morphism) Let G,H ∈ G(N , E) be graphs. A
mapping h : VG → VH is a morphism fromG toH, iff the following conditions

2.1. PARTNER GRAPH GRAMMARS 11

hold for all β ∈ E

∀w ∈ VG.`G(w) = `H(h(w)) (2.1)

{(h(u), h(v)) | (u, v) ∈ Eβ
G} ⊆ Eβ

H (2.2)

Apart from the subgraph relation, Definition 2.1.5 provides notions for
induced subgraphs and the set of connected components of a graph.

Definition 2.1.5 (Subgraphs) Let G,H ∈ G(N , E) be graphs.

1. The graph G is a subgraph of H, written G ≤ H, iff there exists an
injective morphism from G to H.

2. G and H are isomorphic, written G ∼= H if there exists a bijective
morphism from G to H.

3. Let V ⊆ VG. The subgraph of G induced by V , written G |V is the
graph (V,Eβ1 , . . . , Eβn , `), where ` = `G |V and Eβ = Eβ

G ∩ (V × V) for
all β ∈ E.

4. A subgraph of G induced by an element of VG/∼c is called a connected
component of G. The set of all connected components of G is written
cc(G).

2.1.3 Transformation Rules

Having introduced basic graph notions and notations, a novel specification
formalism for evolving graphs is presented: partner graph grammars. As
before, if not stated otherwise, N and E are assumed to be arbitrary finite
sets of node and edge labels, respectively. The first ingredient of a partner
graph grammar is a graph transformation rule.

First, simple rules are presented. They will be augmented with partner
constraints (as explained in Chapter 1) in Section 2.1.4. Simple rules are
triples of the form (L, h,R), where L and R are graphs and where h is an
injective mapping – not necessarily a morphism – from the nodes of L to
the nodes of R. The intended meaning of a rule (L, h,R) is to transform a
graph G into a graph H as follows. The meaning deviates slightly from other
notions of graph transformation rules.

• The rule matches G, iff L is a subgraph of G due to injective morphism
m.

12 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

• The mapping h relates the nodes in the left and in the right graph.
Informally speaking, it defines anchor nodes of a transformation rule.
Nodes in the left graph that are not in the domain of h will be removed
by a rule application whereas nodes in the right graph of a rule that
are not in the codomain of h are newly created by the rule application.

• All edges specified in the left graph are removed, and all edges in the
right graph are added.

• A node v ∈ VG may change its label, if there exists a node v′ ∈ VL such
that m(v′) = v, and v′ and h(v′) have different labels.

Figure 2.2 gives an example of a rule and an application of this rule. The
formal definition of simple transformation rules is given in Definition 2.1.6.
The ⇀ arrow denotes partial mappings. Given a partial mapping f : A ⇀ B,
dom(f) and codom(f) refer to the domain and the codomain of f , whereas
the overlined versions dom(f) and codom(f) stand for A \ dom(f) and B \
codom(f), respectively. Application of a mapping f : A → B to a subset
M ⊆ A of its domain is defined pointwise: f(M) = {f(a) | a ∈M}.

Definition 2.1.6 (Simple Transformation Rules)

1. A triple (L, h,R), where L,R ∈ G(N , E) and h : VL ⇀ VR is injective,
is called a simple transformation rule.

2. A simple transformation rule (L, h,R) matches a graph G ∈ G(N , E),
iff L ≤ G due to morphism m, which is called a match.

3. If r = (L, h,R) matches G due to match m, the result of the application
of r to G is the graph H, where

• VH = (VG \m(dom(h))) ∪̇ codom(h)

• For each β ∈ E

Eβ
H = (Eβ

G ∩ (VH × VH)) \
{(m(u),m(v)) | (u, v) ∈ Eβ

L} ∪
{(m′(u),m′(v)) | (u, v) ∈ Eβ

R}

where m′ : VR → VH is defined to be

m′(v) =

{
v if v ∈ codom(h)
m(h−1(v)) if v ∈ codom(h)

2.1. PARTNER GRAPH GRAMMARS 13

• `H = λv.


`G(v) if v ∈ codom(m)
`R(h(m−1(v))) if v ∈ codom(m)

`R(v) if v ∈ codom(h)

If H is obtained by applying r to G, it is said to be a direct derivation
of G, written G r H.

The first remark concerning Definition 2.1.6 is about well-definedness,
which is not obvious when inverse mappings are used. It is guaranteed,
however, by the injectivity requirements imposed on both the match m and
the mapping h relating the left and the right graph of a rule. In detail,
Definition 2.1.6 reads as follows.

• The set of nodes of graph H resulting from applying r to G consists of
those nodes that are not hit by the match and those maintained by the
rule application. In contrast, the nodes of H corresponding to nodes
not in the domain of h disappear. Newly created nodes are those that
are not in the codomain of h. They are disjointly added. Formally, ∪̇
creates a multiset, if a node in VR happens to have the same identity
as a node in G. However, by using notation in a sloppy way, some
renaming is assumed and the multiset is treated as a normal set.

• The edges of H are first of all restricted to be between nodes of H.
This results in a removal of all edges adjacent to a disappearing node.
The second clause in the definition of EH removes all edges specified
in the left graph. Eventually, all edges specified in the right graph are
added. Certainly, edges specified in the rule r are related to G using
match m.

• As for the node labeling of the resulting graph, there are three cases
to be distinguished. A node not in the codomain of the match keeps
its label. Nodes in the codomain of m receive the label specified in
the right graph by inverting the match and applying h. Finally, newly
created nodes simply get their label as given in the right graph of the
rule.

Consider the simple transformation rule [list] and its application in Fig-
ure 2.2 (b,c). Graph H in (c) is computed by Definition 2.1.6 as follows,
where G and [list] = (L′, h′, R′) are defined by the drawing. All involved
graphs are over the set {x, ν, } of node labels and the set {β1, β2} of edge
labels. The node label is not drawn in Figure 2.2, β1-labeled edges are
drawn as dashed arrows and β2-labeled edges are drawn as solid edges.

14 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

• h′ = [u′1 7→ v′1, u
′
2 7→ v′2]

• The match m justifying L′ ≤ G is given by m = [u′1 7→ w1, u
′
2 7→

w2, u
′
3 7→ w3]

• Plugging in the definition ofm′ yieldsm′ = [v′1 7→ w1, v
′
2 7→ w2, v

′
3 7→ v′3]

• Some computations on domains and codomains of the above mappings
follow. After that, the four ingredients of H are computed in detail.

dom(h′) = {u′1, u′2} codom(h′) = {v′1, v′2}
dom(h′) = {u′3} codom(h′) = {v′3}

codom(m) = {w1, w2, w3} codom(m) = {w4}

VH = {w1, w2, w3, w4} \m({u′3}) ∪̇ {v′3}
= {w1, w2, w3, w4} \ {w3} ∪̇ {v′3}
= {w1, w2, v

′
3, w4}

Eβ1

H = ({(w1, w2)} ∩ VH × VH) \ {(m(u′1),m(u′2)} ∪ {(m′(v′1),m
′(v′2))}

= {(w1, w2)} \ {(w1, w2)} ∪ {(w1, w2)}
= {(w1, w2)}

Eβ2

H = ({(w2, w3), (w3, w4)} ∩ VH × VH) \ {(m(u′2),m(u′3))}∪
{(m′(v′2),m

′(v′3))}
= ∅ \ {(w2, w3)} ∪ {(w2, v

′
3)}

= {(w2, v
′
3)}

`H = [w1 7→ `R′(h′(m−1(w1))), w2 7→ `R′(h′(m−1(w2))),
v′3 7→ `R′(v′3), w4 7→ `G(w4)]

= [w1 7→ x,w2 7→ , v′3 7→ ν, w4 7→]

2.1. PARTNER GRAPH GRAMMARS 15

v5

red bl

bl bl

red

u1

u2

u4 u5

u3

red

bl

bl

bl bl

L R

v1

v2 v3

v4

h = [u1 7→ v3, u2 7→ v1, u3 7→ v5, u5 7→ v4, u4 7→ v2]

(a) Transformation rule [rotate] = (L, h,R)

ν

L′ R′

u′1 u′2 u′3 v′1 v′2 v′3

x x

h′ = [u′1 7→ v′1, u
′
2 7→ v′2]

(b) Transformation rule [list] = (L′, h′, R′)

v′3

G [list] H

G

H
w1 w2 w4

w1 w2 w3 w4

x ν

x

(c) A sample application of the [list] rule

Fig. 2.2: Two examples of simple transformation rules: Rule [rotate] represents
an implementation of a tree-balancing right rotation. This rule matches graph P
of Figure 2.1. Rule [list] in (b) shows the effect of the C statement free(x->n);
x->n = malloc();. Dashed arrows represent pointers from the stack into the
heap, solid arrows stand for the next pointer n of a list. Node label ν is used for
newly created heap cells.

16 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

2.1.4 Partner Constraints

Simple transformation rules provide a powerful specification mechanism for
evolving graphs. However, for some cases, they are not quite expressive
enough. Using simple transformation rules, it is not possible to express neg-
ative application conditions. In many situations, it is useful to reason when
a rule shall not be applied. For example, consider the simple transformation
rule [list] and its application in Figure 2.2. In this case, garbage is created
by the unconstrained removal of node w3. This rule would be more sensible,
if its application was restricted to cases, where u′3 matches the last node of a
list only. Partner constraints are a way to express such conditions. In order
to define them formally, the notion of finite counting is introduced.

Definition 2.1.7 (Finite Counting) Let N be the set of natural numbers
excluding 0. For any k ∈ N the set Nk is the set of all natural numbers
smaller than or equal to k augmented with ∞, i.e. Nk := {1, 2, . . . , k,∞}.

On Nk, the order vk is defined by n vk n′, if and only if n′ = ∞ or
n ≤ n′ ≤ k.

The binary operation ⊕k is defined on Nk as follows:

n⊕k n′ :=

{
∞ if n = ∞, n′ = ∞, or n+ n′ > k
n+ n′ otherwise

For any n ∈ N, (n)k is defined to be n, if n ≤ k, and ∞ otherwise

Requirements on Adjacent Nodes Formally, a partner constraint is a
subset of {in, out} × E × N × Nk. A partner constraint may be associated
with a node in the left graph of a transformation rule. Assume (in, β, ν, n) is
an element of a partner constraint associated with a node u in a left graph
of a rule. Any node v that u matches must have at least one and at most n
ν-labeled nodes connected to it by an incoming β-labeled edge. In this case,
v is said to satisfy the four-tuple (in, β, ν, n).

If a partner constraint pc associated with a node u has more than one
element, a node v matched by u must satisfy exactly all those elements. In
particular, all nodes adjacent to v must correspond to one of the elements
of the partner constraint. In this case, v is said to satisfy the partner con-
straint. A special instance of a partner constraint is the ∅ constraint. A
node associated with this constraint can only match nodes that do not have
adjacent nodes.

Partner constraints must be consistent with the left graph, in which they
occur. For example, an ∅ constraint cannot be associated with a node u in a
graph, where u already has an adjacent node. Another source of inconsistency

2.1. PARTNER GRAPH GRAMMARS 17

may be a graph, where u already has more adjacent nodes of the same kind
than specified by a partner constraint.

Definition 2.1.8 (Partner Constraints) Let k ≥ 1. A partner constraint
over the node labels N and the edge labels E is a subset of the set PC(N , E , k) :=
{in, out}× E ×N ×Nk. Furthermore, for each pc ∈ PC(N , E , k), the notion
pc↘ 3 := {(io, β, ν) | ∃n ∈ Nk.(io, β, ν, n) ∈ p} is used.

Let G ∈ G(N , E) be a graph, u ∈ VG a node of G, and p ∈ PC(N , E , k) a
partner constraint. Node u satisfies p in G, written G, u |= p iff

p↘ 3 = {(in, β, ν) | ∃v ∈ VG.(v, u) ∈ Eβ ∧ `G(v) = ν} ∪
{(out, β, ν) | ∃v ∈ VG.(u, v) ∈ Eβ ∧ `G(v) = ν}

and for each (in, β, ν, n) ∈ p

(|{(v, u) ∈ Eβ ∧ `G(v) = ν}|)k vk n,

where the case for out is analogous. Let L ∈ G(N , E) be a graph, u ∈ VL be
a node and p ∈ PC(N , E , k) be a partner constraint. Partner constraint p
is consistent with L and u, if there exists a graph G ∈ G(N , E) such that L
matches G by match m and G,m(u) |= p.

A partner constraint p is called simple, if all “at most” components are
∞, i.e. if p ⊆ {in, out} × E ×N × {∞}.

The degree of a partner constraint pc is its maximal non ∞ “at most”
component, i.e. max{n | (io, β, ν, n) ∈ pc, n 6= ∞}. The degree of a simple
partner constraint is defined to be 0.

The definition of partner constraints does not forbid constraints with
several element tuples only differing in the fourth, i.e., the “at most”, com-
ponent. In this case, for a node of a graph to satisfy such a constraint, the
most restrictive of these tuples must be satisfied. The most restrictive case
is the one with the smallest “at most” component. The definition of a match
is extended in a way to incorporate partner constraints. This is the only
change to the definition of rule applications from Definition 2.1.6

Definition 2.1.9 (Transformation Rules) Let k ≥ 1.

1. A four-tuple r = (L, h, p, R), where L,R ∈ G(N , E), h : VL → VR is
injective, and p : VL ⇀ PC(N , E , k) is a partial mapping, is called a
transformation rule, if p(u) is consistent with L and u for each u ∈
dom(p).

18 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

u′1 u′2 u′3

x

v′1 v′2 v′3

x ν

{(in, β2, , 1)}

Fig. 2.3: Left and right graph of the transformation rule [list]′. This rule equals
[list] up to the partner constraint {(in, β2, , 1)} attached to node u′3. Partner
constraints are depicted within lightly shaded boxes and connected to their associ-
ated node by a thick line to the center of the node. Due to the partner constraint
[list]′ cannot be applied to graph G in Figure 2.2 any more.

2. A transformation rule r = (L, h, p, R) matches a graph G ∈ G(N , E),
if L ≤ G due to morphism m and G,m(u) |= p(u) for all u ∈ dom(p).
In this case, m is called a match.

3. If r = (L, h, p, R) matches G, r′ = (L, h,R), and G r′ H, then H is
called the result of the application of r to G or the direct derivation of
G using r. Again, the notation G r H is used.

Figure 2.3 shows the general transformation rule [list]′, which is a slight
extension of the simple rule [list] from Figure 2.2. Node u′3 in this rule
is equipped with the partner constraint {in, β2, , 1} enforcing every node w
matching v′3 to have exactly one adjacent node. This node must be connected
to w by an incoming (seen from w) β2 labeled edge and must itself be labeled
. In particular, [list]′ cannot be applied to the graph G from Figure 2.2 on

page 15. Moreover, the partner constraint ensures that no garbage can be
created by an application of [list]′.

2.1.5 Partner Graph Grammars

So far, transformation rules have been defined and can be equipped with
partner constraints for better usability. The latter restrict the applicability of
transformation rules. Applying a transformation rule to a graph transforms
this graph into another one.

In this section, sets of transformation rules are combined with an initial
graph to form a partner graph grammar. A graph transition system is defined
by taking the initial graph as the initial state and the application of one
of the rules as transition between graphs. In other words, partner graph
grammars are the syntax of a specification formalism, whose semantics are

2.1. PARTNER GRAPH GRAMMARS 19

graph transition systems. As usual, the reflexive, transitive closure of a
relation S is written S∗.

Definition 2.1.10 (Partner Graph Grammars) Let k ≥ 1, let R be a
set of transformation rules over N and E and let I ∈ G(N , E) be a graph. A
pair G = (R, I) is called a partner graph grammar.

Two graphs G,H ∈ G(N , E) are in a direct derivation relation R, if
there exist a rule r ∈ R such that G r H.

The graph semantics of the partner graph grammar G is the set [[G]] :=
{G ∈ G(N , E) | I ∗

R G}. The graph transformation system induced by G

is the pair ([[G]], R).

Verification of properties of such systems is difficult, because there is no
a priori known bound on either

• the number of graphs in the graph semantics or

• the size of the individual graphs.

A Checkers Example The following is quoted from the free encyclopedia
Wikipedia: “Checkers is played by two people, on opposite sides of a 16 by
16 playing board, alternating moves. One player has dark pieces, and the
other has light pieces. The player with the light pieces makes the first move
unless stated otherwise. Pieces move diagonally and pieces of the opponent
are captured by jumping over them. The playable surface consists only of the
dark squares. Capturing is mandatory. A piece that is captured is removed
from the board. The player who has no pieces left or cannot move anymore
has lost the game unless otherwise stated.

Uncrowned pieces (“men”) move one step diagonally forwards and capture
other pieces by making two steps in the same direction, jumping over the
opponent’s piece on the intermediate square. Multiple opposing pieces may
be captured in a single turn provided this is done by successive jumps made
by a single piece.

When men reach the kings’ row – the farthest row forward – they become
kings, marked by placing an additional piece on top of the first, and ac-
quire additional powers including the ability to move backwards and capture
backwards.”

Checkers can be formalized beautifully as the partner graph grammar
GC({[MoveR], [CaptureR], [KingR], . . .},Checkers). All components
are given in Figure 2.4. Graphs in GC use node labels {w,ww, b, bb, } and
edge labels {up, right}. Node labels model light men, light kings, dark men,
dark kings, and unoccupied squares, respectively. Different square colors are

20 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

not modeled. Men are depicted with a thin rim, whereas kings get a thicker
rim. Unoccupied squares are shown in white, occupied squares are shown in
either gray or black corresponding to light and dark pieces. Edges are used
to define the geometry of the board.

Rules [MoveR] and [CaptureR] cater for moving and capturing light
men to the right. The remaining rule [KingR] is equipped with a partner
constraint. Informally, this partner constraint ensures, that the row reached
by the light man is the king row. This is enforced by saying that there is no
outgoing up edge from node u3. A shorthand notation is used to write down
this partner constraint. All shorthands used here are explained in detail in
Section 2.1.6.

All transformation rules have the implicit assumption that the mapping
from the left to the right graph is of the form ui 7→ u′i. More rules not
stated here handle the many symmetric cases dealing with black men, kings,
multiple jumps or the requirement of alternating moves from the light and
the dark player. Some of the moves are easy to add, whereas cases like forced
jumps are quite intricate to formalize in terms of transformation rules.

The graph semantics of GC is the set of all possible positions that may
be reached from the starting position. The induced graph transformation
system describes all possible games that can be played.

2.1.6 Special Cases and Shorthands

Writing down specifications using partner graph grammars may be tedious.
In this section, some syntactic sugar both for writing down rules and for
writing down partner constraints is thus introduced.

Label Variables Using label variables it is possible to write down an aug-
mented transformation rule that stands for a finite set of transformation
rules. A label variable is used as a special label in the left and/or right graph
of a transformation rule. It can be bound to an arbitrary concrete label in
a match. Several occurrences of the same label variable in one graph are
possible.

Also, it is possible to annotate a transformation rule with simple con-
straints on label variables, label constraints. A label constraint may require
that a label variable can only be matched to a certain set of labels. Addi-
tionally, boolean combinations of these label constraints are allowed. Two
examples are shown in Figure 2.5. In figures, label variables are written in
bold mathematical font, whereas label constraints annotate rules and are
drawn inside of boxes with thicker rims. Note that, in general, the usage of
label variables is not restricted to node labels, even though it may appear

2.1. PARTNER GRAPH GRAMMARS 21

(a) The initial graph Checkers

u′1u1

u2 u3 u′2 u′3

¬{(out, up)}

u1 u′1

u′2 u′3u2 u3

(b) The rule [MoveR] (c) The rule [KingR]

u′5

u1

u2

u4 u5

u3

u′1

u′2 u′3

u′4

(d) The rule [CaptureR]

Fig. 2.4: Part of the partner graph grammar formalization of a game of checkers,
c.f. the example in Section 2.1.5.

22 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

[u1 7→ u′1, u2 7→ u′2, u3 7→ u′3]

u1

u2 u3 u′2 u′3

u′1

⇒

x ∈ {b, bb,ww}

x

x

h = [ui 7→ ui′, 1 ≤ i ≤ 5]

u1

u2

u4 u5

u3

u′1

u′2 u′3

u′4 u′5

x

y

x

x ∈ {bb} ∧ y ∈ {w,ww}
x ∈ {w,ww} ∧ y ∈ {b, bb} ∨

(a) Rule [Move] (b) Rule [Capture]

Fig. 2.5: Rule [Move] is a shorthand for three rules moving a piece backward
and left. This piece can either be a dark man, a dark king, or a light king, as
indicated by the label constraint on top. Label constraints for rules are shown in
boxes. Bold font is used for label variables. Rule [Capture] models the forward
right capturing of a piece. Either a dark piece can be captured by a light piece or
a light piece by a dark king. A dark king is the only dark piece capable of moving
forward.

like this in Figure 2.5. The formal definition in Definition 2.1.11 allows for
labeling edges with label variables, too.

It would be possible to give a semantic definition to label variables and
label constraints. However, this requires a re-definition of all the concepts
concerning transformation rules and partner graph grammars. Rather, the
other option is chosen, namely, to translate augmented transformation rules
syntactically to a finite set of standard rules.

In the course of this translation, an instantiation relation between aug-
mented and standard rules is defined, relating standard rules with the aug-
mented ones of which they are an instance. To define the notion of an
instance, an assignment mapping of label variables to labels is introduced. It
is then checked whether this assignment satisfies the label constraints, if any.
If this is the case, this assignment defines a valid instance of the augmented
rule. Here is the formal definition of augmented transformation rules and
their denotation as finite sets of standard transformation rules.

Definition 2.1.11 (Label Variables) Let X be a finite set of label vari-
ables. Label constraints LC are defined by the following BNF, where x ∈ X
and M ⊆ N ∪ E

LC ::= ε | x ∈M | ¬LC | LC ∧ LC | LC ∨ LC

2.1. PARTNER GRAPH GRAMMARS 23

An augmented transformation rule over node labels N and edge labels E
is a five-tuple (L, h, p, R, lc), where (L, h, p, R) is a transformation rule with
L,R ∈ G(N∪̇X, E∪̇X), and where lc ∈ LC.

A graph G ∈ G(N , E) is an instance of a graph H ∈ G(N∪̇X, E∪̇X), if
and only if there exists an assignment σ : X → N ∪ E such that

• VG = VH

• Eβ
G = Eβ

H ∪ {e ∈ Ex
H | σ(x) = β} for all β ∈ E.

• `G(v) =

{
`H(v) if `H(v) ∈ N
σ(`H(v)) otherwise

In this case, the notation G Rσ H is used.
An assignment σ : X → N ∪E is defined to satisfy a label constraints lc,

written σ |= lc, by

σ |= ε always
σ |= x ∈M if and only if σ(x) ∈M
σ |= ¬lc if and only if not σ |= lc
σ |= lc1 ∧ lc2 if and only if σ |= lc1 and σ |= lc2

σ |= lc1 ∨ lc2 if and only if σ |= lc1 or σ |= lc2

A transformation rule r′ = (L′, h′, p′, R′) is an instance of the augmented
rule r = (L, h, p, R, lc), iff there exists an assignment σ such that L′ Rσ L,
R′ Rσ R, and σ |= lc.

Later on, augmented rules are used wherever suitable without further
notice. An augmented rule is implicitly identified with the set of its instanti-
ations. In formal reasonings, however, it suffices to consider standard rules,
because the augmentation with label constraints does not generate more ex-
pressive power (but more convenience).

Consider the transformation rule [CaptureR] in Figure 2.4 on page 21.
It is an instance of the more general, augmented rule [Capture] given in
Figure 2.5 on page 22. More formally, [CaptureR] Rσ [Capture] holds
for the assignment σ = [x 7→ w,y 7→ b] over X = {x,y}. It is easy to com-
prehend that σ indeed satisfies the label constraint specified for [Capture].

Partner Constraint Shorthands The same trick that was applied to
transformation rules will be applied to partner constraints again. Augmented
partner constraints allow to conveniently write down a finite set of rules that
merely differ with respect to partner constraints. Formally and similar to
Definition 2.1.11, instances of augmented partner constraints are defined

24 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

and rules featuring augmented partner constraints are identified with the set
of all their instances.

Remember that partner constraints are sets of four-tuples, where each
four-tuple is an element of the set {in, out} × E × N ×Nk. For example, a
tuple (in, β, ν, 3) requires a node to have at least one and at most three ν-
labeled adjacent nodes, to which it must be connected by incoming β-labeled
edges. As a kind of syntactic sugar, it is allowed to leave out components of
a four-tuple. Assume one of the following tuples is an element of a partner
constraints associated with a node that is matched by a node u.

1. The tuple (β, ν, 3) requires u to have between one and three adjacent ν-
labeled nodes to which it is connected by β-labeled edges — regardless
of their direction.

2. The tuple (in, ν, 3) requires u to have between one and three ν-labeled
adjacent nodes, to which it is connected by incoming edges — regardless
of the edge labels.

3. The tuple (in, β, 3) requires u to have between one and three adja-
cent nodes — regardless of their labels — to which it is connected by
incoming β-labeled edges.

4. As pointed out earlier, the tuple (in, β, ν) is a shorthand for the tuple
(in, β, ν,∞).

Consider the first case above, i.e. a tuple (β, ν, n), where n ∈ Nk for
some k > 0. First, assume n 6= ∞. In this case, a set {(io1, β, ν, n1),
. . . , (ioq, β, ν, nq)} is an instance of the the tuple (β, ν, n), if and only if
ioi ∈ {in, out} for all 1 ≤ i ≤ q and n1 ⊕k . . . ⊕k n1 = n. If n = ∞, an
instance is an arbitrary subset of {in, out}×{β}×{ν}×{∞}. Analogously,
instances are defined for the cases 2 and 3 above. The left out component
can be chosen arbitrarily, if the arithmetic requirement is fulfilled. As for
case 4, the only instance of a tuple (io, β, ν) is the set {(io, β, ν,∞)}. If a
partner constraint with left out components consists of more than one tuple,
any union of instances of the element tuples is an instance of this partner
constraint. A transformation rule sporting partner constraints with left out
components is then identified with the finite set of transformation rules,
where partner constraints with left out components are replaced by any of
their instances.

The second shorthand is the negation of a partner constraint pc, written
¬pc. An instance of ¬pc may be an arbitrary subset of PC(N , E , k) \ p. The

2.2. GL: REASONING ABOUT GRAPH GRAMMARS 25

intuition behind this is, to allow for any combination of adjacent nodes except
for those specified by p. Due to the subset construction, this sort of negated
partner constraint may imply a large, but finite number of instances.

If a partner constraint, which already features left-out components, is
negated, the final set of instances is obtained by first computing all the
instances of the partner constraint with left-out components, and then by
negating all these instances.

Certainly, it is possible to combine label constraints and augmented part-
ner constraints, because, in effect, they are simply shorthand notations. An
example of such a combination was given in rule [KingR] in Figure 2.4.
The instances of the partner constraint under negation, i.e. of the partner
constraint {(out, up} are five singleton sets. Each set’s unique element is an
element of {out} × {up} × {b, bb,w,ww, } × {∞}. The negation is thus the
set of all subsets of

({in} × {up} ∪ {in, out} × {right})× {b, bb,w,ww, } ×Nk

for some k > 0.

2.2 GL: Reasoning about Graph Grammars

The logic GL is designed to express properties of partner graph grammars,
more precisely, properties of graph transition systems induced by graph gram-
mars. It is based on the computation tree logic CTL and shares the temporal
constructs of it. Whereas CTL features a next-operator, it is left out from
GL (see final paragraph of this section). On the other hand, GL must be
able to reason about graphs of a statically unknown size. First-order con-
structs are incorporated to facilitate this. However, unlike ETL [YRSW03]
or ATL [Dis03], GL is unable to track node evolution over time, i.e., first
order quantification does not mix up with temporal quantification. Finally,
temporal operators may be restricted by subsets of rules. Only the specified
graph transformation rules may be applied in the scope of the operator for a
formula to become true. The upcoming paragraph describes and defines the
syntax of GL before giving some illustrating examples.

Syntax The logic GL is parameterized by syntactic categories. All of them
are finite sets. First, there is the domain LVar of logical variables with
metavariables x, y, z, . . . ranging over it. Let (R, I) be a partner graph gram-
mar over the set N of node labels and the set E of edge labels. The domains
N , E , and R serve as syntactic categories for GL. Consider Table 2.1 for
metavariables. Additionally, R ranges over subsets of R.

26 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

Definition 2.2.1 (GL Syntax) Let LVar, N , E, and R as aforementioned.
A GL formula φ is defined by the following BNF.

ψ ::= 0 | x = y | ν(x) | β(x, y) | ¬ψ | ψ ∧ ψ | ∀x.ψ |
φ ::= ψ | ¬φ | φ ∧ φ | EFR φ | AFR φ | EGR φ | AGR φ |

E[φ UR φ] | A[φ UR φ]

A GL formula is a state formula, i.e. it will be evaluated over a graph
G and wrt. a given partner graph grammar. The informal description of
the intended semantics is given for the first-order part and two temporal
operators.

• The ψ constructs are standard in first-order logic. They are used to
reason about single graphs. Graphs are easily encodable in first-order
logic. The usual abbreviations for 1, ∨, →, ↔, and ∃x.φ will be used
later.

• EFR φ evaluates to true on G, if there exists a sequence (Giri)i≥0 of
direct derivation steps, such that G0 = G, ri ∈ R, and Gi ri

Gi+1 for
all i ≥ 0. Moreover, there must exist an n ≥ 0 such that φ evaluates
to true on Gn.

• AGR φ evaluates to true on G, if for all sequences (Giri)i≥0 of direct
derivation steps – where G0 = G, ri ∈ R, and Gi ri

Gi+1 for all i ≥ 0
– φ holds true of Gj for all j ≥ 0.

• The intended temporal meaning of the remaining constructs corre-
sponds to the temporal meaning of the respective operators in CTL. In
addition to the temporal features of CTL, GL features the restriction
of rule applications and the ability to reason about graphs of statically
unknown size.

• The restriction R is dropped in case R = R, because the application
of rules is restricted to the set of all rules.

• Associativity, binding priorities, and the notions of free and bound
variables are defined as usual for the first order part of GL. All first
order constructs bind more tightly than the temporal constructs, all of
which bind equally strong.

2.2. GL: REASONING ABOUT GRAPH GRAMMARS 27

Examples Reconsider the checkers graph grammar GC of Section 2.1.5 on
page 18. In that example, nodes correspond to squares on a checkers board.
Accordingly, existential or universal quantification over nodes picks squares
on the board. The following formula over GC

φ1 = ∃x1.∃x2.∃x3.w(x1) ∧ (x2) ∧ (x3) ∧ up(x1, x2) ∧ right(x2, x3)

evaluates to true on positions, where the rule [MoveR] is applicable meaning
it is possible for a white man to move right forward. Remember that the
missing restrictions stand for the case R = R. For instance, Checkers, [] |=
φ1, where Checkers is the graph modeling the start position of a checkers
game. An example of a temporal construct is AG φ1, expressing that a move
right forward is always possible for the white player. As passionate checkers
players know, this is not the case.

Formula φ2 distributes the existential quantifier of φ2 over the E[· U ·]
construct.

φ2 = E[∃x.b(x) U ∃x.ww(x)]

This formula states that there is a game starting from the current position,
such that there exists a black piece in every position until a white king ap-
pears. This formula is certainly true if evaluated on the starting position
Checkers. Notice that the squares can be newly chosen after every di-
rect derivation step, because the existential quantifier is in the scope of the
temporal one. If E[· U ·] is replaced by A[· U ·] in φ3, it evaluates to false
on Checkers, because there are games without any white king. The para-
graph “Other Logics” below further illustrates the subtle interplay between
temporal constructs and node quantifiers.

A concluding example digs into the role of restrictions to sets of rules.
Let Mov be the set of all checkers transformation rules dealing with simple
piece movement (no capturing or becoming king).

φ3 = AG EFMov ∀x.¬b(x) ∧ ¬bb(x)

This formula expresses a classic liveness property. In all games it is always
possible to reach a board with all black pieces captured. Evaluating φ3 on
the initial board yields false, since there are certainly games with a black
winner. Even worse, φ3 forces all black pieces to be captured by moving
only. The possibility to restrict temporal operators may yield inconsistent
formulas. For instance, AGR1 EFR2 x = x for R1 ∩ R2 = ∅ is unsatisfiable, as
becomes clear from the semantics given in Definition 2.2.2. As a consequence,
restrictions should be used carefully.

28 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

Semantics In order to ease the presentation of the GL semantics, a new
notion is introduced. It denotes the set of all possible sequences of direct
derivation steps starting from graph G while using only rules of set R ⊆ R.

~R(G) := {(Giri)i≥0 | ∀j ≥ 0.G0 = G ∧ Gj rj
Gj+1 ∧ rj ∈ R}

A GL formula is evaluated over some graph G. The CTL modalities A
and E refer to all and to the existence of sequences of direct derivations
starting from G, respectively. Evaluating a GL formula over a partner graph
grammar (R, I) amounts to evaluating the formula over the initial graph I.

Definition 2.2.2 (GL Semantics) Let G = (R, I) be a partner graph gram-
mar and let φ be a GL formula over G and logical variables LVar. Let N

be the set of all nodes of the graphs in [[G]]. An assignment ρ is a partial
mapping LVar ⇀ N.

The graph grammar G models φ, written G |= φ, if and only if the initial
graph with the empty assignment models φ.

Graph G with assignment ρ models formula φ, written G, ρ |= φ as defined
in Table 2.2.

Other Logics The CTL feature missing from GL is the next operator X.
There are two reasons for that choice. First, the major application domain
of the specification and verification techniques of this thesis are dynamic
communication systems. They are rather heterogeneous and typically lack
a global clock. From such a system’s point of view a “next” step does not
make much sense in the specification of its behavior. Many actions happen
independently, simultaneously, or with varying, small delays. What is then
the meaning of X? On the other hand, if X was included, the verification
technique presented in Chapter 4, would not be able to verify such properties,
because several direct derivation steps may be summarized in the abstraction.

Traditional temporal logics such as CTL, upon which GL builds, are
propositional. Variants of propositional temporal logic like LTL, CTL, or
variants thereof, are effectively used when reasoning about systems with a
static number of components. In contrast, the main objective here is the
verification of dynamic systems. Objects (nodes in terms of graph represen-
tations) are created at runtime and the task is to specify that each object,
independent of its creation time or links to other objects, adheres to given
requirements. The name anonymous object has been coined, for example
in [YRSW03], for dynamically allocated (heap) objects that are not referable

2.2. GL: REASONING ABOUT GRAPH GRAMMARS 29

G, ρ |= 0 iff never
G, ρ |= x = y iff ρ(x) = ρ(y)
G, ρ |= ν(x) iff `G(ρ(x)) = ν

G, ρ |= β(x, y) iff (ρ(x), ρ(y)) ∈ Eβ
G

G, ρ |= ¬φ iff not G, ρ |= φ
G, ρ |= φ1 ∧ φ2 iff G, ρ |= φ1 and G, ρ |= φ2

G, ρ |= ∀x.φ iff
∧

u∈VG
G, ρ[x 7→ u] |= φ

G, ρ |= EFR φ iff there exists (Giri)i≥0 ∈ ~R(G) and n ≥ 0
such that Gn, ρ |= φ

G, ρ |= AFR φ iff for all (Giri)i≥0 ∈ ~R(G) there exists a
n ≥ 0 such that Gn, ρ |= φ

G, ρ |= EGR φ iff there exists (Giri)i≥0 ∈ ~R(G) such that
for all j ≥ 0 holds Gj, ρ |= φ

G, ρ |= AGR φ iff for all (Giri)i≥0 ∈ ~R(G) and for all j ≥ 0
holds Gj, ρ |= φ

G, ρ |= E[φ1 UR φ2] iff there exists (Giri)i≥0 ∈ ~R(G) and n ≥ 0
such that Gj, ρ |= φ1 for all j < n and
Gk, ρ |= φ2

G, ρ |= A[φ1 UR φ2] iff for all (Giri)i≥0 ∈ ~R(G) there exists n ≥ 0
such that Gj, ρ |= φ1 for all j < n and
Gk, ρ |= φ2

Tab. 2.2: Definition of the GL semantics. See also Definition 2.2.2

by a fixed name, like a global variable, but have to be addressed symboli-
cally. In contrast to [YRSW03], GL is not able to reason over the evolution of
nodes over time, including their points of creation and disappearance. This
is mainly due to the fact, that the verification of such properties is out of the
scope of the work presented in this thesis.

Recent research produced a number of requirement specification lan-
guages for reasoning about anonymous objects, for example, [Dis03, YRSW03,
DH01, BSTW06]. Actually, reasoning about the evolution of individuals
already started in 1946 with the development of quantified modal logics
(QML) [Car46]. Kripke established a so-called possible world semantics [Kri63]
of QML, based on a set of worlds and a successor relation among them. In
terms of partner graph grammars, a world corresponds to a graph and evo-
lution between worlds corresponds to direct derivation steps. In the possible
world semantics, identical nodes may occur in several worlds.

In 1968, Lewis argued against the fixed quantification domain of Kripke

30 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

and developed his counterpart theory [Lew68] where each individual exists
in exactly one world and corresponding individuals in different worlds are
identified via a counterpart relation. This paradigm was, for example, chosen
as the basis of ETL [YRSW03]. It avoids conflicts that may arise by objects
that are destroyed and re-appear again. This is crucial for ETL, because, in
contrast to GL, it provides explicit constructs for reasoning about creation
and destruction of objects. As argued for the X case, this is not in the scope of
the verification techniques to be presented in Chapter 4. More importantly,
as GL is not the main contribution of this thesis, a superfluous technical
burden is avoided by not including this feature.

2.3 Relation to Algebraic Graph Transforma-

tion

A comprehensive survey on graph grammars of all shapes and colors is pre-
sented in [Roz97]. The approach that inspired the design of partner graph
grammars belongs to the area of algebraic graph transformations as pre-
sented in Chapters 3 and 4 of [Roz97]. Other approaches include node- and
hyperedge replacement (Chapters 1 and 2) grammars, monadic second or-
der definable graph transductions (Chapter 5), and 2-structures (Chapter
6). They are not considered here.

In the theory of algebraic graph transformation, a graph is modeled as
a two-sorted algebra, where one sort represents the nodes and the other the
edges. The algebra is further equipped with two unary operations source and
target each mapping an edge value to a node value with the obvious meaning.
Note that this representation features multiple, equally labeled edges between
the same pair of nodes. Graph transformations are formulated as pushout
constructions in a categorical framework. Basic knowledge about category
theory is helpful to understand the next paragraphs. Good introductory
material can be found in [Pie91, BW95, ML71].

Depending on the details of the categorical construction, one distinguishes
two main approaches in the theory of algebraic graph transformation: the
single pushout (SPO) and the double pushout approach (DPO). Historically,
DPO came first. Both approaches can be based on categories with graphs
as objects. These are the graphs that can be represented by two-sorted
algebras as described above. Many different variants of graphs are possible
in both approaches. The arrows considered in the DPO approach are total
morphisms, whereas the arrows considered in the SPO approach are partial
morphisms.

2.3. RELATION TO ALGEBRAIC GRAPH TRANSFORMATION 31

L loo K r // R

m

��

(1) d

��

(2) m∗

��
G l∗oo D r∗ // H

L p // R

m

��

(3) m∗

��
G p∗ // H

DPO SPO

Fig. 2.6: Application of a transformation rule in the double and single
pushout approach to algebraic graph transformation.

In the DPO approach a transformation rule consists of a pair

L K
loo r // R

of total graph morphisms. Graph K is a common interface graph. An ap-
plication of such a rule consists of a commuting diagram of two graphs and
total graph morphisms as shown in (1) and (2) of Figure 2.6. The context
graph D is computed from G by deleting all the elements from G that are
not in dom(l). In terms of categorical constructions, diagram (1) shows how
D is computed as the pushout complement of match m and the l part of
the transformation rule. The result H of the application is obtained by con-
structing the pushout of r and d as shown in diagram (2). Informally, all
the elements of R are inserted into H that are not in dom(r). Pushouts and
pushout complements are known to exist in the categories under consider-
ation. Note that matches are not required to be injective either in SPO or
DPO.

In the SPO approach a transformation rule consists of a partial homo-
morphism p as given in the top line of diagram (3) in Figure 2.6. Obtaining
the result of a rule application corresponds to the construction of the pushout
of match and transformation rule – m and p in diagram (3). It is computed
similar to the construction in Definition 2.1.6.

Gluing conditions are a notion of algebraic graph transformation that are
needed to resolve two sorts of conflicts that may emerge in transformation
rules. The first conflict is due to non-injective matches and is resolved by the
identification condition. Consider Figure 2.7(a). A non-injective match maps
two nodes to the same node that is to be deleted by the rule application. Is

32 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

u3

R

L

G
m = [u1 7→ u3, u2 7→ u3]

u1 u2

p = [u1 7→ u′1]

u′1

m = [u1 7→ u2]

L
u1

u2

R
p = []

G

3u3

(a) (b)

Fig. 2.7: Gluing conditions. Part (a) is a showcase application for which
an identification condition is needed in the DPO approach. Part (b) demon-
strates the need for a dangling condition.

one node to be deleted, in that case which one? Are both to be deleted?
In the DPO approach these questions are answered by disallowing the rule
application at all, whereas the SPO approach opts to delete both nodes. In
partner graph grammars this conflict is excluded by non-injective matches.

Part (b) of Figure 2.7 shows a rule that is to delete a node with incident
edges. Again, this is disallowed by a so-called dangling condition in the DPO
approach. Both the SPO approach and partner graph grammars allow for
such applications by deleting all incident edges implicitly.

If one looks at graph grammars as a programming language, one notices
that they provide strong means of specifying updates, but hardly any means
to specify control. Negative application conditions equip graph grammars
with some notion of control by saying when a rule cannot be applied. Let L
be the left side of a transformation rule in the SPO approach. A negative
application condition is a set of constraints, where a constraint is a graph L′

connected to L by a morphism L → L′. A match m : L → G satisfies the
constraint L → L′, if there does not exist a total morphism from L′ to G.
Put differently, the constraint is satisfied, if the image of the match cannot
be extended to contain the L′ part of the constraint. General application
conditions may contain several constraints, all of which must be satisfied in
order for a match to satisfy the application condition.

Single Pushout versus Partner Graph Grammars This paragraph
reviews the relation between the classic SPO approach to algebraic graph
transformation and the notion of partner graph grammars. A detailed com-
parison of SPO and DPO is available in Chapter 4 of [Roz97]. Essentially,
partner graph grammars are a variant of the SPO approach with a mild form

2.3. RELATION TO ALGEBRAIC GRAPH TRANSFORMATION 33

of negative application conditions. The differences are elaborated on below.
They are necessary to keep partner graph grammars amenable to the formal
verification technique presented in this work. In particular, general negative
application conditions could not be handled.

1. Multigraphs, i.e., graphs featuring multiple, equally labeled edges be-
tween the same pair of nodes, are handled in the SPO approach. Such
edges are not possible in partner graph grammars.

2. Partial morphisms in SPO transformation rules are replaced by simple
partial mappings in partner graph grammars. This allows easy node-
and edge-relabeling in partner graph grammars. In SPO relabeling
inflicts an additional burden [HP02].

3. Involved categorical constructions in all algebraic approaches to graph
transformation are replaced by direct, constructive definitions in this
thesis.

4. The problem of dangling edges created by rule applications is solved
in favor of deletion both in SPO and partner graph grammars. The
issue of identification raised by non-injective matches needs not to be
addressed in partner graph grammars, because injective matches are
required.

5. The concept of partner constraints in partner graph grammars, allows
for a restricted form of negative application conditions. The restric-
tions lie in the locality of partner constraints, whereas general negative
application conditions in the SPO approach are more expressive.

6. The SPO approach lends itself to the use of attributed graphs [LKW93],
where additional labels are used for computational issues. The addi-
tional labels stem from an arbitrary algebra and operations on them
may occur in a direct derivation step. Label constraints within partner
graph grammars present a similar concept, even though it is only used
for matching purposes.

In general, most of the work in the area of algebraic graph transformation
is interested in advancing the state-of-the-art of the technique itself. Tradi-
tionally, not much work is dedicated to the verification of graph grammars.
Exceptions include [Hec98, BKR04, RD06, KK06, BW06] and are discussed
in Chapter 5. In the context of this thesis, partner graph grammars are
mainly used as a means of specification of systems of evolving graphs. The

34 CHAPTER 2. SPECIFICATION OF EVOLVING GRAPHS

main focus, however, is on the verification of such systems. It is hence justi-
fied to design partner graph grammar as a trade-off of expressive power for
analyzability.

Chapter 3

Case Studies

Partner graph grammars are tailored to specify dynamic communication sys-
tems. As matches can occur anywhere in a system, partner graph grammars
can easily model highly concurrent systems without fixed control structures.
Rather, if essential, control needs to be encoded (Section 3.2). While the
previous remarks hold for graph grammars and dynamic communication sys-
tems in general, the strong ability of partner graph grammars to reason about
the immediate neighborhood of a communicating object, e.g. by means of
partner constraints, makes them a good candidate to model communication.
Communication happens between adjacent objects. Moreover, partner graph
grammars are still amenable to formal verification.

A complex case study from the domain of dynamic communication sys-
tems is presented in Section 3.1: car platooning, a system to automatically
optimize traffic flow. It was originally studied in the PATH project [PAT03].
The rather simplistic specification and verification approach taken there is
improved by a series of examples. They demonstrate the ability of part-
ner graph grammars to specify many complex features inherent to dynamic
communication systems: destruction and and unbounded creation of objects
with a dynamically evolving communication topology (Section 3.1.1), unreli-
able communication due to faulty channels (Section 3.1.3), or asynchronous
communication based on message queues (Section 3.1.2). Despite their com-
plexity these features are still amenable to the verification methods proposed
in later chapters.

This chapter concludes by naming more potential application domains
and other examples to be specified by partner graph grammars: process
calculi, heap-manipulating programs, and routing in ad-hoc networks.

35

36 CHAPTER 3. CASE STUDIES

3.1 Car Platooning

The main case study of this thesis is motivated by the “Program on Advanced
Technology for the Highway” (PATH) [PAT03] conducted at the University
of California, Berkeley. The relevant context for this work is the design and
the verification of car platooning maneuvers [HESV91]. A good part of this
introductory material is taken from this report.

Platoons are up to twenty closely spaced vehicles under automatic control
and are used to organize highway traffic. This organization may ideally result
in an increase of highway capacity while decreasing travel time at the same
time. The work reported in [HESV91] focuses on the design of controllers
for such platoons. The control tasks are arranged in a three layer hierarchy.
The top layer is called link layer. There, a centralized controller assigns to
each vehicle its target and a path through the highway. The other layers are
implemented as controllers on each vehicle. A vehicle’s platoon layer plans its
trajectory to conform to its assigned path. This plan consists of a sequence
of elementary maneuvers:

• Merge combines two platoons into one.

• Split separates a platoon in two.

• Change lane enables a single car to change lane.

After the platoon layer has determined to execute a maneuver, it instructs
the bottom layer, the regulation layer, to physically initiate the maneuver
by, e.g., accelerating or breaking. Information necessary to physically exe-
cute maneuvers comes from roadside monitors, sensors, and a communica-
tion infrastructure. Among the sensors, there are longitudinal and lateral
range sensors. Communication means the exchange of messages by either
broadcasting information to every vehicle in range or by addressing specific
vehicles. All the physical issues are ignored for the purpose of [HESV91]
and for this thesis, where ignoring means abstraction by non-determinism.
[LL98] is a good starting point for readers who want to learn more about
hybrid aspects of car platooning.

This case study as well as the report [HESV91] concentrate on design and
verification of the platoon layer. In order to ensure the safety of a maneuver,
vehicles need to negotiate according to protocols. A protocol is a structured
sequence of messages. The protocols considered here, i.e., their specification
and verification in [HESV91], are described in the next paragraphs. It is
shown that neither specification nor verification as described in [HESV91]
are sufficiently close to reality. Even if physical behavior is abstracted by

3.1. CAR PLATOONING 37

non-determinism (as done both in [HESV91] and here), at least the following
over-simplifications are found in the cited report.

• Dynamics : Some sort of artificial modularity is imposed on the pro-
tocols in [HESV91]. Therefore, only scenarios involving a fixed, static
number of vehicles are considered. This neglects the highly dynamic
and concurrent nature of the platoon scenario. Vehicles may appear
and disappear (enter and leave the highway), for example. Many ma-
neuvers may happen simultaneously.

• Communication is modeled by a simplistic and unrealistic shared mem-
ory approach. Synchronous communication via shared memory does
not comply to the scenario of highly diverse vehicles on highways.
Rather, asynchronous models with unreliable channels should be con-
sidered.

• Failure resistance: No attention is paid to unreliable communication
due to faulty channels and to solutions to this issue.

One of these shortcomings is addressed in each Section 3.1.1, Section 3.1.3,
and Section 3.1.2, respectively, where more refined partner graph grammar
specifications of platoon maneuvers are presented. Certainly, verification of
the refined models cannot be tackled by the methods of [HESV91].

Platoon Organization The lead car of a platoon is called its leader, the
rest are called followers. Single vehicles are called free agents. Intra-platoon
communication happens only between the leader and one or all of its fol-
lowers. Inter-platoon communication consequently affects leaders only. The
state of a vehicle, i.e. the information each vehicle possesses, include

• A hard-wired identity.

• Highway, lane, and section numbers available from roadside monitors.

• Optimal platoon size and speed provided by the link layer.

• Its leader’s identity.

• The size of the platoon and its position within the platoon.

• A busy flag.

The last three items are updated after a maneuver has been negotiated.
As stated before, the remaining information is out of scope of [HESV91]
and this work, i.e., behavior dependent on this information occurs non-
deterministically.

38 CHAPTER 3. CASE STUDIES

Maneuvers All upcoming descriptions abstract a considerable amount of
details from the physical or hybrid world, such as numerical information, ge-
ographical positions, velocities, highway geometry, and so on. In particular,
these features will not be modeled in the partner graph grammar implementa-
tion of these maneuvers. The features having an influence on communication
topologies are modeled non-deterministically.

Merge Assume two platoons on the same lane, where the rear platoon ap-
proaches the front platoon. A merge protocol is initiated by the rear
leader after the rear leader has received a “car ahead” acknowledge-
ment. Physically, a car ahead is sensor-triggered, whereas it may occur
non-deterministically here. If size requirements are met and if the front
leader is not busy (being involved in other maneuvers), it acknowl-
edges the request and new leader information is distributed to the rear
leader’s followers.

Split A split may be initiated by a platoon leader or by a follower, because
(i) the platoon size exceeds the optimal size, (ii) a car wants to move
to an adjacent lane or (iii) become a free agent. If the leader wants
to split, it informs its first follower and accelerates. The first follower
broadcasts the new leader information. A follower that wants to split
from a platoon sends a request to its leader. On acknowledgement it
decelerates and confirms to its former leader.

Change lane This protocol may be executed by free agents only. Negotia-
tions involve several cars depending on the following cases. Let A be
the car willing to change lane. If both the lane A wants to move to
– called the target lane – and the lane adjacent to the latter (not the
car’s current) – called far lane – are unoccupied, the car may just move.
If the target lane is clear and the far lane is occupied by car C, A needs
to check whether C wants to move to the same lane A wants. Finally,
if the target lane is occupied by another platoon with leader B, then
(i) B can ask A to decelerate and to move over behind B; (ii) B can
decelerate to let A over in front of B; (iii) B can split to let A in. The
option that is actually taken depends on information like the relative
speeds and sizes of the involved cars and platoons.

COSPAN The formal specification and verification of platoon maneu-
vers in [HESV91] is conducted within the COSPAN framework [HK87]. A
COSPAN specification consists of a finite set of COSPAN automata that
synchronize via shared global memory. Each COSPAN automaton is a finite-
state machine with output and guarded transitions. Each state of a COSPAN

3.1. CAR PLATOONING 39

automaton may be equipped with a set of possible outputs. In each step of
the global system, one element of this set is chosen non-deterministically and
written to the global memory that can be read and written by all automata
in the system. COSPAN automata transitions may be guarded by boolean
expressions over the global memory. The number of COSPAN automata in a
system is fixed and static, building a closed system. The language generated
by this system is the set of all possible sequences of global memory states.

The COSPAN specification of the merge maneuver, for instance, is made
up of two process automata – modeling the front and the rear leader, respec-
tively – and four environment automata modeling range sensors, busy flags
and size conditions. They form a closed system.

COSPAN verification Verification of a COSPAN specification is tackled
by task monitors. A task monitor is just another COSPAN automaton that
does not write into the global memory thus not affecting system behavior.
In order to define the acceptance behavior of a task monitor, one may spec-
ify cycle and recurrence constraints turning task monitors into a variant of
Büchi automata. A word (sequence of global memory states) is accepted
if the automaton either loops in a state specified to be a cycle state, or if
it perpetually takes one of the transitions specified to be recurrent. The
COSPAN model checker is able to check whether the language generated by
a COSPAN system is included in the language accepted by a task monitor
added to the system.

The task monitor of the merge protocol requires that either nothing hap-
pens or that a merge request by a rear leader is always followed by a positive
or negative acknowledgment by the front leader.

COSPAN and [HESV91] Criticism Obviously, the platoon case study
involves a big amount of concurrency, dynamics in the communication topol-
ogy, as well as appearing and disappearing objects (cars). Hence, it is a
prototypical instance of a dynamic communication system. Therefore, the
static scenario of COSPAN is appropriate neither for specification nor veri-
fication of this particular case study. The major criticisms are as follows.

1. In a COSPAN specification, there is a fixed, a priori known, unchange-
able number of processes building a closed system, whereas, in this case
study, there are cars entering and leaving the highway while constantly
changing their communication topology.

2. A synchronous model of communication using shared global memory
is not exactly the first choice to model a dynamic system of heteroge-

40 CHAPTER 3. CASE STUDIES

nous objects with rapidly changing communication topology. In fact,
the current communication topology is not even reflected in the global
memory.

3. In a system like this case study, one cannot simply assume reliable
communication, in particular, if the communication is wireless. No care
is taken for unreliable, faulty channels in the COSPAN specification.

The authors of [HESV91] claim to be able to exclude these issues by enforcing
a top layer, mutual exclusion policy driven by global “is busy” information.
Again, this mutual exclusion policy is hardly verified. Moreover, one maneu-
ver at a time without any interference seems like a severe restriction for a
dynamic communication system. What happens if a car in a merging pla-
toon suddenly needs to change lane? Another hint to the over-simplification
is the number of states observed for the split maneuver in the COSPAN
verification. 17. This appears to be clearly too few.

Apart from these general issues showing why COSPAN is not the first pick
to verify dynamic communication systems, the task monitors simply impose
certain sequences of messages to occur. Surprisingly, these sequences can be
easily read from the specification automata as well. Verification becomes an
almost trivial task if the properties are isomorphically read from the system
specification.

The shortcomings listed above – no dynamics, synchronous communica-
tion without an explicit communication topology, and reliable channels – are
addressed in the following three sections. The platoon scenario is specified in
more detail using partner graph grammars underpinning their crucial role in
the specification of dynamic communication systems. Verification of partner
graph grammars and the platoon case study modeled by them is addressed
in later chapters.

3.1.1 Idealized Platoons

The graph grammar Gideal is the first one modeling the platoon scenario. It
is the simplest in a series of examples that become gradually more involved.
As usual and as observed in [HESV91], all physical behavior is abstracted by
non-determinism. On top of that, Gideal abstracts from explicit messages and
from message queues. It is based on a synchronous model of communication.
Also, no unreliable channels are considered in Gideal.

However, it has the typical dynamic features. Nodes modeling cars can be
created and destroyed dynamically, their number is not fixed and potentially
unbounded. Moreover, the communication topology is modeled explicitly.

3.1. CAR PLATOONING 41

The graph grammar Gideal is defined in terms of the sets Nideal={fa, ldr,
flw, rl, fl, spl, acc} of node labels and Eideal = { } of edge labels. Here is a
description of the role of the various node labels.

fa This label is used to model free agents, i.e., cars that are not involved
with others to build a platoon. It is also the state of cars that may
appear or disappear.

ldr Platoon leaders are modeled using this label, unless they are engaged in
a merge maneuver.

flw Followers assume this label regardless of maneuvers they may be in-
volved with.

rl The rear leader of two merging platoons is modeled using this label, even
if the rear platoon is a free agent. In that case, the free agent assumes
this label, when the maneuver starts.

fl This label is analogous to the previous, except that it models the front
leader of merging platoons.

spl The spl label marks followers that are willing to split. More precisely, it
marks the follower that is to become a leader after the split.

acc If the leader of a platoon needs to split, it can do so by accelerating
which gave the name to the last label of Nideal.

Notice that the change lane maneuver is not in the scope of Gideal as it
depends and affects merely physical parameters that are not in the scope of
modeling by graph grammars – at least not at this point in time.

Merge Maneuver Table 3.1 presents the five transformation rules model-
ing a merge maneuver. They are collected in the rule setRmerge. If not stated
otherwise, the mapping between left and right graph of a rule is assumed to
be h = [ui 7→ u′i]. It maps nodes to their primed versions. In these cases,
as in Table 3.1, the h mapping is dropped from the pictorial notation of the
rules.

[Create] As this rule always matches, a new free agent may enter the stage
at any time. . .

[Destroy] . . . and leave it again in an unconstrained manner.

42 CHAPTER 3. CASE STUDIES

[Create] =⇒ fa

[Destroy] =⇒fa

[InitMerge] u′2

y ∈ {ldr, fa}

rl fl=⇒x y
u1 u2 u′1

x ∈ {ldr, fa}

[Pass1]

rl

u1

u2 u3

u′1

u′2 u′3
fl flrl

flw flw

=⇒

[Ldr2Flw]

{out,fl, 1}

u1 u2 u′1 u′2
flw=⇒flrl ldr

Tab. 3.1: The merge maneuver rules Rmerge.

3.1. CAR PLATOONING 43

[InitMerge] This rule triggers the beginning of a merge maneuver and in-
volves two cars that may either be leader or free agent. The label
constraint on top denotes that an arbitrary (one of four) combination
of this kind is possible. The ongoing merge maneuver is characterized
by the rear leader/front leader connection. At the same time, this rule
is a non-deterministic abstraction of sensor information triggering a
merge maneuver in the real system.

[Pass1] During a merge maneuver the rear leader needs to hand over its
followers to the front leader, because the latter will become the leader
of the merged platoon.

[Ldr2Flw] The partner constraint on the bottom is the formalization of
the fact, that the rear leader has handed over all of its followers. In
other words, it is only connected to a front leader. In that case, the
rear leader may become a follower of the front leader, which in turn
becomes the leader of the merged platoon. This rule concludes a merge
maneuver.

Split in the Middle The split maneuver is two-fold. It needs to be dis-
tinguished whether a split is supposed to occur in the middle (or at the end)
of a platoon or whether the leader needs to accelerate. The first set of rules,
RsplitM, presented in Table 3.2, deals with the first case.

[InitSplit1] This part of the split maneuver is triggered by a follower an-
nouncing a split. The rule may be applied at any time as long as there
is a follower. Again, this amounts to a non-deterministic abstraction
of the real system behavior.

[Pass2] This rule caters for re-structuring one platoon into two by assigning
the split initiating car followers that originally belonged to the leader of
the splitting platoon. How many cars there are eventually handed over
– corresponding to the position of the split initiator – is not specified
and abstracted by non-determinism.

[SplitMiddle] If non-determinism decided that the split initiator has a mid-
dle position within the splitting platoon, followers of the original leader
are handed over to the initiator. If both the initiator in state spl and
the original leader in state ldr have followers (as expressed by the part-
ner constraints) their connecting channel is closed and both become
regular leaders.

44 CHAPTER 3. CASE STUDIES

[InitSplit1] splflw
u1 u′1

=⇒

[Pass2]

spl

u1

u2 u3

u′1

u′2 u′3

flw flw

=⇒

ldr spl ldr

[SplitMiddle]

ldr

{(out, spl, 1), (out,flw)} {(in, ldr, 1), (out,flw)}

u1 u2 u′1 u′2
=⇒ ldr ldrspl

[SplitLast]

u1 u2 u′1 u′2
ldrsplldr

{(in, ldr, 1)}

=⇒ fa

Tab. 3.2: Splitting a platoon in the middle or at the end: RsplitM.

[SplitLast] In case the initiator was the last car within a platoon, it will not
have any followers – as specified by the label constraint – and becomes
a free agent, while the original leader stays what it is.

Split Leader As Gideal does not formalize the change lane maneuver, the
remaining set of rules deals with splitting a leader from a platoon by accel-
erating. They are called RsplitL and given in Table 3.3.

[InitSplit2] A leader that wants to accelerate triggers the second variant of
the split maneuver.

3.1. CAR PLATOONING 45

[2Split] This rule applies in cases of platoons of size two and splits the
platoon into two free agents. The partner constraint expresses that
there is exactly one follower. This constraint will be troublesome for
the later verification.

[Pass3] The car in second position is chosen non-deterministically and as-
sumes the leader state ldr. At the same time, a follower of the original
leader is passed to the second position car. Due to injective matches,
this rule applies only for platoons of size at least three.

[Pass4] As long as the leader of the splitting platoon in state acc still has
followers left, it hands them over to the car in second position.

[AccLeader] If the original leader has handed over all its former followers
to the new leader, i.e., the car in second position within the platoon,
it can safely accelerate and become a free agent – leaving behind a
properly structured platoon.

Sample Run All the rules from Table 3.1, Table 3.2, and Table 3.3 make up
the set Rideal = Rmerge ∪RsplitM ∪RsplitL that is part of the graph grammar
Gideal = (Rideal, Iideal) defining an idealized merge/split platoon scenario.
The initial graph Iideal is chosen to be the empty graph E, i.e. a graph
without nodes.

Figure 3.1 shows sample derivations of the partner graph grammar Gideal.
A few subtle mistakes were introduced in this graph grammar. For instance,
consider the next to the last graph of Figure 3.1. Another matching rule for
that graph is [InitSplit2]. Applying it, yields a situation, where the leader
car wants to accelerate, while the last car is trying to perform a split. This is
clearly an error situation. It demonstrates that putting two sets of rules – in
this case, RsplitM and RsplitL – together without further thought may end up
in erroneous behavior, although each single part on its own may be correct.

Another reason for introducing mistakes in this case study is, certainly, to
explore the power of the verification techniques of the later chapters: Which
mistakes can be discovered, and which cannot?

Sample Properties To conclude Section 3.1.1, some interesting properties
of the case study are formalized using the GL logic of Section 2.2.

AG ∀x1∀x2.ldr(x1) ∧ (x1, x2) → ¬ldr(x2) (3.1)

AG ∀x1.ldr(x1) → ∃x2. (x1, x2) ∨ (x2, x1) (3.2)

46 CHAPTER 3. CASE STUDIES

[InitSplit2]
u′1u1

ldr acc=⇒

[2Split]

{(out,flw, 1)}

u1 u2 u′1 u′2
=⇒ faacc flw fa

[Pass3]

{(out,flw)}

u1

u2 u3

u′1

u′2 u′3

flw flw

=⇒

acc flw acc ldr

[Pass4]

ldr

u1

u2 u3

u′1

u′2 u′3

flw flw

=⇒

acc ldr acc

[AccLeader]

{(out, ldr)}

u1 u′1 u′2
ldrldracc fa=⇒

u2

Tab. 3.3: Formalization of the leader leaving a platoon: RsplitL.

3.1. CAR PLATOONING 47

ldr

fa

fa

fa

fa

fa

fa

fa

flrl

fa

fa

 [Create] [Create] [Create]

 [InitMerge] [Ldr2Flw]

rl

 [InitMerge] [Ldr2Flw]

flw

flw

flw fl flw

 [InitSplit1]

spl

 [SplitLast]

flw flw ldr

ldr

ldr

Fig. 3.1: Sample derivation of the partner graph grammar Gideal. Three
cars are created gradually building a platoon, from which the last car splits
again.

Properties (3.1) and (3.2) are typical safety properties. The first formula
requires that a leader is never connected to another leader. Property (3.2)
states that a leader must always be connected to someone else. If it was alone,
it should be a free agent. The verification of these and more properties is
subject to the verification techniques to be presented in Chapter 4.

3.1.2 Asynchronous Communication

The second shortcoming of the platoon design within the PATH project is
concerned with the communication model. In [HESV91], synchronous com-
munication via shared memory is assumed. This, however, seems unrealistic
given the heterogeneous nature of this scenario.

Again, partner graph grammars promise to formulate a more appropriate
model with explicit and buffered messages. Dynamic features as specified
in the previous section remain. Still, no faulty channels or other sources of

48 CHAPTER 3. CASE STUDIES

unreliability are modeled; neither are physical or hybrid features that remain
abstracted by non-determinism.

In [BSTW06], a framework for specification and verification of dynamic
communication systems was proposed. Within his context, the techniques
presented in this thesis play a major role. Systems in [BSTW06] are specified
using an automata-based approach. A lightweight version of it is given here.
In particular, message queues are replaced with sets serving as buffers. In
a scenario of queue length 1, these approaches are certainly identical. In
general, the set representation is an abstraction of the queue representation.
It is easy to see, that the set representation allows for any possible order of
message receptions, whereas the queue representation has a well determined
order. The formal details of this argument are not important, in order to
prove the applicability of partner graph grammars to model asynchronous
communication – in fact, queues may be modeled as well – and are thus left
out.

An Asynchronous Partner Graph Grammar Template This para-
graph introduces a template for generating a partner graph grammar mod-
eling asynchronous, buffered, message-based communication. It consists of a
number of rules with parameters. A valid partner graph grammar is obtained
by instantiating them appropriately. To start with, the simplified version of
the specification formalism of [BSTW06], DCS protocols, is described. After
that, the grammar template is introduced and later on instantiated yielding
a second, more involved platoon model.

In a slight simplification of [BSTW06] the semantics of a DCS protocol
is defined to be a sequence of topologies. Each topology consists of a set
of processes equipped with a unique identity. Each process is in a local
state. Processes is just another name for cars, objects, or nodes. A process
state corresponds to the local state of an object. Each process comes with a
message buffer, that is a set of messages, each of which may be equipped with
a parameter process identity linking the message to another process. Finally,
each process comes with a finite set of named channels, where a channel may
contain a set of process identities – spanning the communication structure
of the topology. One topology may evolve into another one by one of the
following actions.

Process Creation The set of states contains a non-empty set of initial
states. A process in its initial state with an empty message buffer and
empty channels may appear within a topology in an evolution step.

Process Destruction The set of states contains a (possibly empty) set of

3.1. CAR PLATOONING 49

fragile states. A process that is in one of those states may disappear
in an evolution step regardless of the contents of its buffer and its
channels. On destruction, the process’ identity is collected from all
other processes’ channels and buffers.

Send Message A process in state q may broadcast a message m to all pro-
cesses to which it is connected by channel c thus changing its state to
q′. This is denoted by s : (q,m, c, q′). The process may attach its own
identity or another known identity from channel c′ to the message de-
noted s : (q,m, id, c, q′) or s : (q,m, c′, c, q′), respectively. The message
is added to all processes’ buffers located in channel c of the sending
process.

Receive Message A process in state q may receive a random message m
from its message buffer, changing its state to q′. This is written r :
(q,m, q′). If message m comes with a parameter identity, the process
in state q adds this identity to its channel c, denoted r : (q,m, c, q′)

Reset Channel A process in state q may erase the contents of its channel
c thus changing its state to q′, written e : (q, c, q′).

Environment Messages The set of messages contains a designated set of
environment messages. The environment is a virtual, i.e. not existent
in any topology, process that can send environment messages to any
process at any time. The identity of any process in the current topology
may be attached to such a message.

As may be guessed from the preceding description, the specification of
a DCS protocol involves the following syntactic ingredients. By fixing these
ingredients, a system is specified completely. The partner graph grammar
template uses them as a parameter, yielding a proper partner graph grammar
by instantiating them. The ingredients are:

1. A finite set Q of local states.

2. A non-empty set I ⊆ Q of initial sets.

3. A set F ⊆ Q of fragile states.

4. A set msg of messages.

5. A set emsg ⊆ msg of environment messages.

6. A finite set χ of channel names.

50 CHAPTER 3. CASE STUDIES

7. A successor relation succ containing s, r, and e tuples as aforemen-
tioned.

The partner graph grammar template for the specification of systems
with asynchronous communications is instantiated by choosing a concrete
set of local states q ∈ Q including initial and fragile states, a concrete set of
channels c ∈ χ, and messages msg including environment messages. Given
concrete values ofQ, I, F , msg, emsg, χ, and succ the partner graph grammar
template is instantiated to a partner graph grammar over the sets

NDCS = Q ∪ Q× χ×N ∪ msg
EDCS = χ ∪̇ {buf, par}

of node and edge labels, respectively. Processes as well as messages are thus
modeled as nodes, channels are modeled as edges with one additional edge
label used to link the message buffer to a process. The Q × χ × N part is
needed for technical reasons explained below.

Each rule of a partner graph grammar is obtained by instantiating one of
the template rules that are now described in more detail. Having picked a set
of initial states I and fragile states F , the first rules denote the spontaneous
creation and destruction of processes in the initial or fragile states. As usual,
the correspondence between left and right graph is implicitly given by using
primed versions of node identities. Note that label constraints (Section 2.1.6)
are employed as a shorthand notation.

[TCreate]
x

x ∈ I

[TDestroy]
x

x ∈ F

The following three more complicated rule templates are, at the same
time, a showcase for what graph grammars are not very well suited to model.
For each tuple e : (. . .) ∈ succ each of the following three templates must be
instantiated. They serve to erase the contents of one channel by iterating over
all the identities in the channel. This iteration cannot be coded naturally
in terms of a partner graph grammar. Rather, an artificial label must be
introduced. This role is played by the Q× χ×N construct. The process in
state q assumes the artificial state (q, c, n) (indicated by the shaded circle) in

3.1. CAR PLATOONING 51

order to denote that it is resetting channel c. The natural number n is simply
a flag. It is used to distinguish between several iterations that may happen
at the same time – even in an interleaved fashion. (The c and the n do not
occur in the figure for brevity.) As the artificial label is thus guaranteed not
to occur anywhere else, it is ensured that the process in state q cannot do
anything else but resetting channel c. After there is no identity left on this
channel, as modeled by the partner constraint in template [TReset3], the
involved process may eventually assume the specified state q′.

[TReset1]
u1 u2

cq x

e : (q, c, q′) u′1 u′2

xq

[TReset2]
u1 u2

c x

e : (q, c, q′) u′1 u′2

xq q

[TReset3]

u1

q

¬{(out, c)}

e : (q, c, q′) u′1

q′

To summarize, partner graph grammars and graph grammars in gen-
eral do not have a natural way of encoding complex control flow. Control-
flow points need to be modeled explicitly by additional labels, which seems
rather artificial. The loop encoding rules [TReset1-3] may be abbreviated
as loop(c, [TReset1’]), where the latter rule equals [TReset1] except for
replacing the label of u′1 by q′ instead of q. The meaning of this construct is
to expand rule [TReset1’] in the same fashion as done above.

The loop construct shall be used in the following three templates as well.
They are instantiated for each tuple s : (. . .) ∈ succ and model the sending
of a message without and with an attached identity. In the latter case, there
is one rule template for attaching the sender’s identity and one for attaching
an identity known to the sender. The dotted arrows denote links into the
message buffer, i.e. buf-labeled edges. Solid arrows without an attached
label link messages to their parameter, formally they are labeled par. Arrows
denoting channels are drawn as solid arrows with their label, i.e. their channel
name, attached. Remember that the bold variables like x or y are label
variables and may denote any node label in NDCS. For the sake of readability
nodes representing message are drawn as boxes.

52 CHAPTER 3. CASE STUDIES

[TSend1]
s : (q,m, c, q′)u1 u2

u′1 u′2

cq x

cq′

m

x

u3

[TSend2]
u1 u2

u′1 u′2

q x

q′

m

x

c1

c1

u3

s : (q,m, id, c1, q
′)

[TSend3]
s : (q,m, c1, c2, q

′)

u′1 u′2

q′

m

xc1

z

c2

u′3

u4

u1 u2

q xc1

z

c2

u3

As stated, these rules would only send a message to one random process
in a channel rather than to broadcast it. Therefore, the [TSend] rules must
be replaced by looping constructs: loop(c, [TSendi]) for i = 1, 2, 3. Notice
that whenever such a looping template is instantiated, a new flag must be
introduced, in order not to make the application of these rules interfere.

Analogously to the send case but without loops, there are two rules man-
aging the reception of messages. In contrast to the second case, no identity
is attached to the received message in the first case. There is an instance of
one of these rules for each occurrence of a r : (. . .) tuple in succ.

[TRec1]

u1

q
r : (q,m, q′) u′1

q′

u2

m

[TRec2]
r : (q,m, c, q′)

cy q′
u′1 u′2

m

y

u1

q

u2

u3

3.1. CAR PLATOONING 53

Another case of non-deterministic environment action to abstract from
physical and hybrid influences in the real system is demonstrated by the
next two rule templates. At any time, the environment may send one of
the environment messages z to an arbitrary process x. It may also attach
an arbitrary identity y to the message. In the platoon example below, this
facility is employed to inform cars of cars ahead that are potentially willing
to merge.

[TEnv1]
x

u′1

z
u2

x

u1

z ∈ emsg

[TEnv2]
x

u1 u2

y

w ∈ emsg x

w

u′2u′1

u3

y

A Platoon Instance As an example of an instantiated partner graph
grammar template, an example from [BSTW06] is chosen. Only the syn-
tactic ingredients are mentioned. They define all necessary information for
the instantiation. This instantiation is a platoon example that uses asyn-
chronous, buffered communication via named channels, instead of shared
global memory as presented in [HESV91]. The components are:

• States Q = {fa, ld, req, hnd, hnd′, er, er′, clr,fl, ann}.

• Initial state A = {fa}.

• Fragile states F = {fa,fl}.

• Channels χ = {ldr,flws}, one is used to save the identity of the (po-
tential) leader of the car, the other one to save identities of followers.

• Messages msg = {car ahead, request, new leader, new flwe}.

• Environment messages emsg = {car ahead}.

The only missing ingredient of the instantiation is the successor relation.
It is presented below and comes with a detailed explanation of the meaning
of the local states.

54 CHAPTER 3. CASE STUDIES

State fa This state models free agents driving on their own. The following
transitions are possible from there.

• r : (fa, car ahead, ldr, req): The environment has announced a car
ahead to a free agent triggering the beginning of a merge maneu-
ver. The rear free agent receives this message and changes its
state to req. The identity attached to the message is saved in the
leader channel ldr.

• r : (fa, request,flws, ld): A free agent may receive a request message
requesting a merge. In this case, the free agent drives ahead of an-
other platoon or another free agent and it has been announced to
the respective rear free agent or rear leader by the environment. It
adds the identity attached to the message to its followers channel
flws.

State ld The state that a leader of a platoon assumes.

• r : (ld, car ahead, ldr, req): This tuple corresponds to the first tuple
described for state fa. A car has been announced, its identity is
saved in the ldr channel.

• r : (ld, request,flws, ld): A leader in front may receive a request to
merge from a car driving behind it. In such a case, it adds the
attached identity to its follower channel flws.

• r : (ld, new flwe,flws, ld): In order to finish a merge maneuver,
the followers of the rear platoon announce themselves to their
new leader by sending new flwe messages. By receiving them, the
latter adds all those identities to its follower channel flws.

State req This is the state of a process that was announced a car ahead by
the environment. Originally, this process may have been a leader or
a free agent. It uses this state to process the merge in the role of a
rear leader. The only transition out of this state is to send a request
message to the leader (or free agent) in front, that is stored in the ldr
channel – s : (req, request, id, ldr, hnd). The requesting car adds its own
identity to the message.

States hnd,hnd′ A process in this state hands over its followers to another
leader. It is assumed by former leaders or free agents approaching
another platoon from behind after requesting a merge from the car
ahead. The hand over is handled by broadcasting a new leader an-
nouncement, first without the new leader identity stored in channel ldr

3.1. CAR PLATOONING 55

– s : (hnd, new leader,flws, hnd′). The subsequent state hnd′ repeats
this message once more, but this time the new leader identity informa-
tion, i.e., the identity of the leader or free agent ahead as stored in the
ldr channel, is broadcasted to all followers, before the sending process
assumes state clr – s : (hnd′, new leader, ldr,flws, clr)

State clr In this state, the rear leader that was a leader or free agent
originally clears its flws channel and becomes a follower itself: e :
(clr,flws,fl).

State fl The only thing a follower can do is receiving the announcement of
a new leader. The new leader is announced by its former leader by
means of a new leader message. In that case the follower changes its
state to er for further proceeding. Formally, the tuple looks like this:
r : (fl, new leader, er).

States er, er′ Once in state er, the follower being about to get a new leader,
deletes its old leader information from channel ldr – e : (er, ldr, er′).
When in state er′ it is able to receive the second broadcast of the
new leader information that is equipped with the new leader identity.
The ldr channel is then set to contain this freshly received identity –
r : (er′, new leader, ldr, ann).

State ann The last thing to do for a follower that has just got to a new
leader is to announce itself to this new leader, so that the latter can
add it to its own follower channel flws. This issue is taken care of by
a new flwe message. After that, the follower can assume the proper
follower state again. Formally, this yields the tuple s : (ann, new flwe,
id, ldr, fl).

Sample Run Plugging the detailed rules from the previous paragraph into
the partner graph grammar template, the partner graph grammar GDCS =
(RDCS, IDCS) is obtained, where the initial graph is set to be the empty graph.
A sample derivation is shown in Figure 3.2. Notice that the design of GDCS

deviates slightly from Gideal due to the presence of named channels. Also,
in the DCS specification language of [BSTW06] there is no means of making
transitions dependent on objects (cars, processes) one is linked to. This is of
course due to the asynchronous nature of this specification formalism, which
is reflected in the partner graph grammar.

Sample Properties To conclude Section 3.1.2, two sample properties are
stated in the GL logic of Section 2.2.

56 CHAPTER 3. CASE STUDIES

ldr

fa fa fa

fa fa

fareq

. . .
ldfl

fa
car ahead

hnd

ld

flws

flws

hnd

request

ldr

ldr

ldr

Fig. 3.2: Sample derivation of the DCS grammar GDCS. First two free
agents are created. One is announced to be ahead of the other by a car ahead
environment message featuring an identity. After that, the rear car request
a merge adding the front car to its leader channel. The latter accepts and
adds the rear car to its followers. The dots indicate the hand over of the non-
existent followers that imply only state changes of the rear car. Eventually,
a proper platoon of size two is established.

AG EF ∀x.∀y.¬(buf(x, y) ∨ par(x, y)) (3.3)

AG ∀x.ld(x) ∨ fa(x) ∨ ∃y.(ld(x, y) ∧ ∀z.ld(x, z) → y = z) (3.4)

Property (3.3) expresses that each message buffer will eventually be emp-
tied. In an unrestricted system, it may certainly be falsified by the envi-
ronment swamping a process. It remains to be shown, whether the analysis
techniques to be presented are able to find this out. It is certainly desired,
that each car that is not a free agent or follower has a unique leader. This is
formally expressed by property (3.4).

3.1.3 Faulty Channels

Until now, dynamic object creation, destruction, evolving communication
topologies, and asynchronous, buffered, message-based communication were
added to the static platoon scenario first described in [HESV91] and in de-
tail in the beginning of Section 3.1. That already proved the usability and
expressiveness of partner graph grammars and the specification logic GL.

3.1. CAR PLATOONING 57

[Fault4]

x yz

x y

x yz

x yz

y

⇒

⇒

⇒

x⇒ [Fault1]

[Fault2]

[Fault3]

Fig. 3.3: Four ways to deal with broken communication (from top to bot-
tom): (1) The link simply disappears. (2) The link disappears but the com-
munication partners are notified. (3) Partners are not notified but a logical
connection remains intact. (4) Object notification in combination with logi-
cal links.

In this section, the achievements are further strengthened by incorporating
features that allow reasoning about faultiness of communication.

This section centers around the possibility of faulty channels. Again,
channels are used as a synonym of the more general term links. The source
of all faultiness thus lies in the spontaneous disappearance of edges. How-
ever, there should be means for a system to recover from such faults. Two
dimensions for error recovery are proposed here. First, there may or not may
be a notification of objects about losing a link. The second dimension in-
troduces two sorts of channels: ordinary ones to model physical connections
and logical links. The latter are mostly parallel to the communication links,
but prevail after a communication breaks down. This corresponds to the
intuition, that an object knows some sort of address of its communication
partners modeled by logical links. This knowledge may not be lost, when the
physical link collapses. Figure 3.3 illustrates four possible ways of introduc-
ing faulty channels into a graph grammar by adding one of the [Fault1− 4]
rules.

If one aims at investigating the fault resistance of a given graph grammar
G = (R, I) over the sets N and E of node and edge labels, the following
procedure is proposed depending on the choice of the recovery model. Equip
G with additional fault rules to create a faulty system faulty(G). Consider the
rules in Figure 3.3, where the correspondence between nodes in left and right
graphs is given implicitly by positions. The domain of the label variables are

58 CHAPTER 3. CASE STUDIES

explained in detail below.

• If one opts for no notification and no logical links, the transformation
rule [Fault1] is added to R. The sets of node and edge need not be
adjusted. The label variables range over the complete set of labels,
since an edge may disappear regardless of its label and its incident
nodes.

• The notification/no logical links option is obtained by adding rule
[Fault2] to the rules of R. Furthermore, the resulting partner graph
grammar faulty(G) is over the set N × {good, bad} to distinguish ordi-
nary (good) states from those (bad) indicating the loss of a channel. In
rule [Fault2], the notion of label constraints is slightly abused, because
x and y in the left graph range over N×{good}, whereas a shaded node
labeled x in the right graph actually stands for (x, bad). Certainly, z
ranges over E .

• The third option introduces logical links between objects that model
the knowledge of another object even after the physical connection
is lost. Logical links are introduced whenever a physical connection
collapses. Since objects are not notified, the set of node labels prevails,
whereas the set of edge labels is extended to be E × {physic, logic}.
Rule [Fault3] reads as follows – again abusing the notion of label
constraints. The label variables for nodes range over N . Label variable
z ranges over E ×{physic} in the left graph and over E ×{logic} in the
right graph – shown as a dashed edge labeled z.

• The fourth option simply combines object notification and logical links.
Hence the label sets are N ×{good, bad} and E×{physic, logic}, respec-
tively. Rule [Fault4] is the obvious mixture of [Fault2] and [Fault3].

Running the analysis proposed in later chapters reveals the behavior of the
system specified by G when faulty channels are introduced. An advantage of
the method proposed in this section, is that it offers multiple models of error
recovery to be picked by the user. Certainly, the designer of a fault tolerant
system must add more rules to the original graph grammar to cope with error
recovery. It must be said that the aforementioned transformation rules only
introduce faulty channels and the possibility to overcome them. Concrete
measure against faults must be taken by the system designer. However,
much insight into the behavior of a faulty system can be gained by applying
this method. It may thus be proposed as a general way to analyze faulty
systems.

3.2. FURTHER APPLICATIONS 59

3.2 Further Applications

The car platooning scenario serves as a complex, prototypical instance of the
main application domain of this work: dynamic communication systems. All
the car platooning scenarios will be evaluated in detail in Section 4.5. In
contrast, this section lists a number of other potential, promising application
domains that are to be explored in the course of future work.

Heap Manipulating Programs The best-known application domain that
involves evolving graphs is the domain of heap-manipulating programs, where
heaps are represented as graphs. Similar to dynamic communication systems,
destructive pointer updates can be characterized in a local fashion. However,
the influence on shared nodes, e.g. the creation of dangling references, is not
truthfully modeled by the single pushout approach (Section 2.3), where edges
adjacent to disappearing nodes disappear, too, and do not remain dangling.

Figure 2.2 on page 15 shows examples of this application domain. Due
to the locality of updates, small left graphs in rules are expected, which
eases the effort of computing matches. Also the general advantage of using
graph grammars applies to this application domain: Both specification of a
program and an analysis result are easily visualizable.

The biggest problem with this application domain is modeling control
flow in terms of graph grammars. As seen in the queue implementation,
control flow constructs like iteration over the elements in a container or even
procedures cannot be implemented naturally in graph grammars. Certainly,
they can be encoded or imposed upon a rule-based core. At least for the
verification techniques presented here, this yields a considerable loss of pre-
cision of the analysis results, as will be shown in the experimental evaluation
in Section 4.5.

Another drawback – not of graph grammar based verification in general,
but of partner abstraction as introduced in Chapter 4 – is the lack of features
to reason about reachability within graphs. While this is not crucial for
the application domain of dynamic communication systems, reachability is
essential to be able to reason about in heap-manipulating programs. This is
the reason why transitive closure logics are popular in this research area.

The three-valued logic based approach to verification of heap-manipulating
programs as surveyed in [SRW02] has emerged as a de-facto standard in
this application domain. It is capable of proving very advanced properties
of heap-manipulating programs, such as the correctness of list-sorting algo-
rithms [LARSW00] or safety properties of multi-threaded Java [Yah01]. Also
interprocedural programs [RBR+05] or numeric analyses of array operations

60 CHAPTER 3. CASE STUDIES

[GRS05] are in the scope of this very general technique. It is thus very hard
to compete with this technique in terms of general applicability.

However, improvements over this technique may be possible in terms
of comprehensibility, ease of use, and scalability. The specification of an
analysis in the [SRW02] framework is tedious and error-prone, because one
needs to write involved predicate update formulas instead of simple graph
transformation rules. The actual analysis using the TVLA [LAS00] tool is
often very time-consuming.

Therefore, there is some hope to establish graph grammar based meth-
ods as a complementary technique besides TVLA based analyses. This work
presents a step in this direction as well as analyses based on [BCK04] that,
e.g., allow for the analysis of red-black trees [BCE+05]. The approach closest
to the one here is presented in [RD06]. More graph grammar based verifica-
tion techniques are reviewed in Chapter 5.

Process Calculi One traditional way of specifying communication systems
is the use of process calculi like CCS [Mil80], CSP [Hoa78], or variants of the
π-calculus [SW01]. The main reason for not using them in this work is that
communication topologies are to be represented explicitly using graphs. For
case studies like the platoon scenario, graph transformation rules are a more
natural and more high-level way of coding.

As process calculi occur so frequently and due to their close relationship
to graph grammars, they present an obvious application domain for the ver-
ification techniques presented here. Many interesting applications modeled
in a process calculus would become immediately amenable to the verification
method of this work, if there was an automatic, semantic-preserving transla-
tion of process calculi into partner graph grammars. A hypergraph rewriting
semantics of a π-calculus variant was given in [Kön00]. However, there is still
a significant gap between that semantics and partner graph grammars. The
major problem in this context may be the interpretation of π’s replication
operator. As the natural and obvious interpretation involves an unbounded
number of transformation rules in the grammar, which is clearly not desir-
able.

Even though more work needs to be invested in the application domain
of process calculi, it remains an interesting task to make the techniques of
this work applicable to them and compare the results to related analyses of
process calculi like control flow analyses in the style of [BDNN98].

Peer-to-Peer and Ad Hoc Networks The most promising and at the
same time most sophisticated and most distant application deals with the

3.2. FURTHER APPLICATIONS 61

analysis of communication topologies in peer-to-peer or mobile ad hoc net-
works. In order to convey an impression of the application domain, a typical
example is given. It originates in the Safari project at Rice University and
presents a self-organizing hierarchical routing protocol for ad hoc networking.
The protocol is formally described in [DKC+04]. It should become obvious
from the description that the protocol can be modeled using partner graph
grammars. However, the probabilistic features of it need to be abstracted
by non-determinism. The same abstraction must be applied to concrete,
physical information that is broadcasted over the network.

The hierarchy is formed as a recursive organization of nodes in the net-
work into cells. The set of nodes is partitioned into cells, the set of cells is
partitioned into super-cells, and so on. In general, a level k cell is partitioned
into level k − 1 cells. Within each level i cell there is a level i drum. Each
level i drum, which is equipped with a unique identity, identifies a level i
cell. At the same time, a level k drum is a level i drum for i ≤ k, too. The
hierarchical address of a node id is of the form dk.dk−1.id, where di is the
level i drum identifying the level i cell, in which node id is located.

Each drum disseminates periodic beacon packages containing information
about locality, hierarchy, and routing. This information is forwarded by all
nodes within a certain number of hops from the drum. A node stores all the
beacons it forwards in a routing table. For sending a data packet, routing
is performed according to the hierarchical address of the packet’s source and
destination. Routing happens towards the drum of the destination node’s
cell at each level of recursion.

This completes the description of the organization of the network. For
brevity and because the protocol will not be analyzed formally, some details
were left out in the description, e.g. the self-selecting algorithm of a level i
drum among level i − 1 drums. The purpose of this example is simply to
convey the flavor of this particular application domain.

As with process calculi and heap-manipulating programs, left graphs of
transformation rules are expected to be reasonably small. From a specifica-
tion point of view, the problem consists rather of the numerous physical, i.e.,
numerical, data broadcasted over the network. Also, failure models are typ-
ically described in terms of probability distributions. Both data and proba-
bility distributions may be abstracted using non-determinism. However, this
may yield a very coarse abstraction.

There are two possible solutions to these modeling problems. First,
stochastic graph grammars as proposed in [HLM04] may help to model
stochastic failure behavior. This feature was used in the simulation of peer-
to-peer networks based on graph grammars in [KL06]. The latter work does

62 CHAPTER 3. CASE STUDIES

not aim at verification, though. Rather, systems are simulated and evaluated
statistically.

The problem of data may be addressed using attributed graphs [LKW93].
This should be rather straightforward when it comes to modeling a system
like Safari routing. On the other hand, it will be more complex to analyze.
There is some hope, however, that the tasks of analyzing the graphs and their
attributes may be separated. This may also be a promising approach in the
queue-based platoon scenario stated in Section 3.1.2, where queues will be
shown to be a mischief-maker in Section 4.5.2.

Chapter 4

Partner Abstraction

Partner graph grammars have been introduced in Chapter 2 and proven
useful in Chapter 3. The technical core of this work is presented in this
chapter.

After a brief introduction to the underlying verification technique, ab-
stract interpretation, a novel, two-layered abstraction of graphs is defined:
partner abstraction. The application of transformation rules will be lifted
from graphs to abstract graphs. This gives rise to the notion of an abstract
graph semantics, which will be shown to be a sound over-approximation of
the graph semantics of a partner graph grammar. Some statically check-
able cases are identified, where the obtained information can be shown to be
complete. For this purpose, three novel completeness notions are introduced.
After that, the meaning of GL properties is defined for abstract graph se-
mantics’. It is investigated, to what extent properties that hold of a partner
graph grammar (more precisely, of its induced graph transition system) also
hold of an abstract graph semantics. The abstract interpretation of partner
graph grammars has been implemented in the hiralysis tool. It is used
to implement and experimentally evaluate the platoon case studies of Sec-
tion 3.1. The experiments and experiences gained from them are reported,
before this chapter concludes by giving an outlook to further extensions to
partner abstraction that may make the approach either more precise, more
scalable, or more parameterized.

4.1 Abstract Interpretation

Initially, some foundations of abstract interpretation are presented. This
technique was originally invented in two seminal papers by P. and R. Cousot
[CC77, CC79]. A good survey reference is the book [NNH99], where Chapter

63

64 CHAPTER 4. PARTNER ABSTRACTION

4 treats the theory of abstract interpretation. In this work, only the absolute
necessities of the underlying theory are presented. Later on, the particular
abstraction employed to analyze partner graph grammars is motivated and
introduced. It is called partner abstraction. It maps concrete graphs to
abstract graphs in two steps. Matching and application of transformation
rules are lifted to work on abstract graphs. The key idea is to locally undo
the abstraction by materialization and to then apply the same transformation
rule as defined for the concrete case. In order to guarantee boundedness of
the abstraction, another abstraction step follows the update.

One central theorem of Section 4.1 is called the Matching Theorem. It re-
lates concrete and abstract matches. The second major theorem concerns the
soundness of the proposed analysis. It is a trivial consequence of the embed-
ding in the abstract interpretation framework. It needs to show that abstrac-
tions are preserved by abstract transformers. The soundness theorem implies
that the computed abstract graph semantics is a true over-approximation
of the concrete graph semantics, where the graph semantics is the set of all
graphs generated by a partner graph grammar. As a consequence, certain un-
desired graphs may be proven not to occur in the concrete system by proving
their absence in the abstract system.

4.1.1 Introduction to Abstract Interpretation

A static analysis finitely analyzes a program in advance of the program exe-
cution and extracts useful information from it. Abstract interpretation is a
fundamental framework that can help to formulate and prove correct a static
analysis. In terms of this work, programs are partner graph grammars and
program executions are graph transition systems induced by partner graph
grammars. It should be said, that this introduction to abstract interpretation
is brief and not formal. The purpose is rather to set the stage for the later
sections of this chapter. All material in them is self-explanatory. There is a
huge amount of material on abstract interpretation. A good recommendation
to start digging into it are the seminal papers [CC77, CC79] that laid the
foundation of abstract interpretation and Chapter 4 of [NNH99] providing a
solid introduction.

Abstract interpretation builds upon the notion of an abstraction. An
abstraction is a value from some abstract domain and represents a set of
concrete values. Concrete values are the semantic domain, on which actual
computations of a program happen. In this work, an abstract graph will rep-
resent a set of concrete graphs. Abstract graphs are defined in Section 4.1.2.
The dual of abstraction is concretization. The concretization of an abstract
value is the set of all concrete values that are represented by this abstract

4.1. ABSTRACT INTERPRETATION 65

value. Abstractions and concretizations are formalized in terms of ordered
sets and lattice theory. A good textbook on these subjects is [DP05]. The
central notion relating abstraction and concretization is the notion of a Ga-
lois connection between two complete lattices, one representing the concrete
values, the other representing the abstract values. As Galois connections will
not occur explicitly in the remainder of this work, their precise definition is
omitted.

Abstraction is only the first part of the story of abstract interpretation.
The second part deals with abstract transformers. Abstract domains are
typically chosen to be much simpler than concrete domains. This increases
the chances that computations on the abstract domain may be tractable or
at least decidable, whereas computations on the concrete domain are not. In
the setting of partner graph grammars, computations on the concrete domain
are essentially direct derivation steps between graphs.

Abstract transformers correspond to computations on the abstract do-
main. An abstract transformer f# is a sound over-approximation of a con-
crete transformer f , if and only if

α ◦ f v f# ◦ α ⇔ f ◦ γ v γ ◦ f# (4.1)

assuming abstraction mapping α and concretization γ along with some orders
on lattices of computations. This means that computing on the abstract
domain is always a conservative approximation of the computation on the
concrete domain. Additional behavior or properties may be introduced, but
none are forgotten.

The best abstract transformer can be defined in terms of abstraction,
concretization, and concrete transformer f to be α◦f ◦γ. Unfortunately, the
best abstract transformer is not computable in general. Section 4.1.5 defines
the notion of abstract transformers working on abstract graphs. They are
proven to be sound.

Completeness is another notion to be investigated in the context of ab-
stract interpretation. It means, that no information is lost at all by abstrac-
tion. It amounts to replacing the inequations in (4.1) by equations. An
abstract transformer f# is complete, if it does not matter, whether its corre-
sponding concrete transformer f is applied to some value v and the result is
then abstracted, or whether v is abstracted before the abstract transformer is
applied. Various notions of soundness results for the abstract interpretation
of partner graph grammars are studied in Section 4.3.

The theory of abstract interpretation is certainly much richer than pre-
sented in this brief appetizer. However, it should be sufficient to get in the
right spirit to digest the remainder of this chapter. All of the material to

66 CHAPTER 4. PARTNER ABSTRACTION

come is self-explanatory without using involved abstract interpretation de-
tails, although familiarity with the theory may be helpful. A mnemonic
for abstract interpretation is just: Compute on the abstract domain using
abstract transformers instead of computing on the concrete domain.

4.1.2 Partner Abstraction of Single Graphs

The abstraction of single graphs works in two steps. One of them is inspired
by a rather local way of looking at graphs, whereas the other one takes the
global picture into account. The local abstraction is based on quotient graph
building, and is consequently defined in terms of an equivalence relation on
nodes. The global abstraction first partitions a graph into subgraphs, applies
the local abstraction subgraph-wise, and summarizes those subgraphs that
are isomorphic after local abstraction.

The choice of the local abstraction is driven by the main application do-
main: dynamic communication systems. In such systems most of the actions
depend on two objects communicating with each other. It is thus conjec-
tured that left and right graphs of transformation rules modeling dynamic
communication systems have a small diameter. More often than not they
may consist of two nodes only. Therefore, it is crucial to keep precise infor-
mation related to the immediate neighborhood of nodes, and the name partner
abstraction will be used to denote the abstraction. As the local abstraction
is based on quotient graph building, it comes with an equivalence relation on
nodes, called partner equivalence. Besides a similar neighborhood, equivalent
nodes should have the same label.

Two nodes are partner equivalent, iff they have the same label and the sets
of labels of their adjacent nodes are equal respecting the labels and the

directions of incident edges.

The formal notion is introduced in Definition 4.1.1. It will be demon-
strated that it is even useful in the analysis and verification of other systems.
Most probably, this is the case, because humans seem to prefer local views,
when designing a system. For instance, destructive pointer updates in heap-
manipulating programs have a local flavor, since only single edges are moved
at a time, involving the source, the original target and the new target of
the edge. Certainly, the proposed technique is generally applicable to any
partner graph grammar. This is a benefit of using the abstract interpretation
framework. However, the precision of the results is expected to be smaller,
in case of very involved restructurings within one transformation rule.

4.1. ABSTRACT INTERPRETATION 67

The motivation of the second, global abstraction step is again driven
by the dynamic communication systems application domain, although it is
useful in more general settings, too. Obviously, only objects connected by
communication links may influence each others behavior. It is hence natural
to consider connected components of graphs (or communication topologies)
as a natural granularity for abstractions. To underline their prominent role,
the special term cluster is coined for connected components.

As objects within distinct connected components cannot (not even indi-
rectly) communicate with each other, a connected component is the center of
the focus for the global abstraction. Furthermore, it abstracts from the num-
ber of clusters showing similar behavior, where similar behavior means being
isomorphic after applying the local abstraction. Put together, abstraction of
graphs works as follows.

1. Quotient graph building wrt. partner equivalence for each cluster (con-
nected component). This step is also called cluster abstraction. The
result of it is called an abstract cluster.

2. Summarize clusters that are isomorphic after cluster abstraction. This
step is also called cluster summarization and yields an abstract graph
being a set of abstract clusters.

3. The result of steps 1 and 2 is called partner abstraction.

Example Recall the platoon case study of Chapter 3, in particular the
simple model Gideal of Section 3.1.1. Consider a graph with a number of
platoons (not currently merging or splitting) and free agents. Such a graph
will be abstracted to one abstract platoon and one abstract free agent. Each
free agent is a connected component of its own and partner abstraction of a
single node without edges does not change anything. All free agents are hence
isomorphic after abstraction and summarized to one abstract free agent. All
followers within the same platoon are partner equivalent, because they have
the same label and they all have one outgoing link to a leader. An abstract
platoon consists of one follower – standing for an arbitrary number of them
– and one leader. As all cluster abstracted platoons are isomorphic, they are
all summarized to yield the eventual abstraction. This process is visualized
in Figure 4.1, where a concrete graph T1 ∈ [[Gideal]] is given in part (a) and its
abstraction in part (b) of the figure. Notice that T1 additionally comprises
two merging platoons, where the followers of the two original leaders remain
distinct in the abstraction. Although they have the same label, their adjacent
nodes do not.

68 CHAPTER 4. PARTNER ABSTRACTION

flw

flw

flw

flw

flw

fl
ldr

flw

rlfa

fa

flw

flw
ldr

flw flw

fa

u3
A

C

D

E

F

u1

u2
B

u4

(a)

blflw fl flwldrfa flw

A,B,F C,D E

(b)

Fig. 4.1: Part (a) displays an element of the graph semantics of the idealized
platoon case study as stated in Section 3.1.1. This graph will be called
T1 ∈ [[Gideal]]. Part (b) shows the partner abstraction of T1. Connected
components are denoted by bold capital letters. The graph is abstracted
with k = 1. Summary nodes are drawn thickly rimmed.

Formalizations An essential notion used in the course of the introduction
of partner abstraction is the notion of partners. Some notation is introduced
to handily write down the set of adjacent nodes of node u of graph G while
distinguishing whether connecting edges are incoming or outgoing and which
labels these edges have. The operators � and � are used for this purpose.
They are used in postfix notation together with a node. They are indexed
by the current graph and superscripted by an edge label. The index is left
out, when the graph is clear from the context. For instance, u�β

G is the set
of all nodes, to which u has an outgoing β-labeled edge in G. Formally, let
G ∈ G(N , E) and let u ∈ VG. The sets of incoming and outgoing partners of
u are defined as follows.

u�β
G = {v ∈ VG | (v, u) ∈ Eβ

G} (4.2)

u�β
G = {v ∈ VG | (u, v) ∈ Eβ

G} (4.3)

u�G =
⋃
β∈E

u�
β
G (4.4)

u�G =
⋃
β∈E

u�β
G (4.5)

In the following definitions, as usual, application of a mapping f : A→ B

4.1. ABSTRACT INTERPRETATION 69

to a subset M ⊆ A of its domain is defined pointwise: f(M) = {f(a) | a ∈
M}. As before, N and E denote arbitrary but finite sets of node and edge
labels, respectively. Now, the notion of partner equivalence can be defined
formally.

Definition 4.1.1 (Partner Equivalence) Let G ∈ G(N , E). Two nodes
u, v ∈ VG are partner equivalent, written u 1G v, iff they have the same label
and the sets of labels of their adjacent nodes are equal respecting the label and
the direction of incident edges,i.e., iff

`G(u) = `G(v), (4.6)

∀β ∈ E .`G(u�β
G) = `G(v�β

G), and (4.7)

∀β ∈ E .`G(u�β
G) = `G(v�β

G) (4.8)

The graph index of 1 is dropped, whenever it is clear from the context.

Recall that cluster abstraction, i.e., quotient graph building wrt. partner
equivalence, is applied per cluster, that is per connected component. If it
was applied to a whole graph, there might be an undesired mix-up of nodes
that are not even indirectly connected. If the result of the cluster abstraction
per cluster were taken as the overall result, it might lead to an unbounded
abstraction, because there might be an unbounded number of connected
components in the graphs under consideration. These arguments motivate
the subsequent step of summarizing clusters that are isomorphic after cluster
abstraction.

If partner abstraction was implemented as indicated, a certain amount of
isomorphism checks would become necessary. That is clearly undesirable. A
trick from [SRW02] helps to overcome this problem: canonical naming. Every
possible equivalence class wrt. partner equivalence may be identified by a pair
of a node label – corresponding to requirement 4.6 of Definition 4.1.1 – and
a partner set – corresponding to requirements (4.7) and (4.8). A partner set
is a subset of {in, out} × E ×N .

If two equivalence classes coincide on pairs of labels and partner sets, they
may still differ on the identity and the number of nodes contained in them.
If node identities are neglected for the moment, there is still the possibil-
ity of finite counting to distinguish the numbers of elements of equivalence
classes up to some natural number k. The foundations of finite counting
were introduced in connection with partner constraints in Definition 2.1.7
of Section 2.1. The number of elements in an equivalence class will also be
called its multiplicity. An equivalence class with more than one element shall
be called a summary node (reminiscent of [SRW02]).

70 CHAPTER 4. PARTNER ABSTRACTION

Label, partner set, and multiplicity make up the notion of a canonical
name (again reminiscent of [SRW02]). Canonical names are the key to gain a
unique representation of abstract graphs by restricting the nodes of abstract
graphs to be canonical names themselves. Recall the notion allowing to
restrict the node set of a graph to subsets of W , G(N , E ,W) defined in
Definition 2.1.1. Canonical graphs are thus graphs, whose nodes are canonical
names. After stating the formal definition of canonical names and graphs, it
will be shown, that they yield a unique representation of abstract graphs.

Definition 4.1.2 (Canonical Names and Graphs) Let N , E, and k ≥ 1
be finite sets of node and edge labels, and a natural number, respectively.
The set N × ℘({in, out} × E × N) × Nk is called the set of k-canonical
names over N and E and is written canonicalNames(N , E , k). An element
of ℘({in, out} × E ×N) is called a partner set.

The set G(N , E , canonicalNames(N , E , k)) of graphs over N and E that
have canonical names as nodes is called the set of canonical graphs and is
written Gcan(N , E , k).

The third component n of a node (ν, P, n) of a canonical graph is called
the multiplicity of the node. Nodes with multiplicities n 6= 1 are called n-
summary nodes.

Notice the close relation between partner constraints as defined in Defini-
tion 2.1.8 and partner sets. The abstraction will be designed as to precisely
maintain the satisfaction of partner constraints and the applicability of rules.

The notion of canonical graphs opens up for a more concise and easier
to implement notion of partner abstraction than before. Let G be a graph.
First, for each cluster (connected component) C of G, replace each node with
the triple (ν, P, 1) of its label ν, its partner set P , and its multiplicity 1. This
replacement is handled by the function partner. In order for the node set to
keep its cardinality, it must be made a multiset, because several nodes may
be replaced with the same triple.

The function collapse makes this multiset a set by summarizing equal
nodes, i.e., equal canonical names. At the same time, it counts the number
of nodes summarized up to some finite k. Effectively, this constitutes a graph
homomorphism between two canonical graphs. The collapse function will be
used again in the definition of abstract update. An abstract cluster Ĉ is
obtained from C by first applying partner and then collapse. The abstract
graph Ĝ, being the partner abstraction of G, is then simply the set of all
abstract clusters obtained from the clusters of G. In this scenario, equality
under canonical naming does the job instead of isomorphism. Isomorphic
abstract clusters are in fact equal as justified formally by Lemma 4.1.2 below.

4.1. ABSTRACT INTERPRETATION 71

The upcoming three definitions define the partner and collapse functions,
as well as the notion of abstract clusters and graphs obtained by using these
two functions. An illustrative example follows after the definitions. These
functions are used both for the abstraction of concrete graphs and the renor-
malization of an already abstract graph.

Definition 4.1.3 (Partner) Let G ∈ G(N , E) be a graph and k ≥ 1 a
natural number. The mapping

partnerG,k : VG → canonicalNames(N , E , k)

is defined as

partnerG,k(u) :=

(`G(u),
⋃

β∈E{out} × {β} × `G(u�β
G) ∪

⋃
β∈E{in} × {β} × `G(u�β

G), n)

where the multiplicity n is 1, if u 6∈ canonicalNames(N , E , k), and q, if u =
(ν, P, q).

The mapping partnerk : G(N , E) → Gcan(N , E , k) lifts partnerG,k to whole
graphs as follows for all β ∈ E, where partnerk(G) = H.

VH = {{partnerG,k(u) | u ∈ VG}}
Eβ

H = {{(partnerG,k(u), partnerG,k(v)) | (u, v) ∈ E
β
G}}

`H = λ(ν, P, n).ν

Notice that partner may be applied to nodes in a canonical graph. Typ-
ically, this will be the case during the application of a transformation rule
to an abstract graph. In such a case, partner recomputes label and partner
set of a node, while maintaining its multiplicity. The {{·}} notation in Defi-
nition 4.1.3 is used to do implicit renaming of equal nodes as elaborated on
page 8. It is necessary to maintain the original graph structure under renam-
ing by the partner function. The real quotient graph building is performed
by the collapse mapping defined now:

Definition 4.1.4 (Collapse) Let k ≥ 1 be a natural number. The mapping
collapse : Gcan(N , E , k) → Gcan(N , E , k) is defined as follows for all β ∈ E,
where collapsek(G) = H.

VH = {(ν, P, n) | ∃q ∈ Nk.(ν, P, q) ∈ VG ∧ n =
⊕k

(ν,P,n′)∈VG
n′}

Eβ
H = {((ν, P, n), (ν ′, P ′, n′)) ∈ VH × VH |

∃q, q′ ∈ Nk.((ν, P, q), (ν
′, P ′, q′)) ∈ Eβ

G}
`H = λ(ν, P, n).ν

72 CHAPTER 4. PARTNER ABSTRACTION

The mapping Collapsek lifts collapsek to the pointwise application to sets
or multisets.

Let Ĝ and Ĥ be multisets of clusters such that Collapsek(Ĝ) = Ĥ. The in-
duced morphism ζ : VĜ → VĤ is defined as follows, where Ĉ ∈ Ĝ, (ν, P, n) ∈
VĈ and collapsek(Ĉ) = Ĉ ′.

ζ(Ĉ, (ν, P, n)) := (Ĉ ′, (ν, P,⊕k{n′ | (C, (ν, P, n′)) ∈ VC}

A canonical graph G is called ground, iff for all k ≥ 1 collapsek(G) = G.
The set of all connected, ground, canonical graphs is called the set of abstract
clusters and written C(N , E , k).

In order to distinguish equal nodes (canonical names) from different ab-
stract clusters, the canonical name is often paired with the abstract cluster.
Note that the morphism property of the induced mapping ζ is obvious by
definition. Abstraction of graphs may be defined by simply concatenating
partner and collapse and applying it cluster-wise, i.e. connected component-
wise. The step of cluster summarization comes for free due to canonical
naming. Still, abstraction is parameterized by the natural number k indicat-
ing up to which number the analysis shall count.

Definition 4.1.5 (Abstract Clusters and Graphs) Let k ≥ 1 be a nat-
ural number. The k-abstraction αk : G(N , E) → Gcan(N , E , k) of a graph G
is the set

αk(G) := {collapsek ◦ partnerk(C) | C ∈ cc(G)}

The set αk(G) is called an abstract graph. Its elements are called abstract
clusters.

A node in an abstract graph is a pair of a cluster and a canonical name.

Note that an ordinary set (as opposed to a multiset) is used in the defini-
tion of αk. Lemma 4.1.2 justifies this, because isomorphic abstract clusters
are in fact equal and thus summarized, if put into a set. First the abstraction
is shown at work using the example of Figure 4.1 on page 68. A concrete
graph featuring clusters A− F is displayed in part (a) of that figure. Some
applications of partner and collapse illustrate the abstraction. Let k ≥ 1 be
arbitrary.

partnerC,k(C, u1) = (flw, {(in, , ldr)}, 1)
partnerE,k(E, u2) = (flw, {(in, , rl)}, 1)
partnerE,k(E, u3) = (fl, {(in, , rl), (out, ,flw), }, 1)
partnerD,k(D, u4) = (ldr, {(out, ,flw)}, 1)

4.1. ABSTRACT INTERPRETATION 73

The example shows that u2 and u3 will not be summarized to the same
equivalence class, because they are not partner equivalent. Notice the nota-
tion of nodes of abstract graphs as pairs of cluster and node within a cluster.
This is necessary, because there may be equal nodes in distinct abstract
clusters.

Two sample abstract clusters obtained from graph T1 in Figure 4.1 demon-
strate the effect of counting. Let C1 = α2(C) and C2 = α2(D). The node
sets of C1 and C2 are:

VC1 = {(ldr, {(out, ,flw)}, 1), (flw, {(in, , ldr)}, 2)}
VC2 = {(ldr, {(out, ,flw)}, 1), (flw, {(in, , ldr)},∞)}

These sets show that the abstraction of clusters C and D of graph T1

in Figure 4.1 are in fact distinct. Counting to k = 2 enables the analysis
to distinguish them. In contrast to this, the abstraction of Figure 4.1 was
obtained for k = 1. In that case, no distinction between platoons with two
and three followers is possible, meaning that such platoons are summarized
by cluster summarization.

The following lemma states that there is an induced morphism between
a graph and its abstraction, i.e., the abstraction is homomorphic for any
choice of k. This morphism will be called ξ. The proof of Lemma 4.1.1 is
given in Appendix A. The morphism ξ will be used a lot in the construc-
tions and proofs of later theorems. In particular, it is needed to prove the
soundness of the analysis. The graphs in the lemma are supposed to be non-
canonical, because this makes sure, which case in the definition of partner
will be applied.

Lemma 4.1.1 (Homomorphic Abstraction) Let G ∈ G(N , E) be a non-
canonical graph and let k ≥ 1 be a natural number. There exists a surjective
graph morphism ξ from G to the disjoint graph union of αk(G) defined to be
ξ(u) := (Ĉ, (ν, P, n)), where

1. C is the connected component of G containing u and αk(C) = {Ĉ}

2. partnerC,k(u) = (ν, P, 1)

3. n = (|{v ∈ VC | u 1c v}|)k

In the part (3) of the definition, it is important to require non-canonical
graphs, because that allows for simply counting nodes, instead of adding up
their multiplicities. Recall that the (·)k notion casts a natural number to its
k-bound version. It is computed by simply taking the union of all element

74 CHAPTER 4. PARTNER ABSTRACTION

flwfa

fa

fa

rl fl

flw

flw

flw

blflw fl flwldrfa flw

flw ldr flw

flw

flw

flw ldr flw flw ldr

flw

flw

Fig. 4.2: An abstract graph and a sample materialization of it. Nodes with
a thick rim denote ∞-summary nodes. The abstraction was computed with
k = 1.

graphs. Nodes in distinct clusters were made distinct by pairing them with
their respective cluster.

The final lemma of this section shows that isomorphic abstract clusters
with identical multiplicities become equal because of canonical naming. This
is the basis for cluster summarization and the termination proof of the anal-
ysis.

Lemma 4.1.2 (Unique Representation) Let k ≥ 1 be a natural number
and let G,H ∈ G(N , E) be connected, non-canonical graphs. Then, αk(G) =
αk(H), if and only if

• G/1 ∼= H/1 due to isomorphism ψ and

• (|u |)k = |ψ(u) |k for all u ∈ VG/1.

4.1.3 Materialization

The next important concept in the abstract interpretation of partner graph
grammars is materialization. It plays a crucial role in keeping abstract rule
application as close to concrete applications as possible. In particular, the
very same concrete transformation rules shall be applied to abstract graphs.

4.1. ABSTRACT INTERPRETATION 75

Consider the transformation rule [InitMerge] of Table 3.1 with the label
assignments x = y = ldr. This rule is applicable to the graph T1 of Figure 4.1.
However, it is not applicable to the abstraction α1(T1), if injective matches
are required. Therefore, either the injectivity requirement on matches may
be relaxed, or one does not consider morphisms to abstract graphs. The
second option is chosen here and later proven to be equivalent to the first
option. In order to maintain injective matches, the abstraction of a graph is
locally undone by materialization.

Materialization is not to be confused with the best abstract transformer
defined in [CC79]. There, an abstraction is completely undone, before con-
crete transformers are applied. As in most cases, this cannot be done for
partner abstraction, because there are typically infinitely many concretiza-
tions of an abstraction.

Materialization concretizes just enough to make concrete rules applicable.
Moreover, how much to be materialized is driven by the transformation rule
that is to be applied. Section 4.1.4 gives more details on matching abstract
graphs. First, there is the formal definition of materialization.

Definition 4.1.6 (Materialization) Let k ≥ 1 and let Ĝ ∈ ℘(Gcan(N , E , k))
be an abstract graph such that all its abstract clusters are ground. A multiset
Ĥ of clusters is called a materialization of Ĝ, iff

• Collapsek(Ĥ) = Ĝ and

• For each Ĉ ∈m Ĥ, ν ∈ N , and partner set P there is at most one
element (ν, P,∞) ∈m VĈ, where VĈ may be a multiset.

• For each Ĉ ∈m Ĥ and for each u ∈m VĈ:

(partnerĈ,k(u)) ↓ 2 = (partnercollapsek(Ĉ),k
(ζ(u))) ↓ 2

where ζ is the morphism induced by collapsek(Ĉ).

The ↓ n notation means projection onto the n-th component of a tuple.
It is noteworthy to say, that materializations are still canonical graphs, they
are just not ground anymore. This is important, because it allows to keep
track of multiplicities, when it comes to updating materialized graphs in
Section 4.1.5. In that case, the definition of partner for canonical graphs
respects existing multiplicities (c.f. Definition 4.1.3).

Figure 4.2 shows the abstract graph α1(T1) of Figure 4.1 along with a
sample materialization of it. Due to the multiset notion of Definition 4.1.6,
there may be an arbitrary non-zero number of materializations of each ab-
stract cluster of an abstract graph. As the abstraction was obtained for

76 CHAPTER 4. PARTNER ABSTRACTION

k = 1, a thickly rimmed summary node stands for an arbitrary number
greater than one of such nodes. At most one ∞ summary node may remain
in the materialization.

Corresponding to the two levels of abstraction – cluster abstraction and
cluster summarization – materialization may be seen as a two level process
as well. The first step is cluster materialization, creating instances of ab-
stract clusters, whereas the second step – node materialization – extracts
non-summary nodes from summary nodes.

A first, straightforward property of materializations that is stated here
and proven in Appendix A will become important in subsequent arguments.
For any graph G and any k ≥ 1 there is a materialization of the abstraction
αk(G) that is isomorphic to G and does not contain any summary nodes.

Lemma 4.1.3 (Materialization) Let k ≥ 1 and G ∈ G(N , E) be arbitrary.
There is a materialization Ĥ of αk(G) such that ∪̇Ĥ ∼= G and Ĥ has no
summary nodes.

4.1.4 Abstract Matches

As indicated earlier, one goal in the formalization of abstract updates is to
keep them as close as possible to concrete updates, i.e. to direct deriva-
tions. The first step in doing so is to define an appropriate notion of ab-
stract matches. When does a concrete transformation rule match an abstract
graph? In order for a rule to match a concrete graph two requirements need
to be met (c.f. Definition 2.1.9).

1. The left graph of the rule must be a subgraph of the matched graph.

2. Possible partner constraints must be satisfied (Definition 2.1.8).

The concept of materialization presents a solution to first problem. A
rule matches an abstract graph, if the left graph of the rule is a subgraph of
some materialization of the matched graph. Additionally, it is required that
only non-summary nodes are matched.

It remains to define, however, how the satisfaction of partner constraints
is defined for abstract graphs. It is recommended to recall the definition in
the concrete case: Definition 2.1.8. A partner constraint is a set of tuples
(io, β, ν, n) associated with a node in the left graph of a transformation rule.
It requires that a matched node has at least 1 and at most n adjacent, ν-
labeled nodes to which it is connected by an incoming/outgoing β-labeled
edge. Apart from the “at most” part, this is easily formalized for abstract
graphs as well. As an extension to Definition 2.1.8 counting in Definition 4.1.7

4.1. ABSTRACT INTERPRETATION 77

takes multiplicities into account. The formal definition is as follows. The
↘ n notation means projection onto the first n components of a tuple. It is
familiar from the definition of partner constraint satisfaction in the concrete
case and not to be confused with the ↓ n notation that projects onto the
n-component of a tuple.

Definition 4.1.7 (Abstract Partner Constraint Satisfaction) Let pc be
a partner constraint over N and E, and let Ĉ ∈ Gcan(N , E , k) be a connected
canonical graph . Let u = (ν, P, n) be an element of VĈ. Node u in Ĉ satisfies

pc, written Ĉ, u |= pc, iff

1. pc↘ 3 = (partnerĈ,k(u)) ↓ 2.

2. For all (in, β, µ, q) ∈ pc holds
⊕k{q′ | ((µ, , q′), u) ∈ Eβ

Ĉ
vk q.

3. For all (out, β, µ, q) ∈ pc holds
⊕k{q′ | (u, (µ, , q′)) ∈ Eβ

Ĉ
vk q.

Having defined the notion of partner constraint satisfaction in the abstract
world completes the ingredients needed to define an abstract match. The
following definition formalizes these requirements.

1. There must be a materialization of the abstract graph, such that the
left graph of a rule is a subgraph of this materialization.

2. Partner constraints must be satisfied.

3. The match morphism must not map a node to a summary node.

Definition 4.1.8 (Abstract Match) Let r = (L, h, p, R) be a transforma-
tion rule over N and E, such that the maximal degree among partner con-
straints is k. Let Ĝ be an abstract graph with ground abstract clusters over
N , E, and k. Rule r matches Ĝ, iff

1. There exists a materialization Ĥ of Ĝ such that L ≤ ∪̇Ĥ due to match
m.

2. For all u ∈ dom(p) holds, that, if m(u) ∈ VĈ for some abstract cluster

Ĉ, then Ĉ,m(u) |= p(u).

3. For all u ∈ VL, m(u) = (, (, , 1)).

Morphism m is called an abstract match.

78 CHAPTER 4. PARTNER ABSTRACTION

Finding a matching materialization may not be an easy task, because
there may be many tries necessary before it is found. Certainly, this for-
malization would be difficult to implement. Therefore, an equivalent char-
acterization of abstract matching is given in Lemma 4.1.4 that is easier to
check and to implement. It is based on matching a transformation rule to an
abstract graph without taking the materialization detour.

Lemma 4.1.4 (Existence of Materializations) Let G ∈ G(N , E) be a
graph and r = (L, h, p, R) a transformation rule over the same label sets.
Let k be the maximal degree among the partner constraints in the image of
p and Ĝ = αk(G) the abstraction of G. The following statements are equiv-
alent.

1. Rule r matches Ĝ.

2. There exists a morphism m from L to ∪̇Ĝ, such that ∪̇Ĝ,m(u) |= p(u)
for all u ∈ dom(p), and for each C ∈ cc(L) and each u = (ν, P, n) ∈
m(VC) holds | m−1(u) |k vk n.

As usual, the proof is given in Appendix A. The (2) → (1) part of it
is constructive. It shows how, given a morphism to an abstract graph, a
materialization is constructed. This construction is also used in the imple-
mentation of the analysis. It further clarifies the concepts and differences
between cluster and node materialization.

Having designed an abstraction it is interesting to know which properties
are preserved by. Partner abstraction, as the name indicates aims at preserv-
ing as precise as possible information about the immediate neighborhood of
nodes in graphs. It is therefore expected to preserve partner equivalence and
partner constraint satisfaction. This fact is stated in the following lemma.

Lemma 4.1.5 (Partner Preservation) Let G ∈ G(N , E) be a graph and
Ĝ = αk(G) its abstraction for some k ≥ 1. Let ξ be the induced morphism
of the abstraction. Finally, let pc be a partner constraint. The following
statements hold.

1. partner∪̇Ĝ,k(Ĉ, (ν, P, n)) = (ν, P, n) for all (ν, P, n) ∈ VĈ and all Ĉ ∈ Ĝ.

2. (partnerG,k(u)) ↓ 2 = (partner∪̇Ĝ,k(ξ(u))) ↓ 2 for all u ∈ VG.

3. If pc is a simple partner constraint and G, u |= pc, then ∪̇Ĝ, ξ(u) |= pc.

4. If k is the degree of pc and ∪̇Ĝ, û |= pc for any û ∈ VĜ, then G, u |= p
for all u ∈ ξ−1(û).

4.1. ABSTRACT INTERPRETATION 79

pc = {(out, , ν2, 2}

ν1

ν2

ν2

ν2

ν2

ν4

ν3

ν1

ν2

ν2

ν1

G α2(G)
ν3

ν4

u

ξ(u)

Fig. 4.3: Partner constraint preservation by abstraction. This figure shows
an example of a concrete graph and its abstraction with k = 2, such that there
exists a partner constraint satisfied by a node u in the concrete graph but not
by its abstraction ξ(u). The partner constraint pc requires, that a matched
node has at most two ν2 labeled partners, which is the case in the concrete
but not in the abstract graph resulting in G, u |= pc but α2(G), ξ(u) 6|= pc.
Doubly-lined nodes represent 2-summary nodes.

The first statement of Lemma 4.1.5 means, that the canonical name of a
node in an abstract graph correctly describes its neighborhood. The second
part effectively states the preservation of partner equivalence under abstrac-
tion. The third and fourth statements almost yield an equivalence between
partner constraint satisfaction in a graph and in its abstraction. However,
if a node u in a graph satisfies a non-simple partner constraint, it may be
the case that ξ(u) does not satisfy the partner constraint in the abstraction.
An example of this is given in Figure 4.3. Recall that simple partner con-
straints are those that do not feature “at most” components other than ∞,
i.e., they have degree 0. In other words, they do not impose constraints on
the maximal number of partners of a node.

It is crucial for the soundness proof of the analysis, that, whenever a rule
matches a graph, it matches its abstraction. This is necessary in order not
to miss a graph in the abstract graph semantics. This property is formalized
in Lemma 4.1.6 and proven in Appendix A.

Lemma 4.1.6 (Match) Let r be a transformation rule over N and E that
features simple partner constraints only. Let G ∈ G(N , E) be a graph. For
any k ≥ 1 holds that, if r matches G, then r matches αk(G).

80 CHAPTER 4. PARTNER ABSTRACTION

G′

ν ν

µ µ

L

ν µ

ν ν

µ µ

G

ν ν

µ µ

α2(G)

(a) Unique partners

νν µν µ

ν µ

µ

µ

ν µ

ν

G′L G α2(G)

(b) Summary Cycles

Fig. 4.4: Two examples of abstractions that are matched by a rule (L de-
notes the left graph of the rule). Additionally, one matching (G) and one
non-matching (G′) materialization are given. Part (a) and (b) illustrate the
concepts of unique partners and summary cycles as defined in Definition 4.1.9.
As usual, nodes with a thick rim denote ∞-summary nodes.

Lemma 4.1.6 will be the basis of the soundness proof of the analysis.
If there was to be shown that the analysis might be complete, the inverse
direction of the matching lemma would have to hold, too. Informally, this
means, that whenever a rule matches an abstract graph, it matches all its
concretizations.

In general, the inverse direction of the matching lemma cannot be ex-
pected to hold. In order to guarantee that there are only finitely many ab-
stract graphs, the abstraction must mix up nodes, thereby discarding graph
structure. If, on the other hand, the graph structure in left graphs of rules can
be arbitrarily complex, there is no way to faithfully preserve such arbitrarily
complex structure by only a finite number of canonical graphs. Figure 4.4
shows two examples of such behavior. In both parts, the left hand side L
of some rule is given. A graph G matched by L is shown along with its
abstraction. Furthermore, another graph G′ with α1(G

′) = α1(G) is given
that is not matched by L.

Part (a) presents one of two sources of non-completeness, unique partners,
more precisely, non-unique partners. The inverse of the matching lemma may
not hold, if there is a node with two equally directed, equally labeled edges

4.1. ABSTRACT INTERPRETATION 81

to two distinct but equally labeled nodes. If a graph does not contain such
a pattern, it is said to have the unique partner property.

The second source of non-completeness are summary cycles as illustrated
in part (b) of Figure 4.4. If there is a (possibly singleton) set of summary
nodes on an undirected cycle, abstract matching may not imply concrete
matching. If an abstract graph features unique partners and no summary
cycles, then all its materializations will have a subgraph isomorphic to the ab-
straction. This is the core of the proof of Theorem 4.1.7 given in Appendix A.
In this theorem, it is shown that excluding this undesired behavior implies
the inverse direction of the matching lemma, the matching theorem. The
theorem is stated immediately after the definition of unique partners and
summary cycles. Notice that the matching theorem is formulated in terms
of connected components simplifying the proof.

Definition 4.1.9 (Unique Partners, Summary Cycles) Let G ∈ G(N , E)
be a graph. It has unique partners, iff for all u ∈ VG, for all β ∈ E, and for
all ν ∈ N

• |{v | (u, v) ∈ Eβ
G, `G(v) = ν}| ≤ 1 and

• |{v | (v, u) ∈ Eβ
G `G(v) = ν}| ≤ 1

If G ∈ Gcan(N , E , k) is a canonical graph for any k ≥ 1, then it is said to have
a summary cycle, iff there exist n ≥ 1, u1, . . . , un ∈ VG, β1, . . . , βn ∈ E, such
that u1 = un, ui is a summary node, and pairwise distinct (ui, ui+1) ∈ Eβi or
(ui+1, ui) ∈ Eβi for all 1 ≤ i < n.

Theorem 4.1.7 (Match) Let C ∈ G(N , E) be a connected graph and let
r = (L, h, p, R) be a transformation rule with simple partner constraints over
the same set of labels such, where L is connected. Let k ≥ 1 be arbitrary. If

1. r matches αk(C), and the match morphism m according to Lemma 4.1.4
is injective.

2. αk(C) has unique partners.

3. αk(C) has no summary cycles.

then r matches C.

In fact, the theorem holds for general partner constraints, too. But as
the analysis is not even sound for general partner constraints, this case is
omitted here.

82 CHAPTER 4. PARTNER ABSTRACTION

4.1.5 Abstract Transformers

All the ingredients to define abstract transformers and the abstract graph
semantics of a partner graph grammar are available at this point. The big
picture of an abstract update is a three step process:

1. Find an abstract match and the corresponding materialization.

2. Apply the concrete transformer, i.e. a direct derivation step, to the
materialization.

3. Abstract the result of the direct derivation.

The final step of this process is necessary in order to guarantee the ter-
mination of the abstract graph semantics computation (c.f. Theorem 4.1.8).
In the remainder of this section, abstract updates and the abstract graph
semantics of a partner graph grammar are defined and the termination and
soundness of the analysis is proven.

Definition 4.1.10 (Abstract Graph Semantics) Let G = (R, I) be a
partner graph grammar over N and E. Let r ∈ R be a transformation rule
and let Ĝ, Ĥ ∈ Gcan(N , E , k) be ground abstract graphs, where k ≥ 1.

The abstract graph Ĝ is in the abstract direct derivation relation with Ĥ,
written Ĝ r Ĥ, iff

1. Rule r matches Ĝ due to materialization M̂ .

2. ∪̇M̂ r M̂
′

3. Ĥ = collapsek ◦ partnerk(M̂
′).

One writes Ĝ k
R Ĥ, if there exists an r ∈ R such that Ĝ k

r Ĥ. M̂ is called
the triggering materialization of the update. The abstract graph semantics
of G is defined inductively:

[[G]]k0 := αk(I)

[[G]]ki := [[G]]ki−1 ∪
⋃
{Ĥ | ∃Ĝ ⊆ [[G]]ki−1.Ĝ

k
r Ĥ} for i > 0

[[G]]k :=
⋃

i≥0[[G]]ki

Two example abstract rule applications are presented in Figure 4.5 and
Figure 4.6. The first figure shows the application of a transformation rule
initiating a merge maneuver to an abstract graph representing arbitrary many
platoons of size at least k + 2, because there is an ∞-summary node. The
application shows an example of a cluster materialization. Notations are

4.1. ABSTRACT INTERPRETATION 83

flw flw flwldrflw rlflw ldr

ldr ldr rl

fl

fl

ldr

Ĝ M̂ ′ = Ĝ′

R
u′1 u′2

L
u1 u2

M̂

Fig. 4.5: An example of a rule application to an abstract graph such that
Ĝ Ĝ′. The required materialization is an example of a cluster material-
ization and is called M̂ . The concrete rule application to the materialization
yields M̂ ′, that, in this case, equals its abstraction Ĝ′. Abstraction computed
with k = 1.

chosen according to Definition 4.1.10, where M̂ is a materialization and M̂ ′

the updated materialization.
Figure 4.6 displays an example of node materialization. The transfor-

mation rule passing followers to another leader is applied to an abstract
graph that represents an arbitrary number of merging platoons. As an ab-
stract match morphism must not match to summary nodes, a non-summary
follower is materialized. As before, the notation for materialization and up-
dated materialization corresponds to the notation used in Definition 4.1.10.

Standard results in abstract interpretation also hold for the abstract in-
terpretation of of partner graph grammars based on partner abstraction. The
computation of the abstract graph semantics terminates and is sound. Sound-
ness means that the abstract graph semantics is a conservative approximation
of the concrete graph semantics. The soundness and termination results are
presented in the following theorem and proven in Appendix A.

Theorem 4.1.8 (Termination and Soundness) Let G be a partner graph
grammar and let k ≥ 1 be arbitrary. There exists an n ≥ 0 such that
[[G]]kn = [[G]]ki for all i ≥ n. Furthermore,⋃

G∈[[G]]

αk(G) ⊆ [[G]]k

A Note on Complexity The worst case complexity of computing the
abstract graph semantics of a partner graph grammar is rather large. Let
n and e be the number of node and edge labels, respectively, and let k be
the abstraction parameter. Then the number of possible canonical names is

84 CHAPTER 4. PARTNER ABSTRACTION

rl

flw fl flw flw

flw fl flw flw fl flw

rl flw flrl

rl

flw

flw

L R

u1

u2 u3

u′1

u′2 u′3
fl flrl

flw

=⇒

rl

Ĝ

M̂ ′ Ĝ′

M̂
flw

Fig. 4.6: An example of a rule application to an abstract graph such that
Ĝ Ĝ′. The required materialization employs node materialization. The
materialization is called M̂ . The result of applying the rule to the material-
ization is called M̂ ′. Abstraction computed with k = 1.

c := n22nek. There are hence 2c possibilities for the number of nodes in an
abstract cluster. This number is multiplied by the possible distributions of e
kinds of edges over the nodes to obtain the number of abstract clusters. The
precise number is tedious to compute, because abstract clusters need to be
connected. However, it is enough to know, that there is at least a number of
abstract clusters double-exponential in n and e and exponential in k.

Another source of complexity is matching, which is exponential in the
worst-case, too. This is not so problematic here, because left graphs in
rules are expected to be reasonably small. Moreover, they are labeled which
further simplifies the task. Despite the bad news about complexity, the
implementation of the abstract interpretation of partner graph grammars
described in Section 4.5 works for an example with n = 18 and e = 4.

It is conjectured, that correct protocols implementing dynamic commu-
nication systems are well-behaved in the number of possible communication
topologies. However, experience showed that erroneous protocol implemen-
tations could blow up the size of the obtained results.

4.2. ABSTRACT TRANSITION SYSTEMS 85

fl fl fl

ldrflwfl fl

flw fl flw fl fl

fl

ldrflwfa flw flw

flw flw flw

flw flw flw

flw flw

x

C12

C9 C10 C11

C8C7C6

C5C4
C3C2

C1

rl

rl

rl

rl

rl

rl

rl rl

rl

u3 u4

u2u1

u5

y

Fig. 4.7: The abstract graph semantics of the basic merge maneuver graph
grammar, [[(Rmerge, E)]]1, where Rmerge is the set of rules in Table 3.1 and
where E is the empty graph. The single computation steps are as fol-
lows: [[(Rmerge, E)]]10 = ∅, [[(Rmerge, E)]]11 = {C1}, [[(Rmerge, E)]]12 = {C2},
[[(Rmerge, E)]]13 = {C3}, [[(Rmerge, E)]]14 = {C4, C5, C6}, [[(Rmerge, E)]]15 =
{C7, C8}, [[(Rmerge, E)]]16 = {C9, C10, C11, C12}.

4.2 Abstract Transition Systems

Two semantic constructs exist for partner graph grammars, graph semantics
and graph transition system (Definition 2.1.10). So far, only the abstract
version of the graph semantics has been defined in Definition 4.1.10. The
definition of an abstract graph transition system is more intricate, because
the abstract graph semantics is a set of abstract clusters and several abstract
clusters may be involved in the left and in the right side of a rule application.
The GL logic introduced in Section 2.2 provides features to reason about the
evolution of single nodes, which is even more difficult than the evolution of
clusters. The additional difficulty originates in the summarization of nodes
that is necessary to guarantee the boundedness of partner abstraction. The
issues of node and cluster evolution are addressed in Section 4.2.1 and Sec-
tion 4.2.2.

4.2.1 Cluster Evolution

As indicated in the introduction to Section 4.2, several abstract clusters
may be involved in an abstract derivation step. This gives rise to a bi-
nary relation between sets of abstract clusters. On the other hand, bi-
nary relations over abstract clusters are certainly more convenient to reason
about and to work with. Moreover, they are closer to transitions in ordi-

86 CHAPTER 4. PARTNER ABSTRACTION

nary transition systems. Therefore, the cluster evolution relation E, where
E ⊆ C(N , E , k) × C(N , E , k), does not capture all information that is avail-
able from the abstract graph semantics. Rather, given two abstract clusters,
it captures whether these two occur on the left and right side of an abstract
direct derivation, respectively. Finally, the cluster evolution relation will
be parameterized by transformation rule names. This makes it one cluster
evolution relation, E(r), per transformation rule r of a given partner graph
grammar.

Definition 4.2.1 (Cluster Evolution) Let Ĝ, Ĝ′ ∈ Gcan(N , E , k) be ab-
stract graphs, and let Ĉ ∈ Ĝ and Ĉ ′ ∈ Ĝ′ be abstract clusters. Let r =
(L, h, p, R) be a transformation rule. The clusters Ĉ and Ĉ ′ are in the clus-
ter evolution relation, written Ĉ E(r) Ĉ ′, iff Ĝ k

r Ĝ
′ due to materialization

M̂ and match morphism m from L to ∪̇M̂ , such that for each D̂ ∈m M̂ holds
m(VL) ∩ VD̂ 6= ∅.

The abstract clusters in Ĝ are called the triggering clusters of the cluster
evolution, M̂ is called the triggering materialization, and m is called the
triggering match.

Figure 4.7 shows the complete abstract graph semantics of the partner
graph grammar (Rmerge, E) abstracted with k = 1, where the set of rules
is defined in Table 3.1 on page 42. It models the idealized platoon merge
maneuver. The abstract clusters in the figure are named C1 through C12. In
the caption of the figure, the respective iteration of the fixpoint computation
of the abstract graph semantics, in which an abstract cluster first occurs, are
given. Some sample cluster evolution relations:

C1 E([InitMerge]) C2 (4.9)

C3 E([InitMerge]) C4 (4.10)

C3 E([InitMerge]) C5 (4.11)

C9 E([Pass1]) C9 (4.12)

C9 E([Pass1]) C10 (4.13)

Relation (4.9) requires a cluster materialization, before [InitMerge] is
applied. The cluster evolution relations may contain reflexive elements as
indicated by (4.12). Relations (4.10) and (4.11) do not differ in the applied
rule but in the triggering match leading to the rule application. The difference
between (4.12) and (4.13) is the triggering node materialization. In the first
case, an ∞-summary node for k = 1 is materialized into two non-summaries.
In the second case, one ∞-summary node remains.

4.2. ABSTRACT TRANSITION SYSTEMS 87

4.2.2 Node Evolution

Besides abstract clusters, nodes within an abstract cluster may evolve into
each other, too. The formalization of node evolution is given in Defini-
tion 4.2.2. It allows for tracking nodes over time. In order to define node
evolution, finite arithmetic is extended to include negative integers in the
straightforward way. Furthermore, −∞ is added with the additional require-
ment that the sum −∞⊕k ∞ is undefined, i.e., it may yield any number.

Definition 4.2.2 is rather involved technically. Whether node (Ĉ, û) in an
abstract cluster Ĉ evolves into (Ĉ ′, û′) depends on a cluster evolution from
Ĉ to Ĉ ′ and on a triggering materialization. First, a node u in the mate-
rialization is fixed, that is mapped to û by collapse (rather by the induced
morphism ζ). After the update, u keeps its identity, because concrete up-
dates are independent of node identities. In the updated graph, however,
u must have the same label and partner set as û′. This is formulated in
requirement (4) of the definition. Certainly, u must be within a connected
component that is abstracted to Ĉ ′.

Eventually, multiplicity information is tracked by node evolutions, too. It
is said that û evolves into û′ by ∆ n. The way to compute this ∆ is specified
in part (5) of the definition. This node is mapped to û by ζ as induced by
collapse. The equation reads as follows. The sum of the multiplicities of all
nodes mapped to û by ζ except u plus the unknown ∆ yields the sum of the
multiplicities of all nodes that become equivalent to u after the update.

Definition 4.2.2 (Node Evolution) Let Ĉ, Ĉ ′ ∈ [[G]]k be two abstract clus-
ters, and let û ∈ VĈ and û′ ∈ VĈ′ be two nodes. Node û evolves into û′ by
rule r = (L, h, p, R) and ∆ n, written

(Ĉ, û) E(r, n) (Ĉ ′, û′)

for û = (ν, P, s) and û′ = (ν ′, P ′, s′) iff

1. Ĉ E(r) Ĉ ′ with triggering materialization M̂ , such that ∪̇M̂ r M̂
′.

2. There exist C ∈m M̂ and C ′ ∈ cc(M̂ ′) such that collapsek(C) = Ĉ and
collapsek ◦ partnerk(C

′) = Ĉ ′.

3. There exists t ∈ Nk and u = (ν, P, t) ∈m VC ∩m VC′ such that u 6∈m

m(VL).

4. partnerC′,k(u) = (ν, P ′, t).

88 CHAPTER 4. PARTNER ABSTRACTION

5. n satisfies the equation s− ⊕k n = s+, where

s− =
⊕k{{q | ∃(ν, P, q) ∈ VC .u 6= (ν, P, q)}}

s+ =
⊕k{{q | ∃v ∈ VC′ .u 6= v, partnerk,C′(v) = (ν ′, P ′, q)}}

The triggering clusters of the cluster evolution in (1) are called the af-
fected (or triggering) clusters of the node evolution. The materialization M
is called the triggering materialization.

Figure 4.7 provides a good source of examples of node evolution. The
examples center around abstract cluster C9 and the two ∞-summary nodes
x and y of this cluster. Informally, by applying the transformation rule
[Pass1], one node represented by x is passed over to y. Formally, the follow-
ing relations hold.

(C9, x) E([Pass1],−1) (C9, x) (4.14)

(C9, y) E([Pass1], 1) (C9, y) (4.15)

(C9, x) E([Pass1],∞) (C9, y) (4.16)

Relation (4.14) means that the summary node representing the followers
to the rear leader loses a node during the update, whereas relation (4.15)
describes that the summary node representing followers to the front leader
increases in size by 1. Applying [Pass1] to C9 and obtaining C9 is only
possible, if x is split in a non-summary and an ∞-summary node in a ma-
terialization. The u in the definition is then chosen to be the remaining
∞-summary node rendering s− to be 1 (the multiplicity of the materialized
node). No other node becomes equivalent to u after the update, hence s+ = 0
and n = −1.

In the same materialization, y may be considered. No node needs to be
extracted from it, hence s− = 0. On the other hand, one new node becomes
equivalent to it after the update, yielding s+ = 1 hence n = 1.

Relation (4.16) works for any ∆ including ∞, because the only node u
migrating from x to y by application of [Pass1] is the one materialized from
x. As there is still multiplicity ∞ left in x, s− = ∞ is obtained. After
the update, y becomes equivalent to u, hence s+ = ∞. The equation is
then satisfied for any choice of n due to the undefinedness of computing with
infinities.

To conclude this section, the transitive extension of a simple node evolu-
tion is defined: node paths. All ∆’s along the evolution path are added in a
finite manner up to some k. Furthermore, no ∞ or −∞ may be involved in

4.3. COMPLETENESS RESULTS 89

the computation of the single ∆’s and the sum. The finite sum then makes
up the name of the path.

Definition 4.2.3 (d-Increment Path) Let Ĉ, Ĉ ′ ∈ [[G]]k be two abstract
clusters, and let û ∈ VĈ and û′ ∈ VĈ′ be two nodes. A d-increment path from

(Ĉ, û) to (Ĉ ′, û′) is a sequence of node evolutions

(Ĉ, û) E(r1, n1) . . . E(rt, nt) (Ĉ ′, û′)

where
⊕k

1≤i≤t ni = d. Additionally, for all q ≤ i ≤ t, ni 6= ∞, ni 6= −∞,
and no ∞ or −∞ is involved in the computation of ni in the sense of (5) of
Definition 4.2.2.

The number t is called the length of the increment path. The set of
affected clusters of the node path is the union of all affected clusters in the
sequence of node evolutions.

For example, there is a 2-increment path from (C6, u3) to (C8, u5) in
Figure 4.7.

4.3 Completeness Results

This section presents results regarding completeness – some of which are
strong and unexpected. Methods like partner abstraction must abstract
much, losing a lot of information in order to remain bounded. As stated
earlier in connection to the matching Theorem 4.1.7, in order to guarantee
that there are only finitely many abstract graphs, the abstraction must mix
up nodes discarding graph structure. On the other hand, the structure in left
graphs of rules may be arbitrarily complex. Therefore, it is surprising that
cases may be identified, where all information is maintained by the abstract
interpretation based on partner abstraction. In such cases, the abstract graph
semantics is said to be complete.

In the first part of this section, three different notions of completeness
are defined. The strongest notion among them implies the decidability of the
word problem for a precisely characterized class of partner graph grammars.
Luckily, some of the case studies presented in Chapter 3 belong to that class.

However, such strong results cannot be expected for general partner graph
grammars. This is illustrated using a series of examples leading to distinct
features of partner graph grammars and/or abstract clusters that introduce
spurious behavior. By excluding some or all of these sources of spuriousness,
it is possible to obtain completeness theorems.

90 CHAPTER 4. PARTNER ABSTRACTION

Deciding whether and according to which notion an abstract graph se-
mantics is complete is not possible by looking at the partner graph grammar
alone. Instead, the abstract graph semantics itself must be examined.

4.3.1 Completeness Notions

In a classical sense, an abstract interpretation is complete, if it maintains
all the information available in the concrete world. In the case of partner
abstraction, there are several possible layers of information, for which com-
pleteness may be investigated.

The strongest possible completeness notion definable in terms of this work
is indistinguishability wrt. GL formulas. This means that any GL formula
is satisfied for a partner graph grammar, if and only if it is satisfied for
the abstract partner graph grammar – the latter being the abstract graph
semantics along with node and cluster evolution. Only in Section 4.4 this
issue will be investigated. It is easy to guess, however, that completeness in
this strongest sense cannot be expected to hold for general GL formulas and
general partner graph grammars.

A slightly weaker notion of completeness is the decidability of the word
problem for partner graph grammars. Does a given graph belong to the
graph semantics of a partner graph grammar? A complete analysis answers
this question by saying: if and only if its abstraction belongs to the abstract
graph semantics. This notion is weaker than indistinguishability under GL
formulas, because it neglects the way graphs are derived by the partner graph
grammar. On the other hand, there is in fact a class of partner graph gram-
mars for which the abstract interpretation based on partner abstraction can
be shown complete in this sense.

Another interesting question to ask is whether all clusters represented
by an abstract cluster in fact occur in the concrete graph semantics. If this
holds for all abstract clusters in the abstract graph semantics, one may speak
of cluster completeness. Notice the difference between cluster completeness
and the decidability of the word problem. Cluster completeness does not
make any statement about the combinations of concretizations of abstract
clusters occurring in the graph semantics. Therefore it is a weaker notion
and implied by word problem decidability.

Although it is the weakest completeness notion investigated in this work,
cluster spuriousness is still of practical relevance. An abstract cluster is spu-
rious, if there is no graph in the graph semantics whose abstraction contains
it. A clearly defined class of partner graph grammars will be given whose

4.3. COMPLETENESS RESULTS 91

abstract graph semantics are guaranteed not to contain any spurious abstract
cluster.

Four notions of completeness were elaborated on, that are ordered by
logical implication. Three of them are defined formally in Definition 4.3.1,
whereas the evaluation of GL formulas in the abstract world is postponed
to Section 4.4. Classes of partner graph grammars complete in the weaker
senses are gradually derived in the remainder of this section.

Definition 4.3.1 (Completeness) Let G be a partner graph grammar, k ≥
1, N and E label sets. The abstract graph semantics [[G]]k is called

• word decidable, iff

[[G]] = {G ∈ G(N , E) | αk(G) ⊆ [[G]]k}

• cluster complete, iff for each Ĉ ∈ [[G]]k and for each connected C ∈
G(N , E) holds: If αk(C) = {Ĉ}, then there exists a G ∈ [[G]] such that
C ∈ cc(G).

• free of spurious clusters, iff⋃
G∈[[G]]

αk(G) = [[G]]k

As stated above, these completeness notions are to be understood up to
isomorphism only, because, e.g.in the word decidable case, only one particu-
lar graph is derived in the concrete graph semantics, whereas the definition
requires the whole isomorphism class of this graph to be in the concrete graph
semantics as well. To conclude the introduction of the various completeness
notions, notice the similarity between lack of spurious clusters and soundness
as stated in Theorem 4.1.8.

4.3.2 Friendly Systems

Partner abstraction forgets about the number of clusters summarized to one
abstract cluster. This yields at the same time a strong reduction of size of
the abstraction and a potential source of spurious behavior introduced by
cluster materialization. Reconsider Figure 4.5 on page 83 in Section 4.1.5
showing an instance of cluster materialization. There, the transformation
rule [InitMerge] is applied to a single abstract cluster representing a pla-
toon. In the materialization, however, two platoons need to be present for the

92 CHAPTER 4. PARTNER ABSTRACTION

rule to be applicable. The existence of two platoons cannot be guaranteed
in the general case.

The previous paragraph suggests, that, in general, it is desirable that
the existence of one instance of an abstract cluster justifies the existence of
an arbitrary number of such instances. This property of a partner graph
grammar is called cluster multiplicity. It shows that there is very simple
and easily checkable sufficient condition for cluster multiplicity. A partner
graph grammar has the cluster multiplicity property, if it has an empty initial
graph. If the graph semantics is not empty, there must be at least one rule
with an empty left graph – a create rule. Otherwise, the empty initial graph
cannot be matched by any rule. This means, that the derivation of any
graph starts by applying create rules. This derivation may then be repeated
arbitrarily often, because every graph is matched by a create rule. Moreover,
the recurring derivation cannot be prevented by partner constraints, because
they cannot express the absence of another cluster.

As seen earlier, simple partner constraints are necessary for the sound-
ness of the abstract interpretation based on partner abstraction. Hence they
should be added to the completely static notion of a friendly grammar.

Definition 4.3.2 (Friendly Grammars) A partner graph grammar (R, I)
is friendly, iff it features simple partner constraints only and if I is the empty
graph.

A rule (L, h, p, R) is called a create rule, iff L is the empty graph.

The remainder of this section assumes friendly grammars, even if not
explicitly stated. The formalization of cluster multiplicity is presented in
Lemma 4.3.1. It is given in an even stronger form than needed for reasoning
about completeness. Whenever two graphs are in the graph semantics of
a partner graph grammar, then also their disjoint graph union is in the
graph semantics. The formal proof is omitted, because all the necessary
arguments were given in the paragraphs before Definition 4.3.2. Essentially,
every derivation of a graph in the graph semantics may be repeated arbitrarily
often.

Lemma 4.3.1 (Cluster Multiplicity) Let G be a friendly partner graph
grammar. If G1, G2 ∈ [[G]], then G1∪̇G2 ∈ [[G]].

4.3. COMPLETENESS RESULTS 93

Notice that friendliness is a sufficient but not a necessary condition for
cluster multiplicity. An example of a non-friendly partner graph grammar
that has the cluster multiplicity property may be obtained as follows. There
is only one node label ν, the initial graph is a singleton node labeled ν, and
there is only the following transformation rule.

ν=⇒
u′1u1 u2

ν ν

4.3.3 Cluster Completeness

Among the three notions of completeness defined in Definition 4.3.1, cluster
completeness is the first to be investigated. It states that for each abstract
cluster Ĉ of an abstract graph semantics, all its concretizations occur as
some subgraph of a graph in the concrete graph semantics. In order to
better understand this notion, it is sensible to look at examples of partner
graph grammars that have spurious clusters. By understanding the spurious
examples, conditions preventing them may be identified. It helps to recall
some sources of information loss by partner abstraction.

1. Information about the number of isomorphic abstract clusters is lost.

2. Information about the number of nodes summarized in a summary node
is only maintained up to some finite k.

3. Partner abstraction is based on partners. It records the kind of part-
ners, i.e. their labels and the kind of connection. It does not record the
number and the identity of the partners.

The first source of information loss has already been addressed by in-
troducing friendly graph grammars. The influence of the second and third
source of information loss on the spuriousness of abstract clusters is illus-
trated in Figure 4.8. Both friendly graph grammars of this figure are over a
trivial set of edge labels (consisting of one label only) and the set {ν, ν ′, µ, µ′}
of node labels.

Consider the left column: A friendly partner graph grammar is specified
in the first row and its graph semantics is shown in the second row. When
the abstract graph semantics is computed for k = 1, the right-hand side of
the create rule is abstracted to a ν-labeled node connected to a µ-labeled
∞-summary. The second rule of this grammar may be applied to this ab-
straction due to two possible materializations. The µ-labeled ∞-summary
node may either be split into two non-summaries or in one non-summary and

94 CHAPTER 4. PARTNER ABSTRACTION

=⇒

ν µ

u1 u2

ν ′ µ′

ν

µ

u′1 u′2

µ

=⇒ =⇒ν µ

u1 u2

µ

µ

ν

ν

ν ′ µ′

u′1 u′2

=⇒

µ′

ν

µ

µ µ

ν ′

µ

µ

ν

ν

ν ′ µ′

ν ′ µ′

µν

ν ′ µ′

µ′

µ

ν ′

µ′

µν

ν ′

A Non-Inductive Summary Non-Lone Summaries

Fig. 4.8: Partner graph grammars with spurious abstract clusters. Each
column presents a friendly partner graph grammar in the first row, the com-
plete graph semantics in the second row, and a spurious abstract cluster of
the abstract graph semantics in the third row. The abstractions are com-
puted using k = 1.

one ∞-summary. The second case yields the spurious abstract cluster in the
bottom row of the left column. It is spurious, because every concretization
has one µ′-labeled and at least two µ-labeled nodes. This cannot happen in
the concrete graph semantics. However, for soundness, the analysis must as-
sume that a cluster with an ∞-summary node has concretizations with every
possible number n > k of copies of this summary node. An∞-summary node

4.3. COMPLETENESS RESULTS 95

that actually does represent all possible number of nodes will be called an in-
ductive summary. Later on, a statically checkable criterion for inductiveness
of summary nodes is presented.

Consider the right column of Figure 4.8. Again, the grammar is presented
in the first row, then its concrete graph semantics, and finally an example
of a spurious abstract cluster within the abstract graph semantics. When
the latter is computed for k = 1, the abstraction of the right-hand side of
the create rule is a graph of two ∞-summaries connected by an edge. The
spurious abstract cluster results from a materialization that looks like the
first (top, left) graph of the graph semantics but without one of the diago-
nal edges. However, this materialization has no concrete counterpart in the
graph semantics. This problem is a very general one, occurring whenever two
summary nodes are adjacent. It may be excluded by disallowing connected
summary nodes. A summary node that does not have an edge to another
summary node (including itself) is called a lone summary node.

It shows that inductive and lone summary nodes are the key to prove
cluster completeness. The proof will be conducted analogously to the proof
of the soundness theorem (Theorem 4.1.8): Given a derivation of an abstract
cluster, find a corresponding derivation of concrete graphs. The matching
Theorem 4.1.7 was a first step towards that goal. However, it shows that the
conditions of the matching theorem are not strong enough to guarantee the
absence of spurious clusters.

First, the concept of lone summary nodes is introduced formally. It is then
proven, that abstract clusters featuring only lone summary nodes have a very
restricted form of materializations only. Effectively, all materializations are
equal up to the number of nodes materialized from ∞-summary nodes.

Lone Summary Nodes and S-Materializations Recall the right col-
umn of Figure 4.8. The spurious abstract cluster was due to spurious mate-
rializations of connected summary nodes. Lone summary nodes are a way to
prevent such materializations.

Definition 4.3.3 (Lone Summary Nodes) Let Ĉ ∈ C(N , E , k) be a con-
nected, ground canonical graph. A summary node û ∈ VĈ is lone, iff for all
ν ∈ N and for all β ∈ E

•
⊕k{n | ∃P.((ν, P, n), û) ∈ Eβ

Ĉ
} vk 1, and

•
⊕k{n | ∃P.(û, (ν, P, n)) ∈ Eβ

Ĉ
} vk 1

96 CHAPTER 4. PARTNER ABSTRACTION

The graph Ĉ has lone summary nodes, iff all of its summary nodes are lone.

The big advantage of lone summary nodes is that they allow for very
restricted and disciplined materializations only. Such materializations are
completely characterized by the way summary nodes are split, whereas there
is no choice for the edges. All possible edges must be there. All material-
izations are otherwise equal and faithfully mimic the abstract cluster they
are collapsed to. The S parameter given in the upcoming Definition 4.3.4
specifies the way a node is split in the materialization.

Definition 4.3.4 (S-Materialization) Let Ĉ ∈ C(N , E , k) be a connected,
ground canonical graph. Let S : VĈ → ℘m(Nk) be a mapping, such that

S(ν, P, n) = M if and only if
⊕k M = n. Additionally, let S(û) contain at

most one ∞ for each û ∈ VĈ. The graph M̂ where

VM̂ = {{(ν, P, s) | (ν, P, n) ∈ VĈ , s ∈ S(ν, P, n)}}
Eβ

M̂
= {{((ν1, P1, s1), (ν2, P2, s2)) | ui = (νi, Pi, ni) ∈ VĈ , si ∈ S(ui), i = 1, 2}}

`M̂ = λ(ν, P, n).ν

is called the S-materialization of Ĉ.

It is straightforward to see that an S-materialization indeed adheres to
the requirements of a materialization as defined in Definition 4.1.6. The S
parameter specifies in how many nodes of which multiplicity a summary node
has to be split in a materialization. In some sense, an S-materialization is
a full materialization, because all possible edges exist in it. Figure 4.9 illus-
trates the concept of S-materializations. In this case all S-materializations
are complete bipartite graphs. Certainly, for the example of Figure 4.9, one
may think of materializations that are not complete bipartite. In the case of
lone summary nodes, however, this is enforced. A graph Ĉ is a materializa-
tion of an abstract cluster with lone summary nodes, if and only if Ĉ is an
S-materialization of the abstract cluster. This is formalized in Lemma 4.3.2
and proven in Appendix A.

Lemma 4.3.2 (S-Materialization) Let Ĉ ∈ C(N , E , k) be a connected,
ground canonical graph with lone summary nodes. M̂ is a materialization of
Ĉ, if and only if it is an S-materialization of Ĉ for some S.

Lemma 4.3.2 has a strong consequence for abstract clusters that do not
contain ∞-summary nodes. If such a cluster has lone summary nodes and
no ∞-summary node, it has exactly (up to isomorphism) one concretization,
i.e. one concrete graph C, such that αk(C) = Ĉ. As usual the proof is given
in Appendix A.

4.3. COMPLETENESS RESULTS 97

µ

ν µ

u1 u2

S(u1) = {{1, 1}}
S(u2) = {{1, 1,∞}}

ν

ν

µ

µ

Fig. 4.9: Example of an S-materialization; abstraction based on k = 1.

Lemma 4.3.3 (Unique Concretization) Let Ĉ ∈ C(N , E , k) be a con-
nected, ground canonical graph with lone summary nodes. All graphs C such
that αk(C) = Ĉ are isomorphic, if Ĉ does not contain an ∞-summary node.

Generating Orders A small remark on the relation between concretiza-
tions and materializations initiates this paragraph. Each materialization is
also a concretization but not vice versa. Materializations require nodes to
be canonical names. Hence, given a concretization G, a materialization is
obtained by computing partnerk(G), which replaces nodes by their canonical
names. The so obtained materialization does not have summary nodes.

By now, a sufficient condition has been explored, guaranteeing that all
materializations of an abstract cluster are S-materializations. The only re-
maining ingredient for cluster completeness is to find a condition, that for
each possible S-materializations there exists a graph in the concrete graph se-
mantics that is isomorphic to the materialization. This would mean that each
abstract derivation step is mimicked in the concrete graph transition system.
Note that the only critical part for S-materializations are∞-summary nodes,
because non-∞-summary nodes are precisely tracked up to the parameter k
of the abstraction.

A close manual inspection of the abstract graph semantics of the sim-
ple merge maneuver given in Figure 4.7 on page 85 reveals that it is even
word decidable, in particular, it is cluster complete. How does a computer
scientist convince herself of that fact? She considers an arbitrary abstract
cluster and an arbitrary concretization of it. Then she uses her intelligence
to derive a derivation in the partner graph grammar of a graph that has this
concretization as a subgraph. Moreover, she uses her knowledge about the
system implemented by the partner graph grammar. Consider examples of
clusters and concretizations as given in Figure 4.7 and how to derive them

98 CHAPTER 4. PARTNER ABSTRACTION

in the concrete world.

1. C8: This abstract cluster represents all platoons of at least two follow-
ers. It is possible to derive any such platoon with t > 1 followers in the
partner graph grammar Gideal. Generate t + 1 free agents by applica-
tion of the [Create] rule. Let two of them merge to build a platoon of
two cars. Then let each of the remaining free agents successively merge
with that platoon. In the abstract graph semantics, one proceeds from
C1 to C2 to C3, which represents a platoon of two cars. Another car is
merged to it, by traversing C7 and then C8. From there on, the loop
C8 → C7 → C8 is repeated as often as needed.

2. C9: This abstract cluster represents two merging platoons, where both
have at least two followers. There is a very simple way to create an
arbitrary concretization of this cluster. First create two platoons with
the desired number of followers, then start a merge.

The following two examples give a hint to the remaining ingredients of
a cluster completeness proof besides lone summary nodes. The crucial role
is played by the summary node (C8, u5) in Figure 4.7. Example 1 above
showed that it represents an arbitrary number of followers in the concrete
graph semantics. A summary node, for which all possible concretizations
may occur, is called inductive. The inductiveness of (C8, u5) was derived by
finding two 1-increment paths (c.f., Definition 4.2.3):

(C3, u1) E([InitMerge], 0) (C5, u2) E([Ldr2Flw], 1) (C8, u5) (4.17)

(C8, u5) E([InitMerge], 0) (C7, u4) E([Ldr2Flw], 1) (C8, u5) (4.18)

Notice that C3 and C8 are equal up to the summary status of one node.
Since friendly partner graph grammars have simple partner constraints, the
existence of (4.17) already implies the existence of path (4.18). Remember
that simple partner constraints cannot express “at most” conditions. Hence
a rule applicable to C3 is also applicable to C8.

Another ingredient making the 1-increment argument feasible is cluster
multiplicity as implied by the friendliness of the partner graph grammar.
There is an infinite supply of all clusters that are necessary to execute the
paths (4.17) and (4.18), in this case an infinite supply of free agents.

A summary node such as (C8, u5) serves as a generator for other summary
nodes. In fact, all other summary nodes in Figure 4.7 may be obtained in
one abstract derivation step by 0-increment paths from (C8, u5). This proves
their inductiveness. In general abstract graph semantics, there may be an
arbitrary number of such generators.

4.3. COMPLETENESS RESULTS 99

The previous arguments reveal a sufficient condition for cluster complete-
ness: a generating order. If the clusters of an abstract graph semantics can
be ordered in the following manner, then the abstract graph semantics is
cluster complete. All involved abstract clusters must have lone summary
nodes as elaborated on earlier. Clusters that have an ∞-summary node are
called ∞-clusters.

1. Start with create rules. The abstractions of their right graphs should
not contain ∞-summary nodes and become the minimal elements of
the generating order.

2. Find a number of generator ∞-summary nodes. They are proven to
be inductive by 1-increment paths in the smaller part of the abstract
graph semantics. No ∞-summaries may occur in this smaller part.
The clusters containing such summary nodes are minimal among ∞-
clusters.

3. All other ∞-summaries must evolve, potentially transitively, from a
generator summary node by 0-increment paths.

These three requirements are formalized in Definition 4.3.5. They are
satisfied, if there exists a strict order on the clusters of an abstract graph
semantics. This order must adhere to the requirements 1, 2, and 3 above.
Due to the finiteness of the abstract graph semantics such a strict order
will also be well-founded. Accordingly, the proof of the cluster completeness
theorem will be by well-founded induction.

Here is a quick reminder of some of the notions used in the following defi-
nition. A more detailed introduction to the underlying theory may be found
in various textbooks, e.g. in [DP05]. A strict order on a set A is a binary re-
lation < that is transitive and irreflexive. It is hence also antisymmetric. An
element a ∈ A is minimal, if for all b ∈ A b < a implies b = a. Because of <’s
irreflexive ness, this is equivalent to saying, that a is minimal, if there is no
b ∈ A such that b < a. The definition of maximal elements is analogous. A
strict order on A is well-founded, if each subset of A has at least one minimal
element. This is equivalent to the absence of infinite-descending chains in A
wrt. this given order. Given a well-founded strict order on A one may prove
properties of all elements of A by well-founded induction. In a well-founded
induction prove a property is shown for all minimal elements first. Then it
is shown for an element a by assuming the property for all b < a.

Definition 4.3.5 (Generating Order) Let G = (R, I) be a friendly part-
ner graph grammar, and let [[G]]k be its abstract graph semantics. Let <: be

100 CHAPTER 4. PARTNER ABSTRACTION

a strict order on [[G]]k, and let S be the set of abstract clusters with at least
one ∞-summary node, called the set of ∞-clusters. The strict order <: is
called generating, iff

1. An abstract cluster Ĉ is minimal wrt. <:, if and only if there exists a
create rule (L, h, p, R) ∈ R such that Ĉ ∈ αk(R).

2. Ĉ <: D̂ implies Ĉ E(R)+ D̂, where E(R)+ is the transitive closure of
the union of E(r) over all r ∈ R.

3. Each Ĉ ∈ S has exactly one ∞-summary node, unless it is maximal
and not minimal.

4. If Ĉ is minimal in S with the only summary node û = (ν, P,∞), then
there exists an abstract cluster Ĉ ′ <: Ĉ that is equal to Ĉ except that û
is replaced by û′ = (ν, P, k). Moreover, there exists a 1-increment path
from (Ĉ ′, û′) to (Ĉ, û) such that all affected clusters are smaller than
Ĉ.

5. For each ∞-summary node (Ĉ, û) that is not minimal, there exists a
0-increment path of length 1 from another ∞-summary node such that
all affected clusters are smaller than Ĉ.

6. If Ĉ is maximal and has more than one ∞-summary node, then all
∞-summary nodes of Ĉ are due to node evolutions using the same rule
and the same triggering materialization.

Remember the aforementioned comments on the cluster completeness of
the abstract graph semantics of the simple merge maneuver grammar as given
in Figure 4.7. This abstract graph semantics has indeed a generating order:

C1 <: C2 <: C3 <: C4, C5, C6 <: C8 <: C7, C9, C10, C11, C12 (4.19)

In equation (4.19), incomparable arguments are separated by commas. Among
the clusters with ∞-summary nodes, C8 is the only minimal one. As argued
earlier and as witnessed by equations (4.17) and (4.18), there is a 1-increment
path according to (4) of Definition 4.3.5 and 0-increment paths according to
(5). The only minimal element is cluster C1, which is the only one cor-
responding to the create rule [Create]. The only element featuring two
∞-summary nodes is C9, which is maximal.

Generating orders are the exact formalization of a sufficient condition for
cluster completeness. Unfortunately, no efficient algorithmic solution to the
problem of the existence of a generating order is known so far. The designer

4.3. COMPLETENESS RESULTS 101

of a protocol, however, may have a good intuition to find a generating order,
once she is provided with the abstract graph semantics of her partner graph
grammar. She may then use generating orders to easily prove the cluster
completeness or even the decidability of her abstract graph semantics.

Theorem 4.3.4 (Cluster Completeness) Let G = (R, I) be a friendly
partner graph grammar and let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}

The abstract graph semantics [[G]]k is cluster complete, if it has a generating
order and all Ĉ ∈ [[G]]k have lone summary nodes and unique partners.

The cluster completeness result is established using the following obser-
vations made precise in the proof in Appendix A.

A first observation relates to the subtle differences between materializa-
tions and concretizations and introduces special kinds of S-materializations.
For the abstract graph semantics under concern, Lemma 4.3.2 shows that all
materializations are S-materializations. On the other hand, each concretiza-
tion C is obviously isomorphic to the materialization partnerk(C). In the
latter, all nodes have the multiplicity 1. Such a materialization is called an
S1-materialization. Hence the set of concretizations equals the set of S1 ma-
terializations for a graph with lone summary nodes (up to isomorphism). An
important property of S-materializations is, that partner equivalent nodes in
an S-materialization have in fact equal partners, whereas partner equivalence
only requires the labels of partners to be equal.

This special notion of materialization facilitates the proof that d-increment
paths – a purely static notion – can be obtained in the concrete graph seman-
tics as well. In other words, if (Ĉ, û) E(r, n) (Ĉ ′, û′) and Ĉ has a concretiza-
tion, in which û has t instances, then Ĉ ′ has a concretization, in which û′ has
n+ t instances. Note that in this case the standard plus on integers is used
– in contrast to the finite plus that counts up to k. In order to prove this
statement, the restriction on the analysis parameter k becomes crucial. The
statement holds only, if the number of nodes mapped to an∞-summary node
û by some match is smaller than k. Hence k is safely chosen to be greater
than this number by exceeding the maximal number of equally labeled nodes
in any left graph of any transformation rule.

Given the previous reasoning,the proof of cluster completeness works by
well-founded induction over the generating order. In the smallest part of
the order, there are no ∞-summary nodes at all. This makes the abstraction
precise, because there are unique S1-materializations. Secondly, there are the

102 CHAPTER 4. PARTNER ABSTRACTION

∞-summary nodes in cluster that are minimal among the ∞-clusters. They
are assumed to have 1-increment paths in the smaller part. By induction
hypothesis and the observation made above, the existence of such a path in
the concrete graph semantics is guaranteed. By another inductive argument
it follows, that these summary nodes are inductive. The final step uses
this result to show that all the remaining summary nodes have all their
concretization. A case distinction is necessary distinguishing maximal and
non-maximal abstract clusters. Only the latter may have more than one
∞-summary node.

Remember that cluster completeness was not the weakest of the com-
pleteness notions. Rather there was also the notion of absence of spurious
clusters. A sufficient condition for this notion may certainly be expected to
be weaker than that of generating orders. It is called an almost generating
order. The definition becomes obvious when reading the proof of the cluster
completeness theorem in Appendix A. The requirements imposed on clusters
in a generating order are also imposed on all clusters in an almost generat-
ing order except for the maximal ones. This implies that for all except for
the maximal clusters in the order cluster completeness holds. For the maxi-
mal ones, however, the existence of one concretization in the concrete graph
semantics can be shown.

Definition 4.3.6 (Almost Generating Order) Let G be a friendly part-
ner graph grammar, and let [[G]]k be its abstract graph semantics. Let <: be a
strict order on [[G]]k, and let S be the set ∞-clusters. The strict order <: is
called almost generating, if and only if requirements (1-3) of Definition 4.3.5
hold for all clusters, and requirements 4 and 5 hold for all but the maximal
clusters.

Theorem 4.3.5 (Absence of Spurious Clusters) Let G be a friendly part-
ner graph grammar and let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}

The abstract graph semantics [[G]]k is free of spurious clusters, if it has an
almost generating order, and lone summary nodes and unique partners for
all clusters except the maximal ones.

Before the decidability of the word problem for partner graph grammars
is handled, two concluding remarks regarding cluster completeness and the
absence of spurious clusters are given. These concepts seem very similar, but
they are in fact not equal. Consider this friendly partner graph grammar
consisting of only one create rule:

4.3. COMPLETENESS RESULTS 103

=⇒

µ

µ

ν

The abstract graph semantics of this partner graph grammar consists of only
one trivial strict order, which is an almost generating but not a generating
order. The only element of the abstract graph semantics is both a minimal
and maximal element wrt. the trivial order. Hence requirements (4) and (5)
of the definition of generating orders (Definition 4.3.5) do not need to hold.
This means that there does not need to be a 1-increment path for the abstract
cluster. The abstract graph semantics is still free of spurious clusters.

One concluding remark concerning generating orders and relating to the
previous create rules: If the abstraction of the right graph of a create rule has
an ∞-summary node, it must be maximal in any almost generating order.
There is no generating order in that case. Such an abstract graph semantics
cannot be proven cluster complete by using the notion of generating orders.

4.3.4 Decidability of the Word Problem

Cluster completeness is still not enough to decide the word problem for part-
ner graph grammars. Consider the following friendly partner graph grammar
that consists of one create rule:

=⇒ ν ν

It is obviously cluster complete, but not all possible combinations of con-
cretizations of abstract clusters actually occur in the concrete graph seman-
tics. If they did, the concrete semantics would consist of graphs of n singleton
nodes for any n. In fact, the concrete semantics consists of graphs of 2n sin-
gletons for any n.

The reason for that problem is, that two clusters are created simultane-
ously thus dependently As the abstract graph semantics is a set, it cannot
record these dependencies. If all rule applications used up the graph they
match and created exactly one connected graph, this source of dependen-
cies could be avoided. A very simple, statically checkable, sufficient criterion
avoiding this problem is the connectedness of right graphs of transformation
rules.

If the partner graph grammar has the cluster multiplicity property and
the right graphs of all rules are connected, then an arbitrary number of

104 CHAPTER 4. PARTNER ABSTRACTION

concretizations of each abstract cluster in arbitrary combinations may be
derived by the partner graph grammar. Because of cluster completeness,
each concretization of a given abstract cluster is possible.

Theorem 4.3.6 (Decidability) Let G = (R, I) be a friendly partner graph
grammar and let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}

The abstract graph semantics [[G]]k is word decidable, if it is cluster complete,
and if R is connected for all (L, h, p, R) ∈ R.

The formal proof of Theorem 4.3.6 is given in Appendix A. Notice that
the abstract graph semantics of the simple platoon merge implementation
given in Figure 4.7 is even word decidable, because all rules of Table 3.1 have
connected right graphs. To be exact, word decidability can only be proven for
an abstraction using k = 2 – in contrast to k = 1 that is used in Figure 4.7.
In the course of the case study evaluation in Section 4.5 more details about
the completeness status of the remaining platoon case studies of Section 3.1
are revealed.

4.4 Property Preservation

The aim of this section is to investigate which GL properties are preserved
under abstraction. More precisely, a property is preserved, if the fact, that it
holds of the concrete case implies that it also holds for the abstract case. As
GL properties will be evaluated on abstract graph semantics’, it may then
be concluded that a property does not hold of a partner graph grammar, if
it can be shown not to hold of the abstract graph semantics. The inverse
direction is both more difficult to show and happens more seldom. However,
for complete abstract semantics’, some results can be achieved.

The preservation of first-order properties under partner abstraction is
explored in the beginning of this section. This means given a first-order logic
formula ϕ and a concrete graph G, what is the relation between G, ρ |= ϕ
and ∪̇αk(G), ρ̂ |= ϕ?

The result depends both on the kind of formula and on the considered
graphs. Only existential positive properties are preserved in the general case.
In the case of abstract clusters with lone summary nodes, however, arbitrary
first-order formulas are preserved under partner abstraction.

Note that no new definition for the evaluation of first-order formulas on
abstract graphs is necessary, because they are ordinary graphs except for

4.4. PROPERTY PRESERVATION 105

their special node identities. The meaning of node identities (a node being
summary node, information about its adjacent nodes), however, is not visible
to a first-order formula.

As for the preservation of temporal properties, almost all structure of the
concrete graph transition system induced by a partner graph grammar is lost
by going to the abstract graph semantics. The notions of node and cluster
evolution defined in Section 4.2 mainly served as a means of defining the
completeness notions of Section 4.3. Therefore, only invariants and possibil-
ities are investigated, whereas general temporal properties are left for further
research. In the scope of this section are formulas of the form AGR φ and
EFR φ for first-order formulas φ. Again, due to the simplicity of these cases,
no new definition of a GL semantics for the abstract case becomes necessary,
as will be seen in the theorems of this section.

4.4.1 Property Preservation and Partner Abstraction

Initially, some classes of first-order logic formulas are identified and named.
All first order formulas will be used in prenex form, i.e., in the form Q1x1

. . .Qnxn. φ, where Qi are existential or universal quantifiers and where φ
consists of quantifier-free disjunctions and conjunctions of positive or nega-
tive literals. Here, literals are of either one of the forms ν(x), β(x1, x2), or
x1 = x2. A formula is called existential positive, if Qi = ∃ for all i and all
literals occur without negation. Dually, a formula is called universal negative
if Qi = ∀ for all i and all literals are negative. Finally, existential formulas
are those, where Qi = ∃ for all i without any restrictions on the literals.
Analogously, one speaks of universal formulas, if Qi = ∀ for all i.

As partner abstraction constitutes a morphism – c.f. Lemma 4.1.1 – exis-
tential positive properties are preserved under partner abstraction, which is a
very general result (c.f. [Ros05] for current research on property preservation
under morphisms).

Lemma 4.4.1 (Property Preservation) Let G ∈ G(N , E) and let k ≥ 1.
For all existential positive formulas φ holds: If G, ρ |= φ, then ∪̇αk(G), ρ̂ |= φ,
where ρ̂ = λx.ξ(ρ(x)).

The almost trivial proof is given in Appendix A. A much stronger result
can be established in the case of lone summary nodes and unique partners.
Lemma 4.3.2 showed that all concretizations of ground canonical graphs with
lone summary nodes are essentially S-materializations. The following theo-
rem states that S-materializations preserve precisely the validity of first-order
formulas without equality. In other words, the only loss of information is in

106 CHAPTER 4. PARTNER ABSTRACTION

the number of of nodes summarized to ∞-summary nodes, whereas structure
is completely preserved. The theorem is stated in terms of connected graphs
to simplify the proof. Its proof is given in Appendix A.

Theorem 4.4.2 (Property Preservation) Let C ∈ G(N , E) be a con-
nected graph and let k ≥ 1. Let φ be a first order formula without equality. If
{Ĉ} = αk(C) with induced morphism ξ has lone summary nodes and unique
partners, then

• C, ρ |= φ ⇒ Ĉ, ρ̂ |= φ, for any assignment ρ and ρ̂ = λx.ξ(ρ(x)).

• Ĉ, ρ̂ |= φ ⇒ C, ρ |= φ for all assignments ρ̂ and for all assignments
ρ, such that ρ(x) ∈ ξ−1(ρ̂(x)).

The choice of partner abstraction was mainly motivated by the applica-
tion domain of dynamic communication systems, where the similarity of ob-
jects not only depends on their states but also on the states of their communi-
cation partners. The previous theorem presents another strong justification.
Although being a merely technical and logical reason, partner abstraction has
exactly the right precision to precisely preserve first-order properties without
equality in some well-defined cases. Such graphs that are indistinguishable
by first-order formulas without equality are equal under partner abstraction.

4.4.2 Invariants

After the evaluation of first-order formulas on partner abstracted graphs has
been clarified, the stage is set to investigate the preservation of temporal
formulas in the abstract graph semantics. As mentioned in the introductory
remarks to this section, only formulas of the form EFR φ and AGR φ are
considered here. Also the treatment of restrictions R is postponed to a later
paragraph. So R = R is assumed for now, and the R index to the temporal
quantifiers is left out.

The first theorem deals with forbidden subgraphs and reads as follows.
If there finally exists a graph in the concrete graph transition system, such
that an existential positive formula φ holds true of it, then φ will hold true
of the disjoint graph union of all abstract clusters in the abstract graph
semantics. Note that this theorem holds for all partner graph grammars. It is
called forbidden subgraph, because it is usually applied in its counterpositive
form. If a formula does not hold in the disjoint graph union of all abstract
clusters in the abstract graph semantics, there will never occur a graph in the
concrete graph transition system of which the formula holds true. Moreover,
existential positive formulas essentially describe subgraphs, hence the name
of the theorem.

4.4. PROPERTY PRESERVATION 107

Theorem 4.4.3 (Forbidden Subgraphs) Let G be a partner graph gram-
mar and let k ≥ 1. Furthermore, let φ be a closed, existential positive for-
mula. If G |= EF φ, then ∪̇[[G]]k, [] |= φ.

The proof is trivial using soundness (Theorem 4.1.8) and the preservation
of existential positive formulas as stated in Lemma 4.4.1. In fact, using a
coding trick in the partner graph grammar, even soundness alone suffices
to show the absence of a spurious subgraph: Consider graph F to be the
forbidden subgraph. Add a special error label to the set of node labels and
add an extra rule to the grammar, that has F as its left graph and a single
node labeled by the error label as the right graph. This error label must
not occur anywhere else in the grammar. If this error labeled node does not
occur in the abstract graph semantics, then, by soundness, it does not occur
anywhere in the concrete graph semantics proving the absence of F .

The next and much stronger theorem holds only for abstract graph se-
mantics without spurious clusters and for word decidable abstract graph se-
mantics, respectively. It makes use of the strong property preservation result
holding for abstract clusters with lone summary nodes. The statements of
the theorem read as follows. For a cluster complete abstract graph semantics
without spurious clusters and with lone summary nodes: If there exists an
abstract cluster in the abstract graph semantics, of which an existential for-
mula holds true, then eventually, on some direct derivation in the concrete
graph transition system, this formula will hold of a graph. Moreover, a uni-
versal formula that does not hold of some abstract cluster, implies, that the
same formula cannot hold globally of all graphs on all paths in the concrete
graph transition system.

The results are even much stronger in the case of word decidable abstract
graph semantics. In this case, the abstract graph semantics captures precisely
the concrete graph semantics (but not the concrete graph transition system).
It comes as no surprise, that all invariant properties of the concrete graph
transition system are thus checkable in the abstract graph semantics.

Note that Theorem 4.4.4 enables the user to infer almost arbitrary invari-
ants of the concrete graph transition system by simply looking at the bounded
size abstract graph semantics. In particular, the existential and universal for-
mulas may contain both positive and negative literals at the same time. The
proofs are an immediate consequence of the cluster completeness or the word
decidability theorem together with the property preservation theorem. They
are stated in Appendix A.

Theorem 4.4.4 (Preservation in Complete Cases) Let G be a partner
graph grammar and let k ≥ 1. Furthermore, let φ∀ be a closed universal

108 CHAPTER 4. PARTNER ABSTRACTION

formula and let φ∃ be a closed existential formula. If [[G]]k is cluster complete
and all Ĉ ∈ [[G]]k have lone summary nodes, then

1. If there exists a Ĉ ∈ [[G]]k, such that Ĉ, [] |= φ∃, then G |= EF φ∃.

2. If there exists a Ĉ ∈ [[G]]k, such that Ĉ, [] 6|= φ∀, then G 6|= AG φ∀.

If [[G]]k is word decidable and all Ĉ ∈ [[G]]k have lone summary nodes, then
for any closed first order formula φ that may contain equality

a. G |= EF φ if and only if there exists an S1-materialization M of ∪̇[[G]]k,
such that M, [] |= φ.

b. G |= AG φ if and only if for all S1-materializations M of ∪̇[[G]]k holds,
that M, [] |= φ.

4.4.3 Extensions

Two theorems have stated sufficient conditions that can be evaluated on the
bounded-size abstract graph semantics guaranteeing the absence or the pres-
ence of invariants in the concrete graph transition system. These theorems
may be extended in several ways that are not fully formalized in this work.
Rather they are left for further investigation.

Beyond existential positive As made clear in the proof of Lemma 4.4.1,
the existential requirement is not necessary in the statement of the
lemma. Because of the totality and surjectivity of the abstraction in-
duced morphism ξ, universal positive formulas would work, too.

Rule Restrictions The results so far were only concerned with unrestricted
temporal operators. This means that all rules of a partner graph gram-
mar are allowed to be applied. As there is no nesting of temporal oper-
ators thus no nesting of restrictions, the same results can be obtained
for a restriction R, if the abstract graph semantics of the restricted
system (R, I) is used instead of the abstract graph semantics of the
original system (R, I).

Partial Cluster Completeness The requirements of Theorem 4.4.4 are
rather strong. They may be relaxed for statements 1 and 2 of the
theorem. If cluster completeness is shown by Theorem 4.3.4, a gener-
ating order on the abstract graph semantics is required. If there was a
generating order on a subset of the abstract graph semantics including
the abstraction of the right graphs of create rules, cluster completeness

4.5. EVALUATION OF CASE STUDIES 109

could be guaranteed for the abstract clusters of this subset. This is
intuitively clear and becomes formally clear by looking at the proof of
the cluster completeness theorem. Statements 1 and 2 of Theorem 4.4.4
also hold, if Ĉ is part of this (partial) generating order.

General Temporal Properties In order to reason about general temporal
properties like until, or nested temporal quantification, a better notion
of cluster evolution is necessary. This should not be a binary relation
between clusters but should take all the affected clusters into account,
too. Also abstracting from the number of clusters makes life hard for
temporal verification. A method how to count clusters is proposed
in Section 4.6. Another direction of future research may hence be to
incorporate model-checking techniques into the verification process as
suggested in [BSTW06]. There is some hope, that they are able to
better deal with the temporal aspects, whereas the technique of this
work is ideally suited to analyze structural properties.

Node Evolution The same argument about refinement of cluster evolutions
applies for node evolution, too. Properties of the form ∃x.AGφ are out
of scope of reasoning so far. Such a formula expresses, that there is some
node u in the initial graph such that property φ holds for this fixed u
during its lifetime. Logics and systems arguing about such properties
include [DKR04] and [YRSW03]. These techniques, however, work only
for settings less expressive than partner graph grammars.

Whereas node evolution as defined here is tailored to express rela-
tions between ∞-summary nodes, a new notion reasoning about non-
summary nodes seems promising in order to tackle formulas of the
above kind.

4.5 Evaluation of Case Studies

The purpose of this section is to evaluate the case studies of Chapter 3 ex-
perimentally. It is divided into two major parts. First, the implementation
of partner abstraction based abstract interpretation of graph grammars, the
hiralysis tool, is introduced. Second, the implementation of the car pla-
tooning case studies are given to the tool and the results are commented and
explained. Also, the car platooning examples are examined wrt. completeness
and property preservation.

The section concludes by giving some outlook on how to tackle further
case studies in the future. Although being amenable to partner abstraction

110 CHAPTER 4. PARTNER ABSTRACTION

based abstract interpretation of partner graph grammars in general, they are
not amenable to the current implementation yet. In some cases, even the
technique as is needs to be extended. Potentially worthy extensions will be
described in a subsequent section on counting and general clusters.

4.5.1 Implementation: hiralysis

The hiralysis tool is written in 3000 lines of standard C code. Its function-
ality is rather simple. It gets as input a textual description of a partner graph
grammar G adhering to the abstract syntax given in Appendix B. It may
then be called with an optional number of iterations to be executed. The
tool produces a representation of the abstract graph semantics [[G]]1 of the
specified partner graph grammar. This means, that the partner abstraction
parameter of hiralysis is fixed to k = 1. Apart from that, the tool also visu-
alizes the specified partner graph grammar in a separate output file. In case
an iteration number n was specified, it produces as output a representation
of [[G]]1n. The graph is represented in the .gdl format, an XML-like descrip-
tion of graphs. This output can be visualized with the aisee R© tool that
builds on VCG graph visualization [San94]. A free version is downloadable
for non-commercial usage from www.aisee.com. Sample input and output
will be displayed and explained later in this section and in Appendix B.

After the functionality of hiralysis has been described, some imple-
mentation details follow. Most interesting among them are the internal
representation of graphs, the match finding, the handling of isomorphism
checks and the implementation of materialization. The overall algorithm is
a fixpoint computation closely following the definition of the abstract graph
semantics in Definition 4.1.10. Starting from the abstracted initial graph, all
newly computed abstract clusters are added to the current abstract graph
semantics in each iteration until a fixpoint is reached, which is guaranteed
by Theorem 4.1.8.

Graphs are represented internally as adjacency lists, which is one of the
two standard ways of representing graphs the other being adjacency ma-
trices. A detailed comparison of the two data structures can be found in
Section 23.1, pages 465ff of the standard data structure and algorithms book
[CLR89]. There are several reasons why adjacency lists are to be preferred to
adjacency matrices for this particular application. First of all, one of the most
often applied operations on the data structure is finding the set of all adjacent
nodes, partners, of a given node. This is important for computing partner
abstractions and connected components. It is straightforward in adjacency

4.5. EVALUATION OF CASE STUDIES 111

lists, whereas it requires some overhead in the matrix representation. Fur-
thermore, the considered graphs seem to be reasonable sparse, where sparse
graphs are more efficiently implemented using lists. Finally, space becomes
an issue, if there are many graphs around, which is conjectured to happen
in abstract graph semantics. In this case the more space-efficient adjacency
lists win over the matrix representation.

Matching left graphs against abstract clusters is an exponential operation
in the worst case, because it amounts to subgraph isomorphism. It is not that
bad, however, because, usually, left graphs are reasonably small and because
all graphs are labeled. This restricts the set of candidates to match a node
to equally labeled nodes. In each abstract cluster, there are supposedly not
too many equally labeled nodes (even though there may be an exponential
number of them, if they all differ by their partners’ labels). For each node
in a transformation rule pointers to equally labeled nodes in all abstract
clusters are stored with it. This helps to compute new matches. Analogously,
pointers to the abstract clusters that a connected component of a left graph
has matched, are stored with this connected component. In each iteration
step, only the most recently added abstract clusters are searched for matches.
The number of the iteration, in which it was computed is stored together with
an abstract cluster. This guarantees that the same rule with the same match
is not applied more than once.

Abstract clusters that have been found to be in the abstract graph se-
mantics are stored in a binary search tree. The key of an abstract cluster
in the search tree corresponds to a sorted list of all canonical names of all
its nodes. Lemma 4.1.2 guarantees that isomorphic canonical graphs are in
fact equal (if the multiplicities coincide). A necessary criterion is certainly
the equality of the node sets. The latter corresponds to checking key equal-
ity, where the keys are also called footprints of abstract clusters. Footprint
equality can be checked efficiently. In case footprints are equal an additional
isomorphism check becomes necessary. However, the potential isomorphism
is already determined by the equal node identities simplifying the search. It
becomes effectively linear in the size of the graph. In any case, the manage-
ment of the search tree can be handled efficiently. Note that the search tree
only supports addition of clusters due to the monotone nature of the fixpoint
computation.

The last implementation detail is about how to compute materializations.
The definition of materialization from Definition 4.1.6 is not constructive
mainly for mathematical reasons. Especially, the soundness proof is simpli-
fied a lot using the declarative notion of Definition 4.1.6. Note that also
the notion of an abstract match is easily formalized using the declarative

112 CHAPTER 4. PARTNER ABSTRACTION

notion of materializations. Lemma 4.1.4 about the existence of material-
ization gave an equivalent characterization of an abstract match using non-
injective morphisms. In fact, this is the characterization that is implemented
in hiralysis.

The constructive definition is tedious to write down, because a lot of cases
need to be distinguished depending on the connectivity of left graphs in rules.
For the purpose of this presentation, only two cases are explained in more
detail: left graphs of transformation rules consisting of one or two connected
components, respectively.

The declarative notion of materialization is also very liberal wrt. the mul-
tiplicities of nodes materialized from a summary node û. It merely requires
that the finite sum of the materialized nodes yields the multiplicity of û. It
is sufficient to materialize only as many non-summary nodes from a sum-
mary node û as there are nodes in the left graph matching û ∈ VĈ . (Again,
the non-injective match characterization of abstract matches is used here.)
Assume nodes u1, . . . , un of a left graph matched to the ∞-summary node û
by a match morphism m. For n > 1, there are three node materializations
that sufficiently describe all possible cases. The first one splits û in n non-
summary nodes, the second one splits û in n+1 non-summary nodes, and the
last one splits û in one ∞-summary node and n non-summary nodes. Notice
that for k = 1 as in the implementation, all summary nodes are also ∞-
summary nodes. For n = 1, only two cases are necessary: two non-summary
nodes, and one non-summary, one ∞-summary node. The three cases above
capture all possible behavior that may be triggered by the abstract cluster
Ĉ.

Apart from node materialization, also cluster materialization needs to
be defined constructively for implementation purposes. If the left graph of a
rule consists of a single connected component only, matching and thus cluster
materialization is easy. A match can only occur within one abstract cluster.
If an abstract cluster Ĉ is matched, an identical copy of it is made and the
matching rule applied to that copy.

If the left graph of a rule consists of two connected components L1 and
L2, there are three cases to be distinguished. First, L1∪̇L2 may match a
single abstract cluster Ĉ. In this case, either one or two copies of Ĉ are
made and updated according to the match. Thirdly, Li may match Ĉi for
distinct Ĉ1 and Ĉ2. In this case, one identical copy of each Ĉ1 and Ĉ2 has to
be made, and their disjoint graph union needs to be updated as specified by
the transformation rule. Without dwelling on details, it becomes clear that
this leads to a combinatorial blowup if a left graph consists of more than
two connected components, which is, on the other hand, not very likely to

4.5. EVALUATION OF CASE STUDIES 113

happen.

If the user is certain as to when a rule with a left graph of several con-
nected components is to be applied, she can aid the tool using the keywords
connected and disjoint to simplify the materialization process. Each of
the keywords can be added to a rule. If a rule is tagged to be connected, al-
though the left graph has several connected components, the tool only seeks
matches within one abstract cluster. On the other hand, a disjoint rule of
n connected components in the left graph is only matched against n distinct
abstract clusters. Examples of the usage of the connectivity keywords are
numerous in Appendix B.

4.5.2 Car Platooning

Recall the car platooning case study described in Section 3.1. It consisted of
three categories of examples:

1. A simplified version, where actual messages are abstracted away.

2. A version with explicit message queues.

3. General ideas how to implement and how to overcome faulty channels.

All of these instances of the platoon scenario were implemented as a
partner graph grammar and fed into the hiralysis tool. The results and
experiences are discussed below. Some of the material, especially graphical,
was put into Appendix B for illustration.

Idealized Platoons – Section 3.1.1 The merge part of the idealized pla-
toon scenario has occurred frequently throughout this work. In particular, its
abstract graph semantics was presented in Figure 4.7. In Section 4.3, it was
shown, that this particular abstract graph semantics is even word decidable.
Hence the sample properties (3.1) and (3.2) are amenable to verification given
the abstract graph semantics according to Theorem 4.4.4. In fact, they both
turn out to hold for the idealized merge. The abstract graph semantics of
this grammar consists of 12 abstract clusters and is computed in 5 iterations
using 19 rule applications.

After considering the merge in isolation, the splitting maneuvers are in-
vestigated in isolation taking the representation of a platoon of three cars as
initial graph. Remember that the split maneuver was modeled by two sets
of rules in Table 3.2 and Table 3.3. The transformation rule [2Split], which
is an element of the latter set, makes use of a non-simple partner constraint.

114 CHAPTER 4. PARTNER ABSTRACTION

Hence it is not amenable to the technique of partner abstraction based ab-
stract interpretation that is only sound for partner constraints without “at
most” restrictions.

The first set of rules models the split in the middle of a platoon. It was
implemented as given in Table 3.2. The first experiment yielded an abstract
graph semantics of more than 500 abstract clusters revealing a flaw in the
specification, that was due to the fact, that several cars wanted to initiate
a split within the same platoon. After this possibility was excluded in the
model, the abstract graph semantics as computed by hiralysis is made up
of 13 abstract clusters that were computed in 4 iterations applying 15 rules.
The abstract graph semantics cannot be proven to be cluster complete. In
fact, it is not, because the initial graph represents only three cars and no other
cars are created. But even under the assumption that there were platoons of
all possible sizes to start with, completeness could not be proven using the
completeness theorems. This gives rise to certain points, where the sufficient
conditions for completeness could be relaxed. For instance, one could think
of d-increment paths with d ≤ 0 instead of 0-increment paths in the definition
of generating orders. This would justify the cluster completeness of the split
partner graph grammar. Property (3.1) holds for the split case, whereas (3.2)
does not, because a single leader that is not a free agent is an element of the
abstract graph semantics.

The validity of these properties was not inferred by automatic reasoning,
but by human reasoning. Still, the occurrence of a single leader without
followers in the abstract graph semantics may be suspicious to a protocol
designer.

Eventually, merge and split are put to run in parallel, i.e., a new part-
ner graph grammar was built using the union of the rules for merging and
splitting. The simple union resulted in an abstract graph semantics of 169
abstract clusters. This demonstrates impressively, that partner graph gram-
mar specifications are not very modular. Putting two specifications together
leads to a lot of undesired interferences as suggested by this example. Here,
those interferences result from initiating merge operations for currently split-
ting platoons. If these interferences are manually excluded in the protocol,
only 22 abstract clusters remain. This corresponds to the sum of the sizes of
the abstract graph semantics’ of merge and split alone except for 3 clusters
that are in the intersection of the abstract semantics’ – free agents, platoons
of three or more cars, and platoons of two cars.

Merge with Queues – Section 3.1.2 While the idealized scenarios stud-
ied so far abstract from concrete messages, actual messages are around in the

4.5. EVALUATION OF CASE STUDIES 115

asynchronous communication based platoon implementation. First attempts
to implement the protocol as specified in Section 3.1.2 revealed numerous
flaws, that are all easily detectable. If the abstract graph semantics of the
erroneous partner graph grammar is computed, it generates thousands of ab-
stract clusters or even makes hiralysis run out of memory. A quick look
at the abstract clusters immediately reveals the origin of the explosion. The
hiralysis tool proved very helpful in correcting the flaws and designing a
more reliable protocol, since the reasons for flaws are easily identifiable given
the graphical notion.

An example of such discovered errors: The concept of environment mes-
sages is too liberal as is. Such messages can easily swamp the message queues
of arbitrary processes. (Nodes represent processes in terms of the specifica-
tion given in Section 3.1.2.) It is easily possible to have several merges start
simultaneously. This lack of mutual exclusion was already present in the
idealized version, so it comes as no surprise. The key to restricting the sys-
tem behavior – as already observed in [BSTW06] – is the introduction of
acknowledgement messages into the protocol.

Apart from protocol-inherent problems, there were also some technical
properties that need to be discussed. The repaired protocol yielded an ab-
stract graph semantics of reasonable size (several 100s), but with a large
amount of spurious abstract clusters. These were mainly due to summary
messages, i.e. summary nodes representing messages. Once such a summary
message occurs, it will, at least in some clusters, always prevail, because in-
formation about the concrete number of such messages is lost. This spoils the
precision about the content of the queues. It may, however, still be enough to
show properties of the mere communication topology regardless of message
queues, if the queues are abstracted from the results. For the final imple-
mentation, whose results are reported here, the queue length was restricted
to 1.

A minor technical problem is the control structure that needs to be in-
cluded in the graph grammar to model the broadcast of messages. This issue
was already discussed in detail in Section 3.1.2. Therefore, broadcast was
replaced by picking a random identity among those present in a channel.

The so obtained partner graph grammar yields an abstract graph se-
mantics of 159 abstract clusters that were computed using 163 rules in 40
iterations. Most notably, 34 partner constraints were used in only 30 rules to
obtain this partner graph grammar. This demonstrated how many restric-
tions needed to be introduced to make the protocol work. As expected, the
result cannot be shown to be complete regardless of the completeness notion.
Among the GL properties stated in Section 3.1.2, only (3.4) is an invariant

116 CHAPTER 4. PARTNER ABSTRACTION

of the implementation. It states that each car that is not a leader or a free
agent has a unique leader. The abstract graph semantics does not contradict
this, i.e., it does not reveal a forbidden subgraph.

Faulty Channels – Section 3.1.3 In the section on how to model faulty
channels with partner graph grammars, four options were named how a proto-
col can be analyzed wrt. its robustness concerning unreliable channels. These
options contained the possibilities of arbitrary edges to disappear with/with-
out notification of the incident nodes and with/without a persistent logical
link. Among these options, those without notification of incident objects were
chosen: [Fault1], that does not introduce new logic links, and [Fault3] that
does.

The partner graph grammar augmenting the idealized merge with rules
that delete arbitrary edges is given in Appendix B. The computation of
the abstract graph semantics took 6 iterations and 53 rule applications to
yield 20 abstract clusters. It presents valuable information as to which failure
situations may occur when communication fails non-deterministically. If G is
the original partner graph grammar and G′ the augmented one, the difference
[[G′]]k \ [[G]]k describes precisely the dangerous situations.

In the case of the idealized merge, this difference consists of 8 abstract
clusters:

• 4 clusters of a single follower, leader, rear and front leader, respectively.

• Platoons of either one or more than one follower, where the leader is
replaced with a front or rear leader, respectively.

If one is to design an error recovery strategy, the enumerated 8 situations
are the ones to consider. It was also tested to add the inverse of the link
deletion to the grammar as an default recovery strategy. This attempt failed,
because an enormous amount of abstract clusters was created. Almost any-
thing could be connected to anything else. This is obviously due to the fact,
that the designated recovery rules also apply in situations, where no failure
has occurred.

In the [Fault3] scenario, failing physical communication links are re-
placed with logical links. This implies doubling the set of edge labels. The
so extended idealized merge partner graph grammar leads to an abstract
graph semantics of 450 abstract clusters in 20 iterations using 1206 rule ap-
plications. This rather large number results in iterated failures. Clusters
that remain connected because of logical links, can have other physical links
fail leading to a combinatorial blowup. Anything like 450 abstract clusters

4.5. EVALUATION OF CASE STUDIES 117

#rules #node labels #edge labels #pconstraints

merge 8 5 1 1
split 4 6 1 4
combined 12 6 1 5
combined+ 12 6 1 9

queues 30 18 4 34

faulty1 32 5 1 1
faulty3 32 5 2 1

(a) Partner Graph Grammars

#Abstract Clusters #Iterations # Rules applied

merge 12 5 19
split 13 4 15
combined 169 10 302
combined+ 22 7 34

queues 159 40 163

faulty1 20 6 53
faulty3 450 10 1206

(b) Computation of abstract graph semantics

Tab. 4.1: Experimental evaluation of the platoon case studies. The table on
top shows the size of the specifications of the examples, whereas the bottom
one shows the size and the complexity of the computation needed to obtain
the abstract graph semantics. The merge program implements the ideal-
ized merge, and split implements the idealized split. The two versions of
combined are obtained by simply taking the union of merge and split and
by augmenting the union with more constraints. Finally, there are imple-
mentations of asynchronous communication and two selected scenarios using
unreliable channels.

is hard to digest for a human reader. Therefore, the [Fault3] scenario lends
itself to testing a recovery strategy, where additional rules take care of failed
links, before even more links can fail. One may consider this scenario as
orthogonal to the [Fault1] case that is better suited to design rather than
to test recovery strategies by identifying potential failure situations.

To conclude this section, it must be said that even a protocol as simple
as the idealized merge is far from robust wrt. faulty channels.

118 CHAPTER 4. PARTNER ABSTRACTION

4.5.3 Experiences

Table 4.1 summarizes the numerical results obtained from running hiralysis
on the test cases described in this work. This subsection on experiences is
partitioned wrt. three major aspects:

• Performance of the tool and how it is influenced.

• Practicability of partner graph grammars as specification mechanism

• Usefulness of the results, that is the abstract graph semantics’, that
are computed by the hiralysis tool.

Performance The hiralysis tool achieved execution times in the order
of fractions of second for each of the examples stated in Table 4.1. In the
worst-case, partner abstraction based abstract interpretation suffers from a
heavy complexity, because the number of possible abstract clusters explodes
exponentially with the number of node and edge labels. In practice, however,
the number of node and edge labels was not found to influence the running-
time of the analysis tool to such an extent. The most complex example,
queues, has clearly most labels but a comparably small number of abstract
clusters in the abstract graph semantics, whereas an example like faulty3
has much fewer labels, but a much bigger state space.

The number of applied rules is a much better indicator of the execution
time. This number is, of course, related to the number of distinct matches of
left graphs in rules. On the one hand, small left graphs in dynamic communi-
cation systems models reduce the matching burden. On the other hand, small
left graphs potentially lead to many matches and may corrupt the execution
time of the analysis. Therefore, grammars with more partner constraints pro-
vide more restrictive matching and less superfluous rule applications. The
two extreme cases are faulty3 and queues. The latter uses many partner
constraints and computes a new abstract cluster with almost every rule ap-
plication (159 vs. 163). In contrast, faulty3 computes only one new abstract
cluster per 3 rule applications.

In cases, where the tool ran out of memory, tests with gradually growing
iteration bounds showed an explosion of the number of applied rules rather
than an explosion of the number abstract clusters.

Partner Graph Grammars as a Specification Tool The hiralysis

input language (consult Appendix B for its abstract syntax) does not provide
many syntactical conveniences yet. This becomes clear by looking at the

4.5. EVALUATION OF CASE STUDIES 119

implementation of faulty1 (also available in Appendix B). The next step in
the tool development must provide such conveniences, e.g. label constraints
as defined in Definition 2.1.11 and frequently used in this work. In the long
run, one may even think of a graphical input language. So far, hiralysis
mainly provides the core analysis engine.

A more general problem of using graph grammars became visible at sev-
eral points in this work. They are not very suited to model control in a
programming language sense. There are extensions of graph grammars to-
wards that direction, but they go beyond the pure formalism and may render
themselves hard to verify.

Despite the disadvantages, hiralysis comes with a major strength: part-
ner constraints to restrict the applicability of rules. In experiments, partner
constraints came to help, whenever the state space exploded. Partner con-
straints, as a special instance of negative application conditions, proved to
be absolutely essential for specification purposes. Without the ability to say,
when a rule does not match, none of the examples could have been imple-
mented. As with the disadvantages, most of them are inherent using any
kind of graph grammar.

Usefulness of the Results Recall that Section 3.1 described in detail the
approach to verifying car platooning in the PATH project. It was clarified
that even the specification of the protocols was inadequate. This claim is
strengthened by the experimental evaluation. None of the flaws discovered
in even the simplest implementations is in scope of the COSPAN based,
static verification methods used in the PATH project. Rather these mistakes
were due to the inherent, dynamic behavior of the car platooning case study.
Despite the complexity of the case study, many interesting properties could be
verified or refuted by the results of the hiralysis implementation. In simple
cases, even completeness (word decidability) results could be established.

Unfortunately, the sufficient conditions stated in the completeness theo-
rems prove to be rather strong and only applicable in simple cases. There
are two possible ways to overcome this weakness: try to relax the sufficient
criteria and/or use partial completeness in a property driven fashion. Both
options were already elaborated on in Section 4.4.

A general problem of using graphs in specification and verification of
systems is the accessibility and readability of large graphs by humans. When
a certain size is exceeded, no valuable information can be gathered from such
a graph by just looking at it. There need to be ways to automatically access
and query these graphs. The use of GL for property specification is a first step
towards this goal, because such a specification may be automatically checked

120 CHAPTER 4. PARTNER ABSTRACTION

against the resulting abstract graph grammar. This model-checking process
is not yet integrated into the hiralysis tool, but offers great potential value
of future extensions.

This paragraph concludes by identifying a surprising but very useful
application domain of the hiralysis tool: protocol design. Given verbal
descriptions of communication protocols, one may start with implementing
an abstracted formal description as a partner graph grammar and run the
hiralysis tool on it at this early design stage. The experience gained from
the platoon case study showed that many subtle errors may be discovered
already at this early stage.

Later on, one should gradually refine the protocol implementation. At
all stages, a quick partner graph grammar implementation is possible. It can
then be easily checked by using hiralysis.

This process was exemplified in the platoon case study by starting with
understanding the idealized scenario, before this scenario was refined to con-
tain explicit message queues or the possibility of communication failures.

Other Case Studies The remaining case studies presented in Chapter 3
were either not implemented in terms of partner graph grammars or are
beyond the possible applications of the hiralysis tool. They mostly identify
future work.

4.6 Extensions

This section introduces two extensions to the standard partner abstraction
based abstract interpretation, which will be referred to as standard analysis
from now on. The key idea of the first extension is to count abstract clusters.
So far, only the number of nodes summarized to a summary node was tracked
up to some k. The number of abstract clusters, however, was completely
forgotten. This works fine for partner graph grammars that have the cluster
multiplicity property. In general, the loss of information may be severe. The
new abstraction will be called counting abstraction, the induced analysis will
be called counting analysis.

The second extension – besides counting abstraction – is called general
cluster analysis. The idea is to parameterize the analysis in terms of the
definition of a cluster. So far, cluster was a synonym for a connected compo-
nent. That is, a cluster of a graph was a connected component of the graph.
Technically, a cluster used to be an equivalence class of a graph wrt. the “con-
nected” equivalence. One may get beyond this notion by allowing clusters to

4.6. EXTENSIONS 121

be equivalence classes wrt. other equivalences than just connectedness. On
the abstraction level, abstract graphs will not be sets or multisets of abstract
clusters, but graphs that have abstract clusters as subgraphs.

4.6.1 Counting Clusters

After a motivating example, some technical details of the counting abstrac-
tion are explained, starting from the actual abstraction mapping, proceeding
with abstract matches, and concluding with abstract updates.

The theory is not developed from scratch as in Section 4.1. In particular,
no formal theorems are stated or proven. However, the story-telling of this
section is closely along the lines of Section 4.1. The presented material should
be profound enough to define the technical basis and make clear how the
counting analysis is set up.

Motivation The most obvious partner graph grammar, where counting
analysis enhances precision is the following. Take the partner graph gram-
mar modeling an idealized merge from Table 3.1 without the [Create] and
[Destroy] rules. Complement the rules with an initial graph consisting of a
single free agent. The concrete graph semantics of this partner graph gram-
mar consists of this single free agent only, because no rule matches in the
concrete. The standard analysis, however, will assume an arbitrary amount
of free agents and start exploring the search space, until it reports the famous
twelve abstract clusters of Figure 4.7 as result. This could be prevented, if it
was known, that there was only one free agent around. The counting analysis
addresses this issue.

Abstraction While an abstract graph in the standard abstraction was a
set of abstract clusters, the counting abstraction uses multisets of abstract
clusters as abstract graph domain. Therefore, a counting analysis is param-
eterized by two integer bounds k and c, where k is used for counting nodes
and c is used for counting clusters. The domain of abstract graphs in the
counting abstraction, given a set N of node and a set E of edge labels, is
thus

℘m(Gcan(N , E , k)×Nc)

with a typical element being Ĝ = {{(Ĉ1, n1), . . . , (Ĉt, nt)}}. Note that the
multiset notion together with explicit counters attached to an abstract clus-
ter provide two notions of counting, whereas one notion seems sufficient.
However, the given domain simplifies reasoning when it comes to cluster

122 CHAPTER 4. PARTNER ABSTRACTION

materializations. This corresponds tightly to node multisets together with
multiplicities being part of canonical names.

The abstraction mapping αc,k is defined in terms of a partner and a
collapse mapping just like in the standard case. A bit of care must be taken
in order to get the two-layered counting right. Here are the definitions:

partnerc,k(C) = (partnerk(C), 1) (4.20)

collapsec,k(C, t) = (collapsek(C), tc) (4.21)

Collapsec,k(M) =
c⊕
{{collapsec,k(C) | C ∈m M}} (4.22)

αc,k(G) = Collapsec,k{{partnerc,k(C) | C ∈ cc(G)}} (4.23)

The computation of partner information for nodes is exactly like in the stan-
dard case. This can be seen in (4.20), where the c parameter – the bound for
cluster counting – is effectively ignored. This definition works for clusters C
only and faithfully records 1 being the number of instances of the argument
clusters C.

The collapsec,k mapping applied to a cluster C, whose nodes are already
canonical names, ignores the c, too, except for taking the c-bound version of
the number t of instances of C. This mapping summarizes nodes with equal
partner information.

The Collapsec,k mapping takes care of both summarizing and counting
partner equivalent nodes and isomorphic abstract clusters. It gets a multiset
of pairs of abstract clusters and cluster multiplicities as argument and adds
up equal abstract clusters. The bound c is used for the purpose of cluster
counting, where the operator in (4.22) is defined by:

c⊕
(M) = {{(Ĉ, t) | t 6= 0; ∃q ∈ Nc.(Ĉ, q) ∈m; t = ⊕c{{q, (Ĉ, q) ∈m M}} }}

Equation (4.23) completes the definition of the abstraction mapping. First,
canonical names are computed for each node in each connected component
of a graph, then these nodes are summarized and counted up to bound k.
Finally, equal abstract clusters are summarized and counted up to bound c.

Abstract Updates Like the definition of counting abstraction was split
into the computation of the canonical names and the summarization of nodes
and clusters – just like in the standard case – the definition of materialization
becomes straightforward. It is almost literally the same as in Definition 4.1.6.
The second requirement in this definition forced a materialization to contain
at most one ∞-summary node of a given canonical name. The same require-
ment needs to be added on cluster level. Otherwise, the definitions stay the

4.6. EXTENSIONS 123

same. This is another advantage of the declarative nature materializations.
In order to define materializations constructively for the counting analysis,
even more care would have to be taken than in the standard case.

Having defined materializations, the next step on the way to an abstract
update is abstract partner constraint satisfaction. For the concrete case, it
was defined in Definition 4.1.7. Again, this definition applies almost literally
to the counting abstraction as well, because it is defined in terms of con-
nected components. Counting abstraction on this level is just the standard
abstraction. The only syntactical change involves replacing Ĉ with (Ĉ, 1) to
cater for the cluster counting.

Abstract matching by materialization is equivalently characterized by
non-injective matches in the abstract graph with additional multiplicity con-
straints. This is formalized in Lemma 4.1.4 for the standard analysis. This
lemma almost holds for counting abstraction as well. Instead of taking the
disjoint graph union ∪̇Ĝ of the abstract graph to be matched, one needs to
unfold the counting abstracted graph Ĝ according to the given cluster mul-
tiplicities in order to obtain the equivalence result. Formally, ∪̇Ĝ is replaced
by ∪̇{unfold(Ĉ, t) | (Ĉ, t) ∈m Ĝ}, where

unfold(Ĉ, t) = Ĉ∪̇ . . . ∪̇Ĉ︸ ︷︷ ︸
n times

where n = t if t 6= ∞ and n = c+ 1 otherwise for bound c.

The definition of an abstract update in the counting abstraction reads as
follows. Abstract graph Ĝ evolves into Ĥ by application of rule r, if and only
if there exists a materialization M̂ . The latter is partitioned into clusters of
multiplicity 1 and into summary clusters: M̂1 = {{(Ĉ, 1) | (Ĉ, 1) ∈m M̂}}
and M̂>1 = M̂ \m M̂1. Moreover, there exists the concrete direct derivation
∪̇M̂1 r M̂

′. The result of the application Ĥ is the defined to be:

Ĥ = Collapsec,k({{partnerc,k(C) | C ∈ cc(M̂ ′)}} ∪̇M̂>1)

The update part is joined with the non-affected part of the materialization
and abstracted again.

Defining the abstract graph semantics in the case of counting abstraction
completes the definition of the counting analysis. Therefore, Definition 4.1.10
is adapted in the following way. The maximum union operator ∪̇c replaces
the

⋃
in the second case of the definition. It is defined to be:

M̂1∪̇cM̂2 = {{(Ĉ, t) | t = max{q | (Ĉ, q) ∈m M1 ∨ (Ĉ, q) ∈m M2}}}

This operator summarizes all abstract clusters of two multisets and assigns
the maximal (wrt. bound c) multiplicity to each summarized cluster. All

124 CHAPTER 4. PARTNER ABSTRACTION

remaining union operators in Definition 4.1.10 are replaced with the operator
in (4.23).

Properties of Counting Abstraction The special maximum operator
∪̇c takes care – to a certain amount – of clusters that disappear due to a
rule application. This is yet another precision gain as compared to standard
analysis. Also, the maximum operator ∪̇c preserves monotonicity in the
definition of the abstract graph semantics, which is the key to the termination
result, which certainly holds for the counting analysis, too. However, the
partial order necessary to prove termination is not just subset inclusion, but
the combination of subset inclusion on clusters and smaller than or equal on
the cluster multiplicities.

Soundness can be proven as easily as for the standard analysis. Finally,
the following observation claims the coherence of the counting analysis and
the standard analysis. If a partner graph grammar has the cluster multi-
plicity property, the abstract graph semantics as computed by the counting
analysis coincides with the abstract graph semantics computed by the stan-
dard analysis.

4.6.2 Generalized Clusters

In the previous subsection, it was demonstrated, how the standard analysis
can gain precision by counting clusters on top of counting partner equivalent
nodes. In contrast, this subsection reveals a parameterization that not nec-
essarily increases precision. Rather, it allows to tailor the standard analysis
to applications, where connected components are not as crucial as they are
in the setting of dynamic communication systems. The notion of a cluster
will be parameterized in terms of a defining equivalence relation. In the
standard case, two nodes are cluster equivalent, if and only if they are con-
nected. Arbitrary equivalence relations are allowed to replace connectedness
in the generalized cluster analysis. This subsection is more sketchy than the
previous one and merely describes an idea that is currently being explored.

Motivation Recall the routing case study of Section 3.2. This case study
does not lend itself to the standard analysis, because typically, one is inter-
ested in one, large connected component only. One may even be interested
in proving, that all nodes are connected at all times. Although the standard
analysis may be applied to that, the power of the two-layered abstraction
is completely lost. Moreover, an ad hoc network does not evolve in a very

4.6. EXTENSIONS 125

structured or controlled manner. Rather changes are arbitrary, before the
network re-structures itself.

However, the Safari routing protocol does impose structure on a network.
It is partitioned into cells, the set of cells is partitioned into super-cells, and
so on. Each of the cells has distinguished drums announcing themselves to
everyone in reach. In this case, it might be useful, if the cells were considered
to be clusters instead of the connected components. As cells are arbitrarily
nested, this raises the need for deeper hierarchies than available in the stan-
dard analysis. In the following, only the first issue is addressed: arbitrary
cluster definitions.

Abstraction While the abstract graph domain consisted of sets and mul-
tisets of abstract clusters, respectively, in the cases of the standard and the
counting abstraction, abstract graphs now will be graphs that have abstract
clusters as subgraphs in the generalized cluster analysis. For simplicity as-
sume unlabeled edges for this extension. In the remainder, ∼G denotes an
equivalence relation on the nodes of a graph G. The reader may think of
connectedness or “being in the same cell” as examples of this equivalence
relation.

An abstract graph in the generalized cluster analysis is an element of

℘(Gcan(N , k)) × (℘(Gcan(N , k))× canonicalNames(N , k))2

Therefore, an abstract graph is in fact a graph, whose nodes are canonical
names. There are two kinds of edges.

• intra-cluster edges between canonical names in the same cluster and

• inter-cluster edges between canonical names belonging to different ab-
stract clusters.

That said, the abstract graph domain of the standard abstraction becomes a
special case of this more general domain, where the set of inter-cluster edges
is empty.

The abstraction of a graph G is defined to be α∼k (G) = (αV
k (G), αE

k (G)),
where

αV
k (G) = {collapsek ◦ partnerk(C) | VC ∈ G/∼G, C = G |VC

}

Let ξ∼ be the morphism induced by αV
k . Then ((Ĉ, û), (Ĉ ′, û′)) ∈ αE

k , if and
only if there exist u, u′ ∈ VG, such that u 6∼G u′, (u, u′) ∈ EG, ξ∼(u) = û,
and ξ∼(u′) = û′.

126 CHAPTER 4. PARTNER ABSTRACTION

x

x

(a) (b)

Fig. 4.10: Generalized cluster abstraction at work. Part (a) shows a sample
graph G having two sorts of edge labels β1 (solid) and β2 (dashed). Node
labels are represented by the filling style of nodes (black, white). Two nodes
are cluster equivalent, written u ∼ v, if and only if they are in the same
connected connected of the graph (VG, E

β1

G , `G). Part (b) shows the graph
α∼1 . Clusters are shaded. Intra-cluster edges are within shaded areas; inter-
cluster edges between shaded areas.

In order to define the notion of materialization, the concept of flattening
is introduced. Flattening is applied to abstract graphs. It basically breaks
up the difference between inter- and intra-cluster edges, combining them into
an ordinary graph. Node materialization remains the same again, whereas
cluster materialization becomes more involved. As no real working examples
of the generalized cluster analysis exist so far, the major technical burden
of introducing these more complicated notions is avoided and delegated to
future research. Figure 4.10 shows a generalized cluster abstraction at work
on a simple example. Note that there are two parallel edges, one of them
is an intra- and the other an inter-cluster edge. This is due to the u 6∼G u′

clause in the definition of inter-cluster edges.

Discussion The power of generalized cluster abstraction remains unex-
plored until now. Clearly, it provides a strong, parameterized abstraction,
which may be applicable to all the case studies that do not suite the standard
analysis. As indicated in the beginning of this section, cluster equivalence
may be instantiated to characterize cells in the Safari routing environment.
Apart from that, routing protocols in ad-hoc networks offer the ideal applica-
tion domain for extending the presented analyses to hierarchies of abstraction
deeper than two.

Dynamically allocated heap data structures are another interesting do-
main for generalized cluster analysis. A good choice for cluster equivalence
may be “belonging to the same data structure”, e.g. the same, unshared list.

4.6. EXTENSIONS 127

In this application domain, it may be a step towards a hierarchical shape
analysis. All the applications of the technique surveyed in [SRW02] are in
some sense flat. Even if there is a hierarchical structure conceptually – e.g.,
in [YRSW03] – it is flattened to be fed into the TVLA [LAS00] engine. If
one reformulated the generalized cluster analysis in terms of logic and pred-
icate update formula, c.f. Chapter 5 – a way of bringing more structure to
shape analysis may be near. This said, one needs to stress, that this is still
speculative and requires further research.

Before this section concludes, it must be said, that there is no conceptual
obstacle, that disallows the combination of counting and generalized cluster
analysis, even though this will come at the price of an increased complexity.

A way to decrease complexity at the cost of efficiency not only applies to
the generalized cluster analysis, but also to the standard case, because it is
independent of the actual definition of a cluster. In all variants isomorphic
clusters were summarized on the second layer of abstraction. One may also
think of having weaker or incomparable ways of summarizing clusters, whose
nodes are canonical names. Two examples are given below, more may make
sense.

• Summarize clusters C and D, if their nodes have equal sets of labels,
i.e., if `C(VC) = `D(VD). This is weaker and easier to check than
isomorphism, but yields coarser abstractions.

• Summarize clusters C and D, if they have the same number of nodes,
i.e., if |VC | = |VD |.

128 CHAPTER 4. PARTNER ABSTRACTION

Chapter 5

Related Work

While many related works have been mentioned throughout this thesis, the
most relevant ones are summarized and looked at in more detail in this
section. They include general graph grammars and their verification, the
relation to the three-valued logic based shape analysis technique [SRW02],
and other approaches to the analysis of dynamic communication systems.
Section 2.3 provided a detailed overview of the relation between partner
graph grammars and other notions of graph grammars. It constitutes a
related work section of its own and is thus not repeated here. Nor is the
underlying theory of abstract interpretation part of this section.

Graph Grammar Verification Verification techniques such as abstract
interpretation or model-checking become increasingly important in the graph
grammar community.

[Hec98] presents an approach to the formal verification of graph grammars
based on model-checking. However, no abstraction is used there, making it
inappropriate for the verification of unbounded systems.

Another orthogonal approach [BCK04] proved very successful, but is not
based on abstract interpretation. Rather it is based on the unfolding seman-
tics of the given graph grammar [BCM99] and approximates its behavior by
means of Petri nets. Recently, this approach was equipped with counter-
example guided abstraction refinement [KK06]. It is strong enough to show
properties of programs manipulating red-black trees [BCE+05].

The only abstract interpretation based approach other than the one pre-
sented here was developed independently in [RD06]. The underlying abstrac-
tion [Ren04a] relies on counting incoming and outgoing labeled edges, i.e.,
it is rather edge-centric compared to the node-centric approach used in this
thesis. The idea of materialization-update-abstraction occurs in [RD06], too.
The major drawbacks of [RD06] seem to be the requirement of deterministic

129

130 CHAPTER 5. RELATED WORK

graphs, the lack of any form of negative application conditions, and, to some
extent, missing tool support. These issues are considered in more detail in
the following.

• Graphs are deterministic, if no node has two outgoing β-edges to two
distinct nodes. This property is surprisingly close to the notion of
unique partners that is essential for proving the matching theorem. In
the work presented here, however, this determinism is not needed to
make the analysis work at all.

• The lack of any form of negative application conditions may be the most
severe drawback of the approach proposed in [RD06]. The importance
of such conditions was stressed at many places throughout this thesis.
In the partner abstraction based approach, such conditions come in the
form of partner constraints.

• Although it is still at the prototype phase, the hiralysis tool provides
specially tailored support for partner abstraction based analysis. It
exploits all the properties of the analysis making it efficient. On the
other hand, hiralysis lacks a GUI and syntactic conveniences. In
contrast, the technique of [RD06] was implemented as an add-on to a
general purpose tool, potentially leading to less efficiency.

The partner abstraction based approach of this work provides clear advan-
tages over [RD06]. It is not restricted to deterministic graphs, has some form
of negative application conditions, and provides a two-layered abstraction.
The latter is more precise, when it comes to systems of many connected
components as typical of dynamic communication systems.

Three-Valued Logic Based Shape Analysis Originally, partner ab-
straction was inspired by the work on three-valued logic based shape analysis
[SRW02]. In that approach, concrete graphs are coded as logical structures.
Abstraction, called canonical abstraction, works by summarizing objects in-
distinguishable under a set of abstraction predicates. Abstract states are
three-valued logical structures, where the third logical value denotes uncer-
tainty. The concrete semantics is described in terms of predicate transformers
that are also used for updates on abstract states. This paragraph clarifies
two issues.

• How can partner graph grammars be encoded into logical structures
and predicate transformers?

131

• Given the first issue, how do partner abstraction and canonical abstrac-
tion relate?

There is an obvious correspondence between graphs of G(N , E) and log-
ical structures over the set N of unary and the set E of binary predicates.
The application of a transformation rule or of a predicate transformer cor-
responds to direct derivations between graphs. As a first step to examine
the relation between (the application of) graph transformation rules and
predicate transformers, matching is encoded into logical terms. The work
reported in [Ren04b] handles this issue in quite some detail. To be more pre-
cise, the referenced work investigates how the applicability of transformation
rules, in particular, in the presence of negative application conditions, can
be expressed in terms of first-order logical formulas. It is shown that gen-
eral negative application conditions as described in the previous subsection
correspond to the ∃¬∃ fragment of first-order logic. As a consequence, part-
ner constraints being a restricted version of negative application conditions
can be encoded in that fragment, too. It must be stated, that general first-
order logic, in particular if augmented with transitive closure operators as in
[SRW02], is more expressive, when it comes to specifying, where an update
is to happen. Also, the constructive definition of direct derivations in part-
ner graph grammars can be easily coded in logic. However, the experience
gained using the TVLA tool [LAS00] shows that it can be extremely difficult
and tedious to write down update formulas, whereas the use of partner graph
grammars seems more elegant and less technical.

What about the relation between canonical abstraction and partner ab-
straction? Canonical abstraction handles edges differently from partner ab-
straction. Edges in abstract graphs in this thesis correspond to 1/2-edges in
canonical abstraction. Such edges denote that there may be such an edge
in the concretization. Additionally, canonical abstraction offers 1- or must-
edges that are not considered here. Put differently, canonical abstraction
supports both ∀∀ and ∃∃ abstraction, whereas partner abstraction only sup-
ports the latter. (Even though it may be extended to have both.) Summary
nodes in [SRW02] differ from summary nodes here, where the precision k
comes as a parameter to partner abstraction. Canonical abstraction sup-
ports a subtle variation of the case k = 1.

The real strength of canonical abstraction comes through parameteriza-
tion. The set of predicates used to encode the concrete semantics of a system
(core predicates) can be augmented by arbitrarily defined instrumentation
predicates to keep track of more information. This makes that technique
very powerful and general. The more predicates used, the higher the worst-
case complexity and the higher the specification burden for the designer of

132 CHAPTER 5. RELATED WORK

an analysis. Each predicate has to be defined very carefully and, potentially,
in a tedious manner.

Seemingly more expressive than partner abstraction, indeed, canonical
abstraction is able to encode the former. Due to the power of the two layers
of partner abstraction, this comes at a price of increased complexity, i.e.,
of the need for more instrumentation predicates. For the encoding, spec-
ify two formulas: ψc and ψt, The first formula defines partner equivalence
of nodes, which is easy enough in first-order logic. The second formula de-
scribes that two nodes are in the same connected component. As [SRW02]
comes with transitive closure, this poses no problem, either. However, nodes
v1 and v2 cannot simply be summarized, if both ψt(v1, v2) and ψc(v1, v2)
hold in a concrete structure, because this would not result in a bounded ab-
straction. There can be arbitrarily many connected components. Rather v1

and v2 are summarized, if ψc(v1, v2) holds and if the structures induced by
Vi = {v | ψt(v, vi)} are isomorphic after quotient building under the equiva-
lence relation specified by ψc. This is not straightforward to formalize using
canonical abstraction.

The only possible way of encoding seems to use an exponential number
of additional predicates, where there is a predicate for each possible abstract
cluster (exponentially many) being true for all nodes in such a cluster. There
must be update formulas for all of these many additional predicates, which
may make the analysis very hard. It should be noted that this reasoning does
not constitute a formal proof, that partner abstraction cannot be encoded
efficiently in canonical abstraction.

Despite all arguments in favor of canonical abstraction, there are clear
advantages of the proposed technique. It comes as a stand-alone technique
that does not impose the instrumentation burden on the user. It is especially
tuned to work for the application domain of dynamic communication systems,
whereas TVLA is a general purpose tool. Being able to encode partner
graph grammars and partner abstraction comes at a high price both on the
specification and on the analysis side. Eventually, most advantages of three-
valued logic based shape analysis boil down to more generality.

Other Analyses of Communication Systems The verification meth-
ods proposed in the PATH project defining the original platoon protocols
were inadequate to handle the dynamics of dynamic communication sys-
tems. Only static instances were considered. Other works, where formal
verification is applied to dynamic communication systems, typically use very
different specification or verification techniques and are hard to compare
with on a formal level. Therefore, only two more works are mentioned for

133

further reading. In [BDNN98], a control-flow analysis for the π-calculus was
proposed. However, no explicit communication topologies are prevalent in
this setting. UML implementations are checked against LSC specifications in
[DW02]. Even though UML-style object creation and destruction has the dy-
namics of dynamic communication systems, and even though message queues
can be explicitly encoded in UML, this setting reminds only vaguely of the
setting in this thesis.

134 CHAPTER 5. RELATED WORK

Chapter 6

Conclusion

This chapter concludes the thesis. It starts with a detailed summary of the
major achievements of this work. After that, some areas of future research
are identified and discussed.

6.1 Contribution

This thesis addresses the analysis of communication topologies as they typ-
ically occur in dynamic communication systems. Partner graph grammars
are developed and identified to be an adequate formalism for specifying such
systems. They are an expressive variant of the single-pushout approach of
algebraic graph transformations. Partner graph grammars are characterized
by injective matches and partner constraints, a restricted form of negative
application conditions. Partner constraints prove essential for modeling sys-
tems. None of the case studies could be formulated without this feature. A
constructive, rather than a declarative, algebraic definition of rule applica-
tions is given for partner graph grammars.

A significant case study that is prototypical of dynamic communication
systems is presented in form of platoon maneuver protocols. Originally de-
veloped in the California PATH project, it is shown that protocol verification
within PATH suffers from major drawbacks and is, as a whole, inadequate
to deal with the complexity of the application. Neither the dynamic creation
of objects nor the dynamically changing communication topology is consid-
ered in PATH. Also an unrealistic (for this scenario) shared memory model
is chosen as means of communication, there.

In contrast, in the work presented here, a realistic way of communication
via message queues is considered and the possibility of faulty channels is
taken into account. Section 3.1 demonstrates that all of these features can

135

136 CHAPTER 6. CONCLUSION

be conveniently expressed using partner graph grammars. In the evaluation
to be discussed below, significant properties of the platoon case study are
proven. Additionally, a number of further sophisticated case studies are
presented: heap-manipulating programs, process calculi, and ad hoc network
routing protocols. It is discussed how they could be implemented in partner
graph grammars. The discussion of these further case studies leads to a set of
features that may be added to partner graph grammars, such as probabilism
or attributed graphs, and opened up a promising line of future research.

While Chapter 2 and Chapter 3 prove the expressiveness, usability, and
adequateness of partner graph grammars in terms of specifying dynamic com-
munication systems, Chapter 4 presents the key results of the analysis of
partner graph grammars. First, an abstract interpretation of partner graph
grammars based on partner equivalence is defined. Two nodes u1 and u2 in
a graph are considered partner equivalent, if they have the same label and
if the set of labels of u1’s adjacent nodes equals the set of labels of u2’s ad-
jacent nodes (respecting the directions and labels of edges). In the point of
view of dynamic communication systems, this means, that two objects are
considered equal, if they are in the same state and if the set of states of
their communication partners are equal. It is conjectured that this is pre-
cisely the information that determines the successor state of an object within
a communication topology making partner equivalence the ideal abstraction
for the analysis of such systems. Information may be lost, if the applica-
tion of a transformation rule depends on the number of adjacent nodes with
a given label, because this is only captured by partner equivalence up to
some constant k. Also, if more information than just pure communication
connectivity is encoded in graphs – as in the example of queue-based com-
munication – partner equivalence may lose its precision while still yielding
reasonably precise overall results.

Partner equivalence based abstraction is only the first layer of the pro-
posed two-layered partner abstraction. Again, the second layer is driven
by the communication systems domain. Two subsets of a communication
topology that are not connected, i.e., that cannot influence each other by
communication, are independently abstracted using partner equivalence. If
the results are isomorphic, the two abstracted subgraphs will not be distin-
guished any more in the final partner abstraction. This two-layered approach
is novel.

Partner equivalence is the basic notion in the definition of an abstract
graph. Direct derivation steps defined to work on non-abstract graphs are
lifted to work directly on the abstract level. A fixpoint computation finally
yields a conservative over-approximation of the graph semantics of the con-

6.1. CONTRIBUTION 137

crete partner graph grammar. Remember that the graph semantics denotes
the set of all graphs derivable from an initial graph using the rules of a part-
ner graph grammar. The fixpoint computation is proven to terminate and
the soundness result is established formally.

A crucial notion for defining direct derivation steps on abstract graphs is
the notion of an abstract match. An abstract match is just a non-injective
match morphism, whereas concrete match morphisms must be injective. A
strong theoretical result clearly identifies a class of abstract graphs, such that
a rule matches the abstract graphs if and only if it matches all the concretiza-
tions of the abstract graph. This result is a first step towards a completeness
results, because it states, that, for a certain class, the abstraction preserves
precisely the applicability of rules.

Moreover, three notions of completeness are defined and statically check-
able criteria are shown to be sufficient criteria for completeness. Partner
graph grammars that are shown to be complete exhibit strong property
preservation features. For a given class of graphs, partner abstraction pre-
serves exactly the validity of first-order formulas without equality. The equal-
ity restriction is due to the fact that information about the number of nodes
cannot be tracked precisely, if the abstraction is to be of bounded size.

Partner abstraction based abstract interpretation has been implemented
in the hiralysis tool. It is experimentally evaluated on a significant set of
examples taken from the platoon case study. All advanced features of the
case study are analyzed quickly and interesting properties are shown. The ad-
vanced features include asynchronous, message queue-based communication
and faulty channels. Based on experiences gained with hiralysis, the tool
has been found to be extremely suitable not only for protocol verification,
but in particular for protocol design.

The only verification problem is met in the presence of message queues.
Clearly, more work needs to be invested there, in order to separate queue
verification from pure topology verification. See below for some ideas. If
one was to summarize the highlights of this thesis as briefly as possible, the
following list would be a good candidate.

• Partner graph grammars are introduced as an adequate, powerful, yet
analyzable specification formalism not only for dynamic communication
systems. They gain their particular power from partner constraints, a
special instance of negative application conditions.

• Partner abstraction seems like the ideal abstraction method for dy-
namic communication systems. It is also applicable in other scenarios.

138 CHAPTER 6. CONCLUSION

• Partner abstraction based abstract interpretation has been implemented
in the hiralysis tool. The tool has been experimentally evaluated on
a significant set of examples taken from the platoon case study.

• The sophisticated platoon case study is successfully implemented in
three realistic variants using partner graph grammars. Many inter-
esting properties can be automatically verified using the hiralysis

tool. For the idealized implementation, even completeness results can
be proven. The original approaches to platoon verification are shown
to be inadequate both for specification and verification.

• Some technical results beneficial on their own:

– A class of graphs, for which abstract matches are equivalent to
concrete matches.

– Termination and soundness of the abstract interpretation of part-
ner graph grammars.

– Three notions of completeness for partner graph grammars; suffi-
cient, statically checkable criteria guaranteeing completeness.

– A class of graphs, for which partner abstraction preserves exactly
the validity of first-order logical formulas (without equality).

– Two possible extensions of partner abstraction that allow for count-
ing of clusters and cluster definitions other than connected com-
ponents.

6.2 Outlook

The problem of computing a conservative approximation of all possible com-
munication topologies of a dynamic communication system has been solved
– at least for pure communication topologies as in the idealized platoon case
study. Further developments of the proposed technique should be application-
driven, i.e., they should contribute to making the technique applicable to
richer application domains. Candidates were identified in Section 3.2. They
raised the need for extensions like the following:

• Add stochastic features to partner graph grammars to model faulty
channels more realistically than by non-determinism.

• Add more hierarchy and generalized clusters to partner abstraction in
order to cope with hierarchies as they occur in ad hoc network routing.

6.2. OUTLOOK 139

• Define partner graph grammars and their abstract interpretation for
attributed graphs. Queues, that proved to be an obstacle, could then
be delegated to the attributes rather than being encoded in the graph.
Also, sophisticated routing information in the Safari routing environ-
ment may be encoded using attributes.

Apart from these rather mid- to long-term goals, the immediate steps in-
volve adding more convenience to the hiralysis tool, such as incorporating
label constraints and augmented partner constraints in the grammar speci-
fications or automatically checking for the occurrence of a given subgraph.
Also, formalizing the extensions suggested in Section 4.6 is a challenge to be
tackled soon.

The existence of the similar abstract interpretation based approach of
[RD06] indicates that there may be a unified framework of abstract inter-
pretation of graph grammars. This framework could be instantiated with
partner abstraction, the abstraction proposed in [Ren04a], or others. If the
layered abstraction shows to be a useful concept also for deeper hierarchies,
the depth of such a hierarchy could serve as another parameter instantiating
the framework. This parameterized framework may be much better compa-
rable to the parameterized shape analysis framework proposed in [SRW02].

140 CHAPTER 6. CONCLUSION

Appendix A

Proofs

Lemma 4.1.1 Let G ∈ G(N , E) be a non-canonical graph and let k ≥ 1
be a natural number. There exists a surjective graph morphism ξ from G to
the disjoint graph union of αk(G) defined to be ξ(u) := (Ĉ, (ν, P, n)), where

1. C is the connected component of G containing u and αk(C) = {Ĉ}

2. partnerC,k(u) = (ν, P, 1)

3. n = (|{v ∈ VC | u 1c v}|)k

Proof
The proof is constructive. Let G ∈ G(N , E) be a non-canonical graph

and let Ĝ = ∪̇αk(G) for any k ≥ 1. The morphism ξ : VG → VĜ is defined as
follows.

ξ(u) := (Ĉ, (ν, P, n))

where

1. C is the connected component of G containing u and {Ĉ} = αk(C)

2. partnerC,k(u) = (ν, P, 1)

3. n =|{v ∈ VC | u 1c v}|k

It is trivial to conclude the surjectivity of ξ.
Two requirements remain to be shown proving that ξ is indeed a mor-

phism (c.f. Definition 2.1.4). First, it must be node label preserving, i.e.
`G(u) = `Ĝ(ξ(u)) for all u ∈ VG. Let u ∈ VG be arbitrary and let `G(u) =
ν. Then partnerG,k(u) = (ν, ,) due to the definition of partner. Hence
ξ(u) = (, (ν, ,)) due to the definition of ξ. Definition 4.1.4 concludes the

141

142 APPENDIX A. PROOFS

argument, since it defines the node labeling function of the resulting graph
to be λ(ν, ,).ν.

It remains to be shown that {(ξ(u), ξ(v)) | (u, v) ∈ Eβ
G} ⊆ Eβ

Ĝ
for all

β ∈ E . Let (u, v) ∈ Eβ
G be arbitrary.

This implies that (partnerG,k(u), partnerG,k(v)) ∈ E
β

partnerk(C)
due to Defini-

tion 4.1.3, where C is the connected component of G containing both u and
v. From the definition of node and edge sets in Definition 4.1.4, it becomes
immediate that indeed (ξ(u), ξ(v)) ∈ Eβ

Ĝ
.

Lemma 4.1.2 Let k ≥ 1 be a natural number and let G,H ∈ G(N , E) be
connected, non-canonical graphs. Then, αk(G) = αk(H), if and only if

• G/1 ∼= H/1 due to isomorphism ψ and

• (|u |)k = |ψ(u) |k for all u ∈ VG/1,

then αk(G) = αk(H).

Proof
As a first step in the proof of Lemma 4.1.2, another lemma is proven:

isomorphism preserves partners. It needs to be shown, that for isomorphic
graphs A and B with isomorphism ϕ holds, that, for all u ∈ VA and any
k ≥ 1: partnerA,k(u) = partnerB,k(ϕ(u)). Let partnerA,k(u) = (ν, P, 1). This
implies that `A(u) = ν and – because of isomorphism – `B(ϕ(u)) = ν. As
partner maps to multiplicity 1 for non-canonical graphs, it is known that
partnerB(ϕ(u)) = (ν, P ′, 1). Because of the morphism property of ϕ, it holds
that P ⊆ P ′. The inverse follows, because ϕ is a morphism in the other
direction, too.

Let G, H, k be like in the lemma, and let Ĝ = ∪̇αk(G), Ĥ = ∪̇αk(H),
G′ = G/ 1, and H ′ = H/ 1. To prove equality, it must be shown that
VĜ = VĤ , Eβ

Ĝ
= Eβ

Ĥ
for all β ∈ E , and `Ĝ = `Ĥ point-wise.

Show VĜ ⊆ VĤ Let (ν, P, n) ∈ VĜ, where the name of the abstract cluster
is dropped for this node in an abstract graph, because there is only one
abstract cluster due to the required connectedness of G. As G and H are
non-canonical, the application of partner in the definition of αk always results
in multiplicity 1. The ⊕k sum in the definition of VĜ thus requires q nodes
u1, . . . , uq ∈ VG such that (q)k = n and partnerG,k(ui) = (ν, P, 1) for all
1 ≤ i ≤ q.

This implies that there are q partner equivalent nodes in G all of which
being mapped to (ν, P, 1) by partnerG,k where the equivalence class is called
x ∈ VG′ . Because of the conditions of the lemma, there exists an equivalence

143

class ψ(x) ∈ VH′ with q′ elements such that (q)k = (q′)k. Since partners are
preserved by isomorphism, for all these q′ elements u′ holds partnerH,k(u

′) =
(ν, P, 1). This argument together with (q′)k = (q)k = n and the definition of
collapse yields (q, ν, n) ∈ VĤ .

The proof of VĜ ⊇ VĤ follows symmetrically. The proof of equal node

labelings in Ĝ and Ĥ follows immediately from the node sets equality and
the definition of node labels in abstract graphs. The proof of edge equality
follows the same line as the proof of node equality.

Lemma 4.1.3 Let k ≥ 1 and G ∈ G(N , E) be arbitrary. There is a mate-
rialization Ĥ of αk(G) such that ∪̇Ĥ ∼= G and Ĥ has no summary nodes.

Proof It is known from the definition of abstraction (Definition 4.1.5), that

αk(G) := {collapsek ◦ partnerk(C) | C ∈ cc(G)}

According to the definition of materialization (Definition 4.1.6),
Ĥ := {partnerk(C) | C ∈ cc(G)} is a materialization of Ĝ. A close look at the
definition of partner (Definition 4.1.3) eventually reveals, that ∪̇Ĥ contains
no summary nodes and is clearly isomorphic to G.

Lemma 4.1.4 Let G ∈ G(N , E) be a graph and r = (L, h, p, R) a transfor-
mation rule over the same label sets. Let k be the maximal degree among
the partner constraints in the image of p and Ĝ = αk(G) the abstraction of
G. The following statements are equivalent.

1. Rule r matches Ĝ.

2. There exists a morphism m from L to ∪̇Ĝ, such that m(u), ∪̇Ĝ |= p(u)
for all u ∈ dom(p), and for each C ∈ cc(L) and each u = (ν, P, n) ∈
m(VC) holds | m−1(u) |k vk n.

Proof
First, (1) → (2) is proven. Assume there exists a materialization Ĥ of Ĝ

such that L ≤ ∪̇G by morphism m′. Define m : VL → V∪̇Ĝ as m = ζ ◦m′,
where ζ is the morphism induced by Collapse. Mapping m is a morphism,
because it is a concatenation of two morphisms.

Let u = (C, (ν, P, n)) ∈ m(VC) be arbitrary for any C ∈ cc(L), where the
C will be dropped from u for brevity. Then

m−1(u) = {v ∈ VL | ζ ◦m′(u) = u}

144 APPENDIX A. PROOFS

= {v ∈ VL | m′(v) = (ν, P, qv)} (A.1)

= {v ∈ VL | m′(v) = (ν, P, 1)} (A.2)

⊆ {(ν, P, q) | ∃q.(ν, P, q) ∈ Ĥ} (A.3)

Step A.1 follows from the definition of ζ induced by Collapse, whereas
A.2 is an immediate consequence of the definition of an abstract match.
Moreover, A.3 holds, because the number of (ν, P, 1) elements in a connected
component is smaller than the number of (ν, P, q) elements in a connected
component, if q is at least 1. As the ⊕k sum of the elements of the set in
A.3 is just n (following the definition of collapsek, | m−1(u) |k vk n may be
concluded.

In order to prove m(u), ∪̇Ĝ |= p(u) for all u ∈ dom(p), it needs to be
shown that abstract partner constraint satisfaction is preserved by ζ, which
is immediately obvious from the definitions of collapse and abstract partner
constraint satisfaction.

To conclude the proof, (2) → (1) is shown by constructing a material-
ization given a morphism m : VL → V∪̇Ĝ. The multiset Ĥ will be defined
and shown to be a valid materialization. This multiset is only one possible
materialization, more cases may be obtained and are in fact implemented.
As they are tedious to write down, only one exemplary materialization is
given here.

For each connected component C of L, let Ĉ ∈ Ĝ be the matched abstract
cluster, hence let Ĉ1, . . . , Ĉq be the matched abstract clusters for the q

connected components of L. The multiset Ĥ ′ = Ĝ∪̇{{Ĉ1, . . . , Ĉq}} is obviously

a materialization of Ĝ. It is called the cluster materialization of Ĝ as identical
copies of each matched cluster are made.

For each connected component C of L, let Ĉ be the copy of the matched
component, let VS = {(ν, P, n) ∈ VĈ | n 6= 1} ∩m(VL) be the set of matched
summary nodes. For each (ν, P, n) = u ∈ VS let s(u) = (|m−1(u) |)k, where
s(u) vk n by assumption of the lemma.

The node materialization of a summary node is defined by the mapping
mater : VC × Gcan(N , E , k) → Gcan(N , E , k), where mater(u,C) = D such
that u = (ν, P, n) and

VD = VC \ {u}∪̇{(ν, P, 1)}∪̇
{

(ν, P,∞) if n = ∞
(ν, P, n− 1) if n 6= ∞

}
ED = EC ∪̇ {{(v, w) | (u,w) ∈ EC}} ∪̇ {{(w, v) | (w, u) ∈ EC}}
`D = λ(ν ′, P ′, n′).ν ′

For each u ∈ VS there are s(u) node materializations made. Node ma-
terialization after cluster materialization clearly defines a materialization Ĥ

145

of Ĝ that is matched by L. The match morphism from L in the material-
ization is defined by mapping nodes to the materializations of their matches
in Ĝ. Partner constraint satisfaction is trivially preserved by this sort of
materialization.

Lemma 4.1.5 Let G ∈ G(N , E) be a graph and Ĝ = αk(G) its abstraction
for some k ≥ 1. Let ξ be the induced morphism of the abstraction. Finally,
let pc be a partner constraint. The following statements hold.

1. partner∪̇Ĝ,k(Ĉ, (ν, P, n)) = (ν, P, n) for all (ν, P, n) ∈ VĈ and all Ĉ ∈ Ĝ.

2. (partnerG,k(u)) ↓ 2 = (partner∪̇Ĝ,k(ξ(u))) ↓ 2 for all u ∈ VG.

3. If pc is a simple partner constraint and G, u |= pc, then ∪̇Ĝ, ξ(u) |= pc.

4. If k is the degree of pc and ∪̇Ĝ, û |= pc for any û ∈ VĜ, then G, u |= p
for all u ∈ ξ−1(û).

Proof Reasoning about partners in a graph certainly amounts to reason-
ing about partners in one connected component. Therefore, only connected
components are considered below. Let C be a connected component of G
such that αk(C) = {Ĉ} and let (ν, P, n) ∈ VĈ be arbitrary. The definition of
partnerĈ,k applied to a canonical name immediately yields partnerĈ,k(ν, P, n) =
(, , n). Since (ν, P, n) ∈ VĈ and ξ is surjective, there exists a u ∈ VC

such that ξ(u) = (ν, P, n). According to the definition of ξ this yields
partnerC,k(u) = (ν, P, 1), hence `C(u) = ν. Since ξ is a morphism, `Ĉ(ξ(u)) =
ν may be derived.

It has been shown that partner∪̇Ĝ,k(Ĉ, (ν, P, n)) = (ν, , n). The following
observation is helpful in the subsequent argument.

v ∈ ξ−1(ν, P, n) ⇔ (partnerC,k(v)) ↓ 2 = P (A.4)

The ⇒ direction of (A.4) is obvious by definition of ξ. The ⇐ direction
holds, because C is connected. It is easily computed using the definition of
collapse.

The following computation proves `Ĉ((ν, P, n)�β

Ĉ
) = `C(u�β

C) for any
edge label β. The equation for incoming edges is derived symmetrically.
Together with ξ(u) = (ν, P, n) this implies the claim of part (1). Let C ′ =
partnerk(C).

146 APPENDIX A. PROOFS

`Ĉ((ν, P, n)�β

Ĉ
)

= {ν ′ | ((ν, P, n), (ν ′, P ′, n′)) ∈ Eβ

Ĉ
}

= {ν ′ | ∃q, q′, P ′.((ν, P, q), (ν,′ , P ′, q′)) ∈ Eβ
C′} Definition 4.1.4

= {ν ′ | ∃P ′.((ν, P, 1), (ν,′ , P ′, 1)) ∈ Eβ
C′} multiplicities 1 in C ′

= {ν ′ | ∃v, v′ ∈ VC .partnerC,k(v) = (ν, P, 1),

partnerC,k(v
′) = (ν ′, P ′, 1), (v, v′) ∈ Eβ

C} Definition 4.1.3

= {ν ′ | ∃v, v′ ∈ VC .u 1C v, (v, v′) ∈ Eβ
C , `C(v′) = ν ′}

= {ν ′ | ∃v′ ∈ VC .(u, v
′) ∈ Eβ

C , `C(v′) = ν ′} Definition 4.1.1

= `C(u�β
C) (A.4)

For the proof of part (2), assume Ĉ = αk(C), again, and use C instead
of G. Let partnerC,k(u) = (ν, P, 1). By the definition of ξ this yields ξ(u) =

(Ĉ, (ν, P, n)). Finally, applying part (1), yields partnerĈ,k(ξ(u)) = (ν, P, n)
concluding the argument.

Part (3) is an immediate consequence of part (2) by looking at the defi-
nitions of (abstract) partner constraint satisfaction, because simple partner
constraints only look at the neighborhood in a qualitative fashion.

Let C, Ĉ be as aforementioned, and let Ĉ, û |= pc for a partner constraint
of degree k. This implies (by Definition 4.1.7, part (2)) for all (in, β, µ, q) ∈
pc, where q ≤ k.

⊕k{q′ | ((µ, P, q′), û) ∈ Eβ

Ĉ
} ≤ q (A.5)

Note thatvk may be substituted by≤, because q is at most k. Let u ∈ ξ−1(û)
be such that C, u 6|= p. Without loss of generality, assume that

| {(v, u) ∈ Eβ
C | `C(v) = µ} |= q′ > q (A.6)

Requirement (1) of Definition 4.1.7 cannot be violated because of part (2) of
this lemma. (A.6) implies by the definition of partner:

| {partnerC,k(v) | (partnerC,k(v), partnerC,k(u)) ∈ E
β
C′} |= q′

where C ′ = partnerk(C). Plugging in the definition of partner yields

| {(µ, P ′, 1) | ((µ, P ′, 1), partnerC,k(u)) ∈ E
β
C′} |= q′

Finally, applying the definition of collapse and the induced morphism ζ yields

⊕k{n′ | ((µ, P ′, n), û) ∈ Eβ

Ĉ
} wk q

′

contradicting (A.5).

147

Lemma 4.1.6 Let r be a transformation rule over N and E that features
simple partner constraints only. Let G ∈ G(N , E) be a graph. For any k ≥ 1
holds that, if r matches G, then r matches αk(G).

Proof Let m′ be the injective morphism from L to G that exists according
to Definition 2.1.6, and let ξ be the morphism induced by the abstraction
Ĝ = αk(G). Then m = ξ ◦m′ is a morphism from L in Ĝ as a concatenation
of morphisms. By Lemma 4.1.4, it suffices to show, that m preserves partner
constraint satisfaction and that

∀C ∈ cc(L).∀(ν, P, n) ∈ m(VC).(|m−1(ν, P, n) |)k vk n (A.7)

Partner constraint satisfaction for simple partner constraints is guaranteed
by part (3) of Lemma 4.1.5. It remains to prove (A.7). Let C ∈ cc(L) and
(ν, P, n) ∈ m(VC) be arbitrary. Let D be the connected component matched
by elements in C.

|m−1(ν, P, n) |
= |{v ∈ VC | ξ ◦m′(v) = (ν, P, n)}|
= |{v ∈ VC | m′(v) = (ν, P, 1)}| Lemma 4.1.1, part (2)
≤ |{u ∈ VD | u 1D m′(v)}|
= n Lemma 4.1.1, part (3)

Certainly, the result for natural numbers lifts to finite counting concluding
the proof.

Theorem 4.1.7 Let C ∈ G(N , E) be a connected graph and let r =
(L, h, p, R) be a transformation rule with simple partner constraints over
the same set of labels such, where L is connected. Let k ≥ 1 be arbitrary. If

1. r matches αk(C), and the match morphismm according to Lemma 4.1.4
is injective.

2. αk(C) has unique partners.

3. αk(C) has no summary cycles.

then r matches C.

Proof As a first step in proving this theorem, an auxiliary statement is
proven. It is a consequence of the unique partner requirement for the abstract
graph. Let ξ be the morphism induced by the abstraction. Let {Ĉ} = αk(C).
Claim Let (û, û′) ∈ Eβ

Ĝ
. Then

148 APPENDIX A. PROOFS

a. For all v ∈ ξ−1(û), there exists a v′ ∈ ξ−1(û′) such that (v, v′) ∈ Eβ
C .

b. For all v′ ∈ ξ−1(û′), there exists a v ∈ ξ−1(û) such that (v, v′) ∈ Eβ
C .

In other words, the concrete relation between nodes that is abstracted to a
single edge in the abstract graph is total (a) and surjective (b). The proof
of part (b) of the claim is completely symmetric to the proof of part (a)
and omitted. Assume (û, û′) ∈ Eβ

Ĉ
, where û = (ν, P, n) and û′ = (ν ′, P ′, n′).

According to the definition of collapse this implies that there exists an edge
((ν, P, 1), (ν ′, P ′, 1)) ∈ Eβ

C′ , where C ′ = partnerk(C). According to the defini-

tion of partner, there must hence exist (v, v′) ∈ Eβ
C such that partnerC,k(v) =

(ν, P, 1) and partnerC,k(v
′) = (ν ′, P ′, 1). By the definition of ξ, ξ(u) = û and

ξ(v′) = û′. So there exists v ∈ ξ−1(û) and v′ ∈ ξ−1(û′) such that (v, v′) ∈ Eβ
C .

Now, let w ∈ ξ−1(û) be arbitrary. Obviously, w 1C v. As w is partner
equivalent to v, there must be some w′ ∈ VC such that (w,w′) ∈ Eβ

C and
`C(w′) = ν ′. It remains to be shown that w′ 1C v′, because this implies that
w′ ∈ ξ−1(û′) using the equivalence (A.4) from a previous proof. Assume
w′ 61 v′. Then ξ(w′) 6= ξ(v′), but (û, ξ(w′)) ∈ Eβ

Ĉ
and `Ĉ(ξ(w′)) = ν ′

contradicting assumption (b) of unique partners. This concludes the proof
of the claim.

In the second part of the proof, a concrete match m′ of L to C is suc-
cessively constructed from the abstract match m. Let VS ⊆ VL be the set of
nodes of the left graph matched to a summary node, i.e.

VS = {u ∈ VL | m(u) = (ν, P, n), n 6= 1}

For each u 6∈ VS, set m′(u) = ξ−1(m(u)). This is well-defined, because for
one connected component, ξ maps injectively to non-summary nodes.

Let F be the subgraph of Ĉ spanned by m(VS), i.e., F = Ĉ |m(VS).
If edges are considered undirected, then F is a forest of summary nodes,
because, by assumption (3), there are no undirected summary node cycles in
Ĉ. Let {û1, . . . , ûn} be a depth-first traversal of F traversing all nodes and
edges, such that ûi = m(ui) for 1 ≤ i ≤ n. The bijective mapping between
VS and F is possible, because m is assumed to be injective (assumption (1)).
Construct m′ for elements of VS inductively as follows.

1. Pick an arbitrary element v1 ∈ ξ−1(û1). This is possible because ξ is
surjective.

2. For i > 1, ûi has at most one adjacent node in F that is an element of
M = {û1, . . . , ûi−1} (If there were two, a cycle would be created con-
tradicting assumption (3).) By the induction hypothesis, all elements

149

of M are already in the domain of m′. If ûi has no adjacent node in
M , choose vi ∈ ξ−1(ûi) arbitrarily and set m′(ui) = vi. Without loss
of generality assume (ûj, ûi) ∈ Eβ

F for some j < i and some β ∈ E . Let
m(uj) = vj, hence vj ∈ ξ−1(ûj). According to the Claim above, there

exists a vi ∈ ξ−1(ûi) ⊆ VG, such that (vj, vi) ∈ Eβ
G. Set m′(ui) = vi.

The mapping m′ is an injective morphism by construction, because m
is injective and because C is connected. Partner constraint satisfaction is
guaranteed by applying Lemma 4.1.5.

Theorem 4.1.8 Let G be a partner graph grammar and let k ≥ 1 be
arbitrary. There exists an n ≥ 0 such that [[G]]kn = [[G]]ki for all i ≥ n.
Furthermore, ⋃

G∈[[G]]

αk(G) ⊆ [[G]]k

Proof Let G = (R, I) be a partner graph grammar with simple partner
constraints. In order to prove termination of the analysis, two obvious ob-
servations suffice. First, the set of ground canonical graphs is of finite size,
because the number of canonical names is bounded and statically determined
by the number of node labels, edge labels, and by the abstraction parameter
k. The mapping λi.[[G]]ki is clearly monotone, because of the set union used
in the construction. The set of ground canonical graphs is trivially trans-
ferred into the complete powerset lattice. By the theory of [CC77], such a
computation is guaranteed to terminate.

As for soundness, assume some H ∈ [[G]]. According to Definition 2.1.10,
there exists a sequence of derivations

I r1 G1 r2 . . . Gn−1 rn H

The proof that αk(G) ⊆ [[G]]k is conducted using induction on the length of
this sequence. The induction base n = 0 is easy to show, since G = I and
by Definition 4.1.10 αk(I) = [[G]]k0 ⊆ [[G]]k. The induction step amounts to
proving the general result:

G r G
′ ∧ αk(G) ⊆ Ĝ implies Ĝ r Ĝ

′ ∧ αk(G
′) ⊆ Ĝ′ (A.8)

The derivation step G r G
′ implies that r matches G. By Lemma 4.1.6

and the fact that only simple partner constraints occur, one may conclude,
that r matches Ĝ. By Lemma 4.1.3, there exists a materialization M̂ of αk(G)
such that ∪̇M̂ ∼= G. This implies the existence of M̂ ′ such that ∪̇M̂ r M̂

′

150 APPENDIX A. PROOFS

and M̂ ′ ∼= G′. This yields, that Ĝ k
r αk(M̂

′), where αk(M̂
′) = Ĝ′ and

Ĝ′ ⊇ αk(G
′), because G′ ∼= M̂ ′.

Lemma 4.3.2 Let Ĉ ∈ C(N , E , k) be a connected, ground canonical graph
with lone summary nodes. M̂ is a materialization of Ĉ, if and only if it is an
S-materialization of Ĉ.

Proof Let Ĉ be an abstract cluster as in the statement of the lemma, and
let M̂ ′ be a materialization of it. According to Definition 4.1.6:

collapsek(M̂
′) = Ĉ (A.9)

Let ζ : VM̂ ′ → VĈ be the morphism induced by collapsek, and set

S(û) = {{s | (ν, P, s) ∈ ζ−1(û)}} (A.10)

for any û ∈ VĈ . Mapping S is well-defined, because ζ is total and surjective.
Following the definition of collapsek (Definition 4.1.4), S satisfies the arith-
metic requirement in the definition of S-materializations (Definition 4.3.4).
Hence M̂ ′ is an S-materialization of Ĉ. It needs to be shown that M̂ ′ = M̂ .
The equalities VM̂ = VM̂ ′ and `M̂ = `M̂ ′ are straightforward. It remains to

be shown, that, for all β ∈ E , Eβ

M̂
= Eβ

M̂ ′ , i.e.

Eβ

M̂ ′ = {{(v1, v2) | (û1, û2) ∈ Eβ

Ĉ
, vi ∈ ζ−1(ûi), i = 1, 2}} (A.11)

= Eβ

M̂

First, show that Eβ

M̂ ′ ⊆ Eβ

M̂
. Let ((ν1, P1, s1), (ν2, P2, s2)) ∈ Eβ

M̂ ′ . Due to the
definition of collapse and (A.9), this implies, that there exists n1 and n2, such
that ((ν1, P1, n1), (ν2, P2, n2)) ∈ Eβ

Ĉ
and hence ((ν1, P1, s1), (ν2, P2, s2)) ∈ Eβ

M̂
.

For the inverse direction, let

((ν1, P1, n1), (ν2, P2, n2)) ∈ Eβ

Ĉ
(A.12)

and let ûi = (νi, Pi, ni) for i = 1, 2. Furthermore, let vi ∈ ζ−1(νi, Pi, n1)
be arbitrary. Due to the definition of collapse and (A.9), it holds that vi =
(νi, Pi, si) for some si and i = 1, 2. As Ĉ has lone summary nodes only, n1 6= 1
and n2 6= 1 is not possible at the same time. Without loss of generality, let
n1 = 1 hence s1 = 1.

Moreover, according to Definition 4.1.6, (A.9) implies for i = 1, 2

(partnerM̂ ′,k(vi)) ↓ 2 = (partnerĈ,k(ûi)) ↓ 2 (A.13)

151

(A.13) and (A.12) imply that (in, β, ν1) ∈ partner(v2). There must thus
exist a v′ = (ν2, P

′, s′) ∈ VM̂ ′ such that (v′, v2) ∈ Eβ

M̂ ′ . Assume v′ 6= v1. As
s1 = n1 = 1, v′ cannot be partner equivalent to v1 meaning that P ′ 6= P1.
Therefore ζ(v′) 6= ζ(v1) and because of (v′, v2) ∈ Eβ

M̂ ′ and the definition of

ζ, also (ζ(v′), û2) ∈ Eβ

Ĉ
contradicting the unique partner requirement for û2

Hence v′ = v1 implies (v1, v2) ∈ Eβ

M̂ ′ and concludes the proof.

Lemma 4.3.3 Let Ĉ ∈ C(N , E , k) be a connected, ground canonical graph
with lone summary nodes. All graphs C such that αk(C) = Ĉ are isomorphic,
if Ĉ does not contain an ∞-summary node.

Proof Consider the mapping S1 from nodes of Ĉ to multisets of Nk, where
S1(ν, P, t) = {{1, . . . , 1︸ ︷︷ ︸

t times

}} and t 6= ∞. Let C be a graph that is isomorphic to

the S1 materialization of Ĉ. It is then obvious that αk(C) = {Ĉ}. Assume
D such that αk(D) = {Ĉ}, then partnerk(D) is a materialization of Ĉ and an
S-materialization of Ĉ because of Lemma 4.3.2. As there are no ∞-summary
nodes in Ĉ, it is also the S1-materialization of Ĉ. A connected graph F is
certainly isomorphic to partnerk(F), hence D is isomorphic to C concluding
the proof.

Theorem 4.3.4 Let G = (R, I) be a friendly partner graph grammar and
let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}
The abstract graph semantics [[G]]k is cluster complete, if it has a generating
order and all Ĉ ∈ [[G]]k have lone summary nodes and unique partners.

Proof As a first step in this proof, some notations and notions shall be
fixed. A multiset consisting of n elements x will be denoted {{x}}n. An S1

materialization of Ĉ is an S-materialization, where S(û) ⊆m ℘m({1}) for all
û ∈ VĈ .

Note that for each concretization of an abstract cluster there exists an
isomorphic S1-materialization and vice versa. This is a consequence of the
lone summary assumption and of Lemma 4.3.2. Therefore, an abstract cluster
Ĉ is said to have all its concretizations, if and only if for all S1 materializations
C of Ĉ, there exists a G ∈ [[G]] and a C ′ ∈ cc(G) such that C ′ ∼= C. It suffices
to show that each abstract cluster Ĉ ∈ [[G]]k has all its concretizations.

The notion of S-materializations may be trivially lifted to sets of abstract
clusters (in contrast to Definition 4.3.4). A materialization of an abstract

152 APPENDIX A. PROOFS

graph Ĝ is an S-materialization, if and only if all clusters in the materializa-
tion of Ĝ are an S-materialization of an abstract cluster Ĉ ∈ Ĝ.

A simple observation makes life easier. Partner equivalent nodes in an S
materialization C of Ĉ have equal neighbors, i.e.

u 1C v ⇔ ∀β ∈ E .u�β
C = v �

β
C ∧ u�β

C = v�β
C

Assume u 1C v, u 6= v, and (u,w) ∈ Eβ
C for an S materialization C. If

`C(w) = µ, then µ ∈ `C(u�β
C). As u and v are partner equivalent, µ ∈

`C(v�β
C), too. If there was a w′ 6= w ∈ VC such that `C(w′) = µ and

(v, w′) ∈ Eβ
C , this would either contradict the lone summary or the unique

partner requirement for Ĉ and is thus not possible. Hence (v, w) ∈ Eβ
C . All

other steps in the proof are analogous.

Obviously, nodes with equal partners are affected in the same manner
by an update wrt. to their label and their partners’ labels, i.e. they remain
partner equivalent after an update.

It will now be proven, that node evolution between abstract clusters can
be faithfully mimicked in the concrete graph semantics wrt. to the given ∆.
More formally:

Claim Let (Ĉ, û) E(r, n) (Ĉ ′, û′). If û = (ν, P,∞) is the only ∞-summary
node in Ĉ and Ĉ has a concretization isomorphic to an S1 materialization of
Ĉ, where S1(û) = {{1}}s, then Ĉ ′ has a concretization whose corresponding
S ′1-materialization satisfies S ′1(û

′) = {{1}}s+n. Let

S(û) = {{1}}q ∪̇ {{t0}}1 ∪̇{{t1, . . . , tn}}

be the materialization triggering the node evolution, and let q be the number
of nodes matched by rule r in Ĉ, such that where t0 corresponds to the t
whose existence is required by point 3 of the definition of node evolution.

For all 1 ≤ i ≤ n holds ti 6= ∞, because otherwise s− = ∞ in contrast
to the requirement of a 1-increment path. Hence the following computations
may be conducted using general integers instead of counting to k. Let d =
Σn

i=1ti. Then s− = d+ q. Let

q′ =| {û = (ν, P, 1) ∈ m(VL) ∩ VC | û 6∈ VC′ or partnerC′,k(û) 6= (ν, P, 1)} |

Hence q′ is the number of matched nodes in C that are affected by the update
(disappear or change their canonical name). Additionally, let

d′ = Σ{a | û = (µ,Q, a) 6∈ VC , partnerC′,k(û) = (ν, P ′, a)}

be the number of nodes (rather the sum of their multiplicities) not in C that
migrate to the same connected component as (ν, P, t0) after the update. Also

153

d′ 6= ∞, because otherwise s+ = ∞. This yields s+ = d + (q − q′) + d′ and
thus

n = s+ − s−

= (d+ (q − q′) + d′)− (d+ q)
= d′ − q′

This shows that n is independent of the particular choice of t0, t1, . . . tn. As
partner equivalent nodes are affected in the same way by an update and
because all other clusters involved in the materialization have all their con-
cretizations by assumption, the same update can be performed, if C is an
S1 materialization of Ĉ with S1(û) = {{1}}s for s > q. The latter is implied
by s > k ≥ q. (This is where the requirement on k comes onto the stage.)
So assume C is really an S1-materialization. The number s′ of nodes with
canonical name (ν, P ′, 1) in C ′ is then computed as follows, where t = 1
because C is an S1-materialization.

s = d+ q + t
s′ = d+ t+ (q − q′) + d′

= (d+ q + t) + (d′ − q′)
= s+ n

This concludes the proof of the claim, because of the correspondence between
S1 materializations and concretizations for the case of lone summary nodes.

Now, the core of the proof – a well-founded induction on the generating
order – may be conducted as follows. It must be shown, that each Ĉ ∈ [[G]]k

has all its concretizations. This is trivial for the minimal clusters, because
they have no ∞-summary nodes, thus only one unique S1-materialization
(due to lone summary nodes) corresponding to the unique concretization that
is isomorphic to the right graph of some create rule. Non-minimal abstract
clusters without ∞-summaries have all their concretizations, because they
result from an abstract update from clusters with all their materializations
(by induction hypothesis). In this abstract update, an S1-materialization can
be used instead of the actually triggering materialization by the introductory
reasoning of this proof.

Now, consider an abstract cluster Ĉ minimal among the ∞-clusters. Let
û be the ∞-summary node of Ĉ. By definition of a generating order there
must be a 1-increment path from a cluster Ĉ ′ equal to Ĉ up to û. An
inductive argument using the claim about node evolution shows that all S1-
materializations of Ĉ exist. The same claim proves the existence of all ma-
terializations of non-maximal clusters, because they have at most one ∞
summary node.

154 APPENDIX A. PROOFS

The only part left to show is the case of a maximal cluster Ĉ, that may
have several ∞ summary nodes named û1 through ût. Due to point 6 in the
definition of generating order, there exists an abstract update

{Ĉ1, . . . , Ĉn} k
r {Ĉ, . . .}

and i1, . . . , it such that (Ĉij , v̂j) E(r, 0) (Ĉ, ûj) for j from 1 to t. Due to the
cluster multiplicity property and the induction hypothesis the proof can be
concluded, if all Cij are distinct.

Assume now, there exist (D̂, v̂) evolving to distinct û1 and û2 in Ĉ. If
this is to occur due to the same rule application, it must be due to two
clusters materialized from D̂. Otherwise point 4 of the node evolution defi-
nition cannot hold, because the same node would have different partners in
the updated cluster C ′. Due to the cluster multiplicity property these two
materialized cluster can have arbitrary concretizations in any possible combi-
nation independently. Hence û1 and û2 can have all possible concretizations
independently concluding the well-founded induction and the whole proof.

Theorem 4.3.5 Let G be a friendly partner graph grammar and let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}

The abstract graph semantics [[G]]k is free of spurious clusters, if it has an
almost generating order, and lone summary nodes and unique partners for
all clusters except the maximal ones.

Proof The proof is an immediate consequence of the proof of Theorem 4.3.4.
The difference between generating and almost generating orders is only in
the maximal clusters wrt. the strict order. In both cases, in particular in the
almost generating one, all but the maximal clusters have all concretizations in
the concrete graph semantics. Hence also the derivation leading to a maximal
abstract clusters may be mimicked in the concrete, because all necessary
smaller clusters have all their concretizations. The only thing that is not
guaranteed, is that the maximal clusters have all their concretizations. They
must have at least one, however, proving the absence of spurious clusters.

Theorem 4.3.6 Let G = (R, I) be a friendly partner graph grammar and
let

k ≥ max{|`L(ν)−1 | | (L, , ,) ∈ R, ν ∈ N}

155

The abstract graph semantics [[G]]k is word decidable, if it is cluster complete,
and if R is connected for all (L, h, p, R) ∈ R.

Proof Consider the cluster multiplicity Lemma 4.3.1. It states, for friendly
graph grammars G, that G1, G2 ∈ [[G]] implies G1∪̇G2 ∈ [[G]]. If all right
graphs of all transformation rules in G are known to be connected, also
the inverse direction of this lemma holds. Whenever G1∪̇G2 ∈ [[G]] then also
G1, G2 ∈ [[G]]. Together with cluster completeness implied by the assumption
of the theorem the inverse cluster multiplicity yields the desired decidability
result.

The inverse cluster multiplicity lemma remains to be proven, so assume
G1∪̇G2 ∈ [[G]]. Assume further a direct derivation of G1∪̇G2 from the empty
initial graph. Without loss of generality assume, that G1 and G2 are con-
nected. Since create rules are always applicable, the rule applications in the
derivation of G1∪̇G2 may be re-ordered, such that all create rules come first.
The proof that there are direct derivations of G1 and G2 is by induction on
the length of the remaining derivation (without create rules). If this length is
1, then only one rule application after all create rules leads to G1∪̇G2. Since
this rule has a connected right graph, its application either yields G1 or G2,
where the respective other graph was created by a create rule. Obviously
both G1 and G2 may be created alone and independently of each other in
this case. The induction step is analogous.

Lemma 4.4.1 Let G ∈ G(N , E) and let k ≥ 1. For all existential positive
formulas φ holds: If G, ρ |= φ, then ∪̇αk(G), ρ̂ |= φ, where ρ̂ = λx.ξ(ρ(x)).

Proof Clearly, for a positive formula it suffices to show that the G, ρ |=
ν(x) implies ∪̇αk(G), ρ̂ |= ν(x), and G, ρ |= β(x1, x2) implies ∪̇αk(G), ρ̂ |=
β(x1, x2), and G, ρ |= x1 = x2 implies ∪̇αk(G), ρ̂ |= x1 = x2. Remember that
ρ̂(x) = ξ(ρ(x)) for the morphism ξ induced by the abstraction.

G, ρ |= ν(x) ⇒ `G(ρ(x)) = ν
⇒ `∪̇αk(G)(ξ(x)) = ν
⇒ `∪̇αk(G)(ρ̂(x)) = ν

G, ρ |= β(x1, x2) ⇒ (ρ(x1), ρ(x2)) ∈ Eβ
G

⇒ (ξ(ρ(x1)), ξ(ρ(x2))) ∈ Eβ
∪̇αk(G)

⇒ (ρ̂(x1), ρ̂(x2)) ∈ Eβ
∪̇αk(G)

G, ρ |= x1 = x2 ⇒ ρ(x1) = ρ(x2)
⇒ ξ(ρ(x1) = ξ(ρ(x2))
⇒ ρ̂(x1) = ρ̂(x2)

156 APPENDIX A. PROOFS

All derivations merely require ξ to be a morphism, in fact, they hold for
any homomorphic abstraction. They hold also for universal formulas, if ξ is
surjective, which is the case here.

Theorem 4.4.2 Let C ∈ G(N , E) be a connected graph and let k ≥ 1. Let
φ be a first order formula without equality. If {Ĉ} = αk(C) with induced
morphism ξ has lone summary nodes and unique partners, then

• C, ρ |= φ ⇒ Ĉ, ρ̂ |= φ, for any assignment ρ and ρ̂ = λx.ξ(ρ(x)).

• Ĉ, ρ̂ |= φ ⇒ C, ρ |= φ for all assignments ρ̂ and for all assignments ρ,
such that ρ(x) ∈ ξ−1(ρ̂(x)).

Proof Let ξ be the morphism induced by αk(C) = {Ĉ}. As Ĉ has lone sum-
mary nodes, it is safe to assume, that C is isomorphic to an S-materialization
of Ĉ (by Lemma 4.3.2). The proof is by structural induction on the shape of
the formula φ. Note that φ is assumed to be in prenex form with negations
propagated down to literals.

• φ ≡ ν(x): Part 1 of the theorem is proven analogous to the proof of
Lemma 4.4.1. Part 2 is proven by the following reasoning.

Ĉ, ρ̂ |= ν(x) ⇒ `Ĉ(ρ̂(x)) = ν

⇒ ∀v ∈ ξ−1(ρ̂(x)).`C(v) = ν (A.14)

⇒ C, ρ |= ν(x)

Concluding (A.14) is possible, because ξ is a surjective morphism. The
final conclusion of this computation holds of course for any assignment
ρ as stated in part 2 of the theorem.

• φ ≡ β(x1, x2): Again, part 1 follows from Lemma 4.4.1. Part 2 is
derived as follows.

Ĉ, ρ̂ |= β(x1, x2) ⇒ (ρ̂(x1), ρ̂(x2)) ∈ Eβ

Ĉ

⇒ ∀vi ∈ ξ−1(ρ̂(xi)).(v1, v2) ∈ Eβ
C (A.15)

⇒ C, ρ |= β(x1, x2)

It is crucial to stress that the correctness of (A.15) follows from the def-
inition of S-materializations, Definition 4.3.4. As C is isomorphic to an
S1-materialization, the clause for edges in an S-materialization shows,
that there are edges among all pairs of nodes belonging to connected
equivalence classes in Ĉ.

157

• φ ≡ ¬ν(x): Analogous to the non-negated case.

• φ ≡ ¬β(x1, x2): As for part 1, assume that (ρ(x1), ρ(x2)) 6∈ Eβ
C . The

fact that this implies (ξ(ρ(x1)), ξ(ρ(x2))) 6∈ Eβ

Ĉ
is again derived by the

definition of the edge set in an S-materialization: If (ρ̂(x1), ρ̂(x2)) ∈ Eβ

Ĉ
,

this definition implies (v1, v2) ∈ Eβ
C for all vi ∈ ξ−1(ρ̂(xi)).

As for part 2, assume (ρ̂(x1), ρ̂(x2)) 6∈ Eβ

Ĉ
and there exists vi ∈ ξ−1(ρ̂(xi))

such that (v1, v2) ∈ Eβ
C . This contradicts Lemma 4.4.1 and is thus ex-

cluded. This case is only possible because of the lone summary node
property of Ĉ. It is not typical of arbitrary homomorphic abstractions
at all.

• The cases for boolean combinations are trivial.

• φ ≡ ∀x.ϕ: Universal quantification amounts to a finite (because all
universes under consideration are of finite size) conjunction, where the
bound variable ranges over all elements of the universe. Again, part
1 is obvious by applying the induction hypothesis finitely many times
knowing that ξ is total. In order to show part 2, the surjectivity of
ξ in conjunction with the induction hypothesis suffices to prove the
statement.

Theorem 4.4.4 Let G be a partner graph grammar and let k ≥ 1. Further-
more, let φ∀ be a closed universal formula and let φ∃ be a closed existential
formula. If [[G]]k is cluster complete and all Ĉ ∈ [[G]]k have lone summary
nodes, then

1. If there exists a Ĉ ∈ [[G]]k, such that Ĉ, [] |= φ∃, then G |= EF φ∃.

2. If there exists a Ĉ ∈ [[G]]k, such that Ĉ, [] 6|= φ∀, then G 6|= AG φ∀.

If [[G]]k is word decidable and all Ĉ ∈ [[G]]k have lone summary nodes, then
for any closed first order formula φ that may contain equality

a. G |= EF φ if and only if there exists an S1-materialization M of ∪̇[[G]]k,
such that M, [] |= φ.

b. G |= AG φ if and only if for all S1-materializations M of ∪̇[[G]]k holds,
that M, [] |= φ.

158 APPENDIX A. PROOFS

Proof Only one statement will be proven for the cluster completeness and
word decidable case each. The remaining statements have very similar proofs.

As for part 1, assume there exists a Ĉ ∈ [[G]]k such that φ holds of Ĉ. As
Ĉ is required to have lone summary nodes and as φ is closed and assignments
can be neglected, φ holds of every concretization C of Ĉ. As [[G]]k ⊆ [[G]],
there exists an G ∈ [[G]] and a C ∈ cc(G), such that αk(C) = Ĉ. As the
formula is existential without equalities and holds of C, it also holds of G
proving the statement.

Statement (a) is obvious due to the definition of word decidable abstract
graph semantics. A graph is in [[G]], if and only if it is isomorphic to a
concretization (in this case an S1 materialization) of ∪̇[[G]]k.

Appendix B

Tool Samples

Appendix B illustrates the usage of the hiralysis implementation of partner
abstraction based abstract interpretation of partner graph grammars. It is
partitioned into a number of figures as described below.

1. The abstract syntax of the partner graph grammar input to hiralysis.

2. An implementation of the (Rmerge, E) partner graph grammar for the
specification of an idealized platoon merge maneuver.

3. The abstract graph semantics visualization of the above partner graph
grammar together with the visualization of the rules as they are output
by the tool.

4. A stepwise computation of the same graph grammar illustrating the
iteration bound feature of the tool.

5. A partner graph grammar specifying faulty channels for the idealized
platoon merge.

6. A rather involved excerpt from the queue implementation of the platoon
merge maneuver.

7. A code snippet from the hiralysis implementation showing the main
fixpoint iteration.

159

160 APPENDIX B. TOOL SAMPLES

program ::= nodeDecl ; edgeDecl ; graph ; rules

nodeDecl ::= nodelabels nlist

edgeDecl ::= edgelabels elist

nlist ::= ν | ν , nlist

elist ::= β | β , elist

graph ::= empty

| [nodeset , edgeset]

| [nodeset , edgeset , pconstraints]

nodeset ::= { } | { nodes }

edgeset ::= { } | { edges }

nodes ::= x:ν | x:ν , nodes

edges ::= (x,x):β | (x,x):β , edges

pconstraints ::= ε | partner(x) = { }
| partner(x) = { nlist }

rules ::= create graph;
| destroy graph;

| rule graph , graph;
| rule graph , connected , graph;
| rule graph , disjoint , graph;

| rules rules

Fig. B.1: Abstract syntax of the hiralysis input language specifying part-
ner graph grammars. Terminals are underlined. In addition to the syntactical
categories above, the categories ν ∈ N of node labels, β ∈ E of edge labels,
and x ∈ Var of node variables are used. Create and destroy rules are just spe-
cial notations for rules with empty left or right graph, respectively. The first
graph in a program is the initial graph. Note that simple partner constraints
are simplified even further to only restrict the set of labels of adjacent nodes
regardless of their connection to the constrained node.

161

nodelabels ldr, fa, flw, rl, fl;

edgelabels l;

empty;

create [{x:fa},{}];

destroy [{x:fa},{}];

rule [{x1:fa,x2:fa}, {}], disjoint,

[{x1:rl,x2:fl}, {(x1,x2):l}];

// merge between two free agents

rule [{x1:ldr,x2:ldr}, {}], disjoint,

[{x1:rl,x2:fl}, {(x1,x2):l}];

// merge between two leaders

rule [{x1:fa,x2:ldr}, {}], disjoint,

[{x1:rl,x2:fl}, {(x1,x2):l}];

// merge between free agent and leader

rule [{x1:ldr,x2:fa}, {}], disjoint,

[{x1:rl,x2:fl}, {(x1,x2):l}];

// merge between leader and free agent

rule [{x1:rl, x2:fl, x3: flw}, {(x1,x2):l, (x1,x3):l}],

[{x1:rl, x2:fl, x3: flw}, {(x1,x2):l, (x2,x3):l}];

// passing a follower from back to front leader

rule [{x1:rl,x2:fl}, {(x1,x2):l}, partner(x1)={fl}],

[{x1:flw, x2:ldr},{(x2,x1):l}];

// re-establish platoon after all followers are handed over;

// an example of a "partner constraint"

Fig. B.2: The hiralysis implementation of the idealized merge protocol
graph grammar (Rmerge, E). Note that there is an instance of a partner
constraint. The mapping – usually called h – from left to right graph is
given implicitly by naming.

162 APPENDIX B. TOOL SAMPLES

Fig. B.3: On top, there are six of the eight rules constituting the partner
graph grammar modeling the idealized platoon merge. The correspondences
between left and right graph is given by naming. The top, left rule demon-
strates how partner constraints are drawn. On the bottom, the abstract
graph semantics (k = 1) of the idealized platoon merge partner graph gram-
mar is given. It is generated by hiralysis and visualized by aisee R©. Note
the similarities to the hand-drawn version given in Figure 4.7.

163

i = 1 i = 2 i = 3

i = 4

i = 5

Fig. B.4: The single iteration steps in the computation of the abstract graph
semantics of the idealized platoon merge. The graphs were generated using
the iteration command line option of the tool. The case of i = 0 is empty,
because the initial graph is empty, whereas the case of i = 6 is already the
whole abstract graph semantics displayed in Figure B.3.

164 APPENDIX B. TOOL SAMPLES

...

// destroy any possible link

rule [{x1:fa,x2:fa},{(x1,x2):l}], [{x1:fa,x2:fa},{}];

rule [{x1:fa,x2:ldr},{(x1,x2):l}], [{x1:fa,x2:ldr},{}];

rule [{x1:fa,x2:flw},{(x1,x2):l}], [{x1:fa,x2:flw},{}];

rule [{x1:fa,x2:rl},{(x1,x2):l}], [{x1:fa,x2:rl},{}];

rule [{x1:fa,x2:fl},{(x1,x2):l}], [{x1:fa,x2:fl},{}];

rule [{x1:ldr,x2:fa},{(x1,x2):l}], [{x1:ldr,x2:fa},{}];

rule [{x1:ldr,x2:ldr},{(x1,x2):l}], [{x1:ldr,x2:ldr},{}];

rule [{x1:ldr,x2:flw},{(x1,x2):l}], [{x1:ldr,x2:flw},{}];

rule [{x1:ldr,x2:rl},{(x1,x2):l}], [{x1:ldr,x2:rl},{}];

rule [{x1:ldr,x2:fl},{(x1,x2):l}], [{x1:ldr,x2:fl},{}];

rule [{x1:flw,x2:fa},{(x1,x2):l}], [{x1:flw,x2:fa},{}];

rule [{x1:flw,x2:ldr},{(x1,x2):l}], [{x1:flw,x2:ldr},{}];

rule [{x1:flw,x2:flw},{(x1,x2):l}], [{x1:flw,x2:flw},{}];

rule [{x1:flw,x2:rl},{(x1,x2):l}], [{x1:flw,x2:rl},{}];

rule [{x1:flw,x2:fl},{(x1,x2):l}], [{x1:flw,x2:fl},{}];

rule [{x1:fl,x2:fa},{(x1,x2):l}], [{x1:fl,x2:fa},{}];

rule [{x1:fl,x2:ldr},{(x1,x2):l}], [{x1:fl,x2:ldr},{}];

rule [{x1:fl,x2:flw},{(x1,x2):l}], [{x1:fl,x2:flw},{}];

rule [{x1:fl,x2:rl},{(x1,x2):l}], [{x1:fl,x2:rl},{}];

rule [{x1:fl,x2:fl},{(x1,x2):l}], [{x1:fl,x2:fl},{}];

rule [{x1:rl,x2:fa},{(x1,x2):l}], [{x1:rl,x2:fa},{}];

rule [{x1:rl,x2:ldr},{(x1,x2):l}], [{x1:rl,x2:ldr},{}];

rule [{x1:rl,x2:flw},{(x1,x2):l}], [{x1:rl,x2:flw},{}];

rule [{x1:rl,x2:fl},{(x1,x2):l}], [{x1:rl,x2:fl},{}];

rule [{x1:rl,x2:rl},{(x1,x2):l}], [{x1:rl,x2:rl},{}];

// standard merge rules

...

Fig. B.5: The hiralysis implementation of the [Fault1] scenario of Sec-
tion 3.1.3. The given rules allow any possible edge between two nodes to
disappear. These rules are combined with the rules of Figure B.2 to make
up the scenario described in Section 4.5.2. As this is a tedious combinatorial
exercise, one of the next development steps is to equip the hiralysis tool
with a command line option, that automatically augments a partner graph
grammar with the ability to delete any edge at arbitrary times. Also, the
other faulty scenarios of Section 3.1.3 will be implemented in that way.

165

Fig. B.6: An excerpt of the 159 abstract clusters constituting the abstract
graph semantics of the queue based platoon implementation. This is an
example featuring much more complicated abstract clusters compared to the
idealized version. Consider the X-marked abstract cluster. The four lighter
nodes represent two merging platoons. The top dark node is a follower being
handed over. Attached to it is a dark acknowledgement message.

166 APPENDIX B. TOOL SAMPLES

int newMatch ;
int app l i c a t i o n s ;

CLUSTER ∗ analyze (GTS ∗gts , int loop)
{

CLUSTER ∗ r e s u l t ;
ANARULE ∗ r u l e s ;
int i t e r ;

i t e r = 0 ;
newMatch = 1 ;
app l i c a t i o n s = 0 ;

r e s u l t = NULL;
r e s u l t = i n i tR e s u l t (g t s) ;

r u l e s = NULL;
r u l e s = i n i tRu l e s (gts−>r u l e s) ;
while (newMatch && i t e r < loop+1) {

newMatch = 0 ;
findNewMatches (r e su l t , ru l e s , i t e r) ;
r e s u l t = apply (r e su l t , ru l e s , i t e r) ;
i t e r ++;

}

return r e s u l t ;
}

Fig. B.7: The implementation of the main fixpoint iteration in hiralysis.
The function gets the partner graph grammar and a loop bound and returns
the abstract graph semantics. First the result is initialized to contain the
partner abstraction of the initial graph. The parsed rules need some mas-
saging before being applied. The newMatch flag is set to 1, whenever a new
abstract cluster is added to the search tree of abstract clusters representing
the currently computed abstract graph semantics.

Bibliography

[BCE+05] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Hein-
del, Barbara König, and Vitali Kozioura. Verifying red-black
trees. In Proc. of COSMICAH ’05, 2005. Proceedings available
as report RR-05-04 (Queen Mary, University of London).

[BCK04] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying
finite-state graph grammars: An unfolding-based approach. In
Philippa Gardner and Nobuko Yoshida, editors, CONCUR, vol-
ume 3170 of Lecture Notes in Computer Science, pages 83–98.
Springer, 2004.

[BCM99] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Unfold-
ing and event structure semantics for graph grammars. In FoS-
SaCS, pages 73–89, 1999.

[BDNN98] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Control flow analysis for the pi-calculus.
In Davide Sangiorgi and Robert de Simone, editors, CONCUR,
volume 1466 of Lecture Notes in Computer Science, pages 84–
98. Springer, 1998.

[BKR04] Paolo Baldan, Barbara König, and Arend Rensink. Graph
grammar verification through abstraction. Dagstuhl Seminar
Proceedings 04241, 2004.

[BSTW06] Jörg Bauer, Ina Schaefer, Tobe Toben, and Bernd Westphal.
Specification and verification of dynamic communication sys-
tems. In Proc. of the 6th Conference on Application of Concur-
rency to System Design (ACSD 2006). IEEE Computer Society,
2006. to appear.

[BW95] Michael Barr and Charles Wells. Category theory for comput-
ing science, volume - of Prentice Hall International Series in
Computer Science. Prentice-Hall, 2nd ed. edition, 1995.

167

168 BIBLIOGRAPHY

[BW06] Jörg Bauer and Reinhard Wilhelm. Analysis of dynamic com-
municating systems by hierarchical abstraction. Dagstuhl Sem-
inar Proceedings 06081, 2006.

[Car46] Rudolf Carnap. Modalities and quantification. Journal of Sym-
bolic Logic, pages 33–64, 1946.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
of approximation of fixed points. In Symp. on Princ. of Prog.
Lang., pages 238–252, New York, NY, 1977. ACM Press.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Symp. on Princ. of Prog. Lang., pages 269–282,
New York, NY, 1979. ACM Press.

[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press and
McGraw-Hill Book Company, 1989.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design,
19(1):45–80, July 2001.

[Dis03] Dino Distefano. On Model Checking the Dynamics of Object-
based Software. PhD thesis, University of Twente, 2003.

[DKC+04] S. Du, A. Khan, S. Chaudhuri, A. Post, A.K. Saha, P. Druschel,
D.B. Johnson, and R. Riedi. Self-organizing hierarchical routing
for scalable ad hoc networking. Technical Report TR04-433,
Rice University, Houston, Texas, 2004.

[DKR04] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Who
is pointing when to whom? In Kamal Lodaya and Meena Ma-
hajan, editors, FSTTCS, volume 3328 of Lecture Notes in Com-
puter Science, pages 250–262. Springer, 2004.

[DP05] Brian A. Davey and Hilary A. Priestley. Introduction to lat-
tices and order. Cambridge University Press, CAmbridge, 2.
ed. edition, 2005.

[DW02] Werner Damm and Bernd Westphal. Live and let die: Lsc-based
verification of uml-models. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors,

BIBLIOGRAPHY 169

FMCO, volume 2852 of Lecture Notes in Computer Science,
pages 99–135. Springer, 2002.

[EEPPR04] Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and
Grzegorz Rozenberg, editors. Graph Transformations, Second
International Conference, ICGT 2004, Rome, Italy, September
28 - October 2, 2004, Proceedings, volume 3256 of Lecture Notes
in Computer Science. Springer, 2004.

[FH05] Christian Ferdinand and Reinhold Heckmann. Verifying tim-
ing behavior by abstract interpretation of executable code. In
Dominique Borrione and Wolfgang J. Paul, editors, CHARME,
volume 3725 of Lecture Notes in Computer Science, pages 336–
339. Springer, 2005.

[GRS05] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A frame-
work for numeric analysis of array operations. In Palsberg and
Abadi [PA05], pages 338–350.

[Hec98] Reiko Heckel. Compositional verification of reactive systems
specified by graph transformation. In FASE, pages 138–153,
1998.

[HESV91] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. The design of
platoon maneuver protocols for IVHS. Technical Report UCB-
ITS-PRR-91-6, University of California, Berkley, 1991.

[HK87] Z. Har’El and P.R. Kurshan. COSPAN user’s guide. AT&T
Bell Laboratories, Murray Hill, NJ, 1987.

[HLM04] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic
graph transformation systems. In Ehrig et al. [EEPPR04], pages
210–225.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[HP02] Annegret Habel and Detlef Plump. Relabelling in graph trans-
formation. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, ICGT, volume
2505 of Lecture Notes in Computer Science, pages 135–147.
Springer, 2002.

170 BIBLIOGRAPHY

[KK06] Barbara König and Vitali Kozioura. Counterexample-guided
abstraction refinement for the analysis of graph transformation
systems. In Proc. of TACAS ’06. Springer, 2006. LNCS. to
appear.

[KL06] Piotr Kosiuczenko and Georgios Lajios. Simulation of gener-
alised semi-markov processes based on graph transformation
systems. In Proc. of Workshop on Graph Transformation for
Verification and Concurrency, 2006.

[Kön00] Barbara König. A graph rewriting semantics for the polyadic
pi-calculus. In Proc. of GT-VMT ’00 (Workshop on Graph
Transformation and Visual Modeling Techniques), pages 451–
458. Carleton Scientific, 2000.

[Kri63] Saul Kripke. Semantical considerations on modal logic. Acta
Philosophica Fennica, 16:83–94, 1963.

[LARSW00] Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, and Reinhard
Wilhelm. Putting static analysis to work for verification: A case
study. In ISSTA, pages 26–38, 2000.

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene
based static analysis. In Static Analysis Symposium. Springer,
2000. http://www.math.tau.ac.il/∼ rumster.

[Lew68] David Lewis. Counterpart theory and quantified modal logic.
Journal of Philosophy, LXV(5):113–126, 1968.

[LKW93] Michael Löwe, Martin Korff, and Annika Wagner. An algebraic
framework for the transformation of attributed graphs. Term
Graph Rewriting: Theory and Practice, pages 185–199, 1993.

[LL98] John Lygeros and Nancy A. Lynch. Strings of vehicles: Model-
ing and safety conditions. In Thomas A. Henzinger and Shankar
Sastry, editors, HSCC, volume 1386 of Lecture Notes in Com-
puter Science, pages 273–288. Springer, 1998.

[Mil80] Robin Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer, 1980.

[ML71] Saunders Mac Lane. Categories for the Working Mathemati-
cian. Springer, New York - Heidelberg - Berlin, 1971.

BIBLIOGRAPHY 171

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer, 1999.

[NNP04] Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard.
Spatial analysis of bioambients. In Roberto Giacobazzi, editor,
SAS, volume 3148 of Lecture Notes in Computer Science, pages
69–83. Springer, 2004.

[PA05] Jens Palsberg and Mart́ın Abadi, editors. Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005. ACM, 2005.

[PAT03] PATH. California partners for advanced transport and highway,
1986-2003. http://www.path.berkeley.edu/.

[Pie91] Benjamin C. Pierce. Basic category theory for computer sci-
entists, volume - of Foundations of computing series, research
reports and notes. MIT Press, Cambridge - London, 1991.

[RBR+05] Noam Rinetzky, Jörg Bauer, Thomas W. Reps, Shmuel Sagiv,
and Reinhard Wilhelm. A semantics for procedure local heaps
and its abstractions. In Palsberg and Abadi [PA05], pages 296–
309.

[RD06] Arend Rensink and Dino Distefano. Abstract graph transfor-
mation. Electr. Notes Theor. Comput. Sci., 157(1):39–59, 2006.

[Ren04a] Arend Rensink. Canonical graph shapes. In David A. Schmidt,
editor, ESOP, volume 2986 of Lecture Notes in Computer Sci-
ence, pages 401–415. Springer, 2004.

[Ren04b] Arend Rensink. Representing first-order logic using graphs. In
Ehrig et al. [EEPPR04], pages 319–335.

[Ros05] Benjamin Rossman. Existential positive types and preservation
under homomorphisms. In LICS, pages 467–476. IEEE Com-
puter Society, 2005.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations.
World Scientific, 1997.

172 BIBLIOGRAPHY

[San94] Georg Sander. Graph layout through the vcg tool. In Roberto
Tamassia and Ioannis G. Tollis, editors, Graph Drawing, vol-
ume 894 of Lecture Notes in Computer Science, pages 194–205.
Springer, 1994.

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming Lan-
guages and Systems, 24(3):217–298, 2002.

[SW01] D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[Yah01] Eran Yahav. Verifying safety properties of concurrent java pro-
grams using 3-valued logic. In Symp. on Princ. of Prog. Lang.,
pages 27–40, 2001.

[YRSW03] E. Yahav, T. Reps, S. Sagiv, and R. Wilhelm. Verifying tempo-
ral heap properties specified via evolution logic. In P. Degano,
editor, Proc. ESOP’03, number 2618 in LNCS, pages 204–222.
Springer-Verlag, 2003.

