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Abstract

This thesis presents a language-based, safely programmable middleware
for the simple, high-level, and expressive construction of composable open
systems. The middleware provides services for pickling, components, and
distribution. All are based on a minimal set of primitives and syntax ex-
tensions, such that they otherwise can be completely implemented and cus-
tomized in a high-level language with automatic memory management, ex-
ception handling, higher-order functions, futures, and dynamic types. Us-
ing this approach, it becomes possible to describe the complete architecture
of the middleware system, and to leverage the language’s safety features in
the middleware itself.

Zusammenfassung

Die vorliegende Arbeit beschreibt eine Programmiersprachen-basierte pro-
grammierbare Middleware, die eine einfache Konstruktion offener Systeme
auf hoher Ebene ermöglicht. Die Middleware bietet Dienste für Pickling,
Komponenten und Verteilung an, die allesamt auf einem minimalen Satz
an Primitiven und Syntaxerweiterungen beruhen. Der Hauptteil der Dienste
kann so in einer höheren Programmiersprache mit automatischer Speicher-
verwaltung, Ausnahmebehandlung, Prozeduren höherer Ordnung, Futures
und dynamischen Typen realisiert werden. Dies ermöglicht es, die Archi-
tektur der Middleware vollständig zu beschreiben, sowie die Sicherheitsga-
rantien der höheren Programmiersprache in der Implementierung der Midd-
leware selbst zu nutzen.
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Extended Abstract

This thesis presents a language-based, safely programmable middleware
for the simple, high-level, and expressive construction of composable open
systems.

An open system is a software system that can non-trivially interact with
independent software components and other software systems, which may
possibly not have existed at the time the system was deployed. Since the
advent of the World Wide Web, most modern software systems are open
systems.

The implementation of open systems can be greatly simplified by the use
of a powerful, generic middleware. A middleware is a layer in a software
architecture that mediates between an application and its heterogeneous
networked computing environment.

This thesis presents the design and implementation of a middleware whose
services fall in the areas of pickling, components, and distribution. Based
on a minimal set of primitives and syntax extensions, the middleware is
otherwise implemented completely in a high-level language. This work as-
sumes any programming language with automatic memory management,
exception handling, higher-order functions, futures, and dynamic types.

There are a number of ramifications to this approach. It becomes possible
to describe the complete architecture of the middleware system. All lan-
guage safety features directly carry over to the middleware. Since the prim-
itives are safe, they can be made accessible to programmers. This makes
all middleware services based on the primitives programmable: application
programmers can devise new services and design patterns as they need
them.

The underlying primitives provide generic services. Pickling provides a
unified model for data exchange, messages in distributed communication,
and the representation of components. First-class components, with opera-
tions to reflect metadata, link components, and dynamically create compo-
nents at run time, allow to program powerful component services, namely
lazy dynamic linking; sandboxing; exporting dynamically-created compo-
nents; symbolic, structured names for components and customizable name
lookup; and hiding at the level of components. A distribution layer includ-
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ing remote invocation is built on top of components; all that requires in
terms of primitives is a dynamic call mechanism.

The approach of this thesis is to devise a minimal set of safe primitives
for each service, and to demonstrate how the service can be implemented
in the high-level language on top of those primitives. The work examines
the properties of the resulting system to discuss alternatives. This leads
both to a thorough understanding and discussion of middlewares, and to a
standard library of middleware services in generally useful incarnations.

All concepts have been implemented in the context of two systems: Mozart,
a production quality system implementing Oz, which pioneered most con-
cepts; and Alice, whose design was founded on the presented concepts.
In fact, as the base language and generic runtime system are incrementally
extended, the system built in the thesis more and more resembles full Alice.



Ausführliche Zusammenfassung

Die vorliegende Arbeit beschreibt eine Programmiersprachen-basierte pro-
grammierbare Middleware, die eine einfache Konstruktion offener Systeme
auf hoher Ebene ermöglicht.

Ein offenes System ist ein Softwaresystem, das in nichttrivialer Weise mit
unabhängigen Softwarekomponenten und anderen Softwaresystemen inter-
agieren kann, die womöglich zu dem Zeitpunkt, da das System in Betrieb ge-
nommen wurde, noch nicht existiert haben. Seit der Einführung des World
Wide Web sind die meisten modernen Softwaresysteme offene Systeme.

Offene Systeme können durch den Einsatz ausdrucksstarker Middleware
bedeutend einfacher implementiert werden. Middleware ist die Schicht in
einer Softwarearchitektur, die zwischen einer Anwendung und ihrer hetero-
genen, vernetzten Umgebung vermittelt.

Diese Arbeit stellt Entwurf und Implementierung einer Middleware vor, de-
ren Dienste in die Bereiche Pickling, Komponenten und Verteilung fallen.
Die Middleware basiert auf einem minimalen Satz an Primitiven und Syntax-
erweiterungen und ist andernweitig vollständig in einer höheren Program-
miersprache realisiert. Dabei wird eine beliebige höhere Programmierspra-
che mit automatischer Speicherverwaltung, Ausnahmebehandlung, Proze-
duren höherer Ordnung, Futures und dynamischen Typen angenommen.

Der Ansatz bringt eine Reihe von Vorteilen mit sich. Es wird möglich, die
vollständige Architektur der Middleware zu beschreiben. Die Sicherheitsga-
rantien der Programmiersprache übertragen sich auf die Middleware. Da die
Primitive sicher sind in dem Sinne, dass sie nicht verwendet werden können
in einer Art, die die Garantien der Sprache verletze würde, können sie dem
Programmierer direkt zugänglich gemacht werden. Hiermit sind alle Diens-
te der Middleware, die auf diesen Primitiven basieren, programmierbar: An-
wendungsprogrammierer können ihre eigenen Dienste und Entwurfsmuster
ersinnen, sobald sie solche benötigen.

Die Dienste, die die Primitive erbringen, sind generisch. Pickling bietet ein
vereinheitlichtes Modell für den Datenaustausch, für Nachrichten in der
Kommunikation zwischen verteilten Systemkomponenten und für die Dar-
stellung von Softwarekomponenten. Komponenten erster Klasse bieten Ope-
rationen zur Projektion von Metadaten, zum Binden von Komponenten und
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zur dynamischen Erzeugung. Dies erlaubt die Programmierung mächtiger
Komponentendienste, etwa verzögertes dynamisches Laden und Binden,
Ausführung von Programmen in abgesicherter Umgebung (sandboxing), Ex-
port dynamisch erzeugter Komponenten, anpassbare Auflösung struktu-
rierter symbolischer Bezeichner für Komponenten, sowie Verdeckung auf
der Ebene von Komponenten. Eine Verteilungsschicht mit ferngesteuerter
Aktivierung wird auf Komponenten aufgebaut; hierzu wird lediglich ein wei-
teres Primitiv für dynamisches Binden benötigt.

Die Arbeit geht folgendermaßen vor. Für jeden Dienst wird ein minimaler
Satz von Primitiven bestimmt und es wird aufgezeigt, wie der Dienst mit
Hilfe dieser Primitive in der höheren Programmiersprache realisiert wer-
den kann. Die Eigenschaften des resultierenden Systems werden untersucht
und mit Alternativen verglichen. Das führt zu einem guten Verständnis der
Middleware, sowie zu einer Standardbibliothek von Middlewarediensten in
allgemein nützlicher Form.

Sämtliche Konzepte wurden in zwei Systemen implementiert: Mozart, einem
serienreifen System, das die Sprache Oz implementiert und die Konzepte
als erstes System anbot, sowie Alice, dessen Entwurf auf eben den vorge-
stellten Konzepten basiert. Im Zuge der inkrementellen Erweiterungen der
Basissprache und der generischen Laufzeitumgebung wird das vorgestellte
System tatsächlich Alice immer ähnlicher.
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Chapter 1

Introduction

This thesis presents a language-based, safely programmable middleware
for the simple, high-level, and expressive construction of composable open
systems.

1.1 Middleware

Today, software developers need to build extensible, heterogeneous, and
dynamic systems, also called open systems. In most general terms, an open
system is a software system that can interact in any non-trivial ways with
independent software components and other software systems, which may
possibly not have existed at the time the system was deployed.

The World Wide Web plays host to plenty of examples of open systems: Web
servers such as Apache [Apa03] are run-time configurable to accommodate
new methods for generating dynamic content; Web browsers such as the
Microsoft Internet Explorer [Mic02] download new ActiveX controls [Cha96]
on-the-fly to enrich user experience; and servers dynamically exchange in-
formation by means of Web Services [BHM+04] discoverable at run time.
Another example for an open system is the extensible architecture of the
Eclipse development environment, whose core, the plug-in engine [Bir05],
manages installation, loading, configuring, et cetera, of plug-ins—in other
words, it is a middleware.

The implementation of open systems can be greatly simplified by the use
of a powerful, generic middleware. A middleware is a layer in a software
architecture that mediates between an application and its heterogeneous
networked computing environment, to enable the application to participate
in an open system. The ideas of middlewares have been around since the
late 1970’s, but the term has only been coined in the early 1990’s [CMHC03].
This work focuses on how middleware automates data exchange, discovery

1



2 Chapter 1. Introduction

of services, and their execution both in-process through dynamic code load-
ing, and out-of-process through remote procedure calls.

Data Exchange. To participate in an open system, an application has to be
able to communicate with its peers. This makes data exchange a fundamen-
tal feature of a middleware.

Packaging Services. Services provided by software can be packaged as
self-describing and independently usable program fragments, called compo-
nents [Szy02]. Components are self-describing in that they explicitly specify
dependencies on other components and the types of the objects they define.
Systems are built out of sets of components by means of linking. The mid-
dleware defines a component model and operations to link components.

In-process Execution. Linking can be dynamic, which means that it en-
riches a running application with the objects defined by a new component.
Components can be discovered at run time. Configurable environments
for dynamic linking provide for access control and sandboxing: application
fragments can be executed in a “sandbox”, meaning that they only have
restricted capabilities so that they can cause no harm. The middleware pro-
vides the services of run-time discovery and dynamic linking, and enforces
execution policies.

Out-of-process Execution. In addition to running in-process, services can
be hosted in independent processes, called servers, be it for security rea-
sons, distribution, or longevity. The middleware must provide mechanisms
for starting server processes and for establishing connections to existing
servers possibly running on remote machines.

1.2 Motivation

The design and implementation of middleware is a hot research topic. This
thesis addresses the following aspects for which, I believe, as yet no satis-
factory solutions exist.

Simplicity and Understandability. Many middlewares are large and com-
plex, making their design and implementation prone to error and hard to
communicate. This work addresses the issue by designing a middleware
that is as simple as possible and requires only minimal low-level support,
making it possible to describe its complete architecture.

Safety and Security. Designing and implementing open applications is in-
herently difficult. The number of security bulletins [DFN03] and functional
patches paints a desolate picture of the state of the art of application vul-
nerability and reliability.
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The conjunctions in the preceding sentence indicate that there are two di-
mensions to this problem—safety and security. A safe programming envi-
ronment protects programmers from making mistakes. In contrast, a secure
programming environment protects itself against attacks from third parties.

It is a fact of life that an application built on an insecure middleware cannot
be secure. But building an application on a secure middleware does not, by
itself, make the application secure, either. Still, a middleware can be a key
player in increasing both safety and security: A secure and safe middleware
is required for application developers to build secure applications. The
middleware has to provide expressive, high-level abstractions that shield
applications from requiring low-level or unsafe code. These abstractions
then need to be implemented and secured just once, and all applications
benefit from it.

On the other hand, designing and correctly implementing a middleware is
not easy, either: consider, for instance, the problems initially present in
Java and the Java Virtual Machine [DFW96]. This thesis explores a simple
idea: Just as secure applications can more easily be built on top of a safe
middleware, a secure middleware can more easily be built on top of a safe
programming language.

Ease of Use and Expressivity. Mechanisms such as mobile code [FPV98]
can enrich the toolset of the application developer immensely. Yet, unless
they are provided by the underlying platform, they are often too complex
to afford.

A middleware warrants the investment of developing and securing expres-
sive mechanisms. This work performs this for several mechanisms, among
them mobile code. The mechanisms must add as little complexity as pos-
sible to the middleware itself, and must not make the platform harder to
master. For greatest flexibility, the mechanisms must be arbitrarily com-
posable.

Programmability. The patterns that application programmers can express
their design with are limited by what the middleware offers. In many cases,
there is no “one size fits all”. The goal of this work is to lift limitations
by making the middleware highly programmable: only a small number of
primitives are fixed, and the actual services are provided in the high-level
language. Services become accessible to and modifiable by application pro-
grammers: they can devise new design patterns and corresponding services
as needed.

Unified Models. Externalization of data in the form of pickling (also called
serialization) on the one hand, and components on the other hand are two
fundamental services provided by a middleware. In all existing approaches,
these two are distinct, making mobile code a non-trivial extension. There is
no intrinsic reason for not using pickling as the unified file format for data,
communication messages, and components.
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1.3 Approach

This thesis takes the following route to address the shortcomings of exist-
ing approaches mentioned above.

A Language-based Middleware. With a minimal set of primitives and syn-
tax extensions, I am able implement the middleware in the language itself.
Modern high-level languages provide for strong typing, automatic memory
management, parameterization and abstraction, and exception handling.
With the present approach, all of these directly carry over to the middle-
ware. Since the primitives are safe, they can be made accessible to pro-
grammers, enabling them to implement custom middleware services—in
other words, the middleware becomes programmable.

Safety and Security. As motivated above, this work’s main focus is on
safety. In fact, the only specific security feature addressed is sandboxing,
under an appropriate assumption (pickles need to be verifiable—which is
outside the scope of this work). No other material in this thesis fundamen-
tally depends on this assumption.

The Language. A safe programming environment must be based on strong
typing. The focus of this work is first on dynamically-typed languages,
which enforce strong typing by raising exceptions at run time on type mis-
matches. A secondary concern is how much of the approach carries over
to statically-typed languages, where this work identifies a number of limita-
tions.

At the outset, my solution assumes any programming language with sup-
port for higher-order functions, futures, and dynamic types. Specifically, I
use a variant of Standard ML extended with futures and packages, which I
call L. As I extend the base language, I obtain OpenL, in which lie the contri-
butions of my work.

Complete Architecture. Starting from L and a generic runtime, this work
develops the complete architecture of a middleware, from the underlying
runtime to primitive operations to the actual middleware services. This
makes this work unique: other work usually only takes a spot-light ap-
proach to a specific area, and gives other areas an ad-hoc treatment.

Pickling. At the outset, pickling is just a mechanism to externalize and
internalize graphs of programming language data. In my approach, it ad-
ditionally serves as the foundation for component deployment and dis-
tributed communication. As such, it merits an in-depth treatment: I ana-
lyze the design space of pickling and survey existing mechanisms, to make
educated decisions on a suitable pickling mechanism for my approach.
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Components. Starting from a very simple component model for modular
programming, I incrementally devise extensions to provide powerful com-
ponent services, namely lazy dynamic linking; sandboxing; dynamic cre-
ation of first-class components; exporting dynamically created components
to other processes; symbolic, structured names for components and cus-
tomizable name lookup; and hiding at the level of components. As an ap-
plication of pickling and components, I demonstrate how to provide basic
distribution services.

Implementation. For each middleware service, I devise a minimal set of
safe primitives and demonstrate how the service can be implemented in
the high-level language on top of those primitives. The implementation de-
scriptions are complemented with a qualitative look at incurred costs, and
proposals for optimizations to address these costs. Furthermore, they are
backed by actual implementations in the context of two systems: Mozart,
a production quality system implementing Oz, which pioneered most con-
cepts; and Alice, whose original design was founded on the presented con-
cepts.

1.4 Contributions

This work makes the following contributions:

• This work presents a classification for pickling mechanisms, and sur-
veys a large number of different pickling mechanisms according to the
classification.

• This work develops a principled approach to bottom-up pickling and
unpickling, and relates the problem to existing algorithms in Com-
puter Science.

• To my knowledge, this work is the first to discuss problems in the in-
teraction of concurrent pickling with state and futures, and to propose
solutions.

• A mechanism for customizing pickling at the level of the virtual ma-
chine is presented that allows to uniformly capture pickling behaviors
of resources, first-class functions, and primitives.

• This work identifies a tiny set of low-level mechanisms sufficient to
integrate component programming with first-class components and
lazy dynamic linking into a programming language. The mechanisms
can be safely exposed to programmers as primitive operations.

• Except for the most basic virtual machine services, the runtime sys-
tem including the lazy dynamic linker can be built out of components.
For instance, the system startup procedure is itself defined by a com-
ponent.
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• When instantiated for a dynamically-typed programming language,
the presented approach to linking can be defined on the level of the
language, and implemented by language operations.

• This work proposes a simple and systematic way to propagate run-
time errors originating from the programming infrastructure, such as
dynamic linking errors, by reducing them to the single generic concept
of failed values.

• The presented approach is the first, to my knowledge, that represents
components as pickles, and reduces loading of components to un-
pickling. At the same time, this allows to persist dynamically-created
components.

• The component model unifies many representations for executable
code, which traditionally are static libraries, dynamic libraries, and
executables.

• What is traditionally serialized data, is unified with components. A
component can contain code, data, or a mixture of these.

• From a client’s perspective, even servers running on the network are
integrated with the component concept. Servers are simple applica-
tions implemented in the high-level programming language.

1.5 Context of this Work

The results presented in this thesis have impacted real programming sys-
tems and development projects. This section sketches the context in which
I performed my research, namely Mozart and Alice.

1.5.1 Oz and Mozart

Oz is a concurrent, dynamically-typed, data-flow-driven programming lan-
guage. It has its roots in logic programming, redefined concurrent con-
straint programming, and evolved into a multi-paradigm language integrat-
ing the relational, functional, and object-oriented paradigms. Oz is defined
by a small core language that is founded on a well-defined programming
model [Smo95]. High-level features are provided by powerful abstractions
and are reduced to this core language: for instance, computation spaces are
abstractions for programming constraint services at a high level [Sch02a],
and the object system is reduced to the core language [Hen97].

Development of Oz and its implementation DFKI Oz started at the German
Research Center for Artificial Intelligence (DFKI). Researchers from the Pro-
gramming Systems Lab at Saarland University, the Swedish Institute for
Computer Science in Stockholm, and the Université Catholique de Louvain,
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Belgium, cooperated to release the Mozart Programming System [Moz04]
in 1998, with state-of-the-art performance [Sch98].

The pickling-based component services presented in this thesis were pio-
neered by Mozart [DKSS98, DKS04a]. Mozart and its middleware have been
used successfully for many projects both in research and the industry. The
system is freely available for download [Moz04], including its source code,
and runs on a large number of platforms including Microsoft Windows and
Unixes.

1.5.2 Alice ML and the Alice System

To explore how to integrate the middleware services into a statically-typed
language, we defined the programming language Alice ML [Smo98, RLT+04,
Pro05]. Alice ML is both an extension of Standard ML [MTHM97] that incor-
porates essential features of Oz and Mozart, and a statically-typed variant
of Oz. The system that is incrementally built in this thesis in the end very
closely resembles Alice.

Mozart/Oz taught many lessons about what to improve, why to improve it,
and how to improve it. Its main deficiencies are missing regularity, orthog-
onality, simplicity, and genericity [BK03]. The design of the Alice system
puts simplicity and modularity first, and addresses efficiency by analyz-
ing the bottlenecks and optimizing where needed. The intent was to make
Alice into a flexible research vehicle—among other goals, to support the
claims made in this thesis. Alice features its own virtual machine, called
Seam [BK02], and a rationalized store and pickling mechanism [Tac03].

Alice is platform-independent; Seam runs on Unix and Windows. Both are
available, including source code, for download [Pro05].

1.6 Source Material

The pickling algorithms and data structures from Chapter 5 have previously
appeared in Guido Tack’s Diploma Thesis, supervised by Gert Smolka and
me.

• Guido Tack. Linearisation, minimization and transformation of data
graphs with transients. Diplomarbeit, Naturwissenschaftlich-Techni-
sche Fakultät I, Fachrichtung Informatik, Universität des Saarlandes,
Saarbrücken, Germany, May 2003. [Tac03]

• Guido Tack, Leif Kornstaedt, and Gert Smolka. Generic pickling and
minimization. Proceedings of the ACM SIGPLAN Workshop on ML, Tal-
inn, Estonia, September 2005. [TKS05]
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Some of the material about pickling-based first-class components with lazy
dynamic linking from Chapter 8 and Sections 9.1 to 9.3 and 10.1 has pre-
viously appeared as a technical report. The initial implementation was re-
leased with Mozart 1.0.

• Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka.
A higher-order module discipline with separate compilation, dynamic
linking, and pickling. Technical report, Programming Systems Lab,
DFKI, and Universität des Saarlandes, Saarbrücken, Germany. Septem-
ber 1998. [DKSS98]

• Denys Duchier, Leif Kornstaedt, and Christian Schulte. Application
programming. Tutorial in the Mozart online documentation. 1998–
2004. [DKS04a]

Localizers described in Section 10.2 are initially due to Denys Duchier and
first appeared in Mozart 1.0.

• Denys Duchier, Leif Kornstaedt, Martin Homik, Tobias Müller, Chris-
tian Schulte, and Peter Van Roy. System Modules. Reference manual
in the Mozart online documentation. 1998–2004. [DKH+04]

The first implementation of bundling from Section 10.3 was the Oz linker
ozl, originally due to Christian Schulte.

• Denys Duchier, Leif Kornstaedt, and Christian Schulte. Oz Shell Util-
ities. Reference manual in the Mozart online documentation. 1998–
2004. [DKS04b]

The distribution services developed in Chapter 11 were greatly inspired by
Mozart’s distribution layer (although diminished in functionality), regarding
the classification of distribution behaviors and application programmer’s
interface.

• Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Comput-
ing 16(3):223–251, 1998. Ohmsha, Ltd. and Springer-Verlag. [HVBS98]

1.7 Outline

The body of this thesis is structured as depicted in Figure 1.1. Arrows
indicate direct dependencies between sections.

Context. The first part of the thesis provides context for the design de-
veloped in this thesis, based on my two main research goals. The first of
these is language integration of services—accordingly, the target high-level
language is presented in Chapter 2. A clear definition of required low-level
primitives is the second research goal; Chapter 3 provides them with the
description of a runtime environment to live in.
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Chapter 10
Component Deployment

Chapter 2
Base Language

Chapter 3
Base Runtime

Chapter 4
Pickling Design

Chapter 5
Basic Pickling

Chapters 6/7
Advanced Pickling

Chapter 8
Component Model

Chapter 9
Dynamic Components

Chapter 11
Distribution

Chapter 12
Conclusion

Context

Pickling

Components

Distribution

Discussion

Figure 1.1: Structure of the Thesis: Dependencies between Chapters.
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Pickling. Pickling is the basis for the other services, and as such merits
a thorough discussion: Chapter 4 explores the design space of pickling.
Chapter 5 develops the basic pickling algorithm for terms with sharing,
which is generic to be useful for a wide range of programming languages.
Chapter 6 analyzes the interaction of concurrent pickling with state and
futures. Chapter 7 covers pickling of non-term nodes.

Components. Chapter 8 introduces the component model. The model is
extended to cover programmable, lazy dynamic linking in Chapter 9. The
deployment of components builds on pickling and is analyzed in Chap-
ter 10. Chapter 11 puts pickling and components into practice to provide
support for distributed systems.

Discussion. Chapter 12 concludes with an overview of the complete ar-
chitecture, summarizes the main contributions, and provides directions for
future research.



Chapter 2

The Base Language

This chapter introduces the language that serves as a starting point for the
rest of the work. This language is called L, to distinguish it from Alice
ML. Extensions of L in later chapters will we called OpenL, and OpenL will
become increasingly similar to Alice ML as L is extended.

L’s ancestry includes the following languages (summarized in Figure 2.1),
as well as existing research:

Standard ML. Like Standard ML [MTHM97], L is a statically-typed non-pure
functional language. The design of Standard ML emphasizes safety. In
particular, it provides powerful abstraction mechanisms enforced by
the static type system. Errors do not crash programs, but lead to ex-
ceptions that programs can handle. Automatic memory management
and the absence of explicit pointers eliminate illegal memory accesses,
dangling pointers, and memory leaks. L supports a core language and
module system in the spirit of Standard ML’s. L uses the syntax of
Standard ML.

Oz. From Oz [Smo95], L inherits concurrency and data-flow synchroniza-
tion. Subsequent chapters extend L with more of the features of Oz,
such as pickling (Chapter 5) and components in the style of Oz func-
tors (Chapter 8).

Futures. L provides concurrency and data flow synchronization through
futures, which are initially due to Multilisp [Hal85]. The model pre-
sented here derives from a proposal for Oz by Mehl et al. [MSS98], and
was proposed for Alice by Smolka [Smo98]. It has been formalized by
Niehren et al. [Sch02b, NSS05]. This model has also been proposed for
Java, with the language called Flow Java [DSBH03].

Dynamics. L supports dynamically-typed values in the form of packages,
inspired by dynamics [ACPP91, ACPR95]. Packages as present in L
are due to Rossberg [Ros03, Ros05], who provides a formalization of
packages and describes their implementation.

11
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Standard ML Oz

Alice ML

L

subset of
inherits from inherits from

Figure 2.1: Relations between Languages.

This work assumes the reader is somewhat familiar with Standard ML, but
does not require the reader to know Oz.

Structure of this Chapter. This chapter presents L’s core language in Sec-
tion 2.1, and its module language in Section 2.2. In contrast to Standard ML,
L has a construct to inject modules into core language values, namely pack-
ages, presented in Section 2.3. Section 2.4 concludes with some examples
of L programs that are not possible in Standard ML.

2.1 The Core Language

Basic data structures, functions, and exception handling in L are borrowed
from Standard ML, and are described very succinctly (refer to the definition
of Standard ML for details [MTHM97]). Promises and futures, which are not
present in Standard ML, are described in more detail.

2.1.1 Data Structures

L programs operate on data in an store that can automatically manage deal-
location of data structures. The basic data types are integers and charac-
ters. The immutable data structures are records (subsuming tuples), con-
structed values (annotated with a constructor defined by an algebraic data
type), and vectors (cross-products of an arbitrary number of homogeneous
elements). In contrast to Standard ML, algebraic data types in L have struc-
tural equality—values of two algebraic data types are compatible if and only
if the types have the same set of constructors and corresponding construc-
tors’ argument types are equal. Some commonly used types are defined in
terms of the types above: strings are vectors of characters; booleans and
lists are defined as algebraic data types.

L cleanly separates immutable and mutable data structures. The basic state-
ful data type is the reference cell, a container holding a single value that can
be updated to hold a different value (of the same type). Reference cells are
modeled as constructed values using a designated ref constructor. Other
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stateful data types are conceptually defined in terms of reference cells and
immutable data structures. An array, for instance, conceptually is a vector
of reference cells holding the elements.

L supports Standard ML’s structured pattern matching for discriminating on
constants and constructors of algebraic data types, and for decomposing
structured data.

2.1.2 Functions

Computations can be encapsulated through the definition of functions. A
function takes a single argument and computes a single value, which is
the result of evaluating an application of the function. L is a higher-order
language, that is, functions can themselves be used as values (functions are
first-class citizens). L is lexically scoped: Evaluation of a function definition
creates a closure, which pairs the function definition with the environment
binding its free variables to values.

Functions taking multiple arguments can be expressed either as Cartesian
functions (taking a record of arguments) or as curried functions (functions
returning functions). Multiple return values are expressed as records. Zero
arguments or no return value are represented as the empty record, the only
element of the so-called unit type.

The term function is commonly both used to mean a closure and a func-
tion definition. The present work uses the term function only to denote a
closure.

2.1.3 Primitive Operations

The operations on built-in data types are implemented by primitives. L pro-
grams are evaluated in an initial environment that is empty except for bind-
ings of identifiers to primitives. For example, integer addition and polymor-
phic comparison are bound to the symbolic identifiers + and =.

2.1.4 Exceptions

When an error occurs, L primitives and library functions raise exceptions.
The exception itself is a value of the predefined type exn that describes the
exceptional condition. An expression e1 handle x => e2 evaluates to the re-
sult of e1, unless that results in an exception, in which case the exception is
bound to x and e2 is evaluated. Exception handlers are dynamically scoped:
When an exception is raised, control is passed to the current computation’s
innermost installed handler.
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2.1.5 Promises and Futures

A future is a placeholder in a data structure. The first kind of future in L
is the promised future. Every promised future has an associated promise.
A promise can be fulfilled with a value at most once, which causes the as-
sociated promised future to be replaced by the value. The effect of sepa-
rating promises and futures is the following: any computation that holds a
reference to a future has the permission to read its value, but only a com-
putation that holds a reference to the promise has the permission to define
the value. By construction, the computation that creates a future controls
access to the promise.

Operations. The type t promise is the type of promises for values of
type t, and supports the following primitive operations:

type ’a promise
exception Promise
val promise : unit -> ’a promise
val future : ’a promise -> ’a
val fulfill : ’a promise * ’a -> unit (* Promise *)

A promise is created by the primitive function promise. The primitive func-
tion future returns the promise’s associated future. Note that the presence
of promises in values are type-explicit, while the presence of futures is not
visible in types. The fulfill primitive, given a promise and a value, re-
places the future associated with the promise by the value. Any attempt to
fulfill a promise that has already been fulfilled results in a Promise excep-
tion.

Example. The following expression is an example showing how a cyclic
list can be constructed using promises and futures—something that is im-
possible in Standard ML:

let
val tail = promise ()
val list = 1::future tail

in
fulfill (tail, list); list

end

Promises versus Reference Cells. Promises may be thought of as anal-
ogous to reference cells. The promise primitive corresponds to the ref
constructor, except that it does not take an initial value—the initial value
conceptually is the implicitly created promised future. future is analogous
to reference cell access. fulfill corresponds to reference cell assignment,
but for the single-assignment requirement for promises.
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2.1.6 Concurrency and Laziness

L supports concurrency through the concur primitive:

val concur : (unit -> ’a) -> ’a

Given a nullary function f , an application concur f causes creation of a
new thread to evaluate f (). Threads execute concurrently and are fairly
and preemptively scheduled. concur f immediately returns a concurrent
future x. When the concurrent thread terminates, x is replaced with the
result of the evaluation of f ().

Data-flow Synchronization. If some computation requires the value of x
while it is still a future (it requests the value of x), the computation auto-
matically blocks until the future is bound. In particular, matching a value
against a pattern requests the value, and applying a function requests the
function. Additionally, a value of any type can explicitly be requested using
the primitive await:

val await : ’a -> ’a

Blocking on a promised future deadlocks if no concurrent thread ever ful-
fills the corresponding promise.

Observing Failure. Given an application concur f , it can happen that the
application f () in the new thread fails with an uncaught exception. In this
case, the concurrent future returned by concur f is replaced by a failed
value storing the exception. Every time a thread requests a failed value,
the exception stored in the failed value is raised in the thread (without any
effect on the failed value itself). Thus, all clients equally observe a thread’s
failure and can react upon it, making it possible to program for robustness.

One can define an operation failedValue to explicitly create a failed value:

val failedValue : exn -> ’a

This operation can be expressed in terms of concur:

fun failedValue e =
let

val x = concur (fn _ => raise e)
in

await x handle _ => x
end

Laziness. A computation can be made to evaluate lazily, that is, only once
its result is needed by some thread, by means of the byneed primitive:

val byneed : (unit -> ’a) -> ’a

byneed takes a function f and returns a lazy future x. The first thread to
block on x causes x to be replaced by the result of concur f , which creates



16 Chapter 2. The Base Language

lazy future

concurrent future

failed value

promised future

determined value

promise is fulfilled

promise is fulfilled with a failed value

evaluation succeeds

evaluation raises exception

value is requested

Figure 2.2: Transitions between Futures.

a new thread to evaluate f (). This means that even multiple threads racing
to request x cause a single evaluation of f (). In essence, byneed and
concur differ only in that byneed defers the creation of the thread until its
result is first needed.

As syntactic sugar, L supports lazy e to mean byneed (fn _ => e).

Value Status. If a value is neither a future nor a failed value, we say it is
determined. The status of a value x—whether x is a promised, concurrent,
or lazy future; a failed value; or determined—can be observed with the
status primitive:

datatype status = FUTURE | FAILED | DETERMINED
val status : ’a -> status

Transitions. Figure 2.2 summarizes possible transitions between the var-
ious kinds of future.

2.1.7 Atomic Exchange

In contrast to Standard ML, L features an exchange operation on reference
cells:

val exchange : ’a ref * ’a -> ’a

exchange atomically combines access and assignment. In combination with
promises and futures, atomic exchange forms the basis for thread-safe pro-
gramming. This is illustrated by examples in Section 2.4.

2.2 The Module Language

L inherits Standard ML’s expressive module system: A structure is a collec-
tion of named values and types—the module language equivalent of core
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language records. Signatures are types of structures. Every structure has
an implicit principal signature. Structures can be coerced to an explicitly
annotated signature; the annotated signature must match the structure’s
principal signature. The annotated signature may be more specific, which
allows to hide structure members, and, more importantly, allows for type
abstraction: While the principal signature states the representations of all
the types defined in the structure, the annotated signature can hide the ac-
tual definition of a type. The definition of abstract types in L relies entirely
on this mechanism.

Structures can be computed by functors, functions taking a structure as ar-
gument and returning a new structure. In contrast to Standard ML, L allows
for functors to be part of structures.

Laziness in the Module Language. Similarly to how the core syntax lazy e
denotes lazy evaluation of an expression e, the module language has syntax
for lazy functor application: given a functor F and a structure X, lazy F X
returns a lazy structure that will be evaluated only once one of its items is
requested.

2.3 Packages

The ultimate goal of L is to support dynamic exchange of data in connected
systems. This requires, by nature, dynamic typing, since the underlying
media (disk files and network channels) are untyped1. This is why L has
support for packages (also known as dynamics).

A package is a pair of a structure and (the run-time representation of) its sig-
nature. Packages are created and examined by special language constructs.
A pack expression takes a structure and a signature, and returns a package
as an instance of the abstract type package:

pack 〈structure expression〉 : 〈signature expression〉

Correspondingly, the unpack structure expression allows to access a pack-
aged structure:

unpack 〈expression〉 : 〈signature expression〉

unpack takes a core expression, which must evaluate to a package, and
a signature. It checks whether the given signature matches the signature
obtained from the package, and if so, extracts and returns the structure. If
the signatures do not match, a Mismatch exception is raised.

1To be exact, both are singly-typed—as byte arrays and byte vectors, respectively.
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2.4 Examples

This section illustrates some aspects of how to program in L.2 The examples
consist of several implementations of non-thread reentrant locks.

A first possible signature is as follows:

signature LOCK =
sig

type t
val lock : unit -> t
val sync : t -> (’a -> ’b) -> ’a -> ’b

end

Type t is an abstract type. lock creates a new lock that is initially available.
sync takes a lock l, a function f , and an argument x. It acquires the lock l
(waiting until it becomes free), applies f x and frees the lock, even if f
raises an exception. If f does not raise an exception, the result of f x is
returned as the result of sync.

The first implementation of this signature represents locks by a reference
cell containing a boolean, which is true if and only if the lock is free. If the
lock is not free, it performs a busy waiting loop.

structure BusyWaitingLock :> LOCK =
struct

type t = bool ref
fun lock () = ref true
fun sync l f x =

if exchange (l, false) then
(* lock was free and is now acquired *)
(f x handle e =>

(l := true; raise e)
before l := true)

else sync l f x
end

The second implementation of this signature improves on the first by us-
ing promises and futures to block the thread (obviating the need for busy
waiting) until the lock becomes free:

structure Lock :> LOCK =
struct

type t = unit ref
fun lock () = ref ()
fun sync l f x =

let

2Note that additionally, many of the examples from the Alice Tour [Ros04] are valid
for L as well.
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val p = promise ()
in

await (exchange (l, future p));
f x handle e =>

(fulfill (p, ()); raise e)
before fulfill (p, ())

end
end

Note that type t is now a reference cell storing the empty record, instead of
a boolean value. This type would be completely uninteresting in Standard
ML (if one ignores the fact that reference cells provide for token equality),
but in L, this reference cell is actually used to store one of two values: either
the empty record, or a promised future.

A different signature is conceivable for locks that act as a container pro-
tected by a lock, whose contents can only be accessed after acquiring the
lock:

signature LOCKER =
sig

type ’a t
val lock : ’a -> ’a t
val sync : ’a t -> (’a -> ’a * ’b) -> ’b

end

The abstract type ’a t represents a locked container, whose contents is of
type ’a. lock constructs a container given an initial contents. sync, applied
to a locked container l and a function f , acquires the lock, after blocking
until it is free, and applies f to the contents x. If f raises an exception, the
lock is freed and the contents is not modified (except for side-effects f may
have had on x). Otherwise, f returns a new contents x′ and a result y . The
contents is set to x′, the lock is freed, and y is returned as the result of the
application of sync.

The implementation looks similar to Lock, but introduces an extra con-
structor C instead of using the contents itself as a synchronization value.
Waiting for the lock to be free is implicitly performed by the val C x = . . .
construct. If the contents x itself was used as synchronization value, ac-
quiring the lock would cause x to be requested, with unexpected semantics
if x happened to be a future. Using C x as the synchronization value cir-
cumvents this problem.

structure Locker :> LOCKER =
struct

datatype ’a contents = C of ’a
type ’a t = ’a contents ref
fun lock x = ref (C x)
fun sync l f =

let
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val p = promise ()
val C x = exchange (l, future p)
val (x’, result) =

f x handle e =>
(fulfill (p, C x); raise e)

in
fulfill (p, C x’); result

end
end



Chapter 3

The Base Runtime System

This chapter introduces a runtime system for executing L programs. This
serves both to define terminology and to provide a basis for subsequent
chapters to extend. As presented, the runtime system consists of well-
known technology only. Novel features are provided only by the extensions.

Overview. The runtime system for L is based on a virtual machine. A vir-
tual machine defines a computing platform for the execution of compiled
programs. It abstracts from the underlying hardware and operating sys-
tem to provide a standard interface. The following sections describe the
four main constituents of a virtual machine, namely an abstract memory
model (Section 3.1), an execution unit (Section 3.2), an input/output unit
(Section 3.3), and a model for synchronization of concurrent threads (Sec-
tion 3.4). These constituents are depicted in Figure 3.1.

The chapter concludes with how programs are compiled and how to run

Scheduler Worker

Primitives

Execution Unit

Abstract Store I/O Unit

Operating System

Hardware

Figure 3.1: Structure of the Closed Programming System.
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them with the virtual machine (Section 3.5).

3.1 Memory Model

Conventional hardware computer memory represents an unstructured ar-
ray of binary words, and not even distinguishes between addresses and
integer data. In contrast, the virtual machine’s memory model manages
semi-structured data in the form of data graphs in what is called the ab-
stract store.

Data Graphs. Semi-structured data is arranged as a graph of nodes, called
a data graph. Every node is annotated with a symbolic label, represented
as an integer. A node is either a value node, whose value is a sequence
of integers, or a compound node with a finite number of ordered directed
edges to other nodes. Data graphs explicitly represent sharing (multiple
edges to a single node) and can contain cycles. Tack [Tac03] provides design
and implementation considerations for data graphs.

Data graphs abstract both from the underlying hardware and from the data
structures of a particular programming language. This fact makes data
graphs an ideal concept on which to base this work, to make it gener-
ally applicable. High-level programming languages, too, define data graph
representations for their data structures. In the case of the programming
language Oz, for instance, there are two distinct definitions, a high-level
one based on constraints [Smo95], and a lower-level one based on semi-
structured data [Sch98]. Language-level data maps nicely to the constraint-
based representation, which can easily be mapped to the semi-structured
data representation—which in turn can be expressed as the data graphs
introduced above.

Managing Data Graphs in the Abstract Store. The abstract store repre-
sents, at any point in time, a data graph, which evolves as execution of a
program progresses. In this sense, a snapshot of the state of an abstract
store is a data graph. A running program has an environment consisting of
references to nodes in the abstract store. The set of these nodes is called the
root set. Nodes which are no longer reachable from the root set can safely
be removed from the graph. This operation is called garbage collection.
The abstract store defines a simple interface for operating on nodes in the
graph. More precisely, it provides operations for creating nodes, establish-
ing and redirecting edges, querying whether a node is a leaf or a compound,
accessing node values, following edges, and performing garbage collection
(given some root set).
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Figure 3.2: Data Structures for Execution.

3.2 Execution Model

The operational representation of computations and their execution in a
virtual machine makes use of a number of concepts, summarized in this
section. Computations are represented as code, describing data flow and
control flow. Nonlocal control flow is enabled by application of functions,
and by raising and catching exceptions. Computations are executed concur-
rently in a number of threads, managed by a scheduler. Figure 3.2 depicts
the data structures used for execution that are described in the following.

Code and Code Execution. Code is stored as a sequence of instructions1

in a static memory area called the code area, typically separate from the
store. Code is executed by a number of concurrent threads. A thread main-
tains a stack of activation records (also known as frames), each storing an
environment of references to store nodes, and a pointer to an instruction
in the code area, the program counter (PC).

User-defined Functions vs. Primitives. New activation records are created
by applying a function, which is the encapsulation unit for code. First-class
functions are supported by closure nodes in the store. A closure holds a
pair of the code and its environment. Besides user-defined functions, there
is a set of functions called primitives. Primitives implement the built-in op-
erations of the language that cannot directly be expressed by the code’s
instructions, such as operations on built-in data types and calls to the op-
erating system.

1The specific representation of instructions, for instance as bytecode or native machine
code, is of no concern here.
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Exceptions. The virtual machine supports nonlocal control flow in the
form of exception handling. Code can contain instructions to install an
exception handler. Exception handlers are nested. Each exception handler
is associated with the activation record current at the time it is created,
and consists of a program counter pointing to its exception handling code.
Primitives can raise exceptions. When an exception is raised, the worker
discards activation records up to, but not including the activation record
associated with the innermost exception handler. Execution of instructions
is then resumed from the handler’s program counter.

Thread Scheduling. Threads are managed by the scheduler. The sched-
uler maintains a pool of threads. When the scheduler becomes active, it
fetches a thread from its pool and passes it to the worker. The worker ob-
tains the program counter from the topmost activation record and starts to
fetch instructions sequentially from the code area, to decode and execute
them, which can cause activation records to be created (pushed) or dis-
carded (popped), or threads to be created and entered into the scheduler’s
thread pool.

Status Register. Once a preemption condition is signaled, the worker must
return control to the scheduler. The worker periodically checks for pre-
emption conditions by testing the status register, which is a vector of flags.
When a processing unit of the virtual machine needs processing time, it sets
its associated flag in the status register. Each time the scheduler re-obtains
control from the worker, it dispatches to the querying unit(s). For example,
the store can signal that it needs a garbage collection lest available memory
not become low; this is called synchronous garbage collection (as opposed
to asynchronous garbage collection) and simplifies implementation as the
root set needs only to be known at synchronization points defined by the
worker. Another flag in the status register is periodically set by a timer
to implement fair preemptive scheduling—thread execution is interrupted
after a given time slice.

3.3 Input/Output Model

The input/output subsystem provides for interaction with files, pipes, and
sockets. Reading from and writing to pipes and sockets may not always be
performed immediately due to data or reader unavailability. Typically, oper-
ating systems provide for non-blocking input/output operations: Instead of
waiting until a read or write operation can actually be performed, a process
can inquire whether such an operation would immediately succeed. Concur-
rent virtual machines make use of this facility to avoid blocking the whole
virtual machine just because a single thread has to wait for input/output:
During this time, other runnable threads can be executed. The scheduler
periodically polls pipes and sockets that threads block on, to see whether
they are available and to eventually make threads runnable again.
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Figure 3.3: Thread States and Transitions.

Thread States. At this point, all states a thread can be in have been dis-
cussed. They are depicted in Figure 3.3: A thread is runnable if it resides
in the scheduler’s thread pool. The thread that is currently being executed
by the worker is running. A thread that is waiting until an input/output
operation can be performed is blocked. When the worker has popped the
last activation record from a thread’s stack, the thread is terminated.

3.4 Concurrent Synchronization

Concurrent threads need to communicate and synchronize. All threads ac-
cess the same store and thus can trivially share data. For the purpose of
synchronization, the store has a built-in notion of future nodes. An imple-
mentation of future nodes has been described by Mehl [Meh99].

Future nodes are placeholders for not-yet-computed values. To eliminate
a future node means to replace it by its value. Conceptually, the future
node is removed from the graph; in the implementation, the future node
becomes transparent by having it point to the value it has been replaced
with: All operations on a future node are instead performed on the value it
has been replaced with.

Types of Futures. There are three kinds of future nodes. (1) A promised
future node carries a queue of threads. When a thread requires the value
of a promised future node, the worker enqueues the thread and returns
control to the scheduler. A special primitive exists to explicitly eliminate a
promised future node; in this case, the enqueued threads are appended (for
fairness) to the scheduler’s thread pool. (2) A failed value represents an un-
usable value and contains an exception. When a thread requires the value of
a failed value, the contained exception is immediately raised in that thread.
(3) A lazy future node holds a reference to a closure. When a thread requires
the value of a lazy future node, the lazy future node becomes a promised
future node whose queue contains the current thread, and a new thread
is created with two activation records. The topmost activation record runs
the closure, while the deeper activation record eliminates the new promised
future node. On success, the promised future node is replaced by the value
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returned by the closure; on an exception, the promised future node is re-
placed by a failed value.

3.5 Compiling and Running Code

The virtual machine cannot execute L programs directly. Instead, an of-
fline compiler translates L programs into an untyped intermediate language,
called LI in the following. Compilation proceeds as follows:

• Type definitions are translated into value declarations that bind type
identifiers to term representations of the type. This makes it possible
to perform dynamic type-checks requires by packages.

• Other than that, types are discarded after elaboration. Like Standard
ML, L has the property that (apart from creation and inspection of
packages) types are unnecessary for execution; this is also called type
erasure semantics.

• Structures are translated to records: Identifiers bound in structures
become record labels, and the value each identifier is bound to be-
comes the value of the record field.

• Signature coercion prunes record fields that are not part of the signa-
ture.2

• Functor definitions are translated to function definitions. Functor ar-
gument structures become function argument records, and the struc-
ture computed by the functor becomes the return record value of the
function.

• Records are translated to tuples: First, records are normalized by sort-
ing fields according to a lexicographic ordering of the labels, then la-
bels are discarded. This is possible because for every record selection,
the set of labels of the selected record is fully statically known. Thus,
the field can be selected by its integer index.

• Function definitions are translated to an instruction sequence that cre-
ates closure nodes.

• Tuples and vectors are represented as compound nodes in the ab-
stract store. Constructed values are represented as pairs of the con-
structor index and the constructor argument.

LI is very similar to the intermediate language defined for Alice [Ros02].
Compilation of L into LI is very similar to the usual operation of compilers
of Standard ML.

2Note that functor arguments and result structures are also subject to signature coer-
cion. In other words, signature coercion performs a recursive representation change.
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Execution. A compiled LI program can be placed in a file that consists
of an instruction stream, in which references to primitives are symbolic.
The virtual machine is started with an argument giving the name of a file
containing a compiled program. The code area is initialized with the in-
structions from the file, resolving references to primitives. The virtual ma-
chine creates a single thread with a single activation record, whose program
counter is the address of the first instruction in the code area. The thread is
added to the thread pool and control is delegated to the scheduler, thereby
executing the program.

Termination. The virtual machine terminates in either of the following
cases:

• An exception is raised in a thread that has no exception handler in-
stalled. The virtual machine reports the exception and terminates with
an error code.

• No thread is runnable and no thread is blocked on input or output.
(Note that threads blocked on futures are not counted.) In this case,
execution is stuck: nothing could make a thread runnable again. The
virtual machine terminates with a success code.
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Chapter 4

The Design Space of Pickling

Pickling is an operation that takes a root node of a data graph (as defined
in Section 3.1) as argument, and produces a linearized representation from
it, called a pickle, which is just a byte sequence. Unpickling is the converse
operation: From a pickle, unpickling recreates in an abstract store (possibly
in a different process, on a different machine, on a different computing
platform) a clone of the original data graph. A clone of a data graph G is
a data graph G′ such that G and G′ are isomorphic and have no nodes in
common.

Pickling enables a computation process to effortlessly store a clone of a
live data structure out-of-process, or to transport it to a computation in an-
other process. A pickle both describes a value and specifies its type. This
means that pickles allow to define file formats and messages in a commu-
nication protocol by programming language types. If pickles can contain
first-class functions, then even mobile code and dynamic libraries can be
stored as pickles. This is heavily made use of by component deployment in
Chapter 10 and distribution in Chapter 11.

Goals. This chapter spans the design space for pickling and derives a novel
classification for pickling mechanisms. Ultimately, the goal is to design a
pickling mechanism suitable as a foundation for open programming in L,
with the following properties:

A Principled Approach. The literature widely seems to regard pickling as
a simple mechanism. A closer look, however, reveals a number of
interesting issues, such as bottom-up versus top-down pickling and
unpickling. This work takes a principled approach to identify and
discuss these issues.

Platform-independence. If general data exchange is to be based on pick-
ling, then pickles need to be platform-independent. In an abstract
store, in contrast, data representation emphasizes efficiency. This
leads to the distinction between the external and internal represen-

29
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tations of data structures, and raises the question of how to convert
between them.

Resource Access Security. Data structures in the store can contain refer-
ences to resources pertinent to the current process. This raises two is-
sues: Resource references could possibly not be interpreted meaning-
fully in other processes; and implicit creation of resource references
through unpickling may introduce security problems. Resources need
to be recognized and disallowed in pickles.

Pickling of Code. L is a higher-order programming language, which allow
functions as first-class values in data structures. A natural conse-
quence is that pickles need to be able to describe data structures with
first-class functions, including their code (the function definition it-
self, a description of the computation).

Support for Futures. L programs compute with futures (see Sections 2.1.5
and 2.1.6). As described in Section 3.4, futures are represented in the
store by special types of nodes. The pickler must be able to cope with
these nodes.

Concurrent Pickling. Concurrent systems with pickling present the poten-
tial pitfall that pickling may be traversing a data structure that is being
mutated. To avoid producing unusable pickles, a requirement is that
a pickle must always correspond to a consistent snapshot of the store
at some point in time.

This work is the first to address all of these problems.

Overview. Many programming systems offer some form of pickling, which
also goes by the names linearization, serialization, marshaling, and flatten-
ing. Section 4.1 summarizes related work with respect to the presented
goals. The remainder of the chapter derives the possible design choices that
can be made when designing a new pickling mechanism, resulting in a novel
classification for pickling mechanisms. Section 4.2 presents an overview
of the classification. The subsequent sections then discuss the classifica-
tion’s dimensions in detail. This culminates in founded design decisions,
presented in Section 4.11, for a pickling mechanism for L that is suited to
fulfill the above goals.

4.1 Related Work

This section reviews existing approaches to pickling. This section starts
out with a presentation of the first systems that feature pickling, roughly
in chronological order. The first approach to integrate pickling into pro-
gramming systems [HL82], developed in the context of CLU, already con-
tains most of the essential ideas. Subsequent publications on pickling con-
tribute comparatively small insights on pickling. Therefore, after the pio-



4.1. Related Work 31

neering approaches, only the ideas subsequent approaches contribute are
discussed.

The term pickling was coined by Birrell et al. [BJW87] in the context of effi-
cient small databases.

4.1.1 Value Transmission in CLU

Herlihy and Liskov were the first to publish a pickling mechanism for a
programming language [HL82]. The context of their work is CLU [LZ74], a
procedural language derived from Pascal that emphasizes the definition of
abstract data types. They define a transmissibility property on types: All the
primitive types are transmissible, and abstract data types are transmissible
if they define operations for converting between the internal and external
representations of values of the type as follows:

x

t

encode

t′

x

decode

Module A Module B

XT$transmit

Converting a value of an abstract data type to an external representation
means reducing it to a representation using only transmissible types. This
representation will be marked as being an instance of a specific abstract
data type in the external representation. Therewith Herlihy and Liskov
propose the first customization mechanism for pickling, and hint at cor-
rectness criteria for pairs of externalization and internalization functions.
Externalization functions explicitly decide which values shall be tested for
sharing. The linearized form they describe amounts to a top-down descrip-
tion of the data structure.

4.1.2 Modula-3 Pickling

Modula-3 [DEC99], an object-oriented language descended from Modula,
features a pickling mechanism [BNOW95] clearly inspired from CLU’s, but
retargeted to an object-oriented language. Its design aims for simplicity.
Sharing preservation and cyclic data structures are supported. Source doc-
umentation [DEC94] claims that pickles are platform-independent, but this
does not mean that a pickle can be read back by any Modula-3 application:
Pickles are parametric in the bit sizes of primitives types, which are not
prescribed by the pickle format. An attempt to read a pickle into a process
whose ordinal types have a smaller size than that required by the pickle
causes an exception.
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The behavior of pickling can be influenced in several ways. By default, all
data structures (in particular including object state) are cloned. Values of
untraced references, pointers to data allocated outside the Modula-3 heap,
are not included in pickles; they receive the value nil upon unpickling.
The pickling and unpickling classes allow their methods for reading and
writing objects to be overridden. Additionally, handlers may be registered
for specific types. While the CLU approach completely separates the issues
of customization and pickle format, Modula-3 entangles the two.

Types are represented in the pickle as fingerprints, that is, hash values com-
puted over the type definition. The language’s definition of type equivalence
carries over to fingerprints. Types of unpickled values must be defined in
the running system in order for unpickling to succeed.

Procedures are stored in pickles as pairs of name and type. In other words,
they are pickled by reference and not by value. Upon unpickling, a separate
mechanism is used to locate the implementations of referenced procedures,
via the given name and type.

According to Nelson [Nel91, Page 80], who describes an older version of
Modula-3’s pickling module, the pickler performs a depth-first search to
collect the information to store in a pickle. Pickles as described by Nelson
depend on the machine architecture and use the same layout as the garbage
collector. Therefore, unpickling amounts to reading the pickle as an image
and adjusting the pointers contained therein.

4.1.3 Java Object Serialization

Java [GJS00] is an object-oriented language inspired from C++ [Str00], but
fully type-safe and with automatic memory management. Java’s Object
Serialization [RWW96, Sun01] is a direct descendant of Modula-3 pickling
and adds only few ideas to it. In particular, its designers valued type-
safety more than efficiency, making use of the fact that store nodes are
fully self-describing. This resulted in a body of work trying to improve ef-
ficiency [PH00, BP01]. Java pickling is implemented in Java, with unsafe
reflection primitives to allow access to private object fields and methods.

Java separates serializing of object state (pickling) from the transmission of
stateless computations (class files): to interpret a given pickle, the virtual
machine has to obtain the referenced classes out of band.

4.1.4 .NET Serialization

A similar approach to Java’s object serialization is taken in Microsoft’s .NET
Framework [Mic03a]. The .NET runtime, called the Common Language In-
frastructure [TC301b], is not tied to a single language, but commits to an
abstract store that represents objects as instances of fully-known classes.
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.NET’s pickling [Mic03d] is superior to Java’s in that it factors customiza-
tion and pickle format, up to providing a set of pickle formats (binary, XML,
and SOAP [GHM+03]) and allowing new formats to be defined by users. Cus-
tomization methods for pickling return a description of the object they
are called on as semi-structured data (as a pair of a class name and a set of
name-value-pairs). Unfortunately, the pickling and unpickling processes are
not specified in detail; for instance, it is unclear in what order user-defined
delayed object initialization callbacks are run after unpickling.

Pickling and unpickling are, like in Java, implemented in a high-level lan-
guage (in this case, C# [TC301a]), and use reflection to access private object
state. Language-level security in the sense of maintaining encapsulation of
private state is achieved by introducing an explicit serialization permission:
Code that calls a pickling or unpickling operation must have the serializa-
tion permission.

4.1.5 Standard ML of New Jersey

Standard ML of New Jersey (SML/NJ) [SML02] is a native-code implementation
of the non-pure functional language Standard ML [MTHM97]. Its structure
Unsafe provides operations blastWrite and blastRead that respectively
perform pickling and unpickling, with next to no documentation. As the
structure name suggests, these operations are unsafe in that they do not
perform type-checking upon unpickling: behavior is undefined if the types
do not match. The operations clone state and maintain sharing and cycles.
An attempt to pickle a first-class function or a resource (such as a reference
to an open file) leads to termination of the process.

Pickling has originally been added to SML/NJ for the sake of storing static
environments in compilation images [AM94, Section 4]. From the start, pick-
ling was implemented on top of the garbage collector in order to reuse ex-
isting traversal algorithms. As a consequence, nodes are enumerated in
breadth-first order. The idea is to start a garbage collection with a root set
consisting only of the root node, copying the data structure in a fresh mem-
ory area (or semi-space), adjusting pointers to be relative offsets to the start
of the memory area, and writing out the memory area to disk.

4.1.6 Objective Caml

The functional and object-oriented language Objective Caml [INR02a] (also
known as O’Caml) from the ML family of languages comes with a pickling
mechanism in its standard library [INR02c], called module Marshal. The
only source of information about its properties are the sparse online doc-
umentation and the freely available source. The pickler supports all basic
and constructed types except for objects, which cannot be pickled. Code
is pickled as a pointer into the address space of the pickling process. This
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means that pickling of code is not platform-independent; in fact, it does
not even allow for recompilation on the same platform. Code consistency
is checked by means of an MD5 digest [Riv92] computed over the entire
code area. Lazy suspensions are pickled by pickling the unevaluated ex-
pression itself. The pickler recognizes abstract values from their memory
representation and disallows them in pickles. Abstract values are used for
instance for handles to dynamically linked C primitives; in other words,
pickling is well-defined in this case. Customization is only supported at a
low level: types defined using the C foreign function interface carry user-
defined pickling and unpickling operations. Values of a user-defined type
are identified in pickles by their type name. The type of the pickled value
is not represented in the pickle; unpickling is unsafe in that it just assumes
that the types match.

4.1.7 G’Caml

G’Caml [INR02b] extends O’Caml with extensional polymorphism. Furuse
and Weis [FW00] describes a pickling mechanism for G’Caml. The main
concern is type safety of representation types: Types are reduced to MD5
fingerprints computed over the normalized type. Normalization means that
sum and product types (that is, algebraic data types and records) are sorted
by their labels, and the names and labels are removed. The intent is to be
robust against modifications of type definitions. For instance, the following
types are equivalent after normalization:

type ’a tree = type ’a arbre =
| Leaf of ’a | Feuille of ’a
| Branch of ’a tree list | Branche of ’a arbre list

Type abstraction is not supported. Type fingerprints are used exclusively to
verify upon unpickling that the pickled value has the same representation
as the type used to read it back. Type fingerprint and value are stored
sequentially in pickles; their consistency is assumed. Pickling of functions
is not supported. The pickle format is not described, but an example [FW00]
suggests that it is based on a depth-first search with a preorder enumeration
of nodes.

4.1.8 Python Pickling and Marshaling

The object-oriented scripting language Python [Pyt05] has three picklers,
called pickle, cPickle, and marshal, unpublished but for the online doc-
umentation and freely available source. pickle and cPickle use the same
pickle format, support sharing detection and cyclic data structures, and
pickle code by reference as pairs of module name and symbolic class name.
pickle and cPickle differ in that pickle is implemented in Python and is
subclassable to allow for customization, and cPickle is implemented in C
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(hence the name) and does not support customization, but is claimed to
be three orders of magnitude faster. These picklers are the only picklers
known to be based upon a depth-first-search with postorder enumeration
of nodes. Pickles are bytecoded programs and unpickling amounts to inter-
preting the program.

The marshal pickler is completely separate from the first two. It is used to
pickle compiled Python programs, which are represented as Python objects.
marshal does not maintain sharing nor support cyclic data structures as
these do not occur in Python code. The pickles produced by marshal are
not portable (that is, platform-independent). Different implementations of
Python have different code representations.

4.1.9 Clean Dynamic Input/Output

Clean [Sof04] is a lazy purely functional programming language with dy-
namics. A dynamic is a pair of a value and its type, and can be decon-
structed by a typecase construct. Clean features file input/output opera-
tions for dynamics [VP02]. Any dynamic can be written to a file, including
higher-order functions. Lazy expressions are stored as unevaluated expres-
sions. Resources cannot be pickled since they are based on unique types,
and unique types are disallowed in dynamics.

Type definitions are not stored in the file with the dynamic, but are stored as
a reference into a global repository. An early account mentions that higher-
order pickling was planned for Clean [Pil96], but this was later solved by
representing function definitions as references into the repository [VP02]:
The repository contains native code images, so dynamics on files are not
platform-independent. Repositories are managed using special commands
that exist outside the programming language.

Loading of dynamics is lazy, and is separated into on-demand loading of
the type (for matching in the typecase construct) and the value, given that
the types match. Nested dynamics in dynamics that already reside on files
are stored as references to the other files, which greatly increases complex-
ity of the design and implementation. The paper does not give the rationale
for this approach, and it remains unclear what practical problems it is sup-
posed to solve.

4.2 Overview of the Classification

The discussion of related work in the previous section alludes to the broad
design space that exists for pickling. Understanding the design space is an
essential precondition for founded design decisions when introducing pick-
ling into a programming language and system. This section therefore tries
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Dimensions

High Level: Design

Types

Used by the Mechanism

Used for Type-Checking

Portability and Platform-independence

Treatment of Specific Data Structures

Customization

Low Level: Implementation

Level of Implementation

Pickling and Unpickling Metaphors

Representing Sharing in Pickles

Figure 4.1: Dimensions of the Pickling Design Space.

to capture this design space in the form of a novel classification for pick-
ling mechanisms. While the preceding presentation of related work is orga-
nized by system, this section takes the complementary view of examining
features of pickling mechanisms and is structured by feature. The follow-
ing shall present an overview of the dimensions the classification consists
of, depicted in Figure 4.1.

Types Used by the Mechanism (Section 4.3). This item is concerned with
the type information that the mechanism uses for the directing traver-
sal of a graph in the store, and for interpreting the contents of a pickle.

Types Used for Type-Checking (Section 4.4). Type-checking upon unpick-
ling can verify that the pickle contents matches expectations.

Portability and Platform-independence (Section 4.5). This item describes
to what degree pickles are portable. At the same time, this raises
the question whether there the syntax and semantics of pickles are
defined by an open specification.

Treatment of Non-term Data (Section 4.6). Nodes representing functions,
resources, or threads have to be treated specially. They may or may
not be picklable, and if they are, there are several possibilities for how
they are pickled.

Customization (Section 4.7). The next question is whether and how the
pickling process can be customized to implement user-defined behav-
ior for specific data structures.

Level of Implementation (Section 4.8). One question to ask is at what level
to implement the pickling operations themselves: either in the high-
level language itself, or as a service provided at a lower level by the
runtime.
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Pickling and Unpickling Metaphors (Section 4.9). There is a choice of the
mechanism to use to perform the traversal. This is similar to the
choice of an algorithm for a garbage collector: It either operates as a
depth-first search or as a breadth-first search.

Sharing in Pickles (Section 4.10). This concerns the representation, if any,
of sharing and cyclic data structures in pickles.

Related work is classified in tabular fashion according to the above criteria.
The tables also contain entries for Mozart and Alice, which form the context
of this work. The pickling mechanism for L has the same properties as Alice,
as will be discussed in Section 4.11.

4.3 Types Used by the Mechanism

Pickling has to interpret every node in the graph to be pickled, and has to
be able to descend into child nodes. This requires some type information
for each node. The first question therefore is how type information is made
available.

Type-directed Pickling. One possibility is to define the pickling operation
as a function of two arguments, a (pointer to a) node and (a repre-
sentation of) its type. The node is interpreted according to the type,
and the type is deconstructed in parallel with the node to recursively
invoke the pickling operation with a constituent node and the corre-
sponding constituent type. An approach similar to this is for instance
taken by CLU [HL82].

Limitations. Several language features may make this approach dif-
ficult, impractical, or even impossible. First, in a language with poly-
morphism, the types given as arguments to the pickling operation
must be instantiated types, that is, they must not reference any (free)
type variables. One solution to this problem is to execute programs
under intensional polymorphism [HM95], which means that instance
types become explicit additional arguments to polymorphic functions.
Another problem arises in languages with first-class functions: Nodes
referenced through closures cannot be traversed, because the type of
the closure itself cannot in general describe the types of the nodes in
the closure. Yet another problem arises in languages with generative
abstract types: Such types do not describe their implementation, thus
cannot be used for traversal—instead, the corresponding representa-
tion type would be needed. Implementations can alleviate the latter
problem by representing abstract types as pairs of the generated name
and the (hidden) representation type.

Reflection-based Pickling. An alternative, used in most pickling implemen-
tations, is to define the pickling operation to have only the node as its
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argument. The node’s type is discovered by inspecting the node using
reflection primitives. In languages with automatic memory manage-
ment, these primitives are typically easy to provide, as they return the
same information as the garbage collector needs. The limitations of
type-directed pickling therefore do not apply to reflection-based pick-
ling.

Because the pickling and unpickling operations must be the inverse of one
another (pickling an unpickled data structure should produce the same
pickle, modulo renamings), all types represented in store nodes must be
represented in the pickle and vice-versa. Besides making it possible to in-
terpret the contents of a pickle and to reconstruct the value in an abstract
store, types in pickles can serve other purposes:

Integrity Verification of the Pickle. The more type information nodes con-
tain, the more invariants can be checked at run time. At one extreme,
types may be used to verify the internal consistency of a pickle.

Debugging. It may be useful to represent more type information in the
pickle for the purpose of debugging. In other words, more detailed
type information can make a pickle easier to interpret by humans.

Type System Used. The type system used by the mechanism needs not be
the type system used at the language level. Frequently, they are the same.
For instance, in implementations of object-oriented languages with auto-
matic memory management, every object carries a reference to the corre-
sponding class definition, which fully describes the object’s representation.
This is the case for the Java Virtual Machine [LY99] and the object serial-
ization implemented on top of it [RWW96, Sun01]. Also, dynamically-typed
languages such as Oz have to represent full language types at run time,
since they require run-time type checks.

Other systems represent just enough information in the store and in pickles
to make it possible to implement services in the runtime, such as garbage
collection. The graph in the store then needs not be related to the language-
level types at all, only to their representation in the actual implementa-
tion. This kind of store is typically used in implementations of statically-
typed functional languages such as those in the ML family, for instance in
SML/NJ [SML02] or O’Caml [Ler90].

Classification. Table 4.1(a) classifies approaches by whether the traversal
is type-directed or reflection-based, and whether the type system used by
the mechanism is the language’s or a lower-level type system.

4.4 Types Used for Type-Checking

After unpickling, the resulting data structure will be bound to a program
variable. At this point, the type with which the variable is declared (the
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Approach (a) Mechanism (b) Type-checking
Traversal Node Types

CLU type-directed language explicit/full
Modula-3 reflective language implicit
Obliq reflective language dynamic types
Java reflective language implicit
.NET SOAP reflective language implicit
.NET Binary/XML reflective language implicit
O’Caml reflective low-level none
G’Caml reflective low-level explicit/fingerprints
SML/NJ reflective low-level none
Python pickle reflective language dynamic types
Python cPickle reflective language dynamic types
Python marshal reflective language none
Clean unspecified language dynamics/repository
Mozart reflective language dynamic types
Alice reflective low-level dynamics

Table 4.1: Classification of Pickling Mechanisms: Use of Types (a) by the
mechanism, (b) for type-checking.

expected type) and the type of the data structure (the actual type) must
match. There are several approaches to type-checking.

None. The weakest option is to omit type-checking entirely and assume
that the types match. The burden of ensuring type consistency is left
to the programmer. The pickling mechanism from O’Caml’s standard
library takes this approach, with undefined results if the types do not
match.

Dynamic Types. In dynamically-typed languages, variables are not stati-
cally restricted to hold values of given types only. If a variable holds
a value of the wrong type, this will sooner or later result in a run-time
type error (typically an exception or program abort). Here, the burden
of ensuring type consistency is also left to the programmer, but at
least the system provides some help. Python takes this approach.

Explicit Types. If types have a run-time representation (for example, as
terms or fingerprints), the actual type can be explicitly stored in the
pickle—in other words, the pickled value is, at least conceptually, a
pair of a value and its type. The unpickling operation takes the ex-
pected type as an additional argument and performs type-checking
prior to allowing access to the value. An example for this is G’Caml.

Dynamics. Some statically-typed languages provide pairs of a value and its
type as first-class values, called dynamics [ACPP91, ACPR95]. Inspec-
tion of a dynamic is performed using a typecase construct. In other
words, type-checking is decoupled from unpickling. Dynamic file I/O
in Clean takes this approach, by only allowing values of type dynamic
to be pickled.
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Implicit Types. The information present in pickle node types may be made
expressive enough to be sufficient for language-level type-checking.
Types can then be checked not only for the root node of the pickled
value, but for all its constituents. This is the case for Java Object
Serialization, which needs to perform subtyping tests for assigning
values to object fields, since the class definitions used for pickling
need not be the same as those present during unpickling. (Note that
with respect to the root node, Java uses dynamics: The unpickled
value has the type java.lang.Object, which is the top type of all
objects. Before such an object can actually be used, it must be cast
down. Down-casts are checked, that is, they raise an exception if types
are incompatible.)

Representing Types. In the case of explicit types or dynamics, the type
stored with the value can either be physically part of the pickle or it can be
a symbolic name resolved by means of a global type definition repository.
The actual representation of the type can either be a full representation
of a type, or it can be a fingerprint. In either case, the type can either be
the language type including eventual type abstractions or it can be some
representation type.

Table 4.1(b) classifies how existing approaches perform type-checking.

4.5 Portability and Platform-independence

Many approaches in the literature claim to produce portable or platform-
independent pickles. Different authors however use different underlying
definitions for platform-independence. One can identify at least the follow-
ing levels of platform-independence, in increasing order:

None. At the lowest level, pickles are readable only by processes execut-
ing the same compilation image as the process that produced them.
This is, for example, the case for the pickler in the O’Caml standard
library, which includes addresses in the pickle that are valid for the
compilation image only (see the discussion on functions).

Cross-image. At this level, pickles abstract from the actual compilation
image used, but contain hardware or operating system-specific data
(such as exact sizes of integers). Such pickles lose validity when read
on systems with different hardware or operating system properties.
This can be relaxed somewhat:

Cross-architecture. In addition, pickles at this level abstract from hardware
and operating system specifics. They remain tied to a specific imple-
mentation of the programming system however. For example, they
may make assumptions on the layout of data structures that could be
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different on other implementations (such as byte order or representa-
tions of floating point numbers).

Some systems make some effort to achieve cross-platform portabil-
ity, with semantically observable limitations. For instance, Modula-3
includes the assumed integer sizes in the pickle’s header and allows
them to be read on systems with larger integer sizes. Python reads
back 64-bit integers as standard integer objects on 64-bit architec-
tures, but types them as long integers (as opposed to standard inte-
gers) on 32-bit architectures.

Cross-implementation. Here, the specification of the pickling mechanism
includes the full pickle format and semantics, so that other imple-
mentations can actually be developed. Of course, pickles must con-
tain sufficient information so they can be interpreted independently
of implementation considerations.

Java Object Serialization [Sun01] and XDR [Sun87] attain this level.
The .NET/XML and .NET/Binary picklers do not fall into this category
because of the lack of an open specification.

Cross-version. At the highest level, pickles declare the version of the spec-
ification they adhere to. Implementations may be able to read pickles
conforming to several versions of the specification for backward com-
patibility. This is the case for .NET/SOAP.

An orthogonal issue in portability is whether pickles are self-contained.

Self-contained Pickles. Moving the pickle amounts to a simple data trans-
fer (file copy or download) to another system, where it can be inter-
preted.

Global Repository. Pickles can only be interpreted with respect to a given
environment. This environment is typically stored in a global repos-
itory. Clean for example looks up type and function definitions in a
repository. Moving a pickle to a different system requires to move
(parts of) the environment with it and integrate it with the environ-
ment of the target system. Clean provides special commands external
to the programming language to manage pickles and repositories.

Classification. Table 4.2 summarizes the levels of portability provided by
existing approaches, and whether they provide an open specification or not.

4.6 Treatment of Non-term Data

Data structures representing control structures or operating system re-
sources typically cannot be pickled by simple cloning. This section exam-
ines design possibilities for functions (also called procedures, depending
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Approach Portability Open Specification
CLU unspecified no
Modula-3 cross-architecture no
Obliq unspecified no
Java cross-version yes
.NET SOAP cross-version yes
.NET Binary/XML cross-architecture no
O’Caml none no
G’Caml unspecified no
SML/NJ unspecified no
Python pickle cross-version no
Python cPickle cross-version no
Python marshal cross-architecture no
Clean cross-image no
Mozart cross-architecture no
Alice cross-version planned

Table 4.2: Classification of Pickling Mechanisms.

on the language), resources, and threads. Table 4.3 summarizes the design
decisions taken by existing approaches.

4.6.1 Functions

Most language support some form of first-class function, be it through full-
fledged closures, delegates (pairs of object and method pointer), or function
pointers. Because of the wide range of representations of functions and
function definitions (called a function’s code), a number of possible design
choices with respect to pickling have to be considered:

Disallow. The simplest, but least expressive solution is to disallow func-
tions in pickles, in which case the representation of code becomes
irrelevant. This could be enforced statically by the type system. For
instance, Standard ML’s type system provides for equality types, which
do not contain the function types, such that the pickling operation
could require its argument to be of an equality type. Alternatively,
it could be enforced dynamically by having the pickler recognize and
reject nodes that represent functions.

Pickle by Reference. One could allow references to functions to be con-
tained in pickles, but not their code. The function would be repre-
sented as a symbolic reference (which Java does) or an address in the
code address space (as is done in O’Caml). The unpickler would be re-
quired to resolve the reference, either by requiring a function with the
same symbolic name to be present in the system, or by dynamically
locating and linking a component that defines it. O’Caml makes its
symbolic representation safe by including an MD5 digest of the code
of all functions in the system.
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Approach Procedures Resources Threads
CLU ? disallowed N/A
Modula-3 by-reference disallowed disallowed
Obliq by-value disallowed disallowed
Java by-reference disallowed disallowed
.NET SOAP disallowed disallowed disallowed
.NET Binary/XML by-reference disallowed disallowed
O’Caml by-reference disallowed disallowed
G’Caml disallowed unspecified unspecified
SML/NJ disallowed disallowed disallowed
Python pickle disallowed disallowed disallowed
Python cPickle disallowed disallowed disallowed
Python marshal by-value disallowed disallowed
Clean via repository disallowed N/A
Mozart by-value disallowed disallowed
Alice by-value disallowed disallowed

Table 4.3: Classification of Pickling Mechanisms: Supported Data Struc-
tures.

Pickle by Value. Another option is to include in the pickle the function
complete with its code. Obliq [Car95] stores functions in source form;
other options are abstract syntax trees, compiled bytecode, or com-
piled native code.

Link to a Code Repository. Procedures can also be translated to references
into a global code repository upon pickling. This is Clean’s approach.
The unpickling operation is able to dynamically load, if needed, the
code from the repository to resolve the reference.

4.6.2 Resources

Values representing resources of the current process lose their meaning
when interpreted in other processes. For this reason, it makes no sense in
general to include them in pickles. Resources include, for instance, han-
dles to open files or graphical windows, pointers to C functions obtained
through the foreign function interface, or local runtime structures such as
threads. There are several approaches to deal with this problem:

Undefined Behavior. The weakest option is not to handle resources spe-
cially at all. Unpickling a value representing a resource then has unde-
fined behavior. This happens, for example, when loading a heap image
in SML/NJ.

Disallow. Values representing resources can be specially marked. If the
pickler encounters a resource, it fails (for example, with an exception).
This approach is taken, for example, by O’Caml for foreign functions.
Java provides for a language mechanism to declare data structures
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serializable on a per-class basis, and the class library uses this mech-
anism to make all classes representing resources non-picklable.

Re-binding. Some values represent resources that exist in every process. A
mechanism called re-binding replaces such resources upon unpickling
by the local resource of the unpickling process [FPV98].

Using the Type System. At the language level, an effect system or a mon-
adic type system can be used to determine statically whether a value
may contain a resource. The pickling operation would restrict its argu-
ment to be of resource-free type. Clean takes this approach by means
of its unique types.

4.6.3 Threads

Some research has gone into allowing to pickle thread state or first-class
threads [BH00, FPV98]. Unpickling a thread causes creation of a new thread
in the unpickling system, whose state is a clone of the original thread. Ap-
plications include checkpointing, server replication, and thread mobility.

4.7 Customization

Customization is the user-level ability to influence pickling behavior of spe-
cific values. Several levels of support can be identified:

None. It is simplest to not provide any customization mechanism at all.
Implementors of abstract data types are then required to choose a
representation that implicitly produces the required pickling behavior.
Section 6.4 presents ways to deal with the issue.

At the Level of Extensions. Many systems allow users to define their own
low-level data types (typically called extensions) using a foreign func-
tion interface. O’Caml, for instance, allows users to supply pickling
and unpickling operations for extensions implemented in C.

At the Language Level. The most expressive is to enable customization at
the language level. In CLU, implementors of abstract data types can de-
fine operations encode and decode that perform translations between
internal and external representations. Java and .NET programmers can
choose to disallow serialization of their classes entirely, they can spec-
ify that specific fields of the object state are left out upon pickling, and
they can supply replacement objects during pickling (that even may
be of a type unrelated to the original object) that are translated back
during unpickling. Of course, the latter possibility implies that type
compatibility must be explicitly checked again at unpickling time.
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Approach (a) Customization (b) Impl. Level
CLU high-level language/safe
Modula-3 high-level language/unsafe
Obliq none runtime service
Java high-level language/unsafe
.NET SOAP high-level language/unsafe
.NET Binary/XML high-level language/unsafe
O’Caml low-level runtime service
G’Caml none runtime service
SML/NJ none runtime service
Python pickle high-level language/safe
Python cPickle none runtime service
Python marshal none runtime service
Clean none unspecified
Mozart low-level low-level
Alice low-level low-level

Table 4.4: Classification of Pickling Mechanisms: (a) Customization and (b)
Level of Implementation.

Separation of Customization and Pickle Syntax. It is possible either
to couple user-defined translation functions with pickle syntax or to
decouple them. Modula-3 and Java couple the two: translation func-
tions convert between the internal representation and a byte sequence.
In contrast, the two issues are separated in CLU and in .NET. In CLU,
translation functions are free to choose any external representation,
defined in terms of language data structures (that are more primi-
tive than the type to translate). .NET decouples the translation from
the low-level pickling format by defining external representations to
be pairs of a type name and a finite mapping from names to values.
User-defined classes can specify the translation between their state
and this type of external representation, which is then taken to actual
pickle syntax by a class-library provided lower layer (which, by the
way, can also be replaced by the user).

Modal Pickling. As an extension, customization can be made to depend
upon the pickling context. This is called modal pickling. Java, for in-
stance, builds its Remote Method Invocation [WRW96] mechanism on pick-
ling. Object references may however differ in their behavior depending
upon whether they are serialized to a file or whether they are transferred
as an argument to a remote method. One special application of this is to
omit type information from pickles representing remote arguments for effi-
ciency [BP01]. .NET adopts the general solution to allow a context parameter
to be given to the pickling operation, which is then passed to user-defined
translation functions.

Table 4.4(a) summarizes customization facilities as offered by existing ap-
proaches.
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4.8 Level of Implementation

A fundamental decision to make when implementing a pickling mechanism
is at what level in the programming system it operates.

High-level Language Implementation. Pickling can be implemented in the
high-level language itself. This is the case for Modula-3 [BNOW95],
Java [RWW96], .NET [Mic03a], and Python [Pyt05]. This typically re-
quires unsafe inspection and deconstruction primitives for pickling,
and unsafe construction primitives for unpickling. A noteworthy ex-
ception is the dynamically-typed language Python, which defines ev-
erything, including the class of an object, as objects that can be in-
spected in a systematic way.

This approach is problematic in languages with concurrency when the
pickler is defined to clone stateful data structures: With such a pickler,
the snapshot property does not come “for free”, meaning, without
programmer intervention (see Section 6.1). Existing approaches all
seem to disregard the issue, placing the burden on the programmer.

Virtual Machine Service Implementation. The alternative is to implement
the pickler as a virtual machine service. The virtual machine obviously
has access to all representation details of values. This approach is
deemed to have better efficiency, as is illustrated by the fact that low-
level pickling implementations have been proposed for Java [BP01] to
improve its performance, or that Python has a module cPickle that
is a low-level implementation (in C, hence the name) of the module
pickle.

Table 4.4(b) gives an overview of what implementation level is chosen by
which existing approach.

4.9 Pickling and Unpickling Metaphors

Two distinct traversal mechanisms are found in the literature.

Depth-first Search. Implementations of depth-first traversal require either
recursion or an explicitly maintained stack. There are two possibilities
to enumerate nodes: preorder enumeration, which is the approach
taken by most existing mechanisms, or postorder enumeration, which
only seems to be used in Python. Depth-first search is the mechanism
used in most approaches.

Garbage-collector Based. Pickling can use standard garbage-collection al-
gorithms, based on the observation that both perform a traversal of
a graph. This is done, for example, in SML/NJ [AM94], where pickling
amounts to a breadth-first search of the graph using Cheney’s algo-
rithm [Che70, Wil92]. In their case, pickling becomes iterative, with
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a constant-size runtime stack. In contrast, depth-first search needs a
stack linear in (some measure of) the depth of the graph. Conceptu-
ally, unpickling amounts to loading a memory segment and patching
pointers (although it may technically be realized differently), directly
exploiting the fact that abstract stores internally also use a linearized
representation for graphs.

Drawbacks. Using the garbage collector for pickling, or using the
memory layout as pickle format makes design decisions of the imple-
mentation of the store shine through. Not abstracting from memory
layout is likely to limit portability of pickles. In contrast, a graph-
based traversal can be implemented on top of the interface of the
abstract store, and allows for a layered design.

Dual to node enumeration order during pickling is what concept the un-
pickler builds on.

Term Interpretation. The pickle conceptually represents a term built from
a set of constructors (plus some representation for sharing). Unpick-
ling amounts to evaluating the term. This is the canonical approach if
preorder enumeration is used for pickling.

Bytecode Evaluation. The pickle conceptually represents a bytecoded pro-
gram, with concepts such as opcodes, operands, a stack, and local
variable slots. Unpickling amounts to executing the program. This is
the canonical approach if postorder enumeration is used for pickling.

Heap Loading. The pickle uses the same representation as objects in the
heap. Unpickling amounts to loading the pickle contents into a fresh
memory area and relocating the pointers it contains. This is the canon-
ical approach if breadth-first enumeration is used for pickling, but is
also chosen in an early version of Modula-3 [Nel91], which uses pre-
order enumeration for pickling.

The traversal mechanism and unpickling metaphor used by existing ap-
proaches are summarized in Table 4.5(a).

4.10 Representing Sharing in Pickles

It may be important to maintain sharing in pickles for several reasons. Most
importantly, there is a semantic issue: If sharing is not maintained, this
may become visible for nodes that have token equality. When not handling
sharing, cyclic data structures cannot be pickled. Furthermore, there is
the issue of efficiency: In the worst case, pickles can suffer an exponential
growth.

This leads to the question of how to represent sharing in pickles. The usual
way is to logically bind subgraphs to identifiers, and allow references to
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Approach (a) Metaphors (b) Sharing/Announced
Pickling Pickles

CLU preorder term all nodes
Modula-3 preorder heap/term all nodes
Obliq preorder term all nodes
Java preorder term all nodes
.NET SOAP preorder term all nodes
.NET Binary/XML preorder term all nodes
O’Caml stdlib preorder term all nodes
G’Caml Weis preorder term all nodes
SML/NJ breadth-first heap all nodes
Python pickle postorder bytecode all nodes
Python cPickle postorder bytecode all nodes
Python marshal preorder term none
Clean unspecified unspecified ? + external links
Mozart preorder term only shared/no
Alice postorder bytecode only shared/yes

Table 4.5: Classification of Pickling Mechanisms: (a) Metaphors and (b) Shar-
ing.

identifiers instead of node constructors in other places in the pickle.

All Nodes Are Marked. All nodes are considered potentially shared and
are assigned identifiers. The advantage is that pickling can be per-
formed in a single pass. Single-pass pickling however has the disad-
vantage that if the pickle is being sent out to a network at the same
time it is generated, an explicit abort must be sent in the protocol
if an unpicklable data structure is found [BP01]. Furthermore, with
single-pass pickling the mapping from identifiers to nodes typically
must be maintained in a dynamic (enlargeable) array or a hash table
in the unpickler.

Only Shared Nodes Are Marked. This induces the cost of two-pass pick-
ling; the first pass determines which nodes are shared, and the sec-
ond inserts appropriate identifier assignments and identifier refer-
ences into the pickle. If the pickle header explicitly announces how
many identifiers are contained in the pickle, a static array can be used
at unpickling time to reconstruct sharing. Performance is potentially
superior to dynamic arrays.

No Nodes are Marked. The simplest approach is to not deal with sharing
at all, as does Python’s marhsal module. Cyclic data structures then
lead to non-termination (or an abort when memory is exhausted). That
sharing is not maintained is semantically observable in mutable data
structures.

Table 4.5(b) summarizes how existing approaches handle sharing.
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4.11 Summary: Towards a Pickling Mechanism for L

This section decides on the requirements for a pickling mechanism for L,
suited to fulfill the goals defined in the beginning of this chapter. Chapters
5 to 7 develop a design according to these requirements.

Types Used by the Mechanism (Section 4.3). Pickling for L has to be
reflection-based: L is a polymorphic higher-order programming language
with expressive type abstraction facilities, which precludes type-directed
pickling. For general applicability, L is based on a traditional store as
present in many implementations of ML languages (see Section 3.1). As
a consequence, the mechanism shall be based on a lower-level type system.

Types Used for Type-Checking (Section 4.4). L features packages (Sec-
tion 2.3), which are dynamics at the level of the module language. Pickling
can therefore be based on packages (the only data type that can be pick-
led or unpickled is the package), and thereby decouple type-checking from
pickling. Packages can therefore be designed orthogonally. Types can eas-
ily be made picklable, even in an abstraction-safe way, by hashing [LPSW03]
or by choosing a term representation. L will assume a term representation,
which is outside the scope of this work.

Portability and Platform-independence (Section 4.5). A system based on
pickling can only be open if pickles are portable across architectures. For
the language itself to be open, pickles would have to be portable across
implementations. This is a non-goal in the present work.

Treatment of Non-term Data (Section 4.6). Users of a higher-order lan-
guage, in which functions are fully emancipated, would expect functions
to be just as picklable as terms. When pickles are used as messages, they
should be self-contained, which implies that functions should be pickled by
value. Chapters 10 and 11 make heavy use of this property.

Resources are disallowed in pickles. This is an essential prerequisite for
safety and security. Threads are, for simplicity, not supported; captured
components as introduced in Section 9.2.3 provide a high-level solution to
deal with migration and replication of computations.

Customization (Section 4.7). For simplicity, and because of the otherwise
non-trivial implications for type-checking in the light of the foregoing de-
sign decisions, pickling for L shall support customization only at the level
of data structures defined through the foreign function interface. The for-
eign function interface being unsafe anyway, this introduces no new secu-
rity implications. Modal pickling as provided by Java is not needed for L, as
discussed in Chapter 11.
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Level of Implementation (Section 4.8). L is concurrent, and pickling is de-
fined to clone state. Therefore, a high-level language implementation would
not have the snapshot property (see Section 6.1). The pickling mechanism is
therefore implemented as a service provided by the runtime. Since loading
of components and distributed communication are to be based on pickling,
pickling needs to have the efficiency only achievable by a low-level imple-
mentation.

Pickling and Unpickling Metaphors (Section 4.9). Pickling in L enumer-
ates nodes in a depth-first postorder traversal. The metaphor for unpick-
ling is bytecode execution. This approach has the best tradeoff between
pickle sizes as well as pickling and unpickling efficiency [Tac03].

Representing Sharing in Pickles (Section 4.10). Pickles in L only mark
those nodes as shared that actually are shared. Shared nodes are assigned
consecutive integer identifiers starting from zero, and the pickle header
announces the number of assigned identifiers. This makes it possible to
use a static array to reconstruct sharing during unpickling, for improved
efficiency. The extra cost incurred in pickling is small [Tac03].



Chapter 5

Pickling and Unpickling of Terms
with Sharing

Pickling a data graph requires a traversal of the data graph, to produce
a representation of it as a sequence of bytes. This chapter develops a
generic pickling algorithm, restricted to data graphs that represent terms,
that treats all nodes in the same way, and that maintains sharing. This
makes the algorithm very general and applicable to a wide range of pro-
gramming systems. In particular, the presentation does not assume any
specific programming language.

With only few exceptions that are only published as source code, existing
approaches linearize graphs in a top-down fashion. Tack [Tac03] provides
empirical evidence that bottom-up unpickling is superior to top-down un-
pickling in terms of run time efficiency, with an insignificant increase in
pickle size. The presented approach uses the following metaphors to re-
duce the design of a bottom-up mechanism to well-known problems in Com-
puter Science:

• Pickles are bytecoded programs.

• Unpickling amounts to execution of a pickle program.

• Pickling is an application of depth-first search.

Overview. Section 5.1 introduces the data graphs on which the algorithms
operate. Since unpickling can be useful without pickling, whereas the con-
verse is not true, unpickling is developed first, in Section 5.2. A by-product
is the definition of the format of pickles. A pickling algorithm to produce
pickles in this format is then developed in Section 5.3. Section 5.4 concludes
with a summary and description of validating implementations.
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5.1 Data Graphs

As described in Section 3.1, a data graph is composed of nodes, annotated
with labels, and carrying either a value or having a finite number of ordered
directed edges to other nodes. Formally, this leads to the following defini-
tion [Tac03].

Definition 5.1 Given a finite set of constructors con and a set of strings str,
a finite function g is a data graph if and only if:

Ran(g) ⊆ con× (str ]Dom(g)∗)

The elements of Dom(g) are the nodes. Scalar data is represented by nodes
carrying a string value.

Logical View. Logically, edges emanating from nodes can be seen as argu-
ments to the constructor associated with the node. A data graph therefore
corresponds to a (possibly infinite) term. A let rec construct can be added
for the sake of having finite terms represent finite data graphs.

At this level, scalar data needs not be treated specially: Instead, new con-
structors can be used to represent (encode) the string values. For this rea-
son and for a more compact presentation, the following discussion does not
treat scalar nodes in data graphs specially. The developed algorithms and
pickle language could, however, trivially be extended to treat scalar data
more directly and, possibly, more efficiently.

Implementation View. A programming system implements an instantia-
tions of general data graphs. This means that it specifies the sets con (cor-
responding to the labels used by the abstract store, which are typically a fi-
nite subset of the integers) and str (typically as sequences of bytes). A data
graph can be seen as a mapping from addresses to nodes, with n ∈ Dom(g)
the addresses. This is the view taken by the interface of the abstract store.
Depending on the constructor of scalar data, store implementations can
choose optimized representations, such as an unboxed representation.

Non-term Nodes. The data graphs considered in this chapter describe
terms with sharing. For now, assume that the pickler raises an exception
when it encounters a non-term node. The pickler could recognize non-term
nodes by designated label.

Example. Figure 5.1 illustrates the various views of graphs by an example.
Here, con = {a,b, c, d} and str = {a, . . . ,z}∗. (The notation ′x′, ′y′ is used to
stand for a sequence of integer codes representing the characters x and y
in some character set.)
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g = {n0 7→ (a, 〈n1, n2, n3〉),
n1 7→ (b, 〈n1〉),
n2 7→ (c, "xy"),
n3 7→ (d, 〈n0〉)}

(a) Data Graph.

let rec
x1 = a(x2, c(′x′, ′y′), d(x1))
x2 = b(x2)

in x1

(b) Logical View.

c "xy"

a

b d

(c) Graphical Representation.

#0: a 3

#1: #4

#2: #6

#3: #8

#4: b 1

#5: #4

#6: c

#7: "xy"

#8: d 1

#9: #0

(d) Store
Representation.

Figure 5.1: Example: Views of a Data Graph.

5.2 Unpickling

The following sections present algorithms to solve increasingly harder un-
pickling problems: First, the simple case of constructing trees is handled.
This is then extended to cover directed acyclic graphs, in other words, to
be able to establish sharing. The last extension adds support for general
directed graphs, which may contain cycles.

Every step defines a pickle language. Programs in the pickle language, so-
called pickle programs, consist of a sequence of instructions, whose execu-
tion by a pickle interpreter causes construction of a graph.

5.2.1 Constructing Trees

Logically, a tree is just a term constructed recursively by constructor ap-
plications. Evaluation of the term is similar to the evaluation of arithmetic
expressions, for which a well-known compilation technique is to target an
abstract stack machine [ASU86, Section 2.8]. Abstract stack machines are
composed of a value stack (hence the name) and an instruction sequence
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a

b c

d e

n1

n2 n3

n4 n5

(a) A Tree.

cons d 0
cons e 0
cons b 2
cons c 0
cons a 2
eos

(b) Pickle Program.

cons a 2cons b 2 cons c 0cons d 0 cons e 0

n4 n4

n5

n2 n2

n3

n1

(c) Execution States.

Figure 5.2: Example: Constructing a Tree.

to evaluate; instructions consume values from the stack and push values to
the stack.

Tree Pickle Language. Assuming a set 〈constructor〉 of valid constructors,
pickle programs for constructing trees on an abstract stack machine can
thus be defined as follows, in BNF notation:

〈pickle〉 ::= 〈instrs〉 eos
〈instrs〉 ::= 〈instr〉 〈instrs〉

| ε
〈instr〉 ::= cons 〈constructor〉 〈size〉
〈size〉 ::= 〈int〉

The initial state is the empty stack of nodes. The cons instruction takes
as operands a constructor and an integer. It pops as many nodes from the
stack, applies the constructor to them, and pushes the resulting node onto
the stack. This amounts to a bottom-up construction of the tree. The eos
instruction marks the end of the program. It expects a single value on the
stack, which is the root node of the final tree.

Example. Figure 5.2 shows an example tree, a pickle program that con-
structs it, and the sequence of states produced by execution of the pickle
program. Above each state the instruction whose execution produced the
state is given.

5.2.2 Constructing Acyclic Graphs

In contrast to a tree, a directed acyclic graph, or DAG, can express sharing
of subtrees. Pickle programs must be able to construct sharing; unfolding
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a DAG into a tree may be semantically visible (if shared nodes are stateful),
and it may be inefficient (it may cause an exponential blowup).

DAG Pickle Language. The pickle language needs to be extended by a
mechanism that allows to again push nodes onto the stack that have al-
ready been built. Assuming a set 〈var〉 of variables, the pickle language is
extended as follows (+= is used here to stand for addition of new produc-
tion rules to an existing nonterminal):

〈instr〉 += store 〈var〉
| load 〈var〉

The abstract machine is extended by a set of registers, designated by the
variables in 〈var〉. The store instruction takes a variable and stores the
topmost node from the stack in the register designated by the variable. The
stack is not affected, but a subsequent load instruction can now retrieve
the node from the register and push it once more onto the stack.

Example. Figure 5.3 shows an example of a DAG, along with a pickle pro-
gram that constructs it and the execution states produced by the program.
Boxes in the state represent, from left to right, the registers associated with
variables x0 and x1.

5.2.3 Constructing Cyclic Graphs

Unpickling must able to construct general directed graphs. What is still
missing is the possibility to construct graphs with cycles. So far, nodes can
only be constructed once all their children are known—which is not the case
for any node that is part of a cycle. In other words, unpickling needs to first
use a placeholder for some node on the cycle, construct the remainder of
the nodes, then finally replace the placeholder by the actual node.

Pickle Language. Creation and replacement of placeholders is made pos-
sible by addition of two instructions to the pickle language:

〈instr〉 += prom 〈constructor〉 〈size〉 〈var〉
| fulfill 〈var〉 〈size〉

The instruction prom takes a constructor, a size, and a variable. It intro-
duces a placeholder for a node with the given constructor and size, pushes
it to the stack, and stores a reference to it in the register denoted by the
variable. In other words, it promises that the placeholder will once become
a node with the given constructor and size. On the level of the abstract
store, a node with the given constructor and of the given size is allocated
(which is what the constructor and size operands are needed for), but not
initialized—what is logically the placeholder is therefore, on the level of the
store, an incompletely constructed node.
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a

b

c d

e

n1

n2

n3 n4

n5

(a) An Acyclic Graph.

cons c 0
cons e 0
store x0

cons d 1
store x1

cons b 2
load x1

load x0

cons a 3
eos

(b) Pickle Program.

cons c 0 cons e 0 store x0 cons d 1 store x1

n5 n5 n5 n4

n3 n3

n5

n3

n5

n3

n4

n3

n4

cons b 2 load x1 load x0 cons a 3

n5 n4 n5 n4 n5 n4 n5 n4

n2 n2

n4

n2

n4

n5

n1

(c) Execution States.

Figure 5.3: Example: Constructing an Acyclic Graph.

Correspondingly, the instruction fulfill takes a variable and a node count,
retrieves the (uninitialized) node from the register denoted by the variable,
and initializes its child edges by consuming as many nodes from the stack.
(If the store supports a reflective operation that, given a node, returns its
exact number of children, then the node count operand is not needed.)

Example. An example graph containing a cycle is shown in Figure 5.4,
along with a pickle program that constructs it and the execution states
the program produces. Within execution states, the notation n− is used
to denote a node n that has already been allocated, but not yet initialized.
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a

b

c d

n1

n2

n3 n4

(a) A Cyclic Graph.

cons c 0
prom a 2 x0

cons d 1
store x1

cons b 2
load x1

fulfill x0 2
eos
(b) Pickle Program.

cons c 0 prom a 2 x0 cons d 1 store x1

n−1 n−1 n−1 n4

n3 n3

n−1
n3

n4

n3

n4

cons b 2 load x1 fulfill x0 2

n4 n4 n4n−1 n−1 n1

n2 n2

n4

n1

(c) Execution States.

Figure 5.4: Example: Constructing a Cyclic Graph.

5.2.4 Optimizations

As it stands, the pickle interpreter has to manage dynamic data structures
during unpickling: a stack that grows dynamically, and a mapping from
variables to registers that is extended incrementally. With the following
small extension to pickle programs, these data structures can be allocated
statically.

Maximum Stack Height. Abstract interpretation of a pickle program can
determine the maximum height of the stack used during execution. If this
number is announced in the pickle header, the unpickler can allocate a fixed
array to hold the node stack.

Variables and Registers. The variables occurring in pickles can bijectively
be mapped to consecutive integers starting from zero. Obtaining the reg-
ister denoted by a variable then corresponds to indexing an array. If the
number of variables is announced in in the pickle header, the unpickler can
allocate a fixed array to hold the register bank.
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Combined Instructions. Pickle programs can be transformed such that
every store instruction is preceded by a cons instruction. To reduce the
size of pickles, these can be combined in a single instruction. Conceptu-
ally, store becomes be a prefix instruction modifying the subsequent cons
instruction. For symmetry, prom can also become a prefix instruction.

Pickle Language. To summarize, here is the full version of the pickle lan-
guage, including support for general directed graphs and the above opti-
mizations:

〈pickle〉 ::= 〈header〉 〈instrs〉 eos
〈header〉 ::= init 〈nstack〉 〈nvars〉
〈nstack〉 ::= 〈int〉
〈nvars〉 ::= 〈int〉
〈instrs〉 ::= 〈instr〉 〈instrs〉

| ε
〈instr〉 ::= 〈cons〉

| store 〈var〉 〈cons〉
| load 〈var〉
| prom 〈var〉 〈cons〉
| fulfill 〈var〉 〈size〉

〈cons〉 | cons 〈constructor〉 〈size〉
〈size〉 ::= 〈int〉
〈var〉 ::= 〈int〉

5.3 Pickling

The previous section has solved the problem of constructing general di-
rected graphs and has defined a pickle language able to describe such con-
structions. This section now addresses the problem of generating a pickle
program from a data graph. The problem is addressed in several steps.
First, the easier problem of producing a pickle program from a tree-shaped
data graph is tackled. The construction of pickle programs from general
graphs is then reduced to (an extension of) the simpler approach.

5.3.1 From Trees to Pickle Programs

The construction of a pickle program from a tree is very similar to the
compilation of an expression tree to a program for an abstract stack ma-
chine [ASU86, Section 2.8]. A data tree is like an operator tree, where the
operators may be n-ary and correspond to the nodes’ constructors. Com-
pilation consists of performing a depth-first traversal of the tree and enu-
merating nodes in postorder as cons instructions.
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a

b c

d

tree

up

down

cross

Figure 5.5: Example: A Graph with All Kinds of Edges.

5.3.2 From Graphs to Pickle Trees

The algorithm for pickling graphs is based on a classical depth-first search
for graph traversal [Tar72]. The idea is to construct a corresponding tree
during a depth-first search of the graph, and to introduce special nodes
to represent the structural information that would not be present in the
tree. Sedgewick classifies graph edges according to how they are visited in
a depth-first search—into tree edges, up edges (from nodes to ancestors),
down edges (from nodes to indirect descendants), and cross edges (from
nodes to nodes that are neither ancestors nor descendants) [Sed83]. The
various kinds of edges are illustrated in Figure 5.5. According to this ter-
minology, construction of a pickle tree introduces special nodes exactly to
represent the non-tree edges. In other words, sharing is made explicit.

Pickle Trees. A node n ∈ Dom(g) is called a shared node if it has more
than one predecessor, or if it is the root node and has a predecessor. Let var
be a set of variables, of which one is assigned to each shared node. Again
ignoring scalar nodes for the reasons stated above, pickle trees correspond
to the tree-shaped graphs g′ with the following definition:

Ran(g′) ⊆ con×Dom(g′)∗ ] var × (con×Dom(g′)∗)] var

Expressed informally, pickle trees can contain two kinds of nodes in addi-
tion to the nodes n representable in a data graph: labeled nodes (x,n) and
reference nodes x for x ∈ var .

Constructing Pickle Trees. A pickle tree is obtained from a data graph by
transforming all edges leading to shared nodes as follows. Let n ∈ Dom(g)
be a shared node. Assign variable x ∈ var to n. Replace all edges but one
that lead to n by edges that lead to new reference nodes x, and replace the
remaining edge by an edge leading to the new labeled node (x,n). Iterate
until the graph contains no more shared nodes. The algorithm is shown in
Figure 5.6.

Note that a single graph can have many pickle trees with distinct structure,
but they all have the same set of nodes, modulo variable renaming.
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input
g, a data graph
var , a set of variables

effect
modifies g to become a pickle tree

begin
while there is some shared node n in g:

let x be a variable from var ;
let var := var \ {x};
let n′ be a new labeled node (x,n);
let n′′ be a node from g whose edge i leads to n;
replace edge i in n′′ by an edge to n′;
while g contains a node n′′ 6= n′ with an edge i that leads to n:

let n′′′ be a new reference node x;
replace edge i in n′′ by an edge to n′′′

end

Figure 5.6: Algorithm for Constructing a Pickle Tree.

a

b

c d

(a) Data Graph.

a

b

c d

x0 x1

x0 :=

=: x1

(b) Pickle Tree.

Figure 5.7: Example: Constructing a Pickle Tree.

Figure 5.7 shows a data graph and a pickle tree constructed from it. The
graphical representation uses x := · to indicate labeled nodes, and x for
reference nodes.

5.3.3 From Pickle Trees to Pickle Programs

Given a pickle tree, the next task is to construct a pickle program from
it. This solution is again reduced to the compilation of expressions for a
stack machine, as was the case for ordinary trees. The difference lies in the
pickle program instructions generated for the newly introduced labeled and
reference nodes.

Compilation of a pickle tree into a pickle program thus proceeds as follows.
First, a linearized form as a sequence of nodes is produced by a postorder
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traversal of the pickle tree. Then, the pickler iterates through the nodes in
the linearized form, generating code for each node according to the follow-
ing cases:

Data Nodes. If the current node is a data node n, emit a cons f m instruc-
tion, where f is the constructor of n and m is the number of children
of n.

Labeled Nodes. If the current node is a labeled node (x,n):

Store. If this is the first occurrence of x in the linearized form, emit a
store x prefix followed by the code for n.

Fulfill. If this is not the first occurrence of x in the linearized form,
emit a fulfill x m instruction, where m is the number of chil-
dren of n.

Reference Nodes. If the current node is a reference node x, and the corre-
sponding labeled node is (x,n):

Promise. If this is the first occurrence of x in the linearized form,
emit a prom x prefix followed by the code for n.

Load. If this is not the first occurrence of x in the linearized form,
emit a load x instruction.

5.3.4 Efficient Implementation

The preceding presentation gave a high-level description of the transforma-
tions performed by the pickler. This section discusses how to obtain an
efficient algorithm for pickling.

Detecting Sharing. To construct a pickle tree, an algorithm must detect
shared nodes. There are two fundamentally different approaches: main-
taining a set of visited nodes, or marking visited nodes directly in their
internal representation. In a garbage-collected store, marking of nodes can
be implemented with no overhead, since the marking mechanisms used by
the garbage collector can be reused (of course, after pickling is finished,
marking has to be undone). The disadvantage of marking is that it pro-
hibits concurrent pickling. This is not a problem when maintaining a set
of visited nodes. Actually, the set approach has another advantage: Ad-
ditional bookkeeping information can be associated with visited nodes. In
other words, an incrementally extended mapping from nodes to bookkeep-
ing information is maintained instead of a set of nodes. Such a mapping
can easily be implemented as a hash table, using the address of the node in
the store as hash function.

Interleaving Pickle Tree Construction and Linearization. The most effi-
cient solution to constructing a pickle tree is a depth-first search of the
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graph. By the observation that a depth-first search of a pickle tree can be
used to produce a postorder enumeration of nodes, linearization can be in-
terleaved with pickle tree construction. As a consequence, the pickle tree
never needs actually be constructed in memory. The added difficulty is that
nodes are visited and linearized before their sharing status has been de-
termined. The solution is to record bookkeeping information about visited
nodes: When a node is visited for the first time, the offset in the linearized
form is recorded. If a node is encountered for the second time, a variable
is assigned to the node and recorded in the bookkeeping information, the
linearized form is updated to replace the node by a labeled node, and a ref-
erence node is appended to the linearized form. Every subsequent visit of
the node results in a new reference node being produced.

Interleaving Pickle Program Generation and Linearization. Explicit con-
struction of the linearized form can be done away with by directly gener-
ating the pickle program instructions into a buffer instead. The problem is
that nodes cannot be backpatched into labeled nodes (this would require
moving parts of the buffer to accommodate the extra prefix instruction, in
the worst case resulting in quadratic cost). The solution is to maintain an
ordered list of pickle program offsets where a store instruction prefix has
to be inserted. Only when writing out the pickle program buffer are the
store instruction prefixes actually inserted.

Adding the Pickle Program Header. When the buffer is written out, the
init instruction has to be prepended. At this point, the number of variables
used in the pickle is known. What still needs to be computed is the stack
height required for unpickling. This can be computed from the pickle tree:
If n is a pickle tree node, the required stack height is given by the function

height(n) =


1

if n is a leaf node
maxmi=0

(
height(ni)+ i

)
if n has children 〈n0, . . . , nm〉

Right-to-left Versus Left-to-Right Linearization. Some languages feature
right-recursive data structures, such as Standard ML lists. The preceding
discussion assumed left-to-right construction of data structures. According
to the above stack height function, right-recursive data structures require
a larger stack. It may therefore make sense to partition the set of con-
structors into two sets, one with the constructors that tend to be used for
left-recursive or balanced data structures, and another with the construc-
tors that tend to be used for right-recursive data structures. For the second
set of constructors, right-to-left construction could then be used.
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5.4 Summary

The pickling mechanism presented above is implemented in the Seam vir-
tual machine for Alice. Because of its regularity and genericity, it requires
only 1650 lines of C++ code. A first version of the pickler was top-down
instead of bottom-up. It was roughly equivalent in size, but the efficiency
of bottom-up pickling proved to be superior [Tac03].

An ancestor of Seam’s pickling is Mozart’s pickler, now in its third gen-
eration, which is complex in comparison: Pickling always performs two
traversals, implemented as instances of an abstract graph traversal algo-
rithm that requires overriding 22 type-specific processing methods. Each
node type has its own traversal routine, of which some iterate over their
children left-to-right, others right-to-left. The macros for handling sharing
need to be expanded on average 13 times per traversal implementation.
There are two types of sharing detection: The first pass performs sharing
detection on nodes in the Oz heap (labeling only shared nodes), the sec-
ond pass performs sharing detection on manually managed C++ objects (all
labeled). Unpickling is separated into a builder abstraction and the actual
unpickler that parses the pickle. To accommodate two styles of C++ con-
structors for heap nodes, the builder implements a mixture of top-down
and bottom-up construction (internally using a stack that can hold 40 types
of task, of which some are reminiscent of S-pointers à la Warren Abstract
Machine [AK91]). Mozart’s pickling is expressed as 11250 lines of C++ code,
and is outperformed by Seam’s pickler.
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Chapter 6

Concurrent Pickling with State
and Futures

This chapter analyzes the problems that state and futures cause in con-
junction with pickling and concurrency, and proposes solutions to these
problems.

The algorithm presented in the previous chapter did not make a distinction
between immutable and mutable nodes, also called stateful nodes. This
means that if no further provisions are made, pickling would cause state-
ful nodes to be cloned. Several scenarios could actually benefit from this
behavior:

Checkpointing. To enable recovery from failures (induced by crashes or
system power-down), long-running processes can regularly write their
current state to disk, called a checkpoint. The checkpoint can then be
used to restart the application. This amounts to cloning the applica-
tion’s state.

Server Replication. A server application could replicate itself onto another
machine, for example, to react to increasing request rates or to ac-
commodate for system maintenance. Such a replication could be im-
plemented by cloning the server’s state.

Problem: Preservation of Invariants. If pickling always blindly clones
state, this can lead to semantic problems: In general, a stateful data struc-
ture has to fulfill representation invariants. Usually, these are guaranteed
by encapsulating state in abstract data types. Every public operation sup-
ported by an abstract data types restores the invariants before it returns.

To illustrate a problem that cloning can introduce even without concur-
rency, consider an abstract data type with an iteration operation that takes
a first-class function as argument. Assume that the iteration needs to call
the first-class function at a point where the invariants temporarily do not
hold. While the abstract data type can protect itself against the first-class
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function invoking other operations on the instance (using timestamping or
a flag, for example), it cannot prevent the first-class function from pickling
the instance—in which case the resulting pickle would describe an unusable
instance. When pickling occurs on one thread while another thread mutates
the data graph being pickled, the problem becomes apparent in many more
scenarios. With future nodes, which can cause pickling to block indefinitely,
the likelihood of the problem appearing is increased still further.

It seems that the implications of cloning state in the presence of concurrent
pickling have never been discussed previously. This work identifies the
problems and proposes solutions.

Overview. Section 6.1 proposes that a pickle should always describe a
snapshot of the data graph in the store, even in the presence of concurrent
mutators. This is a first prerequisite for tackling the problems introduced
by concurrent pickling. Section 6.2 describes a possible implementation
of a pickler that has the snapshot property. This solution does not inter-
act nicely with futures, as developers can easily make mistakes that lead
to deadlocks. This problem is mitigated by an extension described in Sec-
tion 6.3. Finally, mechanisms alone always will be insufficient to protect de-
velopers from hard-to-find design errors, which is why Section 6.4 proposes
design patterns that make it easier for developers to build pickling-safe ab-
stract data types. Section 6.5 concludes with a summary.

6.1 Concurrent Pickling

A pickler is said to be concurrent if other threads that operate on the ab-
stract store are allowed to execute in-between the points in time when a
pickling operation starts and when it ends. If a pickler is not concurrent, in
other words, it prevents any other threads from executing while it is run-
ning, then pickling becomes a bottleneck in designs that rely on frequent
use of pickling.

Concurrent Pickling and Automatic Memory Management. One difficulty
in implementing a concurrent pickler lies in enabling the pickler to run con-
currently with the garbage collector. This requires that the garbage collector
includes all bookkeeping information used by the pickler in its root set. The
simplest approach is to represent all bookkeeping information by abstract
store nodes. The algorithm presented in the previous chapter requires hash
tables whose keys are store nodes. Such hash tables can be implemented
by using node addresses as hash values; note, though, that a compacting
garbage collector would have to be aware of such hash tables and re-hash
entries for nodes that have been relocated to new addresses.

Concurrent Pickling and Mutators. The bigger problem is that concurrent
threads can mutate the value being pickled before pickling is complete, in
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which case the resulting value may be inconsistent or break representation
invariants. One answer to mitigate this problem is to require that the pickler
has the snapshot property, defined as follows:

Definition 6.1 Let G(n, t) be the function that describes the subgraph in an
abstract store that is reachable from a root node n at time t. Assume a
concurrent pickler that pickles the graph reachable from n, and that the
pickler runs between time points t1 and t2, producing a pickle representing
the graph g. We say that g is a snapshot of n if and only if there is some
t ∈ [t1, t2] such that G(n, t) = g.

We say a pickler has the snapshot property if and only if it only produces
snapshots of values in the abstract store.

There are trivial ways to make a pickler have the snapshot property:

Forbidding Pickling of State. The problems only appear when pickling can
clone state. The simplest possible answer, then, is to forbid in pickles
nodes that represent state. This can easily be achieved by partition-
ing the set of constructors into conimmutable, which are the construc-
tors for immutable nodes, and constateful, the constructors for stateful
nodes.

Stop-the-world Pickling. If pickling is atomic, in other words, G(V, t) is
constant on [t1, t2], then the pickler trivially has the snapshot prop-
erty. This can be achieved by suspending all other threads when a
pickling operation starts, and resuming then when it ended.

Neither of these solutions is satisfying, as either the expressivity of pickling
is severely limited, or pickling can become a bottleneck in a system.

6.2 Pickling with Write Barriers

This section sketches a pickler that achieves the snapshot property by pro-
tecting all nodes it has visited against concurrent modification.

Assume the virtual machine supports a new kind of node called a write
barrier. (The term is inspired by the write barriers employed in generational
garbage collection.) Let a write barrier be a new kind of future node, as
introduced in Section 3.4. The state of a write barrier is a pair of values
(n,Ts), where n is the node protected by the write barrier and Ts is a queue
of threads, called the write barrier’s suspension queue.

When the pickler encounters a stateful node n, it constructs a shallow
clone n′ of n and replaces n in-place by a write barrier with state (n′,nil).
Additionally, the pickler records the new write barrier in a set called the
pickler’s trail.
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Operations on stateful nodes must account for write barriers. Read opera-
tions (including picklers) ignore the write barrier and perform transparently
on the value it protects. (In particular, two concurrent picklers cannot dead-
lock each other.) In contrast, write operations that encounter a write barrier
record the current thread in the corresponding suspension queue and block
the thread.

When the pickler has finished traversing the graph, all nodes are protected,
therefore the produced pickle trivially is a snapshot of the graph. To undo
node protection, the pickler iterates through its trail and binds each write
barrier to the value it protected, thereby resuming all threads in the corre-
sponding suspension queues.

Performance Overhead. The presented scheme provides for gracefully de-
grading performance with increasing use of pickling. Assuming that all op-
erations perform a test for future nodes anyway, programs that do not use
pickling suffer next to no performance hit: Only in the (infrequent) case
that a future is encountered there is an additional test whether the future
actually is a write barrier. When pickling is used, and thus new write bar-
riers are created, threads concurrently operating on the data graph being
pickled have to block. Conversely, this means that threads independent of
that data graph continue to run at full speed.

The drawback is that the assumption above severely restricts opportunities
to optimize away future tests through static analysis: Every stateful node
can potentially become a future node.

6.3 Futures

Section 3.4 introduced future nodes. Not all of these should be treated as
normal term nodes:

Promised Futures. At the language level, a promised future can only be
bound by some computation that holds a reference to the correspond-
ing promise. Assume that pickling could clone promised futures. Un-
pickling would therefore produce a new promised future, but there
would be no computation to bind it—rendering the promised future
useless. Instead, the pickler could block on promised futures or disal-
low them.

Lazy Futures. Lazy futures carry with them a computation that can pro-
duce the value they will be bound to. Cloning a lazy future can there-
fore make sense (provided the computation can be cloned, too). This
approach is actually taken by Clean [VP02]. Alternatively, the pickler
could evaluate the computation and pickle the computed value instead
of the lazy future. The following trade-offs need to be considered:
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concurrently clone
stateless nodes

atomically clone
stateful nodes

concurrently request
future nodes

Figure 6.1: Pickler Operation Modes.

• If the computation is cloned, it may have to be carried out multi-
ple times—once for every clone.

• If, on the other hand, the computation is carried out by the pick-
ler, to pickle the computed value instead of the computation,
it could yield an infinite data graph (meaning that is does not
terminate)—-whereas computations always have a finite repre-
sentation.

• The computation might not be picklable because it references
non-picklable nodes—but the value it produces could be pick-
lable. (Also the converse could be true.)

Failed Values. Cloning a failed value produces, upon unpickling, a value
that causes an exception to be raised upon access. There are pros and
cons to this behavior. Assume that pickling was used to transmit the
result of a remote function application—then, it would make sense to
pickle a failed value to communicate failure. In persistence scenarios,
on the other hand, it could mean that a failure is only discovered
considerably later, at a point where it may have become impossible to
retry the computation. In this case, it might be desirable to request
the failed value at pickling time, causing an exception to be raised.

In summary, there are situations where pickling should block. Unfortu-
nately, in this case, both atomic pickling and pickling with write barriers
can cause a deadlock. This section proposes a way to recover the snapshot
property.

Concurrent Pickling with State and Futures. Imagine a restartable pickler
that can run in one of a number of modes, depicted with their transitions
in Figure 6.1.

• At the outset, the pickler shall be concurrent, under the optimistic as-
sumption that the data graph consists of immutable nodes only and
does not contain futures. If this assumption holds, pickling is a con-
current activity with the snapshot property.
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• Once the pickler encounters the first stateful node, it changes its mode
of operation to become atomic (either by suspending all other threads,
or by using write barriers). As long as the pickler encounters no fu-
ture, it trivially has the snapshot property.

• Once the pickler encounters the first future node that it has to block
on, the pickler discards the output buffer constructed so far (and un-
marks any write barriers, if applicable), becomes concurrent again,
and traverses the data graph solely to request all reachable futures.
(Since the pickler does not produce a pickle in this mode, it does not
lose the snapshot property.) Thereafter, the pickler restarts from the
root node as a concurrent pickler.

In any mode, a non-picklable node causes the pickler to abort with an ex-
ception.

Properties of the Pickler. Because the pickler chooses its mode of opera-
tion depending on the nodes it encounters, its performance gracefully de-
grades as state and futures occur in data graphs. There are some drawbacks
to restarting the pickler after requesting futures, however, since the pickler
potentially traverses a data graph that has been concurrently modified in
the mean time:

• The modified data graph can contain new futures. Examples can be
constructed where pickling would never terminate.

• The set of requested futures can depend on timing, and pickling can
request futures that were not actually referenced from the nodes that
are, in the end, pickled.

• Pickling can fail due to a non-picklable node temporarily featuring in
the data graph, even though another pass on the data graph could
have been able to produce a pickle.

These properties should be kept in mind by users of the language, espe-
cially library designers. This is one more motivation for introducing design
patterns for pickling-safe abstract data types.

6.4 Design Patterns for Pickling-safe Data Types

Introducing pickling into a programming language is a more significant
change than is first apparent. The following two problems have been iden-
tified above: (1) Pickling of stateful nodes means that invariants on data
structures can, in general, not be guaranteed. (2) Futures can cause the
pickler to not terminate, deadlock, or behave non-deterministically (depend
on timing).

To deal with similar semantic issues, concurrent programming has intro-
duced a property of abstract data types called thread-safety. A thread-safe
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abstract data type has the property that concurrent invocations of opera-
tions on instances of that data type can never break invariants (that is, an
operation can never see an inconsistent instance). Similarly, when program-
ming with pickling, abstract data types may or may not be pickling-safe,
which means that pickling will never produce an inconsistent instance.

Examples. Consider a thread-safe abstract data type t that synchronizes
all operations on all of its instances using a single global lock (as defined in
Section 2.4):

type t = { a : int ref, b : int ref }
(* invariant: for x : t, !(#a x) = !(#b x) *)
fun new () = { a = ref 0, b = ref 0 }
val inc =

let
val lock = Lock.lock ()

in
Lock.sync lock

(fn x => (#a x := #a x + 1;
(* (+) *)
#b x := #b x + 1))

end

The data type may be thread-safe, but it has several issues with pickling.
(1) If one thread invokes inc on an instance and another thread pickles the
same instance, it may happen that the pickling thread gets to run while the
incrementing thread is suspended at program point (+). The clone breaks
the invariants since the pickling thread ignores the lock. (2) Assume that the
procedure inc was pickled. Two instances of the global lock could coexist
in the same process, since the global lock is part of inc’s closure.

Solution: Design Patterns. One solution to mitigate these problems is to
introduce design patterns [GHJV95, BMR+96], similar to those employed in
concurrent programming (see [Lea99], for example). Library designers have
to define, document, and implement a pickling behavior for the abstract
types they define. The purpose of design patterns is to help library design-
ers choose and communicate specific behaviors.

As a starting point, the following paragraphs sketch some possible design
patterns for various pickling behaviors:

Non-picklable Instance. Sometimes, picklability is either not possible or
not desirable. Examples are lazily constructed infinite data structures
(where pickling would lead to an infinite loop or memory exhaustion),
or concurrently constructed infinite data structures (such as streams
terminated in a future, where pickling would necessarily deadlock), or
singletons (as in Problem 2 above).

Instances of such a data type can simply be made non-picklable, caus-
ing an exception if encountered by the pickler. The pattern is to em-
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bed an artificial reference to a resource into the type’s representation
(say, by pairing). Such “non-picklability marking” could be provided
as an abstract data type in a library, allowing for a more direct im-
plementation and making its use clearer, since the resource is likely
never to be accessed.

Single Stateless Node. Instead of a record with one reference cell per mu-
table field, use a single reference cell containing a record with im-
mutable fields only. For instance, to solve Problem 1 above, change
the definition of t to read { a : int, b : int } ref. Good can-
didates for stateless representations with efficient algorithms can, for
example, be found in purely functional data structures [Oka98].

Pickling-safe Lock. It is possible to protect a data structure by a lock. Both
pairing the data with a Lock instance (where the lock is the first com-
ponent of the pair) or embedding the data within a Locker instance
work fine: These locks are implemented by reference cells, so once the
pickler reaches the lock, it becomes atomic. If the lock is currently not
taken, atomic pickling will create a snapshot. If the lock is currently
taken, the pickler will find a future within the reference cell, causing it
to block and restart—until it manages to “obtain” the lock. Note that
this pattern would not work with the BusyWaitingLock implemen-
tation from Section 2.4, as that lock is clonable, including the lock’s
state.

Cached Optimized Representation. This pattern is best motivated by an
example. Assume an abstract data type representing Standard ML sig-
natures, to be used for separate compilation. The items comprising
the signature are best stored as a list, because this allows to express
both the correct scoping and hiding. Lookup is presumed to be fre-
quent, so the items should also be stored in a hash table. The pickle
should contain only the list representation for compactness, so the
hash table should be reconstructed upon unpickling. The hash table
is a cached optimized representation.

The general pattern is as follows: Define an abstract type t. Define a
type cloned to hold the cloned part and cached to hold the cached
part. Generate a unique identifier of some type id upon instantia-
tion of the data type, and define t = id × cloned. Define a global
variable to hold a weak mapping from id to cached. In each opera-
tion on instances of t that requires access to the cached part, do the
following under mutual exclusion: Check whether the domain of the
mapping contains t’s identifier; if yes, retrieve the associated value,
otherwise, compute the cached part from the cloned part and extend
the mapping. All mutation operations must maintain consistency be-
tween cloned and cached parts.

Resource Rebinding. A variant of Cached Optimized Representation allows
to implement resource rebinding [FPV98]: Let the cloned part be a
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symbolic representation of a resource and the cached part be the (non-
picklable) resource itself.

6.5 Summary

This work has described a concurrent pickling mechanism that interacts
nicely with state and futures, with gracefully degrading performance as
stateful nodes and future nodes occur in the traversed data graph. The
described pickler with three modes of operation has been implemented in
Seam. Because pickling using write barriers severely restricts potential for
optimizing away future tests through static analysis, Seam does not use
write barriers to achieve atomicity; instead, it makes the pickling thread
non-preemptable (this effectively suspends all other threads since Seam
only implements cooperative multithreading).

Future Work. Additional work is needed to identify more design patterns
for pickling-safe abstract data types. In particular, a pattern to express
high-level customization would be useful. While this seems feasible for
dynamically-typed languages, for statically-typed languages, no type-safe
solution is known.
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Chapter 7

Pickling of Non-term Nodes

This chapter extends the pickling mechanism from the previous sections
with provisions for dealing with non-term nodes, in particular, resources
and functions.

Overview. Chapter 5 developed a pickling mechanism for terms, which
meant that all nodes were treated in the same way. This assumption breaks
down for nodes that do not represent terms. Specifically, this chapter exam-
ines resources (Section 7.1) and functions (Section 7.2). Section 7.3 presents
a customization facility to the pickling mechanism, which can be used to
implement the pickling behavior of arbitrary non-term nodes. Section 7.4
concludes with a summary.

7.1 Resources

Some of the abstract types that libraries define represent resources. A re-
source is data that pertains to the process in which it lives, and that should
not or cannot be meaningfully interpreted within other processes. Exam-
ples are operating system handles.

At the implementation level, resources are typically embedded into the lan-
guage graph represented in the store by representing as integers. These in-
tegers are interpreted by the built-in operations on the resource nodes: For
instance, the Unix operating system represents handles to open files, pipes,
or sockets (file descriptors) as small integers [Ste97]—which can directly be
embedded in the language graph. In Microsoft’s Windows operating system,
handles are pointers into the address space of the creating process [Ric97].
These pointers can be treated as integers and embedded in the language
graph.

If resources were represented as integers, the default pickling behavior on
them would be that they are cloned. This can cause a number of issues:

75
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Semantics. When interpreted in the context of another process, the integer
is likely to denote an arbitrary object, if it denotes a valid object at all.
In other words, behavior is, in general, undefined.

Security. The programming language’s safety depends on lexical scoping.
For unpickling not to violate lexical scoping, it must create a self-
contained data graph in the store. In particular, it must not cause
references to resource nodes to be created out of thin air.

In short, the pickler must not clone resources. Instead, it must fail when
it encounters a resource. Therefore, a resource node cannot simply be an
integer, but must be marked so that its resource-ness becomes apparent.
To this aim, the set of constructors can be partitioned into a set of term
constructors and a set of resource constructors:

con = conTerm ] conResource

7.2 Functions

In languages with first-class functions, nodes in the abstract store can rep-
resent functions. For functions to really be emancipated data structures,
they need to be picklable, and for pickles to be self-contained, they need to
be pickled by value. Concretely, this means that the definition of the func-
tion (the description of the computation carried out by the function, also
called the function’s code) should be contained in the produced pickle.

As described in Section 3.2, functions come in two flavors: primitives and
closures (user-defined functions).

Primitives. Primitives are used to implement operations on built-in types
of the programming language, and calls to the operating system. These
two are markedly distinct for the purpose of pickling: There is no reason
not to make built-in operations picklable, but if system operations were
picklable, an unseeming first-class function obtained from a pickle (which
was supposed to be self-contained) could, when applied, obtain references
to resources.

Different designated constructors can be used to distinguish built-in prim-
itives from system primitives. In the abstract store, primitives can be rep-
resented as pointers to a native function provided by the virtual machine;
on a pickle, primitives need to have a symbolic representation such that the
unpickling process can substitute the corresponding implementation.

Closures. A closure of a user-defined function is a pair of an environment
and the function’s code. The closure and environment can easily be repre-
sented as a store node, and be treated as a normal term node. For code, the
following two approaches are conceivable:
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Separate Code Area. The virtual machine described in Section 3.2 stores
code in a separate code area. A store node would reference code in
the code area by storing a pointer into the code area as an integer.
In this case, the pickler has to recognize this as a reference into the
code area, so that it can extend pickling to include a section of the
code area (possibly with relocation information). Depending on the
structure of the code area (imagine embedded immediate operands,
termed “V registers” by Scheidhauer [Sch98]), a more or less complex
second pickler has to be designed.

Code Embedded in the Data Graph. As an alternative, code could be rep-
resented within the data graph itself—as store data structures. For
example, byte code (or even position-independent native code) can be
stored in string nodes, or abstract syntax trees can be stored as graphs
of nodes. In this case, it may even be sufficient to just clone the code
data structure.

7.3 Customization

A comparison of the two approaches to pickling code from the previous sec-
tion sparks the following idea: Reduce pickling of non-term nodes (possibly
including data types defined via a foreign function interface) to pickling of
non-term nodes, and use a single pickler for both. This section develops a
customization mechanism based on this idea.

Non-term nodes have an internal representation, which can, in particular, be
a pointer into the unmanaged heap (effectively enabling any virtual machine
implementor to arbitrarily choose an internal representation). Also, non-
term nodes may or may not have an external representation. If they do, the
expressive language of data graphs can be used to describe it.

To realize this idea, the following extensions are sufficient:

• The pickle language needs an instruction to convert the data graph
that is currently on top of the stack into an internal representation.
The instruction takes as operand an identifier denoting the node’s
type (for example, “built-in primitive” or “code”).

• The unpickler looks up an implementation-dependent function for the
identifier that creates an internal representation, when given the data
graph from the stack as argument.

• The abstract store has to make internal representations apparent. The
mechanism to do this is up to the implementation; for example, a des-
ignated node label could indicate that a given node is an internal rep-
resentation. The node’s first edge could give an identifier denoting
the node’s type, and the second edge the actual internal representa-
tion (for example, a native pointer encoded as an integer).
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• The pickler uses the type identifier to look up and invoke a function.
The function creates and returns a data graph that describes the in-
ternal representation.

Example: Resources and System Primitives. Resource nodes and system
primitives would, in this model, both have identifiers with which no ex-
ternalization function would be associated, causing the pickler to raise an
exception.

Example: Built-in Primitives. The externalization function of a built-in
primitive would return a string denoting the given primitive. The internal-
ization function would look up the implementation of the primitive, given
the string.

Example: Code. An external representation of code must be portable, easy
to explain and process, and perhaps include typing information to make it
possible to check well-formedness. Possible choices are bytecode instruc-
tions, an abstract syntax tree representation, or even source code. Code
in an internal representation must be efficient to execute. For instance, in-
struction opcodes may be replaced by addresses to the machine code that
implements them (so-called direct threaded code [Bel73]), branch targets
may be specified as absolute addresses, or the code could even be rep-
resented as a native code translation. A conversion from the external to
the internal representation can be performed by run-time compilation (also
called just-in-time compilation, or JITting). Unless decompiling JITted code
is easy, one would retain the data graph representation even after JITting to
enable externalizing the code again.

7.4 Summary

This chapter proposed a simple mechanism that allows to customize pick-
ling at the level of the virtual machine. Still, it is sufficiently general to
forbid resources, externalize primitives symbolically, and clone definitions
of user-defined functions. Outside the scope of this work is verifiability of
pickles. In the presence of customization, and of user-defined functions in
particular, verifiability becomes an interesting problem. For dynamically-
typed languages, “some” verifiable representation would probably easy to
devise: Since all operations are preceded by runtime type-checks, term data
(and the environment of closures) does not need to be verified (beyond the
pickle being well-formed); for code, the simplest approach would be to store
it in source form. For statically-typed languages, this simple solution is
ruled out.

Validating Implementations. The sketched customization mechanism has
been implemented in Alice-on-Seam [BK02, BK03].



Chapter 8

Components for Modular
Programming

This chapter extends L with a powerful mechanism for modular program-
ming with separate compilation. This defines the first version of OpenL.
The realization of the mechanism requires only a minimal extension to the
syntax of the source language introduced in Chapter 2, and a modification
of the startup procedure of the virtual machine introduced in Chapter 3.
The mechanism establishes the basis of OpenL’s component system, as pre-
sented in Chapters 9 and 10.

Motivation. This chapter defines a component model targeted specifically
at fulfilling the following business requirements:

Components for System Composition. Customers need software systems
that adapt as their needs change. In other words, program compo-
sition, also called configuration, is performed on the customer’s ma-
chine, not the vendor’s machine.

Binary Components. Component vendors ship libraries, user interface ele-
ments (controls), and applications as (sets of) binary components. The
benefit to customers is performance: no compilation is necessary on
their machine. To component vendors, binary components mean pro-
tection of the intellectual property that would be apparent in source
code.

Interchangeability of Components. The customer, not the application ven-
dor, can choose which component provides a given service—for in-
stance, a spell-checking service for use by applications supporting text
input.

These requirements translate into the following technical requirements:

• Components are typed by interfaces1. Many different components can

1Be it either through typeful programming [Car91], or through static typing.
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provide implementations for the same interface. Components must
be self-describing in the sense that they package their interface with
their implementation in a single unit.

• Component systems must enable separate compilation. This is to en-
able compiling single components, as opposed to compiling whole ap-
plications, or compiling components only when the implementations
of components they depend on are known.

• Component-based applications are assembled at run time, not at com-
pile time. This assembly operation is called linking.

Overview. This chapter presents the foundation for a component system,
which fulfills the technological requirements outlined above. Section 8.1 in-
troduces OpenL as a minimal extension of the syntax of L to enable modular
programming, initially under the assumption of dynamic typing. An OpenL
source file defines a component, in contrast to L, where a source file defines
an application. Section 8.2 defines the semantics of OpenL programs com-
posed of a set of components, from which Section 8.3 derives a model for
separate compilation and linking. Section 8.4 modifies the virtual machine
to run componentized programs by linking graphs of components at boot
time.

Under the assumption of dynamic typing, OpenL components can be di-
rectly translated to L programs. Section 8.5 analyzes with what assump-
tions and limitations the mechanism carries over to statically-typed pro-
gramming languages. Related work is then surveyed in Section 8.6. Finally,
Section 8.7 summarizes how the concepts presented in this chapter are real-
ized and validated in two programming systems, namely Mozart and Alice.

8.1 Componentizing Programs

OpenL is a strict extension of L, which differs from L in that every source
file defines a component instead of a monolithic application. Every com-
ponent defines a namespace, akin to an L structure (see Section 2.2). Syn-
tactically, an OpenL component consists of a possibly empty sequence of
import announcements, followed by a sequence of declarations. The import
announcements specify which program objects from other namespaces can
be referenced by this component, while the declarations define the contents
of the namespace defined by this component. The declarations may only
reference identifiers bound in the initial environment, identical to the initial
environment from Section 2.1.3 in which L source files are interpreted, as
well as identifiers bound by import announcements.

Every namespace is named; for now, assume the name of a namespace is
given by the base name of the source file. Import announcements refer to
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other namespaces by name. Syntactically, an import announcement con-
sists of the new keyword import, an enumeration of identifiers, the new
keyword from, and a string denoting a namespace name. Since L distin-
guishes between identifiers for types, values, signatures, and structures and
functors, each identifier in an import announcement shall be prefixed with a
keyword (type or datatype, val, signature, and structure and functor,
respectively).

Examples. The following simple declaration, when placed in a file with
base name Fac, defines a component Fac:

fun fac n = if n < 2 then 1 else n * fac (n - 1)

A component Main that wants to reference fac from component Fac could
look as follows:

import val fac from "Fac"
val x = fac 7

Components vs. Modules. OpenL uses the term namespace to mean the
same as a module in, say, Oberon-2 [MW91]. This is to avoid confusion with
L’s notion of a module, which is a simple structure or functor. An OpenL
namespace is, of course, similar to an L structure—this exact similarity be-
tween compilation units and structures, and between component interfaces
and signatures, has been previously pointed out by Burstall [Bur84].

8.2 Semantics of Componentized Programs

The definition of the syntax above already hinted at the semantics of OpenL
components. The goal of this section is to better capture the semantics
of an acyclic directed graph of components, also called a componentized
program.

A Source-level Rewriting Semantics. For an initial definition, the idea is
to first translate every OpenL component into an L source fragment, then
concatenate these fragments to obtain an equivalent L program:

• Replace every component body by a declaration of a structure, bound
to an identifier obtained from the name of the namespace defined
by the component. The body of the structure is a local declaration
whose private part contains one declaration for each imported iden-
tifier, and whose public part contains the declarations of the com-
ponent. The import declarations bind every imported identifier to a
selection of the corresponding program object from the namespace
structure corresponding to the imported component.

• The import announcements span a dependency graph whose nodes
are components. Assuming that this dependency graph is acyclic, the
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components can be topologically ordered, which means that they are
put into a total order in which every component is preceded by all
of its dependees. Concatenate all structure declarations obtained as
described above in a topological order, obtaining an L program.

Let the semantics of a componentized OpenL program be the semantics of
the obtained L program. Note that because there may possibly be more than
one topological order for a given dependency graph, and because declara-
tions can have side-effects, this definition is intentionally ambiguous.

Example. The OpenL program consisting of Fac and Main from the previ-
ous section is equivalent to the following L program:

(* fragment corresponding to component Fac *)
structure Fac =
struct

local
(* no import announcements *)

in
fun fac n = if n < 2 then 1

else n * fac (n - 1)
end

end

(* fragment corresponding to component Main *)
structure Main =
struct

local
(* from import announcement *)
val fac = Fac.fac

in
val x = fac 7

end
end

8.3 Separate Compilation and Linking

Cardelli calls the above approach to defining the semantics of a componen-
tized program a characterization of “merging of sources” [Car97]. This does
not capture the notion of separate compilation. Consider the following two
steps to remedy this:

1. To factor out individual components from the generated monolithic
L program, perform lambda lifting [Joh85] on each structure. Lambda
lifting turns an expression with free variables into application of a
function that takes those variables as arguments. Lambda lifting a
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structure produces, correspondingly, a functor definition and a func-
tor application.

2. If one ignores the functor declarations, all that remains is a sequence
of functor applications, which is exactly the scaffolding necessary to
compose components into an executable program. This skeleton will,
in the following, be called a linking program. Correspondingly, a linker
is just a program that generates a linking program.

In summary, a compiled component is a file whose base name is the name of
the namespace defined by the component, and whose contents is a functor
definition and the metadata needed to generate a linking program. To fig-
ure out what metadata is needed, consider how a linker operates: A linker
needs to perform, starting from a root component, a depth-first search of
the component dependency graph, and output functor applications in post-
order to evaluate the component graph bottom-up. (The linker would fail
if the graph contained cycles.) This means that the only metadata that is
needed for a component is a vector of strings, where each string in sequence
would give the name of the namespace the corresponding functor argument
corresponds to.

Example. Revisiting the above example, a compiled component for Main
would contain two pieces of information: the metadata #[] (an empty vec-
tor of strings), and the code for a functor definition such as the following:

functor MkFac () =
struct

fun fac n = if n < 2 then 1 else n * fac (n - 1)
end

Similarly, a component for Fac would contain the metadata #["Fac"], and
the code for a functor definition such as the following (types omitted for
now):

functor MkMain (structure Fac : ...) =
struct

local
val fac = Fac.fac

in
val x = fac 7

end
end

A linker would generate the following linking program for Main:

structure Fac = MkFac ()
structure Main = MkMain (structure Fac = Fac)

As another example, to illustrate sharing, assume a componentized pro-
gram structured as shown in Figure 8.1. The following linking program
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A

B C

D E

Figure 8.1: Sample Component Dependency Graph.

would perform the linking steps necessary to produce the corresponding
namespaces A to E:

structure E = MkE ()
structure D = MkD ()
structure C = MkC (structure D = D structure E = E)
structure B = MkB (structure D = D)
structure A = MkA (structure B = B structure C = C)

Prerequisite: Higher-order Functions. Note that this definition of sepa-
rate compilation requires higher-order functions: Component declarations
typically define functions, which are (after compilation) nested inside a
functor. At the level of the intermediate language LI introduced in Sec-
tion 3.5, this means that component functors become higher-order func-
tions.

8.4 Execution of Componentized Programs

An OpenL stand-alone program is defined by a component, which is taken
to be the root of a component graph. The effect of a stand-alone program
is defined to be the sequence of side-effects generated by a linking program
for the root component. (Note that the order of side-effects can depend on
the topological ordering chosen by the linker, which is consistent with the
degree of freedom implied by the rewriting semantics.)

In other words, the virtual machine for OpenL is started with the name of
a compiled component as argument. Contrast this to the virtual machine
for L, which is started with the name of a self-contained compiled program,
as described in Section 3.5. The OpenL virtual machine has a boot linker that
loads the root component, interprets its metadata, and recursively loads the
components directly and indirectly referenced by the root component, in-
crementally adding code to the code area. Interleaved with the traversal,
it interprets a linking program it dynamically generates. To preserve shar-
ing of namespaces, and to evaluate every component only once, the boot
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linker needs to record the namespace resulting from each component func-
tor application. To this end, it maintains a boot namespace table that maps
namespace names to namespaces.

8.5 Application to Statically-typed Languages

For simplicity, the above discussion assumed a dynamically-typed language,
where the built-in run-time type checks are sufficient to ensure that the
component extensions do not compromise type-safety of the underlying
language. Statically-typed languages, however, rely on static types to en-
force abstractions and hiding, and omit run-time type checks. In the follow-
ing respects, the semantics of components as introduced so far are lacking:

• Import announcements as described above do not carry enough infor-
mation to perform compile-time type checking.

• The linking programs generated by the virtual machine are not type-
checked, and would be executed even if they were ill-typed.

These shortcomings are addressed in the following two sections. Note
that statically-typed languages can no longer express the linking programs,
which is why this section descends to the level of LI.

8.5.1 Component Types and Compilation

At the level of the core language, elaboration of source programs can infer
most types automatically. At the level of the module language, however,
type inference is not possible. In the case of typed OpenL, this means that
the compiler needs to know the types of imported structures. This can be
achieved through two mechanisms:

Explicitly-typed Imports. Identifiers in import announcements can be dec-
orated with their full type. This is required, for instance, when com-
piling a component against a component whose interface has been
defined, but for which no implementation is available (or should be
assumed).

Load Dependees at Compile Time. Component metadata has to include the
full types of all items it exports, for the purpose of link-time type-
checking as defined in the next section. This means that if the com-
piler encounters an identifier in an import announcement that has not
been decorated with its type, it can require an implementation of the
dependee component to be available at compile time and load the type
from its metadata.

When a dependee component is not available at compile time, programmers
have to use the first mechanism. If dependee components are available,
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the second mechanism is, in general preferable: Fully annotated import
announcements are large and prone to error, and cross-component type
inconsistencies will remain undiscovered at compile time, and only become
apparent at link time via the mechanism described next.

8.5.2 Component Types and Run-time Linking

Recall that the virtual machine generates and interprets linking programs
at boot time. In a statically-typed setting, this has two implications:

• Linking programs need to be type-checked before they may be exe-
cuted.

• Linking programs apply functors, and applying a functor requires a
signature coercion on all argument structures. Signature coercion may
require a representation change (see Section 3.5).

A linking program is type-correct if the actual type of each imported names-
pace matches the type that it was assumed to have at compile time. (Note
that a namespace’s type can be fully described by a single signature, be-
cause namespaces are actually represented as structures.) This means that
the linker has to type-check and perform one signature coercion for every
edge in the dependency graph. To enable this, the metadata of a compiled
component has to specify:

• A signature describing the type of the namespace computed by the
component.

• For every imported namespace, a signature describing the type of the
namespace that was assumed at compile time.

Implementation. The virtual machine’s boot time linker generates linking
programs at the level of LI. Every signature and every namespace has a first-
class LI representation. This means that the linker needs an operation such
as the following (LI is untyped; types are used here solely for documenta-
tion):

val match : namespace * sign * sign -> namespace
(* Mismatch *)

The first argument to match is a namespace, whose type is given by the sec-
ond argument. The third argument is the type this namespace is expected
to have. If the types do not match, match raises the Mismatch exception
from Section 2.3, causing the linker to abort; otherwise, match returns the
namespace coerced to the expected type.

With this operation, the following is a linking program, expressed in LI, for
the component graph from Figure 8.1. This program assumes that fX is
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bound to a function representing the component functor producing names-
pace X, signX is bound to a representation of the actual type of names-
pace X, and signXY is bound to a representation of the type of names-
pace Y as expected by component X:

val E = fE #[]
val D = fD #[]
val CD = match (D, signD, signCD)
val CE = match (E, signE, signCE)
val C = fC #[CD, CE]
val BD = match (D, signD, signBD)
val B = fB #[BD]
val AB = match (B, signB, signAB)
val AC = match (C, signC, signAC)
val A = fA #[AB, AC]

Limitation. This section has made the assumption that every component
is evaluated exactly once, since in modular programming (as opposed to
real component programming) the program is structured as a static graph
of components. As a consequence of this assumption, the simple approach
to type-checking works even for components whose export signature men-
tions types from one of the import signatures. As more flexible component
programming is enabled by Section 9.2.2, the need for more flexible type-
checking is called out.

8.6 Related Work

Modular Programming. The idea of an industry that produces software
components to increase the productivity of software development has first
been published by McIlroy [McI68]. Looking back, the fundamental feature
to enable this vision is that of a well-defined module system, as featured in a
large number of programming languages designed in the 1970’s. Examples
of this are Mesa [LS79] developed at Xerox PARC for systems programming,
which directly inspired Wirth’s Modula [Wir95]; as well as CLU [Lis93], which
integrated the ideas of data abstraction and modularity. The key idea was to
separate interface from implementation. These languages have in common
that the principle of separate compilation and static linking is part of their
definition. As was reinforced by Szyperski [Szy02], reuse of software com-
ponents needs to be based on compiled code as opposed to source code,
which prerequires separate compilation.

Theoretical Foundation for Linking. A thorough and founded analysis
of linking started only comparatively late, with Cardelli’s influential pa-
per [Car97]. According to the terminology introduced by Cardelli, our com-
piled components are “linksets”. Cardelli focuses on theoretical modeling
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of linking, as opposed to engineering features necessary to enable compo-
nent programming.

C. The C Programming Language [KR88] supports separate compilation.
However, there is no well-defined concept of a module, and linking only has
a low-level definition: Every symbol (identifier) declared at the top level in a
source file can have either internal or external linkage. The result of com-
pilation is an object file, which basically consists of code segments, data
segments, a table of defined symbols mapping symbol names to offsets
within segments, and a table of undefined symbols listing all references to
the symbol from within segments. The linker constructs a single executable
or library from a set of object files by merging the segments from all object
files and patching cross-object file symbol references to the actual offset in
the resulting file. At this point, all symbols with external linkage are part of
a single global namespace: no symbol must be defined in more than one ob-
ject file; and if producing an executable, all symbols must be resolved. The
crudeness of this mechanism is due to the fact that historically, every com-
puting platform had a single defined object file format and a single linker,
over which compiler writers had no control. The single global namespace
precludes instantiating a component more than once in a single program,
as pointed out by Flatt and Felleisen [FF98].

Pebble. The idea of regarding components as functions is first found in
the work of Burstall [Bur84], who describes an approach that translates
programs with modules into typed functional programs, in the context of
the functional language Pebble. The goal of his work is to study modular-
ity features in programming languages. The present work uses the same
foundation, albeit in pursuit of a very different goal.

Standard ML. Standard ML [MTHM97] features a powerful and formally de-
fined module system, which provided a fruitful context for theoretical re-
search. However, Standard ML is only considered with modules as a mech-
anism for abstraction, not componentization, and does not even provide
for separate compilation in its definition. The Standard ML of New Jersey
implementation provides a compilation manager [BA99] that tackles sep-
arate compilation with automatic dependency analysis and cross-module
optimizations, but not binary deployment and dynamic linking as required
for component programming.

Units. Flatt and Felleisen [FF98] presents Units, which are software com-
ponents for higher-order typed programming languages. Units represent
the approach most similar to the present work. Flatt and Felleisen syn-
thesize their model from the ideas of object files for separate compilation,
packages for integrating the module and the core language, and ML-style
functors for combining modules into programs and making Units replace-
able. Units specify component linkage outside of components (similar to
the above linking programs), as opposed to hard-wiring them within com-
ponents. Units take the Pebble approach to base compilation on function
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definition and application to model component definition and evaluation.
However, Flatt and Felleisen completely disregard loading (an essential part
of dynamic linking). They consider the verbosity of their text representation
for Units prohibitive for real-world applications: imports need to describe
the full types of imported elements. MzScheme [MzS04] implements Units,
but the system itself is not composed of Units. Flatt and Felleisen do not
define a language-level representation for Units, or language-level linking
programs.

8.7 Summary and Validation

This chapter has developed a viable representation for compiled compo-
nents to solve the classical problem of modular programming languages,
albeit with mechanisms different from the traditional model: Compiled
components make use of higher-order functions, and componentized ap-
plications are linked at startup.

Validation by Implementation. This chapter makes the claim that the
component system can be instantiated for any language, statically-typed
or dynamically-typed, that supports higher-order functions. This claim is
substantiated by two implementations in actual full-fledged programming
systems:

Mozart. The first instantiation of the component system took place for
the dynamically-typed programming language Oz, in its implemen-
tation Mozart. Oz has an open, well-defined language-level represen-
tation for components [HK04] and builds compilation and linking on
function definition and function application. Oz components (called
functors) are syntactic sugar only, without requiring any primitives.
Mozart has an ad-hoc approach to booting instead of the approach
described here.

Alice. The second instantiation of the component system took place for the
statically-typed language Alice ML, which is derived from Standard ML.
The Seam virtual machine for Alice performs boot-time linking as de-
scribed here; however, the boot linker omits link-time type-checking,
for a reason: Alice implements type-checking in Alice ML itself (com-
ponent signatures are represented as Alice ML data structures), and
the type-checker is available on after the boot linker has completed.
This is acceptable, as boot-time linking in Alice is only applied to sys-
tem components (components deployed with the system), and consis-
tency of system components can be assumed. All subsequently loaded
components are linked with type-checking, using the mechanisms de-
scribed in Chapters 9 and 10.
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Chapter 9

Components with Lazy Dynamic
Linking

This chapter describes a principled approach to a component system with
first-class components, lazy dynamic linking, and sandboxing security. The
component system is applicable to programming languages with higher-
order functions, lazy futures as described in Section 2.1.6, and packages as
described in Section 2.3.

Motivation. The component system presented in the previous section lim-
its linking to take place eagerly and fully at the time the virtual machine is
started up. In this chapter, the limitations are lifted to provide the following
features:

• Components are loaded and linked only when they are actually first
used. This is commonly known as lazy linking.

• Components other than those the root component directly or indi-
rectly depends on can be dynamically discovered and linked at any
point while an application runs. This is called dynamic linking.

• Assembly of components, also called system configuration, can be pro-
grammed in the high-level programming language. This provides for
maximum flexibility regarding policy and mechanism of linking: ap-
plication programmers can write their own dynamic linkers to run
as substitutes to or side-by-side with the system-provided dynamic
linker.

• Components can be evaluated multiple times in a single program, in
different contexts. This is also called instantiating components.

Overview. The structure of this chapter, depicted in Figure 9.1 (arrows
indicating dependencies), is as follows.

First, OpenL’s components for modularization and separate compilation
from the previous chapter is extended with lazy linking in Section 9.1. The
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9.2 First-class Components

8 Component Model

9.1 Lazy Linking

9.3 Dynamic Linking

9.4 Runtime Components

9.5 Custom Managers 9.6 Optimizations

Figure 9.1: Structure of this Chapter.

components from the previous chapter are reified into an abstract data
type in the language in Section 9.2, which allows for a simple presenta-
tion of a component manager for late composition and dynamic linking
in Section 9.3. Section 9.4 demonstrates how to integrate the component
manager into the execution environment and shows how the component-
related parts of the runtime system architecture are composed of compo-
nents themselves. With this background, Section 9.5 discusses instantiating
multiple component managers in a single system for, among other goals,
obtaining sandboxing security.

Section 9.6 discusses optimizations for componentized programs as intro-
duced by the combination of all of these extensions. Section 9.7 concludes
with a summary and an overview of how the concepts have been validated
in real systems.

9.1 Lazy Linking

The previous chapter described eager linking, where a component is evalu-
ated after all components it depends on have been evaluated. This section
provides for lazy linking, that is, linking components at the latest before
they are actually needed. A major benefit of lazy linking is that execution
of a program can start before all components have been loaded and evalu-
ated. Startup time may therefore be reduced, as may the memory footprint
of an application. As an example, components required by failure han-
dling, seldom-used code paths, or features not used by many users are only
evaluated once they are needed, if at all. As another example, consider a
command-line tool invoked to print out its usage, which does not need to
link the components that perform its actual business logic.
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Another benefit of lazy linking is that it allows for cyclic dependencies,
which is not possible with eager linking. Furthermore, in Section 9.3.2, it
turns out that lazy linking also allows for a simpler realization of dynamic
linking.

9.1.1 The Semantics of Lazy Linking

The semantics presented in Section 8.2 explicitly require that components
are evaluated bottom-up with respect to the dependency graph. In the pres-
ence of lazy linking, evaluation of components in the component graph is
actually triggered in a top-down fashion as components are first needed for
computations to proceed. Furthermore, evaluation of one component can
actually trigger evaluation of a component it depends on before its own
evaluation is completed.

Introducing Laziness into the Semantics. The notion of lazy futures in-
troduced in Section 2.1.6 provides a useful definition of what is means for a
value to be “needed” by a computation: Constructs and primitives are strict
in some of their arguments; using a value as a strict argument constitutes
a need. To reuse this definition for the need of components, it is therefore
sufficient to simply precede every functor application in linking programs
with the lazy keyword, as introduced in Section 2.2. For instance, the link-
ing program from Section 8.3 becomes:

structure Fac = lazy MkFac ()
structure Main = lazy MkMain (structure Fac = Fac)
val _ = Main.x

The last line is required to actually cause evaluation of the root component.

Lazy Structure Selection. Previously, the assumption was that structure
selection using longids of the form S.x was strict: Use of such a longid
represents a need of structure S. By the translation of import announce-
ments to value declarations with longids, as specified in Section 8.3, this
would actually cause programs to behave exactly the same as under the ea-
ger linking discipline, since the first thing evaluation of a component would
cause would be evaluation of all components it imports. One solution is
to make longids non-strict. Then, dependee components are evaluated only
when the value of an imported identifier is first needed, as opposed to when
the imported identifier is first referenced.

To accommodate this change, the last line of the linking program above
needs to be modified to read:

val _ = await Main.x

Error Handling. As with eager linking, a component fails to return a name-
space when its evaluation raises an exception. In contrast to eager linking,
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however, a computation may currently be blocking in the middle of exe-
cution waiting for the namespace to become bound. Simply halting the
program is not acceptable: The computation may need to free resources it
has acquired, or recover from the failure for robustness.

It turns out that with lazy linking, a mechanism to handle failure is already
built-in, which may not be apparent at first: A lazy longid, when needed,
spawns a computation that, in turn, needs the namespace returned by the
corresponding lazy functor application, to select a program object from
it. Recall from Section 2.1.6 that this exception causes the future that is
the placeholder for the result of the functor application to become a failed
value. Similarly, all lazy longids for that namespace become, when needed,
failed values. Effectively, the exception raised by evaluation of a component
is delivered to all components that wish to use program objects exported
by the failed component.

To make exceptions caused during evaluation of a component apparent (af-
ter all, in normal operation, they may be unexpected), they are wrapped in
an Eval exception constructor:

exception Eval of exn

9.1.2 Implementing Lazy Linking

The previous section has shown what changes are needed in OpenL linking
programs. LI linking programs for statically-typed components, as intro-
duced in Section 8.5.2, require the following additional considerations:

• Type-checking needs to be lazy. Lazy linking is supposed to reduce
start-up costs, and type-checking is the most expensive part of linking.
To achieve this, add the lazy keyword to every application of match.

• match needs to be non-strict in its first argument, which means that
is has to perform the representation change caused by coercion lazily.
This prevents evaluation of the component in the case of a type mis-
match.

• As said above, evaluation of components needs to be lazy. This is
achieved by adding the lazy keyword to every application of a com-
ponent function.

• As said above, exceptions raised by component evaluation need to be
wrapped in an Eval constructor and re-raised within the lazy expres-
sion.

Applying these changes to the LI linking program from Section 8.5.2 results
in:

val E = lazy fnE #[]
handle e => raise Eval e
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val D = lazy fnD #[]
handle e => raise Eval e

val CD = lazy match (D, sigD, sigCD)
val CE = lazy match (E, sigE, sigCE)
val C = lazy fnC #[CD, CE]

handle e => raise Eval e
val BD = lazy match (D, sigD, sigBD)
val B = lazy fnB #[BD]

handle e => raise Eval e
val AB = lazy match (B, sigB, sigAB)
val AC = lazy match (C, sigC, sigAC)
val A = lazy fnA #[AB, AC]

handle e => raise Eval e
val _ = await A (* execute the linked program *)

9.1.3 Related Work

Unix Shared Libraries. The Unix shared libraries ELF object format sup-
ports lazy binding with the goal of reducing startup time [Lev00]. Lazy bind-
ing is less general than lazy linking as supported by the above approach: All
libraries are actually loaded eagerly at startup, but cross-library procedure
references are resolved lazily. The Procedure Linkage Table contains a stub
for every imported procedure. When a cross-library procedure call is first
executed, the stub is executed. The stub invokes the run time linker to
resolve the procedure reference and patch the call site to point to the ac-
tual procedure. Lazy binding is analogous to OpenL lazy longids—with the
difference that lazy binding only applies to procedures. Cross-library data
references require an extra indirection through the Global Offset Table.

Windows DLLs. Microsoft Windows “delay-loaded” dynamically-linked li-
braries [Lev00] employ a similar technique to the ELF Procedure Linkage
Table. The run time linker invoked by the stubs, however, also handles
finding and loading the dynamically-linked library in addition to resolving
cross-library references—which is why the actual loading can be lazy, as op-
posed to ELF. On the other hand, this requires locking in the loader, which
frequently leads to deadlocking problems [Bru03].

Java. The definitions of both the Java language [GJS00] and the Java Vir-
tual Machine [LY99] cover lazy dynamic linking, but define it only infor-
mally. Like in OpenL, lazy dynamic linking is composed of loading, linking,
and evaluation (called initialization in Java). In addition, Java distinguishes
sub-phases of linking, namely verification, preparation, and resolution. All
of these are low-level mechanisms neither expressible in the language it-
self, nor in the terminology of the language at all. This makes it nontrivial
to capture the semantics in a formal model, which is the subject of ongo-
ing research (for instance, [DLE03]). In contrast, the OpenL semantics are
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actually captured at the level of the language.

Java class loading [LB98] can fail in a number of ways, such as by raising
NoSuchMethodException, which essentially correspond to type mismatch
exceptions in OpenL. At the first use of a class, the class’s or its parent’s
class initializer is run, which may also throw an exception. This exception
is re-thrown as a ExceptionInInitializerError, which is analogous to
OpenL’s Eval exception. In contrast to OpenL, where all clients of a class
are equal in that they see the same exception, subsequent attempts to use
a class for which initialization failed result in NoClassDefFoundError ex-
ceptions. OpenL’s solution using failed values is considerably simpler and
more uniform.

Units. Units [FF98] do not address the question of lazy linking, but are
interesting in this context in their way of dealing with recursive definitions
(cyclic dependencies). Compiled Units use state (reference cells) to stand
in for the imported and exported values of a component. This is at the
same time the reason why the Units linker needs to distinguish between the
operations of linking and evaluation of a component. These operations can
be merged into a single function application in OpenL, making for a simpler
design.

9.2 First-class Components

One goal stated in the introduction is to make it possible to write OpenL
programs that acquire components and compose them into runnable sys-
tems. This means that OpenL programs must be able to manipulate com-
ponents as values, to load them, reflect their metadata, and evaluate them.
To this aim, OpenL introduces a predefined abstract component type for
first-class components, with the following operations:

structure Component :
sig

type component

exception Malformed

val load : string -> component
(* IO.Io, Malformed *)

val imports : component -> (string * sign) vector
val sign : component -> sign
val apply : component -> package vector -> package

(* Mismatch *)
val capture : package -> component

end
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These operations are all type-safe and can thus be exposed to the applica-
tion programmer.

9.2.1 Loading Components

Given the name of a namespace, load finds a corresponding compiled com-
ponent file, adds the contained code to the code area as described in Sec-
tion 8.4, and constructs and returns a new component instance. A com-
ponent instance is a tuple of metadata and a first-class functor, which can
trivially be represented in the abstract store. If load cannot find or read
a file, it raises IO.Io; if a file is found but is not a valid component file,
load raises Malformed. imports and sign project the metadata defined in
Section 8.5.2.

Note that load will be made non-primitive in Section 10.1.

9.2.2 Evaluating Components

apply takes a component and a vector of packaged namespaces. These
namespaces correspond one-to-one to the dependencies mentioned in the
imports metadata vector. apply processes these namespaces, under the
expected and actual types, in the same way as match is used by LI linking
programs—in particular, type-checking and coercion are lazy. apply evalu-
ates the component (which may or may not trigger type-checks, coercions,
and component evaluations, depending on the argument component) and
returns the resulting namespace, packaged with the component’s type.

Generative Types. In contrast to previous linking programs, which eval-
uated every component at most once, apply can be used to evaluate a
component more than once. For generative types, type-checking now de-
serves a closer look. Assume that a given component C defines an abstract
type t. When C is evaluated twice, this effectively defines two distinct ab-
stract types t1 and t2. (Note that t1 and t2 can actually be structurally
different if the definition of t depends on a type passed as an argument
to apply.) So far, no mechanism has been introduced to make t1 and t2
incompatible, which they need to be, lest apply break the soundness of
the type system. The following proposes a simple solution and outlines its
limitations.

A Simplistic Solution. During elaboration, the compiler generates a static
type name ts for every definition of an abstract type t. At run time, every
evaluation i of the definition of t requires a new abstract type name ti to be
generated (run-time types already need to fulfill this requirement, to make
the package concept sound). One solution to the problem outlined above is
to have apply operate under a substitution from every static type name ts
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in its argument namespaces to the corresponding dynamic type name ti. A
requirement for a type t stated by an import signature of a component is
fulfilled by a substitution ts 7→ ti; type equivalence constraints of the form
ts = us are fulfilled only if, according to the substitution, both ts and us

map to the same ti. Similarly, apply needs to extend the substitution for
the type names introduced by the namespace it produces.

Substitutions and Package Signatures. For soundness, it must not be pos-
sible to dissociate substitutions from namespaces. In other words, a partial
substitution must be stored in the signature that is part of every pack-
age. Assuming that the pack construct similarly includes a partial substi-
tution in the runtime signature stored in the package it produces, packages
obtained through apply can interoperate with packages obtained through
pack.

Limitations. One thing that the substitution scheme above cannot deal
with is when import signatures have free type variables. Consider the fol-
lowing component:

import type int from "Fundamental"
import val f : int -> int from "MyComponent"
〈. . . use f . . . 〉

In the simplistic solution above, free occurrences of type variables have to
be disallowed. This solution is simplistic, because it severely reduces the
expressivity of the component system in the presence of static typing with
generative types. This can be mitigated, to some extent, by making fewer
types generative: (1) Ubiquitous types, like int above, can be placed in the
initial environment. They would be treated as constants, as opposed to
free type variables. (2) Algebraic datatypes can have structural equality, as
opposed to token equality.

Rossberg [Ros06b] proposes a component system for statically-typed lan-
guages that covers more scenarios.

9.2.3 Capturing Components

A package constructed at run time can be turned into a component using
the capture injection function. The resulting component has no imports,
the same signature as the argument package, and its component functor
returns the structure contained in the package verbatim. Note that the exact
same structure is returned, as opposed to a copy. In essence, the capture
operation essentially allows a package to be used in place of any first-class
component.

Applications. When Section 10.1 introduces a way to persist first-class
components, the capture operation unfolds its full potential. As an ex-
ample, some component may compute data that is static in the sense that
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it is only ever read after initialization. The computation may be expensive,
but the actual representation of the data may be small. By evaluating the
component, capturing the result, and persisting it, the data can be made
available to other applications without requiring to perform the computa-
tion again.

Another application are mobile agents [FPV98, Section 4.1.4], discussed in
Section 11.2.

9.2.4 Syntactic Support for First-class Components

OpenL can easily be extended with a syntax to express first-class compo-
nents by adding the following expression syntax:

comp 〈import announcements〉 〈declarations〉 end

A comp expression has type component and evaluates to a component. With
file-level components, it shares the property that it has imports; with cap-
tured components, it shares the property that it can contain references to
run-time computed data structures, if the comp expression has free vari-
ables.

Note that the expressivity of the comp expression is superior to both file-
level components created by the batch compiler, and captured components.
One application is remote execution of agents, using the mechanism de-
scribed in Section 11.2.3.

9.3 Late Composition and Dynamic Linking

All linking programs described so far had the property that they assumed
their free variables were already bound to component metadata and com-
ponent functors. In other words, the set of components that make up an
application had to be fully known at the time of constructing the linking
program. This section adds the ability to extend a running application by
components discovered at run time.

Section 9.3.1 describes the interface to the component manager, the en-
tity responsible for coordinating and fulfilling dynamic link requests. The
component manager is built on first-class components, with no additional
magic, as Section 9.3.2 shows. Finally, Section 9.3.3 generalizes the compo-
nent manager to allow for multiple evaluation of the same component.

9.3.1 The Component Manager

To dynamically link a component, one needs to know the name of the
namespace it defines, as well as its type. Obtaining a name of a namespace
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at run time is called discovery; since namespace names are simple strings,
discovery can be implemented in any number of ways. With this said, the
simplest conceivable interface to the component manager is the following:

structure ComponentManager :
sig

exception Eval of exn

val link : string -> package
(* IO.Io, Mismatch, Eval, Malformed *)

end

link takes the name of a namespace, loads and links the component if
it has not been linked already, and returns the resulting namespace as a
package. It is up to the calling program to unpack the package under a
valid type.

Semantics of Dynamic Linking. In an application such as link s, the com-
ponent designated by s may depend on other components, which link
would need to recursively link. To be well-defined, an application linked
by the dynamic linker must have the exact semantics described in Sec-
tion 9.1.1. This implies that linking has to be lazy, the same amount of
sharing has to be maintained, and cyclic dependencies need to be correctly
resolved. In particular, every application of link to a given string s returns
the same package.

The Namespace Table. To this aim, the component manager maintains
a namespace table. Every time the component manager comes across a
reference to a namespace name that is not in the namespace table, it adds
an entry to the namespace table mapping the namespace name to a lazy
future. A request of the value of this lazy future causes the component
manager to load and link the corresponding component. The lazy future
is then replaced by either the resulting namespace, or, if evaluation of the
component raised an exception, a corresponding failed value.

9.3.2 Implementing the Component Manager

The component manager needs to be thread-safe. Its only state is the
namespace table. Internally, the namespace table is represented as a map-
ping from namespace names to packages. The following operations provide
a thread-safe namespace table:

val init : (string * package) list -> unit
datatype reference =

EXISTING of package
| NEW of package promise

val reference : string -> reference
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init initializes the namespace table with the given contents. reference
is the only accessor to the namespace table; it is atomic. If the compo-
nent table already contains a package package for the given namespace
name, reference returns a the existing entry as EXISTING package. If not,
reference creates a promise p, creates an entry in the component table
with the value future p, and returns NEW p. (In other words, for a given
string s, the first application of reference s returns a NEW result, and every
subsequent application of reference s returns an EXISTING result.) These
operations can easily be implemented in plain L and are not shown here for
conciseness.

Then, link can be defined in OpenL as follows:

fun link name =
case reference name of

EXISTING package => package
| NEW p =>

let
val package =

lazy (eval (Component.load name)
handle e => raise Eval e)

in
fulfill (p, package); package

end
and eval component =

Component.apply component
(Vector.map (fn (name, sign) => link name)

(Component.imports component))

Dynamic Typing. For dynamically-typed languages, the above definition
is identical but for the simplification that there is no need for packages: all
occurrences of packages can be replaced by the corresponding namespaces,
and apply does not need to perform type-checking.

Properties. The implementation has a number of important properties. It
works for cyclic references. It is fully thread-safe. Exceptions thrown by
component evaluation result in a failed value due to the definition of lazy
and can therefore be handled by all clients.

9.3.3 Evaluating Components Multiple Times

One requirement stated in the introduction is the possibility of evaluating
a component multiple times. This is not possible with the component man-
ager interface presented above, unless the same component exists under
multiple namespace names—once a component has been evaluated for a
namespace name, subsequent applications of link retrieve the namespace
from the namespace table instead of re-evaluating the component.
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However, the above implementation of link already defines an eval opera-
tion that exactly fulfills the requirement of evaluating a component without
entering it into the namespace table. eval just needs to be exposed from
the ComponentManager structure as follows:

val eval : component -> package

Section 9.5.1 extends the concept to allow for evaluating a component in
various contexts.

9.3.4 Related Work

Configuration Languages. The need for making linking of components
configurable has been recognized as early as the 1970’s. Mesa [LS79] had
one of the first configuration languages for defining the linking of sep-
arately compiled components. Mesa’s configuration language is separate
from the programming language.

The approach taken in the context of Pebble [Bur84] defines a single func-
tional programming language that is used to express both the components
themselves and the linking of these components. This is similar to what
this chapter does with first-class components: OpenL itself becomes the
configuration language.

Unix Dynamic Libraries. The Unix dlopen library supports dynamic link-
ing. dlopen interfaces to ld.so, the dynamic linker. There is no easy way
for application programmers to substitute their own version of dlopen and
ld.so, since the latter makes use of platform-dependent low-level mecha-
nisms for its operation. In other words, application programmers have little
control over the actual linking—in contrast to OpenL, which makes linking
entirely programmable at the level of the language.

Module Management as a System Service. Bracha et. al. [BCLO93] propose
a system service, running as a separate process, that provides for module
management. Their understanding of module management is similar to the
goals of this work’s component system. The module management service
defines an abstract data type for modules, which can be instantiated for
many languages. In essence, their system replaces the system’s dynamic
linker and provides application programmers with more control over sys-
tem configuration. Their work delivers only a model, not a practical im-
plementation: The authors themselves say, “many [. . . ] assertions remain
largely unsubstantiated claims.” In contrast, OpenL delivers, in its incarna-
tions in Mozart and Alice, viable implementations proving all of its claims.

Units. Units [FF98], like OpenL components, are first class. They also pro-
vide a linking operation to make program composition programmable in
the high-level language. As noted in Section 8.6, they do not address the
problems of dynamic loading and deployment.
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Java Class Loaders. Java’s class loaders [LB98] allow to load and link com-
ponents explicitly at run time. Classes obtained in this way are less con-
venient to use than statically referenced classes: they are returned as in-
stances of the java.lang.Class class [Sun03b] and can only be instan-
tiated through an expensive and cumbersome reflection method instead of
the built-in new operation. Only by casting the instance to a statically-known
base class or interface can it be used by built-in method invocation. This
is an artifact introduced by Java’s type system, and OpenL does not suffer
from such a problem.

Classes can use instances of classes defined by other class loaders. Java has
a similar typing issue as the one discussed above regarding type compat-
ibility across class loaders. Instead of using substitutions, Java identifies
each type by a pair of the class loader identity and the symbolic name of
the class. Interestingly, this issue was overlooked in early versions of Java,
compromising soundness [DFW96], and needed to be retrofitted into the
virtual machine definition.

Type-safety. OpenL’s dynamic linking only hints at typing issues with dy-
namic linking, by delegating them to the largely-unspecified type language.
Dean [Dea97] proposes a mechanism to prove type consistency in a sys-
tem with dynamic linking. Duggan [Dug02] describes how to maintain type
abstractions provided by the module language in the context of dynamic
linking; Sewell [Sew01] pursues the same goal in the context of distribution.
Rossberg [Ros06b] describes Alice’s approach to these problems, which are
outside the scope of this work.

First-class Environments. In the context of Scheme, there has been some
research about how to provide minimal language extensions to support
first-class modules [Jag94, QR96], taking the very different approach of rei-
fied environments. OpenL’s syntax for first-class components shares with
their approach the goal of allowing parameterization of a program with re-
spect to an unordered set of variables, as opposed to functional abstraction.
Their focus is, however, on modules as units of reuse, as opposed to units
of compilation and deployment—analogous to how Standard ML modules
differ from OpenL components. OpenL packages and captured components
have some similarities with such first-class environments.

9.4 Architecting the Runtime from Components

The preceding sections introduced Component and ComponentManager as
predefined structures. This section takes a closer look at how a system
architecture can actually make these structures themselves available to the
programmer as components.

To this aim, Section 9.4.1 introduces the distinction between built-in prim-
itives, the system namespace, and runtime components. This distinction
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allows the programming system to be composed from components, and
at the same time is an essential precondition for sandboxing security as
presented in Section 9.5.3. Section 9.4.2 revises the virtual machine from
Section 8.4 to start up a componentized runtime and run user applications
from within a component manager.

9.4.1 The System Namespace and Runtime Components

Chapter 3 considered the execution environment to consist of a virtual ma-
chine that could interpret a code representation of programming language
constructs, and of a number of primitive operations. OpenL distinguishes
two groups of primitive operations:

Built-in Primitives support built-in language types; they include, for in-
stance, arithmetic on integer types, vector and array operations, and
the operations on futures from Sections 2.1.5 and 2.1.6. The defin-
ing property of a built-in primitive is that it has an effect only on the
abstract store (see Section 3.1), but no access to or effect on the pro-
gram’s environment (disregarding memory operations performed by
the implementation of the abstract store).

System Primitives provide the remaining operations not expressible in the
programming language: operations for accessing properties of the
current process, such as environment variables and command line pa-
rameters; accessing the file system; creating and communicating with
other processes; and performing network operations.

Built-in primitives are made available by the compiler through the initial
environment as described in Section 8.1. The virtual machine supports a
special instruction to apply a built-in primitive; in other words, references
to the initial environment at the source level translate to direct references
to the built-in primitives from generated code.

In contrast, system primitives cannot be directly referenced from code. In-
stead, the virtual machine places all system primitives into the so-called
system namespace, which is constructed at startup, and for which there ex-
ists no persisted representation. The boot linker’s namespace table (see
Section 8.4) initially consists solely of the system namespace, registered
under a designated namespace name.

The runtime components are predefined components that are part of the
system and that can be implemented in OpenL itself. Runtime components
import the system namespace and provide a type-safe high-level interface
to system resources.

The constituents of the architecture are depicted in Figure 9.2. Above the
dashed line is shown a user component that makes use of runtime compo-
nents and built-in primitives. Below the dashed line are the constituents
that are part of the programming system.
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Figure 9.2: Componentized Runtime Architecture.

9.4.2 Booting the Virtual Machine

The OpenL virtual machine already supports eager linking on booting (see
Section 8.4). This mechanism can be used to link a component graph below
a boot component that creates a component manager and uses it to link a
user application’s root component.

In contrast to the root component, which is executed just by evaluating it,
the boot component has to be passed parameters from the boot linker—
namely the boot namespace table, lest the components linked by the boot
linker be evaluated more than once. After evaluating the boot component,
the boot linker therefore expects the resulting namespace to define a func-
tion boot, which it applies to the boot component table:

val boot : (string * package) list -> package

boot creates the component manager and populates its namespace table
according to its argument. It then links the root component using the com-
ponent manager’s link operation, and returns the resulting package. The
virtual machine then requests the namespace contained in the package—
which is not in general expressible in OpenL itself: Requesting just the
package does not, because of laziness, evaluate the component.

Accessing the Component Manager. The component manager itself must
be made accessible to the application so that the latter can issue a dynamic
link request. To this aim, boot needs to create an entry in the namespace
table for a namespace containing the component manager.

Implementation. The following is an implementation sketch of one way to
define a boot component:

import structure Component from "Component"
〈definitions of init and reference〉
fun boot bootNamespaceTable =

let
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structure ComponentManager =
struct

exception Eval of exn
fun link name =

〈definition of link〉
and eval component =

〈definition of eval〉
end

val package =
pack ComponentManager : 〈. . . 〉

val rootComponent =
List.hd (CommandLine.arguments ())

in
init (("ComponentManager", package)::

bootNamespaceTable);
ComponentManager.link rootComponent

end

9.4.3 Related Work

Heap Images. Many systems, in particular interactive Lisp, Scheme, and
ML systems, boot their runtime from heap images. When the system is
built, ad-hoc bootstrapping mechanisms are used to start a system with an
empty heap and an initial environment consisting of only built-in and sys-
tem primitives. This system is then enriched with the runtime components
by compiling and evaluating source files. At the end of this initialization
procedure, the contents of the heap is dumped to a file called a heap im-
age. Thereafter, every time the user starts the programming system, a heap
image is read back into memory at boot time, whereby the runtime envi-
ronment is made available. Often, this mechanism is also the only possibil-
ity for application programmers to produce executable applications—after
compiling the application code into an existing heap image, application pro-
grammers produce a new heap image that they ship to customers.

Heap images do not provide flexible customization, beyond providing mul-
tiple heap images at system build time. Multiple heap images also cannot
share any data—any data contained in multiple images must exist multi-
ple times on disk. Finally, each process can only load a single heap image,
determined at startup time. While it may be possible to dump a subset of
a running system’s heap, there is no possibility of linking this subset into
another system’s heap. In contrast, OpenL provides for all of these.

Java. Exposing the runtime as language components is a common ap-
proach. Java, for instance, exposes all runtime system components as
classes. In contrast to OpenL, however, Java requires a number of ad-hoc
solutions to deal with chicken-and-egg problems and circular dependen-
cies at startup time—for instance, the java.lang.Object and java.lang.
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System classes are required to parse class files (Java’s externalized compo-
nents), but their own definitions reside in class files. Booting such a system
is significantly more complex than OpenL’s approach, as is exemplified by
that fact that the approach taken for the Jalapeño virtual machine [AAB+99]
is simple compared to other Java virtual machines, but significantly more
complex than OpenL’s approach.

9.5 Custom Component Managers

There are a number of scenarios that cannot be covered by a single prede-
fined component manager:

• The namespace table only ever grows, and no namespace is ever re-
moved from it. This precludes unloading of components.

• Components may be obtained from untrusted sources, such as “ap-
plets” originating from a Web page and running in a Web browser, or
Web server applications uploaded by customers of an Internet Service
Provider. To limit the damage these components can cause, they may
need to be evaluated in restricted contexts.

• Components imports may be used as a mechanism for parameteriza-
tion, as opposed to just expressing static dependencies for a modular-
ized program. An application may need to evaluate such a component
multiple times, in different contexts, to make use of different instan-
tiations of the service.

Richer Predefined Component Managers. Since component managers are
defined by ordinary OpenL functions, application programmers can obvi-
ously implement their own customized initial namespace table population,
strategies for locating components, and loading policies. Many scenarios
can, however, be covered by just a richer definition of the predefined com-
ponent manager. Consider the following functor:

functor MkComponentManager
(val initialNamespaceTable :

(string * package) vector) :
sig

exception Eval of exn
exception Collision

val link : string -> package
(* IO.Io, Mismatch, Eval, Malformed *)

val eval : Component.component -> package
(* Mismatch *)

val enter : string * package -> unit
(* Collision *)
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val namespaceTable :
unit -> (string * package) vector

end

This definition differs from the ComponentManager structure from Sec-
tion 9.3.1 as follows:

• The definition is exposed as a functor, and can therefore be applied to
obtain multiple component managers with distinct namespace tables.

• The definition is parameterized over the initial namespace table con-
tents.

• enter adds a new, possibly dynamically-created namespace to the
namespace table even after initialization of the component manager.

• namespaceTable returns an existing component manager’s names-
pace table, from which new component managers can be created.

The following sections sketch how to realize the above scenarios with this
abstraction.

9.5.1 Component Managers for Multiple Evaluation

Evaluating a single component C under multiple contexts becomes possible
through the following steps: Retrieve a namespace table from an existing
component manager; modify it to establish contexts; create new component
managers from the modified contexts; and link C in all component man-
agers. The types defined by namespaces obtained from the initial compo-
nent managers will be compatible across all component managers, while ab-
stract types defined by C (and possible dependencies that were not present
in the initial namespace table) will be distinct.

9.5.2 Component Managers for Component Unloading

Unloading a component after having made use of its functionality becomes
a matter of creating a component manager from the namespace table of
an existing component manager, linking a component, and dropping all
references to the new component manager. As values from the namespace
are no longer used, the resources occupied by the component manager and
the namespaces it created can be reclaimed by the garbage collector. This
is by virtue of the fact that component managers are ordinary language
objects.

No explicit unloading operation is required, which preserves the property
that a component manager’s namespace table can only ever monotonically
grow. To program against this declarative idiom is less prone to error than
programming against an operational idiom: If used in the way described
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above, it is guaranteed by construction that all dynamic type names ti ob-
tained from a component manager for an abstract type t agree.

9.5.3 Component Managers for Sandboxing Security

The idea of sandboxing security is to execute an untrusted application in
a so-called sandbox, an environment that allows only controlled access to
system resources. As described in Section 9.4.1, all operations that provide
access to system resources reside in the system namespace, and system
primitives cannot directly be referenced from code. Establishing a sandbox
therefore means that untrusted applications must not be given references
to the system namespace or to runtime components.

Solution. OpenL makes a simple solution possible: One can create a re-
stricted component manager by applying the MkComponentManager func-
tor to a namespace table with the following properties: (1) There is no entry
for the system namespace. Since there exists no persisted representation
for the system namespace, the only way to access system primitives is if
there is an entry in the namespace table. (2) For every runtime component,
there is an entry that maps its namespace name to a restricted implemen-
tation that limits or controls access. For instance, a restricted version of a
runtime component providing file system access could have all of its opera-
tions throw exceptions, or allow access to files under a controlled directory
only (also known as “isolated storage”).

To leave its sandbox, a component has to gain access to a system primitive.
Components evaluated by a restricted component manager can only access
system primitives that the restricted runtime components let them access.1

Limitation. The initial namespace table of a restricted component man-
ager represents a blacklist of the components an untrusted component
should not be allowed to use unrestricted. As often with blacklists, this has
the potential of introducing a maintenance and versioning problem that can
lead to vulnerabilities: Imagine a newer version of the runtime that defines
more runtime components. A sandbox implemented against a previous ver-
sion of the runtime would not restrict access to the new runtime compo-
nents. Separating logical and physical component names as introduced in
Section 10.2 is one solution to this problem, effectively providing a whitelist
instead of a blacklist.

1Obviously, this relies on the assumption that one can verify that the component, even
though it was obtained from an untrusted source, is well-formed and that its metadata is
consistent with its code. This lies outside the scope of this work.
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9.5.4 Related Work

Capability-based Security. Sandboxing as presented above amounts to a
combination of capabilities, first introduced by the Hydra operating sys-
tem kernel [LCC+75], and namespace management [WBDF97]. A capability
is a token that gives the possessor permission to access an entity [Lev84].
Namespace management stands for providing different component imple-
mentations, depending on who wants to access them.

Java. Java pioneered sandboxing in an industrial-strength, general pur-
pose programming language. Sandboxing was first introduced to secure the
host system from applets running in a Web browser. Java’s sandboxing se-
curity is achieved through a combination of class file verification (ensuring
that the code cannot forge references) and security managers, which allow
or deny requests from class loaders to create specific classes. Application
programmers can define custom class loaders and security managers. Re-
portedly, these mechanisms are difficult to master [DP02].

Microsoft .NET. The Microsoft .NET runtime has a concept of application
domains [TC301b, Mic03e], originally introduced for ASP.NET to support ef-
ficiently running multiple server-side Web applications in a single server
process. Application domains provide for isolation with respect to accesses
and faults of multiple applications similar to having multiple processes, but
without the process boundary. At the same time, they serve to unload un-
used assemblies (.NET’s term for components). In other words, they share
some goals with OpenL component managers.

Every type and every object lives in an application domain. Every newly
created application domain is initially empty (at least conceptually—for ef-
ficiency, every application domain shares the same set of system-defined
ubiquitous assemblies). Each Application Domain can resolve the same
component name to a different component implementation, based on con-
figuration of the Application Domain. Application domains cannot im-
mediately share references to the same type instances; instead, all cross-
application domain invocations have to use remoting, which marshals ar-
guments using serialization. Such application domain crossings are subject
to the same limitations, and therefore protection, as cross-process accesses.
Compatibility of types across application types depends on the user-defined
underlying serialization policy.

While application domains aim to solve a larger problem than component
managers (for instance, application domain termination causes forced un-
winding of all threads running in the application domain—a concept not
supported by component managers), the mechanism is significantly more
heavy-weight than OpenL’s for the common goals.
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9.6 Optimizations

In general, many optimizations rely on inferring properties and identities
of objects referenced by variable occurrences. For example, if, in a function
application, the applied function is known statically, a compiler can com-
pile the application as a first-order call instead of a general higher-order
call: Since it can exploit known implementation details of the callee (up to
inlining the callee), much more efficient code can be generated.

In a system with dynamically linked components, the actual objects refer-
enced across components only become known at run-time. A naïve imple-
mentation therefore loses many opportunities for optimization; more so in
applications that have a fine-grained component structure in which cross-
component references and calls are frequent. This section proposes ways
to recover the most important optimizations.

Overview. Section 9.6.1 describes a simple optimization to minimize the
number of futures introduced by lazy longids. Seen on its own, the effect
is small, but it plays an enabling rôle with respect to picklability of ab-
stractions, and for the effectiveness of later optimizations. Section 9.6.2
proposes to statically bind to core library components, to recover first-
order applications of frequently-used primitive operations. When compo-
nents can be evaluated multiply in different contexts, this means that func-
tions in the component cannot even fully optimize first-order applications
of other functions defined in the same component—this is recovered by a
technique proposed in Section 9.6.3. If all else fails, a last chance for opti-
mization is doing late optimizations in a run-time compiler, as discussed in
Section 9.6.4.

9.6.1 Hoisting Lazy Structure Selections

A naïve implementation of non-strict longids is to translate every OpenL
longid S.x to the LI intermediate language expression lazy #x S, as op-
posed to #x S. In other words, every longid would create a lazy future at run
time, increasing generated code size and memory footprint proportional to
the number of longids in the program. Instead, the compiler could hoist
all these lazy selection expressions to the program point just after where
the selected structure is introduced into the scope (be it a structure decla-
ration, a signature coercion, an import announcement, a functor argument,
or the result of a functor application). In other words, multiple selections
from a single structure then appear in batches, lending themselves to com-
mon subexpression elimination—leading to creation of fewer futures in the
system, and possibly earlier elimination of those futures.

Semantics. Note that in the presence of pickling, this transformation has
an observable effect, since pickling traverses the closures of functions. A
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function whose body references a longid would, before the transformation,
reference the whole structure from its closure, which could have a large
pickled representation or even not be picklable at all due to embedded re-
sources. After the transformation, such a function would reference only
individual items from the structure, and pickling would not consider parts
of the structure that are not actually used from the function.

9.6.2 Compile-time Cross-component Optimizations

Typical programming systems provide as part of their library a number of
operations on built-in data types that are so fundamental that they are ap-
plied at a high frequency by all but the most contrived programs. Such
functions are likely to never see their definition changed, and are therefore
termed ubiquitous functions in the following. Ubiquitous functions are pro-
vided by predefined components. If the compiler treated these like every
other component, this would mean that every one of the frequent appli-
cations of the ubiquitous functions would be compiled into a higher-order
call. The goal of this section is to optimize applications of ubiquitous func-
tions (more generally, uses of arbitrary ubiquitous values).

Solution. To this aim, assume that the compiler be able to statically bind
not only against built-in primitives, but arbitrary functions, in the sense
that the code for these functions would be included in every compiled com-
ponent, and references to them hard-wired or even inlined.

To provide the optimization, one must identify the ubiquitous functions
and define them in a single runtime component. The compiler would, on
startup, evaluate this component and use the resulting namespace as the
initial environment (remember that until now, the initial environment was
assumed to consist of the built-in primitives only). The compiler shall in
general statically link against all entities contained in the initial environ-
ment.

Trade-offs. Since every ubiquitous function is potentially present in the
system many times due to it being part of many components, the memory
footprint is likely to grow as more functions are made ubiquitous, possibly
outweighing the advantages of static linking. Also, since the code of ubiqui-
tous functions is included in the compiled component, ubiquitous functions
may contain no references to system primitives (directly or indirectly). Note
also that by design, ubiquitous functions are not versionable and cannot be
modified once deployed.

9.6.3 Link-time Intra-component Optimizations

To enable multiple evaluation of components in different contexts, every
component body is translated to a functor. This means that every declara-
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tion, even though it may syntactically appear at the top level of a component
body, is effectively a nested declaration. In other words, even references
within a component to objects declared by the component can no longer
be translated to first-order references. For example, consider the following
component:

fun f () = ...
fun g () = ... f () ...
fun h f’ = ... f’() ...

The application of f within g would be as expensive as the application of f’
within h, even though much more is known statically about f. This is ad-
dressed by the next technique.

Solution. The idea is to compile a component as if it was part of a mono-
lithic program, in other words, to assume that all declarations are top-level
declarations—with the exception that the compiler would produce a special
representation for first-order intra-component references. Additionally, it
would mark the produced functor to be copy-on-apply (much like a mem-
ory management unit’s copy-on-write flag on virtual memory pages). apply
would always duplicate a functor’s code before applying it, and hard-wire
the first-order references in the copy. The original code can be viewed as a
template, and the copies as instantiations. In essence, this means trading
cost of component instantiation (both in terms of space and time) against
efficiency of executing the code in the component’s declarations.

Limitations. Due to the need for a special representation that lends itself
to instantiation, the optimization will only apply to an ad-hoc set of en-
tities. In Mozart/Oz, for instance, first-order reference optimizations are
only performed for the following entities:

Functions. Scheidhauer [Sch98] has shown that optimization of first-order
applications is critical for performance, as the majority of function
applications in typical programs is first-order.

Names. Oz names are unstructured values only consisting of their identity,
not unlike argument-less exception constructors in OpenL. Oz uses
names for protection, in particular of private class members. Calls of
statically-bound methods can be optimized only if the name is hard-
wired in the code, which necessitates the above technique.

In Mozart, this optimization recovers most of the performance of compa-
rable monolithic programs for programs that are subject to coarse-grained
componentization.

9.6.4 Link-time Cross-component Optimizations

Even in the presence of copy-on-apply, every application of a function im-
ported from another component remains equivalent to a higher-order appli-
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cation. This section proposes an optimization for cross-component appli-
cations, to reduce the performance impact on programs with fine-grained
componentization.

Solution. The idea is to exploit the run-time compiler present on many
virtual machines. As opposed to a batch compiler, the run-time compiler
runs after linking, whereby it can actually resolve object references, and
generate more first-order references. In other words, the intermediate rep-
resentation of functions is unchanged, but the code generated at run-time
can be specialized with respect to the component’s imports.

Limitations. Due to lazy longids, it often happens that the run-time com-
piler can only resolve object references to lazy futures. The run-time com-
piler could now actually request the lazy future (as is, in fact, done in Java
and Microsoft .NET), with an observable effect, or schedule the function for
dynamic recompilation. The latter could, for instance, be achieved by in-
serting code to this effect right after every construct that requests a lazy
future from the function’s closure.

9.6.5 Related Work

Most existing work on cross-module optimizations is based on propagat-
ing static information across compilation units [Blu97] or across (possi-
bly higher-order) module boundaries [Sha98], or on static interpretation of
module constructs [Els99]. By definition, propagating static information es-
tablishes strong dependencies between compiled program fragments across
which optimizations have been applied, and static interpretation assumes
that the linking structure of a set of components is known at compile time.
Both of these properties are contrary to the whole idea of components,
which should be weakly dependent on one another in the sense that com-
ponents should be interchangeable, and that the linking structure is deter-
mined at run time.

9.7 Summary and Validation

This chapter has presented a principled approach to lazy dynamic linking.
The semantics of lazy linking, handling of errors caused by lazy linking,
and implementation of the lazy linker are all reduced to the single concept
of futures. Simple operations, based on packages to obtain type-safety, are
identified for first-class components and allow the definition of dynamic
linkers in the programming language itself. This makes linking policies
and system configuration completely programmable, which, for instance,
allows application programmers to employ components not only for struc-
turing and extensibility, but also as a parameterization mechanism. The
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additional distinction of built-in versus system primitives allows to express
sandboxing security.

Validation. The proposed solutions have been validated in the context of
two systems, Oz/Mozart and Alice/Seam.

Lazy Linking is provided by both Mozart and Alice. Non-strictness of ac-
cesses to imported components is supported differently by both sys-
tems: Alice ML makes all longids lazy as described; Mozart creates
lazy futures only for identifiers explicitly enumerated for a names-
pace name in the import announcement.

Component Managers are defined both in Mozart and Alice. Both allow
the definition of restricted component managers for sandboxing secu-
rity by virtue of distinguishing between system primitives and built-in
primitives, but neither provides one as part of its standard libraries.

First-class Components with captured components are both in Mozart and
Alice. Oz has syntactic support similar to the one proposed in this
chapter; Alice provides only captured components. Oz does not co-
erce imported namespaces to the given signature (which solely con-
sists of an enumeration of identifiers), but makes this fact transparent
to application programmers by disallowing first-class access to names-
paces for which a signature is given. Due to its more ambitious type
system, Alice cannot use the exact primitives proposed above, and
builds its component managers completely on top of unsafe primi-
tives instead.

Component System Optimizations are provided both in Mozart and Alice.
In particular, both define ubiquitous functions, called the base envi-
ronment in Oz and the core library in Alice. In terms of link-time
optimizations, Mozart implements only the proposed copy-on-write
technique, while Seam implements optimizations based on the run-
time compiler as described.
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Chapter 10

Component Deployment

This chapter shows how the OpenL component mechanism can provide in
a simple and high-level way important services for component deployment.
Deployment is the “process whereby software is installed into an opera-
tional environment” [Sun03a]. Specifically, this chapter addresses the fol-
lowing requirements:

Programmable Component Acquisition. All services for component acqui-
sition, including resolving component addresses and loading of com-
ponents, must be expressible in the high-level language, without any
specific support from the underlying runtime system. Specifically,
it must be possible to internalize components from arbitrary byte
streams. This makes component acquisition fully programmable by
application developers.

Component Persistence. Whether they have been created statically by the
batch compiler or dynamically by capturing, components must be ex-
ternalizable to arbitrary byte streams, provided they only reference
data that has external representations. This allows applications to
persist parts of their run-time computed data and architecture.

Component Interchange Format. The byte stream representation must be
an open format, such that components can be produced by non-OpenL
programs. This makes OpenL components be a versatile data inter-
change format.

Versatile Default Mechanisms. The runtime must provide standard mech-
anisms for component acquisition that incorporate networked file sys-
tems defined by standard Internet protocols such as HTTP [FGM+99].

Hiding. For safety and business reasons, it must be possible to deploy ap-
plications with a component granularity different from that used dur-
ing development. Component boundaries internal to the system being
deployed must be hidden from clients of the system.

117
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Overview. Section 10.1 reduces externalization of components to pick-
ling, thereby defining a portable file format for components and enabling
data components. Furthermore, it investigates the ramifications of inte-
grating pickles and components. Section 10.2 proposes to use Uniform
Resource Identifiers (URI) [BLFM98] to represent component names, allow-
ing for principled component addressing and integrating the networked file
system into component acquisition. Localizers provide a flexible mecha-
nism for locating components at run time and for decoupling static pro-
gram structure from link-time binding decisions. Section 10.3 presents
bundling to enable hiding at the component level, making it possible to
force specific linking decisions statically, and allowing for components to
be deployed at a more coarse granularity than that used during develop-
ment. As a side-effect, the overhead incurred by link-time type-checking is
reduced and internal components are made inaccessible to external com-
ponents. Section 10.4 summarizes the results. All presented features have
been implemented in Mozart/Oz and Alice, thereby validating the proposed
techniques.

10.1 Representing Components as Pickles

The previous chapters defined the syntax and semantics of components,
and demonstrated how to implement eager static linking and lazy dynamic
linking. Representation of components on disk was not deeply looked at.
This section proposes to use pickling to obtain a representation of com-
ponents on files. Section 10.1.1 tackles the technical challenges of applying
pickling to components; Section 10.1.2 describes how to make the format of
pickled components open. Sections 10.1.3 and 10.1.4 develop the applica-
tion programmer’s interface to loading and saving components from and to
pickles, respectively. The ramifications of unifying pickles and components
are discussed in Section 10.1.5.

10.1.1 Making Components Picklable

Pickling is defined on a subset of LI data structures. To apply pickling
to OpenL components, their existing first-class representation must be ex-
pressed in this subset. Chapter 8 decomposed OpenL components into the
following constituents:

Export Signature. Every component contains metadata describing the sig-
nature of the namespace it computes, which is a single structure type
instance. Section 8.5.2 already mandated that all run-time types have
an LI representation. Types are terms, and terms in general are repre-
sentable by the picklable subset of LI.
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Imports. The metadata describing component dependencies is defined to
be exactly the value returned by the imports operation presented in
Section 9.2. This value is a vector of pairs of strings and types, all of
which are picklable.

Component Body. The body of a component is translated to a functor,
as introduced in Section 8.3. In LI, functors become functions, and
LI functions are picklable if all data structures in their closure are
picklable (remember that code is picklable).

These constituents can be packaged as an LI tuple. Taken together, this
means that:

• all components produced by the batch compiler are picklable, as their
closure contains built-in primitives only (see Section 9.6.2), which are
picklable by definition; and

• captured components are picklable if and only if the captured value is
picklable. Note that Section 9.4.1 requires that system primitives not
be picklable.

Note also that Section 9.6.1 described how hoisting of lazy longids ensures
that only the used parts of structures are part of the transitive closure of
abstractions.

10.1.2 Making the Format of Pickled Components Open

Section 7.3 already discussed how pickles in general can and should be
represented in an open format. To make pickled components be an open
format, the way how components are represented in LI must be part of the
definition. This means that (1) the type language and operations of types
must be defined; and (2) the names and semantics of built-in primitives
must be defined.

(1) and (2) together encompass, in particular, the apply operation. Note
that the actual linkers need not be defined, by virtue of being fully defined
in terms of apply and the other primitives.

10.1.3 Loading Components from Pickles

The single extension that is needed to obtain a component from its pickled
representation is the following unpickle primitive:

val unpickle : Word8Vector.vector -> component
(* Malformed *)
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The unpickle primitive verifies that the argument byte vector represents a
well-formed pickled component1, in which case the LI data structure repre-
sented by the pickle is constructed and returned. This operation is type-safe
and can, therefore, be made available to the application programmer in the
Component structure from Section 9.2.

With this operation, the operation load from Section 9.3 becomes non-
primitive:

fun load filename =
let

val instream = BinIO.openIn filename
val vector =

BinIO.inputAll instream
handle e =>

(BinIO.closeIn instream; raise e)
in

BinIO.closeIn instream;
unpickle vector

end

10.1.4 Persisting Components to Pickles

The operation inverse to unpickle is pickle, which takes a first-class com-
ponent and pickles it, returning the result as a byte vector:

exception Sited
val pickle : component -> Word8Vector.vector

(* Sited *)

In case the argument component referenced non-picklable data, pickle
raises a Sited exception. pickle, too, is type-safe and can be exposed
in the Component structure.

10.1.5 Pickles Versus Components

Note that until now, the only operation that created a component on disk
was the compiler. The pickle operation adds to this the possibility to per-
sist captured components—which means that persisted components may
contain not only compiled components, but, more generally, computed
(higher-order) data.

The pickle and unpickle operations defined on components, together
with captured components, subsume pickling of packages. Therefore, a
single application programmer’s interface is needed for both pickling and
loading components, with the added possibility of saving components to

1How the primitive does this is outside the scope of this work.
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disk. The interface is type-safe, as it builds on components, which in turn
are built on packages. Moreover, pickled data can be imported using im-
port announcements, and pickled data can be bundled with components, as
described in Section 10.3 below.

10.1.6 Related Work

Java. The Java virtual machine was designed with a documented file for-
mat for compiled components [LY99]. Every class resides on its own class
file. Class files are platform-independent, self-describing, and verifiable.
The concept is proven by the many virtual machines that have been imple-
mented to consume class files, and libraries that produce class files.

Class files are loaded by class loaders, which have an operation that takes a
byte array and produces a linked class object from it. Unlike in OpenL, there
is no first-class representation for an unlinked class. Also, class files are
much more restrictive than OpenL pickles: They can contain only constant
data of very basic data types and not arbitrary graphs. Object graphs can
only be made persistent through serialization. Serialization and class files
are kept separate concepts, which is why each of them is less expressive
than OpenL pickles.

First-class Components for Java. Duggan’s work on dynamic linking of
first-class components [Dug02] mentions that loading of dynamic libraries
can be based on Java deserialization. However, it does not consider seri-
alization as a mechanism for making dynamically-created components per-
sistent, or examine the ramifications of combining the concepts of compo-
nents and pickling. Both of these are featured in OpenL.

Microsoft .NET. In Microsoft .NET, executables (EXEs) and dynamic libraries
(DLLs) share the same file format (assemblies packaged within portable exe-
cutable files), the difference being that EXEs designate a static method as the
entry point at which the application launcher is to start execution. Like in
Java, assemblies can only contain very limited static data. .NET goes further
than Java in that assemblies can be created dynamically using the classes in
the System.Reflection.Emit namespace [Mic03b]. Such dynamic assem-
blies can even be saved to disk. Mechanisms as simple as OpenL capturing,
first-class syntax, and pickling are not available.

Units. Flatt and Felleisen [FF98, Footnote 6] disregard loading. Pickling
could be employed in their approach in just the same way as in OpenL.

Capabilities in Mobile Code Systems. Wallach et al. [WBDF97] describe
the complexities of preventing mobile code systems to perform unmediated
transfer of capabilities. Mobile code based on pickled dynamic components
mitigates this problem: Capabilities are represented as system primitives,
which cannot be part of pickles. Since pickling is defined on closed graphs,
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an abstraction that possesses a capability is itself not picklable—therefore,
capabilities cannot be implicitly transferred as part of mobile code. Mobile
code has to be parameterized over the capabilities it requires, enabling mo-
bile code hosts to mediate capability transfer: They need to pass capabilities
to downloaded code explicitly, or can choose not to do so.

10.2 Locating Components at Run Time

As described, components are referenced by name in import announce-
ments and metadata, and represented on files as pickles. The preceding
sections assumed that component names lived in a flat namespace, and
that the base file name was always identical to the component name. These
assumptions are unrealistic in the face of the following important scenar-
ios:

Naming Components by Function. At the outset, one goal of components
was to make system composition configurable at run time, and ac-
cessible to the administrator as opposed to the developer. In order
to make components interchangeable that are identical in their pro-
grammatic interface, clients should be able to use symbolic compo-
nent names instead of actual component file names.

Selecting Component Variants. A special case of the preceding scenario is
selecting, at run time, variants of a component that are or are not
instrumented with assertions, for tracing, for coverage data collection,
or for profiling.

Component Interposition. A familiar mechanism in object-orientation is
function interposition [BCLO93], which allows to rebind all references
to a function f to an impostor function. The impostor function can
make references to f . This mechanism can be used, for instance, for
adapting existing compiled code to new data formats or debugging.

Assigning Security Levels. Section 9.5.3 described how sandboxing secu-
rity required components to be classified according to the level of
trust required from clients. Errors in the classification can lead to
security vulnerabilities. System extensions can make this mapping
hard to maintain if it cannot easily be derived from component names
alone.

Integrating Subsystems without Name Clashes. When subsystems are de-
veloped independently of one another, there is a possibility that the
names of components internal to each subsystem collide. This can
make it difficult to integrate these subsystems.

Network Transparency. In general, for example in the case of applets, com-
ponents can be provided on the local computer, or a different com-
puter on the network. In the latter case, they can also be cached lo-
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cally. Clients should be able to address a component under a single
name, irrespective of the network location.

This section introduces a distinction between logical and physical compo-
nent names to break the static connections between components, and to en-
able external selection of connections. It proposes to structure logical and
physical component names by use of URI and URL, respectively. Localizers
map from logical to physical names. Just as writing functor applications al-
lows to make linking decisions in the module language, defining localizers
allows to make linking decisions in the component language.

10.2.1 Logical and Physical Component Names

Uniform Resource Identifiers (URI) [BLFM98] and Uniform Resource Locators
(URL) [BLMM94] define a standardized syntax for strings with a hierarchical
structure. URI and URL are good candidates for logical and physical compo-
nent names: URI serve as abstract identities, which require an application-
defined mapping to interpret them. In contrast, URL have defined mech-
anisms for obtaining resources from them (in particular, file contents). A
localizer shall be a partial function from URI to URL. Note that since the
set of URL is a subset of the set of URI, the identity function on URL is a
localizer.

Using URI as Logical Component Names. URI have a hierarchical structure.
The benefit is that this allows to easily define conventions for identifying
sets of related components. In particular, all components below a specific
node in the hierarchy could be considered to require higher trust; or orga-
nization of sub-hierarchies can serve to heuristically avoid name collisions.
For instance, OpenL could use URI starting with x-openl://system/ for
all of its system components: The x-openl scheme ensures that there are
no collisions with any URL or any user-defined component, and the system
authority indicates that this component requires a high trust level.

URI can be absolute or relative. A standardized resolving function takes an
absolute URI (called the base URI ) and a relative URI, and returns an absolute
URI. Relative URI facilitate relocating sets of interdependent entities as a
whole, without needing to adapt references internal to the set.

Using URL Instead of File Names as Physical Component Names. URL
can express commonly used file system paths by use of the (implied) file
scheme. In other words, file names can be used as URL. Beyond that, URL
define a networked file system: For instance, the Hypertext Transfer Pro-
tocol (HTTP) [FGM+99] is used to access resources named by URL from the
http scheme.

The networked file system defined by URI is not browsable—and there is no
need for it to be, in the context of component naming: Component man-
agers only ever need to open and read files given their name. Dynamic
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discovery of components amounts to viewing component tables as mono-
tonically growing subsets of the mapping from logical component names to
namespaces.

10.2.2 Programming Localizers

From the preceding section, it follows that logical component names and
component instances are related by partial functions as follows:

absolute URI
getUri−⇀ absolute URL

getUrl−⇀ pickle
unpickle−⇀ component

This section describes how these functions are made available to the OpenL
application programmer by library structures. Observe how this function-
ality is fully implemented in the high-level language.

Acquiring Resources from URL. The getUrl operation examines the ar-
gument URL and uses, depending on its scheme, network protocols or file
system functions to access the resource in binary form, if it exists:

type url = string
val getUrl : url -> Word8Vector.vector

(* IO.Io *)

In practice, getUrl would be extensible by allowing registration of custom
handlers for specific URL schemes.

Localizing a Resource from a URI. A localizer is a simple function. The
getUri operation is parameterized over a localizer, which it uses to turn a
given URI into a URL, and acquire the resource:

type uri = string
type localize = uri -> url option
val getUri : localize -> uri ->

Word8Vector.vector option

getUri is defined as follows:

fun getUri localize uri =
case localize uri of

SOME url =>
(SOME (getUrl url) handle _ => NONE)

| NONE => NONE

In practice, it is useful to be able to specify a list of localizers to try in se-
quence until one of them returns a URL from which a resource can success-
fully be acquired. This is analogous to search paths in traditional systems:

val getUriN : localize list -> uri ->
Word8Vector.vector option
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fun getUriN (localize::rest) uri =
(case getUri localize uri of

SOME vector => SOME vector
| NONE => getUriN rest uri)

| getUriN nil uri = NONE

10.2.3 Localizers and Component Managers

To support localizers in component managers, it is sufficient to (1) revise
the Component.load operation from Section 9.2 to take a localizer as an
additional argument; and (2) parameterize MkComponentManager from Sec-
tion 9.5 over a localizer to use.

The load operation shall now look as follows:

val load : localize list -> uri -> component
(* IO.Io, Malformed *)

fun load localizers uri =
case getUriN localizers uri of

SOME vector => unpickle vector
| NONE => raise IO.Io {...}

Change (2) is accomplished as follows:

functor MkComponentManager
(val initialNamespaceTable :

(string * package) vector
val localizers : localize list)

Note that the component table operates on (absolute) logical component
names only. In other words, if two logical component names map to the
same physical component name, the component will be loaded twice.

10.2.4 Configuring the Default Localizer

The virtual machine—and, thereby, the default component manager—needs
to use a localizer. It should be possible for the user to specify this localizer
at startup. For instance, Mozart and Alice read a localizer specification
from an environment variable, whose syntax allows to specify a sequence
of localizers from the following vocabulary:

Default denotes the localizer that returns a given URI as-is. This trivial
mapping is meaningful since URL are a subset of URI. In practice, most
configurations include the default localizer.

Root(d) denotes a localizer that resolves relative URI with respect to a given
directory name d (or any absolute URL, really). This localizer ad-
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dresses the scenario of starting an application with arguments that
are relative URI, but need to be interpreted independently of the direc-
tory current when the application is started.

Cache(d) takes URI of the form scheme://authority/path to URL of the
form d′/scheme/authority/path, where d′ is the directory name d
rewritten to an absolute file URL. This localizer addresses the com-
mon scenario of locally caching components from the networked file
system. This is also useful for establishing an installation structure
for predefined components packaged with the system (both Mozart
and Alice use the cache structure for this).

Prefix(s1, s2) denotes a localizer that, given a URI starting with string s1,
returns a URL with the prefix s1 replaced by string s2. This localizer
addresses the scenario where a set of physical locations are given for
logical component names en masse.

Pattern(p, e) is defined by a pattern p and an expression e and takes a URI
that match p to URI computed from e. p can contain match variables
of the form ?{x}, and e can contain corresponding occurrences of
?{x}. For example, let p be http://www.?{x}/?{y} and let e be
ftp://ftp.?{x}/?{y}. Then http://www.foo.com/bar would be
mapped to ftp://ftp.foo.com/bar. This localizer is a more general
form of the prefix localizer.

10.2.5 Related Work

Windows Dynamically Linked Libraries. A Windows dynamic library is
referenced by its base file name. The actual library is located by trying to
load it from a number of specific directories in sequence, including (details
depending on the version of the operating system) the system directory,
the directory in which the application resides, and the current directory.
This has led to numerous application breakages—applications picking up
incompatible versions of libraries; inability of two applications to depend
on different versions of the same library; and library name clashes. In gen-
eral, installation of a new application can break installed applications, a
situation generally known as DLL hell. The root cause of the problem is
that library names have no structure—in particular, they do not include any
version information. OpenL circumvents this problem by separating logi-
cal from physical component names, and introducing structure on logical
component names to allow for encoding of information that differentiates
different variants of a single component. Moreover, configurability of local-
izers allows for special casing in case of version incompatibilities.

Windows COM. The Component Object Model [Rog97] was originally de-
veloped as infrastructure for the Object Linking and Embedding (OLE) tech-
nology, which allows for documents to embed documents handled by com-
ponents unknown to the outer document’s handler. COM components are
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implemented by dynamic libraries and live on executable files. A global
database (the Windows registry, and, in the case of Windows 2000 and
successors, the distributed Active Directory database) defines the mapping
from human-readable “programmatic IDs” to GUIDs (globally unique identi-
fiers), and from GUIDs to files. The database also supports superseding—a
newer version of a component being able to emulate an older version. When
a component exists in several versions, their programmatic IDs are distin-
guished heuristically by appending the version number, while their GUIDs
will all be different.

In summary, COM tries to solve goals similar to OpenL’s, but the config-
urability of its logical-to-physical name mapping is limited and global. In
contrast, OpenL’s mappings are programmable and per-application, or even
per-component manager (if an application instantiates multiple component
managers).

Java. Application programmers can define custom class loaders. Custom
class loaders have full control over the way that classes are located and
loaded—OpenL application programmers have the same flexibility. Java’s
default class loader uses the CLASSPATH environment variable, which is
akin to the way the OpenL virtual machine parameterizes over a localizer.
However, the CLASSPATH is just a sequence of directories (and “archives”,
which emulate directory structure within a file); as such, it is completely
subsumed by and much less expressive than localizers.

Microsoft .NET. Microsoft .NET is a successor to COM built on a common
runtime for so-called managed code. The runtime has control over all as-
pects of execution, including, in particular, loading and linking of compo-
nents (called assemblies). Assemblies can be addressed by their file name
relative to the application’s installation location, which means that a com-
ponentized application can be installed by just copying a directory tree
(termed XCOPY deployment, alluding to a DOS recursive file copy command).
Assemblies can be addressed by any number of the following constituents:
name, locale, processor architecture, and version number. Also, assemblies
can be signed by a cryptographic key (called a strong name); in this case, the
linker will fail unless it finds the exact same assembly at run time. Assem-
blies can be installed into the global assembly cache, or they can be located
using a search path. Every application domain (similar to component man-
agers, but with strong isolation guarantees) can have its own search path.
Application programmers can define custom loaders, but do not have full
control: the default assembly loader is always tried first; only if it fails will
the user have a chance of delegating to his own loading behavior.

Microsoft .NET is superior to OpenL in that it supports strong names in
determining whether an assembly satisfies a given link request. Microsoft
.NET predefines more variables in link requests, but OpenL subsumes these
by allowing to encode these into URI. Neither system suffers from the “DLL
hell” problem.



128 Chapter 10. Component Deployment

Function Interposition. Bracha et al. [BCLO93] also address the function
interposition problem. They propose a language, called Jigsaw, that pro-
vides operators on first-class components. This language is used to write
what amounts to LI linking programs, and is expressive enough to solve the
function interposition problem.

10.3 Bundling

This section proposes a mechanism called bundling that serves to package
several components into a single deployment unit.

During development, developers typically structure their application as a
number of fine-grained components, for reasons of maintainability and
short turn-around times. When it comes to deployment, there are reasons
for more coarse-grained componentization:

Hiding. Implementation details should not be visible, and unlicensed reuse
of internal components should be prevented.

Early Binding. Components can serve to postpone linking decisions until
after deployment for flexibility. When componentization decisions
were also driven by development considerations, this power is often
not needed; in fact, it effectively introduces opportunities for config-
uration errors on the part of the administrator who is deploying the
application.

Time Efficiency. It takes longer to load a large number of small compo-
nents than a small number of large components, especially over the
network. In addition, the higher the number of deployed components
is, the more edges the dependency graph has, and component types
have to be verified on every edge.

Space Efficiency. Type representations are not small and may, in some
cases, even dwarf the representation of a component’s code and data.
Those types that can be fully checked during early binding need not
be deployed as part of the application.

Example. Figure 10.1(a) shows a sample component dependency graph.
The Compiler component implements a first-class compiler used both by
a command-line batch compiler application, and a debugger (say, for eval-
uating expressions interactively). Several components use a file I/O com-
ponent from the standard library. Assume that the components should be
deployed with a different granularity, namely the components surrounded
by the dashed line should become a single bundle, resulting in the com-
ponent graph depicted in Figure 10.1(b). Figure 10.1(c) shows the internal
structure of the bundle, where a dashed ellipse represents a dependency of
the resulting bundle.
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(a) Development Component Graph.
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(c) The Internal Structure of the Compiler’ Bundle.

Figure 10.1: An Example of Bundling.
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A Pattern for Bundling. The intent is for developers to use bundling as fol-
lows. Development produces a set C ∈ Name −→fin,inj Comp of component
files. Then, bundling can be applied to a set N ⊆ Dom(C), which results in
a deployment unit c = bundle(C,N), such that only C′ = C|Dom(C)\N∪{n 7→
c}, n ∈ N, will be deployed. To obtain the final set of deployment units,
several bundling steps may be necessary.

Bundling as an Operation on Deployment Units. Looked at from a dif-
ferent angle, at the core of bundling is the following operation: One can
package an arbitrary non-closed connected subgraph of the graph spanned
by import announcements, starting from a given component, yielding a new
deployment unit. (Of course, a single component also forms a deployment
unit.) Note that this operation effectively duplicates the bundled compo-
nents. Unless used under the pattern described above, this can lead to unin-
tended results, as these components may be loaded and evaluated multiple
times, each instance having its own state.

Overview of this Section. In a first step, Section 10.3.1 derives the re-
quirements that bundling must fulfill for to address the above scenarios.
Section 10.3.2 sketches the OpenL approach and analyzes its properties.
The bundle construction algorithm is presented in Section 10.3.3, and im-
plementation issues are discussed in Section 10.3.4. Finally, Section 10.3.5
compares the proposed approach to related work.

10.3.1 Requirements and Non-goals

From the goals outlined in the introduction follow the following require-
ments:

R1 Bundling must require modifications neither to the source code nor
to development-time configuration. This separates deployment from
development considerations and decisions.

R2 It must be possible for components in a bundle to depend on compo-
nents that are not part of the bundle. This allows for libraries to be
shared by several bundles, as in the example above.

R3 Other than that, bundles must be self-contained, that is, not refer-
ence the components from which they have been constructed. This is
so that the constituents components can be physically removed after
bundling (when appropriate), to protect against component duplica-
tion. This implies that programs that make programmatic use of lo-
calization failures at run time may behave differently after bundling.

R4 It should not be trivial to extract constituent components from a bun-
dle. This guards against unlicensed reuse of constituent components.
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R5 The linking decisions in-between any two components included in the
same bundle must be prescribed by bundling, and no longer be subject
to late binding. This eliminates possibility of misconfiguration.

R6 When externalized, the bundle must consist of fewer files than the
sum of its constituents. This reduces the number of files that need to
be individually loaded.

R7 Imports between any two components that are part of the same bun-
dle must be type-checked at bundling time. This implies that pro-
grams that make programmatic use of type mismatches at run time
may behave differently after bundling.

R8 Types only needed for type-checking performed at bundling type must
not be represented in the resulting bundle.

Non-goals. In view of the practical goals the solution has to fulfill, the
following are explicitly declared as non-goals:

N1 It is not a goal to make bundling “fool-proof” in that an arbitrary
bundling operation applied to a set of components would not mod-
ify the components’ semantics.

In general, any bundling operation modifies semantics—which is re-
ally the purpose of bundling: bundling hides components, so that
these components cannot be referred to externally any more. In par-
ticular, they are not dynamically discoverable any more. This means
that any component that is to be dynamically discovered cannot be
allowed to exist only in a bundle as a non-root component.

N2 It is not a goal to support references from outside the bundle to more
than one component included in the bundle. Such a situation is de-
picted in Figure 10.2(a). The single designated component to which
references are possible will, in the following, be called the bundle’s
root component.

The reason to make this a non-goal is that it significantly reduces the
complexity of the problem, and the apparent limitation can be worked
around easily. For instance, Figure 10.2(b) defines a component X that
imports C and D and reexports the entities they define. (X could be
auto-generated by a tool.) Now, A and B have to refer to X instead
of C and D. There are several ways to accomplish this: (1) modify
the imports of A and B to refer to X directly (see Figure 10.2(c)); or
(2) introduce “proxies” for C and D that import and re-export the corre-
sponding definitions from X, and which are deployed under the logical
names of C and D. This is shown in Figures 10.2(d) and 10.2(e).
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A B

C D

(a) Intended
Bundle.

import val c from "C"
import val d from "D"
val c = c
val d = d
(b) The Merger Component X.

A B

X

C D

(c) Direct use of X.

A B

X

C’ D’

(d) Use of X
via Proxies.

import val c from "X"
val c = c

import val d from "X"
val d = d

(e) Components C’ and D’.

Figure 10.2: Implementing Bundles with Multiple Roots.

10.3.2 Approach

The central idea of the proposed solution is to generate a single new com-
ponent to represent a bundle. In other words:

• The imports of the bundle component are those components that are
referenced from bundles in the component, but that are excluded
from the bundle.

• The signature of the bundle component is the signature of the bun-
dle’s root component.

• The component body functor is generated as follows:

– The functor’s arguments are the namespaces imported by the
bundle.

– The functor’s free variables are the unevaluated components in-
cluded in the bundle.

– The functor’s body is a partial linking program.

– The functor’s return value is the namespace of the root compo-
nent, as computed by the linking program.

This fits into the general strategy as follows. Section 8.3 defined linking
programs that could be generated statically for a set of components and
resulted in the components being linked and evaluated, and these linking
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programs were extended to support a lazy linking strategy in Section 9.1.2.
Component managers as defined in Section 9.3.2 generate and interpret
linking programs on-the-fly. Now, bundling generates a partial linking pro-
gram for a non-closed connected graphs of components, and packages it
into a component.

Fulfilled Requirements. This approach immediately fulfills: Requirement
(R1) by virtue of bundling operating on compiled components only; (R2) by
virtue of the bundle component supporting imports; (R3) by virtue of pick-
ling transitively including values referenced through the free variables of
pickled functions; (R4) by virtue of there being neither operations to obtain
a component’s body function, nor to obtain that function’s free variables;
(R5) by virtue of the partial linking program being generated at bundling
time, as opposed to on-the-fly by a component manager; (R6) by virtue of a
bundle component being picklable onto a single file.

Ramifications. This approach has the following ramifications:

• The fact that bundles are components implies that all operations on
components also operate on bundles without modification, for in-
stance, linking, component managers—and bundling. In other words,
bundling is compositional: bundles can be part of bundles. This
means that bundling has expressive power equivalent to lexical scop-
ing on logical component names of the form letn1 = c1, . . . , nm = cm
in c end.

• Since the bundling operation explicitly generates linking programs,
the linking strategy used in-between the bundled components is under
the control of the bundler. If this strategy is lazy linking, the semantic
change induced by bundling is least noticeable—but other strategies
are possible.

• Since the only new data and code generated by the bundling operation
is metadata composed from the argument components, and a linking
program, both of which are picklable, it follows that the resulting com-
ponent is picklable if and only if all of its constituent components are
picklable.

• Due to bundles being intra-linked, bundling provides an opportunity
for link-time optimizations that may be too expensive to do at run
time; for instance, specialization or inlining. This is conceptually
equivalent to partial evaluation of the generated partial linking pro-
gram.

10.3.3 A Bundling Algorithm

This section presents the actual algorithm for creating a bundle. First of all,
the bundler needs the following information to create bundle:
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The Root URI. The component denoted by the root URI is always included
in the bundle, and the namespace it computes is the namespace ex-
ported by the bundle.

A Localizer. When the bundler has determined that the component corre-
sponding to a given URI is to be included in the bundle, it uses the
localizer to acquire it.

A Membership Predicate on URI. Assume a component c is included in the
bundle. The membership predicate determines, for each of the com-
ponents imported by c, whether they should also be included in the
bundle or excluded from it. To do that, the membership predicate is
applied to the imported components’ URI as resolved with respect to
the URI of c.

A Rewriting Function. Any component excluded from the bundle becomes
an import of the resulting component. The bundler knows a unique
absolute URI for each of these; however, the resulting component
should usually have relative import URI. This is the purpose of the
rewriting function. The rewriting function takes absolute URI to abso-
lute or relative URI, and can be used to “undo” resolving—as well as
for arbitrary rewriting: For instance, it can serve to realize the scenario
depicted in Figure 10.2(c). (Note that the rewriting function needs not
be injective.)

Optimizing Exclusions. In general, a component that is imported from
bundled components may be referenced under more than one type. For
example, in Figure 10.3(a), component B imports D under type t1, while C
imports it under type t2. If only one of t1 and t2 needs to be represented,
the bundle’s representation becomes smaller and fewer types have to be
checked at run time. One can distinguish the following cases:

(1) t1 and t2 are equivalent. The two imports can be merged, as shown in
Figure 10.3(b).

(2) t1 is a subtype of t2 (or the symmetric case). The two imports can
be merged into one import under type t1, as every namespace that
matches t1 will also match t2.2 Note that this optimization is not se-
mantically transparent: Assume that at run time, a component D is
found that matches t2, but not t1. In the unbundled system, compo-
nent B will still be allowed to successfully execute against D, while in
the bundled system, any attempt to use D from B will fail with a type
mismatch.

(3) Neither one of t1 or t2 is more specific. This can be further subdivided
into the following cases:

2In the case that coercion of a namespace to a given type possibly needs a representa-
tion change, an adapter component may have to be synthesized into the bundle in-between
the remaining import and B.
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Figure 10.3: Bundles with Multiply Referenced Exclusions.

(3a) The intersection type t = t1∩t2 exists and can be computed. This
case can be reduced to case (2).

(3b) The intersection t1∩t2 = ∅ is empty, and this fact can be proven.
An error should be flagged at bundling time.

(3c) Otherwise, the resulting bundle shall consider the two imports to
be unrelated (despite having the same name) and retain both of
them, at higher resource cost, as shown in Figure 10.3(c).

Algorithm. Figure 10.4 shows an algorithm that uses the information de-
scribed above to collect the components to bundle and manage their meta-
data. In this algorithm, “resolve” stands for the function that resolves a
possibly relative URI with respect to another (usually absolute) one. “match”
is a predicate that is true if a structure of the type given as first argument
matches the type given as second argument. Since the algorithm performs
type-checking at time of bundling, it clearly fulfills Requirement (R7). For
simplicity, the algorithm assumes that the intersection of two types always
exists and can be computed by the “intersect” function. The actual con-
struction of the component bundle is examined in the next section.

10.3.4 Creating the Resulting Bundle Component

Now that the algorithm has determined the components that go in the bun-
dle, the bundler needs on operation to actually construct the bundle. This
section presents such an operation, first in a type-safe incarnation that,
however, creates unnecessary overhead in the bundle. By descending one
level to an unsafe realization, an optimized representation can be obtained.

A Component Construction Primitive. Up to now, the only options to cre-
ate components at run time were capturing (creating an evaluated compo-
nent from live data) and the first-class component syntax (creating a com-
ponent from a static definition). The bundler, in contrast, creates a unevalu-
ated, computed component. This constructor can be exposed as a primitive
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function bundle(rootUri, localizers, member , rewrite) =
let included be a new map from URI to components;
let excluded be a new map from URI to signatures;
procedure depthFirst(uri, sign) =

let component = load(localizers, uri);
if ¬match(sign(component), sign):

raise Mismatch;
included[uri] := component;
for each (uri′, sign′) ∈ imports(component):

let uri′′ = resolve(uri, uri′);
if member(uri′′):

if uri′′ 6∈ Dom(included):
depthFirst(uri′′, sign′)

else if ¬match(sign(included[uri′′]), sign′):
raise Mismatch;

else:
let uri′′′ = rewrite(uri′′);
if uri′′′ ∈ Dom(excluded):

excluded[uri′′′] := intersect(excluded[uri′′′], sign′)
else:

excluded[uri′′′] := sign′;
let top be a type matched by all components;
depthFirst(rootUri, top);
return a new component with:

one import for every (uri, sign) ∈ excluded,
a component body functor that has included as a free

variable and arguments according to excluded,
sign(included[rootUri]) as export signature.

Figure 10.4: Algorithm for Constructing a Bundle.

as follows:3

val component : { imports : (string * sign) vector,
body : package vector -> package,
sign : sign } -> component

component creates a bundle with the given metadata, and whose compo-
nent body functor is as follows: It expects as arguments structures with
the given signatures, packages them, passes the packages as a vector to
the given function, unpacks the result, and coerces it to the given export
signature.

3A convention introduced by the Standard ML Basis library calls for naming the con-
structor of an abstract type after the type.
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Computing the Component Body Function. At this point, all that remains
is to compute the body function. Given the result of the argument above, a
function of the following type would be appropriate for this:

datatype source =
INCLUDED of int

| EXCLUDED of int
type script = (component * source vector) vector * int
val createBody : script -> (package vector -> package)

createBody takes a script—a data structure that describes the internal link-
ing structure of a bundle—and returns a body function that takes a vector
of argument namespaces. Every element of the script’s vector is a tuple of a
bundled component and a description of where it gets its arguments from:
INTERNAL i denotes the ith element of the script, while EXTERNAL i denotes
the ith argument. The integer in a script is the index of the bundle’s root.
For instance, the structure of the bundle depicted in Figure 10.1(c) could be
described by the following script:

val script =
(#[(compiler, #[INTERNAL 1, INTERNAL 2]),

(parser, #[EXTERNAL 0, INTERNAL 3]),
(codeGenerator, #[INTERNAL 3, EXTERNAL 0]),
(parseTree, #[])], 0)

A script can easily be computed from the included and excluded maps com-
puted by Algorithm 10.4. createBody can then be implemented thus:

fun createBody (script, root) arguments =
let

val promises =
Vector.map (fn _ => promise ()) script

val futures = Vector.map future promises
fun link (promise, (component, sources)) =

let
fun get (INCLUDED i) =

Vector.sub (futures, i)
| get (EXCLUDED i) =
Vector.sub (arguments, i)

in
fulfill (promise,

lazy Component.apply component
(Vector.map get sources))

end
in

VectorPair.app link (promises, script);
Vector.sub (internal, root)

end handle Subscript => raise Mismatch
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Optimization. In the case of a dynamically-typed language, this solution
is complete. For statically-typed languages, although the solution is func-
tional, it does not yet fulfill Requirement (R8), which states that internal
types should not be checked at run time, and not even be represented in
the bundle.

Note the following observation: By construction, the apply operation as
used in createBody will never raise a Mismatch exception for any argu-
ment namespace computed from a component that is part of the bundle.
Consequently, at the level of LI, the application of apply in createBody can
be partially evaluated to omit type-checking; and the component type can
be used transparently to store only the component body function of every
bundled component, without its metadata. This exercise is very technical
and is, therefore, not explicitly demonstrated here for conciseness.

10.3.5 Related Work

Java. On the level of the Java language, Java packages fulfill some of
the goals of OpenL bundles: packages have structured names and can be
nested, and package boundaries are used to control access to classes and
members [GJS00]. On the level of the virtual machine [LY99], which is the
level at which code is deployed, packages fail to fulfill these goals: pack-
ages can not be closed—after deployment, a new class can be defined in an
existing package and will be allowed to access the symbols internal to the
package.

Another goal of OpenL bundles—that collections of components can be de-
ployed as a single file—is fulfilled in Java by so-called Java archives (JARs).
JARs need to be explicitly mentioned in the CLASSPATH for the virtual ma-
chine to be able to locate at run time the components they contain. In
contrast to OpenL bundles, JARs are not intra-linked: Deploying implemen-
tations of two components A and B in a single JAR, where A depends on B,
does not guarantee that A will be linked against this implementation of B. If
another implementation of B can be found in a location preceding the JAR
in the CLASSPATH, that implementation will be used instead. Also, individ-
ual components can be extracted from JARs, as opposed to OpenL bundles,
which are opaque. In summary, JARs provide only for physical packaging,
not hiding.

Microsoft .NET. At the level of the C# and Visual Basic languages, .NET
has namespaces that are very similar to Java packages. In contrast to Java,
however, .NET offer more structure for deployment: While logically types
live in namespaces, physically they live in modules, many of which can be
linked into an assembly. The internal access level means “internal to the
assembly”, not “internal to the namespace”. By creating an assembly, all
linkage in-between types contained in that assembly is prescribed, and is
not subject to late binding any more. In this respect, .NET assemblies are
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superior to Java packages and JARs, and akin to OpenL bundling. However,
in contrast to .NET assembly linking, OpenL bundling is compositional, with
the ensuing flexibility.

Units. Flatt and Felleisen’s Compound Units [FF98] realize much the same
degree of hiding as OpenL bundling, and are intra-linked. Compound Units
are defined in terms of source-level rewriting; no mechanism for creating
Compound Units from existing (compiled) Units is proposed—in contrast
to OpenL, which can even define this operation at the language level.

Jiazzi. The Jiazzi system [MFH01] brings Units to Java. Creating Com-
pound Units in Jiazzi is similar to OpenL bundling—in particular, bundled
components are effectively duplicated. Linked Compound Units have mul-
tiple export types, which has a higher cost than OpenL’s type intersection.
Component renaming is performed upon linking, which OpenL performs at
run time using localizers, for added flexibility.

10.4 Summary and Validation

This chapter has presented the file format, naming, and packaging of com-
ponents for deployment. Components, which are first-class in the language,
are made picklable; thereby, pickles become a single, well-defined inter-
change format for binary components. Pickles make it possible for exter-
nalized components to contain both code and data; also, in addition to just
loading compiled components from disk, pickling provides for saving of
dynamically-created components. Also, pickles can be unified with com-
ponents, allowing to use pickles and components interchangeably both in
language syntax (import announcements) and the programming interface.

This chapter introduced a distinction between logical and physical compo-
nent names. This separation enables expressive run time configurability,
solving problems such as network transparency, component interposition,
and naming components by function. Embodied as Uniform Resource Iden-
tifiers, logical component names obtain a well-defined hierarchical struc-
ture, and, in conjunction with URI resolving, allow to easily implement
sets of related components to be location-independent. Localizers are pro-
grammable translators from logical to physical component names. By using
URL for physical names, the networked, distributed file system defined by
standard Internet protocols can be embedded into the component loader.

With bundling, this chapter defined a compositional operation to create
components from graphs of existing components. Bundling is a form of
static linking in the sense of early binding that allows to express hiding.
The implementation of bundling (with the exception of one optimization)
amounts to generation of a parameterized linking program, which could be
realized at the level of the high-level language.
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Validation. Both Mozart/Oz and Alice define external component repre-
sentation in terms of pickling. Also, both systems support a syntax for
defining localizers similar to the presented approach.

A tool to perform bundling has been implemented under the name of static
linker in both Mozart/Oz and Alice. The static linker in Oz impacts seman-
tics to a higher degree, in that it allows for two linking strategies, both of
which are different from that of the default component manager used for
non-bundled components. The Alice static linker only implements the lazy
linking strategy that component managers use.

The Mozart/Oz static linker is fully implemented in Oz itself, which was
eased by the fact that Oz is dynamically typed. Alice has a more complex
implementation due to Alice ML being statically typed. In fact, for the opti-
mization reasons presented above, the Alice implementation builds heavily
on unsafe primitives; the linker as a whole, however, gives the guarantee by
construction that the resulting bundle will always be type-safe.
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Distribution

This chapter describes the design and implementation of simple, efficient,
and type-safe primitives and abstractions for programming distributed ap-
plications in OpenL. The proposed extensions provide for network trans-
parency and network awareness, and are strongly integrated with compo-
nents. The implementation is compact, due to reusing concepts from pick-
ling and components, and mostly built in OpenL itself. As such, it repre-
sents a case study of how to build systems from the services presented in
previous chapters.

A distributed system is a system that runs on a number of interacting sites
interconnected by a network. The design and implementation of such sys-
tems can be complex; however, programming languages can serve to sig-
nificantly reduce the complexity if they offer high-level abstractions specifi-
cally for exposing services to other sites, invoking services exposed by other
sites, and generally transferring data and even computations in-between
sites.

This chapter proposes primitives and abstractions for distributed program-
ming in OpenL that fulfill the following requirements:

Network Transparency. A program that is part of a distributed system can
hold both local and remote references, depending on whether the ac-
tual data they denote resides on the site on which the program is
running, or on a different site. If instances of a language type have
both local and remote references, and operations on them are sup-
ported with identical behavior on both local and remote references,
one speaks of network transparency [Car95].1

Network transparency has many benefits. Programmers do not need
to switch abstraction levels when working with both local and remote
references; they can abstract from whether an actual reference is lo-
cal or remote; and a single-site program can easily be refactored to

1Of course, this does not require that all operations be defined on remote references.
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work in a distributed setting. Also, consider the case where function
application is defined on remote functions: language data can then be
communicated between sites as easily as passing them as arguments
to functions, without any explicit representation conversion being nec-
essary.

The proposed approach offers network-transparent support for a sub-
set of the language data types that allows to express a number of
distributed programming patterns. This support extends across both
the definition of interfaces between sites and invocation of services
provided by other sites.

Network Awareness. Network transparency does not mean that a system’s
distribution structure becomes unimportant. On the contrary: for se-
curity and efficiency reasons, programmers must understand and con-
trol the distributed behavior of data structures.

The proposed approach makes establishing of connections explicit.
Distribution behavior is strongly connected to types; programmers
can control a system’s distribution structure by designing their data
representations accordingly.

Type-safety. Typing cross-site communication must be as expressive as
typing single-site programs. In particular, operations that are type-
safe on local references must be equally type-safe on remote refer-
ences. The presented approach ascertains type safety when a connec-
tion is established. Thereafter, type-checking of communication over
that connection is minimized for efficiency.

Security. When a site receives data from another site, it may want to im-
pose a lower level of trust on that data—in particular, if that data
contains functions. It must not be possible for a site to forge local
references on another site just by sending data to it; the receiving
site must explicitly allow access. The proposed approach fulfills this
through capability-based security: cross-site transfer of resources and
references to resources is disallowed, and received functions need to
be explicitly granted access by the receiving site explicitly passing ref-
erences to resources as arguments.

This chapter defines a middleware for distributed computing in OpenL that
is based on pickling and components as introduced in previous chapters.
The simplicity of these mechanisms, both in use and implementation, is as
much a contribution to the field of distributed middlewares as it is a case
study for programming with pickling and components.
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11.1 Overview

A discussion of a middleware for distributed computing must happen at
two levels. At a high level, patterns serve to design distributed systems.
At a lower level, the construction of distributed systems relies on the pro-
gramming system to support implementing these patterns. This section
describes some patterns addressed by this work.

11.1.1 Patterns for Establishing Connections

Before a number of initially independent sites can collaborate to form a dis-
tributed system, they need to become aware of and connect to one another.
Typical patterns include the following:

Client/Server. A server is a site that provides one or more services un-
der well-known interfaces. Clients are sites that access these services.
Clients are short-lived in comparison to servers.

Since servers are usually available over long periods of time, and their
address and interface seldom changes, clients typically use early bind-
ing to access a server’s services.

Peer-to-peer. A peer-to-peer relationship is much more flexible. All sites
are peers in the system. Peers learn of each other’s existence at run
time. The system as a whole is loosely coupled: peers can dynamically
participate in or drop out of the system.

In a sense, every peer can be considered a short-lived variant of a
server. Because of system dynamics, peers use late binding to access
other peers.

Delegation. Consider an application whose purpose is to perform an ex-
pensive computation. For scalability in terms of performance, this
application may factor its computation into a number of tasks that
can be executed in parallel. In this case, the application may spawn
new sites on a number of networked computers, and distribute the
sub-tasks across these sites, also resulting in a distributed system.

Section 11.2 shows how these architectures can be expressed in OpenL.

11.1.2 Patterns for Exchanging Data

Sites participating in a distributed system have to exchange data. At the
network level, this communication is performed by sending and receiving
of messages, which are just sequences of bytes. This is not, however, an
adequate level for software designs to model communication. Instead, the
distribution middleware needs to create the illusion of a global shared store,
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and sites communicate via data structures in this store. Programmers think
about instances of their data types as, for example, bound to a specific
site or stateless and replicable to other sites, or they may want to disallow
instances from given types to participate in remote communication. The
middleware is in charge of translating remote operations to exchanges of
messages.

Section 11.3 describes distributed behaviors of data structures and how
they can be expressed in OpenL.

11.2 Connecting Sites

This section looks at how the various patterns for connecting sites can be
realized in OpenL. Section 11.2.1 starts with a simple server that serves out
a data structure for use by any number of clients. The realization is very
simple and requires no extension of OpenL—but it does exhibit a number
of interesting properties, discussed in Section 11.2.2. The realization of
other connectivity patterns is equally simple, which is illustrated by Sec-
tion 11.2.3.

11.2.1 A Simple Data Server

As the simplest scenario, consider a simple client/server application, in
which the clients can ask the server for a piece of data (say, the current time
on the server). It is easy to write an OpenL application to do the following:

• Let x be a reference to the data that is to be exported.

• Capture x into a first-class component X.

• Create a socket, bind it to a port (say, 8001), and listen for incoming
connections.

• From every connection, parse incoming data into a HTTP request.2 If
this request is for a specific URI (say, /x), pickle X and return it as the
body of a HTTP response.

Assuming this application runs on a machine named leifk, any HTTP client
can retrieve a fresh pickled copy of x from the URL http://leifk:8001/x.
In particular, a client can use that URL in an import announcement:

import val x from "http://leifk:8001/x"
〈. . . use x . . . 〉

2HTTP is just one of any number of possible protocols. It serves as an example for the
sake of conciseness, as it has a publicly available specification.
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This is all there is to it—the first client/server application is running. Every
time a client is run, it gets a clone of a current snapshot of X.3

Error Handling. Since it is based on pickling, the handler on the server can
fail if the captured component is sited at the moment the client requests
it. (This may be a transient error, as captured components can be stateful.)
One solution is to create the handler as follows:

fun makeHandler component =
fn httpReqest =>

pickle component
handle Sited => pickle comp raise Sited end

Now, if pickling fails, the server still delivers a component to the client.
Upon evaluation, the client gets an exception to the effect that the server
failed, and can deal with the error appropriately.

Abstractions. The above pattern can be captured by the following abstrac-
tions:

val offer : package -> string
val take : string -> package

The offer abstraction would perform the server-side operations, and take
a client-side import. The intuition is that the server offers a data structure,
and clients take the offer.

11.2.2 Properties of the Approach

The example in the previous section was short, but it already exhibits a
number of interesting aspects:

• All data transfer is reduced to pickling.

• X can be any (picklable) component, whether produced by the com-
piler, by capturing, or by first-class component syntax. In particular,
X can contain first-class functions.

• Pickles, static components, and dynamic components representing
servers in a distributed system are all addressed uniformly.

• Remote references are embedded into the URI namespace of logical
component names.

• The client could not be simpler, as it already is integrated with the
component manager, by virtue of component loading supporting HTTP
URL (see Section 10.2.1).

3With a simple modification, the server could take a snapshot once and cache it. What
the right thing is depends on the actual application.
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• Remote references are URI, in other words, simple strings. Thus, re-
mote references can be transferred over any (external) communication
channel, for example, in a telephone conversation or an email mes-
sage.

• Remote references themselves are untyped, but the components they
denote are typed by their metadata. Type-checking occurs at first use
of the remote reference.

• If the URL is obtained out-of-band, the URL is passed as argument to
ComponentManager.link, and both sites have a server running, the
client/server model turns into the peer-to-peer model.

11.2.3 Remote Execution

Based on the data server, it becomes simple to write an application that
spawns a site and has it execute a given task. Such an application would
proceed as follows:

• Create a component X whose evaluation causes the task to be exe-
cuted.

• Start an in-process HTTP server and register X under URL u.

• Start a new virtual machine (directly on the same machine, or using
rsh or ssh to launch one on a remote machine) and pass u on its
command line.

The newly started virtual machine will instantiate a new component man-
ager and use it to load and evaluate the component denoted by u, which is
the root URL the virtual machine is started with.

When Section 11.3.4 introduces proxies, this mechanism is extended to pro-
vide for bidirectional communication.

11.3 Distribution Behaviors for Data

As detailed above, accessing a remote reference is defined by pickling. Pick-
ling defines a persistence semantics for every type of node, and the per-
sistence semantics of a complex data structure is defined by that of its
constituent nodes. This section looks at the distribution behaviors that cor-
respond to the persistence semantics, which come “for free” from the use
of pickling, and introduces new node types for additional behaviors that are
essential for rich, distributed programming.
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11.3.1 Replication

The most straightforward behavior is replication, applicable to stateless
nodes. Pickling replicates stateless nodes. A site that is operating on state-
less nodes cannot distinguish whether these nodes are stored locally, on a
different site, or replicated (copied) from another site. Semantically, repli-
cation is just an optimization.

11.3.2 Cloning

Cloning is similar to replication, but applies to stateful nodes. Pickling
clones reference cells and arrays. Cloning is not semantically transparent:
modifying the state of a clone of a node x does not affect x. Since cloning
is already made available to single-site programs via pickling, and exporting
and importing data across sites is explicit, extending cloning from pickling
to distributed communication does not break applications.

11.3.3 Resources Nodes

Resources are data that have an effect on the environment of a given site.
OpenL’s capability-based security (see Section 9.5.3 implies that code can
only access a given resource if it is explicitly passed a reference to it by the
owner of that resource. Extending that model to distributed communication
means that a remote reference cannot refer to a resource.

Section 7.1 made the decision to disallow references to resources in pickles.
In other words, the default pickling semantics for resource nodes yields
exactly the desired distributed behavior.

Note that it still is easy to write mobile agents that request access to given
local resources: Components are picklable, and a remote agent that is pack-
aged as a component can mention resources in its imports. It is up to the
site that evaluates a component obtained from another site to decide which
resources to grant access to, by using a correspondingly restricted compo-
nent manager.

11.3.4 Stationary Nodes

The communication patterns from the previous section only allow for uni-
directional communication. On the one hand, since remote references are
URL, a client can use requests of the form

http://leifk:8001/x?a=1&b=2

The handler registered on the server obtains these arguments as part of the
parsed HTTP request. It could interpret these arguments and dynamically
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compute a component depending on them. On the other hand, the imple-
mentation level is low, and does not provide for network transparency.

Proxy Functions. A network-transparent, language-level equivalent is the
proxy function. Consider the following operation:

functor MkProxy(type a type b val f : a -> b) :
sig

val f’ : a -> b
end

An application of MkProxy creates a proxy function f ′ for a given func-
tion f .4 In a single-site program, an application f ′ x evaluates as follows:

• If x is sited, raise a Sited exception. Otherwise, pickle x, then un-
pickle, resulting in a clone x′ of x.

• Evaluate f x′.

• Case 1: f x′ succeeds and results in a value y . If y is sited, raise
a Sited exception. Otherwise, pickle y , then unpickle, resulting in a
clone y′ of y . Return y′ as the result of f ′ x.

• Case 2: f x′ raises an exception e. If e is sited5, raise a Sited excep-
tion. Otherwise, pickle e, then unpickle, resulting in a clone e′ of e.
Raise e′ as the result of f ′ x.

In essence, in a single-site program, a proxy function is identical to the func-
tion except that all data flowing into it and out of it is passed via pickling.

Now comes the time of defining a pickling behavior on the proxy functions
themselves, and this introduces the new concept of remote invocation: Let
the pickled representation of f ′ not include f , but a remote reference to the
instance of f on the site that created f ′. Upon unpickling, create a function
that establishes a connection to the remote reference, to implement the
exact same behavior as described above, with the added site boundary in
the middle of every “pickle, then unpickle” pair.

Example. As an example, consider a server that provides a stationary ser-
vice to convert integers to their string representation:

fun f i = Int.toString i
structure Service =

MkProxy(type a = int type b = string val f = f)
val uri = offer (pack Service :

(val f’ : int -> string))
val _ = TextIO.print (uri ^ "\n")

4Obviously, in a dynamically-typed language, this operation can be exposed as val
proxy : (’a -> ’b) -> (’a -> ’b).

5Note that exception constructors are always picklable, but arguments to exception
constructors may be sited.
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When the server is ready, it prints out the URI under which the service can
be accessed, say, "http://leifk:8001/f". A client can then access this
service as follows:

structure Service =
unpack (take "http://leifk:8001/x") :

(val f’ : int -> string)
val s = Service.f’ 17

Note that the client does not need to know, or care, whether the service is
stationary or mobile.

By default, an application of the form f’ 17 (where f’ is a proxy) is syn-
chronous, in other words, blocks the thread until the server responds. Note
that any application can be turned into an asynchronous invocation by
wrapping it in an application of concur.

Bidirectional Communication using Proxies. A simple pattern to estab-
lish bidirectional communication between two sites using proxies is as fol-
lows: a site A establishes a connection to a site B and retrieves a compo-
nent X from it that contains proxy functions. One of these could be a proxy
function f that takes a component as argument. If A applies X.f to a com-
ponent Y that contains proxies created by A, then A and B can invoke each
other’s services via the proxy functions in components X and Y .

Stationary Nodes. The more general distribution behavior that is enabled
by proxy functions is the stationary node. The function that is being proxied
becomes stationary, that is, does not move with the proxy when a remote
reference to the proxy is transferred to another site. This is useful in the
following scenarios:

Shared State. The default behavior on stateful nodes is cloning. By hid-
ing stateful data behind a proxy function, the stateful data becomes
stationary. Different sites effectively share the same state.

Efficiency. It may be more expensive to replicate a large data structure than
to repeatedly transfer queries against this data structure and their
results. This can be achieved by making the data structure stationary.

Security. If data that represents sensitive information, such as credit card
numbers, is replicated across sites, this can lead to information disclo-
sure vulnerabilities. Making sensitive data stationary is a protection
against a whole class of attacks.

11.4 Implementation

This section describes the implementation of the distribution layer. The
distribution layer is made available as a structure RemotePort with the fol-
lowing signature:
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Proxy Function
Dynamic Call
Remote Port

Client Channel
HTTP Client Channel

HTTP Client

Client Site

Proxied Function
–/–
Remote Port
Server Channel
HTTP Server Channel
HTTP Server

Server Site

Figure 11.1: Overview of Proxy Invocation.

signature REMOTE_PORT =
sig

val offer : component -> string
(* Sited *)

val take : string -> component
(* IO.Io, Malformed *)

functor MkProxy(type a type b val f : a -> b) :
sig

val f’ : a -> b
end

end

offer registers the component with a server channel and returns the corre-
sponding URI. take is a trivial wrapper around ComponentManager.load.
The interesting part is the implementation of the MkProxy functor.

Overview. An invocation of a function through a proxy traverses a num-
ber of layers, as depicted in Figure 11.4. The responsibilities of each layer
are as follows:

HTTP Client and Server. These implement the HTTP protocol, used in this
presentation as the messaging layer on top of TCP/IP.

Client and Server Channels. The actual sending of messages is encapsu-
lated in one abstract channel type for each side. A channel provides
functionality for exporting values and proxies, generating an appro-
priate URI, and for invoking a proxy, given a URI. At this level, value
and proxies are just byte vectors and functions from byte vectors to
byte vectors, respectively. The HTTP client and server channels im-
plement channels based on HTTP. The abstraction makes it simple to
substitute other protocol implementations.6

Remote Port. The remote port interfaces between the user-visible signature
given above and channels. In other words, it transforms values from

6This assumes that the component managers’ load operation supports registering new
client protocols for given URI schemes.
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and to byte vectors, and handles exceptions raised by proxied func-
tions. This logic is the same irrespective of the underlying protocol.

Dynamic Call. Proxy functions must be picklable, but the channels they
are based on are, by nature, sited. The dynamic call mechanism intro-
duces a form of late binding that allows to express an invocation of a
sited client channel as a picklable function.

Section 11.4.1 defines abstract channels and describes their incarnation us-
ing HTTP. Section 11.4.2 then shows an implementation of the RemotePort
structure, generated by a functor parameterized over abstract channels.

11.4.1 Server and Client Channels

Server Channels. A server channel is defined by a structure with the fol-
lowing signature:

signature SERVER_CHANNEL =
sig

type vector = Word8Vector.vector
type handler = vector -> vector
val registerValue : vector -> string
val registerProxy : handler -> string

end

registerValue causes a channel to expose a given value to other sites,
and returns a remote identifier for the value in the form of a URI. In a sense,
registerValue is an untyped variant of offer. registerProxy creates a
remote identifier for a handler that can be activated by other sites, which
given a value computes and returns a result value. Behind the scenes, a
server channel creates a connection point to which other processes can con-
nect, and a thread that listens for and accepts connections, and processes
messages sent over them.

A Server Channel Based on HTTP. One can easily implement a structure
HttpServerChannel to fulfill the above signature using the HTTP protocol.
The first time one of its functions is invoked, it starts a HTTP server on a
port number allocated by the operating system. Every registration extends
a monotonically growing mapping from URI to values and handlers. The
HTTP server processes requests as follows: When a GET request is made to
a URI that denotes a registered value, it returns a response with status code
200 (success) whose body is that value, verbatim. When a POST request is
made to a URI that denotes a registered value, it applies that handler to the
request’s body, and returns a response with status code 200 whose body is
the value returned by the handler. All other requests cause a response with
an error status code to be returned.
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Client Channels. A client channel is defined by a structure with the fol-
lowing signature:

signature CLIENT_CHANNEL =
sig

type vector = Word8Vector.vector
val invokeProxy : string * vector -> vector

(* IO.Io *)
end

The invokeProxy operation is dual to registerProxy: it causes a regis-
tered handler to be executed on the server. Note that there is no dual oper-
ation for invokeValue, as this functionality is provided by the component
managers’ load operation.

A Client Channel Based on HTTP. Given the HTTP server channel, imple-
menting HttpClientChannel is straightforward. invokeProxy expects, as
its first argument, a URL with the http scheme, parses it to determine the
target server, and sends a POST request to it. This request carries the sec-
ond argument as its body, and the body of its response (given it has a
success status code) is returned. The component managers’ load operation
acquires a value registered on a server by issuing a trivial GET request.

11.4.2 The Remote Port

Now a remote port can be constructed given a server and client channel:

functor MkRemotePort(
structure ServerChannel : SERVER_CHANNEL
structure ClientChannel : CLIENT_CHANNEL) :

REMOTE_PORT = struct ... end

offer and take are straightforward:

fun offer component =
ServerChannel.registerValue (pickle component)

fun take uri = ComponentManager.load uri

For implementing MkProxy, two new primitives are needed.

Dynamic Call. As mentioned above, proxy functions need to be picklable,
but use sited channels. This contradiction is resolved by the dynamic call
mechanism:

val setTarget : (string * package -> package) -> unit
val dynamicCall : string * package -> package

dynamicCall is a built-in primitive (in other words, picklable) that simply
invokes an arbitrary target that has previously been set (in the same pro-
cess) by setTarget. The type of the target function has been chosen to
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work on arbitrary types, yet still be type-safe. Since the target operation is
not part of the representation of dynamicCall, it is not part either of the
proxy function, which makes it picklable. Note that setTarget must be a
system primitive (that is, sited; see also Section 9.4.1), as it has a side-effect
on the process’s environment, which is considered a resource.

The Proxy Target. All proxy functions share a common target for the dy-
namic call they need to make. The target simply calls the client channel’s
invokeProxy function, with the necessary conversions from packages to
pickles and back:

fun target (uri, package) =
let

val component = capture package
val v = pickle component
val v’ = ClientChannel.invokeProxy (uri, v)
val component’ = unpickle v’

in
ComponentManager.eval (uri, component’)

end
val _ = setTarget target

(Note that for simplicity, this implementation uses the global component
manager. For security, this should be a restricted component manager in
practice, seeing that invokeProxy is expected to return a component with-
out imports.)

Constructing a Proxy Function. Now that the target is set, the actual
proxy function itself can be implemented:

functor MkProxy(type a type b val f : a -> b) =
struct

fun handler v = ...
val uri = ServerChannel.registerProxy handler

fun f’ a =
let

val package =
pack (val x = a) : (val x : a)

val package’ = dynamicCall (uri, package)
structure B =

unpack package’ : (val x : b)
in

await B.x
end

end

The one noteworthy piece is the application of await, which is explained
below. Still missing is the definition of the handler that is registered with
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the server channel:

fun handler v =
let

val component = unpickle v
val package =

ComponentManager.eval ("", component)
structure A =

unpack package : (val x : a)
val component =

let
val b = f A.x
val package =

pack (val x = b) : (val x : b)
in

capture package
end handle e => failedValue e

in
pickle component

end handle Sited => pickle (failedValue Sited)

The conversions from a pickle to the argument value and from the result
value to a pickle are similar to the conversions performed in target. More
noteworthy is the handling of exceptions, which comes in two forms: (1) The
application f A.x can raise any exception. If this happens, we replace it
with a failed value. Note that failed values are, in general, picklable. (2) It is
possible that either the result of f A.x, or the exception it raised, are sited.
In this case, the application of pickle will raise a Sited exception. This
exception is treated identically to any other exception: it is replaced by a
failed value.

Now it becomes obvious why the proxy function f’ contains an application
of await: If the proxied function raised an exception, it is transferred back
as a failed value. By explicitly requesting the result, the proxy ensures that
the client will have to handle this exception.

11.5 Discussion

Optimization: Type-checking. As defined above, every application of a
proxy function performs a type-check for the argument on the server, and
a type-check for the result on the client. If the server always trusts the
integrity of its clients, no type-checks need to occur after initially establish-
ing a connection. This can be achieved by substituting untyped pickling and
dynamic call operations for their typed occurrences:

val pickle : ’a -> vector
val unpickle : vector -> ’a
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val setTarget : (string * ’a -> ’b) -> unit
val dynamicCall : string * ’a -> ’b

Then, pack/unpack (and capture/eval) can be removed, which means that
no type-checking occurs.

Optimization: Local Proxy Invocation. If client channels are implemented
naïvely, even an invocation of a proxy on the home site of the function it
proxies would traverse all transport layers. The layers below pickling (which
will still be necessary because proxies by definition have to clone arguments
and results) can be optimized away with no change to MkRemotePort: the
client channel simply has to test whether the server site is the same as the
client site. In this case, is would directly call the registered handler instead
of establishing a connection.

Threading Model. In a similar vein, the threading model of proxy invo-
cations is up to the client and server channels, and not MkRemotePort. In
general, there is little to be gained by limiting the concurrency of concurrent
proxy invocations on the client, but a server could sequentialize all invoca-
tions to all or each proxied function. Different channel implementations
can be substituted for different synchronization behavior.

Synchronization Nodes. Futures are an expressive construct for concur-
rent programming. In a sense, distributed programming is an extension of
concurrent programming. On the one hand, it could be argued that futures
should have distributed semantics as well. On the other hand, synchro-
nization patterns across multi-site systems are usually very different from
single-site systems, and cross-site synchronization can often be encapsu-
lated in proxies. (For instance, non-transparent futures can be constructed
on top of proxy functions.)

Distributed Garbage Collection. The above design makes the assumption
that a value or proxy, once exported, will live as long as its home site: Server
channels have no operation to unregister an exported entity. If the de-
sign was extended to allow for an unregistering operation, or to include
advanced distribution behaviors such as Mozart’s mobile objects, the pro-
tocols would have to be extended to support distributed garbage collection.
This is outside the scope of this work.

11.6 Related Work

There is a huge body of research work on the design and implementation of
distributed systems. This section only covers a number of approaches that
are similar to the approach taken by OpenL.
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CLU. CLU [HL82] featured the first language-level remote procedure call.
Every type has a “transmissibility” property that defines if and how it can
be transferred to other sites; in other words, CLU defines a pickling mech-
anism. By default, remote calls all have by-value semantics, but users can
provide encode and decode operations for their own types. Messages con-
tain no types: types for remote invocation are checked at compile time only,
since types are meant to catch errors, not provide security. OpenL is supe-
rior in that it makes by-value and stationary nodes composable, and in that
first-class functions are transferred by value with their code.

Modula-3 Network Objects. Birrell et al. [BNOW95] present a distribution
layer implemented in and for Modula-3. By-value transfer of arguments
and return values are based on pickling; remote object references make
objects into stationary nodes. Like in OpenL, a remote reference that an
object’s home site passes to a second site remains usable when the second
site sends it to a third site (“third-party transfer” of remote references is
transparent). Stationary objects are implemented by stub modules: stubs
need to be generated explicitly by an offline tool, and must be known at
the time that clients to the stationary objects are compiled. In contrast,
OpenL generates stubs dynamically. Similar to the distinction between the
remote port and channels in OpenL, the implementation of Network Objects
separates transports (user-definable buffered streams) and protocols that
are implemented by stubs. To establish a connection—to initially obtain a
reference to a remote object—, a separate registry needs to be set up (called
agent server). The registry is provided by a well-known object listening on
a standard port.

Java RMI. Java Remote Method Invocation [WRW96] is a direct descendant
of Modula-3 Network Objects. Java improves over Modula-3 in that clients
can automatically obtain and dynamically link the stub classes, albeit the
class files need to be transferred out-of-band (for instance, by setting up
a Web server on the server machine). This is much simpler in OpenL,
since proxies are picklable by-value (they are self-contained and include
their code). Java RMI bases transfer of argument and return values on
pickling. Efficiency dictates that type information be left out. According
to Breg [BP01], this was the principal reason to support modal pickling in
Java. The approach presented above shows that this need for modal pick-
ling, which would require support in the low-level mechanism, is mitigated
in OpenL.

Obliq. Cardelli [Car95] presents the distributed, dynamically-typed, inter-
preted scripting language Obliq. Like OpenL functions, Obliq procedures
are first-class and transferable by-value over the network. Unlike OpenL,
Obliq makes all mutable nodes stationary, in particular objects, and implic-
itly creates proxies for all locations. Obliq provides a network copy opera-
tion; in contrast to value transfer over the network, a network copy clones
mutable nodes. Many distribution behaviors can be expressed in terms of
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these operations. All security in Obliq is obtained through lexical scoping.
Obliq’s implementation is based on Modula-3 Network Objects.

Mozart. Distributed Oz [HVBS98], as implemented by Mozart, provides
very elaborated distribution behaviors such as mobile objects [VHB+97] and
distributed logic variables [HVB+99], in addition to the behaviors supported
by OpenL. In fact, the functionality of the simple distribution layer pre-
sented in this chapter was designed as a minimal subset of Mozart. Due
to its broader scope, the distribution protocols in Mozart are significantly
more complex, but also measurably more efficient. Distribution behaviors
are fully implemented at the level of the runtime system, which is fairly
intrusive when compared to OpenL’s orthogonal extension of the base sys-
tem.

DSS. The Distribution Subsystem [KEBH03] is a language-independent mid-
dleware that provides for distribution behaviors, reference management,
and messaging of language entities. Instead of coupling itself to a single
programming system, it takes a library approach that programming sys-
tems can interface to. As such, by definition, the actual implementation
happens at a lower level than the high-level programming language it is
used to support, but alleviates that disadvantage by a clean separation of
concerns. The DSS is sufficiently expressive to cover the distribution behav-
iors supported by Mozart.

D’Caml. D’Caml [WAS00] is a distributed version of O’Caml, designed for
parallel execution of programs. D’Caml lacks OpenL’s dynamic connectiv-
ity: all sites are spawned by a single process, called the host, and execute
the same program; therefore, connection establishment, typing, and secu-
rity are non-issues. The distributed shared memory creates an illusion of a
global store: stateless nodes are always replicated on first access, and mu-
table nodes are all stationary. Whether a node is mutable is always known
statically, but any reference to a mutable node can be remote, which re-
quires runtime support and overhead (in contrast to OpenL). Transfer of
closures is reduced to the transfer of the environment; since all processes
execute the same program, transfer of code is reduced to translating the en-
try addresses (various sites could run on different hardware and software
platforms; the compiler generates one version of the code per platform).

Using URLs to Identify Servers. It is common practice to use URI such
as http://leifk:8001/x above to identify values exported by other sites.
For instance, Java name servers [WRW96] interpret rmi URI, Microsoft .NET
remoting channels [Mic03c] interpret remote references in URI format, and
the offer/take mechanism in Mozart calls its strings tickets [HVBS98]. In all
these systems, however, these URI can only be used when interpreted by
the same class that generated them; in contrast, OpenL generates URL for
remote references that can be interpreted by any URL client.
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11.7 Summary and Validation

This chapter has presented a simple, yet effective distribution layer for
OpenL. Dynamic establishment of connections can be completely expressed
without any extension of either the language or the runtime system. The
enabling feature for this is the built-in support of network addresses in lo-
calizers. Basic transfer of values is directly provided by pickling: stateless
nodes are replicated, stateful nodes are cloned, and references to resources
are protected.

Additionally, this chapter demonstrated a viable implementation of a trans-
parent remote function application mechanism. Proxy functions are the only
kind of stationary node. Their realization required no extension of pickling,
and the runtime only needed additional non-intrusive primitives to support
a dynamic call. The dynamic call facility can potentially be more generally
useful than just for defining proxy functions.

The implementation cleanly separates the transport layer from the protocol
layer. In this fashion, the actual transport protocols become user-definable
as so-called channels.

Validation. Alice implements its distribution layer practically as described
here. The most notable difference is that instead of a type-safe dynamic call,
it uses an untyped pickling mechanism, trading safety for efficiency.
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Conclusion

This chapter summarizes the main contributions of this thesis, and gives
some concrete ideas for future work in areas which have only been touched
on, or which have been out-of-scope for this work.

12.1 Main Contributions

Completeness. I described the complete architecture of a programming
system that provides a powerful middleware for component-based and dis-
tributed programming. Starting from a standard runtime system and a base
language with well-known concepts, I defined incremental extensions as
shown in Figure 12.1 to cover all layers and aspects that are often treated
in an ad-hoc way. All of what this work describes has been validated in real
systems, namely Mozart Oz [Moz04] and Alice [Pro05].

Minimal Runtime, Maximal Programmability. I have built the whole sys-
tem from a very small set of primitives—nine in total, as shown in Fig-
ure 12.2. All of these primitives are type-safe and accessible to program-
mers, making it possible for them to replace all layers above the primitives

Ch. Language Primitives Runtime
5–7 Pickling

8 Component Syntax Boot Linker
9 Lazy Structure Selection; Operations on First- Built-in vs. System

First-class Component class Components Primitives
Syntax

10 Component I/O and
Creation

11 Dynamic Call

Figure 12.1: Overview of Extensions.
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structure Component :
sig

exception Malformed
exception Sited

type component

val pickle : component -> Word8Vector.vector
(* Sited *)

val unpickle : Word8Vector.vector -> component
(* Malformed *)

val apply : component -> package vector -> package
(* Match, Package.Mismatch *)

val imports : component -> (string * sign) vector
val sign : component -> sign
val capture : package -> component
val component : { imports : (string * sign) vector,

body : package vector -> package,
sign : sign } -> component

end

structure DynamicCall :
sig

val setTarget : (string * package -> package) -> unit
val dynamicCall : string * package -> package

end

Figure 12.2: Overview of Primitives.

by customized variants: I illustrated this by presenting a high-level imple-
mentation of the dynamic linker (Section 9.3) and the bundler (Section 10.3).

Survey of Pickling Mechanisms. I developed a novel classification for
pickling mechanisms and provided the first comprehensive survey of ex-
isting mechanisms based on this classification (Chapter 4).

A Principled Approach to Pickling. This work describes a principled ap-
proach to bottom-up pickling and unpickling, first published in Tack’s the-
sis [Tac03] (Chapter 5).

Concurrent Pickling and State. This work is the first to discuss the in-
teraction of concurrent pickling with state and futures (Chapter 6) and to
propose design patterns for pickling-safe abstract data types.

Principled Lazy Linking. Systems with lazy linking have two things to pro-
vide runtime support for: the first access to an object can trigger a linking
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operation, and any access to an object (for which linking failed) can trigger
an exception. Usually, systems deal with these by inserting ad-hoc runtime
checks. My approach employs the mechanisms of lazy futures and failed
values, which are very generally useful and available at the language level,
to implement triggering of linking and error handling in a principled way
(Section 9.1).

Component Representation. Since pickling as I define it supports first-
class functions, I can represent components as pickles. This means that
I need only a single uniform file format. This also means that a single
application programmer’s interface is needed to deal with both compo-
nents and pickles—whereby pickles can be referenced in static import an-
nouncements, and dynamically-created components can be saved to disk
(Section 10.1).

Component Localization. I propose separating logical from physical com-
ponent names, and using URI and URL for them, respectively. This solves
the problems of network transparency (by abstracting from locations, and
by integrating the networked file system spanned by HTTP URL into com-
ponent addressing), component interposition, and naming components by
function. The mapping from URI to URL is, in the simplest of cases, trivial;
for other practically useful mappings, I presented a simple configuration
mechanism (Section 10.2).

Component Hiding. I proposed a bundling operation for creating a single
component from a graph of existing components. This solves the problem
of deploying a set of components as a single file. The operation implements
real early binding, as opposed to most commonly-used approaches, allows
to express irreversible hiding by preventing unbundling, and is composi-
tional (Section 10.3).

Non-intrusive Distribution Layer. Without any extensions to either the
language or the runtime system, I have shown that the system can express
dynamic establishment of connections and data exchange (Section 11.2).
When I extend the system to support proxy functions for remote invocation,
all I need are two very simple primitives for late binding—the rest being
fully expressible in the high-level language (Section 11.4).

12.2 Future Directions

Futures. My approach uses transparent futures to express lazy linking,
and failed values to report a link error to all clients of the failed compo-
nent. Transparent futures are, of course, a more generally useful concept,
which comes at the cost of an intrinsic overhead on practically every strict
operation. In dynamically-typed languages, this cost can be amortized with
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the cost for dynamic type checks [Sch98]. The cost in statically-typed lan-
guages still seems substantial, and there is little research to quantify or
even eliminate it. The calculus by Niehren et al. [NSS05] is a good basis for
research on static analysis and optimizations.

Link-time Optimizations. This issue is directly linked with the issue of
cross-component optimizations. Cross-component optimizations are in-
trinsically hard, but even more crucial in a statically-typed language with
futures, it seems. This work has only hinted at the possibilities of opti-
mization in run-time compilers; this warrants more research. For instance,
one could envision that the intermediate language used in pickles to repre-
sent code was annotated with strictness constraints. The run-time compiler,
which knows the constraints both on the importing and actual components,
could solve these constraints; this would tell it at which places a test for a
future is really necessary.

Cross-language Pickle Format. This thesis developed a middleware for
one specific instance of a programming language. The approach is cross-
platform, and concepts carry over to other languages, but the one place
where an actual implementation would be very tied to one language is the
pickling format. The success of Microsoft .NET shows that application pro-
grammers want cross-language support from a middleware. To open up the
present work for cross-language environments, the pickling format needs
to support multiple languages, which is particularly hard for code. Some
first attempts have been made to solve this [BK02].

Verifiability of Pickles. The main focus of the present work was on safety.
To provide for security, one of the first areas to address would be ver-
ification of pickles, which could be stated as: Is there a valid program
that could create a data graph that, when pickled, would exactly result
in a given pickle? For statically-typed languages with an expressive type
system, such as Alice ML, this essentially requires that the heap be type-
checkable, including closures of functions. Some work has been done for
verifying purely code, such as Java’s byte-code verification [LY99]) or proof-
carrying code [Nec97]. This does not trivially extend to closure environ-
ments. For some scenarios, cryptographic signing is an alternative to verifi-
cation [PS00, RSA78]. More work is warranted in this area.

More Expressive Static Typing. In the presence of static typing, this work
needed to make a number of simplifying assumptions. In particular, sig-
natures in import announcements cannot contain free variables—a severe
limitation in the presence of generic abstract types. Rossberg [Ros06b] pro-
poses modifications to the component system to address these limitations.

A Component Calculus. This work presented a component model, one of
whose virtues is its simplicity, and actually gave an informal semantics for
it. On the other hand, this work—like Alice ML—builds on Standard ML,
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which is famous for its formal definition. Some more research is needed
to bridge this gap: a formal component calculus could serve to prove type
soundness of the middleware. Research in this area is ongoing [Ros06a].
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