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Abstract

The production of high quality animations which feature compelling lighting
effects is computationally a very heavy task when traditional rendering approaches
are used where each frame is computed separately. The fact that most of the com-
putation must be restarted from scratch for each frame leadsto unnecessary re-
dundancy. Since temporal coherence is typically not exploited, temporal aliasing
problems are also more difficult to address. Many small errors in lighting distribu-
tion cannot be perceived by human observers when they are coherent in temporal
domain. However, when such a coherence is lost, the resulting animations suffer
from unpleasant flickering effects.

In this thesis, we propose global illumination and rendering algorithms, which
are designed specifically to combat those problems. We achieve this goal by ex-
ploiting temporal coherence in the lighting distribution between the subsequent
animation frames. Our strategy relies on extending into temporal domain well-
known global illumination and rendering techniques such asdensity estimation
path tracing, photon mapping, ray tracing, and irradiance caching, which have
been originally designed to handle static scenes only. Our techniques mainly fo-
cus on the computation of indirect illumination, which is the most expensive part
of global illumination modelling.
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Kurzfassung

Die Erstellung von hochqualitativen 3D-Animationen mit anspruchsvollen Licht-
effekten ist f̈ur traditionelle Renderinganwendungen, bei denen jedes Bild separat
berechnet wird, sehr aufwendig. Die Tatsache jedes Bild komplett neu zu berech-
nen f̈uhrt zu unn̈otiger Redundanz. Wenn temporale Koherenz vernachlässigt
wird, treten unter anderem auch schwierig zu behandelnde temporale Aliasing-
probleme auf. Viele kleine Fehler in der Beleuchtungsberechnung eines Bildes
können normalerweise nicht wahr genommen werden. Wenn jedoch die tempo-
rale Koherenz zwischen aufeinanderfolgenden Bildern fehlt, treten sẗorende Flim-
mereffekte auf.

In dieser Arbeit stellen wir globale Beleuchtungsalgorithmen vor, die die oben
genannten Probleme behandeln. Dies erreichen wir durch Ausnutzung von tem-
poraler Koherenz zwischen aufeinanderfolgenden Einzelbildern einer Animation.
Unsere Strategy baut auf die klassischen globalen Beleuchtungsalgorithmen wie
”Path tracing”, ”Photon Mapping” und ”Irradiance Caching” auf und erweitert
diese in die temporale Dom̈ane. Dabei beschränken sich unsere Methoden hauptsächlich
auf die Berechnung indirekter Beleuchtung, welche den zeitintensivsten Teil der
globalen Beleuchtungsberechnung darstellt.
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Summary

Synthesis of images predicting the appearance of the real world has many
important engineering applications including product design, architecture, and in-
terior design. One of the major components of such predictive image synthesis
is global illumination, which is very costly to compute. Thereduction of those
costs is an important practical problem in particular for the production of ani-
mated sequences because a vast majority of the existing global illumination al-
gorithms were designed for rendering static scenes. In practice this means that
when such algorithms are used for a dynamic scene, all computations have to
be repeated from scratch even for minor changes in the scene.This leads to re-
dundant computations which could be mostly avoided by taking into account the
temporal coherence of global illumination in the sequence of animation frames.
Another important problem is the temporal aliasing, which is more difficult to
combat efficiently if temporal processing of global illumination is not performed.
Many small errors in lighting distribution cannot be perceived by the human ob-
server when they are coherent in the temporal domain. However, they may cause
unpleasant flickering and shimmering effects when such a coherence is lost.

In this thesis, we propose global illumination and rendering algorithms, which
are designed specifically to combat those problems. We achieve this goal by ex-
ploiting temporal coherence in the lighting distribution between the subsequent
animation frames. Our strategy relies on extending into temporal domain well-
known global illumination and rendering techniques such asdensity estimation
path tracing, photon mapping, ray tracing, and irradiance caching, which have
been originally designed to handle static scenes only. Our techniques mainly fo-
cus on the computation of indirect illumination, which is the most expensive part
of global illumination modelling.

Parts of this thesis have already been published at different conferences or in
journals. This thesis is based on these contributions as shown in the followings:

• As the first contribution, we present accelerated renderingof walkthrough
animation sequences using a combination of ray tracing and Image-Based
Rendering (IBR) techniques. A proper number of keyframes and their
placement within an animation sequence are decided using the perception-
based Animation Quality Metric (AQM).

• As the second contribution, we introduce a new framework forefficient
rendering of global illumination in dynamic environments.We propose a
combination of energy and perception based error metrics AQM to guide
efficient lighting computation. In addition, we introduce spatio-temporal
processing of photons at each triangle mesh element.
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• As the third contribution, we propose an efficient techniquefor high-quality
animation rendering which improves the efficiency of final gathering method
and which is computationally expensive. We achieve rendering speedup by
localizing in the scene space costly recomputation of the final gathering us-
ing extended photon maps and irradiance cache techniques.

• As the fourth contribution, we further extend the irradiance cache algorithm
to the underlying level of the incoming radiance field. Incoming radiance di-
rectional samples, which contribute to the irradiance cache value, are stored
and reused in the subsequent frames. Each incoming radiancesample is
updated uniformly in space and time. The algorithm can handle a general
animation which includes motion of camera, objects, and light sources.

• As the last contribution, we extend the final gathering technique to handle
scenes efficiently with significant variations of lighting distribution. In such
a case, commonly used uniform sampling leads to poor convergence of the
irradiance integration. We propose a different sampling strategy for strong
indirect illumination using an extended photon map.

Finally, we summarize our newly developed solutions for efficient rendering of
global illumination in dynamic scenes and conclude this thesis with a discussion
of possible directions for future work.
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Zusammenfassung

Die realistische Bildsynthese, die dazu gedacht ist, das Erscheinungsbild der
realen Welt zu simulieren, hat viele wichtige Einsatzbereiche im heutigen In-
genieurwesen wie zum Beispiel im Produktdesign, in Architektur und Innenar-
chitektur. Eine der bedeutendsten Komponenten der realistischen Bildsynthese ist
die globale Beleuchtung, die jedoch sehr zeitaufwendig zu berechnen ist. Jede
Reduktion dieser Zeitkosten ist von großem praktischen Nutzen insbesondere für
die Erstellung von animierten Sequenzen, da die meisten existierenden globalen
Beleuchtungsalgorithmen für die Berechnung statischer Szenen konzipiert sind.
Für dynamische Szenen bedeutet das in der Praxis, dass alle Berechnungen selbst
bei kleinstenÄnderungen an der Szene für jedes Einzelbild wiederholt werden
müssen. Die Folge sind redundante Berechnungen, die zum Großteil vermieden
werden k̈onnen, wenn die temporale Kohärenz in einer Animationssequenz aus-
genutzt wird. Ein weiteres Problem in der realistischen Bildsynthese von Anima-
tionssequenzen sind temporale Aliasingeffekte, die mit viel mehr Rechenaufwand
behoben werden m̈ussen, wenn temporale Kohärenz vernachlässigt wird. Viele
kleine Fehler in der Beleuchtungsverteilung können, solange sie kohärent in der
temporalen Dom̈ane sind, vom menschlichen Betrachter nicht wahrgenommen
werden.

Diese Dissertation behandelt speziell diese Art von Problemen und stellt ef-
fiziente globale Beleuchtungsalgorithmen vor. Unsere Strategie liegt darin, bekan-
nte globale Beleuchtungsalgorithmen und Techniken für statische Szenen wie
zum Beispiel ”Path tracing”, ”Photon mapping”, ”Irradiance caching” in die tem-
porale Dom̈ane zu erweitern. Der Schwerpunkt unserer Techniken liegt dabei
haupts̈achlich in der indirekten Beleuchtungsberechnung, welcheden gr̈oßten An-
teil einer globalen Beleuchtungsberechnung darstellt.

Teile dieser Dissertation wurden bereits in verschiedenenKonferenzen oder
Journalen publiziert. Die Disseration basiert auf diese Publikationen die wie folgt
gegliedert sind:

• Als ersten Beitrag pr̈asentieren wir ein beschleunigtes Verfahren zum Ren-
dern von ”Walkthrough Animationen” mittels einer Kombination von Ray-
tracing und ”Image-Based Rendering” (IBR) Techniken.

• Als zweite Kontribution stellen wir ein neues Grundgerüst zur effizienten
Bildsynthese von globaler Beleuchtung in dynamischen Umgebungen vor.

• Der dritte Beitrag zeigt einen effizienteren Ansatz für ”Final Gathering”
Methoden, die zur Erstellung von hochqualitativen Animationssequenzen
eingesetzt werden.
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• Als vierten Beitrag erweitern wir den klassischen ”Irradiance Cache” Algo-
rithmus zu einem ”Radiance Cache” Algorithmus. Proben der eintreffenden
Strahlungsdichte (”radiance”), die zu den ”Irradiance Cache” Werten beitra-
gen, werden separate gespeichert und in aufeinander folgenden Bildern wieder
verwendet. Jede richtungsabhängige Probe wird gleichm̈assig in Raum
und Zeit aktualisiert. Der Algorithmus kann dabei für jede Art von Ani-
mationen eingesetzt werden, die Kamerafahrten, dynamische Objekte und
Lichtquellen beinhalten.

• Als letztes zeigen wir, wie die klassische ”final gathering”Technik erweit-
ert werden kann, um Szenen mit starken Beleuchtungsvariationen effizient
zu handhaben. In solchen Fällen ist die Konvergenz der Integrationüber die
Strahlungsdichte (Berechnung der Beleuchtungsdichte) mittels klassischer
uniformer Abtastmethoden (uniform sampling) sehr langsam. Wir schla-
gen deshalb eine andere Abtaststrategie vor, die zur Berechnung von stark
variierender indirekter Beleuchtung eingesetzt werden kann und auf einer
erweiterten ”Photon map” basiert.

Zum Schluß fassen wir die neu entwickelten Lösungen zum effizienten Berech-
nen der globalen Beleuchtung in dynamischen Szenen zusammen und schliessen
diese Disseration mit einer Diskussionüber m̈ogliche Richtungen f̈ur zukünftige
Arbeiten ab.
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CHAPTER 1

Introduction

Realistic image synthesis has been a prominent research topic in computer graph-
ics for over thirty years. Realistic images are used in many important applications
such as architecture and interior design, illumination engineering, environmental
assessment, special effects and film production. One of the basic conditions to
achieve high level realism is the lighting modeling, which is based on physics
laws governing light propagation in space and light reflection on scene surfaces.
Such physically-based modeling involves extremely high computational cost be-
cause, for each point in a scene, light coming not only directly from light sources
but also reflected (possibly multiple times) from surrounding surfaces must be
considered. This problem is called the global illuminationproblem. One of the
main goals of the global illumination research is to bring this complex modeling
to tractable computation level for scenes with complex geometry, lighting, and re-
flectance properties. Additionally, the rendering qualitycannot be compromised
and images indistinguishable from the real world appearance should be synthe-
sized.

The problem of computational cost becomes more pronounced in high quality
animation rendering, when thousands of images must be generated to obtain a
very short animation.

1.1 Interactive vs. Off-Line Rendering

Existing global illumination solutions for dynamic environments can be roughly
categorized as interactive and off-line. The interactive techniques are designed
to trade the image quality for the response speed in order to secure a sufficient
frame rate (many applications require constant frame rate,e.g., 30 or 60 Hz for
broadcasting applications). The state-of-the-art approach in the interactive global
illumination is the Instant Global Illumination by using the Real Time Ray Tracing
technology which recomputes each frame from scratch and requires a PC cluster

1



2 Chapter 1: Introduction

to achieve interactive performance [85, 82, 81]1. The main objective of the in-
teractive techniques is to provide fast response to frame-to-frame changes in the
environment, but not to a sequence of such changes. The temporal coherence of
lighting can be exploited much better when longer image sequences are consid-
ered. This requires the knowledge of changes in the environment for such se-
quences in advance. Those conditions are met for the off-line global illumination
algorithms that are used in the final production of high quality animations.

1.2 Off-Line Rendering

Although the off-line computation of top quality computer animations makes it
possible to include costly lighting simulation techniques, it rarely happens in in-
dustrial practice [1]. For example, in the film industry, a common approach is
to use only very simple rendering algorithms, which completely ignore indirect
lighting and complex light scattering functions [1]. Sincescenes illuminated only
by direct lighting look unrealistic, much effort is spent toplace additional light
sources which imitate the appearance of indirect lighting.Although this approach
requires significant experience and is done manually, it is still more efficient than
using fully automatic but computationally expensive existing global illumination
techniques. Even in the very recent movie “Shrek 2” (produced by DreamWorks),
global illumination has been used in a limited way to a singlebounce of indirect
lighting [69]. Another leading company of the movie production exclusively us-
ing 3D graphics,PIXAR, plans to add global illumination to their future films as
well. Their current research focuses on seamless inclusionof global illumination
in their RenderMan system to handle complex scenes [10, 9].

The main problem of existing global illumination solutionsis poor scaling of
the computation load with increasing scene complexity. It is often caused by wast-
ing computational efforts on unimportant scene details that cannot be perceived
in the final animation by human observers [58, 26]. Additionally, existing ani-
mation rendering techniques process every single frame independently, therefore
they cannot account properly for the eye sensitivity variations resulting from tem-
poral considerations [49]. While some efficient techniques of perception-based
guidance of the global illumination computation for staticimages have been pro-
posed recently [20, 4, 56], relatively little attention hasbeen paid to the temporal
aspect of such a guidance for dynamically changing environments. In particular,
indirect lighting often changes slowly from frame to frame and many of those
changes might be too subtle to be perceived (changes in direct lighting are usually
quite well noticeable due to high-contrast shadows and highlights accompanying

1for more complete surveys of interactive global illumination techniques, refer to [15, 84, 83].
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the moving objects). Since it is an obvious waste to repeat the computation of
indirect lighting for every frame, the performance of animation rendering could
be significantly improved by exploiting the temporal coherence of indirect light-
ing. Ideally, lighting information acquired for the preceding and following frames
should be reused as much as possible for reconstructing indirect lighting in a given
frame; however, the quality of the resulting animation as perceived by human ob-
servers should not be compromised.

1.3 Problem Statement

The production of high quality animations featuring compelling lighting effects is
very time consuming using traditional rendering approaches in which each frame
is computed separately. It leads to unnecessary, redundantcomputation because a
vast majority of computation must be started from scratch for each frame. Since
temporal coherence is typically not exploited, temporal aliasing problems are also
more difficult to combat. Many small errors in lighting distribution cannot be
perceived by human observers when they are coherent in temporal domain. How-
ever, when such a coherence is lost, the result often becomesunpleasant flickering
effects.

In this thesis, we propose global illumination and rendering algorithms, which
are designed specifically to combat those problems. We achieve this goal by ex-
ploiting temporal coherence in the lighting distribution between the subsequent
animation frames. Our strategy relies on extending into temporal domain well-
known global illumination and rendering techniques such asdensity estimation
path tracing, photon mapping, ray tracing, and irradiance caching. All those tech-
niques have been originally designed to handle static scenes only. Our techniques
mainly focus on the computation of indirect illumination which is the most com-
putationally expensive part of global illumination.

1.4 Chapter Overview

Parts of this thesis have already been published at different conferences or in jour-
nals [50, 51, 52, 71, 70, 73, 72]. This thesis is based on thesecontributions and
organized as follows:

• In Chapter 1 we introduce the general idea of global illumination and dis-
cuss briefly its major applications. We identify some problems with ex-
isting algorithms and summarize our solutions designed to combat those
problems.
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• In Chapter 2 we explain basic terminology used in global illumination. Then
we introduce the rendering equation which is the core of all global illumi-
nation algorithms. We also present briefly a number of relevant works of
global illumination and rendering algorithms.

• In Chapter 3 we discuss previous work related to this thesis. We focus
mainly on off-line global illumination and rendering solutions which lead
to high quality animations.

• In Chapter 4 we present accelerated rendering of walkthroughanimation
sequences using a combination of ray tracing and Image-Based Render-
ing (IBR) techniques. A proper number of keyframes and theirplacement
within an animation sequence are decided using the perception-based Ani-
mation Quality Metric (AQM) [50].

• In Chapter 5 we introduce a new framework for efficient rendering of global
illumination in dynamic environments. We propose a combination of energy
and perception based error metrics AQM to guide efficient lighting compu-
tation. In addition, we introduce spatio-temporal processing of photons at
each triangle mesh element [51, 52].

• In Chapter 6 we propose an efficient technique for high-quality anima-
tion rendering which improves the efficiency of final gathering method and
which is computationally expensive. We achieve rendering speedup by lo-
calizing in the scene space costly recomputation of the finalgathering using
extended photon maps and irradiance cache techniques [71].

• In Chapter 7 we further extend the irradiance cache algorithmto the un-
derlying level of the incoming radiance field. Incoming radiance direc-
tional samples, which contribute to the irradiance cache value, are stored
and reused in the subsequent frames. Each incoming radiancesample is
updated uniformly in space and time. The algorithm can handle a general
animation which includes motion of camera, objects, and light sources [73].

• In Chapter 8 we extend the final gathering technique to handle scenes ef-
ficiently with significant variations of lighting distribution. In such a case,
commonly used uniform sampling leads to poor convergence ofthe irradi-
ance integration. We propose a different sampling strategyfor strong indi-
rect illumination using an extended photon map [72].

• In Chapter 9 we summarize our newly developed solutions for efficient ren-
dering of global illumination in dynamic scenes and conclude this thesis
with a discussion of possible directions for future work.



CHAPTER 2

Background

This chapter introduces the physical and mathematical fundamentals behind global
illumination algorithms. For more complete explanations,refer to well established
textbooks [12, 65, 25, 33, 19, 54]. Table 2.1 summarizes symbols used in this
chapter.

2.1 Lighting Terminology

The goal of global illumination algorithms is to simulate all possible paths of
lighting transport in a scene. The transport is formulated using physical quantities
introduced in radiometry, which is a scientific discipline dealing with the physical
measurement of light. In this section, we briefly explain thebasic radiometric ter-
minology used in global illumination algorithms.

Flux
Flux (Φ) is the radiant power inWatt (W). It is the total energy leaving from /
arriving at a surface per unit time (J/sec).

Irradiance and Radiosity
Irradiance (E) is the incident flux per unit surface area (W/m2) at a surface loca-
tion x:

E(x) =
dΦ

dA
. (2.1)

Radiosity (B) is the outgoing flux per unit surface area (W/m2) at a surface loca-
tion x:

B(x) =
dΦ

dA
. (2.2)

5
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Symbol Description Unit
x Position
~n Normal
~ωi Direction of incoming radiance (away from surface)
~ωo Direction of outgoing radiance (away from surface)
d~ω Differential solid angle
Ω Hemisphere of directions
Φ Flux W
E Irradiance W/m2

B Radiosity W/m2

L Radiance W/m2/sr
Le Emitted radiance W/m2/sr
Li Incoming radiance W/m2/sr
Lo Outgoing radiance W/m2/sr
fr BRDF
ρ reflectance
η Index of refraction

Table 2.1: Symbols used in this chapter.

Radiance
Radiance (L) is flux per unit projected area per unit solid angle (W/m2/sr):

L(x, ~ω) =
d2Φ

cos θdAd~ω
(2.3)

whered~ω denotes the differential solid angle in the direction~ω, andθ is the angle
between the direction~ω and the surface’s normal. Radiance is the most important
quantity in the image synthesis because it does not change when light is traveling
in space (it is assumed that there is no participating mediumin space). Addition-
ally, the human eye is directly sensitive to radiance.

We can compute irradiance at a locationx, by integrating incoming radiance
over all directionsΩ if incoming radiance field is known:

E(x) =

∫

Ω

Li(x, ~ωi)(~ωi · ~n)d~ωi (2.4)

where(~ωi · ~n) = cos θ.

2.2 Luminaires

Light is emitted from a light source which might be artificial(an incandescent
bulb or a fluorescent lamp) or natural (the sun or fire). In the global illumination
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algorithms, the intensity of a light source is given in flux. The following light
source types are considered within the scope of this thesis:

Point Light
A point light is an idealized light source whose size is infinitely small. Despite of
this unrealistic assumption, it is often used in computer graphics to simplify the
lighting computation. The power of light is usually uniformly distributed in all
spherical directions, but goniometric diagrams can be usedto specify more com-
plex angular power distributions [78].

Area Light
An area light source is used when the spatial dimensionalityof luminaires cannot
be neglected. The luminaire can be of arbitrary shape, but a simple geometry such
as a square and disk is commonly preferred because sampling algorithms are also
simple. Note that in contrast to point light sources, the probability of sampling
directions must be proportional to the cosine of the outgoing angle for area light
sources. More details on light source sampling are given in Section 2.6.

Directional Light
A directional light has a fixed direction and is often used to emulate the sunlight.
Because the distance to the sun is very large, all directionsof the emitted rays
from a directional light source can be assumed parallel to each other.

2.3 Bidirectional Reflectance Distribution Function
(BRDF)

The Bidirectional Reflectance Distribution Function (BRDF) describes how light
reflects on a surface. It is defined as the ratio of reflected radiance and irradiance:

fr(x, ~ωi, ~ωo) =
dLr(x, ~ωo)

dEi(x, ~ωi)
=

dLr(x, ~ωo)

Li(x, ~ωi)(~ωi · ~n)d~ωi

(2.5)

where~n is the normal at a pointx. Using the BRDF and incoming radiance,
reflected radiance,L, is computed as:

L(x, ~ωo) =

∫

Ω

fr(x, ~ωi, ~ωo)dE(x, ~ωi) (2.6)

=

∫

Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi · ~n)d~ωi. (2.7)

The physically correct BRDF must satisfy the following two properties:
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Helmholtz Reciprocity
This law states that the BRDF is independent from the direction of light flows,
i.e., the incident and outgoing directions can be exchangedin the BRDF:

fr(x, ~ωi, ~ωo) = fr(x, ~ωo, ~ωi). (2.8)

All two-pass global illumination algorithms utilize this property by tracing light
paths both from the light sources and the eye.

Energy conservation
This property ensures that a surface cannot reflect more energy than it received:

∫

Ω

fr(x, ~ωi, ~ωo)(~ωi · ~n)d~ωi < 1,∀~ωo. (2.9)

2.3.1 Idealized Light Reflection Models

Although the BRDF is a generalized reflection function and can represent any type
of distribution functions, it is often decomposed into idealized reflection models
to simplify the computation.

BRDF Diffuse Specular Glossy

Figure 2.1: The BRDF can be represented as a sum of different reflection types.

Diffuse Reflection
When light arrives at a diffuse surface, it is reflected in all directions. It is caused
by multiple scattering of light in the microstructure of a surface. A special case of
diffuse reflection is Lambertian, when light is uniformly reflected over all hemi-
spherical directions:

fr(x, ~ωi, ~ωo) = ρd
1

π
(2.10)

whereρd is the diffuse reflectance.

Specular Reflection
On a mirror-like surface, the incident and reflected light lie in the same plane along
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with the surface’s normal, and the incident light angle measured in respect to the
normal vector is equal to the outgoing light direction. The reflected direction~ωo

can be expressed using the incident light direction~ωi and the normal vector~n:

~ωo = 2(~ωi · ~n)~n − ~ωi. (2.11)

Refraction
A transparent surface such as water and glass refracts lightat the interface with
the air (or another media). The incident angle,θ1, and the refracted angle,θ2,
measured with respect to the normal are defined bySnell’s law:

η1 sin θ1 = η2 sin θ2 (2.12)

whereη1 andη2 are the corresponding indices of refraction for the media atboth
sides of the interface surface. The refracted direction~ωo can be computed as

~ωo = −η1

η2

(~ωi − (~ωi · ~n)~n) −





√

1 −
(

η1

η2

)2

(1 − (~ωi · ~n)2)



~n. (2.13)

Glossy Reflection
Most of surfaces have glossiness which can be determined between perfect diffuse
and specular reflection. Several functions have been proposed to capture realistic
glossiness using physically based or empirical approaches. A simple reflectance
function based on the Phong model is shown [39] as

fr(x, ~ωi, ~ωo) = ρs
k + 2

2π
cosk θ (2.14)

cos θ = R(~ωi) · ~ωo, cos θ > 0 (2.15)

whereρs is the glossy reflectance andk is the exponential coefficient.R(~ωi) is
the mirror reflection direction of~ωi. The function exhibits all properties required
by the physically correct BRDF as discussed in Section 2.3.

2.4 Rendering Equation

Kajiya introduced the rendering equation [35] which is the fundamental formula
for all global illumination algorithms. In other words, each global illumination
algorithm is designed to compute the rendering equation efficiently and accurately.
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The rendering equation represents outgoing radiance,Lo, at any location and is
formed as the sum of emitted radiance,Le, and reflected radiance computed as
the integral of incoming radiance convolved with the surface BRDFfr(x, ~ωi, ~ωo):

Lo(x, ~ωo) = Le(x, ~ωo) +

∫

Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi · ~n)d~ωi. (2.16)

Note thatLi(x, ~ωi) depends onLo for other surfaces. It effectively means that
those radiances are coupled and unknown.

2.5 Monte Carlo Integration

In this section, we briefly discuss Monte Carlo integration techniques which are
commonly used to solve the rendering equation. The advantage of Monte Carlo
integration is that it does not impose any constraints on theintegrand in terms of
its continuity or smoothness. It is only required that the integrand can be evalu-
ated at a given point. Monte Carlo integration easily extendsto high dimensional
problems without introducing exponential growth of the computation [76]. In the
following parts of this section, we shortly review the terminology of probability
theory and introduce a basic Monte Carlo estimator.

Discrete Random Variables
First, let us consider a random variable which can take a finite number of possible
values. For a discrete random variable withN possible outcomes, the expected
value (or mean) of a random variable can be estimated as

E(x) =
N

∑

i=1

pixi (2.17)

wherepi is a probability associated with any event with outcomexi.

Continuous Random Variables
Now we extend our discussion to include continuous random variables. The prob-
ability P that a variablex takes a value in the range[a, b] is defined as follows:

P (x ∈ [a, b]) =

∫ b

a

p(x)dx (2.18)

wherep(x) is aprobability density function(PDF) such that
∫

∞

−∞

p(x)dx = 1,∀x : p(x) ≥ 0. (2.19)
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Similar to the case of discrete random variables, the expected value of a given
functionf(x) can be computed as

E[f(x)] =

∫

f(x)p(x)dx. (2.20)

We can also calculate the expected value of a function by taking the mean of
a large number of random samples from the function. It will converge toward
the correct answer as the number of samples approaches infinity (Law of Large
Numbers):

E[f(x)] ≈ 1

N

N
∑

i=1

f(xi). (2.21)

Monte Carlo Integration
Now we would like to compute an estimate of the integral of a function f(x).
From Equations 2.20 and 2.21, the following equation can be derived:

∫

f(x)dx =

∫

f(x)

p(x)
p(x)dx ≈ 1

N

N
∑

i=1

f(xi)

p(xi)
. (2.22)

The rightmost term in Equation 2.22 is called the Monte Carlo estimator for an in-
tegral

∫

f(x)dx. The accuracy of the estimator depends on the number of samples
N , and the error is proportional to1/

√
N .

2.6 Sampling Random Variables

In Monte Carlo integration techniques [36, 19], sampling random variables is an
important problem. Random numbers are used to decide the location in a given
pixel of a rendered image, a position inside an area light source, a direction of a
reflected and transmitted ray, the terminating condition ofa ray path, and so on.

2.6.1 Explicit Sampling

We often need to sample directions in spherical coordinates(θ, φ). Two uniform
random numbersξ1 ∈ [0, 1] andξ2 ∈ [0, 1] can be mapped to spherical coordinates
keeping the property of the uniform distribution for some functions. In terms of
coordinates(x, y, z), the direction becomes

~ω = (x, y, z) = (sin θ cos φ, sin θ sin φ, cos θ). (2.23)
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Spherical Sampling
A point light source distributes the fraction of the power into all possible directions
from its position. A sampling direction is given as

(θ, φ) = (cos−1(1 − 2ξ1), 2πξ2). (2.24)

Diffuse Sampling
For sampling reflected directions on a diffuse surface and emitted directions on an
area light source with the diffuse light distribution, the uniform sampling should
be weighted by the cosine function of the sample direction inrespect to the surface
normal:

(θ, φ) = (sin−1(
√

ξ1), 2πξ2). (2.25)

Phong Specular Sampling
The modified Phong reflectance function shown in Equation 2.14 can also be ex-
plicitly sampled as

(θ, φ) = (cos−1(ξ1

1

n+1 ), 2πξ2). (2.26)

This mapping originally distributes points around thez-axis, so we need to rotate
the sampling direction to the actual mirror direction with respect to the incoming
direction.

2.6.2 Rejection Sampling

Explicit sampling requires an analytical formula for the inverse of the cumulative
distribution function which is often not possible analytically. In such a case, re-
jection sampling technique can be used. In this technique samples are repeatedly
generated and discarded until a specified property is obtained. In case the ratio
of sample acceptance is low, this sampling technique may be inefficient. On the
other hand, this technique is very easy to implement and works for any probability
distribution function.
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2.7 Variance Reduction Techniques

The main problem with Monte Carlo integration is the slow convergence rate
1/
√

N . It means that in order to halve the error, we must use four times as many
samples. To improve the quality of an estimate, several variance reduction tech-
niques are proposed, which we summarize briefly in this section.

Importance Sampling
The main idea of importance sampling is to concentrate more samples in important
regions of a function than in remaining regions. The variance can be arbitrarily
low by choosing a good PDF used to distribute samples in the function domain. It
can be shown that the optimal PDF isf(x)/

∫

f(x)dx. However, its denominator
requires the knowledge of the integral value, which is the goal of the computation.
In practice, we select PDFs using the knowledge of the BRDF ofa surface, the
intensity of light sources, and so on.

Stratified Sampling
Stratified sampling is another powerful variance reductiontechnique. In this tech-
nique the domain of the integral is divided into subdomains.The main goal of
this domain subdivision is to reduce the integrand variability in each subdomain.
Stratified sampling leads to a significant variance reduction, and its performance
strongly depends on the choice of subdomains (strata). Evenfor a very poor strata
selection, the variance of stratified sampling cannot be worse than a naive Monte
Carlo sampling. It is more efficient to increase the number of strata than to use
more samples per stratum. For this reason, only one sample per stratum is usually
used. The problem with stratified sampling is that the numberof subdomains must
be known in advance.

In the following sections, we discuss selected global illumination algorithms
based on Monte Carlo methods which lead to the solution of the rendering equa-
tion.

2.8 Monte Carlo Ray Tracing

Monte Carlo ray tracing techniques are the extended algorithms of a classic ray
tracing [96] to capture global illumination effects. The basic idea is a point sam-
pling by tracing random rays in a scene and the weighted sum ofsamples to com-
pute the integral of the rendering equation. The advantagesof this idea are an
easy implementation, memory efficiency, and easy handling of complex geome-
tries and materials. The main disadvantages are the huge computational cost and
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stochastic noise. In the past 20 years, several algorithms have been proposed as
described below.

Distribution Ray Tracing
Distribution ray tracing was introduced by Cook et al. [13] in1984. It extended
traditional ray tracing to capture effects such as soft shadows, motion blur, and
depth of field by stochastic sampling in each of those domains.

Path Tracing
Kajiya introduced the path tracing [35] in 1986 as a solutionof the rendering equa-
tion. The algorithm can simulate all possible light paths ina scene and capture full
global illumination effects. In the path tracing, a random ray is shot from the eye
and traced a reflected and/or refracted ray until the ray hitsa light source or is ab-
sorbed on a surface. A number of such random paths through a pixel contributes
the power to the outgoing radiance for a given pixel. The mainproblem of the
path tracing is that the solution variance is high. It is seenas the high frequency
noise in a rendered image. If a light source is very small compared to a scene, the
probability that a path hits the light source becomes very small. The next event
estimation [19] helps to overcome this problem by explicit sampling of all light
sources in a scene.

Bidirectional Path Tracing
To improve the performance of path tracing, the bidirectional path tracing was
proposed by Lafortune and Willems [38] and Veach and Guibas [77]. The idea
of the bidirectional path tracing is to trace paths from boththe eye and the light
sources and connect nodes of each path with proper weights tocompute their
contribution to a given pixel. The algorithm works significantly better than path
tracing for a certain type of paths in case that it is difficultto reach light sources
from the eye path. However, it still suffers from high frequency noise, which can
be reduced below the perceptibility level by shooting a hugenumber of rays for
each pixel.

2.9 Photon Mapping

The photon mapping was introduced by Jensen [32, 33] in 1996.It is based on
Monte Carlo ray tracing algorithm and can efficiently render an image with global
illumination in complex models with arbitrary BRDFs. The most important fea-
ture of this algorithm is decoupling the illumination representation from geom-
etry. The algorithm stores lighting information in a point-based data structure,
the photon map. This point-based data structure enables to handle very complex
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geometry.
The method consists of two passes: (1) building the photon map using photon

tracing and (2) rendering an image using the cached information in the photon
map. We describe the details of those two passes in the following two sections.

2.9.1 Photon Tracing

In the first stage of the photon mapping method, photons are traced from light
sources toward a scene, and the photon-hit points on diffusesurfaces are registered
in the photon map. To accelerate the search in the photon map and reduce the
memory storage, the kd-tree data structure is used and photons are stored in a
heap-like memory layout. This stage is very fast comparing to the second pass.

To improve the rendering efficiency, two photon maps are built: causticand
global photon maps. The caustic photon map collects photons immediately after
they are reflected or refracted by surfaces with specular light reflectance proper-
ties. The global photon map stores all photons hitting diffuse surfaces. Since this
map is not directly rendered but rather queried in the final gathering procedure, a
moderate number of photons is sufficient.

2.9.2 Rendering

In the rendering stage, caustic effects are reconstructed through a direct density
estimation performed for photons in the caustic photon map.This enables the
reconstruction of quick changes for spatial lighting patterns which are typical for
caustic effects. To obtain high quality caustics (to reducethe stochastic noise with-
out excessive blurring of caustic details), a huge number ofphotons are needed.
This can be achieved by reinforcing shooting caustic photons in the direction of
specular objects in a scene. This is an easy task for photons propagating directly
from light sources to specular surfaces. Recently, it has been shown that selec-
tive photon tracing [17] can be used to take into account morecomplex photon
paths involving collisions with diffuse or glossy surfacesbefore reaching specular
surfaces [27].

2.10 Irradiance Caching

Soft indirect lighting is reconstructed from the global photon map through the
irradiance cache technique [91, 90, 33]. For each cache location, irradiance is
integrated over a scene by sampling the incoming energy for selected directions as
illustrated in Figure 2.2. Each sample involves a heavy intersection computation
performed by tracing a ray and the estimation of energy incoming from the point
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Figure 2.2: IrradianceE and incoming radiance samplesLi (one sample per
strata) at an irradiance cache location marked by the black dot.

hit by a ray. The photon map is used for the incoming lighting reconstruction
using the nearest neighbor density estimation method [29].To reduce the density
estimation cost, Christensen [8] proposed to precompute irradiance and store the
resulting values at sparsely selected photon locations on diffuse surfaces. When
the final gathered ray hits an object, the precomputed irradiance value for the
nearest photon location is used. To reduce the variance of such sampling, the
hemisphere of all possible directions is split into strata,and a small number of
sample directions (usually one) are randomly chosen for each stratum (refer to
Figure 2.2).

This stratified sampling works well for scenes with low variation of lighting
distribution. However, it leads to an enormous number of samples when density
of photons in the global photon map significantly changes between scene regions.
Ideally, the angular density of samples should correspond to the density of photons
stored in the map.



CHAPTER 3

Related Work

The problem of global illumination for dynamically changing environments has
attracted significant attention in the research community,and a number of solu-
tions that attempt to exploit temporal coherence in lighting have been proposed. In
this survey of previous work, we limit our discussion to off-line methods whose
emphasis is high animation quality. In addition, we assume that all animation
paths are known in advance.

In the following sections, we describe solutions tailored for a keyframe-based
approach to an animation. We also present extensions of radiosity, bi-directional
path tracing, and final gathering rendering to handle image sequences. At the end
of this chapter, we discuss more recent attempts of exploiting the characteristics
of human visual system to improve the performance of animation rendering.

3.1 Keyframe-Based Animation Rendering

Keyframe-based animation rendering relies on exact computation for a fixed num-
ber of frames (keyframes) and reusing the results obtained for the remaining frames
(inbetween frames). This idea has been also used in the context of lighting com-
putation which are performed only for keyframes and interpolated for inbetween
frames [53, 97]. Usually the number of inbetween frames between a pair of
keyframes is the same for the whole animation, and there is nocontrol of the
validity of applying the keyframe lighting to the inbetweenframes [97]. This ap-
proach can result in visually noticeable errors in the lighting distribution, which is
affected by changes in the environment that occur in the course of an animation.

Obviously, the errors in lighting that are explicitly caused by the scripted ani-
mation of light sources can be compensated by increasing thenumber of keyframes
for the affected animation segments. However, the questionarises how many ad-
ditional keyframes must be placed, so that approximations in the lighting recon-
structed for inbetween frames remain unnoticeable. It is even more difficult to

17
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predict how the moving objects will affect the lighting distribution based merely
on the animation script.

A significant step toward adaptive keyframe selection have been done by Nimeroff
et al. [53]. They proposed a powerful range-image-based framework for handling
indirect lighting in dynamic environments. The indirect lighting is sparsely sam-
pled in time and then interpolated to reconstruct full global illumination for se-
lected base images. The time steps for recomputing the indirect lighting are found
by recursive subdivision. At each time step, the lighting iscalculated for a num-
ber of vertices using deterministic wavelet radiosity [12,65], then the differences
between the corresponding vertices are computed. If largerdifferences than an as-
sumed threshold are found for a certain percentage of vertices the time sequence is
subdivided. The drawback of this approach is that direct lighting is not considered,
therefore it could effectively wash out even significant differences in indirect light-
ing [23]. Additionally, the tone reproduction [75] is not applied to the resulting
lighting. Applying tone reproductions is difficult in the view-independent frame-
work as proposed by Nimeroff et al. [53] because the eye adaptation conditions
cannot be established.

The interpolation of indirect lighting between two time steps is an important
feature of Nimeroff’s framework. The continuity of changesin the lighting distri-
bution between time steps is modelled, and popping effects resulting from switch-
ing between two distinct lighting distributions as in [97] can be avoided. However,
in all discussed approaches, the accuracy of indirect lighting reconstruction fluctu-
ates between frames, achieves the highest level for the keyframes, and then grad-
ually decreases for the remaining frames usually as a function of their distance to
the keyframes along an animation path.

Clearly, even for the simple approach with reusing lighting for inbetween
frames, some error metrics are needed to guide the keyframe placements. Some
perception-based animation quality metrics are required to enable direct judge-
ment whether the errors introduced by exploiting the temporal coherence are be-
low the sensitivity level of human observers. In addition, by performing some
limited computation for all frames (not just keyframes), abrupt changes in light-
ing can be identified more easily. We propose an algorithm designed along those
guidelines in Chapter 4.

3.2 Spatio-Temporal Radiosity Solutions

Deterministic and Monte Carlo radiosity techniques are commonly used in many
commercial packages and research rendering systems. A common denomina-
tor for those technique is that mesh is used for lighting computation and recon-
struction. The extension of radiosity techniques to handledynamic environments
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proved to be quite successful. Early solutions [6, 22, 48] were embedded into
the progressive radiosity framework and relied on shootingthe corrective energy
(possibly negative) to scene regions affected by the environment changes. Much
better performance was obtained by more recently introduced techniques that are
based on hierarchical radiosity [18, 61, 16, 55]. A line-space hierarchy proposed
by Drettakis and Sillion [18] enables fast identification oflinks affected by a scene
modification and leads to image updates at interactive ratesfor moderately com-
plex environments. However, the memory requirements inherent in this technique
are extremely high because, apart from storing the active links used for energy
gathering, also passive (refined) links and shafts for the entire scene are stored.
The problem of storing shafts was recently reduced by Schoeffel and Pomi [61].
They store shafts only locally for regions affected by geometry changes. Damez
and Sillion [16] explicitly incorporated time in the hierarchical radiosity frame-
work and showed substantial improvements in the rendering performance of ani-
mated sequences. However, it was achieved at the expense of asignificant increase
of memory requirements which become impractical for complex scenes. Pueyo
et al. [55] proposed a radiosity algorithm which focuses on exploiting the tempo-
ral coherence of subsequent animation frames for static camera parameters. All
discussed radiosity techniques work well only when the lighting changes are well
localized in a scene. Otherwise, recomputing the lighting from scratch is a better
choice.

In Global Monte Carlo Radiosity [2], the temporal coherence of costly visibil-
ity computations is efficiently and conservatively exploited. However, the radios-
ity solution is performed independently for each frame, andall radiosity solutions
are stored simultaneously in the memory. The algorithm generates “global lines”,
which are cast independently from surface positions, with auniform density all
over the scene. They can be generated, e.g., by joining random pairs of points
taken in a sphere bounding the whole scene. The temporal coherence is exploited
by reusing the visibility information between static surfaces stored in global lines.

The high quality of the lighting reconstruction is not guaranteed in those mesh-
based object space approaches. In particular, changes of direct lighting effects
such as shadows and highlights resulting from object motionare usually highly
visible because they are important visual cues (in general,specular effects are dif-
ficult to model for radiosity techniques). To avoid similar problems, a majority
of high quality rendering solutions computes direct lighting for every frame us-
ing view-dependent techniques such as sophisticated scanline methods [1] or ray
tracing [89, 32].

In Chapter 5, we propose our mesh-based solution which is based on Monte
Carlo light tracing. It avoids many of discussed problems.
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3.3 Spatio-Temporal Bi-Directional Path Tracing

In the previous section, we discussed radiosity algorithmsin which spatio-temporal
processing was performed in the object space. In this section, we consider a view-
dependent algorithm calledbi-directional path tracing(BPT) [38, 77] which was
extended by Havran et al. to handle dynamic environments [28]. In this algorithm,
the bookkeeping of global illumination samples is organized in the image space.
The BPT algorithm is considered within a more general rendering framework for
computing multiple frames at once by exploiting the coherence between image
samples (pixels) in the temporal domain. For each sample representing a given
point in the scene, its view-dependent components are updated for each frame
and their contribution is added to pixels identified throughthe compensation of
camera and object motion.

The global illumination computation in the framework proposed by Havran
et al. is based on the BPT algorithm [38, 77] and uses themulti-frame visibility
data structure(MFVDS) to query visibility for all considered frames at once.
Each bi-directional estimate of a given pixel color is reused for several frames
before and after the one it was originally computed for. To reuse these estimates,
the BRDF values at the first hit point of the eye path need to be recomputed to
take into account the new viewpoint. The corresponding estimates are then added
to the pixel through which the hit point can be seen for the considered frame.
Since it involves only the evaluation of direct visibility from the viewpoint and
a few BRDF recomputations, reusing a sample is much faster than recomputing
from scratch. Reusing samples for several frames also makesthe noise inherent
to stochastic methods fixed in an object space and enhances the quality of the
resulting animations.

The main advantage of this framework is a significant speedupof animation
rendering, which is usually over one order of magnitude in respect to traditional
frame-by-frame rendering, while the obtained quality is always much higher due
to a significant reduction of flickering. Many standard tasksin rendering such as
shading, texturing, and motion-blur can be efficiently performed in this rendering
architecture.

3.4 Spatio-Temporal Final Gathering

In the rendering of production quality animation, global illumination computa-
tions are usually performed using two-pass methods [69, 9].In the first (prepro-
cessing) pass, the lighting distribution over scene surfaces is sparsely computed
using radiosity [42, 67, 11] or photon mapping [33, 8] methods. In the second
(rendering) pass, more exact global illumination computation is performed on a



3.4 Spatio-Temporal Final Gathering 21

per-pixel basis using the results obtained in the first pass.To improve the spa-
tial resolution of lighting details for a given camera view,the final gathering
[57, 42, 67, 11] is commonly used. Usually the direct lighting is explicitly com-
puted for each pixel, and the indirect lighting is obtained through the integration
of incoming radiances, which is computationally expensive.

The final gathering has been initially introduced in the context of the radios-
ity algorithm to overcome the problems arising with the mesh-based storage of
lighting [57, 42, 67, 11]. More efficient versions of this final gathering have been
recently proposed specifically for Hierarchical Radiositywith Clustering [59, 60].

The final gathering costs also can be reduced by using theirradiance cache
data structure [91, 90] which is more suitable for ray tracing methods. Within this
method, irradiance samples are lazily computed and sparsely cached in an object
space for a given camera position (a view-dependent process). The indirect illu-
mination is interpolated for each pixel based on those cached irradiance values.
It is significantly faster than the final gathering computation for each pixel. The
irradiance cache technique efficiently removes shading artifacts which are very
difficult to avoid if the indirect lighting is directly reconstructed based on the ra-
diosity mesh or the photon maps. However, this high quality lighting reconstruc-
tion needs long computation time mostly because of the irradiance integration
that is performed for each cache location in a scene. All those final gathering ap-
proaches can be used for a walkthrough animation, however, they are not suitable
for the rendering of dynamic environments.

Recently, Martin et al. [45] proposed a final gathering algorithm in the frame-
work of space-time hierarchical radiosity. Martin et al. classified the hierarchical
radiosity links into thegood linksif the error of gathered lighting is within given
bounds and thebad linksotherwise. For the good links, the final gathering step
is not required, and resulting lighting is accumulated in a texture using linear in-
terpolation within a given patch. For each shooter polygon associated with a bad
link, the graphics hardware is used to estimate the visibility of receiver patch tex-
els using the projective shadow technique. In the temporal domain, the bad links
are classified intostatic anddynamic. The costly visibility computation is per-
formed once for a given time interval for static links and repeated for each frame
for dynamic links.

The final gathering method proposed by Martin et al. leads to significant ren-
dering speedup (1.7–7 times in the examples given by the authors). However, the
method shares typical drawbacks of hierarchical radiositysolutions such as poor
handling of non-Lambertian surfaces and significant storage costs required by the
link data structures. Those costs are even more significant in the presented so-
lution because the history of links is also stored, i.e., links are not deleted when
refined for possible reuse in different time intervals.

In Chapter 6, we propose our final gathering approach which exploits the tem-
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poral coherence and is embedded into the photon mapping rendering algorithm.

3.5 Perception-guided Animation Rendering

The main goal of perception-guided animation rendering techniques is to save
computational cost without compromising the resulting animation quality as per-
ceived by human observers. Recently, some successful examples of perception-
based rendering of static images have been presented [20, 4,56]. However, ex-
panding those techniques to handle the temporal domain remains mostly an open
problem.

Yee [97] proposed an interesting application of a visual attention model to im-
prove the efficiency of indirect lighting computations in the RADIANCE system
[89] for dynamic environments. Yee demonstrated that greater errors can be toler-
ated for less salient image regions in which the density of indirect lighting samples
can be substantially reduced. However, variability in the selection of the region of
interests (ROI) for different observers or even for the sameobserver from session
to session can lead to some degradation of the animation quality in regions that
were not considered as important attractors of the visual attention.Yee reported
that such degradations of quality could be perceived when the same animation
sequence was viewed more than once by the same observer.



CHAPTER 4

Exploiting Temporal Coherence in
Walkthrough Rendering

In this chapter, we consider accelerated rendering of walkthrough animation se-
quences using a combination of ray tracing and Image-Based Rendering (IBR)
techniques. Our goal is to derive as many pixels as possible using inexpensive IBR
techniques without affecting the animation quality. A perception-based spatio-
temporal Animation Quality Metric (AQM) is used to automatically guide such
a hybrid rendering. The Image Flow (IF) [30] obtained as a by-product of the
IBR computation is an integral part of the AQM. The final animation quality is
enhanced by an efficient spatio-temporal antialiasing, which utilizes the PF to
perform a motion-compensated filtering.

4.1 Introduction

The central part of our approach is the Image Flow (IF) which is computed as a
displacement vector field in the image plane due to the motionof the camera along
an animation path (refer to Figure 4.1). The displacement distribution is provided
for all pixels and all frames in an animation sequence. The IFis computed using
IBR techniques, which guarantees very good accuracy and high speed processing
for synthetic images. The IF is used in our technique in the following tasks:

• To perform the temporal considerations of our perception-based animation
quality metric (Section 4.2).

• To reproject pixels from the ray-traced keyframes to the image-based inbe-
tween frames (Section 4.3).

• To enhance the animation quality by performing antialiasing based on motion-
compensated filtering (Section 4.3.3).

23
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I
n

I
n+1

I
n-1

Figure 4.1: Displacement vectors between positions of the corresponding pixels
which represent the same scene details in the subsequent animation framesIn−1,
In, andIn+1. The planar image-warping equation [46] is used to derive displace-
ment vectors that are computed in respect to pixel positionsin In. The computa-
tion requires the range data forIn, and the camera parameters of all three involved
frames. Note that the RGB values are not necessary to computedisplacement
vectors.

In this chapter, we limit our discussion to the production ofhigh quality walk-
through animations when only camera animation is considered (refer to Chap-
ters 5–7 for the discussion of global illumination in more general animation cases).
We assume that a walkthrough animation is of high quality, involving complex
geometry and global illumination solutions, thus a single frame rendering incurs
significant costs. The other reasonable assumptions are that the animation path
and all camera positions are known in advance, that ray tracing (or other high
quality rendering methods) for selected pixels is available, that depth (range) data
for each pixel is inexpensive to derive for every frame (e.g., using z-buffer), and
that the object identifiers for each pixel can be easily accessed for every frame
(e.g., using item buffer [95]).

The material in this chapter is organized as follows. In Section 4.2, we briefly
describe the animation quality metric used for the keyframeselection. We describe
efficient methods of inbetween frames computation in Section 4.3. Section 4.4
shows results obtained using our approach. Section 4.5 concludes this chapter.
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4.2 Animation Quality Metric

Automatic assessment of animation quality as perceived by the human observer is
becoming very important in various applications dealing with digital video encod-
ing and compression techniques. The most successful error metrics are based on
the computational models of human vision [43, 93, 74] and aredesigned specifi-
cally for digital video applications.

In this study, we deal exclusively with synthetic images, and we are looking
for a metric well tuned to our application requirements, even at the expense of
some loss of its generality. As the framework of our animation quality metric
(AQM) we decided to expand the VDP [14] into the temporal domain. The cen-
tral part of the AQM is a model for the spatiovelocity ContrastSensitivity Func-
tion (CSF), which specifies the detection threshold for a stimulus as a function
of its spatial and temporal frequencies. The visual patternvelocity required by
this model is estimated based on the average IF magnitude between the currently
considered frame and the previous/subsequent frames (refer to Figure 4.1). Also,
visual masking is modelled, which affects the detection threshold of a stimulus
as a function of the interfering background stimulus which is closely coupled in
space. The AQM models temporal and spatial mechanisms (channels) which are
used to represent the visual information at various scales and orientations in a
similar way as the primary visual cortex does. For more detailed description of
the AQM processing refer to [50].

As input to the AQM two comparison animation sequences are provided. For
every pair of input frames a map of probability values is generated as output,
which characterizes the difference in perceivability. This map is used in our walk-
through animation rendering algorithm to identify pixels for which IBR tech-
niques do not provide sufficient quality and more precise computation must be
performed. We apply the AQM to guide inbetween frame computation, which we
discuss in Section 4.3.2.

4.3 Inbetween Frames Rendering

For animation techniques relying on keyframing the rendering cost depends heav-
ily upon the efficiency of inbetween frame computation because the inbetween
frames usually significantly outnumber the keyframes. In this work, we apply
well-known off-the-shelf IBR solutions suitable for inbetween frame computa-
tions, which are based on simple data structures and do not require intensive
preparatory computations. We use a combination of the following standard tech-
niques:

• To account for proper IF computation and occlusion relations we select 3D
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warping and warp ordering algorithms developed by McMillan[46], which
require just the reference image and the corresponding range data.

• To reduce gaps between stretched samples during image reprojection we
use the adaptive “splatting” technique proposed by Shadeet al. [62].

• To remove holes resulting from occluded objects we composite the two
warped keyframes as proposed by Market al. [44]. Pixels depicting objects
occluded in the two warped keyframes are computed using ray tracing.

This choice is the result of extensive analysis of the suitability of existing IBR
techniques for walkthrough applications which we presented in [49]. Figure 4.2
summarizes the processing flow for the inbetween frame derivation using the tech-
niques we selected.

The quality of pixels computed using the IBR techniques selected by us can
be deteriorated occasionally due to such reasons as occlusions in the keyframes of
the scene regions that are visible in the inbetween frames, specular properties of
depicted objects, and so on. In the following section, we discuss our solutions to
modifying bad pixels which could affect the animation quality as perceived by the
human observer. One of important factors toward reducing the number of bad pix-
els is the selection of keyframes along the walkthrough trajectory. In Section 4.3.2
we propose an efficient method for adaptive keyframe selection which is specif-
ically tuned for deriving inbetween frames using IBR techniques and is guided
by the AQM predictions. In Section 4.3.3 we briefly discuss our spatiotemporal
antialiasing solution, which is applied as a post-processing step to all animation
frames.

4.3.1 Quality Problems with Inbetween Frames

The goal of our animation rendering solution is to maximize the number of pixels
computed using the IBR approach without deteriorating the animation quality.
However, the quality of pixels derived using IBR techniquesis usually lower than
ray-traced pixels, e.g., in the regions of inbetween frameswhich are expanded
(zoomed-in) in respect to the keyframes.

Human vision is especially sensitive to distortions in image regions with low
IF velocities. As a part of our antialiasing solution we replace IBR-derived pixels
in such regions with ray-traced pixels. The replacement is performed when the
IF velocity is below a specified threshold value, which we estimated in subjective
and objective (using the AQM) experiments (for more detailsrefer to [50]).

Specular effects often attract the viewer’s attention and are of high local con-
trast, so special care should be taken to process them properly. In existing IBR
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keyframe #2
      view

keyframe #1
      view

desired inbetween
           view

object

    composited
inbetween frame

warped keyframe #1 warped keyframe #2

Figure 4.2: Derivation of an inbetween frame based on two keyframes, and
the corresponding range data (the distance is shown in greyscale). At first, the
keyframes are 3D warped to the inbetween frame viewpoint. Then, composition
of the keyframe warps is performed accounting for the propersolution of occlu-
sion problems.

methods, handling of non-diffuse reflectance functions requires very costly pre-
processing to produce a huge number of images needed to obtain crisp mirror
reflections [47, 41]. Because of these problems we decided touse ray tracing for
pixels depicting objects with strong specular or transparent properties. We per-
form such a computation only for those objects for which wellvisible artifacts are
predicted by the AQM.

Scene fragments that are visible in the inbetween frames which are not present
in the keyframes cannot be properly derived using the IBR techniques. We apply
ray tracing to compute the missing image fragments. To reduce the number of
pixels which must be ray traced we propose a technique for adaptive selection of
keyframes, which we discuss in the following section.
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4.3.2 Adaptive Selection of Keyframes

The selection of keyframes should be considered in the context of the actual tech-
nique used for inbetween frame computation. Our goal is to find an inexpensive
and automatic solution for the initial placement of keyframes which improves the
IBR rendering performance. We assume a fixed number of initial keyframes and
we want to minimize the number of pixels which cannot be properly derived from
the keyframes due to visibility problems [46]. Since in our animation rendering
solution all such pixels are computed using ray tracing for all inbetween frames,
our objective is to reduce their number. In this section, we discuss an adaptive
refinement of keyframe placement which is performed taking into account per-
ceptual considerations, and is guided by AQM predictions.

After the initial uniform frame placement, every resultingsegmentS of length
δ = N + 1 is processed separately through application of the following recursive
procedure:

1. Generate the first frameI0 and the last frameIN in segmentS using ray
tracing. The keyframes that are shared by two neighboring segments are
computed only once.

2. Derive two instances of the central inbetween frameI ′

[N/2] and I ′′

[N/2] for
segmentS by 3D warping [46] the keyframes:

• I0: I ′

[N/2] = 3DWarp(I0), and

• IN : I ′′

[N/2] = 3DWarp(IN).

3. Use the AQM to compute the probability mapPMap with perceivable dif-
ferences betweenI ′

[N/2] andI ′′

[N/2].

4. Mask out fromPMap all pixels that must be ray traced because of the IBR
deficiencies (discussed in Section 4.3.1). The following order for masking
out pixels is taken:

(a) Mask out fromPMap pixels with low PF values.

(b) Mask out fromPMap pixels depicting objects with strong specular
properties (i.e., mirrors, transparent, and glossy objects). The item
buffer [95] of frameI[N/2] is used to identify pixels representing ob-
jects with such properties. Only those specular objects aremasked out
for which the differences betweenI ′

[N/2] andI ′′

[N/2] as reported inPMap

can be readily perceived by the human observer. In Section 4.4 we
provide details on setting the thresholds of AQM response, which are
used by us to discriminate between the perceivable and imperceivable
differences.
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(c) Mask out fromPMap holes composed of pixels that could not be de-
rived from keyframesI0 andIN using 3D warping.

5. If masked-outPMap shows the differences betweenI ′

[N/2] andI ′′

[N/2] for a
bigger percentage of pixels than the assumed threshold value:

(a) SplitS at frameI[N/2] into two subsegmentsS1 (I0, . . . , I[N/2]) andS2

(I[N/2], . . . , IN ).

(b) Process recursivelyS1 andS2, starting this procedure from the begin-
ning for each of them.

Else

(a) CompositeI ′

[N/2] and I ′′

[N/2] with correct processing of object occlu-
sions [44, 62] to deriveI[N/2].

(b) Ray trace all pixels which were masked out in the step 4 of this proce-
dure, and composite these pixels withI[N/2].

(c) Repeat two latter steps for all remaining inbetween frames, i.e.,
I1, . . . , I[N/2]−1 andI[N/2]+1, . . . , IN−1 in S.

To avoid image quality degradation resulting from multipleresamplings, al-
ways the fully ray-traced keyframesI0 andIN are warped in step 5c to obtain all
inbetween frames inS. Pixels to be ray traced, i.e., pixels with low PF values, pix-
els depicting specular objects with visible differences (such objects are selected
once for the wholeS in step 4b), and pixels with holes resulting from the IBR
processing must be identified for every inbetween frame separately.

We evaluate the AQM response only for frameI[N/2]. We assume that deriva-
tion of I[N/2] applying the IBR techniques is the most error-prone in the whole
segmentS because its arclength distance along the animation path to either theI0

or IN frames is the longest one. This assumption is a trade off between the time
spent for rendering and for the control of its quality (we discuss the costs of AQM
in Section 4.4), but in practice, it holds well for typical animation paths.

Figure 4.3 summarizes the computation and composition of aninbetween
frame. We used a dotted line to mark those processing stages that are performed
only once for segmentS. All other processing stages are repeated for all inbe-
tween frames.

4.3.3 Spatiotemporal Antialiasing

As a final step, the animation quality is enhanced by an efficient spatiotemporal
antialiasing, which utilizes the IF to perform a motion-compensated filtering [63].
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Figure 4.3: The processing flow for inbetween frames computation.
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The filter parameters have been tuned using the AQM predictions of animation
quality as perceived by the human observer. These parameters adapt locally to the
visual pattern velocity which is estimated based on the IF asshown in Figure 4.1.
For more details on our spatiotemporal antialiasing technique refer to [50].

Figures 4.4a and b show a single frame from an animation sequence, that was
obtained using ray tracing with antialiasing and that from our technique of in-
between frame computation described in in this section. Figure 4.4c shows the
frame depicted in Figure 4.4b, which was processed using ourspatiotemporal
antialiasing. Although, the frames in Figures 4.4a and c exhibit many perceiv-
able differences when observed as still images, they are visually indistinguishable
when observed within animation sequences.

a) b)

c)

Figure 4.4: Selected animation frame computed using: a) raytracing with an-
tialiasing, b) composition of IBR-derived and ray-traced pixels, and c) as in b),
but processed by our spatiotemporal antialiasing solution. Note that frames in a)
and c) are visually indistinguishable when observed withinthe animation context.
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4.4 Results

As the case study in this research we selected a walkthrough animation for two
different scenes: theATRIUM of the University of Aizu and aROOM (refer to
Figures 4.3 and 4.4). The main motivation for this choice were the interesting
occlusion relationships between objects which are challenging for IBR. In the case
of theATRIUM scene, a vast majority of the surfaces exhibit some view-dependent
reflection properties, including the mirror-like and transparent surfaces, which
made inbetween frames calculation more difficult. Under such conditions, the
AQM guided selection of keyframes and glossy objects withininbetween frames
to be recomputed was more critical, and wrong decisions concerning these issues
could be easy to perceive. For theROOM scene we disabled specular properties,
and we designed an animation path which causes great variation in the IF velocity.
Our goal was to investigate the performance of our animationrendering solution
for the conditions in which eye sensitivity changes dramatically.
For our experiments we selected a walkthrough sequence of 200 frames for the
ATRIUM , and 448 frames for theROOM. The resolution of each frame was640 ×
480 (to accommodate for the NTSC standard). At the initial keyframe selection
step, we assumed an animation segment length of∆ = 25 frames. For theATRIUM

walkthrough we kept the length of every segment fixed, i.e.,δi = ∆, because
changes of the average IF velocity computed for every frame are relatively small.
For theROOM scene the average IF velocity variates significantly, so we adjusted
the length of every segmentδi using an algorithm presented in [50]. The goal
of such adjustment was the reduction of the percentage of pixels with occlusion
problems which arise in IBR techniques.

As described in Section 4.3.2, for every segmentS we run the AQM once
to decide upon the specular objects which require recomputation. The AQM is
calibrated in such a way that 1 JND unit corresponds to a 75% probability that
an observer can perceive the difference between the corresponding image regions
(such a probability value is the standard threshold value for discrimination tasks
[14]). If a group of connected pixels representing an object(or a part of an object)
exhibits differences greater than 2 JND (93.75% probability of discrimination) we
select such an object for recalculation. If for an object thedifferences below 2 JND
are reported by the AQM then we estimate the ratio of pixels exhibiting such
differences to all pixels depicting this object. If the ratio is bigger than 25%, we
select such an object for recomputation - 25% is an experimentally selected trade-
off value, which makes possible a reduction in the number of specular objects
requiring recomputation, at the expense of some potentially perceivable image
artifacts. These artifacts are usually hard to notice unless the observer’s attention
is specifically directed to the given image region.

After masking out the pixels to be recomputed, the decision on further split-
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Figure 4.5: ATRIUM walkthrough statistics: a) the AQM prediction of the per-
ceived differences between the warped images of two neighboring keyframes (tak-
ing into account various retinal image velocity), and b) thepercentage of pixels to
be recalculated by ray tracing. In a) lines connecting the symbols were added for
readability and they do not have any meaning for unmarked frames.
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Figure 4.6:ROOM walkthrough statistics: a) the AQM prediction of the perceived
differences between the warped images of two neighboring keyframes (taking into
account various retinal image velocity), and b) the percentage of pixels to be re-
calculated by ray tracing. In a) lines connecting the symbols were added for read-
ability and they do not have any meaning for unmarked frames.
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ting S is made using AQM predictions for the remaining pixels. The predictions
are expressed by the percentage of unmasked pixels for whichthe probabilityp of
detecting the differences is greater than 0.75. Based on experiments that we con-
ducted, we decided to split every segmentS when the percentage of such pixels is
bigger than 10%. When computing the AQM predictions that we used to decide
upon segment splitting, we assumed good tracking of moving visual patterns with
smooth-pursuit eye movements. The filled squares in Figures4.5a and 4.6a show
such predictions for the inbetween frames located in the middle of every initial
segmentS. Segments with AQM predictions over 10% were split and the filled
diamonds show the corresponding reduction of the predictedperceivable differ-
ences. We also performed experiments assuming higher levels of retinal velocity
for our walkthrough animation. The filled triangles in Figures 4.5a and 4.6a show
the AQM predictions when the retinal velocity is equal to theIF (eye movements
are ignored). For all segments selected for splitting basedon smooth-pursuit eye
movement assumption, the AQM predictions also exceeded thethreshold of 10%
when the eye movements were ignored.

The overall costs of inbetween frame computations are strongly affected by
the average number of pixels that must be ray traced. The graph in Figure 4.5b
shows the percentage of pixels depicting specular objects that are replaced by
ray traced pixels in theATRIUM walkthrough sequence. This graph also shows
the percentage of replaced pixels due to IBR occlusion problems, and the high
sensitivity of the visual system for image patterns moving with low velocity (the
velocity threshold of 0.5 degree/second was assumed). Obviously, a given pixel
was replaced only once, and we assumed the following processing order of pixels
replacement: 1) pixels depicting slowly moving patterns, 2) pixels with possible
reflection/refraction artifacts, and 3) pixels with occlusion problems. Figure 4.6b
shows the equivalent results for the sceneROOM.

To evaluate the efficiency of our animation rendering systemwe compared the
average time required for a single frame of our test walkthroughs using the fol-
lowing rendering methods:ART - fully ray traced frames with antialiasing (using
adaptive supersampling) which are commonly applied in the traditional render-
ing animation approach,RT - fully ray traced frames (one sample per pixel), and
IBR+RT frames generated using our approach with mixed ray traced and IBR-
derived pixels. Table 4.4 summarizes the obtained results for the ATRIUM and
ROOM walkthroughs. In the caseIBR+RT, we included the computation involved
in IBR rendering (which requires about 12 seconds to warp andcomposite two
keyframes), motion-compensated 3D filtering which added anoverhead of 10 sec-
onds per frame (refer to Section 4.3.3), and AQM processing which takes 243 sec-
onds to process a pair of frames (refer to Section 4.2). The AQM computations
are so costly mainly because of the software implemented Fast Fourier Transform
(FFT). Since our frames are of resolution640 × 480 we had to consider images
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Scene ART RT IBR+RT

[minutes] [minutes] [minutes]
ATRIUM 170.0 40.0 20.5
ROOM 6.9 1.5 1.1

Table 4.1: Average computation time per frame for various animation rendering
solutions. All timings were measured on the MIPS 195 MHz processor.

of resolution1024 × 512 for the FFT processing. The AQM processing can be
shortened by about 50% considering just512 × 480 fragments of frames. This is
acceptable in many cases because near the frame boundaries many pixels cannot
be properly derived using the IBR approach (refer to the warped keyframes shown
in Figure 4.3), so they do not contribute to the AQM response.
The most significant speedup was achieved by using our spatiotemporal antialias-
ing technique and avoiding the traditional adaptive supersampling. Our inbetween
frames rendering technique added a further 25–50% of speedup with respect to the
RT approach. The tested scenes were hard for our algorithm because of the strong
specular reflectance properties exhibited by many of the surfaces (ATRIUM ), and
the slow motion of the camera, in which case eye sensitivity is high (ROOM). Also,
the chessboard-like pattern of textures in theROOM scene made it quite challeng-
ing in terms of proper antialiasing. Even better performance can be expected for
environments in which specular objects are depicted by a moderate percentage of
pixels, and camera motion is faster.

4.5 Conclusions

In this chapter, we proposed an efficient approach for rendering of high quality
walkthrough animation sequences. Our contribution is in developing a fully auto-
matic, perception-based guidance of inbetween frame computation, which mini-
mizes the number of pixels computed using costly ray tracing, and seamlessly (in
terms of the perception of animated sequences) replaces them by pixels derived us-
ing inexpensive IBR techniques. Also, we have shown two important applications
of the image flow obtained as a by-product of IBR processing. It was applied to:
1) estimate the spatio-velocity Contrast Sensitivity Function which made it pos-
sible to incorporate temporal factors into our perceptually-based image quality
metric, and 2) perform the spatiotemporal antialiasing with motion-compensated
filtering based on image processing principles. We integrated all these techniques
into a balanced animation rendering system.
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Exploiting Temporal Coherence in
Photon Density Estimation

In this chapter, we introduce a novel framework for efficientglobal illumination
computation in dynamic environments. We propose a combination of energy-
and perception-based error metrics which efficiently guidelighting computation.
Using these metrics, the spatiotemporal coherence in lighting distribution can be
better exploited and accurate lighting computation can be obtained without de-
grading the animation quality as perceived by human observers. As a result, a
perceptually-homogeneous quality of indirect lighting reconstruction across the
spatial and temporal domains is obtained.

5.1 Introduction

The goal of this work is to improve the performance of global illumination compu-
tations for high quality animation sequences by exploitingthe temporal coherence
in indirect lighting distribution. The mesh-based view-independent Density Esti-
mation Particle Tracing (DEPT) algorithm [79], which we extend in this work
to handle animated objects, is used as a global illuminationframework, but the
proposed solutions could be easily applied to other stochastic algorithms such as
the photon map [32]. Initially, the lighting function is sparsely sampled in space
for all frames (not just for fixed keyframes as in [53, 97], refer to Section 3.1
for a discussion of those techniques) within a given animation segment. Then,
based on the obtained results, the decision is made whether the segment can be
expanded or contracted in the temporal domain. Since the validity of samples
may depend on the particular region in a scene for which indirect lighting condi-
tions change more rapidly, different segment lengths are chosen locally for each
mesh element (used to store particle hits), based on the variation of the lighting
function. Energy-based statistical measures of such localvariations are used to

37
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calculate the number of preceding and following frames for which samples can be
safely used for a given region. More samples are generated ifthe quality of the
frames obtained for a given segment length is not sufficient.The perception-based
Animation Quality Metric (AQM) [49] is used to choose the average number of
photons per frame for each segment to prevent perceivable degradation of ani-
mation quality. Spatial filtering is performed for those scene regions in which a
sufficient number of samples cannot be collected in the temporal domain. For the
final rendering, the indirect lighting is reconstructed using the outlined techniques
while specular effects and direct lighting are computed forevery frame separately
by ray tracing.

The material in this chapter is organized as follows. In Section 5.2, we de-
scribe our indirect lighting algorithm. In Section 5.3, we present extensions of
this algorithm to process photons in temporal domain. In Section 5.4, we describe
our algorithm of perception-based lighting simulation forall frames within an ani-
mation segment. In Section 5.5, we analyze the accuracy of lighting simulation in
our approach. In Section 5.6, we present the results obtained using our approach.
In Section 5.7, we conclude this Chapter and investigate future work directions.

5.2 Indirect Lighting Solution

As a framework for global illumination computation, we chose the Density Es-
timation Photon Tracing (DEPT) algorithm [79]. The DEPT is similar to other
stochastic solutions in which photons are traced from lightsources towards sur-
faces in the scene, and the lighting energy carried by every photon is deposited at
the hit point locations on those surfaces [29, 64, 86]. A simple photon bucketing
on a dense triangular mesh is performed, and every photon is discarded imme-
diately after its energy is distributed to the mesh vertices. Efficient object space
filtering substantially reduces visible noise, while the excessive smoothing of the
lighting function can be avoided by adaptively controllingthe local filter support
which is based on stochastically-derived estimates of the local illumination error
[79, 86].

An important feature of the DEPT technique is that the bucket-based lighting
reconstruction and filtering are very efficient, and the quality of the reconstructed
lighting is quite good. Thus, the resulting illumination maps can be displayed
immediately, and many variants of lighting reconstructionin the context of tem-
poral photon processing for animations can be inexpensively analyzed to choose
the best solution. This is in contrast with other photon tracing techniques which
involve costly density estimation techniques such as the kernel methods [64, 86],
or the final gather step [32] in order to obtain images of good quality.

Another advantage of the DEPT computation is that a reasonable mesh-based
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approximation of the direct lighting is available (although in the final frames the
direct lighting is recomputed on a per pixel basis), which isrequired to model
the local eye adaptation conditions. The eye adaptation characteristics are needed
for proper tone reproduction [75] during the illumination map display, and for the
prediction of the eye sensitivity to the errors in indirect lighting. The reduction
of these errors is the main objective of the perception-based guidance of temporal
photon processing.

a) b)

Figure 5.1: Indirect lighting changes can be significant in dynamic environments.
Note the color bleeding effect in the room corner caused by the strongly illumi-
nated torus in a). The effect disappears as the torus moves away in b).

The extension of the DEPT algorithm to handle animated sequences of dy-
namically changing environments requires the storage of photons that are reused
in neighbouring frames. The photons are stored on a per framebasis. For each
photon, information on its spectral energy distribution isstored to account for re-
flected light and allow effects such as color bleeding (referto Figure 5.1). Also,
the hit point coordinates in the form of two barycentric coordinates are stored to
facilitate distributing the photon energy to the mesh vertices, and to keep the pho-
ton position within the mesh elements in relative rather than in absolute terms.
Finally, the mesh element identifier is stored, which forms abasis together with
the photon barycentric coordinates for re-using a given photon for neighbouring
frames. We assume that the motion of objects between the subsequent frames is
small enough that even the photons which are “attached” to moving mesh elements
approximate the indirect lighting within these elements well. In Section 5.3.1 we
present our solutions that prevent re-using of photons for neighbouring frames
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when the variations in indirect lighting are significant enough to be perceived by
the observer.

Since mesh elements are the framework for our temporal processing, the pho-
tons are sorted according to the elements which they hit. Apart from storing pho-
ton records, an additional table which summarizes the number of photons per ele-
ment is also kept for every frame. Those tables are later usedto efficiently derive
some statistics on lighting variations in the temporal domain for a given element
(refer to Section 5.3.1). With the help of these statistics we can detect significant
changes of lighting. In this case reusing photons for reconstructing the lighting
in adjacent frames might be restricted. Using the tables forthe purpose of such
statistics means that effectively the exact positions of photon hit points within an
element are ignored (only the photon number counts), however, the processing of
complete photon records can be avoided. In the following section we describe
those statistics in more detail. We also explain the spatiotemporal processing of
photons for dynamic environments.

5.3 Spatiotemporal Photon Processing

In our technique we assume that photons are traced sparsely for all animation
frames and our goal is to minimize the number of those photonswithout com-
promising the animation quality. To achieve this goal we exploit the temporal
coherence of indirect lighting and for a given frame we also consider photons that
were traced for neighboring frames. Ideally, as many framesshould be processed
as it is required to reduce the stochastic noise below the sensitivity level of the
human observer. However, the expansion of the photon collection in the temporal
domain might be limited due to changes in dynamic environments that affect the
lighting distribution. A contradictory requirement arises between maximizing the
number of collected photons and minimizing the number of neighbouring frames
(the time span) for which these photons were traced. A trade-off solution to this
problem relies on balancing the stochastic noise (resulting from collecting too
few photons) and the errors in reconstructed illumination (caused by collecting
too many invalid photons in the temporal domain) to make those artifacts as lit-
tle objectionable as possible for the human observer. The perception-based AQM
is used to find the minimal number of photons per frame which isrequired to
make the noise undetectable. An energy-based stochastic error metric, which is
applied to each mesh element and to every frame, is used to guide the photon
collection in the temporal domain. We found this mesh-element level of applying
the energy-based metric to be very efficient, and therefore abandoned the use of
perception-based guidance of photon collection at this lowlevel which would be
far more expensive.
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We describe our energy-based error metric which controls the temporal pho-
ton processing and reduces the probability of using invalidphotons in the scene
regions in which lighting changes rapidly in Section 5.3.1.In Section 5.4 we dis-
cuss our techniques of spatiotemporal photon processing, which guarantee that
the quality of the indirect lighting reconstruction is consistent through the whole
animation.

5.3.1 Error Metric for Temporal Processing

As we argued in the previous section, collecting photons in the temporal domain
makes sense only if the lighting distribution does not change too rapidly for sub-
sequent frames. We attempt to detect such changes locally onthe level of single
mesh elements. The practical question how to distinguish the actual changes in
lighting from the stochastic error arises. This problem is especially difficult in our
technique because we compute a very small number of photons for every frame,
which results in high levels of noise. In practice, this means that only lighting
changes that are significantly higher than the noise level can be detected, which
requires estimating the noise.

If we assume for a moment that the lighting does not change between subse-
quent frames, then hitting mesh elements by photons can be modelled well by the
Poisson distribution [3]. Since the mesh elements are smallthe probabilityp of
hitting a given mesh element by a photon is also small, i.e.,p ≪ 1 as required by
the Poisson process. Also, different photons hitting a meshelement are mutually
independent, i.e., the probability of the same photon hitting a mesh element again
as a result of its multiple reflections is small. The Poisson distribution only has
a single parameter, the meanµ, which can be estimated as the mean number of
photons hitting a mesh element. The standard deviationσ can simply be derived
asσ =

√
µ. Thus, the noise level can be estimated asµ ± kσ, where e.g.,k = 2

(for µ = 0 we assignσ = 1). Based on this estimate we assume that if the number
of photonsx hitting a mesh element does not satisfy the condition

µ − kσ ≤ x ≤ µ + kσ (5.1)

a change of lighting can be expected and the photon collection for this mesh el-
ement is disabled. For a given mesh element the meanµ is estimated for the
currently considered frame and the values ofx are obtained for the corresponding
mesh element in the preceding and following frames. The temporal collection of
photons is initiated from the current frame and proceeds forsubsequent frames as
long as Condition (5.1) is satisfied. The photon processing isperformed indepen-
dently in the directions of the preceding and following frames. Thus, the photon
collection for a given mesh element may be asymmetric with respect to the current
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frame when Condition (5.1) is violated earlier in one of thosedirections than in
another one.

There are many possible sources of error, which may prevent the application
of Condition (5.1) from working robustly for all mesh elements. First of all the
estimate ofµ might be inexact since we use a Monte Carlo solution at very early
stages of convergence. To reduce the influence of outliers onthe estimate ofµ
we consider the mean number of photons hitting a given mesh element for three
subsequent frames. We apply this procedure to derivex for the same reason. More
than three subsequent frames might be considered but then the µ estimate might
be affected by changes in lighting. Clearly, the procedure works the better the
more photons per frame are computed.

If the average number of photons per mesh element is small, assigningk > 2
might be considered to compensate for inaccuracies in theµ estimates. Also,
small lighting changes on the level±kσ are usually less perceptible than the tem-
poral aliasing which becomes visible when the temporal photon collection is pre-
maturely disabled. In practice, we assume the minimal extent of the temporal
processing to be at least 3 frames. Even if the lighting conditions change drasti-
cally for a pair of subsequent frames, the visibility thresholds are usually elevated
due to the temporal masking for up to 100 milliseconds [24]. Since new lighting
details cannot be seen well for 2–3 animation frames the lighting reconstruction
accuracy can be relaxed for those frames, and tracing additional photons can be
avoided.

In the following section we describe the algorithm of animation rendering,
which extensively uses the procedure of adaptive photon collection in the temporal
domain described in this section.

5.4 Algorithm

The animation sequence is split into animation segments, which are then pro-
cessed sequentially one by one. The organization of a singlesegment is depicted
in Figure 5.2.

The frameK divides the segment into two halves of lengthFmax/2 each. The
goal of the segment processing is to reconstruct indirect lighting for allFmax + 1
frames. To enable temporal processing of the whole segment the photons collected
for neighbouring segments for up toFmax frames precedingK and up toFmax

frames followingK are also considered. For the very first and last animation
segments the lack of those extra frames is compensated by tracing more photons.

The processing of every animation segment consists of five major steps:

1. Initialization: determination of the number of initial photons per frame, and
processing of those photons for all frames in the current segment.
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Figure 5.2: Organization of an animation segment.

2. Adjustment of the segment length depending on the temporal variations of
indirect lighting which are measured using energy-based criteria (refer to
Section 5.3.1).

3. Adjustment of the number of photons per frame based on the AQM response
in order to limit the perceivable stochastic noise to an acceptable level.

4. Spatiotemporal reconstruction of indirect lighting forall mesh elements
guided by the same energy-based criteria as in Step 2.

5. Spatial filtering step for those mesh elements that did notmeet the percep-
tual and energy criteria in the previous two steps.

In practice, Steps 1–3 are performed not only for the currentsegment but for
the subsequent segment as well, which results in the processing of all photons
that are used for indirect lighting reconstruction in the current segment at Step 4.
Obviously, photons for the preceding segment that has already been processed are
also available for the temporal processing of frames in the current segment.

In the following sections we describe all steps in detail.

5.4.1 Initialization

In the initialization step we decide how many photonsNframe per frame have to be
shot for a given animation segment. Also, the initial segment lengthFmax needs
to be chosen based on the anticipated complexity of the lighting changes during
an animation. The initial settings ofFmax andNframe are adjusted later for every
animation segment using the energy-based and perception-based error metrics.
However, the better the initial guess is, the smaller numberof iterations involving
those metrics is needed. In our approachFmax is set manually by the user for the
first processed segment. The adjustedFmax for a previous segment is assigned
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as the initial length of a subsequent segment. Based onFmax chosen for a given
segment,Nframe is decided automatically as follows.

An initial value forNframe should take into account basic lighting character-
istics of the considered animation segment. To derive such an initial guess we
applied the energy-based measure of the error of indirect lighting simulation1 E.
We observed that by setting the maximum error valueEmax to lie inside the range
of 1–5% we usually obtained images of good quality. Further computation basi-
cally did not introduce any improvement as perceived by the human observer [79].
In practice, we assume a less conservativeEmax = 5%. Now, if we would run the
DEPT computation untilE ≈ Emax we would find the number of photonsNmax

that is required to achieve this accuracy. Since we want to reconstruct indirect
lighting for a given frame using photons computed for up toFmax/2 preceding
andFmax/2 following frames, we could estimateNframe = Nmax/(Fmax + 1). In
practice, we do not want to run the computation for a single frame long enough
to reach the error levelEmax. However, we can directly get a good estimate of
Nframe much faster by using the basic property of stochastic solution convergence
stating that the error is proportional to the inverse squareroot of the number of
traced photons [36]:

E

Emax

≈
√

Nmax

Nframe

This means thatNframe can be estimated by running the pilot DEPT computation
until E ≈ Emax

√
Fmax + 1.

Finally, for all frames in the current animation segmentNframe photons are
traced, and their hit point records are sorted for every meshelement.

5.4.2 Choosing the Animation Segment Length

The main goal of adjusting the maximum segment lengthFmax is to reduce the
animation artifacts caused by collecting photons in the temporal domain over too
many frames, as this may lead to an invalid lighting reconstruction. For the scene
regions in which the temporal changes of the lighting function are fast, the collec-
tion of photons can be performed only for a small number of subsequent frames.
Conversely, for the scene regions in which the temporal changes are slow the pho-
tons should be collected for as many frames as possible to reduce the stochastic
noise.

In Section 5.3.1 we described our procedure of adaptive photon collection in
the temporal domain. The maximum number of frames for which photons are
collected using this procedure is limited by the segment length Fmax. Increasing

1The detailed description of the stochastic method used to estimate the lighting simulation error
in the framework of the DEPT algorithm can be found in [80].
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Fmax incurs additional costs of processing a larger number of frames, and is jus-
tified only when collecting photons fromFmax frames is possible for a significant
percentagepme of the mesh elements. In practice, the user sets a certain thresh-
old valuepthr, e.g., 40%, andFmax is increased until the conditionpme < pthr is
met. Such a test is performed only once per segment, when the lighting is recon-
structed for the central keyframeK. Note that increasingFmax causes movingK
apartFmax/2 frames from the end of the previously processed segment (or from
the beginning of animation sequence for the very first processed segment). The
Fmax value obtained forK is then used for all frames in the current segment.

5.4.3 Choosing the Number of Photons

The main goal of adjusting the number of photons per frameNframe is to keep
the noise below a perceivable level. IncreasingNframe for each frame in a given
segment is an expensive operation and should be performed ifthe adjustment of
Fmax performed in the previous step did not provide the required animation quality
as perceived by the human observer.

The AQM is used to measure the errors of the indirect lightingreconstruction
which enables the perception-guided selection ofNframe to minimize the computa-
tional costs without degrading the animation quality. The AQM requires two ani-
mation framesI1 andI2 as input, and will then predict the perceivable differences
between them. Ideally, a frame resulting from the temporal photon processing
should be compared to some exact reference solution. Since such a reference so-
lution is not available in practice, we decided to measure the differences in indirect
lighting reconstructed for the central frameK by splitting the photons collected
for all frames in a given segment into two halves (the even andodd photons). The
indirect lighting inI1(K) andI2(K) is reconstructed using these halved sets of
photons. In order to measure the level of noise in the conditions in which the
actual temporal photon processing is performed for all animation frames, the pro-
cedure of adaptive photon collection in the temporal domainis used for theI1(K)
andI2(K) computation as well (refer to Section 5.3.1).

The approach of halving sets of photons is quite conservative because accord-
ing to the Monte Carlo methods theory [36] the stochastic error of indirect lighting
reconstruction in the frameI(K) that is obtained for 100% of photons is smaller
by the factor

√
2 with respect toI1(K) andI2(K). The perceivable differences as

predicted by the AQM usually are reduced by an even larger factor if the number
of photons is doubled.

As the result of AQM processing a mapMAQM is generated which shows
the prediction of perceivable differences in indirect lighting between all corre-
sponding pixels inI1(K) andI2(K). As a scalar metric of the frame quality the
percentagedAQM of MAQM pixels with differences over one unit Just Noticeable
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Difference (JND) is assumed [49]. The user chooses a certainthreshold valuedthr

of the AQM predicted differences, and whendAQM > dthr, Nframe is doubled and
the whole procedure is repeated untildAQM < dthr.

To reduce the costs of Human Visual System (HVS) modelling the AQM pro-
cessing is performed only once per segment for the central frameK. Thus, the
Nframe value obtained forK is assumed to be valid for all frames in a given seg-
ment. In practice, this trade-off approach works well because the differences in
indirect lighting are usually small for a given animation segment whose length
Fmax was adjusted to reduce such differences (refer to Section 5.4.2).

5.4.4 Indirect Lighting Reconstruction

After establishingFmax andNframe further processing of all frames in a given seg-
ment becomes straightforward. At first, the valid photons are collected for each
mesh element, using the procedure of adaptive photon collection in the tempo-
ral domain described in Section 5.3.1. Then the standard procedure for deriving
illumination at mesh vertices is applied (refer to Section 5.2).

5.4.5 Repairing Noisy Pixels

The procedure described in the previous section may potentially result in locally
noisy images2 for the scene regions (e.g., moving objects) in which the indirect
lighting changes much faster than for the remaining parts ofenvironment. For
such regions collecting photons in the temporal domain is usually limited to a
few subsequent frames. Obviously, the noise level could be reduced by increasing
Nframe which is costly. Note that in the procedure of selectingNframe using the
AQM we allow perceivable differences for up todthr pixels (refer to Section 5.4.3).
When the perceivable problems concern only a small fraction of mesh elements,
then for efficiency reasons, increasingNframe for all frames in a given segment
should be avoided.

Our solution relies on using the spatial filtering performedin the object space
selectively for those mesh elements for which the expansionin the temporal do-
main was not possible, resulting in a small number of collected photons. We apply
the filtering algorithm which was originally proposed in [79]. To achieve the re-
quired level of accuracy of reconstructed lighting at a given vertex, photons hitting
a regionh centered at this vertex are considered. Stochastic variance estimates of
the local illumination are used to decide upon the size ofh. This effectively re-
duces noise, however some bias is introduced to the reconstructed lighting (refer

2As a matter of fact for a vast majority of tests that we performed, we were not able to notice
such problems.
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to [79] for a formal derivation of a mathematically-sound measure of illumination
accuracy and a detailed description of the filtering algorithm).

Using spatial filtering is equivalent to trading in the spatial details of indirect
lighting in order to remove excessive noise. If this approach is not acceptable,
a final gathering step [32] could be performed. However, we did not apply this
solution because of its significant cost. We found that the spatial filtering approach
as applied in the indirect lighting reconstruction produces good results in terms of
the animation quality as perceived by the human observer.

5.5 Accuracy Considerations

The accuracy of the indirect lighting reconstruction usingour algorithm described
in Section 5.4 is limited by the spatial resolution of the mesh used for collecting
photons. Consequently the solution is biased. On the other hand the mesh reso-
lution can be set arbitrarily fine and more photons can be traced. For those mesh
elements that still collect too few photons in the temporal domain, the spatial fil-
tering discussed in Section 5.4.5 can be used to remove visible noise. Another
source of the bias is the temporal blur resulting from the collection of invalid pho-
tons in the temporal domain. The level of blurring can be controlled in the energy
terms and traded for the stochastic noise by decreasing the value of parameterk
in Condition (5.1).

The AQM is used to measure the perceivable differences between two equally
biased indirect lighting solutions, which means that all measured differences be-
tween framesI1(K) and I2(K) result from the stochastic noise (refer to Sec-
tion 5.4.3). Effectively the AQM provides a conservative stopping condition for
photon tracing when the noise falls below the sensitivity level of the human ob-
server. Tracing more photons cannot improve the perceived quality of the indirect
lighting reconstruction due to limitations in the spatial mesh resolution.

5.6 Results

We present results that we obtained for theROOM scene (about 5,300 mesh ele-
ments). Also, we briefly summarize the results obtained for another sceneATRIUM

(about 45,000 mesh elements), which are qualitatively verysimilar and therefore
do not need to be discussed in full length. Both scenes were designed in such
a way that moving objects significantly affected the lighting distribution. Also,
some scene regions are illuminated exclusively by indirectlighting which imposes
higher requirements on its reconstruction. We begin with discussing the experi-
mental results for the adaptive algorithm of temporal photon processing discussed
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in Section 5.3.1. Then we discuss the step by step results obtained for the spa-
tiotemporal photon processing discussed in Section 5.4.

The simplest scenario of temporal photon processing is to consider the fixed
number of preceding and following frames. However, this approach may lead to
significant errors as illustrated in Figures 5.3. Figure 5.3a shows the correct ref-
erence frame obtained for the converged DEPT solution. In this scene a spot light
illuminates the bottom of the aircraft, and the highlight onthe floor is caused by
the light reflected from the aircraft. Note that as the resultof non-adaptive tem-
poral processing for allFmax = 30 frames the highlight is significantly washed
out (Figure 5.3b). When applying our adaptive photon collection technique (Sec-
tion 5.3.1) the highlight shown in Figure 5.3c is similar to the reference frame
in Figure 5.3a. Figure 5.3d shows the AQM produced mapMAQM, in which red
color marks pixels for which visible differences are predicted.

Figures 5.4a and b summarize the AQM predicted percentage ofpixelsdAQM

with perceivable differences derived fromMAQM for various settings ofNframe

andFmax for non-adaptive and adaptive photon collection approaches. As can be
seen in Figure 5.4a for the non-adaptive approach, expanding Fmax initially leads
to reducingdAQM, but then the collection of invalid photons results in increasing
dAQM for largeFmax. The corresponding characteristics for the adaptive approach
shown in Figure 5.4b are extremely favorable because the expansion ofFmax al-
ways leads to the reduction ofdAQM, which means that collecting invalid photons
is mostly avoided.

Following the subsequent processing steps described in Section 5.4 we ob-
tained the following animation settings for theROOM scene. As the result of the
initialization procedureNframe = 10, 000 andFmax = 15 were chosen. The ani-
mation was split into three segments and the final settings computed for the central
segment framesKi are summarized in Table 5.1. In segmentK3 Nframe is smaller
andFmax more expanded because strong direct lighting washes out some imper-
fections of the indirect lighting reconstruction. Also, changes of lighting are less
dynamic in this animation segment.

Nframe Fmax

K1 40,000 30
K2 40,000 30
K3 10,000 44

Table 5.1: Final settings for theROOM scene animation.

Figure 5.5 summarizes the results obtained forK2 using the energy-based
procedure of photon validity estimation for subsequent frames described in Sec-
tion 5.4.2. We assumedpthr = 40%. The maximum segment lengthFmax = 30
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a) b)

c) d)

Figure 5.3: Example frame from theROOM sequence a) reference solution
for 2,000,000 photons without temporal processing, b) non-adaptive (note the
washed-out highlight under the plane) and c) adaptive photon collection in the
temporal domain forFmax = 30 frames andNframe = 40, 000 photons, and d) the
map of AQM predicted perceivable differences (marked in red) between a) and c).
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Figure 5.4: The AQM predicted percentage of pixelsdAQM with perceivable
differences for a) non-adaptive and b) adaptive temporal photon collection ap-
proaches for increasingFmax and various settings ofNframe (as specified in the
legend).
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Figure 5.5: Distribution of mesh elements for frameK2 as a function of the num-
ber of preceding (negative values) and following frames forwhich temporal pho-
ton processing was possible. VariousFmax were considered as specified in the
legend.

was chosen (refer to Table 5.1), in which casepme = 36% andpme = 30% were
obtained for the preceding and following directions, respectively.

Figure 5.6 summarizes the results obtained using the perception-based proce-
dure of noise level estimation as described in Section 5.4.3. It was assumed that
dthr = 3%, which means in practice that the perceivable differencesdAQM < 1%
with respect to the reference solution are usually obtained. Table 5.1 summa-
rizes the number of photonsNframe chosen for every segment based on the graphs
in Figure 5.6. For such animation settings the spatial filtering described in Sec-
tion 5.4.5 was not necessary.

Figure 5.7a shows an animation frame obtained using the settings presented
in Table 5.1. Figure 5.7b depicts the corresponding frame obtained using the
traditional approach without any temporal photon processing. Strong temporal
aliasing was observed when the animation composed of such quality frames was
viewed. We also tried the traditional approach withNframe = 845, 000 which
corresponds to the average number of photons collected in the temporal domain
using our approach. While the static image is of a quality comparable to the
frame in Figure 5.7a some temporal aliasing can be seen clearly when the resulting
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Figure 5.6: The AQM predicted percentage of pixelsdAQM with perceivable dif-
ferences as a function ofNframe for the central segment framesKi.

animation is viewed.
The results obtained for theATRIUM scene are very similar to the ones for

ROOM. For a majority of segmentsNframe = 20, 000 andFmax = 44 were cho-
sen using our automatic procedures described in Section 5.4. In general,Nframe

fell into the range of 10,000–40,000 photons whileFmax lay between 30 and 44
frames. The activation of spatial filtering (Section 5.4.5)led to some minor im-
provement of the animation quality. Figure 5.8 shows an example of a frame with
spatial filtering and the only differences with respect to the corresponding frame
without filtering can be seen on the stairs which feature small mesh elements and
little visual masking.

A summary of timings of indirect lighting computation is given in Table 5.2.
As can be seen, tracing photons and their temporal processing is rather inexpen-
sive. The higher cost of temporal processing for theATRIUM scene is due to the
larger number of processed mesh elements. The I/O costs related to disk access
are given for two extreme scenarios denoted in Table 5.2 asMIN andMAX (pro-
vided in brackets). In the former case photons are accessed from the disk only
once and then cached until all frames using those photons have been processed.
This means that all photons processed for a given frame must reside in memory,
which is a common requirement for many photon-based techniques such as the
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a) b)

Figure 5.7: Example frame from theROOM sequence a) with temporal processing
for Nframe = 10, 000 and Fmax = 44 and b) without temporal processing for
Nframe = 24, 550. The same computation time was spent to generate those frames,
but in b) the average overhead time of 1.31 seconds, which wasrequired in a) for
the temporal, AQM, and I/O processing (refer to Table 5.2), was used to trace
more photons.

photon map [32]. This is usually a reasonable assumption forour technique as
well. For example, the maximum memory storage per frame for the ATRIUM se-
quence was about 120 MB (one photon hit point requires 20 bytes of storage). In
the case denoted by (MAX ) in Table 5.2 it was assumed that all photons are always
loaded from disk for each frame. Such a situation may arise for complex scenes
when a high accuracy of lighting reconstruction is required, in which case a large
number of photons that are bucketed into a fine mesh must be considered (refer
to Section 5.5). Note that even in such a case our timings are at least three times
better than shooting a similar number of photons that we collected in the temporal
domain for every frame, which requires 87 and 133 seconds forthe ROOM and
ATRIUM scenes, respectively. Ray tracing of a single frame requires 9.4 seconds
for ROOM and 158 seconds forATRIUM .

5.7 Conclusions

We proposed a novel global illumination technique for dynamic environments
which is suitable for high-quality animation rendering. A combination of efficient
energy- and perception-based error metrics was used to guide the computation as
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Figure 5.8: Example frame from theATRIUM sequence with temporal processing
and spatial filtering forNframe = 20, 000 andFmax = 44.

Scene Photon AQM Temp. I/O Total
tracing proc. MIN (MAX ) MIN

ROOM 2.57 0.27 0.32 0.72 (21.56) 3.88
ATRIUM 2.95 0.21 1.85 0.88 (26.93) 5.89

Table 5.2: Timings of the indirect lighting computation fora single frame obtained
as the average cost per frame for the whole animation. All timings are given in
seconds and were measured on a 800 MHz Pentium III processor.
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a function of local spatiotemporal variations of the lighting distribution. As a re-
sult the animation quality as perceived by a human observer is consistent across
all frames both in spatial and temporal dimensions. Also, the efficiency of compu-
tation is improved and the temporal aliasing is reduced withrespect to traditional
approaches which ignore temporal processing.

As future work we want to investigate our technique in the context of MPEG
coding. The accuracy of the lighting reconstruction can be adjusted in order to ob-
tain a degradation of the animation quality that is perceived as being as homoge-
neous as possible for an assumed animation compression level. Also, by removing
non-visible lighting details from animations the compression performance can be
improved.
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CHAPTER 6

Local Update of Global Illumination
in Final Gathering

Rendering of high quality animations with global illumination effects is computa-
tionally expensive using traditional techniques designedfor static scenes. In this
chapter, we present an extension of the photon mapping algorithm to handle dy-
namic environments. First, for each animation segment, thestatic irradiance cache
is computed only once for a scene with all dynamic objects removed. Then, for
each frame, the dynamic objects are inserted and the irradiance cache is updated
locally in the scene regions whose lighting is strongly affected by the objects. In
the remaining scene regions, the photon map is used to correct the irradiance val-
ues in the static cache. As a result, the overall animation rendering efficiency is
significantly improved and the temporal aliasing is reduced.

6.1 Introduction

The algorithm of choosing the final rendering for high quality images is called
final gathering[57, 42, 67, 11] (also refer to Section 3.4 for more details).Usu-
ally, the direct lighting is computed for a surface region represented by a given
pixel, and the indirect lighting is obtained through the integration of incoming ra-
diances. The cost of those computation is very high. Those computational cost
can be reduced by using theirradiance cachedata structures [91, 90] to store
irradiance samples sparsely in the object space. The cachedvalues are used to
interpolate the indirect lighting for each pixel and are computed lazily. The coarse
distribution of lighting, which is used for the irradiance integration, can be com-
puted in the preprocessing stage using a deterministic or stochastic radiosity [65],
photon maps [33], and so on. The irradiance cache technique efficiently removes
shading artifacts which are very difficult to avoid if the indirect lighting is directly
reconstructed based on the radiosity mesh or the photon maps. However, this high

57
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quality lighting reconstruction needs long computation time mostly because of the
irradiance integration that is repeated for many sample points in a scene.

In this work, we extend the concept of irradiance cache for dynamic environ-
ments to improve the rendering performance and reduce the temporal aliasing. In
addition, we extend the photon mapping algorithm to obtain more efficient global
illumination computation for such dynamic environments.

The material in this chapter is organized as follows. In Section 6.2, we present
our extensions to the photon mapping and irradiance cache algorithms to handle
animation sequences efficiently. In Section 6.3, we discussour solutions to com-
bat temporal aliasing. In Section 6.4, we present the results obtained using our
techniques, and we conclude this chapter in Section 6.5.

6.2 Algorithm

In our approach we use a two pass photon mapping algorithm [33]. In the first
pass, photons are traced from light sources and stored in thephoton map. In the
rendering pass, the lighting computation is performed separately for direct illumi-
nation and glossy/specular reflection, diffuse indirect illumination, and caustics.
The two first lighting components are computed for each framefrom scratch us-
ing ray tracing. The diffuse indirect illumination is computed using the irradiance
cache [91, 90]. Illumination values stored in the cache are computed through in-
tegration of the scene illumination, which is reconstructed from the photon map
using the nearest neighbor density estimation technique. Such an integration is
not performed to render direct caustics, which are directlyreconstructed through
density estimation of the caustic photon map.

In this chapter we focus on exploiting the temporal coherence of photons to
speedup the costly irradiance cache computation and to improve the quality of in-
direct lighting reconstruction. We introduce the notion ofstatic irradiance cache,
which is computed once for an animation segment. For the static irradiance cache
computation we remove all dynamic objects (i.e., objects changing their position,
shape or light reflectance properties as a function of time) from the scene and we
trace the so-calledstatic photons.

The illumination component reconstructed from the static irradiance cache is
perfectly coherent in the temporal domain and results in theflicker-free anima-
tions. However, the dynamic illumination component causedby dynamic objects
must be also considered. For this purpose thedynamic photonswhich interact
with dynamic objects are computed for each frame and are stored in a separate
photon map. The map may store photons with negative energy [34], which are
needed to compensate for occlusions of the static parts of the scene by dynamic
objects. For example, the negative photons are stored in theregions of indirect
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b c d

e f

a

Figure 6.1: Processing flow in the computation of global illumination for an an-
imation frame: a) the final frame, b) direct lighting, c) indirect lighting, d) static
indirect lighting computed using the static irradiance cache, e) dynamic indirect
lighting computed using the dynamic irradiance cache, and f) the dynamic indi-
rect lighting computed through the photon density estimation and summed with
the static indirect lighting which is shown in d).

shadows cast by dynamic objects. We describe the dynamic photons approach in
more detail in Section 6.2.1.

Figures 6.1 illustrate the illumination reconstruction using our technique. Fig-
ure 6.1a shows the final animation frame whose lighting was composed from the
direct illumination and specular reflection (Figure 6.1b) and the diffuse indirect
illumination (Figure 6.1c). The dynamic component of the indirect lighting is
reconstructed at two levels of accuracy depending on the influence of dynamic
objects on local scene illumination. In the regions with thehigher influence (we
discuss the problem of detecting such regions in Section 6.2.3) the dynamic ir-
radiance cache is recomputed, which leads to better accuracy of reconstructed
dynamic lighting (refer to Figure 6.1e). In the remaining scene regions as shown
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in Figure 6.1f the illumination stored in the static irradiance cache (shown in Fig-
ure 6.1d) is corrected by adding its dynamic component reconstructed from the
dynamic photon map using density estimation. A direct visualization of the dy-
namic illumination component is not shown because its values are rather small
for the most parts of the scene and are negative in the regionsoccluded by dy-
namic objects. We blend lighting reconstructed using thosetwo different methods
(Figures 6.1e and 6.1f) to assure smooth transition of the resulting lighting.

While the static photons processing is performed in the same way as tracing
ordinary photons for the static scenes [33], the dynamic photons are treated dif-
ferently which we describe in the following section. In Section 6.2.2 we discuss
our extensions of the irradiance cache to handle dynamic andstatic illumination
components. We describe our animation rendering algorithmin Section 6.2.3.

6.2.1 Tracing Dynamic Photons

We introduce the dynamic photon map which is an extension to the photon maps
to handle dynamic environments. It is leveraged to estimatethe indirect illumi-
nation contributed only by dynamic objects (i.e., objects changing the position,
orientation, shape, and material properties). The dynamicphoton map stores dy-
namic photons which intersect with dynamic objects at leastonce.

Figure 6.2 illustrates the paths of two dynamic photons in the room with two
dynamic objects, which are shown as an ellipsoid and a circle. The dynamic
photons are traced from light sources toward the scene as in the traditional photon
tracing approach [33]. When a photon hits a dynamic object, the ray is marked
as a dynamic ray, and then it is reflected or transmitted with the positive energy,
or simply absorbed. In the first intersection with the dynamic object, a negative
ray is spawned at the intersection point. This ray pierces the dynamic object and
it is traced further as an usual ray with the only difference that it carries negative
energy (in Figure 6.2 all negative rays are depicted using dashed lines). When a
dynamic photon hits on a diffuse surface, it is stored in the dynamic photon map.

Special care is required in handling the direct photon pathsfrom light sources
to the scene. Since we separately compute the direct illumination, a dynamic
photon directly hitting an object is not stored in the dynamic photon map to avoid
doubling the computation of the direct illumination (referto points a, b andg in
Figure 6.2). Also, for the negative rays their intersectionwith dynamic objects
must be ignored because their purpose is to subtract the energy from the static
irradiance cache, which is computed for the scene without dynamic objects. For
example, note that the ellipsoid is simply ignored on the wayof the negative ray
which travels between a pair ofpoints h and i. Finally, note that the negative
ray is not spawned atpoint e when the dynamic ray hits on the another dynamic
object. This can be interpreted as the redirection of energywhich in the case of
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static scene traveled along the path betweenpoints b, c, andd into the new path
betweenpoints a, e, andf in the complete scene with dynamic objects.

The key point of construction of the dynamic photon map is to store only those
photons which indirectly intersect with a dynamic object atleast once.

Light source

Positive photon
Negative photon

g
a

b

h

i
e

c

f

d

Figure 6.2: Tracing the dynamic photons: Example photon paths.

6.2.2 Static and Dynamic Irradiance Caches

We also extend the irradiance cache to handle dynamic environments. We use
two (static and dynamic) irradiance caches for the efficientrendering of indirect
illumination in dynamic environments. The static irradiance cache is computed for
the scene with static objects only, i.e., all dynamic objects are removed. This cache
can be computed only once for an animation sequence when lighting conditions
do not change significantly. Otherwise, the animation must be split into shorter
segments with coherent illumination. For example, a new static irradiance cache
must be computed when a light is turned on in the dark room.

When the camera path is known in advance, which is usually the case for
the off-line animation rendering, all values in the irradiance cache can be pre-
computed. It is also possible to lazily reconstruct the static irradiance cache in a
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frame-by-frame manner. However, in such a case all photons for the static scene
must be kept in memory.

On the other hand, the dynamic irradiance cache is always lazily recomputed
for each frame from scratch for those scene regions whose illumination changes
significantly (e.g. for dynamic objects themselves and their neighborhood). The
irradiance in the dynamic irradiance cache is computed using the global photon
map of the current frame for the complete scene with static and dynamic objects.
This approach is similar to the traditional irradiance cache technique with the only
difference that in our approach the computation is not performed for the whole
scene but rather for its selected regions. The problem of identifying such regions
is discussed in detail in the following section.

Note that the sample locations in the dynamic irradiance cache are different
for each frame, and they depend on the dynamic changes of illumination. By
contrast, the sample locations in the static irradiance cache are the same for each
considered animation segment.

Figure 6.3 shows the locations of sample points in the staticand dynamic
irradiance caches for the scene depicted in Figure 6.4.

a) b)

Figure 6.3: Locations of sample points for the a) static and b) dynamic irradiance
caches.

6.2.3 Rendering

A practical two-pass rendering algorithm using photon mapsis presented in [33].
In this algorithm the outgoing radianceLr is computed as a sum of four terms: di-
rect illuminationLd, soft indirect illuminationLi, causticsLc, and specular com-
ponentLs:

Lr = Ld + Li + Lc + Ls
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In this chapter we focus on the computation of indirect illumination Li, which
is usually quite expensive to compute. We further splitLi into two components:
Ly which is strongly affected by dynamic objects andLt which is less affected
by them. The choice betweenLy andLt depends on the influenceI of dynamic
objects on changes of illumination in the scene as follows:

Li =



















Ly I > τu,

f(g(I)) ∗ Ly+ τu > I > τl,

(1 − f(g(I))) ∗ Lt

Lt τl > I.

whereτl andτu are the lower and upper threshold values forI, andf(g(I)) is a
blending function betweenLy andLt in the transition scene regions. The blending
function must be introduced to avoid discontinuities in lighting distribution due to
inaccuracies inLy andLt estimates. In particular, the dynamic component ofLt

which is computed using density estimation is prone to such inaccuracies. We use
a cubic equation as the blending functionf(x) and the scaling functiong(x) to
map the influence valuesI into the range from 0 to 1:

f(x) = −2x3 + 3x2

g(x) =
x − τl

τu − τl

The influenceI is computed using the following density estimation equation
based on the dynamic photon map:

I =
1

πr2

N
∑

p=1

max(|∆Φp,r|, |∆Φp,g|, |∆Φp,b|)

where∆Φp is a power of the photonp, andr, g andb denote the red, green and
blue components in the power ofp. The absolute value of photon energy is used
because the dynamic photon map contains photons with both positive and negative
energy.

Ly is computed using the dynamic irradiance cache as describedin the previ-
ous section for the scene regions withI > τl and the dynamic objects themselves.
Because such regions are strongly affected by dynamic objects, we use an accurate
method for the lighting computation.

To computeLt, first all irradiances of the static irradiance cache are updated
by adding the differential power estimated by the density estimation of the dy-
namic photon map. We apply the density estimation only in thepositions of the
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a) b)

c) d)

Figure 6.4: Decomposition of indirect illumination into a)Ly and b)Lt compo-
nents, and c) the resulting image. The corresponding influence functionI is shown
in d).

static irradiance cache because we assume that in the scene regions less affected
by dynamic objects we do not need to recompute cache positions. ThenLt is com-
puted using interpolation of sample values stored in the updated static irradiance
cache.

Figures 6.4 illustrate the concept of splitting the indirect illumination into two
localized in the scene componentsLy (Figure 6.4a) andLt (Figure 6.4b). The
final image (Figure 6.4c) is obtained by combiningLy and Lt with the direct
illumination. The influence functionI is shown in Figure 6.4c, where brighter
regions correspond to higher values ofI.

6.3 Temporal Consideration

It is very important to reduce temporal aliasing in renderedanimation frames be-
cause the human observer is very sensitive to such artifacts. The stochastic noise,
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which is inherent in Monte Carlo rendering, may result in intolerable degrada-
tion of animation quality if proper temporal antialiasing techniques are not used.
The photon mapping approach usually successfully eliminates the high spatial fre-
quency noise in the reconstructed lighting distribution. However, the remaining
low frequency noise can be still quite objectionable in the context of animation.

We reduce the aliasing problem by introducing the concept ofstatic irradiance
cache, which means that the static part of illumination in the scene is perfectly
coherent for the subsequent animation frames. For the dynamic illumination com-
ponent we use two simple techniques applied to theLy andLt computation.

The dynamic irradiance cache used to deriveLy is computed by gathering
incoming radiances, i.e., shooting a number of random rays into the scene. The
noise inLy can be substantially reduced by fixing the directions of gathering rays.
This simple solution works well for the pseudo-random and stratified sampling.

Our second antialiasing technique deals with shooting dynamic photons. Be-
cause illumination changes inLt are computed through density estimation of the
dynamic photon map, ideally those photons should be coherent in the temporal
domain as much as possible. One way to achieve this goal is to use quasi random
walk for photon tracing. Then, the index of the quasi random sequence should
be reset for each frame. Of course, the resulting photon paths are not exactly the
same because the presence of dynamic objects in the scene butat least should be
quite similar. Another solution is to process photons in thetime domain as in [51].

6.4 Results

We experimented with animation rendering for scenesBALL andTABLE (refer to
Figures 6.4 and 6.5, respectively).

Since the most time consuming part of the animation rendering is the irradi-
ance cache computation we estimated the number of recomputed irradiance sam-
ples per frame (refer to Table 6.1). The reference solution recomputes the irra-
diance samples for all visible scene regions of each frame from scratch. On the
other hand, our method recomputes them only for the region strongly affected by
dynamic objects. Our method usually requires 3–4 times lessirradiance samples
per frame than the reference solution.

Reference Our method
Scene1 6,719 1,543
Scene2 6,081 1,635

Table 6.1: The number of recomputed irradiance samples per frame.
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a) b)

c) d)

Figure 6.5: Example animation frames a) and c), and the corresponding influence
I b) and d).

Table 6.2 compares the rendering time of indirect illumination per frame for
our method and the reference solution for sceneBALL . The frame resolution is
320×240 pixels. Our method needs extra 1.4 seconds for tracing dynamic photons
as well as 1.4 seconds for tracing global photons (shown in the column PT). The
computation time for the influenceI is rather significant in our approach because
we used a large number (300) of nearest photons for its estimation, and a large
searching area for every pixel. The timing ofLy is much smaller than in the
reference solution. Before computingLt, we must update the static irradiance
cache using density estimation but this takes only 1 second.Table 6.3 compares

PT Li (sec.)
(sec.) I Ly Lt

Our method 1.4 + 1.4 16 40 5.5
Reference 1.4 - 205

Table 6.2: SceneBALL : Timings per frame.
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PT Li (sec.)
(sec.) I Ly Lt

Our method 6.6 + 33 12 59 54
Reference 6.6 - 224

Table 6.3: SceneTABLE: Timings per frame.

the timings for sceneTABLE. In the experiment performed our method is 1.4 to
3.2 times faster than traditional approach for computationof indirect illumination.

6.5 Conclusions

We presented an efficient technique for high-quality animation rendering. For this
purpose we extended the photon mapping approach to dynamic environments.
Significant speedup of the computation was achieved by localizing in the scene
space the costly recomputation of the irradiance cache. Also, temporal aliasing
was reduced by introducing the concept of static irradiancecache which can be
reused across many subsequent frames until the scene lighting conditions do not
change significantly.
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CHAPTER 7

Exploiting Temporal Coherence in
Final Gathering

In high quality animation rendering, computationally expensivefinal gathering
technique is commonly used (refer to Section 3.4). We extendthis technique to
the temporal domain by exploiting coherence between the subsequent frames. We
store previously computed incoming radiance samples and refresh them evenly
in space and time using some aging criteria. The approach is based upon a two-
pass photon mapping algorithm with irradiance cache (referto Sections 2.9 and
2.10), but it can be also applied in other gathering methods.The algorithm signif-
icantly reduces the cost of expensive indirect lighting computation and suppresses
temporal aliasing with respect to the state of the art frame-by-frame rendering
techniques.

7.1 Introduction

The irradiance caches can be reused for the efficient rendering of walkthrough an-
imations in static environments [91]. However, for dynamicenvironments, such a
simple reusing technique may lead to invalid lighting. In this chapter, we address
this problem and propose some extensions of irradiance cache management into
the temporal domain, specifically in the context of photon mapping technique.
Not only do we try to reuse the irradiance cache locations, but also we update the
cache values required in dynamic environments. For each frame and each cache
location, a certain percentage of stored incoming radiancesamples is updated po-
tentially for those scene regions in which lighting changesare the most significant.
Additionally, in response to changing lighting and camera positions, new cache
locations are lazily inserted and unnecessary cache locations are removed. It re-
duces computational time significantly compared to frame-by-frame rendering. In
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addition, better animation quality can be obtained due to the temporal coherence
between cache locations and cached incoming radiance samples.

Our space-time approach presented in this chapter focuses only upon efficient
computation of soft indirect lighting. Direct illumination and caustics as well as
all directional effects such as specular reflections and refractions are computed
from scratch for each frame.

In the first stage of the photon mapping algorithm, photons are traced from
light sources toward the scene, and photon hit points are registered in a kd-tree
structure, called photon map. Because this stage is done very quickly (compared
to the second pass), photons can be easily recomputed for each frame. The only
attempt at reusing photons for several frames was done to perform motion blur
for caustics [5]. In our approach, the photon map is computedfrom scratch for
each frame, which guarantees that selectively updated incoming radiance samples
in the final gathering computation are correct.

In the following section, we extend the concept of irradiance cache into the
temporal domain, in which case cached irradiance values maychange from frame
to frame due to dynamic changes in a scene.

7.2 Temporally Coherent Gathering

In this section we describe our approach to updating irradiance cache values for
the subsequent animation frames. Our goal is to exploit temporal coherence of
incoming radiance samples contributing to each cache value. This requires sharing
information on the samples between neighboring frames and selectively replacing
those samples that become invalid due to changes in the dynamic environment.

In Section 7.2.1 we describe data structures used for the incoming radiance
samples. Then in Section 7.2.2 we present our strategies to update those samples
selectively. In Section 7.2.3 we discuss the problem of choosing the ratio of sam-
ples to be updated and we propose an algorithm for adaptive selection of such a
ratio for each cache.

7.2.1 Cache Data Structures

In the traditional irradiance cache algorithm [91, 90] positioning each cache is a
view-dependent process. Then the numerical integration ofincoming radiance is
performed by tracing rays towards the environment and gathering lighting infor-
mation. To produce high quality images a huge number of rays is traced, and the
incoming radiance samples are immediately discarded aftereach cache value is
computed. In papers [66, 37] those samples are stored and reprojected to improve
interpolation between caches.
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In this research we show that storing incoming radiance samples is not only
feasible, but also offers many advantages for efficient animation rendering. For
each sampling direction, we store incoming radiance packedin four bytes using
the common exponent method [88] which reduces the storage toone third of that
when using the standard floating-point format. The error of the irradiance estima-
tion caused by the inaccuracy of this format is negligible because an irradiance
value is the sum of a large number of incoming radiance samples. The distance to
the nearest intersection point is stored to reevaluate the harmonic mean distance
[91] (the reciprocal of the sum of reciprocal distances) in upper hemispherical di-
rections, which is required to compute optimal cache locations. The age of each
sample, which is a function of the number of frames since the sample was com-
puted, is stored in a flag. This value is used to create an approximated probability
density function which is used to decide in which order directions should be re-
placed (refer to Section 7.2.2). To save storage, we use the same flag to indicate
whether the sample hits a moving object. This information isused to adaptively
estimate the number of rays to be updated (refer to Section 7.2.3). The data struc-
ture for the incoming radiance sample is as follows:

struct RadianceSample {
RGBE Li; // incoming radiance

// packed in 4 bytes
float16 Di; // distance to the nearest

// intersection point
// packed in 2 bytes

ushort flag; // number of frames and
// the flag of hitting on
// dynamic objects

};

Each incoming radiance sample occupies 8 bytes. Usually, 200–1,000 samples
per cache are required for a still image to remove artifacts and the number of
irradiance values varies in each scene. We store the incoming radiance samples
on a hard disk. The overhead of the disk IO is negligible because the samples are
accessed only once per frame when they are updated. In Section 7.4 we provide
information on storage requirements for our test scenes.

We use the kd-tree data structure to store cache locations inthe object space.

7.2.2 Age Driven Cache Update

In this section we describe our solution for updating incoming radiance samples
based on their age. For the purpose of illustration we show inFigure 7.1 our
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Figure 7.1: Sampling scheme for the irradiance cache. Upperrow: Internal cache
structure with 16 stratified sampling directions in the upper hemisphere for frames
1, 2, and 5. The values in the grid cells are computed as2age. Lower row: The
corresponding cumulative distribution functions (c.d.f.).

sampling scheme for a simple cache, which is composed of 16 samples. The
grid depicts the stratified sampling directions over the upper hemisphere. The
number in each cell shows the corresponding sample age whichis measured us-
ing the exponential function2age, where theage value is stored in the structure
RadianceSample. The graphs in the bottom row show the corresponding cu-
mulative distribution functions (c.d.f.) of the sampling direction based on the
value of 2age. This value for the updated cells is reset to zero for the current
frame. Because all directions are computed from scratch forframe0 (the first
frame in each animation) the age values are set to 0 for all cells. The age of all
cells is increased when the subsequent frame is processed. Shaded cells in the
grid in Figure 7.1 indicate the selected cells for which incoming radiance value as
well as other records in the structureRadianceSample (refer to Section 7.2.1)
are updated by shooting a new random ray within the cell for that frame.

Our purpose is to pick a number of sampling directions and replace the old
samples by re-shooting the ray for each selected direction.The random per-
mutation algorithm that randomly changes the order of elements is well suited
to our goals because we want to randomly pick directions withthe constraint
that they should not be the same for each frame. When we havem elements
v0, v1, . . . , vm−1, a random integer valueX in 0 ≤ X ≤ m − 1 is chosen and the
last elementvm−1 is swapped withvX . This process is repeated for the remaining
elementsv0, v1, . . . , vm−2 until the number of the remaining elements becomes
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one. Figure 7.2 shows the pseudo-code of the random permutation algorithm.

randomperm ()
elements v[size]
m = size
while (m > 1)

X = uniform random integer number
in the range of 0 and m-1

swap v[m-1] and v[X]
m--

Figure 7.2: Pseudo-code of the random permutation algorithm

It is straightforward to apply this algorithm to the elements which have non-
uniform probability. Each time a random cell is selected, the c.d.f. is rebuilt and
the uniform random valueX in 0 ≤ X ≤ total cumulative value is mapped to
the cell in the grid.
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Figure 7.3: A random numberX is mapped to the index of a cell (2, 2) and a new
c.d.f. (the bold dashed line) is rebuilt after the selected cell (the shaded area) is
removed.

Figure 7.3 illustrates how the random value is mapped to the index of a cell for
frame 5 in Figure 7.1. Because thec.d.f. is already sorted, the binary search can
be efficiently exploited for this complete balanced data. After one cell is selected,
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this cell is excluded from thec.d.f. and a newc.d.f. is built for the remaining
cells as shown in the bold dashed line in Figure 7.3. This process is repeated
until a sufficient number of directions are chosen. The pseudo-code in Figure 7.4
summarizes the overall algorithm.

This scheme makes sample directions uniformly distributedin space and time.
The recently selected cells are less likely to be selected than others in the subse-
quent frames.

render_animation ()
render the first frame using traditional
irradiance cache
for all remaining frames

photon tracing
update_irradiance_cache()
render the current frame

update_irradiance_cache ()
for every irradiance cache E

create a cdf
n = the number of updated samples

(refer to Equation (2))
update_incoming_samples(E, cdf, n)

update_incoming_samples (E, cdf, n)
while (n > 0)

pick a cell based on the cdf
shoot a gathering ray to the cell
delete the entry of the selected cell
from the cdf and rebuild it
n--

evaluate irradiance values

Figure 7.4: Pseudo-code of the overall algorithm

7.2.3 Adaptive Cache Update

So far we described in which order directions should be replaced. Another ques-
tion is how many rays should be replaced for each cache. Intuitively, this should
depend on the magnitude of changes in lighting: More rays should be replaced
when and where lighting changes quickly and less rays may be enough for slowly
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changing environments. We tried both uniform and adaptive number of replace-
ment rays. The uniform number approach is very intuitive andleads to refreshing
the same number of rays for every cache. For example, when we set the number
of replacement rays to 10% of the total number of strata, the rendering speed is
roughly ten times faster. Moreover, it ensures that every direction is likely to be
refreshed after about 10 frames (the reciprocal of 10%). This means that temporal
error propagation by reusing invalid samples for more than 10 frames is not very
likely.
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Figure 7.5: The average and maximum age of samples measured for an animation
composed of 100 frames. The total number of considered sample directions for
each cache was 500 and 10% of samples were replaced for each frame. The
average age is about 5.6 frames and the maximum age is 14 frames.

Figure 7.5 shows the graph of the average and maximum age of all directions
when 10% of samples is replaced. We assumed that 500 directions are stored for
each cache and 50 directions are updated per frame. The average age of about 5.6
frames is obtained experimentally for an animation composed of 100 frames and
it differs only slightly from the theoretical average age 5.5 frames computed as:

50
∑10

x=1 x

500
= 5.5 (7.1)

The graph of the maximum age indicates that every ray is refreshed at most
after 14 frames compared with the optimal 10 frames case. These experimental
data show that our algorithm works well in practice.
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a) b) c)

Figure 7.6: Adaptive cache update for scene regions in whichindirect illumina-
tion changes rapidly: a) reference frame-by-frame solution, and temporal update
solutions for b) uniform and c) adaptive number of refreshing rays. Notice the
incorrect shadow which is cast by the ball in the corner in b).This shadow mostly
disappears in c).

The reason of the low average and maximum age at the leftmost part of the
graph is that all directions atframe0are computed from scratch.

We also tried an empirical adaptive approach which adjusts the number of the
replacement rays based on the number of rays which hit dynamic objects. We
estimate the number of directions to be updated as:

Nupdate(x) = (τmax − τmin) · x + τmin · N (7.2)

whereN is the total number of gathering rays, theτmin andτmax are user speci-
fied percentages of the minimum and the maximum of updated rays andx is the
number of rays which hit on the dynamic objects. This simple empirical strategy
works very well, especially in the scene regions near movingobjects. Figure 7.6
shows an example where a red ball leaves the corner and is rolling on the floor.
Figure 7.6a represents the reference solution of the soft indirect illumination. Fig-
ure 7.6b is rendered using a uniform number of refreshing rays for every cache.
This solution leads to incorrect results at the corner near the moving red ball due
to a too small number of refreshing rays in this region. Figure 7.6c shows the
result of the adaptive scheme which is very similar to the reference solution.

7.3 Handling Irradiance Caches

In the previous section we discussed the issues of single cache update and the
goal of this section is the problem of cache locations. We focus on two issues
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specific to our approach that arise when the irradiance cachedata structures are
reused between frames. In Section 7.3.1 we discuss how to handle caches lo-
cated on moving objects. Then in Section 7.3.2 we present oursolution to remove
redundant caches as camera and lighting change.

7.3.1 Transforming Caches on Animating Objects

Separating the irradiance cache data structure from the geometric one is advanta-
geous because optimal cache locations can be selected independently from the ge-
ometry. However, it is cumbersome in dynamic scenes becausecaches on moving
objects may no longer lay in the same position on a given surface for subsequent
frames. To solve this problem, we store the object ID for eachcache. This allows
us to move caches to different locations in the next frame. This requires trans-
formation of a local coordinate system for each cache to preserve the directional
distribution of incoming radiance samples. Although the sampling coordinates on
the moving objects are not precisely the same, artifacts were not visible in our
test scenes if a reasonable number of refreshing rays is chosen (e.g., 10% of total
gathering rays) even for the scene in which the ball is rolling and the normals on
the ball change quickly (refer to Figure 7.6). For fast moving objects a complete
update of all incoming radiance samples can be also considered.

7.3.2 Removing Redundant Caches

When objects are moving, the optimal distribution of cache locations is changing.
If an object approaches another surface the value of a harmonic mean distance
becomes small and the valid domain of the irradiance cache isdecreased, which
leads to denser cache locations in such regions. Because irradiance cache algo-
rithm has a unique lazy construction mechanism, new caches are simply inserted
when valid caches are not found near the query location. The problem occurs
when the object moves away from a surface. In this case, the harmonic mean
distance of each cache becomes large and the valid cache domain increases. In
such regions, some caches become redundant. This problem isillustrated in Fig-
ure 7.7a where the rolling red ball leaves many redundant caches along its motion
trajectory.

It is difficult to find an optimal layout of caches which completely covers all
visible surfaces and leads to a minimal number of caches without affecting image
quality. Our solution is inspired by neighborhood-based stratification approach
[87] developed in point-based rendering to remove superfluous points. We sim-
ply remove caches when too many valid caches are found at somelocations. For
each cache location, a nearest neighbor search is done. If the number of found
neighbors is bigger than some threshold number (for example10), this cache is
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removed. Figure 7.7b shows the result of applying this procedure and as can be
seen many redundant caches are successfully removed. Updating the data struc-
ture for each cache to be removed is not efficient, so at first wemark all redundant
caches and hide them for the subsequent cache density queries. After all caches
are examined, marked caches are removed and the kd-tree is balanced in a packed
heap data structure.

a) b)

Figure 7.7: Irradiance cache locations: a) redundant irradiance caches resulting
from the ball motion on the floor, b) result of removing the redundant caches.

7.4 Results

We tested our algorithm for three different scenesBOX, LIGHT andROOM (refer
to Figures 7.8, 7.9 and 7.10, respectively). For theBOX scene indirect lighting
changes significantly in the proximity of regions traversedby the object. As a
result of the motion of the red box towards the light source, strong color bleeding
effects can be seen on the ceiling. For theLIGHT scene the light source turns
toward the left red wall, which results in strong color bleeding from that wall. The
ROOM scene is substantially more complex and we consider both themotion of
light (sun position) and of objects (rotating fan) simultaneously. In all our test
scenes indirect lighting changes quickly and those changesaffect either a large
portion of the scene, so these test scenes are very difficult cases for our algorithm.
We expect that in many practical applications the indirect lighting changes will be
more moderate.

The animation sequences were rendered by our experimental renderer on a
Pentium 4 Xeon 1.7 GHz, 1 GB memory, Debian GNU/Linux. In bothBOX and
LIGHT scenes 192 incoming radiance samples are considered for each cache, and
768 samples are used in theROOM scene. Incoming radiances are refreshed using
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a) d)

b) e)

c) f)

Figure 7.8: Selected frames for theBOX animation sequence. In the left column
the final frames are shown while the right column shows the corresponding indi-
rect lighting solutions computed using temporally coherent gathering.
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a) d)

b) e)

c) f)

Figure 7.9: Selected frames for theLIGHT animation sequence. In the left col-
umn the final frames are shown while the right column shows thecorresponding
indirect lighting solutions computed using temporally coherent gathering.
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a)

b)

Figure 7.10: Selected frames for theROOM animation sequence.
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Scene Tpt Td Ti T total
BOX Ref 21.6 1.0 19.3 41.9 1 h 3 min

Our 21.6 1.0 6.7 (x2.9) 29.3 (x1.4) 45 min
LIGHT Ref 24.3 1.1 34.3 59.8 1 h 31 min

Our 24.4 1.1 6.6 (x5.2) 32.2 (x1.9) 49 min
ROOM Ref 34.6 11.6 674.6 720.9 18 h 14 min

Our 34.6 11.6 74.3 (x9.1) 120.8 (x6.0) 3 h 14 min

Table 7.1: Timings for scenesBOX, LIGHT andROOM shown in Figures 7.8, 7.9
and 7.10, respectively. All timings except the last column are given in seconds.
The row “Ref” presents timings of the reference solution, inwhich all frames
are computed independently. The row “Our” presents timingsof our solution.
The columns show the average time per frame for each component: Tpt - photon
tracing and precomputation of irradiance [7],Td - direct illumination,Ti - indirect
illumination. The columnT is the average time per frame for all components, i.e.
T = Tpt + Td + Ti. The values in the parentheses show the acceleration factors
compared to the corresponding reference solution. The lastcolumn shows the
total timings for rendering all frames.

the aging method. Theτmin andτmax parameters for adaptive control in Equation
(7.2) are set to 0.05 and 1.0, respectively. The image resolution for both anima-
tionsBOX andLIGHT is 320× 240 and the one forROOM is 564× 240.

Detailed timings are shown in Table 7.1. The photon tracing and the precom-
putation of irradiance [7] (refer to the timings in columnTpt) are repeated for
each frame. The precomputation of irradiance is time consuming (about 40–60
% of Tpt), but it vastly accelerates the computation of the indirectillumination in
both the reference solution and ours. So we used this technique to render all an-
imations. ColumnTd shows timings for the direct lighting computation which is
repeated for each frame from scratch.Tpt andTd are usually a small fraction of the
total computation time for complex scenes. We did not optimize our experimen-
tal code to speed up those computations. ColumnTi shows timings for indirect
lighting reconstruction including the overhead of temporal processing. Significant
speedup of 3–9 times with respect to the reference frame-by-frame solution was
achieved. ColumnT summarizes the overall processing time per frame. Note that
our algorithm performs much better for the more complexROOM scene.

The number of irradiance samples and the resulting storage requirements are
shown in Table 7.2. Since the irradiance cache data are stored in the object space
the storage requirements weakly depend on the frame resolution. For example, in
the ROOM scene the number of irradiances becomes 1.7 times bigger size when
the image resolution is quadrupled. Recently, Gautron et al. [21] demonstrated
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Scene N #E Size
BOX 192 4,009 6.2 MB
LIGHT 192 4,377 6.7 MB
ROOM 768 11,599 71.3 MB

Table 7.2: The size of the irradiance cache:N - the number of incoming radiance
samples per an irradianceE (refer to Equation 7.2), #E - the number of irradiance
values, Size - the storage requirement of incoming radiancesamples.

τmin RMS Error Ti

10 % 0.5 % 7.3
5 % 0.6 % 6.7

2.5 % 0.8 % 6.1
1.25 % 1.1 % 5.9

Table 7.3: The RMS Error measured in respect to the referenceframe-by-frame
animation for theBOX scene for various settings ofτmin which decides upon the
minimal number of updated rays (refer to Equation 7.2).τmax = 100% was as-
sumed. As in Table 7.1Ti denotes the average time per frame (measured in sec-
onds) for the indirect illumination computation during rendering.

that spherical harmonic bases can be used to store compactlyan irradiance field
over the hemisphere. We could also consider this approach inour application to
reduce the storage costs.

The visual quality of an animation produced by our techniqueis better than for
the reference solution (obtained with traditional irradiance cache) because tem-
poral flickering is significantly reduced. When single framesare compared they
look almost perfectly the same as the reference solution (the RMS errors are 0.6%,
0.5% and 2.7% for theBOX, LIGHT andROOM scenes respectively). All frames
are of similar quality because our algorithm does not accumulate error and re-
freshes all gathering rays. Table 7.3 summarizes changes ofthe RMS error as a
function ofτmin for theBOX scene. Similar results have been also obtained for the
other test scenes.

Figure 7.11 depicts the values of incident radiance samplesover the hemi-
sphere for a selected cache location. The samples are captured in the middle of an
animation sequence in order to check whether errors in theirvalue do not accumu-
late as a function of time. As can be seen the directional distribution of samples is
very similar for the frame-by-frame computation and our method. The graphs in
Figure 7.12 show changes of the irradiance value as a function of time for both ap-
proaches. The irradiance is measured for 90 subsequent frames. The same cache
location as in Figure 7.11 is considered. Again, the correspondence between the
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two graphs is good. A small time lag between the two graphs canbe observed
because samples are reused only in the “chronological” order.

a) b)

Figure 7.11: Distribution of incoming radiance samples over the hemisphere for a
selected cache location at the floor, which is shown as the green dot in the bottom
image: a) the frame-by-frame computation and b) our method (10% of samples is
refreshed for each frame according to the aging criterion).

7.5 Conclusions

We presented a simple, general, and effective method for computing soft indi-
rect illumination in dynamic scenes. Our algorithm requires to build a cumulative
distribution function (c.d.f.) for each irradiance cache to decide the order of di-
rectional incoming radiance samples updates based on theirage. The gathering
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Figure 7.12: Changes of irradiance value as a function of timefor theBOX anima-
tion at the cache location shown in Figure 7.11. The graph forthe frame-by-frame
approach is drawn as the solid line, while the dashed line is used for our approach.

rays are updated taking into account the probability in thec.d.f. within the limits
of user-set minimum and maximum refreshing sampling ratios(τmin andτmax ).
By contrast to traditional approaches which compute globalillumination for ev-
ery frame from scratch, our algorithm updates a rather smallnumber of incoming
radiances. It speeds up expensive indirect illumination computation 3–9 times
compared to the currently fastest rendering algorithm. Also, temporal flickering
of indirect lighting component is substantially reduced due to the use of temporal
coherence. This is achieved by sharing the same cache locations and incoming
radiance samples between subsequent frames. Our algorithmcan handle gen-
eral animations including light source motion. Camera animation does not affect
cached indirect illumination and new irradiance caches areinserted only when oc-
cluded parts become visible for subsequent frames. Our algorithm fits well to the
photon mapping algorithm [33] in which direct illumination, caustics, specular
reflections and refractions are computed on a frame-by-frame basis while diffuse
interreflections can be accelerated using our technique.

As future work we plan to experiment with more compact representations for
incoming radiance using wavelets or spherical harmonics [21]. Also, we plan to
investigate the applicability of our technique to render moderately glossy surfaces
using directional information which we store in our cache data structure. This will
require the development of new criteria controlling the density of cache locations,
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which will be sensitive to surface glossiness. To reduce thenumber of caches
required for high quality rendering of moderately glossy surfaces we plan to use
the final gather reprojectiontechnique [37].



CHAPTER 8

Importance Sampling in Final
Gathering

In this chapter, we propose an efficient algorithm for handling strong secondary
light sources within the photon mapping framework. We introduce an additional
photon map as an implicit representation of such light sources. At the rendering
stage, this map is used for the explicit sampling of strong indirect lighting in a
similar way as it is usually performed for primary light sources. Our technique
is fully automatic, improves the computational performance, and leads to better
image quality than traditional rendering approaches.

8.1 Introduction

A naive sampling with a uniform distribution of sampling directions in a space
may lead to very poor convergence of the irradiance integration which manifests
in noisy pixels for scenes with significant variations of lighting distribution. An
efficient way to improve the performance of the irradiance integration is to sample
more densely those scene regions which significantly contribute to illumination at
a given cache location. For glossy surfaces, an easy importance sampling scheme
can be considered by grouping sample directions around the reflection direction in
respect to the eye position. However, for diffuse surfaces,this importance criterion
fails. In this chapter, we propose an efficient importance sampling scheme which
handles this difficult case. Our solution is embedded into the photon mapping
algorithm framework [33].

Slowly changing (soft) indirect lighting is reconstructedfrom the global pho-
ton map through the irradiance cache technique [91, 90, 33] (refer to Section 2.10
for more details). For each cache location, irradiance is integrated over a scene
by sampling the incoming energy for selected directions. Toreduce the variance
of such sampling, the hemisphere of all possible directionsis split into strata, and

87



88 Chapter 8: Importance Sampling in Final Gathering

a small number of sample directions (usually one) are randomly chosen for each
stratum (refer to Figure 2.2).

This approach works well for scenes with low variation of lighting distribu-
tion but leads to a huge number of samples when density of photons in the global
photon map significantly changes among scene regions. The angular density of
samples should correspond to the density of photons stored in the map. However,
the estimation of photon density would require projecting all those photons on the
hemisphere centered at a given cache location and it is too costly. We propose
a simpler solution which involves splitting photons into two maps in the global
photon map. In the first map called thehigh-energyphoton map, photons in very
bright scene regions are stored. The second map called thelow-energyphoton
map stores the remaining photons, which effectively leads to small spatial varia-
tions of their density. In terms of irradiance integration,this map can be properly
sampled by a small number of uniformly distributed samplingdirections. The
high-energy map involves explicit directional sampling towards regions of high
photon concentration with controllable angular density ofirradiance samples. In
the following section, we introduce our algorithm for splitting the global photons
into those two maps.

8.2 Algorithm

In the first step of our algorithm a voxel grid which contains the whole rendered
scene is built. Each voxel has a counter which is the number ofphotons hitting
on surfaces in this voxel. During the photon tracing stage, all photon hit points
are initially stored in the low-energy photon map. However,when the number of
photons stored in a given voxel is equal to a specified threshold valuecmax, all
subsequent photons are stored in the high-energy photon map. cmax should be
chosen so that photons are captured in this map only for strong secondary lights.
In practice, the user decides on the threshold irradiance valueEmax which is then
used to compute the correspondingcmax using the following relation:

cmax =
EmaxA

∆Φ
(8.1)

where∆Φ is the radiant power carried by each photon andA = πr2 is an estimate
of the surface area in the voxel of the edge length2r. Emax can be automatically
selected as a function of the average scene irradianceEavg, which is estimated for
a certain percentagep% of the pilot photons as:

Eavg =
n∆Φ

Atotal

(8.2)
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Figure 8.1: Distribution of photon hit points stored in the high-energy photon map
for the scene shown in Figure 8.3. The black dots in the upper left region around
the primary light source represent photons from this map.

wheren is the number of photon hit points forp% of all traced photons (usually
we assumep% = 10%) andAtotal is an estimate of the surface area for all objects
in the scene.

Figure 8.1 shows the distribution of photons stored in the high-energy photon
map, which was obtained using this procedure. Although thisscheme is fast and
sufficiently accurate for our purposes, more elaborate methods to examine the
density of photons are presented in [68].

During the rendering stage, the high-energy photon map is used to explicitly
sample irradiance at a given pointx in the scene by shooting rays toward the
random locations inside the corresponding voxels. The number of rays per voxel
can be either proportional to the photon count in each voxel or it can be just a fixed
number. The reflected radiance at the locationx for strong secondary light sources
is represented as the integral of the differential irradiancedE for each high energy
voxel:

L(x, ω) =

∫

Ω

f(x, ω, ω′)V (x, ω′)dE(x, ω′) (8.3)

Here Ω is the set of high energy voxels andV (x, ω′) is the visibility function
(V (x, ω′) = 1 when the ray traced fromx in the directionω′ arrives to the selected
voxel, otherwiseV (x, ω′) = 0).
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Figure 8.2: The schematic view of computing the differential irradiancedE for
the selected voxel. The black dots inside the voxel represent photon hit locations
with marked incoming directions.

Figure 8.2 illustrates the schematic view of the differential irradiancedE com-
ing from a selected voxel. The differential irradiancedE is computed as:

dE(x, ω′) = Li(x, ω′′)(ω′ · N)d~ω′ (8.4)

d~ω′ =
(ω′′ · N ′)A

l2
(8.5)

The reflected radianceLi(x, ω′′) from a secondary light source (a selected voxel)
is approximated by the density estimation of the high-energy photon map.N and
N ′ are the normal vectors at the locationx and the selected location inside the
voxel, respectively. Here,ω′′ = −ω′ andl is the distance between the locationx
and the location inside the voxel. The meaning ofA is the same as in equation
(8.1).

8.3 Results

We tested our algorithm for scenes shown in Figures 8.3 and 8.4. All images are
rendered on a Pentium 4 Xeon 1.7 GHz, Debian GNU/Linux PC.

For images in Figure 8.3 the irradiance integration is performed for each pixel
(the final gathering procedure). Figure 8.3a presents the result of stratified sam-



8.4 Discussion 91

a) b)

Figure 8.3: Final gathering procedure. Size: 320× 240 pixels, a) 768 stratified
samples/pixel, rendering time 21 min and b) 278 (48 stratified samples + 230
explicit samples) samples/pixel, rendering time 9 min.

pling for 768 samples per pixel using the traditional globalphoton map. Although
rendering requires 21 minutes, stochastic noise is still perceivable. Figure 8.3b
shows the results obtained using our technique. The image isrendered using 48
stratified samples towards the low-energy photon map and 230explicit samples
towards high-energy secondary light sources. The rendering time is 9 minutes.
Although in our approach nearly three times less samples have been computed the
overall image quality is significantly better than in Figure8.3a.

In Figure 8.4, we demonstrate our algorithm in a more complexscene. The
image is rendered using the irradiance caching. Because theirradiance integration
is performed only on the irradiance cache locations, significant speedup of the
computation is achieved. 300 stratified samples towards thelow-energy photon
map and 98 explicit samples towards the high-energy photon map are used for
each irradiance integration. The total number of cache locations is 13,666 and the
rendering time is 10 minutes for the image resolution of 1,128× 480 pixels.

8.4 Discussion

Our algorithm separates the global photon map into the low- and high-energy pho-
ton maps. The former map is used for the irradiance integration as in traditional
photon mapping algorithm. Because of the lower variation ofphoton distribution
in this map a high accuracy of such integration can be easily achieved using only
a small number of sampling directions. The high-energy photon map associated
with the voxel grid identifies strong secondary light sources which are explicitly
sampled by shooting rays toward the corresponding directions.

A similar idea is implemented in theRadiancerendering system [92], in which



92 Chapter 8: Importance Sampling in Final Gathering

Figure 8.4: The image is rendered by our algorithm using the irradiance caching.
Size: 1,128× 480 pixels, 398 (300 stratified samples + 98 explicit samples) sam-
ples/cache, 13,666 caches, rendering time 10 min.

bright scene objects can be manually chosen as the secondarylight sources. This
scheme works only in the case when the bright objects are known in advance and
can be manually selected as virtual lights to be explicitly sampled at the rendering
stage. The advantage of our algorithm is that it can be applied automatically for
any scene. Since we use the photon map and voxel grid data structures, our sec-
ondary light source representation is independent of any type of scene geometry.
In our technique strong secondary light sources are automatically selected and the
user must specify just one parameter to control this choice.

Another related work is the importance sampling using the photon map al-
gorithm [31] in which the importance directional function is built based on the
photon map at each rendered pixel. Our algorithm requires tobuild the impor-
tance positional function only once as the photon count in the voxel grid. In our
method, the important directions are immediately found foreach pixel by picking
the selected voxels.

8.5 Conclusions

We presented an efficient algorithm for rendering scenes with strong secondary
light sources. The performance of our algorithm is the better when a scene has the
bigger variations in secondary lighting across the whole scene. Our technique can
be considered as a variant of importance sampling embedded into the framework
of photon mapping algorithm.

As future work we plan to extend our technique to handle dynamic scenes.
We intend to exploit the temporal coherence in indirect lighting distribution to
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improve the computation efficiency.
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CHAPTER 9

Conclusions and Future Work

Global illumination is an important visual cue in photo realistic rendering of ani-
mations. Producing high quality animations featuring richobject appearance and
compelling lighting effects is very time consuming using traditional frame-by-
frame rendering systems. In this thesis, we presented a number of global illumi-
nation and rendering solutions that exploit temporal coherence in lighting distri-
bution for subsequent frames to improve the computation performance and overall
animation quality. Our strategy relied on extending into temporal domain global
illumination and rendering techniques such as density estimation path tracing,
photon mapping, ray tracing, and irradiance caching, whichwere originally de-
signed to handle static scenes only. This strategy of extending various algorithms
is justified since the best technique which is suitable for all types of scenes and
applications simply does not exist. Our solutions led to significant improvements
of the computation performance and animation quality through the suppression of
temporal aliasing. A practical question arises:Which of the presented techniques
should be chosen for a given application?

In Chapter 4, we proposed an application of image-based techniques to derive
inbetween frames based on a small number of high quality ray-traced keyframes.
The key aspect of our algorithm was the perception-driven keyframe placement,
which led to the significant reduction of image warping artifacts. The technique
works well only for static scenes and walkthrough scenarios. The performance of
this technique can be affected for scenes with many specularobjects for which the
computation must be performed in principle for each frame. Using our perception-
based quality metric made it possible to determine for whichpixels and frames
such computations must be performed to avoid perceivable artifacts.

In Chapter 5, we extended the density estimation path tracingalgorithm into
the temporal domain by sharing photon-hit points between the subsequent frames
and using advanced spatio-temporal filters for lighting reconstruction. The re-
sulting spatio-temporal photon density estimation technique seems to be the most
suitable for practical animation systems, where the rendering speed is the key

95
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factor even at the expense of lower accuracy in the lighting computation. This
method does not require to store photon-hit positions between the subsequent
frames. Photon counters for each mesh element are sufficientto significantly re-
duce the memory requirements. Recently, the technique was implemented as a
plug-in for the 3D StudioMax system [94], and experiences with the exploitation
of this technique in the animation production are very good.

In Chapters 6–8, we proposed a number of extensions to the photon mapping
technique and focused on the problem of efficient rendering using the irradiance
cache approach. We extended the irradiance cache into the temporal domain by
reusing cache locations (Chapter 6) and selectively updating directional samples
that contribute to the cached irradiance whenever requireddue to changes in a
scene (Chapter 7). Both techniques are suitable for all applications in which the
quality requirements are very high. The photon mapping technique based on static
and dynamic photons (Chapter 6) is suitable in particular forthose applications in
which scene changes do not significantly affect the lightingdistribution (a vast ma-
jority of photons can be classified as static). Selective update of irradiance cache
(Chapter 7) is suitable for any two-pass global illuminationsolution including ra-
diosity, density estimation, and photon mapping. It leads to significant reduction
of the computational cost. Efficient handling of strong secondary emitters in the
irradiance cache approach as proposed in Chapter 8 improves the computational
performance for scenes featuring unbalanced lighting distributions. The extension
of this technique into the temporal domain was relegated as future work.

The common denominator for all presented algorithms is thatthey lead to
high quality animations. However, each algorithm has its own characteristics and
constraints which may affect the quality of frames. Table 9.1 summarizes those
characteristics and constraints for all of the algorithms proposed in this thesis. The
interpretation of columns in this table is as follows. The leftmost column refers
to the chapter number in which a given algorithm was presented. The column
ANIMATION TYPE specifies which component describing rendered scene can be
changed from frame to frame. The columnLIGHTING describes for which lighting
component the temporal coherence between frames is used. Our main interest is
the computation of indirect illumination which is the most time consuming part of
global illumination. The columnTEMPORAL COHERENCEdescribes our approach
to the lighting computation for each frame (i.e., in the temporal domain). The
columnRENDERING METHODspecifies which global illumination and rendering
algorithms are used. The columnPRECISIONdetermines at which level global
illumination is solved and temporal coherence is exploited.

The algorithms proposed in this thesis have also a number of limitations. The
problem of light transport in participating media has been completely ignored.
It means that we consider only the case in which rays travel between surfaces
without any interaction with media. However, an extension of our algorithms
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such as spatio-temporal density estimation and irradiancecaching seems to be
feasible for the participating media as well. It can be an interesting direction of
future work especially given that the global illumination computation is even more
costly in this case, and therefore exploiting temporal coherence may lead to more
spectacular speedup.

Another promising direction of future work is an efficient handling of glossy
surfaces. Our spatio-temporal density estimation and irradiance caching algo-
rithms are basically limited to diffuse surfaces. In the former case, glossy surfaces
could be handled, but then photons should be stored along with their incoming di-
rections and significantly more photons should be considered. Additionally, the
granularity of mesh should be reduced, which may lead to an explosion of mesh
elements. A better chance of handling glossy surfaces has our spatio-temporal
irradiance caching algorithm. This approach would requirean extension of data
structures to similar as presented in [40].



98 Chapter 9: Conclusions and Future Work

ANIMATION

TYPE

LIGHTING TEMPORAL

COHERENCE

RENDERING

METHOD

PRECISION

Chapter 4 camera direct
+

indirect

exact lighting
computed only
for keyframes

ray tracing
+

image-based
rendering

outgoing
radiance
Lo[W/m2/sr]
per pixel (image
space)

Chapter 5 camera
+

object

indirect rough indirect
lighting compu-
tation for each
frame

ray tracing
+

spatio-temporal
density estima-
tion

irradiance
E[W/m2] per
mesh element
(object space)

Chapter 6 camera
+

object

indirect separate com-
putation of
static and dy-
namic lighting
components

photon mapping
+

irradiance
caching

irradiance
E[W/m2] per
cache location
(object space)

Chapter 7 camera
+

object
+

light

indirect re-using and up-
dating informa-
tion from the
previous frames

photon mapping
+

irradiance
caching

incoming radi-
ance samples
Li[W/m2/sr]
at cache lo-
cation (object
space)

Chapter 8 - strong
indirect

- photon mapping
+

irradiance
caching

-

Table 9.1: Synthetic summary: Basic characteristics of algorithms developed
within the scope of this thesis.
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