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Kurzzusammenfassung — Short Abstract

Kurzzusammenfassung — Deutsch

Die Bestimmung des Verschiebungsvektorfeldes zwischen zwei aufeinander folgenden
Bildern einer Bildfolge — des sogenannten optischen Flusses — ist eines der zentralen
Probleme des Maschinensehens. Obwohl Variatioggaazu den qualitative besten Ver-
fahren fir diese Aufgabeahlen, kamen sie bisher noch nicltit Echtzeitanwendungen in
Frage, da sie dasdsen groler linearer oder nichtlinearer Gleichungssysteme erfordern.
In dieser Arbeit werden zwei wichtige Beilge auf dem Gebiet der variationellen op-
tischen Flussberechnung geleistet: (i) Zum einen wird ein systematischer Rahmen zur
Entwicklung genauer Variationsaitge vorgestellt. Dieser erlaubt den Entwurf der zur
Zeit prazisesten Sd@izverfahreniir den optischen Fluss in der gesamten Literatur. (ii)
Zum anderen wird ein allgemeiner Ansatz zur Konstruktion hochperformanter Mehrgit-
terverfahren pgisentiert, der ein schnelles und effizientésén der auftretenden linearen

und nichtlinearen Gleichungssysteme sicher stellt. Dieser Ansatz ist nicht nur in seiner Ef-
fizienzublicherweise verwendeten numerischen Verfahren um bis zu vige€aiordnung-
enuberlegen, er erdyglicht zudem die erste Echtzeitberechnung von variationellem opti-
schen Flussiberhaupt.

Short Abstract — English

The recovery of the displacement field between two consecutive frames of an image se-
guence — the so-called optic flow — is one of the central problems in computer vision.
Although variational methods are among the best performing approaches for this task,
they have not been used for for real-time applications so far, since they require to solve
large linear or nonlinear systems of equations. This thesis contributes in two important
ways to the field of variational optic flow computation: (i) First it provides a systematic
toolkit for the design of accurate variational methods. Thereby, we demonstrate that this
toolkit allows the construction of the currently most accurate optic flow approaches in the
literature. (ii) Secondly, it presents a multigrid framework for the efficient solution of the
resulting linear and nonlinear systems of equations. This framework does not only outper-
form frequently used numerical schemes by up to four orders of magnitude, it even allows
the first real-time computation of variational optic flow ever.
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Zusammenfassung

Die Bestimmung des Verschiebungsvektorfeldes zwischen zwei aufeinander folgenden
Bildern einer Bildfolge — des sogenannten optischen Flusses —ist eines der zentralen Prob-
leme des Maschinensehens. Aufgrund ihrer Eigenschaft verschiedene Annahmen math-
ematisch korrekt im Rahmen eines gemeinsamen Minimierungsproblems formulieren zu
konnen, Ahlen Variationsaréze zu den qualitativ besten und den am besten verstande-
nen Verfahrenir diese Aufgabeiberhaupt. Sie &nnen so modelliert werden, dass sie
Bewegungsgrenzen respektieren, grol3e Verschiebungen korrekt behandeln, sich robust
gegeiriiber Beleuchtungswechseln erweisen oder gute Ergebnisse bei Rauschen oder
Verdeckungen erzielen. Trotzdem finden sie in der Praxis nicht sehr oft Verwendung, da
sie das Ibsen grol3er linearer oder nichtlinearer Gleichungssysteme erfordern. Insbeson-
dere gelten sie deshalb als zu langsa@amXufgaben, die auf eine Berechnung in Echtzeit
angewiesen sind.

In dieser Arbeit werden zwei wichtige Beilye auf dem Gebiet der variationellen op-
tischen Flussberechnung geleistet: Zum einen wirdsgstematischer Rahmenr Ent-
wicklung genauer Variationsadize vorgestellt. Dieser erlaubt den Entwurf dar Zeit
prazisesterschatzverfahreniir den optischen Fluss in der gesamten Literatur. Zum an-
deren wird eirallgemeiner Ansatzur Konstruktion hochperformanter Mehrgitterverfahren
prasentiert, der ein schnelles und effizientésén der auftretenden linearen und nicht-
linearen Gleichungssysteme sicher stellt. Dieser Ansatz ist nicht nur in seiner Effizienz
ublicherweise verwendeten numerischen Verfahren um higezGrof3enordnungeiber-
legen, er erraglicht zudem die erst&chtzeitberechnungon variationellem optischen
Flussuberhaupt.

Der erste Teil dieser Arbeit befasst sich mit variationellen optischen Flussverfahren
zur Sclatzung kleiner Verschiebungen. In diesem Rahmen wird die systematische En-
twicklung konvexer Angtze untersucht. Neben der Analyse einer Vielzahl vordbeten
Modellierungskonzepten, werden hierbei auch mehrere eigene ldeen vorgestellt, die die
Qualitat der Schtzung im Bezug auf Rauschen, Ausreil3er und wechselnde Beleuch-
tung verbessern. Daber hinaus wird eine kompakte Notatidir fvariationelle optische
Flussverfahren vorgestellt, die auf Bewegungs- und Diffusionstensoren basiert. Diese No-
tation erweist sich in zweierlei Hinsicht alsitzlich: Zum einen errglicht sie den sys-
temtatischen Entwurf neuer Verfahren. Dies wird unter anderem am Beispiel zweier neu
entwickelter Modelle gezeigt. Zum anderen bildet sie die Basis eines allgemeinen nu-
merischen Ansatzes zur Entwicklung hocheffizienter bidirektionaler Mehrgitterverfahren.
Dieser beruht auf einem direkten Transfer der Tensoren dilfege Gitter, anstatt wie
sonstublich eine Unterabtastung der Originalbildfolge durcligwén. Die daraus resul-
tierende Grobgitterapproximation ist damit nicht nur effizienter, sondern auch numerisch
genauer als die meisten bisher verwendeten Strategieniishe qualitative und quan-
titative Experimente anhand sieben verschiedener Modellprototypen und sechs nume-
rischer Verfahren zeigen sowohl die Genauigkeit der Modelle als auch die Effizienz der
numerischen biser.

Im zweiten Teil dieser Arbeit werden die vorherigen Bgi auf den Fall groRRer Ver-
schiebungen verallgemeinert. Dazu wird @ahst ein achter Prototyp eingéft, der
auf einem nichtkonvexen Ansatz basiert. Um das ztdgghk Minimierungsproblem er-

Vv



folgreich zu bsen, wird eine inkrementelle Fixpunktiteration vorgestellt, die durch eine
sukzessive Verfeinerung des Problems bestimmte lokale Minima umgehen kann. In diesem
Zusammenhang gelingt es auch, eine theoretische Rechtfertigudgefweit verbreitete
Klasse der Bildvorverzerrungsverfahren (Warping-Verfahren) herzuleiten, deren Einsatz
bisher ausschlief3lich algorithmisch motiviert war. Gi@er hinaus wird ein Equivalent des
Bewegungstensorsiif grol3e Verschiebungen eingéft, welches sowohl die Erweiterung

der kompakten Notation als auch die Erweiterung des allgemeinen Ansatzes zur Entwick-
lung hocheffizienter Mehrgitterverfahren eiglicht. Die erfolgreiche Verallgemeinerung

der obigen Konzepten zeigt sich in den zu@yehen qualitativen und quantitativen Exper-
imenten. Dort werde@hnliche Geschwindigkeitszugewinne erreicht wie im Falle kleiner
Verschiebungen, jedoch noch genauere Fluggzahgen.
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Abstract

The recovery of the displacement field between two consecutive frames of an image se-
guence — the so-called optic flow — is one of the central problems in computer vision.
Allowing a mathematical sound integration of different concepts into a single minimisa-
tion framework, variational methods belong to the best performing and best understood
techniques for solving this task. They can be designed in such a way that they preserve
motion boundaries, treat large displacements correctly, are robust with respect to illumi-
nation changes or perform favourably in the presence of noise and occlusions. However,
they are hardly used in practical applications, since they require to solve large linear or
nonlinear systems of equations. In particular, they are considered to be too slow for those
tasks where real-time performance is needed.

In this thesis we make two important contributions to the field of variational optic flow
computation: Firstly, we provide systematic toolkitor the design of accurate variational
methods. Thereby, we demonstrate that this toolkit allows the construction@friieatly
most preciseoptic flow approaches in the literature. Secondly, we presentkigrid
frameworkfor the efficient solution of the resulting linear and nonlinear systems of equa-
tions. This framework does not only outperform frequently used numerical schemes by up
to four orders of magnitudet even allows the firsteal-time computation of variational
optic flow ever.

The first part of this thesis is dedicated to variational optic flow methods for small
displacements. Thereby we investigate the systematic design of convex approaches by
discussing a variety of established models. In this context, we also introduce several
new ideas that improve the quality of the estimation with respect to noise, outliers and
varying illumination. Moreover, we present a compact notation for variational optic flow
methods that is based on motion and diffusion tensors. This notation proves to be useful
in two respects: Firstly, it allows the systematic construction of novel approaches. This is
demonstrated by the example of two advanced optic flow techniques. Secondly, it forms
the basis of our numerical framework for the design of efficient bidirectional multigrid
methods. By resampling these tensors instead of the original image sequence, we present
a novel way to create a suitable coarse grid representation that is both computationally
efficient and accurate at the same time. Extensive qualitative and quantitative benchmarks
for seven different models and six different numerical prototypes show the accuracy and
the efficiency of the proposed multigrid implementations.

The second part of this thesis extends our previous contributions to the case of large
displacements. To this end, we introduce an eighth prototype that is based on a nonconvex
approach. In order to solve the resulting minimisation problem we derive an incremental
coarse-to-fine fixed point iteration that allows to avoid local minima. In this context, we
also succeed to provide a theoretical justification for the well-known warping technique
that has been motivated only on an algorithmic basis so far. Moreover, we define a new
motion tensor equivalent for the case of large displacements. This allows us to extend our
compact notation and therewith our highly efficient multigrid framework that we devel-
oped before. Quality and efficiency benchmarks show the success of this generalisation:
While the speedups are similar than in the case of small displacements, the accuracy is
even higher.
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Introduction

“The reasonable man adapts himself to the world; the unreasonable one per-
sists in trying to adapt the world to himself. Therefore all progress depends
on the unreasonable man.

- George Bernard Shaw

1.1 Motivation

The estimation of motion information from image sequences is one of the key problems in
computer vision. Typically, one is thereby interested in determining the direction and the
velocity of moving objects in the scene as well as the motion of the video camera itself —
the so-callecego-motion A first step towards obtaining this information and the focus of
this thesis is the computation of thelative motionof the scene. Hereby, the expression
“relative” refers to the fact that we compute the motion relative to the possibly moving
camera(s) and not to a static fixed point in the scene. Moreover, we restrict ourselves to
monocularimage sequences — sequences that have been acquired by a single camera only.
Projective geometry tells us that in this case the depth of the scene cannot be determined
unigquely. As a consequence, the extraction of motion information comes down to comput-
ing only aprojection of the actual motioonto the image plane. This 2-D displacement
field that describes the apparent motion of the scene is the so-ogliedlow Figure[1.1
illustrates the resulting correspondence problem: Given two consecutive frames of an im-
age sequence, one is interested in determining that displacement vector field that maps all
points of the first frame onto their new location in the second frame.

Fig. 1.2 Example for the optic flow problemLeft and Right: Two consecutive images of the
Marble sequence by Otte and Nagélentre: Wanted displacement field (optic flow). How can
we compute this displacement field in a fast and accurate manner?
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Fig. 1.2 Possible fields of applicatioreft: Tracking of cars in a traffic scen€entre: Naviga-
tion of a car through a stregRight: Computed optic flow field. The colour indicates the direction
of the relative motion.

Fields of Application. Although the optic flow is only the projection of the true motion
of the scene, it proves to be useful for a variety of different tasks (see Figure 1.2). For
example, it allows to distinguish stationary from moving objects and thus to detect and
avoid obstacles [Enk91]. This makes it particularly useful for tasks where vehicles have to
be guided safely through an unknown environment. In this context one can either think of
robot navigationwhere one is interested in a fully autonomous behaviour [DK02] or the
design ofdrivers assistance systemere support is only required in certain situations
[LMBO2| Hei0Z].

Moreover, the estimated motion allowsttack objectson their way through the scene,
to keep them focused and to follow them if desired [KN90, KDTN92, NH98, LMBO02].
This interaction with the environment goes far beyond a pure avoidance of obstacles. In
combination with approaches from machine learning, motion patterns can be trained in
such a way that the obtained algorithms even allow for the interpretation of human mim-
ics and gestures [BYJ97]. These techniques serve as an important step tbuwaas
machine interfaces

Another field of application that is more related to image processing than to computer
vision is thecompressiorof video sequences. The basic idea is thereby to decompose a
sequence of images into a small set of key frames and encode the differences to the remain-
ing frames as flow fields [MKW97, HP0O1]. Extending this idea to an even more compact
representation based on object shapes and single displacement vectors describing their
motion, one obtains the specification of the current MPEG-7 compression standard [Mar].

Finally, computing the optic flow is also directly related to other important correspon-
dence problems in computer vision suclstereo reconstructiofADSW02,[ SBW05] and
image registratiofWPFES05]. While in the case of stereo reconstruction one is interested
in finding the mapping between the left and the right frame of a stereo pair, image reg-
istration requires to compute the displacement field between two images that may have
even been obtained by two different types of image acquisition methods, e.g. computer
tomography (CT) and magneto resonance imaging (MRI).

This direct relation to other correspondence problems and the previously discussed prac-
tical applications are only a few examples that demonstrate the usefulness of optic flow.
However, they clearly show why in the last two decades so much research has been carried
out with respect to the development of accurate models and fast numerical schemes for its
estimation.
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1.2 Overview

The goal of the present work is to contributetimo waysto the field of optic flow com-
putation. On one hand, we are interested in improvingghalitative performancef
current optic flow techniques. To this end, we focus on the class of optic flow approaches
that gives the currently best results in the literature — so-catthtional methods By
discussing existing and novel concepts for designing such methods and by introducing a
compact notation that is based on different tensor formulations, we prowsgstamatic
toolkit for the construction of novel highly accurate optic flow techniques. On the other
hand, we are also interested ifaat computatiof the results. Therefore, we also present

a general numerical frameworfor these methods that is based on one of the most effi-
cient computational schemes — so-caltedirectional multigrid methodsThis allows us

to make variational techniqgues more appealing for time-critical tasks that are currently
dominated by fast but poorly performing optic flow algorithms. By addressing both as-
pects themodellingand thenumericsof variational methods, this thesis shall provide a
common basis for the design of fast and accurate optic flow techniques.

In order to specify our contributions in detail, let us give a short introduction to varia-
tional optic flow computation and on the use of multigrid methods in the context of mo-
tion estimation. Moreover, we will discuss relevant work that is related to both fields of
research.

1.2.1 Variational Optic Flow Computation

Since the prototypical approach of Horn and Schunhck [HS81] in 1981, variational methods
are among the best performing and best understood techniques for computing the op-
tic flow. Such methods determine the desired displacement field as the minimiser of a
suitable energy functional, where deviations from model assumptions are penalised. In
general, this energy functional consists of two termslata termthat imposes temporal
constancy on certain image features, e.g. on the grey value of objects,sambgness

term that regularises the often non-unique (local) solution of the data term by an addi-
tional smoothness constraint. While the data term represents the assumption that certain
(characteristic) image features do not change over time and thus allow for a retrieval of
corresponding objects in subsequent frames, the smoothness term stands for the assump-
tion that neighbouring points most probably belong to the same object and thus undergo a
similar type of motion.

How Do Variational Methods Work? Let us demonstrate this rather general strategy by

a concrete example: the classical variational method of Horn and Schunck [HS81]. This
method is based on the two most frequently used assumptions in the optic flow literature:
thebrightness constancy assumptiwhich assumes that the grey value of objects remains
constant over time andbomogeneous regularisatiavhich assumes that the resulting flow

field is smooth everywhere. In order to formulate these two assumptions mathematically,
let us consider a scalar-valued image sequéftee, x-, z3), where(z;, z5) " is the loca-

tion within a rectangular image domaily, C R? andx; € [0, 7] denotes time. Further-

more, let us assume that the temporal displacement between two consecutive frames of the
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Fig.1.3 (a) Left: Aperture problem. Only the component of the flow orthogonaftg is com-
putable (green arrowjb) Right: No information available. Correspondences may lie everywhere.

image sequence &z; = 1. Then, the assumption of a constant image brightness can be
formulated as

J(xy+uy, votug, x3+1) — f(21,22,23) =0,

whereu(zy, v, 23) = (uy(w1, 29, 23), us(z1, 9, 23), 1) 7 is the desired optic flow field.

If we furthermore assume that the displacements are small and that the image sequence
f varies smoothly in space and time, we can approximate this equation reasonably well
by performing a first-order Taylor expansion. Then, the following lineartgetit flow
constraint(OFC) is obtained

f:clul + f$2u2 + fx:g = 07

where subscripts denote partial derivatives. Evidently, this single equation is not sufficient
to determine the two unknowns andus; uniquely. In the literature this problem is re-
ferred to as thaperture problemFor non-vanishing image gradients, it is only possible to
determine the flow component parallelN@ f := (f.,, f,)', i.e. normal to image edges;

see Figuré 113 (a). F&F,f # 0 this so-callechormal flowis given by

o fl‘3 VQfT
Vo[ [V2f]

At locations wherév, f = 0 the situation even becomes worse: Since there is no image
information available, not even this normal flow can be calculated; see Figiire 1.3 (b).

As indicated before, the method of Horn and Schunck overcomes this locally non-
unique solution by assuming the resulting flow field to be globally smooth. This can
be formulated mathematically by penalising large spatial flow gradients and Vyus,.
Combining both the constancy and smoothness assumption in a single variational frame-
work and squaring both constraints in order to penalise negative and positive deviations in
the same way, the following energy functional is obtained:

, = ( i (1.1)

EHS([I) = / ( (fl,lul + meUQ + f,’];3)21+ « (|V2U1’2 + |V2U2|2) ) dX, (12)
Qs =~ ~"~ d
data term smoothness term

wherex := (z;,z2)". The degree of smoothness of the solution is thereby steered by the
positive weightx that serves as@egularisation parameterThe larger the value af, the
smoother becomes the computed flow field.
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Tab. 1.1 Definition of the integration domaif, the integration variablg and the gradient opera-
tor V for spatial and spatiotemporal energy functionals.

spatial caseX frames) spatiotemporal case>(2 frames)
Q Q= Qy C R? Q:=Q3 CR?x[0,T]
X X 1= (x1,29) " X := (21,9, 23) "
\Y V=V, := (89517312)T V:=V3:= (a$17az278$3)T

A General Energy Functional. After we have explained the basic strategy of variational
techniques by the example of the method of Horn and Schunck, let us now clarify in which
types of energy functionals we are interested in this thesis. To this end, let us define a more
general energy functional. If we denote by f the set of all partial (spatial and temporal)
derivatives off of orderk, then, this energy functional can be formulated as

E(u) :/ ( M(D’“f,u)+ a S(Vf,Vu) )dx, (1.3)
P ———
data term smoothness term

whereM (D* f, u) denotes a data term that represents one or more constancy assumptions
on D* f that are either given in their original nonlinear or their linearised form, while
S(V f,Vu) stands for a smoothness term that assumes the flomfigddbe smooth or
piecewise smooth. In order to preserve discontinuities, this term can be adapted to the
image gradien¥ f or to the flow gradien¥u itself. Moreover, it can be extended to the
spatiotemporal domain, which requires a redefinition of the integration daiaohthe
integration variablex and of the gradient operatdf (see Tabl¢ 1]1). As one can easily
verify, the approach of Horn and Schunck(in {1.2) is one particular instance of this general
energy functional. However, in this thesis we are interested in much more elaborated
approaches that make use of the full potential of our general formulation.

» Our first main goal in this thesis is to provide a general toolkit for the systematic con-
struction of variational optic flow methods based on our general energy functiopallin (1.3).
In order to achieve it, we will discuss various established concepts for the design of both
the data and the smoothness term. Apart from investigating existing strategies, we will
also present several novel ideas that address typical problems in motion estimation such
as noise, varying illumination and outliers.

Convexity vs. Nonconvexity. In general, it is desirable to design the energy functional

in (I.3) in such a way that it istrictly convex In this case the minimisation is rather
simple, since ainique minimiseexists that can be found by any globally convergent al-
gorithm. However, as in the case of the method of Horn and Schunck, the construction
of such an energy functional requires fivearisationof all constancy assumptions. As

long as we restrict ourselves to image sequences with small displacements, this does not
influence the estimation quality, since the linearised assumptions are valid approximations
to the original nonlinear ones. In contrary, the convex design even offers additional advan-
tages such asell-posednes®sults and theontinuous dependency of the solutanboth
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the input data and the model parameters [ADK99, AK02, WS01a, HSSW02]. However, if
we are interested in estimating displacements that are significantly larger than a few pixels
per frame, this method suffers from their linearised assumptions and performs relatively
poorly. In this case one has to replace this assumptions and use their original nonlinear
counterparts instead. This in turn results in an energy functional thahisonvexSuch a
functional requires the use of much more sophisticated optimisation strategies, since algo-
rithms that can be applied in the convex case get easily trapped in a local minimum very
close to the initialisation.

» With respect to the design of variational methods we will discuss both the convex and the
nonconvex case. In the latter case we will also present a suitable minimisation framework
that allows to find suitable local minima.

Why Variational Methods? Although we have already explained the basic idea of vari-
ational methods and discussed the advantages of convex functionals, we only briefly mo-
tivated so far why we have chosen exactly this class of optic flow techniques. This is in
particular important with respect to the fact that there are also numerous other strategies in
the literature to solve the underlying correspondence problemal differential methods

that are based on the same constancy assumptions as variational techniques but minimise
local energy-like expressions [LKB1, Luc84, BGW91, FarGéhture-based techniques

that seek correspondences for sparse but characteristic image features such as edges or
corners [BB84, WWB88, WABQO6]area-based approachdkat rely on matching com-

plete image patches by aggregating local information [Aha89, Sin90]phade-based
approacheghat make use of velocity-tuned filters in the Fourier domain [FJ90, Fel04].

Let us now discuss the four main advantages that variational methods offer when com-
pared to the aforementioned classes of optic flow techniques:

+ Transparent Modelling.Variational methods allow for a transparent modelling by
construction: All assumptions on the image data and the solution are explicitly for-
mulated in the underlying energy functional. There are no intermediate or postpro-
cessing steps that question the consistency of the whole approach. Moreover, the use
of a joint minimisation framework allows thereby a mathematical sound integration
of all desired assumptions.

+ Invariance under Rotationslf designed in the continuous setting, these energy
functionals can formulated in such a way that they are invariant under rotations.
Results from numerical analysis show that consistent discretisations approximate
this invariance under rotations arbitrarily well if the sampling is sufficiently fine.

+ Dense Flow FieldsVariational optic flow methods amglobal methods: If there is
not sufficient local information, the data ter(D* f, u) is so small that it is dom-
inated by the smoothness tem$ (V f, Vu) which fills in information from more
informative surrounding locations. Thus, in contrast to local methodsijlling-
in effectof global variational approaches always yields dense flow fields such that
no subsequent interpolation steps become necessary. Everything is automatically
accomplished within a single variational framework.
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+ Better Qualitative PerformanceAs shown in different performance evaluations
[BEB94,|GMN"98] and in the recent literature on optic flow [MP98a, BWSO05,
PBBT06,/AK05a], variational methods are those techniques that currently offer the
highest precisiomn terms of error measures [BFB94].

These advantages make the superiority of variational optic flow methods explicit. How-
ever, there is a also@ice to paywhen using such techniques: The regulariser that yields
the desired filling-in-effect also leads to a coupling of neighbouring pixels in the optimi-
sation problem. This in turn requires a joint optimisation of the solution for all pixels
by means of solving one or motarge linear or nonlinear systems of equationdften
standard iterative numerical schemes are applied for this purpose such Jasoeor

the Gaul3-Seideinethod [ORQ0, You71, Mei99]: While they are easy to implement, they
require thousands of iterations to reach a desired accuracy.

» Our second main goal in this thesis is the development of a numerical framework for the
efficient solution of these linear and nonlinear systems of equations. Thereby, we want to
show that high quality optic flow computation is possible in real-time. In order to achieve
it, we will discuss a variety of numerical schemes. In particular, we will focus on multigrid
methods, since they are among the fastest techniques for solving this task.

1.2.2 Multigrid Methods for Variational Optic Flow Computation

There are basically three different types of multigrid methods that are used in the con-
text of variational optic flow methodsunidirectional multigrid methodsunidirectional
warping techniqueandbidirectional multigrid methodsThey are either applied to speed

up the computation or to improve the quality of the results when dealing with nonconvex
optimisation problems. Let us now briefly discuss all three types of techniques.

Unidirectional Multigrid Methods. The most popular class of multigrid methods are
so-calledunidirectionalschemes [Ana89, BAK91, LKW94, BD96]. These coarse-to-fine
strategies start with a coarse version of the original problem and refine it during the so-
lution process. Thereby, coarse grid solutions serve as initialisations on finer grids. Uni-
directional multigrid schemes offer two advantages: One one hand — in the cege-of

vex energy functionals — they allow to speed up ttmenputationsignificantly; see e.g.
unidirectional schemes in_[BW#®5]. This is not surprising, since coarse grid results
are in general good approximations to fine grid solutions. However, one cannot expect
that the numerical algorithm converges to a better solution, since a strictly convex energy
functional has only a single minimiser. On the other hand — in the cas@rfonvex
energy functionals — they also allow to improve tipaality of the results significantly
[BA96|, MP98h] AWS00, BWS(05%, PBB)E]. This is a direct consequence of the fact that
certain undesired local minima disappear at sufficiently coarse resolutions and thus can be
avoided by a coarse-to-fine framework.

Unidirectional Warping Techniques. In the nonconvex case — in particular in the con-
text of large displacements — unidirectional multigrid schemes are often combined with
so-calledwarping stepgBAHH92/, BA96,[MP984a]. Thereby the original problem is com-
pensated by the already computed motion from all coarser levels before the resolution is
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refined. What remains to be solved at each resolution level is the motion increment for the
difference problem [BA96, MP98b, AWSDO0]. Such a proceedings allows to keep the dis-
placements at each resolution level small, so that linearised constancy assumptions remain
reasonable approximations. As is to be expected the results obtained for large displace-
ments are much better than approaches with linearised constancy assumptions that are
used only on one resolution level — such as the ones in [HS81,INE86, AELS99, WSO01a,
WSO01b].

Bidirectional Multigrid Methods. From a numerical viewpoint, unidirectional multigrid
schemes are not the end of the road. Very promising — in particular in the context of vari-
ational methods — are so-calléddirectional multigrid methods[[Bra77, Hac85, Wes92,
BHMOO,TOSO01]. These techniques that create a sophisticated hierarchy of equation sys-
tems with excellent error reduction properties belong to the fastest numerical schemes for
solving linear or nonlinear systems of equations. In contrast to unidirectional schemes
they revisit coarser resolution levels in order to obtain useful correction steps. Thus,
they are able to overcome the typical limitation of basic iterative solvers that is also
present in unidirectional multigrid schemese weak attenuation of low error frequen-
cies[Bra77,/[Hac85]. Moreover, they can benefit from all advantages of unidirectional
multigrid schemes, since they may use the same coarse-to-fine initialisation strategy on
top. Then, these bidirectional multigrid schemes are referred fidlasultigrid methods
[BHMOQ].

» With respect to the design of multigrid methods we will analyse the construction of
all three types of techniques. Moreover, we will seek to combine the different strategies
in order to obtain a numerical scheme that allows for both an accurate estimation and an
efficient performance.

1.3 Related Work

After we have clarified the main goals of this thesis and indicated how we will reach them,
let us now discuss some relevant work that is related to our two most important contri-
butions: the modelling of variational optic flow methods and the usage of bidirectional
multigrid methods in motion estimation.

1.3.1 Modelling of Variational Methods

The modelling of variational methods for computing the optic flow goes back to the pro-
totypical approach of Horn and Schunck in 1981 [HS81]. Since then, a lot of research has
been carried out to improve the performance of such techniques. Due to the vast amount of
literature, concepts for the design of data and smoothness terms are discussed separately.
Moreover, we will restrict ourselves only to the most relevant work. More detailed refer-
ences are given throughout the Chapjtérs 2 @nd 5, where the design of variational methods
is studied.

Data Term. With respect to the design of data terms, there are two main fields of re-
search in the literatureRobust data termthat use non-quadratic penaliser functions to
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improve the performance in the presence of outliers in the image [data [BA91, BA96,
MP98a, HSSW02] andhodified constraintthat allow for a more accurate estimation in
different situations such as varying illumination, large displacements and hoise [Nag83a,
NES86, Sch93, Sch94a, ANS00, BWS02, BW02].

e Robust Data Terms.The design of robust data terms for variational optic flow
methods goes back to Black and Anandan [BA91, BA96] who suggested the use
of M-estimators from robust statistics [Hub81]. Such functions penalise outliers
less severely than the quadratic function originally proposed by Horn and Schunck
and thus reduce the influence of corrupted data on the result. Some years later, also
Mémin and Brez [MP983] investigated the usefulness of M-estimators but solved
the resulting nonconvex optimisation problem by an iteratively weighted least square
fit instead of using continuous annealing as proposed by Black and Anandan. For
continuougguasi-convex energy functionals similar non-quadratic growth functions
were studied by Hinterberget al. in [HSSWO02]. In this context also a regularised
variant of theL; estimator was investigated. Such an estimator is of particular inter-
est, since it provides both robustness and convexity.

e Modified Constraints.Regarding the construction of modified constraints for the
data term a variety of ideas has been proposed in the literature. Suitable constraints
with respect to a changing image brightness have been suggested lkiyr$&koh93,
Sch94a). For a more accurate estimation of small displacements Nagel proposed
the approximation via a second order Taylor expansion [Nag83b], while Nagel and
Enkelmann as well as Alvarezt al. proposed to tackle large displacements by
constancy assumptions without linearisations [NE86, AWSO00]. In order to improve
the performance of the data term with respect to noise, Batlal. proposed the
integration of a local least square fit [BWS$02]. This idea was further refined by
Brox et al. who proposed ro replaced the static averaging of the least square fit by
an adaptive one based on nonlinear diffusion [BW$02, BW02].

Smoothness Termln the case of the smoothness term the literature mainly focuses on two
aspects: Thereservation of motion discontinuitifdag83a, NE8E, SH89, BA9L, Coh93,
HB93,[Nes9B, PVPO9%4, Sch94b, KTE96, AELS99, ADKQ9, WS01a] andnifegration

of temporal informatiorfNag90, BA91| WS01lb].

e Discontinuity-Preserving Smoothness TernTe first approach to design adap-
tive regularisers goes back to Nagel in 1983 who proposed an oriented smoothness
constraint that inhibits the filling-in-effect acrogsage discontinuities [[Nag83a,
NE86]. Some years later, in the contextdicretevariational approaches based
on Markov random fields (MRF), Shulman and Herve, Heitz and Bouthemy as
well as Nesi presented an alternative approach based on the use of robust statis-
tics [SH89, Nes93, HB93]. By penalising outliers in the smoothness less severely
than Horn and Schunck, they explicitly allowed for discontinuities in the unknown
flow field. Thus, they overcame the typical problem of image-driven regularisers
that reduce smoothness in particular in textured regions. Similar non-quadratic reg-
ularisers that steer the smoothness in accordance with the evdlmndield have
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also been suggested by Sonnand Weickert, however, in the context@intinu-
ousformulations of variational techniques [Sch94b, WS01a]. Thereby, in particular
the work in [WS0143] is of interest, since it proposes a classification of continuous
smoothness terms based on their induced diffusion process. Similar smoothness
terms that also respect discontinuities of the evolving flow field bunhatenvari-

ant under rotationdave been proposed first by Cohen [Cdh93] and Deratha.
[DKA95].

e Spatiotemporal RegularisersThe first proposal to model spatiotemporal smooth-
ness terms goes back to Murray and Buxton [MB87]. in 1987 they proposed to
use adiscreteoptic flow method based on spatiotemporal Markov random fields
in order to estimate multiple flow fields simultaneously. Shortly thereafter, Nagel
extended his spatially oriented smoothness constraint from [Nag83a] to the tem-
poral domain and thus introduced the first spatiotemporal smoothness term for an
continuousapproach|[Nag90]. Another strategy to make use of temporal infor-
mation was later on suggested by Black [BA91]. Instead of assuming piecewise
smoothness in a spatiotemporal data volume, he used previously computed flow es-
timates as prior knowledge and thus obtained temporally piecewise homogeneous
motion fields. This back-in-time adaptation strategy was improved by Weickert and
Schrorr who extended their discontinuity-preserving regularisers to the temporal
domain [WS99| WSO01b]. Thus, smoothness terms were obtained that allow the
preservation of both spatial and temporal discontinuities in the unknown flow field
and this in forward and backward direction (as Murray and Buxton [MB87] as well
as Nagel[Nag90] by a simultaneous computation of multiple flow fields).

» The detailed discussion of the preceding four concepts — two for the data and two for
the smoothness term — forms the basis of our systematic toolkit for the design of accurate
variational optic flow methods in this thesis. Their combination with novel own ideas will
thereby allow the construction of the currently most precise optic flow techniques in the
literature.

1.3.2 Bidirectional Multigrid Methods for Motion Estimation

In contrast to the modelling of variational optic flow approaches that is a fruitful field of
research since decades, only a few works exist in the literature that deal with the construc-
tion of bidirectional multigrid methods for variational optic flow techniques.

Linear Bidirectional Multigrid Methods. The first approaches to use linear bidirectional
multigrid methods for computing the optic flow go back to Glazer [Gla84], Terzopoulos
[Ter86] and Enkelmann [Enk87]. Since also the research of optic flow techniques was a
relatively new field of research at that time, the implemented approaches were restricted
to simple optic flow techniques: While Glazer and Terzopoulos investigated the efficient
implementation of the prototypical method of Horn and Schuhck [HS81], Enkelmann fo-
cused its multigrid efforts on implementing a modified variant of a technique proposed by
Nagel [Nag83a]. But also from a numerical viewpoint, these first multigrid approaches
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could not convince: Due to the use of emappropriate coarse grid approximation strat-
egythat was based on a resampling of the image data, they offered a relgalyper-
formanceor showed everonvergence problenfer an increasing number of multigrid
levels. This was also critisised by Battét al. [BAK91] who proposed to refrain from
bidirectional multigrid methods and to develop adaptive unidirectional multigrid schemes
instead.

Several years later, Ghosal and @ar{GvV96] revived the research of multigrid tech-
niques for variational optic flow methods. They proposedlgebraicbidirectional multi-
grid method for solving a modified variant of the technique of Nagel and Enkelmann
[NE8E]. In contrast to thgeometrianultigrid schemes of Glazer, Terzopoulos and Enkel-
mann that were defined on regular grids, their algebraic method was based on graph struc-
tures [BHMOO]. Thus, at the expense of additional computational costs for the complex
data handling, they were able to create an adaptive and thus very accurate coarse grid
representation. As a consequence, the presented results were much better than those re-
ported one decade ago. However, with respect to geometric multigrid methods, not much
had changed: Shortly after Ghosal and &anzZini et al. [ZSL97] suggested a multigrid
implementation for a 3-D Horn and Schunck variant with an additional incompressibility
constraint. Unfortunately, only the model was new. For the construction of the coarse grid
eguation systems the same inappropriate strategy was used as in the approaches of Glazer,
Terzopoulos and Enkelmann.

This stagnation in the development of geometric multigrid methods for variational optic
flow techniques ended recently when El Kalmoun and&[ERO03] proposed Galerkin
approach[[BHMOQD] for the method of Horn and Schunck. Instead of resampling the im-
age sequence and creating the equation systems from scratch, they proposed to tackle the
problem directly and resample the equation system itself. While this strategy yielded a
very efficient multigrid method in terms of iterations, it introduced another problem: The
creation of the coarse grid equation systems via the Galerkin approach was computation-
ally very expensive. Therefore, the same authors also proposed a second technique based
on the resampling of the image data. However, this technique showed the weaknesses of
all previous geometric approaches: It did not converge if more than three multigrid levels
were used.

Nonlinear Bidirectional Multigrid Methods.  Apart from the previously discussed at-
tempts to develop multigrid schemes for optic flow techniques that require tolsudee
systems of equations, there also exists one work in the literature that deals with the so-
lution of nonlinearsystems of equations related to an optic flow approachl._In [BIK02],
Borzi et al. proposed to solve the control equations of a control-theory-based optic flow
formulation by means of a nonlinear bidirectional multigrid method — a so-célikd
approximation schem@AS) [Bra77]. However, for “ordinary” formulations of optic

flow methods that yield nonlinear equation systems such as the ones in [Sch94b/WSO01a,
WSO01b, HSSWO02] that form special cases of our general energy functiofaljin (1.1), no
attempts have been made so far to develop suitable bidirectional multigrid schemes.

Multigrid Approaches in Image Processing and Computer Vision.Also for other tasks
in image processing and computer vision, bidirectional multigrid methods have been de-
veloped. In the context of photometric stereo and image binarisation Kimmel and Yavneh
[KYQ3] developed an algebraic multigrid method, while Clediral. [CCW97] researched
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geometric multigrid schemes for variational deconvolution with total variation (TV) reg-
ularisation. For TV denoising Vogel [VogB5] proposed the use of a linear multigrid
method within a nonlinear fixed-point iteration, while, very recently, Frohn-Schetauf
al. [FSHWO04] investigated a nonlinear multigrid scheme (FAS) for the same task.

» In this thesis we will develop a suitable coarse grid representation for geometric bidirec-
tional multigrid methods that is a good compromise between accuracy and efficiency. This
representation forms the basis of our general numerical framework for the construction of
efficient multigrid methods for variational optic flow techniques. Thereby both the linear
and the nonlinear case will be addressed.

1.4 Organisation and Contributions

Different parts of the work presented in this thesis have been published at conferences
[BWS02,BWF 03, WBPBO03, PBBWO03, BBPW04, BWM5,BWO05] or journals [BWSU5,
BWKSO05, PBB 06, WBBP06! BWKS06]. With respect to a better readability the main
contributions are split into four chapters — three chapters on variational methods for small
displacements and one on variational methods for large displacements.

Optic Flow For Small Displacements — Modelling

In Chapterf 2 we investigate the modelling of variational optic flow methodsiiwall
displacements, i.e. the design of variational approaches that are based on linearised con-
stancy assumptions. Thereby we show by a detailed discussion of established concepts for
both the data and the smoothness term how such methods can be constructed and how the
different strategies influence the estimation quality.

In this context, we also present four novel ideas for the data term: (i) We propose
constancy assumptions based on higher order image derivatives in order to address the
problem of additive or multiplicative illumination changes. (ii) Moreover, we suggest the
use of motion-invariant image features in order to overcome the theoretical limitation of
constancy assumptions that contain directional information. Experiments show in both
cases the superiority of the resulting data terms if compared to classical approaches based
on the image brightness [HS81]. (iii) Furthermore, we propose the combination of several
constancy assumptions within in a single data term. This keeps the model flexibly and
allows for a more reliable estimation of the optic flow if no prior knowledge on the scene
is available. In this context, we also introduce the concept of separate robustification, that
employs a robust penaliser function to each of the constancy assumptions separately. (iv)
Finally, we also extend the combined-local-global (CLG) framework that was presented
in [Bru01]. By supplementing the least squares fit of the original CLG approach with a
non-quadratic penaliser, we obtain a data term that is not only robust with respect to noise
but also with respect to outliers.

Apart from all these novelties, we also introduce a compact notation for variational optic
flow methods that is based on motion and diffusion tensors. We show how such tensors
can be derived from the data and the smoothness term, respectively, and why they carry all
essential information on the underlying optic flow approach. Moreover, we demonstrate
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why this notation not only allows for a systematic construction and implementation of
novel techniques, but also for a better understanding of existing ones.

Optic Flow For Small Displacements — Prototypes

In Chaptef B we exploit our framework of Chagter 2 and present seven variational methods
for small displacements. These methods that shall serve as prototypes for our qualitative
and numerical studies comprise two classes of techniques: five basic approaches that cover
the most popular strategies for the smoothness term [WS01a] and two advanced techniques
that address two important problems in computer vision: noise and varying illumination.
While the basic approaches are adapted almost directly from the literature, we develop
the advanced prototypes completely from scratch. By combining different concepts in-
troduced in Chaptér] 2, we thereby show how our framework for the design of variational
methods can actually be applied.

In an extensive experimental evaluation with various synthetic and real-world scenarios,
we investigate the advantages and shortcomings of the proposed prototypes. Thereby in
particular the two novel approaches yield excellent results.

A further important contribution besides the design and the evaluation of the different
prototypes is our successful approach to establislkanomyfor variational optic flow
methods based on the structure of their underlying Euler—Lagrange equations. This allows
us to reduce our numerical efforts in Chagter 4 to three main cases: a linear one and two
nonlinear ones. For all these cases we present a suitable discretisation scheme and discuss
the resulting linear and nonlinear systems of equations with respect to their coupling of
unknowns.

Optic Flow For Small Displacements — Solvers

In Chaptef # we discuss various numerical schemes for solving the linear and nonlinear
equation systems that we obtained for the three general cases in Ghapter 3. For each of
these cases we investigate the construction of four different types of solvers: (i) basic
non-hierarchical iterative solvers such as the Gaul3-Seidel method and its block relaxation
variants, (ii) advanced non-hierarchical iterative solvers such as the successive overrelax-
ation technique (SOR), (iii) unidirectional multigrid methods in form of coarse-to-fine
strategies and (iv) bidirectional multigrid methods such as ordinary full multigrid methods
and full multigrid methods based on full approximation schemes.

Since they are among the fastest techniques for solving linear or nonlinear systems
of equations, our focus lies thereby on the development obttigectional multigrid
methods In this context, we show (i) which basic solvers are appropriate, (ii) propose
a suitable pair of intergrid transfer operators and (iii) derive a coarse grid approximation
strategy that is both computationally efficient and accurate at the same time. This in turn
allows us not only to derive suitable bidirectional multigrid schemes for all our prototypes,
but also to establish a complete multigrid framework for the design of efficient hierarchical
solvers that can be applied to all variational models that are constructed in accordance with
our systematic toolkit from Chaptg} 2.

In order to evaluate the efficiency of the different numerical schemes, we perform bench-
marks for all seven prototypes with image sequences of Kigex 120. Thereby, the
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proposed bidirectional multigrid methods achieve speedups of two to four orders of mag-
nitude compared to standard numerical schemes. This in turn corresponds to frames rates
up to 63 frames per second which constitutes the first real-time computation of variational
optic flow in the literature.

Optic Flow For Large Displacements — Extensions

In Chaptef b we extend our framework for the accurate modelling and efficient minimisa-
tion of variational optic flow methods targe displacementslo this end, we introduce an
eighth prototype that is based on constancy assumptions in their original nonlinear form.
Since the resulting energy functional is nonconvex, we propose its minimisation by means
of an incremental coarse-to-fine fixed point iteration. Such a procedure postpones the lin-
earisation of the constancy assumptions from the model to the optimisation scheme. We
show that this late linearisation does not only improve the estimation quality with respect
to large displacements, but that it also allows a theoretical justification of the well-known
warping technique that has only been motivated on an algorithmic basis so far.

Not surprisingly, this theoretically sound modelling leads to excellent qualitative results.
Various quantitative and qualitative experiments show that the proposed prototype does not
only outperform all seven techniques from Chapier 3 in most cases, it even produces the
currently most accurate flow fields in the literature.

Apart from these contributions to the design and minimisation of variational methods,
we also present an efficient numerical scheme for solving the nonlinear equation system at
each incremental fixed point step. Thereby we exploit the fact that each of the systems can
be seen as a specific instance of one of the nonlinear cases in Ghapter 4. Thus it becomes
possible to generalise our framework for the design of efficient multigrid schemes also to
the case of large displacements.

This is also reflected in the corresponding efficiency benchmarks: As in the case of
small displacements, speedups of two to four orders of magnitude are achieved compared
to frequently used iterative methods. This corresponds to near real-time frame rates of
three high quality optic flow fields per second.



Optic Flow For Small Displacements — Modelling

“Even a journey of a thousand miles begins with a small step”
- Chinese saying

This chapter discusses the modelling of variational optic flow methodsvatl displace-

ments As indicated in the introduction, such methods compute the optic flow field as
minimiser of an energy functional witinearisedconstancy assumptions. Although lim-

ited in their estimation range, these methods are very interesting from an optimisation
point of view: They can be designed in such a way that the resulting energy functionals
areconvex This in turn means, that only onar{ique minimiser exists which can easily

be found by any globally convergent algorithm. Moreowee]l-posednesgesults can be
established that show the continuous dependency of the solution on both the input data
and the model parametefs [ADK99, AK02, WS01a, HSSWO02].

In the first part of this chapter we investigate the desigdaia termdfor this particu-
lar family of variational methods. Starting from our general formulation of an optic flow
functional in [1.3) we analyse different constancy assumptions and their corresponding
data terms in detail. Thereby in particular the problenmvafying illuminationis ad-
dressed. Furthermore, we show how these data terms can be modified in such a way that
they becomenore robust with respect to noise and outlieirs this context, different con-
cepts such as local least square regressions, adaptive averaging via nonlinear diffusion and
statistically robust error norms are discussed.

In the second part of this chapter we investigate the construction of differesdgthness
terms To this end, we make use of tlgfusion based taxonomy [WS01a] that links
optic flow regularisers to their underlying diffusion processes. Thereby we show in detail
how the different regularisation strategies can be derived and how they realjzesee-
vations of discontinuitiedMoreover, we discuss how the corresponding smoothness terms
can be extended to tiepatiotemporal domain.e. how the information of more than two
frames can be used to improve the quality of the optic flow field.

While discussing different solutions and presenting novel approaches for some of these
problems, we perform a variety of experiments at the same time. These experiments shall
accompany the reader through our detailed discussion and visualise the impact of all con-
cepts on the overall result in botlgaantitativeand aqualitativeway.

However, this chapter shall not only provide further insights into the design of varia-
tional methods for small displacements. It shall also serve as useful tool-kit for the con-
struction of new approaches. By introducing a modular notation based on motion and
diffusion tensors we set up general frameworkhat allows for both a simple develop-
ment and a straightforward implementation of such techniques. While in this and the next
chapter, our framework is limited to the design of methods for small displacements, its
actual generality becomes obvious in the Chagtprs 4 and 5. There, it is extended to the
development of variational methods for large displacements as well as to the systematic
design of efficient numerical schemes for both types of approaches.

15
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2.1 Presmoothing Step

Before we analyse the different assumptions and concepts for the smoothness and the data
term let us briefly discuss a common step in the computation of optic ftbe:pres-
moothing of the image datdn general, the original sequenggis thereby replaced by a
preprocessed variarftthat has been obtained via convolution with a Gaussian kétpel

of standard deviation:

[ =K * fo. (21)

This so-calledpresmoothing stepas the purpose of removing noise and other desta-
bilising high frequencies that may otherwise spoil the result. Moreover, it guarantees that
f € C>,which is in general useful to establish any well-posedness proof for the presented
methods. Since the amount of smoothing in this preprocessing step is directly related to
the noise level of the input data, the standard deviati@f the Gaussian kernel is also
referred to asoise scaldBWS02, BWS05].

The impact of such a presmoothing step on the input data is illustrated in Figlire 2.1.
Thereby it becomes obvious that a too large amount of presmoothing may be problematic
in two ways: Firstly, it removes useful details that may allow to establish better correspon-
dences and secondly, it leads to the estimation of flow fields that may not approximate the
ones for the original image sequence too well.

Fig.2.1: Presmoothing step(a) Top Left: Frame 8 of the Yosemite sequenaih clouds with
Gaussian noise of standard deviatigon= 40. (b) Top Right: Presmoothed variant with = 10.
(c) Bottom Left: Presmoothed variant with = 20. (d) Bottom Right: Presmoothed variant with
o = 40.
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2.2 Data Terms

In the design of data terms for optic flow methods prior knowledge plays an important
role. This knowledge includes information on the imaging device (e.g. the quality of the
images with respect to noise), on the conditions during the acquisition of the video mate-
rial (e.g. the occurrence of frequent illumination changes) as well as information on the
expected type of motion (e.g. mainly translational motion of cars in traffic sequences).
For a specific problem, this information may allow to select a data term that is especially
appropriate and thus improves the quality of the estimation significantly. For this reason,
the following section gives an overview on data terms that are frequently used in the liter-
ature. Moreover, a detailed discussion on their advantages and shortcomings should guide
the reader to select an appropriate data term for a specific situation.

2.2.1 Constancy Assumptions - Modelling

The first step of constructing a data term is the choice of one or more suitable constancy
assumptions. Such constancy assumptions have to be imposed on certain image features,
in order to allow the retrieval of pixels, structures and objects within subsequent frames
of the image sequence. Evidently, these image features should be chosen in accordance
with the prior knowledge on the scene, since an estimation of correspondences can only be
successful if the selected features are invariant under the prevailing illumination conditions
and the occurring type of motion. In the following we give a survey on different constancy
assumptions that proved to be useful in the context of motion estimation. Thereby we start
with the most popular constancy assumption in the literature: the brightness constancy.

2.2.1.1 Constancy Assumption on the Image Brightness

Knowing the lighting conditions to be constant from one frame to the next, a simple but
suitable choice for an invariant image sequence feature is the image brightness. To be
more precise, one can assume that the grey value of objects does not change over time.
Although this classical assumption has already been used in the prototypical approaches
of Horn and Schunck [HS81] and Nagel and Enkelmann [NE86] more than two decades
ago, it still forms the basis of many accurate optic flow techniques that have recently been
developed (see e.d. [MP02] and [BWSO05]).

Al - Constancy of the Brightness.Mathematically, the assumption of a constant image
brightness can be expressed by a single constraint. Given two consecutive frames of an
image sequence at timg andzs + 1, respectively, it can be formulated as

0 = f(z1+uw, xatug, x3+1) — f(z1, 22, 23). (2.2)

Unfortunately, this constraint omy andus is rather inconvenient: It is botfonlinearand
implicit. However, in particular with respect to the fact that we are designing data terms
for small displacements, there is an elegant way to overcome this problem: Under the
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assumption that the displacements are small and the flow field changes smoothly over
time, the left term can be approximated sufficiently well by a first order Taylor expansion
in the pointx = (21, 2, 73) "

flritur, matus, x3+1) = f(21,29,23) + fo,ur + fuuz + fi. (2.3)
Then, equatior (2} 2) simplifies to the following expression:
Jeyu1 + foyuz + [ =0 (2.4)

which is well-known as thdinearised optic flow constraintAlthough this step resolves

the problem of non-linearity and implicitness, the obtained constraint still cannot be used
directly as data term. Since we are interested in penalising all deviations from zero, we
follow the idea of Horn and Schunck and square this constraint thus obtaining the data
term [HS81| LK81]

My(D'f,u) := (uT Vs f)?. (2.5)

2.2.1.2 Constancy Assumptions on Image Derivatives

As long as the image data does not violate the brightness constancy assumption, the use of
the data term\/; will give good results. In particular with regard to image data with non-
constant brightness, however, constancy assumptions should be based on image features
that are less sensitive to illumination changes. A simple and efficient strategy in this
context is the consideration of derivatives.

A2 - Constancy of the Gradient. Instead of imposing constancy to the image brightness

f from one frame to the next, one may e.g. assume that the spatial brightness gradi-
ent(f.,, f»,)' does not change over time [TP84, UGVT88, Sch93, Tis94, ON95, For05,
PBB'06]. Since the spatial gradient is a vector with two components, we obtain two
constraints this time. They are given by

Jor (@1 +u1, Totug, x3+1) — fo (21, 22, 73), (2.6)
fa;2(x1+U/1, J,’Q"—UQ, x3+]—) - fo(l'l,l'Q,ng). (27)

o o
|

with linearised counterparts

uTV?)fm = 07 (28)
u'Vif,, = 0. (2.9)

Squaring and adding them produces the data term
2

M2(D2f7 11) = Z(UTVSfxi)2' (210)

=1
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A3 - Constancy of the Hessian.In a straightforward way, constancy assumptions can
also be imposed on higher-order derivatives, e.g. on the (spatial) HégsfarSquaring
and adding the corresponding equations we obtain the following datalterm [F63B

2 2

My(D*f,u) = > (' Vs fra,)™ (2.11)

i=1 j=1

2.2.1.3 Motion Invariant Constancy Assumptions on Image Derivatives

With M, and M3 we have proposed data terms that are designed for sequences with ad-
ditive illumination changes. However, they have a small drawback that does not become
apparent at first glance: Theoretically, their performance depends on the occurring type of
motion. This has the following reason: In contrast to the image brightness both gradient
and Hessian contain directional information — in fact, they represent contextual informa-
tion from a very small neighbourhood. As a consequence, any constancy assumption that
is imposed on these expressions implies a constancy assumption on their orientation. On
one hand, this property may be useful if it comes to the estimation of translational, di-
vergent or slow rotational motion. In this case the orientation of the features does hardly
change and the combination of two or three constraints in one data term may improve the
results. On the other hand, slightly poorer results may be obtained if fast rotations are
dominating and the implied orientation constancy does not hold.

A4 - Constancy of the Gradient Norm. A way to overcome this theoretical limitation

is to create motion invariant image features from these “oriented” derivatives. Instead of
imposing constancy on the (spatial) brightness gradient and therewith on its orientation,
one may e.g. assume that only its magnitude is constant over time. Then, the following
data term is obtained [RD96, PBBG]:

My(D*f,u) = (u' V35|V f])*. (2.12)

A5/A6 - Constancy of the Trace/Determinant of the HessianThis idea to use invariant
features can also be extended to higher-order derivatives. As an example, let us consider
the (spatial) Hessiaft, f. In this case, one may either think of imposing constancy on
the trace of the Hessian — the (spatial) Laplacisy¥ — or on the determinant of the
(spatial) Hessiaft; f. While the data term associated to the Laplacian is given by [RD96,
PBBT06, WPESO5]:

M5(D3f: u) = (uTvs(AQf))Qa (2.13)
the data term based on the constancy of the determinant of the Hessian readS¢PBB
Mg(D?f,u) == (u' Vgdet(Hyf))?. (2.14)

This example shows that in general multiple of such scalar valued expressions can be
derived from the set of derivatives of a single order. However, there is no general rule
which expression gives the best performance.
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One should note that all data terms based on derivatives can not only be used in the con-
text of additive illumination changes. If the original image sequefice replaced by a
logarithmised varianf,.., = log f, the presented concepts also work fine for sequences
with multiplicative variations of the image brightness.

2.2.1.4 Constancy Assumptions on Multiple Image Features

Until now, we have assumed that specific prior knowledge on the scene is available, i.e.
that the illumination conditions and the occurring type of motion is known. However,

in particular with respect to real-world sequences, this assumption is often not justified.

In most cases the required information can only be obtained from sample data and thus
lacks completeness. As a consequence, the selection of an appropriate feature for the data
term becomes a non-trivial task. In order to tackle this problem, one can make use of
the following strategy: Instead of focusing on a single constancy assumption one may
combine several possible candidates for the data term by means of a linear combination
[TP84,Sch93, WPESD5, PBB6]. Thus, at the expense of additional parameters, the
model becomes more flexible - it is not restricted a-priori to sequences of a single type.

A7 - Constancy of the Brightness and the GradientIn order to give an example for a

data term that considers more than one image feature, let us assume that we would like to
combine the gradient and the grey value constancy assumption. Then, the following data
term is obtained [BBPW04]:

2
M?(lev D2f7 u) =N (uTVSf)z + 72 Z(UTVSfxi)2' (215)

i=1

Here,y,; and~, are positive weights that steer the influence of the corresponding constancy
assumptions on the overall data term.

One should note that the proposed strategy may also be applied in the context of image
sequencesvith prior knowledge: In this case the combination of several (appropriate)
image features may give additional useful information compared to a data term based on
a single feature only. Consequently, the accuracy of the computed displacement field may
improve. As we will see in Sectidn 2.2.8.3, this aspect is also related to the so-called
aperture problem [BPT88].

2.2.1.5 Constancy Assumptions on Multiple Image Channels

By the example of\/; we have shown how to design data terms that can handle constancy
assumptions on multiple image features. Regarding the input data, however, we still have
restricted ourselves to image sequences with a single information channel (e.g. grey value
image sequences). Since most of todays cameras provide colour images, let us now lift
this limitation and discuss suitable strategies for generalising single-channel data terms to
a scenario with multi-channel image data.
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Tab. 2.1 Comparison of the data ternig;—Ms.

data term constancy assumption illum. changes| motion type
M, (uTVs3f)? brightness no any
translational
2
M, S (u'Vafe,)? gradient yes divergent
=1
slow rotational
translational
2 2
M; > Y (' Vs fa,)? Hessian yes divergent
i=1j5=1
! slow rotational
My (uTV3|Vf])? gradient magnitude yes any
M (u'V3(Asf))? Laplacian yes any
Mg (u' V3 det(Haf))? Hessian determinant yes any
1 (0TV3f)? brightness
My + + depends ony; and-ys
2
Yo S (u'Vsfs,)? gradient
=1
3 .
Mg > (u'Vsf;))? RGB colour brightness no any
=1

When considering image sequences with multiple channels, one is evidently interested in
exploiting all available information. Therefore, a simple conversion of the data by com-
bining all channels to a scalar-valued image sequence is definitely not the best solution.
Instead it makes much more sense to treat all channels separately and recombine the result-
ing constraints in a common data term. This does not only allow to preserve the additional
information, it also enforces the computation of a joint displacement field for all channels.
Let us illustrate this proceeding by the example of the brightness constancy assumption.

A8 - Constancy of the Brightness for Multiple Channels.Let f(x, 25, x3) : Qo X T —
R™ be a multi-channel image sequence withlifferent channels(,y, ..., f,). Then, the
data term for the generalised brightness constancy assumption reads

Mg(D fy, ooy D iy ) =D i (0" Vi fi))? (2.16)
i=1

Here,u; are positive weights that steer the influence of the different channels.
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One should note that in the case of RGB sequences these weights are often set to 1. This
intuitively makes sense, since the red, blue and green channel should have similar impact
on the result. If the channels, however, are not directly comparable in their meaning (e.g.
YUV images) or have been obtained from different sources (e.g. from colour and infrared
sensors) then adjusting these weights adequately may significantly improve the results.

An overview of all data terms presented so far is given in Tablg 2.1. Thereby one
should note that data terms based on higher orders of image derivatives are in general
more sensitive to noise than assumptions based on the original data itself.

2.2.2 Constancy Assumptions - Experiments

After we have discussed a variety of possible constancy assumptions, let us now illustrate
their impact on the computed flow field by means of two experiments. To this end, we
consider the data termg;—M g within a spatial energy functional based on homogeneous
regularisation of Horn—Schunck type, i.e. we minimise

E;(u) = /Qz (Mj +a Zi: \Vui\Q) dx (2.17)

for j = 1,...8. In order to allow for a quantitative comparison of the results we computed
the so-callecaverage angular error (AAEHBFEB94] in all cases. It can be calculated via

1 T
AAE(u.,u,) = — [ arccos Yele ) iy, (2.18)
2| Ja, e |[u|

where the subscriptsande denote the correct respectively the estimated spatiotemporal
optic flow vectorsu, = (u.,ue,1)" andu, = (uer, e, 1)". In this context,|Qy| =
fQ2 dx stands for the integration domain, ahddenotes the Euclidean norm given by

lu| = \/u? +u3 + 1. For a qualitative evaluation of the computed flow fields we have
used the colour representation shown in Figur¢ 2.2. While the colour itself indicates the
direction of the displacements, the brightness expresses their magnitude.

e o
iy
_,

Fig.2.2 (a) Left: Colour code. (b) Centre: Flow field in vector representation(c) Right:
Corresponding colour representation (boundaries contain the colour code).
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2.2.2.1 Experiment I: Translational and Divergent Motion, Varying lllumination

In our first experiment depicted in Figyre .3 we consider the fanYossmitesequence

with clouds. It consists of 15 frames of si2&6 x 252 pixels and combines divergent and
translational motion under varying illumination. Both the sequence and its ground truth
flow field are available fronftp://csd.uwo.ca under the directorypub/vision

For evaluating the performance of the colour constancy assumptign We also created

a RGB variant with orange mountain-site and blue sky. While the chosen colours reflect
additional knowledge on the segmentation of the final flow field, they have the same grey
values as the original sequence (if converted back).

The results obtained for optimised Gaussian presmoothing paramétér equation
(2.7)) and regularisation parameteare presented in Table 2.2. Moreover, in the case of
the combined data ter@v,, also the optimised values for the weightsand~, are listed.
Comparing the achieved angular errors, the following three observations can be made:

e Usefulness of Image Derivatives under Varying Illluminatibinstly, we can see that
the commonly used brightness constancy assumption is outperformed by almost all
other constraints that involve higher derivatives. This is not surprising, since the
sequence was chosen in such a way, that illumination changes are present. The poor
performance of the brightness constancy assumption is also reflected in the result
for the combined data terd/,;. Here, the average angular error is only marginally
better than for the pure gradient constancy assumptign

e Usefulness of Directional Information for Translational and Divergent MotiSac-
ondly, if we compare the results for the gradient constancy assumption and the gradi-
ent norm constancy assumption, one can see that the additional directional informa-
tion helps to improve the accuracy of the estimation. In this context we also observe
that constancy assumptions based on higher order derivatives require a larger stan-
dard value for the standard deviatiernn order to give optimal results. This reflects
the increased sensitivity of the underlying constraints to the influence of noise. In
contrast, the significantly varying values ferhave a much simpler reason. They
are simple caused by the different range of values of the different image features.

e Usefulness of Colour InformationFinally, when comparing the average angular
error for the colour and the grey value constancy assumption, one can observe a
slight improvement of the result. This is a consequence of the additional colour
information, that allows a slightly better distinction of the two motion patterns in
the mountain region and the sky than in the case of the original grey value sequence.
Thereby one should keep in mind that, due to the occurring illumination changes in
the region of the clouds, assumptions on the original grey/colour values of the image
sequence are not optimal.

These quantitative impressions are confirmed qualitatively by the corresponding flow fields
shown in Figurg 2]3. Whilé/, and M5 give slightly better results at the mountain site,

the other data terms are significantly superior in estimating the sky region where illumi-
nation changes are present. This shows once more that it can be worthwhile to replace the
brightness constancy constraint by constraints that involve higher derivatives, in particular
when varying illumination has to be expected.
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Fig.2.3 Experiment |: Impact of the constancy assumption on the quality of the flow field
for translationalanddivergent motiorwith varying illumination (a) Top Left: Frame 8 of the
Yosemitsequencevith clouds of size316 x 256 pixels (colour variant)(b) Top Centre: The same
frame of the original sequence (grey-scale variaul) Top Right: Ground truth (vector plot)d)
Upper Middle Left: Ground truth (colour plot)(e) Upper Middle Centre: Computed flow field

for a spatial approach with data terhf; (brightness constancy) and homogeneous regularisation.
(f) Upper Middle Right: Data termM, (gradient constancy)(g) Lower Middle Left: Data
term M3 (constancy of Hessianjh) Lower Middle Centre: Data termM, (gradient magnitude
constancy).(j) Lower Middle Right: Data termA/5 (constancy of Laplacian)j) Bottom Left:
Data termM;g (constancy of Hessian determinarn(®) Bottom Centre: Data termM; (brightness
and gradient constancy()) Bottom Right: Data termMg (colour constancy).
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Tab.2.2 Experiment |I: Impact of the constancy assumption on the quality of the optic flow
field for translationalanddivergent motiorwith varying illumination We used a spatial energy
functional with homogeneous regularisation, and computed the average angular error (AAE) for
the Yosemitesequencevith clouds. The parametess o, v; and~y; have been optimised.

| dataterm | constancy assumption | o | a [ AAE |
M, brightness 1.30 500 7.17°
Mo gradient 2.10 20 5.91°
Ms Hessian 2.70 1.8 6.46°
My gradient magnitude 1.90 14 6.37°
Ms Laplacian 2.50 3.0 6.18°
Mg Hessian determinant 3.00 0.1 8.10°
M brightness + gradienty( = 0.01,72 = 1) 2.10 21 5.87°
Mg RGB colour brightness 1.20 | 2400 || 7.10°

2.2.2.2 Experiment II: Rotational Motion

For our second experiment we chose$tewly Rotating Texturgequence shown in Figure
[2.4. It consists of 10 frames of siz@7 x 127 pixels and depicts a green textured disc that
rotates in front of a blue background with similar texture. The angle of rotation between
two consecutive frames of the sequence is given by 5 degrees. Therefore, as desired, the
displacements remain relatively small — at least at locations that are sufficiently close to
the centre.

As for our first experiment, the optimised results with respect to the parameters;
and~, are listed in a table (TabJe 2.2). Here, the following two observations can be made:

e Not Necessarily Advantages by Motion-Invariant Image Featukesstly, we can

see that the data terms based on motion-invariant image features are not necessarily
better than those based on directional information. Although this observation may
be surprising at first glance, it has a simple explanation: Since the angle of rotation
is only five degrees, the property of motion-invariance does not play a significant
role. In fact, in the case of this heavily textured sequence, it is more important to
consider structural (neighbourhood) information. This can simply be done by using
assumptions on derivatives. As a consequence, the classical data term based on the
image brightness is once again outperformed by all other constraints.

e Usefulness of Colour InformationSecondly, one can observe that the additional
information provided by the colour version of the image sequence is seemingly very
useful. Comparing the images of the original and the grey-value sequence, one sees
that the rotating disc is hardly distinguishable from the background if no colour
information is present. Since moreover, the motion discontinuity coincides with
the object boundary, this information is particularly helpful to improve the results
(correspondences within one colour a favoured).

Also in this case, most of our considerations are confirmed by the corresponding flow
fields. Evidently, all data terms are capable of estimating the displacements close to the
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Fig.2.4 Experiment Il : Impact of the constancy assumption on the quality of the flow field
for rotational motion (a) Top Left: Frame 2 of theSlowly Rotating Textursequence of size
127 x 127 pixels (colour variant).(b) Top Centre: The same frame of the converted sequence
(grey-scale variant)(c) Top Right: Ground truth (vector plot)(d) Upper Middle Left: Ground
truth (colour plot).(e) Upper Middle Centre: Computed flow field for a spatial approach with data
term M (brightness constancy) and homogeneous regularisdfiodpper Middle Right: Data
term M, (gradient constancy)g) Lower Middle Left: Data termi/3; (constancy of Hessian{h)
Lower Middle Centre: Data termM, (gradient magnitude constancyj). Lower Middle Right:

Data termM; (constancy of Laplacian)(j) Bottom Left: Data termMg (constancy of Hessian
determinant)(k) Bottom Centre: Data termM~ (brightness and gradient constandy) Bottom
Right: Data termMg (colour constancy).
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Tab. 2.3 Experiment Il : Impact of the constancy assumption on the quality of the optic flow field
for rotational motion We used a spatial energy functional with homogeneous regularisation, and
computed the average angular error (AAE) for 8lewly Rotating Textursequence in Figufe 2.4.
The parameters, «, v; andvy, have been optimised.

| dataterm | constancy assumption | o | a [ AAE |
M, brightness 2.60 50 12.15°
M, gradient 3.50 1.8 11.47°
M3 Hessian 3.50 0.5 11.93°
My gradient magnitude 3.80 0.5 11.84°
Ms Laplacian 460 | 0.05 | 11.68°
Mg Hessian determinant 3.30 0.5 11.74°
M~ brightness + gradient v( = 0.05,72 = 1) 3.10 | 100 11.26°
Msg RGB colour brightness 2.10 | 410 10.62°

centre in an accurate way. However, with increasing distance to the center, the quality
of the estimation becomes worse since the displacements get larger. In particular, at the
motion boundary, the differences between the approaches can be seen. Thereby, the data
term based on the colour information gives also visually the best impression (hardly over-
estimates).

2.2.3 Constancy Assumptions - The Motion Tensor Notation

In Sectior] 2.2.]1, we have formulated any data term based on one or multiple linear con-
straints as a (weighted) sum of inner products between the spatiotemporal flow vector
u = (u,us,1)"T and the spatiotemporal gradient of the corresponding image features
that are assumed to be constant over time. In order to simplify the notation further
and in order to understand the local properties of the different data terms in a better
way, let us now extend this formalism by introducing the concepinotion tensors
[BGW91,Ah93] SAHIL, Far01, BWKS06].

2.2.3.1 The Motion Tensor for One Constraint

Let us first illustrate the concept of motion tensors by the example of the brightness con-
stancy assumption. Since this assumption is based on a single constraint only, it can easily
be reformulated as the following quadratic form:

M (D'fu) = (u'Vsf)2=u' V3fVsf u=:u" Ji(Vsf) u (2.19)

Evidently, thesymmetric positive semidefiniiex 3 matrix J,(Vsf) := V3fVsf T con-

tains all necessary information to describe the constraint on the local solution imposed by
M. Therefore, in the following, we will refer to it as theotion tensothat is associated

to the data ternd/;. In fact, such a motion tensor can be derived in the same way also for
all other data terms based on a single constraint (&.g.M\5 and Mg).
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2.2.3.2 The Motion Tensor for Multiple Constraints

After we have seen how to construct motion tensors for data terms with a single constraint,
let us now generalise this idea to data terms with multiple constraints. This extended case
applies to the data term¥,, M3, M, and Mg. To this end, we consider an arbitrary data
term that can be represented by the weighted sumszfuared linearised constraints on

the image features, ..., p,. Then, the corresponding motion tensor can be obtained from
the quadratic form

;%‘ (uT Vgpz')Q — ;% (uT V3 pi V?,p;r 11) = ;% <uT T(Vsps) u)

constraint tensor

J/

general motion tensor

= u' (Z% J<V3pi)> u= UTJ(V?)pl,--,Vspn) u,
i=1

20)

wherevy,, ..., v, are the (positive) weights of the different constraints.

As one can see, each of the constraints contributes with exactly one matrix (constraint
tensor) to the common motion tensor. Since each of these&matrices isymmetric pos-
itive semidefinitédy construction and this property is preserved under weighted averaging,
it is also shared by the general motion tensor.

One should note that from a statistical point of view such combined data terms are noth-
ing else tharordinary least squares fitfOLS) with respect to the considered constancy
assumptions. This can be easily verified by reformulating them as

Z’% (uT v3pi)2 = Z'yl ((u17u27 1) (pi:p17pix27pirg)T)2 (221)
=1 =1

= > (w1, 12) (Vi Piay VA Piay) T = (= Vi Piay)”

=1
V1P, /71 Play < y ) — /1 P1ay
. . 1 .

U2

v In pnxl vV Tn pnx2 RV Tn pnxg

| Afi — b?

2.2.3.3 The Local Interaction Between Data and Smoothness Term

So far the motion tensor notation did only allow for a compact formulation of the data term.
However, it may also serve as a tool to obtain information on the local interaction between
the data and the smoothness term. In order to understand this interaction, it is important to
know if the local information of the data term is sufficient to determine the two unknowns
u; andusg, at a point(xy, z9, 3) uniquely or not. Let us therefore first discuss how the
local minimiser of the data term can be computed and then how the motion tensor notation
can provide us with a reliable indicator for its uniqueness.
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The Local Minimiser of the Data Term. In order to determine the local solution of the
data term, one has to minimise it. This can be done by setting its partial derivatives with
respect ta;; andu, to zero and by solving the resultifgx 2 system of equations. For a
general data term of typg (2]20) this system is given by

n 2 n n
i=1 Vi Pig i=1 Vi PigyDig, U = 2i=1 Vi Pig Dig.
( D ic1 Y 1 D1 Y )( 1>:< dic1 Y 5>’(2.22)

Z?:l Yi PigyPig, Z?Zl Vi pii Ua - Z?:l Yi PigoPig,
ATA u ATb
where the resulting equations are referred to as the so-acadledal equationgSBO0Z].

If we denote by.J,.,.(Vsp1,.., Vs p,) the entry of the general motion tensor at position
(n,m) this system can be reformulated as

Ji(Vapi,..Vspn) J12(Vspi, ... Vspy) ur '\ —J13(Vsp1,...V3py) (2.23)
J12(Vsp1, . Vapn) Joo(Vspr,..,.Vsp,) Us —Jo3(Vsp1,..,.V3py) o

Since this2 x 2 matrix carries allspatialinformation of the full motion tensor, we will
denote it in the following as thgpatial motion tensorEvidently, this system can only be
solved uniquely, if this spatial motion tensor is invertible.

Interpretation of the Eigenvalues. In order to determine if the spatial motion tensor is
invertible and in order to obtain some additional information on the local solution of the
underlying data term, let us take a look at the eigenvalue decompositibh4f Let such

a decomposition be given by

Ju(Vspr, ., Vspn) Ji2(Vapi, ...Vip,) At O T
= (v1,V2) (vi,v2) ',
J12(Vsp1, ., Vspn) Jo2(Vapi,...Vapy,) 0 A

(2.24)
where \; and \, denote the eigenvalues (w.l.o.g. let > )\;) andv; andv, are the
corresponding orthonormal eigenvectors. Then, three different cases of solutions of the
data term can be distinguished which depend onrdh& of this tensor:

e Rank 2 — Optimal RankThe spatial motion tensor is invertible and the data term
offers a locally unique solution. Thereby the two non-zero eigenvalues indicate
that at least two of the image features ..., p, vary in different spatial directions.
This in turn means that the corresponding spatial gradi€ats andV,p; of these
two features ardinearly independent Since each of these constraints allows to
recover exactly the flow information parallel to its spatial feature gradient (aperture
problem), these two linearly independent constraints are sufficient to determine the
two unknownsu; andus uniquely. The corresponding solution is then given by

i=(ATA)ATb. (2.25)

This case is illustrated in Figufe 2.5 (a). Here two features — the horizontal and the
vertical line — provide a unique solution of the data term.
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e Rank 1 — Rank Deficiency of The spatial motion tensor is not invertible. Since
at least one solution of the underlying least square fit must exist, this means that
the data term has infinitely many solutions and is thus locally non-unique. Thereby
the fact that only one eigenvalue is non-zero shows that all spatial feature gradients
Vaps, .., Vap, arelocally dependentout at least one of them gives information i.e.
di e {1,.,n} : Vyp; # 0. Exactly in direction of this non-zero feature gradient, the
component of the optic flow can be computed. Since this projection constitutes the
solution with the smallest Euclidean norm, it can be computed gssinedo normal
solution[Pen56] of the normal equations [n (2/22), i.e. as

= (A"TA)TAb, (2.26)

where(A' A)* is the Moore-Penrose pseudoinvefse [Pen56, HJ94] 0f1). While

the component in direction of the non-zero feature gradient can be computed, the
component orthogonal to it cannot be determined. This results amdnguityof

the solution of rank-1 spatial motion tens@i®ng a line This case is illustrated

in Figure[2.% (b). Since only one image feature — the vertical line — is available,
not more than the flow component in direction of the corresponding feature gra-
dient can be computed (represented by the green arrow). However, also all other
displacements that map the left point to one of the points on the right line are valid
local solutions of the data term.

One should note that the classical aperture problem resulting from the brightness
constancy assumption that was discussed in the introduction is only a special case
of this scenario: If only one constraint is used, it is evident that this constraint cannot
be sufficient to determine the two unknownsandu, uniquely. The component of

the optic flow that can be computed in this case — the component in direction of the
non-zero brightness gradient — is known asribemal flow

e Rank 0 — Rank Deficiency of 2ZT'he spatial motion tensor is not invertible. As
in the previous case the data term has infinitely many solutions and is thus locally
non-unique. Since both eigenvalues are zero, this means that there are no spatial
variations of the image features, ig,, = 0 andp;,, = 0. As a consequence, all
entries of the spatial motion tensor and the right hand side become zero. This in turn
means that all values far, andu, are local solutions of the data term. Thus, we
have arambiguityof the solution of rank-0 spatial motion tensarshe whole image
plane This case is illustrated in Figufe 2.5 (c). Since no information is available,
the correspondences may lie everywhere.

The preceding analysis of the eigenvalues shows the close relation between the rank of the
spatial motion tensor and the uniqueness of the solution. Moreover, it allows to interpret
the corresponding space of solutions geometrically. However, this analysis has also one
drawback: In the case of a unique solution it does not give sufficient information to decide
on its reliability. It does not distinguish solutions that are in accordance with all local
constraints and thus yield a very small contribution of the data term to the whole energy
functional and solutions that violate one or more constancy assumptions severely and thus
yield to large local contribution. In order to obtain this information, one has to compute
the local solution first and then to use it to evaluate the local contribution of the data term.
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Fig. 2.5 Visualisation of the three cases for the solution of the data term depending of the rank
of the spatial motion tensofa) Left: Optimal Rank. Unique solution determined by two linearly
independent feature gradients (horizontal and vertical lifle).Centre: Rank Deficiency of 1.
Non-unique solution due to one feature gradient only (vertical line). At least the normal compo-
nent is computable (green arrow}) Right: Rank Deficiency of 2. No information is available.
Correspondences may lie everywhere.

This shows that for a better understanding of the contribution of the data term the rank of
the spatial motion tensor is very important. Unfortunately, the actual rank of this matrix
depends on the local structure of the image sequence and thus cannot be computed in
advance. However, it is at least possible to determine its maximum rank. In most cases
this gives already a good impression on the behaviour of the data term.

Relevance of the Rank Deficiency Problem for Variational Approaches.Of course,
variational approaches do not suffer from the rank deficiency problem: They regularise a
possibly non-unique local solution of the data term by additionally imposing (piecewise)
smoothness of the result. Nevertheless, the information given by the rank of the spatial
motion tensor is still very useful: It determines, whether the regulariser is locally domi-
nating and if the data term can be fulfilled in accordance with the smoothness constraint.
While data terms based on spatial motion tensors with a maximum rank of 1 can some-
times be fulfilled without contradicting the smoothness term (e.g. if both constraints are
orthogonal [NE85]), data terms based on spatial motion tensors with rank 2 may provide
their own solution and thus seek for a real compromise with the regulariser.

An overview of the different motion tensors associated to the data terms presented so
far as well as the maximum rank of their spatial motion tensors are given in[Table 2.4.

2.2.4 Constancy Assumptions - Experiments ||

In the previous section we have discussed the importance of the rank of the spatial motion
tensor for the local interaction between the data and the smoothness term. Unfortunately,
we could only compare the proposed motion tensors byrtiwe@munrank of their spatial
counterparts. For a specific image sequence, however, we can go one step further and
evaluate theiactualrank. This shall be done in the next experiment.
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Tab. 2.4 Comparison of the motion tensafs—Js and the rank of their spatial motion tensors.

motion tensor constancy assumption| rank
J1 V3fVsf' brightness <1
2
J2 (Vs fz,)(Vafa) " gradient <2
i=1
2 2
I3 > (Vsfeie;)(Vafoiw,) Hessian <2
i=1j=1
J Usy Vofu vy Sffg)iffé 3o /e Vs fsp) gradient magnitude | <1
Tl T2
2 2 .
J5 (V3 Y faiz)) (V3 Y faiay) Laplacian <1
i=1 i=1

(fle’gv?)fl‘lxl +f1‘13!}1 V3f$2:132 _2fmlxgv3fx1:v2)
Jg Hessian determinant | <1

(fxgxgv?)leml +f:l‘1x1 V3fx2x2 _2fx1xgv3fx1x2)—r

brightness
2
J7 4! v?).]cvi%fT + 72 Z (ngmJ(ngxl)T + <2
i=1
gradient
3
Js S (Vafu)(Vafay) " RGB colour brightness| < 2

=1

2.2.4.1 Experiment I: The Rank of the Spatial Motion Tensor

In this experiment, we compare thetualrank of the spatial motion tensors associated to
Ji1-Js for the Rotating Spheresequence depicted in Figyre [2.6. This sequence consists of
20 frames of sizé50 x 150 and shows a rotating sphere in front of a stationary background.
The texture of the background is thereby chosen in such a way that it only changes in one
direction and the aperture problem is present. The sequence as well as its ground truth are
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available at the internet address/w.cs.otago.ac.nz/research/vision/ . The
computed rank maps for all spatial motion tensors are presented in Figure 2.6. As treshold
for both eigenvalueg; and )\, a treshold of 0.01 was used. In the case of unique solution
(rank 2), we moreover also distinguished between the case, where the data term is close to
zero (green) and where the constancy assumptions are locally violated (red). The depicted
rank maps allow the following observations:

e Low Textured Areas Require Regularisatids one can see, all constancy assump-
tions have problems to overcome the rank deficiency problem in the background. In
particular, the spatial motion tensor associated to the datat&r(oonstancy of the
determinant of the Hessian) is almost everywhere of rank zero. This shows, that the
determinant of the Hessian is a very sparse feature. This is intuitively clear, since
this feature already becomes zero if one eigenvalue of the Hessian is zero (not to
confuse with the eigenvalues of the motion tensor).

e Usefulness Of Additional Constraintgloreover, the presented rank maps show that
motion tensors of rank 2 really provide additional information: They can overcome
the rank deficiency problem in almost the whole sphere. Only at a very few locations
at the boundary of this sphere the constancy assumptions are actually violated. This,
however, is evident, since due to the rotational motion new parts of the sphere appear
and disappear.

This experiment demonstrates that the consideration of multiple constraints can be worth-
while in certain situations. However, it also shows that additional constraints cannot pro-
vide additional information where no additional information is available (e.g. in the back-
ground).

2.2.5 Robust Data Terms - Modelling

After we have chosen one or more suitable constancy assumptions for our task, let us
now discuss by the example 8f; (brightness constancy) ard-, (brightness and gradi-

ent constancy) how the corresponding data terms can be modified such that they become
more robust. To this end, we investigate three different stratelyieat least squares fit-

ting, adaptive averaging with nonlinear diffusi@ndnonquadratic penalisatianWhile

the first two concepts improve the performance for corrupted data (e.g. for noisy image
sequences), the third one renders the estimation more robust with respect to violations of
the model assumptions (e.g. with respect to appearing or occluded objects).

2.2.5.1 Local Least Squares Fitting

A useful strategy to make optic flow estimation more robust under noise is the consid-
eration of neighbourhood information within the data term [BWS02, BWSO05]. To this
end, one may e.g. assume that the optic flow is constant within some spatial or spatiotem-
poral neighbourhood of fixed size. Then, simple statistical methods such as least square
regressions can be applied to estimate the flow vector from the considered neighbourhood
[LK81]. This yields so-calledombined local globalCLG) methods[[BWS02] that com-

bine the robustness of local approaches with the density of global variational approaches.
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Fig.2.6. Experiment |: Impact of the constancy assumption on thak of the spatial motion
tensor Visualisation of the actual rank by colouBlack - Rank deficiency of 2.Blue - Rank
deficiency of 1.Green- Optimal Rank (no constancy assumptions violat&thd- Optimal Rank
(constancy assumptions violate@) Top Left: Frame 10 of th&kotating Sphereequence of size
200 x 200 pixels (colour variant).(b) Top Centre: Grey-value variant(c) Top Right: Ground
truth (vector plot)(d) Upper Middle Left: Ground truth (colour plot)(e) Upper Middle Center:
Rank map for motion tensaf;, (brightness constancyjf) Upper Middle Right: Motion tensor
Jo (gradient constancy)(g) Lower Middle Left: Motion tensorJs (constancy of Hessian)h)
Lower Middle Center: Motion tensorJ; (gradient magnitude constancyfi) Lower Middle
Right: Motion tensorJ; (constancy of Laplacian)j) Bottom Left: Motion tensor.Js (constancy
of Hessian determinant)(k) Bottom Center: Motion tensor.J; (constancy of brightness and
gradient). (I) Bottom Right: Motion tensor.Jg (constancy of colour brightness; used for colour
version of the sequence).



2.2 Data Terms 35

In this context it is common to decrease the weight of neighbouring constraints with in-
creasing distance to the center, e.g. by performing a Gaussian weighted least squares fit.
This reflects the additional assumption that information obtained further away from the
centre of integration is less reliable than information acquired closer to it.

R1 - Least Squares on the Brightness Constancy.et us now apply such a Gaussian
weighted least square fit to the data term for the brightness constancy assumption given by
M;. Then, the corresponding data term reads

My(D*f,u) :=u' Jo(Vsf)u, (2.27)

where the new motion tensdy is obtained from the original oné via componentwise
convolution with a Gaussiaft, of standard deviatiop:

Jo(Vsf) = K, % Ji(Vsf). (2.28)

Since the standard deviation determines the area over which neighbourhood information
is locally integrated, this parameter is also referred tmeegration scaldBWS02].

In fact, for a non-zero integration scale, the proposed data term can be used as a stand-
alone version of a local differential optic flow method. This is due to the fact that such
methods are also relying on additional constraints from the neighbourhood to overcome
the rank deficiency problem [LK81, BGWO1, SAH91]. If, however, no integration is
desiredp can be set to zero. Then, the proposed least square fit by minindisjrmpmes
down to the original data term/;.

In general, the strategy of local least squares fitting can also be applied to all other
data terms presented so far. However, one should note that in the case of the brightness
constancy assumption, the associated motion tensor is very special: It coincides exactly
with the well-knownlinear structure tenso(see e.g.[[BGW91, FG87, RS91].

2.2.5.2 Adaptive Averaging with Nonlinear Diffusion

Although the preceding integration of local information by means of a Gaussian convolu-
tion is a good concept for achieving robustness under noise, the integration relies on the
underlying assumption that the optic flow field is constant within the local neighbourhood
described by the Gaussian kernel. Evidently, this assumption is not valid if the area of in-
tegration contains any discontinuities with respect to the flow field. As a consequence, the
Gaussian convolution compromises the flow estimation in these cases and the quality of
the result becomes worse. As a remedy, one can assume that the flow field pseaely

wise constant. Then, one replaces the non-adaptive averaging scheme of the local least
squares fit[(2.28) that is based on Gaussian convolution — or equivalently linear diffusion
— by an adaptive one [WBO0R2, BWO02] that uses nonlinear tensor-valued diffusion instead.
Since nonlinear diffusion reduces the amount of smoothing at discontinuities, it avoids the
integration of unrelated data beyond these motion boundaries. Consequently, it leads to
less ambiguity in the least square regression.
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R2 - Adaptive Averaging of the Brightness Constancy.Since the motion tensor is a
matrix field, a matrix-valued scheme for nonlinear diffusion is needed. Such a scheme is
proposed in[[TDO01] where the matrix channels are coupled by a joint diffusivity. Using
the motion tensor/; (V3 f) associated to the grey value constancy assumption as initial
value for the nonlinear diffusion process

3

Oty = v (g( D IVIP)V) () =1,2,3) (2.29)

k=1

the solution/; (V3 f, t) constitutes the computed motion tensor for a certain diffusion time

t. This diffusion time is the scale parameter of the new motion tensor. It is similar to the
standard deviation of the Gaussian kernel used in the least squdres fit (2.28) and thus steers
the size of the local neighbourhood. The so-called diffusivity functios a decreasing
function that reduces the amount of smoothing at discontinuities in the data. An appropri-
ate choice for it is, for instance, the regularised TV diffusivity [ROF92, NS98] given by

1
2\/s2 + €’
where the small positive constatyf is introduced for theoretical reasons and in order to
avoid unbounded diffusivities. In practice this constant can be set to a very small value,
e.g. tol073.

Let us now apply this nonlinear averaging scheme to the motion tensor of the brightness
constancy assumptiod{;). Then, we obtain the data term

9(s*) = (2.30)

Myo(D'fou) = u” Jio(Vsf) u, (2.31)

where the new motion tensor is obtained from the original one by the matrix-valued non-
linear diffusion process described above with diffusion time

Jio(Vsf) = J(Vsf,1). (2.32)

As in the case of the local least squares fit, this adaptive averaging scheme can be applied
to all other data terms presented so far. However, also in this case the brightness constancy
assumption is somewhat special: It yields the so-calt@dinear structure tensdiWB02,
BWOZ]. Alternative ways of creating adaptive tensor schemes are studied in [NG98] and
[BvdBL "06]. Of course, also these concepts can directly be used to create discontinuity-
preserving motion tensors.

A final aspect that is worth noting is, that if one chooses the diffusivity function

g9(s*) =1, (2.33)

one ends up with homogeneous diffusion, which does not adapt to the data. Homogeneous
diffusion with diffusion timet is equivalent to Gaussian convolution with standard devia-
tion p = v/2t. This shows the direct relation between the employment of the non-adaptive
averaging inJy = K, = J; and the adaptive one ih, = J; ().
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2.2.5.3 Nonquadratic Penalisation

So far we have only considered data terms that penalise deviations from constancy as-
sumptions in a quadratic way. From a statistical viewpoint, however, it seems desirable
to penalise outliers less severely than in a quadratic setting. In particular with regard
to the preservation of discontinuities in the data term, this concept from robust statistics
[HRRS86/ Hub81] proves to be very useful; see e.q. [BA91, HSSW02, MP98a,/AK02]. In
order to guarantee well-posedness for the remaining problem and allow the construction
of simple globally convergent algorithms it is advantageous to use penali¢etsthat

are convex irs. Such penalisers comprise e.g. the regularisedorm given by

Up(s?) = 1/s2+ €2, (2.34)

whereep, is a small positive constant.

In Figure[2.7 the graphs of the corresponding functions are depicted. Apart from TV
penalisation also an example for a nonconvex function is shown. Although such penalisers
are more robust from a statistical viewpoint, they result in energy functionals that have
multiple minima. As a consequence, minimisation strategies do usually not succeed in
finding the global minimum, which in turn makes the minimisation a non-trivial task.

Fig.2.7 Comparison of different penalising functionga) Left: Tikhonov (quadratic). (b)
Center: Total variation (linear)(c) Right: Example of a nonconvex function.

R3/R4 - Nonquadratic Brightness Constancy/Least Squares on Brightness Constancy.
Let us demonstrate this robustification strategy by replacing the quadratic penaliger in
(brightness constancy) ard, (least squares on brightness constancy) by one of the pro-
posed convex functions. Then, we obtain the following data terms:

My (D'f,u) = Wp(u'Ji(Vsf)u), (2.35)
My(D'f,u) == Wp(u'Jo(Vsf)u) (2.36)

— W (" (K, * H(Vsf) ).

Please note that the data telfi, (D' f, u) is thereby of particular interest, since it extends
the already noise robust local least square fit of CLG methods [BWS02] by an additional
robust concept.
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R5/R6 - Joint/Separate Robustification of the Brightness and Gradient Constancyn

the case of a single constraint, the realisation of the non-quadratic penalisation is straight-
forward. If the data term, however, is based on multiple constraints, the robustification
becomes more complicated. In particular the problem occurs how the different terms shall
be penalised. In this context, two different strategies that can be used:

() Joint Robustification The basic idea of the joint robustification strategy is to con-
sider the whole data term as one entity that represents all constancy assumptions
that are imposed on the image data. Consequently, all assumptions are robustified
jointly — by applying a single robust function to the complete data term [BBRWO04].

(i) Separate Robustificatiomn contrast to the joint concept, the separate robustification
strategy considers all constancy assumptiona@espendentonstraints that can be
fulfilled or violated separately. From this point of view it obviously makes more
sense to robustify each constancy assumption individually [BWOS5].

Let us illustrate both concepts by the example of the combined dataMer(brightness
and gradient constancy). While the data term based on a joint robustification is given by

Mys(D'f,D*f,u) = Up(u'Jz(Vsf)u) (2.37)
— O (w71 (V) + 92 Vi) )
= Up (’71 (UTV3f)2 + e Z(uTVSfa:i)Q)a

i=1

the one based on the separate strategy reads

My (D'f,D*f,u) = ~ ¥Up,(u'Ji(Vsf)u) + 72 ¥p,(u' S(Vsf)u) (2.38)
2

= v Up, ((uTvsf)2> + 72 \I’D2<Z(UTV3JC’“)2)'

=1

Since in the case of the separate robustification two non-quadratic functions are required,

this gives us one additional degree of freedom. However, if both constancy assumptions

can be expected to give the same types of outliers — this is obviously the case for the

brightness and the gradient constancy assumption — they should also be treated equally.
Therefore it makes sense to use the same fundtips- ¥, = ¥p, to penalise deviations

from both constancy assumptions.

One should note that unlike the quadratic data tetfysand M, the non-quadratic
onesM;,-Mi, have no motion tensor equivalent. This is due to the fact that, evidently,
they cannot be written as a quadratic form. However, the motion tensor notation may still
be useful: As part of the quadratic argument of the non-quadratic penaliser, the motion
tensor still allows to decide, whether the rank deficiency problem is locally present or not.

An overview of all robust data terms presented so fds<)/,,) and their capability of
handling discontinuities in the data is given in Tgblg 2.5.
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Tab. 2.5 Comparison of the robust data terg—M 1 4.

data term concept discontinuities
Mo, u' (Kp * Jl(v;gf)) u least squares no
Mo u' J1(Vaf,t)u nonlinear diffusion yes
M4 N <uTJ1(V3f)uT)) nonguadratic penaliser yes

least squares
M, U (uT (Kp s Jl(ng)) u) + yes
nonguadratic penaliser

nonguadratic penaliser

Mis | o (uT (71 N(Vaf) + 2 J2<v3f)> u> (joint robustification) yes

-
n ¥, <u S1(Vsf) u) nonguadratic penaliser

M4 + o yes
Y2 ¥p, (uTJQ(v3 f) u) (separate robustificatiory)

2.2.6 Robust Data Terms - Experiments

After we have discussed different strategies for rendering the data term more robust with
respect to noise and outliers in the image data, let us now investigate their impact on the
quality of the computed flow field. This shall be done in the following two experiments.

2.2.6.1 Experiment I: Gaussian Noise

In our first experiment we compare different data terms regarding their robustness under
noise. To this end, we have added Gaussian noise with zero mean and varying standard
deviationo,, to the Yosemite sequenuath clouds. In addition to the data terid; (bright-

ness constancy), we considered its robust variafitand M, that are both based on the
concept of local integration (least square fit and nonlinear diffusion, respectively). More-
over, we chose withi/; (gradient constancy) a data term, that shall represent the behavior

of constancy assumptions that are based on derivatives of the image sequence. The results
obtained for the different data terms and noise levels are presented in Tdble 2.6. They
show the following two facts:

e Usefulness of Local Integration under Noi§&mparing the results at/,, My and

M4, one can see that both robust data terms give better results than their non-robust
counterpart. This can be explained by the additional neighbourhood information
that is used when locally integrating the motion tensor. One should note that the
variant based on nonlinear diffusion is better for a small amount of noise while the
least square fit seems more suitable for noise of a larger standard deviation. This
is due to the fact that nonlinear diffusi@alaptsto the image data and thus allows

to preserve discontinuities. While this adaptation improves the results for a small
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amount of noise, it may lead to an adaptation to noise itsetf, ibecomes larger.
Of course, this constitutes no problem for the local least square fit: In contrast to
nonlinear diffusion, it is based onfixedscale of integration.

e Increased Sensitivity of Higher Order Derivatives with Respect to Ndisecond
aspect that can be observed, is the poor performance of the datdfefgradient
constancy). Although the underlying assumption is one of the most suitable ones for
the Yosemite sequeneath clouds (due to the varying illumination in the sky), the
corresponding data term is outperformed significantly for large amounts of noise -
even by the data term that makes use of the less suitable brightness consfancy (
This, however, is not surprising: The computation of higher order derivatives is
well-known to be noise sensitive. Of course, this does not constitute a real problem:
Also the gradient constancy assumption can be robustified.

The computed flow fields for the best performing data téfp(least squares) are depicted

in Figure[2.8. Although the original sequence was degraded severely (in particular for
o, = 40), the obtained results still look realistic. However, one notices that the flow field
becomes smoother with increasing noise level. This is a consequence of the large values
for all three smoothness parameters — the noise scdlee smoothness weightand the
integration scale — that are required to deal with the increasing perturbations (cf. Table
[2.6). For a more detailed discussion on the different roles of this three parameters the
reader is referred to [BWS05].

Tab. 2.6. Experiment |: Performance of robust data terms un@aussian noise Comparison

of data terms\{y, M5, Mgy and M19. We added Gaussian noise with varying standard deviations
o, 1o the Yosemite sequence with clouds and used a spatial energy functional with homogeneous
regularisation to compute the average angular error (AAE). The parametersp, andt have

been optimised.

| noise | dataterm| o [ o | integration parametef AAE |
o, =0 My 1.30 500 - 7.17°
My 1.30 500 p=1.80 7.14°
Mg 1.30 300 t =250 6.97°
My 2.10 20 - 5.91°
o, =10 My 1.77 | 1100 - 9.37°
My 1.77 950 p=4.50 9.18°
Mg 1.90 850 t =200 9.02°
Moy 3.00 27 - 8.88°
o, = 20 My 2.08 | 2200 - 12.17°
My 2.09 1600 p=10.70 11.71°
Mg 2.10 | 1600 t =225 11.76°
My 3.60 35 - 12.26°
o, =40 My 2.45 | 4100 - 16.80°
My 2.38 | 2000 p=17.60 15.82°
Mg 2.40 | 2500 t =500 16.29°
Moy 4.20 55 - 18.00°
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Fig.2.8 Experiment I: Performance of robust data terms un@aussian noise Results for

the data term\/y (least squares on brightness constan€g).Top Left: Frame 8 of therosemite
sequencevith clouds degraded by Gaussian noise of standard deviafien 40. (b) Top Centre:

Ground truth (colour plot)(c) Top Right: Computed flow field for a spatial approach with data
term My (least squares on brightness constancy) and homogeneous regularisation. Noise level
on = 0. (d) Bottom Left: Noise levelo,, = 10. (e) Bottom Middle: Noise levels,, = 20. (f)

Bottom Right: Noise levels,, = 40.

2.2.6.2 Experiment II: Outliers in the Data

In our second experiment we investigate the advantages of nonquadratic penalisers. This
is done in Tabl¢ 2]7, where the quadratic data tedfis(brightness constancy) and-
(brightness and gradient constancy) are compared to their nonquadratic countefparts
(nonquadratic penaliser) antd;, (nonquadratic penaliser and least squares) &hgl
(nonquadratic penaliser, joint robustification) ahd, (nonquadratic penaliser, separate
robustification), respectively. Again, the listed results refer to the Yosemite sequéhce
clouds. Here, the following two observations can be made:

e Usefulness of Nonquadratic Penalisers with Respect to Outli®isviously, one

can improve the estimation by replacing the quadratic penaliser with a nonquadratic
one. This is due to the fact that in the case of divergent motion — such a motion
pattern occurs in the Yosemite sequence — boundary pixels from the first frame are
not necessarily present in the second one. Evidently, these pixels — that do not have
a corresponding counterpart in the second frame — are violating any constancy as-
sumption per definition. By penalising outliers in a non-quadratic way, the influence
of these pixels on the overall result is reduced significantly. As a consequence, the
estimation quality improves (cf. average angular error). In this context we like to
point out that a comparison between the results of the varianfdf@nd/; would

not be fair. The significantly lower average angular errors of the data terms originat-
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ing from M; are due to the gradient constancy assumption that allows to overcome
the varying illumination in the sky.

e Usefulness of Separate Robustificati8is.the achieved average angular error shows,
the separate robustification gives slightly better results than its joint counterpart.
This can be explained as follows: When replacing the joint robustification of two
constraintss; ands, by a separate one using tlig norm, the new data term pe-
nalises exactly those solutions more severely, where both constraints do not hold,
i.e. |s1| # 0 and|ss| # 0. This can be easily verified by comparing both variants,
namely

1U(53) + 12 Un(3) = mlsa| +alsel = 1287 + Znrlsil 2] + 73 3

Up(7is: +7585) = \/ 715t +1553.

while settingy; = /7 and~, = /93. One should note that this property also
holds for other robust functions as long as they are positive and concat.eSach
functions lead in the separate case always to a stronger penalisation of those results
that are considered as outliers in both constancy assumptions. This in turn favours
exactly those solutions where at least one of the constancy assumptions holds — and
thus reflects the assumption that they can hadipendentlyrom each other.

and

The corresponding flow fields given in Figlire|2.9 confirm our considerations. In particular,

in the lower left corner of these flow fields - an enlarged version of this region is shown
once again in Figure 2.10 — the advantages of robust penalisers become obvious. In this
area the problem of outliers is present:. A border of several pixels is moved out of the
image from one frame to the next. In the case of the quadratic data terms, these outliers
cause severe artifacts that are clearly visible. In the case of the nonquadratic data terms,
however, these artifacts disappear almost completely. In fact, the resulting flow field is
very smooth, which coincides much better with the actual motion.

Tab. 2.7 Experiment Il : Performance of robust data terms with respeabudiers in the data
Comparison of quadratic and nonquadratic penalisers for the dataAéyifimightness constancy)

and M, (brightness and gradient constancy). We used a spatial energy functional with homoge-
neous regularisation, and computed the average angular error (AAE) for the Yosemite sequence
with clouds. The parametess o andp have been optimised.

| data term]| penaliser | 0 | a | other parameters AAE |
M, quadratic 1.30 | 500 - 7.17°
My nonquadratic 1.40| 190 - 7.08°
Mo nonquadratic + least squares 1.40| 200 p=2.0 6.76°
M~ guadratic 210| 21 | 4=0.01,=1 | 5.87°
M3 nonquadratic (joint robustification) | 2.10| 400 | 4;=0.06,7,=100| 5.18°
My nonquadratic (separate robustification?.10 | 400 | 7,=0.06,v,=10 | 5.10°
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Fig.2.9 Experiment Il : Performance of robust data terms with respeabudiers in the data
(1/2). Comparison of quadratic and nonquadratic penalisers for the data Aérn{isrightness
constancy) and\/; (brightness and gradient constancyjp) Top Left: Boundary detail from
Frame 8 of the Yosemite sequenaih clouds (4 x 64 pixels). (b) Top Centre: Frame 9.(c)
Top Right: Ground truth. (d) Middle Left: Computed flow field for a spatial approach with
data termi/; (quadratic penaliser) and homogeneous regularisatiepMiddle Centre: Data
term M7, (nonquadratic penaliser)f) Middle Right: Data termM/;5 (honquadratic penaliser
and least squares)g) Bottom Left: Data termM/; (quadratic penaliser)(h) Bottom Centre:
Data termM;3 (nonquadratic penaliser, joint robustificatiorfi). Bottom Right: Data termi/y4
(nonquadratic penaliser, separate robustification).

2.3 Smoothness Terms

In our section on data terms we have shown how the integration of prior knowledge on
the scene can influence the quality of the estimation. However, we have also seen that the
local data alone may not be sufficient to compute a locally unique solution. In order to
overcome this problem, variational optic flow methods make use of an additional term, that
incorporates prior knowledge on the solution itsélfe smoothness ternin this section

that it based on the article in [WBBPO06], we discuss which smoothness assumptions are
commonly used in the literature and how these assumptions can be classified in a suitable
way. To this end, we follow the idea of Weickert and SeéhrfWS014a], and link the design
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Fig.2.10 Experiment Il : Performance of robust data terms with respeatutiers in the data
(2/2). Comparison of quadratic and nonquadratic penalisers for the data Aérnfisrightness
constancy) andV/; (brightness and gradient constancyp) Top Left: Boundary detail from
Frame 8 of the Yosemite sequensgh clouds 64 x 64 pixels). (b) Top Centre: Frame 9.(c)
Top Right: Ground truth. (d) Middle Left: Computed flow field for a spatial approach with
data termi/; (quadratic penaliser) and homogeneous regularisatiepMiddle Centre: Data
term M;; (nonquadratic penaliser)f) Middle Right: Data termM;s (nonquadratic penaliser
and least squares)g) Bottom Left: Data termM7 (quadratic penaliser)(h) Bottom Centre:
Data termM,3 (nonquadratic penaliser, joint robustificatiorfi). Bottom Right: Data termM4
(nonquadratic penaliser, separate robustification).

of smoothness terms to the modelling of multi-channel diffusion processes. Furthermore,
we investigate the usefulness of spatiotemporal smoothness constraints. In contrast to their
spatial counterparts, such constraints consider a temporal window of more than two frames
for the estimation of the flow field.

2.3.1 A Diffusion Based Classification of Smoothness Terms

As shown by Weickert and Schbirr in [WS01a] the design of smoothness terms is closely
related to the desired type &ifling-in effect. In fact, the smoothness term results in a
diffusion process that takes information from the neighbourhood and propagates it to lo-
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cations, where the rank deficiency problem is present, i.e. where no unique solution of the
data term can be computed. This connection between regularisation methods and diffusion
filters becomes evident, when minimising the underlying energy functional \stegpest
descent equationd he resulting expressions constitutéifiusion—reaction systemhere

the obtained diffusion part depends only on the original smoothness term. Weickert and
Schrorr used this implicit relation to set up a diffusion based taxonomy for smoothness
terms. The different smoothness constraints were thereby classified in accordance with
the induced diffusion process [Wei98]. In order to develop a deeper understanding of this
diffusion based taxonomy, let us start by analysing how the underlying diffusion—reaction
system is obtained.

2.3.1.1 From Energy Functionals to Diffusion—Reaction Systems

Minimising the energy functiona[ (1.3) can be done in two different ways: Either one
performs arelliptic approachby solving the corresponding Euler—Lagrange equations, or
one performs g@arabolic approachwhere one is interested in finding the steady state of
the corresponding diffusion—reaction system. In the following both strategies are discussed
in detail.

The Elliptic Approach. One possibility for minimising an energy functional is the com-
putation of its so-calledeuler—Lagrange equationsThe Calculus of Variations tells us
that these equations constitute a necessary condition for each minimisén pJCH53,
Els61)GFO0D]. In the specific case of a spatial energy functipnal (1.3) they are given by the
following two-dimensional system of partial differential equations (PDES)

0 = 05,Sui, + 05, — = OuM, (2.39)
0 = O, Suss, + 00y Suss, — = 0, M (2.40)
- ’ N——
smoothness data

equipped with homogeneous Neumann (reflecting) boundary conditions. Here, the term
Sui,zj denotes the partial derivative sfwith respect ta), ; u;.

The Parabolic Approach. Another possibility for minimisingE(u) is the use of the
steepest descent methoda the case of a spatial functional this yields a system of two-
dimensional diffusion—reaction equations, where the diffusion term results from the regu-
lariserS(V £, Vu), and the reaction term is induced by the data té#ifD* f, u):

3tu1 = 8:51 Ulg, +6x25u1,12 —é u1M7 (241)

Dty = OuySusa + 0uySus, — L 0 M (2.42)
—_— "~
diffusion reaction

Here, the parameteris a purely numerical parameter that denotes the evolution time. It
should not be confused with the time of the image sequence. In order to find a minimum

of the underlying energy functional, one has to compute the steady—state of this evolution
equation, i.e. the solution far — oo. It is evident that this solution also fulfills the

Euler—Lagrange equations (2139)—(2.40), since in this Gase = 0 andd,uy = 0. If
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E(u) is strictly convext even constitutes aniqgue minimiser Moreover, in this case, the
steepest descent evolutiong®bally convergentlts steady—state does not depend on the
initialisation.

Since we are interested in a taxonomy for optic flow regularisers, it is sufficient to
restrict ourselves to the diffusion part pf (2.41)—(2.42). This diffusion part can be identified
with a multi-channeMdiffusion process on the two channelsandus:

Oty = 0y, Suss, +00Su,,  (i=1,2). (2.43)

In order to get a better understanding of such processes, it is instructive to make a little
excursion to diffusion filters for multi-channel images. This shall be done next.

2.3.1.2 Diffusion of Multi-Channel Images - Modelling

In our section on data terms we have already addressed colour images as a special form
of multi-channel image data. However, there are also other typical representatives such
as satellite images and multi-spin echo MR data sets. They all have in common that they
require special filtering schemes that consider a joint treatment of all channels. Such
schemes do also exist for diffusion filters: Wet= (f1(x), ..., fn(x))" be some multi-
channel image witkk € R?. Then, a suitable scheme for a diffusion filter is described by
the following evolution

o = div ( T(V,Vu) Vui> (i=1,..,m) (2.44)
wheref(x) acts as initial condition for the solutian(x, t):
wi(x,0) = fi(x)  (i=1,..,m). (2.45)

Here,T(V f, V u) denotes the so-calladiffusion tensor apositive definit€ x 2 matrix

that steers the direction and intensity of the local diffusion process (jointly for all chan-
nels). Often this steering is adapted such that it respects discontinuities either in the initial
imagef or the evolving imagai. Depending on the form of the diffusion tensor, five
different cases can be distinguishdstbmogeneoudiffusion, linear isotropicandlinear
anisotropic diffusioras well amonlinear isotropicandnonlinear anisotropidiffusion.

Before we will discuss these five diffusion types, let us point out that the correspond-
ing models are not the only PDE methods that have been proposed for processing multi-
channel images. For alternative approaches the reader is referred tol [BC98, KMSO0O,
Sap01, Wei99] and the references therein. However, in contrast to other approaches, our
taxonomy allows a connection to optic flow regularisers: Itis based on diffusion processes
in divergence form that can be derived as steepest descent methods for minimising suitable
energy functionals. Let us start our classification with the most popular diffusion process:
Homogeneous diffusion.

T1 - Homogeneous DiffusionHomogeneous diffusion is the simplest form of diffusion.
The corresponding diffusion tensor comes down to the identity matrix and is given by

TV, Vu) =1 (2.46)

It describes a diffusion process that treats all directions equally and does neither adapt
to discontinuities in the initial nor in the evolving image [lij59]. As a consequence, the
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obtained image becomes homogeneously blurred and semantically important edges may
get dislocated.

T2 - Linear Isotropic Diffusion. A more advanced diffusion process is obtained if the
diffusion tensor is modified in such a way that it respects discontinuities imttial
imagef; see[Fri92]. This requires two properties: (i) The diffusion tensor must be able
to detect discontinuities ifi. This can be realised by evaluating gloent gradient of all
image channelgjg';1 |V f;]?. (i) The diffusion tensor must inhibit the diffusion process

if this gradient is large, i.e. discontinuities are present. This in turn can be achieved by
using a positive functiog(s?) that decreases ist and is close to zero for* — oo. Such

a function is for instance given by the regularised TV diffusivity (2.30). Performing both
modifications with respect t6; the following diffusion tensor is obtained:

T (VE,Vu) = g(Z |ij|2)1. (2.47)

One should note that the corresponding diffusion process is dalleak, sincel; only
depends on the initial image (which does not change over time). Moreover, the process
is said to basotropig since all directions are treated equally (although the strength of the
diffusion may vary).

T3 - Linear Anisotropic Diffusion. Until now, we have restricted ourselves to diffusion
processes that are isotropic. However, in particular with respect to discontinuities, it makes
sense to distinguish between different directions [lij62]: While diffusacrossdisconti-
nuities is not desired, diffusioalong edges may even improve the filtering result — in
particular with respect to noisy boundaries. Suclaaisotropicbehaviour ca be achieved

by extracting structural information from the joint image tenw;1 ijijT by means

of an eigenvalue decomposition:

S VLV = (vi,va) (Aol A02 ) (vi,v2) " (2.48)
j=1

While the eigenvectore,, v, represent the directions with highest and lowest contrast, the
corresponding eigenvalues,\; specify the value for the contrast itself. A suitable diffu-
sion tensor can then be created by keeping the original eigenvectors fixed and modifying
the eigenvalues by applying a functigfs?) as in the isotropic case:

G (; ijijT> = (v1,v2) ( 9(8\1) 9(22) ) (v1,va)T. (2.49)

This strategy, that inhibits diffusion across dominant features of the image, allows the
extension of any functiopn to the tensor-valued domain (and codomain). In the following
we will abbreviate the associated diffusion tensor by

Ty(VE, Vu) = G(iwjvﬁ). (2.50)

As in the two previous cases the corresponding diffusion procdise&. Although more
(directional) information is used, it still depends on the initial imége
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Tab. 2.8 Comparison of the diffusion tensdf3—T5.

diffusion tensor diffusion process | discontinuities  adaptation
T I homogeneous no -
m . . - . .-, . .

Toll gl > ]ijP)I linear isotropic yes initial image

53| G ZijVf-T> linear anisotropic yes initial image

m
> |Vuj|2)I nonlinear isotropic yes evolving image

m
s || G ZVujVuT> nonlinear anisotropic yes evolving image

T4 - Nonlinear Isotropic Diffusion. So far, the discussed diffusion processes were de-
signed in such a way that they respect discontinuities inriti@l image. However, from

a modelling point of view it may also be interesting to have a feedback frorevbietion

itself. In the isotropic case, this can be achieved by replacing the joint gradient of the
initial image ", |V f;|* by the joint gradient of the evolving image ", [Vu,|*. Then,

one obtains the diffusion tensor [GKKJ92]

Ty(VE,Vu) = g(i |vuj|2)1, (2.51)

whereg(s?) is a positive decreasing function as defined before. One should note that this
allows the underlying diffusion process to adapt to discontinuities that are cihated

the evolution. Evidently, thisionlinear behaviour is significantly different from linear
diffusion: The corresponding diffusion tensors do not change over time.

T5 - Nonlinear Anisotropic Diffusion Of course, this feedback strategy can also be
applied in the anisotropic case. To this end, one has to replace the joint image tensor
Z;”Zl ijijT by its evolution dependent counterp@;L1 VujVujT. The obtained dif-
fusion tensor is then given by [Wei94b]

Ty(VE,Vu) = G( Zm: vujvu}), (2.52)
j=1

whereG(T) has to be understood once more as a fungjief) that modifies the eigen-
values of its tensor-valued argumént As in the previous case, the underlying diffusion
process isionlinear.

A summary of all presented diffusion processes in form of the corresponding diffusion
tensors is given in Table 2.8.
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Fig. 2.11 Diffusion filtering of colour images(a) Top Left: Noisy colour image(b) Top Cen-
tre: Homogeneous diffusior(c) Top Right: Linear isotropic diffusion(d) Bottom Left; Linear
anisotropic diffusion(e) Bottom Centre: Nonlinear isotropic diffusion(f) Bottom Right: Non-
linear anisotropic diffusion.

2.3.1.3 Diffusion of Multi-Channel Images - Experiments

In our experiment we compare the effect of the different smoothing strategies for a noisy
RGB colour image. To to this end, we applied Gaussian noise of standard deviation
o, = 40. Figure[2.1]l shows the obtained results. We observe that homogeneous dif-
fusion performs well with respect to denoising, but does not respect image edges. Space-
variant linear isotropic diffusion, however, may suffer from noise sensitivity as strong
noise may be misinterpreted as an important edge structure where the diffusivity is re-
duced. Anisotropic linear diffusion allows smoothing along edges, but reduces smoothing
across them. This leads to a better performance than isotropic linear diffusion if images
are noisy. We can also observe that nonlinear models give better results than their linear
counterparts. This is not surprising, since the nonlinear models adapt the diffusion process
to the evolving image instead of the initial one.
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Tab. 2.9 Optic flow regularisers and their corresponding vector-valued diffusion processes. In the
diffusion context,f denotes the vector-valued initial image andts evolution. In the optic flow
setting, f is the scalar-valued image sequence amscribes the optic flow field.

optic flow regulariser vector-valued diffusion process
S(Vf,Vu) 8x15uiz1 + O, SuiIQ
2 9 .
g homo- 21 Vi div (IVu,) homo- | .
1 1= 1
geneous (Horn/Schunckl[HS81])|| (scalar case: lijimz [lij59]) geneous
2
2 12 i |2 .
S image-driver] 9(IVfl )Z;l Vi div <9(§ IV £l )vuz> linear T
Isotropic (Alvarez et al. [AELS99])| (scalar case: Fritsch [Fri92]) Isotropic
2
T . - Avall 4
g, | image-driver Z.Zlvui D(V)Vui | dv (G(%: VIV WW) linear |,
anisotropic (Nagel [Nag83a]) (scalar case: lijimée [lij62]) anisotropig
2 2 i ! 2
g, || flow-driven \I’(leu"’ ) div | U3 [Vuy[) Vg nonlinear| .,
4 . . 1= J . . 4
ISOWOPIC | Schrbr [Schgab)) (Gerig et al. [GRKJ92]) | 'SOOPIC
2 T i / T
o | towdriven tr@(i; Vuva ) |\div (v (%jvujvuj)vui nolinear| .
anisotropic (Weickert/Schirr (Weickert [Wei94b]) Isotropic
[WSO01a])

2.3.2 Spatial Regularisation - Modelling

After we have discussed a suitable classification for multi-channel diffusion processes, we
can transfer it to the optic flow setting. The idea is to identify the optic flow regularis-
ersS(V f, Vu) that produce homogeneous, linear isotropic, linear anisotropic, nonlinear
isotropic, and nonlinear anisotropic diffusion. It should be noted that now that we returned
to the optic flow settingf denotes the image sequence again,arsdthe flow field.

The simplest optic flow regulariser is th@mogeneousegularisation of Horn and
Schunck[[HS81]. This quadratic regulariser of typ&vu) = |Vu,|* + |Vuy|* penalises
all deviations from smoothness of the flow field. It can be related to linear diffusion with a
constant diffusivity. Thus, the flow field is blurred in a homogeneous way such that motion
discontinuities may loose sharpness and get dislocated. It is thus not surprising that peo-
ple have tried to construct a variety of discontinuity-preserving regularisers. Depending
on the structure of the resulting diffusion term, we can classify a regule&fiSér, Vu)
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as image-driven or flow-driven, and isotropic or anisotropic [WS01a].
Forimage-driverregularisersy is not only a function of the flow gradief« but also of
the image gradieri f. This function is chosen in such a way that it respects discontinu-
ities in the image data. If only the gradienagnitudeV f| matters, the method is called
isotropic[AELS99]. It can avoid smoothing at image edges. &isotropictechnique de-
pends also on thdirectionof V f. Typically it reduces smoothing across edgeg ¢f.e.
alongV f), while smoothing along edges d¢fis still permitted [Nag83a]. Image-driven
regularisers can be related to linear diffusion processes.

Flow-drivenregularisers take into account discontinuities of the unknown flow field
by preventing smoothing at or across flow discontinuities. If the resulting diffusion pro-
cess uses a scalar-valued diffusivity that only depend§ver® := |Vu,|?> + |Vus|?, it
is anisotropic process([Sch94b]. Cases where also the directiow@f and Vu, mat-
ters are namednisotropic[WS01a]. Flow-driven regularisers lead to nonlinear diffusion
processes.
Table[2.9 gives an overview of the different regularisers and their corresponding diffusion
filters. As a rule of thumb, one can expect that flow-driven regularisers offer advantages
over image-driven ones for highly textured sequences, where the numerous texture edges
create an oversegmentation of the flow field. Moreover, anisotropic methods may give
somewhat better results than isotropic ones, since the latter ones are too “lazy” at noisy
discontinuities.

2.3.3 Spatial Regularisation - Experiments

In the previous section, we have classified five strategies for smoothness terms by their
induced diffusion process. Let us now evaluate their impact on the quality of the computed
flow field with two experiments.

2.3.3.1 Experiment I: Preservation of Discontinuities - Visual Quality

In this experiment, we compare the capabilities of the different smoothness terms re-
garding the preservation of discontinuities. To this end, we used a grey-scale variant of
the syntheticNew Marblesequence by Middendorf. It consists of 200 frames of size
512 x 384 pixels and depicts two marbled blocks moving over a marbled floor. A third,
stationary block, completes the scene. The sequence as well as the ground truth are avail-
able fromhttp://i21www.ira.uk.de/image _sequences . For the computation

of the flow fields, we considered a spatial approach with data feinbrightness con-
stancy). In contrast to previous experiments, the obtained results were not optimised with
with respect to the average angular error, but with respect to visual quality. This allows to
investigate the actual behaviour of the different smoothness concepts in clear way. Apart
from the full flow fields depicted in Figuie 2.]12, also zoom-ins for the corner of the upper
right moving block are shown (cf. 2.[L3). Both illustrations show clearly the following
facts:

e Usefulness of Discontinuity-Preserving Smoothness Telksisne can see, the ho-
mogeneous regulariséy yields the worst performance of all smoothness terms. Its
flow field is fairly blurry and does not respect important motion discontinuities. All
other smoothness terms, however, give significantly better results: They allow the
preservation of discontinuities for both the small and the large marbled block.
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Fig.2.12 Experiment |: Impact of different smoothness assumptions onviseal qualityof

the flow field with respect to thpreservation of discontinuitiedl/2). (a) Top Left: Frame 150

of the New Marblesequence of siz§12 x 384 pixels (colour variant).(b) Top Centre: The
same frame of the converted sequence (grey-scale varightfop Right: Ground truth (vector
plot). (d) Middle Left: Ground truth (colour plot).(b) Middle Centre: Computed optic flow
magnitude for a spatial approach with data tevfn (brightness constancy) and smoothness term
S1 (homogeneous regularisatiotfd) Middle Right: Smoothness terrfi; (image-driven isotropic
regularisation).(d) Bottom Left: Smoothness terrs (image-driven anisotropic regularisation).
(e) Bottom Centre: Smoothness terifi; (flow-driven isotropic regularisationff) Bottom Right:
Smoothness terrfi; (flow-driven anisotropic regularisation).

e Usefulness of Flow-Driven Smoothness Ter@amparing image- and flow-driven
regularisers, the superior performance of the flow-driven techniques in highly tex-
tured regions becomes obvious. Here, image-driven methods suffer from the fact
that they interpret each image discontinuity as motion discontinuity and thus inhibit
smoothing. Flow-driven regularisers, however, do not adapt to the image and thus
allow for a more homogeneous estimation of the flow field in such regions. This can
particularly be seen within the marbled blocks and at their motion boundaries.

e Usefulness of Anisotropic Smoothness Tefffnzally, one can also observe that the
anisotropic regularisers give slightly better results along flow discontinuities than
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Fig.2.13 Experiment |I: Impact of different smoothness assumptions onviseal quality of
the flow field with respect to thpreservation of discontinuitie®/2). (a) Top Left: Detail from
frame 150 of ground truth of tidew Marblesequencel@8 x 128 pixels). (b) Top Centre: Com-
puted optic flow magnitude for a spatial approach with data tefm(brightness constancy) and
smoothness termi; (homogeneous regularisation() Top Right: Smoothness terrfy (image-
driven isotropic regularisation)d) Bottom Left: Smoothness terrfs (image-driven anisotropic
regularisation).(e) Bottom Centre:Smoothness terr; (flow-driven isotropic regularisatior(})
Bottom Right: Smoothness terri5 (flow-driven anisotropic regularisation).

their isotropic counterparts. Moreover, one can see that the image-driven case ben-
efits from the improved treatment of edges by allowing the degree of smoothness
within the object to be higher (yields a more homogeneous object). This shows
the advantage of additionally imposing smoothness along edges, even if smoothness
across them is completely inhibited.

This shows that discontinuity-preserving methods should be used, if sharp edges of the
flow field are desired. In order to demonstrate the differences between the different regu-
larisers also quantitatively, we performed a second experiment, where we also optimised
the parameters with respect to the average angular error.

2.3.3.2 Experiment II: Preservation of Discontinuities - Impact on the Accuracy

Table[2.1ID presents our second experiment. It compares the different spatial approaches
from our first experiment with respect to their accuracy for the Yosemite sequeétite
clouds. To this end, we computed the average angular error for optimised parameter sets
of o anda. The obtained results confirm the observation we have made in our first exper-
iment:

e Usefulness of Discontinuity-Preserving Smoothness Tekm®ne can see, the ac-
curacy improves significantly, if adaptive regularisation strategies are used (smooth-
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Fig.2.14 Experiment Il : Impact of different smoothness assumptions on the accuracy of the flow
field with respect to th@reservation of discontinuitiega) Top left: Frame 8 of therosemitese-
guence 128 x 128 pixels). (b) Top centre: Computed optic flow magnitude for a spatial approach
with data term); (brightness constancy) and smoothness tgrthomogeneous regularisation).

(c) Top right: Smoothness terny, (image-driven isotropic regularisation)d) Bottom left:
Smoothness terms (image-driven anisotropic regularisation(e) Bottom centre: Smoothness
term S, (flow-driven isotropic regularisationjf) Bottom right: Smoothness terifi; (flow-driven
anisotropic regularisation).

ness terms,-S,). Thereby image and flow-driven techniques perform equally well.
This can be explained as follows: If important motion discontinuities coincide with
image-discontinuities — this is the case at the horizon — image-driven smoothness
terms allow for a similar precision as flow-driven regularisers. If, however, as
in the first experiment, objects and background are heavily textured, the obtained
flow fields suffer from oversegmentation artifacts and the accuracy of flow-driven
methods is higher.

The corresponding flow fields depicted in Figlire 2.14 are fully in accordance with our
considerations: The separation of sky and mountain region is much sharper if discontinuity
preserving smoothness terms are used.

2.3.4 Spatiotemporal Regularisation - Modelling

While our general functiondl (1.3) allows either spatial or spatiotemporal models, the reg-
ularisers that we have discussed so far use spétialsmoothness constraints. However,

in particular with respect to the fact that the motion of objects often varies only slowly
over time, it seems desirable to impose some amoutgroporalor piecewise temporal
smoothness as well. In this context, one may also think of extending the Gaussian pres-
moothing to the temporal domain. Let us now investigate what happens if we consider
such spatiotemporal models.
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Tab.2.10 Experiment Il : Impact of different smoothness assumptions on the accuracy. of the
flow field with respect to th@reservation of discontinuitiesNe used a spatial energy functional
with data termi/; (brightness constancy, and computed the average angular error (AAE) for the
Yosemite sequenagith clouds. The parametessanda have been optimised.

| smoothness term|  regularisationstrategy | o | o [ AAE |
S1 homogeneous 1.30 500 7.17°
So image-driven isotropic 1.20 | 2700 6.44°
Ss image-driven anisotropic| 1.30 | 4500 || 6.28°
Sy flow-driven isotropic 1.30 42 6.32°
Ss flow-driven anisotropic | 1.30 44 6.42°

Going from spatial to spatiotemporal models is not very difficult in principle: All one
has to do is to replace the spatial integration dontairin (1.3) by a spatiotemporal one
23, and to consider spatiotemporal instead of spatial derivatives. As a resulting steepest
descent method, one obtains theee-dimensionaliffusion—-reaction system

oy, = 8x15ulyzl + axQSuLzz + 81,33%363 - é Ou, M, (2.53)
Oy = 02y Suy,, + 02ySus,, + 02ySus,, — = O, M (2.54)
h " g —~
diffusion reaction

instead of its two-dimensional counterpéart (2.4[)—(R.42).

In practice, spatiotemporal models have not been used too often so far. An early sugges-
tion for spatiotemporal anisotropic image-driven regularisers goes back to Nagel [Nag90],
followed by spatiotemporal flow-driven approaches such as [BA91, WS01b]. The main
reason why such techniques have hardly been studied in the literature is the large amount
of memory that is required to process multiple frames simultaneously. In the meantime,
however, the fast development of standard desktop PCs allows even the computation of
whole image sequences of reasonable size (e.g. of siz&BPx 512 in [BWS05]). Since
the computational time per frame is only marginally higher for spatiotemporal methods
than for their spatial counterparts and the achieved results are usually significantly better,
spatiotemporal methods became increasingly appealing in the last years.

2.3.5 Spatiotemporal Regularisation - Experiments

After we have seen how to model spatiotemporal smoothness terms, let us now analyse
their impact on the quality of the computed flow field. To this end, we have performed two
experiments.

2.3.5.1 Experiment |: Spatial vs. Spatiotemporal Regularisation under Noise

In our first experiment depicted in Figyre 2.15 we study the effect of replacing spatial by
spatiotemporal regularisation. This is done by the example oOildeviarble sequence

by Otte and Nagelhttp://i21www.ira.uk.de/image _sequences ). This real-
world sequence consists of 32 frames of $izex 512 pixels and shows four dark marbled
blocks that move along with the marbled floor to the lower right. In contrast to all other
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Tab. 2.11 Experiment |: Comparison of the spatial and spatiotemporal regularisers with and with-
out noise. We used a spatial/spatiotemporal energy functional with data\fergirightness con-
stancy) and smoothness tesh (flow-driven isotropic regularisation. We computed the average
angular error (AAE) for thélarble sequence without and with Gaussian noise with standard devi-
ationo,, = 40. The parametersspa;, otemp anda have been optimised.

|

noise | smoothness term | strategy || owpat | Otemp | o | AAE |

on =20 Sy (flow-driven isotropic) spatial 2.60 - 40 | 5.11°

Sy (flow-driven isotropic) | spatiotemporall| 2.00 0.45 13 | 2.51°

on =40 || Sy (flow-driven isotropic) spatial 2.15 - 400 | 7.75°

Sy (flow-driven isotropic) | spatiotemporal|| 3.15 0.33 75 | 4.90°

objects, the white marble block in the centre stands still. Apart from this sequence in its
original form, we also considered a noisy variant with Gaussian noise of standard devia-
tion o,, = 40. This allows us to investigate the advantages of spatiotemporal regularisers
also with respect to corrupted data. For computing the optic flow, we used an energy func-
tional with data term\/; (brightness constancy) and spatial or spatiotemporal smoothness
term S, (flow-driven isotropic regularisation). In order to show significant differences be-
tween both types of smoothness terms it was already sufficient to consider four instead
of two frames in the spatiotemporal case. Moreover, the input images were also pres-
moothed along the temporal direction in order to investigate the impact of spatiotemporal
presmoothing on the results. To this end, a Gaussian with different standard deviation in
space and time has been used.

The obtained results for the sequence with and without noise are listed in[Talle 2.11.

The raw numbers show the following:

e Usefulness of Spatiotemporal Regularise@bviously, the results can be signifi-

cantly improved if a spatiotemporal regulariser is used instead of a spatial one. In
the case of the original sequence, one can even observe an improvement of more
than 50%. Thereby one should keep in mind that in contrast to the spatial setting
only two additional frames have been used. This strong improvement in terms of the
average angular error is a consequence of the additional temporal information that
allows for a more precise estimation of the optic flow for both stationary and moving
objects. While in the case of stationary regions the beneficial effect is obvious — the
zero flow is propagated along the temporal axis — things are a bit more complicated
for moving areas: In this case, the results can be expected to be smooth in the di-
rection of the flow but not necessarily in the direction of time. If the motion, as in
this chapter, is restricted to small displacements and the objects are relatively large,
this is not a problem: Both directions almost coincide and any spatiotemporal regu-
lariser will work well. However, if the displacements become sufficiently large with
respect to the object size, motion discontinuities in temporal direction will arise.
Then, discontinuity preserving smoothness terms such as those proposéd-with

S5 have to be considered. One should note that these regularisers do not only allow
the preservation of motion boundaries in spatial direction. In their spatiotemporal
setting, they also respect discontinuities in direction of the temporal axis.
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Fig.2.15 Experiment |: Comparison of spatial and spatiotemporal regularisers with and without
noise.(a) Top Left: Frame 16 of thévlarble sequence of siz&12 x 512 pixels. (b) Top Centre:
Ground truth (vector plot)c) Top Right: Ground truth (colour plot)(d) Middle Left: Frame 17
with noise levelr,, = 0. (e) Middle Centre: Computed flow field for a spatial approach with data
term M, (brightness constancy) and smoothness t&in{flow-driven isotropic regularisation).
Noise levelr,, = 0. (f) Middle Right: Spatiotemporal approactyg) Bottom Left: Frame 17 with
noise levels,, = 40 (h) Bottom Middle: Spatial approach(i) Bottom Right: Spatiotemporal
approach.

e Usefulness of Spatiotemporal Regularisers with Respect to Nasene can see
from the achieved angular errors for the noisy data, the usefulness of spatiotem-
poral smoothness terms is not only limited to the noise-free case. Also for image
data that is corrupted by Gaussian noise, the additional temporal information allows
obviously a more reliable estimation of the results.
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This experiment shows that significantly better results can be obtained, if spatial regularis-
ers are replaced by their spatiotemporal counterparts. Let us study in our last experiment
how the size of the temporal window, i.e. the number of frames, influences the quality of
the computed flow field.

Tab.2.12 Experiment Il : Impact of the number of frames and the amount of spatiotemporal
presmoothing on the quality of the optic flow field. We used a spatiotemporal energy functional
with data termM; (brightness constancy) and smoothness tgrrtflow-driven regularisation) and
computed the average angular error (AAE) for the Yosemite sequence with clouds. The parameters
Ospat» Otemp aNda have been optimised.

spatial presmoothingspatiotemporal presmoothing
number of frames| frames @ Ospat | AAE Ttemp | AAE
2 7-8 500 1.30 7.17° - 7.17°
3 7-9 340 1.20 6.95° 0.40 6.83°
4 6-9 270 1.30 6.66° 0.45 6.54°
5 6-10 220 1.30 6.70° 0.55 6.56°
6 5-10 255 1.30 6.36° 0.50 6.23°
7 5-11 220 1.30 6.57° 0.50 6.46°
8 4-11 240 1.30 6.44° 0.50 6.31°
9 4-12 190 1.30 6.54° 0.50 6.41°
10 3-12 220 1.30 6.41° 0.50 6.30°
11 3-13 205 1.30 6.48° 0.50 6.37°
12 2-13 205 1.30 6.37° 0.50 6.25°
13 2-14 205 1.30 6.43° 0.50 6.33°
14 1-14 205 1.30 6.37° 0.50 6.25°
15 1-15 180 1.30 6.40° 0.50 6.29°

2.3.5.2 Experiment II: The Spatiotemporal Window

In order to investigate the impact of the size of the spatiotemporal window on the result,
we have considered once more the Yosemite sequertbeclouds. Starting from the
centre frames 8 and 9 we have increased the total number of frames that are used for the
estimation consequently by one until the maximum number of 15 frames was reached.
In order to isolate also the effect of the additional presmoothing along the temporal axis,
we computed the results with purely spatial and with spatiotemporal presmoothing. The
achieved average angular errors are listed in Tablg 2.12. They show the following two
tendencies:

e Usefulness of a Small Spatiotemporal Windowghile increasing the number of
input frames from 2 to 6 yields a significant improvement of the results, the use of
more than 6 frames does not seem to give additional information that is valuable.
However, we can also see that more frames do not necessarily spoil the result, in
particular, if discontinuity-preserving spatiotemporal regularisers are used. More-
over, one can observe that the optimal value for the smoothness weitgtreases
when the number of frames increases. This is a consequence of the increasing con-
tribution of the temporal information that joins the spatial one by filling in useful
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data from the neighbourhood. If there is enough temporal information, one can

chosea much smaller but still obtains a similar extent of tiiléng-in effectas in

the spatial case. One should note that is particularly useful, since discontinuities
are better preserved for smaller values of alpha. Finally, one can observe that the
accuracy of the approach is slightly higher for an even than for an odd number of

frames. This is due to the fact that an odd number of frames yields an unbalanced
number of flow fields with respect to the number flow fields before and after the cen-

tral flow field. Consequently, although the chosen spatiotemporal regulariser allows
the preservation of discontinuities along the temporal direction, the spatiotemporal

smoothness assumptions yields a solution that is more similar to the flow fields of

the dominating temporal direction.

e Usefulness of Spatiotemporal Presmoothif@@ne can furthermore observe that it
also makes sense to extend the presmoothing step to the temporal domain. As men-
tioned in Section 2|1 this step does not only help to eliminate noise: If the sequence
is presmoothed with a Gaussian it beconfes C*>°. Moreover, since the con-
volved sequence changes more smoothly along the spatial and temporal direction,
such a presmoothing step allows a better linearisation by means of a Taylor expan-
sion. However, one should note that the computed flow field fits then best to the
presmoothed data. Thus it is not surprising, that the optimised valuesg.fgrare
not too large.

2.4 Summary

In this chapter we have discussed the design of variational methods that are suitable for
smalldisplacements. This was done in two steps. First we have reviewed the modelling of
thedata term We have seen how constancy assumptions can be modified so that they be-
come more robust under illumination changes, invariant under different types of motion,
and better performing with respect to noise and outliers in the data. In the second part
we have investigated the design of #raoothness ternBy identifying different regular-
isation strategies with their underlying diffusion process, we showed how such diffusion
processes can be classified and how they have to be modelled to preserve discontinuities in
the image or the flow field. Moreover, we have discussed how to improve the performance
even further by extending such smoothness constraints to the temporal domain.

Apart from this overview over a variety of concepts for variational flow methods, we
have also introduced the conceptswitionanddiffusion tensorsAs we have seen, these
two tensors carry the essential information on the underlying optic flow approach and
allow to understand the interaction between the data and the smoothness term in a better
way. In the following chapters this tensor notation will prove to be even more useful:
It will allow a simple formulation of the associated Euler-Lagrange equations and the
development of a general strategy to derive efficient hierarchical numerical schemes (see

Chapter$ {d,14,]5).
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Optic Flow For Small Displacements — Prototypes

“Much learning does not teach understanding”
- Heraclitus, greek philosopher

In the previous chapter we focused on the design of variational optic flow methods for
small displacements. To this end, we discussed a variety of concepts for the data and the
smoothness term and introduced a suitable notation based on motion and diffusion tensors.

In this chapter, we exploit this general toolkit for the systematic construction of varia-
tional techniques: We present seven approaches that shall sgmaeagpedor both our
gualitativeand ournumericalstudies. To this end, we start with a brief discussion of the
underlying energy functionals in Section|3.1. Apart from recalling the integrated concepts
— they have already been presented in the previous chapter — we also draw connections
to similar methods in the literature. This discussion is followed by a comparison of the
corresponding Euler-Lagrange equations in Se¢tion 3.2. Such a comparison allows us to
classify the different equation types into three main groups and relate them to similar types
of equation systems. This is done in Secfion} 3.3, where a suitable discretisation based on
a finite difference approximation is discussed. Finally, we conclude this chapter with an
extensive evaluation of all presented methods: In Seftign 3.4 various test scenarios shall
allow to assess the actugliality of the different approaches.

3.1 Selection of Prototypes

It should be evident that our framework in Chapter 2 allows the construction of many more
variational methods than we can actually consider in our qualitative and numerical stud-
ies. Therefore, we restrict ourselves at this point to seven prototypes that cover most of the
proposed concepts. These prototypes can be divided into two different ghagisvari-

ational approacheandadvanced variational methodBor the group of basic approaches

we have chosen five spatial methods based on the standard data/tg€brightness con-
stancy) and the different regularis&fs-S5. This selection of methods based on different
regularisation strategies is particularly interesting from a numerical point of view, since
each smoothness term requires a slightly different numerical scheme. For the group of
advanced variational methods, we have considered two techniques, that we have recently
presented: the noise robust CLG method of Brahal. [BWS05] and the illumination ro-

bust technique of Papenbertial. [BBPWO04, PBB 06]. In contrast to the first approaches
these methods combine several concepts within one energy functional: While the method
of Bruhnet al. combines two robust concepts (local least square fit + non-quadratic penal-
isation), the approach of Papenbetal. accounts for the problem of varying illumination

by using a combined data term with two different constancy assumptions. Moreover, both
methods are equipped with a discontinuity preserving regulariser. Since we are interested
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in having both a spatial and a spatiotemporal technique within this group, we decided to
investigate the approach of Papenbet@l. in its spatiotemporal form. After this short
motivation, let us start our discussion on the prototypes by introducing the representatives
of our first group: the basic variational methods.

3.1.1 Basic Variational Methods

As we have seen in the previous chapter, there are basically five different types of smooth-
ness termshomogeneous regularisatipimage-driven isotropicandimage-driven aniso-

tropic regularisation andlow-driven isotropicandflow-driven anisotropiaegularisation
[WSO01a]. For each of the five strategies we have chosen one prototype based on the mo-
tion tensor formulation for the linearised brightness constancy assumgtion (n the
following these prototypes are discussed briefly.

3.1.1.1 Prototype A — Homogeneous Regularisation

Our prototype for the class of methods witbmogeneousegularisation is the classical
method of Horn and Schunck [HS81]. Their method assumes global smoothness by pe-
nalising deviations from smoothness in a quadratic way [TA77]. This comes down to
combining the data term/; with the smoothness terifi;. The corresponding energy
functional reads

Euon_sn(u) = / (Ml(le,u)+aSl(Vf,Vu)> dx (3.1)

Qo

= / ((uTJl u+a( |[Vu] + [Vu|? )) dx,
Qo

whereJ; = V3fVsf ' is the motion tensor associated to the brightness constancy as-
sumption as defined in the last chapter.

3.1.1.2 Prototype B — Image-Driven Isotropic Regularisation

Instead of penalising deviations from smoothness in a quadratic way, one may think of
downweighting the smoothness term at locations where the magnitude of the spatial image
gradient is large [AELS99]. As we have discussed in Chdpter 2, this form of regularisa-
tion that respects discontinuities in the image data is catfedje-driven isotropic The
associated energy functional is given by

EH,QD(U) = /g; <M1<D1f, LI) + SQ(Vf, Vu)) dx (32)
_ /Q (um u+a g(VIP) (V] + [V )) dx.

where g(s?) is a positive decreasing function iR. The method we have chosen to
represent this regularisation strategy is based on a function proposed by Charbonnier
[CBFAB94] which
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reads

9(s?) = ———. (33)

Here,es is a contrast parameter.

3.1.1.3 Prototype C — Image-Driven Anisotropic Regularisation

As prototype for the class of optic flow methods wittage-driven anisotropicegularisa-

tion we consider the technique of Nagel and Enkelmann [NE86]. Their method accounts
for the problem of discontinuities by smoothing only along a projection of the flow gra-
dient, namely its component orthogonal to the local image gradient. As a consequence,
flow fields are obtained that avoid smoothing across discontinuities in the image data. The
energy functional associated to this anisotropic form of regularisation is given by

E[A_QD(U) = /Q (Ml(le, 11) + « Sg(Vf, VU)> dx (34)
= / (uTJl u-+ le(VUIPNE(Vf)Vul‘f‘VU;—PNE(Vf)VUQ)> dx,
Qo

wherePyg(V f) is a projection matrix perpendicular ¥f that is defined as

_ 1 :?24_6% —fur fas
PNE(Vf) - |Vf|2 _{_26% ( _fx1fx2 31 —i-G% : (3-5)

In this contextes serves as regularisation parameter that prevents the nfatg&v f)
from getting singular.

3.1.1.4 Prototype D — Flow-Driven Isotropic Regularisation

Our fourth method serves as prototype floiv-driven isotropidechniques [Sch94b]. By
reducing smoothing at those locations where edges in the flow field occur during the com-
putation, it avoids the typical oversegmentation artifacts of image-driven methods. The
corresponding energy functional reads

Brn(w) = [ (Mi(D'fow)+a Si(Vf.Vu) dx (3.6)
Qo
— / (uTJl u+a¥s( [Vul® + [Vue|?) > dx,
Qo
where U (s?) is a positive increasing function iR with the property to increase less
severely than a quadratic function. As prototype we have chosen a method that penalises

deviations from the smoothness with thenorm. This corresponds to total variation (TV)
regularisation[ROF92] which we implemented by means of a regularised variant given by

Ug(s?) = /5% + €. (3.7)
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Hereegs serves as small regularisation parameter. A similar functional that approximates
TV regularisation is proposed inh [WSQ1b], while variational approaches for rotationally
not invariant versions of TV regularisation have been investigated in [Coh93, DKA95,
KTB96, ADK99].

3.1.1.5 Prototype E — Flow-Driven Anisotropic Regularisation

The fifth and last regularisation strategy dl@w-driven anisotropicsmoothness terms
[WSO01a]. In contrast to the isotropic case where the non-quadratic funk{ipenalises

the magnitude of the flow vector, it is now applied to the local flow tengerVu, +
Vu,Vuy which additionally contains directional information. As we have seen in the
previous chapter, the application of the function to a tensor can be realised by means of an
eigenvalue decomposition. This allows to access the eigenvalues directly and thus yields a
penalisation that adapts to the directional flow structure. The associated energy functional
is given by

Praan(u) = [ (Mi(D'f.)+a Si(V,Vu)) dx (3.8)
— / (ule u+atr (Us( Vu V! + VueVa, ) ) dx,
Qo

where tr is the trace of the local flow tensor. As for the isotropic case we have chosen a
method as prototype that is based on a regularised variant of the total variation penaliser:

Wg(s?) = /52 + 2. (3.9)

3.1.2 Advanced Variational Approaches

After having introduced our prototypes for the five types of regularisation strategies, let
us now discuss two prototypes for more advanced optic flow techniques: The noise robust
combined-local-global (CLG) approach of Brukhal. that we presented in [BWSD05]

and alinearised varianiof the highly accurate optic flow method of Papenbetrgl. that

we recently proposed in [PB®6]. In contrast to all previous prototypes these methods
combine several of the concepts proposed in the second chapter and can thus be expected
to give qualitatively better results. In the following both techniques are explained in detalil.

3.1.2.1 Prototype F — The Noise Robust Method of Bruhet al.

(f) Noise Robustness - The Method of Bruhret al.

As we have seen in Sectipn 2.2.5, the sensitivity of approaches with respect to noise
is a very important aspect for the design of algorithms in motion estimation. Therefore,
we present a variational approach that tackles this problem in two ways: (i) It combines
the noise robustnessf local methods with the full density of global approaches. This is
achieved by embedding a local least square fit into the motion tensor formulation of the
data term[[BWS02]. How this works in detail has been shown in Seftion 2.2.5.1. (ii) It
makes use of the regulariséd norm as non-quadratic penaliser of the data term. As we
have discussed in Sectipn 2.2]5.3, such non-quadratic functions are related to statistically
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robust error norms [Hub81] and thus increase the performance of the approach with respect
to outliers[BA91]. Apart from these two concepts that shall improve the performance of
the data term, we also consider a discontinuity preserving smoothness term: a flow-driven
isotropic regulariser based on the regularised total variation (TV). The associated energy
functional for this noise robust method is given by

ECLG,QD,SD(LI) = /{; (Mlg(le, 11) +« S4(Vf, Vu) dx (310)

— / (\IJD (u'Jou) + a Vs ( [Vus | + [Vus|* ) > dx.
Qo

As for our previous prototypes the small constants required for the reguldrisestm are
denoted by andeg for the data and the smoothness term, respectively. Please recall that
the motionJ, is obtained via Gaussian convolution fram Jo(Vsf) = K,*J1(V3f). In

this context, one should also note that the subscript SD stands for "small displacements”.
This refers to the fact, that only linearised constancy assumptions are used.

3.1.2.2 Prototype G — The Illumination Robust Method of Papenbergt al.

Apart from noise there are is another problem that has to be addressed in the context of
motion estimation: varying illumination. To this end, we propose a variational approach
that supplements the standard grey value constancy assumption by an additional term:
The constancy of the spatial image gradi8htf = (f.,, f.,) - As we have seen in

the previous chapter, this assumption allows to deal with global illumination changes of
additive type. However, we have also seen that this assumption is very sensitive with
respect to noise. Therefore, we render the data term more robust with respect to outliers
by a joint robustification of both constancy assumptions. To this end, a regularised variant
of the L, norm is used. Finally, since we are also interested in the preservation of motion
discontinuities, we consider a spatiotemporal flow-driven isotropic regulariser based on
the regularised total variation (TV). Combining all these concepts within a single approach
yields the following energy functional:

Epap_sp-sp(u) = /Q (M13(D1f, sz, u) +a Sy(Vf, Vu) dx (3.11)

- / (\IJD (uTJ7 u) + &\Ifs( IVsui]® + [Vaua|? ) ) dx.
Q3

As defined in the previous chapter the motion tengas given by
J:(Vsf) = mAh(Vsf) +7202(Vafe, Vafe,)
= 1 (VsfVsfT) +7(Vale Vall, + VsfuVsfl,).

where J; and J, are the motion tensors for the brightness and the gradient constancy
assumption, respectively. Since in general, only the relative weight between both terms is
decisive for the estimation, one may set apnéixed. In our case we decided to sgt= 1
and to replaces by ~.

Please note that this prototype ivariant of the original method of Papenbeeg al.
that we presented in [PBB®6]: Due to the use of linearised constancy assumptions this
variant is limited to the estimation of small displacements.
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3.2 Minimisation

After we have presented our prototypes, let us now discuss how the underlying energy
functionals can be minimised. As we have seen in the previous chapter, this can be done
in two ways: Either one computes the solution of the corresponding Euler—Lagrange equa-
tions (lliptic approach) or one finds the steady-state of the associated diffusion-reaction
system that is given by the steepest descent equatpanakiolic approach In the fol-

lowing we restrict ourselves to the elliptic case. As experiments in our numerical section
will show, this strategy is more efficient than the parabolic one.

3.2.1 The Euler-Lagrange Equations

According to the Calculus of Variations [EIs61], the minimisation of an energy functional
comes down to solving its Euler—-Lagrange equations. In order to solve them, however,
these equations have first to be formulated. By using the motion and diffusion tensor
notation that we have introduced in the last chapter, this can be done in a compact way.
Moreover, this systematic notation can be exploited to derive a classification of the differ-
ent prototypes. This classification is based on the type of the associated Euler—Lagrange
equations. Thereby three cases are distinguishedlirthar case the nonlinear case |

(still partially linear) and theonlinear case I(fully nonlinear). In order to keep the clas-
sification general, the specific motion tensor for each prototype is replaced in the following
by an arbitrary motion tensaf.

3.2.1.1 The Linear Case — Prototypes A-C

In the first three cases A, B and C the Euler—Lagrange equations have the coupled form

Jinug + Jigug + Jiz — o Lyu, (3.12)
0 = Jipug + Jopug + Jog — a Lrusg (3.13)
linear linear

with thelinear differential operator
Lrz(x) =div (T(Vf) Vz(x)) (3.14)

and homogeneous Neumann (reflecting) boundary conditions. This linearity results from
the adaptation of the corresponding smoothness terms to the discontinuitiesnratjee
sequenceThe corresponding diffusion tensors are given by

A - homogeneous regularisation T(Vf)=1
B - image-driven isotropic regularisation  T(Vf) = g(|Vf|*) I
C - image-driven anisotropic regularisation T'(V f) = Pxg(Vf)
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3.2.1.2 The Nonlinear Case | — Prototypes D-E

In the cases D and E the associated Euler-Lagrange equations have a structure that is very
similar to the one for A, B and C. They are given by the coupled form

0 = Jnu+ Jioug+ Jig — a Lap(ug, us), (3.15)
O = J12 U1 + JQQ (%) + J23 — ﬁNL<U2, U1> (316)
linear nonlinear

with the nonlineardifferential operator
Lnr(2(x), 2(x)) = div (T(Vz(x), VZ(x)) Vz(x)) (3.17)

and homogeneous Neumann boundary conditions. H&¢g,is a nonlinear differential
operator, because it depends nonlinearly on its argumeatsl Z (which are in factu;
andu,). This can directly be seen from the corresponding diffusion tensors that are given

by

D - flow-driven isotropic regularisation T(Vz, Vz) = W4(|Vz|? + |VZ]?) I
E - flow-driven anisotropic regularisatidh(Vz, Vz) = U4 (V2Vz T + VzV2T)

where the derivative of the regulariség norm is obviously nonlinear since it reads

1
2\/s*+ e

As we will see later, this nonlinearity of the differential operafiy;, has serious impact
on the resulting discrete system of equations and therewith on the design of the numerical
strategy.

Let us now derive the Euler—Lagrange equations for the prototypes of the more advanced
optic flow methods F-G.

W (s2) = (3.18)

3.2.1.3 The Nonlinear Case Il - Prototypes F-G

In the case of the advanced variational methods for small displacements (8rahn
Papenberget al), the Euler—Lagrange equations are very similar to those of the flow-
driven isotropic method (prototype D). They have basically the sesnéneardifferential
operator and diffusion tensor and are given by the coupled form

U (UTJ 11) (Jirug + Jigug + Ji3) — o Ly (ug, ug), (3.19)
= tIJ;D (uTJ 11) (J12 uy + Jog ug + ngz — o ﬁNL(UQ,ul) . (3.20)

nonlinear nonlinear
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Please note that for a spatiotemporal method such as the 3-D method of Papraderg
(prototype G), the nonlinear differential operator is adpatiotemporali.e.

Lnr(2(x), 2(x)) = div (T(V3z(x), V32(x)) Vsz(x)) . (3.21)

The corresponding diffusion tensors are given by

F - Bruhnetal. T(Vz,VZ2) = UL(|Vz> +|VZ]) I
G - Papenbergtal. T(Vsz, V3z) = U4(|Vsz|? + |V32|?) T

where the derivative of the regularisé¢gl norm in both data and smoothness term reads
1

2¢/s? + €2 .
The main difference to the nonlinear case | with prototypes D-E is the fact that the obtained
system of equations is now nonlineardachof the terms. The reason for this is the non-
guadratic penalisation of outliers in the data termWjathat results in thaonlinearfactor

U}, (u'J u) in front of the originally linear expressions,,, (n,m =1, .., 3).

Wh(s?) = Wy(s?) = (3:22)

3.3 Discretisation

3.3.1 Spatial Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations A-F. To this
end, we consider the unknown functiongx1, x5, x3) andus(x, x2, z3) ON a rectangular
pixel grid with cell sizeh = (h,,,h,,)", and we denote byu}] ,; the approximation

to u; at some pixel, j with i = 1,...,N? andj = 1,..., N . The total number of pixels

is thus given byN® = Ni‘l NP, Spatlal derivatives of the image data are approximated
using a fourth-order approximation with the ster{¢il—8, 0,8, —1)/(12h), while tempo-

ral derivatives are computed with a simple two-point stencil. If we denote the discretised
entries of the differengpatial diffusions tensors by

a(x) b(x) ) h [a®]. . [o"]. .

T(x):= — |T* . = b b 3.23
(x) ( b(x) e(x) [ I [th,j [Ch}z‘,j e
we can discretise the divergence expressions in the spatial differential opdratansl
L1, by means of the following finite difference approximations:

0oy (a(x) 0y, 2(x)) =~ DP( MEP([a h] ) D+’h([ hLJ)), (3.24)
O, (b(x) Opy2(x)) ~ D2 ( b } [zh]m.)), (3.25)
Ouy (b(x) 05y 2(x)) =~ D2 ( 0", Dz ([2"].,), (3.26)
Oy (€(x) Onp2(x)) = DM MEM(["], ) D+h ([£"].,)- (3.27)

Details on the required averaging and dlfferentlal operators within the approximations are

given in Tablg 3.Jl. One should note, that these discretisations can also be derived from
discrete versions of the original energy functionals. An alternative discretisation that also

offers a good accuracy can be found(in [Bro05].



3.3 Discretisation 69

Tab. 3.1 Discretisations of averaging and differential operators - spatial case.

[Zh] ij:17j+ [Zh] i,j

One-sided averaging | ME™" ([z"],,)

One-sided differences D" ([h]. ) = +5
i.j

Fra
Central differences Db ([=P = [zh]i“’j_[zh}i_u
T ZL‘J‘) = T
(2], =[]
Db ([4],) = g P
Sauared iferences | DA ([+*],)) = (D117, )+ 4 (05" ((],))’
2 3 2
DI ([],,) =5 (DEMN([M,) + 5 (P (1,))

Gradient magnitude ’Dzah ([zh]”)‘ = \/Dg%;h([zh] i) T D2 ([20] »

3.3.2 Spatiotemporal Discretisation Aspects

In the case of our prototype G (the illumination invariant method of Paperdtead)
we consider the unknown functions(z1, z2, x3) andus(z1, z2, x3) on a voxel grid with
voxel sizeh = (hy,, ha,, hey)". Analogously to the spatial caspyy'] , ., stands hereby
for the approximation ta,; at some pixel, j, k with i = 1,..,N®, j = 1,..,N?, and

k= 1,...,1\7;‘3. This time, however, we have to discretise the differential opetatgrfor a
spatiotemporadiffusion tensor

a(x) b(x) d(x) [ah]i,j,k [bh]z‘,j,k [dhL,j,k
b(x) e(x) e(x) | = [Ttp], = | %] ()50 ("] |328)
d(x) e(x) f(x) [ [l i

To this end, we use the following finite difference approximations:

T3(x) ==

Ou, ((a(x) 05,2(x)) ~ D" ( M;;h([ah}i,j,k) D ([Zh}”k)% (3.29)
0a(b0) 0sb0) = D ([, DY (M) @30
0 (000 0u) = DY ([, DE (). (33D
Oy ( b(x) O, 2(x)) Dy, ( [bh}i,j,k Dy, ([Zh}i,j,k))’ (3.32)
Ony ((€(x) Or,2(x)) D" ( M;;’h([ch}i,j,k) DM ([ i,j,k))’ (3.33)
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Tab. 3.2 Discretisations of averaging and differential operators - spatiotemporal case.

One-sided averaging M ([2"], ) = s
h h
M (] 0) = g
h h
ijzg,h ([zh]ch) = [ ]zyki12 [ ]uk
. . +.,h h [h]zil'k [h]l k
One-sided differencesDz;™ (|2 ]”k) =+ y :
h h
DE* ([4],,) = s
h h
DE? (1)) =g
h _|,h
Central differences | Dy, ([2"],.,) = : ]M’j’;hf s

2 2
Squared differences| D3} ([Zhhgk) =3 (D;h(['zh]uk» +3 (Dah(['zh]i,g‘,k))

Gradient magnitude ‘DQ’h([zh]i,ng)‘ = \/Dgih([zh]i7j7k;)+D§'72h(|:zh}7j7j7k)+D§';’)h(|:zh}i7j7k)

Ou, ( €(x) Ory2(x)) ~ Dy, ( [eh]i,] k D, ([Zh]i,j,k))7 (3.34)
Oy ((€(x) Oy 2(x)) D | [dhLM D ([2"] l7j7k)), (3.35)
Oy ((d(x) Dy, 2(x)) D " ik DY ([zh]m’k)), (3.36)
Ous (J(x) u2(x)) = Dt (MG Dt (7 ,0))- B:37)

The corresponding details on the basic averaging and differential operators can be found
in Table[3.2. As in the spatial case the discretisation scheme can be related to a discrete
energy functional.
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3.3.3 The Discrete Euler—Lagrange Equations

As we have seen in Sectipn 3.2.1, there are basically three types of Euler—Lagrange equa-
tions: linear ones,partially nonlinearones andully nonlinearones. Let us now discuss
their discretisation by means of the following abbreviations

h h h T
ut = ([ul]m,...,[ul]N%M) (1=1,2), (3.38)
T
o = (ool Dl ) (min=1.2.3), (3.39)
T = diag (i) (mn=123),  (3.40)

and their spatiotemporal counterparts (required for the prototype G). Apart from a compact
notation these abbreviations allow us to formulate the resulting systems of equations in
such a way that their underlying structure becomes explicit.

3.3.3.1 The Linear Case - Prototypes A-C

Structure. We are now in the position to write down the discrete Euler-Lagrange equa-
tions for the linear case. They are given by the following system of equations

J{ll JE Llﬁ 0 U-lf _ —jlfS
((J ) Vo) ) Le )7 (341
linear operator linear operator rhs

which is linear with respect to the N unknownsu! andu}. Here, L} denotes the dis-

crete version of the corresponding linear operdtpmwhich comes down to aymmetric
positive semidefinitd’® x N® matrix that has eithgoentadiagonalprototypes A-B) or
nonadiagonalprototype C) structure. These type matrices that actually discretise a dif-
fusion process have been well researched in [Weéi94a]. One should note that symmetry
and positive semidefiniteness are also shared by the matrix obtained from the data term
(by construction) and thus by the overalV® x 2/N® system matrix. One can even show
that this matrix ispositive definitef at least one entry of the off-block diagonal, is
different from zero. This means in turn if constant images are excluded — such images are
not of interest anyway — the resulting matrix is invertible and the system can be solved by
standard numerical techniques (see Chdgter 4).

Coupling. One should furthermore note that there are two different types of coupling
in the equation system. Thaintwise couplingoetweenu! andu} via the off-block
diagonals/%, in the first operator (data term) and theighbourhood couplingithin the
main-block diagonals via the second operadtpr(smoothness term).

3.3.3.2 The Nonlinear Case | - Prototypes D-E

Structure. Analogously to the linear case, we discretise the Euler Lagrange equations for
the first nonlinear case. The obtained nonlinear system of equations reads

T thz) <L‘§L(u5‘ ug) 0 ) <u‘f) <—j§‘3>

— ’ = . ) 3.42

( (J{IQ J;Q 0 L%L(U}faug) ug —ngs ( )
———— ~ N——

linear operator nonlinear operator rhs
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Here, the finite difference approximation 6k, (u1, uz) and Ly, (ug, uq) results in the
product of acommon nonlineaoperatorLy; (u, u}') and the vectora! andu}, respec-

tively. One should note that for a fixed argument this nonlinear argument becomes linear
and the solution process comes down to the linear case. This aspect will be exploited in
the next chapter.

Coupling. Apart from the point coupling and the neighbourhood coupling that are already
present in the linear case, a third type of coupling of the unknowns is present. It is given
by the joint argument of the common nonlinear operdtgr (ul', ud).

3.3.3.3 The Nonlinear Case Il - Prototypes F-G

Structure. As in the previous case the discretisation of the Euler-Lagrange equations for
the nonlinear case Il yields a nonlinear system of equations. It is given by

((qu{zum F§L<ulf,u1;>Jg)_a <L§L<u?,ug> 0 )>>(u)
u;

F(uf, ul)Jy By (uf, uy) g3, 0 Ly (u},u}
nonlinear operator nonlinear operator
Fh (uh uh) jh 0
+ NSRRI 3.43
(Rt ) = (6 (549

nonlinear operator  rhs

where the nonlinear facta¥j,(u' J u) results in the nonlinear operator
Bl (b, ub) = diag((wh ([u*] [, [, [u], ). (3.44)
c U ([ut] ;3;1 NB [7"] NB NB [u”] NB NB )> :

One should note that in contrast to the nonlinear case |, the right hand side is homogeneous.
This is a direct consequence of the fact that all terms are nonlinear (they can be combined
into one single nonlinear operatpr

Coupling. One should note that the linear point coupling in the data term that appears
in the first two cases (prototypes A-E) may now become strongly nonlinear, since it is re-
weighted by the entries of the nonlinear operdt8y (ul', ul). The use of a joint argument

for this operator thereby constitutes a fourth type of coupling.

3.4 Qualitative Experiments

After we have seen how to minimise the obtained Euler—Lagrange equations — efficient
strategies for this purpose will be discussed in the next chapter — let us now perform a
systematic comparison of all prototypes with respect to their estimation quality. To this
end, we evaluate the performance of the different approaches for various motion scenarios:
We start with sequences basedgdabal motion typescontinue withmoving objectshat
require the estimation afiscontinuities and end up with scenes whdyeth camera and
objects are movingMoreover, we consider image sequences walying illumination
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andnoise In order to give a realistic impression of the true capabilities of each prototype
both synthetic and real-world sequences are used. This also allows to address the problem
of interlacingthat is typical for many applications.

3.4.1 Synthetic Sequences

In contrast to real-world sequences, synthetic sequences offer the advantage that they allow
to measure the performance of an approach quantitatively. As explained in Ghapter 2, this
is done by means of the average angular error (AAE) [BFFB94]. In the following we present
six experiments that investigate the performance of the proposed prototypes for synthetic
sequences in both a quantitative and a qualitative way.

Tab. 3.3 Experiment I: Performance of the prototypes for synthetic sequences with globally di-
vergent motion. We optimised the paramet@ys.:, otemp, @, p and~y with respect to the average
angular error (AAE).

Yosemite Sequence without Clouds

| prototype | method | owat | « | other parameters| AAE |
A homogeneous 1.80 800 - 2.64°
B image-driven isotropic 1.80 | 2700 - 2.64°
C image-driven anisotropi¢ 1.80 | 3000 - 2.57°
D flow-driven isotropic 1.80 27 - 2.58°
E flow-driven anisotropic 1.80 22 - 2.65°
F Bruhnet al. 2-D 1.95 17 p=1.3 2.27°
G Papenbergt al. 3-D 1.95 7 7=1.0,0temp=0.80 || 1.45°

3.4.1.1 Experiment I: Globally Divergent Motion

In our first experiment we study the performance of the seven prototypes with respect to
globally divergent motion. To this end, we used tfesemitesequenceavithout sky by

Black (http://www.cs.brown.edu/people/black/images.html ). It con-

sists of 15 frames of siz816 x 252 and depicts a flight through the Yosemite National
Park. The occurring displacements are in the order up to 5.5 pixels. In order to allow for a
more accurate evaluation of the results we did not consider the 8-bit ground truth provided
with the image data, but the original 16-bit ground tffjthy John Barron. Moreover, we
omitted the sky region when computing the average angular error. This is common prac-
tice, since the sky does not provide any texture. One should note that this simplifies the
estimation significantly, since there are no real discontinuities left.

The obtained average angular errors for all prototypes are listed in[Table 3.3. As one
would expect for such a simple task, all methods perform relatively good. However, one
can see a clear difference between the results of the basic prototypes A-E and the re-
sults of the advanced methods F-G. This is not surprising, since due to the absence of
discontinuities other concepts such as robust data terms (F,G), local least square fits (F)

1. In the scope of the performance benchmark of Bagal. [BEB94] this ground truth was available at
ftp://csd.uwo.ca/pub/vision
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Fig. 3.1 Experiment I: Performance of the prototypes for synthetic sequences with globally
divergent motion(a) Top Left: Frame 8 of théfosemitesequencavithoutclouds of size16 x 256
(grey-scale).(b) Top Centre: Frame 9.(c) Top Right: Ground truth (vector plot)(d) Upper
Middle Left: Ground truth (colour plot)(e) Upper Middle Centre: Prototype A (homogeneous
regularisation)(f) Upper Middle Right: Prototype B (image-driven isotropic regularisatiofg)
Lower Middle Left: Prototype C (image-driven anisotropic regularisatiofi)) Lower Middle
Centre: Prototype D (flow-driven isotropic regularisatiofi). Lower Middle Right: Prototype E
(flow-driven anisotropic regularisation(j) Bottom Left: Prototype F (Bruhret al. 2-D, SD).(k)
Bottom Centre: Prototype G (Papenbesi al. 3-D, SD).
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Fig. 3.2 Experiment Il : Performance of the prototypes for synthetic sequences with discontinu-
ities, outliers and globally divergent motioria) Top Left: Frame 10 of theOffice sequence of
size 200 x 200 (grey-scale variant)(b) Top Centre: Frame 11.(c) Top Right: Ground truth
(vector plot). (d) Upper Middle Left: Ground truth (colour plot).(e) Upper Middle Centre:
Prototype A (homogeneous regularisatioff).Upper Middle Right: Prototype B (image-driven
isotropic regularisation),g) Lower Middle Left: Prototype C (image-driven anisotropic regular-
isation).(h) Lower Middle Centre: Prototype D (flow-driven isotropic regularisatiofi). Lower
Middle Right: Prototype E (flow-driven anisotropic regularisatioj).Bottom Left: Prototype F
(Bruhnet al. 2-D, SD).(k) Bottom Centre: Prototype G (Papenber al. 3-D, SD).
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and spatiotemporal regularisers (G) become more important. In fact, one can see from
the corresponding flow fields in Figure B.1 that the advanced methods allow for a much
smoother estimation of the results. Outliers at the lower left corner are thereby eliminated
successfully by the robust data term and the additional temporal smoothness.

3.4.1.2 Experiment II: Discontinuities, Outliers, Globally Divergent Motion

In our second experiment we investigate the performance of the different prototypes with
respect to global divergent motion, outliers and discontinuities. For this purpose we con-
sidered theOffice sequence by Galviet al. [GMNT98]. This sequence consists of 20
frames of size00 x 200 and depicts a zoom into a synthetic working place. The varying
depth of the furniture thereby creates small discontinuities, that have to be estimated cor-
rectly by the different approaches. However, the displacements are rather small, since they
do not exceed 1.5 pixels. Apart from with the discontinuities, the methods have also to
deal with temporal aliasing artifacts that manifest themselves in a large number of outliers
in regions of the monitor, the plant and the window.

Let us take a look at the achieved results that are presented in[Taple 3.4. They show
that apart from the advanced techniques F and G, also the simple prototype A performs
well — although this approach does not respect motion discontinuities. While this may be
surprising at first glance, it has a simple explanation: If we compare the corresponding flow
fields depicted in Figurle 3.2, we see that the non-robust discontinuity preserving methods
B-E not only respect edges in the image and flow field: They also adapt to outliers that
have been mentioned before. Thus, although their performance is superior in most areas,
they cannot outperform the evidently too smooth result of the prototye'this also
explains the good performance of the advanced techniques F and G. Here, the robust data
term and the spatiotemporal regularisation contribute significantly to the improved results.

Tab. 3.4 Experiment Il : Performance of the prototypes for synthetic sequences with discontinu-
ities, outliers and globally divergent motion. We optimised the parameig(s otemp, o, p andy
with respect to the average angular error (AAE).

Office Sequence

| prototype | method | opat | a | other parameters| AAE |
A homogeneous 0.75 2700 - 4.36°
B image-driven isotropic 0.75 5400 - 5.06°
C image-driven anisotropi¢ 0.60 | 10000 - 5.03°
D flow-driven isotropic 0.75 70 - 4.99°
E flow-driven anisotropic 0.75 49 - 4.94°
F Bruhnet al. 2-D, SD 0.80 17 p=2.5 4.31°
G Papenbergt al. 3-D, SD || 1.30 7 v=2.4,0temp=0.10 || 3.26°

2. Please note that we have kept the regularisation paramgter each prototype fixed in all our exper-
iments. Increasing its value to a large number, however, would allow to approximate the behaviour of
prototype A (homogeneous regularisation) with the prototypes B-E (adaptive regularisation) and thus to
achieve similar results for all five basic prototypes.
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3.4.1.3 Experiment lll: Discontinuities, Translational Motion with Static Back-
ground

After we have investigated the performance of the different prototypes with respect to di-
vergent motion, let us now study their capabilities of estimating translational motion. This
is done in our third experiment by the example of MiddendoN&v Marblesequence
(http://i2lwww.ira.uka.de/image _sequences/ ). This sequence was already
used in our theoretical chapter and consists of 200 frames obsze 384. Apart from

a static marble block it depicts two moving blocks that slide over a marble floor with up
to 2 pixels per frame. Due to the static background this scene requires the estimation of
sharp motion discontinuities at the boundaries of all moving objects.

The corresponding results are presented in Table 3.5. As one can see all prototypes
allow for an accurate estimation of the results. However, the raw numbers also show the
advantage of flow-driven methods for heavily textured sequences. In contrast to image-
driven techniques they allow for a homogeneous estimation of moving objects even across
discontinuities that belong to the texture while still respecting true motion discontinuities.
This is also confirmed by the computed flow fields that are depicted in Higyre 3.3. They
show the best results for the methods D-G. Thereby the advantage of robust data terms
becomes obvious: Only the prototypes F and G allow to suppress the motion that results
from the shadow of the large block moving to the right.

Tab. 3.5 Experiment lll : Performance of the prototypes for synthetic sequences with discontinu-
ities and translational motion with static background. We optimised the paramgigrsoemp,
a, p and~y with respect to the average angular error (AAE).

New Marble Sequence

| prototype | method | owat | « | other parameters| AAE |
A homogeneous 0.60 850 - 2.51°
B image-driven isotropic 0.60 | 3050 - 2.45°
C image-driven anisotropi¢g 0.60 | 3050 - 2.51°
D flow-driven isotropic 0.60 47 - 1.50°
E flow-driven anisotropic 0.60 38 - 1.58°
F Bruhnet al. 2-D, SD 0.50 27 p=0.1 0.93°
G Papenbergt al. 3-D, SD || 0.50 19 |~+=1.0,0¢emp=0.10| 0.66°

3.4.1.4 Experiment IV: Discontinuities, Outliers, Translational Motion with Mov-
ing Background

In the previous experiment, objects were moving in front efadic backgroundin order

to make things more challenging, let us evaluate in our fourth experiment the performance
of our prototypes ifboth object and background are moving. To this end, we consider
the Streetsequence by Galviet al. [GMN'98]. This synthetic sequence consists of 20
frames of size200 x 200 and depicts a car driving from the left to the right with up to
4.5 pixels per frame. At the same time — induced by a slow camera motion following the
car — the background moves in the opposite direction. Evidently, this scenario requires
the estimation of two types of translational motion as well as the preservation of motion
discontinuities. Moreover, it requires the handling of a significant number of data outliers
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Fig.3.3 Experiment Il : Performance of the prototypes for synthetic sequences with discon-
tinuities, outliers and translational motion with static backgrou(a). Top Left: Frame 150 of

the New Marblesequence of siz812 x 384 (grey-scale variant)(b) Top Centre: Frame 151.

(c) Top Right: Ground truth (vector plot)(d) Upper Middle Left: Ground truth (colour plot).

(e) Upper Middle Centre: Prototype A (homogeneous regularisatioff).Upper Middle Right:
Prototype B (image-driven isotropic regularisatiof)) Lower Middle Left: Prototype C (image-
driven anisotropic regularisation{h) Lower Middle Centre: Prototype D (flow-driven isotropic
regularisation) (i) Lower Middle Right: Prototype E (flow-driven anisotropic regularisatio@).
Bottom Left: Prototype F (Bruhmt al. 2-D, SD).(k) Bottom Centre: Prototype G (Papenbegy

al. 3-D, SD).
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Fig. 3.4 Experiment IV : Performance of the prototypes for synthetic sequences with discontinu-
ities, outliers and translational motion with dynamic background (camera mof@nJop Left:
Frame 10 of thé&treetsequence of siz200 x 200 (grey-scale variant)b) Top Centre: Frame 11.

(c) Top Right: Ground truth (vector plot)(d) Upper Middle Left: Ground truth (colour plot).

(e) Upper Middle Centre: Prototype A (homogeneous regularisatioff).Upper Middle Right:
Prototype B (image-driven isotropic regularisatiofg)) Lower Middle Left: Prototype C (image-
driven anisotropic regularisation{h) Lower Middle Centre: Prototype D (flow-driven isotropic
regularisation) (i) Lower Middle Right: Prototype E (flow-driven anisotropic regularisatio).
Bottom Left: Prototype F (Bruhret al. 2-D, SD).(k) Bottom Centre: Prototype G (Papenbes

al. 3-D, SD).
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(e.g. inthe region of the tree). These outliers are once again the result of temporal aliasing
and manifest themselves in flickering artifacts.

The obtained average angular errors for all our methods are listed in[Table 3.6. As
one can see, the image-driven prototypes A-C perform relatively poorly. This can be ex-
plained as follows: Since these methods either favour very smooth solutions (prototype
A) or adapt to the (false) image data (prototype B-C), they are not suitable for corrupted
image sequences with small moving objects. This is also reflected in the fact that we had
to limit the value of the smoothness parametés 2000 for these three prototypes in order
to prevent them from ignoring the foreground object and estimating only the translational
background motion. In contrast, the flow-driven prototypes D-G allow to preserve dis-
continuities without adapting directly to the corrupted data. Therefore it is not surprising
that they give significantly better results. This is also confirmed by the corresponding flow
fields depicted in Figurp 3.4. As one can see the background is estimated much better
in the cases D-G. Thereby it becomes also obvious why the advanced prototype F is out-
performed by the basic prototypes D-E. While its robust data term allows an even better
estimation of the background it also treats parts of the (relatively small) car as outliers.
This, of course, reduces the overall accuracy. As the flow field of prototype G shows,
spatiotemporal information may be useful to overcome this problem. In fact, for this pro-
totype, both types of motion are estimated accurately.

Tab. 3.6. Experiment IV : Performance of the prototypes for synthetic sequences with discon-
tinuities and translational motion with dynamic background camera motion. We optimised the
parameterspat, otemp, @, p and~y with respect to the average angular error (AAE).

Street Sequence

| prototype | method | owat | a | other parameters| AAE |
A homogeneous 0.60 | 2000 - 6.40°
B image-driven isotropic 0.70 | 2000 - 6.48°
C image-driven anisotropig 0.60 | 2000 - 5.79°
D flow-driven isotropic 0.80 90 - 4.09°
E flow-driven anisotropic 0.80 65 - 4.13°
F Bruhnet al. 2-D, SD 0.90 10 p=0.9 4.30°
G Papenbergt al. 3-D, SD || 1.60 11 | +4=2.1,0¢emp=0.10 || 3.21°

3.4.1.5 Experiment V: Discontinuities, Translational and Divergent Motion, Vary-
ing lllumination

Until now we have performed experiments for sequencesaiikiertranslationabr diver-
gent motion. In our fifth experiment, however, we evaluate the performance for sequences
whereboth types of motionare present. To this end, once more the famtasemitese-
quencewith clouds is used. This sequence consists of 15 frames oBs$ize 252 and
depicts a flight through the Yosemite national park. It combines the divergent motion of
the flight with the translational motion of the clouds. The transition between both motion
types thereby requires the estimation of a sharp discontinuity. Moreover, the region of the
clouds is very challenging, since varying illumination is present.

The corresponding results for this sequence are listed in Talile 3.7. They nicely show
how additional concepts can improve the estimation: One can see that non-adaptive reg-
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ularisers (prototype A) are outperformed by adaptive ones (prototype B-G), that robust
data terms (prototypes F-G) give better results than non-robust ones (prototypes A-E) and
that the gradient constancy assumption (prototype G) is much more suitable under varying
illumination than the grey value constancy assumption (A-F). In fact, all these observa-
tions are confirmed by the corresponding fields depicted in Fjgufe 3.7. The discontinuity-
preserving methods allow the estimation of a sharp discontinuity at the horizon, the robust
methods overcome the small outlier problem at the lower left corner (these pixels move
out of the image) and the prototype based on the gradient constancy assumption allows
the correct estimation of the sky region despite of the varying illumination. One can also
see that all methods underestimate the optic flow vectors in the lower left corner (the cyan
is not as bright as the one of the ground truth). This, however, is not surprising: Since
the correct displacements are in the order of seven pixels in this area, our methods based
on linearised data terms have slight problems. Nevertheless, the estimation is still pretty
accurate as the average angular errors show.

Tab. 3.7. Experiment V: Performance of the prototypes for synthetic sequences with discontinu-
ities, translational and divergent motion as well as varying illumination. We optimised the param-
etersogpat, Oremp, @, p aNnd~y with respect to the average angular error (AAE).

The Yosemite Sequence with Clouds

| prototype | method | owat | a | otherparameters| AAE |
A homogeneous 1.30 500 - 7.17°
B image-driven isotropic 1.20 | 2700 - 6.44°
C image-driven anisotropig 1.30 | 4500 - 6.28°
D flow-driven isotropic 1.30 42 - 6.32°
E flow-driven anisotropic 1.30 44 - 6.42°
F Bruhnet al. 2-D, SD 1.60 24 p=1.4 5.74°
G Papenbergtal. 3-D, SD || 2.10 93 | ~v=1050,0tcmp=0.50 || 2.78°

3.4.1.6 Experiment VI: Discontinuities, Translational and Divergent Motion, Vary-
ing lllumination, Gaussian Noise

Our sixth and last experiment with respect to the synthetic sequences is dedicated to the
performance of the different prototypes under noise. To this end, we added Gaussian
noise of standard deviatian, = 10, 20 and40 to the Yosemitesequencevith clouds and
computed the average angular error for all prototypes.

The results obtained for all methods and all noise levels are presented irj Table 3.8. As
expected, the advanced prototype F yields the most accurate flow fieldsp@sdll proto-
types A-F. However, compared to tepatiotemporaprototypes G its performance looks
rather poor. This has two reasons: Firstly, the gradient constancy assumption is by far the
most suitable constancy assumption for this sequence (due to the varying illumination in
the sky). This is already reflected in the results without noise. Secondly, the robust data
term and the additional temporal information compensate for the higher sensitivity of this
constancy assumption with respect to noise. Thus it is not surprising that average angular
errors are obtained that are almost twice as low as those of the remaining prototypes. Let
us now take a look at the computed flow fields for the noise level, 0= 40 (Figure
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Fig. 3.5 Experiment V: Performance of the prototypes for synthetic sequences with discontinu-
ities, translational and divergent motion as well as varying illuminati@).Top Left: Frame 8

of the Yosemitesequencavith clouds of size316 x 256 (grey-scale).(b) Top Centre: Frame 9.

(c) Top Right: Ground truth (vector plot)(d) Upper Middle Left: Ground truth (colour plot).

(e) Upper Middle Centre: Prototype A (homogeneous regularisatioff).Upper Middle Right:
Prototype B (image-driven isotropic regularisatiof)) Lower Middle Left: Prototype C (image-
driven anisotropic regularisation{h) Lower Middle Centre: Prototype D (flow-driven isotropic
regularisation) (i) Lower Middle Right: Prototype E (flow-driven anisotropic regularisatio@).
Bottom Left: Prototype F (Bruhmt al. 2-D, SD).(k) Bottom Centre: Prototype G (Papenbegy

al. 3-D, SD).
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Fig. 3.6 Experiment VI: Performance of the prototypes for synthetic sequences with Gaussian
noise.(a) Top Left: Frame 8 of therosemitesequenceavith clouds of size316 x 256 (grey-scale).
Gaussian noise af,, = 40 was added(b) Top Centre: Frame 9.(c) Top Right: Ground truth
(vector plot). (d) Upper Middle Left: Ground truth (colour plot).(e) Upper Middle Centre:
Prototype A (homogeneous regularisatioff).Upper Middle Right: Prototype B (image-driven
isotropic regularisation),g) Lower Middle Left: Prototype C (image-driven anisotropic regular-
isation).(h) Lower Middle Centre: Prototype D (flow-driven isotropic regularisatiofi). Lower
Middle Right: Prototype E (flow-driven anisotropic regularisatioj).Bottom Left: Prototype F
(Bruhnet al. 2-D, SD).(k) Bottom Centre: Prototype G (Papenber al. 3-D, SD).
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Tab. 3.8 Experiment VI: Performance of the prototypes for synthetic sequences with Gaussian
noise. We optimised the parametetg.:, otemp, @, p and~y with respect to the average angular
error (AAE).

Yosemite Sequence with Clouds - Noise Leve}, = 0

| prototype | method | owat | a | otherparameters| AAE |
A homogeneous 1.30 500 - 7.17°
B image-driven isotropic 1.20 | 2700 - 6.44°
C image-driven anisotropig 1.30 | 4500 - 6.28°
D flow-driven isotropic 1.30 42 - 6.32°
E flow-driven anisotropic 1.30 44 - 6.42°
F Bruhnet al. 2-D, SD 1.60 24 p=1.4 5.74°
G Papenbergt al. 3-D, SD | 2.10 60 |~v=1050,0tcmp=0.50 || 2.78°

Yosemite Sequence with Clouds - Noise Leve}, = 10

| prototype | method | owpat | « | otherparameters| AAE |
A homogeneous 1.80 | 1100 - 9.37°
B image-driven isotropic 1.80 | 4500 - 8.72°
C image-driven anisotropi¢g 1.80 | 6600 - 8.17°
D flow-driven isotropic 1.80 70 - 8.22°
E flow-driven anisotropic 1.80 56 - 8.28°
F Bruhnet al. 2-D, SD 1.80 20 p=2.3 7.96°
G Papenbergt al. 3-D, SD || 3.10 39 | v=1050,04mp=0.40 || 3.95°

Yosemite Sequence with Clouds - Noise Leve}, = 20

| prototype | method | owat | o | otherparameters| AAE |
A homogeneous 2.10 2000 - 12.17°
B image-driven isotropic 2.10 7500 - 11.62°
C image-driven anisotropi¢g 2.10 | 12500 - 10.99°
D flow-driven isotropic 2.10 110 - 10.91°
E flow-driven anisotropic 2.10 90 - 11.03°
F Bruhnet al. 2-D, SD 2.10 21 p=3.0 10.71°
G Papenbergt al. 3-D, SD || 3.80 36 | v=1050,0tcmp=0.65 | 5.58°

Yosemite Sequence with Clouds - Noise Leve}, = 40

| prototype | method | opat | a | otherparameters| AAE |
A homogeneous 2.40 4500 - 16.82°
B image-driven isotropic 2.40 | 17000 - 16.37°
C image-driven anisotropi¢ 2.40 | 32000 - 15.73°
D flow-driven isotropic 2.40 191 - 15.66°
E flow-driven anisotropic 2.40 178 - 15.69°
F Bruhnet al. 2-D, SD 2.40 12 p=15.4 15.31°
G Papenbergt al. 3-D, SD || 5.00 25 ~v=1050,0temp=0.70 || 8.29°
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[3.6). As one can see, they confirm our considerations with respect to the advantages of
our prototype G: In spite of the large amount of noise, the gradient constancy assumption
still allows for a precise estimation of the sky region.

3.4.2 Real-World Sequences

In the previous six experiments we have evaluated the performance of our prototypes with
respect to synthetic sequences. Let us now study by the example of three real-world scenes
how these methods actually perform on non-synthetic data. To this end, we start with a
simple scene with rotational motion — a motion type that has not been considered to so far.

3.4.2.1 Experiment I: Discontinuities, Rotational Motion

In our first experiment on real-world data we evaluate the performance of our prototypes
with respect to rotational motion. To this end, we selectedriigiksequence by Szeliﬁd

that consists of1 frames of siz&€56 x 240. This sequence shows Rubik’s famous cube po-
sitioned on a rotating disk and requires the estimation of discontinuities within a rotational
motion. The occurring displacements are approximately in the order of 1.5 pixels.

As common for real-world sequences, the ground truth for the Rubik scene is not known.
Thus, we adapted the parameters in such a way that the visual quality was optimised (ho-
mogeneous estimation of disc and cube). The corresponding flow fields are depicted in
Figure[3.T. Surprisingly, they show a very good performance of our image-driven proto-
types B and C. In particular, the flow field obtained by our anisotropic technique C looks
very realistic. Almost all flow-driven methods, however, suffer from the problem that they
propagate information into the textureless static floor. At this point one should note that
this behaviour igully in accordancewith the underlying model assumptions: Pixels of the
same grey value are still mapped to each other. Onlptloe knowledgehat the floor is
solid and thus does not move leads to our decision that this filling-in of flow information is
wrong. The only exception from this behaviour is given by our spatiotemporal prototype
G. Due to the additional temporal information this prototype requires only a relatively
small value for the smoothness weight This in turn allows for a homogeneous estima-
tion of the motion for the disc and the cube without smoothing over the corresponding
boundaries.

3.4.2.2 Experiment II: Discontinuities, Multiple Translational Motions, Interlacing

So far we have restricted ourselves to image sequences with not more than two moving
objects. However, in particular with respect to computer vision tasks such as video surveil-
lance or people tracking, optic flow approaches should allow the simultaneous estimation
of multiple motions. This aspect is investigated in our second experiment on real-world
data, where a classic traffic sequence is usedRtimanhaferscene by Nagel. This scene

that is available fronmttp://i21www.ira.uka.de/image _sequences/ shows

a surveillance video of a highly frequented intersection and consists of 1000 frames of size
688 x565. Apart from estimating the motion of the different cars (up to 9 pixels per frame),

3. In the scope of the performance benchmark of Baebal. [BEB94] this sequence was available at
ftp://csd.uwo.ca/pub/vision
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Fig. 3.7 Experiment |: Performance of the prototypes for real-world sequences with disconti-
nuities and rotational motion(a) Top Left: Frame 10 of theRubicsequence of siz256 x 240
(grey-scale).(b) Top Centre: Frame 11.(c) Top Right: Prototype A (homogeneous regularisa-
tion). (d) Middle Left: Prototype B (image-driven isotropic regularisatiofg) Middle Centre:
Prototype C (image-driven anisotropic regularisatigf))Middle Right: Prototype D (flow-driven
isotropic regularisation)(g) Bottom Left: Prototype E (flow-driven anisotropic regularisation).
(h) Bottom Centre: Prototype F (Bruhret al. 2-D, SD).(i) Bottom Right: Prototype G (Papen-
berget al. 3-D, SD).

this scene also requires to deal with interlacing artifacts. These stripe artifacts that result
from an alternating update of even and odd lines are typical for real-world applications.
The computed flow fields for this sequence are depicted in Figufe 3.9. As one can
see, the interlacing artifacts hardly spoil the estimation. Only in the case of our image-
driven prototypes B and C they yield slightly visible stripe-artifacts (within the black back-
ground). In particular for the flow-driven prototypes D-G, however, the estimation quality
is very good. The motion boundaries are sharp and even the motion of the small cars in the
background is estimated precisely. Nevertheless, one should note that all methods suffer
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Fig.3.8 Experiment Il : Performance of the prototypes for real-world sequences with disconti-
nuities, multiple translational motions and interlaciga) Top Left: Frame 1130 of the interlaced
Rheinhafersequence of sizé88 x 565 (grey-scale)(b) Top Centre: Frame 1131(c) Top Right:
Prototype A (homogeneous regularisaticfa)). Middle Left: Prototype B (image-driven isotropic
regularisation). (e) Middle Centre: Prototype C (image-driven anisotropic regularisatioff).
Middle Right: Prototype D (flow-driven isotropic regularisatior(p)) Bottom Left: Prototype E
(flow-driven anisotropic regularisation{h) Bottom Centre: Prototype F (Bruhret al. 2-D, SD).

(i) Bottom Right: Prototype G (Papenber al. 3-D, SD).

from a common problem in this sequence: the underestimation of the displacements for the
fast driving white van in the foreground. Although the motion field looks reasonable, the
actual motion of the white van is much faster. As we have discussed in the context of the
Yosemite sequence with clouds, this problem is related to the use of linearised constancy
assumptions in the data term.

3.4.2.3 Experiment Ill: Discontinuities, Multiple Motions, Occlusions, Interlacing

In our third experiment we evaluate the performance of the different prototypes with re-
spect to occlusions. To this end, we consider another popular traffic scertettlthger
Tor sequence by Kollnig. As theheinhafersequence from the previous experiment, this
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Fig. 3.9 Experiment Il : Performance of the prototypes for real-world sequences with disconti-
nuities, multiple translational motions, occlusions, and interladiagTop Left: Frame 24 of the
Ettlinger Torsequence of siz&l2 x 512 (grey-scale)(b) Top Centre: Frame 25(c) Top Right:
Prototype A (homogeneous regularisaticfa). Middle Left: Prototype B (image-driven isotropic
regularisation). (e) Middle Centre: Prototype C (image-driven anisotropic regularisatioff).
Middle Right: Prototype D (flow-driven isotropic regularisatior(ly) Bottom Left: Prototype E
(flow-driven anisotropic regularisationjh) Bottom Centre: Prototype F (Bruhret al. 2-D, SD).

(i) Bottom Right: Prototype G (Papenbesgd al. 3-D, SD).

scene is available frorhttp://i21www.ira.uka.de/image _sequences/ and

shows a heavily frequented intersection. However, since it was recorded from a larger dis-
tance, objects and displacements are smaller. The sequence consists of 50 frames of size
512 x 512 and depicts a variety of moving cars (up to 6 pixels per frame). Thereby two
cars are of particular interest: a bus in the foreground that passes behind a lamp post and
and a car in the upper right area that leaves a tunnel. In both cases occlusions due to static
background objects occur and motion discontinuities have to be estimated.

As one can see from the corresponding flow fields in Figurie 3.9, all prototypes yield real-
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Tab. 3.9 Comparison to the Literature I: Comparison between results from the literature with

100 % density and our prototypes. All data refer to ¥esemitesequence with cloudy sky.

SD = small displacements. HC = constancy assumptions on higher derivatives. NQ-D = non-
guadratic (robust) data term. NQ-S = non-quadratic smoothness term or similar strategy (preserves
discontinuities). M = multiscale strategy, warping (can handle large displacements). S = segmen-
tation strategy. AAE = average angular error.

Yosemite Sequence with Clouds

y technique [HC[NQ-D|NQ-S[3D| M | S | AAE |
Horn/Schunck, orig. [BEB94] - - - - - - 31.69
Singh, step 1 [BEB94] - - - - - - 15.28
Anandan [BEB94] - - - - - - 13.36
Singh, step 2 [BEB94] - - - - - - 10.4%
Nagel [BEB94] - - v - - - 10.22
Horn/Schunck, mod. [BEB94] - - - - - - 9.78
Uraset al. [BEB94] - - - - - - 8.94
Prototype A - - - - - - 717
Liu et al. [LCR98] - - v v - - 6.85°
Prototype B - - v - - - 6.44
Prototype E - - v - - - 6.42
Prototype D - - v - - - 6.32
Prototype C - - v - - - 6.28
Prototype F (2-D, SD) - v v - - - 57#
Alvarezet al. [AWSO0Q] - - v - v - 5.5
Mémin/Ferez [MP98a] - v v - v - 5.38
Prototype F (3-D, SD) - v v v - - 5.18
Farnelick [Far01] v - - v - v 4.8%
Mémin/Ferez [MP98E] - v v - v - 4.69
Wu et al. [WKCL98]| - - - v - - 3.5#
Prototype G (2-D, SD) v v v - - - 3.50
Prototype G (3-D, SD) v v v v - - 2.78
Tenget al. [TLCHO5] - v v v v - 2.70
Amiaz/Kiryati [AKO54] v v v - v v 2.04
Amiaz/Kiryati [AKO5Db] v v v - v v 1.73

istic results. However, as in the previous experiment, slight interlacing artifacts are visible
in the background for the image-driven approaches A-C. In the case of our flow-driven
prototypes D and E, these artifacts are suppressed. However, the flow fields for the differ-
ent vehicles are not very homogeneous. The best results are once more obtained by our
advanced prototypes F and G. Thereby the estimates of the spatiotemporal method G are
slightly sharper (see e.g. the two cars at the left border). As before, this is a consequence
of the reduced smoothness requirements due to the additional temporal information.

3.4.3 Comparison to the Literature

After we have evaluated the estimation quality of our seven prototypes for a variety of
different test scenarios, let us conclude this experimental section with a comparison of
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Tab. 3.1Q Comparison to the Literature 1l: Comparison between results from the literature with

100 % density and our prototypes. All data refer to Wosemitesequence without cloudy sky.

SD = small displacements. HC = constancy assumptions on higher derivatives. NQ-D = non-
guadratic (robust) data term. NQ-S = non-quadratic smoothness term or similar strategy (preserves
discontinuities). M = multiscale strategy, warping (can handle large displacements). S = segmen-
tation strategy. AAE = average angular error.

Yosemite Sequence without Clouds

y technique [HC[NQ-D|NQ-S|3-D| M | S | AAE |
Black/Anandan [BA9G] - v v - v - 4.56
Black [Bla94] - v v v v - 3.52
Szeliski/Coughlan [SC94] - - - v v - 2.45
Prototype E - - v - - - 2.6%
Prototype A - - - - - - 2.6%
Prototype B - - v - - - 2.64
Prototype D - - v - - - 2.58
Prototype C - - v - - - 257
Prototype G (2-D, SD) v v v - - - 2.30¢
Black/Jepson [BJ9E] - v v - v - 2.29
Prototype F (2-D, SD) - v v - - - 2.27
Middendorf [Mid03] - - v - - 227
Juet al. [JBJ96] - v - v 2.1¢
Bab Hadiashar/Suter [BHS9E] - - - - - - 2.05
Lai/Vemuri [LV98] - - - - - - 1.99
Mémin/Ferez [MPO2] - v v - v v 1.58
Tenget al. [TLCHOY] - v v v v - 1.52
Roth/Black [RBOS] - v v v v - 1.47
Prototype F (3-D, SD) - v v v - - 1.46
Prototype G (3-D, SD) v v v v - - 1.45
Farnelack [Far00] v - - v - v 1.40°
Liu et al. [LCR98] - - v v - - 1.39
Farnelick [Far01] v - - v - v 1.1#

the obtained results to the most accurate results from the literature. This is done in the
Tableq 3.p anfd 3.10, where the results for Yosemitesequencevith andwithout clouds

are listed. Thereby all considered approaches have been analysed regarding the use of the
following six key concepts: (i) constancy assumptions on higher order derivatives, (ii) ro-
bust formulations of the data term, (iii) preservation of discontinuities, (iv) spatiotemporal
information, (v) multiscale focusing strategies (warping) and (v) segmentation techniques
(e.g. level sets). Moreover, to show the actual performance of our advanced prototypes F
and G, results are presented for both spatial (2-D) and spatiotemporal variants (3-D).

3.4.3.1 Comparison I: Yosemite with Clouds

Let us start our comparison with th@semitesequencavith clouds (Tabl¢ 3]9). As one
can see, the results for our basic prototype A-E are only average. However, this is not
surprising, since these techniques hardly use any of the above mentioned concepts. In
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fact, they are comparable to the classical optic flow methods presented in [BFB94]. With
respect to the results presented for these methods, our basic approaches perform well.
For the advanced prototypes F and G, the situation is completely different. In particular,
the spatiotemporal variant of our prototype G gives excellent results. With an average
angular error of 2.78this methods is among the most accurate techniques for estimating
the optic flow. One should note that all other state-of-the art methods listed if Tgble 3.9 are
explicitly designed to handle large displacements. Thus, there is still room for improving
our prototypes in Chaptgf 5, where the extension of modelling and numerics to optic flow
methods to large displacements is discussed.

3.4.3.2 Comparison II: Yosemite without Clouds

In our second comparison to the literature for ¥osemitesequence without clouds ten-
dencies are similar: While the basic prototypes A-E give good results compared to classi-
cal approaches such as the ones proposed by Black or Black and Anandan, the advanced
prototypes G and F are once again among the leading techniques for estimating the optic
flow. One should note that the prototype F now benefits from the fact that no sky and thus
no illumination changes are present. As for the sequence with clouds, we can observe
that the performance of the spatiotemporal variants of the advanced prototypes is signifi-
cantly better than the one of the spatial versions. However, also in this case, there is room
for improvement by extending our prototypes in such a way that they can handle large
displacements.

3.5 Summary

In this chapter we presented seven different prototypes of variational methods for small
displacements: five basic variational methods that were chosen to represent the five main
regularisation strategies (homogeneous, image-driven isotropic and anisotropic as well
as flow-driven isotropic and anisotropic) and two advanced variational techniques that
were designed to address two typical problems in motion estimation: noise and varying
illumination. While the five basic techniques were directly adapted from the literature,
the two advanced methods — the method of Brahal. and the method of Papenbesg

al. — have been developed from scratch. Thereby we demonstrated how the toolbox for
constructing variational approaches from the last chapter can actually be applied for the
design of novel methods.

As a next step we addressed the minimisation of the presented energy functionals. To
this end, we proposed an elliptic strategy and derived the corresponding Euler-Lagrange
equations for all seven prototypes. As proposed in the next chapter this was done on the
basis of the motion and diffusion tensor notation. This compact representation allowed us
to establish a taxonomy of Euler-Lagrange equations for variational optic flow methods.
Thereby we distinguished three different types of equations: linear equations, partially
nonlinear equations and fully nonlinear equations. For each of the three cases we proposed
a suitable discretisation and derived the discrete Euler-Lagrange equations. Moreover, we
analysed the resulting linear and nonlinear systems of equations regarding their structure.
Thereby we saw that these systems are very sparse and only coupled via a small local
neighbourhood. In the next chapter on the numerical solution of these equation systems,
this property will be exploited to design efficient numerical schemes.
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Finally, we evaluated the estimation quality of the selected prototypes for a variety of
motion scenarios. We saw that a combination of several concepts within a single energy
functional can be very useful: In almost all experiments our advanced methods yielded
the best results of all proposed prototypes. In this context, also the general superiority of
spatiotemporal regularisers became obvious. All in all, the experiments showed that the
appropriate design of variational methods allows to handle a large amount of typical prob-
lems in motion estimation. This was also reflected in our final comparison to the literature:
The advanced prototypes that we had designed not only gave excellent results, they even
competed successfully with state-of-the-art methods that were explicitly constructed for
large displacements.
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“Not the big will eat the small but the fast will eat the slow.”
- Heinz Peter Halek

As we have seen in the previous chapter the minimisation of an energy functional via its
Euler-Lagrange equations comes down to solving a large and sparse linear or nonlinear
system of equations. To this end, the numerical literature provides us with a large num-
ber of iterative methods. The first part of this chapter — Se¢tign 4.1 — is dedicated to the
solution oflinear systems of equations. Thereby we present a broad class of methods
for which efficient implementations are derived: The Gaul3—Seidel and the Successive
Overrelaxation method (SOR) representing the class of non-hierarchical iterative solvers
[OROQ, You71] Mei90], unidirectional coarse-to-fine techniques that stand for the class
of simple hierarchical iterative schemeés [BD96] and bidirectional multigrid methods that
can be identified with the most advanced hierarchical stratégies [Bra77, BHMOO,/Hac85,
TOS01/Wes92]. In the second part of the chapter given by Sectibn 4.2 we discuss how
these techniques can be extended in such a way, that they can also be used for the solution
of nonlinearsystems of equations. There the focus lies on inexact Lagged-Diffusivity vari-
ants of the previous techniques [BBPW04, CV 99, Vog02]. Finally, we conclude this chap-
ter with an experimental evaluation of the efficiency of the different numerical schemes
that we have proposed before. This is done in Seftidn 4.4.

4.1 The Linear Case

In the following we explain the different numerical schemes for the linear case in detail.
This is done in two ways: Firstly, we present the general idea for each scheme based
on a rather abstract notation. This notation is very common in the numerical literature,
but not related to a specific problem. Secondly, we transfer this knowledge to the field
of variational optic flow methods: We show by a concrete example — our prototype A —
how these schemes can be applied for our purposes, namely the solution of the previously
discussed Euler—Lagrange equations.

General Problem. Let us start by giving a general definition of our problem. In the
following we are interested in solving a linear equation system given by

AbxP = bl (4.1)

whereA" is a symmetric positive definitVhx2 N® matrix with O(N®) non-zero entries,

x" is the solution and" is the right hand side. As we have discussed in 3.3.3.1 such linear
systems are obtained for our prototypes A-C. The convexity of the underlying energy
functionals thereby guarantees a unique solution which is reflected in the invertibility of
AP due to its positive definiteness.

93
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Concrete Example. In our concrete example we are interested in solving the discrete
Euler-Lagrange equations that are associated with our prototype A. To this end, let us first
identify the different parts of these equations[in (B.41) with those of our general formula-
tion in (4.1). This can be done as follows:

T oo VY (i
((J ) o)) Car )7 ) (“2)
~ ~ TP S —
Ab xh ph

Unfortunately, this formulation of the whole system of equations in block form does not
allow to explicitly write down the effect of the discrete linear differential operdfdon

ul' andub. For deriving the iteration instructions for the different numerical schemes,
however, this is necessary. Therefore, we switch to a point-based notation, where just
the equations for the pixgl, j) are presented. Knowing that the diffusion tensor for
our prototype A is given by the identity matrix, i.e[7™] .; = 1, and following the
discretisation scheme ip (3]24)-(3127), we finally obtain

[ulﬂ zj> _

[Jﬁ]”[ } [‘]12} i Z Z (

le{z1,22} 7,5€N;(i,5)
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o [‘]{13} i, (4.3)
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fori =1,...,N! andj = 1,.., N!. Here,\i(i, j) denotes the set of neighbours of the
pixel 7, 7 in direction of axis/. Let us now discuss how this system of equations can be
solved.

4.1.1 Splitting-Based Iterative Methods

Although at first glance it might seem desirable to solve the linear systém jn (4.1) directly
by inverting the system matrix, such a proceedure would be much too expensive in terms of
both memory requirements and computational costs. However, one can try to approximate
this direct approach iteratively by splitting the system matrix in two parts,

AP = AP 4 AD (4.5)
and introducing a fixed point iteration of type
h k+1 (Ah) (bh o Ag Xh,/c) (46)

wherek denotes the iteration number. Hereby,)~! should be chosen in such a way
that it is not only cheap to compute but also a sufficiently good approximation to the true
inverse(A")~1. Then, the overall costs to solve the system are not too expensive. This is
the core idea of so-callesplitting-basedterative techniques such as tBaul3—Seideind

the Successive Overrelaxationethod (SOR).
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4.1.1.1 The Standard Gauf3-Seidel Method

Basic Idea Despite its poor complex{fjof O(n?), the GauR-Seidel method is one of the
most frequently used iterative solvers in the literature [You71, Mei99]. It is easy to imple-
ment and does not require a too complex adaptation to a specific problem. Its underlying
idea is the decomposition of the original matrix into

AP = (DM — LM+ (=U) 4.7
—— =
A} A

whereD?, L* andU™" are the diagonal, strictly lower triangular and strictly upper trian-
gular parts ofA". This allows to rewrite the equation systethx® = b" as

(D® — LM)x" = (b + U™ xM) (4.8)
and to introduce the fixed point iteration step
Xh,k—‘rl — (Dh o Lh)—l (bh + Uh Xh’k). (49)

Due to the lower diagonal structure of the matiix*— L"), the solution for each iteration
step can be computed via a simfdeward substitution stepFor problems whergl® has
O(N™) entries, this step has linear complexity, i.©(n). If we denote byz! thei-th
component of a vectat®, we can formulate the corresponding iteration instructions. In
point-notation they are given by

i—1 2Nh
hk+1 _ h \—-1(1.h Z h _hk+1 Z h _hk
j=1 j=i+1

fori=1,...,2N". By showing that all variables are updated consecutively, this notation
makes the dependency of the method on the order of traversal explicit. However, this
aspect is less critical, since in most cases, the “wrong” update order does only lead to
slight deterioration of convergence rate. One should note thélt i positive definite —

this is the case for our prototypes A-C — the Gaul3-Seidel method converges for all starting
vectorsx™? and for all right hand sidels®.

Concrete Example.Let us now take a look how the corresponding iteration instructions
read for our concrete example. They are given by

1. This asymptotical complexity refers to the required number of mathematical operations to compute the
solution for simple model problems such as the Poisson equation [TOS01}witknowns up to the
accuracy of the discretisation.
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fori=1,..,N? andj = 1,..., N, whereN, (¢, ) and ;" (i, j) are the sets of neigh-
bours of pixel(z, j) in directlon of axisl that have already been processed and that have
still to be processed, respectively. Moreovéy;(i, 7)| denotes the number of neighbours
of the pixel(i, 7) in direction of axigl.

In this context one should note that since we have a linear system of equations, the
denominator is independent fro{mh} and [u8] . ;- Consequently, its inverse can be
computed a priori so that divisions are not requwed apart from the set-up-phase (divisions

are much more expensive than multiplications, additions and subtractions).

4.1.1.2 Block Gaul3-Seidel Variants

Basic Idea In particular with respect to a strong coupling of unknowns in the equation
system, it often makes sense to update more than one variable in the forward substitu-
tion step simultaneously. In the literature such schemes are knowloes relaxation
method4Wes92]. The most popular block relaxation strategies aredopled point re-
laxation (CPR) and thalternating line relaxation(ALR). While the CPR computes all
unknowns simultaneously that belong to the same pixel, the ALR determines all those un-
knowns at the same time that belong to the same line. Since in general the direction of
the strongest coupling is neither known nor constant for all unknowns, the ALR method
additionally alters the direction when performing several line sweeps. As one can see from
their names the CPR and the ALR method implicitly assume that the equation system was
obtained from a multi-dimensional problem with several unknowns per pixel. Evidently,
this matches our purposes: In the case of optic flow we are looking for a 2-D or 3-D vector
field.

Let us assume that we hawe blocks and let these blocks of unknowns be given by the
setsB; for i = 1,...,m. Let furthermorex;;*"" be the vector that consists only of those
entries ofx™*+! that coincide with the position of the unknowns from the bldt:k Let

finally Agiﬁ]_ be the matrix that only contains those entriesi8fthat relate the two blocks

B; andB;. Then, the associated iteration step for#tk block B; can be formulated as

i—1
X (4l ) *(b};i =3 AR, X Z Al s Xl ) (4.13)
j=1

Jj=i+1

One should note that if each blod¢k only consists of one unknown, namely, this
scheme comes down to the standard Gaul3-Seidel methodl (4.10).
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Block Gaul3-Seidel Variants - Concrete Example lLet us now take a look at the itera-
tions instructions in point-form for the Gau3-Seidel method with coupled point relaxation
(CPR). They are given by

(b= (Bl B ) () e

fori =1,..,N! andj = 1,..., N! with the matrix entries

[K{ll] ij Jll Z 2|M i,7)| (4.15)
le{z1,22} l

(KW, = [, (4.16)

[K512] ij JQhQ ;1 Z 2’M i,7)] (4.17)
le{z1,x2} l

and right hand side

) = = X (X WY W) @l

le{z1,22} ¢ 1,JEN] (4,5) ZJEN+(Z ])
[bh} o= J23 Z ( Z k+1+ Z u2 ) . (4.19)
le{x1,22} l f,j@\ff(z 7) ZjENJr(Z 7)

One should note that apart from discretisation details, this relaxation scheme is identical
to the one proposed by Horn and Schunck' in [HS81]. As for the standard Gauss-Seidel
method, also in this case no divisions are required. This is due to the fact that the entries

of the2 x 2 matrices X
Ku]. . [KR] .\

MP = ) LR 4.20

" ( [K{ﬂ i3 [K;ﬂ i3 ) ( )

do not depend on the unknow{vﬁ‘] ~and[u}] . - and thus can be computed in advance.
As a consequence, the computatlonal effort of]the block is comparable to that of the stan-
dard method.

Concrete Example Il. As second example let us now investigate the structure of the it-
eration instructions for the Gauf3-Seidel method witHine relaxation. To this end, we

need to address whole lines of unknowns. This can be realised by using the following
abbreviations (in accordance with (3.38)) - (3.40)):

[wh]" = ([uﬂlz,l,...,[u}“]i’Nh>T (1=1,2), (4.21)
i = ([Jmn}‘;l,...,[Jmn}lgw)T (mn=1,2,3), (422

), = diag([i5,]]) (mn=1,23).  (4.23)
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Consequently, the iteration instructions are also given in line-form. They read

W] = [KP]T b (4.24)

W] ¥ = [KP) T b"]" (4.25)

)

fori =1,.., N> withthe N? x NP matrices

[KHZ - _szrz"i_[J{llLa (4.26)
(K], = ~Layer + [J3], (4.27)
where
—1 1 0
o 1 -2 1

Loy, = 15 1 : : (4.28)

2 —2 1

0 1 -1

] = S r (O30 [T [b)E) - ) (b)) - i), 4.29)

“ TEN T () zele(z)

")t = S r (30 [T [ud)d) - [ [ub) - (i), (4.30)

T deNs () ENG (i >

Here, I is the identity matrix andV;” (i) and ;" (i) are the sets of neighbouring lines in
direction of axid that have already been processed and that have still to be processed, re-
spectively. As one can see, the solution for each line of unknowns requires the solution of
two tri-diagonal systems of equations. However, in contrast to the point-coupled case, in-
verting these systems in advance is not a good idea. Since the maftitesand [K7}] .

are diagonally dominant and have only negative off-diagonal elements, the resulting in-
verse would be a dense matrix of sixg. x N [Var00;p.94]. Instead, one can apply

the Thomas algorithm [Tho49], an efficient variant of the Gaussian algorithm [Sch97] for
sparse matrices with complexity(n). In this case, at least that part of tlibomas al-
gorithmcan be computed in advance that does not depend on the right hand side (which
changes during the iterations). One should note that the use of such (inner) solvers with
linear complexity for each line does not increase the overall complexity of the underlying
Gaul3-Seidel method.

In the case of Gaul3-Seidel method with alternating line relaxation (ALR)thise
sweep is followed by a relaxation iy -direction, which can be derived in an analogous
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way. An interesting aspect at this point is the fact, that in our equation system one direc-
tion is not covered by such a standard alternating relaxation scheme: the direction of the
different unknowns per pixelg¢}] ,; and [ub] ;). Therefore it is useful to complement

the two line relaxation steps by a point-coupled one.

4.1.1.3 The Successive Overrelaxation (SOR) Method

Basic Idea Apart from using block relaxation techniques to improve the performance
for strongly coupled systems of equations, one may also think of speeding up the general
convergence of the Gaul3—Seidel method. This can be done by meansSafcitessive
Overrelaxation(SOR) technique which has in the optimal case a compgity) (n').

It is based on an extrapolation of the Gaul3—Seidel results [You71] and can be written as

i—1 2NB
hktl h,k h \—1(1.h Z h  hktl Z h _hk
j=1 Jj=i+1

N J/

original GauR-Seidel result

(4.31)

fori=1,...,2N", wherew is arelaxation parametem the interval(0,2). With D®, Lb
andU™ as defined in[(4]7), these iteration instructions can also be reformulated in matrix
notation:

xR — (Db — ! (w b" + ((1 — w)D" + wU") Xh’k> : (4.32)

As one can see, far = 1 the SOR technique comes down to the Gaul3-Seidel method.
However, in practice, other values forare more interesting: While schemes based on

a smaller valueactually perform underrelaxatiomdmpened Gaul3-Seidel metha@ohd

thus may offer improved stability as well as better smoothing properties compared to the
original method[[Wes92, TOS01], methods based derger valueperform real overre-
laxation and thus may accelerate the convergence significantly. Thereby the actual choice
of w is decisive: A well-chosew may allow to speed up the computation daye or two
orders of magnitudeSince, in general, it is not possible to compute the optimal value for

w in advance, it has to be determined either empirically (for a specific model problem)
or heuristically (based on some kind of estimate). As the Gaul3-Seidel method, the SOR
method converges for our prototypes A-C, since the underlying system matrix is symmet-
ric and positive definite.

Concrete Example After we have discussed the general idea of the SOR method, let
us now study how this scheme looks like for our concrete example. Analogously to the
iteration instructions for the Gaul3-Seidel method, the SOR instructions are given by

2. This asymptotical complexity refers to simple model problems such as the Poisson eduation/ [TOSO01].
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(] = (1-w) [ud] (4.33)
Y oa( X [ [)h) -] ] - [
+wl€{x1,m2} LjENT (i.9) LjeEN(1,9)
o BN,
x1,T2
3] = (1—w) [u] (4-34)
IO e W E B A M
Y lefze} ' N DGeNT (i) LJENGT (i.)
> BN+ B,
le{x1,72}

fori =1, ...,N;‘l andj = 1,..., N;‘,Z. As in the previous cases where the inverse of the
diagonal elements/block has not been too large, we can compute the whole denominator
in advance to avoid divisions. Thus, from a computational point of view, the cost for
using the SOR scheme are only marginally higher than those for using the Gaul3-Seidel
method. However, one should keep in mind that the SOR methods may need significantly
less iterations to converge.

4.1.2 Unidirectional Multigrid Methods

So far, we have only considered numerical methods that worksimgée grid However,

these methods perform relatively poor if the equation system is only coupled via a small
local neighbourhood (such as the discrete differential operdtpr In fact, it may take
thousands of iterations to transport local information between unknowns that are not cou-
pled directly. A popular remedy to speed up the computation in those cases is the use of
unidirectional multigrid methodfBA91,, BD96].

Basic Idea. Such methods are based on the observation that the required number of it-
erations may be significantly reduced if the initialisation is already close enough to the
correct solution. In order to obtain such a good initialisation, they follow a simple two-
grid strategy: Instead of solving the equation system on the original (fine) grid they first
transfer this system to@oarser gridwhere it becomes

AHxH — pH, (4.35)

Here,H = (H,,, H,,)" denotes the coarse grid cell size with, > h,, andH,, > h,,.

After solving this system with one of the proposed non-hierarchical iterative methods, the
obtained solution is then interpolated to the fine grid, where it serves as good initial guess
for the original problem. This initialisation strategy by means of a coarse grid solution
offers two advantages: On one hand, the equation system on the coarse grid can be solved
much cheaper than the one on the fine grid. Assunfing ~ 2h,, and H,, ~ 2h,,,

the additional computational costs are only 25%. On the other hand it is plausible that the
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interpolated solution from the coarse grid like constitutes a reasonable initialisation for the
fine grid solver. It is therefore not surprising that in general much more than the required
25% of all fine grid iterations are saved to make the approach worthwhile.

Intergrid Transfer Operators. Before we discuss how the required coarse grid equation
system can be derived, let us first address another problem that arises if more than one grid
is used: The transfer of data and solution between the different grids. To thia pad,

of intergrid transfer operatorss needed:

e Restriction Operatar Firstly, one has to define a so-callesstriction operator
RP—H that transferslatafrom the fine to the coarse grid:

b = Rhi—Hph (4.36)

Such an operator usually combines a pure resampling strategy (injection) with an
appropriate amount of smoothing (low-pass filtering) to overcome the aliasing prob-
lem. A good choice in this context is thiell-weighting operator [BHMOO] or the
operator forarea based averaginBWF"05].

e Prolongation Operator Apart from a restriction operator alsopgolongation op-
erator PH—1 is required that transfers thselutionfrom the coarse to the fine grid:

xD = pHohyH (4.37)

In this context,constantor linear interpolation are most frequently used [Wes92,
BHMOQ]. As shown in[[BWF 05] alsoarea based interpolatiomay give good re-

sults. If computational time is not important, also more accurate (and more costly)
interpolation schemes may be considered such as cubic splines or operator depen-
dent interpolation (combined with operator dependent restriction) [Wes92].

One should note that although we have to restrict image data from the fine to the coarse
grid, the solution is only transferred one direction namely from the coarse grid to the

fine grid. This property gives the whole class of unidirectional multigrid methods their
name.

Coarse Grid Equation System.After we have discussed the intergrid transfer operators,

let us now investigate suitable strategies how the actual coarse grid equation system can be
derived. To this end, three different approaches are proposed in the literatuPeolbtem

Based Coarse Grid ApproximatigRCA), theDiscretisation Coarse Grid Approximation
(DCA) and theGalerkin Coarse Grid Approximatiof(GCA) [BHMOQ].

e Problem Based Coarse Grid Approximati@CA). The first and simplest approach
is based on theediscretisation of the original problemThis is usually done by
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downsampling any problem relevant data and discretising the continuous Euler-
Lagrange equations using the coarse grid cellHizélthough such a proceeding is

very transparent — it allows to interpret the obtained coarse grid equation system as a
separate problem with different grid size — its approximation quality with respect to
the fine grid solution is relatively poor. This is intuitively clear, since the approach
does not tackle the actual task directly: the downsampling of the equation system.

Discretisation Coarse Grid ApproximatiofpCA): The second and often cheap-

est approach in terms of computational costs is the Discretisation Coarse Grid Ap-
proximation. Its basic idea is tediscretise the discrete Euler-Lagrange equations
directly. The obtained coarse grid equation systems is in general a much better ap-
proximation to the fine grid equation system as in the case of the PCA. This is not
surprising, since in particular with respect to coefficients that depend nonlinearly on
the input data, the first approach introduces additional errors.

Galerkin Coarse Grid Approximatio(GCA): The third and last approach is based
on the Galerkin condition [BHMQO]. It tackles the problem directly by setting

AH — Rh—H phpH—=h (4.38)

and
b = Rh—Hphk (4.39)

where RP~H and PH—h are the restriction and prolongation operator as defined
before. One should note that applying the coarse mathxo a vectorx comes

down then to prolonging that vector, applying the original matrix, and restricting

it again. Although this is the approach that offers the most direct and thus most
accurate approximation strategy, it is also by far the most expensive one. Even using
the efficient multiplication scheme for three sparse matrices proposed in [Wes92],
the computation of the coarse grid equation systems takes about ten times longer
than in the case of the PCA or DCA .

While the first strategy (PCA) is very popular in the computer vision community due to
its simplicity and transparency — see e.g. [Ana89, BAK91, LKW94] in the context of
optic flow — the other two (better performing) concepts are mainly found in the numer-
ical literature [Wes92, BD96, BHM0O0]. For our purpose the discretisation coarse grid
approximation is the most interesting one: It offers a good approximation quality at low
computational costs.

Hierarchical Application. So far we have only considered the two-grid case, where a
coarser grid is used to provide the finer one with a suitable initialisation. However, in
order to speed up the computation even further, one may think of usthgda even
coarser grid whose solution serves as initial guess for the second (coarse) one. Such a
hierarchical initialisation strategy with more than two grids is also referred tassadic
multigrid [BD96]. In Figure[4.1 this idea is illustrated by a schematic drawing for four
levels. As one can see, starting from a coarser version the original problem is refined step
by step. Thereby coarser solutions serve as initialisation for finer levels.
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Unidirectional Multigrid
FINE H'—-H H —H H—h

COARSE

Fig. 4.1 Schematic drawing of a unidirectional multigrid strategy. Starting from a very coarse
variant of the original equation system, the solution is refined step by step. The corresponding
refinements steps are marked with ‘r'. At each resolution level several iterations with the basic
solver are performed. This is indicated by large black dots.

Concrete Example As we have indicated before, the discretisation coarse grid approx-
imation (DCA) offers the best ratio between approximation quality and computational
costs. Therefore, let us now demonstrate how a corresponding unidirectional multigrid
scheme can be derived for our prototype A. Its construction is done in four steps.

I) Basic Solver. Firstly, we have to choose a basic iterative solver. Since our pro-
totype A (homogenous regularisation) does not require the handling of anisotropic
neighbourhood coupling, we propose the use Giail3-Seidel method with coupled
point relaxation(CPR). The corresponding iteration instructions are giverj by |(4.14
-[4.19). The same solver is also useful for our prototype B (isotropic regularisation).
Only in the case of prototype C (anisotropic regularisation), a Gaul3-Seidel method
with alternating line relaxation (ALR) may be appropriate.

II) Coarse Grid Cell SizeSecondly, we have to define the new coarse grid Hze
Since our approach shall be applicableatoy problem size it should not have the
typical limitation to sequences with image sizes that are a powerDherefore we
propose the following computation éf,, x H,,. Let N2 andN? be the number of
cells on the fine grid i andy direction. Then the new cell size is given by

h h
H, =h N, H,, =h N, 4.40
xr1 - X1 NH o T2 NH ( " )

with N¥ =[NP /2] and N} = [N} /2], where[z] is the smallest integer number
m with m > z. Thus the total number of cells at the coarser grift§= N N1,

[Il) Intergrid Transfer OperatorsThirdly, we have to define the interpolation and re-
striction operator. Following the idea of [BWBS,[BWKS06] we chosarea based
interpolationandarea based averagingA simple example for these operators is

given in Figure 4.p.
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RESTRICTION PROLONGATION

'
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______________

9 18 12 9 15 16 12

Fig. 4.2 One-dimensional example for an area based restriction opg?itoH and an area
based prolongation operat®¥1—h with % = g Numbers denote grey values. Grey values

are weighted proportional to their area, €2§.+ 112 = 9.

IV) Coarse Grid Equation Systenkinally, we have to rediscretise the discrete Euler—
Lagrange equations. This yields the coarse grid equation system

] et G e, o > Z [“H”) = =[],

le{wy,a2} 5,5€N(5,5)

(4.41)
R )
[mhj[ } [22}”“1 i % Z Z __[23L‘,j’

le{w1,@2} §,jEN; (i)
(4.42)

fori =1, ..., Njf andj =1, ..., Ng. Thereby the entries of the coarse grid motion
tensor|JH| ,; are obtained via channelwise restriction:

i mnl i (m,n=1,2,3). (4.43)
One should note that the choice of the restriction operator ensures that these coarse
grid tensors remain positive semidefinite. This in turn guarantees the positive defi-
niteness of the resulting coarse grid equation system so that the same non-hierarchical
iterative solvers can be applied as on the fine grid. Moreover, one should note that
(ol iy # )i Uan) iy = [‘le{m]w This less accurate variafif*! ) ;; of the
coarse grid motion tensor would be obtained by the problem based discretisation
approach (PCA). Finally, one should note that for rediscretising the linear differen-
tial operatorZ? via the schemd (3.24)-(3.27), also the diffusion tensors have to be
transferred to the coarse grid. Analogously to the motion tensors this can be done
by channelwise restriction
H h—H h

[T i = I [T ij
For our prototype A this comes down to restricting the identity matrix which remains
the identity matrix.

(m,n=1,2). (4.44)

This example for a unidirectional multigrid scheme shows the advantages of our motion
and diffusion tensor notation explicithf:he construction of efficient hierarchical methods
becomes very simplés we will see in the following, this does also apply to much more
advanced multigrid techniques.
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4.1.3 Bidirectional Multigrid Methods

In the previous section, we have discussadtlirectionalmultigrid methods that speed up

the computation by using a hierarchical initialisation strategy. However, from a numerical
viewpoint, these unidirectional coarse-to-fine schemes are not the end of the road. Very
promising — in particular in the context of variational methods — are so-daidie@ctional
multigrid methods[[Bra77, Hac8b, Wes92, BHMO0O, TOSO01]. These techniques that cre-
ate a sophisticated hierarchy of equation systems with excellent error reduction properties
belong to the fastest numerical schemes for solving linear or nonlinear systems of equa-
tions. In contrast to unidirectional schemes they revisit coarser resolution levels in order
to obtain useful correction steps. Thus, they are able to overcome the typical limitation
of basic iterative solvers that is also present in unidirectional multigrid scheheaeak
attenuation of low error frequencidBra77,[Hac85]. Moreover, they can benefit from alll
advantages of unidirectional multigrid methods, since they may use the same coarse-to-
fine initialisation strategy on top. Then, these bidirectional multigrid schemes are referred
to asfull multigrid methods/[BHMOQO].

Local Mode Analysis. In order to understand the basic idea behind bidirectional multi-
grid methods we have to ask ourselves the following question: Why do non-hierarchical
iterative solvers such as the standard Gaul3—Seidel method usually perform so poorly when
solving equation systems that are coupled only via a small local neighbourhood? A suit-
able tool to answer this question is the so-caltezhl mode analysiflBHMOO]. This ana-

lysis investigates the development of the different error frequencies in the Fourier domain.
Hereby, the term “error” refers to the difference betweeraiygroximativenumerical so-

lution for the equation system (obtained after a certain number of iterations) aodrést
numerical solution. If a method converges, this error decreases during the iterations until
the level of quantisation is reached. In the Fourier domain of the error such a behaviour
is reflected in an attenuation of the different frequencies. How strong each frequency is
attenuated depends on two factors: The entries of the system matrix and the numerical
solver that is used. Thereby the overall strength of the attenuation determines the speed of
convergence.

Local Mode Analysis - Concrete Example In Figure[4.B the attenuation behaviour of

the standard Gaul3-Seidel method for our prototype A is studied. It shows the develop-
ment of the Fourier spectrum of the error for an increasing number of iterations. In order
to make the attenuation behaviour more explicit, the standard Gaul3-Seidel method was
initialised in such a way that all frequencies contributed equally to the initial enioite

error spectrun). The different spectra of the standard Gaul3-Seidel method show the typ-
ical problem of non-hierarchical splitting-based iterative solviers [BHMOO]: Whiidgn
frequencycomponents (small wavelength, local impact) are attenuated efficiénilgy
frequencycomponents (large wavelength, global impact) remain almost un-dampened. In
practice, this smoothing behaviour with respect to the error results in a significant deteri-
oration of the convergence rate already after a few iterations. Then, only low frequency
components remain that only allow for a very slow attenuation by the underlying relax-
ation scheme. Apart from the typical problem of weak attenuation, the different spectra
show also the dependency of the Gaul3-Seidel solver on the order of traversal. This is re-
flected in the asymmetry of the resulting error spectra with respects to the two frequency
axes.
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Fig. 4.3 Logarithmic Fourier spectra of the numerical error in thecomponent of the optic flow

for our prototype A. Development for an increasing number of standard Gauf3-Seidel iterations.
Lower frequencies are located in the centre of the image, higher frequencies at the bou(ajaries.
Outer Left: Initialisation with equally distributed error frequenci€b) Centre Left: 1 iteration.

(c) Centre Right: 10 iterations(d) Outer Right: 100 iterations.

Basic Idea - The Linear Bidirectional Two-Grid Cycle. In order to overcome this prob-

lem bidirectional multigrid methods [Bra7[7, BHMGO, Hac85, TOS01, Wes92] are based
on a sophisticated strategy. They make use of correction steps that competgothe

(not a coarser version of the fine grid solution) on a coarser grid. Thus, lower frequency
components of the error reappear as higher ones and allow for an efficient attenuation
with standard iterative methods. In the following we explain this strategy in detail by the
example of a basic bidirectional two-grid cycle.

I) Presmoothing Relaxatiornrhe bidirectional two-grid cycle starts by performing
iterations with a basic iterative solver (e.g. the standard Gaul3—Seidel method). This
is the so-calledpresmoothing relaxation stepvhere high frequency components
of the error are removed. In Figure .4 the corresponding Fourier spectra for our
prototype A are shown. As one can see, the high frequency components are attenu-
ated very well. If we denote the correct solutionsdyand the result after these
iterations byx", the current numerical error is given by

o = x" &M (4.45)

In the following this numerical error is in the focus of our computational efforts.

Fig. 4.4 Logarithmic Fourier spectra of the numerical error for the standard Gaul3-Seidel
method (prototype A)@) Left: Before the presmoothing relaxation stép) Right: After
the presmoothing relaxation step (2 iterations).
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Il) Coarse Grid TransferEvidently, one is interested in findirg' in order to correct
the approximated solutiok®. Althoughe® cannot be computed directly, the linear-
ity of AM allows its computation via

Aheh = AP (xP — xh) = APxh - APgh = b Abgh = b (4.46)

wherer? = b" — AbxP is calledresidual Since most of the high frequencies of
the error have already been attenuated, we can speed up the computation by solving
thisresidual equation systeat a coarser resolution:

Abel =P AHeH — pH (4.47)

One should note that at this point, a transfer of the original equation system to a
coarser grid makes no sense: Unlike the error, the solution very probably contains
(desired) high frequency components. A restriction of these components would only
deteriorate the solution (aliasing).

[II) Coarse Grid SolutionSince the remainingpw frequency components of the pres-
moothing relaxation step reappear on the coarser gigherfrequencies they can
now be (more) efficiently attenuated by applying the basic iterative solver.

IV) Fine Grid Transfer After we have solved the residual equation system on the coarse
grid, we have to transfer the solution back to the fine grid:

eH &b (4.48)

Here, the interpolated coarse grid solution is denote@since it is only an ap-
proximation to the desired correctiefi.

V) Coarse Grid CorrectionOn the fine grid this interpolated solution can then be used
to correct our approximative result from the presmoothing relaxation step:

xh = xb4eh (4.49)

As one can see from the corresponding Fourier spectra for our prototype A in Fig-
ure[4.5, this correction allows a significant reduction of the lower frequency parts.
However, one can also observe that the interpolation of the error introduces some
new high frequency components.

Fig. 4.5 Logarithmic Fourier spectra of the numerical error for the standard Gaul3-Seidel
method (prototype A)a) Left: Before the coarse grid correction stép) Right: After the
coarse grid correction step.
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VI) Postsmoothing Relaxatiorrinally, in order to eliminate these new high frequency
components a so-callgmbstsmoothing relaxation stépperformed. Analogously to
the presmoothing relaxation step this step is based on the applicatipiterations
of our basic iterative solver. The corresponding Fourier spectra for our prototype
A are depicted in Figure 4.6. As expected they show a strong decrease of the high
frequency components of the error.

Fig. 4.6. Logarithmic Fourier spectra of the numerical error for the standard Gaul3-Seidel
method (prototype A)a) Left: Before the postsmoothing relaxation stép). Right: After
the postsmoothing relaxation step (2 iterations).

These six steps form theidirectional two-grid cycle- the basic building block for the
design of more advanced bidirectional multigrid methods. However, before we explain
such methods in detail, let us discuss how to choose the intergrid transfer operators and
the coarse grid equation system in the two-grid case.

Intergrid Transfer Operators. As in the unidirectional case we have to define a suitable
pair of intergrid transfer operators for traversing the grids.

e Restriction Operatonn order to transfer the right hand side of the residual equation
system from the fine to the coarse grid, a restriction operatortis required:
rH = ph—Hyph (4.50)

For this purpose the injection operator (pure resampling), the full weighting operator
[BHMOO] and the operator for area based averaging [B\04] are a good choice.

¢ Prolongation OperatorMoreover, we need a prolongation operafdt—" to trans-
fer the coarse grid correction back to the fine grid:

gh = pH—heH, (4.51)
Also in this case we can use the same operators as proposed in the unidirectional
case: constant/linear interpolation [BHMOO] or area based interpolation [EBF

However, in the bidirectional case, the transfer operator pair has to fulfil a certain condition

[Hac85, Wes92]. If we denote hyrder(P) the maximum degree of a polynomial that can
still be interpolated exactly be the prolongation operdtaand if m stands for the order
of the partial differential equations that shall be solved, then this condition reads:

order(PH=") + order((R*™™)") > m — 2. (4.52)
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As we will see in our concrete example, this condition can be fulfilled by area based
interpolation and area based averaging.

Coarse Grid Equation System. In order to set up the residual equation system for the
coarse grid correctioA® et =rH, not only a restriction operator for the residual is needed
but also a suitable coarse grid representation of matfix Analogously to the unidirec-
tional case, this coarse grid matrix can be obtained by one of the following three strategies:

e Problem Based Coarse Grid Approximation (PCA)
e Discretisation Coarse Grid Approximation (DCA)

e Galerkin Coarse Grid Approximation (GCA)

One should note that the approximation quality of the coarse grid opetHtaith respect

to its fine grid counterpar® is much more important for bidirectional multigrid methods
than for unidirectional ones. This is reflected in the fact that simple approaches based on
the problem based coarse grid approximation (PCA) do not converge properly in most of
the cases [Gla84, Enk87, ER03]. However, this poor behaviour with respect to a PCA
does not mean that bidirectional multigrid methods are not suitable to solve systems of
equations that are derived from optic flow methods as stated in [BAK91].

Hierarchical Application . In our explanation of the basic two-grid cycle the question of

an appropriate solver for the residual equation system on the coarse grid was left open. A
very elegant and efficient strategy in this context is the use of a third grid, that provides
a correction for the second grid itself. Such a hierarchical application of the presented
two-grid cycle is called/—cycle One may also think of performing a second, additional
correction step per level. This yields the so-cal¥dcyclethat has better convergence
properties at the expense of slightly increased computational costs. Examples for the grid
traversal strategies of V and W—cycles are given in Figurie 4.7.

One should note that in general multiples of these advanced cycles are required to reach
the desired accuracy. This can also be seen from Higure 4.8 that shows the development of
the error frequencies over three V-cycles: The low and middle frequency components that

Bidirectional Multigrid
FINE W-CYCLES
H - @-0--@-—--@®- @ @ &-®— @ — @ @ — e e __
H oV
H - - - - ___
[ ¥ A AT V AR v AN V AR
COARSE

Fig. 4.7. Schematic drawing of bidirectional strategies (V— and W-cycles) for two, three and four
levels. Iterations with the basic solver on the original problem are marked with large black dots,
while iterations on residual problems are symbolised by small black dots.
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Fig. 4.8 Logarithmic Fourier spectra of the numerical error in thecomponent of the optic flow
for our prototype A. Error reduction over three V-cyclésom Top to Bottom: First cycle, second
cycle and third cycleFrom Left to Right: Initialisation, presmoothing relaxation step, coarse grid
correction step, postsmoothing relaxation step.

remain after the first cycle are almost completely attenuated by the second one. After three
cycles even these frequency components vanish. This in turn corresponds to a decrease of
the Euclidean norm of the error tdur orders of magnitude

Concrete Example At this point let us investigate how the proposed numerical method
can actually be used for solving the equation system associated with our prototype A. To
this end, we discuss how a such a bidirectional multigrid scheme based on a discretisation
coarse grid approximation (DCA) approach can be derived. This requires four decisions:

I) Basic Solver Firstly, we have to select a basic iterative solver. In this context one
should note that in contrast to the unidirectional case, one is only interested in the
attenuation properties of the solver with respect tohiglher frequency partsThe
lower frequency parts amutomatically covered by constructiofhthe multigrid al-
gorithm. This excludes advanced non-hierarchical solvers such as the SOR method
that may have the better overall performance but cannot dampen high frequencies
as efficiently as the Gaul3-Seidel method. For our concrete example we select once
again a Gaul3-Seidel variant: The Gaul3-Seidel method with coupled point relaxation
(CPR).
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II) Intergrid Transfer Operators Secondly, a suitable pair of intergrid transfer oper-
ators has to be defined. Since the order of our differential equation is 2, the ac-
curacy condition[(4.52) tells us that at least one of the two operators (prolonga-
tion, transposed restriction) has to be of order 1. Therefoes based interpola-
tion (order 0) andarea based averaginffransposed order 1) are a suitable choice
[BWFT05,[BWKSO06].

[II) Coarse Grid Cell Size Thirdly, a new coarse grid sizH has to be chosen. In
contrast to all other bidirectional multigrid approaches for variational optic flow
techniques with homogeneous or image-driven regularisation [Gla84, Ter86, Enk87,
ZSL197, BWF 03,[ERO3] we decidedot to limit ourselves to image sizes, where
N,, and N,, are a power oR. This makes our approach much more flexible, in
particular with respect to the fact that images of any size may occur. At this point one
should note that extending smaller images with zeresd padding is not a good
solution: Such a procedure yields significantly different results at the boundaries.

As in the unidirectional case we propose the following computatiod 9fx H,.,.
Let Ng?l andN;‘2 be the number of cells on the fine gridarandy direction. Then
the new cell size is given by

NG, Ny
le = hmlN—I_i Ha:g = hx2N_I; (453)

with N =[NP /2] and NH =[N} /2], where[z] is the smallest integer number

m with m > z. Thus the total number of cells at the coarser gridid= NI NI,

One should note that such a non-dyadic approach becomes only possible, because
our area based intergrid transfer operators are non-dyadic by construction. The fre-
guently usedull weighting operatofBHMOQQ], for instance, cannot be used for
restricting arbitrary image sizes.

IV) Coarse Grid Equation Systerkinally, we have to set up thesidual equation sys-
temfor the coarse grid. To this end, we follow the discretisation coarse grid approx-
imation approach (DCA) and rediscretise all entries of the discrete Euler—Lagrange
equations that belong to the matrit'. This yields the coarse grid equation system

[Jfﬂ i [6111} i,j—F [Jg] Z Z [61 ] M) = [TlH] T

le{z1,x2} szM(Z J)
(4.54)

€ [-~—|€y]| . .
[th2} ij [6111} i,j+ [Jg} i,9 [eﬂ z‘,j_a Z Z ’Hl2 = [T?] .5’

l6{$17x2} ;756-/\/-[ (27])

(4.55)

fori = 1,..,N¥andj = 1,.., NI, where[ef ] and [eg] are the new un-
knowns (coarse grid error) ar{dH] ;; and (5] are the components of the re-
stricted residual. As in the unidirectional case, the entries of the coarse grid motion
tensors[JH] _and the coarse grid diffusion tensQrBH} _are obtained via chan-

nelwise restrrctron
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In this context one should note that in the optic flow literature the problem based
coarse grid approximation approach (PCA) is by far most frequently used [Gla84,
Ter86/Enk87, ZSLI7, ER0D3]. However, as we have discussed already in the unidi-
rectional case, the resampling of the data (image sequence/derivatives of the image
sequence) is definitely not the best solution. It is therefore not surprising that due
to the inaccurate representation of the coarse grid equation systems in the case of
the PCA, convergence problems arise if the number of levels is increased [Gla84,
ERO03]. As shown in[BWF03] this is not the case for the discretisation coarse grid
approximation (DCA).

This example shows that also the design of bidirectional methods can be simplified sig-
nificantly if our motion and diffusion tensor notation is used. In combination with the
discretisation coarse grid approximation approach (DCA) this notation not only allows for
a systematic design of variational models but also for a systematic construction of efficient
numerical schemes for their minimisation.

Full Multigrid . So far we have strictly separated the ideeah@rarchical initialisation
(unidirectional multigrid methods) andoarse grid correction(bidirectional multigrid
methods). However, it is not difficult to see that both strategies are complementary: While
coarse-to-fine strategies could benefit from a better solver at each resolution level, V- and
W-cycles could benefit from a better initialisation. Consequently, both concepts should be
combined to obtain optimal convergence. If this is done, the class of bidirectional multi-
grid methods with the best performance is obtairfeti:multigrid. In the ideal case such
methods have linear compleﬁy)(n), i.e. the computational costs depend linearly on the
number of unknowns. Evidently, from a theoretical point of view, this is optimal.

An example for a full multigrid method with four levels is given in Figiire]4.9. As one
can see the original equation system is refined step by step. Thereby at each resolution
level, two W-cycles are used as solvers.

Full Multigrid
FINE H'—H H —H H—h

COARSE

Fig. 4.9 Schematic drawing of a full multigrid strategy, Starting from a very coarse variant of the
original equation system, the solution is refined step by step. The corresponding refinements steps
are marked with ‘r'. At each resolution level two W-cycles are used as solver. Each of these cycles
is marked with ‘w’. Iterations with the basic solver on the original problem are represented with
large black dots, while iterations on residual problems are symbolised by small black dots.

3. This asymptotical complexity refers to simple model problems such as the Poisson eduation [TOS01].
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4.2 The Nonlinear Case | + Il

After we have shown how to design efficient numerical schemes for the linear case, let
us now extend this systematic approach to the nonlinear cases | and Il. To this end, we
focus oninexactvariants ofLagged-Diffusivitymethods[CM98, Vog(02] that are known in

the literature as techniques wittozen coefficientfESHWO4]. As in the linear case these
basic solvers are first discussed on a single grid before they are used for the construction
of efficient hierarchical methods. Thereby we stick to our previous strategy for presenting
the numerical schemes: First, we explain their basic idea in a rather general way. Then,
we show by a concrete example — our prototype F — how these schemes can actually be
applied in the context of variational optic flow methods.

General Problem. Let us start by giving a general definition of our problem. In the
following we are interested in solvingreonlinearequation system of type

AP(xh) = b, (4.56)

where AP (x") is a nonlinear operator artsf" is the right hand side. Thereb$"(x") can
be decomposed into

AP(x) = BR(x") x" 4 cP(xP) (4.57)

whereB®(x") andc?(x") are nonlinear operators such that for eattthe valueB" (x")

is a symmetric and positive definiigVh x 2N matrix with O(N®) non-zero entries,
while cP(x") is a vector of siz& N®. As we have discussed [in 3.3.3.2 and 3.3.3.3 such
linear systems are obtained for our prototypes D-G. Please recall that the convexity of the
underlying energy functionals guarantees a unique solution of this nonlinear system.

Concrete Example. In our concrete example we are interested in solving the discrete
Euler—Lagrange equations that are associated with our prototype F (method ofdruhn
al.). To this end, let us first identify the different parts of the corresponding nonlinear
equation system in (3.42) with those of our general problern in|4[56)4(4.57). This can be
done as follows:

( (FI{I‘L(ulf,ug)Jﬂ Fl\?L(ul?,ug)Jﬁ) —a (LﬁL(U?,US) 0 )) > ( u? )

Fr (ut, ug) Jiy FRy (ut, ug) 0 Ly(uf,ug

Bh(xh) xh
F, (ub ué‘)j‘fg) ( 0 )
+ ’ ! = . 458
(qu?,umg 0 (4.58)
A -~ J/ \v

ch(xh) bh

One should note that our prototype F represents the nonlinear case Il. For the sake of
completeness, let us therefore also derive the assignment of the different operators for the
(simpler) nonlinear case I. They are given by
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(3 8)- (b)) (1)-(8)-(2)
Jin I 0 LNL(u17u2> B) 0 —Jo3

~ ~ N — —— ——
BB(xh) xh ch(xh) b

(4.59)

As in the linear case we have to reformulate this equation system in point-based notation
in order to make the effect of the discrete nonlinear differential operdtprand the dis-
crete nonlinear operatdty;, onul andu} explicit. Thus, we obtain

[\Ilbh] i,j [Jﬂ} i,j [uﬂ i,j+ [\Ijbh} i,j [th2} i,7 [u2] [\Iﬂh] ij [Jg] i,j

(9355 + [#8],,) ()5 02],,
—a Y D ( 2 ) hi >:O e

le{l‘17x2} ;756/\6 (7'7])

(o], ) la] s+ 0] el lue] s+ [0 [l
5] )] )] )] »J »J 5]

[0+ (98,,) (4055 041
B Z Z ( : >< z >:o (4.61)

l€{$1,$2} 27.}€M(17])

fori = 1,..,N? andj = 1,...,N2. Here, [%h}ij and [\If’sh}ij denote the functions
U1, (s?) and g (s?) evaluated at pixe(z, 5), i.e
1
[op],, = . (4.62)
7 2\/( [ulll] i,j’ [ug] i,j’ 1)(‘]h) iJ( [ulll] z‘,j’ [ug] i,j’ 1)T + €]21)

1
(o], = : (4.63)
T2y /ID2R([u] I+ [D2R([u] )P+

where|D*?([z } )| denotes the gradient magnitude operator as defined in le 3.1.

In this context one should note that the nonlinearity of the preceding system is now
hidden in the expressmrﬁiﬂh} and[\lf’h] that actually depend o} | and[uﬂ
Thus it is not surprising that iaoth nonlinear expressmns become 1if the nonquadratlc
penalisersip(s?) = /s2 + €2 andUs(s?) = /s% + €2 are replaced by their quadratic
counterpartdp(s?) = s and¥p(s?) = s2. In this case, the associated nonlinear system
of equations basically simplifies — apart from the different motion tensor — to the linear

one of our prototype A (4]3-4.4).

4.2.1 The Lagged-Diffusivity Method

Basic Idea A general approach for solving the nonlinear system of equations ir| (4.56) is
its decomposition into a series of linear problems and the use of standard linear techniques
such as the Gaul3-Seidel method. This can be accomplished by means of the so-called
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Lagged-Diffusivityor Kacanovmethod [KNPS68, FKN73, CM99]. By introducing a fixed
point iteration of the form

S kL (Bh<xh,k))—1(bh . ch(xh,k)) (4.64)

this method exploits both the decompositiondf(x") into B (x") x" + c¢?(x") and the
special properties oB"(x") andc®(x") with respect to a fixed argumert. The basic
idea is thereby to use the old (lagged) solutidn* for evaluating the nonlinear operators
BP(x?) andch?(x?). Thus, a linear system remains to be solvedsfachiteration step:

B (xMF) xPEH = (bP — ch(x™F)). (4.65)

This task, however, is straightforward: Since the corresponding system m&tii *)

is symmetric and positive definite, each of these steps comes down to our general problem
for the linear caséd (4.1). For this problem, in turn, we have already proposed a variety of
efficient methods.

Concrete Example Let us now discuss by our concrete example (prototype F — the
method of Bruhret al) how the Lagged-Diffusivity method can be used to solve the
Euler-Lagrange equations for the nonlinear cases | and Il. This is done in two steps:

[) The Fixed Point IterationFirstly, we have to derive the linear system of equations
that has to be solved i@achstep of the fixed point iteratiof (4.65). For our proto-
type F this system is given by

W] ] ]+ [ ] [s] )+ (e8], L8]

Z?]

oy (T D) (T[]

- 4,
T 0 (4.66)

le{z1,22} 7,5EN(4,5)
(], [ k] 7 00 ] (o) (], [

/h rh] K uh {Cirl— ug k+1
» Z Z ([w§ s+ [‘I’s Lj) ([ Q]i,j hf[ LJ ) -0 (4.67)

le{z1,x2} z]EM(l 7)

fori=1 handj=1,..., N} In order to compute theN"™ unknownsu}] e

and [uQ] the orlglnally nonlinear expressiong{}’] ,; and N4 .; are kept

fixed, i.e. they are evaluated at the old time stepherefore they are denoted by
!/ k / k
[\IJDh] i, and [\Ijsh} i,
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[I) The Basic SolverSecondly, we have to select a numerical method to solve each
of these linear equation systems given py (#.66)—{4.67). In order to keep things
simple we choose the Gaul3-Seidel method with coupled point relaxation (CPR).
However, one could also use any other method for the linear case. If we denote by
the iteration index associated to our Gaul3-Seidel solver, the corresponding iteration
instructions in point-notation read

[ﬂk+1n+1 [Kﬁ]fj {K1h2]fj -1 [bﬂkﬂn
) e ) e () o]+ (4.68)

fori=1,..,N2 andj = 1,..., N? with the matrix entries

h1k /h h \Iﬂh i [\I'éh] f])
(KE)E = [o]L R, e Y Z I (4.69)
le{z1,22} 1,5eN(4,9) !
[K{lzmj - [\I];Dh]i,j[‘]u}i,j (4.70)

\If/h \I//h
(KB]0 = O] [s], +a Y Z 2h12[ ) 4.71)

le{z1,22} 7,5EN(4,9)

and right hand side

\I//h k- [\I,/h]k)
k+1n S i, k+1,n
1 = e Y 3 e R g e

le{zr,ma}t i,5EN] (i)

\If,h o \I//h
oy 3 )

le{wi,m2} 75N (4,9) (4.72)

h] k+1n /h \Iﬂh [\I/éh] f]) h1 k+1,n+1
(03] i T [\PD} J23 ;T Z Z 2h2 [u3] i
1e{z1,09} 7. 5EN (i.4) !

\I’/h o \If/h k
oy oy W e

le{z1,x2} z]€N+(zj) (4 73)

This example shows the interaction between the actual fixed point iteration that keeps the
nonlinearity fixed at each step and the basic iterative method that solves the resulting linear
systems of equations.
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4.2.2 The Inexact Lagged-Diffusivity Method

Basic Idea In order to improve the overall performance of the Lagged-Diffusivity method,
one may think of replacing the proposed Gaul3-Seidel variant by a more efficient numerical
solver, e.g. by a full multigrid scheme. However, this is not the best strategy to speed up
the computation. More efficient, in particular in terms of computation costs, are so-called
inexactvariants of the Lagged-Diffusivity method. Instead of solving the linear systems
of equations of type[ (4.65) with a very high precision, such techniques perform only a
few solver iterationgo obtain an approximate solution at each siep [WBIE Vog02]
Evidently, such a procedure leads to a slight deterioration of the convergence of the fixed
point iteration itself. However, the number of additional fixed point steps is negligible
compared to the significant reduction of computational costs for each equation system.
Thus it is not surprising thahexactvariants are much faster than any exact method that
relies on solving the linear equation systems precisely. One should note the convergence
of such inexact methods is not proven yet. Hints, however, can be found in [Axe97].

Frozen Coefficients Special representatives for this class of Lagged-Diffusivity tech-
niques are iterative methods wifitozen coefficientfESHWO04]. Such methods are based

on the idea of accelerating the fixed point iteration by updating the lagged nonlinear ex-
pressions as fast as possible. Consequently, these expressions are only kept fixed (frozen)
for one iterationof the basic solver. The resulting strategy of combining fixed point and
solver iterations can be interpreted in two ways: Either one may think of a “very inex-
act” Lagged-Diffusivity method that uses only one iteration to solve each equation system
or one may think of a nonlinear iterative method that extends the idea of linear iterative
solvers by an additional update step.

Concrete Example Let us now investigate how the strategy of frozen coefficients can be
applied for solving the nonlinear equation system associated to our prototype F (method of
Bruhnet al). In order to allow for a comparison to the exact Lagged-Diffusivity method

in (4.66)(4.67) and (4.68)—(4.[73) we have selected once more the GauRR-Seidel method
with coupled point relaxation (CPR). The corresponding iteration instructions read

L]\ (TR IRBLE )
([u‘;} A AN L L R W @7

fori =1,.., NP andj = 1,..., N® with the matrix entries

‘Ijlh [\I}lh}z)
[K{ll]f,j - [\Iﬂh} J11 ;@ Z Z ] @75)
le{z1,22} 7,5eN(4,)
K5 = [%*‘]?U&h o
([w]: [‘If’hL )
[K‘?ﬂia‘ S ] J22 ta Z Z 2 (4.77)

le{z1,22} 7,5eN(4,9)
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and right hand side

\I//h k- [\I,/h]f')
br)y, = =[98, s, +a > Z 2h2 e [u}]55
l

le{zr,ma}t 3,5EN] (4,9)

\I]/h
+ « Z Z 2h12

le{m,ma} 5N (4,5)

‘If/h ”) N

(4.78)

\I,/h _i_[\ljlsh]'f)
W - e Y S [48]55
le{z1,22} 7N (i) !

(Wb +[x1ﬂsh}f.> .
ta ), Z zhf = [z

le{z1,2} 1]6./\/ (4,9)

(4.79)

As one can see, in contrast to the exact case only one iteration ihyléx gufficient.

This is a consequence of the fact that the indices for the fixed point iterations and solver
iterations coincide: The frozen coefficient®'] . * and [T * “are now updated after
eachiteration. In this context one should note tf1at this frequent evaluation may be very
expensive compared to the iteration step itself: It may require more than 50% of the total
computational costs.

4.2.3 Unidirectional Multigrid Methods

With inexact Lagged-Diffusivity methods we have proposed a class of non-hierarchical
iterative solvers for our nonlinear cases | and Il. However, as we have already discussed in
the context of linear problems, such iterative single-grid methods are not well-suited with
respect to a very local coupling of the unknowns (via the discrete differential operator).
Therefore it is also desirable in the nonlinear cases | and Il to develop multigrid schemes
that speed up the computation. As in the linear case we start with the simplest multigrid
strategy — the multigrid strategy that is based on a coarse-to-fine initialisation of the results:
unidirectional multigrid

Basic Idea. In fact, there is no reason why the idea of hierarchical initialisation should
not work for a nonlinear problem. However, one has to be more careful when transferring
the corresponding equation system to the coarse grid. This transfer has to be done in such
a way that the coarse grid operatdt (xH) of the coarse grid equation system

AH(xH) = pH (4.80)
with new cell sizeH = (H,,, H,,) " is still decomposable into
AR (xT) = BH(xM) T + H(xM). (4.81)

Then, the same nonlinear solvers as for the single grid can be used. Apart from this, the
construction of suitable unidirectional schemes is straightforward:
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Intergrid Transfer Operator . As intergrid transfer operators the same restriction and
prolongation techniques can be used as in the linear dalieveightingor area based
averagingfor restriction ancconstant/lineaior area based interpolatiofor prolongation.

Coarse Grid Equation System However, in contrast to the linear case, only two different
strategies are available to construct the coarse grid equation systems:

e Problem Based Coarse Grid Approximation (PCA)

e Discretisation Coarse Grid Approximation (DCA)

The Galerkin coarse grid approximation (GCA), that was introduced as the most accurate
but also by far the most expensive coarse grid approximation, is not used in the context
of nonlinear problems (at least not to restrict nonlinear equation systems). This has the
following reason: Sincei® (xH) is a nonlinear operator, the construction via

AH(xH) = Rh—H gH (yH) pH—h (4.82)

cannot be represented any longer by a simple (though costly) multiplication of three ma-
trices. In fact, in most cases this expression cannot be evaluated efficiently.

Concrete Example Let us now show by the concrete example of our prototype F (method
of Bruhnet al), how such an unidirectional multigrid scheme can be derived for the non-
linear case. To this end, a suitable discretisation coarse grid approximation (DCA) ap-
proach is investigated. This is done in four steps.

I) Basic SolverFirstly, we have to chose a basic iterative solver. Since our prototype
F is based on isotropic regularisation, we propose to us&thd3-Seidel method
with frozen coefficients and coupled point relaxat{@®PR) (cf. linear case). The
corresponding iteration instructions have already been discussed. They are given
by (4.74) - [4.79). The same solver can also be used for our prototypes D and G
(isotropic regularisation as well). Only in the case of prototype E (anisotropic reg-
ularisation), a frozen coefficient variant of the Gaul3-Seidel method with alternating
line relaxation (ALR) may give better results.

II) Coarse Grid Cell SizeSecondly, we have to define the new coarse grid cellHize
As in the linear case, we favour a non-dyadic approach with

NP NP
H, =h, — H, :=h, —=2 (4.83)
1 1 Nalj_f 2 2N£

where N = [N! /2] and N} = [N! /2]. Please note that for our spatiotempo-
ral prototype G (method of Papenbegal.), the coarse grid cell size in temporal
direction should be adapted in the same way.

[I) Intergrid Transfer OperatorsThirdly, we have to define the interpolation and re-
striction operator. Again we chooseea based interpolatioandarea based aver-
aging(cf. linear case).
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IV) Coarse Grid Equation Systerhinally, we have to derive a suitable coarse grid rep-
resentation for our fine grid equation system. Following the discretisation coarse
grid approximation approach (DCA), this requires to rediscretise the discrete Euler—
Lagrange equations. This yields the coarse grid equation system

[\I]/DH}i,j[JS}i,j[u?}i,j+[\Ijlf)H} [‘]12} [ } +[\IIIH} [‘]13}

. Z Z (\I/’H -+ (U] ” < Lg) _0

Hf
le{zr,@2} 4,5€N(i,5)

(4.84)
9] ), ) ) ) ) (o),
(low) s, + [o2],,) (81,1681,
_QZE{Z }*gf\;(' ) i " h
T1,T2} 1, AP
Eavi (4.85)

fori=1,...,N;'andj = 1,..., NiI. Asin the linear case, the entries of the coarse
grid motion tensor{JH} _are obtained via channelwise restriction:

ol ;=BR[] (mn=1,2,3). (4.86)

The entries of the diffusion tensors, however, depend omfrendu’ and are thus
nonlinear. This in turn means that they cannot be restricted. Instead they have to
be adapted to the new coarse grid cell dite For our prototype F this yields the
nonlinear expressions

/H 1
ZJ 2\/‘D2H ‘Z—HDQH([ Lj)P_'_E%

(4.87)

where| D>H([2H] )| denotes the gradient magnitude operator as defined in Table

[3.1. Apart from the diffusion tensors also the nonlinear expressions from the non-
guadratic data term have to be adapted to the coarse grid cell size. Analogously,
they become

] = ! . (4.88)

2 ([ [T D) ([ [ DT e

where | JH] ; is the restricted motion tensor from (4,86).

This example shows that our systematic framework for the design of efficient hierarchical
schemes based on the motion and diffusion tensor notation can also be applied in the
context of nonlinear unidirectional multigrid methods. If it is combined with a coarse grid
approximation (DCA) approach, its construction rules become rather simple: While all
linear expressionsuch as the motion tensor have torbdiscretisedqthey only depend on

the input data), athonlinear expressiorareadaptedo the new coarse grid cell size (they
depend on the solution).
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Fig. 4.1Q Logarithmic Fourier spectra of the numerical error inthecomponent of the optic flow

for our prototype F. Development for an increasing number of standard Gaul3-Seidel iterations.
Lower frequencies are located in the centre of the image, higher frequencies at the bou(adaries.
Outer Left: Initialisation with equally distributed error frequencigb) Centre Left: 1 iteration.

(c) Centre Right: 10 iterations(d) Outer Right: 100 iterations.

4.2.4 Bidirectional Multigrid Methods

In the linear case we have identified the weak attenuation of low error frequencies as the
actual reason for the poor performance of iterative splitting-based methods. As one can
see from Figur¢ 4.10 this also holds for nonlinear techniques that are derived from the
Lagged-Diffusivity method. Hereby, apart from the original problem — the local coupling
via a small neighbourhood — also the problem of the slow convergence of the fixed point
iteration is present.

Basic Idea - The Nonlinear Bidirectional Two-Grid Cycle. For overcoming these prob-
lems so-calledull approximation schemd&AS) [Bra77] proved to be very useful. These
bidirectional multigrid schemes for the nonlinear case rely on a similar error correction
strategy as their linear counterparts. However, due the nonlinearity of the opétéd),

their construction is slightly more difficult. Let us now explain by the example of a basic
nonlinear bidirectional two-grid cycle how the FAS concept works.

I) Presmoothing RelaxatiorAs in the linear case we start by performimgiterations
with a nonlinear iterative basic solver (e.g. a frozen coefficient method) in order to
reduce the high frequency components of the error (see 4.11). If we denote

Fig.4.11 Logarithmic Fourier spectra of the numerical error for the Gaul3-Seidel method
with frozen coefficients and coupled point relaxation (prototype(&) Left: Before the
presmoothing relaxation stefb) Right: After the presmoothing relaxation (2 iterations).
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the correct solution by" and the result after these iterations byx", this error can
be computed as follows

el = xP — %P (4.89)

Coarse Grid Transfer Evidently, we are interested in computie in order to
correct our approximation. However, sind&(x") is a nonlinear operator, the way

of deriving a suitable coarse grid correction step is now completely different from
the linear case. In fact, there is only @nplicit relation between the erre” and

the residuat™ = f®* — AR(x"). This relation is given by

Ab(xP 4 eh) — Ab(xh) = AP(xh) — AP(xh) = b — Ab(xh) =P (4.90)

In order to compute the desired correction, we make use of this relation and transfer
the following nonlinear equation system to the coarse grid:

AR(xP peP) =P ARED) - AF( M4 eM) =P 4| AH(xH)
—— —_—— ~ ~ ~ =
x" fP xH fH

(4.91)

In order to visualise the difference to the linear case the additional terms are marked

by frames. As one can see, one cannot compute the error directly. However, one can

deter[ninefch + eM and via subtraction finallg?. If we reformulate the new right

handfH side as
2 = B4 AHEH) (4.92)

— Rh—»Hrh + AH(}ZH)

— Rh*)Hfh - RhHHAh(ih) + AH<}~(H)

— fH + (AH(Rh—>H)~(h) _ Rh—»HAh(f(h)) (493)

we can see that we are actually solving a modified variant of the original nonlinear
equation system on the coarse grid. Please note that in géHeyaf™ since there

is a significant difference between (i) evaluating the coarse grid operator for the
restricted solution, i.e. computing® ( RP~Hx") and (ii) restricting the result of the
evaluated fine grid operator for the fine grid solution, i.e. compulhigH A (x1).

Coarse Grid Solution As in the linear case the low frequency components that
remain after the presmoothing relaxation step reappear as higher frequencies in the
error of our coarse grid problem. Therefore, they can now be attenuated efficiently
by using the nonlinear iterative basic solver again.

Fine Grid Transfer Since solving the nonlinear residual equation system on the
coarse grid gives us actualiy! + e, we have to subtract™ from the computed
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solution in order to obtain the true coarse grid eeBr This solution has then to be
transferred to the fine grid

el —&h (4.94)

Once again, the interpolated coarse grid solution is denoted pgince it is only
an approximation to the desired correctigh

Coarse Grid Correction After having transferred the coarse grid solution to the
fine step, it can be used to correct our approximative result from the presmoothing
relaxation step:

xh =xh el (4.95)

new

As we can see from the corresponding Fourier spectra shown in [Figuie 4.12 this re-
sults in the desired attenuation of low error frequencies. The interpolation, however,
introduces some new high frequencies.

Fig.4.12 Logarithmic Fourier spectra of the numerical error for the Gaul3-Seidel method
with frozen coefficients and coupled point relaxation (prototype(&) Left: Before the
coarse grid correction stefb) Right: After the coarse grid correction step.

Postsmoothing Relaxatioin order to remove this high error frequencies, finatly
iterations of the nonlinear iterative basic solver are applied (see Figuie 4.13).

Fig.4.13 Logarithmic Fourier spectra of the numerical error for the Gaul3-Seidel method
with frozen coefficients and coupled point relaxation (prototype(&) Left: Before the
postsmoothing relaxation stefin) Right: After the postsmoothing relaxation step (2 itera-
tions).

As one can see, the basic idea of full approximation schemes is very similar to the one of
bidirectional multigrid methods for the linear case. Let us now discuss how the necessary
intergrid transfer operators have to be chosen and how one can obtain the required coarse
grid equation system.
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Fig. 4.14 Logarithmic Fourier spectra of the numerical error inihhecomponent of the optic flow
for our prototype F. Error reduction over three V-cyclEsom Top to Bottom: First cycle, second
cycle and third cycle.From Left to Right: Initialisation, presmoothing relaxation step, coarse
grid correction step, postsmoothing relaxation step.

Intergrid Transfer Operators. In order to allow for the construction of efficient multigrid
schemes, the intergrid transfer operators have to satisfy the same accuracy condition as in
the linear casd (4.52). Moreover, they should be chosen in such a way that they preserve
the positive definiteness of the coarse grid motion tensors — this allows the application of
the same nonlinear iterative basic solver on all multigrid levels. Reasonable choices are
the full-weightingor area based averagingperator for restriction andonstant/linearor

area based interpolationperator for prolongation.

Coarse Grid Equation System.As already explained in the unidirectional case, only two
strategies are used in the context of nonlinear problems to derive the coarse grid system:

e Problem Based Coarse Grid Approximation (PCA)
e Discretisation Coarse Grid Approximation (DCA)

Since the approximation quality of the problem based coarse grid approximation is often
so poor that the resulting bidirectional multigrid methods do not converge, one should only
rely on approaches based on the discretisation coarse grid approximation (DCA).
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Hierarchical Application. So far we have only discussed the basic two-grid cycle. How-
ever, analogously to the linear case, this cycle can be extended to more advanced grid
traversal strategies that have better error reduction properties such as V- and W-cycles (cf.
Figure[4.T). As in the linear case, two to three cycles are already sufficient to achieve a
significant attenuation of all frequencies and thus a decay of the Euclidean norm of the er-
ror of aboutfour orders of magnitudésee Figuré 4.14). However, V- and W-cycles alone

are rarely used in the context of nonlinear problems. They are often embedded within a
full multigrid scheme(cf. Figure[4.9). This has the following reason: Unlike in our case
where the solution is unique, often nonlinear problems Imauéiple solutions In order

to converge to the “right”solution, in particular with respect to Newton-like techniques,

it is important to be sufficiently close to the right basin of attraction when starting the it-
erations. This in turn can be achieved by the hierarchical initialisation that is used by full
multigrid schemes.

Concrete Example Let us now discuss how such a DCA-based full approximation
scheme can be derived for our prototype F (method of Brethal). One should note
apart from the control-theory-based optic flow approacHh_in [BIK02], no attempts have
been made so far to use nonlinear bidirectional multigrid methods in the context of vari-
ational optic flow computation. In order to set up the full approximation scheme, the
following four decisions have to be made.

[) Basic SolverFirstly, we have to decide for a basic iterative solver. As in the unidi-
rectional case, we propose the use @aul3-Seidel method with frozen coefficients
and coupled point relaxatio(CPR) for this purpose.

II) Intergrid Transfer Operators Secondly, a suitable pair of intergrid transfer oper-
ators has to be defined. While the restriction operator is required to transfer the
residualand the approximative solution to the coarser grid as well as for the con-
struction of the coarse grid motion tensors, the interpolation operator is needed to
interpolate the obtained coarse grid correction. As we have shown in the case of
linear bidirectional methodsyea based interpolatioandarea based averagingre
a suitable choice [BWF05,[BWKSOQ06]: Firstly, they preserve the positive definite-
ness of the coarse grid motion tensors and therefore allow the application of frozen
coefficient methods, and secondly and equally important, they satisfy the accuracy

condition in [4.52).

[II) Coarse Grid Cell SizeThirdly, a new coarse grid cell si2& has to be chosen. This
time, too, we propose a nhon-dyadic approach with

H,, = hmlN—i H,, = th—% (4.96)
NH NH

with NH =[NP /2] andNII =[NP /2]. In the case of our spatiotemporal prototype
G one should not forget to treat the temporal axis in the same way, i.e. to define

Nh
H,, o= hy,—22 (4.97)
3 BNg

with NIT=[NPE /2].
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IV) Residual Coarse Grid Equation Systeifinally, we have to set up theonlinear
residual equation systefor the coarse grid. Once again, we follow the discretisa-
tion coarse grid approximation approach (DCA) and rediscretise all entries of the
discrete Euler-Lagrange equations that belong to the nonlinear opestet).

This yields the coarse grid equation system

[\IIBH} ij [JIPH ij [“ﬂ i T [\I/;DH} i [JII;} i [“ﬂ it [\I/;DH} i [Jlfiﬂ irj
(] s+ (U], ) ([ud'] 55— [uf] -
—a Z Z ( ’ —; ) ( i ) _ [

le{x1,$2} Z:jej\/’l(lz.])

le{z1,2} 7,5€N;(4,9)

(4.99)

fori = 1,..,Njl andj = 1,.., N3}, where[u{'] . and [4}'] , ; are the new un-
knowns (coarse grid solution) andf!] . - and[f}], . give the modified right hand
side. As in the unidirectional case, the entries of the coarse grid motion tensors

[JH] ;; are obtained via channelwise restriction, while the nonlinear expressions

),

[v57],, and [T¢T], . are adapted with respect to the new coarse grid cellHize
(the latter one is a consequence from adapting the diffusion tensor).

Evidently, our coarse grid construction rules from the unidirectional case can also be ap-
plied in the context of bidirectional multigrid methods (FAS schemes). This in turn means
that by combining the diffusion and motion tensor notation with a suitable discretisation
coarse grid approximation approach (DCA), we have provided a complete framework for
the design of efficient multigrid schemes for variational optic flow methods for small dis-
placements. One should note that this framework is not restricted to the seven prototypes
that have been selected. It can be applied to the whole class of variational techniques that
can be designed in accordance with our theoretical guidelines in Chapter 2.

4.3 Numerical Prototypes

In the previous two sections we have discussed a variety of numerical schemes for the
solution of the linear and nonlinear equations systems associated to our prototypes A-G.
However, as for the variational models, only a few prototypes can actually be tested in
our numerical experiments. Therefore, we selected six numerical techniques for each of
the systems of equations A-G: One bidirectional and one unidirectional multigrid method
(both based on our multigrid framework), one basic and one advanced non-hierarchical
solver, and two techniques that make use of the briefly discussed elliptic minimisation
strategy (these techniques compute the steady state of the steepest descent equations; cf.
[2.3.1.1). Let us now discuss the different implementations in detail.



4.3 Numerical Prototypes 127

Tab.4.1 Implemented bidirectional multigrid schemes for the different variational models.
MG = multigrid. FMG = full multigrid. W = W-cycle. Cyc = multigrid cycles per level. GS

= GauRR—Seidel. CPR = coupled point relaxation. ALR = alternating line relaxation. Pre/Post =
pre- and postsmoothing relaxation iterations. L = linear. NL = nonlinear. SD = small displacements

| Case Model MG Solver | Cyc| Basic Solver Pre/Post
L A - Homogeneous FMG-W 1 GS-CPR 1-1
B - Image-Driven Isotropic FMG-W GS-CPR 2-2
C - Image-Driven Anisotropic FMG-W GS-ALR 1-1
NL | || D - Flow-Driven Isotropic FAS-FMG-W GS-CPR 2-2
E - Flow-Driven Anisotropic | FAS-FMG-W GS-ALR 1-1
NL Il || F- Bruhnetal.2-D, SD FAS-FMG-W GS-CPR 2-2
G - Papenbergt al. 3-D, SD | FAS-FMG-W GS-CPR 2-2

N NP N[|BADN

Multigrid Solvers. As representatives for the class of bidirectional multigrid methods we
developed several full multigrid schemes (see Table 4.1). Thereby we used two different
types of basic iterative solvers: While in the cases of homogeneous and isotropic regular-
isation, a Gau3—Seidel technique with coupled point relaxation (CPR) was sufficient, the
anisotropy of the neighbourhood coupling required the use of a Gaul3—Seidel method with
alternating line relaxation (ALR). For the nonlinear variants of the Gaul3—Seidel solvers we
used the strategy of frozen coefficients. Direct nonlinear Gaul3—Seidel Newton methods
[BHMOQ] have not been considered as basic solver. Preliminary experiments using this
kind of methods have shown a similar performance in terms of error reduction, however,
at the expense of significantly increased computational costs.

As one can see from Taljle 4.1 an increasing anisotropy of the diffusion tensor (homoge-
neous— isotropic— anisotropic) requires more multigrid cycles at each level of the full
multigrid implementation. This can be explained by the deterioration of the approximation
quality of the coarse grid operator if the entries of the diffusion tensor vary strongly.

In order to allow for a complete multigrid hierarchy and the application to image se-
guences of any size, we considered the use of non-dyadic intergrid transfer operators in
all approaches. As we proposed before, they were realised by area based interpolation and
area based averaging. Coarser versions of the linear and nonlinear operators were created
by the discretisation coarse grid approximation approach (DCA) [Wes92]. To this end, we
restricted all linear expressions such as the motion tensors and the linear diffusion tensors
and adapted the grid size for the nonlinear ones.

In addition to our full multigrid implementations we also developed unidirectional multi-
grid schemes for all our prototypes (cascadic multigrid methods). In order to allow a fair
comparison to their bidirectional counterparts, we used the same basic iterative solvers
(linear and nonlinear Gaul3-Seidel variants with coupled point (CPR) and alternating line
relaxation (ALR)). Moreover, we used the same intergrid transfer operators and the same
coarse grid approximation strategy (DCA).
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Tab. 4.2 Overview over all implemented solvers. NL = variant for the nonlinear case. FC = frozen
coefficients. ILD = inexact lagged diffusivity( 1 iterations between nonlinear updates).

Case | Solver Type \ Selected Solver | NL |
Elliptic Basic Non-Hierarchical GauR3-Seidel (CPR/ALR) FC
Advanced Non-Hierarchical Successive Overrelaxation (SOR) ILD
Unidirectional Multigrid Cascadic GauR3-Seidel (CPR/ALRYC

Bidirectional Multigrid Full Multigrid (see Table 4]1) FC
Parabolic|| Explicit Scheme Stabilised Explicit Scheme -
Semi-Implicit Scheme Semi-Implicit Scheme + SOR -

Non-Hierarchical Iterative Solvers. As contestants for the class of non-hierarchical iter-
ative solvers we selected the following two prototypes: the previously GsedR-Seidel
variantsas basic non-hierarchical solvers andsbecessive overrelaxation meth@DR)

as advanced non-hierarchical technique. In the latter case we realised the nonlinear variant
by means of an inexact lagged diffusivity method.

Parabolic Solvers. Finally, as numerical prototypes for the class of parabolic solvers —
such methods compute the steady state of the steepest descent equations —we implemented
a stabilised explicifWS01b] and asemi-implicitapproach [WHS01]. While the first

method is a straightforward extension of a standard explicit scheme (e.g. a gradient descent
method) that allows for larger time step sizeshe second approach is unconditionally
stable but requires the solution of a linear equation system at each step (e.g. by using the
SOR method). For a comparison of different numerical schemes for the parabolic case the
interested reader is referred to [WH®L]. An overview of all six techniques that we have
implemented for our comparison is given in Tapblg 4.2.

4.4 Numerical Experiments

Having discussed all numerical prototypes, let us now evaluate the efficiency of our multi-
grid implementations. Thereby all computations are carried out on a standard desktop PC
with a 3.06 GHz Intel Pentium 4 CPU executing C / C++ code.

4.4.1 Basic Variational Approaches

In our first experiment we compare the efficiency of different numerical schemes for the
five basic prototypes A-E. For our evaluation we uséd(ax 120 real-world sequence (the
Dancingsequence; see Figure 4.15), where a person dances in front of the camera. Before
we applied the different numerical schemes we preprocessed the sequence by convolution
with a Gaussian kernel of standard deviatios 1. The iterations were stopped when the
relative errore,; := ||z — Z,||2/|z||» dropped belowl0~2, wherez denotes the correct
numerical solution and,, stands for the computed result afteiterations/cycles. The
correct numerical solution was thereby computed in advance with a very high precision.
In all cases a zero flow field served as initialisation.
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Tab. 4.3 Experiment I: Performance benchmark for the linear case (prototypes A-C) on a stan-
dard desktop computer with 3.06 GHz Pentium 4 CPU. Run times refer to the computation of a

single flow field from thel60 x 120 dancing sequence. FPS = frames per second.

Linear Case: Prototype A (homogeneous regularisation)
o =1.0, « =1000

Solver | lterations | Time[s] | FPS[s~!] | Speedup
Modified Explicit Schemer{ = 0.25) 4425 3.509 0.285 1
Gaul3-Seidel (CPR) 2193 1.152 0.868 3
Semi-Implicit Schemer( = 1000) + SOR 82/1 0.073 13.699 48
SOR (@ =1.94) 82 0.052 19.233 67
Cascadic Gaul3-Seidel (CPR) 16 0.018 56.189 197
Full Multigrid 1 0.016 62.790 220

Linear Case: Prototype B (image-driven isotropic regularisation)

0=1.0,a=1000,es = 1.0

] Solver | lterations | Time([s] | FPS[s~'] | Speedup
Mod. Explicit Schemex = 0.25) 8896 12.048 0.083 1
Gaul3-Seidel (CPR) 2856 2.793 0.358 4
Cascadic Gaul3-Seidel (CPR) 215 0.085 3.508 42
Semi-Implicit Schemern( = 1000) + SOR 89/1 0.124 8.065 97
SOR (v =1.95) 91 0.103 9.709 117
Full Multigrid 1 0.048 20.850 251

Linear Case: Prototype C (image-driven anisotropic regularisation)

o =1.0, a =1000, eg = 1072

] Solver | lterations | Time([s] | FPS[s~'] | Speedup
Mod. Explicit Schemex = 0.1666) 36433 47.087 0.021 1
GauR-Seidel (ALR) 607 3.608| 0.277 13
Cascadic Gaul3-Seidel (ALR) 473 3.218 0.311 15
Semi-Implicit Schemer( = 1000) + SOR 199/1 0.244| 4.098 195
SOR (v = 1.96) 202 0.212| 4.417 224
Full Multigrid 1 0.171 5.882 275

The Linear Case. Tablg 4.3 shows the excellent performance of our full multigrid schemes
for the linear case (prototypes A-C): For tfisst timein the literature real-time frame

ratesare achieved for variational optic flow methods with homogeneous and image-driven
regularisation (up to 63 dense flow fields per second). Thereby speedups of two to three
and one to two orders of magnitude are obtained compared to frequently used modified
explicit schemes and widely spread basic iterative solvers, respectively. Also compared to
their unidirectional counterparts our full multigrid implementations performed favourably:
Except for the homogeneous case (prototype A) where the results are usually rather smooth
and the hierarchical initialisation works almost perfectly, we achieved average speedups
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Tab. 4.4 Experiment |: Performance benchmark for the linear case (prototypes D-E) on a standard
desktop computer with 3.06 GHz Pentium 4 CPU. Run times refer to the computation of a single
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flow field from the160 x 120 dancing sequence. FPS = frames per second.

Nonlinear Case I: Prototype D (flow-driven isotropic regularisation)

0=1.0,a=10,eg = 1072

Solver | lterations | Time[s] | FPS[s~'] | Speedup
Mod. Explicit Schemex = 0.0025) 10633 30.492 0.033 1
GauR-Seidel (CPR) 2679 6.911 0.145 4
Cascadic Gaul3-Seidel (CPR) 371 0.853 1.173 36
Semi-Implicit Schemer( = 10000) + SOR 17/5 0.206 4.854 148
Inexact Lagged SOR(= 1.95) 17/5 0.174 5.748 174
FAS - Full Multigrid 1 0.082 12172 372

Nonlinear Case I. Prototype E (flow-driven anisotropic regularisation)
0=1.0,a=10,¢e = 1072

] Solver | lterations | Time[s] | FPS[s~!] | Speedup
Mod. Explicit Schemex = 0.0025) 9224 58.837| 0.017 1
Gaul3-Seidel (ALR) 591 12.508| 0.080 5
Cascadic Gaul3-Seidel (ALR) 138 3.816 0.262 15
Semi-Implicit Schemer( = 10000) + SOR 35/5 0.595 1.681 99
Inexact Lagged SOR(= 1.90) 35/5 0.509 1.964 116
FAS - Full Multigrid 1 0.491 2.038 120

of one order of magnitude. Only the SOR based numerical schemes with manually opti-
mised overrelaxation parameteishowed a more or less comparable performance (due to
the low but realistic accuracy requirementsQf = 10-2): While the SOR method is still
outperformed by a factor three for our prototype A, it can reduce the gap to a difference
of about20% in the anisotropic case (prototype C). As explained in Segtion 4.3, this is
directly related to the reduced approximation quality of the coarse grid operator within
our full multigrid schemes for highly anisotropic motion tensors with varying coefficients.
One should note that the more sophisticated Galerkin coarse-grid approximation strategy
(GCA) may yield a faster convergence in terms of required cycles on each multigrid level,
but is so expensive that it does not allow to reach real-time frame rates.

Apart from the good performance of our full multigrid implementations, this experiment
also shows that ioes not give any advantagesolve the obtained equation systems using
a parabolic approach. In fact, the semi-implicit scheme yielded the best results when a
very large time step size was used=€ 1000) and only one iteration of the SOR method
was applied to solve the resulting linear equation system in each time step. This in turn
means thatve actually solve an elliptic problefr — oo), and this with a standard SOR
solver. Thus it is not surprising that the obtained results of the semi-implicit scheme are
basically identical with the ones of the ordinary SOR method (apart from slightly increased
computational costs).
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Fig.4.15 Experiment Il: Quality of our real-time implementationsLeft to Right: dancing
sequence, waving sequence, rotating thumb sequé&opdo Bottom: First frame, Second frame,
No regularisation (normal flow), Prototype A (homogeneous regularisation).

The Nonlinear Case l.In the nonlinear case (prototypes D and E) our comparison shows

a very similar tendency (see Taljle 4.4). Also for flow-driven mettred$time frame

rates are achieved for the first time in the literature (up to 12 frames per second). Here, the
speedup factors are in the range of two to three orders of magnitude compared to modified
explicit schemes and basic iterative solvers and about one order of magnitude compared to
unidirectional multigrid techniques. Also in this case the SOR method showed a good per-
formance: While it was outperformed by a factor two in the isotropic case (prototype D)

it proved to be almost as efficient as our full multigrid solver in the anisotropic case (pro-
totype E). Regarding the comparison between elliptic and parabolic approaches, we can
observe again that the parabolic strategy does not give any advantage: As before the semi-
implicit scheme comes down to afliptic solverwhen it achieves its best performance.
Then, it approximates the inexact lagged diffusivity method for the SOR scheme.
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Fig.4.16 Experiment II: Quality of our real-time implementationd.eft to right: dancing se-
guence, waving sequence, rotating thumb sequefog. to bottom: Prototype B (data-driven
isotropic regularisation), Prototype C (data-driven anisotropic regularisation), Prototype D (flow-
driven isotropic regularisation), Prototype E (flow-driven anisotropic regularisation).

Quality. In our second experiment we juxtapose the estimation quality of our proposed
full multigrid implementations for the different regularisation strategies (prototypes A-E).
To this end, we computed flow fields for three different real-world sequences: for the
previously usedancingsequence (complex motion), tNéavingsequence (translations
and discontinuities) and thieotating Thumisequence (rotation). The depicted flow fields

in Figure[4.1b and Figure 4.]l6 make the quality of our real-time variational optic flow
methods explicit: One can see that the image- and flow-driven prototypes B-E allow the
preservation of discontinuities, that the anisotropic prototypes C and E give slightly better
results than their isotropic counterparts B and D, and that the flow-driven methods D and
E are able to overcome the problem of oversegmentation that lies in the nature of image-
driven techniques for heavily textured scenes.
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Tab. 4.5 Experiment lll: Performance benchmark for the nonlinear case Il (prototypes F-G) on a
standard desktop computer with 3.06 GHz Pentium 4 CPU. Run times refer to the computation of
a single flow field from the downsampl&heinhafersequence (siz&60 x 120; see Figur¢ 4.17).

FPS = frames per second.

Nonlinear Case Il: Prototype F (Bruhn et al. 2-D, SD)
Robust data term with local integration + flow-driven isotropic regularisation

0=0.0,p=1.0,a=15,ep = 1071, €g = 1073

] Solver

lterations | Time[s] | FPS[s~'] | Speedup

Mod. Explicit Schemex = 0.00025) 81064 246.812 0.004 1
GauR3-Seidel (CPR) 3720 9.524 0.105 26
Cascadic Gaul3-Seidel (CPR) 138 0.409 2.448 603
Semi-Implicit Schemer( = 10000) + SOR 20/5 0.243 4.115 1016
Inexact Lagged SOR(= 1.96) 20/5 0.189 5.291 1306
FAS - Full Multigrid 1 0.087 11473 2836

Nonlinear Case Il: Prototype G (Papenberget al. 3-D, SD) :
Robust data term with additional gradient constancy + flow-driven isotropic regularisation
0=10,a0=30,7=15,ep = 1071, eg = 1073

] Solver lterations | Time[s] | FPS[s~'] | Speedup
Mod. Explicit Schemex = 0.00025) 184913 | 6408.660| 0.001 1
Gauf3-Seidel (CPR) 10809 231.883| 0.026 28
Cascadic Gaul3-Seidel (CPR) 595 14.807| 0.405 432
Semi-Implicit Schemer( = 10000) + SOR 23/5 2.083 2.880 3076
Inexact Lagged SOR(= 1.93) 23/5 1.826 3.286 3510
FAS - Full Multigrid 1 0.607 9.885 10558

4.4.2 Advanced Variational Methods

In our third experiment we investigate the efficiency of our multigrid implementations for
the more advanced variational optic flow prototypes F and G. As test sequence in this
experiment served a downsampled variant (¥6020) of theRheinhafersequence. As
before, a relative error af..; = 10-2 was used as stopping criterion.

The Nonlinear Case Il. Let us now take a look at the obtained results in Table 4.5. The
corresponding frame rates show clearly that even in the case of such highly advanced
optic flow methods, real-time performance is still possible. Moreover, one can see that
the speedups for the more advanced optic flow methods are even better than for the basic
techniques with different types of regularisation. One should particularly note the large
speedups for the spatiotemporal prototype G: With three to four orders of magnitude the
modified explicit scheme (that needs one to two hundred thousand iterations) is outper-
formed more than significantly. The same applies to the basic iterative solvers, although
the speedup is here “only” two orders of magnitude. Even compared to their unidirec-
tional counterparts, the acceleration is still in the range of one order of magnitude. As
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Fig.4.17 (a) Top Left: Frame 1130 of th&®heinhafer{resized tol60 x 120). (b) Top Right:
Frame 1131(c) Bottom Left: Flow field computed by our full multigrid implementation for the
prototype F (Bruhret al. 2-D, SD). Computing time: 87 millisecond&d) Bottom Right: Flow
field computed by our full multigrid implementation for the prototype G (Papenbesd. 3-D,
SD). Computing time: 121 milliseconds.

in the previous benchmark for the prototypes A-E the SOR technique showed a relatively
good performance. This time it is only outperformed by a factor two to three. The same

holds for the semi-implicit scheme. As before, this parabolic strategy required a very large
time step size to yield its optimal performance and thus came once more down to a solver
for the elliptic strategy.

Quality. In Figure[4.1} the computed flow fields are depicted. Evidently they look fairly
realistic: The motion of the van in the foreground as well as the motion of most other
vehicles in the background is computed with good precision. Moreover, object boundaries
within the flow field are rather sharp and allow for a simple separation of the different
motions layers via thresholding. This segmentation-like behaviour, that is desired in many
optic flow applications, is a direct consequence of using the total variation as discontinuity-
preserving regulariser. Please note that these flow fields are just one example of the quality
of the proposed real-time implementations. Of course, all results presented in our qualita-
tive experiments in the previous chapter can be reproduced with our multigrid methods.
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4.5 Summary

In the previous chapter we presented seven prototypes of variational optic flow methods for
small displacements and showed that some of them are among the most accurate optic flow
methods in the literature. In this chapter we have demonstrated that all these prototypes can
be implemented in such a way that they even achieaktime performancéor sequences

with images ofl60 x 120 pixels. To this end, we discussed different numerical schemes
for solving the linear and nonlinear systems that are obtained when minimisiogriex

energy functionals of the different prototypes via their Euler-Lagrange equations.

Thereby we focused in particular on the desigiiglirectional multigrid methodshat
are among the fastest numerical schemes for coping with this task. In this context we
not only derived efficient numerical schemes for all our prototypes, we even succeeded to
establish a complete multigrid framework for variational optic flow methods. This frame-
work, that is based on the diffusion and motion tensor notation as well as the discreti-
sation coarse grid approximation approach, allows a systematic construction of efficient
hierarchical solvers for all variational methods that are designed in accordance with our
theoretical guidelines in Chapier 2.

In our experimental section the advantages of the developed bidirectional multigrid
solvers became obvious: Compared to standard numerical methods our implementations
achieved speedups of two to four orders of magnitude. Even more efficient solvers such
as unidirectional multigrid methods or the successive overrelaxation method were out-
performed clearly in most cases. Thereby frame rates of up to 63 dense flow fields per
second for sequences t#0 x 120 allowed for thefirst timein the literature the real-time
computation of optic flow fields with variational methods.

Apart from demonstrating the excellent performance of our multigrid implementations
we also answered the question if an elliptic or a parabolic strategy is more suitable for min-
imising the energy functionals of variational methods: We saw that the use of a parabolic
strategy does not give any advantages. This strategy required so large time step sizes for an
optimal performance that it actually approximated the behaviour of athpéic strategy.
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“To err is human, but to really foul things up you need a computer”
- Paul Ehrlich

So far we have restricted ourselves to the design of variational optic flow methods for
smalldisplacements, i.e. to approaches that use constancy assumptions lin¢haeised

form. This restriction allowed us to construct convex energy functionals that affegae
solution and can therefore be minimisedayglobally convergent algorithm. Moreover,

it allowed us to introduce the motion tensor notation that formed the basis of our real-time
multigrid framework. However, in particular with respect to real-world sequences where
large objects often move faster than a few pixels per frame and thus require the estimation
of large displacements, such a restriction may not be appropriate. In these cases it may
even prevent the approach from estimating the correct displacement field and thus turns
from a restriction into a limitation.

In this chapter wadift this limitation andgive up the convexitgf the resulting models:

We show by the example of an eighth prototype how our previous framework for the
design of accurate variational models and the construction of efficient numerical schemes
can be extended to the casdafye displacementsThereby all steps — the modelling, the
minimisation, the discretisation and the numerical scheme — are discussed in detail.

To this end, we start in Sectign 5.1 with the presentation of our new prototype — an
energy functional that is based on constancy assumptighsutlinearisation. Since this
functional is no longer convex its minimisation becomes a non-trivial task. This problem
is addressed in Sectipn 5.2 where we derive the associated Euler-Lagrange equations and
discuss a suitable minimisation strategy. In this context, we also investigate the question
of an appropriate extension for our motion tensor notation. After discussing a suitable
discretisation in Sectign 5.3 we continue with a detailed evaluation of the estimation qual-
ity of the selected prototype in Sectipn]5.4. In order to allow for a direct comparison to
the prototypes for small displacements, the same test scenarios are used as in[Chapter 3.
This qualitative evaluation is followed by an investigation of efficient numerical schemes
in Section 5.5. Thereby, we focus once more on the design of nonlinear bidirectional
multigrid methods to solve the obtained nonlinear systems of equations. In this context,
we also show how our real-time multigrid framework from Chapier 4 can be extended to
variational methods for large displacements. Finally, we conclude this chapter with an
evaluation of the proposed numerical scheme. This is done in Séctjon 5.6.

5.1 Prototypes for Large Displacements

As we have already indicated in the introduction to this chapter the design of variational
methods for large displacements differs from that of their small-displacement-counterparts:
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In order to handle large displacements one has to refrain from linearising the constancy
assumptions in the model and postpone their linearisation to the minimisation schAeme

we will see in the remainder of this chapter, the decision when to linearise the constancy
assumptions — in the model or in the minimisation scheme — has an enormous impact on
both the minimisation strategy and the quality of the resulting flow fields. In order to
demonstrate this, let us start with our first step: the introduction of our eighth prototype.

5.1.1 Prototype H— The Method of Bruhn and Weickert

As our prototype for variational methods for large displacements, we selected the method
of Bruhn and Weickert — a technique that we recently proposed in [BWO05]. This method
constitutes an improved variant of the approach of Paperdieaty [PBB"06,[ BBPW04]
and tackles four important problems at the same twaeying illumination noise motion
discontinuitiesandlarge displacements

Such a robustness and flexibility requires the integration of several concepts: Firstly,
our method is based on two different constancy assumptionsbrigbtness constancy
assumption and thgradient constancgssumption. Evidently, this allows the handling of
additive illumination changes (if the weight for gradient constancy assumptions is chosen
sufficiently large). Secondly, these assumptions are used inahginal nonlinear form
This in turn allows the correct estimation of large displacements: No linearisations are
performed in the model that may spoil the estimation. Thirdly, in order to render our
method more robust with respect to noise and outliengrequadratiqgpenaliser function is
applied toeachof the two constancy assumptions. As we have discussed in Chapter 2 such
aseparate robustificatiors more suitable than its joint counterpart if thenorm is used.
Fourthly, our method makes use of an isotropic flow-driven regularisation strategy based
on the total variation (TV). This finally allows the preservation of sharp discontinuities in
the flow field. Combining all these concepts within a single variational framework, the
following energy functional is obtained:

Epw_sp-1p(u) = /

(1\714(171 f,D%fu) +a Si(Vf, Vu)) dx
Qo

:/Q (?Dl(‘f(x—i_u)_f(X)|2)/+’YiI’D2(‘Vf(X+u)—Vf(x)|2)l

robust brigh?ﬁess constancy robust grad‘irent constancy

+a :IJS ( ‘V3U1|2 + ’v;gu2‘2 ) ) dx. (51)

isotropic flow-driven regulariser

Here,]\714 denotes the variant of the data teffi, withoutlinearisation (brightness and
gradient constancy, separate robustification). Moreover, the three non-quadratic penalisers
Up,, Up, andUg are regularised variants of tHg norm. The associated small regular-
isation constants are denoted &y, ¢p, andes. In order to point out the difference to
methods for small displacements we added the abbreviation "LD” which stantsder
displacementsPlease note that for the sake of simplicity we restrict ourselves to the use
of a spatial regulariser. However, in our comparison to other methods from the literature
in Sectior] 5.p, also results for the corresponding spatiotemporal variant will be presented.
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5.2 Minimisation

Following the calculus of variations [EIS61] we can minimise the preceding energy func-
tional by solving its Euler—Lagrange equatioedliptic approach). As for our prototypes

A-G we restrict ourselves only to this strategy and do not consider a minimisation via its
steepest descent equatioparn@bolic approach Once more this decision is motivated by

our numerical experiments: They show that also in the case of large displacements, the
elliptic approach is more efficient.

5.2.1 The Euler-Lagrange Equations

In the case of small displacements we established a taxonomy of variational optic flow
methods based on their Euler—-Lagrange equations. We distinguished threelicases:
equationspartly nonlinearequations andully nonlinearequations. However, since all

our models were convex, we implicitly assumed by this classification that equations which
belong to one of these three classes have a unique solution. In particular with respect to the
fact that energy functionals with constancy assumptions in their original nonlinear form
are in generahonconvexthis cannot be guaranteed any longer for our prototype H. In
order to account for this problem, we have to extend our classification by a fourth class:
the class ofully nonlinearequationsvith multiple solutions In the following this class

will be referred to as thaonlinear case Il

5.2.1.1 The Nonlinear Case Il — Prototype H

Let us now derive the Euler-Lagrange equations that are associated with our prototype H.
They are given by the following system of coupled patrtial differential equations

0= Up ([fx+u) = &) (f(x+1u) = (X)) for (x + )
+v\If’2(|fo+u V) (for(x+ 1) = fo, (X)) for (x + 1)
Y UL, ([VF(x+1u) = VFE)?) (for (X + 1) = (X)) foras(x + 1)
—a L, (ug, us), (5.2)
0= U ([fx+u) = &) (f(x+1u) = (X)) far(x + 1)
+v\If’2(|fo+u V() )(fx1<x+u> For (X)) Foras(x + 1)
Hy UL, (IVFx+u) = V) (foa(x + 1) = f2,(X)) Fraa(x + 1)
—a L, (u2, ur) (5.3)

with (reflecting) Neumann boundary conditions. As for the prototypes D and Rahe
linear differential operatoCyy, is given by

L (2(x), 5(x)) = div (T(V2(x), VE(x)) V2(x)) (5.4)
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with the diffusion tensor

H - Bruhn/Weickert T(V2,VZ2) = W(|Vz|> + |VZ}) I

that is evidently nonlinear, since the derivative of the regularisexdorm reads
1
2,/s%+ € '

Before we can discretise the Euler-Lagrange equatiofs in (5.2)-(5.3), we have to deal with
two major problems:

Uy (s?) = (5.5)

o Implicit ExpressionsFirstly, due to the use of constancy assumptions without lin-
earisation, terms have appeared in this coupled system of partial differential equa-
tions thaimplicitly depend on the desired flow field Evidently, these terms do not
allow a direct discretisation. Therefore we have to find a suitable strategy to resolve
them.

e Local Minima. Secondly, the underlying energy functional has multiple local min-
ima, since it isnonconvex This in turn means that simple numerical methods such
as gradient descent techniquae no longer globally convergenthey get trapped
in the local minimum that is close to the initialisation. Since all local minima are per
definition a correct solution of the Euler—Lagrange equations, we have to develop a
minimisation concept that allows to find the solution that corresponds to the global
minimum or at least to a reasonable local one.

Apart from solving these two problems it would also be useful to introduce a motion
tensor equivalent for variational methods for large displacements. This notation would
allow to carry over all numerical strategies that were used before in the context of small
displacements. As we will see now, this is strongly connected to the question how the
implicit expressions in the Euler—-Lagrange equations can be resolved.

5.2.2 Hierarchical Incremental Minimisation

In order to tackle the aforementioned problems, we propose to embed the solution of the
Euler—Lagrange equations in an incremental computation based on a coarse-to-fine fixed
point iteration. This is done in three steps:

[) The Fixed Point IterationFirstly, we introduce a fixed point iteration to solve the
preceding nonlinear equations. In order to allow for a faster convergence and a bet-
ter stability than explicit schemes, we use thereby an approach that is semi-implicit
in the data and fully implicit in the smoothness term. This yields an iteration instruc-
tion that still requires to solve a coupled system of nonlinear equations — however
now in eachiteration step. For the iteration stég-1 this system is given by
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0= W, (|fexrut) = fx)]") (flxtu*h) = f(x)) fo (x+u")
oy W, ( [V Fxut ) = V)" ) (for x0T = £, (%)) foro (x+0)
+y U, ( ]Vf (x+ufth) Vf(x)‘2 ) (for (x40 = f1,(X)) foram (x+1u")
—a Ly () (5.6)
0= Wp(|fectu"™) = f(x)|") (Fx+ut™) = £(x)) fo (x+ ub)
oy U ([Vf ) = V)] ) (far (A0 ) = £ (%)) fryma (x+0b)
oy W, ( [V Fx+um ) = V)" ) (fan (et 0 = £, (%)) Frna (x+0)
—o Ly, (ub™ uf (5.7)

I) The Incremental ComputatiorSecondly, we split up the unknown flow field**

anduf™ into the already known patt® andu} and the unknown motion increment
duf anddub:
ub ™ = uf + duf, ub ™ = ub + dub. (5.8)

Sinceu} andu% are known from the previous step, only the motion increnaesit
anddu’ has to be computed in each iteration. This, however, can only be done if all
terms are resolved that implicitly depend on this motion increment. To this end, we
propose their linearisation via a first order Taylor expansion:

fx+uth) x fxtu®) + fo, (x+u") duf + fo,(x+u") dug (5.9)

for (XU & fo (x40) + foy (x405) duf + fryr, (x+0F) dub (5.10)

S (X+uk+1) ~ fm(x—i—uk) + fx1x2(x+uk) dulf + fasas (X"Hlk) dug (5.11)
Please recall that this linearisation has begentionallypostponed from the mod-
elling phase in order to allow for a correct handling of large displacements. Apart
from resolving all implicit expressions, this linearisation has another advantage:

Squared differences of tygd.(x + u*!) — f.(x)|*> with f, being eitherf, f.,
or f,, now simplify to the quadratic form

Lxuth) = £ ()|

~ A 0E) o+ fog, (b 0") duf o+ fo, (xt0b) duf — £u(x)]
Foay (xH0") duf + fog, (x+0") dug + (fo(x4+1u") = fu(x))]
= |(du*) ' Vf.(x+ub)[’

= (du*)' Vi + )V (x +ub) (du?) (5.12)
J*(Xti— u”)

2
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Here,du® = (du*,duk, 1)T denotes the spatiotemporal motion increment &hd
defines a variant of th& operator where the last component is not a temporal
derivative but a temporal difference (which is in fact a simple approximation to the
derivative). This shows that even in the casdaofe displacementsur systematic
notation based omotion and diffusion tensormsan be used. By defining the new
motions tensors for the brightness and the gradient constancy assumption as

7' = Vicorut) VT (xub) (5.13)

T = Vi (x+ut) VI (xtut) + Vi, (xub) VT (x+ub)  (5.14)
we can finally write down the partially linearised fixed point iteration step for the
motion increment/u® anddus:

~ k ~ k ~ k ~k
0 = U, (du) Ty (du®)) (Jiqg duf + Jigp dul + J153)

~k ~k ~k ~k
+y U, (Au®) T (duh)) (Joyy duf + Jopp dul + Jo15)
— a L (ul 4 duf, ub 4 dub), (5.15)

~ k ~ k ~ k ~k
0 = }Ijbl ((duk)TJI (duk)) (Jl 1o QU + Jy o du + o 23)1

nOﬁﬁhear
~k ~ K ~k ~k
+7 ¥p, ((duk)TJQ (duk)) (JQ 1o duf + Jp 9 du + Jo 23)

nonﬁhear
—a L (ub + dul, uf + aub) (5.16)

S

nonlinear

One should note that these equations are still nonlinear due to the expreBsions
Uy, and¥g. However, in contrast to the equations of the original fixed point iter-
ation, they belong to thaeonlinear case tl They offer a unique solution that can

be found by any globally convergent algorithm. This is a direct consequence of
the linearisation and the usage of strictly convex penaliser functions (regulasised
norm).

After this system has been solved with respect to the motion incremi@ngsddu?,

we can update the current overall solutigii' andu5*" and therewith the motion
tensorsJ, ¥ and J,* for both constancy assumptions. This, however, requires the
computation off, (x+u) —a compensation of the image sequence and its derivatives
by the already computed motion (current overall solution). What remains to be
solved at the next fixed point step is the obtaidéterence problem

ll) The Coarse-To-Fine Strategyhirdly, in order to tackle the problem of multiple
minima, we embed the partly linearised fixed point iteratior] in (5.15)—5.16) into
a coarse-to-fine framework. During this procedure we use representations of the
image sequencg smoothed at different scales to update the motion incremént
anddu}. Starting the iteration with a very smooth versionfahat we define ag!,
we employ successively less smoothed representatiofisrofubsequent iteration
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steps. This can for instance be achieved by convolyimgth Gaussians of decreas-

ing standard deviation. If we connect the variableot only to the iteration index

but also to the current scale of the image sequéehamly the computation of the
motion tensors changes with respect to the non-hierarchical fixed point equations in
(5.18)-[5.16). They are now given by

75 = VR x ) VT (xub), (5.17)

~k ~ ~ ~ ~

Jy = VfE(x+uh) VT (x4+u") + VI (x+u¥) VLT (x+u")  (5.18)

where f* denotes the smoothed variant of the image sequence that is used at the
current iteratiork.

In contrast to the unidirectional multigrid methods that we have used for accelerating
the solution of linear and nonlinear systems of equations in Chiapter 4, this coarse-
to-fine strategy has also a second, even more important purfiesavoidance of

local minima Since the underlying energy functional is nonconvex, the initialisation
decides to which (local) minimum the fixed point iteration converges. A hierarchical
proceeding offers hereby the advantage, that local minima with sufficiently small
spatial extent vanish at coarser scales and can thus be avoided. Two examples for
such a coarse-to-fine minimisation strategy is shown in Figure 5.1. As one can
see, the strategy may successfully find the global minimum (a) or at least avoids
sufficiently small local minima (b).

Fig. 5.1 Red: Non-hierarchical minimisationGreen: Coarse-to-fine minimisatiorBlue:
Global minimum. (a) Left: Global minimum found. (b) Right: Useful local minimum
found.

One should note that in the case of our incremental fixed point iteration only the
scale has to be refined between the different fixed point steps. The initialisation,
however, is automatically accomplished by modifying the problem (cf. step II).

Let us once again point out the goals of the three previous steps: While the coarse-to-
fine strategy can easily be identified with a unidirectional multigrid scheme that helps
to avoid local minimaduring the optimisation, the incremental computation via a fixed
point iteration is nothing else than an approximation of the original nonlinear constancy
assumptions in the data term by means sédes of linearised one#lthough the coarse-
to-fine technique works well in most of the cases, one should note that there exists no
convergence proof for it. However, there are already convergence results for a simplified
optic problem using such coarse-to-fine strategies [I.C01]
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5.3 Discretisation

In the previous section, we have proposed to minimise the nonconvex energy functional of
our prototype H by means of an incremental coarse-to-fine fixed point iteration. Thereby
at each iteration ste@ coupled system of nonlinear partial differential equations has to

be solved in order to determine the current motion increment. Let us now discuss how
this system can be discretised and how the presented coarse-to-fine framework can be
implemented. To this end, we make use of the discretisation scheme in $ectipn 3.3.1 and
introduce additionally the following abbreviations:

.
duf" = ([duf™], e A ) (0= 12), (5.19)
~ ~ ~ T

jl:;: = ([Jlfr;z]llﬂ"w [Jl:;n}Ng‘l,Nh> (l:1727 m7n:17273)7 (520)
Tim = diag((Jl,‘;:) ) (I=1,2; mn=123). (5.21)

5.3.1 The Discrete Fixed Point Step

Structure. We are now in the position to discretise the partially linearised fixed point
iteration step in[(5.15)4(5.16). The obtaineshlinearsystem of equatlons that has to be
solved at each fixed point step with respect to2hg unknownsdu anddu is then
given by

kh kh khy 7 kh kh kh khy 7 kb
( (Fl,NL(dul yduy™) Jiqy Fl,NL(dul yduy™) Ji g, (5.22)
~ kh ~ kh .
k.h kh kh ; kh kh Eh ;
FI,NL(dul yduy™) Jiy F1,NL<du1 yduy™) Ji gy

nonlinear operator

~ kh ~ kh
k.h k,h k,h kh k.h ;

Sty (FQ,NL(dul ,du ) JZ 11 F2,NL<du1 ,duy™) Jo ’1€2h>
k.h k,h k,h k,h khy 78
FQ,NL(dul ,du2 ) J2 12 FQ,NL(dul s duy™) Jo gy

nonlinear operator

(LR ) 0 o
0 L (" +dul®, ub " +dub™) dul®

N

nonlinear operator

kh kh ~ kh kh kh khy o kh
( (Fl NL (duy™, du ) J1 13 ) Yy <F2,NL(du1 ;duy™) jo 13 )
k,h k,h ok, k,h kh g khy oK
Fy (duy ™, du ) J1og FQ,NL(dul yduy™) ja2 o3

nonlinear operator nonlinear operator

Y LE( kh+du ub - dub 0 ) (u’f’h> B
Lllinlj( kh—l—dukh I2c,h+du12f,h) ul;,h

nonlinear operator rhs
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Here, the nonlinear factors, ((du’“)Tflk (du*)) and ¥y, ((du"/’)Tij (du”)) resultin
the nonlinear operators

FHE (dub®, dub®) = diag(% ([du™] [, [TE], [duth] ), (5.23)
W ([ [ T[40 ),

FEB (dub® dub®) :oliag(q/;D ([du™®] ], [55],, [du®] ), (5.24)
U, ([0 5 (B T[40 )

As we have indicated before, this system of equations has the same structure as the dis-
crete Euler-Lagrange equations of our prototypes F ando@liear case i A unique
solution exists, all terms form a single nonlinear operator and the right hand side is homo-
geneous. However, in the case of our prototype H this system of equations only describes
a small part of a complex hierarchical minimisation strategy to solve the associated Euler—
Lagrange equations. It constitutes only one out of many fixed point steps that have to be
performed within the complete incremental coarse-to-fine framework.

Coupling. In order to allow for the selection of a suitable numerical scheme in Section
[5.5, let us briefly discuss the different types of couplings that occur in the equation system
of each fixed point step. As in the nonlinear case Il, four different types of couplings are
present:

e Theexplicit point couplingetweendu® anddu?
. ~kh ~ kh
(via Fig (dul®, dug™) Jp 7y and Fyy (dup®, dub™) L5 ).

e Theimplicit point couplingbetweendu® anddu121
( via the joint argument of 'y (du;™, du5™) and Y, (dup™, duj™) ).

e Theexplicit isotropic neighbourhood couplingithin du®"* anddu’™
(via Ly (ufP +-duf®, ub ™ +dus™) ).

e Theimplicit point couplingbetweemlu{1 anddu?}
( via the joint argument of 5l (uf P +dul® ui? +dub™) ).

Therefore, also in the case of our prototype H it may be useful to consider block relaxation
techniques for solving the different equation systems (coupled point relaxation, alternat-
ing line relaxation). Which solvers are most suitable and how they can be implemented
efficiently will be discussed in Sectign 5.5.

5.3.2 The Discrete Coarse-To-Fine Fixed Point Iteration

After we have discussed the discretisation of the fixed point step, let us now turn to the
guestion how the coarse-to-fine framework can be implemented. For this purpose, the
literature offers us two different strategiesiultiresolution techniquefBA96, IMP98b]
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that downsample all relevant data and thus make use of different resolution levels and
scale-space focusing methd@$VS99] that keep the resolution unchanged but consider
the problem at different smoothness scales (similar to the original continuous idea). While
the first approach is much more efficient from a computational point of view, the second
one is easier to implement: Since the resolution is kept fixed, one does not have to care
about the aliasing problem.

Concrete Example. Evidently, we are interested in extending our real-time framework
from the previous chapter to variational methods for large displacements. Therefore, we
have to realise the coarse-to-fine strategy with the more efficiatiiresolution technique

In this context, three decisions have to be made:

[) Motion Compensation Stratedyirstly, at each resolution level, the image sequence
has to be compensated by the already computed flowdigtdandu’™" in order to
compute the new entries foi*? and.,*®. This requires anotion compensation
strategy— an algorithm that distorts an image in accordance with a given vector
field. As proposed in [MP98a, BBPWO04] this is realised byagkward registration
approach based drilinear interpolation

II) Intergrid Transfer OperatorsSecondly, both aestriction and aprolongationop-
erator has to be defined. While the restriction operator is required to transfer the
image sequenceg to coarser resolution levels, the prolongation operator is needed
for interpolating the current overall solutiari™ andu’™ back to the next finer grid.

As in the case of uni- and bidirectional multigrid methods this is accomplished by
means ofarea-based averagingndarea-based interpolatiofBWKSO05].

l11) Downsampling FactorThirdly, a downsampling factay € (0, 1) has to be chosen
that states by which facte@ach dimensiors reduced from one resolution level to the
next (the actual resolution ratio between two levels is then giveftpyin our case
we selected) from the interval [0.5,0.7]. Values from this interval are in general a
good compromise between computational efficiency (the smaller the valyetfer
faster the computation) and the quality of the minimisation (the larger the value for
n the better the results).

Relation to Warping Methods. One should note that the incorporation of the partly lin-
earised fixed point iteration into a multiresolution strategy yields the well-kneanping
technique[BAHH92, BA96, MP984a]. Warping denotes the distortion of the image se-
guence which is required for the compensation for the already computed motion. So far
this technique has only been justified onagorithmic basis In general, it was argued

that it makes sense to embed optic flow approaches for small displacements into a coarse-
to-fine framework, since large displacements become smaller at coarser levels and thus
allow for an accurate estimation with linearised model assumptions. This, of course, is
true. However, as we have seen, this warping strategy can also be derived as a hierarchi-
cal fixed point iteration for minimising the energy functional of a variational approach for
large displacements, i.e. for an energy functional based on constancy assumptions without
linearisation. This in turn, providestheoretical justificatiorof the warping technique.
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5.4 Qualitative Experiments

In the previous section we have shown by the example of our prototype H how energy
functionals for large displacements can be minimised. Let us now make use of this knowl-
edge and evaluate the estimation quality of such methods with respect to different motion
scenarios. In order to allow for a direct comparison of the achieved results to those ob-
tained by our prototypes for small displacements, the same experiments with synthetic
and real-world sequences are performed as in Chigpter 3. Thereby, we restrict ourselves to
comparisons with the advanced prototypes F and G — these approaches yielded the quali-
tatively best results in our first evaluation.

5.4.1 Synthetic Sequences

Let us begin our evaluation with experiments on synthetic image sequences. To this end,
we make use of the same structure as in Chapter 3: Starting from relatively simple global
motion patterns such as divergence and translations we increase the complexity of the
scenes step by step.

5.4.1.1 Experiment I: Globally Divergent Motion

In our first experiment we study the performance of the prototype H with respect to
globally divergent motion. This is done by the example of Yesemitesequencevithout
clouds. As one can see from the obtained results in Table 5.1, it is evidently very useful to
postpone the linearisation of the constancy assumptions to the minimisation scheme: Al-
though our prototype H relies only on spatial regularisation and thus cannot benefit from
the temporally smooth motion pattern, it still shows an estimation quality that is com-
parable to the one of our spatiotemporal prototype G. This similar performance of both
prototypes is also confirmed by the corresponding flow fields in Figuije 5.2: While the
prototype H allows a slightly better estimation of the large mountain in the foreground —
this area requires the computation of relatively large displacements (up to 5.5 pixels) — the
prototype G gives better results in the remaining regions. At the end of this section, we
will show that an extension of the prototype H to the spatiotemporal setting combines the
strength of both approaches: Thus, even average angular errors below one degree become
possible.

Tab. 5.1 Experiment |: Performance of the most accurate prototypes for synthetic sequences with
globally divergent motion. We optimised the parametes;, otemp, &, p and~y with respect to
the average angular error (AAE).

Yosemite Sequence without Clouds

| prototype | method | owpat | a [ other parameters| AAE |
F Bruhnet al. 2-D, SD 1.95 17 p=1.3 2.27°
G Papenbergt al. 3-D, SD || 1.95 7 | v=1.0,04emp=0.80 || 1.45°

| H [ Bruhn/Weickert 2-D, LD|| 0.90 | 130 | V=7.4 | 158° |
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Fig.5.2 Experiment |: Performance of the most accurate prototypes for synthetic sequences
with globally divergent motion(a) Top Left: Frame 8 of théfosemitesequencevithoutclouds of
size316 x 256 (grey-scale).(b) Top Centre: Ground truth (vector plotjc) Top Right: Ground

truth (colour plot). (d) Bottom Left: Prototype F (Bruhret al. 2-D, SD).(e) Bottom Centre:
Prototype G (Papenbegg al. 3-D, SD).(f) Bottom Right: Prototype H (Bruhn/Weickert 2-D,
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Fig.5.3 Experiment Il : Performance of the most accurate prototypes for synthetic sequences
with discontinuities, outliers and globally divergent motiga) Top Left: Frame 10 of théffice
sequence of siz200 x 200 (grey-scale variant)(b) Top Centre: Ground truth (vector plotjc)

Top Right: Ground truth (colour plot).(d) Bottom Left: Prototype F (Bruhret al. 2-D, SD).

(e) Bottom Centre: Prototype G (Papenbewgt al. 3-D, SD). (f) Bottom Right: Prototype H
(Bruhn/Weickert 2-D, LD).
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Fig.5.4 Experiment Ill : Performance of the most accurate prototypes for synthetic sequences
with discontinuities, outliers and translational motion with static backgro(a)dlop Left: Frame

150 of theNew Marblesequence of siz&12 x 384 (grey-scale variant)b) Top Centre: Ground

truth (vector plot)c) Top Right: Ground truth (colour plot)(d) Bottom Left: Prototype F (Bruhn

et al. 2-D, SD).(e) Bottom Centre: Prototype G (Papenbegg al. 3-D, SD).(f) Bottom Right:

Prototype H (Bruhn/Weickert 2-D, LD).

Fig.5.5 Experiment IV: Performance of the most accurate prototypes for synthetic sequences
with discontinuities, outliers and translational motion with dynamic background (camera motion).
(a) Top Left: Frame 10 of theStreetsequence of siz200 x 200 (grey-scale variant)(b) Top
Centre: Ground truth (vector plotjc) Top Right: Ground truth (colour plot)(d) Bottom Left:
Prototype F (Bruhret al. 2-D, SD).(e) Bottom Centre: Prototype G (Papenbesd al. 3-D, SD).

(f) Bottom Right: Prototype H (Bruhn/Weickert 2-D, LD).
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5.4.1.2 Experiment II: Discontinuities, Outliers, Globally Divergent Motion

In our second experiment we use th#ficesequence to investigate the performance of the
prototype H with respect to global divergent motion, outliers and discontinuities. Since
for this sequence the maximum displacements are in the order of 1.5 pixels, it is not sur-
prising that the obtained results shown in Tgblg 5.2 are not in favour of our prototype H.
Moreover, as we have already seen in the context of our qualitative benchmark for small
displacements, spatial regularisers at not very effective in suppressing strong temporal
aliasing artifacts and preserving discontinuities at the same time. This is also reflected in
the corresponding flow fields depicted in Figfire| 5.3. While our spatial prototypes either
suppress artifacts (prototype F) or preserve discontinuities (prototype H), the spatiotem-
poral prototype G allows to find a suitable compromise.

Tab.5.2 Experiment Il : Performance of the most accurate prototypes for synthetic sequences
with discontinuities, outliers and globally divergent motion. We optimised the paramejgrs
Tremp @, p and~y with respect to the average angular error (AAE).

Office Sequence

| prototype | method | ospar | o | other parameters| AAE |
F Bruhnet al. 2-D, SD 0.80 | 17 p=2.5 4.31°
G Papenbergt al. 3-D, SD|| 1.30 7 | 7v=2.4,0temp=0.10 || 3.26°

| H [ Bruhn/Weickert 2-D, LD|| 0.80 | 47 | 1=1.9 | 4.30° |

5.4.1.3 Experiment lll: Discontinuities, Translational Motion with Static Back-
ground

Let us now investigate the performance of our prototype H with respect to translational
motion with astatic background This is done in our third experiment by the example

of the New Marblesequence. As one can see from the obtained results in [Table 5.3, our
approach for large displacements (prototype H) yields the lowest angular error of all three
prototypes. Evidently, it is useful for this sequence to rely on constancy assumptions
without linearisation. This observation is confirmed by the computed flow fields shown

in Figure[5.3: In the case of the prototype H the displacements in the upper right corner
of both marble blocks are estimated more precisely compared to the other two prototypes.
This has a simple explanation: Since these areas are the parts of the blocks that are closest
to the camera, their motion causes the largest displacements (2.5 pixels).

Tab.5.3 Experiment Il : Performance of the most accurate prototypes for synthetic sequences
with discontinuities and translational motion with static background. We optimised the parameters
Ospats Ttemps @, p @andy with respect to the average angular error (AAE).

New Marble Sequence

| prototype | method | owpat | o | other parameters| AAE |
F Bruhnet al. 2-D, SD 0.50 | 27 p=0.1 0.93°
G Papenbergtal. 3-D,SD || 0.50 | 19 |v=1.0,0¢emp=0.10 || 0.66°

| H | Bruhn/Weickert 2-D, LD[| 0.00 | 44 | 7=0.7 | 0.60° |
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5.4.1.4 Experiment IV: Discontinuities, Outliers, Translational Motion with Mov-
ing Background

In our fourth experiment we study the estimation quality of the prototype H with respect to
translational motion in front of enoving backgroundThis is done in Tablg 5|4, where the
computed average angular errors for 8teeetsequence are listed. Once more, our proto-
type for large displacements (prototype H) gives the best result. The reason for this can be
seen from the corresponding flow fields in Figlre 5.4. Although the prototype H cannot
completely suppress the outliers — this requires once more a spatiotemporal regulariser — it
yields by far the most accurate estimation of the car. This in turn is not surprising, since as
in the previous experiment this motion is related to the largest displacements (4.5 pixels).

Tab. 5.4 Experiment IV : Performance of the most accurate prototypes for synthetic sequences
with discontinuities and translational motion with dynamic background (camera motion). We op-
timised the parameters.:, oremp, @, p andy with respect to the average angular error (AAE).

Street Sequence

| prototype | method | owat | a [ other parameters| AAE |
F Bruhnet al. 2-D, SD 0.90 10 p=0.9 4.30°
G Papenbergt al. 3-D, SD|| 1.60 11 |~+=2.1,0temp=0.10 || 3.21°

[ H | BruhnMeickert2-D,LD|| 0.80 | 187 | =160 | 3.16° |

5.4.1.5 Experiment V: Discontinuities, Translational and Divergent Motion, Vary-
ing lllumination

Our fifth experiment is dedicated to the estimation of translational and divergent motion
under varying illumination. To this end, we used thesemitesequencewith clouds.

As in the case of its variant without cloudy sky, this sequence requires the estimation of
displacements in the order of up to 5.5 pixels. Expectedly, the achieved results i Table 5.6
show the usefulness of postponing the linearisation of the constancy assumptions to the
minimisation scheme. This is also confirmed by the corresponding flow fields in Figure
[5.6. In contrast to the prototype G that already linearises the constancy assumptions in the
model, the large mountain in the foreground is estimated more precisely. This observation
is in accordance with our first experiment where the same sequence without cloudy sky
was used.

Tab. 5.5 Experiment V: Performance of the most accurate prototypes for synthetic sequences with
discontinuities, translational and divergent motion as well as varying illumination. We optimised
the parametersgpa:, otemp, 0, p @andy with respect to the average angular error (AAE).

Yosemite Sequence with Clouds

| prototype | method | owat | a [ otherparameters | AAE |
F Bruhnet al. 2-D, SD 1.60 24 p=1.4 5.74°
G Papenbergt al. 3-D, SD|| 2.10 93 | y=1050,0¢emp=0.50 || 2.78°

[ H [ Bruhn/Weickert 2-D, LD]| 0.90 | 160 | =165 [ 2.42° ]
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Fig.5.6. Experiment V: Performance of the most accurate prototypes for synthetic sequences
with discontinuities, translational and divergent motion as well as varying illuminat@nTop

Left: Frame 8 of theYosemitesequenceavith clouds of size316 x 256 (grey-scale). (b) Top
Centre: Ground truth (vector plotfc) Top Right: Ground truth (colour plot)(d) Bottom Left:
Prototype F (Bruhret al. 2-D, SD).(e) Bottom Centre: Prototype G (Papenber al. 3-D, SD).

(f) Bottom Right: Prototype H (Bruhn/Weickert 2-D, LD).

Fig.5.7 Experiment VI. Performance of the most accurate prototypes for synthetic sequences
with Gaussian nois€a) Top Left: Frame 8 of thefosemitesequencevith clouds of size316 x 256
(grey-scale). Gaussian noiseqf = 40 was added(b) Top Centre: Ground truth (vector plot)

(c) Top Right: Ground truth (colour plot)(d) Bottom Left: Prototype F (Bruhret al. 2-D, SD).

(e) Bottom Centre: Prototype G (Papenbert al. 3-D, SD). (f) Bottom Right. Prototype H
(Bruhn/Weickert 2-D, LD).
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5.4.1.6 Experiment VI: Discontinuities, Translational and Divergent Motion, Vary-
ing lllumination, Gaussian Noise

In the sixth and last experiment with synthetic image sequences we evaluate the perfor-
mance of our prototype H with respect to noise. To this end, we considered the same
noisy variants of thé&rosemitesequencavith clouds as for the corresponding experiment

for small displacements (Gaussian noise of standard deviatiea 10, 20 and40). The
obtained results for all noise levels are presented in Table 5.6. They show the high robust-
ness of our prototype H with respect to noise. However, they also show that a spatiotempo-
ral regulariser (prototype G) can even be slightly more effective in handling the corrupted
data. This is also reflected in the computed flow fieldsfpe= 40 (Figurg5.T). In contrast

to the spatiotemporal prototype G that tends to oversmooth the flow field, the prototype H
preserves the discontinuities in a better way. However, since it also adapts to noise it yields
an undesired segmentation-like result. Evidently, for optimal performance both concepts
— constancy assumptions without linearisation and spatiotemporal regularisation — have to
be combined. As we have demonstrated in [PBB] such a combination even allows to
obtain average angular errors of below five degrees for a noise with standard deviation of
o, = 40.

Tab.5.6 Experiment VI: Performance of the most accurate prototypes for synthetic sequences
with Gaussian noise. We optimised the parametggs:, otemp, &, p @and~y with respect to the
average angular error (AAE).

Yosemite Sequence with Clouds - Noise Leve}, = 0

| prototype | method | owat | o | otherparameters | AAE |
F Bruhnet al. 2-D, SD 1.60 24 p=1.4 5.74°
G Papenbergtal. 3-D, SD | 2.10 60 |~v=1050,0tcmp=0.50 || 2.78°

| H | Bruhn/Weickert 2-D, LD|| 0.90 [ 160 | 1=16.5 | 2.42° |

Yosemite Sequence with Clouds - Noise Level}, = 10

| prototype | method | owpat | « | other parameters | AAE |
F Bruhnet al. 2-D, SD 1.80 20 p=2.3 7.96°
G Papenbergtal. 3-D,SD || 3.10 | 39 |v=1050,04¢mp=0.40 || 3.95°

| H [ Bruhn/Weickert2-D,LD|| 1.45 | 71 | 7=9.0 | 413 |

Yosemite Sequence with Clouds - Noise Level, = 20

| prototype | method | owpat | « | other parameters | AAE |
F Bruhnet al. 2-D, SD 210 | 21 p=3.0 10.71°
G Papenbergtal. 3-D, SD || 3.80 | 36 |+y=1050,0¢¢mp=0.65 | 5.58°

| H [ Bruhn/Weickert 2-D, LD|| 1.45 | 61 | 7=6.0 | 5.97° |

Yosemite Sequence with Clouds - Noise Level, = 40

| prototype | method | owat | o« | other parameters | AAE |
F Bruhnet al. 2-D, SD 2.40 12 p=15.4 15.31°
G Papenbergtal. 3-D, SD || 5.00 | 25 | y=1050,04¢mp=0.70 | 8.29°

] H | Bruhn/Weickert 2-D, LD|| 2.15 | 61 | v=6.0 | 9.63° |
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5.4.2 Real-World Sequences

After we have investigated the performance of our prototype for large displacements with
respect to synthetic image sequences, let us now turn to the evaluation of its estimation
guality for real-world image data.

5.4.2.1 Experiment I: Discontinuities, Rotational Motion

In our first experiment on real-world data we address the problem of rotational motion.
This is done by the example of tiieubiksequence. As one can see from the computed
flow fields in Figurg 5.8, the estimation quality of our prototype H is between the one of
the prototypes F and G: Discontinuities at the cube and at the top of the disc are well-
preserved (even better than in the case of our prototype F), while discontinuities between
the disc and the static floor are not respected (not as good as in the case of our prototype
G). This however, is not surprising. Since the maximum displacements for this sequence
are in the order of 1.5 pixels, our prototype H can hardly benefit from the fact that it is
based on constancy assumptions in their original nonlinear form.

Fig.5.8 Experiment I: Performance of the most accurate prototypes for real-world sequences
with discontinuities and rotational motioa) Top Left: Frame 10 of th&rkubicsequence of size

256 x 240 (grey-scale).(b) Top Right: Prototype F (Bruhret al. 2-D, SD).(c) Bottom Left:
Prototype G (Papenbesrt al. 3-D, SD).(d) Bottom Right: Prototype H (Bruhn/Weickert 2-D,
LD).
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5.4.2.2 Experiment II: Discontinuities, Multiple Translational Motions, Interlacing

In our second experiment on real-world sequences we evaluate the performance of our
prototype H with respect to a classical traffic scene:Rheinhafersequence. Apart from
multiple motions and interlacing this sequence requires the estimation of the largest dis-
placements of all test scenes (up to 9 pixels per frame). Expectedly, the computed flow
fields depicted in Figurie 5.10 make the advantages of constancy assumptions without lin-
earisation explicit: While the prototypes F and G underestimate the motion of the large
white van due to the use of linearised constancy assumptions, our prototype H allows for
a correct estimation. Even the motion of the remaining cars is how estimated more ac-
curately and thus better distinguishable from the static background (they also move faster
than computed by the prototypes F and G). One should note that in contrast to the same
experiment for small displacements in Chapter 3, the colour representation of the flow
fields for F and G was adapted such that they became comparable to the one of our pro-
totype H. The full saturation is now achieved for displacements of 9 pixels (instead of for
displacements of 2 pixels).

Fig.5.9 Experiment Il : Performance of the most accurate prototypes for real-world sequences
with discontinuities, multiple translational motions and interlacia). Top Left: Frame 1130 of

the interlacedRheinhafersequence of siz€88 x 565 (grey-scale).(b) Top Right: Prototype F
(Bruhnet al. 2-D, SD).(c) Bottom Left: Prototype G (Papenbegg al. 3-D, SD).(d) Bottom

Right: Prototype H (Bruhn/Weickert 2-D, LD).
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5.4.2.3 Experimentlll: Discontinuities, Multiple Translational Motions, Occlusions,
Interlacing

In our third and last experiment we evaluate the performance of our prototype H with re-
spect to occlusions. To this end, we consider another popular traffic scertettlthger

Tor sequence. As in the previous experiment, the computed flow fields show clearly the
advantages of constancy assumptions without linearisation (figuie 5.10). In particular, the
fastest moving objects — the bus in the foreground and the car that overtakes this bus — are
estimated more precisely by our prototype H. For our prototypes F and G the correspond-
ing displacements of up to 6 pixels per frame are already too large to allow for an accurate
estimation: Parts of the bus that are relatively close to the occlusion created by the lamp
post suffer from a consequent underestimation. This tendency becomes even more explicit
in the fact that the overtaking car is almost ignored completely.

Fig.5.10 Experiment Il : Performance of the most accurate prototypes for real-world sequences
with discontinuities, multiple translational motions, occlusions, and interlac{ag).Top Left:
Frame 24 of thé&ttlinger Torsequence of siz&l2 x 512 (grey-scale)(b) Top Right: Prototype F
(Bruhnet al. 2-D, SD).(c) Bottom Left: Prototype G (Papenbegg al. 3-D, SD).(d) Bottom

Right: Prototype H (Bruhn/Weickert 2-D, LD).
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Tab.5.7. Comparison to the Literature I: Comparison between results from the literature with
100 % density and our prototypes. All data refer to ¥esemitesequence with cloudy sky.

SD = small displacements. LD = large displacements. HC = constancy assumptions on higher
derivatives. NQ-D = non-quadratic (robust) data term. NQ-S = non-quadratic smoothness term
or similar strategy (preserves discontinuities). M = multiscale strategy, warping (can handle large
displacements). S = segmentation strategy. AAE = average angular error.

Yosemite Sequence with Clouds

| technique [HC|NQ-D[NQ-S|3-D| M | S | AAE
Horn/Schunck, orig. [BEB94] - - - - - - 31.69
Singh, step 1 [BEB94] - - - - - - 15.28
Anandan [BEB94] - - - - - - 13.36
Singh, step 2 [BEB94] - - - - - - 10.4%4
Nagel [BEB94] - - v - - - 10.22
Horn/Schunck, mod. [BEB94] - - - - - - 9.78
Uraset al. [BEB94] - - - - - - 8.94
Prototype A - - v - - - 717
Liu et al. [LCR98] - - v v - - 6.85°
Prototype B - - v - - - 6.44
Prototype E - - v - - - 6.42
Prototype D - - v - - - 6.32
Prototype C - - - - 6.28

Prototype F (2-D, SD) - v v - - - 57#
Alvarezet al. [AWSO0Q] - - v - v - 5.53
Mémin/Ferez [MP98a] - v v - v - 5.38
Prototype F (3-D, SD) - v v v - - 5.18
Farnelack [Far01] v - - v - v 4.8%
Mémin/Ferez [MP98E] - v v - v - 4.69
Prototype F (3-D, LD) [BWSO05] - v v v v - 417
Wu et al. [WKCL98]| - - - v - - 3.5#
Prototype G (2-D, SD) v v v v - - 3.50
Prototype G (3-D, SD) v v v v - - 2.78
Tenget al. [TLCHO5] - v v v v - 270
Prototype H (2-D, LD) [BWO5] v v v - v - 2472
Amiaz/Kiryati [AKO54] v v v - v |V 2.0
Prototype G (3-D, LD) | [PBBT06] || v v v Ve - 1.78
Amiaz/Kiryati [AKO5D] v v v - v |V 1.73
Prototype H (3-D, LD) [BWO5] v v v v v - 1.72

5.4.3 Comparison to the Literature

Let us finally compare our results to the most accurate results from the literature. To
this end, we updated the corresponding tables folrtieemitesequencevith andwithout

clouds from Chapter|3 and added entries for the average angular errors obtained by the
spatial and spatiotemporal variant of our prototype H. Moreover, in order to allow for a
better comparison between methods for large and small displacements, we also included
results of variants of our prototypes F and G for large displacements (marked with "LD”).
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Tab. 5.8 Comparison to the Literature 1l: Comparison between results from the literature with
100 % density and our prototypes. All data refer to Wosemitesequence without cloudy sky.

SD = small displacements. LD = large displacements. HC = constancy assumptions on higher
derivatives. NQ-D = non-quadratic (robust) data term. NQ-S = non-quadratic smoothness term
(preserves discontinuities). M = multiscale strategy, warping (can handle large displacements).
S = segmentation strategy. AAE = average angular error.

Yosemite Sequence without Clouds

| technique [|HC|NQ-D[NQ-S|3-D| M | S [ AAE |
Black/Anandan [BA9G] - v v - v - 4.56
Black [Bla94] - v v v |V - 3.52
Szeliski/Coughlan [SC94] - - - v v - 243
Prototype E - - v - - - 2.65
Prototype A - - - - - - 2.64
Prototype B - - v - - - 2.6%#
Prototype D - - v - - - 2.58
Prototype C - - v - - - 257
Prototype G (2-D, SD) v v v - - - 2.30
Black/Jepson [BJ9E] - v v - v - 2.29
Prototype F (2-D, SD) - v v - - - 2.27
Middendorf [MidO3] - - v v - - 2.27
Juet al. [JBJ96] - v v - v |V 2.1¢
Bab Hadiashar/Suter [BHS9¢E] - - - - - - 2.0%
Lai/Vemuri [LVa8] - - - - - - 1.99
Mémin/Ferez [MPQO2] - v v - v |V 1.58
Prototype H (2-D, LD) [BWO5] v v v v - - 1.58
Tenget al. [TLCHO5] - v v v v - 1.52
Roth/Black [RBO5] - v v v v - 1.47
Prototype F (3-D, SD) - v v v - - 1.46
Prototype G (3-D, SD) v v v v - - 1.45
Farnelack [Far00] v - - v - v 1.40
Liu et al. [LCR98] - - v v - - 1.39°
Farnelack [Far01] v - - v - v 1.1#
Prototype F (3-D, LD) [BWSO05] - v v v |V - 1.02
Prototype G (3-D, LD) | [PBB*06] | v v v v |V - 0.98
Prototype H (3-D, LD) [BWO5] v v v v |V - 0.98

5.4.3.1 Comparison |: Yosemite with Clouds

Table[5.7 compares results obtained for Wosemitesequencevith clouds. It is evident

that our prototypes perform favourably. In particular, the spatiotemporal variant of our
prototype H and the "long displacement variant” of our prototype G yield excellent results.
Thereby, with an average angular error of £, 78e former one achieves tharrently most
accurate resulin the literature. In this context one should note that even the good results
of the approaches of Amiaz and Kiryati are related to the high accuracy of our prototypes:
These methods are based on the embedding of the spatial variant of prototype G into a
level set formulation [AKQ5&, AKOSb].
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5.4.3.2 Comparison II: Yosemite without Clouds

The comparison in Tab[e 5.8 for thédsemitesequence without clouds confirms our pre-
vious findings. With average angular errors below and arounddriants of all three
prototypes yieldnore accurate resultthan any other approach proposed in the literature
so far. This underlines once more that a systematic design of variational methods allows
to construct models that are transparent and highly accatabe same time

5.5 Solvers

Having designed some of the best performing variational techniques in the literature, let
us now discuss how these methods can be accelerated in such a way that they can be used
for time-critical applications. Evidently, this requires to combine the multiresolution tech-
nique from Sectiof 5|3 with an efficient numerical solver for the resulting nonlinear sys-
tems of equations. In the following we show that also in this case our real-time multigrid
framework from Chaptér|4 can be applied. To this end, we derive a suitable bidirectional
nonlinear multigrid method for our prototype H — a full approximation schéme [Bra77].

5.5.1 The Nonlinear Case Il

General Problem. Let us start by giving a general definition of our problem. In the
following we are interested in solvingseriesof n nonlinear equation systems given by

Al’h(Xl’h) — bl,h

N : (5.25)
An,h(xn,h> — bn,h.

where each of the equation systeims 1, .., n consists of a nonlinear operatdf® (x*")
and a right hand sidé". Thereby, each operatai*"(x") can be decomposed into

AR () = B (o) kit ok (5.26)

whereB® (x*) andc?(x*") are nonlinear operators such that for any fixéd the eval-
uated expressioB* ! (x*h) is asymmetric and positive defini2eV* " x 2 N*! matrix and
chB(x*h) is a vector of siz& N*!. Here, the number of unknowns for a certain equation
systemk is given by N#P = [2(n=k) Nnh] - wheren is a downsampling factor in the
interval (0, 1). Furthermore, one should note thegichof the nonlinear equation systems
in (5.25) has ainiquesolution (cf. Subsectign 5.2.2 step I1).

Relation to the Nonlinear Cases | and Il. Evidently, the nonlinear case lll is closely
related to nonlinear cases | and Il. In fact, each nonlinear equation system of the series of
equation systems that we consider[in (5.25) is a specific instance of our general problem
for the nonlinear cases | and Il (cf. (4]56) and (4.57)). This in turn makes the develop-
ment of efficient numerical solvers straightforwashy numerical scheme that we have
developed in the context of the nonlinear cases | and Il can also be used in the context of
our nonlinear case Il — even our bidirectional multigrid methadgekt us demonstrate this
useful relation by the example of our prototype H.
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Concrete Example. In our concrete example we are interested in solving the nonlinear
equation systems that are associated to an incremental coarse-to-fine fixed point iteration
applied to the discrete Euler—Lagrange equations of our prototype H. To this end, let us
first identify the different parts of the corresponding nonlinear equation systems i (5.22)
with those of our general problem ijn (5]25)—(8.26). This can be done as follows:

kh
F1NL(du11€h du )J1]1€1h 1NL(du]fh du )J112 (5.27)
Flk,l\}IlL(d o dukh) Ji19 FlklfflL(d e dukh) J122
" <F££L<d P Ty F (dul® dg?) J)
v k,h kh kh kh
FZNL(d u, ,du )J212 F2NL( du )J222

L (Lﬁf( +du g’h—l—dug ) 0 ) du]f’h N
0 LEP (P 4 duf? uh " +dub ™) dul"

(. AN

-~
Bk,h(xk,h) <k

~kh ~kh
( <F1NL(du]fh du ).]113 >+ <F2NL<du]1€h du )J213 )
Y ~kh

F1NL(du]fh du )j123 FzNL(dulfh du )J223

N (Lﬁf(ul +dul® ubP+dub ) 0 ) (ukh> B (O)
0 L{if{‘(u’f’h—l—dulf’h,ug’h+du§’h) u’;h 0)°

N ~- s N~
Ck,h(xk,h) bkh

As one can easily verify each of these systems belongs in fact to the nonlinear case II:

all terms are nonlinear and the right hand side is zero. However, before we can make

use of our numerical schemes for this case, we have to reformulate these equation sys-

tems in point-based notation. This allows us to make the effect of the nonlinear opera-

tors F'y (dul™, duf™) and Fyy; (dup™, duy™) and the nonlinear differential operator

LEP P duf ™ ub® +dub™) onduf®, dub®, uP* anduf™ explicit and thus to write

down the iteration instructions for our different numerical schemes. In point-based nota-

tion these nonlinear equation systems are given by
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fori=1,., NP andj = 1,.., N5 Here,[wii"], ., [W"], - and[ws""], - denote the

functions¥y, (s%),9p, (s*) andWg(s*) evaluated at pixeli, j), i.e.
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whereyDZh([zh]i )| denotes the gradient magnitude operator as defined in @Ie 3.1
Please note that these abbreviations are still nonlinear expressions.

5.5.1.1 The Inexact Lagged-Diffusivity Method

Since we are interesting in developing a bidirectional multigrid method for solving the
preceding nonlinear systems of equations, we need a suitable non-hierarchical iterative
solver. Following our strategy from the nonlinear cases | and Il, it makes sense to select
an inexact lagged diffusivity method for this purpose (cf. Subseftion|4.2.2).

Concrete Example. Let us show how such a solver can be realised for our prototype H.
To this end, we consider a Gaul3—Seidel method with frozen coefficient and coupled point
relaxation (CPR). The corresponding iteration instructions for each equation system then

read
dut™] " T MR A e
khyntl | = khym khyn k,h7 7 .
o )= (e b ) (G ) eso

] %,J 1,J
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fori =1,.., NP andj = 1,.., NEM with the matrix entries
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and right hand side
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Please note that after each iteration the frozen coefficients, i.e. the nonlinear expressions

(5.30)5.3R) have to be updated.
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5.5.1.2 Bidirectional Multigrid Methods

It is evident that the proposed frozen coefficient methodl in {5.83)4(5.33) suffers by con-
struction from the same drawbacks as its counterpart for the nonlinear cases | and Il the
weak attenuation of low error frequencies. As we have already seen in the context of
the nonlinear cases | and I, so-calliedl approximation schemg&AS) [Bra77] allow to
overcome this attenuation problem that is common to all splitting-based iterative numer-
ical solvers. By using residual equation systems to compute suitable correction steps on
coarser grids, these schemes provide a useful framework for the efficient attenuation of
all error frequencies. Thus, it is evidently desirable to develop such numerical methods
also for the nonlinear case Ill. One should note that in contrast to all previous cases these
schemes have now to be applieceathstep/level of the fixed point iteration to solve the
resulting nonlinear system of equations, i.e they are used to solethplete series of
equation systemgiven by [5.28)-{(5.29). To the best of our knowledge, this combination

of a unidirectional optimisation scheme (coarse-to-fine incremental fixed point iteration)
and a bidirectional numerical solver (full approximation scheme) has not been proposed
in the literature so far.

Concrete Example Let us now discuss how such a bidirectional numerical solver can
be realised for our prototype H. Since the underlying strategy of a full approximation
scheme has already been explained in Chapter 4, we restrict ourselves at this point to a
brief discussion of the four required components:

I) Basic Solver Firstly, we have to select a basic iterative solver. As indicated in
Subsubsectiof 5.5.1.1 we propose the use of a Gau3-Seidel method with frozen
coefficients and coupled point relaxation (CPR).

II) Intergrid Transfer OperatorsSecondly, a suitable pair of intergrid transfer operators
has to be defined. Since they have to fulfill the same requirements as in the nonlinear
case | and Il — the accuracy condition [n (4.52) and the preservation of positive
definiteness if applied channelwise to matrices — we choose once again area based
interpolation and area based averaging [BWKSO05].

[II) Coarse Grid Cell SizeThirdly, a new coarse grid cell sizé¢ has to be chosen. Also
as for all previous multigrid approaches, we decide fooa-dyadic approackvith

Nk,h Nk’h
A T e (5.39)
x1 xr2

with N2/H =[NkR /2] and NEH = [NER /2],

IV) Residual Coarse Grid Equation SysteFRinally, we have to set up the thmonlin-
ear residual equation systefar the coarse grid. As we have already discussed in
the nonlinear cases | and I, the discretisation coarse grid approximation approach
(DCA) is a reasonable strategy to create a useful coarse grid representation of our
nonlinear operatod®®(x*®). Using this approach, we obtain the following coarse
grid equation system:
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In order to speed up the computation even further we implemented a full multigrid variant
of our full approximation scheme. This in turn means that we are actually combining
three different multigrid ideas: (i) the incremental coarse-to-fine fixed point iteration to
avoid local minima, (ii) at each step of this iteration a unidirectional multigrid method for
a hierarchical initialisation and (iii) at each level of this unidirectional multigrid method a
bidirectional multigrid method as solver (for attenuating all error frequencies efficiently).

This example shows that our systematic framework for the design of efficient multigrid
schemes from Chaptpf 4 can also be extended to variational methods for large displace-
ments. To this end, it has to be combined with an incremental coarse-to-fine fixed point
iteration — a unidirectional multigrid strategy that avoids local minima during the minimi-
sation. The obtained numerical method offers two advantages: (i) It allows to maintain the
systematic and compact notation based on motion and diffusion tensors. (ii) It permits to
adapt all numerical concepts that we have proposed in the context of the nonlinear cases |
and Il. This in turn means that we have actually established a complete framework for the
design of efficient numerical schemes for variational optic flow methods in general.

5.5.2 Numerical Prototypes

As in the case of small displacements, we are interested in evaluating the efficiency of
different numerical methods for our prototype H. To this end, we have selected the same
numerical techniques as in our comparison in Segtioh 4.3: Apart from the proposed full
approximation scheme (see Taplg5.9), we considered one unidirectional multigrid method
(also based on our multigrid framework), one basic and one advanced non-hierarchical
solver (one Gaul3-Seidel and one SOR based technique), and two techniques that make
use of the elliptic minimisation strategy (one explicit and one semi-implicit approach;
the latter also based on SOR). In order to allow for a fair comparison, all solvers have
been embedded in the same incremental coarse-to-fine fixed point iteration as our full
approximation scheme.

Tab.5.9 Implemented bidirectional multigrid schemes for the different variational models.
MG = multigrid. WARP = incremental coarse-to-fine fixed point iteration (warping). FMG = full
multigrid. W = W-cycle. Cyc = multigrid cycles per level. GS = Gaul3—Seidel. CPR = coupled
point relaxation. ALR = alternating line relaxation. Pre/Post = pre- and postsmoothing relaxation
iterations. L = linear. NL = nonlinear.

| Case] Model MG Solver | Cyc| Basic SolvetPre/Pos}
L A - Homogeneous FMG-W 1 GS-CPR 1-1
B - Image-Driven Isotropic FMG-W 2 GS-CPR 2-2

C - Image-Driven Anisotropid FMG-W 4 GS-ALR 1-1 -
NL | D - Flow-Driven Isotropic FAS-FMG-W 2 GS-CPR | 2-2
E - Flow-Driven Anisotropic FAS-FMG-W 4 GS-ALR 1-1
NL 11 F - Bruhnet al. 2-D, SD FAS-FMG-W 2 GS-CPR 2-2
G - Papenbergt al. 3-D, SD FAS-FMG-W 2 GS-CPR 2-2

| NLIII || H- Bruhn/Weickert 2-D, LD | WARP-FAS-FMG-W | 2 | GS-CPR | 3-3 |
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5.6 Numerical Experiments

After we have introduced our numerical prototypes let us start with our experimental eval-
uation. Also this time, all computations are carried out on a standard desktop PC with a
3.06 GHz Intel Pentium 4 CPU executing C / C++ code.

5.6.1 Prototypes for Large Displacements

In order to evaluate the efficiency of the different numerical schemes for our prototype H,
we selected a downsampled variant (26@20) of theRheinhafersequence. As in the

case of small displacements, a relative errar,of = 1072 was used as stopping criterion.
However, one should note that this relative error now not only refers to a single nonlinear
equation system. It refers to a whole series of systems that results from the proposed
hierarchical minimisation via the incremental coarse-to-fine fixed point iteration. This in
turn means that errors on coarser levels influence the results on finer levels such that errors
can propagate.

The Nonlinear Case Ill. Let us now take a look at the obtained results in Table]5.10.
They clearly show that even in the case of such highly accurate optic flow methods as
our prototype H, frame rates can be achieved that are close to real-time (3 frames per
second fore,;, = 1072; up to 7 frames per second with slightly reduced accuracy re-
guirements[[BWO05]). Since apart from the incremental coarse-to-fine fixed point iteration
the same numerical schemes are used as for the nonlinear case ll, it is not surprising that
the corresponding speedups are similar to the ones obtained for our advanced prototypes
F and G (cf. Sectiof 4/4). As one can see, also this time our full multigrid implemen-
tation is the most efficient solver: While it outperforms the basic Gaul3-Seidel method
and its unidirectional multigrid variant by two orders of magnitude, it is even almost four
orders of magnitude more efficient than the stabilised explicit scheme. With respect to
both techniques based on the SOR method — the inexact Lagged-Diffusivity solver and the

Tab.5.10 Performance benchmark for the 2-D variant of the method of Bruhn/Weickert [BWO05].
The benchmark was performed on a standard desktop computer with 3.06 GHz Pentium 4 CPU.
Run times refer to the computation of a single flow field from the downsanfRleinhaferse-
qguence (sizé60 x 120). FPS = frames per second.

Nonlinear Case llI: Prototype H (Bruhn/Weickert 2-D)
Separately robustified data term with additional gradient constancy (without linearisation)
+ flow-driven isotropic regularisation
0 =0.0,«=300,v=10,7=0.50,ep, = 107!, ep, = 1071, e = 1073

| lterations | Time[s] | FPS[s™'] | Speedup

] Solver ateachwarping level

Mod. Explicit Schemex = 0.00025) 174217| 1906.546| 0.001 1
Gaul3-Seidel (CPR) 9798 74.816| 0.013 25
Cascadic Gaul3-Seidel (CPR) 1646 16.190| 0.062 118
Semi-Implicit Schemer( = 10000) + SOR 25/5 0.664 1.506 2868
Incomplete Lagged SORu(= 1.98) 25/5 0.617 1.621 3089
FAS - Full Multigrid 1 0.349 2.861 5454
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semi-implicit scheme — we can observe a speedup of a factor two. This is also accordance
with our benchmarks for the nonlinear case Il. Even the superiority of the elliptic strategy
becomes evident one more time: The semi-implicit scheme performs best if the time step
sizer is chosen very large. This in turn means that it approximates de facto the inexact
Lagged-Diffusivity method, i.e. the parabolic strategy comes down to the elliptic one.

Quality. In Figure[5.1] the computed flow field for our prototype H is presented and
compared to the one of our prototype G. Evidently, both flow fields looks fairly realistic.
However, one can clearly see the advantages of our prototype H by looking at two details:
() the decreasing displacements of the van in the foreground with increasing distance to
the camera and (ii) cars at left and right side of the background that are not visible in
the estimation of our prototype G. Please note that this highly accurate flow field is just
one example of the quality of the proposed near real-time implementation. Of course, all
results presented in our qualitative experiments for large displacements can be reproduced
with our full multigrid method.

Fig.5.11 (a) Top Left: Frame 1130 of th&kheinhafersequence by Nagel (resized 160 x
120). (b) Top Right: Frame 1131.(c) Bottom Left: Computed flow field by our full multigrid
implementation for the prototype G (Papenbetgl. 3-D, SD). Computing time: 121 milliseconds.
(d) Bottom Right: Computed flow field by our full multigrid implementation for the prototype H
(Bruhn/Weickert 2-D, LD). Computing time: 349 milliseconds.
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5.7 Summary

In this chapter we completed our work on the accurate modelling and the efficient minimi-
sation of variational optic flow methods by discussing theoretical and numerical aspects
of approaches that are suitable farge displacements

Starting point of our efforts was the introduction ohavel variational approacltthat
served as eighth prototype for our qualitative and numerical studies: the high accuracy
method of Bruhn and Weickert. By this example we demonstrated that the problem of
large displacements can be tackled, if the linearisation of the constancy assumptions is
postponedrom the modelling phase to the optimisation scheme. Then, instead of com-
promising the continuous model and therewith the estimation quality, the linearisation may
even be helpful to speed up the computation.

In this context, we also gave a theoretical justification of the warping technique that was
motivated so far only on an algorithmic basis: We showed that this method can be derived
as an incremental coarse-to-fine fixed point iteration that is employed to minimise energy
functionals of variational methods based on constancy assumptitdmnsutlinearisation.

This finding also allowed us to extend our framework based on motion and diffusion ten-
sors to the case of large displacements.

In the experimental evaluation of the estimation quality, all these efforts were rewarded
by excellent results: Our prototype not only proved to be more accurate than our previous
methods with respect to the estimation of large displacements, it even yielded the currently
most accurate results of all methods presented in the literature so far. This demonstrated
once more that performance and deeper theoretical understanding are not contradictive:
They are nothing else but two sides of the same medal.

Finally, we also extended our framework for the design of efficient multigrid methods
to the case of large displacements. Thereby we exploited the fact that the proposed in-
cremental coarse-to-fine fixed point iteration required the solution of nonlinear systems
of equations that have the same structure as those in Chapter 4. This in turn allowed us
to reuse all numerical concepts for nonlinear methods that we had already discussed so
that the development of a suitable bidirectional multigrid method for our new prototype
became straightforward.

As in the case of small displacements, our efficiency benchmarks showed the supe-
riority of the presented framework: With speedups of two to four orders of magnitude
compared to standard basic solvers and unidirectional multigrid schemes, our implemen-
tation yielded once more the best results. Thereby real-time near frame rates of up to three
frames per second for sequences of dige x 120 demonstrated that there is no reason
to refrain from accurate optic flow techniques if a fast performance is required: If highly
efficient numerical schemes are used one can have both advantages at the same time.
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6.1 Summary

The main topic of this thesis was to introduce a systematic approach for the accurate
design and the efficient implementation of variational optic flow methods. This was done
successively in four steps:

Accurate Modelling for Small Displacements

In Chaptef P we investigated the modelling of convex variational optic flow methods for
small displacements. To this end, we reviewed various established concepts for designing
both the data and the smoothness term. Apart from discussing existing concepts we also
introducedseveral novel ideathat addressed important problems in the field of motion es-
timation such as varying illumination, non-motion-invariant image features and corrupted
data due to noise and outliers. Moreover, we presentggstematic notatiofor varia-

tional optic flow methods based on motion and diffusion tensors. This notation offered us
three advantages: (i) It allowed for a compact representation of the essential properties of
the underlying optic flow methods, (ii) it simplified the construction and implementation

of novel approaches in Chapfeér 3, and (iii) it was the key to a successful design of efficient
numerical schemes (as shown in Chapter 4[and 5). Thus, together with our presentation
and evaluation of the different concepts, we providegeaeral toolkitfor the systematic
construction of variational optic flow methods for small displacements.

Design and Comparison of Suitable Prototypes

In Chaptef B we made use of our toolkit from Chapier 2 and presented seven variational
approaches that served as prototypes for our qualitative and numerical studies. To this
end, we considered one approach for each of the five regularisation strategies proposed in
[WSO01a] — among them the popular methods of Horn and Schunck |[HS81] and Nagel and
Enkelmann{[NE86]. Moreover, we developeab novel techniqueas prototypes for the

class of advanced variational methods: the noise robust approach of &rahrand the
illumination robust optic flow method of Papenbeigal. Comparisons to state-of-the-art
methods from the literature showed that these advanced prototypes not only yield excellent
results, they evermompeted successfullyith methods that were explicitly constructed

for large displacements. In order to compute the unique minimiser of all seven energy
functionals we proposed to follow an elliptic strategy and solve the associated Euler—
Lagrange equations. As a useful byproduct of the motion and diffusion tensor notation, we
thereby obtained &@xonomyfor variational optic flow approaches. This taxonomy allowed

us to focus our numerical efforts on three representative classes of methods: approaches
with (i) linear terms only, (ii) linear and nonlinear terms, and (iii) nonlinear terms only.

169
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Design and Comparison of Efficient Numerical Schemes

In Chapterl # we investigated efficient numerical methods for the solution of this three
different classes of linear and nonlinear equations systems. Our main focus was thereby
the development of bidirectional multigrid schemes that are among the fastest numeri-
cal methods for fulfilling this task. In this context we not only derived efficient numerical
schemes for all our prototypes, we even succeeded to establsh@ete multigrid frame-

work for variational optic flow methods. This framework that is based on the diffusion and
motion tensor notation as well as the discretisation coarse grid approximation approach
(DCA) [BHMOQ] allowed the systematic construction of efficient hierarchical solvers for

all variational methods that were designed in accordance with our systematic toolkit from
Chaptef . Performance benchmarks for image sequences dfisize 120 showed the
efficiency of the developed hierarchical methods: With frame rates of up to 63 frames per
second, they allowed for thigst time in the literatureio compute variational optic flow

in real-time These frame rates correspond to significant speedups of two to four order
of magnitude compared to standard iterative solvers such as the Gaul3—Seidel method and
stabilised explicit schemes.

Extension to Large Displacements

In chaptef b we extended our framework for the accurate modelling and the efficient min-
imisation of variational optic flow methods to the case of large displacements. To this end,
we lifted the constraint with respect to the strict design of convex energy functionals and
introduced ahird novel (nonconvex) approachhe high accuracy method of Bruhn and
Weickert. Comparisons to state-of-the-art methods from the literature showed the excel-
lent performance of this prototype: It yielded results that waoge accurate than those

of any other technigugresented in the literature so far. Main reasons for this perfor-
mance was our strategy to postpone the linearisation of all constancy assumptions to the
optimisation scheme and to use an incremental coarse-to-fine fixed point iteration for the
minimisation of the resulting nonconvex energy functional. In this context, we also suc-
ceeded tqustify the well-known warping method theoreticalyat was only motivated on

an experimental basis so far. We demonstrated that it can be naturally derived as a numeri-
cal approximation strategy for solving the Euler—Lagrange equations of energy functionals
with constancy assumptions in their original nonlinear from.

Apart from designing the currently most precise optic flow method, we also showed how
to extended our motion and diffusion tensor notation to the case of large displacements.
Thereby we saw that each of the nonlinear equation systems that is obtained by discretis-
ing the incremental coarse-to-fine fixed iterations can be efficiently solved by means of
the same multigrid framework that we have established in Chapter 4. Performance bench-
marks for our prototype for sequences sequences ofligizex 120 showed the same
efficiency of our multigrid schemes as in the case of small displacements: With up to 3
frames per secondear real-timeframe rates were achieved for such high quality optic
flow methods for the first time in the literature. Thereby once more significant speedups
of two to four order of magnitude compared to standard iterative solvers were achieved.

With the work that was done in this thesis we have demonstratechitlatquality op-
tic flow computation and real-time performance are not opposing worldey can be
combined if accurate modelling and efficient numerics go hand in hand.
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6.2 Future Work

Although the proposed framework allows the construction of very fast and highly accurate
optic flow techniques, there still remains a lot of things that can be done. In the following
we will sketch some of the most promising ideas:

Modelling Ideas

Let us start with three aspects that concern an improved modelling or the integration of
additional concepts into the existing framework.

e OcclusionsOne important aspect that was excluded from our modelling framework
from Chaptef R is theorrect handling of occlusiondn this context one may think
of a symmetrical approach that determines the forward and backward displacement
field at the same time. In JADPS02] such a method is presented: It couples the
estimation in both directions by an additional term that penalises deviations from
bijectivity. Whether such a hard constraint makes sense or not is not clear. However,
methods that integrate the occlusion handling directly into the estimation process
are most likely to give better result than approaches that postpone this task to a
postprocessing step. Therefore, the investigation of a suitable integration of the
occlusion handling is one of the most important tasks.

e Problem Specific Regulariserdinother interesting aspect that exceeds our current
modelling framework is the use of approaches that include physics in the regulariser.
In particular if the expected type of motion is non-rigid, such types of approaches
may be very useful. Typical fields of applications are the estimation of motion
in fluid dynamics[[CMP02] and meteorology [KS03] as well as the registration of
medical images [Mod04]. In this context, one should note that such non-rigid regu-
larisers may also lead to an explicit point coupling via the smoothness term. This in
turn requires a non-trivial extension of our taxonomy for Euler—Lagrange equations
in Chaptef # and the development of modified numerical schemes.

e Motion SegmentationAnother interesting idea is thr@ombination of segmentation
and optic flow In this context level set methods have become more and more pop-
ular [CS05| AKO54, AKO5b]. The main idea is thereby to determine the number of
regions and the corresponding flow fields at the same time. Apart from the perfect
preservation of motion discontinuities at regions boundaries, such a procedure also
allows for a compact representation of the image sequence. This in turn can be ex-
ploited by subsequent tasks such as video compression and video indexing. A first
own approach that gives impressive results with respect to standard test sequences
will be presented in [BBWGO6]. The development of efficient numerical solvers for
such combined techniques, however, is still an open task.

Numerical Ideas

Apart from the development of suitable bidirectional multigrid methods for the previous
three modelling concepts, there are also three general numerical ideas that may be worth
being investigated.
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¢ Iterant Recombination Firstly, in order to improve the performance of our bidi-
rectional multigrid method even further, one may thinkefombining results from
previous iterationdBM95]. In particular, if the representation of the coarse grid
operator is poor, such a strategy is known to be useful. Promising results in the
context of variational optic flow methods have been recently presented in [KCRO5].
However, these results were restricted to simple techniques with image-driven reg-
ularisation (linear case).

e Multilevel Nonlinear Methods.Secondly, one may consider the implementation
of multilevel nonlinear methods (MNM). Such nonlinear multigrid techniques that
have been recently proposed|in [YDO06] combine the advantages of full approxima-
tion schemes (FAS) that are based on nonlinear correction steps (c.f. JRapter 4)
and Newton-Raphson methods that perform linear updates. Thereby the nonlinear
equation system is split into a strongly and a weakly nonlinear part. Since each of
the parts is processed by the corresponding basic method — FAS for the nonlinear
and Newton-Raphson for the linear part — almost all nonlinear equation systems can
be solved more efficiently.

e Direct Parallelisation. Thirdly, one may think of airect parallelisationof the
proposed multigrid schemes. In contrast to domain decomposition techniques that
we investigated in[[KSBW04, KSBW05] as suitable parallelisation strategies for
weakly connected high latency networks (such as Ethernet), direct parallelisation
approaches are more suitable for heavily connected low latency networks. This is
due to the fact, that such direct approaches distribute the computation itself instead
of decomposing the problem and thus require a much smaller computational over-
head at the expense of higher communication costs. It is evident that in the case of
heavily connected low latency networks such an approach allows higher speedups
for similar number of CPUs than domain decomposition strategies. Recent results
for a direct parallelisation of the method of Horn and Schunck presented in [KCRO05]
confirm the usefulness of the latter approach.

Extension to Other Correspondence Problems

Motion estimation is not the only important correspondence problem in computer vision.
Stereo reconstruction and medical image registration are other widely researched repre-
sentatives of this type of problems. Evidently, it seems desirable to extend our modelling
and multigrid framework also to these fields of application. However, at least in the case
of stereo reconstruction this is a non-trivial task.

e Stereo Reconstructionhe accurate estimation of displacement fields from stereo
camera systems requires the integration of the epipolar constraint [Fau93]. Since
this constraint limits the search space of the underlying correspondence problem to
certain lines (epipolar lines), the number of unknowns is reduced from two to one
per pixels. However, in return, the structure of the equations gets significantly more
complex. Although we already presented a first successful approach in [SBWO05],
the design of suitable methods is still not straightforward: Both the modelling and
the numerical implementation require significant adaptations.
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All these ideas give just a small impression on the realm of things that can still be done.
However, one thing is for surefhere will always be a need for fast and accurate algo-
rithms in computer vision.
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Notation

f grey value image or image sequence

f=(fay, f(m))T multi-channel image or image sequence

x1,To spatial coordinates in an image or image sequence
T3 temporal Coordinate in an image sequence

X coordinate vector, i.e., eithar= (x, z2) in images

orx' = (z1,22,23) " inimage sequences
t diffusion time in diffusion—reaction systems

09,03 rectangular image domaif, C R? for images{2; C R? x R}
for image sequences

12 size of the image domai

Oa abbreviation for

ap abbreviation forZ}

Ape abbreviation for2-e

Vaa spatial gradient ofi, i.e., (0., a, 0z,a) "

Vsa spatiotemporal gradient af i.e., (0, a, 0z,a, 0zya) "

Asa spatial Laplacian of, i.e.,82 a + 02,a

Asa spatiotemporal Laplacian af i.e.,07 a + 02,a + 82,a

Hoa spatial Hessian of, i.e., (02, a, 85, 05,a) ", (9, 0rya,0%,a) )

div (a) 0z,a1 + Og,a2 in the spatial case an@, a; + 0y,a2 + Oz,a3 in the

spatiotemporal case

|a] magnitude of vectoa

U1, U optic flow component irc; andx, direction

u = (ug,uz, 1) optic flow vector, see also next entry

u = (U, ..o, Up) | evolving image in the case of vector-valued diffusion filtering
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DFq
M(DF f,u)

S(Vf,Vu)

Vi

i

Ospat
Otemp
Ky f

On

Notation

set of derivatives ofi with orderk

data term

smoothness term

weight of the smoothness term

weight of constancy assumption

weight of sequence channgl

gaussian kernel with standard deviation
spatial standard deviation of Gaussian kernel
temporal standard deviation of Gaussian kernel
convolution of f with K,

standard deviation of Gaussian noise

motion tensor3 x 3 matrix

diffusion tensor: eithe2 x 2 matrix in the spatial 0B x 3 matrix in
the spatiotemporal case

eigenvalues of a x n matrix

eigenvectors of & x n matrix

rank of matrixA

entry of matrixA at position(z, j)

matrix processed by nonlinear diffusion after time

diffusivity

small regularisation parameter for the data and the smoothness term

nonquadratic penaliser of the data and the smoothness term
derivatives of' (s?) andWg(s?) with respect tos?

linear differential operator

nonlinear differential operator

grid cell size in direction of dimensian

grid cell size vectoh = (h,,, hs,)" in the spatial case
andh = (hg,, hsy, hey) | in the spatiotemporal case
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Np number of grid cells in direction of dimensidnf discretised with
grid cell sizeh

Nh total number of grid cells if discretised with grid cell siae

a®, abk, Ab expressiom, a and A discretised with grid cell sizh

[aP] iy [aP] i [AP] .; expressiom, a andA for cell (i,j) discretised with grid cell siza

(WP i evaluated expression 8fp, (s?) at pixel (i, j)

(Wb i evaluated expression &f;(s?) at pixel (4, 5)

diaglah ") diagonal matrix with entries of vecta as main diagonal

Lk discrete linear differential operator

L discrete nonlinear differential operator

2y discrete nonlinear operator derived from nonquadratic data term

Ab linear operator (system matrix)

Ab(xh) nonlinear operator

xh vector of unknowns

bh right hand side

Db diagonal part of a matrix

Uh strictly upper diagonal of a matrix

Lk strictly lower diagonal of a matrix

N(i,7) set of neighbours of celt;, ;)

N (i, 7)] number of neighbours of celt, ;)

Ni(i,7) set of neighbours of cell;, j) in direction of dimensior

N, (i, 4) set of neighbours of celli, j) in direction of dimensiori that have
still to be processed

Nt (i, j) set of neighbours of celli, j) in direction of dimensiori that have
already been processed

B set of cells (used in block relaxation algorithm)

x‘é) vector containing only those entriesxt that are in the Selfy

A%) 5 matrix with those entries ofi® that relate the unknowns in the sets

B; andBj
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Notation

overrelaxation parameter for the SOR method
coarse grid cell size in direction of dimensibn

coarse grid cell size vect®l = (H,,, H,,) " in the spatial case
andH = (H,,, H,,, H,,)" in the spatiotemporal case

prolongation operator

restriction operator

smallest integer numbeérwith b > «a
approximative solution ok
residual bh — Abgh

error xP — xh

number of presmoothing iterations (bidirectional multigrid)
number of postsmoothing iterations (bidirectional multigrid)
motion increment in;; andxs direction for fixed point step

data term based on constancy assumptions without linearisation
motion tensor for large displacemengsx 3 matrix

downsampling factor in the intervé, 1)

time step size in parabolic approaches



2-D

3-D

ALR

CLG

CPR

DCA

DFG

FAS

FMG

GCA

LD

MNM

OFC

OLS

PCA

PDE

RGB

SD

SOR

TV

YUV

Abbreviations

spatial method

spatiotemporal method

average angular error

alternating line relaxation

combined local global

coupled point relaxation
discretisation coarse grid approximation
Deutsche Forschungsgemeinschaft
full approximation scheme

full multigrid

Galerkin coarse grid approximation
large displacements

multilevel nonlinear methods

optic flow constraint

ordinary least squares fit

problem based coarse grid approximation

partial differential equation

color space in terms of red, green, and blue

small displacements
successive overrelaxation

total variation

color space in terms of luminance and chrominance
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