
Realtime Ray Tracing

on current CPU Architectures

Carsten Benthin
Computer Graphics Group

Saarland University
66123 Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

S
A

R
A V I E N

S
I

S

U
N

I V
E R S I T

A
S

Betreuender Hochschullehrer / Supervisor:
Prof. Dr.-Ing. Philipp Slusallek
Universität des Saarlandes, Saarbrücken, Germany

Gutachter / Reviewers:
Prof. Dr.-Ing. Philipp Slusallek
Universität des Saarlandes, Saarbrücken, Germany

Prof. Dr. rer. nat. Hans-Peter Seidel
MPI Informatik, Saarbrücken, Germany

Research Assistant Professor Steven G. Parker
University of Utah, Salt Lake City, UT, USA

Dekan / Dean:
Prof. Dr. rer. nat. Jörg Eschmeier
Universität des Saarlandes, Saarbrücken, Germany

Eingereicht am / Thesis submitted:

30. Januar 2006 / Jan 30st, 2006

Carsten Benthin
Lehrstuhl für Computergraphik, Geb. 36.1/E14
Im Stadtwald, 66123 Saarbrücken
Germany
benthin@graphics.cs.uni-sb.de

iii

Abstract

In computer graphics, ray tracing has become a powerful tool for generating
realistically looking images. Even though ray tracing offers high flexibility,
a logarithmic scalability in scene complexity, and is known to be efficiently
parallelizable, its demand for compute power has in the past lead to its
limitation to high-quality off-line rendering.

This thesis focuses on the question of how realtime ray tracing can be re-
alized on current processor architectures. To this end, it provides a detailed
analysis of the weaknesses and strengths of current processor architectures,
for the purpose of allowing for highly optimized implementation. The com-
bination of processor-specific optimizations with algorithms that exploit the
coherence of ray tracing, makes it possible to achieve realtime performance
on a single CPU.

Besides the optimization of the ray tracing algorithm itself, this thesis
focuses on the efficient building of spatial index structures. By building
these structures from scratch for every frame, interactive ray tracing of fully
dynamic scenes becomes possible. Moreover, a parallelization framework for
ray tracing is discussed that efficiently exploits the compute power of a cluster
of commodity PCs. Finally, a global illumination algorithm is proposed that
efficiently combines optimized ray tracing and the parallelization framework.
The combination makes it possible to compute complete global illumination
at interactive frame rates.

iv

Kurzfassung

In der Computer-Graphik hat sich Ray-Tracing längst als wichtiges Werkzeug
zur realistischen Bildsynthese etabliert. Entscheidend dazu beigetragen haben
dessen Flexibilität und logarithmische Skalierung in der Szenengröße, sowie
die effiziente Parallelisierbarkeit. Aufgrund der hohen Anforderung an Rechen-
kapazität war die Verwendung bisher auf den qualitativ hochwertigen, aber
nicht interaktiven Bereich der realistischen Bildsynthese beschränkt.

Diese Dissertation beschäftigt sich mit der Frage, wie die Geschwindigkeit
von Ray-Tracing auf heutigen Prozessorarchitekturen derart gesteigert wer-
den kann, dass es die Bildsynthese in Echtzeit ermöglicht. Dazu präsen-
tiert die vorliegende Arbeit eine genaue Analyse der Stärken und Schwächen
der heutigen Prozessorarchitekturen, um die benötigten Algorithmen ent-
sprechend zu optimieren. Darauf aufbauend werden Algorithmen vorgestellt,
die es im besonderen Maße erlauben, Kohärenz innerhalb des Ray-Tracing
Verfahrens effizient auszunutzen. Diese Kombination von kohärenz-ausnutzen-
den Algorithmen mit einer prozessoroptimierten Implementierung ermöglicht
sogar die interaktive Bildsynthese bei Ausnutzung der Rechenkapazität eines
einzelnen Prozessors.

Darüber hinaus präsentiert die vorliegende Arbeit einen neuen Algorith-
mus, der die Zeit für den Aufbau der für das Ray-Tracing benötigten räum-
lichen Beschleunigungsdatenstrukturen erheblich verkürzt. Der beschleu-
nigte Aufbau erlaubt sogar das interaktive Ray-Tracing von vollständig dy-
namischen Szenen. Daneben wird ein Parallelisierungsystem für Ray-Tracing
vorgestellt, welches die Rechenkapazität eines Netzwerkes von Standardrech-
nern effizient kombiniert, um sogar Bildsynthese in Echtzeit zu erreichen.
Abschließend wird ein Verfahren zur physikalisch korrekten Beleuchtungssim-
ulation beschrieben, welches bereits vorgestellte Techniken wie optimiertes
Ray-Tracing und effiziente Parallelisierung verbindet. Diese Kombination
ermöglicht es letztendlich die physikalisch korrekte Beleuchtung mehrmals
pro Sekunde komplett neu zu berechnen.

v

Zusammenfassung

In der Computer-Graphik hat sich Ray-Tracing längst als wichtiges Werkzeug
zur realistischen Bildsynthese etabliert. Entscheidend dazu beigetragen haben
die Flexibilität und logarithmische Skalierung in der Szenengröße sowie die
effiziente Parallelisierbarkeit des Ray-Tracing Verfahrens an sich. Aufgrund
der langen Laufzeit und der hohen Anfordung an Rechenkapazität war die
Verwendung von Ray-Tracing bisher auf den qualitativ hochwertigen, aber
nicht interaktiven Bereich der realistischen Bildsynthese beschränkt.

Diese Dissertation beschäftigt sich mit der Frage, wie die Geschwindigkeit
von Ray-Tracing derart gesteigert werden kann, dass Ray-Tracing auch für
die interaktive Bildsynthese bzw. die Bildsynthese in Echtzeit geeignet ist.
Als ersten Schritt dazu präsentiert die vorliegende Arbeit eine genaue Anal-
yse der heutigen Prozessorarchitekturen, die die zugrundeliegende Hardware-
Plattform bilden. Dabei werden deren Stärken und Schwächen detailliert
aufgezeigt und daraus abgeleitet Implementierungs- und Optimierungsricht-
linien vorgestellt. Diese Richtlinien erlauben es, ineffizienten Code bei der
Implementierung des Ray-Tracing Verfahrens zu vermeiden.

Einer der Hauptschwerpunkte der vorliegenden Disseration liegt auf der
Entwicklung von Algorithmen, die es erlauben Kohärenz innerhalb des Ray-
Tracing Verfahrens effizient auszunutzen. Gerade die Anwendung von Oper-
ationen auf kohärente Strahlbündel anstatt auf einzelne Strahlen ermöglicht
eine erhebliche Steigerung der Geschwindigkeit von Ray-Tracing. Dies wird
detailliert an den zwei fundamentalen Algorithmen des Ray-Tracing Ver-
fahrens, der Traversierung von Strahlen durch eine räumliche Beschleuni-
gungsdatenstruktur und dem Schnittpunkttest zwischen Strahl und geome-
trischem Primitive aufgezeigt. Beim Schnittpunkttest wird neben der Unter-
stützung für Dreiecke ein besonderes Augenmerk auf die effiziente Unter-
stützung von Freiformflächen gelegt. Im Gegensatz zur Beschreibung einer
Szene mittels Dreiecken erlaubt die Beschreibung mittels Freiformflächen
eine viel kompaktere und genauere Repräsentation. Allerdings gestaltet sich
der benötigte Schnittpunkttest ungleich aufwendiger. Diese Arbeit stellt
dazu verschiedene Algorithmen vor, die je nach Anwendungsgebiet und Ge-
nauigkeitsanforderungen unterschiedlich eingesetzt werden können. Die Kom-
bination kohärenz-ausnutzender Algorithmen zur Traversierung und Schnitt-
punktberechnung mit einer effizienten und prozessornahen Implementierung
ermöglicht sogar die interaktive Bildsynthese bei Ausnutzung der Rechen-
kapazität eines einzelnen Prozessors.

Neben der Optimierung des Ray-Tracing Verfahrens an sich, stellt diese
Dissertation ein Algorithmus vor, um die für Ray-Tracing benötigten räum-
lichen Beschleunigungsdatenstrukturen effizient aufzubauen. Dabei wird auf

vi

dieselben Optimierungsstrategien zurückgegriffen, die bereits bei der Be-
schleunigung des Ray-Tracing Verfahrens zum Tragen kommen. Der op-
timierte Aufbaualgorithmus erlaubt sogar das interaktive Ray-Tracing von
vollständig dynamischen Szenen, indem die Beschleunigungsdatenstrukturen
mehrmals pro Sekunde komplett neu aufgebaut werden.

Weiterhin wird ein System zur Parallelisierung des Ray-Tracing Ver-
fahrens präsentiert, das die Rechenkapazität eines Netzwerkes von Standard-
rechnern effizient kombiniert. Dabei wird das System mit dem Ziel entwickelt,
die Nachteile einer solchen verteilten Architektur, wie beispielsweise getren-
nte Hauptspeicher und langsame Verbindungsbandbreiten, effizient zu kom-
pensieren. So gelingt es, die Geschwindigkeit von Ray-Tracing linear mit der
Anzahl der verbundenen Rechner zu steigern, wodurch Ray-Tracing sogar in
Echtzeit ermöglicht wird.

Im letzten Teil der Dissertation wird ein Verfahren zur physikalisch kor-
rekten Beleuchtungssimulation vorgestellt, welches die bereits vorgestellte
Techniken, hoch optimierter Ray-Tracing Kern und Rahmenwerk zur Paral-
lelisierung, effektiv verbindet. Die Kombination dieser Techniken mit einem
auf Kohärenzausnutzung ausgelegtem Algorithmus zur Beleuchtungssimula-
tion ermöglicht es letztendlich, die physikalisch korrekte Beleuchtung mehr-
mals pro Sekunde komplett neu zu berechnen.

vii

Acknowledgements

First of all, I would like to thank Prof. Dr. Philipp Slusallek for supervis-
ing this thesis. The open and encouraging atmosphere in his group and in
particular his continuous support were invaluable for the success of my thesis.

Second, I have to thank Dr. Ingo Wald, who taught me basically ev-
erything I know about ray tracing. He has been an invaluable help in many
projects related to this thesis. Without his encouraging support and a count-
less number of discussions through the years I would not have been able to
complete my PhD thesis.

I would also like to thank my reviewers, Hans-Peter Seidel and Steven
Parker, for kindly accepting the responsibility of reviewing my thesis.

Similarly, I have to thank (in random order) Andreas Dietrich, Heiko
Friedrich, Johannes Günther, Jörg Schmittler, and Georg Demme and his
administration group for many fruitful discussions, ideas and help in many
projects. Special thanks goes to Michael Scherbaum for reducing my work-
load during writing this thesis. Furthermore, I would like to thank the current
and former members and students of the computer graphics group.

I would also like to thank James T. Hurley for giving me the opportunity
to do an internship at Intel Corp. Many thanks are due to Gordon Stoll
and Alexander Reshetov for many helpful discussions, for introducing me to
many new ideas, and for simply making the stay a great experience.

Special thanks goes to my sister Nicole Benthin, who helped me writing
this thesis in ’readable’ English.

Finally, and most importantly, I would like to thank my familiy, and in
particular my wife Andrea for their great patience, their encouraging support
and for bearing so many stressful times. Without their help this thesis would
never have been possible.

viii

Contents

1 Introduction 1

1.1 Outline of this thesis . 3

2 Introduction to Ray Tracing 5

2.1 The Ray Tracing Algorithm 5

2.2 Ray Tracing for Rendering . 7

2.3 Ray Tracing Performance . 9

2.4 Coherence . 10

2.5 Conclusions . 13

3 CPU Architectures 15

3.1 Performance Issues . 15

3.2 Coding Guidelines . 18

3.3 Data Level Parallelism by SIMD Instructions 19

3.4 Tools and Hardware . 27

3.5 Conclusions . 29

4 Tracing Coherent Ray Bundles 31

4.1 kd-Trees . 32

4.2 Ray Bundle Traversal I . 34

4.3 Ray Bundle Traversal II . 49

4.4 Experiments and Results . 58

4.5 Conclusions and Future Work 69

5 Coherent Ray Tracing for Triangular Surfaces 71

5.1 Triangle Intersection I . 72

5.2 Triangle Intersection II . 76

5.3 Results . 79

5.4 Conclusions and Future Work 82

x CONTENTS

6 Coherent Ray Tracing for Freeform Surfaces 83

6.1 Bézier Fundamentals . 85
6.2 The Ray-Patch Intersection Problem 90
6.3 Uniform Refinement . 91
6.4 Newton Iteration . 97
6.5 Newton Iteration and Krawczyk Operator 104
6.6 Bézier Clipping . 113
6.7 Summary of Intersection Algorithms 123
6.8 Spatial Index Structures for Patches 125
6.9 Trimming Curves . 125
6.10 Results . 128
6.11 Application . 135
6.12 Conclusions and Future Work 138

7 Dynamic Scenes 139

7.1 Rapid Construction of kd-Trees 140
7.2 Conclusions and Future Work 148

8 Distributed Coherent Ray Tracing on Clusters 149

8.1 Introduction . 149
8.2 Distribution Strategies . 150
8.3 The OpenRT Distribution Framework 152
8.4 Communication and Dataflow 157
8.5 Results . 159
8.6 Conclusions and Future Work 159

9 Applications 163

9.1 Instant Global Illumination 163
9.2 Exploiting Coherence . 165
9.3 Streaming Computations . 167
9.4 Efficient Anti-Aliasing . 169
9.5 Distributed Rendering . 170
9.6 Results . 171
9.7 Conclusions and Future Work 173

10 Final Summary, Conclusions, and Future Work 175

A List of Related Papers 179

Bibliography 183

List of Figures

2.1 Recursive ray tracing . 8
2.2 Ray coherence . 11

3.1 SOA data layout . 20
3.2 Intel’s streaming SIMD extension (SSE) 21
3.3 AOS vs. SOA . 22
3.4 Parallel dot products using SSE instructions 22
3.5 Parallel dot products using SSE intrinsics 24
3.6 SSE utility functions . 26
3.7 SSE inverse computation using Newton-Raphson approximation 26
3.8 SSE horizontal operations . 27
3.9 Data structure for single rays and ray bundles 28
3.10 Data structure for an axis-aligned bounding box 29

4.1 Layout of a kd-tree node . 34
4.2 Traversal order for single rays 35
4.3 Traversal algorithm for single rays 36
4.4 Traversal algorithm for ray bundles 37
4.5 Ray bundle initialization . 39
4.6 Traversal order look-up table 40
4.7 Traversal implementation for a single four-ray bundle 42
4.8 Traversal implementation without branches 45
4.9 Traversal implementation for four-ray bundles 46
4.10 Alternative traversal implementation for four-ray bundles . . . 48
4.11 Inverse frustum culling algorithm 50
4.12 Offset look-up table for extremal traversal 52
4.13 Extremal traversal implementation by inverse frustum culling . 53
4.14 Alternative extremal traversal algorithm 54
4.15 Alternative ray-segment traversal implementation for extremal

traversal . 55
4.16 Finding kd-tree entry points 56

xii LIST OF FIGURES

4.17 Triangular example scenes . 58
4.18 Visualizing kd-tree entry points 61
4.19 Standard mailboxing . 66
4.20 Hashed mailboxing . 67

5.1 Data structure for preprocessed triangle data 72
5.2 Ray-triangle intersection test for a four-ray bundle 74
5.3 Triangle intersection test based on Pluecker coordinates 78

6.1 Data structure for a 3D bicubic Bézier patch 85
6.2 Bicubic Bézier curve . 87
6.3 The de Casteljau algorithm 88
6.4 Bicubic Bézier patch . 89
6.5 Uniform refinement algorithm 92
6.6 Pruning Test (uniform refinement) 93
6.7 Vertical patch refinement (uniform refinement) 94
6.8 Patch evaluation (Newton iteration) 100
6.9 Patch evaluation for a four-ray bundle (Newton iteration) . . . 102
6.10 Data structure for interval vectors 109
6.11 Krawczyk-Moore test . 111
6.12 Computation of the interval extension of patch derivatives . . 112
6.13 Bézier clipping algorithm . 114
6.14 Data structure for a 2D bicubic Bézier patch 117
6.15 Initialization of the 2D control point matrix (Bézier clipping) . 118
6.16 Pruning Test (Bézier clipping) 119
6.17 Computing Lu and Lv (Bézier clipping) 120
6.18 Computing the convex hull (Bézier clipping) 121
6.19 2D subdivision by the de Casteljau algorithm (Bézier clipping) 122
6.20 Trimming curves . 126
6.21 Bicubic Bézier test scenes . 127
6.22 Performance in relation to the number of refinement steps . . 129
6.23 High-quality rendering of a Mercedes C-class model 136

7.1 Sorted list of split plane candidates 142
7.2 Data structure for a split plane candidate 143
7.3 Fast kd-tree construction algorithm 144
7.4 Fast kd-tree construction timings 145
7.5 Fast kd-tree construction for completely dynamic scenes . . . 146
7.6 Fast kd-tree construction for huge data sets 147

8.1 Slave implementation . 155
8.2 Master implementation . 156

LIST OF FIGURES xiii

8.3 Master/slave timing diagram 158
8.4 Scalability in the number of CPUs 160

9.1 Instant radiosity and interleaved sampling 165
9.2 Combing primary and shadow rays 166
9.3 Programmable procedural shading 168
9.4 Efficient anti-aliasing . 169
9.5 Quality comparison with and without efficient anti-aliasing . . 170
9.6 Scalability of the new instant global illumination system . . . 173
9.7 Interactive global illumination 174

xiv LIST OF FIGURES

List of Tables

3.1 Current CPU architectures . 17

4.1 Traversal and intersection steps in relation to bundle size . . . 59
4.2 Comparison of different traversal algorithms 62
4.3 Complexity of kd-tree entry point search 63
4.4 Mailboxing statistics . 65
4.5 Comparison between hashed and standard mailboxing 68

5.1 Exit point probabilities . 75
5.2 Probability of full intersection test execution 76
5.3 Cycle cost for different triangle intersection tests 80
5.4 Performance speedup by kd-tree entry point search 81

6.1 Cycle cost for core operations (uniform refinement) 95
6.2 Cycle cost of core operations (Newton iteration) 101
6.3 Cycle cost of core operations for a four-ray bundle (Newton

iteration) . 103
6.4 Cycle cost for core operations (Bézier clipping) 123
6.5 Reduction of patch data accesses in relation to bundle size . . 128
6.6 Speedup by tracing ray bundles (uniform refinement) 130
6.7 Speedup in relation to the resolution (uniform refinement) . . 130
6.8 Single ray statistics (Newton iteration) 131
6.9 Single ray statistics (Bézier clipping) 132
6.10 Single ray statistics (Krawczyk-Moore) 133
6.11 Four-ray bundle statistics (Newton iteration) 135

9.1 Performance comparison between the two instant global illu-
mination systems . 172

9.2 Performance of the new instant global illumination system . . 172

xvi LIST OF TABLES

Chapter 1

Introduction

In the context of computer graphics, the term rendering refers to the pro-
cess of generating a two-dimensional image from a three-dimensional virtual
scene. Rendering forms the basis for many fields of today’s computer graph-
ics, e.g. computer games, visualization, and graphical effects used for movie
productions. Based on the algorithm used for the rendering process, two
major rendering categories can be classified: rasterization-based rendering
and ray tracing-based rendering.

For decades, ray tracing has been used exclusively for high-quality ren-
dering, where it has been known for its long rendering times. Therefore, ray
tracing’s sole application has been off-line rendering. On the other hand,
the field of interactive rendering has been dominated by rasterization-based
hardware rendering.

Beyond any doubt, the key factor for the non-existence of ray tracing in
terms of interactive rendering has been its poor performance. Researchers
have long argued that thanks to its logarithmic behavior in scene complexity,
ray tracing could eventually become faster than rasterization-based render-
ing; nevertheless its performance has been far from challenging. However, if
enough parallel compute power was available, even the performance of ray
tracing has been able to reach interactivity [Keates95, Muuss95a, Muuss95b,
Parker99b]. Unfortunately, a large scale supercomputer was required to pro-
vide enough compute power.

In recent years, researchers have once again focused on the performance
of ray tracing [Wald01c, Wald03e, Wald04, Reshetov05], in particular with a
focus on off-the-shelf hardware. They have concentrated on an efficient and
optimized implementation of the ray tracing algorithm and its data struc-
tures with respect to the advantages and disadvantages of current hardware
architectures. The efficient combination of algorithmic and hardware-specific

2 Chapter 1: Introduction

optimizations has allowed ray tracing’s performance to be lifted to an inter-
active level while running on off-the-shelf hardware [Wald04].

Note that implementations of ray tracing exist for other architectures
such as GPUs [Purcell02, Foley05], or even custom hardware [Schmittler02,
Schmittler04, Woop05]. However, they are still too slow (GPUs) or not
widely available (custom hardware), so the current processor architectures
are considered as the most suitable hardware platform.

The main difficulty when using processor-specific optimized algorithms
in order to achieve high performance ray tracing is that they are not easy to
explain in general, especially not from a high-level view.

This thesis presents the latest approaches and algorithms for realtime ray
tracing on current processor architectures. The intention when writing this
thesis was to avoid a strictly high-level view but to give exact and detailed
information about low-level implementation issues and optimizations. Where
possible, example code is provided for each illustrated algorithm.

The main contributions of this thesis to the field of ray tracing are

• SIMD-optimized algorithms for the traversal of coherent rays,

• a detailed analysis and SIMD-optimized implementation of intersection
algorithms for rays with different geometric primitives such as triangles
and bicubic Bézier patches,

• an algorithm for handling fully dynamic scenes by fast building of spa-
tial index structures,

• a parallelization framework for ray tracing that achieves linear scala-
bility in the number of connected computing nodes,

• and a ray tracing-based system that allows for interactively computing
global illumination.

All algorithms illustrated in this thesis are an integral part of the OpenRT
ray tracing library [Wald02a, Dietrich03, Wald04].

Even though some of the techniques discussed in this thesis have already
been sketched in [Wald04], they will be discussed here in more detail, while,
in particular, focusing on low-level implementation aspects.

The code examples provided in this thesis have already been optimized
for high performance, but there is still much room for further optimization.
Even though optimizing might take time and “cost nerves”, it can sometimes
be the key factor in order to lift algorithms to a new performance level.

1.1 Outline of this thesis 3

1.1 Outline of this thesis

The thesis starts with a brief introduction to ray tracing and its use for
rendering in Chapter 2. The chapter also provides a high-level performance
analysis of the ray tracing algorithm and introduces the benefits of coherence
and CPU architecture-specific optimizations.

Chapter 3 discusses current CPU architectures in detail. As these archi-
tectures build the underlying hardware platform for the implementation of
all algorithms proposed in this thesis, special emphasis is put on performance
issues and useful coding guidelines. The chapter introduces SIMD instruc-
tions, which will be an essential tool for exploiting the full compute power of
current CPU architectures.

Increasing ray tracing performance in particular requires an efficient traver-
sal through a spatial index structure. Therefore, Chapter 4 proposes highly
optimized algorithms for efficient traversal of coherent sets of rays. In combi-
nation with optimized triangle-intersection algorithms that have been mod-
ified to efficiently support coherent sets of rays, as illustrated in Chapter 5,
interactive ray tracing performance for ray tracing of triangular scenes will
be achieved on a single processor.

Chapter 6 shows that interactive ray tracing is not limited to triangular
scenes and presents various highly efficient intersection algorithms for bicubic
Bézier patches in detail. These algorithms will be discussed in depth showing
their advantages and disadvantages in terms of performance and accuracy.

Chapter 7 demonstrates that even the construction algorithm for spatial
index structures can be efficiently optimized. A highly optimized implemen-
tation in particular allows for handling fully dynamic scenes by reconstructing
the corresponding kd-tree from scratch for every frame.

Compensating the need of ray tracing for compute power means com-
bining the compute power of multiple processors. Chapter 8 thus proposes
a parallelization framework that effectively distributes the rendering work
to a cluster of off-the-shelf PCs. As this framework has been designed for
handling high-latency interconnections, linear scalability in the number of
connected PCs will be achieved, increasing the performance of ray-tracing to
a realtime level.

If the techniques for achieving realtime ray tracing, as discussed in the
previous chapters, are combined with a global illumination algorithm that
has been exclusively modified to exploit these techniques, it becomes possible
to achieve interactive global illumination. Chapter 9 illustrates this modified
global illumination algorithm and the surrounding framework.

Finally, this thesis ends with a short summary, and an outlook on the
future of realtime ray tracing on future processor architectures.

4 Chapter 1: Introduction

Chapter 2

Introduction to Ray Tracing

This chapter starts with a brief review of the basic ray tracing algorithms
(see Section 2.1) in order to provide a quick introduction to the field of high
performance ray tracing. For a more detailed introduction to the field of ray
tracing, please refer to one of the classical ray tracing books [Glassner89,
Glassner95, Shirley03, Pharr04].

After illustrating how ray tracing is efficiently applied as a rendering
algorithm (see Section 2.2), general performance and optimization techniques
are discussed (see Section 2.3). These consolidated findings on ray tracing
performance allows better access to the role of coherence (see Section 2.4).
Besides hardware-specific optimizations, coherence in all its appearances (see
Section 2.4.1 and Section 2.4.2) is the key factor for increasing ray tracing
performance to a realtime level.

2.1 The Ray Tracing Algorithm

In order to avoid confusion, the term ray tracing or core ray tracing is defined
here as an algorithm for finding the closest intersection between a ray and a
set of geometric primitives, e.g. triangles [Glassner89, Badouel92, Erickson97,
Möller97, Shoemake98, Shirley02, Wald04] or freeform patches [Sweeney86,
Parker99b, Nishita90, Martin00, Wang01, Benthin04]. According to the ray
equation R(t) = O + t ∗ D, where O is the ray origin and D the ray direction,
the ray tracing algorithm returns the intersection with the smallest distance
tmin ∈ [0,∞). Other ray tracing algorithms that, for example, return all
intersections along a ray will not be considered in this thesis. The smallest
distance tmin ≥ 0 corresponds to the closest intersection with respect to the
ray origin. The actual intersection point can be easily obtained by evaluating

6 Chapter 2: Introduction to Ray Tracing

the ray equation using tmin. Note that the algorithm can easily be adapted so
as to accept only intersections that lie in a given distance range [tstart, tend].

Using a brute force approach by testing all primitives within a scene
against the ray and comparing the resulting intersection distances, is only
an option if the number of primitives is small. Unfortunately, the typical
number of primitives per scene ranges from thousands to millions making
the brute force approach for realtime rendering impractical.

A well-known optimization technique consists in applying spatial subdivi-
sion. Spatial subdivision splits the virtual scene into spatial cells and stores
for each cell the geometric primitives contained within. Note that only those
primitives that are contained in the spatial cells intersected by the ray need
to be tested. The advantage of this approach is that only a small subset
of all spatial cells has to be considered for a given ray. Moreover, a typical
scene includes large regions of empty space, so that for most rays only a
small number of non-empty cells have to be considered. Exploiting spatial
subdivision allows for significantly reducing the required primitive tests per
ray, but also introduces the new problem of quickly identifying those cells
that are intersected by the ray. The data structures required for the spatial
sorting of geometry are called spatial index or spatial acceleration structures.

Algorithms for quickly identifying intersected cells are called ray traversal
algorithms. Note that only those spatial cells have to be traversed which are
pierced by the ray when starting from its origin and following the ray di-
rection. Keeping to such a traversal “direction” allows for efficiently finding
the closest intersection without touching any cells beyond that point. Ex-
iting the traversal at the closest intersection is called early ray termination.
Early ray termination can save many traversal and intersection steps (for the
cells beyond the closest intersection point), but also requires a front-to-back
traversal order of all cells that are intersected by the ray.

Researchers have proposed many different spatial index structures such as
bounding volume hierarchies [Rubin80, Kay86, Haines91, Smits98], uniform,
non-uniform, and hierarchical grids [Fujimoto86, Amanatides87, Gigante88,
Jevans89, Hsiung92, Cohen94, Klimaszewski97], octrees [Glassner84, Samet89,
Cohen94, Whang95], axis-aligned BSP (binary space partitioning) trees,
short kd-trees [Sung92, Subramanian90a, Bittner99, Havran01], and ray di-
rection sorting techniques such as ray classification [Arvo87, Simiakakis95].
These techniques either sort the primitives within a scene hierarchically
(bounding volume hierarchies) or subdivide the space spanned by the prim-
itives hierarchically (grids, octrees, kd-trees).

As a result, finding the closest intersection point between a ray and a set
of geometric primitives includes the front-to-back traversal of a spatial index
structure and the intersection tests for the corresponding primitives.

2.2 Ray Tracing for Rendering 7

2.2 Ray Tracing for Rendering

The core ray tracing algorithm represents the fundamental basis for many ray
tracing-based rendering algorithms. The common task of all these rendering
algorithms is to compute a two-dimensional image from a three-dimensional
virtual scene. As ray tracing is well suited for accurately simulating the dis-
tribution of light by simulating the propagation of photons, most ray tracing-
based rendering algorithms focus on providing high image realism by closely
simulating the illumination within the virtual scene. The realism within the
generated image largely depends on how accurately the rendering algorithm
takes into account both the illumination (by light sources) and the surface
properties (of the scene’s geometry). As a general rule, the higher the desired
accuracy, the more rays have to be shot during simulation.

In order to give a better understanding of how rendering algorithms rely
on the core ray tracing algorithm, a brief illustration of the standard recursive
ray tracing approach [Whitted80] (see Figure 2.1) is presented next.

Generating a two-dimensional image from a three-dimensional scene us-
ing recursive ray tracing comprises several steps: From a virtual camera
(typically corresponding to a one-eyed imaginary observer), rays are created
and shot through each pixel of a virtual image plane. These rays are called
primary rays, because they are created first. For each primary ray, the core
ray tracing algorithm returns the closest intersection, in the following simply
called hit or intersection point, with the geometry of the scene.

In order to determine the light at an intersection point that is reflected
in the (inverse) direction of the ray, the illumination at a given point has to
be computed first. Afterwards, the illumination must be combined with the
material properties of the underlying geometry. The process of determining
the interaction of light with the material properties at an intersection point
is called shading. Note that the light reflected at the intersection points of
primary rays determines the final pixel color.

The decision of whether a light source contributes illumination to a given
hit point or not can be based on a simple occlusion test: A ray is shot
from a hit point towards a virtual light source (or vice versa), and only if
no intersection occurs along the way, the light source will contribute to the
illumination. As these rays determine whether a given hit point lies in shadow
or not, they are called shadow rays. For the occlusion test itself, the core ray
tracing algorithm can be used once more, but it might be useful to slightly
modify the algorithm. For shadow rays, the determination of the intersection
with the smallest distance tmin ∈ [0, distance(lightsource)] is not mandatory;
instead, any intersection with a distance t ∈ [0, distance(light source)] will
be sufficient. This allows for more efficient ray termination because as soon

8 Chapter 2: Introduction to Ray Tracing

Figure 2.1: Simplified illustration for recursive ray tracing: A primary ray
is generated from a virtual camera and shot through each pixel of the image
plane. The intersection closest to the ray origin is determined and tested
for illumination by the light sources (the green shadow rays). Depending on
the material properties of the intersected geometry and the incoming illumi-
nation, the current intersection point is shaded and potential reflection or
refraction rays are generated. For each of these secondary rays, the contri-
bution is recursively evaluated in the same way as for primary rays.

as an appropriate intersection is found, the ray tracing algorithm can be
terminated.

Based on the material properties of the geometry and the underlying
rendering model, additional secondary rays can be generated to simulate
effects such as reflection or refraction. Depending on their purpose, these
rays are also called reflection rays or refraction rays. The contribution of
secondary rays to the current hit point is recursively evaluated. Even though
these rays are called secondary rays, they are essentially treated the same
way as primary rays.

Apart from this traditional and simple approach to recursive ray trac-
ing, countless variations exists for ray tracing-based rendering [Glassner89,

2.3 Ray Tracing Performance 9

Glassner95, Shirley03]. For example, Cook extended the recursive ray tracing
approach to support additional effects such as glossy reflection, illumination
by area light sources, motion blur, and depth of field. This extended approach
is called distribution ray tracing [Cook84a]. More advanced algorithms even
compute the complete global illumination within a scene, including indirect
illumination and caustic effects [Cook84b, Lafortune93, Cohen93, Veach94,
Veach97, Jensen01, Shirley03, Dutre03]. Even though the purpose and sup-
ported accuracy of each algorithm is different, the key point is that they all
heavily rely on the core ray tracing algorithm as their fundamental base.

2.3 Ray Tracing Performance

Looking at the organization of ray tracing-based rendering, it becomes clear
that all algorithms require to trace a massive number of rays. Casting only
a single primary ray per pixel at a resolution of 1024 × 1024 results in over
one million rays per image. In particular, each ray must locate the correctly
intersected primitive in a scene of (typically) millions of primitives. A per-
formance level that allows for generating multiple images per second requires
therefore a very fast implementation of the core ray tracing algorithm.

Section 2.1 illustrated that the core ray tracing algorithm basically con-
sists of two coupled operations: traversal of a spatial index structure and
ray primitive intersection tests. This is why the performance of the core ray
tracing algorithm largely depends on the total number of required traver-
sal and intersection operations. Obviously, the cost of these operations is
closely related to their implementation in terms of the underlying hardware
architecture.

If one has a closer look at the core ray tracing algorithm in terms of
computational and memory-related operations, it becomes clear that a ray
traversal step mainly involves data-dependent computations. Given the cur-
rent traversal state, which corresponds to a location within a spatial index
structure, a new state (location) is computed based on the ray data and the
data loaded from the spatial index structure. As traversal states depend on
data from the spatial index structure, a data dependency exists.

For a single intersection computation, the same data dependency applies
(loading primitive data from memory first, then performing intersection com-
putation). However, multiple intersection tests in a given spatial cell do not
depend on each other, so that the loading of primitive data and intersection
computation can be interleaved or even done in parallel.

The main problem of memory-related operations is that the data access
latency might be the limiting factor. Prior to any traversal or intersection

10 Chapter 2: Introduction to Ray Tracing

operation, the required data has to be loaded from memory first. For an
implementation on a current CPU architecture, this could become critical
due to the discrepancy between the memory latency of on-chip cache and
system memory (a more detailed discussion will be given in Chapter 3).
Ensuring a large number of data accesses to the on-chip cache is essential to
achieve high performance.

2.4 Coherence

Defining the term coherence is not a trivial matter, as its meaning depends
to a great extent on the environment where it is applied. Nevertheless, the
following definition illustrates the term coherence in a non-restricting way:

Definition: Coherence is the degree of which parts of an environment or
its projections exhibit local similarities [Foley97].

Transferring the definition of coherence into the context of ray tracing,
raises the question of which parts of ray tracing exhibits local similarities. In
order to answer this question step by step, the search for coherence is first
restricted to the core ray tracing algorithm. Later, the search is extended to
the shading process which forms another major part of a ray tracing-based
rendering system.

2.4.1 Ray Coherence

Defining ray coherence as the degree of spatial deviation within a set of rays, a
statement on coherence in the context of traversal and primitive intersection
becomes possible.

More precisely, a set of coherent rays (see Figure 2.2) will basically travel
through the same spatial regions, and thus access the same data of the spatial
index structure. The same holds true for the intersection test, where a set
of coherent rays will basically test similar primitives. As a result, one can
define traversal coherence for a set of rays as the ratio between the number
of spatial cells traversed by all rays (as entity) and the sum of cells traversed
by any ray. In the same manner, one can define intersection coherence for a
set of rays as the ratio between the number of intersection tests performed
by all rays (as entity) and the number of intersection tests performed by any
rays.

The higher the traversal and intersection coherence the higher the prob-
ability of loading the same data, exploiting the memory cache hierarchy of
current CPU architectures. In this case, traversal and intersection coherence
translate into memory coherence.

2.4 Coherence 11

Figure 2.2: Exploiting ray coherence for ray tracing: A set of coherent rays
will essentially follow the same path through the spatial index structure (green
cells = accessed by all rays, red cells = accessed by some rays), and will es-
sentially test the same primitives for intersection. This allows for efficiently
amortizing memory accesses over all rays in a set.

Having data in the cache shortens the access latency for the individual
rays within a set, but does not reduce the required number of memory ac-
cesses itself. A simple way of approaching this problem is a change in the
way in which rays are handled. Instead of tracing rays individually, it is more
beneficial to trace them together as a set.

As illustrated in Section 2.3, the core ray tracing algorithm involves many
data-dependent computations and therefore numerous memory accesses. Co-
herent sets of rays allow for efficiently reducing the number of memory ac-
cesses due to the high probability that all rays within the set request the
same memory (memory coherence), while the cost of the memory access it-
self is amortized over all rays within a set. As no dependency exists between
the rays of a set, the traversal and intersection operations are suitable for
parallel processing. In the following, a set of coherent rays is called a coherent
bundle, bundle or packet.

Special attention must be given to the fact that an algorithmic or implemen-
tation-based overhead for supporting ray bundles does not offset the corre-
sponding benefit. Therefore, the following three requirements must be ful-
filled in order to fully exploit the advantages of coherent ray bundles for the
core ray tracing algorithm:

12 Chapter 2: Introduction to Ray Tracing

Spatial Index Structure: The spatial index structure and the correspond-
ing traversal algorithm must efficiently support ray bundles. The traver-
sal algorithm in particular should avoid any complex computations.

Ray Bundle Traversal: An implementation of ray bundle traversal (with
respect to a chosen spatial index structure) must minimize any overhead
due to inefficient mapping to the underlying hardware architecture.
Ideally, the hardware architecture and its corresponding instruction
set should optimally support an implementation.

Ray Bundle Intersection: Similar to a traversal implementation, an in-
tersection implementation has to efficiently support ray bundles. As
different types of geometric primitives can exist in the same scene, ray
bundle intersection algorithms should efficiently support various prim-
itive types.

In the case no efficient ray bundle intersection algorithm can be found
for a given primitive type, the fall-back solution of intersecting the rays
sequentially might be acceptable.

Chapters 4, 5, and 6 will provide a detailed discussion of data structures,
algorithms, and the corresponding implementations that fulfill all these re-
quirements.

2.4.2 Shading Coherence

Besides the actual core ray tracing algorithm, the shading process also ben-
efits from local similarities. Considering for example the hit points of neigh-
boring primary rays which are likely to intersect the same primitive. Even if
this is not the case, it is very likely that the hit points are in the same spatial
region. In addition, the probability that the intersection points share the
same shader, and therefore perform similar shading operations is very high.
Similar shading operations could be performed in parallel, again allowing for
processing the shading of intersection points in bundles.

Sharing the same shader implies additionally that the loaded data exhibits
similarities as well. For example, look-ups to the same texture for neighboring
intersection points are likely to provide a high degree of memory coherence,
which in turn allows for the efficient use of caches.

As a result, the shading process itself can benefit from coherence; however,
similar to the core ray tracing algorithm, bundle shading for intersection
points is prone to overhead caused by inefficient implementation.

2.5 Conclusions 13

2.5 Conclusions

This chapter has demonstrated that the key to pushing ray tracing per-
formance to a realtime level is an efficient support of coherent ray bundles
combined with a highly optimized implementation. A sub-optimal implemen-
tation in particular is likely to offset any benefit offered by tracing bundles.
Unfortunately, current CPU architectures in combination with their support-
ing compilers are not intended to support the required degree of efficiency out
of the box. On the contrary, without any manual effort in optimizing algo-
rithms and implementation code, there is only little chance of ever reaching
the desired performance level.

In order to avoid hardware and software-specific implementation pitfalls,
it is beneficial to examine the architecture of current CPUs more closely
(see Chapter 3). Taking specific CPU-related issues into account allows for
an efficient implementation of the core ray tracing algorithm. In particular,
the optimized implementation includes the extension of the traversal algo-
rithm (see Chapter 4) and the primitive intersection tests (see Chapter 5 and
Chapter 6) for efficiently supporting ray bundles.

A difficult task for a ray tracing-based rendering system is to gather co-
herent ray bundles. Coherent bundles of primary rays can easily be generated
when relying on a typical (perspective) camera model, where primary rays of
neighboring pixels exhibit a large degree of coherence. The same holds true
for the shadow rays generated towards a single point on a light source. How-
ever, for most secondary rays, e.g. those generated by reflection off of curved
surfaces and even refraction rays, coherence will be significantly lower than
for primary rays. In the case of low coherence, coherence-based regrouping
or even falling back to tracing individual rays may be necessary.

Instead of trying to extract coherent ray bundles out of a traditional ray
tracing-based rendering system, one can design the rendering system in such
a way that the majority of rays can be combined directly in coherent bun-
dles (see Chapter 9). Such a system allows for minimizing the overhead for
generating coherent bundles. If for such a system the majority of rendering
time is spent in the core ray tracing algorithm, total system performance will
directly benefit from fast ray bundle tracing.

14 Chapter 2: Introduction to Ray Tracing

Chapter 3

CPU Architectures

Optimizing program code basically consists of two steps: Identifying the
program’s hot spots and trying to modify the corresponding code sequences.
The difficulty thereby is to modify the code in such a way that the modi-
fied version shows better run-time behavior (with respect to the underlying
hardware architecture) than the original one. This requires identifying code
structures that cannot be efficiently executed. Identifying and modifying
makes code optimization a difficult and time-consuming task which requires
in-depth knowledge of the underlying architecture. Apart from architectural
issues, code optimization additionally depends on the chosen compiler.

Nevertheless, the benefits of code optimization can be tremendous. Statis-
tics have shown that the increase in performance between optimized and non-
optimized code can range from a few percent to entire orders of magnitude.

In order to avoid costly performance penalties in critical code sequences,
it is essential to have a detailed knowledge of the execution flow within the
underlying CPU architecture. Therefore, a brief overview of performance-
related issues of today’s CPU architectures will be given in Section 3.1.
Having identified the architecture related issues allows for formulating the
general coding guidelines of Section 3.2. Section 3.3 introduces the concept
of SIMD instructions, while Section 3.4 discusses compiler and performance
profiling-related tools.

3.1 Performance Issues

For historical reasons, the majority of today’s software has been designed
for non-parallel execution. Because of this, current CPU architectures are
designed to execute serial program code as fast a possible. With every new
CPU generation, designers have tried to achieve a continuous performance

16 Chapter 3: CPU Architectures

increase by introducing small architectural enhancements to optimize serial
execution. The key factor to increase performance has been the raising of
the CPU clock rate (up to 3.8 GHz for latest Pentium-IV [Intel01]). Hav-
ing a higher clock rate allows for (potentially) executing more instructions
within a fixed time period. Raising the clock rate could only be realized
through smaller micro structure designs which require extremely long exe-
cuting pipelines (the Pentium-IV uses a pipeline with more than 30 stages).

These long executing pipelines are the major drawback of the high clock
rate architectures. If the utilization of the execution pipeline is low, the
performance of the CPU itself will be low, too. Even though the analysis
and optimization of execution bottlenecks is a quite complex topic, the main
reasons for low pipeline utilization, and thus low performance, can be roughly
classified into the following categories:

Cache Misses: The difference in access latency between on-chip memory
cache and main memory itself is tremendous, e.g. the Pentium-IV has
an L1 cache latency of 1-4 cycles, an L2 cache latency of 20-27 cy-
cles, and a latency to main memory of over 200-300 cycles. Obviously,
this can result in pipeline stalls whenever data does not reside in the
memory cache hierarchy. CPU architectures follow multiple ways of
reducing the impact of cache misses by having large and multiple cache
levels to reduce the probability of cache misses, and by executing in-
dependent program code during idle periods. For serial program code,
the search for, and the execution of, independent instructions is often
referred to as out-of-order execution. On the other hand, techniques
such as simultaneous multi-threading or hyper-threading [Intel02c] use
the implicit parallelism of thread execution to fill pipeline stalls with
independent instructions.

Branches: The negative impact of long executing pipelines comes into play
when dealing with conditional branches. Every time a branch is wrongly
predicted, the complete pipeline has to be flushed. Branch prediction
(over multiple levels) and even branch prediction by branch hint in-
structions are able to lower the probability. Nevertheless, every mis-
predicted branch means a “waste” of up to 30 cycles for a 30-stage
execution pipeline. Even though the negative performance impact is
lower than for cache misses it is still significant. This particularly af-
fects complex and branch-intensive code.

Low Instruction Level Parallelism: Multiple instruction pipelines and
functional units combined with out-of-order execution even allow the
serially operating CPU to execute multiple independent instructions in

3.1 Performance Issues 17

Processor Intel Pentium-IV AMD Opteron

Pipeline Stages 20-31 12-17
Reorder Buffer 126 Entries 72 Entries
Units 2 Int, 1 FP, 3 LS 3 Int, 3 FP, 2 LS
SIMD MMX, SSE, SSE2, SSE3 MMX, SSE, SSE2, SSE3
Register 16 Int, 8 FP, 16 SIMD 16 Int, 8 FP, 16 SIMD
Caches (I, D, L2) 12k µOPs, 8-16k, 64k, 64k,

512k-2M 1M
Branch Prediction 4k BTB 16k BHT + 2k BTB
Memory Bandwidth 6.4 GB/s 6.4 GB/s +

3x HyperTP (3.2 GB/s)
Frequency 1.5-3.8 GHz 1.4-2.6 GHz

Table 3.1: Specifications of current 64-bit processor architectures, e.g. Intel’s
Pentium-IV (EM64T) and AMD’s Opteron (X64). Both architectures feature
a high pipeline length (varying due to different lengths for integer and floating
pipelines) and large caches. Both architectures include special hardware units,
such as Branch Target Buffers (BTB) and Branch History Tables (BHT), to
achieve a better branch prediction rate. Large caches and advanced branch
prediction units are the most effective components (of these architectures) to
keep the long pipelines busy.

parallel (within a single clock cycle). This feature is typically called
instruction level parallelism (ILP). Code dependencies appear when
an instruction requires the output of a preceding instruction as input,
while the output is not available at this point (mostly due to instruction
latency). A sequence of dependent instructions is called a dependency
chain. Dependency chains frequently appear in inefficient and complex
code, but long latency instructions such as divisions, function calls, op-
erating system-related or input/output instructions can also contribute
to these chains.

In order to lower the effect of the three above-mentioned bottleneck cat-
egories, the most recent CPU architectures feature large on-chip caches and
special hardware components to keep pipeline utilization high (see Table 3.1).
Unfortunately, the improved hardware support is not able to overcome the
effects of inefficiently written code. Even though modern compilers [Intel02a,
GNU] try to rearrange the instructions in a more suitable way, the optimum
in run-time performance can only be achieved by optimizing data structures
and algorithms manually to the underlying hardware architecture.

18 Chapter 3: CPU Architectures

The road map of the leading CPU manufacturers makes it clear that
the length of the pipeline, and thus the frequency of future CPUs is not
likely to grow significantly, and may even decrease. Therefore, future CPU
designs will rely on increased execution parallelism such as multiple pipelines
and functional units, execution threads, and in particular many cores in
order to increase performance. Introducing multiple cores will widen the gap
between memory latency/bandwidth and compute power dramatically. As
each core will access the main memory via the same memory interconnect,
future algorithms will need to reduce their required memory bandwidth.

3.2 Coding Guidelines

The performance impact of inefficiently written code ranges from a few per-
cent to entire orders of magnitude, largely depending on the code itself. Even
though the following coding guidelines seem obvious, it is worth outlining
them to reduce the probability of significant performance penalties:

Data Locality and Memory Access Pattern: Localizing memory access
ensures high cache hit probability. In situations where large chunks of
memory need to be loaded, a qualified memory access pattern such
as pure sequential access should be applied. Sequential access is ef-
ficiently supported by the hardware prefetching unit, available on all
current CPU architectures. In certain situations, it is beneficial to
manually apply CPU-supported prefetch instructions in order to load
chunks of memory in advance. As memory prefetching is done asyn-
chronously to the execution flow, the loading latency can be hidden by
working on data already residing in the cache hierarchy. Obviously, the
mechanism only works if the memory loading latency is smaller than
the computation time between subsequent prefetches.

Simple Control Flow: Replacing branch-frequent code by conditional move
sequences avoids mis-predicted branches. However, if the probability
of a branch mis-prediction is sufficiently low (something which depends
largely on the code), applying branches can be faster than applying con-
ditional moves, because the execution of a correctly predicted branch
has almost no costs. In contrast, conditional move sequences may re-
quire the computation of results which may not even be used later. On
a more higher level, critical run-time loops should be kept as small and
as simple as possible. Simply dropping or replacing complex instruc-
tions such as divisions or functions calls in inner loops can dramatically
speed up performance. Having only a minimum of code dependency

3.3 Data Level Parallelism by SIMD Instructions 19

chains within the inner-most loop body can additionally increase in-
struction throughput. Furthermore, small and simple inner-loops can
be more easily optimized and maintained.

Data Level Parallelism: In order to maximize performance, data level
parallelism by SIMD (single instruction multiple data) instructions
should be applied. SIMD instructions offer a simple and easy way
to manipulate multiple data elements at once. In particular, Intel’s
SSE instruction set [Intel01, Intel02b, Intel02a] allows for manipulat-
ing four single precision floating point or integer values using a single
instruction. The main issues when using SIMD instructions are the re-
quired layout changes of input data and the necessary recoding of the
algorithm (see Section 3.3).

Data level parallelism via SIMD instructions is currently the only way
of explicitly performing parallel operations on a sequentially operating CPU
(see Section 3.3). Instruction level parallelism, on the other hand, is per-
formed internally by the CPU (out-of-order execution). It can only be in-
fluenced implicitly by reordering code for a more appropriate out-of-order
executing flow.

In contrast to single-threaded applications, coding guidelines for multi-
threaded applications should also contain guidelines for thread synchroniza-
tion. In order to efficiently exploit multiple CPUs (or CPU cores), syn-
chronization points (such as mutex lock/unlocks [Nichols96]) should be kept
to a minimum. Roughly speaking, synchronization means serialization, and
long serialization periods dramatically reduce the positive effect of parallel
execution.

Multi-threaded performance is further affected whenever implicit synchro-
nization is required. Implicit synchronization occurs when caches on differ-
ent CPUs need to be synchronized. Even though the interconnects between
CPUs offer a high bandwidth for synchronizing cache areas, the performance
impact can still be very high. Due to the fact that the synchronization
granularity is based on cache-lines, unintended cache synchronization can be
avoided by assuring that synchronization-relevant data exclusively occupies
complete cache-lines.

3.3 Data Level Parallelism by SIMD Instructions

The basic concept behind SIMD instructions is the idea that many algorithms
(see Figure 3.1) could work on multiple data elements in parallel. Instead of
processing each data element by a single instruction in a sequential manner,

20 Chapter 3: CPU Architectures

// the four three-component input vectors are

// stored in the SOA format.

//

// float x[4] -> the four ’x’ vector components

// float y[4] -> the four ’y’ vector components

// float z[4] -> the four ’z’ vector components

inline void SimpleDot4(const float *x,

const float *y,

const float *z,

float *const dest)

{

dest[0] = x[0]*x[0]+y[0]*y[0]+z[0]*z[0];

dest[1] = x[1]*x[1]+y[1]*y[1]+z[1]*z[1];

dest[2] = x[2]*x[2]+y[2]*y[2]+z[2]*z[2];

dest[3] = x[3]*x[3]+y[3]*y[3]+z[3]*z[3];

}

Figure 3.1: Computing a dot product of four three-component floating point
vectors with standard C/C++ code. As no dependencies exists, the compu-
tation (for each component of ’dest’) can be performed in parallel. Note that
the code does not implement a generic dot product, but rather a simplified
version where only one input vector is used for both dot product elements.

one could apply the same operation to multiple elements in parallel using a
single instruction.

Applying SIMD requires that no dependencies exist between the data
elements in a processing group. Moreover, controlling program execution
by conditional branches brings about certain changes: Instead of basing the
branch on the result of a single condition, SIMD instructions compute the
results of multiple conditions in parallel. Obviously, one could extract the
result of a single condition and perform the branch with respect to it, but
very often it is more beneficial to perform the branch based on a condition
regarding all results.

SIMD features are available on almost all current processor architec-
tures [Intel02b, AMD03, AltiVec, IBM05], but only Intel’s Streaming SIMD
Extension will be considered in the following. Nevertheless, all code examples
in this thesis can be easily ported to a different SIMD extension.

3.3.1 Intel’s Streaming SIMD Extension (SSE)

For historical reasons, floating point operations on x86 architectures have
been executed using the FPU (floating point unit). FPU registers have been

3.3 Data Level Parallelism by SIMD Instructions 21

organized in a stack-like structure, causing reorganization overhead for exe-
cuting floating point operations. With the introduction of the Pentium-III,
Intel for the first time offered SIMD features with its Streaming SIMD Ex-
tension (SSE) [Intel02b].

1 2 3

3210

00 1 1 2 2 3 3

X X X X
YYYY

X+Y X Y+ X+Y X+Y

0 xmm0

xmm1

addps xmm0,xmm1

Figure 3.2: Intel’s streaming SIMD extension allows for manipulating four
data elements via a single instruction, e.g. adding four single precision float-
ing point values.

SSE allows for operating on multiple data elements, usually on four 32-
bit data elements, for the cost of one. Besides the advantage of data level
parallelism, dropping the stack-like register organization in favor of a linear
addressing model further accelerates operations further.

The standard SSE instruction set allows for operating on four single pre-
cision floating point values via a single instruction. SSE implementations of
current processors, e.g. Pentium-IV internally execute only two single pre-
cision floating point operations in parallel, i.e. four operations in a 2 × 2
way. This hardware implementation is currently limiting the SSE instruction
throughput, but is likely to be removed from future architectures [Intel05].

The latest extension to the instruction set, called SSE2 [Intel01] and
SSE3 [Intel03], also makes it possible to manipulate four 32-bit integer, eight
16-bit integer, sixteen 8-bit integer, or two 64-bit double precision floating
point values via a single instruction. As these instruction do not play a
major role in the example implementations, they are not discussed in any
more detail.

All SSE registers (8 to 16, depending on the architecture version) are
4 ∗ 32 = 128-bit wide. These registers are usually referenced by xmm0 to
xmm7 (or xmm15). Figure 3.2 shows a simple example of adding two SSE
registers (four single precision floating point values per register) using a single
instruction.

SSE introductions work most effectively in the vertical way, as shown by
Figure 3.2. The horizontal way is more difficult due to the lack of appropriate
horizontal instructions. For example, a short sequence of instructions is
required to sum up all four register elements (see Section 3.3.3). Even though

22 Chapter 3: CPU Architectures

the latest architectures [Intel03] offer direct support for horizontal operations,
they are not as efficient implemented as vertical operating instructions.

0 0 0 0

0

0

1 1 1

1

1

12 2 2

2

2

2

3 3 3

3

3

3

X Y Z

X Y Z

−

−

−

−

ZYX

X Y Z

X X X X

Y Y Y Y

ZZZZ

Figure 3.3: Left: For many algorithms, e.g. computing dot products, the
standard array-of-structure (AOS) layout does not ensure optimal SSE uti-
lization (the right-most element is not used). Right: The structure-of-array
(SOA) layout is more beneficial as it optimally supports vertically operating
SSE instructions.

As a consequence, the layout of data and the implementation of algo-
rithms should be rearranged to allow for as many vertical instructions as
possible. As an example, vertex data should be stored in the structure-
of-array (SOA) format instead of the array-of-structure (AOS) format (see
Figure 3.3). Figure 3.4 shows that using the structure-of-array data layout,
four dot products can be efficiently implemented by using only five instruc-
tions. The array-of-structure data layout would require more than double
the number of instructions (because of the required shuffle operations).

0

0

0

1

1

1

2

2

2

3

3

3

xmm0X X X X
Y Y Y Y

ZZZZ
xmm1

xmm2

mulps xmm0,xmm0
mulps xmm1,xmm1
mulps xmm2,xmm2
addps xmm0,xmm1
addps xmm0,xmm2

Figure 3.4: The structure-of-array (SOA) data layout allows for efficiently
using SSE instructions, e.g. computing four (simple) dot products in parallel
(similar to the code in Figure 3.1) using only 5 instructions.

3.3 Data Level Parallelism by SIMD Instructions 23

If the array-of-structure layout as input format cannot be avoided, a cor-
responding transposition into the structure-of-array can be performed on-
the-fly. The transposition code consists of a sequence of shuffle and load
instructions. The decision of whether the overhead introduced by the re-
arrangement of register elements is tolerable or not largely depends on the
code. If the code following the transposition is sufficiently long, the intro-
duced overhead can be effectively amortized.

Another important factor concerning efficient coding with SSE instruc-
tions relates to the rearrangement of instructions in terms of their throughput
and latency. In particular, conditional branches based on a comparison be-
tween SSE registers require a manual transfer of the resulting bit mask (see
Section 3.3.2) from an SSE register to a general purpose register. This trans-
fer suffers from an high latency and should therefore be used carefully. On
the other hand, coding in terms of instruction throughput is essential for
avoiding resource conflicts of computational units. Throughput and latency
vary across x86 architectures (and their variants), making general coding
optimizations difficult. Fortunately, modern compilers allow for reordering
code with respect to a specific processor without much manual effort.

Another important limitation of SSE instructions is the lack of scat-
ter/gather operations for loading and storing data. Loading or storing indi-
vidual register elements requires a sequence of loading and shuffle operations,
because only the lowest register element can be handled as a standard scalar
register.

3.3.2 SSE Intrinsics

One possible way to benefit from SSE instructions is to directly rely on assem-
bly programming, but this procedure would be too inflexible and error-prone.
On the other hand, modern C/C++ compilers (see Section 3.4) offer auto-
vectorization of standard C/C++ program code. Even though this allows
for programming in standard C/C++ code, the output typically will not
reach the quality of hand-written code. Furthermore, the compilers often
fail to auto-vectorize loops because of unresolvable dependencies (from the
compiler’s view) within the loop body. A more efficient way that combines
both the quality of hand-written assembly code and the high-level inter-
face of C/C++ code are SSE intrinsics [Intel02a]. Intrinsics are C/C++
function-style macros, which can be used directly with C/C++ constructs
and variables. During compilation, the compiler automatically takes care of
register allocation, result propagation, intermediate usage, etc.

Due to the fact that the compiler takes care of SSE register and memory
allocation, the programmer can focus on the algorithmic implementation

24 Chapter 3: CPU Architectures

// the four three-component input vectors are stored

// in the SOA format using a SIMD vector data type.

//

// u[0] -> the four ’x’ vector components

// u[1] -> the four ’y’ vector components

// u[2] -> the four ’z’ vector components

typedef typedef __m128 sse_t;

inline sse_t SimpleDot4SSE(const sse_t *u)

{

return _mm_add_ps(_mm_add_ps(_mm_mul_ps(u[0],u[0]),

_mm_mul_ps(u[1],u[1])),

_mm_mul_ps(u[2],u[2]));

}

Figure 3.5: Intrinsics allow for effectively using SIMD instructions with
C/C++ constructs. This small routine computes four (simple) dot products
(similar to the code in Figure 3.1) in parallel using SSE intrinsics.

itself (see Figure 3.5). Moreover, the compiler is able to perform architecture-
specific optimizations, e.g. considering throughput and latency optimizations.
Most SSE intrinsics map to a single SSE instruction, others are composed of
a short sequence of SSE instructions.

Given the importance of SSE instructions for efficient coding, the most
frequently used instructions will be discussed in more detail. Note that scalar
operating intrinsics, operating only on the lowest register element, differ from
their full counterpart only through the ss-suffix instead of the ps-suffix.

Arithmetic Instructions For addition, multiplication, subtraction, and di-
vision of four single precision floating point values, the intrinsics mm add ps,
mm mul ps, mm sub ps, mm div ps are used. Reciprocal operations are
also useful, e.g. mm rcp ps and mm rsqrt ps, which perform the 1/x and
1/sqrt(x) operations. These special instructions are faster than a real di-
vision or square root. The speed increase comes at the expense of reduced
accuracy because the result is computed based on approximating algorithms.
Nevertheless, the reduced accuracy can be increased afterwards by perform-
ing a Newton-Raphson iteration [Intel02b] (resulting in a short sequence of
additional instructions). Breaking up costly long-latency instructions such
as real divisions or square roots into a short sequence of short-latency in-
structions is more advantageous for exploiting instruction level parallelism.

3.3 Data Level Parallelism by SIMD Instructions 25

Load/Store Instructions Loading one single or four single precision float-
ing point values can be performed using the intrinsics mm load ss and
mm load ps. Note that the argument of mm load ss and mm load ps is a
pointer to a float or float array. Additionally, mm load ps requires that the
address is aligned on a 16-byte boundary to ensure maximum performance
(less efficient non-aligned access can be implemented by mm loadu ps). The
intrinsics mm set ps and mm set ps1 use immediate float values as argu-
ments. mm set ps1 copies a single value into all four register elements.
Note that loading four different float values into a single register by applying
mm set ps and mm rset ps involves a sequence of shuffle instructions. Re-
turning the lowest SSE register element as scalar float value can be performed
by using the mm cvtss f32 intrinsic.

Comparison Instructions Comparisons between two SSE registers using
the mm cmpXX ps (XX can be eq,lt,gt,...) return a mask where all bits of
each register element are set to one if the result of the comparison is true
and are set to zero otherwise. In combination with a sequence of logical
instructions, the returned bit mask can be used to implement an element-
based conditional move sequence.

Miscellaneous Instructions The mm shuffle ps intrinsic shuffles register
elements within one single or across two registers (with certain restrictions).
It is often necessary to apply a conditional jump based on the values of
all four register elements. Therefore, mm movemask ps transfers the high-
est bit (the sign bit) of each register element to the four lowest bits of a
general purpose register. If all register elements contain a comparison’s bit
mask, the transferred bits correspond to the comparison result. In order to
quickly obtain the maximum and minimum values per register element, the
mm max ps and mm min ps intrinsics can be used.

Logical Instructions The logical operations or, and, xor, and notand
are realized by mm or ps, mm and ps, mm xor ps, and mm andnot ps.
mm setzero ps allows for quickly setting all register elements to zero using
a simple xor operation.

3.3.3 Using Intrinsics and Basic Data Structures

As discussed in Section 3.2, the performance impact of mis-predicted branches
due to pipeline flushes can be critical. This holds especially true for SSE
code sequences. In many cases, a conditional branch construct looks like:

26 Chapter 3: CPU Architectures

IF condition THEN C=A ELSE C=B. An efficient way to realize these if-
else-constructs per SSE register element without branching is to apply bit
masking (returned by an SSE-comparison) using a short sequence of logical
instructions (see Figure 3.6).

inline sse_t Update4(const sse_t a, const sse_t b, const sse_t mask)

{

// note that ’andnot’ requires the ’mask’ as first parameter

return _mm_or_ps(_mm_and_ps(a,mask),

_mm_andnot_ps(mask,b));

}

Figure 3.6: Small utility functions increase the readability of SSE code signif-
icantly. The routine implements an - IF condition THEN C=A ELSE C=B
- construct on register element level.

For the operation of computing the inverse of four single precision values
in parallel, it is often beneficial to not apply a real division, but to use
a reciprocal approximation combined with a Newton-Raphson iteration in
order to increase the result’s accuracy later on. Figure 3.7 shows the actual
SSE implementation.

inline sse_t Inverse4(const sse_t n)

{

const sse_t rcp = _mm_rcp_ps(n);

return _mm_sub_ps(_mm_add_ps(rcp,rcp),

_mm_mul_ps(_mm_mul_ps(rcp,rcp),n));

}

Figure 3.7: Fast inverse computation by using reciprocal approximation com-
bined with a Newton-Raphson step in order to increase IEEE precision to 24
bits. In many cases, splitting up inverse computation into multiple instruc-
tions is faster than using an explicit division, because the instruction level
parallelism of current CPUs allows for a efficient parallel execution with sur-
rounding instructions.

Up to the latest Pentium-IV [Intel03] and Opteron processor generations,
SSE instructions have been lacking direct hardware support for horizontal
operations. Horizontal operations work on all elements of a single register
and store the result in the lowest element. However, horizontal operations
can be simulated using a sequence of instructions. As shown in Figure 3.8,
a horizontal add requires at least four instructions. Similar utility functions
compute horizontal sub, min, and max operations.

3.4 Tools and Hardware 27

inline sse_t sseHorizontalAdd(const sse_t &a)

{

const sse_t ftemp = _mm_add_ps(a, _mm_movehl_ps(a, a));

return _mm_add_ss(ftemp,_mm_shuffle_ps(ftemp, ftemp, 1));

}

Figure 3.8: Many architectures do not offer SSE instructions for perform-
ing horizontal operations, e.g. adding all four register elements and storing
the result in the lowest element. Instead, a short sequence of instructions
emulates these horizontal operations.

Given the seamless integration of intrinsics into C/C++ code, it is ben-
eficial to implement useful code sequence as small utility functions. These
utility functions increase the readability of the SSE code significantly.

Another important point to consider is the fact that even coherence is
highly important for implementing algorithms through SSE code. This is es-
pecially true for conditional branching based on the values of all four register
elements (using the mm movemask ps instruction). In this case, decision-
coherence which is defined as the probability that the comparison result in all
four register elements is equal, is essential. Testing the sixteen possibilities
by if-else or switch statements, where each case has equal probability, would
typically result in many branch mis-predictions. Therefore, a high decision-
coherence allows for arranging the comparison statements based on their
probability. This efficiently reduces the amount of mis-predicted conditional
branches.

Creating fundamental data structures for tracing ray bundles is straight-
forward. Due to the fact that SSE operates on four elements at once, struc-
tures for storing information of four rays are created first. Figure 3.9 shows
data structures for storing four three-component vectors in the SOA format,
and the hence constructed four-ray structure.

Besides a structure for ray and intersection data, a structure for axis-
aligned bounding boxes, e.g. as representation for spatial voxels, is often
required. An efficient representation based on the extremal expansion is
shown in Figure 3.10.

3.4 Tools and Hardware

Because of the required SSE intrinsics support, all algorithms were imple-
mented using either the GCC compiler collection [GNU] or the Intel C/C++
compiler suite [Intel02a]. Because of its superior performance, the Intel com-

28 Chapter 3: CPU Architectures

struct R3 {

float x,y,z;

};

// -- single ray --

struct Ray {

R3 direction;

R3 origin;

};

struct Intersection {

float dist;

float u;

float v;

float id;

};

// -- packet/bundle of four rays --

struct SSEVec4 {

sse_t t[3]; // SOA format

};

struct SSERay4 {

SSEVec4 direction;

SSEVec4 origin;

};

struct SSEIntersection4 {

sse_t dist;

sse_t u;

sse_t v;

int id[4];

};

Figure 3.9: ’R3’ is the basic representation of a three-component vector,
while ’Ray’ and ’Intersection’ store ray and intersection data for a single ray.
’SSEVec4’ is the fundamental data structure for storing four three-component
vectors in the SOA format. It builds the base for the ’SSERay4’ structure,
which stores the data for four rays. The ’SSEIntersection4’ structure stores
the data for four intersection points, e.g. intersection distance, barycentric
coordinates, and the index of the primitive hit.

piler is favored over the standard GCC compiler. It is interesting to see that
the Intel compiler creates very efficient code not only for Intel processors,
but also for its competitors.

For profiling, analyzing, and identifying code bottlenecks, the VTune
profiling tool is used [Intel04]. The tool provides a detailed analysis for
detecting performance-related bottlenecks caused by cache misses, branch

3.5 Conclusions 29

struct Box {

R3 min;

float dummy0;

R3 max;

float dummy1;

};

Figure 3.10: Structures for representing three-component vectors and axis-
aligned bounding boxes. The axis-aligned bounding box is represented by their
extremal points. The additional dummy values ’dummy0’ and ’dummy1’ in-
crease the total structure to a preferable size of 32 bytes, which is more suit-
able with respect to cache-line sizes. Note that no SSE data types are used
because for many algorithms a fast access to individual vector elements must
be ensured (avoiding the overhead for accessing SSE register elements). In
the two dummy values additional information can be stored.

mis-predictions, etc. Furthermore, VTune provides many useful statistics
such as cycles per instructions ratios, issued/retired ratios with respect to
different instruction types, etc.

For providing an approximate cost measure for a short code sequence,
the internal processor’s clock cycle counter [Intel97] is used. Note that out-
of-order execution, caching effects, varying branch table history entries, sur-
rounding code sequences, and even differences in the underlying architecture
make it very difficult to determine the exact amount of cycles required for a
given code sequence. Therefore, all cycle statistics in this thesis should be
seen as estimates rather than exact values.

As operating system a 32-bit or 64-bit Linux distribution, running a 2.4
kernel has been used. Most of the performance statistics were measured
on a 2.2 GHz Pentium-IV PC with 512 MB of memory. In a few cases,
in particular where a PC cluster setup was needed, a cluster of PCs with
AthlonMP 1800+ PCs (running at 1.5 GHz) was used. Whenever a 64-bit
processor provided superior performance compared to a 32-bit processor, a
64-bit AMD Opteron PC with 1.8 GHz has been chosen.

3.5 Conclusions

Current CPU architectures are able to provide a large amount of computing
power if they execute well-suited code. Even though today’s compilers offer
automatic optimization features, the full potential of a processor can only be
utilized by manual optimization.

30 Chapter 3: CPU Architectures

The difference in performance between manually optimized and unopti-
mized code can reach order of magnitudes. Therefore, it will become more
and more important to focus on the optimization of critical code sections. It
can even be beneficial to favor algorithms that have a sub-optimal algorithmic
complexity, but allow for very simple and therefore fast implementation. An
implementation requiring only a sequence of simple instructions is typically
more suited for current CPU architectures.

Apart from simplicity of implementation, the memory access pattern of
algorithms is another critical point. Code that is optimized to access memory
in a cache-friendly way is likely to outperform unoptimized code. The same
optimization argument holds true for branch and ILP optimizations.

As a result, it is essential for achieving optimal performance on current
CPU architectures to carefully chose and optimize algorithms in terms of the
underlying architecture.

Chapter 4

Tracing Coherent Ray Bundles

Efficiently searching for the first intersection along a ray requires building up
a spatial index structure over the primitives within the scene. The spatial
cells created by the spatial index structure allow for efficiently reducing the
number of potential intersection candidates but require a way of quickly
identifying those cells that are intersected by the ray. Moreover, the cells
have to be traversed in front-to-back order to ensure early ray termination.

The spatial index structure has a tremendous impact on the performance
of the core ray tracing algorithm. The following issues describe those impacts
in detail:

Quality: The quality of a spatial index structure is measured in terms of the
number of required traversal steps versus resulting intersection opera-
tions. Depending on the chosen index structure and the corresponding
implementation, it can be beneficial to increase the required number
of operations of one category in order to decrease the number of oper-
ations of the other category, i.e. to have a higher number of traversal
operations in order to perform fewer intersection operations. Never-
theless, the main goal should be to reduce the number of operations in
both categories.

Memory Layout: The larger the memory representation of a spatial in-
dex structure the higher the required bandwidth to memory. In the
case the processor’s cache hierarchy is not able to efficiently support
memory accesses to the spatial index structure, the core ray tracing
algorithm can easily become memory-bandwidth limited. Moreover, a
sub-optimal memory access pattern (e.g. accessing data crossing cache-
lines) or a too complex data extraction sequence (e.g. decompressing
spatial cell data) can significantly impact performance.

32 Chapter 4: Tracing Coherent Ray Bundles

Traversal Costs: Besides the number of traversal steps, the cost of per-
forming a single traversal step for one or more rays is particularly im-
portant. Complex code that does not efficiently map to the underlying
hardware architecture is able to offset any benefit from a high-quality
spatial index structure.

Apart from quality and memory requirements, the traversal operation
must be generalizable for efficiently supporting coherent ray bundles (see
Section 2.4.1), because this has turned out to be one of the key factors for
pushing ray tracing performance [Wald04, Reshetov05]. This means that
data access costs can be efficiently amortized over all rays within the bundle
(instead of only one ray at a time). This allows for reducing the required
memory bandwidth, which is known to be one of the major bottlenecks of
current CPU architectures. Since a traversal operation is performed in a
similar way for all rays within the bundle, an implementation can reduce
traversal costs by exploiting SIMD instructions.

By carefully reviewing different spatial index structures with respect to
quality, memory layout, and traversal costs, a kd-tree is chosen as the most
appropriate data structure. A kd-tree is a BSP tree [Subramanian90a, Sung92,
Bittner99, Havran01] with axis-aligned splitting planes. The advantages of a
kd-tree are its better geometric adaptation ability [Havran01, Wald04] com-
pared to other spatial index structures [Havran01], and its very efficient mem-
ory layout with respect to CPU caches [Wald04]. Moreover, kd-tree traversal
can be efficiently generalized for tracing bundles of coherent rays in parallel
using a short and iterative approach [Wald04, Reshetov05].

As algorithms for tracing coherent ray bundles form the crucial base for
achieving realtime ray tracing for different primitive types (see Chapter 5
and Chapter 6), a detailed algorithmic review and coding guidelines for dif-
ferent implementations will be presented in the following. Section 4.1 briefly
deals with an efficient memory layout for kd-trees, while Section 4.2 and Sec-
tion 4.3 present state-of-the-art traversal algorithms for ray bundles in detail.
Section 4.4 finally discusses the advantages and disadvantages of using ray
bundles.

4.1 kd-Trees

The kd-tree is basically a binary tree in which each node corresponds to a
spatial cell. Inner nodes within the tree also represent axis-aligned splitting
planes. The spatial cells of the two child nodes of a given node are created
by splitting the node’s spatial cell by the corresponding splitting plane. The

4.1 kd-Trees 33

deeper a node is located in the tree the smaller its spatial cell. Instead of
splitting planes, leaf nodes store references to all primitives that intersect the
corresponding spatial cell.

The kd-tree itself is constructed by recursively subdividing the scene’s
spatial bounding box by inserting axis-aligned splitting planes. As an inner
node represents a splitting plane, the two child nodes represent two axis-
aligned spatial cells, split by the splitting plane of the parent node. These
spatial cells are often referred to as cells or voxels.

Each leaf node, in contrast to an inner node within the kd-tree, must
refer to a corresponding list of primitives (instead of referring to the two child
nodes). In other words, the representation of a kd-tree node requires a flag in
order to decide whether it is an inner or a leaf node. In the event of an inner
node, a pointer to the two child nodes (storing the child nodes successively
saves a second pointer) is required, while in the event of a leaf node, a pointer
to a list of primitive references is needed. Instead of using pointers, address
offsets can be used. Adding the offset to the memory address of a given node
yields the memory address of the two child nodes.

A compact data structure for realizing these requirements has been pro-
posed by Wald et al. [Wald04]. Figure 4.1 shows that the 8-byte structure
allows for efficiently storing all required information within a 64-bit word.
Note that logical instructions such as and, or, and xor on 32-bit or 64-bit
integers are very efficient on current CPU architectures, allowing masking
operations to extract data to be implemented very efficiently. Coding the
offset, which refers either to the two child nodes or to the leaf primitive list,
within 29 bits allows for a maximum “node” distance of 229 ∗ 8 bytes. As
229 ∗ 8 = 232, the addressing scheme does not reduce the available address
space (on a 32-bit architecture).

Memory access on current CPU architectures works with cache-line gran-
ularity. The typical cache-line size is 32, 64 or 128 bytes depending on the
underlying CPU architecture. This means that the CPU loads/stores a com-
plete cache-line no matter the actual operand size of the memory access.
Having a kd-tree memory alignment of more than 23 ensures that accessing
the first child node automatically fetches the second child node. Depending
on cache-line size, 8− 16 nodes can be stored within a single cache-line. For
certain cases it could be beneficial to regroup the kd-tree nodes in small sub-
trees of cache-line size [Havran01]. This technique might be able to further
reduce the number of cache misses during traversal.

34 Chapter 4: Tracing Coherent Ray Bundles

// efficient 8-byte layout for a kd-tree node

struct KDTreeNode {

union

{

float split_position; // position of axis-aligned split plane

unsigned int items; // or number of leaf primitives

}

unsigned int dim_offset_flag;

// the 32 bits of ’dim_offset_flag’ are used to encode multiple data

// bits[0..1] : encode the split plane dimension

// bits[2..30] : encode an address offset

// bit[31] : encodes whether a node is an inner node or a leaf

};

// macros for extracting node information

#define ISLEAF(n) (n->dim_offset_flag & (unsigned int)(1<<31))

#define DIMENSION(n) (n->dim_offset_flag & 0x3)

#define OFFSET(n) (n->dim_offset_flag & 0x7FFFFFFC)

Figure 4.1: kd-tree node layout using only eight bytes. In combination with
a proper memory alignment of more than 23 bytes, the kd-tree node layout
allows for storing the split dimension within the two lowest bits. The highest
bit decides between inner and leaf node, while the remaining 29 bits encode
an address offset (substituting a pointer) to either the child nodes or to an
index list of primitives.

4.2 Ray Bundle Traversal I

Fast traversal through a kd-tree is essential for achieving high ray tracing
performance because the operation is the one most frequently performed.
In order to provide a better understanding of the traversal algorithm for
bundles, a brief review of the algorithm for single rays is given first.

4.2.1 The Ray-Segment Algorithm for Single Rays

The traversal algorithm basically consists of the following operations: De-
scend from the kd-tree root node in a front-to-back manner (required by
early ray termination) by either following the front, the back, or both chil-
dren until a leaf is reached. In the case of following both children, continue
with the front child and push the kd-tree node referring to the back child onto
a stack. If a leaf is reached, test all entries in the leaf’s primitive reference
list (typically, indices referring to a list of scene primitives) for intersection.

4.2 Ray Bundle Traversal I 35

++ −−

Figure 4.2: The front “child” (green) and back “child” (red) is determined
by the direction of the ray. Therefore, the traversal order can directly be
extracted from the direction sign with respect to the dimension of the split
plane.

After testing all primitives of a leaf, the ray is tested for early ray termina-
tion. If the ray is not terminated yet and the traversal stack is not empty,
a kd-tree node is popped from the stack and the traversal is continued from
this node. These steps are performed until the stack is empty or the ray has
found a valid intersection. Note that the front respectively back child depend
only on the direction of the ray (see Figure 4.2). Moreover, the order can be
directly extracted out of the direction sign with respect to the dimension of
the split plane. For tracing single rays, this order is fixed during traversal.

The crucial part of the traversal algorithm is to quickly evaluate the de-
cision of whether to follow only the front child, back child, or both children
while descending within the kd-tree. The algorithm proposed by Wald et
al. [Wald04] operates in one dimension along a ray and is based on the com-
parison of ray segments. In the following, this algorithm will be called ray
segment algorithm.

Representing a ray as R(t) = origin + t ∗ direction allows for associ-
ating a ray segment [near, far] with parameter t. This interval represents
the segment where the ray intersects a given cell. The ray segment is first
initialized to [0,∞) and then clipped according to the axis-aligned bounding

36 Chapter 4: Tracing Coherent Ray Bundles

far

near

far

d

d near

far

d

near

Figure 4.3: Left: The ray enters only the front child because distance value
’d’ is greater than the value ’far’. Center: The ray enters the back child,
distance value ’d’ being smaller than the value ’near’. Right: The ray enters
both children. The traversal is continued with the front child while the back
child is pushed onto a stack. For both children, the ray segment has to be
updated accordingly.

box of the scene. This clipping operation initializes near and far, which
avoids unnecessary traversal operations in the case the origin of a ray lies
outside the axis-aligned bounding box of the scene.

As shown in Figure 4.3, testing of the three cases (i.e. following either
the front child, back child, or both children) can be realized efficiently by
comparing the computed distance d to the splitting plane with the current
ray segment [near, far]. Three cases are possible:

d > far: The ray only intersects the cell associated with the front child.
The ray segment stays the same.

d < near: The ray only intersects the cell associated with the back child.
The ray segment stays the same.

near ≤ d ≤ far: The ray intersects both children. In a first step, the cell
in front of the splitting plane must be traversed with [near,d] as the
ray segment, and in a second step, the cell behind the splitting plane,
with [d,far] as the ray segment.

4.2 Ray Bundle Traversal I 37

d

d

far

far

d
near

far

d

0d

1

0d

1

1

1

d0

near

0d

1

near
near

far0

far1

1

0near

0

1
near0

near1

far

10

far0

near0 1

1

0far

Figure 4.4: For all ray bundles a common origin is assumed. Left: All rays
enter the cell of the front child as all distance values ’di’ are greater than
the values ’fari’. Center left: All rays enter the cell of the back child as all
distance values ’di’ are lower than the values ’neari’. Center right: If only a
single ray traverses both children, all rays have to follow. Right: The cells of
the front and the back child have to be accessed again, but the ray bundle has
different direction signs. Even in this case, a common front-back decision is
possible: All rays first access the cell of the child containing the origin.

One advantage of the ray segment algorithm is that it requires only a
short sequence of simple instructions. In particular, only the parametric
distance d has to be computed, followed by the two comparisons with the
near and far value. Based on these comparisons, one of the three cases has
to be determined and the traversal is continued accordingly.

4.2.2 The Ray-Segment Algorithm for Ray Bundles

Traversal for bundles of rays relies on the same idea of comparing ray seg-
ments as shown for single rays (see Section 4.2.1). Instead of a single interval
[near, far], n intervals [neari, fari], where n is the number of rays within the
bundle, have to be used. Note that in the following it is assumed that all rays
within a bundle have a common origin, while the case of arbitrary origins
will be discussed later on. This assumption allows for a common traversal
order in the event of varying ray direction signs.

38 Chapter 4: Tracing Coherent Ray Bundles

Figure 4.4 illustrates that if the segment comparison for all rays is iden-
tical (di > fari or di < neari), only one child has to be traversed similarly
to the single ray case. In all other cases, both children must be traversed.
In other words: If any ray indicates a specific child, all rays have to follow.
This illustrates why coherence within the ray bundle is essential for achieving
high performance, because the more coherent the rays are the more likely it
is that all rays make the same decision.

Attention must be given to determining the front and back order when
both children have to be traversed. In the case that all rays have the same
direction sign (with respect to the split dimension), the front and back child
is unambiguously determined (as in the single ray case). If the ray direction
signs vary but (as assumed) all rays have a common origin, a non-ambiguous
order (see Figure 4.4) is still ensured, because all rays first traverse the child
containing the origin.

Computing the appropriate order every time from scratch during traversal
can be quite complex. Therefore, it can be beneficial to split the rays into
bundles with equal direction signs before the traversal. Moreover, in practice
only a few bundles need to be split up. For more simplicity, the case of equal
direction signs is assumed for all subsequent code examples.

A similar procedure can be applied if the rays within the bundle do not
share a common origin and ray directions differ. In this case, no consistent
front and back order can be determined. The best way to ensure a consistent
order is to split the rays into bundles containing only rays with equal ray
directions ensuring a common traversal decision.

4.2.3 Implementation

In the following, an example implementation for the ray segment traversal
algorithm for ray bundles is proposed. The implementation is optimized for
exploiting SIMD features by using SSE intrinsics. As SSE operates on four
floating point values at once, it is beneficial to use ray bundles with a multiple
of four rays. The implementation is divided into three parts: Initialization,
traversal order determination, and the traversal operation itself.

Initialization

The initial clipping against the scene bounding box computes the minimum
and the maximum parametric distances to all three plane slabs [Kay86] (a
box is defined as the intersection of three slabs). Figure 4.5 shows the SSE
implementation for a bundle of four rays. Note that values of clip min and
clip max will be exchanged according to the ray directions, before updating

4.2 Ray Bundle Traversal I 39

near4 and far4. During traversal, the parametric distance d to the splitting
plane is computed as d = (split − origin) ∗ 1/direction. By precomputing
1/direction a costly division operation is avoided. Note that the inverse
computation does not have to be performed at this point, e.g. the inverse of
directions for primary rays can be initialized when the rays are generated.

sse_t near4 = _mm_setzero_ps(); // -- four ray segments --

sse_t far4 = _mm_set_ps1(Infinity);

SSEVec4 oneOverDirection; // -- 1.0 / ray4.direction --

// -- clipping in the x dimension --

oneOverDirection4.t[0] = Inverse4(ray4.direction.t[0]);

// compute minimum distance by (box.min.x - origin.x) * 1.0/direction.x

const sse_t clip_min = _mm_mul_ps(_mm_sub_ps(_mm_set_ps1(box.min.x),

ray4.origin.t[0]),

oneOverDirection.t[0]);

// compute maximum distance by (box.max.x - origin.x) * 1.0/direction.x

const sse_t clip_max = _mm_mul_ps(_mm_sub_ps(_mm_set_ps1(box.max.x),

ray4.origin.t[0]),

oneOverDirection4.t[0]);

// update near4 and far4 based on the minimum and maximum distance

const sse_t cmp = _mm_cmpgt_ps(ray4.direction.t[0],_mm_setzero_ps());

near4 = _mm_max_ps(near4,Update4(cmp,clip_min,clip_max));

far4 = _mm_min_ps(far4,Update4(cmp,clip_max,clip_min));

Figure 4.5: Initial segment initialization for a four-ray bundle. The four ray
segments are stored within the two SSE variables ’near4’ and ’far4’. After ini-
tialization, one clipping step against the scene bounding box, here in the first
dimension, is applied. Clipping in the other two dimensions is implemented
accordingly. The inverse of the directions is stored in the ’oneOverDirection4’
structure.

In order to achieve a common traversal order, it is necessary to split up a
ray bundle with different ray directions into bundles with equal ray directions.
This case can be quickly detected by comparing the direction signs of all
rays within the bundle. The signs for a four-ray bundle can be extracted by
a simple mm movemask ps instruction. This instruction extracts the sign
bits of all register elements, and stores the final 4-bit result within a general
purpose register. In the case the four signs are equal (either 0 or 0xf) with
respect to all three dimensions, the bundle does not need to be split. The

40 Chapter 4: Tracing Coherent Ray Bundles

splitting operation can actually be seen as a sorting of ray directions into the
eight coordinate system octants. Each octant ensures equal ray directions,
and can therefore be processed without further splitting.

In the case a ray does not enter the scene bounding box it should not
influence any decision in the traversal and intersection. Therefore, such in-
valid rays have to be identified and deactivated. Fortunately, the clipping
step automatically sets the ray segment for invalid rays to the invalid state of
near > far. Detecting this case by performing an SSE comparison between
near4 and far4 allows for using the bit-mask result as a valid/invalid mask
for rays.

const unsigned int dir_x = *(unsigned int *)(&ray4.direction.t[0]);

const unsigned int dir_y = *(unsigned int *)(&ray4.direction.t[1]);

const unsigned int dir_z = *(unsigned int *)(&ray4.direction.t[2]);

const unsigned int ray_dir_x = (dir_x & ((unsigned int)1<<31))) >> 28;

const unsigned int ray_dir_y = (dir_y & ((unsigned int)1<<31))) >> 28;

const unsigned int ray_dir_z = (dir_z & ((unsigned int)1<<31))) >> 28;

const unsigned int ray_dir[3][2] = {

{ ray_dir_x,ray_dir_x^((unsigned int)1 << 3) },

{ ray_dir_y,ray_dir_y^((unsigned int)1 << 3) },

{ ray_dir_z,ray_dir_z^((unsigned int)1 << 3) } };

Figure 4.6: Precomputing the traversal order (front and back child) as offsets
for a bundle of rays with equal directions. For a given dimension ’d’, the
front child has an offset of ’ray dir[d][0]’, and the back child of ’ray dir[d][1]’.
In order to efficiently obtain the pointer to the front respectively back child
of the current kd-tree node, only the precomputed offset has to be added to
the current node address. Note that the size of a kd-tree node is 8 bytes.
Therefore, the extracted sign bit must be right-shifted by 28 bits. The offset
table contains only the values 8 or 0.

Traversal Order

Under the condition of a common traversal order, it is only necessary to
decide which of the left or right kd-tree child node is the front respectively
back child. By using a small array of two integer offsets per dimension, as
shown in Figure 4.6, the offset to the front and back child can be precomputed
(based on the direction signs) for the whole bundle. As all rays within the
bundle have equal directions signs, the simplification can be made to initialize
the offset table with the data of the first ray of the bundle.

The offset table itself allows for speeding up the inner-traversal loop be-
cause it avoids recomputing the offset for every traversal step. Computing

4.2 Ray Bundle Traversal I 41

the address of the child node now only requires a simple integer addition to
the address stored in the parent node. This is however only a small optimiza-
tion: The offset table and its impact on the inner-most traversal loop can
typically increase the total ray tracing performance by up to a few percent.

Traversal

The core of the actual traversal code basically consists of the decision of
whether to follow either the left, right, or both child nodes. As shown in
Figure 4.4, the state of all (active) rays must be considered in the decision.
Similar to the initial clipping, attention must be paid to rays that enter a
cell that they did not intend to enter. These rays must not influence any
decision regarding the traversal of the sub-tree that they are forced to enter.
Therefore, these rays have to be deactivated.

Ray segments of such invalidated rays are automatically set to the invalid
state of near > far. Therefore, identifying invalid rays can be efficiently
implemented by testing their current near and far values during traversal.
The bit mask returned by the SSE comparison can be used (in combination
with the initial state provided by the clipping step) to deactivate these rays.
Note that the invalidation of rays can only happen when the ray bundle
traverses both children. Another way for fast ray invalidation is to track the
state (active/inactive) of each ray during traversal. If a ray bundle intends to
traverse both children, two masks are created which correspond to the active
rays within each sub-voxel. This mask is then logically combined with the
current active mask. Therefore, no deactivated ray can become active again.
Note that in the case of explicitly handling the active mask, the mask of the
back sub-voxel has to be saved on the stack. Experiments have shown that
the performance of these two approaches is equivalent.

Figure 4.7 shows the actual traversal code. The inner-most loop and
therefore the most time-critical part descends within the kd-tree until a leaf
entry is found. For each traversal step, the dimension is extracted first. Based
on the dimension, the four distances d to the splitting plane are computed.
This computation involves an mm set ps1 instruction, which is actually a
compound of mm set ss and mm shuffle ps, to copy the split value into
the four register elements, an mm sub ps instruction for subtracting the ray
origins, and finally an mm mul ps for a multiplication with the inverse di-
rections. The computation can be interleaved with the computation of the
address of the two child nodes and the determination of the front and back
child, because the latter only depends on dimension k. Interleaving instruc-
tions is beneficial to address pipeline latencies. The address computation only
involves integer instructions, while computing the distances d only targets

42 Chapter 4: Tracing Coherent Ray Bundles

unsigned int activeMask = 0xf, termination = 0, index = 0;

union { KDTreeNode *node; unsigned int adr; };

node = scene->root; // root of kd-tree

do { // traverse until a leaf is reached

while (!ISLEAF(node)) {

const unsigned int k = DIMENSION(node);

const sse_t d = _mm_mul_ps(_mm_sub_ps(_mm_set_ps1(node->split),

ray4.origin.t[k]),

oneOverDirection4.t[k]);

adr += OFFSET(node);

KDTreeNode *back = (KDTreeNode *)(adr + ray_dir[k][1]);

KDTreeNode *front = (KDTreeNode *)(adr + ray_dir[k][0]);

node = back; // only back child traversal ?

if (!(_mm_movemask_ps(_mm_cmple_ps(near4,d)) & activeMask)) continue;

node = front; // only front child traversal ?

if (!(_mm_movemask_ps(_mm_cmpge_ps(far4,d)) & activeMask)) continue;

stackNode[index] = back; // push values on stack

stackSSE4[index].near4 = _mm_max_ps(near4,d);

stackSSE4[index].far4 = far4;

index++;

far4 = _mm_min_ps(far4,d); // update far values and the active mask

activeMask &= _mm_movemask_ps(_mm_cmple_ps(near4,far4));

}

if (node->items) {

// ... intersection code ...

termination |= activeMask &

_mm_movemask_ps(_mm_cmpge_ps(far4,hit4.dist));

if (termination == 0xf) return; // valid intersections -> terminate

}

if (index == 0) return; // stack empty -> terminate

index--; // pop values from the stack and update active mask

node = stackNode[index];

near4 = stackSSE4[index].near4;

far4 = stackSSE4[index].far4;

activeMask = ~termination & _mm_movemask_ps(_mm_cmple_ps(near4,far4));

} while(1);

Figure 4.7: SSE traversal code for a bundle of four rays (with equal direction
signs). The four lowest bits of ’activeMask’ correspond to the current ray
state (activated/deactivated), which is based on the current relation between
’near4’ and ’far4’. The code consists of three parts: Traversal until a leaf
is reached, then perform (possible) primitive intersection tests, and if not
all rays are set for early ray termination, starting a new traversal iteration
with values taken from the stack. When taking an entry from the stack the
’activeMask’ is updated with the mask of the already terminated rays.

4.2 Ray Bundle Traversal I 43

the floating point pipeline. The out-of-order execution unit of the processor
is able to execute these instructions mostly in parallel.

The decision whether to traverse the front child, back child, or both
children is computed by only considering active rays. The lowest four bits
of activeMask indicate the current state of all four rays. Applying a logical
and between activeMask and the result of SSE comparison between d and
near4 respectively far4, automatically sets the flag register, removing the
need for an additional compare instruction. The first comparison between d
and near4 tests if no ray requires to access the front child. If this condition
is true all rays will go to the back child. The second comparison for testing
the front child (no ray needs to access the back child) based on d and far4,
works accordingly.

If both the front and the back children have to be considered, the active
mask is updated based on the current values by applying a logical and be-
tween near4 and far4. This is done because a deactivated ray can never
become active again, so the number of active rays will only become smaller
while descending the tree. Additionally, the back node and the correspond-
ing far value are pushed onto the stack, and the corresponding stack index
is increased.

The two branches within the inner-most traversal loop are only taken if
all rays go either exclusively to the front or back child. These two cases
should be arranged before the case of traversing both children, because the
more coherent the rays are the lower the probability for the later case. The
probability of the front and back branch depends on the scene and in par-
ticular on the view, which is why the branch arrangement does not matter
significantly. Statistics have shown that for coherent rays all three cases oc-
cur with equal probability. Therefore, the two exclusive branches are taken
with an average probability of 2/3 and require fewer instructions than the
both child case.

In terms of cache misses, the critical memory access occurs when loading
the data of a kd-tree node from memory. Reducing the cache misses by
inserting prefetch instructions fails because the traversal code is too small to
completely hide the memory latency. On current CPU architectures, roughly
200 cycles are required to hide the latency of main memory accesses. On the
other hand, the CPU cache hierarchy ensures a reasonable cache hit rate
because of the locality of kd-tree node accesses.

When reaching a leaf node an empty test is applied first. As advanced
kd-tree construction tends to cut off empty space as much as possible, many
empty leaves will be created. In the case that the current leaves is not empty,
intersection tests, e.g. for triangles (see Chapter 5) are performed based on
a primitive index list.

44 Chapter 4: Tracing Coherent Ray Bundles

After performing all intersection tests, all rays are checked for early ray
termination. Note that only those rays are marked as terminated whose
intersection distance is smaller than the current far value and the corre-
sponding active masks are set. If the distance is higher than the current far
value, a potential new intersection could exist between the current far and
the intersection distance.

At the end, if the stack is not empty, the corresponding values are taken
from the stack and traversal is restarted. Before restarting traversal, the
active mask is reset based on the updated near and far values, and on any
newly terminated rays.

The code in Figure 4.7 stores the active mask as an integer bit mask.
On some CPU architectures, it is more beneficial to hold the active within
SSE registers, and apply an mm and ps before transferring the result of the
comparison using the mm movemask ps instruction. The latter also suffers
from a very high latency of 7 or more cycles (on current architectures). The
high latency results from the fact that the asynchronously running integer
and floating point pipelines have to be synchronized.

Further critical performance hot spots are the two branches because they
are purely data dependent. Therefore, the processor’s branch prediction unit
cannot really reduce the amount of mis-predicted branches. Besides the im-
pact of branch mis-prediction, the traversal code for four rays has a lot of data
dependencies, making parallel out-of-order execution difficult. For larger
bundles, some operations like the computation of the split plane distances
can be done in parallel across all four-ray bundles. Nevertheless, branching
according to the three traversal cases requires the comparison results of all
four-ray bundles. This introduces implicit synchronization, limiting the code
regions for potential parallel execution.

Extension: Removing Branches

The traversal loop can be implemented without branches (see Figure 4.8)
because a mis-predicted branch causes a pipeline stall up to the length of the
processor’s execution pipeline.

Current CPU architectures allow for using conditional move instructions
to prevent branching. These instructions move a value to a register only if
a specific condition holds true. Current C/C++ compilers [Intel02a, GNU]
tend to use such conditional move instructions through the ?: operator, if
both operands are constant values. The code shown in Figure 4.8 applies this
operator for setting the traversal side. Note that the conditional ?: operator
represents only a hint for the compiler to use a conditional move instruction,
not a must. Depending on the compiler, it is helpful to manually modify

4.2 Ray Bundle Traversal I 45

sse_t far4_update[2];

union { KDTreeNode *node; unsigned int adr; };

while (!ISLEAF(node))

{

const unsigned int k = DIMENSION(node);

const sse_t d = _mm_mul_ps(_mm_sub_ps(_mm_set_ps1(node->split),

ray4.origin.t[k]), oneOverDirection4.t[k]);

adr += OFFSET(node);

far4_update[0] = _mm_min_ps(far4,d);

far4_update[1] = far4;

const unsigned int d_near = _mm_movemask_ps(_mm_cmple_ps(near4,d));

const unsigned int d_near_active = (!(d_near & activeMask)) ? 1 : 0;

stackNode[index] = (KDTreeNode *)(adr + ray_dir[k][1]);

node = (KDTreeNode *)(adr + ray_dir[k][d_near_active]);

const unsigned int d_far = _mm_movemask_ps(_mm_cmpge_ps(far4,d));

const unsigned int d_far_active = (!(d_far & activeMask)) ? 1 : 0;

stackSSE4[index].near4 = _mm_max_ps(near4,d);

stackSSE4[index].far4 = far4;

const unsigned int both_sides = d_near_active | d_far_active;

index += 1 ^ both_sides;

far4 = far4_update[both_sides];

activeMask &= _mm_movemask_ps(_mm_cmple_ps(near4,far4));

}

Figure 4.8: The inner-most traversal loop implemented without branches
through applying conditional move instructions (using the ?: operator).
Branchless code avoids the penalty of branch mis-predictions. As the complete
code sequence is executed regardless of the determined traversal case, more
instructions have to be executed. The break-even point, where the branchless
version becomes faster depends on the probability distribution of the three
traversal cases. Note that the ’far4’ value must only be updated with the min-
imum of ’far4’ and ’d’ if both children need to be traversed. This code uses a
table look-up to properly update the ’far4’ value.

the code in order to achieve the desired goal, e.g. by applying explicit const
typecasts or code rearrangements.

The conditional move instructions are used to compute a traversal flag
that is active in the event that both children have to be traversed. Regardless
of the traversal case, the back child is always saved on the traversal stack,

46 Chapter 4: Tracing Coherent Ray Bundles

#define FOR_ALL_BUNDLES for (unsigned int i=0;i<BUNDLES;i++)

while (!ISLEAF(node))

{

const sse_t node_split = _mm_set_ps1(node->split);

const unsigned int k = DIMENSION(node);

adr += OFFSET(node);

KDTreeNode *front = (KDTreeNode *)(adr + ray_dir[k][0]);

KDTreeNode *back = (KDTreeNode *)(adr + ray_dir[k][1]);

unsigned int d_near = 0, d_far = 0;

sse_t d[BUNDLES];

FOR_ALL_BUNDLES

{

d[i] = _mm_mul_ps(_mm_sub_ps(node_split,ray4[i].origin.t[k]),

oneOverDirection4[i].t[k]);

d_near |= _mm_movemask_ps(_mm_and_ps(_mm_cmple_ps(near4[i],d[i]),

activeMask[i]));

d_far |= _mm_movemask_ps(_mm_and_ps(_mm_cmpge_ps(far4[i],d[i]),

activeMask[i]));

};

node = back;

if (d_near == 0) { continue; } // traverse the back child

node = front;

if (d_far == 0) { continue; } // traverse the front child

// traverse both children => push values on the stack

FOR_ALL_BUNDLES {

stackISSE[stackIndex].far4[i] = far4[i];

stackISSE[stackIndex].near4[i] = _mm_max_ps(near4[i],d[i]);

far4[i] = _mm_min_ps(far4[i],d[i]);

activeMask[i] = _mm_and_ps(activeMask[i],

_mm_cmple_ps(near4[i],far4[i]));

}

stackNode[stackIndex] = back;

stackIndex++;

}

Figure 4.9: The inner-most traversal loop for an arbitrary number of four-
ray bundles. The implementation relies on the same algorithm as shown in
Figure 4.7. Note that for each four-ray bundle, the ’activeMask’ is stored as
SSE data type.

but the stack pointer is only updated if the traversal flag is active. A similar
mechanism is applied for updating the far4 value: Both the original and a
modified far4 value are stored into a table, and the far4 is set by a table
look-up based on the traversal flag. Updating the far4 could be implemented
by a sequence of conditional move instructions, but a table look-up is usually
faster.

4.2 Ray Bundle Traversal I 47

As the branchless version executes more instructions as the version with
branches, the break-even point where the branchless version becomes faster
depends on the probability distribution of the three traversal cases. The
more likely the both-side case is, the more beneficial the branchless version
will be. Therefore, ray bundles with a low coherence are more suitable for
the branchless version.

Extension: Tracing Multiple Ray Bundles

Extending the code to trace more than four rays in parallel is straightforward.
As SSE operates on four elements, it is beneficial to handle multiples of four-
ray bundles, e.g. four four-ray bundles corresponding to 16 rays. Note that
16 rays require four near4 and four far4 values. Unfortunately, the eight
SSE registers (on standard 32-bit Intel or AMD architectures) do not allow
for holding all near4 and far4 values within registers during traversal. This
introduces additional memory accesses (temporary values must be stored to
memory). An alternative implementation could store the activeMask as an
integer value, instead of using the sse t data type. Which way is actually
faster, largely depends on the actual architecture used.

Figure 4.9 shows the traversal loop for an arbitrary number of four-ray
bundles. Note that computing distances di, and the corresponding com-
parisons to neari and fari for a bundle i is independent of other bundles,
allowing for an increased instruction level parallelism.

Moreover, the decision to follow only one side comes up roughly in the
middle of the traversal code. This means, the more likely the one-side case
happens the more often half of the traversal code is skipped. One could
easily implement the traversal code for multiple bundles without branches,
following the same approach as shown in Figure 4.8. Whether this approach
is beneficial or not, largely depends on the probability that both children
must be traversed as well as the penalty cost for a mis-predicted branch.

Extension: Tracing Multiple Ray Bundles With Masking

Apart from the given code examples, many implementation variants are pos-
sible. As mentioned in the beginning of this section, storing the active mask
as integer directly on the stack will avoid updating the active mask based
on the current near and far values. Moreover, the complete front/back child
determination can be recoded in a left/right child decision using a sequence
of Boolean expressions (see Figure 4.10).

As the fact that the front or back child only depends on the ray directions,
they can be evaluated on the fly. Therefore, all ray directions (with respect to

48 Chapter 4: Tracing Coherent Ray Bundles

#define FOR_ALL_BUNDLES for (unsigned int i=0;i<BUNDLES;i++)

unsigned int activeMask = 0xffff;

while (!ISLEAF(node)) {

const sse_t node_split = _mm_set_ps1(node->split);

const unsigned int k = DIMENSION(node);

adr += OFFSET(node);

unsigned int dgef = 0; unsigned int dlen = 0;

sse_t d[BUNDLES];

FOR_ALL_BUNDLES {

d[i] = _mm_mul_ps(_mm_sub_ps(node_split,ray4[i].origin.t[k]),

oneOverDirection4[i].t[k]);

dlen |= _mm_movemask_ps(_mm_cmpgt_ps(near4[i],d[i])) << (4*i);

dgef |= _mm_movemask_ps(_mm_cmpgt_ps(d[i],far4[i])) << (4*i);

};

const unsigned int bactive = ((dgef^0xffff) &

(dlen^0xffff)) & activeMask;

dgef &= activeMask; dlen &= activeMask;

// active rays that require to traverse the right child

const unsigned int ractive = (dgef & dir[k]) |

(dlen & (dir[k]^0xffff)) | bactive;

// active rays that require to traverse the left child

const unsigned int lactive = (dgef & (dir[k]^0xffff)) |

(dlen & dir[k]) | bactive;

if (lactive == 0) { adr += 8; continue; } // traverse the right child

if (ractive == 0) { adr += 0; continue; } // traverse the left child

FOR_ALL_BUNDLES {

stackISSE[stackIndex].far4[i] = far4[i];

stackISSE[stackIndex].near4[i] = _mm_max_ps(near4[i],d[i]);

far4[i] = _mm_min_ps(far4[i],d[i]);

}

const unsigned int side = (bactive & dir[k]) != 0;

node += side;

stackNode[stackIndex] = (KDTreeNode*)adr^8;

stackNode[stackIndex] = side ? lactive : ractive;

activeMask &= side ? ractive : lactive;

stackIndex++;

}

Figure 4.10: The inner-most traversal loop for up to eight four-ray bundles
(all rays must have the same direction sign). Instead of holding the ray active
mask within multiple SSE registers, the mask is stored as a bit mask within
a single integer register (requiring more ’ mm movemask ps’ instructions).
The decision of whether to follow the front or back child is modified into a
decision of whether to follow the left child (offset 0) or the right child (offset
8).

4.3 Ray Bundle Traversal II 49

the three dimensions) are extracted and stored as bit-masks into three integer
variables. Depending on the split dimension, one of these three direction
masks is applied to determine the front and back child, respectively.

Compared to the code example of Figure 4.9, the deactivation of invalid
rays is not performed by SSE instructions but integer instructions. Depend-
ing on the architectures, this modification can be beneficial but in general
the two implementations provide similar performance.

Future Modifications

If a future version of the SSE instruction set includes a multiply-add in-
struction, the dependency chain for computing the distances to the splitting
plane can be reduced. Instead of performing (split − origin) ∗ 1/direction,
one could rearrange this code sequence to split ∗ 1/direction − origin ∗
1/direction, while the −origin ∗ 1/direction could be precomputed. The
rearrangement allows for directly applying a multiply-add instruction of the
form a ∗ b + c.

Note that there is no unique fastest code sequence. Depending on the
architecture, in particular on the throughput and latency of the instructions,
one has to choose an appropriate implementation. Moreover, some optimiza-
tion techniques are beneficial for a certain architecture, e.g. the Pentium-IV,
but are disadvantageous for other architectures such as the Opteron.

4.3 Ray Bundle Traversal II

Reshetov et al. [Reshetov05] proposed an alternative traversal algorithm
which does not consider the decision of each ray in order to determine the
behavior of the whole bundle. Instead, the algorithm efficiently culls parts
of a kd-tree which are known not to be intersected by the frustum spawned
by the rays within the bundle. The underlying culling technique is called
inverse frustum culling.

4.3.1 The Inverse Frustum Culling Algorithm

Inverse frustum culling allows for efficiently culling the axis-aligned bounding
boxes (AABBs) associated with kd-tree cells by using the faces of a given
AABB as separation planes. If one of these planes separates the ray bundle
from the AABB, the corresponding cell can be efficiently culled.

Figure 4.11 illustrates the approach by using a 2D example. A given cell
associated to a kd-tree node is split into two sub-cells (associated to the two

50 Chapter 4: Tracing Coherent Ray Bundles

dmin dmax s min s max dmaxdmins min s max
S S

Figure 4.11: Traversal for ray bundles by comparing only extremal values: If
the extremal intersection value ’dmax’ (’dmin’) of all intersections with split-
ting plane ’S’ is less (greater) than ’smin’ (’smax’) (the bounds of ’S’ with
respect to the current cell), only the front (back) cell, colored green (white),
has to be considered further, while the back (front) is completely culled. The
non-culled cell is marked green. If none of the two cases is valid, both cells
have to be considered. Note that the culling test has to be applied in two
dimensions, i.e. given split dimension ’x’, the two culling tests have to be
applied to the other two dimension ’y’ and ’z’.

child nodes) by split plane S. In a first step, the algorithm computes the in-
tersection values di for all rays within the bundle with splitting plane S. On
the assumption that the bundle intersects the given cell, the intersected sub-
cell(s) has/have to be determined. Determining the sub-cell can be efficiently
realized by only comparing the extremal values of all ray-splitting-plane in-
tersections di with the bounded interval [smin, smax] of splitting plane S.

Knowing the extremal values of ray directions in advance allows for han-
dling large bundles of rays without considering all rays during traversal. As-
suming a standard perspective camera for generating primary rays, these ex-
tremal values correspond to the corner rays of a small N×N pixel block. The
definition of all rays within the bundle must only be known when entering a
non-empty leaf, especially for performing the ray-primitive intersection tests.

4.3 Ray Bundle Traversal II 51

Depending on the common direction of rays within the bundle, only two
cases have to be considered:

dmax < smin: All intersection points di are lower than smin. All rays will
only intersect the cell associated to the front child.

dmin > smax: All intersection points di are greater than smax. All rays will
only intersect the cell associated to the back child.

In all other cases both children have to be traversed.
Applying the algorithm to 3D requires the comparison to be made in

two dimensions: For example, given a split plane parallel to the yz-plane
the intervals in y and z direction have to be used. Furthermore, not only
the front and back child but also the roles of dmin and dmax depend on the
common ray directions within the bundle.

4.3.2 Implementation

In contrast to the algorithm in Section 4.2, the traversal does not rely on
handling ray segments but on continuously updating the axis-aligned bound-
ing box referring to the current kd-tree voxel. Representing the axis-aligned
bounding box by the two extremal points, as shown in Figure 3.10, allows
for efficiently updating the current box. The extremal component of the box
which has to be updated depends on the common ray directions.

Initialization

As pointed out, certain parts of the algorithm depend on the common ray di-
rections. The eight possible cases, corresponding to the eight octants, could
be implemented separately. The appropriate case only needs to be deter-
mined once and in particular before the actual traversal starts. In the fol-
lowing, a different implementation is used. The determination of the traver-
sal case is done in the inner-most traversal code but using data-dependent
reads. Therefore, using look-up tables, e.g. for storing integer offsets to ex-
tremal points with the box structure (see Figure 4.12) allows for avoiding
costly branches within the traversal code.

Traversal

The actual traversal code for four rays is shown in Figure 4.13. In a first step,
the four distances t to the current split plane are computed. Depending on
the dimension of the split, the other two dimensions dim0 and dim1 are

52 Chapter 4: Tracing Coherent Ray Bundles

const unsigned int signs[3] = {

_mm_movemask_ps(ray4.direction.t[0]),

_mm_movemask_ps(ray4.direction.t[1]),

_mm_movemask_ps(ray4.direction.t[2])

};

const unsigned int nearOffset[3] = {

(signs[0] == 0xf) ? 0+0 : 4+0, // min,max

(signs[1] == 0xf) ? 0+1 : 4+1, // min,max

(signs[2] == 0xf) ? 0+2 : 4+2, // min,max

};

const unsigned int farOffset[3] = {

(signs[0] == 0xf) ? 4+0 : 0+0, // max,min

(signs[1] == 0xf) ? 4+1 : 0+1, // max,min

(signs[2] == 0xf) ? 4+2 : 0+2, // max,min

};

const unsigned int dimTable[3][2] = {

{1,2}, // y,z

{0,2}, // x,z

{0,1} // x,y

};

Figure 4.12: The ’signs’ table stores the sign bits per dimension for a bundle
of four rays. The ’nearOffset’ and ’farOffset’ tables refer to components of
extremal points within the box structure. These tables are efficiently used
within the traversal code to avoid costly branches. The last table is used
for determining the two dimensions that are different from the current split
dimension.

determined. Computing the intersections points Y and Z with the splitting
plane using the two dimensions, allows for an efficient comparison against the
bounding box intervals. The minimum respectively maximum component of
these box intervals is determined by applying a look-up in the nearOffset
and farOffset table. The decision of whether the front child, back child,
or both children are traversed requires only a comparison between the four
intersection points and the minimum and maximum box components.

Instead of maintaining a stack of ray segments, a stack of axis-aligned
bounding boxes (in addition to the kd-tree node stack) is used. When both
children have to be traversed, the current bounding box and the correspond-
ing kd-tree node are pushed onto the respective stack.

Note that early ray termination requires a maximum ray distance with
respect to the current leaf. The distances can either be computed during
traversal, which is rather costly, or be computed by a sequence of clipping
steps when entering a non-empty leaf (see Figure 4.5).

4.3 Ray Bundle Traversal II 53

while (!ISLEAF(node))

{

const float split = node->split;

const sse_t node_split = _mm_set_ps1(split);

const unsigned int k = DIMENSION(node);

(unsigned int)node += OFFSET(node);

KDTreeNode *front = (KDTreeNode *)(adr + ray_dir[k][0]);

KDTreeNode *back = (KDTreeNode *)(adr + ray_dir[k][1]);

const sse_t t = _mm_mul_ps(_mm_sub_ps(node_split,ray4.origin.t[k]),

oneOverDirection4.t[k]);

const unsigned int dim0 = dimTable[k][0];

const unsigned int dim1 = dimTable[k][1];

const sse_t Y = _mm_add_ps(ray4.origin.t[dim0],

_mm_mul_ps(t,ray4.direction.t[dim0]));

const sse_t Z = _mm_add_ps(ray4.origin.t[dim1],

_mm_mul_ps(t,ray4.direction.t[dim1]));

const sse_t b_minY = _mm_set_ps1(((float*)&cbox)[nearOffset[dim0]]);

const sse_t b_minZ = _mm_set_ps1(((float*)&cbox)[nearOffset[dim1]]);

if (_mm_movemask_ps(_mm_cmplt_ps(Y,b_minY)) == signs[dim0] ||

_mm_movemask_ps(_mm_cmplt_ps(Z,b_minZ)) == signs[dim1])

{

((float*)&cbox)[nearOffset[k]] = split; node = front; continue;

}

const sse_t b_maxY = _mm_set_ps1(((float*)&cbox)[farOffset[dim0]]);

const sse_t b_maxZ = _mm_set_ps1(((float*)&cbox)[farOffset[dim1]]);

if (_mm_movemask_ps(_mm_cmpgt_ps(Y,b_maxY)) == signs[dim0] ||

_mm_movemask_ps(_mm_cmpgt_ps(Z,b_maxZ)) == signs[dim1] ||

_mm_movemask_ps(t) == 0xf)

{

((float*)&cbox)[farOffset[k]] = split; node = back; continue;

}

stackBox[stackIndex] = cbox;

stackNode[stackIndex] = back;

((float*)&cbox)[nearOffset[k]] = split;

((float*)&stackBox[stackIndex])[farOffset[k]] = split;

node = front;

stackIndex++;

}

Figure 4.13: Traversal code using extremal properties of the ray bundle. The
decision of whether the front child, back child, or both children are traversed
is based on the decision of whether all intersection points between the rays
and the splitting plane lie outside the rectangular plane region bounded by the
current kd-tree voxel.

54 Chapter 4: Tracing Coherent Ray Bundles

d

d

min

near

dmax

farmin

farmax

minnear

maxd

min

max

Figure 4.14: Alternative traversal using the ray segment algorithm for trac-
ing ray bundles (see Section 4.2.2) by comparing extremal values. Left: If the
minimum distance ’dmin’ to the current split plane is greater than the max-
imum distance to the current AABB ’farmax’, only the front child (marked
green) must be traversed. Right: If the maximum distance to the current
split plane ’dmax’ is less than the minimum distance to the current AABB
’nearmin’, only the back child (marked green) must be traversed. In all other
cases, both children must be considered. In contrast to the standard ray seg-
ment algorithm for bundles, only a single ray segment [nearmin, farmax] is
used (and updated) during traversal.

Alternative Traversal

Compared to the previous algorithm, an alternative traversal (see Figure 4.14)
relies on computing the minimum and maximum distance to the AABB cor-
responding to the current kd-tree node. If the maximum (minimum) of all
distances to the current split plane is less (greater) than the current mini-
mum (maximum), all rays will exit the AABB after (before) intersecting the
split plane and will therefore only visit the back (front) child.

The code for the alternative traversal algorithm is shown in Figure 4.15.
The main advantage of the implementation is the lower code complexity as

4.3 Ray Bundle Traversal II 55

compared to the previous implementations for tracing ray bundles. Since
only a single ray segment based on extremal values is used, the algorithm
will introduce unnecessary traversal steps in the case of low ray coherence
within the bundle.

Note that for further optimization, the horizontal operation within the
code shown in Figure 4.15 can be removed by using a precomputed table of
minimum and maximum values of 1/ray.direction for determining dMin and
dMax.

// float near: the current minimum of all distances

// float far: the current maximum of all distances

while (!ISLEAF(node))

{

const float split = node->split;

const sse_t node_split = _mm_set_ps1(split);

const unsigned int k = DIMENSION(node);

adr += OFFSET(node);

KDTreeNode *front = (KDTreeNode *)(adr + ray_dir[k][0]);

KDTreeNode *back = (KDTreeNode *)(adr + ray_dir[k][1]);

const sse_t d = _mm_mul_ps(_mm_sub_ps(node_split,ray4.origin.t[k]),

oneOverDirection4.t[k]);

const float dMin = _mm_cvtss_f32(sseHorizontalMin(d));

const float dMax = _mm_cvtss_f32(sseHorizontalMax(d));

node = back;

if (dMax < near) { continue; }

node = front;

if (dMin > far) { continue; }

stack[stackIndex] = back;

stack[stackIndex].near = MAX(dMin,near);

stack[stackIndex].far = far;

stackIndex++;

far = MIN(dMax,far);

}

Figure 4.15: Alternative traversal variant for handling ray bundles by ex-
tremal values. The code is based on comparing the extremal distances ’dMin’
and ’dMax’ (to a splitting plane) with a single ray segment [near, far].

4.3.3 kd-Tree Entry Point Search

Reshetov et al. [Reshetov05] proposed to use one of the two previous extremal
traversal algorithms to find better entry points within the kd-tree. Having
deep entry points within the kd-tree allows for minimizing the required num-
ber of traversal steps per bundle.

56 Chapter 4: Tracing Coherent Ray Bundles

A

B C

D

F

E

G

inner node

empty leaf

non-empty leaf

Figure 4.16: Simple example of finding a kd-tree entry point for a bundle of
rays using extremal traversal: Starting at the root node ’A’, only the left child
’B’ has to be traversed. At ’B’, both children have to be considered. Therefore,
’B’ is pushed onto the bifurcation stack, and the traversal continues with the
front child ’D’ of ’B’. At ’D’, only the right child ’G’ has to be traversed. Node
that ’G’ is a non-empty leaf (marked red), so it becomes the first kd-tree entry
point candidate and the bifurcation stack is frozen. As the bifurcation stack is
non-empty (it contains ’B’), the entry point algorithm takes a node from the
bifurcation stack and continues with its back child (the front child has already
been traversed). The back child ’E’ is an empty leaf (marked green), so the
current kd-tree entry point candidate is not updated. As ’E’ is a leaf and the
bifurcation stack is empty, the current candidate ’G’ is returned as the kd-tree
entry point. In the event that the entry point is already a leaf, which holds
true for ’G’, only primitive intersection tests need to be performed (skipping
ray bundle traversal).

The idea behind the kd-tree entry point search is to start with a frustum
that defines the traversal behavior of a bundle of contained rays. For primary
rays generated by a standard perspective camera, the corner rays of a small
N ×N pixel tile will define an appropriate frustum. The ray frustum is tra-
versed through the kd-tree until a non-empty leaf is found (see Figure 4.16),
or more precisely, until the axis-aligned bounding box of all primitives within
the non-empty leaf is intersected by the frustum. During traversal, all bifur-
cation kd-tree nodes (all nodes where both children have to be considered)

4.3 Ray Bundle Traversal II 57

are pushed onto a stack. This stack (including the first non-empty leaf) con-
tains all potential kd-tree entry point candidates. The algorithm continues by
taking a potential candidate from the stack and traversing the corresponding
back child (the front child has already been traversed). If for an entry candi-
date a non-empty leaf is found, the corresponding bifurcation node becomes
the current entry point candidate. The traversal and candidate updating
continues until the stack is empty, all rays within the frustum intersect the
primitives of a non-empty leaf, or a leaf is empty but is marked as inside
some “watertight” object (“empty occluders”) [Reshetov05]. In all cases, the
current candidate is returned as an entry point. Since not all rays within
the frustum have to be defined at the point where the frustum is tested for
termination, the intersection test must rely on the properties of the frustum,
i.e. if the frustum misses a primitive, all rays within the frustum will miss
the primitive too.

In addition to returning the kd-tree entry point, the algorithm must also
return the corresponding kd-tree cell as an axis-aligned bounding box. Sub-
sequent traversal algorithms are initialized by this AABB. An inaccurate
AABB, as for example the scene bounding box, will cause unnecessary traver-
sal overhead. Note that in the case of ray segment-based traversal, the cor-
responding ray clipping step must be performed with the AABB returned by
the kd-tree entry point algorithm.

With respect to a given ray frustum, the kd-tree entry point algorithm
returns either the first bifurcation node, or in the event the bifurcation node
is empty, the leaf where all rays have ended. The complete sub-tree above
the entry point can be excluded for the entire set of rays which are bounded
by the frustum. The more coherent the rays are, the deeper the entry point
is located within the kd-tree. This allows for efficiently reducing the number
of traversal steps required for the remaining set of rays. In order to achieve
good entry points, Reshetov [Reshetov05] suggested to start (for primary
rays) with boundary rays for a fairly large set of rays to continuously create
smaller sets, and to find respective entry points for them. Section 4.4 presents
the corresponding results when the entry point algorithm is used for primary
rays.

Compared to a standard traversal of ray bundles, the entry point algo-
rithm does not perform any intersection test because usually not all rays
have been defined at this point. For the actual implementation, both traver-
sal variants shown in Figure 4.13 and Figure 4.15 can be used (with the
modification of storing the parent kd-tree node on the stack, instead of the
node referring to the back child). Note that the latter procedure results in
a more inaccurate traversal because of using and continuously updating a
single ray segment of extremal values. The inaccurate traversal will typically

58 Chapter 4: Tracing Coherent Ray Bundles

result in an increased number of traversal and intersection steps. However,
these additional intersection tests can be reduced by performing an addi-
tional clipping step against the axis-aligned bounding box spawned by the
primitives within a non-empty leaf [Reshetov05].

On the other hand, the implementation of the second traversal variant
requires significantly fewer instructions compared to the first traversal vari-
ant. For either traversal variant, no masking of inactive invalid rays can
be applied (again, not all rays have to be defined at this point). If these
traversal algorithms are applied for standard traversal, the rays have to be
coherent or significant traversal overhead will be caused (depending on the
kd-tree quality). In the case these algorithms are applied for rather inco-
herent rays, Reshetov [Reshetov05] proposes to use extremal traversal in the
upper hierarchy while changing to the standard traversal (with masking) in
the deeper parts of the kd-tree (see Section 4.4).

4.4 Experiments and Results

In order to illustrate the benefits of tracing ray bundles, three triangular
example scenes with varying complexity will be discussed in the following
(see Figure 4.17). All models are rendered at a resolution of 1024 × 1024,
casting only primary rays.

Figure 4.17: A small set of triangular example scenes for illustrating traversal
statistics in the context of ray bundles. The scene complexity varies from
left to right: 280K (Conference), 680K (VW Beetle), 2.16M (Soda Hall)
triangles. All test scenes are rendered at a resolution of 1024 × 1024, using
only primary rays.

4.4 Experiments and Results 59

4.4.1 Ray Bundle Sizes

Table 4.1 shows traversal and intersection statistics for different ray bundle
sizes. These statistics have been generated for the VW Beetle scene using
the standard ray-segment algorithm shown in Figure 4.9.

Rays/Bundle 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32

T Steps/Bundle 29.79 32.25 36.81 56.33 104.32 261.23
T Steps/Ray 29.79 8.06 2.3 0.88 0.41 0.26
Only Front Side % 36.39 35.80 34.66 31.97 27.34 22.68
Only Back Side % 39.08 38.22 36.01 31.65 25.23 19.22
Both Sides % 24.53 25.97 29.33 36.39 47.43 58.10
I Steps/Bundle 2.73 3.59 5.61 11.68 29.34 88.50

Table 4.1: Traversal and intersection statistics (for primary rays) in relation
to different ray bundle sizes. Even though the statistics are generated from
the VW Beetle model (see Figure 4.17), the two other scenes show a similar
behavior. The average traversal steps per ray (T Steps/Ray) can be signif-
icantly reduced by using ray bundles (T Steps/Bundle), while the number
of required intersection steps (I Steps/Bundle) increases for larger bundles.
Given the higher intersection than traversal costs, a moderate ray bundle size
of 4× 4 rays offers the best compromise between traversal step reduction and
intersection overhead.

While the total number of traversal steps for a complete frame can be
efficiently reduced by using larger ray bundles, the total performance ad-
vantage decreases due to the traversal and intersection overhead caused by
non-coherent rays. Because of the overhead, the average number of intersec-
tions per bundle (I Steps/Bundle) increases significantly with a larger bundle
size. The impact of traversal overhead for larger bundles can be clearly de-
rived from the relative percentage of the three traversal cases (front child,
back child, or both children). Using small bundles almost 75% of the cases
require only the traversal of either the front or the back child. This amount
decreases to 41% for 32 × 32 bundles.

Because of the generally higher costs for intersection than for traversal,
a compromise between traversal reduction and intersection overhead has to
be found. The chosen bundle size depends on the cost for a traversal step,
the cost for an intersection step, and the quality of the kd-tree itself. For the
algorithms presented here, and the target resolution of 1024×1024, a bundle
size of 4 × 4 rays was found to be most suitable.

If the bounding box of all primitives within a leaf is available, an addi-

60 Chapter 4: Tracing Coherent Ray Bundles

tional clipping step between the bounding box and sub-sets of the ray bundle
can be applied. Assuming for example a bundle size of 8 × 8, additional
clipping tests against the four 4 × 4 bundles could be used to avoid unnec-
essary intersection computations. This could further reduce the number of
intersection tests per bundle while introducing additional computations per
non-empty leaf.

4.4.2 Applying kd-Tree Entry Point Search

Finding better kd-tree entry points using the algorithms from Figure 4.13
and Figure 4.15, allows for further reducing the number of traversal steps
per bundle. In order to simplify matters, the termination criteria of the kd-
tree entry search have been reduced to a simple leaf emptiness test, ignoring
advanced criteria such as “empty occluders”.

For primary rays, the ray frustum is done by splitting the screen into a
starting set of 64 × 64 pixel tiles. After looking for a kd-tree entry point by
performing an entry search using the ray frustum of a 64× 64 tile (assuming
a standard perspective camera for generating primary rays, these extremal
values correspond to the corner rays), the tile is split again into a set of 16
sub-tiles with a size of 16 × 16 pixels. For each of these 16 × 16 pixel tiles,
the entry point search is continued by using the entry point of the preceding
64 × 64 tile. At this point, the entry search is finished, and the standard
traversal is invoked. Therefore, each 16 × 16 sub-tile is split once more into
16 tiles of 4 × 4 pixel, and a standard traversal algorithm starts with the
entry point returned by the entry search of the 16 × 16 tile.

For the three example scenes, the average number of traversal steps per
4×4 bundle can be reduced by up to 48% (see Table 4.2). By fine-tuning the
heuristics used for the kd-tree construction for individual scenes (e.g. by vary-
ing the threshold for cutting off empty space), the reduction can be further
increased to over 50% percent. Note that the kd-tree heuristics (e.g. maxi-
mum depth criteria or empty space thresholds) for one particular scene are
likely to be sub-optimal for others. This should make it clear that the re-
sults achieved by applying kd-tree entry points algorithms depend largely
on the quality of the constructed kd-tree itself. Moreover, the integration
of more sophisticated termination criteria for the kd-tree entry point search,
e.g. through inserting empty occluders [Reshetov05] should provide even bet-
ter entry points, and therefore a larger reduction of the required traversal
steps.

Note that the 48% of saved traversel steps are only achieved for scenes
with a rather high geometric occlusion, as for example the conference scene.
Figure 4.18 visualizes kd-tree entry points for this scene. Almost all primary

4.4 Experiments and Results 61

Figure 4.18: Left Image: Original conference scene with simple shading,
Right Image: Visualization of kd-tree entry points. All primary rays cor-
responding to the green shaded regions take advantage of kd-tree entry points
which are deeper than the root of the tree. The red colored regions refer to en-
try points which directly correspond to a single kd-tree leaf. In this case, only
intersection operations need to be applied and initial operations, e.g. traver-
sal initialization or ray clipping can be omitted, saving many unnecessary
operations.

ray bundles exploit deep kd-tree entry points and even for a fairly large
number the entry points correspond directly to kd-tree leaf nodes. In this
case, no traversal but only intersection operations have to be performed.
If this case is applied prior to the actual ray bundle traversal, all initial
operations, e.g. ray clipping or traversal initialization can be omitted, thus
saving many unnecessary operations. As this optimization technique is rather
special, it is not included in any upcoming measurement.

For scenes with high occlusion the effect of using deep kd-tree entry points
can even save more than half of the traversal steps. Reshetov [Reshetov05]
showed that for such scenes, up to 2/3 of all traversal steps can be omitted.
On the other hand, complex scenes with less occlusion, such as the VW
Beetle scene, are not well-suited for the entry point algorithm. In this case,
only a traversal step saving of 20% to 30% is achieved (see Table 4.2).

Table 4.2 also provides statistics for replacing the standard 4 × 4 bundle
traversal algorithm (XP) by a version that is similar to the extremal traver-
sal algorithms (XP4), known from the kd-tree entry search (see Figure 4.13).

62 Chapter 4: Tracing Coherent Ray Bundles

The main difference between standard traversal and extremal traversal algo-
rithms is the deactivation of invalid rays through masking operations. As
the extremal algorithm relies on properties of the whole ray bundle without
applying any masking operations, an overhead in traversal and intersection
operations is caused. On the other hand, the advantage of extremal traversal
is its simpler and faster traversal implementation as compared to the stan-
dard algorithm. Standard traversal bases the traversal order (left, right, or
both children) on the decision of all active rays within a 4×4 bundle, whereas
extremal traversal relies only on the decision of the ray frustum. If the intro-
duced traversal and intersection overhead is sufficiently small, e.g. for simple
scenes a performance gain of up to 30 − 40% can be achieved.

Scene Conference VW Beetle Soda Hall

T / Bundle XP 39.65 36.81 29.64
I / Bundle XP 6.03 5.61 3.68
T / Bundle XP4 42.13 42.01 30.08
I / Bundle XP4 7.93 7.06 5.01
T / Bundle EP 3.37 3.56 2.94
T / Bundle XP (EP) 20.46 25.03 23.27
I / Bundle XP (EP) 6.04 5.61 4.24
T / Bundle XP4 (EP) 22.99 30.26 23.89
I / Bundle XP4 (EP) 7.94 7.16 5.6
Reduction T XP / XP (EP) 48.39% 32% 21.49%
Reduction T XP4 / XP4 (EP) 45.43% 27.97% 20.59%
Increase T XP (EP) / XP4 (EP) 12.37% 20.89% 2.66%
Increase I XP (EP) / XP4 (EP) 31.45% 27.63% 32.07%

Table 4.2: 1.) Average traversal steps (T / Bundle) and intersections
(I / Bundle) per 4× 4 primary ray bundle using standard ray bundle traver-
sal (XP) with masking, and extremal traversal (XP4) using a ray frustum
spawned by four corner rays. 2.) Additional traversal steps required for
kd-tree entry point search (T / Bundle EP). Average traversal steps and in-
tersections for standard (XP (EP)) and extremal (XP4 (EP)) per 4 × 4 ray
bundle using kd-tree entry points. 3.) For scenes with high occlusion and
less geometric complexity (Conference), up to 48% of all traversal steps are
saved. For scenes with less occlusion and high complexity (VW Beetle or
Soda Hall), only 32% to 21% are saved. Relying on extremal traversal (XP4)
results in an increased number of intersections (up to 32%).

4.4 Experiments and Results 63

For all example scenes, the overhead in traversal steps for the extremal
traversal (XP4) as compared to the standard traversal (XP) varies from 2%
to 20%. Morover, the extremal traversal requires roughly 30% more intersec-
tions. The overhead for intersection is larger than that for traversal because
the additionally accessed kd-tree nodes, which are deeper within the kd-tree,
are likely to not contain empty-space. Unfortunately, an intersection opera-
tion is more expensive than a traversal operation, especially more expensive
than an extremal traversal operation. It might be beneficial to follow the
idea of Reshetov [Reshetov05], who proposed (for rather incoherent rays) to
apply extremal traversal in the upper 2/3 of the kd-tree and for the lower
1/3 the standard traversal with masking. This would ensure fast traversal in
higher regions of the kd-tree, where the impact of extremal traversal is not
that significant, and slower but more accurate traversal in the deeper kd-tree
regions to prevent unnecessary operations.

Scene Conference

XP Bundles 65536
EP Bundles 64 × 64 224
EP Bundles 16 × 16 3955
T Steps EP 64 × 64 62.24
T Steps EP 16 × 16 40.76
T Steps EP / XP Bundle 2.61

Table 4.3: Number of primary ray bundles (frustum spawned by four corner
rays) used for kd-tree point entry search (EP) and the related average traver-
sal steps per bundle. Note that the kd-tree entry point search does not perform
any intersection operations (in this implementation). Therefore, costs of 2-3
additional traversal steps per standard 4 × 4 bundle (XP) are negligible.

Preliminary tests with a simple depth-based criteria have shown that the
traversal overhead of extremal traversal can be split by half. For scenes with
high occlusion, e.g. the conference scene, even pure extremal traversal can
be beneficial. Especially for simple scenes with high occlusion, the faster
implementation of extremal traversal outperforms the standard traversal al-
gorithm. Note that the pure extremal traversal will not perform well with
complex scenes having less occlusion, e.g. the VW Beetle scene. As no mask-
ing of inactive rays can be applied during traversal, extremal traversal will
access more leaves and will therefore perform more intersection operations.
The intersection overhead (typically more than 30%) is likely to offset any
traversal benefit.

64 Chapter 4: Tracing Coherent Ray Bundles

The overhead for extremal traversal largely depends on the underlying kd-
tree. If the kd-tree is not constructed well, e.g. without applying surface area
heuristics (SAH), the resulting amount of required traversal and intersection
operations can be tremendous [Havran01, Wald04]. Even in the case of SAH-
based kd-tree construction, it is highly beneficial to further optimize the
kd-tree for extremal traversal, e.g. by avoiding many extreme small voxels.
Reshetov et al. [Reshetov05] proposed several techniques for optimizing SAH-
based kd-tree construction, which could additionally lower the traversal and
intersection overhead.

In terms of entry search complexity, only 2− 3 additional traversal steps
per 4 × 4 bundle have to be applied (see Table 4.3). Note that the entry
point search does not perform any intersection operations, so the costs for
kd-tree entry search depend exclusively on the traversal costs. The costs for
applying these 2 − 3 additional traversal steps per 4 × 4 bundle are rather
negligible, because these steps are significantly faster than standard traversal
steps.

As the actual ray tracing performance does not only depend on the chosen
traversal algorithm but also on the chosen intersection algorithm, all total
performance statistics for the triangular example scenes are postponed until
Chapter 5.

4.4.3 Traversal Costs

Measuring the average cost including memory access for a single traversal step
of a 4 × 4 ray bundle while using the ray-segment code from Section 4.2.3,
yields 130 to 220 cycles. The first value was measured on one of the lat-
est EM64T architectures with 16 SSE registers, while the second value was
measured on a standard 32-bit processor with only 8 SSE registers. This il-
lustrates the importance of holding the majority of relevant data within pro-
cessor registers as opposed to loading the data from memory. Besides a larger
number of registers, the latest processor generations offer additional features
such as improved branch prediction or lower instruction latency which also
helps.

The observation of improved performance on the latest architectures holds
also true for the kd-tree entry search algorithm of Section 4.3. Here, the
cycle costs vary between 70 and 180 cycles for a single traversal step. The
less complex code results directly in lower cycle costs, and can benefit from
a larger number of registers in the same way as the standard 4× 4 traversal.

Amortizing the cycle costs for the standard 4×4 ray bundle traversal over
the number of rays yields 8.13 to 13.75 cycles, which is very low compared to
the traversal costs of 30 cycles for single rays [Wald04]. If a 4×4 ray bundle is

4.4 Experiments and Results 65

traversed using the extremal traversal, the amortized costs are 4.38 to 11.25.
All these cycle costs should not be seen as exact calculations but rather as

rough estimates. Given the varying costs of memory access and out-of-order
execution, an exact timing is very difficult to achieve.

4.4.4 Efficient Mailboxing

Due to the fact that a reference to the same primitive can exist in multiple
kd-tree leaves, a ray bundle could perform the primitive intersection test
multiple times. A simple technique to avoid such unnecessary intersection
tests is Mailboxing [Amanatides87, Glassner89, Kirk91].

Mailboxing allows for checking if a given primitive has already been in-
tersected by the current ray bundle or not. Therefore, mailboxing requires
that a unique ID be assigned to each ray bundle. After an intersection test,
the primitive is marked as already intersected by assigning the current ray
bundle ID to the primitive.

Unnecessary tests can now be avoided by performing a simple check before
every potential primitive intersection: If the current ray bundle ID matches
the ID assigned to the primitive candidate, an intersection test between the
ray bundle and the primitive has already been performed and can therefore
be omitted.

Scene Conference VW Beetle Soda Hall

I Ops/Bundle without MB 6.99 8.17 4.25
I Ops/Bundle with MB 5.97 5.45 3.68
Reduction 14.59% 33.29% 13.41%

Table 4.4: Average number of intersection tests per 4 × 4 ray bundle with
and without standard mailboxing. Applying mailboxing can save 13− 33% of
intersection tests. If the cost for intersection is significantly larger than the
cost of traversal, the reduced amount of intersection tests can largely enhance
ray tracing performance.

Table 4.4 shows that for the three example scenes, mailboxing allows for
reducing the amount of intersection tests per bundle between 13−33%, which
directly corresponds to the amount of multiple intersections. The impact of
mailboxing depends largely on the occlusion within the scene and the quality
of the corresponding kd-tree.

As an additional ray bundle ID is required per primitive, the standard
mailboxing requires a separate look-up table with a size equal to the number

66 Chapter 4: Tracing Coherent Ray Bundles

unsigned int mbox[NUMBER_OF_PRIMITIVES];

inline void MarkIntersection(const unsigned int triId,

const unsigned int rayId)

{ mbox[triId] = rayId; };

inline bool AlreadyIntersected(const unsigned int triId,

const unsigned int rayId)

{ return mbox[triId] == rayId; };

Figure 4.19: An example implementation for standard mailboxing. The
’mbox’ look-up table stores for each primitive the last ray bundle ID (’rayId’)
with which an intersection test was performed. Prior to a potential intersec-
tion, the primitive ID is taken to determine the entry location and a compar-
ison between the current and the stored ray bundle ID is performed. If these
two IDs match, an intersection with this primitive has already been performed
and can therefore be omitted.

of primitives. Figure 4.19 shows an example implementation for standard
mailboxing. Unfortunately, this approach is suboptimal for current CPU
architectures because the mailbox entries are accessed at almost random
order, introducing a lot of L2 cache misses. A 1, 000, 000 primitive scene
requires, for example, a mailbox look-up table of 1, 000, 000 ∗ 4 = 3.81 MB,
which is larger than any L2 cache. Only a fraction of the complete mailbox
can be held in the L2 cache and the probability that only the cached mailbox
entries are accessed is rather low. Besides the actual cache misses, loading
entries out of the mailbox table into the L2 cache overwrites potential kd-tree
or any other required data. This can implicitly affect performance of other
components of the ray tracing algorithm.

Given the problematic cache behavior a more compact mailbox layout is
beneficial. Fortunately, statistical analyses have shown that a look-up ta-
ble with a size equal to the number of primitives is not mandatory because
a ray bundle typically accesses only a subset of all primitives during ray
traversal. Therefore, a significantly reduced mailbox look-up table combined
with a hashing function has proven superior. The mailbox entry is found
by building a hash value with the primitive ID. Each mailbox entry stores
the ray bundle and primitive ID of the last intersection together. Prior to a
potential intersection, the ray bundle ID and the primitive ID are tested for
equality. Figure 4.20 shows an example implementation for hashed mailbox-
ing. Choosing a hash table size of a power of two allows for implementing
the hash function as a simple logical and operation.

4.4 Experiments and Results 67

#define HASH_TABLE_SIZE 64

#define HASH_TABLE_MASK HASH_TABLE_SIZE-1

struct Entry

{

unsigned int triId, rayId;

};

Entry mbox[HASH_TABLE_SIZE];

inline bool AlreadyIntersected(unsigned int triId, unsigned int rayId)

{

return mbox[triId & HASH_TABLE_MASK].triId == triId &&

mbox[triId & HASH_TABLE_MASK].rayId == rayId;

};

inline void MarkIntersection(unsigned int triId, unsigned int rayId)

{

mbox[triId & HASH_TABLE_MASK].triId = triId;

mbox[triId & HASH_TABLE_MASK].rayId = rayId;

};

Figure 4.20: An example implementation for hashed mailboxing. Each mail-
box entry stores the ray bundle and primitive ID together. The mailbox entry
is determined by hashing the primitive ID. As the size of the hash table is
a power of two, the table entry is determined using a simple and fast logical
and operation. For testing if a primitive has already been intersected by the
current ray bundle, both the ray bundle ID and the primitive ID have to be
compared with the values of the mailbox entry.

The efficiency of hashed mailboxing depends on the number of hash col-
lisions during the traversal of a ray bundle. Collisions occur when the hash
values of different primitive IDs map to the hash table entry. Fortunately,
the primitive IDs accessed during traversal are almost randomly distributed,
which results in an almost equal hash distribution. Therefore, only the size
of the hashed mailbox influences the number of collisions.

Table 4.5 illustrates the average number of intersection tests per bundle
using hashed mailboxing with a varying hash table size. For all test scenes, a
hashed mailbox with only 64 or 128 entries provides almost the same number
of intersection tests per 4×4 ray bundle ratio as a standard full-sized mailbox,
while only requiring 0.5 − 1 KB storage space. Because of an improved L2
cache behavior a hashed mailbox has been used as the default mailbox for
all measurements.

68 Chapter 4: Tracing Coherent Ray Bundles

Scene Conference VW Beetle Soda Hall

Standard Mailbox 5.97 5.45 3.68
Hashed Mailbox 16 Entries 6.14 (2.8%) 6.02 (10.4%) 3.79 (2.9%)
Hashed Mailbox 32 Entries 6.06 (1.5%) 5.77 (5.8%) 3.76 (2.1%)
Hashed Mailbox 64 Entries 6.03 (1.0%) 5.61 (2.9%) 3.73 (1.3%)
Hashed Mailbox 128 Entries 6.00 (0.5%) 5.52 (1.2%) 3.72 (1.0%)

Table 4.5: Average number of intersection tests per 4 × 4 ray bundle using
hashed mailboxing with a varying hash table size. A hashed mailbox with
only 64 or 128 entries ensure almost the same ratio (difference of less than
3%) as that of a standard full-sized mailbox. As a hashed mailbox with 128
entries requires only 1 KB storage space, the probability of a cache miss
when accessing a mailbox entry is significantly lower than that of a standard
mailbox.

4.4.5 Shading Coherent Rays

Supporting the efficient bundling of coherent rays in a standard recursive
ray tracer can be very difficult. Tracing bundles is not problematic for pri-
mary rays because those are usually generated in a coherent manner. Also,
the coherence of shadow rays traced from the first hit point to a point light
is usually very high. The problem appears when handling secondary rays,
especially recursive reflected or refracted rays. For these kinds of rays, co-
herence between rays may be lost. Obviously, one could trace a bundle of
incoherent rays. The problem is that with incoherent bundles only a few
rays will be active during traversal, which is likely to offset the performance
benefit of tracing bundles. Therefore, some kind of efficient regrouping will
be necessary.

In standard ray tracing systems the recursive evaluation of secondary rays
within a freely programmable surface shader is very common. A regrouping
operation for secondary rays is difficult to realize efficiently in software, be-
cause a recursive shader evaluation must be temporarily stopped in order to
insert a ray into the appropriate ray bundle, and it must be restarted once
the bundle has been traced.

One possible solution to this problem is to split the shading model into a
programmable and a fix function part. The programmable part defines a ray
query and transfers the query to fix part. The queries for a complete bundle
are gathered and the fix function part of the shaders traces them together as
a bundle. This approach only works for secondary rays which are spawned
by the same surface shader [Benthin03].

4.5 Conclusions and Future Work 69

Woop et al. [Woop05] proposed to handle different shaders for a given set
of intersections in a multi-pass way on a ray tracing hardware architecture.
For each shader type, an individual pass is performed, excluding intersec-
tions of different shaders by masking. This approach does not include an
explicit regrouping of rays because it only groups and traces rays from the
same shader in a bundle (even if the rays are incoherent). The pure hardware
approach makes it even possible to stop and restart recursive shader evalua-
tion without any performance losses. Even though the same approach could
also be realized in terms of software, it is unclear how effective a software
implementation would be.

Even though several approaches for shading coherent rays exist, for a
pure software system, an efficient algorithm for the regrouping of coherent
rays and the design of an efficient shading model for ray bundles remains an
open question to this day.

4.5 Conclusions and Future Work

In summary, current CPU architectures allow for efficient kd-tree traversal
if the corresponding implementation has been carefully adapted to the un-
derlying hardware. However, traversal implementation will be even faster if
future CPU architectures offer a higher number of registers, less deep exe-
cution pipelines to lower the impact of branch mis-predictions, as well as an
improved instruction set.

For the future, it will be very interesting to minimize the traversal and in-
tersection overhead for extremal traversal. If the overhead can be minimized
to a similar level as for standard traversal, extremal traversal will be the
method of choice in terms of performance. Besides faster implementation,
the costs for extremal traversal are constant because they are independent
of the number of rays within the bundle. This will be beneficial in the case
large bundles of coherent rays need to be traced, e.g. for anti-aliasing by
super-sampling.

70 Chapter 4: Tracing Coherent Ray Bundles

Chapter 5

Coherent Ray Tracing for
Triangular Surfaces

Triangles are essentially the standard geometric representation for rendering
in computer graphics. As triangles are the standard primitive for today’s
graphics hardware, scene complexity is predominantly measured in triangles.
Typical scene complexity for models used in the context of virtual prototyp-
ing, ranges from several hundred thousands to millions of triangles.

As shown in Chapter 4, tracing coherent ray bundles instead of single rays
is the key factor for increasing traversal performance. SSE instructions, which
allow for efficient traversal implementation in the context of ray bundles, can
also be applied to speed up triangle intersection.

In order to illustrate ray-triangle intersection algorithms in the context of
coherent ray bundles, a small collection of triangular scenes have been used
(see Chapter 4).

Researchers proposed many algorithms for computing the intersection
between a single ray and a triangle [Glassner89, Badouel92, Erickson97,
Möller97, Shoemake98, Wald04]. Some of these algorithms require only the
vertices of the triangle as input data, others rely on extra precomputed data
to ensure maximum performance. In the following sections, the implementa-
tions of two of these algorithms are presented in detail in the context of ray
bundles.

This chapter starts with a presentation of the algorithm proposed by Wald
et al. [Wald04] in Section 5.1. In Section 5.2, a variation of the Pluecker
test is proposed which has been adapted in order to handle ray bundles
efficiently. Finally, Section 5.3 illustrates the effective combination of fast
kd-tree traversal and intersection for ray tracing triangular scenes.

72 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

struct TriAccel

{

// plane:

float n_u; // normal.u / normal.k

float n_v; // normal.v / normal.k

float n_d; // constant of plane equation

int k; // projection dimension

// line equation for line ac

float b_nu;

float b_nv;

float b_d;

int pad0; // pad to 48 bytes for cache alignment purposes

// line equation for line ab

float c_nu;

float c_nv;

float c_d;

int pad1; // pad to 48 bytes for cache alignment purposes

};

Figure 5.1: Structure for storing the preprocessed triangle data. It contains
triangle data that is projected onto one of the three axis-aligned planes (the
corresponding dimension is indicated by parameter ’k’). The data block re-
lated to normal data is used for computing the intersection distance while
the two other blocks are used for computing the barycentric coordinates. The
padding to a 48-byte size allows for a better cache access pattern.

5.1 Triangle Intersection I

A fast ray-triangle intersection test which can be efficiently implemented
using SSE instructions was proposed by Wald et al. [Wald04]. The basic idea
behind this test is to project the triangle into one of the three axis-aligned
planes and to perform the computation of the barycentric coordinates in 2D
instead of 3D. This allows for reducing the number of operations required.
In order to ensure maximum performance, the algorithm relies on a small
amount of precomputed data (see Figure 5.1) for every triangle. Relying
on this precomputed data basically avoids additional instructions for data
rearrangement, which can be costly using SSE.

The size of the precomputed data per triangle corresponds to 48 bytes,
resulting in a tolerable amount of 45.78 MB of additional preprocessed data
for a typical one-million-triangle scene. Additionally, the size of 48 bytes

5.1 Triangle Intersection I 73

corresponds to 1.5 cache-lines for a 32-byte cache-line size, or to 0.75 cache-
lines for a 64-byte cache-line.

5.1.1 Implementation

Adapting the original algorithm [Wald04] for supporting four rays in parallel
using SSE instructions is straightforward. Figure 5.2 shows an example im-
plementation for four rays. An implementation for 4 × 4 rays can be simply
achieved by sequentially performing the intersection code four times.

A closer look at the code shows that extra shuffle operations are required
to copy a single float value (from the corresponding preprocessed TriAccel
structure) to all SSE register elements at the beginning. Replicating the
TriAccel elements four times would allow for a more suitable access but
would also result in a four times larger structure size. Additionally, this
would significantly increase the required memory bandwidth and lower the
effect of caches, which is is not beneficial.

The first sequence of instructions computes the distances f between the
ray origins and the triangle plane using the precomputed normal data in the
TriAccel structure. As the distance computation involves a costly division
and the subsequent instructions depend on the result, the implementation
uses a Newton-Raphson iteration for computing the inverse. This allows
for reducing latency and for better interleaving of surrounding instructions
(increased instruction level parallelism). The slightly less accurate result
compared to a real division is negligible.

Comparing the four distances f with the previous intersection distances
forms the first potential exit point. Note that the exit is only taken if the
comparison holds true for all four rays. This is an example for decision
coherence. The higher the coherence of the rays, the higher the probability
that all rays leave the code sequence at a given exit point.

The subsequent instructions basically compute the barycentric coordi-
nates and compare the results to the valid bounds for a triangle. The second
and third exit points require the results of the barycentric coordinate compu-
tation and are therefore located in the middle and at the end of the algorithm.
After the fourth, and final exit point the data for the four intersections is
updated according to the accumulated final mask.

A size of 48 bytes and a data alignment that is a multiple of the cache-
line size ensures that for accessing all required data only one cache-line or
only a maximum of two cache-lines (per triangle) must be loaded. A detailed
discussion about the algorithmic details and the required preprocessing for
the intersection algorithm is given in [Wald04].

74 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

TriAccel &acc = accel[triID];

static unsigned int modulo[] = {0,1,2,0,1};

const unsigned int k = acc.k;

const unsigned int ku = modulo[k+1];

const unsigned int kv = modulo[k+2];

sse_t nd =_mm_add_ps(_mm_mul_ps(_mm_set_ps1(acc.n_u),ray4.direction.t[ku]),

_mm_mul_ps(_mm_set_ps1(acc.n_v),ray4.direction.t[kv]));

sse_t f =_mm_add_ps(_mm_mul_ps(_mm_set_ps1(acc.n_u),ray4.origin.t[ku]),

_mm_mul_ps(_mm_set_ps1(acc.n_v),ray4.origin.t[kv]));

nd = _mm_add_ps(nd,ray4.direction.t[k]);

const sse_t rcp = _mm_rcp_ps(nd);

nd = _mm_sub_ps(_mm_add_ps(rcp,rcp),_mm_mul_ps(_mm_mul_ps(rcp,rcp),nd));

f = _mm_add_ps(f,ray4.origin.t[k]);

f = _mm_sub_ps(_mm_set_ps1(acc.n_d),f);

f = _mm_mul_ps(f,nd);

sse_t mask = _mm_and_ps(_mm_cmpge_ps(_mm_load_ps(hit4.dist),f),

_mm_cmpgt_ps(f,sse_eps));

if (_mm_movemask_ps(mask)==0) continue; // -- first exit point --

const sse_t hu = _mm_add_ps(ray4.origin.t[ku],

_mm_mul_ps(f,ray4.direction.t[ku]));

const sse_t hv = _mm_add_ps(ray4.origin.t[kv],

_mm_mul_ps(f,ray4.direction.t[kv]));

// -- ’lambda’ stores first barycentric coordinates --

sse_t lambda = _mm_add_ps(_mm_mul_ps(hu,_mm_set_ps1(acc.b_nu)),

_mm_mul_ps(hv,_mm_set_ps1(acc.b_nv)));

lambda = _mm_add_ps(lambda,_mm_set_ps1(acc.b_d));

mask = _mm_and_ps(mask,_mm_cmpgt_ps(lambda,_mm_setzero_ps()));

if (_mm_movemask_ps(mask)==0) continue; // -- second exit point --

// -- ’mue’ stores second barycentric coordinates --

sse_t mue = _mm_add_ps(_mm_mul_ps(hu,_mm_set_ps1(acc.c_nu)),

_mm_mul_ps(hv,_mm_set_ps1(acc.c_nv)));

mue = _mm_add_ps(mue,_mm_set_ps1(acc.c_d));

mask = _mm_and_ps(mask,_mm_cmpgt_ps(mue,_mm_setzero_ps()));

if (_mm_movemask_ps(mask)==0) continue; // -- third exit point --

// -- compute 1 - ’lambda’ - ’mue’ --

const sse_t finalMask = _mm_and_ps(_mm_cmple_ps(_mm_add_ps(lambda,mue),

sse_one),mask);

const unsigned int intFinalMask = _mm_movemask_ps(finalMask);

if (intFinalMask==0) continue; // -- fourth exit point --

// => hit4 updates ...

Figure 5.2: Implementation of the triangle test by Wald et al. [Wald04] for
testing four rays against one triangle using SSE instructions. The algorithm
relies on a small structure of precomputed triangle data. Therefore, it requires
only a small number of instructions.

5.1 Triangle Intersection I 75

5.1.2 Discussion

If one has a closer look at the algorithm from Figure 5.2, it becomes evident
that the intersection algorithm discards a triangle on the basis of two tests:

Distance Test: The test checks if the potential intersection distance is in
a valid range. If for all rays, the intersection distance to the triangle
plane is greater than the last valid intersection distance, the triangle
can be excluded from further processing.

Inside Test: The test checks if the rays within a bundle pierce the triangle
at all. For the algorithm shown in Figure 5.2, this is done by computing
the barycentric coordinates and testing them to determine whether
they are in a valid range. If the barycentric coordinates for all rays
are outside the valid range, the triangle can be excluded from further
processing.

The inside test takes place very late in the algorithm (essentially at the
last exit point), compared to the distance test. Table 5.1 shows the average
probabilities for the distance and inside test, together with the probabilities
for a full test execution. All test scenes are rendered at a resolution of
1024×1024 and with a bundle size of 4×4 rays. A given ray bundle is divided
into four-ray bundles, each four-ray bundle being processed individually.

Only 20 % to 28 % of all ray bundle tests require a full execution of
the test. Moreover, 52 % to 68 % of all tests leave execution at the exit
points related to the inside test, while only roughly 18 % (or less) exit at the
distance test.

Scene Conference VW Beetle Soda Hall

Distance Test Exit % 17.99 13.05 19.30
Inside Test Exit % 61.98 68.90 52.32
Full Test % 20.03 18.05 28.38

Table 5.1: Average probability for exiting at the distance and inside test as
well as for performing the full test execution. The three example scenes are
rendered at a resolution of 1024× 1024 with 16 rays per bundle, casting only
primary rays. Approximately 20 % to 28 % of all four-ray bundle intersection
tests require a full test execution. Between 52 % and 68 % of all tests exit at
the inside test and therefore miss the triangle completely.

Moreover, a certain amount of the early exits performed by the distance
test can be handled by the inside test, as shown in Table 5.2. Therefore, the

76 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

actual number of full test executions is only moderately increased. Given
these ratios, it would be beneficial to perform (if possible) the inside test in
a first step, and the distance test as a second step.

Scene Conference VW Beetle Soda Hall

Full Test (with DT) % 20.03 18.05 28.38
Full Test (without DT) % 26.26 20.64 32.76

Table 5.2: Probability of full test execution with and without a distance test.
Removing the distance test results in an only moderately increased number of
full test executions.

5.2 Triangle Intersection II

An intersection test which is able to quickly perform the inside test first
is the so-called Pluecker test [Erickson97, Shoemake98]. Instead of using
barycentric coordinates for the inside test, the Pluecker test relies on testing
the relations between a ray and the triangle edge(s).

The Pluecker test takes advantage of the properties of Pluecker coordi-
nates [Shoemake98], which will be briefly described in this section. Each
directed line which uses 3D coordinates can be represented in 6D Pluecker
space. Given two 3D points A and B, the corresponding line L in Pluecker
space is defined as L = [A−B,A×B], where × refers to a cross product. For
a direction D and an origin O, the line L is defined as L = [D,D×O]. A very
useful operation concerning the relation of lines in Pluecker space is the so-
called inner-product. The inner-product defines how two lines pass each other
in space. For two lines L0 = [U0, U1] and L1 = [V0, V1], the inner-product is
defined as L0 ∗ L1 = U0 ∗ V1 + U1 ∗ V0, where ∗ refers to a standard dot
product. If the result equals 0 the lines intersect, while a negative (positive)
result indicates that the lines pass clockwise (counterclockwise).

A triangle intersection test using Pluecker coordinates is straightforward.
By expressing the ray and all three triangle edges as Pluecker lines, a ray-
triangle intersection criteria is defined as follows: a ray intersects the triangle
if the inner-products between the ray and all edges have the same sign. Note
that the inner-product uses only multiplications and additions, allowing for
an efficient implementation by SSE instructions.

In the following, a slightly modified version of a Pluecker test is presented.
Assuming all rays within the ray bundle share a common origin, one can

5.2 Triangle Intersection II 77

further optimize the original algorithm [Shoemake98]. Through transferring
the ray origin to the origin of the coordinate system (by subtracting the
origin O from the triangle vertices A and B), the inner-product between the
ray R = [D,D × O] and the triangle edge E = [A − B,A × B] is simplified
to

R ∗ E = D ∗ ((A − O) × (B − 0)) + D × (O − O) ∗ ((A − O) − (B − O))

= D ∗ ((A − O) × (B − 0)) + 0 ∗ (A − B)

= D ∗ ((A − O) × (B − 0))

Having a common origin per ray bundle, e.g. for primary rays or for
shadow rays to a point light, allows for efficiently amortizing the computation
costs for (A−O)× (B−0) (and the required computations for the remaining
two edges) over all rays within the bundle. The actual inside test for a four-
ray bundle can be performed simply by evaluating three dot products using
SSE instructions.

In order to obtain the intersection distances t, the following equation has
to be evaluated after the edge tests:

t =
N ∗ (A − O)

D ∗ N

where N is the triangle normal. As N ∗ (A−O) is fixed for the whole bundle
it can also be precomputed. Note that the normal N of each triangle can be
precomputed and stored as preprocessed data during scene definition. On
the other hand, one can omit the preprocessing and compute all necessary
data on the fly. In terms of changing vertices, e.g. for dynamic animation,
this approach can be more efficient than carrying out an extra preprocessing
step.

5.2.1 Implementation

A simplified implementation of the intersection algorithm is shown in Fig-
ure 5.3. The Init function is used for precomputing all edge and normal data
for the whole bundle. The actual intersection code starts with the compu-
tation of three dot products. The corresponding signs for all three edges
are compared for equality. If no ray indicates a valid intersection, no bit is
set in the mask value, and the next ray bundle is processed. If at least one
ray has a valid intersection, the execution continues with the computation
of intersection distances. The look-up into the sseMaskTable table loads a

78 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

// -- precomputed per bundle --

SSEVec4 v0_cross, v1_cross, v2_cross, normal;

sse_t nominator, triNum;

inline void Init(const R3 &a,const R3 &b,const R3 &c,

const R3 &origin,int id)

{

v1_cross = (b-origin)^(a-origin);

v2_cross = (a-origin)^(c-origin);

v0_cross = (c-origin)^(b-origin);

const R3 n = (c-a)^(b-a); normal = n; // convert R3 -> SSEVec4

nominator = _mm_set_ps1(n * (a-origin));

triNum = _mm_set_ps1(*(float *)&id);

}

inline void Intersect(const SSERay4 *ray4,SSEIntersection4 *hit4)

{

for (unsigned int i=0;i<BUNDLES;i++) {

const sse_t v0d = Dot(v0_cross,ray4[i].direction);

const unsigned int v0s = _mm_movemask_ps(v0d);

const sse_t v1d = Dot(v1_cross,ray4[i].direction);

const unsigned int v1s = _mm_movemask_ps(v1d);

const sse_t v2d = Dot(v2_cross,ray4[i].direction);

const unsigned int v2s = _mm_movemask_ps(v2d);

const unsigned int mask = (v0s & v1s & v2s) |

((v0s^0xf) & (v1s^0xf) & (v2s^0xf));

if (mask > 0) {

const sse_t dist = _mm_mul_ps(nominator,

Inverse(Dot(ray4[i].direction,normal)));

sse_t finalMask = *(sse_t*)&sseMaskTable[mask][0];

const sse_t vol = Inverse(_mm_add_ps(_mm_add_ps(v0d,v1d),v2d));

finalMask = _mm_and_ps(_mm_cmple_ps(dist,*(sse_t*)hit4[i].dist),

finalMask);

finalMask = _mm_and_ps(_mm_cmpge_ps(dist,EPSILON),finalMask);

const sse_t lambda = _mm_mul_ps(v0d,vol);

const sse_t mue = _mm_mul_ps(v2d,vol);

// => update intersection structure: hit4[i]

}

}

}

Figure 5.3: A reliable triangle intersection test based on Pluecker coordinates
adapted for ray bundles with a common origin. A triangle can be pruned early
by performing only three dot products (one for each edge) using precomputed
data. The cost for preprocessing Pluecker coordinates for all three triangle
edges is amortized over the ray bundle.

5.3 Results 79

binary SSE mask. Each of the four lowest bits is replicated 32 times in the
corresponding register element: If, for example, the lowest bit of four bits is
set, the lowest element of the SSE register will be set to 0xffffffff , and
to 0x00000000 otherwise.

The results of the inner-products can also be used to obtain the barycen-
tric coordinates. The three results correspond to the homogeneous barycen-
tric coordinates. In order to determine the final coordinates, a division by
the sum of all three coordinate values has to be performed. Note that the
division does not need to be performed every time, but only once at the end
of ray traversal. Note also that this requires all three coordinate values to
be temporarily stored and updated.

The actual computation of intersection distances could also be done with-
out an inverse operation. The three barycentric coordinates u, v, w and the
triangle vertices V ertexA, V ertexB, and V ertexC allow for easily determin-
ing the intersection point P (u, v, w):

P (u, v, w) = V ertexA ∗ u + V ertexB ∗ v + V ertexC ∗ w

The intersection distance is the projection along the direction of the ray:

distance = ray.direction ∗ (P (u, v, w) − ray.origin)

Unfortunately, the approach of computing the distance by projection
along the direction is a few percent slower than computing the distance by
division because of the increased number of instructions required. The ma-
jor advantage of the division-free approach is that it exclusively relies on
multiply-add sequences which might be beneficial for future architectures.

5.3 Results

Accurately determining run-time costs in CPU cycles for the different trian-
gle intersection algorithms is difficult because of the varying early exit point
probabilities. For the example scenes shown in Figure 4.17, three cost cat-
egories have been defined. The first one measures the cycles until an early
exit with respect to a triangle test occurs, the second one corresponds to a
full test execution, while the third one represents the average cost based on
the probability distribution of the exit points for the particular view.

Table 5.3 presents the cost for all three categories with respect to a bundle
of 4 × 4 rays. The numbers in parentheses correspond to the amortized

80 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

Intersection Test Miss Triangle Full Execution Average

Projection (cycles) 420 (26.25) 620 (38.75) 480 (30)
Pluecker (cycles) 310 (19.38) 590 (36.88) 385 (24.06)

Table 5.3: Triangle intersection cost in CPU cycles for different execution
scenarios. All costs are measured for a bundle of 16 ray, the numbers in
brackets correspond to the amortized costs per ray. The first number gives
the cost if all rays miss the triangle, the second if all rays hit the triangle.
The third takes the probability distribution of exit points into account.

cost per ray. Note that for the Pluecker test, the cycle cost includes the
preprocessing step.

If the probability that rays miss the current triangle is high, the Pluecker
test is able to play off its strength. Depending on the view and scene, an
average speedup of up to 25% (for the triangle test) can be achieved compared
to the test by Wald et al. (see Section 5.1). Note that the total speedup of
the core ray tracing performance lies typically between 2 − 10%, because
intersection computations take only a certain part of the time (see below).
However, for most scenes, the Pluecker intersection test is the fastest for
coherent bundles and is therefore used as the default test for ray tracing
triangular scenes.

One could further optimize the Pluecker test by not executing the test
per triangle but by executing it first for all edges and later reusing the results
for the triangles. If the ratio of shared triangle edges is high, a significant
amount of operations can be saved.

Applying an edge-based intersection has the additional advantage of be-
ing reliable in the intersection decision. Due to numerical instabilities an
intersection test which relies on the comparison of barycentric coordinates
can produce wrong results at edges of adjacent triangles. In this case, the
test returns a wrong miss which can result in visible artifacts. An edge-based
test that uses a fixed order of edge vertices is non-ambiguous and therefore
reliable.

Combining the techniques for traversal of coherent ray bundles from
Chapter 4 with the fast triangle intersection tests for ray bundles allows for
easily achieving interactive ray tracing performance even on a single desktop
PC. Table 5.4 illustrates performance statistics using a commodity 2.2 GHz
Intel Pentium-IV PC.

Tracing ray bundles allows for achieving interactive performance even on
a single CPU system. Applying performance analysis with VTune to the

5.3 Results 81

core ray tracing algorithm shows that roughly 60% of the time is spent on
traversal, while 40% is spent on intersection tests. Good kd-tree entry points
reduces the required traversal steps per bundle by up to 50%. Reducing the
number of required traversal steps per bundle shifts the traversal/intersection
ratio to 40% for traversal and 60% for intersection. This illustrates that the
intersection test is now becoming the limiting factor. Further speed opti-
mization should therefore concentrate on speeding up triangle intersection.

Scene (1024 × 1024) Conference VW Beetle Soda Hall

Without Entry Point Search (fps) 3.100 3.150 3.432
With Entry Point Search (fps) 4.052 3.556 3.854
Speedup 30.71% 12.8% 12.29%

Table 5.4: Performance statistics for triangular scenes rendered at a reso-
lution of 1024 × 1024 with a ray bundle size of 4 × 4. All tests were run
on a commodity 2.2 GHz Intel Pentium-IV PC, casting only primary rays.
The first row illustrates performance statistics without applying kd-tree en-
try point search, while the second row takes advantage of entry point search.
Even though the entry point search efficiently reduces the required number of
traversal steps per 4 × 4 bundle by up to 50%, the total performance gain
is rather small (between 12-30%). The reason for this is that the triangle
intersection is more and more becoming the bottleneck: For a typical scene,
60% of the ray tracing time is taken up by traversal while 40% is taken up
by intersection.

Due to the fact that a resolution of 1024×1024 yields 65536 ray bundles of
the size 4×4 and each bundle requires an average of 39.49 (conference scene)
traversal steps without applying entry point search, the required memory
bandwidth for kd-tree nodes is 65536 ∗ 39.49 ∗ 8 = 19.745 MB/frame. Ap-
plying the kd-tree entry point algorithm cuts down the number of traversal
steps to 50%, reducing the bandwidth accordingly.

For the intersection tests, the 65536 ray bundles require an average band-
width of 6.06 times the size of the triangle intersection data. Applying the
test proposed by Wald et al. [Wald04], requires 48 bytes of precomputed data
per triangle. This results in a total bandwidth of 65536 ∗ 6.06 ∗ 48 = 18.18
MB/frame. Therefore, the total required bandwidth of external data sums
up to 37.925 MB/frame. Most of these bandwidths (> 90% percent) can be
compensated for due to the multi-level cache hierarchies of current CPUs,
which yields an external memory bandwidth of less than 4 MB/frame.

82 Chapter 5: Coherent Ray Tracing for Triangular Surfaces

5.4 Conclusions and Future Work

Section 5.3 showed that the combination of efficient traversal, kd-tree entry
point search, and triangle intersection for ray bundles allows for achieving
interactive ray tracing even on a single CPU. All tests were run on a 2.2 GHz
Intel Pentium-IV processor, more recent CPU versions will therefore achieve
even better results.

As fast ray bundle traversal increases the impact of triangle intersec-
tion on the core ray tracing performance, a triangle intersection test for ray
bundles has been proposed that efficiently prunes non-intersecting triangles.
For future implementations, it might be necessary to further speed up the
intersection test for coherent ray bundles.

A promising approach to this problem could be to store the triangle ge-
ometry as small index face sets instead of individual triangles. In the case
a ray bundle enters a leaf, a fast side test, e.g. a Pluecker test, would first
be performed for all edges. In a second step, the results of the edge tests
would be passed to the actual triangle test. Given the high probability of
shared edges within a kd-tree leaf, the total amount of operations per leaf
could be reduced. Moreover, the side test would ensure high instruction level
parallelism, because no dependencies exist between the computation of dif-
ferent edges. In terms of implementation, a kd-tree leaf would not only store
references to triangles but additionally references to triangle edges.

Chapter 6

Coherent Ray Tracing for
Freeform Surfaces

Almost all CAD systems and design tools rely on freeform surfaces such as B-
Splines, NURBS, or subdivision surfaces for representing 3D surfaces. How-
ever, almost all commercial ray tracing systems tessellate freeform surfaces
into simpler geometric primitives, e.g. triangles. The tessellation process is
usually applied before the actual rendering process starts. Tessellation it-
self, and therefore the increased amount of scene data, is often considered
acceptable because ray tracing is known for its logarithmic behavior in scene
complexity.

In Chapter 5, it has been shown that interactive ray tracing on commodity
hardware is possible even when dealing with millions of triangles. It is thus
legitimate to ask why freeform surfaces should be ray traced directly. The
answer to this question is simple: Tessellating freeform surfaces into triangles
has serious drawbacks:

Scene and Storage Complexity: The amount of required storage space
for tessellated triangles is orders of magnitudes higher than for the
original freeform data.

Accuracy: Tessellation can be seen as producing a snapshot of the freeform
data with a given accuracy. Unfortunately, the accuracy cannot easily
be changed afterwards.

Preprocessing Cost: Tessellation itself and the preprocessing steps required
later on, such as the construction of spatial acceleration structures, re-
quire a significant amount of time, slowing down the rendering workflow
and thus the interaction with the scene.

84 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

As a consequence, direct ray tracing of freeform surfaces is becoming more
and more important. Unfortunately, almost none of the existing approaches
has ever targeted interactivity, resulting in a limitation to off-line systems.

The industrial standard representation for freeform surfaces are NURBS
(N on Uniform Rational B -Splines). Even though NURBS surfaces allow
a very compact representation of freeform surfaces, see [Foley97], the core
operations such as surface evaluation, surface subdivision, convex hull com-
putation, etc. are very complex and costly when directly using NURBS sur-
faces. As these operations are essential for a ray-surface intersection test,
their cost easily dominate the total intersection cost.

In order to provide simpler and less costly core operations, the original
NURBS representation has been converted into a bicubic Bézier represen-
tation by performing knot insertion [Piegl97, Farin96, Foley97] and degree
reduction [Piegl97, Farin96]. In the case a NURBS surface is non-rational,
it can be represented by a set of Bézier surfaces of the same degree with-
out loss of accuracy. Applying degree reduction by recursive subdivision of
higher degree Bézier surfaces causes some loss of accuracy, but this is usually
negligible in the context of visualization. However, as compared to trian-
gles, Bézier surfaces are the method of choice when it comes to representing
smooth surfaces.

In the context of Bézier surfaces, the term surface typically refers to a
compound set of Bézier patches. As Bézier patches are the basic primitive,
only this type will be considered in the following.

In order to achieve a compromise between flexibility, loss of accuracy,
and implementation efficiency, a (fixed) patch degree of three (bicubic) for
Bézier patches is chosen (see Section 6.1). As a single NURBS surface typi-
cally converts to an entire set of Bézier patches, the conversion increases the
amount of data required for representing the surface. However, compared
to the conversion into triangles, storing bicubic Bézier patches requires less
storage space: The higher the curved shape of a patch, the more triangles
are required for an accurate approximation.

The format chosen for storing the sixteen control points of a bicubic Bézier
patch is the SSE-suitable SOA format (see Figure 6.1). Storing the control
point matrix in the SOA format using single precision floating point values
requires 192 bytes in total, which allows for effectively storing one thousand
patches in less than 200 KB.

Before addressing the problem of interactive ray tracing scenes consist-
ing of many bicubic Bézier patches, the fundamentals of Bézier curves and
patches will be presented in Section 6.1. Section 6.2 to Section 6.6 will be
dealing with the different approaches for a ray-patch intersection algorithm
and the extension for supporting bundles of rays. Section 6.7 presents a

6.1 Bézier Fundamentals 85

struct SSEVec4 {

sse_t t[3]; // SOA format: xxxx, yyyy, zzzz

};

struct BicubicBezierPatch3D {

SSEVec4 p[4];

};

Figure 6.1: Storing the 16 control points in the SSE-suitable SOA format,
requiring a total of 192 bytes (using single precision floating point accuracy).

detailed comparison of all approaches. Building spatial index structures for
efficiently handling scenes consisting of many Bézier patches will be the fo-
cus of Section 6.8. Section 6.9 briefly describes how trimming curves are
integrated into the intersection algorithms. Finally, Section 6.10 will give
performance statistics for all presented algorithms using a set of test scenes.

6.1 Bézier Fundamentals

The fundamental basis for Bézier curves and surfaces are the Bernstein poly-
nomials [Piegl97, Farin96, Foley97]. Bernstein polynomials are defined as:

Bn
i (u) =

(

n
i

)

(
u − a

b − a
)i(

b − u

b − a
)n−i , u ∈ [a; b] (6.1)

Usually the Bernstein polynomials are defined over the unit interval [0, 1]
which simplifies the definition to:

Bn
i (u) =

(

n
i

)

ui(1 − u)n−i , u ∈ [0, 1] (6.2)

These polynomials work as blending functions between the curve or patch
control points. Bernstein polynomials have important properties that will
translate directly to the properties of Bézier curves and Bézier patches [Piegl97,
Farin96, Foley97] later on. In the following, a brief overview of the most use-
ful properties is given:

• Non-negative over domain: Bn
i (u) ≥ 0 , u ∈ [a, b]

• Partition of unity:
∑n

i=0 Bn
i (u) = 1 , u ∈ [a, b]

86 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

• Recursive definition: Bn
i (u) = (b−u

b−a
)Bn−1

i (u) + (u−a
b−a

)Bn−1
i−1 (u)

• Derivatives: (Bn
i (u))

′

= n(Bn−1
i−1 (u) − Bn−1

i (u))

For example, the Bernstein polynomials of degree three are defined by
the following four equations:

B3
0(u) =

(

3
0

)

u0(1 − u)3 = (1 − u)3 (6.3)

B3
1(u) =

(

3
1

)

u1(1 − u)2 = 3u(1 − u)2

B3
2(u) =

(

3
2

)

u2(1 − u)1 = 3u2(1 − u)

B3
3(u) =

(

3
3

)

u3(1 − u)0 = u3

For efficiency reasons it is not advisable to evaluate these functions via
their recursive definition, but to use the compact form of Equation 6.3.

6.1.1 Bézier Curves

Bézier curves of degree n are defined over a set of control points {Pi, 0 ≤ i ≤ n}
which define the shape of the curve. The basis functions of Bézier curves are
the Bernstein polynomials, resulting in the following curve definition:

P n(u) =
∑n

i=0 Bn
i (u)Pi , Pi ∈ R

n

The control points Pi are usually elements of R
2 or R

3. A single bicu-
bic Bézier curve (see Figure 6.2) can therefore be efficiently represented by
4 ∗ 2 ∗ 4 = 32 bytes using single precision floating point values. The poly-
gon defined by the control points is called control polygon.

As using Bernstein polynomials are used as the basis functions, Bézier
curves inherit some useful properties:

• Convex Hull: The inherited properties of non-negativity (and the par-
tition of unity) cause any point of the curve to be inside the convex
hull of the curve control points.

• Interpolation of start and end point: The curve will pass through the
start and end points defining the curve, e.g. P n(0) = P0 and P n(1) =
Pn.

6.1 Bézier Fundamentals 87

P

PP

P0

1 2

3

Figure 6.2: A bicubic Bézier curve defined by four control points.

• Variation Diminishing Property: A line or plane does not intersect the
curve more often than the polygon defined by the control points.

• Affine Transformation: The curve is invariant under affine transforma-
tion (realized by transforming the control points), meaning that it does
not change its shape.

The convex hull property will prove very useful later on because various
intersection algorithms use it as an efficient pruning test: If a ray does not
intersect the convex hull of the curve, it cannot intersect the curve itself.

Apart from their inherited properties, Bézier curves own efficient algo-
rithms for subdivision, refinement, and evaluation. The most popular algo-
rithm which handles all three tasks was presented by de Casteljau [Piegl97,
Foley97]. This iterative algorithm is based on the affine combination of con-
trol points. Let

P 0
i = Pi , 0 ≤ i ≤ n

the next set of control points is determined by

P j
i = (1 − u)P j−1

i + uP j−1
i+1 , 1 ≤ j ≤ n, 0 ≤ i + j ≤ n

for a parameter u ∈ [0, 1]. Figure 6.3 illustrates the properties of the de
Casteljau algorithm: Point P n

0 corresponds to the evaluation of the Bézier
curve at parameter value u. Control points P j

0 , 0 ≤ j ≤ n define the control
points of the left sub-curve, while P j

i , 0 ≤ j ≤ n, i+ j = n define those of the
right sub-curve of the original curve subdivided at parameter u. Through
continuous subdivision, the corresponding control polygon converges to the

88 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

P 0

0

P 1

0

P 2

0

P 0

1
P 0

2

P 2

1

P 1

2

P 0

3

P 1

1

P 3

0

P
0

0
P

0

1
P

0

2
P

0

3

P
1

0
P

1

1
P

1

2

P
2

1
P

2

0

P
3

0

u u u1−u 1−u 1−u

u 1−u u

1−u u

1−u

Figure 6.3: Left: Applying the de Casteljau algorithm for a bicubic Bézier
curve P (u) with u = 0.5. P n

0 corresponds to point P (0.5). P j
0 , 0 ≤ j ≤ 3

defines the control points of the left sub-curve, P j
i , 0 ≤ j ≤ 3, i + j = 3 those

of the right sub-curve. Right: The de Casteljau algorithm illustrated as a
triangular scheme of linear combinations.

curve itself and can therefore be used (following a sufficient number of subdi-
visions) as an approximation. This process is often referred to as refinement.

6.1.2 Bézier Patches

A Bézier patch is a surface extension (tensor product) of a Bézier curve. It
is constructed from n × m control points {Pij, 0 ≤ i ≤ n, 0 ≤ j ≤ m} using
products of two univariate Bernstein polynomials as blending functions. A
Bézier patch is defined as a two-dimensional parametric function:

P (u, v) =
∑n

i=0

∑m

j=0 Bn
i (u)Bm

j (v)Pij , Pij ∈ R
n

A bicubic Bézier patch (see Figure 6.4) with its 4× 4 = 16 control points
defined in R

3 can be efficiently represented by 16 ∗ 3 ∗ 4 = 192 bytes using
single precision accuracy.

Similar properties as for Bézier curves also hold for Bézier patches: P00,
P0n, Pm0, Pnm are on the patch surface, the patch lies in the convex hull of its
control points, and the patch is invariant under affine transformation. The
de Casteljau algorithm for Bézier patches works similar to the one for Bézier
curves, with the exception that the algorithm can be applied to either one of
the two parametric directions (see Figure 6.3).

6.1 Bézier Fundamentals 89

01

03

10

00
02

P P P
P

P
12P 13P

2220 PP

30P 32
33

P P

23P

11P

31P

P21

Figure 6.4: A bicubic Bézier patch defined by its 16 control points. Note that
P00,P03,P30, and P33 lie on the surface itself.

In certain cases, it is useful to represent the Bézier patch in its matrix
representation. For a bicubic Bézier patch, this representation is defined as:

P (u, v) = UT BT PBV (6.4)

=









u3

u2

u
1









T

BT









P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33









B









v3

v2

v
1









where the Bernstein matrix B is defined as

B =









−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0









(6.5)

If the control points are known not to change, the Bernstein matrix B can
be multiplied to the control point matrix, resulting in

=









u3

u2

u
1









T 







P ∗

00 P ∗

01 P ∗

02 P ∗

03

P ∗

10 P ∗

11 P ∗

12 P ∗

13

P ∗

20 P ∗

21 P ∗

22 P ∗

23

P ∗

30 P ∗

31 P ∗

32 P ∗

33

















v3

v2

v
1









90 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

The evaluation of P (u, v) through the application of the new matrix P ∗

ij

requires only multiplication (from left and right) with the two vectors UT

and V . This allows for a more efficient implementation. In the same manner,
the derivatives can be determined by simply replacing the vector UT by
U

′T =
[

3u2 2u 1 0
]

, respectively V by V
′

.

6.2 The Ray-Patch Intersection Problem

Testing for a valid intersection between a ray and a bicubic Bézier patch
is a significantly more complex operation than a ray-triangle intersection
test. In the last two decades researchers have proposed many approaches
for solving the intersection problem. In the following, some of these will be
briefly discussed.

Nishita et al. [Nishita90] described an iterative algorithm called Bézier
clipping (see Section 6.6) to compute ray-patch intersections by identifying
and cutting away regions of the patch, which are known not to intersect the
ray. Campagna et al. [Campagna97] later solved inherent numerical issues of
the original algorithm and proposed algorithmic optimizations.

Martin et al. [Martin00] presented a framework for integrating ray tracing
of trimmed NURBS into existing rendering architectures. The framework
can be easily transferred for handling bicubic Bézier patches instead of the
original NURBS. A numerical approach called Newton iteration was chosen as
basis for intersection computation. Newton iteration (see Section 6.4) allows
for quickly converging to a solution if the starting values are sufficiently close
to the correct solution. Martin et al. used a spatial subdivision structure for
each patch to ensure a sufficiently close starting values.

Wang et al. [Wang01] combined Newton iteration with Bézier clipping
and used the coherence of neighboring rays to speed up Nishita’s original
algorithm by roughly a factor of three. Unfortunately, the algorithm requires
additional data structures to prevent wrong results through reusing the data
of neighboring rays.

Sweeney et al. [Sweeney86] concentrated on speeding up ray tracing of
B-Spline surfaces by basing the initial guess of the Newton iteration on the
intersection between a ray and the sufficiently refined control mesh.

Researchers have also proposed dedicated hardware designs for ray tracing
freeform surfaces. Lewis et al. [Lewis02] presented a design of a pipelined
architecture for ray-patch intersection. The design is too closely related to
custom hardware to be beneficial for a software approach. Furthermore, its
main target was to serve as a proof of concept, and not to provide a high
performance solution.

6.3 Uniform Refinement 91

Parker et al. [Parker99b] implemented a realtime ray tracing system using
a massively parallel approach (a large shared-memory supercomputer). The
system also supported Bézier patches, while using Newton iteration for ray-
patch intersection.

To sum it up, all approaches so far more or less have been focused on a
general implementation and have never explicitly targeted high performance.
Furthermore, the corresponding algorithms were neither designed nor imple-
mented with respect to the underlying processor architecture, causing major
performance penalties.

Approaches designed exclusively to the underlying hardware have been
proposed by Benthin et al. [Benthin04] and Geimer et al. [Geimer05]. Both
methods have been optimized to achieve interactive performance on a single
CPU (see Section 6.3 and Section 6.4).

In the following, intersection algorithms considered suitable for fast im-
plementation will be discussed in detail. Bottlenecks, performance issues
and, in particular, coding guidelines for an implementation using SSE in-
structions will be presented. Moreover, it will be shown that, depending on
the algorithm, the approach of performing intersection computation for a
bundle of rays in parallel (see Chapter 5) is also beneficial in the context of
bicubic Bézier patches.

6.3 Uniform Refinement

As a basis for the first ray-patch intersection algorithm, a simple refinement-
based approach is chosen. Refinement allows for easily controlling approxi-
mation accuracy and, in particular, isolating the spatial location of the inter-
section. The refinement-based intersection thus relies on the following core
operations:

Pruning: A conservative and simple pruning test is used to decide whether
the ray can intersect a given patch or not.

Refinement: A refinement step subdivides a given patch into a set of (usu-
ally two to four) child patches.

Final Intersection: When reaching the maximum refinement level, an in-
tersection test with an approximate representation of the current patch
is performed.

Instead of adaptively refining the patch, a maximum predefined refine-
ment level is used. It may seem that introducing the additional work of

92 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

BicubicBezierPatch3D patch; // current active patch

Stack stack; // patch stack

int depth = 0;

while(1)

{

while(1)

{

if (Prune(patch)) break;

if (depth == MAX_DEPTH)

{

FinalIntersection(patch);

break;

}

if (depth % 2)

patch.RefineHorizontal(child0,child1);

else

patch.RefineVertical(child0,child1);

depth++;

patch = child0;

stack.push(child1,depth);

}

if (stack.empty()) break;

stack.pop(patch,depth);

}

Figure 6.5: Pseudo C++ code for intersection based on three core opera-
tions for uniform refinement. The parametric direction for the refinement
operation is determined by the current refinement depth.

refining the patch to a fixed predefined level is not as clever as avoiding
the work by adaptive refining, but it makes the previously required crack-
handling and adaptivity tests obsolete. The main difficulty of this approach
is to chose the right refinement level, see [Benthin04].

Figure 6.5 shows an example implementation for the complete ray-patch
intersection step. Note that uniform refinement does not require additional
data structures. This makes the algorithm very memory-efficient. In the
following, the core operations will be discussed in detail.

6.3.1 Pruning Implementation

The pruning operation can be seen as the most important of all core op-
erations, because it is the first one in order and therefore the one applied
most often (a pruned patch is never refined nor intersected). To efficiently
implement the pruning operation we represent the ray as the intersection of

6.3 Uniform Refinement 93

inline bool Prune(const BicubicBezierPatch3D &patch,

const RayPlanesSSE &plane)

{

unsigned int signsU = 0;

for (unsigned int i=0;i<4;i++)

{

const sse_t d = _mm_add_ps(_mm_add_ps(_mm_mul_ps(plane.Nu.t[0],

patch.p[i].t[0]),

_mm_mul_ps(plane.Nu.t[1],

patch.p[i].t[1])),

_mm_mul_ps(plane.Nu.t[2],patch.p[i].t[2]));

signsU |= _mm_movemask_ps(_mm_sub_ps(d,plane.du)) << (4*i);

}

if (signsU == 0xffff || signsU == 0) return true;

unsigned int signsV = 0;

for (unsigned int i=0;i<4;i++)

{

const sse_t d = _mm_add_ps(_mm_add_ps(_mm_mul_ps(plane.Nv.t[0],

patch.p[i].t[0]),

_mm_mul_ps(plane.Nv.t[1],

patch.p[i].t[1])),

_mm_mul_ps(plane.Nv.t[2],patch.p[i].t[2]));

signsV |= _mm_movemask_ps(_mm_sub_ps(d,plane.dv)) << (4*i);

}

if (signsV == 0xffff || signsV == 0) return true;

return false;

}

Figure 6.6: Fast pruning test by testing the signs of control point distances to
the two ray planes. If the sixteen signs match, all control points lie entirely
in one half-space determined by one of the ray planes, and the corresponding
patch cannot be intersected by the ray.

two orthogonal planes [Sweeney86, Woodward89]. The distance of all con-
trol points to both planes are computed yielding 2D coordinates. If all 2D
coordinates lie entirely in one half-space (with respect to a certain plane),
the ray cannot intersect the corresponding patch because of the convex hull
criteria.

The projection of control points can be realized via a sequence of dot
products. SSE instructions allow for performing four dot product operations
in parallel. For the entire patch, this results in only 12 parallel multiplications
and 12 parallel additions plus 1 instruction for obtaining the sign bits for each
plane (see Figure 6.6).

94 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

inline void RefineVertical(BicubicBezierPatch3D &patch0,

BicubicBezierPatch3D &patch1)

{

static const sse_t half = _mm_set_ps1(0.5f);

patch0.p[0] = p[0];

patch1.p[3] = p[3];

patch0.p[1].t[0] = _mm_mul_ps(half,_mm_add_ps(p[0].t[0],p[1].t[0]));

patch0.p[1].t[1] = _mm_mul_ps(half,_mm_add_ps(p[0].t[1],p[1].t[1]));

patch0.p[1].t[2] = _mm_mul_ps(half,_mm_add_ps(p[0].t[2],p[1].t[2]));

patch1.p[2].t[0] = _mm_mul_ps(half,_mm_add_ps(p[2].t[0],p[3].t[0]));

patch1.p[2].t[1] = _mm_mul_ps(half,_mm_add_ps(p[2].t[1],p[3].t[1]));

patch1.p[2].t[2] = _mm_mul_ps(half,_mm_add_ps(p[2].t[2],p[3].t[2]));

const sse_t p11x = _mm_mul_ps(half,_mm_add_ps(p[1].t[0],p[2].t[0]));

patch0.p[2].t[0] = _mm_mul_ps(half,_mm_add_ps(patch0.p[1].t[0],p11x));

patch1.p[1].t[0] = _mm_mul_ps(half,_mm_add_ps(patch1.p[2].t[0],p11x));

const sse_t p11y = _mm_mul_ps(half,_mm_add_ps(p[1].t[1],p[2].t[1]));

patch0.p[2].t[1] = _mm_mul_ps(half,_mm_add_ps(patch0.p[1].t[1],p11y));

patch1.p[1].t[1] = _mm_mul_ps(half,_mm_add_ps(patch1.p[2].t[1],p11y));

const sse_t p11z = _mm_mul_ps(half,_mm_add_ps(p[1].t[2],p[2].t[2]));

patch0.p[2].t[2] = _mm_mul_ps(half,_mm_add_ps(patch0.p[1].t[2],p11z));

patch1.p[1].t[2] = _mm_mul_ps(half,_mm_add_ps(patch1.p[2].t[2],p11z));

const sse_t p30x = _mm_mul_ps(half,_mm_add_ps(patch0.p[2].t[0],

patch1.p[1].t[0]));

patch0.p[3].t[0] = p30x;

patch1.p[0].t[0] = p30x;

const sse_t p30y = _mm_mul_ps(half,_mm_add_ps(patch0.p[2].t[1],

patch1.p[1].t[1]));

patch0.p[3].t[1] = p30y;

patch1.p[0].t[1] = p30y;

const sse_t p30z = _mm_mul_ps(half,_mm_add_ps(patch0.p[2].t[2],

patch1.p[1].t[2]));

patch0.p[3].t[2] = p30z;

patch1.p[0].t[2] = p30z;

}

Figure 6.7: Vertical patch refinement by applying the de Casteljau algorithm.
The original patch is subdivided into two sub-patches. Note that the algorithm
only relies on multiply-add sequences.

6.3.2 Refinement Implementation

The refinement operation itself is based on the de Casteljau algorithm [Foley97],
which splits the patch in half along a chosen parametric direction (either ’v’
or ’u’) producing two refined child patches. Alternating the parametric di-
rection at each refinement level ensures uniform refinement.

6.3 Uniform Refinement 95

Refinement in the ’v’ direction operates mainly vertically, following the
most advantageous way. The operations performed for the de Casteljau al-
gorithm are simple affine combinations of control points. The algorithm can
thus be very efficiently implemented by using only 18 SSE additions and 18
SSE multiplications, as shown in Figure 6.7.

Due to the restrictions of SSE in horizontal operations, refinement in the
’u’ direction is slightly more costly. Additional ’swizzling’ operations need
to be inserted to operate horizontally.

6.3.3 Final Intersection Test

As soon as the final refinement level is reached a final intersection step is ex-
ecuted. Instead of considering the patch as a triangle mesh and performing
a sequence of ray-triangle intersection tests [Benthin04], a reduction of the
bicubic Bézier patch to a bilinear representation is applied and the intersec-
tion point is computed analytically. The eventual loss of accuracy due to the
reduction is acceptable if a sufficiently large number of refinement steps has
been applied before.

The four corner control points of the bicubic Bézier patch are set as
the four (possibly non-coplanar) points defining the bilinear patch. Using a
simplified bilinear representation largely reduces the complexity of the in-
tersection algorithm. An excellent survey and source code for computing
bilinear patch intersections can be found in [Ramsey04].

Step CPU Cycles

Pruning 86
Refinement(u) 244
Refinement(v) 94
Final Intersection 280

Table 6.1: Number of average CPU cycles for each of the core operations for
intersection based on uniform refinement. All core operations cost less than
300 cycles. Note that for refinement in the ’u’ direction, additional shuffle
operations are required, resulting in higher costs than for refinement in ’v’.

6.3.4 Performance of Core Operations

By implementing the recursive algorithm through an iterative sequence, addi-
tional function call overhead is avoided. As the maximum refinement level is

96 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

known in advance, the memory for storing refined patches is constant and can
therefore be allocated in advance (avoiding costly memory allocation calls).
As an example, the ray-patch intersection code reserves 32 ∗ 192 = 6144
bytes for a maximum refinement level of 32.

Table 6.1 shows with careful optimization, almost all core operations can
be executed in less than 300 cycles (measured using the internal CPU clock
cycle counter). Note that the current implementation still leaves room for
optimization, allowing for even faster execution.

6.3.5 Extension for Ray Bundles

The uniform refinement approach is especially suitable for tracing ray bundles
because the refinement operations are independent of the number of rays
within a bundle. This allows for efficiently amortizing the cost of refinement
over the rays within the bundle. Nevertheless, the other core operations for
tracing bundles need to be adjusted accordingly.

Pruning for ray bundles has to be adapted in the following way: If even
one ray in the bundle indicates an intersection of a patch, it must not be
pruned. As long as coherence within the ray bundle is high enough almost
all rays will produce the same decision in the pruning step.

As long as all rays can be grouped within a coherent beam (e.g. for pri-
mary rays), the pruning test can be simplified further. By constructing four
planes out of the four corner rays spanning the beam one can easily decide
(distance to plane) if all control points are outside the beam or not. Using
this technique, the number of required plane tests can be significantly re-
duced. Instead of constructing two planes for each ray, only four planes for
the entire bundle are needed. The complete pruning operation based on the
four corner rays has an average cost of 240 cycles per 16-ray bundle, corre-
sponding to an average of only 15 cycles per ray. The code in Figure 6.6 can
be easily adapted to test against four instead of two planes.

The final intersection step must be applied for all rays within a bundle
and cannot be easily amortized. It therefore turns out that this step is very
time-critical. As SSE operates on four data elements at once it is most
beneficial to perform the final intersection in bundles of four rays. Bilinear
patch intersection as presented in [Ramsey04] can be coded easily using SSE
for four rays in parallel. This parallel bilinear intersection code is able to
reduce the average cost per ray for the final intersection step from 280 to
only 88 cycles.

6.4 Newton Iteration 97

6.4 Newton Iteration

Newton iteration is a common technique for solving equations of the form
f(x) = 0. It approximates the roots of function f(x) by using the first terms
of the Taylor series for f(x). The Taylor series of f(x) regarding point
x = x0 + ε is defined as

f(x0 + ε) = f(x0) + f
′

(x0)ε +
1

2
f

′′

(x0)ε
2 + ... (6.6)

A restriction to only the first derivative results in

f(x0 + ε) ≈ f(x0) + f
′

(x0)ε (6.7)

By starting from an initial guess x0, Equation 6.7 can be used to determine
the value for ε by setting ε0 = ε

ε0 = −
f(x0)

f ′(x0)
(6.8)

The resulting ε0 can be seen as the offset to the root’s position. Through
continuous adjustment of

εn = −
f(xn)

f ′(xn)
(6.9)

an iterative sequence

xn+1 = xn −
f(xn)

f ′(xn)
(6.10)

is defined. The sequence converges to the root if the starting value x0 is
sufficiently close to this value. The need to chose a sufficiently close starting
value is at the same time a major disadvantage of this method because of the
instability near a horizontal asymptote or a local extremum. If the Newton
iteration converges, it does so quadratically, which intuitively means that the
number of correct digits of the root approximation roughly doubles in every
step.

In the following sections, techniques for applying the Newton iteration in
order to solve the ray-patch intersection problem will be discussed. Sec-
tion 6.4.1 will illustrate the algorithm itself, while Section 6.4.2 to Sec-
tion 6.4.4 will provide guidelines for an SSE implementation and will discuss
an extension for supporting ray bundles. Section 6.4.5 will present results
and will discuss limitations and bottlenecks.

98 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

6.4.1 Newton Iteration Algorithm

As shown by Martin et al. [Martin00], the Newton iteration represents an
efficient framework for handling the ray-patch intersection problem. Starting
from two perpendicular planes

P0 := (N0, d0) N0 x + d0 = 0

P1 := (N1, d1) N1 x + d1 = 0 Ni ∈ R
3, di ∈ R

whose intersection represents the ray, the aim is to find the roots for the
following function

F (u, v) =

(

N0 P (u, v) + d0

N1 P (u, v) + d1

)

(6.11)

The Newton iteration for this case looks as follows

(

un+1

vn+1

)

=

(

un

vn

)

− P (un, vn) J−1(un, vn) (6.12)

The term J is the Jacobian matrix

J =

(

N0
∂
∂u

P (u, v) N0
∂
∂v

P (u, v)
N1

∂
∂u

P (u, v) N1
∂
∂v

P (u, v)

)

(6.13)

where J−1 is defined as

J−1 =
adj(J)

det(J)
(6.14)

As J is a 2 × 2 matrix, the adjoint of J is

adj(J) =

(

J22 −J12

−J21 J11

)

(6.15)

The Newton iteration stops as soon as

||P (un, vn)|| < ε , (6.16)

where ||P (u, v)|| defines the distance of P (u, v) to the ray (more precisely, to
the two ray planes) and ε is defined as an accuracy threshold. As an early
exit point, Martin et al. [Martin00] suggested the following condition:

6.4 Newton Iteration 99

||P (un+1, vn+1)|| > ||P (un, vn)|| (6.17)

If for the current iteration the distance to the ray is greater than the dis-
tance of the previous iteration, an early exit is performed. Additionally,
the iteration stops if the number of iterations is greater than a predefined
threshold.

If the Newton iteration returns a valid solution (u∗, v∗), the distance of the
corresponding intersection point needs to be compared with the ray origin.
P (u, v) is therefore evaluated at the parameter values (u∗, v∗) in order to
obtain the intersection point. By projecting the intersection point along the
ray direction, the distance t can be computed as

t = ray.direction ∗ (P (u, v) − ray.origin) (6.18)

Equations 6.13 and 6.16 demonstrate that the actual implementation requires
only two core operations:

• Evaluation of the partial derivatives ∂
∂u

P (u, v) and ∂
∂v

P (u, v).

• Evaluation of P (u, v).

As evaluating P (u, v) is very similar to the evaluation of ∂
∂u

P (u, v), the
focus will be on optimizing a code sequence which handles both cases (see
Section 6.4.2).

Additionally, the Newton iteration algorithm allows for performing the
intersection computation for multiple rays in parallel, which is beneficial for
handling ray bundles. As with triangle intersection (see Chapter 5), it is
beneficial to perform the intersection for patches for four rays in parallel (see
Section 6.4.2).

6.4.2 SSE Implementation

Geimer et al. [Geimer05] showed that the evaluation of P (u, v) and the par-
tial derivatives can be efficiently performed by computing a vector-matrix-
vector product. The modified control point matrix P ∗

ij of Section 6.1.2 avoids
the required evaluation of the Bernstein basis functions (see Equation 6.4).
Therefore, P (u, v) can be evaluated by the following vector-matrix-vector
product:

100 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

inline R3 Evaluate(const BicubicBezierPatch3D &patch,

const float u,

const float v)

{

const sse_t V = _mm_setr_ps(v*v*v,v*v,v,1.0f);

const sse_t u2 = _mm_set_ps1(u);

const sse_t u1 = _mm_mul_ps(u2,u2);

const sse_t u0 = _mm_mul_ps(u1,u2);

const sse_t X = _mm_add_ps(_mm_add_ps(_mm_mul_ps(patch.p[0].t[0],u0),

_mm_mul_ps(patch.p[1].t[0],u1)),

_mm_add_ps(_mm_mul_ps(patch.p[2].t[0],u2),

patch.p[3].t[0]));

const float x = _mm_cvtss_f32(sseHorizontalAdd(_mm_mul_ps(X,V)));

const sse_t Y = _mm_add_ps(_mm_add_ps(_mm_mul_ps(patch.p[0].t[1],u0),

_mm_mul_ps(patch.p[1].t[1],u1)),

_mm_add_ps(_mm_mul_ps(patch.p[2].t[1],u2),

patch.p[3].t[1]));

const float y = _mm_cvtss_f32(sseHorizontalAdd(_mm_mul_ps(Y,V)));

const sse_t Z = _mm_add_ps(_mm_add_ps(_mm_mul_ps(patch.p[0].t[2],u0),

_mm_mul_ps(patch.p[1].t[2],u1)),

_mm_add_ps(_mm_mul_ps(patch.p[2].t[2],u2),

patch.p[3].t[2]));

const float z = _mm_cvtss_f32(sseHorizontalAdd(_mm_mul_ps(Z,V)));

return R3(x,y,z);

}

Figure 6.8: Evaluating P (u, v) by performing a vector-matrix-vector product
by SSE instructions. Through the SOA layout, horizontal operations are
required to compute the sum of all register elements.

P (u, v) =









u3

u2

u
1









T 







P ∗

00 P ∗

01 P ∗

02 P ∗

03

P ∗

10 P ∗

11 P ∗

12 P ∗

13

P ∗

20 P ∗

21 P ∗

22 P ∗

23

P ∗

30 P ∗

31 P ∗

32 P ∗

33

















v3

v2

v
1









(6.19)

Additionally, the evaluation of P (u, v) can be efficiently implemented using
SSE instructions. The implementation shown in Figure 6.8 starts with u and
v as float values. Shuffle operations are required to copy float values into all
register elements. Moreover, adding elements horizontally within a register
requires additional operations.

6.4 Newton Iteration 101

Computing the derivatives in the same way allows for reducing the num-
ber of instructions because components which are multiplied by zero are
not considered any further. Table 6.2 shows the average number of cycles
for three different core operations. Even though almost all core operations
require less than 100 cycles, the cost could be further reduced as soon as
processor architectures offer better support for horizontal and shuffle opera-
tions.

Step Cycles

Evaluate 90
Derivative(u) 90
Derivative(v) 79

Table 6.2: Average number of CPU cycles for each of the core operations
(single ray). All core operations require less than 100 cycles. For the deriva-
tive in the ’u’ direction, fewer shuffle operations are required, resulting in
lower costs than for the derivative in ’v’.

6.4.3 Extension for Ray Bundles

Adapting the intersection for ray bundles is straightforward. As SSE allows
for operating on four data elements using a single instruction, it is beneficial
to apply the Newton iteration for bundles of four rays in parallel. Performing
four Newton iterations in parallel makes it necessary to evaluate P (u, v)
for two vectors U = (u0, u1, u2, u3) and V = (v0, v1, v2, v3) in parallel (see
Figure 6.9). Even though the layout of U and V avoids additional horizontal
operations (such as required for the single ray implementation), the four-ray
implementation requires that every control point coordinate be copied into
the four register elements by an additional shuffle instruction.

One could avoid the shuffle instruction by storing every control point co-
ordinate as an SSE data type, but this would increase the patch data storage
costs by a factor of 4, thus significantly affecting the advantage of compact
data representation. On the other hand, one could use larger bundles (of
more than four rays) to amortize the cost for the shuffle instruction, but the
limited number of registers makes this approach inefficient.

Table 6.3 shows the average number of required CPU cycles. On a per
ray basis, the costs for the core operations are reduced, in particular for
evaluating the derivatives.

102 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

inline void Evaluate4(const sse_t u,

const sse_t v,

const BicubicBezierPatch3D &patch,

SSEVec4 &result)

{

const sse_t u2 = u;

const sse_t u1 = _mm_mul_ps(u,u);

const sse_t u0 = _mm_mul_ps(u,u1);

const sse_t v2 = v;

const sse_t v1 = _mm_mul_ps(v,v);

const sse_t v0 = _mm_mul_ps(v,v1);

// == X ==

const sse_t t0 = patch.p[0].t[0];

const sse_t t1 = patch.p[1].t[0];

const sse_t t2 = patch.p[2].t[0];

const sse_t t3 = patch.p[3].t[0];

const sse_t x0 = _mm_add_ps(_mm_add_ps(_mm_mul_ps(SHUFFLE(t0,0),u0),

_mm_mul_ps(SHUFFLE(t1,0),u1)),

_mm_add_ps(_mm_mul_ps(SHUFFLE(t2,0),u2),

SHUFFLE(t3,0)));

const sse_t x1 = _mm_add_ps(_mm_add_ps(_mm_mul_ps(SHUFFLE(t0,1),u0),

_mm_mul_ps(SHUFFLE(t1,1),u1)),

_mm_add_ps(_mm_mul_ps(SHUFFLE(t2,1),u2),

SHUFFLE(t3,1)));

const sse_t x2 = _mm_add_ps(_mm_add_ps(_mm_mul_ps(SHUFFLE(t0,2),u0),

_mm_mul_ps(SHUFFLE(t1,2),u1)),

_mm_add_ps(_mm_mul_ps(SHUFFLE(t2,2),u2),

SHUFFLE(t3,2)));

const sse_t x3 = _mm_add_ps(_mm_add_ps(_mm_mul_ps(SHUFFLE(t0,3),u0),

_mm_mul_ps(SHUFFLE(t1,3),u1)),

_mm_add_ps(_mm_mul_ps(SHUFFLE(t2,3),u2),

SHUFFLE(t3,3)));

result.t[0] = _mm_add_ps(_mm_add_ps(_mm_mul_ps(x0,v0),

_mm_mul_ps(x1,v1)),

_mm_add_ps(_mm_mul_ps(x2,v2),

x3));

// == Y,Z similar ==

// ..

}

Figure 6.9: Evaluating P (U, V) for two vectors U = (u0, u1, u2, u3) and
V = (v0, v1, v2, v3) by performing a vector-matrix-vector product using SSE
instructions. No horizontal operations are required but many shuffle instruc-
tions, because each control point coordinate has to be copied into the four
register elements.

6.4 Newton Iteration 103

Step Cycles / Per Four-Ray Bundle Cycles / Per Ray

Evaluate 350 87.5
Derivative(u) 255 63.75
Derivative(v) 244 61

Table 6.3: Average number of CPU cycles for each of the core operations
when operating on four rays in parallel. Computing derivatives requires fewer
operations, resulting in lower costs.

6.4.4 Newton Iteration Convergence

The greatest difficulty by the Newton iteration is the fact that convergence
depends on the starting value. If the starting point is chosen too far away
from the correct solution, the Newton iteration can converge to a wrong
solution (get “stuck” in a local minimum), converge slowly, or even fail to
converge at all.

In order to obtain a good starting value, researchers [Martin00] have
suggested to subdivide a given patch into a set of sub-patches (based on a
flatness criteria [Guthe02]) and to build a spatial index structure from these
sub-patches. Each sub-patch corresponds to a specific parametric domain
of the original patch. A ray, or a ray bundle, is then traversed through this
spatial index structure and, in the case of sub-patch intersection, the starting
value of the Newton iteration is initialized to the center of the corresponding
parametric domain of the sub-patch.

If the patch is sufficiently flat, patch subdivision for initializing starting
values works quite well. Nevertheless, it can never guarantee convergence.
Note that the creation of sub-patches typically requires a chosen flatness or
curvature threshold, which has to be manually adjusted depending on the
curvature of patches.

6.4.5 Discussion

The convergence speed of a Newton iteration-based intersection algorithm de-
pends mainly on the distance between the starting value and the final result.
If the distance is sufficiently small, Newton iteration offers quadratic conver-
gence, which makes it extremely fast. Nevertheless, the standard approach of
determining a sufficiently close starting value by traversing an additional spa-
tial index structure (see Section 6.4.4), which is constructed per patch, has
serious drawbacks. First of all, the overall memory requirements are higher
because of the additional spatial structure per patch, making rendering of

104 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

highly complex scenes difficult. Furthermore, the larger memory footprint in-
creases the probability of cache misses. Finally, even a finely resolved spatial
index structure does not guarantee convergence in all potential cases.

The main advantage of a Newton iteration-based approach is that the ray-
patch intersection costs essentially depend on the costs for evaluating P (U, V)
and the corresponding derivatives. A closer look at the code itself shows that
the evaluation almost exclusively consists of multiply-add sequences. This is
similar to the implementation of core operations for uniform refinement. And
here too, the performance could be significantly increased using an exclusive
multiply-add SSE instruction and more SSE registers for storing temporary
values.

6.5 Newton Iteration and Krawczyk Operator

As discussed in Section 6.4, a Newton iteration-based algorithm can fail to
converge if the starting point is chosen too far away from the correct solution.
Fortunately, the Krawczyk operator [Krawczyk69, Krawczyk70] is able to
determine for a chosen starting point if the Newton iteration will converge
or not. Therefore, the Krawczyk operator can be used as an extension to the
standard Newton iteration-based intersection in order to identify safe starting
regions. The implementation described in this section is an extension of the
original work by Toth et al. [Toth85].

Before explaining the Krawczyk operator and the extension of the Newton
iteration-based intersection in detail, the fundamentals of interval arithmetic,
which form the basis of a Krawczyk operator, are presented first.

6.5.1 Interval Arithmetic

An interval (over R) is defined as a bounded set of real numbers X =
[Xmin, Xmax] = {x ∈ R : Xmin ≤ x ≤ Xmax}. For intervals, which in the fol-
lowing will be indicated in capital letters, the standard arithmetic operations
{+,−, ∗, /} are defined as:

X + Y = [Xmin + Ymin, Xmax + Ymax] (6.20)

X − Y = [Xmin − Ymax, Xmax − Ymin] (6.21)

X ∗ Y = [minx∗y,maxx∗y] (6.22)

1.0/X = [1.0/Xmax, 1.0/Xmin], 0 /∈ X (6.23)

When multiplying two intervals, the upper, respectively lower bound of the
result is computed by determining the maximum resp. minimum of the four

6.5 Newton Iteration and Krawczyk Operator 105

combinations: minx∗y = min(XminYmin, XminYmax, XmaxYmin, XmaxYmax) and
maxx∗y = max(XminYmin, XminYmax, XmaxYmin, XmaxYmax).

Additionally, operations between an interval X and a scalar value y ∈ R

are defined as:

X + y = [Xmin + y,Xmax + y] (6.24)

X ∗ y = [min(Xmin ∗ y,Xmax ∗ y),max(Xmin ∗ y,Xmax ∗ y)] (6.25)

All operations are associative and commutative. Note that distributivity
does not hold true, only sub-distributivity:

X ∗ (Y + Z) ⊂ X ∗ Y + X ∗ Z (6.26)

For evaluating terms, more accurate results can be achieved by factorizing
the elements as much as possible.

To implement the Krawczyk operator, two additional operators are re-
quired: The midpoint operator m(X) and the width operator w(X). These
are defined as

m(X) =
Xmin + Xmax

2
(6.27)

w(X) = Xmax − Xmin (6.28)

A natural extension to intervals are interval vectors. An m-dimensional in-
terval vector is defined as X = (X0, .., Xm−1) ∈ R

m, where Xi is an interval
over R.

For two interval vectors X and Y ∈ R
m, the operations Θ ∈ {+,−, ∗, /}

are defined componentwise

XΘY = (X0ΘY0, .., Xm−1ΘYm−1) (6.29)

Similarly, the midpoint and the width operator for interval vectors are also
defined componentwise

m(X) = (m(X0), ..,m(Xm−1)) (6.30)

w(X) = (w(X0), .., w(Xm−1)) (6.31)

In the same manner as for defining functions over R, one can extend the
functions to intervals over R. An interval extension of a function

f(x0, .., xm−1) = (y0, .., yn−1), xi, yj ∈ R (6.32)

106 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

is defined as

F (X0, .., Xm−1) = (Y0, .., Yn−1) (6.33)

where Xi, Yj are intervals over R.

6.5.2 Krawczyk Operator

The Krawczyk operator K(Xi, y, Y) is defined as:

K(Xi, y, Y) = y − Y ∗ f(y) + (|Y | ∗ A ∗ e ∗ [−1, 1]) (6.34)

y = m(Xi) (6.35)

Y = m(F ′(Xi))
−1 (6.36)

Aij =
1

2
(w(F ′(Xi)))ij (6.37)

ei =
1

2
(w(Xi))i (6.38)

where Xi is an interval extension of xi ∈ R, y ∈ Xi, and Y a non-singular
matrix. Without loss of generality, y = m(Xi) and Y = m(F ′(Xi))

−1. The
fundamental idea of applying the Krawczyk operator is to determine safe
convergence regions within interval Xi.

From the given interval Xi, the Krawczyk operator K(Xi, y, Y) computes
a new interval X

′

i . Based on the new interval X
′

i , a convergence criteria is
evaluated that determines if Xi can be considered as a safe region for starting
a Newton iteration.

For a detailed description of the mathematical background, see [Krawczyk69,
Krawczyk70, Toth85].

6.5.3 Krawczyk-Moore Intersection Algorithm

Based on the work by Moore [Moore77], Toth [Toth85] proposed an algo-
rithm that uses the Krawczyk operator to identify safe regions for the New-
ton iteration. If a solution for function f(x) = 0 with x ∈ X0 exists, the
Krawczyk-Moore test will return an interval Xsafe for which all x ∈ Xsafe

converge to a non-ambiguous solution. The underlying process can be for-
mulated as an iterative algorithm starting with the initial interval X0. The
intervals Xi builds a sequence of nested intervals:

6.5 Newton Iteration and Krawczyk Operator 107

X1 = X0

⋂

K(X0,m(X0),m(F ′(X0))
−1) (6.39)

X2 = X1

⋂

K(X1,m(X1),m(F ′(X1))
−1) (6.40)

... (6.41)

Xi+1 = Xi

⋂

K(Xi,m(Xi),m(F ′(Xi))
−1) (6.42)

The sequence can be terminated if one of the follow conditions holds true:

• Xi is a safe region for starting the Newton iteration

• Xi = ∅: There exists no valid solution for Xi

• w(Xi) < Epsilon and w(F ′(Xi)) < Epsilon: F (Xi) can be considered
as almost planar. In this case only a single Newton step using m(Xi)
has to be performed.

• Xi = Xi−1: since the intervals are not shrinking, subdivide Xi in half
and continue recursively with each sub-interval.

What remains now is to define the conditions when Xi can be considered
a safe starting region. If either

K(Xi,m(Xi),m(F ′(Xi))
−1) ⊂ Xi (6.43)

r = ||I − m(F ′(Xi))
−1 ∗ F ′(Xi)|| < 1 (6.44)

or

||m(Xi) − n(m(Xi))|| < (1 − r) ∗ a (6.45)

r = ||I − m(F ′(Xi))
−1 ∗ F ′(Xi)|| < 1 (6.46)

with a = mini(
1
2
w(Xi)) and B(Xi, a) = x ∈ Xi : ||x − m(Xi)|| ≤ a is ful-

filled, the Newton iteration will converge for all x ∈ Xi, respectively x ∈
B(Xi, a) [Toth85].

As convergence of the interval sequence Xi mainly depends on the interval
extension of the derivatives SU(Xi) and SV (Xi), it is important to compute
these (3-dimensional) intervals as accurately as possible. The approach of
computing, for example, SU(Xi) by

108 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

SV (U, V) =









V 3

V 2

V
1









T 







P ∗

00 P ∗

01 P ∗

02 P ∗

03

P ∗

10 P ∗

11 P ∗

12 P ∗

13

P ∗

20 P ∗

21 P ∗

22 P ∗

23

P ∗

30 P ∗

31 P ∗

32 P ∗

33

















3U2

2U
U
0









(6.47)

where U and V are interval extensions and P ∗

ij is the modified control point
matrix, is fast and efficient. Given interval distributivity, however, it does
not ensure optimal accuracy (see Equation 6.26). The limited accuracy in-
creases the number of iterations of the Krawczyk-Moore test to identify a
safe starting region. Therefore, it is more beneficial to compute derivatives
the following way: Given the original patch with its control points Pij (not
multiplied with the Bernstein matrix), a new patch with control points PR

ij

is computed that corresponds to the original patch restricted to interval Xi.
From the new patch, a reduced 3 × 4 control point matrix Qij is created.
Note that for SU

Qij =
3

w(U)
(PR

ij+1 − PR
ij) (6.48)

and for SV

Qij =
3

w(V)
(PR

i+1j − PR
ij) (6.49)

The interval extension of derivatives SU(Xi) and SV (Xi) can be easily ob-
tained by determining the minimum and maximum intervals over the com-
ponents of the reduced control point matrix Qij.

Note that this approach requires additional clipping operations due to the
restrictions of patch control points to the interval Xi. Even though the clip-
ping operations can be efficiently performed by de Casteljau subdivisions, the
four subdivision steps are costly. However, the interval extension obtained
from the clipping step is typically more accurate than the result of the ma-
trix evaluation approach. The higher accuracy directly translates to a three
to four times smaller number of iterations for the Krawczyk-Moore test (see
Section 6.10).

6.5.4 Implementation

The implementation of an intersection algorithm based on the Krawczyk
operator can be directly combined with the Newton iteration algorithm from

6.5 Newton Iteration and Krawczyk Operator 109

Section 6.4. Finding a safe starting region is just a preamble for the actual
Newton iteration step. Therefore, the main task is to efficiently implement
the evaluation of the Krawczyk operator.

In order to provide an easy and encapsulated access to interval arithmetic,
a few simple C++ classes are used (see Figure 6.10).

class Interval {

public:

float min;

float max;

// ... arithmetic operators for a one-dimensional interval vector

};

class Interval3D {

public:

Interval interval[3];

// ... arithmetic operators for a three-dimensional interval vector

};

class IntervalMatrix2x2 {

public:

Interval interval[2][2];

// ... arithmetic operators for a 2x2-dimensional interval matrix

};

Figure 6.10: Simple C++ classes for implementing interval arithmetic.

Based on the interval arithmetic classes of Figure 6.10, a brief description
of each step required to compute the Krawczyk operator will be given.

SU(Xi) and SV(Xi): The partial derivatives of the patch with respect to
interval Xi can be computed either by performing an interval-vector
matrix interval-vector product or by determining the minimum and
maximum intervals of the reduced control point matrix. In either case,
the result is an Interval3D class, corresponding to a three-dimensional
interval vector.

FU(Xi) and FV(Xi): These are the partial derivatives of F (Xi) which can
be efficiently computed by representing the ray as the intersection of
two planes (NU , dU) and (NV , dV), where NU , NV ∈ R

3 and dU , dV ∈ R.
In this case, the computation of FU(Xi) and FV (Xi) only involves four
dot products:

FU(Xi) =

(

NU ∗ SU(Xi)
NV ∗ SU(Xi)

)

, FV (Xi) =

(

NU ∗ SV (Xi)
NV ∗ SV (Xi)

)

(6.50)

110 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

The result of, e.g., NU ∗ SU(Xi) is a one-dimensional interval. There-
fore, the result of FU(Xi) and FV (Xi) is stored into an IntervalMa-
trix2x2 class, which is a 2 × 2 interval matrix.

Y = m(F′(Xi))
−1: As FU(Xi) and FV (Xi) are partial derivatives of F (Xi),

the derivative of F (Xi) is the Jacobian matrix J = (FU(Xi)FV (Xi)).
Before computing the inverse of the 2 × 2 Jacobian interval matrix J ,
the midpoint operation m(Xi) is applied first. This transfers the 2× 2
interval matrix into a real-valued 2×2 matrix. The inverse is computed
by J−1 = adj(J)

detJ
.

Aij = 1
2
(w(F′(Xi)))ij: Performing the width operation transforms the previ-

ously computed 2×2 interval matrix into the real-valued 2 × 2 matrix A.

ei = 1
2
(w(Xi))i: Computing ei only requires the width operator applied on
the current interval Xi.

f(y): The function f(y) = f(m(Xi)) can be quickly evaluated by performing
a vector-matrix-vector product (see Section 6.4).

All these steps are required for an implementation of an intersection algo-
rithm using the Krawczyk operator and Newton iteration. Figure 6.11 shows
a pseudo C++ code for an example implementation.

In a first step, the algorithm performs a patch clipping operation (start-
ing from the original patch) based on the current parametric interval UV.
For implementing the Clip operation, the patch refinement code from Sec-
tion 6.3 can be reused. Note that the clipping operation is performed in every
iteration of the algorithm and should therefore be as optimized as possible.

In order to avoid unnecessary iterations of the Krawczyk-Moore test, an
early pruning test is performed based on the axis-aligned bounding box of the
clipped patch and the ray. If the ray intersects the bounding box, the partial
derivatives (Su and Sv) of the clipped patch are computed and the results
are stored in two three-dimensional interval vectors (su and sv). Figure 6.12
shows an example implementation of Sv using SSE instructions.

The 2 × 2 interval matrix mat of the partial derivatives is computed by
performing four dot products between the patch derivatives su and sv and
the two ray plane equations (Nu,du) and (Nv,dv). This interval matrix forms
the basis for obtaining the two 2 × 2 real-valued matrices Y and A.

After evaluating the patch at the center of the current interval UV, the
distances fy of the corresponding point to the two ray planes are computed.
The interval UV, the distances fy, and the matrices Y and A then allow for
evaluating the Krawczyk operator (see Equation 6.34). If interval k returned

6.5 Newton Iteration and Krawczyk Operator 111

BicubicBezierPatch3D patch; Ray ray; // current patch and ray data

R3 Nu,Nv; float du,dv; // two ray planes (Nu,du) and (Nv,dv)

Interval2D stack[MAX_STACK_DEPTH];

Interval2D *sptr = stack;

*sptr++ = Interval2D(0.0f,0.0f,1.0f,1.0f);

while(sptr != stack) {

sptr--; Interval2D UV = *sptr; // get interval from stack

while(1) {

// -- clipped original patch based on current UV interval --

BicubicBezierPatchSSE clipped_patch = Clip(UV,patch);

// -- test if ray intersects bounding box of clipped patch --

Box box = clipped_patch.GetAABB();

if (!IntersectBox(ray,box)) break;

// -- compute interval extension of derivatives --

Interval3D su = Su(UV,clipped_patch);

Interval3D sv = Sv(UV,clipped_patch);

// -- compute interval matrix for partial derivatives --

IntervalMatrix2x2 mat = Fuv(su,sv,Nu,Nv);

// -- compute Matrix A and Y--

Matrix2x2 A,Y; A = ComputeA(mat); Y = ComputeY(mat);

// -- evaluate patch at the center of UV --

R3 p = Evaluate(patch,UV.center());

// -- compute distances to ray planes (Nu,du) and (Nv,dv) --

R2 fy = ComputeDistances(p,Nu,Nv,du,dv);

// -- compute new interval using the Krawczyk operator --

Interval2D k = ComputeKraw(UV,Y,A,fy);

if (Disjoint(UV,k)) break; // -- UV and k disjoint -> skip UV --

// -- compute subset of UV and k --

Interval2D UV_k = Subset(UV,k);

// -- if safe interval exists -> start Newton iteration --

if (isSafeInterval(UV,k,Y,A,fy)) {

NewtonIteration(UV_k,ray,patch); break;

} else {

// -- test if no reduction could be achieved --

if (UV_k == UV) {

// -- subdivide UV into four subsets, continue recursively --

Subdivide(UV,sptr[0],sptr[1],sptr[2],sptr[3]); sptr+=4; break;

}

UV = UV_k; // -- update UV interval --

} } }

Figure 6.11: Pseudo C++ Code for a ray-patch intersection algorithm using
the Krawczyk-Moore test. The interval extension of the derivatives is com-
puted by clipping the original patch according to the ’UV’ interval. If a safe
interval region is identified, a Newton iteration is performed.

112 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

inline float hMax(const sse_t &a) {

const sse_t ftemp = _mm_max_ps(a,_mm_movehl_ps(a, a));

return _mm_cvtss_f32(_mm_max_ss(ftemp,_mm_shuffle_ps(ftemp,ftemp,1)));

}

inline float hMin(const sse_t &a) {

const sse_t ftemp = _mm_min_ps(a,_mm_movehl_ps(a, a));

return _mm_cvtss_f32(_mm_min_ss(ftemp,_mm_shuffle_ps(ftemp,ftemp,1)));

}

inline Interval3D Sv(const Interval2D &UV,

const BicubicBezierPatch3D &patch)

{

Interval3D S;

const Interval &V = UV.interval[1];

const float width = 3.0f / width(V);

// -- X --

const sse_t x0 = _mm_sub_ps(patch.p[1].t[0],patch.p[0].t[0]);

const sse_t x1 = _mm_sub_ps(patch.p[2].t[0],patch.p[1].t[0]);

const sse_t x2 = _mm_sub_ps(patch.p[3].t[0],patch.p[2].t[0]);

S.interval[0].min = width * hMin(_mm_min_ps(x0,_mm_min_ps(x1,x2)));

S.interval[0].max = width * hMax(_mm_max_ps(x0,_mm_max_ps(x1,x2)));

// -- Y --

const sse_t y0 = _mm_sub_ps(patch.p[1].t[1],patch.p[0].t[1]);

const sse_t y1 = _mm_sub_ps(patch.p[2].t[1],patch.p[1].t[1]);

const sse_t y2 = _mm_sub_ps(patch.p[3].t[1],patch.p[2].t[1]);

S.interval[1].min = width * hMin(_mm_min_ps(y0,_mm_min_ps(y1,y2)));

S.interval[1].max = width * hMax(_mm_max_ps(y0,_mm_max_ps(y1,y2)));

// -- Y --

const sse_t z0 = _mm_sub_ps(patch.p[1].t[2],patch.p[0].t[2]);

const sse_t z1 = _mm_sub_ps(patch.p[2].t[2],patch.p[1].t[2]);

const sse_t z2 = _mm_sub_ps(patch.p[3].t[2],patch.p[2].t[2]);

S.interval[2].min = width * hMin(_mm_min_ps(z0,_mm_min_ps(z1,z2)));

S.interval[2].max = width * hMax(_mm_max_ps(z0,_mm_max_ps(z1,z2)));

return S;

}

Figure 6.12: After clipping the original patch to the current interval ’UV, the
interval extension of patch derivatives (here in the parametric ’v’ direction)
can be efficiently coded using SSE instructions. In a first step, a reduced
control point matrix (of the clipped patch) is created by subtracting control
point Pi+1j from Pij. For each of the three dimensions, the corresponding
interval is set to the minimum and maximum of the control point differences
(multiplied by 3.0/width(V)).

by the Krawczyk operator and the current interval UV are disjoint, the
current interval UV is excluded from further processing.

6.6 Bézier Clipping 113

If one of the convergence criteria is fulfilled (isSafeInterval), the current
interval UV is considered as a safe starting region and a Newton iteration-
based intersection is performed. If no safe starting region can be determined,
the algorithm performs a comparison of equality between the current interval
k and the subset of k and UV. If no reduction of the parametric region can be
achieved, the algorithm subdivides UV into four sub-intervals and continues
recursively. Otherwise, UV is replaced by the subset of k and UV, and the
algorithm continues. The algorithm terminates when the interval stack is
empty.

6.5.5 Discussion

The main advantage of the Krawczyk operator is that it avoids the con-
vergence problems of the standard Newton iteration-based intersection al-
gorithm, providing reliable results. No additional spatial index structures
that limit the parametric starting region are required. This reduces memory
requirements because only the original patch data is needed.

However, identifying safe regions by evaluating the Krawczyk operator
does not come for free. In each iteration, many complex operations, e.g. patch
clipping or computing derivative intervals, have to be performed. Even
though most operations can be efficiently implemented using SSE instruc-
tions, significantly more SSE instructions are required than for standard
Newton iteration-based intersection. For many scenes, this significantly im-
pacts performance (see Section 6.10).

The number of iterations that are required to identify a safe convergence
region largely depends on the size of the partial derivative intervals. The
larger the derivative intervals, the smaller the reduction of the current para-
metric region. Typically, the expansion of the derivative intervals becomes
larger with an increased patch curvature. Therefore, it might be beneficial
to subdivide highly curved patches in a preprocessing step in order to first
reduce the curvature of these patches.

6.6 Bézier Clipping

Another approach for solving the intersection problem is the Bézier clipping
algorithm. Bézier clipping was first presented by Nishita et al. [Nishita90].
The basic idea behind the Bézier clipping algorithm is to cut away regions of
the patch (and therefore parametric intervals) that are known not to be
intersected by the ray. Through continuous cutting, the parametric do-
main associated with the remaining sub-patch converges to the solution.

114 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Note that Bézier clipping even works for rational Bézier surfaces or Bézier
curves because all operations are only performed after a projection of the
patch into 2D.

The original algorithm proposed by Nishita et al. [Nishita90] suffers from
certain numerical instabilities because of the underlying nature of the algo-
rithm. Campagna et al. [Campagna97] identified those critical issues and
proposed a modified version, which greatly reduced the numerical problems.

As a matter of fact, Bézier clipping is a very complex algorithm, whose
implementation is not trivial. Nevertheless, even this complex algorithm can
be efficiently implemented using SSE instructions. In order to provide a bet-
ter understanding of implementation issues, Section 6.6.1 will first discuss
the original algorithm in detail. Section 6.6.2 will present a step-by-step ap-
proach to an SSE implementation. Finally, Section 6.6.3 will deal remaining
problems and bottlenecks.

03

L

L u

v

00P P

33P30P −2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

umin

umax

u

BC(u)

Figure 6.13: Left Image: The distances of all 3D control points to the two ray
planes (blue lines) are determined, resulting in a 2D patch representation. In
order to reduce the parametric domain, two lines Lu = 1

2
(P30 − P00 + P33 −

P03) and Lv = 1
2
(P03 − P00 + P33 − P30) are computed (green lines) which

pass through the origin and are roughly perpendicular to the two parametric
directions ’u’ and ’v’. Right Image: The convex hull of the distances of all 2D
control points to line Lv, plotted using equidistant spacing of the unit interval.
The region outside of the convex hull is known to not to be intersected and
can be cut away.

6.6.1 The Bézier Clipping Algorithm

Bézier clipping works by cutting away regions of the patch, and thus para-
metric regions of the parameter domain, that are known not to be intersected

6.6 Bézier Clipping 115

by the ray. Each ray is again represented as the intersection of two planes
pl0(x) = N0 x + d0 and pl1(x) = N1 x + d1. In a first step, the distance for
all control points Pij with respect to the two planes are computed

dij = (N0 Pij + d0, N1 Pij + d1) (6.51)

This allows for performing all cutting and subdivision operations in 2D in-
stead of 3D, thus saving 33% of the total number of operations. The distances
dij are used as control points for the projected 2D patch representation

P
′

(u, v) =
3

∑

i=0

3
∑

j=0

B3
i (u)B3

j (v) dij , dij ∈ R
2 (6.52)

The two lines pl0 and pl1 specify the coordinate axes, as shown in the left
image of Figure 6.13. This reduces the intersection problem to finding values
for u and v, so that P

′

(u, v) = 0. The algorithm finds potential u and v values
by iteratively excluding parametric regions with P

′

(u, v) 6= 0. Therefore, two
lines Lu and Lv which pass through the origin are determined. Those lines
should be roughly perpendicular to the two parametric directions u and v,
and are usually defined as:

Lu =
1

2
(P30 − P00 + P33 − P03) (6.53)

Lv =
1

2
(P03 − P00 + P33 − P30) (6.54)

In rare cases when either Lu = 0 or Lv = 0, the computation of Lu and Lv

must be performed differently [Efremov05]. If u is the first parametric direc-
tion to be considered, the distances d

′

ij of all 2D control points to line Lu are
computed next. Relying on the following property of Bernstein polynomials

n
∑

i=0

i

n
Bn

i (u) = u (6.55)

an explicit Bézier curve can be defined as

BC(u) =
n

∑

i=0

[

i
n

d
′

i

]

Bn
i (u) (6.56)

116 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

As BC(u) intersects the u-axis at some point where P
′

(u, v) intersects Lu,
the convex hull criteria for BC(u) can be applied in order to identify regions
for u that do not intersect the u-axis and therefore do not intersect Lu ei-
ther. The right image of Figure 6.13 shows the convex hull of the points
(i

n
, d

′

i) intersecting the u-axis at umin and umax. Therefore, intervals [0, umin]
and [umax, 1] can be excluded from containing potential solutions in the u
direction. Note that i

n
is an equidistant spacing of the unit interval.

Two de Casteljau subdivision steps are now performed in the u direction
in order to reduce the 2D Bézier patch P

′

(u, v) to the reduced parametric
interval [umin, umax]. The algorithm continues by alternating between u and
v as parametric directions. Bézier clipping has three termination criteria:

• One interval is smaller than a predefined epsilon. If only one para-
metric direction is still greater than epsilon, the algorithm continues
exclusively with the corresponding interval. If the interval for both di-
rections is smaller than epsilon, the center of either interval is returned
as a valid intersection.

• After the de Casteljau subdivision, the subdivided patch does not in-
clude the origin (with respect to the two ray planes), resulting in no
intersection.

• The convex hull of the Bézier curve BC(u) does not intersect the u-axis,
resulting in no intersection.

Handling multiple intersections can be problematic because the algorithm
does not need to terminate in this case. A simple solution to this problem is
to subdivide the patch in half and restart the algorithm with either half
provided the parametric interval reduction is less than a constant value.
Nishita [Nishita90] heuristically determined this value as being 20%.

If the algorithm converges to a solution, the original patch P (u, v) is
evaluated at the corresponding parameter values in order to obtain the coor-
dinates of the intersection point. By projecting the intersection point along
the ray direction, distance t can be computed easily by

t = ray.direction ∗ (P (u, v) − ray.origin) (6.57)

6.6.2 SSE Implementation

The following operations required by the Bézier clipping algorithm have been
identified as suitable core operations for implementation using SSE instruc-
tions:

6.6 Bézier Clipping 117

struct BicubicBezierPatch2D

{

sse_t Nu_dist[4];

sse_t Nv_dist[4];

};

Figure 6.14: The structure stores the sixteen 2D control points of the patch
P

′

(u, v), which are the distances dij of the original control points to the two
ray planes, in an SSE suitable SOA format.

• Obtaining the 2D control points dij of patch P
′

(u, v) by computing the
distances of the 3D control points Pij to the two ray planes pl0 and pl1.

• Checking whether the current patch P
′

(u, v) includes the origin.

• Computing the Lu and Lv.

• Computing the distances d
′

ij of dij to either Lu or Lv, and determining
the convex hull of the obtained distance control points. Finding umin

and umax if the convex hull intersects the u-axis.

• Based on the reduced parametric interval [umin, umax], subdividing the
current patch two times in order to obtain sub-patch P

′

(u, v).

In the following, the implementation for all those operations will be dis-
cussed in detail.

Initialization 3D to 2D

Applying the Bézier clipping algorithm for bicubic Bézier patches requires
a data structure for storing the 2D control points dij (see Figure 6.14) for
the 2D patch P

′

(u, v). This data structure is initialized by computing the
distances of the original control points to the two ray planes.

The code illustrated in Figure 6.15 shows that distances dij can be effi-
ciently computed by performing a sequence of four dot products in parallel.
Additionally, a pruning test is performed by checking the signs of the com-
puted 2D distance coordinates. If all distances have matching signs, the 2D
convex hull of all control points cannot contain the origin. Thus, the ray
cannot intersect the patch. Note that this additional test can be performed
basically without any additional costs.

118 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

inline bool Init(const BicubicBezierPatch3D &patch,

const RayPlanesSSE &plane)

{

unsigned int signsU = 0;

for (unsigned int i=0;i<4;i++)

{

const sse_t d = _mm_add_ps(_mm_add_ps(_mm_mul_ps(plane.Nu.t[0],

patch.p[i].t[0]),

_mm_mul_ps(plane.Nu.t[1],

patch.p[i].t[1])),

_mm_mul_ps(plane.Nu.t[2],patch.p[i].t[2]));

const sse_t d_f = _mm_sub_ps(d,plane.du);

Nu_dist[i] = d_f;

signsU |= _mm_movemask_ps(d_f) << (4*i);

}

if (signsU == 0xffff || signsU == 0) return false;

unsigned int signsV = 0;

for (unsigned int i=0;i<4;i++)

{

const sse_t d = _mm_add_ps(_mm_add_ps(_mm_mul_ps(plane.Nv.t[0],

patch.p[i].t[0]),

_mm_mul_ps(plane.Nv.t[1],

patch.p[i].t[1])),

_mm_mul_ps(plane.Nv.t[2],patch.p[i].t[2]));

const sse_t d_f = _mm_sub_ps(d,plane.dv);

Nv_dist[i] = d_f;

signsV |= _mm_movemask_ps(d_f) << (4*i);

}

if (signsV == 0xffff || signsV == 0) return false;

return true;

}

Figure 6.15: Initialization of the sixteen 2D control points of patch P
′

(u, v).
The control points are the distances dij of the original control points to the
two ray planes (stored in the SSE-suitable SOA format). If the new control
points lie completely in one half space with respect to a ray plane, the new
patch cannot contain the origin and the function returns false (early exit).

Origin Test

The test whether the current patch P
′

(u, v) includes the origin, or not, is
basically the same as the previously mentioned sign test of all distances.
Since this test is performed for every Bézier clipping iteration it needs to be
as fast as possible. Therefore, a simplified version is chosen. This test first
computes the extremal distances (minimum and maximum) with respect to

6.6 Bézier Clipping 119

inline bool ContainsOrigin()

{

sse_t minU = Nu_dist[0];

sse_t maxU = Nu_dist[0];

for (unsigned int i=1;i<4;i++)

{

minU = _mm_min_ps(minU,Nu_dist[i]);

maxU = _mm_max_ps(maxU,Nu_dist[i]);

}

if ((_mm_movemask_ps(maxU) == 0xf) ||

(_mm_movemask_ps(minU) == 0x0)) return false;

sse_t minV = Nv_dist[0];

sse_t maxV = Nv_dist[0];

for (unsigned int i=1;i<4;i++)

{

minV = _mm_min_ps(minV,Nv_dist[i]);

maxV = _mm_max_ps(maxV,Nv_dist[i]);

}

if ((_mm_movemask_ps(maxV) == 0xf) ||

(_mm_movemask_ps(minV) == 0x0)) return false;

return true;

}

Figure 6.16: Checking if the 2D patch P
′

(u, v) contains the origin by apply-
ing the plane test only to extremal values of the control point matrix. For
every column of the control point matrix, the minimum and maximum is
computed in parallel and the corresponding signs are compared. If all maxi-
mum, respectively minimum, values have negative respectively positive signs,
the patch cannot contain the origin.

the columns of the control point matrix. The origin test is performed in a
second step by simply testing those extremal points, as shown in Figure 6.16.

Computing Lu and Lv

Reducing the parametric domain in either the u or v direction makes it
necessary to compute the two lines Lu = 1

2
(P30 − P00 + P33 − P03) and Lv =

1
2
(P03−P00+P33−P30). Lu (Lv) should be roughly perpendicular to direction

u (v). Given the nature of Bézier clipping, it is possible that either Lu or Lv

become zero. In this case, the zero vector will be replaced by a vector which
is perpendicular to the non-zero vector. As computing Lu and Lv is rather
simple, code is omitted.

120 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

umin

umax

u

BC(u)

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

umin

u

BC(u)

Figure 6.17: Left Image: When computing the intersection of the convex
hull with the u-axis, only the extremal intersections umin and umax need to
be considered. Right Image: In the case of multiple intersections, only the
absolute maximum, respectively minimum, of the intersections with the u-axis
is determined.

Computing the Convex Hull

Assuming parametric direction u has been chosen, the new control point ma-
trix d

′

ij is set by computing the distances dij to Lu. Because of the equidistant

partition in u, all d
′

ij, 0 ≤ i ≤ 3 share the same ui = i ∗ 1
3

value. Therefore,

the minimum dmin
′

i and maximum dmax
′

i of d
′

ij, 0 ≤ i ≤ 3 are determined
for every vi. Computing vi can be implemented efficiently using SSE instruc-
tions, which allows all four dmin

′

i and dmax
′

i to be stored within one register.
An early exit can be performed, simply by testing the four dmin

′

i in terms
of matching positive signs and dmin

′

i in terms of matching negative signs.

Starting from dmin
′

i respectively dmax
′

i, the convex hull with respect to
a possible intersection at the u-axis is constructed. Note that an intersection
with the u-axis can only exist if the signs of dmin

′

i (dmax
′

i) do not match. For
all possible intersections with the u-axis, only the extremal intersections umin

and umax need to be considered, as shown in the left image of Figure 6.17.

For the four points dmin
′

i (dmax
′

i), there exists only a maximum of four
intersections with the u-axis, as shown in right image of Figure 6.17. Note
that not all have a valid intersection with the u-axis. Based on the signs of
the four points dmin

′

i (dmax
′

i), it is possible to precompute the indices istart

and iend referring to the y coordinate and the u values for the start and end
points of all four line equations.

Taking the signs of either dmin
′

i or dmax
′

i, one can easily assemble all
four possible line equations in the SOA format by performing table look-ups.
The potential intersections can now be efficiently computed using SSE in-

6.6 Bézier Clipping 121

struct IntersectionTableEntry // sixteen precomputed entries

{

unsigned int sy[4];

unsigned int ey[4];

float dx[4];

float sx[4];

};

// --------------------------------

sse_t dist[4];

const sse_t nx = _mm_set_ps1(du.y); // normal to Lu

const sse_t ny = _mm_set_ps1(-du.x);

for (unsigned int i=0;i<4;i++)

dist[i] = _mm_add_ps(_mm_mul_ps(nx,Nu_dist[i]),

_mm_mul_ps(ny,Nv_dist[i]));

sse_t min_dist = _mm_min_ps(_mm_min_ps(dist[0],dist[1]),

_mm_min_ps(dist[2],dist[3]));

sse_t max_dist = _mm_min_ps(_mm_max_ps(dist[0],dist[1]),

_mm_max_ps(dist[2],dist[3]));

if (_mm_movemask_ps(min_dist) == 0x0 ||

_mm_movemask_ps(max_dist) == 0xf) return false;

if ((minMask & 0x9) != 0x9) {

const unsigned int index = ((mask & 0x8) ? ~mask : mask) & 0x7;

const IntersectionTableEntry &entry = convexHullIntersectionTable[index];

const sse_t sy = _mm_setr_ps(ptr[(int)entry.sy[0]],ptr[(int)entry.sy[1]],

ptr[(int)entry.sy[2]],ptr[(int)entry.sy[3]]);

const sse_t ey = _mm_setr_ps(ptr[(int)entry.ey[0]],ptr[(int)entry.ey[1]],

ptr[(int)entry.ey[2]],ptr[(int)entry.ey[3]]);

const sse_t denom = Inverse(_mm_sub_ps(ey,sy));

const sse_t s = _mm_add_ps(_mm_mul_ps(_mm_mul_ps(*(sse_t*)entry.dx,sy),

denom),*(sse_t*)entry.sx);

const float s_min = _mm_cvtss_f32(sseHorizontalMin(s));

const float s_max = _mm_cvtss_f32(sseHorizontalMax(s));

minS = MIN(minS,s_min);

maxS = MAX(maxS,s_max);

}

if (((~maxMask) & 0x9) != 0x9) {

// ...

}

Figure 6.18: Given a maximum of four intersections, the indices for the four
line representations are precomputed, allowing the intersections to be effi-
ciently computed in parallel. Horizontal operations then return the minimum
and maximum of the ’u’ intersections.

122 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

structions (see Figure 6.18). Taking the minimum (maximum) of the four u
intersections, one can obtain umin (umax). Note that the intersection com-
putation needs to be applied only for a subset of the sixteen possible sign
combinations.

inline void deCasteljauVertical(BicubicBezierPatch2D &dest,

const sse_t alpha,

const sse_t beta) const

{

dest.Nu_dist[0] = Nu_dist[0];

const sse_t p10x = _mm_add_ps(_mm_mul_ps(alpha,Nu_dist[0]),

_mm_mul_ps(beta,Nu_dist[1]));

dest.Nu_dist[1] = p10x;

const sse_t p11x = _mm_add_ps(_mm_mul_ps(alpha,Nu_dist[1]),

_mm_mul_ps(beta,Nu_dist[2]));

const sse_t p20x = _mm_add_ps(_mm_mul_ps(alpha,p10x),

_mm_mul_ps(beta,p11x));

dest.Nu_dist[2] = p20x;

const sse_t p12x = _mm_add_ps(_mm_mul_ps(alpha,Nu_dist[2]),

_mm_mul_ps(beta,Nu_dist[3]));

const sse_t p21x = _mm_add_ps(_mm_mul_ps(alpha,p11x),

_mm_mul_ps(beta,p12x));

const sse_t p30x = _mm_add_ps(_mm_mul_ps(alpha,p20x),

_mm_mul_ps(beta,p21x));

dest.Nu_dist[3] = p30x;

// similar for Nv_dist[i]

// ...

}

Figure 6.19: The 2D de Casteljau algorithm for subdividing in the vertical
direction. ’alpha’ and ’beta’ are the linear factors used for computing the
linear combinations.

Subdivision

Starting from a reduced parametric interval [umin, umax], the corresponding
control point matrix needs to be computed. Therefore, two de Casteljau
subdivisions are executed using the code shown in Figure 6.19.

Note that the linear factors used for the linear combinations within the
de Casteljau algorithm need to be adjusted: umin,1 − umin for the first sub-
division, and umax−umin

1.0f−umin

for the second subdivision.

6.7 Summary of Intersection Algorithms 123

Step CPU Cycles

Initialization 3D to 2D 74
Origin Test 70
Computing Lu and Lv 50
Computing Convex Hull 218
Subdivision 100 (200)

Table 6.4: Average number of CPU cycles for each of the core operations
for Bézier clipping. The two most expensive operations are the determina-
tion of the convex hull including intersection computation, and the related
subdivision. Note that subdivision in ’u’ direction requires additional shuffle
instructions, thereby roughly doubling the costs.

6.6.3 Discussion

Table 6.4 shows the average number of cycles for different core operations.
Almost all core operations require less than 100 cycles. The cost, in particu-
lar, for computing the convex hull and for patch subdivision, could be further
reduced as soon as processor architectures offer better support for horizontal
and shuffle operations.

The Bézier clipping algorithm in its original form does not depend on an
additional per-patch spatial index structure as required by the Newton itera-
tion. Similar to the uniform refinement approach, it only requires the original
control point matrix, which makes it very memory efficient. Nevertheless, the
Bézier clipping algorithm could also benefit from a patch acceleration struc-
ture to speed up convergence. Restricting the parametric starting domain
associated to an index structure entry would immediately reduce the number
of required iterations.

Another difficulty is that the Bézier clipping algorithm is rather sensitive
to the relation of the two lines Lu and Lv. Ideally, these two vectors should be
perpendicular to each other. In practice, however, the angle between them
can be rather small. In this case, only a low reduction of the parametric
domain can be achieved, resulting in an increased number of iterations. It
would be interesting to implement the approach proposed by Efremov et
al. [Efremov05] for computing more suitable Lu and Lv vectors.

6.7 Summary of Intersection Algorithms

Except for the standard Newton iteration-based intersection, none of the de-
scribed approaches depend on an additional per-patch spatial index structure.

124 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

However, Bézier clipping or Newton iteration using the Krawczyk operator
might benefit from a structure of this kind. Such an index structure would
restrict the parametric starting region, thereby improving convergence of the
intersection algorithm. Moreover, if an intersection algorithm requires many
iterations before pruning a patch, a per-patch index structure can help to
perform the pruning test earlier (in the traversal phase). On the other hand,
the increased number of traversal steps and memory accesses can offset the
benefit gained from a higher convergence speed.

Profiling tools such as VTune [Intel04] show that for all approaches which
do not rely on additional spatial index structures, the intersection sequence
is compute-bound. A stack of subdivided patches (or parametric intervals),
as required by most approaches, comprises only a few KB. Therefore, stack
data completely resides in the cache hierarchy.

The only point where cache misses appear is the point of accessing patch
data. However, most of those (L2) cache misses can be avoided by prefetching
data for the subsequent patches while intersecting the current one. Since
the memory latency is usually smaller than the costs of patch intersection,
memory prefetching works very well in this situation.

Comparing the implementation complexity of the different intersection
algorithms shows that the intersection based on uniform refinement employ
the shortest core routines and the simplest control flow. A slightly more
complex algorithm is the Newton iteration with an additional spatial index
structures over sub-patches, while Bézier clipping is the most complex in-
tersection algorithm. Newton iteration using the Krawczyk operator is as
complex as Bézier clipping. Whenever short construction times are manda-
tory, e.g. for supporting dynamic scenes (see Chapter 7), one should choose
an intersection algorithm that does not depend on additional per-patch spa-
tial index structures. Furthermore, if limited accuracy is acceptable, uniform
refinement typically provides the highest performance (see Section 6.10). For
actual performance statistics for ray tracing complete bicubic Bézier scenes,
see Section 6.10.

When it comes to supporting ray bundles, uniform refinement and Newton
iteration with a sub-patch spatial index structure provide a straightforward
extension. Integrating ray bundles into Bézier clipping is more difficult be-
cause the subdivision has to be done on a per ray basis. Moreover, Bézier
clipping requires numerous temporary data updates, which is difficult to re-
alize for many rays in parallel. Therefore, it is likely that the benefit of
computing the intersection for multiple rays in parallel will be offset by the
additional overhead.

For a Newton iteration-based intersection algorithm using the Krawczyk
operator the support of ray bundles is non-trivial. As each ray uses its own

6.8 Spatial Index Structures for Patches 125

parametric interval, the patch clipping step must be performed individually
for each ray.

On the other hand, it might be beneficial to split the intersection algo-
rithm into a serial and a parallel part: This means evaluating the Krawczyk
operator for each ray in a serial process, but performing the computation for
the subsequent Newton iterations in parallel.

6.8 Spatial Index Structures for Patches

Having a fast primitive intersection code is only a first step, because typical
scenes are comprised of many primitives which will require the construction
of a spatial index structure to reduce the number of ray-patch intersection
tests per ray. Compared to a simple ray-triangle intersection, the cost for
a ray-patch intersection is significantly higher. This means that a small
number of ray-patch intersection tests per ray is essential for achieving high
performance, which puts certain quality requirements on the spatial index
structure used. In the past, researchers mostly used bounding volume hi-
erarchies [Rubin80, Kay86, Haines91, Smits98] as the spatial acceleration
structure for reducing the number of ray-patch intersection tests. Because of
the very fast traversal code (see Chapter 4) and its adaptation ability with
respect to geometric distribution, a kd-tree is chosen as the spatial index
structure.

A kd-tree over patches is built based on the axis-aligned bounding boxes
(AABB) for each patch, ignoring the patch shape itself. Even though this
simplification is less accurate, it is both simple and fast. To enhance the
quality of the kd-tree, a surface area heuristic (SAH) [Havran01, Wald04,
Benthin04] is applied to carefully position the splitting plane. This results
in better quality (fewer intersection tests per ray), compared to a standard
kd-tree construction algorithm. For a more detailed discussion of how to
construct kd-trees out of axis-aligned bounding boxes, see Section 7.1.

6.9 Trimming Curves

Trimming curves are a common method for overcoming the topologically
rectangular limitations of patches. Trimming curves, which are defined in
two-dimensional parameter space, are mostly used when designers wish to
cut out sections from patches.

Similar to the conversion of NURBS to bicubic Bézier patches (see Sec-
tion 6.2), an arbitrary source representation for a trimming curve is converted

126 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Figure 6.20: Example trimming curve consisting of three bicubic Bézier seg-
ments. For each segment the axis-aligned bounding box (marked blue, green,
and gray) is used as the construction primitive for the kd-tree. The kd-tree
as the spatial index structure allows for reducing the number of potential
segments which are passed to the ray-segment intersection test. In order to
determine whether a given point is inside (outside) a trimming curve, the
number of intersections between a virtual ray (marked red) and the trim-
ming curve segments is counted. In the case of an odd (even) number, the
corresponding point is inside (outside) with respect to the curve.

to a sequence of bicubic Bézier curve segments. Restricting the degree of the
curve to three allows for a fast and less complex implementation.

Trimming curves have two important properties: they are closed and
they must not overlap. Exploiting these properties allows for constructing
a trimming curve hierarchy. Additionally, each trimming curve saves its
orientation, which defines whether the inside or outside (with respect to the
curve) has to be removed.

In the case one or more trimming curves are attached to a given patch,
and the corresponding ray-patch intersection returns a hit, the parametric
hit coordinates are passed to a trimming curve (hierarchy) test. If a trim-
ming curve hierarchy exists for the given patch, the hierarchy is traversed
as described in [Martin00]. An intersection point lies inside (outside) with
respect to a given trimming curve, if the number of intersections, between
a ray starting from the intersection point towards a point outside the trim-
ming curve, is odd (even). The task is therefore to count the intersections
between a “virtual ray” and the underlying bicubic Bézier segments. In order

6.9 Trimming Curves 127

Figure 6.21: A set of test scenes that have been converted into bicubic Bézier
patches. The number of Bézier patches is 32 for the “Teapot”, 915 for the
“Head”, 20, 257 for the “VW Golf” and 1, 160 for the “Stingray”. The “VW
Golf” scene contains 8150 trimming curves, corresponding to 119, 580 bicubic
Bézier curve segments.

to speed up intersection calculation, a two-dimensional kd-tree is constructed
over all segments. This allows for reducing the number of potential segments
that need to be tested for intersection. For the actual kd-tree construction,
a similar approach as for patches is chosen: The axis-aligned bounding box
(now in 2D) of each curve segment is used as construction primitive (see
Figure 6.20). In order to compensate for the coarser hull approximation, an
SAH is applied to improve kd-tree quality. For the real ray-curve intersec-
tion test, any of the algorithms shown in Section 6.2 is suitable. Typically,
uniform refinement with a fixed number of refinement steps offers sufficient
speed and accuracy. As all operations are now performed in 2D, roughly 30%
of the respective core routine costs are saved as compared to the operation
costs in 3D.

128 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

6.10 Results

This section will provide performance statistics and analyses for ray tracing
bicubic Bézier scenes. For testing purposes, four scenes with different com-
plexity have been used (see Figure 6.21). Note that only the “VW Golf”
scene contains trimming curves.

Comparing the different intersection approaches is difficult. This is espe-
cially true when it comes to comparing uniform refinement with approaches
based on analytical solutions. Therefore, the algorithmic analysis is split into
two parts: The first part covers intersection for uniform refinement while the
second part deals with the analytical algorithms.

Regardless of the intersection algorithm, ray tracing of Bézier patches re-
quires less time in kd-tree traversal than for triangles. Even if an additional
index structures over sub-patches is used, typically only 20-30% of the time
for tracing a single ray is spent in kd-tree traversal, while ray-patch intersec-
tion takes up 70-80% of the time. The performance impact of fast traversal
code is therefore less than for ray tracing triangles (typically traversal 70%,
intersection 30%). The simple reason for this is that total performance is
exclusively determined by the intersection step. Even though the cost for
intersection already starts to dominate even in the triangle case, for Bézier
patches the cost discrepancy between traversal and intersection is even more
significant. In the case no sub-patch index structures are used, a kd-tree over
patches is shallower as compared to the triangle case. This results in 40-50%
fewer traversal steps in total, additionally shifting the dominating cost factor
towards intersection.

Rays Teapot VW Golf Head Stingray

1 378760 704965 219687 440892
16 6.71% 10.21% 10.6% 8.74%

Table 6.5: Average number of patches loaded per frame at a resolution of
640×480, casting only primary rays. Compared to tracing single rays, tracing
ray bundles of sixteen rays reduces patch accesses to less than 10% of the
number for individual rays.

Extending single ray traversal to ray bundle traversal allows for exploiting
the same benefits as those of the triangle case. In particular, any fast traversal
code can be reused directly. Only the code for triangle intersections has to be
replaced by patch intersection code. Moreover, a similar bandwidth reduction
as for triangles can be achieved, because neighboring rays are likely to access
the same patches. The loaded patch data can therefore be reused for all rays

6.10 Results 129

within the bundle. This reduces the total number of patch accesses per frame,
and therefore the required bandwidth to memory. Table 6.5 shows that for
4 × 4 ray bundles, the bandwidth required for loading patch data can be
reduced to less than 10% of the original amount. For scenes with additional
sub-patch index structures, the reduction is typically smaller (depending on
the depth of the sub-patch index structure).

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

fr
am

es
 p

er
 s

ec
on

d

refinement steps

Teapot
VW Golf

Head
Stingray

Figure 6.22: (Single ray) performance (in fps) for Bézier scenes as a function
of the number of patch refinement steps. Each refinement step corresponds to
a de Casteljau subdivision step in one of the two parametric directions. All
experiments were performed at a resolution of 640 × 480 pixels on a single
Pentium-IV 2.2 GHz processor. Using 4−6 refinement steps, an intersection
based on uniform refinement is able to achieve interactive performance on a
single processor.

6.10.1 Uniform Refinement Results

In order to demonstrate the impact of an increasing refinement level, Fig-
ure 6.22 illustrates the performance in frames per second for all four test
scenes, casting a single primary ray per pixel. All tests were run on a single
Pentium-IV 2.2 GHz processor at a resolution of 640× 480. Even for a high
number of refinement steps, interactive performance is realized. The achieved
accuracy depends to a great extent on the patch shape itself, but for most

130 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Rays Teapot VW Golf Head Stingray

1 2.0 1.01 3.23 1.89
16 16.14 5.72 12.93 9.02
Speedup 8.07x 5.67x 4.0x 4.77x

Table 6.6: Performance comparison between tracing single rays and tracing
bundles of sixteen rays, in frames per second. All scenes are rendered at a
resolution of 640×480, casting only primary rays and with a refinement level
of 4. Tracing ray bundles of sixteen rays results in a speedup factor of 4− 8,
compared to tracing single rays. For the “VW Golf” scene, no evaluation of
trimming curves has been applied.

applications a refinement level of 4 − 6 already provides smooth surfaces.

To further improve performance, the single ray intersection code was ex-
tended in order to support ray bundles. Uniform refinement, in particular,
can benefit enormously from ray bundles because the patch subdivision cost
can be efficiently amortized over all rays within the bundle. As for the tri-
angle case, a bundle size of 16 rays has been found to be most beneficial.

A comparison between the fastest code for tracing single rays and the
fastest code for tracing ray bundles shows that a speedup factor of 4 − 8 is
achieved through bundling (see Table 6.6). By increasing coherence within
the ray bundle, e.g. by rendering at resolutions higher than 640 × 480, this
factor can be increased even further.

Rays Teapot VW Golf Head Stingray

640 × 480 8.07 5.67 4.0 4.77
800 × 600 8.25 6.61 4.48 5.17
1024 × 1024 8.6 8.42 5.64 6.28
1600 × 1200 8.7 8.5 5.7 6.41
Speedup 7.8% 49.91% 42.5% 34.38%

Table 6.7: Speedup improvement for tracing ray bundles compared to tracing
single rays with increasing resolution. The more coherent the rays are, the
higher the speedup improvement (up to 49.91%).

Table 6.7 shows the increase of the speedup factor for all test scenes when
rendered at different resolutions. At a resolution of 1024×1024, the increased
coherence within the ray bundle results in a 49.91% speedup as compared to
rendering at a resolution of 640 × 480.

6.10 Results 131

Higher coherence does not only affect traversal performance but, above
all, intersection performance. The more coherent the rays are, the higher
the decision coherence within uniform refinement. The largest performance
gain is achieved for the “VW Golf” scene because the scene consists of many
small patches which negatively impact decision coherence within traversal
and intersection when rendering at low resolutions.

As a result, intersection based on uniform refinement is able to fully ex-
ploit ray bundle coherence. If high accuracy requirements are not mandatory
(depending on the scene), a fast uniform refinement implementation is able
to provide interactive performance even on a single processor.

6.10.2 Analytical Intersection Results

As analytical intersection algorithms iteratively converge to the right so-
lution, a fixed accuracy threshold is used. More precisely, if a computed
solution yields an error which lies below a predefined value, the solution is
accepted as valid.

Rays Teapot VW Golf Head Stingray

Patches 32 20,257 915 1160
Sub-patches 2016 255,188 15,538 4,650
IRays 273,663 215,821 151,365 252,399
TSteps 23.59 35.11 35.70 22.88
PI/IRay 1.01 2.33 1.67 1.51
NI/IRay 2.59 8.04 5.61 4.93
fps 2.5 1.35 2.4 2.0

Table 6.8: Single ray statistics for Newton iteration-based intersection using
an additional per-patch index structure to restrict the parametric search do-
main. Only sufficiently small parametric domains (sub-patches) will ensure
convergence of the Newton iteration. Compared to the original number of
patches, the number of sub-patches is increased by a factor of 4 to 60. Each
ray invokes roughly 1 − 3 intersection steps, resulting in 2 − 8 Newton iter-
ations per ray. All scenes were rendered at a resolution of 640 × 480 on a
Pentium-IV 2.2 GHz, with an accuracy threshold of 1E−3. “IRays”: number
of rays that performed an intersection step,”TSteps”: required traversal steps
per ray,“PI/IRay”: number of patch intersections per “IRay”, “NI/IRay”:
number of Newton iterations required per “IRay”.

Table 6.8 shows statistics for a Newton iteration-based patch intersec-
tion. For this case, the kd-tree is constructed over sub-patches to restrict the

132 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

parametric search domain. The Newton iteration will only converge if the
parametric starting region is sufficiently small. As convergence depends to a
great extent on patch curvature, a simple criterion based on the deviation to
a bilinear patch is used to terminate the generation of sub-patches. Depend-
ing on the scene, 4 to 60 times more sub-patches than patches have to be
created in order to ensure convergence. Note that for sub-patches, no actual
patch data needs to be stored, but only a reference to the corresponding
parametric domain as well as a reference to the original patch data. All re-
quired information can be efficiently stored in a 32-byte structure [Geimer05],
requiring 7.78 MB of additional storage space for 215, 821 sub-patches of the
“VW Golf” scene. As the kd-tree is constructed over sub-patches, the corre-
sponding storage space increases from 3.14 MB for 20, 257 patches to 62.36
MB for 255, 188 sub-patches.

As illustrated in Table 6.8, one ray requires an average of 22−35 traversal
steps and 1−3 intersection tests. Each intersection step requires at least one
Newton iteration, resulting in 2 − 8 Newton iterations per ray on average.
Given the small number of required iterations and the impact of the efficient
SSE implementation (see Section 6.4), interactive performance even on a
single processor is achieved.

Rays Teapot VW Golf Head Stingray

Patches 32 20257 915 1160
IRays 273,663 215,821 151,365 252,399
TSteps 10.22 24.64 23.12 16.63
PI/IRay 1.31 3.26 2.08 1.71
BC/IRay 9.96 2.03 2.31 2.48
fps 0.8 1.25 2.37 1.73

Table 6.9: Single ray statistics for Bézier clipping-based intersection. Each
ray invokes 1− 3 intersection steps, resulting in 2− 10 Bézier clipping steps
per ray. All scenes were rendered at a resolution of 640 × 480 on a 2.2
GHz Pentium-IV, with a solution accuracy of 1E − 3. “IRays”: number
of rays that performed an intersection step, “PI/IRay”: number of patch
intersections per “IRay”, “BC/IRay”: number of Bézier clipping iterations
required per “IRay”.

Intersection based on Bézier clipping, as illustrated in Table 6.9, does not
depend on additional data structures in order to ensure convergence. As a
result, the kd-tree is significant smaller, resulting in up to 50% fewer traver-
sal steps compared to the sub-patch-based intersection. For most scenes,

6.10 Results 133

only 2− 3 Bézier clipping iterations are required. As with Newton iteration-
based intersection, the “Teapot” with its highly curved patches requires sig-
nificantly more iterations (more pre-subdivisions) than all other scenes. A
performance comparison between the two intersection approaches shows that
the costs for Bézier clipping cannot be compensated for by the smaller num-
ber of traversal steps. Bézier clipping provides a slightly lower performance
than Newton iteration-based intersection but, on the other hand, requires no
additional spatial index structures.

Rays Teapot VW Golf Head Stingray

Patches 32 20257 915 1160
IRays 273,663 215,821 151,365 252,399
TSteps 10.22 24.64 23.12 16.63
PI/IRay 1.31 3.26 2.08 1.71
KI-Clip/IRay 12.76 6.01 4.53 4.65
KI-Interval/IRay 44.23 22.82 14.49 14.89
NI/IRay 0.53 1.76 0.87 0.83
fps 0.21 0.25 0.52 0.43

Table 6.10: Single ray statistics for Newton iteration-based intersection using
the Krawczyk operator. All scenes were rendered at a resolution of 640× 480
on a 2.2 GHz Pentium-IV, with a solution accuracy of 1E − 3. “IRays”:
number of rays that performed an intersection step, “PI/IRay”: number of
patch intersections per “IRay”, “KI-Clip/IRay”: number of Krawczyk opera-
tor evaluations per “IRay”, using a clipping operation to compute the inter-
val extension of the partial patch derivatives,“KI-Interval/IRay”: number of
Krawczyk operator evaluations per “IRay”, using pure interval arithmetic to
compute the interval extension of the partial patch derivatives, “NI/IRay”:
number of Newton iterations required per “IRay”.

Table 6.10 shows statistics for Newton iteration-based intersection using
the Krawczyk operator. The algorithm does not rely on additional per-patch
spatial index structures, which implies the same number of traversal and
intersection steps per ray as for Bézier clipping. In terms of iterations for
the Krawczyk-Moore test, the higher accuracy of the interval extension of the
partial derivatives makes for a reduction of up to a factor of four as compared
to using pure interval arithmetic.

As the “Teapot” scene contains highly curved patches, the Krawczyk
operator using clipping operations still needs over 12 iterations per ray, as
compared to 4 − 6 for the other scenes, to provide safe starting intervals.

134 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Moreover, the safe starting intervals are typically very small which allows
for fast convergence of the Newton iteration. For the four test scenes, only
0.5− 2 iterations per ray are required in order to compute the final intersec-
tion. However, total performance is lower than with the standard Newton
iteration-based algorithm. The reasons behind the lower performance are the
costly operations required for evaluating the Krawczyk operator. Further op-
timization should thus concentrate on reducing the cost for these operations.

As only the “VW Golf” scene includes trimming curves, the impact of
trimming curve evaluation could only be measured for this scene. Depending
on the view, additional trimming curve tests cause a total performance de-
crease of 10−30% (compared to the performance statistics of Tables 6.8, 6.9,
and 6.10).

Extending ray-patch intersection algorithms to efficiently support ray
bundles is difficult. Certain algorithms, e.g. Bézier clipping or Newton it-
eration using the Krawczyk operator, cannot be easily extended to efficiently
support ray bundles because these algorithms require many complex opera-
tions as well as a complex control flow. Implementing these operations for
ray bundles is likely to introduce additional implementation overhead. This
is not the case for the standard Newton iteration-based intersection. Ta-
ble 6.11 illustrates statistics for 2 × 2 ray bundles using standard Newton
iteration-based intersection. At a resolution of 1024 × 1024, ray bundles al-
low for achieving a speedup factor of 1.58 to 2.13, compared to tracing single
rays. An interesting point is that the number of iterations for ray bundles is
only slightly increased, even though the exit point is not taken unless all four
rays fulfill the exit criteria. This indicates high decision coherence within the
algorithm.

The speedup for ray bundles could be even higher, but the small number
of registers and the limited floating point capability of current CPU architec-
tures have a negative impact on intersection performance. These limitations
significantly affect bundles larger than 2 × 2 rays. For such larger bundles,
standard Newton iteration-based intersection is sub-optimal. For every ac-
cessed sub-patch, a complete intersection test for all rays within the bundles,
has to be performed (as long as not all bundles have a valid intersection).
Many small sub-patches (caused by patch curvature), increase the probabil-
ity that a high number of sub-patches, will need to be accessed, until all rays
within the bundle have found a valid intersection.

Assuming future CPU architectures will have a higher number of registers
and a improved support for floating point computations, a Newton iteration-
based intersection algorithm using the Krawczyk operator might then be
beneficial. The Krawczyk operator would return, for each ray within the
bundle, either a valid starting interval or the statement that the ray will

6.11 Application 135

Rays Teapot VW Golf Head Stingray

TSteps 26.71 35.33 35.67 20.83
PI/IRay 1.25 2.47 1.71 1.66
NI/IRay 3.28 8.31 5.29 5.19
fps 0.68 0.41 0.56 0.54
TSteps 2 × 2 26.62 35.41 32.69 20.9
PI/IRay 2 × 2 1.35 3.11 2.04 1.91
NI/IRay 2 × 2 3.76 11.5 5.29 6.40
fps 1.45 0.65 0.93 0.98
Speedup 2.13x 1.58x 1.66x 1.81x

Table 6.11: Comparison of Newton iteration-based intersection for single rays
against bundles of 2 × 2 rays. All scenes were rendered at a resolution of
1024 × 1024, with a solution accuracy of 1E − 3. Even though the exit point
within the Newton iteration is not taken unless the criteria are fulfilled by all
four rays, the required number of Newton iterations is only slightly increased.
Therefore, a performance speedup factor of 1.58 to 2.13 is achieved, compared
to casting single rays.

miss the patch. Because of the complex control flow, it might prove useful to
perform these operations sequentially. The result of this operation sequence
would be an array of starting intervals as well as a bit-mask to indicate
whether a ray will intersect a given patch or not. Based on these values a
parallel Newton iteration could be performed for all rays within the bundle.
The iteration would stop once all valid rays (for which a safe starting region
has been identified) indicate a valid intersection.

Obviously, all traversal algorithms from Section 4.2, e.g. reducing traver-
sal steps by finding better kd-tree entry points, could be applied here. How-
ever, most of the total time is spent in intersection, which limits the positive
impact of a smaller number of traversal steps. The main goal should therefore
be to further optimize intersection.

6.11 Application

Computer-Aided Design and Virtual Reality are becoming increasingly im-
portant tools for industrial design applications. Large and high-end engi-
neering projects, in particular, such as cars or airplanes, are already being
designed on an almost entirely digital basis, as the cost for building physical
mockups of such objects is very high.

136 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Figure 6.23: Top left: Mercedes C-class model directly exported from a CAD
system and converted into 319, 340 bicubic Bézier patches and 1.46 million
(bicubic Bézier) trimming curves. The patches are ray traced directly without
triangulation. Top right: In order to illustrate the complexity of the Mercedes
model, a random color is assigned to each patch. Center left: The model
with advanced shading for glass and car paint, combined with surrounding
geometry and an HDR environment map. Center right, Bottom left, Bottom
right: Close-ups demonstrating the high geometric accuracy necessary for
high-quality visualization of smooth surfaces.

6.11 Application 137

CAD engineers work on the raw geometric data of the model, usually
using freeform data such as NURBS surfaces [Piegl97]. In order to satisfy
the requirement of interactivity, practically all of today’s virtual reality (VR)
systems are built on triangle rasterization hardware. With this, however,
rendering complete models with high geometric accuracy is not possible, as
freeform surfaces usually cannot be rendered directly, and the number of
triangles generated by a high-quality tessellation is in the order of tens of
millions of triangles.

The process of tessellating freeform models, which consists of converting
them first to triangles and subsequently carrying out a simplification step,
is currently state-of-the-art in the industry. However, this approach has
two important drawbacks: First, only limited geometric accuracy is achieved
and, second, preparing these special VR models takes time, so changes of
the original model may take up to several days before they can be shown in
a VR presentation. This often leads to decision makers looking at outdated
model variants.

Thanks to the seamless integration of fast intersection implementations
for freeform surfaces (see Chapter 6) into the ray tracing framework, it is
now possible to deliver the level of interactive performance which is required
for VR systems. Moreover, ray tracing-based rendering algorithms allow for
achieving higher shading quality than rasterization-based VR systems could
provide.

Figure 6.23 shows examples of a ray tracing-based VR system which uti-
lized the fast freeform ray tracing code from Chapter 6. The model consisted
of 69, 067 NURBS surfaces and 392, 491 2D NURBS curves forming 73, 749
trimming curves, directly exported from a CAD system. The 69, 067 NURBS
surfaces were converted into 308, 095 Bézier patches of arbitrary degree. In
order to fully exploit the fast patch intersection code of the previous sec-
tion, a patch degree reduction was applied, yielding 319, 340 bicubic Bézier
patches. Degree reduction was applied in a similar way for the 2D NURBS
curves, resulting in 1.46 million bicubic Bézier curves, i.e. 5 trimming curves
per patch. Besides the geometry itself, extremely complex shading, e.g. so-
phisticated car paint or glass shading, was applied to provide as much realism
as possible.

A cluster of 15 dual-processor PCs (a mix of 3.0 GHz Intel Pentium-
IVs and 2.4 GHz Opterons) was used to provide enough compute power
for performing all ray tracing and shading tasks at interactive rates (see
Chapter 8). This setup allowed for achieving high-quality rendering with a
frame rate of up to 10 frames per second, at a resolution of 640 × 480. As
the underlying shading system only supports single rays, neither ray bundle
traversal nor ray bundle intersection were used.

138 Chapter 6: Coherent Ray Tracing for Freeform Surfaces

Apart from the direct support of CAD data, the ray tracing-based VR
prototype system shows the advantage of a decoupled ray tracing and shading
process. The complete shading framework, in particular, is fully independent
of the underlying geometry and was developed using triangular models. In
order to render bicubic Bézier patches, only the underlying core ray tracing
algorithm had to be extended to support patches.

6.12 Conclusions and Future Work

This chapter has shown that by optimizing algorithms and adapting them
to the underlying processor architecture, interactive ray tracing of freeform
surfaces can be realized even on a single processor. However, for a highly
accurate analytical solution, the computing power of a single processor is
not enough in order to provide high frame rates. If future processor archi-
tectures provide improved support for SSE execution, e.g. more registers and
execution pipelines, all proposed intersection algorithms will benefit directly.

Even though Newton iteration-based intersection using the Krawczyk op-
erator is the slowest algorithm, it has the important advantage of providing
reliable results. Therefore, future implementations need to focus on speeding
up this algorithm. It should be particularly interesting to find other more
efficient ways to compute the interval extension of the partial derivatives,
which is currently the limiting factor. If the patch clipping operation can be
avoided, the algorithm will allow efficient implementation for ray bundles.

Chapter 7

Dynamic Scenes

Apart from the ray tracing computation itself, the time required for pre-
processing scene data is often ignored. The most time-consuming part of
preprocessing scene data is usually taken up by the construction of spa-
tial index structure(s). For traditional high-quality off-line ray tracing, the
spatial index is built from scratch for every frame. Construction costs in par-
ticular are usually amortized over the number of rays shot. For high-quality
rendering, the shading operations and the number of rays shot are high. As
a result, the cost for construction is negligible. The off-line approach allows
for supporting arbitrary dynamic scenes because reconstruction from scratch
permits arbitrary manipulation of the scene’s geometry between subsequent
frames. Obviously, this approach is incompatible with a realtime ray tracing
system.

For a realtime ray tracing system, the assumption of negligible cost for
constructing spatial index structures is no longer true. Since realtime ray
tracing requires highly optimized spatial index structures, the construction
phase can take up to several minutes. This makes it impossible to reconstruct
the spatial index structure at interactive frame rates.

In order to still be able to support dynamic scenes, researchers [Lext01,
Wald03b, Wald04] have restricted the manipulation to applying hierarchical
affine transformation to rigid bodies. This approach is suitable because for
most applications large parts of the scene remain static, while dynamic parts
are only manipulated by affine transformation. Therefore, the geometric
primitives which undergo dynamic manipulation are classified according to
their transformation behavior. Primitives that share the same transformation
are combined into geometric objects and for each of these objects a separate
spatial index structure is built.

When the transformation of an object changes, the corresponding spatial

140 Chapter 7: Dynamic Scenes

index structure does not need to be rebuilt. Instead, during traversal the
rays are transformed to the local coordinate system of the object. As the
transformation is represented as a matrix, it can be efficiently realized by a
multiplication with the inverse matrix.

Wald [Wald04, Wald03b] also pointed out that the approach directly sup-
ports multiple instantiation of the same geometric object (without actually
replicating the geometry). Due to the fact that an instance only requires a
reference to the object and the corresponding transformation, it will need no
more than a few bytes of memory. If a scene can be efficiently represented
by instances of a set of objects, the required storage space can be several
magnitudes lower than without instancing [Dietrich05].

Nevertheless, hierarchical transformation only works for static objects. If
the geometry of the primitives changes, this approach no longer works. This
category of dynamic manipulation is called unstructured motion, because the
underlying transformation does not follow any structure. Unstructured mo-
tion is very common in the context of games, e.g. for realizing explosions,
surface deformations, and character skinning. The brute force way for sup-
porting unstructured motion is to rebuild the spatial index structure for every
frame from scratch.

As argued in Section 4.1, using a high-quality kd-tree as the spatial index
structure has been identified as an essential component for achieving realtime
ray tracing. Therefore, the goal is to build a kd-tree as fast as possible
but without significantly reducing its quality. Moreover, the kd-tree build
algorithm should not be restricted to a certain primitive type. Instead, it
should be capable of handling arbitrary types.

In the following, an algorithm is proposed that fulfills these requirements.

7.1 Rapid Construction of kd-Trees

In order to handle arbitrary primitives, a straightforward approach is chosen.
Instead of handling primitives by their geometric shape, only the primitive’s
axis-aligned bounding box is considered.

Constructing a kd-tree based on axis-aligned bounding boxes (AABBs)
essentially avoids the handling of special cases as, for example, in the tri-
angle case. The obvious disadvantage is a coarser primitive level causing
reduced kd-tree quality. In order to still achieve a good kd-tree quality (suf-
ficiently low number of traversal and intersection steps per ray), a surface
area heuristic (SAH) [Havran01, Wald04, Benthin04] is used during kd-tree
construction. Unfortunately, applying an SAH-based cost function signifi-
cantly increases building time, because for every potential split candidate

7.1 Rapid Construction of kd-Trees 141

the cost function has to be evaluated during recursive construction.
Therefore, the focus lies on a fast algorithm for building kd-trees out of

AABBs using a high-performance SAH evaluation. The coding guidelines
from Section 3.2, which served to optimize kd-tree traversal and primitive
intersection tests, can also be used in the context of fast kd-tree construction.

7.1.1 Algorithm

One of the main advantages of using AABBs as primitives is that the num-
ber of potential split candidates for a given AABB is limited. One AABB
can produce one or two split candidates in each of the three coordinate di-
mensions, according to the minimum and maximum value in the respective
dimension. Only one split candidate is created if the AABB is planar in
the corresponding dimension (minimum value = maximum value). In the
case of two splits, each split is marked as opened (minimum value) or closed
(maximum value), in the case of one split, it is marked as planar.

Evaluating where to split using the SAH is straightforward: For each split
si the cost function cost(si) is computed which corresponds to the estimated
splitting cost at the particular position. After evaluating the cost for all
splits, the smallest cost value is compared to the cost of not splitting at
all (resulting in sequentially intersecting all remaining primitives). If the
cost for the best split is less than the cost for non-splitting, the current
voxel is splitted (the AABB spawned by all contained primitive AABBs)
at the corresponding split position. If not, a kd-tree leaf is created based
on the current set of primitives. Note that finding the ’best’ split requires
considering all three dimensions.

The cost function cost(s) [Goldsmith87, MacDonald89, MacDonald90,
Subramanian90b, Havran01, Wald04] itself is implemented as follows:

cost(s) = PL(s) ∗
SAL(v, s)

SA(v)
+ PR(s) ∗

SAR(v, s)

SA(v)
(7.1)

SAL and SAR compute the surface area of the current voxel v limited on
the left, respectively right, of the voxel by split s. The surface area of
the current voxel v is given by SA(v). The ratio SAL(v,s)

SA(v)
of surface areas

corresponds to the probability (heuristic assumption) that a ray will inter-
sect the left voxel (with respect to split s) [MacDonald89, MacDonald90,
Subramanian90b, Havran01]. The difficult part is to efficiently compute PL

and PR, i.e. the number of primitives on the left respectively right side of
split s. Note that constant costs for intersecting each primitive are assumed,
which permits to simplify the equation to the form as shown above.

142 Chapter 7: Dynamic Scenes

0.5 1.5 2.3 2.3 2.3 4.5

[]|[] []

4.5

0 1 1 02 33

Figure 7.1: Example of a sorted split list. The green part shows the split type
(opened, planar, closed), while the red part shows the split position. In the
case of equal positions, the splits are sorted in closed, planar, opened order.
While sequentially iterating over all splits, the SAH can directly be evaluated
on the basis of the known number of primitives to the left/right of the split.
If the iteration reaches the splits with position 2.3, for example, it will first
of all check for multiple candidates at the same position. If this is the case,
the iteration stops at the first split which is classified as opened. Up to this
point, two splits have been classified as opened, one as planar and one as
closed, which corresponds to three primitives to the left of the split and two
primitives to the right.

Computing PL and PR is simplified significantly when all possible splits
are sorted with respect to their position (in one determined dimension). By
knowing the total number of splits and counting all closed, planar and opened
splits, while sequentially evaluating the cost function for each split candidate
in this ordered split list, PL = planar + opened and PR = splits − planar −
closed can be easily determined (see Figure 7.1). The important point is
that this evaluation only requires one sequential pass over all possible split
candidates.

After determining the best split, all three split lists (which correspond
to the set of AABBs) have to be inserted in the list of the left or right
child node. An AABB will be inserted left (right) if the position of the
corresponding closed (opened) split is less (greater) than the position of the
current split candidate. All AABBs which cannot be classified via this criteria
will be included in both lists. In the special case of a planar AABB that lies
exactly at the position of the chosen split candidate, the AABB can either be
assigned to a fixed side (with respect to the split candidate) or to the child
node corresponding to the smallest voxel.

7.1 Rapid Construction of kd-Trees 143

struct {

float position;

unsigned int type : 2; // the uppermost bits for the split type

unsigned int index : 30; // the first 30 bits for the AABB index

};

Figure 7.2: The 8-byte structure efficiently represents a split candidate for
kd-tree construction. The split types (opened, closed, and planar) are coded
using a single 32-bit integer.

7.1.2 Implementation

The split data structure consists of the split position, the split type, and the
index to the corresponding AABB. As shown in Figure 7.2, all data can be
efficiently represented via an 8-byte structure.

An AABB can produce two splits in each of the three coordinate dimen-
sions, resulting in a maximum of 3 ∗ 2 = 6 splits (48 bytes) per AABB.

Sorting of all splits is essential for quickly computing the cost function.
In order to avoid costly sorting in each kd-tree construction step, all splits
are sorted once at the beginning of the kd-tree construction, and the lists
of splits are kept in order during recursive kd-tree construction. The actual
sorting is implemented by an optimized in-place quicksort routine, which is
replaced by insertion sort once a small number of elements is reached.

The kd-tree construction algorithm consists of two steps: Creating and
sorting the three split candidate lists and the recursive construction itself
(see Figure 7.3).

In the case of multi-threaded kd-tree construction, the split list in each
dimension is split into sub-lists according to the number of threads. Each
thread sorts its sub-list independently. After each sub-list has been sorted,
the sub-lists are combined hierarchically by a merge sorting step.

Besides parallel sorting, the actual kd-tree construction step can also be
done in parallel. At first, a short sequence of recursive split evaluations is
executed to produce an initial spatial distribution, more precisely, a set of
voxels together with a split list assigned to each of them. These split lists
do not depend on each other and the corresponding kd-trees can therefore
be constructed in parallel. As the final step, all sub kd-trees are combined
into a final kd-tree. The resulting speedup via multi-threaded construction
is shown in Section 7.1.3.

A bottleneck of kd-tree construction is the required memory allocation
for storing the sorted splits during recursive construction. Calling system
functions (in each recursive step) for allocating memory would result in a

144 Chapter 7: Dynamic Scenes

————- Preprocessing Step —————
empty split candidate lists splx, sply, and splz (index indicates dimension)
for all box b in AABB list do

insert split candidates of box b (opened+closed or planar) into split lists splx, sply,
and splz

end for
sort each split candidate list splx, sply and splz according to split position

——– Recursive KD-Tree Building Code: build(splx, sply,splz) ——-
for all split candidate list spl of splx, sply and splz do

#opened = 0 // number of opened splits
#closed = 0 // number of closed splits
#planar = 0 // number of planar splits
for all split candidate s of split candidate list spl do

increase #opened, #closed, or #planar according to split type of s

eval cost function cost(x) for s according to #opened, #closed, and #planar

if cost(s) < cost(bestsplit) then
bestsplit = s

end if
end for

end for
if cost(bestsplit) < COST FOR LEAF then

for all split candidate list spl of splx, sply and splz do
split spl according to bestsplit into two splleft and splright

end for
build(splleft−x, splleft−y,splleft−z) // continue recursively
build(splright−x, splright−y, splright−z) // continue recursively

else
create leaf

end if

Figure 7.3: Rapid kd-tree construction algorithm based on axis-aligned bound-
ing boxes. The algorithm basically consists of two steps: Sorting of all po-
tential split candidates (required for fast SAH evaluation), and the recursive
construction process itself. The ordered split candidate lists allow for per-
forming the SAH evaluation of split candidates with linear complexity. As
the sorting complexity is O(n log n) (quicksort) and the build complexity is
O(n log n), the total complexity of the algorithm is O(n log n).

significant performance drop. Therefore, a carefully written memory pool
implementation, using a certain amount of pre-allocated memory allows for
handling split lists with almost no costly system calls.

7.1 Rapid Construction of kd-Trees 145

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

se
c

primitives

Single Thread
Two Threads

Figure 7.4: kd-tree construction time with an increased number of primitives.
Even when using costly surface area heuristics for determining the best split
plane, the highly optimized implementation allows for constructing the kd-
tree for 100, 000 primitives in less than half a second when distributing the
work among two threads. Note that due to memory caching effects, the multi-
threaded construction shows even a superlinear speedup.

7.1.3 Results

An optimized implementation of split sorting, cost function evaluation, split
list partitioning, and leaf creation makes it possible to construct scenes con-
sisting of thousands of primitives within a fraction of a second.

Figure 7.4 shows the construction timings in relation to an increasing
number of primitives (bicubic Bézier patches). Even with 100, 000 patches,
the implementation requires only one second for the complete construction
process. When distributing the construction work among two threads (dual-
processor PC), a significant reduction of up to 50% can be achieved. Note
that the multi-threaded timings still include thread creation time.

Applying ray-patch intersection that does not require an additional spa-
tial index structure per-patch, e.g. an intersection based on uniform refine-

146 Chapter 7: Dynamic Scenes

ment (see Chapter 6), allows for arbitrary dynamic manipulation by simply
transforming the patch control points. In terms of complete Bézier scenes,
one simply needs to reconstruct the kd-tree over the corresponding patches.

Figure 7.5: Combining the tracing of ray bundles for Bézier patches with fast
kd-tree construction allows for efficiently handling even completely dynamic
scenes with arbitrary movement. This scene consists of 144 cones, each cone
consisting of 4 Bézier patches (576 patches in total). The kd-tree over all
patches is rebuilt from scratch for every frame. On a 2.2 GHz Pentium-IV,
it runs with 6.6 fps at a resolution of 800 × 600.

Figure 7.4 shows that even kd-tree reconstruction of 20, 000 patches re-
quires less than 100 milliseconds. In order to demonstrate this new feature,
a waving field (see Figure 7.5) of 12 × 12 = 144 cones was created, which is
rebuilt from scratch for every frame. A build time of only a few milliseconds
leaves enough time for ray tracing this fully dynamic scene with 6.6 fps on a
2.2 GHz Pentium-IV processor.

Apart from completely dynamic scenes, the startup time for highly com-
plex scenes can also be significantly reduced. Figure 7.6 shows an artificial
cube of 32, 768 teapots. Each teapot consists of 32 patches, corresponding
to a total of 1, 048, 576 patches. Even for this huge number of patches, a
multi-threaded kd-tree construction makes it possible to achieve an almost
immediate startup time of 4.42 seconds. Thanks to the ray bundle techniques
of Chapter 6, this huge amount of patches can be rendered with 2.5 fps at a
resolution of 800 × 600.

Applying the fast kd-tree construction algorithm to triangular scenes
shows that the total rendering performance is reduced by about 20−40% com-

7.1 Rapid Construction of kd-Trees 147

Figure 7.6: With coherent ray bundles, even huge scenes of, for example,
32, 768 teapots (1, 048, 576 patches) can be interactively ray traced at 2 fps
at a resolution of 800 × 600 on a 2.2 GHz Pentium-IV. With multi-threaded
kd-tree construction the startup time for this scene is reduced to less than 5
seconds.

pared to high-quality triangular-based kd-tree construction [Wald04]. How-
ever, compared to the construction time of the high-quality kd-tree, a 10
to 20 times faster construction is achieved, even when using only the single
threaded version. As for Bézier patches, the fast kd-tree construction makes
it possible to ray trace fully dynamic scenes of several thousand triangles.

Analyzing the fast kd-tree construction code using profiling tools such as
VTune [Intel04] shows that for an increasing number of primitives (measured
from 16, 384 to 1, 040, 576), the sorting of split candidates takes up 30% to
35% of the total construction time.

As shown in Figure 7.4, the construction time is almost linear in the
number of primitives. Usually, one would expect an increase in construction
time if the working set becomes larger than the L2 cache size. However, even
with hundreds of thousands of primitives, the major amount of the working
set can be held in the CPU cache hierarchy. Moreover, the working set can
be loaded very quickly into the cache hierarchy because the sequential access
pattern of SAH evaluation and split sorting is very suitable for the built-in
hardware memory prefetcher.

The actual bottlenecks of the code (measured by VTune) are located in
the evaluation of the SAH and the sorting of splits according to the chosen
split candidate. As a split is a compound data type (position and type),

148 Chapter 7: Dynamic Scenes

a split comparison typically performs multiple branches. Therefore, split
sorting involves a large number of mis-predicted branches. In terms of further
optimization, one has to lower the amount of mis-predicted branches first.
Removing branches by Boolean expressions might be a good solution to this
problem. Evaluating the SAH for multiple split candidates in parallel using
SIMD instructions could further reduce the number of mis-predicted branches
and additionally increase the SAH split evaluation throughput. As a result,
further low-level code optimizations could provide a significant speedup of
performance.

7.2 Conclusions and Future Work

Multi-core CPUs will make it possible to efficiently construct kd-trees using
multiple threads. The current implementation already supports two threads,
where both of them are used for the split sorting step and the construction
process. For the latter, the two threads start working independently once
the split candidate list has been sorted according to the first chosen split
candidate. In the case of multiple threads, the split candidate lists have to
be sorted multiple times in order to provide a working set for each thread.

The time for generating the working sets might be further reduced by
using either a hierarchical startup, where one thread starts two sub-threads,
or an initial spatial sorting. A regular grid structure could be used as initial
spatial sorting, permitting the sorting step to be performed very quickly.
The number of non-empty grid cells would correspond to the initial number
of working sets, which can be directly assigned to the set of construction
threads.

Obviously, not all objects have to be reconstructed for every frame. If
no ray accesses the object, the spatial index structure does not need to be
rebuilt. In the case a ray accesses the bounding box of an object, a simple test
could be performed if the index structure has already been built. Moreover,
the rapid kd-tree construction algorithm could also be used for adaptive kd-
tree construction [Havran01]. The idea behind adaptive kd-tree construction
is to build the kd-tree on the fly during ray traversal. The more rays hit a
given object, the finer the corresponding kd-tree must be built.

Chapter 8

Distributed Coherent Ray
Tracing on Clusters

8.1 Introduction

Even though the compute power of a single or dual-processor workstation is
quite sufficient for realizing interactive ray tracing with a small number of
rays per pixel and simple shading, it is not enough for high frame rates in
combination with many advanced shading effects.

In order to compensate for the need of compute power, researchers have
used large shared-memory supercomputers (all processors share the same
main memory) with up to hundreds of processors. Such a hardware setup has
allowed for “pushing” ray tracing performance to realtime level rates [Keates95,
Muuss95a, Muuss95b, Parker99b, Parker98, Parker99a], but the cost for a
high-end supercomputer is tremendous. Because of the cost, these high-end
systems are not very common.

On the “low-end” side, multi-processor systems [Intel01, AMD03, IBM05]
with more than two processors (or cores) are not standard and therefore
expensive. Even though this is beginning to change, arbitrarily increasing
the number of processors within an off-the-shelf PC is often not possible. As
the processor and the supporting hardware have to be exclusively designed for
multi-processing, “low-end” multi-processor systems are typically restricted
to a small number of CPUs. Unfortunately, the quality and complexity
requirements of advanced ray tracing-based rendering algorithms can easily
saturate the available compute power of small multi-processor systems.

Given the requirements of ray tracing, there is a tremendous need for an
easy and inexpensive way to combine the compute power of several small
single or multi-processor systems. In order to keep costs low, the method

150 Chapter 8: Distributed Coherent Ray Tracing on Clusters

of choice would be to connect the different systems by inexpensive off-the-
shelf network technology. Unfortunately, this makes things more complicated
because the total system would then be a distributed memory system (each
desktop PC can only access its own main memory), and the interconnection
framework for transferring data between the system’s components suffers
from a low bandwidth and a high latency. In order to compensate for this,
a distribution framework is required that is able to handle the impacts of a
distributed memory environment and high latency communication [Wald02a,
Dietrich03, DeMarle03, Wald04, DeMarle04].

This chapter will provide a detailed presentation of the distribution frame-
work that is used within the OpenRT library [Wald02a, Dietrich03, Wald04].
The framework has been exclusively designed for efficiently combining the
compute power of a cluster of PCs, while handling all related memory and
interconnection issues.

Before giving details about the OpenRT distribution framework, a brief
overview of distribution strategies for parallel ray tracing will be presented
first. Note that in the following a set of standard desktop PCs is referred as
a cluster of rendering nodes.

8.2 Distribution Strategies

The main task for parallel ray tracing is to define a set of tasks that can be
distributed across processors and executed in parallel. The preferable way for
achieving the best performance is to split up the most time-consuming part
of the rendering algorithm into independent tasks which can be executed in
parallel. In terms of ray tracing, this typically means the shooting of rays.

In the following, a brief overview of typical tasks used for parallel ray
tracing [Reinhard97, Reinhard95, Chalmers98, Chalmers01] is given:

Frame Distribution: In the context of off-line rendering, the tasks are typ-
ically defined as complete frames. Distributing frames across a render
farm allows for achieving a high frame throughput, but the costs for
rendering one frame are more or less constant.

Scene Subdivision: The scene data is partitioned by spatial subdivision.
The resulting scene parts are distributed across the nodes of a dis-
tributed memory system. Based on the spatial location within the
scene, the rays are transferred during traversal between the different
system elements. This approach allows for rendering highly complex
scenes that exceed the main memory of a single PC, since each system
element handles only a fraction of the complete scene data. On the

8.2 Distribution Strategies 151

other hand, rays must be reordered (based on their location) and all
ray data has to be transferred across the network.

Image Subdivision: Due to the fact that the color of each pixel can be com-
puted independently of any other pixel, a distribution strategy based
on image plane subdivision can be used to speedup the rendering of a
single frame. In order to display the final frame, only the computed
pixel colors need to be combined.

Looking at the distribution schemes in detail makes it clear that not all of
them are suitable for realtime ray tracing on a distributed memory system.
A frame-based distribution would introduce a latency corresponding to the
amount of time required for rendering all distributed frames. For a realtime
system requiring immediate feedback, the approach is not acceptable.

On the other hand, scene subdivision is also sub-optimal because the
limited bandwidth of the interconnection framework makes it difficult to
transfer data quickly. As rays typically traverse large spatial regions, many
different spatial locations are accessed. Therefore, a huge amount of ray
data must be transferred between nodes. Representing a ray usually requires
at least 32 bytes (direction, origin, intersection distance, primitive id) and
assuming a resolution of 1024× 1024 pixels and 10 rays per pixel, yields 320
MB per frame. This amount of data simply exceeds the bandwidth of today’s
interconnection techniques.

Additionally, the connection of spatial locations to nodes typically creates
“hot spots” during ray traversal, because most of the time only a few nodes
actually work in parallel. For example, the nodes containing the camera or
the light sources will need to handle numerous rays, thereby becoming “hot
spots”. Due to this sub-optimal utilization and the consequently limited
scalability, the OpenRT framework instead uses image plane subdivision for
task distribution.

A typical image-based distribution approach relies on individual pixels.
For example pixel i would be assigned to node i mod n, where n is the
number of nodes. Even though the required transfer of pixel coordinates and
colors would require less bandwidth than sending ray data, the amount is still
significant. Assuming two bytes per pixel coordinate yields 4 MB, without
the actual pixel colors for a resolution of 1024 × 1024 pixels. Additionally,
relying on individual pixels complicates the gathering of coherent primary
ray bundles because of the spacing between pixels assigned to a particular
node.

Given bandwidth requirements, a distribution scheme with an image
plane subdivided into rectangular tiles is more beneficial. Rectangular tiles

152 Chapter 8: Distributed Coherent Ray Tracing on Clusters

can be easily represented by only two 2D pixel coordinates, thereby largely
reducing the amount of transferred data. Assuming a tile size of 32 × 32
results in 1024 tiles and yields 4 KB of coordinate data per frame (without
pixel colors). This amount of data is acceptable for transferring data across
the different nodes.

The image-based distribution scheme makes it necessary to provide each
node either with direct access to the complete scene data or enable it to load
required data on demand [Wald01a, DeMarle03].

Besides the actual definition of the tasks, the distribution scheme itself
is of high importance. Assigning the pixel tiles for a frame statically to the
nodes in the same manner as individual pixels, works well if the required
rendering time per tile is roughly the same. In this case, all nodes finish the
rendering of a frame at the same time, fully exploiting parallel execution. If
the rendering time per tile varies significantly, however, a statical distribution
will increase the time necessary for rendering a frame because of the low
parallel execution at the frame’s end. Note that the smaller an image tile is,
the more likely equal rendering times are because the rendering load will be
more finely distributed.

Given the bandwidth requirements, image tiles have to be rather large
compared to the size of individual pixels. Therefore, the rendering time
per tile is likely to vary significantly, making a statical distribution scheme
sub-optimal. Therefore, the OpenRT distribution framework distributes the
image tiles dynamically to nodes, to ensure full utilization of all nodes.

In the following, the OpenRT distribution framework will be discussed in
more detail.

8.3 The OpenRT Distribution Framework

The OpenRT distribution framework [Wald02a, Dietrich03, Wald04] is based
on a master/slave(s) approach. The master is responsible for task and scene
data distribution, while the slaves do the actual rendering work. The mas-
ter then receives the pixel colors of image tiles rendered by the slaves and
combines them into the final image.

Physically, a master or slave is just a PC within the cluster. As discussed
in Section 8.2, the master uses a tile-based task distribution, which means
that the master sends the definition for a rectangular tile to one of the slaves,
waits until the slave has rendered all pixels within this particular tile, and
finally receives the corresponding color data. Once the master has received
all color data, it displays the frame.

The master is also responsible for distributing the scene data to all slaves.

8.3 The OpenRT Distribution Framework 153

The same holds true for scene data updates, e.g. a new camera or light source
position, which are once more transferred from the master to all slaves. Note
that this transfer is unidirectional, as there is no need for transferring scene
data from slave to master. For the OpenRT framework, there is no differ-
ence between the initial scene data distribution and subsequent scene data
updates, because an application communicates with the underlying library
only through the OpenRT API. The OpenRT framework distributes each
API call, with the exception of geometry calls, to all slaves. This mecha-
nism is similar to remote procedure calls, except that OpenRT distributes
the API calls asynchronously. Geometry calls are cached on the master until
the corresponding object is completely defined. Geometry caching avoids the
distribution of many geometry calls, saving costly bandwidth.

The main issue of the tile-based task distribution is to avoid idle periods
on the slave side. These idle periods can have the following reasons:

Communication Latency: When relying on standard network technology,
the network round-trip time (master-slave-master) is in the region of
milliseconds. During such a time span, one could trace thousands of
rays, which means that communication-related dependency chains be-
tween master and slave should be avoided or kept to a minimum. If,
for example, the master only sends a new task to a slave after having
first received the color data of a previous tile, the slave would spend a
lot of time waiting for the next task.

Synchronization: Parallel execution is always affected by synchronization,
because synchronization means serialization. In terms of an image-
based ray tracing system, synchronization occurs after the end of frame
n and before the start of frame n + 1. Only during this period can the
scene data be updated (during rendering, it has to be fixed to avoid
inconsistent scene data).

The OpenRT framework minimizes these idle periods by introducing
asynchronous behavior and special latency hiding techniques:

Dynamic Load Balancing: The scene and shading complexity typically
vary across the image plane. Therefore, a dynamic load balancing
scheme is used. Each slave requests a task (tile) from the master. If
frequently the rendering of tiles takes longer, the corresponding slave
will ask for work less often, allowing other slaves to take over part of
the image computation. This ensures that a high variation in rendering
time complexity will be handled more efficiently.

154 Chapter 8: Distributed Coherent Ray Tracing on Clusters

Task Prefetching: In order to hide communication latency on the slave
side when requesting tiles from the master, a fixed number of tiles is
assigned to each slave in advance. These tiles are stored on the slave
side in a task queue. By transferring the color data of a computed tile
back to the master, the slave simultaneously requests a new tile from
the master. However, as there still are tasks left in the task queue,
the slave can directly continue with the next task without having to
wait for the arrival of the new one. In order to prevent stalls, the time
required to render the tiles within the task queue must be greater than
the round-trip time for sending and receiving a tile.

Asynchronous Data Transfer: Given the limited bandwidth and high la-
tency, a transfer of data across the network is costly. The most critical
time span is required for transferring scene data updates from the mas-
ter to the slaves because the master has to broadcast the data. There-
fore, asynchronous data transfer has been integrated: While slaves are
rendering frame n, the master directly transfers the scene data for
frame n + 1 to the slaves. During rendering of frame n, frame n − 1 is
displayed. This introduces one frame of latency between the rendering
and the display of a frame, but gives the master the time span of one
frame to transfer scene data updates to all slaves.

Two-Frames Task Scheduling: Even though dynamic load balancing tries
to distribute the rendering task evenly over the slaves, idle periods on
the slaves occur when the master has to synchronize all slaves at the
end of a frame. In this case, all tiles of a given frame have been sent,
but the corresponding rendering has not been finished yet on the slave
side. Before the master can distribute the tiles of the next frame, it
has to wait until all tiles from the previous frame have been received.
In order to prevent idle periods because of frame synchronization, the
master allows the slaves to continue rendering with the next frame
(even if the current frame has not yet been completely finished by all
slaves). In the event a slave has already received the scene data for the
next frame, it can directly proceed with the rendering (if not, the slave
has to wait until data reception is completed).

Supporting latency hiding techniques requires asynchronous behavior on
the master and the slave side. In the following sections, the master and slave
implementation used in the OpenRT framework will be presented.

The implementation has been exclusively designed for high-performance.
Therefore, no sophisticated library such as MPI [Foruma], PVM [Geist94]
was used to prevent abstraction layer overhead in network communication.

8.3 The OpenRT Distribution Framework 155

Instead, the implementation uses a framework that is directly based on the
standard UNIX sockets [Stevens98]. All communication relies on the TCP/IP
protocol. Even though communication based on UDP would offer features
such as network broadcast, the possible loss of data would require special
and complex countermeasures. For parallel thread execution, OpenRT relies
on the POSIX pthread library [Nichols96].

Tile Receiver

Thread

Tile Render

Thread

Tile Render

Thread

Tile

FIFO
Tile

FIFO

Master

Tile Sender

Thread

Scene Data

Receiver

Thread

Data

FIFO

Slave

Figure 8.1: Multi-threaded slave implementation: Each colored box corre-
sponds to a single thread, a colored circle representing a shared data structure.
The green and blue rectangles form the rendering pipeline, which receives im-
age tile data over the network from the master, performs the rendering and
sends the corresponding pixel colors back to the master. The second pipeline
which runs asynchronously to the first, receives scene data from the master
over the network, and stores it in the data queue. Once all tiles for the given
frame have been rendered, the rendering threads are synchronized and the
scene data is updated based on the content of this queue.

8.3.1 Slave

The slave relies on two asynchronously running pipelines, each consisting of
one or multiple threads (see Figure 8.1). The first pipeline, the so-called
rendering pipeline, is responsible for receiving image tiles from the master,
performing the actual rendering, and for sending back the color data to the
master. Each of these three steps is handled by a separate thread.

The “execution flow” for the rendering pipeline is as follows: The Tile
Receiver Thread is listening on a network socket connected to the master. As

156 Chapter 8: Distributed Coherent Ray Tracing on Clusters

soon as the Tile Receiver Thread receives an image tile, it puts the data into
a Tile FIFO Queue. A number of Tile Render Threads takes entries from
the queue and performs the actual rendering. The number of Tile Render
Threads is usually related to the number of CPU cores on the slaves. After
rendering, each Tile Render Thread adds the pixel colors to the image tile
and inserts the combined data into the second Tile FIFO Queue. The last
thread, the Tile Sender Thread, takes a tile (with pixel colors) from the last
queue and sends all corresponding data (over a network socket) back to the
master.

The second pipeline, the so-called scene data pipeline, is responsible for
handling the scene data updates. Therefore, the Scene Data Receiver Thread
listens on the second incoming network connection to the master. Through
this connection, the master sends scene data updates, which will be stored in
the Scene Data Queue. Buffering of received scene data is necessary because
a scene data update must be synchronized with the Tile Render Threads.
Once a frame has been completely rendered, the set of Tile Render Threads
is synchronized, and a scene data update can be safely performed based
on the content of the Scene Data Queue before restarting the Tile Render
Threads.

Master

Tile

Sender/Receiver

Thread

Scene Data

Sender

Thread

Application

Slave

Data

FIFO
OpenRT

API

Figure 8.2: Multi-threaded master implementation: Each colored box cor-
responds to a single thread. The scene data queue, together with a thread
for sending scene data to the slaves, builds the application pipeline. This
pipeline runs synchronously to the application. The second thread, which
forms the slave pipeline, runs asynchronously with the application. While
the application defines the scene for frame n, the application pipeline buffers
the corresponding data, while the same pipeline asynchronously handles the
image tile distribution and reception for the two previous frames.

8.4 Communication and Dataflow 157

8.3.2 Master

Similar to the slave, the master consists of two asynchronously running
pipelines (see Figure 8.2). The first pipeline, the so-called application pipeline,
runs synchronously with the application, whereas the second pipeline, the
slave pipeline, runs asynchronously to the application.

The main task of the application pipeline is to distribute scene data up-
dates (in the form of OpenRT API calls) over the network to all slaves. The
point in time when all scene data for the current frame is defined, is also the
point of synchronization with the second pipeline. At the synchronization
point, the application pipeline waits until all pixel data for a new frame has
been received and completely copied to the frame buffer.

The slave pipeline consists of a single thread, called Tile Sender/Receiver
Thread, which handles all tile-based communication between master and
slaves. It listens on the network sockets which connect the master to the
slaves. It responds to each incoming tile color data with a new tile task.
If all tile tasks for the current frame have already been assigned, tiles for
the next frame are used. Therefore, tiles for a maximum of two frames can
be in-flight. As a result, the Tile Sender/Receiver Thread must be capable
of handling tiles for two different frames at the same time, which directly
translates to supporting double-buffering via two internal frame buffers.

8.4 Communication and Dataflow

For a better understanding of the asynchronous behavior of master and slave,
a simplified timing diagram is shown in Figure 8.3.

While the master receives all tile data for frame n, frame n−1 is displayed.
The master’s application pipeline is locked until all tiles for frame n have been
received. At this point, the lock for the application pipeline is released, and
frame n can be displayed by the application. Moreover, the application can
already start to specify the scene for frame n + 1.

Due to an one-to-one exchange of color data and new tasks, the master has
to distribute tiles for frame n+1 (all tiles for frame n have been distributed),
while still waiting for the color data of frame n. This is the key point to
prevent idle periods on the slaves, because the master allows those slaves to
proceed with the rendering of frame n + 1 which have already received the
scene data for frame n + 1.

The slave receives, renders, and sends back tile data for frame n, while
asynchronously receiving the data for frame n + 1. When all scene data
for frame n + 1 has been received, the slave updates the scene data by the

158 Chapter 8: Distributed Coherent Ray Tracing on Clusters

Display

Master (App)

Master (Tile)

Slave (Data)

Frame n-2

S Tiles
Frame n-1

S Data
 Frame n

Slave (Receive)

Slave (Render)

Slave (Send)

R Tiles
 Frame n-1

R Tiles
 Frame n-1

RD Tiles
 Frame n-1

S Tiles
 Frame n-1

R Data
Frame n

U Data
Frame n

Frame n-1

S Data
 Frame n+1

S Tiles
Frame n

R Tiles
 Frame n

R Data
Frame n+1

RD Tiles
 Frame n

S Tiles
 Frame n

R Tiles
 Frame n

Frame n

S Data
 Frame n+2

S Tiles
Frame n+1

R Tiles
 Frame n+1

R Data
Frame n+2

R Tiles
 Frame n+1

U Data
Frame n+1

RD Tiles
 Frame n+1

S Tiles
 Frame n+1

Figure 8.3: The timing diagram for master-slave communication (S = Send,
R = Receive, U = Update, RD = Render). The main synchronization point
appears when all tiles for frame n have been received. Only at this point is the
application able to display frame n. While distributing tile jobs and receiving
color data back for frame n, the master sends data for frame n + 1 to all
slaves. The slave asynchronously buffers this data, while it receives, renders,
and sends data for frame n. Therefore, one frame of latency between the
specification and display of a frame is introduced.

buffered data, while the master is still waiting for color data of the previous
frame. As long as all scene data is received before the rendering of the last
image tile is finished, the time for the network transfer can be completely
hidden. If the time required for updating the scene data is sufficiently small,
the slave will have almost no idle periods in terms of rendering. Between the
specification and the display of a frame, one frame of latency is introduced.

In the case of using multiple rendering threads, the update must only
be executed by a single thread. Therefore, all rendering threads need to be
serialized at this point.

As discussed in Section 8.3, the master distributes a set of tiles in advance.

8.5 Results 159

These tiles are directly buffered by a Tile FIFO Queue, so that they can be
directly requested by a rendering thread. If the master receives the color data
for the first tile of the set, it will send a new tile. In the case of n rendering
threads, the time required for rendering all tiles in the queue decreases to
1/n of the original time span. Therefore, the number of tiles sent in advance
must be increased accordingly.

8.5 Results

For testing the scalability of the master/slave distribution framework, a clus-
ter of 24 dual Athlon MP 1800+ (48 CPUs in total) with 512 MB memory
was used. For each CPU, a separate slave process was created, yielding a
maximum of 48 slaves running simultaneously.

Since all slaves transfer the image data to the master, the network band-
width to the master can easily become a bottleneck. Therefore, the slave
PCs are interconnected by a fully switched 100Mbit Ethernet using a Giga-
bit uplink to the master.

A set of four triangular example scenes was rendered at a resolution of
640 × 480, using only primary rays and simple shading. The scene com-
plexity ranged from a few thousand triangles for the “Office” scene up to
several millions for the “Power Plant” scene. For a detailed scene description
see [Wald03e, Wald04].

Figure 8.4 shows that for all example scenes the distribution framework
achieves linear scalability in the number of CPUs (slaves) until the network
bandwidth to the master is saturated. For the given setup, the saturation
appears when more than 22 MB/s have to be transferred over the network.
For a resolution of 640 × 480 and color coding of three bytes per pixel,
this corresponds to a maximum of 25 frames per second. By combining
the bandwidths of several Gigabit network connections, the framework even
allows for reaching 40 − 50 fps.

8.6 Conclusions and Future Work

The proposed master/slave-based distribution framework allows for efficiently
combining the compute power of several PCs interconnected by standard net-
work technology. The framework has been designed especially for scalability
and interactivity, while relying on a high-latency interconnection. In order
to hide the interconnection latency, several techniques such as dynamic load-
balancing, task scheduling, task prefetching and asynchronous data transfer

160 Chapter 8: Distributed Coherent Ray Tracing on Clusters

 0

 5

 10

 15

 20

484032241681

f
r
a
m
e
s

p
e
r

s
e
c
o
n
d

CPUs

Office
Headlight

Power Plant
Sunflowers

Figure 8.4: Scalability of the master/slave distribution framework for an in-
creasing number of CPUs (slaves) and different example scenes. All scenes
have been rendered at a resolution of 640 × 480 using only primary rays and
simple shading. The complexity of scenes ranges from a few thousand trian-
gles for the Office scene up to several million triangles for the Power Plant
scene. For all scenes, the distribution framework achieves linear scalability
in the slaves until the network bandwidth to the master is saturated. The
saturation appears for the given hardware setup at a maximum transfer rate
of 22 MB/s, which corresponds to 25 fps.

have been integrated into the framework. These techniques allow for achiev-
ing a linear scalability in the number of connected PCs.

Even though the distribution framework provides linear scalability, the
maximum frame rate is limited by the maximum network bandwidth. For
the network setup shown in Section 8.5, a maximum of 25 frames per sec-
ond can be achieved. For future setups, it will be necessary to further in-
crease the bandwidth to the master. Obviously, faster network technology
like Myrinet [Forumb] or Infiniband [Futral01], could provide a higher band-
width but the required network hardware is still non-standard and thus ex-
pensive. Therefore, it might be beneficial to rather focus on fast compression

8.6 Conclusions and Future Work 161

and decompression algorithms in order to reduce the amount of transferred
data. For multi-core CPUs, in particular, one could reserve a single core for
compressing/decompressing pixel data.

In the current implementation, specific system parameters such as the size
of a pixel tile or the numbers of tiles that a slave fetches in advance are fixed.
This typically works well for most situations, while it can be sub-optimal
in others. Therefore, future implementations should automatically analyze
the efficiency of the applied parameters by, for example, measuring the load
on the slaves and, if required, adapting these parameters during run-time to
ensure an optimal work distribution.

162 Chapter 8: Distributed Coherent Ray Tracing on Clusters

Chapter 9

Applications

A key point for achieving high ray tracing performance is ray coherence. As
discussed in Section 4.4.5, most of the ray tracing-based rendering algorithms,
e.g. standard backward ray tracing, rely on the recursive evaluation of single
ray paths. The recursive evaluation makes it difficult to combine individual
rays to ray bundles. Even if individual rays can be combined, it is not ensured
that the rays within the bundle are coherent. Unfortunately, this also applies
for any other ray-path generating rendering algorithm.

Solving this problem requires a shift in design: Instead of trying to gather
coherent rays out of an arbitrary rendering algorithm, one should design, or
modify, the rendering algorithm in order to produce coherent rays.

In the following section, a rendering algorithm is presented that is able to
almost exclusively produce coherent ray bundles. This rendering algorithm
is known as the instant global illumination algorithm, and was originally
presented by Wald et al. [Wald02b, Wald04]. By having a fast ray tracing
core combined with a lot of processing power, the algorithm is able to fully
recompute a complete global illumination for every frame. The improved
algorithm [Benthin03] described in this chapter has been designed to fully
exploit coherent ray bundles and to eliminate the bottlenecks of the previous
algorithm [Benthin03].

9.1 Instant Global Illumination

This section briefly reviews the original instant global illumination algorithm.
For a more detailed description of this algorithm and other global illumina-
tion algorithms see [Wald04].

The core of the instant global illumination algorithm is build on the in-
stant radiosity algorithm proposed by Keller et al. [Keller97]. Instant radios-

164 Chapter 9: Applications

ity approximates diffuse illumination by a set of virtual point light sources
(VPLs). These VPLs are computed in a preprocessing step by generating
light paths (using random walks) from the light sources into the scene. At
each light path bounce, a VPL is created (the emittance of the virtual point
corresponds to the reflected radiosity at the given point). The contribution
of all VPLs approximates the indirect illumination.

The set of VPLs is used in the actual rendering process to compute the
irradiance at every point. For each primary ray intersection point, the ir-
radiance is computed by shooting shadow rays towards all generated VPLs
and adding their contributions. Obviously, the more VPLs are considered
per intersection point, the more accurate the illumination computation will
be. However, as the focus is on interactivity, only a small set of VPLs is
affordable per pixel.

VPLs cause discretization errors due to the generation of sharp shadow
boundaries. However, these can be smoothed by using interleaved sam-
pling [Keller01]. The idea behind interleaved sampling is to not generate
and use only one set of VPLs for all pixels but to generate multiple VPL
sets and interleave these sets for the illumination computation of neighbor-
ing pixels. An N × N pixel pattern implies the generation of N × N VPL
sets. As neighboring pixels do not share the same VPL set, hard shadow
boundaries are broken up. All VPL sets are of equal size and, therefore,
the number of shadow rays per pixel is similar to the one-set case. This
implies that no additional work has to be done. The drawback of interleaved
sampling is the transfer of discretization errors into visible structured noise.
The combination of interleaved sampling and instant radiosity is illustrated
in Figure 9.1.

The structured noise introduced by interleaved sampling can be signifi-
cantly reduced by a technique which is called discontinuity buffering [Keller01,
Wald02b, Wald04]. Discontinuity buffering essentially filters the irradiance
of neighboring pixels. In order to filter over all different VPL sets, the fil-
ter kernel must have the same size (N × N) as the interleaved sampling
pattern. Discontinuities, e.g. surface edges or cured surfaces must not be
filtered, otherwise visible blurring artifacts will appear. Therefore, disconti-
nuity buffering relies on several heuristics (hit point distance, surface normal)
to detect such cases. The key point of discontinuity buffering is that it al-
lows for combining the illumination computation of neighboring pixels. For
an N × N interleaved sampling pattern and an N × N filter kernel, every
pixel exploits the illumination from all N × N VPL sets. The combination
of interleaved sampling and discontinuity buffering trades spatial blurring
of the illumination for the speed of computation. Usually, the results are
acceptable because indirect illumination changes only slowly on surfaces.

9.2 Exploiting Coherence 165

Figure 9.1: Combination of instant radiosity and interleaved sampling:
Neighboring pixels use a different set of virtual point lights (VPLs). The
structured noise introduced by the different VPL sets is on removed later on
by filtering the irradiance of neighboring pixels.

9.2 Exploiting Coherence

The standard approach of combining rays from neighboring pixels to coherent
(shadow) ray bundles as shown in Chapter 4 does not work any longer when
using interleaved sampling. Therefore, only pixels that share a common
VPL set produce shadow rays which are coherent. As a result, only those
rays should be combined into bundles. One could trace primary rays from
neighboring pixels together and later reorder the intersection points according
to the different VPL sets. However, reordering would require many scatter-
gather operations, which are costly when using SSE instructions.

Fortunately, reordering is not necessary because an N × N interleaved
sampling pattern ensures that every N th pixel (with respect to both rows and
columns) has the same interleaved sampling index i, 0 ≤ i ≤ N ×N . If N is
small, e.g. 3, grouping primary rays according to their interleaved sampling

166 Chapter 9: Applications

index will only slightly decrease coherence within the bundle. The increased
space between primary rays for a 3 × 3 interleaved sampling pattern causes
an overhead of approximately 10% to 20% for primary ray bundles when
rendering at moderate resolutions, e.g. 640 × 480. For higher resolutions,
e.g. 1024 × 1024, the overhead is clearly below 10%.

1
2

0
3

4
5

36
7

8
6

0
1

2
0

x

x

x

x

x

VPL

0
x
xx

x

x
xx

x

x
xx

x

x
xx

x

1
2

0
3

4
5

36
7

8
6

0
1

2
0

0

VLP

Figure 9.2: Combining primary and shadow rays which share the same in-
terleaved sampling index (marked green) into bundles. A 3 × 3 interleaved
sampling pattern ensures that coherence within a bundle is only slightly re-
duced. Left Image: Casting one ray per pixel, four rays per bundle in total.
Right Image: Casting four rays per pixel, sixteen rays per bundle in total.
This arrangement is suitable for per-pixel super-sampling.

Chapter 4 showed optimized routines for bundle traversal of 4 or 16 rays.
These core routines can be directly reused for tracing primary and shadow
ray bundles which share the same interleaved sampling index. Figure 9.2
illustrates these two approaches: The first casts only one ray per-pixel, the
second casts four rays per pixel for improved anti-aliasing by per-pixel super-
sampling. In terms of improved per-pixel anti-aliasing, different approaches
for gathering coherent rays exist, e.g. casting bundles of 4 or 16 rays per pixel
without adding rays from pixels sharing the same interleaved sampling index.
These approaches offer higher coherence but significantly more rays have to
be shot (16 rays per-pixel). As the focus lies on interactivity, Section 9.4
will present a way for improved per-pixel anti-aliasing without introducing
significant performance penalties.

9.3 Streaming Computations 167

9.3 Streaming Computations

In order to fully exploit the benefits of SSE instructions, the entire process
of ray shooting and shading operations is reformulated in a streaming-like
and breadth-first way. Instead of directly proceeding to shading and shadow
ray generation after having cast the first primary ray bundle, multiple neigh-
boring primary ray bundles with the same interleaved sampling index are
cast first. The results, e.g. intersection point, surface normal, etc. are stored.
Based on the stored intersection data, the process continues with the gen-
eration and casting of shadow rays to each VPL in the current set. The
contribution of each VPL is added to the stored intersection data. After
adding the contribution for the last VPL in the current set, the process con-
tinues with shading evaluation and the casting of additional secondary rays
(see Section 9.3.1).

This breadth-first approach significantly increases cache usage because
neighboring ray bundles are likely to access similar data.

9.3.1 Streaming Shading

As the cost for shading can easily exceed the cost for ray casting, a highly effi-
cient shading system is essential. However, allowing for freely programmable
shaders aggravates the problem of realizing efficient shading.

As a solution, the actual shading process is split into the evaluation of
two independent entities: a fixed function BRDF shader and a freely pro-
grammable surface shader. The BRDF shader evaluates the illumination
contribution and the underlying BRDF itself. The key point is that the
BRDF shader performs the evaluation based on the settings provided by the
surface shader. The surface shader itself only provides shading parameters,
e.g. diffuse, specular color, normals, etc. and passes them on to the BRDF
shader which is responsible for tracing secondary rays.

This programming model allows for maintaining high shading perfor-
mance thanks to a highly optimized BRDF shader, while providing most
of the features of programmable shading. The high performance is accom-
plished by shifting the critical performance part, e.g. adding the illumination
of VPLs and BRDF evaluation, to a highly optimized BRDF shader. As
bundles of rays return bundles of intersection points, the BRDF shading
must also be performed for bundles. This offers the advantage that code
dependencies between shading computations can be minimized, allowing for
increased instruction level parallelism.

The usually less critical shading part is taken on by a freely programmable
surface shader. If costs for tracing rays dominate the total rendering cost,

168 Chapter 9: Applications

Figure 9.3: Freely programmable procedural shading in a globally illuminated
scene. The “Shirley 6” test scene (left) in its original form, and after apply-
ing several procedural shaders (marble, wood, and brick-bump). The efficient
shading model shifts the performance bottleneck towards ray casting. There-
fore, even complex and costly shading operations, such as multiple noise func-
tion evaluations, only moderately affect total rendering performance. In this
case, performance drops to 3.7 fps compared to 4.5 fps with constant diffuse
reflection.

the relative costs for the freely programmable part are relatively low. This
allows for complex shading operations without large performance penalties
(see Figure 9.3).

For standard shading, profiling shows that almost all shading time is taken
up by the BRDF shader. This especially applies for adding up the weighted
illumination of VPLs: Each VPL in a scene is described by its position xi,
the surface normal ni(xi), and its emitted radiance Li. The irradiance at any
given surface point x with normal n is then approximated by adding up the
contributions from all VPLs:

E(x) =
N−1
∑

i=0

V (x, xi)
cos θx cos θi

||x − xi||2
Li, (9.1)

where V (x, y) specifies the visibility between two points x and y, and θx, θi are
the angles between the normal vectors nx, ni and vector x− xi, respectively.
Based on the normalized surface and VPL normals, the two cosine factors are
evaluated by two dot products, allowing for an efficient SSE implementation.
Note that E(x) is evaluated for multiple intersection points in parallel which
allows for efficiently using SSE instructions to perform the dot products. As
VPL normals are normalized before the rendering starts, the normalization

9.4 Efficient Anti-Aliasing 169

x
xx

x

x
xx

x

x
xx

x

x
xx

x

1
2

0
3

4
5

36
7

8
6

0
1

2
0

0

VLP

VLP

Figure 9.4: Efficient anti-aliasing using a similar interleaving approach as
for the generation of VPLs. Instead of connecting all intersection points
of a given pixel to the same VPLs, the intersection points are connected to
different subsets of the same VPL set.

only needs to be performed for surface normals. Each surface normal is reused
for evaluating E(x) for each VPL. This allows for efficiently amortizing the
normalization cost.

Evaluating V (x, y) requires casting shadow rays. If the surface and VPL
normals indicate that no radiance transfer can occur, the shadow ray casting
could be skipped. However, as shadow rays are cast in bundles, the skip
decision has to be evaluated with respect to the entire bundle. The related
decision coherence is very high, because the surface normal usually does not
vary significantly for adjacent spatial locations.

9.4 Efficient Anti-Aliasing

Efficient per-pixel anti-aliasing can be realized for the instant global illu-
mination algorithm by following a similar interleaving approach as for the
generation of the different VPL sets (see Figure 9.4). Instead of connecting
each one of N primary ray intersection points of a given pixel to all VPLs, the
VPL set is split into N sub-sets, and each intersection point is only connected
to the VPLs from one sub-set.

The main advantage of this approach is that the total number of rays
per pixel is only slightly increased. The only “investment” is the increased

170 Chapter 9: Applications

number of primary rays per pixel while the number of shadow rays remains
constant. Depending on the size of the VPL set, the performance impact
of efficient anti-aliasing typically lies in the range of 10% to 30%, while the
actual image quality is significantly enhanced (see Figure 9.5). Different
primary rays for the same pixel obtain illumination from different VPLs;
a possible difference in the illumination is therefore possible (compared to
connecting each primary ray to the same VPL set). In most cases, how-
ever, each primary ray is connected to multiple VPLs, thereby reducing the
probability of illumination discrepancies. For typical scenes, the difference
in illumination quality is virtually indistinguishable.

Figure 9.5: Left: Casting a single primary ray per pixel exhibits aliasing
artifacts for small geometric details. Right: Casting four primary rays per
pixel with interleaved shadow ray generation. As the number of shadow rays
is constant, performance decreases only from 4 fps to 3.2 fps while providing
better image quality through anti-aliased rendering.

9.5 Distributed Rendering

High image quality requires many VPLs which in turn requires casting of
many shadow rays. In order to perform a full recomputation of the complete
illumination per frame, the compute power of a single PC is not sufficient. As
a result, multiple PCs need to be combined. The original instant global illu-
mination system [Wald02b] as described here therefore uses the distribution
framework presented in Section 8.3.

The original instant global illumination system [Wald02b] performs the
rendering on the slaves and the discontinuity filtering on the master. As a

9.6 Results 171

result, all pixel data required for discontinuity filtering needs to be trans-
ferred to the master. The required bandwidth easily saturates the network
bandwidth, thereby limiting the scalability of the entire system. The support
of caustics in the original system makes it necessary to perform the filtering
on the master side. By dropping caustics support in the new system, the
filtering step can be moved to the slave side.

A drawback of filtering on the slave side is the overhead caused by the
tile-based task distribution system. More precisely, a 3 × 3 filtering kernel
requires access to pixel data which lies outside the tile boundaries. Therefore,
the tile has to be virtually enlarged by a one-pixel border. Obviously, the
larger the tile, the smaller the overhead will be. For a tile size of 40 × 40
pixels, 164 additional pixels have to be computed. This 10% overhead is
easily acceptable when gaining better scalability in return.

An advantage of filtering on the slave side is that all filtering data can
be completely held in CPU caches. This is beneficial because the filtering
step is then completely memory-bound. As the filter kernel has a regular and
fixed size and all input values are provided as single precision floating point
values, the actual filtering is efficiently implemented using SSE instructions.
If all input values are directly loaded from cache, the SSE-based filter easily
outperforms a non-SSE version by a factor of about 3.

9.6 Results

The new instant global illumination system [Benthin03] demonstrates the
effectiveness of directly supporting coherent ray bundles using rendering al-
gorithms. Streaming shading and filtering (see Section 9.3.1) shift the critical
computational part towards ray casting. Combined with the typical setting
of using many VPLs per pixel, the total rendering time is strongly dominated
by ray casting. This allows for directly exploiting the fast traversal code for
ray bundles from Chapter 4.

Table 9.1 shows a comparison between the original and the new instant
global illumination system. The original system only supports single ray
traversal and no streaming shading. The new system’s support for tracing
bundles of rays and streaming shading allows for outperforming the old sys-
tem by a factor of 3 − 8. The higher the resolution, the higher coherence
within the ray bundles and the more beneficial bundle traversal becomes.
Note that the statistics for the new system already include the 10% overhead
caused by overlapping at tile boundaries.

Even the compute power of a single PC is sufficient to achieve interactive
frame rates at small resolutions. Table 9.2 shows the actual performance per

172 Chapter 9: Applications

Office Conference Power Plant

640 × 480 2.7 3.2 2.5
800 × 600 2.9 3.41 2.7
1000 × 1000 4.2 7.2 4.0
1600 × 1200 5.7 8.0 5.1

Table 9.1: Performance increase of the new compared to the previous instant
global illumination system using 64 VPLs/pixel with full shading and filtering
at various resolutions. Even with a 10% overhead caused by overlapping tile
boundaries, the new system outperforms the original one by a factor of up to
8 at higher resolutions.

CPU in million rays per second. Note that these numbers include shading and
filtering. The table further demonstrates the impact of coherence. Increasing
the resolution from 640 × 480 to 1000 × 1000 results in a speedup of 30%.
Obviously, integrating support for 4×4 bundles combined with kd-tree entry
search would yield a further significant performance boost.

High-quality rendering with interactive frame rates still requires the com-
pute power of many PCs. Therefore, the distribution framework of Sec-
tion 8.3 is used to combine the resources of a cluster of PCs. All measure-
ments are carried out using a cluster of 24 dual AthlonMP 1800+ PCs with
512 MB memory each. All slaves are connected to a commodity 100 Mbit
switch. The master uses a Gigabit uplink to the switch.

Office Conference Power Plant

640 × 480 1.72 1.12 0.33
800 × 600 1.77 1.22 0.42
1000 × 1000 1.84 1.33 0.44
1600 × 1200 2.00 1.46 0.48

Table 9.2: Performance in million rays per second on a AthlonMP 1800+
CPU at different resolutions with 16 VPLs, full shading and filtering.

Shifting discontinuity filtering from the master to the slaves (see Sec-
tion 9.5) allows for exclusively transferring pixel colors. This reduces the
required network bandwidth per frame dramatically from 4 − 6 MB to 912
KB. The combination of a largely reduced bandwidth and the efficient distri-
bution framework (see Section 8.3) ensures high scalability and high frame
rates. Figure 9.6 demonstrates the essentially linear scalability of up to 24
PCs (48 CPUs). This setup allows for reaching 20 fps at video resolution

9.7 Conclusions and Future Work 173

 0

 5

 10

 15

 20

 5 10 15 20

fr
am

es
 p

er
 s

ec
on

d

slaves

Shirley-6
Office

Conference
Power Plant

Figure 9.6: System scalability: Performance is essentially linear for up to 24
PCs/48 CPUs. This applies to scenes ranging from several hundred trian-
gles (Shirley-6) up to the Power Plant scene with 50 million triangles (four
instances).

(640 × 480) or 8 fps at full screen resolution (1024 × 1024). Note that even
for the power plant scene (four instances of 12.5 million triangles each), the
complete illumination is recomputed from scratch for every single frame (see
Figure 9.7).

9.7 Conclusions and Future Work

Besides adding support for missing illumination effects, e.g. caustics or glossy
effects, it would be a great advance to optimize the system towards multi-
core CPUs or shared memory setups. These two hardware setups are already
becoming available on the desktop, and will provide enough compute power
to achieve a performance level as the distributed setup. Through linear
scalability in the number of processing resources and implicit support for
coherent ray bundles, the instant global illumination system is the method
of choice for realizing interactive global illumination.

174 Chapter 9: Applications

Figure 9.7: Top left: Room with animated globe and lamp, containing roughly
20,000 triangles. The lamp illuminates North America which reflects a yel-
lowish light into the room. Top right: The globally illuminated conference
scene with 280, 000 triangles and 104 light sources rendering at about 20 fps
on 22 dual AthlonMP PCs with 12 VPLs. Center left and right: The well-
known Shirley-6 test scene consisting of 600 triangles rendered with procedural
shading. This scene is rendered at roughly 22 fps with 12 VPLs allowing ar-
bitrary changes in the scene. Bottom left and right: A power plant scene
containing four copies of the model with a total of 50 million triangles ren-
dered at about 2 fps with global illumination. These two views clearly show
the difference between direct illumination with hard ray traced shadows and
the smooth lighting rendered by the global illumination system. All scenes
were rendered at a resolution of 640 × 480.

Chapter 10

Final Summary, Conclusions,
and Future Work

In this final chapter, the content and all new contributions of this thesis will
be briefly summarized. Before concluding, potential future work for all areas
discussed here will be outlined.

In Chapter 2, the basics of ray tracing and the role of ray tracing as
a rendering algorithm were discussed. After defining the core ray tracing
algorithm which forms the basis for ray tracing-based rendering, the factors
that impact its performance were presented. In particular, the need for an
efficient traversal of rays through a spatial index structure and the need for
an efficient primitive intersection test were discussed in detail. Based on
this discussion, exploiting coherence, e.g. by traversing coherent ray bundles
and an optimized implementation with respect to the underlying hardware
architecture were identified as key factors to improve the performance of the
core ray tracing algorithm.

As optimization in terms of the underlying hardware architecture plays
a major role for achieving realtime ray tracing, a detailed discussion of the
performance issues of current CPU architectures, e.g. cache misses, branch
mis-predictions, and dependency chains, followed in Chapter 3. Based on
this discussion, coding guidelines which help to achieve optimized code were
proposed next. In addition, the SIMD extension of current CPUs was pro-
posed as a powerful tool for exploiting the full compute power of current
CPU architectures.

Chapter 4 used the optimization guidelines of Chapter 3 to describe sev-
eral highly optimized example implementations for the traversal of coherent
ray bundles through a kd-tree. In particular, implementations of different
frustum traversal algorithms, which allow for constant traversal cost (in terms

176 Chapter 10: Final Summary, Conclusions, and Future Work

of the number of rays within the frustum) were proposed.
The efficient ray bundle traversal algorithms presented in Chapter 4 could

be directly used as the basis for ray tracing triangular scenes. Chapter 5 com-
bined these traversal algorithms with fast triangle intersection algorithms.
By relying on fast traversal and intersection algorithms designed for effi-
ciently supporting ray bundles, even interactive ray tracing performance on
a single CPU and at high resolutions was achieved.

Chapter 6 showed that interactive ray tracing performance is not limited
to triangular scenes. In particular, highly optimized intersection algorithms,
e.g. based on uniform refinement, Bézier clipping, and Newton iteration for
efficiently supporting bicubic Bézier surfaces were presented. Each of these
intersection algorithms has its advantages and disadvantages, so choosing a
particular algorithm largely depends on performance and accuracy require-
ments.

Chapter 7 showed that the coding guidelines can be efficiently used to
optimize the construction algorithm for high-quality kd-trees. The proposed
algorithm, which even allows for multi-threaded kd-tree construction, is able
to support ray tracing of fully dynamic scenes by reconstructing the corre-
sponding kd-tree from scratch for every frame.

The need of ray tracing for compute power can be compensated by com-
bining the compute power of multiple PCs. Chapter 8 presented a frame-
work for parallel ray tracing using a cluster of off-the-shelf PCs. As the
framework was exclusively designed for handling realtime ray tracing on a
distributed memory environment, e.g. dealing with high interconnection la-
tency and small interconnection bandwidth, linear scalability in the number
of connected PCs was achieved.

Chapter 9 combined several techniques outlined in the preceding chap-
ters, e.g. tracing of coherent ray bundles and the distribution framework,
in order to realize a system that is even capable of interactively computing
global illumination. The instant global illumination algorithm presented was
adapted to directly benefit from coherent ray bundles, and extended using a
high-performance shading framework. Moreover, the proposed implementa-
tion of the instant global illumination algorithm in terms of the distribution
framework of Chapter 8 allowed for achieving linear performance scalability
in the number of connected PCs.

Future Work

Even though many aspects of potential future work have already been dis-
cussed throughout this thesis, they will be briefly summarized in the following.

177

Extremal traversal of coherent ray bundles allows for constant traversal
cost, independently of the number of rays within the bundle. One should
therefore concentrate on further reducing the intersection overhead caused
by extremal traversal, as compared to that of a standard ray bundle traversal
algorithm. A possible way to achieve this could be to automatically update
the ray frustum during traversal by excluding already terminated rays.

For triangular scenes, it might be beneficial to store the geometry of
triangles within a leaf as a small index face set. A potential ray bundle
intersection would then first perform a side test based on the set of edges.
Only for those triangles that fulfill the criteria of the side test, would a
distance test be performed in a second step. This algorithm might be able
to avoid a significant amount of unnecessary triangle intersection tests.

In terms of intersection tests for bicubic Bézier surfaces, future optimiza-
tions should concentrate on a Newton iteration-based intersection using the
Krawczyk operator, because this is the only algorithm that reliably provides
highly accurate results. As the cost and required iterations for the intersec-
tion algorithm largely depend on the accurate computation of the interval
extension of the partial derivatives, further optimization should focus on this
operation. It might also be beneficial to evaluate how the intersection algo-
rithm can be efficiently extended to directly support coherent ray bundles.

Besides faster traversal and intersection, efficiently supporting dynamic
scenes will be one of the major fields of future research for realtime ray
tracing. The fast kd-tree construction algorithm proposed in this thesis can
be seen as a first step; supporting scenes as used in today’s computer games
will require even further optimized algorithms.

Having a system capable of performing realtime ray tracing allows for di-
rectly exploring potential ways of realizing realtime global illumination. The
modified instant global illumination algorithm presented in this thesis has
been designed to optimally exploit coherent ray bundles. As the algorithm
largely relies on casting shadow rays, future modifications could integrate
extremal traversal for efficiently tracing a large number of shadow rays per
bundle.

Besides the performance improvements made possible by using better al-
gorithms, future hardware architectures will be able to offer an improved
support for realtime ray tracing. Instead of increasing performance per CPU
by raising the clock speed, future CPU architectures will improve perfor-
mance by adding multiple cores to a single CPU chip. Even though current
CPUs have two cores per CPU at the most, all major CPU manufacturers
have already announced a higher number of cores for future CPU designs. A
high number of cores per CPU is beneficial for ray tracing because the work-
load can be distributed across multiple cores. However, multi-core CPUs

178 Chapter 10: Final Summary, Conclusions, and Future Work

present their own problems, e.g. limited interconnection bandwidth between
cores, shared CPU caches, and efficient synchronization techniques. Future
realtime ray tracing systems must consider these issues to exploit the full
potential of multi-core CPUs.

A new design in terms of multi-core CPUs was introduced with the CELL
processor [Cell05]. Instead relying on a homogeneous system of identical CPU
cores, the CELL processor has a single standard CPU core and eight addi-
tional small CPU cores. These small CPUs have been exclusively designed
for performing SIMD operations. Moreover, each of them has no memory
cache but a small amount of local memory attached. If a small CPU core
wants to access the main memory, a DMA request must be initiated manually.
The new CELL architecture provides a significant amount of SIMD comput-
ing power, but requires new programming techniques, because all memory
transfers must be initiated manually. However, a very early prototype im-
plementation of a ray tracing system that relied on the algorithms proposed
in this thesis was capable of ray tracing the conference scene (tracing only
primary rays) with over 30 frames per second at a resolution of 1024 × 1024
on a 2.4 GHz CELL processor. Future optimization should concentrate on
exploiting the full potential of the CELL chip, which might permit a ray
tracing system to be created which offers similar compute power as an entire
cluster of PCs.

Final Conclusions

This thesis showed that algorithms designed and optimized in terms of the
underlying processor architecture are the key factor for realizing realtime ray
tracing. Even though for establishing realtime ray tracing as an alternative
to rasterization-based rendering many open questions need to be answered
realtime ray tracing is already starting to play a major role in 3D graphics.

Through the introduction of powerful multi-core processors, sufficient
compute power will be available on everyone’s desktop to explore the en-
tire set of new applications, which now become possible with realtime ray
tracing.

Appendix A

List of Related Papers

Many parts of this thesis have already been published in previous publica-
tions. This chapter provides a list of papers that have contributed to this
thesis and that contain additional information.

2001

Interactive Rendering using Coherent Ray Tracing

Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek
Computer Graphics Forum, 20(3), 2001, pages 153–164, by A. Chalmers
and T.–M. Rhyne (editors), Blackwell Publishers, Oxford, (Proceedings
of Eurographics 2001), Manchester, UK [Wald01c]

Interactive Distributed Ray Tracing of Highly Complex Models

Ingo Wald, Philipp Slusallek, and Carsten Benthin
Rendering Techniques 2001 (Proceedings of the 12th Eurographics Work-
shop on Rendering), by Steven J. Gortler and Karol Myszkowski (edi-
tors), pages 274–285, pages 2001, London, UK [Wald01b]

2002

Interactive Global Illumination using Fast Ray Tracing

Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, Philipp
Slusallek , Rendering Techniques 2002, by P. Debevec and S. Gibson
(editors) pages 15–24, 2002, Pisa, Italy, (Proceedings of the 13th Eu-
rographics Workshop on Rendering) [Wald02b]

180 Chapter A: List of Related Papers

Interactive Headlight Visualization –A Case Study of Interac-

tive Distributed Ray Tracing–

Carsten Benthin, Ingo Wald, Tim Dahmen and Philipp Slusallek, Pro-
ceedings of the Fourth Eurographics Workshop on Parallel Graphics
and Visualization (PVG), pages 81–88, Blaubeuren, Germany, 2002
[Benthin02]

OpenRT – A Flexible and Scalable Rendering Engine for Inter-

active 3D Graphics

Ingo Wald, Carsten Benthin, and Philipp Slusallek, Technical Report
2002, Saarland University Saarbrücken, Germany [Wald02a]

2003

Towards Realtime Ray Tracing – Issues and Potential

Ingo Wald, Carsten Benthin, and Philipp Slusallek, Technical Report
2003, Saarland University Saarbrücken, Germany [Wald03d]

The OpenRT Application Programming Interface – Towards A

Common API for Interactive Ray Tracing –

Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek,
OpenSG Symposium 2003, Darmstadt, Germany [Dietrich03]

Interactive Global Illumination in Complex and Highly Oc-

cluded Scenes

Ingo Wald, Carsten Benthin, and Philipp Slusallek, Proceedings of the
14th Eurographics Symposium on Rendering, by P. H. Christensen and
D. Cohen-Or (editors) pages 74–81, 2003, Leuven, Belgium [Wald03c]

Interactive Distributed Ray Tracing on Commodity PC Clus-

ters – State of the Art and Practical Applications –

Ingo Wald, Carsten Benthin, and Philipp Slusallek, in Harald Kosch,
Laszlo Böszörmenyi, and Hermann Hellwagner, editors, Euro-Par 2003,
Klagenfurt, Austria, volume 2790 of Lecture Notes in Computer Sci-
ence, Springer. [Wald03a]

A Scalable Approach to Interactive Global Illumination

Carsten Benthin, Ingo Wald, and Philipp Slusallek, in Computer Graph-
ics Forum, 22(3), 2003, pages, 621–630, (Proceedings of Eurographics
2003), Granada, Spain [Benthin03]

181

Distributed Interactive Ray Tracing in Dynamic Environments

Ingo Wald, Carsten Benthin, and Philipp Slusallek, SIGGRAPH/Eurographics
Workshop on Parallel Graphics and Visualization (PVG) 2003, Seattle,
WA, USA, pages 77-86 [Wald03b]

Realtime Ray Tracing and its Use for Interactive Global Illu-

mination

Ingo Wald, Timothy J.Purcell, Jörg Schmittler, Carsten Benthin, and
Philipp Slusallek, Eurographics 2003 State-of-the-Art Reports, Granada,
Spain [Wald03e]

2004

Interactive Ray Tracing of Freeform Surfaces

Carsten Benthin, Ingo Wald, and Philipp Slusallek, Afrigraph 2004,
Stellenbosch (Cape Town), South Africa [Benthin04]

2005

A Ray Tracing based Framework for High-Quality Virtual Re-

ality in Industrial Design Applications

Ingo Wald, Carsten Benthin, Alexander Efremov, Tim Dahmen, Jo-
hannes Guenther, Andreas Dietrich, Vlastimil Havran, Philipp Slusallek,
Hans-Peter Seidel, Technical Report 2005, University of Utah [Wald05]

Techniques for Interactive Ray Tracing of Bézier Surfaces

Carsten Benthin, Ingo Wald, and Philipp Slusallek, Journal of Graphics
Tools (to appear) [Benthin05]

182 Chapter A: List of Related Papers

Bibliography

[AltiVec] Motorola Inc. AltiVec Technology Facts. Available at
http://www.motorola.com/AltiVec/facts.html.

[Amanatides87] John Amanatides and Andrew Woo. A Fast Voxel Traver-
sal Algorithm for Ray Tracing. In Proceedings of Euro-
graphics, pages 3–10. Eurographics Association, 1987.

[AMD03] Advanced Micro Devices. AMD Opteron Processor Model
8 Data Sheet. http://www.amd.com/us-en/Processors,
2003.

[Arvo87] James Arvo and David Kirk. Fast Ray Tracing by Ray
Classification. Computer Graphics (Proceedings of ACM
SIGGRAPH), 21(4):55–64, 1987.

[Badouel92] Didier Badouel. An Efficient Ray Polygon Intersection.
In David Kirk, editor, Graphics Gems III, pages 390–393.
Academic Press, 1992.

[Benthin02] Carsten Benthin, Ingo Wald, Tim Dahmen, and Philipp
Slusallek. Interactive Headlight Simulation – A Case
Study of Distributed Interactive Ray Tracing. In Pro-
ceedings of the 4th Eurographics Workshop on Parallel
Graphics and Visualization (PGV), pages 81–88, 2002.

[Benthin03] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A
Scalable Approach to Interactive Global Illumination.
Computer Graphics Forum (Proceedings of Eurographics),
22(3):621–630, 2003.

[Benthin04] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Inter-
active Ray Tracing of Free-Form Surfaces. In Proceedings
of Afrigraph, pages 99–106, November 2004.

184 BIBLIOGRAPHY

[Benthin05] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Tech-
niques for Interactive Ray Tracing of Bézier Surfaces.
Journal of Graphics Tools (to appear), 2005.

[Bittner99] Jiri Bittner. Hierarchical Techniques for Visibility
Determination. Technical Report DS-005, Depart-
ment of Computer Science and Engineering, Czech
Technical University in Prague, 1999. Also avail-
able at http:/www.cgg.cvut.cz/∼bittner/publications/-
minimum.ps.gz.

[Campagna97] Swen Campagna, Philipp Slusallek, and Hans-Peter Sei-
del. Ray Tracing of Parametric Surfaces. The Visual
Computer, 13(6):265–282, 1997.

[Cell05] International Business Machines. The Cell Project
at IBM Research. http://www.research.ibm.com/cell/,
2005.

[Chalmers98] Alan Chalmers and Erik Reinhard. Parallel and Dis-
tributed Photo-Realistic Rendering. In Course notes for
ACM SIGGRAPH, pages 425–432. ACM Press, 1998.

[Chalmers01] Alan Chalmers, Tim Davis, Toshi Kato, and Erik Rein-
hard. Practical Parallel Processing for Today’s Rendering
Challenges. In Course notes for ACM SIGGRAPH. ACM
Press, 2001.

[Cohen93] Michael F. Cohen and John R. Wallace. Radiosity and
Realistic Image Synthesis. Morgan Kaufmann Publishers,
1993.

[Cohen94] Daniel Cohen. Voxel Traversal along a 3D Line. In Paul
Heckbert, editor, Graphics Gems IV, pages 366–369. Aca-
demic Press, 1994.

[Cook84a] Robert Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed Ray Tracing. Computer Graphics (Proceeding of
ACM SIGGRAPH), 18(3):137–144, 1984.

[Cook84b] Robert L. Cook. Shade trees. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH), 18(3):223–231, 1984.

BIBLIOGRAPHY 185

[DeMarle03] David E. DeMarle, Steve Parker, Mark Hartner, Christi-
aan Gribble, and Charles Hansen. Distributed Interactive
Ray Tracing for Large Volume Visualization. In Proceed-
ings of the IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (PVG), pages 87–94, 2003.

[DeMarle04] David E. DeMarle, Christiaan Gribble, and Steven
Parker. Memory-Savvy Distributed Interactive Ray Trac-
ing. In Eurographics Symposium on Parallel Graphics and
Visualization, pages 93–100, 2004.

[Dietrich03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and
Philipp Slusallek. The OpenRT Application Programming
Interface – Towards A Common API for Interactive Ray
Tracing. In Proceedings of the 2003 OpenSG Symposium,
pages 23–31, 2003.

[Dietrich05] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and
Philipp Slusallek. Realistic and Interactive Visualization
of High-Density Plant Ecosystems. In Natural Phenom-
ena 2005, Proceedings of the Eurographics Workshop on
Natural Phenomena, pages 73–81, August 2005.

[Dutre03] Phil Dutre, Philippe Bekaert, and Kavita Bala. Advanced
Global Illumination. A K Peters, 1st edition, July 2003.

[Efremov05] Alexander Efremov, Vlastimil Havran, and Hans-Peter
Seidel. Robust and Numerically Stable Bézier Clipping
Method for Ray Tracing NURBS Surfaces. In SCCG’05
Proceedings, 2005.

[Erickson97] Jeff Erickson. Pluecker Coordinates. Ray Trac-
ing News, 1997. http://www.acm.org/tog/resources/-
RTNews/html/rtnv10n3.html#art11.

[Farin96] G. Farin. Curves and Surfaces for Computer Aided Geo-
metric Design 4th Edition. Academic Press, Boston, 1996.

[Foley97] Foley, van Dam, Feiner, and Hughes. Computer Graphics
– Principles and Practice, 2nd edition. Addison Wesley,
1997.

186 BIBLIOGRAPHY

[Foley05] Tim Foley and Jeremy Sugerman. KD-tree Acceleration
Structures for a GPU Raytracer. In HWWS ’05 Proceed-
ings, pages 15–22. ACM Press, 2005.

[Foruma] MPI Forum. MPI – The Message Passing Interface Stan-
dard. http://www-unix.mcs.anl.gov/mpi.

[Forumb] Myrinet Forum. Myrinet. http://www.myri.com/-
myrinet/overview/.

[Fujimoto86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata.
ARTS: Accelerated Ray Tracing System. IEEE Computer
Graphics and Applications, 6(4):16–26, 1986.

[Futral01] William T. Futral. Infiniband Architecture: Development
and Deployment – A Strategic Guide to Server I/O Solu-
tions. Intel Press, 2001.

[Geimer05] Markus Geimer and Oliver Abert. Interactive Ray Trac-
ing of Trimmed Bicubic Bézier Surfaces without Triangu-
lation. In WSCG (Full Papers), pages 71–78, 2005.

[Geist94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidyalingam S. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tu-
torial for Network Parallel Computing. MIT Press, Cam-
bridge, 1994.

[Gigante88] Michael Gigante. Accelerated Ray Tracing using Non-
Uniform Grids. In Proceedings of Ausgraph, pages 157–
163, 1988.

[Glassner84] Andrew S. Glassner. Space Subdivision For Fast Ray
Tracing. IEEE Computer Graphics and Applications,
4(10):15–22, 1984.

[Glassner89] Andrew Glassner. An Introduction to Ray Tracing. Mor-
gan Kaufmann, 1989.

[Glassner95] Andrew Glassner. Principles of Digital Image Synthesis.
Morgan Kaufmann, 1995.

[GNU] The GNU gcc compiler, version 3.4.X.
http://www.gnu.org.

BIBLIOGRAPHY 187

[Goldsmith87] Jeffrey Goldsmith and John Salmon. Automatic Creation
of Object Hierarchies for Ray Tracing. IEEE Computer
Graphics and Applications, 7(5):14–20, May 1987.

[Guthe02] M. Guthe, J. Meseth, and R. Klein. Fast and Memory
Efficient View-Dependent Trimmed NURBS Rendering.
Pacific Graphics 2002, pages 204–213, October 2002.

[Haines91] Eric Haines. Efficiency Improvements for Hierarchy
Traversal in Ray Tracing. In James Arvo, editor, Graphics
Gems II, pages 267–272. Academic Press, 1991.

[Havran01] Vlastimil Havran. Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001.

[Hsiung92] Ping-Kang Hsiung and Robert H. Thibadeau. Accelerating
ARTS. The Visual Computer, 8(3):181–190, March 1992.

[IBM05] International Business Machines. IBM Power5.
http://www03.ibm.com/systems/power/, 2005.

[Intel97] Intel Corp. Using the RDTSC Instruction for
Performance Monitoring. http://www.intel.com/drg/-
pentiumII/appnotes/RDTSCPM1.HTM, 1997.

[Intel01] Intel Corp. IA-32 Intel Architecture Optimization – Ref-
erence Manual, 2001.

[Intel02a] Intel Corp. Intel C/C++ Compilers, 2002.
http://www.intel.com/software/products/compilers.

[Intel02b] Intel Corp. Intel Pentium III Streaming SIMD Exten-
sions. http://developer.intel.com/vtune/cbts/simd.htm,
2002.

[Intel02c] Intel Corp. Introduction to Hyper-Threading Technol-
ogy. http://developer.intel.com/technology/hyperthread,
2002.

[Intel03] Intel Corp. Prescott New Instructions, 2003.
http://www.intel.com/cd/ids/developer/asmo-
na/eng/microprocessors/ia32/pentium4/resources/.

188 BIBLIOGRAPHY

[Intel04] Intel Corp. Intel VTune Performance Analyz-
ers. http://developer.intel.com/software/products/-
vtune/index.htm, 2004.

[Intel05] Intel Corp. Intel Next Generation Micro Architecture.
http://www.intel.com/technology/computing/ngma/,
2005.

[Jensen01] Henrik Wann Jensen. Realistic Image Synthesis Using
Photon Mapping. A K Peters, 2001.

[Jevans89] David Jevans and Brian Wyvill. Adaptive Voxel Subdi-
vision for Ray Tracing. Proceedings of Graphics Interface
’89, pages 164–172, 1989.

[Kay86] Timothy L. Kay and James T. Kajiya. Ray Tracing Com-
plex Scenes. Computer Graphics (Proceedings of ACM
SIGGRAPH), 20(4):269–278, 1986.

[Keates95] Martin J. Keates and Roger J. Hubbold. Interactive Ray
Tracing on a Virtual Shared-Memory Parallel Computer.
Computer Graphics Forum, 14(4):189–202, 1995.

[Keller97] Alexander Keller. Instant Radiosity. Computer Graphics
(Proceedings of ACM SIGGRAPH), pages 49–56, 1997.

[Keller01] Alexander Keller and Wolfgang Heidrich. Interleaved
Sampling. Rendering Techniques, pages 269–276, 2001.
(Proceedings of the 12th Eurographics Workshop on Ren-
dering).

[Kirk91] David Kirk and James Arvo. Improved Ray Tagging For
Voxel-Based Ray Tracing. In James Arvo, editor, Graph-
ics Gems II, pages 264–266. Academic Press, 1991.

[Klimaszewski97] Kryzsztof S. Klimaszewski and Thomas W. Sederberg.
Faster Ray Tracing using Adaptive Grids. IEEE Com-
puter Graphics and Applications, 17(1):42–51, January/
February 1997.

[Krawczyk69] R. Krawczyk. Newton-Algorithmen zur Bestimmung von
Nullstellen mit Fehlerschranken. Computing, 4:187–201,
1969.

BIBLIOGRAPHY 189

[Krawczyk70] R. Krawczyk. Einschiebung von Nullstellen mit Hilfe einer
Intervallarithmetik. Computing, 5:356–370, 1970.

[Lafortune93] Eric Lafortune and Yves Willems. Bidirectional Path
Tracing. In Proc. 3rd International Conference on Com-
putational Graphics and Visualization Techniques (Com-
pugraphics), pages 145–153, 1993.

[Lewis02] R. Lewis, R. Wang, and D. Hung. Design of a Pipelined
Architecture for Ray/Bezier Patch Intersection Computa-
tion. Canadian Journal of Electrical and Computer En-
gineering, 28(1), 2002.

[Lext01] Jonas Lext and Tomas Akenine-Möller. Towards Rapid
Reconstruction for Animated Ray Tracing. In Eurograph-
ics 2001 – Short Presentations, pages 311–318, 2001.

[MacDonald89] J. David MacDonald and Kellogg S. Booth. Heuristics for
Ray Tracing using Space Subdivision. In Proceedings of
Graphics Interface, pages 152–63, 1989.

[MacDonald90] J. David MacDonald and Kellogg S. Booth. Heuristics for
Ray Tracing using Space Subdivision. Visual Computer,
6(6):153–65, 1990.

[Martin00] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical
Ray Tracing of Trimmed NURBS Surfaces. Journal of
Graphics Tools, 5:27–52, 2000.

[Möller97] Tomas Möller and Ben Trumbore. Fast, Minimum Stor-
age Ray Triangle Intersection. Journal of Graphics Tools,
2(1):21–28, 1997.

[Moore77] R. E. Moore and S.T. Jones. Save Starting Regions for
Iterative Methods. SIAM J. Numer. Anal., 14:1051–1065,
1977.

[Muuss95a] Michael J. Muuss. Towards Real-Time Ray-Tracing of
Combinatorial Solid Geometric Models. In Proceedings of
BRL-CAD Symposium, 1995.

[Muuss95b] Michael J. Muuss and Maximo Lorenzo. High-Resolution
Interactive Multispectral Missile Sensor Simulation for
ATR and DIS. In Proceedings of BRL-CAD Symposium,
1995.

190 BIBLIOGRAPHY

[Nichols96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx
Farrell. PThreads Programming. O’Reilly, 1996.

[Nishita90] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray
Tracing Trimmed Rational Surface Patches. Computer
Graphics (Proceedings of ACM SIGGRAPH), pages 337–
345, 1990.

[Parker98] Steven Parker, Peter Shirley, Yarden Livnat, Charles
Hansen, and Peter-Pike Sloan. Interactive Ray Tracing
for Isosurface Rendering. In IEEE Visualization, pages
233–238, October 1998.

[Parker99a] Steven Parker, Michael Parker, Yarden Livnat, Peter-
Pike Sloan, Chuck Hansen, and Peter Shirley. Interactive
Ray Tracing for Volume Visualization. IEEE Transac-
tions on Computer Graphics and Visualization, 5(3):238–
250, 1999.

[Parker99b] Steven Parker, Peter Shirley, Yarden Livnat, Charles
Hansen, and Peter-Pike Sloan. Interactive Ray Tracing.
In Proceedings of Interactive 3D Graphics, pages 119–126,
1999.

[Pharr04] Matt Pharr and Greg Humphreys. Physically Based Ren-
dering : From Theory to Implementation. Morgan Kauf-
man, 2004.

[Piegl97] Les Piegl and Wayne Tiller. The NURBS book, 2nd edi-
tion. Springer-Verlag, Inc., 1997.

[Purcell02] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray Tracing on Programmable Graphics
Hardware. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH), 21(3):703–712, 2002.

[Ramsey04] Shaun Ramsey, Kristin Potter, and Charles Hansen. Ray
Bilinear Patch Intersections. Journal of Graphics Tools,
9(3):41–47, 2004.

[Reinhard95] Erik Reinhard. Scheduling and Data Management for
Parallel Ray Tracing. PhD thesis, University of East An-
glia, 1995.

BIBLIOGRAPHY 191

[Reinhard97] Erik Reinhard and Frederik W. Jansen. Rendering Large
Scenes using Parallel Ray Tracing. Parallel Computing,
23(7):873–885, 1997.

[Reshetov05] Alexander Reshetov, Alexei Soupikov, and Jim Hurley.
Multi-Level Ray Tracing Algorithm. ACM Trans. Graph.,
24(3):1176–1185, 2005.

[Rubin80] Steve M. Rubin and Turner Whitted. A Three-
Dimensional Representation for Fast Rendering of Com-
plex Scenes. Computer Graphics, 14(3):110–116, July
1980.

[Samet89] Hanan Samet. Implementing Ray Tracing with Oc-
trees and Neighbor Finding. Computers and Graphics,
13(4):445–60, 1989.

[Schmittler02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saar-
COR – A Hardware Architecture for Ray Tracing. In
Proceedings of the ACM SIGGRAPH/Eurographics Con-
ference on Graphics Hardware, pages 27–36, 2002.

[Schmittler04] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J.
Paul, and Philipp Slusallek. Realtime Ray Tracing of
Dynamic Scenes on an FPGA Chip. In Proceedings of
Graphics Hardware, 2004.

[Shirley02] Peter Shirley. Fundamentals of Computer Graphics. A K
Peters, 2002.

[Shirley03] Peter Shirley and R. Keith Morley. Realistic Ray Tracing.
A K Peters, Second edition, 2003.

[Shoemake98] Ken Shoemake. Pluecker Coordinate Tutorial. Ray Trac-
ing News, 1998. http://www.acm.org/tog/resources/-
RTNews/html/rtnv11n1.html#art3.

[Simiakakis95] George Simiakakis. Accelerating Ray Tracing with Direc-
tional Subdivision and Parallel Processing. PhD thesis,
University of East Anglia, 1995.

[Smits98] Brian Smits. Efficiency Issues for Ray Tracing. Journal
of Graphics Tools, 3(2):1–14, 1998.

192 BIBLIOGRAPHY

[Stevens98] W. Richard Stevens. Unix Network Programming Vol-
ume 1. Prentice Hall, 1998.

[Subramanian90a] K. R. Subramanian. A Search Structure based on kd-
Trees for Efficient Ray Tracing. PhD thesis, University of
Texas at Austin, 1990.

[Subramanian90b] K. R. Subramanian and Donald S. Fussel. Factors Affect-
ing Performance of Ray Tracing Hierarchies. Technical
report, The University of Texas at Austin, 1990.

[Sung92] Kelvin Sung and Peter Shirley. Ray Tracing with the
BSP Tree. In David Kirk, editor, Graphics Gems III,
pages 271—274. Academic Press, 1992.

[Sweeney86] M. Sweeney and R. Bartels. Ray Tracing Free-Form B-
Spline Surfaces. IEEE Computer Graphics and Applica-
tions, 6(3):41–49, 1986.

[Toth85] Daniel L. Toth. On Ray Tracing Parametric Surfaces. In
Proceedings of ACM Siggraph, pages 171–179, New York,
NY, USA, 1985. ACM Press.

[Veach94] Eric Veach and Leonid Guibas. Bidirectional Estimators
for Light Transport. In Proceedings of the 5th Eurograph-
ics Workshop on Rendering, pages 147 – 161, 1994.

[Veach97] Eric Veach and Leonid Guibas. Metropolis Light Trans-
port. In Turner Whitted, editor, Proceedings of ACM
SIGGRAPH, pages 65–76, 1997.

[Wald01a] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Inter-
active Distributed Ray Tracing of Highly Complex Mod-
els. In Rendering Techniques, pages 274–285, 2001. (Pro-
ceedings of Eurographics Workshop on Rendering).

[Wald01b] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Inter-
active Distributed Ray Tracing of Highly Complex Mod-
els. In Steven J. Gortler and Karol Myszkowski, edi-
tors, Rendering Techniques, Proceedings of the 12th Eu-
rographics Workshop on Rendering Techniques, London,
UK, June 25-27, 2001, pages 274–285. Springer, 2001.

BIBLIOGRAPHY 193

[Wald01c] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive Rendering with Coherent
Ray Tracing. Computer Graphics Forum, 20(3):153–164,
2001. (Proceedings of Eurographics).

[Wald02a] Ingo Wald, Carsten Benthin, and Philipp Slusallek.
OpenRT - A Flexible and Scalable Rendering Engine
for Interactive 3D Graphics. Technical report, Saarland
University, 2002. Available at http://graphics.cs.uni-
sb.de/Publications.

[Wald02b] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander
Keller, and Philipp Slusal lek. Interactive Global Illu-
mination using Fast Ray Tracing. In Paul Debevec and
Simon Gibson, editors, Rendering Techniques 2002, pages
15–24, Pisa, Italy, June 2002. Eurographics Association,
Eurographics. (Proceedings of the 13th Eurographics
Workshop on Rendering).

[Wald03a] Ingo Wald, Carsten Benthin, Andreas Dietrich, and
Philipp Slusallek. Interactive Ray Tracing on Commodity
PC Clusters – State of the Art and Practical Applications.
In Harald Kosch, László Böszörményi, and Hermann Hell-
wagner, editors, Euro-Par, volume 2790 of Lecture Notes
in Computer Science, pages 499–508. Springer, 2003.

[Wald03b] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Dis-
tributed Interactive Ray Tracing of Dynamic Scenes.
In Proceedings of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics (PVG), 2003.

[Wald03c] Ingo Wald, Carsten Benthin, and Philipp Slusallek. In-
teractive Global Illumination in Complex and Highly Oc-
cluded Environments. In Per H Christensen and Daniel
Cohen-Or, editors, Proceedings of the 2003 Eurographics
Symposium on Rendering, pages 74–81, Leuven, Belgium,
2003.

[Wald03d] Ingo Wald, Carsten Benthin, and Philipp Slusallek. To-
wards Realtime Ray Tracing – Issues and Potential. Tech-
nical report, Saarland University, 2003.

194 BIBLIOGRAPHY

[Wald03e] Ingo Wald, Timothy J. Purcell, Jörg Schmittler, Carsten
Benthin, and Philipp Slusallek. Realtime Ray Tracing and
its Use for Interactive Global Illumination. In Eurograph-
ics State of the Art Reports, pages 85–122, 2003.

[Wald04] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004.

[Wald05] Ingo Wald, Carsten Benthin, Alexander Efremov, Tim
Dahmen, Johannes Guenther, Andreas Dietrich, Vlas-
timil Havran, Philipp Slusallek, and Hans-Peter Seidel. A
Ray Tracing based Framework for High-Quality Virtual
Reality in Industrial Design Applications. Technical Re-
port UUSCI-2005-009, SCI Institute, University of Utah,
2005.

[Wang01] S. Wang, Z. Shih, and R. Chang. An Efficient and Sta-
ble Ray Tracing Algorithm for Parametric Surfaces. 18th
Journal of Information Science and Engineering, pages
541–561, 2001.

[Whang95] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim,
W. S. Cho, C. M. Park, and I. Y. Song. Octree-R: An
Adaptive Octree for efficient Ray Tracing. IEEE Transac-
tions on Visualization and Computer Graphics, 1(4):343–
349, 1995.

[Whitted80] Turner Whitted. An Improved Illumination Model for
Shaded Display. CACM, 23(6):343–349, 1980.

[Woodward89] C. Woodward. Ray Tracing of Parametric Surfaces by
Subdivision in the Viewing Plane. Theory and Practice
of Geometric Modeling, 1989.

[Woop05] Sven Woop, Joerg Schmittler, and Philipp Slusallek.
RPU: A Programmable Ray Processing Unit for Realtime
Ray Tracing. Proceedings of ACM SIGGRAPH, 2005.

