
Transformations of
Specifications and Proofs

to Support an
Evolutionary Formal Software

Development

Axel Schairer

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen

Fakultäten der
Universität des Saarlandes

Saarbrücken, 2005

Veröffentlicht im Shaker Verlag, Aachen, 2006
www.shaker.de

Tag des Kolloquiums 21. 07. 2006

Dekan Prof. Dr.-Ing. Thorsten Herfet

Prüfungsausschuss:

Vorsitzender Prof. Dr. Gert Smolka

Akademischer Mitarbeiter Dr. Dieter Hutter

Gutachter Prof. Dr. Jörg H. Siekmann
Universität des Saarlandes

Prof. Dr. Bernd Krieg-Brückner
Universität Bremen

Dr. Alan Smaill
University of Edinburgh, Scotland, UK

Abstract

Like other software engineering activities, formal modelling needs to deal
with change: bugs and omissions need to be corrected, and changes from
the outside need to be dealt with. In the context of axiomatic specifications
and (partly) interactive proofs, the main obstacle is that changes invali-
date proofs, which then need to be rebuilt using an inhibitive amount of
resources.

This thesis proposes to solve the problem by considering the state of
a formal development consisting of (potentially buggy) specification and
(potentially partial) proofs as one entity and transforming it using pre-
conceived transformations. These transformations are operationally moti-
vated: how would one patch the proofs on paper given a consistent trans-
formation for the specification? They are formulated in terms of the spec-
ification and logic language, so as to be usable for several application do-
mains.

In order to make the approach compatible with the architecture of ex-
isting support systems, development graphs are added as an intermediate
concept between specification and proof obligations, and the transforma-
tions are extended to work in the presence of the indirection. This leads to
a separation of a framework for propagating transformations through de-
velopment graphs and a reference instantiation that commits to concrete
languages and proof representation. The reference instantiation works for
many practically relevant scenarios. Other instantiations can be based on
the framework.

iii

Zusammenfassung

Wie bei allen anderen Software Engineering-Aktivitäten muss es auch bei
der formalen Modellierung möglich sein, Änderungen vorzunehmen. So
können Modellierungsfehler korrigiert, Unvollständigkeiten ergänzt und
externe Änderungen in das Modell eingearbeitet werden. Für axiomatische
Spezifikationen und (zumindest teilweise) interaktive Beweise ist das größ-
te Hindernis dabei, dass Änderungen die Beweise ungültig machen. Diese
müssen dann erneut konstruiert werden, was einen unverantwortbar hohen
Einsatz von Ressourcen erfordert.

Diese Arbeit schlägt vor, dieses Problem dadurch zu lösen, dass eine
formale Entwicklung bestehend aus einer (möglicherweise fehlerhaften)
Spezifikation und (möglicherweise unvollständigen) Beweisen als eine Ein-
heit betrachtet und nach vorgegebenen Regeln transformiert wird. Diese
Regeln werden Transformationen genannt und sind operational motiviert:
Wie würde ein Mensch intuitiv die Beweise anpassen, wenn eine in sich
konsistente Transformation auf die Spezifikation angewendet wird? Die
Transformationen sind unabhängig von der Anwendungsdomäne anwend-
bar. Um den Ansatz mit dem Aufbau existierender Werkzeuge vereinbar zu
machen, führen wir ein zusätzliches Konzept als Mittler zwischen Spezifika-
tion und Beweisverpflichtungen ein, so genannte Development Graphs. Das
führt zu einer Trennung zwischen einem Rahmenwerk, das Transformatio-
nen über generische Development Graphs hinweg propagiert, und einer
Referenzinstantiierung, die sich auf konkrete Sprachen und eine konkrete
Repräsentation der Beweise festlegt. Die Referenzinstanz erlaubt die Be-
handlung von vielen in der Praxis vorkommenden Szenarien. Andere In-
stanzen können aus dem Rahmenwerk abgeleitet werden.

v

Ausführliche Zusammenfassung

Es wird heute allgemein akzeptiert, dass ein rein wasserfallartiger Software-
Entwicklungsprozess nicht angemessen ist. Wie bei allen anderen Software
Engineering-Aktivitäten auch muss es daher bei der formalen Modellierung
möglich sein, Änderungen vorzunehmen. So können Modellierungsfehler
korrigiert, Unvollständigkeiten verbessert und externe Änderungen in das
Modell eingearbeitet werden. Gerade das Entdecken und Eliminieren von
Fehlern in einem frühen Stadium ist einer der Hauptvorteile der formalen
Modellierung und Entwicklung.

Für axiomatische Spezifikationen und (zumindest teilweise) interaktive
Beweise ist das größte Hindernis dabei, dass Änderungen die vorher
konstruierten Beweise potentiell ungültig machen. Diese müssen dann
erneut konstruiert werden, was einen unverantwortbar hohen Einsatz von
Ressourcen erfordert. Gerade gegen Ende einer Entwicklung wird so das
Projektrisiko immer größer.

Diese Beobachtung beruht auf der Annahme, dass Änderungen an den
Spezifikationen zuerst unabhängig von den Beweisen durchgeführt wer-
den, und dass dann in einem zweiten Schritt die Beweise nachgeführt
oder neu konstruiert werden. Wir schlagen deswegen vor, dieses Problem
dadurch zu lösen, dass eine formale Entwicklung bestehend aus einer
(möglicherweise fehlerhaften) Spezifikation und (möglicherweise unvoll-
ständigen) Beweisen als eine Einheit betrachtet wird und nach vorgegebe-
nen Regeln transformiert wird. Diese Regeln werden Development Trans-
formations genannt und sind operational motiviert: Wie würde ein Mensch
intuitiv die Beweise anpassen, wenn eine in sich konsistente Transformation
auf die Spezifikation angewendet wird? Die Transformationen sind auf der
Ebene der Spezifikations- und Logiksprache formuliert. Damit werden sie
unabhängig von der Anwendungsdomäne anwendbar.

Um den Ansatz mit dem Aufbau existierender Werkzeuge, wie zum
Beispiel die in unserer Gruppe entwickelten Softwaretools VSE oder INKA/
MAYA, vereinbar zu machen, führen wir ein dort zusätzlich vorhandenes
Konzept als Mittler zwischen Spezifikation und Beweisverpflichtungen
ein, so genannte Development Graphs. Development Graphs dienen einer
logischen Strukturierung der Spezifikationen und der davon abgeleiteten
Beweisverpflichtungen. Die Transformationen werden so erweitert, dass
sie die zusätzlich eingeführten Development Graphs berücksichtigen. Das
führt zu einer Trennung zwischen einem Rahmenwerk, das die Transforma-
tionen über generische Development Graphs hinweg propagiert, und einer

vii

Referenzinstantiierung, die sich auf konkrete Sprachen und eine konkrete
Repräsentation der Beweise festlegt. Die Referenzinstanz erlaubt die Be-
handlung von vielen in der Praxis vorkommenden Szenarien. Andere In-
stanzen können aus dem Rahmenwerk abgeleitet werden.

Wir entwickeln eine konkrete Instanz des vorgestellten Rahmenwerkes.
In einer prototypischen Implementierung mechanisieren wir Transforma-
tionen der vorgestellten Instanz. So weisen wir nach, dass die vorgestellten
Konzepte praktisch anwendbar sind, und Korrekturen und Ergänzungen
der Spezifikation und der Beweise mit vertretbarem Aufwand möglich wer-
den.

viii

Acknowledgements

This thesis would not have been written without the help and support that
I received. In particular, I am indebted to Professor Jörg H. Siekmann who
let me be a member of his group in Saarbrücken and provided an inspiring
environment in which to work, and to Professor Alan Bundy who hosted
me as a visiting researcher in Edinburgh for a year. My work was sub-
stantially influenced by my stay in Edinburgh, and I am very grateful for
the funding of the German Academic Exchange Service (DAAD). I would
also like to thank Professor Bernd Krieg-Brückner and Dr. Alan Smaill for
agreeing to serve as my examiners and for the feedback and encourage-
ment that they provided.

I am particularly grateful for the support that my supervisor Dieter
Hutter has provided over all those years. He has always been available
to discuss ideas, provide feedback and offer advice whenever I needed
it. I would also like to thank Dieter for the time and energy he spent on
commenting numerous notes and drafts of this thesis. I guess he is at least
as happy as I am that this is the final iteration.

I would like to thank Till Mossakowski for invaluable discussions and
comments. In particular I am very grateful for the helpful feedback he
provided on numerous notes that would eventually become the frame-
work part of my thesis, and for his comments on the near-final version of
the relevant chapter.

My thanks are due to the members of our group at the DFKI in Saar-
brücken and the DReaM group in Edinburgh, both for input and for the
positive and encouraging atmosphere. In particular, Serge Autexier, Heiko
Mantel, Werner Stephan, Toby Walsh and Andreas Wolpers have provided
helpful discussions and valuable insights.

Perhaps the most important source of help over all those years, how-
ever, was the support that Julia and my parents provided. If it was not for
them, I would not be writing these words now.

This thesis was set in Palatino and Helvetica using LATEX, Makoto Tatsuta’s proof package

and Paul Taylor’s commutative diagrams package.

ix

Contents

Abstract . iii
Zusammenfassung . v
Ausführliche Zusammenfassung vii

Acknowledgements . ix

List of Figures . xv

I Introduction and Motivation 1

1 Introduction 3
1.1 Software Engineering . 3

1.1.1 Development Artifacts and Workflow 3
1.1.2 Software Development Process 4

1.2 Formal Methods . 6
1.2.1 Formal Artifacts . 7
1.2.2 Formal Methods and the Development Process 8

1.3 Management of Change . 10
1.3.1 Development Graphs 10
1.3.2 Proof Replay and Reuse 10

1.4 Our Approach . 12
1.5 Structure of the Thesis . 15

2 Example Scenarios and Supporting Transformations 17
2.1 Overview . 17
2.2 Example Scenarios . 17

2.2.1 Changes Resulting from Corrections 18
2.2.2 Changes as Part of the Development Process 20

2.3 Support by Transformations 23
2.3.1 Extending and Restricting the Signature 25
2.3.2 Changing Existing Signature Entries 27

xi

CONTENTS

2.3.3 Adding and Removing Axioms 28
2.3.4 Changing Formulae 29
2.3.5 Changing Induction Schemes 31
2.3.6 Completeness and Adequacy 33

2.4 Summary . 33

II Transformation Framework 35

3 Context and Overview over the Framework 37
3.1 Overview . 37
3.2 Abstract Logic: Institutions 39
3.3 Development Graphs . 41
3.4 Specification Language . 49
3.5 Proof Representation . 51
3.6 Formal Developments . 55
3.7 Integration with Existing Tools 57
3.8 Transformations . 58
3.9 Summary . 61

4 Development Graph Transformations 63
4.1 Overview . 63
4.2 Changing the Graph Structure 65

4.2.1 Adding and Deleting Nodes 65
4.2.2 Adding and Deleting Links 65

4.3 Changing the Content of Nodes or Links 67
4.3.1 Adding, Deleting, and Moving Axioms 72
4.3.2 Changing Axioms . 74
4.3.3 Extending and Restricting Signatures 79
4.3.4 Translating Development Graphs 87

4.4 Generic Construction of Translations 94
4.5 Relation to Basic DG-Operations 96
4.6 Summary . 97

III A Reference Instantiation 99

5 Formal Developments 101
5.1 Overview . 101
5.2 Concrete Logic . 101
5.3 Concrete Specification Language 106

xii

CONTENTS

5.3.1 Specification in the Small 106
5.3.2 Specification in the Large 108
5.3.3 Mapping to Development Graphs 110

5.4 Concrete Proof Representation 111
5.5 Summary . 117

6 Specification Transformations 119
6.1 Overview . 119
6.2 Adding and Deleting Elements 120

6.2.1 Theories . 120
6.2.2 Axioms . 121
6.2.3 Signature Items . 121
6.2.4 Uses and Satisfies Clauses 124

6.3 Changing Elements . 126
6.3.1 Signature Item Names 126
6.3.2 Function and Predicate Arities 128
6.3.3 Generatedness Constraints 132
6.3.4 Formula and Term Occurrences 134

6.4 Summary . 137

7 Proof Transformations 141
7.1 Overview . 141
7.2 General Pattern of Proof Transformations 142
7.3 Adding and Deleting Assumptions 143
7.4 Mapping Proofs . 146
7.5 Restricting the Signature . 146
7.6 Translating Proofs . 146
7.7 Changing Occurrences . 148

7.7.1 Replacing Occurrences 149
7.7.2 Special Cases . 162
7.7.3 Induction Schemata 164

7.8 Auxiliary Transformations . 166
7.9 Summary . 168

8 Mechanising Transformations 169
8.1 Overview . 169
8.2 Original Specification . 169
8.3 Missing Axioms . 174
8.4 Missing Theory . 177
8.5 Missing Slot . 180
8.6 Missing Action . 182

xiii

CONTENTS

8.7 Stronger Precondition . 184
8.8 Summary . 194

IV Related Work and Conclusions 197

9 Related Work 199
9.1 Management of Change . 199
9.2 Proof Reuse and Replay . 200
9.3 Correctness-Preserving Transformations 201
9.4 Advanced Programming IDEs 203
9.5 Requirements Traceability . 205

10 Conclusions and Outlook 207
10.1 Conclusions . 207
10.2 Further Work . 209

References 213

Index 225

V Appendix 229

A Category, Functor, Natural Transformation 231

B Functors Lifted to Sets and Tuples 233

C Details of the Definition of FolEqGen 237

D Details of the Case Study 241
D.1 Development Trace . 241
D.2 Developments . 241
D.3 Transformations . 247
D.4 Original Specification Text . 247

xiv

List of Figures

1.1 Development artifacts and workflow 4
1.2 Waterfall-like process . 5
1.3 Iterative process . 5
1.4 Relationship between specification and proofs 8
1.5 Feedback from proofs to specification 9
1.6 Changes to specification triggered elsewhere 9
1.7 Traditional approach: edit and reuse 13
1.8 Proposed new approach: transformation 13

2.1 Example set of basic transformations 26

3.1 Visualisation of the state of a formal development 38
3.2 Example development graph 43
3.3 Development graph calculus example 47
3.4 Commuting diagrams for η and concl 54
3.5 Development well-formedness 56
3.6 Development transformation 57
3.7 Layers of development transformation 59

4.1 Induced transformations . 64
4.2 Respecting morphisms . 69
4.3 Moving axioms . 73
4.4 Signature adjustment respects the morphisms 81
4.5 Moving signature symbols from one node to another one . . 82
4.6 Signature adjustment: sentence functor 83
4.7 Signature adjustment: sketch of inherited axioms 84
4.8 Translation of global axioms 91
4.9 Extended proof representation conditions 92
4.10 Definition of translations . 95
4.11 Uniqueness of definition of translations 96
4.12 Development graph transformations 98

xv

LIST OF FIGURES

5.1 Logic language abstract syntax 105
5.2 Specification language abstract syntax 107
5.3 Proof calculus rules . 115

6.1 Adding links . 125
6.2 Realization of adding links . 125
6.3 Renaming signature items . 128
6.4 Development graph translation for adding arguments 132
6.5 Specification transformations 139
6.6 Dependency between concrete transformations 140

7.1 Sentence replacement for context and focus 157

8.1 Initial development graph . 172
8.2 Initial proof . 173
8.3 Proof with completed subproof for b-1 176
8.4 Development graph with boolean 178
8.5 Development graph with added link 179
8.6 Proof with crash action . 183
8.7 Proof with weakened property 186
8.8 Part of the original proof for (a) 187
8.9 Part of the new proof for (a) 189

D.1 History of example . 242
D.2 Development graph . 243
D.3 Contents of nodes . 244
D.4 Proof tree . 245
D.5 Proof obligation . 246
D.6 Goal with missing axioms . 248
D.7 Goal with added axioms . 249
D.8 Goal with strengthened preconditions 250

xvi

Part I

Introduction and Motivation

1

Chapter 1

Introduction

1.1 Software Engineering

Software engineering is concerned with developing software systems that
satisfy customers’ needs and expectations. The crucial technical questions
are what needs to be built and how it can be constructed in a goal-directed
way. The things that are constructed are usually called development ar-
tifacts (or deliverables, if they are handed to or discussed with the cus-
tomer). Which artifacts are derived from others and how is captured in
the workflow, and the distribution of the activities over time is called the
development process.

1.1.1 Development Artifacts and Workflow

Complex and mission-critical systems should almost always be developed
in a top-down fashion: requirements are gathered and the system is built
such that it meets these requirements. This involves core development ac-
tivities, e.g. requirements analysis, design, implementation, or integration
[Som95], [Bal00]. These activities produce documents that are related: the
design should meet the requirements, for instance, and the implementa-
tion should implement the design. In a top-down approach, development
activities produce more concrete artifacts from more abstract ones along
these relationships: the design activity, e.g., derives a design document
from the requirements document. This is called workflow and is illus-
trated for a very coarse-grained set of artifacts and workflow activities in
Figure 1.1.

In addition to the workflow activities, there are also validation and
verification activities. These are concerned with whether the artifacts are

3

Chapter 1. Introduction

Specification

DesignRequirements

Specification
Implementation

ImplementationDesign

... ...

Figure 1.1: Development artifacts and workflow

internally consistent and the relationships between them are as required.
For example, design reviews ensure that the design document is consistent
and satisfies the requirements; unit tests ensure that the implementation
of a component does what the design document says it should do.

1.1.2 Software Development Process

Given a fixed workflow, a development process describes or legislates how
the different activities are spread over time. The simplest possibility is a
waterfall-like process (cf. [Roy70]), where each artifact is completed and
frozen before a more concrete document is derived from it. Thus, work-
flow activities correspond to distinct phases in the process. Another pos-
sibility is to proceed in iterations (or spirals, cf. [Boe88]) and produce new
versions of the artifacts in each iteration. These two possibilities are ex-
tremes, and intermediate possibilities exist. Figures 1.2 and 1.3 illustrate
a waterfall-like and an iterative process. Criteria to choose between these
possibilities include process visibility, the level of goal-directedness that
can be achieved, and the necessary development resources. These are, of
course, dependent on assumptions about the system to be built and the
stakeholders in the project.

As far as resources are concerned, a waterfall-like process assumes that
it is possible to cast, e.g., the design in stone before the implementation
work has started. This means that each artifact is built only once, and no
duplicate work is spent on updates further down the workflow line: the
downstream artifacts do not exist yet. The perceived problem with the
waterfall process is that it does not work very well in practice: experience
shows that downstream activities are going to reveal errors in earlier arti-
facts no matter what, at a time when no resources are left for fixing them.
This results in an inacceptably high risk for the project.

An iterative process, on the other hand, assumes that the design is un-
likely to be correct without insights resulting from implementation activ-
ities. Thus, starting implementation work before the design is complete
is considered preferable to completing a misguided design first. The per-
ceived problem with the iterative process is that constantly revising arti-

4

1.1. Software Engineering

Design

Implementation

Time

Requirements
Specification

Design
Specification

Implementation

Figure 1.2: Waterfall-like process

Time

Implementation

Design Design

Design
Specification

Requirements
Specification

Implementation

Figure 1.3: Iterative process

5

Chapter 1. Introduction

facts and updating all downstream artifacts accordingly simply costs too
much.

Almost all current processes strive for an iterative, or evolutionary, pro-
cess, cf. [Boe88], [JBR99], [Bec00], [LKB02]. This means that the workflow
and validation and verification activities need to address the incremen-
tal nature of the process: they need to make use of the respective artifact
from the previous iteration, because it would be too expensive to pro-
duce all artifacts from scratch in each iteration. There is a whole wave
of proposed development strategies that promise to make changes cheap
[McC96], [Bec00], [Hig02], [Lar04]. These are called agile processes. As
usual, cautiousness is required with the extreme positions and the bene-
fits that the proponents claim for their favourite ideology; as an example
compare the Extreme Programming literature, e.g. [Bec00], with a critical
view, e.g. [SR03].

Even though, it is generally accepted today that a pure waterfall model
is inadequate, and that it is an important goal to make making changes
cheaper so as to enable an iterative, evolutionary process.

1.2 Formal Methods

Formal methods can be used throughout the whole development to im-
prove the quality of the artifacts and the final product. For example, the
requirements document and the design document can both contain a for-
mal model of the system to be built on different levels of detail and ab-
straction. Because of the formal syntax and semantics, the meaning of the
models is unambiguous. It is thus possible to analyse with mathematical
rigour, whether the design satisfies the requirements. Similarly, it is possi-
ble to analyse with mathematical rigour whether each model is complete
and internally consistent. This provides a way to introduce objectivity and
rigour into an otherwise subjective and informal review process.

Experience shows that whenever informal documents are formalised
and scrutinised rigorously, unexpected errors and omissions show up.
The main benefit of formality, therefore, is not primarily that a specifi-
cation is provably correct – as is often claimed. Rather the main benefit
is that errors, omissions, and misconceptions, which would otherwise go
undetected, are found as early as possible. It is argued, therefore, that the
biggest benefit of using formal methods is on the abstract development
levels, where no executable code exists that could be tested [Rus01].

6

1.2. Formal Methods

1.2.1 Formal Artifacts

In a formal setting, the specific formal artifacts are formal specifications
(sometimes also called models) and formal, mechanised proofs.

A formal specification captures, in a formal language, relevant aspects
of the system and its relevant properties. A formal specification can con-
tain, e.g., a formalisation of the requirements, a formalisation of the de-
sign, and a formal statement of the postulate that the design satisfies the
requirements. This example of a formal specification is relevant for the
design activity: the postulated property ensures that the relationship be-
tween requirements and design is as intended. Similarly, on another level
of abstraction, a formal specification models design and programs and
postulates that the implementation satisfies the design. These postulates
link two different informal artifacts. One specification thus typically con-
sist of parts that are associated with different informal artifacts. Addi-
tionally, specifications also contain formal postulates that correspond to
properties of a single informal artifact, e.g. its internal consistency, or the
claim that some aspects are consequences of others. Examples for the latter
are security models, which describe the requirements that should be met
by the design in terms of security functions that are expected to enforce a
certain property, which cannot be implemented directly.

Given a specification, postulated properties give rise to proof obligations:
the resulting proof obligations are sufficient conditions for the postulated
properties to hold. They are derived mechanically from the specification
and are formulated in a logical language. They propose that a certain con-
clusion follows logically from assumptions, where the notion of logical
entailment is formally captured by the logic.

Formal proofs are objects that represent evidence for such a proposi-
tion. Partial proofs are proofs that have “holes” representing open goals
still to be proven. These holes need to be closed before the proof is com-
plete. While working on a development, many proofs are partial proofs.
The failure to find a proof for a proof obligation often means that the obli-
gation is mistaken, pointing to a problem in the model or property state-
ments of the specification. The relationship between specifications and
proofs is illustrated in Figure 1.4.

Tool support for this approach is available and is used by now in an in-
dustrial setting for developments that are mission-critical, e.g. [SRS+00],
[SRS+02]. Users of a support tool like, e.g., the Verification Support Envi-
ronment (VSE, [AHL+00]) enter structured specifications with models and
properties. They let the system generate proof obligations and then use the
reasoning subsystem of the tool to discharge the proof obligations by con-

7

Chapter 1. Introduction

Generate proof
obligations

Construct proofs
(partly interactive)

Specification Obligations Proofs

Figure 1.4: Relationship between specification and proofs

structing formal proofs. Experience shows that, despite of the heuristics
used, finding proofs cannot be fully automated and requires a significant
amount of user interaction.

1.2.2 Formal Methods and the Development Process

The choice of a development process has, of course, consequences on how
formal methods fit into the development as a whole. For a waterfall-like
process, it is important to get early, abstract artifacts right because the ear-
lier an error is introduced the more expensive it is to correct later. In this
situation, formal specifications and proofs are used to “debug” the arti-
facts [BN04]. The consequence is that formal specification and proof work
are necessarily evolutionary in nature: they are more like a formal reflec-
tion about the current state of the development in progress, rather than
a way to prove facts that were already evident beforehand. Whenever a
problem is detected, i.e. a proof cannot be constructed as expected, the
specification is changed accordingly. This leads to changed proof obliga-
tions, which in turn invalidate the respective proof. This is illustrated in
Figure 1.5.

For an iterative process, the formal specification changes with each it-
eration anyway. These changes may either be the outcome of a formal
activity, e.g. a bug is detected when a proof fails (cf. Figure 1.5), or may
be due to other forces (cf. Figure 1.6), e.g. changed requirements due to
a changing business context or additional functionality that is introduced
within the current iteration.

In any case, the consequence is that specifications and their associated
proof obligations necessarily change frequently in a formal development
process. It is, therefore, not acceptable to construct proofs from scratch
each time the proof obligation changes. The cost and the project risk asso-
ciated with these changes would be too high. This is independent of the
chosen process and the current phase or workflow activity.

8

1.2. Formal Methods

Generate proof
obligations

Construct proofs
(partly interactive)

Revise specification

Specification

Obligations

Proofs

Figure 1.5: Feedback from proofs to specification

Generate proof
obligations

Construct proofs
(partly interactive)

Specification

Obligations

Proofs

Generate proof
obligations

Construct proofs
(partly interactive)

Specification

Obligations

Proofs

Edit Specification

Figure 1.6: Changes to specification triggered elsewhere

9

Chapter 1. Introduction

1.3 Management of Change

Management of change is the name used for concepts and techniques that
aim at reducing the cost of changes to formal specifications. The idea
invariably is to make sure that constructing the proofs as illustrated in
Figures 1.5 and 1.6 does not start from scratch but rather reuses the old
versions of the proofs. There are two main ideas that have been followed
in the existing literature. If an obligation is not changed (or is changed
in a way that is transparent to the associated proof) the proof can be kept.
Another idea is to derive the new proofs from information that is available
in – or about – the old proofs.

1.3.1 Development Graphs

Development graphs [Hut00] have been introduced to exploit the structure
of a formal specification to minimise the effect of changes. Like any other
description of a software system, formal specifications present the system
in a structured way. They divide the system description into modules that
are connected by explicit interfaces. Since the presentation is formal, the
dependency of modules on other modules can be extracted and encoded
in a development graph. In the graph, nodes correspond to modules and
links represent different kinds of dependency relationships.

Proof obligations are now computed indirectly from the development
graph rather than directly from the specification. Each proof obligation is
rooted at a link. This provides a notion of locality: changes to the graph
only affect those proof obligations that are reachable from the changed
part of the graph. Proofs associated to links that are unreachable can be de-
termined as still valid by reasoning about the structure of the graph with-
out considering the contents of the modules at all, cf. [AHMS00], [MAH01],
[AH02], [MHAH04]. This is implemented in the MAYA system [AHMS99],
[AHMS02] and the idea is also used in the correctness management of the
VSE system [AHL+00]. The approach makes a huge difference and is in-
dispensable in practice for realistically sized developments. However, it
still invalidates those proofs that are reachable, whether they are essen-
tially affected or not.

1.3.2 Proof Replay and Reuse

Another idea is to use the old version of proofs to construct a new proof
when the proof obligation has changed.

10

1.3. Management of Change

After a proof has been constructed in a theorem prover, using inter-
action by the user and proof automation, there is knowledge about the
proof itself and about how it was found. The latter may consist of, say,
a proof script that reproduces the proof when it is run by the theorem
prover on the original proof obligation: it simulates the choices and in-
puts of the user. The former might be a proof object that represents the
detailed proof rules that were applied, in which case the proof can be in-
spected and checked easily. Not all systems represent or store both kinds
of information, though. Also, the distinction between the two kinds of in-
formation is not so clear as may seem at first: a proof object can be seen as
a very detailed proof script that eliminates most or all search; and a proof
script can be seen as a way to externalise the proof object (e.g. to store it
on disk).

When a proof obligation associated with a proof has changed, the proof
script can be rerun on the changed obligation. The hope is that the script
represents the essence of the proof that still works for the new proof obli-
gation, and therefore a proof for the new obligation will be produced. Usu-
ally, the script needs to be adapted before it can be replayed. Depending
on how detailed the proof script is, this is called proof reuse or proof re-
play. In special cases, heuristics are available to reuse and partly adapt an
old proof to the new proof obligation. In essence, these heuristics redo
the search that was done by the proof automation in the original proof
and try to adapt the user’s previous inputs where possible [RS93], [FH94],
[KW94], [Kol97], [MW97], [Sch98], [MS98], [BK04].

While these methods for heuristic replay are an important help where
applicable, they face the problem that changes can have a dramatic effect
on the search space. It turns out that they are not appropriate as a gen-
eral tool for the organised adaption of proofs in the context of the formal
software development. For example it is a well-known fact that adding ax-
ioms – i.e. changing the theory monotonically – changes the search space
so that proof scripts often fail to reprove the unchanged conjecture, al-
though clearly the proof which the script found in the first place is not
invalidated by an additional assumption. An example was discussed on
the Isabelle mailing list.

“The automatic proof of Cantor’s theorem is very fragile, since
it has to construct the diagonal set by unification. When you
replace the type ’a by nat, you greatly increase the search space,
since there are many rules that specifically apply to the type of
natural numbers.” [Pau00]

This is a problem of redoing too much search when replaying the script.

11

Chapter 1. Introduction

An idea for fixing this is to tighten the control of the replay by representing
more details. But this also has its problems:

“Isabelle does not (unlike, say, PVS) let you refer to assump-
tions by number. That leads to brittle proofs that cannot be
re-played if you make minor changes.” [Pau00]

The result is that in practice after changes, proof scripts are often patched,
or other proof representations are adapted, manually and ad hoc. What
is desperately needed is support for the organised adaption of proofs that
can be used as a matter of routine and that is aware of the type of change
being made, in order to avoid time-consuming manual, ad-hoc patch-
ing. Our suggestion is to use transformations on whole developments,
i.e. transform specification and proofs as one entity.

1.4 Our Approach

In current support systems, changes to a formal development are carried
out by editing the formal artifacts, e.g., in a text editor. The support sys-
tem then computes new proof obligations. In a second, decoupled step,
the proofs have to be adapted. This is in contrast to how changes to a de-
velopment are discussed informally on a blackboard, where changes to a
specification are considered together with the effects of these changes to
the property of the system and their proofs: adding a new state transition
is going to add another case to case distinctions over the possible transi-
tions. Only that new case is considered.

Therefore, we propose to view the state of a development as one en-
tity consisting of a specification and the proofs. This means that proofs
are an integral part of the formal development artifacts, rather than being
conceptionally separated as in traditional approaches. Instead of editing
the specification and adapting the proofs in a second step (cf. Figure 1.7),
we propose to change the entire development using preconceived formal
transformations that map a development consisting of specification and
proofs to a new development (cf. Fig. 1.8).

Because such a transformation knows what change is carried out on
the level of the formal specifications, it can determine what needs to be
changed on the level of proofs. Thus, proofs will be patched as necessary.
Of course, in general this will introduce holes in the proofs that need to be
looked at afterwards. However, large parts of the old proof can be reused.

Over time, the evolution of the formal artifacts is a sequence of devel-
opments where each of the developments results from applying a trans-

12

1.4. Our Approach

Specification

Obligations

Proofs

Specification

Obligations

Proofs

Transformation

proof obligations
Generate

Specification

Obligations

Proofs

proof obligations
Generate

Proofs

Obligations

Specification
Edit

?

?

Figure 1.7: Traditional approach: edit and reuse

Specification

Obligations

Proofs

Specification

Obligations

Proofs

Transformation

Figure 1.8: Proposed new approach: transformation

13

Chapter 1. Introduction

formation to the preceding development. Each of these developments is a
self-contained entity without reference to the one it resulted from. There-
fore, the history is not needed to determine the meaning of a development.
Similarly, the development alone includes all the information needed to
determine whether all proof obligations have an associated proof that is
complete. The proposed approach is compatible with the architecture and
methodology of existing support tools. In particular, it integrates well
with development graphs, and it is completely orthogonal to any exist-
ing proof replay or reuse. This means that transformations can be used in
addition to any other existing methods for manipulating formal artefacts
that are provided by a tool.

Each development transformation rule, or simply development trans-
formation, is a binary relation over well-formed developments. If two de-
velopments are in relation, we also say that the first development can be
mapped to the second one by the transformation. In practice, we are in-
terested in the special case of partial functions. In particular this means
that each development transformation has to map a specification from its
domain to another specification, and it has to map (partial) proofs for the
old specification to (partial) proofs for the new specification. This has sev-
eral consequences. On the one hand, for each change to the specification,
proofs are adapted automatically as far as possible by the respective de-
velopment transformation. In order to be able to adapt proofs usefully,
development transformations need to use information about the relation-
ship between the old and new specification. Also, it is unreasonable to
expect useful adaption of proofs of arbitrary changes to the specification.
Thus, useful transformations have to restrict the ways in which specifica-
tions can be changed compared to what is possible when freely editing
specification text. On the other hand, each change a user wants to make
to the specification needs to be supported by a development transforma-
tion, unless adequate support is provided already by existing techniques
of course. Therefore, it is essential to find an adequate set of transforma-
tions that is restricted enough to enable useful patching of proofs and that
is powerful enough to enable users to carry out the changes they want to
make. These are conflicting interests which need to be balanced against
each other.

Our proposed solution to this conflict is to provide a set of transfor-
mations that correspond to elementary changes of the specification. In the
context of the axiomatic specification of abstract datatypes (ADTs), such
elementary changes are, e.g., adding or removing theories from a speci-
fication, adding and removing axioms, replacing subformula occurrences
in an axiom of a theory by another formula, or changing the signature of

14

1.5. Structure of the Thesis

a theory by making a binary predicate ternary, i.e. adding an additional
type to the arity of the predicate.

The proposed set is complete in the sense that for each well-formed de-
velopment dev = (S, P) and for each well-formed specification S′, there is
a development dev′ = (S′ , P′) that results from dev by applying exclusively
development transformations from the set. In order for the set of transfor-
mations to be adequate, we need to provide evidence that for practically
relevant transformations from dev to dev′, closing the resulting proofs P′ is
less time-consuming than following the traditional approach. We will do
this by revisiting example scenarios that are the motivation for our work
and discussing the treatment of these examples with the set of transforma-
tions.

1.5 Structure of the Thesis

The rest of this thesis is structured as follows. Chapter 2 describes exam-
ple scenarios that are representative for the kinds of changes appearing in
practice and motivates the use of transformations to support the changes.
Our approach is then developed in detail in Part II and III.

Part II describes an abstract formulation of the ideas as a framework
that is to a large extent independent of the concrete specification language
and proof formalism. Chapter 3 describes abstractions of specification lan-
guage, development graphs, logic, and proof calculus. This forms the ba-
sis for a detailed description of development graph transformations to-
gether with their interfaces to abstract specification and proof transforma-
tions in Chapter 4.

In Part III, we describe the details of an instance of the framework for a
concrete choice of specification language and proof representation, which
is described in Chapter 5. Using this instantiation, Chapter 6 works out
specification transformations and associates them with the resulting trans-
formations to proof obligations. This is afforded through the development
graph transformations that have been described in Part II. Chapter 7 then
provides the proof transformations that are needed to propagate the spec-
ification transformations to the proofs. Finally, Chapter 8 revisits the sce-
narios for which our approach has been developed. It presents example
transformations in the context of a small case study and shows how these
transformations are successfully applied in the context of a concrete spec-
ification and proofs.

Part IV concludes the thesis, discussing related work, our contribu-
tions, and questions that provide the starting point for further work.

15

Chapter 2

Example Scenarios and
Supporting Transformations

2.1 Overview

Many formal developments for industrial projects and academic case stud-
ies have been carried out by our group over the years: published exam-
ples include [RSW+99], [LUV00], [MG00], [RSB00], [SRS+00], [MSK+01],
[SRS+02], and [Sch03]. These cover different application domains like,
e.g., robot controllers, chip cards for digital signatures, operating systems,
or multi-agent systems. Different specification formalisms and languages,
and different proof calculi and representations were used. In all of them
we had to deal with changing specifications and the need to adjust the
proofs.

In this chapter, we first present examples that are representative for the
kinds of changes that occurred regularly and frequently. The examples
are presented in the form of brief scenarios. Then, we show how these
types of changes are supported by transformations in the approach that
we propose in this thesis.

2.2 Example Scenarios

We distinguish two types of changes based on whether they represent cor-
rective actions or whether they are anticipated as part of the development
activity. Section 2.2.1 shows examples of changes that are due to errors that
were noticed when proofs failed. Section 2.2.2 contains examples where
the development methodology itself presupposes changes to the specifica-
tion. The classification is independent of whether the overall development

17

Chapter 2. Example Scenarios and Supporting Transformations

process is waterfall-like or iterative.

2.2.1 Changes Resulting from Corrections

Invariants for State Transition Systems. The first example is an ex-
plicit specification of a state transition system. We specify states and pos-
sible state transitions as predicates on prior and resulting states. This in-
duces a definition of possible system traces, i.e. of a set of all those se-
quences of states that describe a possible execution of the system with the
given state transitions. Postulated properties are formulated as invariant
properties: each state in each system trace is required to satisfy a predicate.
Detailed examples can be found, e.g., in [MG00], [SRS+00].

In the specification, state transitions are divided into classes that can
be specified uniformly. For a specification of a file system, we specify state
transitions that correspond to creating, reading, writing, and removing
files. The pre- and postconditions of, e.g., all write-transitions are specified
together: the concrete data to be written and the file to write to are par-
ameters of the definition. The other transitions are specified similarly. A
straightforward proof of an invariant now proceeds by an induction over
the length of the sequence and a case distinction over the different classes
of possible transitions for the step case. There is one subproof correspond-
ing to the case for the create-transitions, one for the read-transitions and
so on. Each of these subproofs establishes that the invariant property is
in fact invariant over transitions from the respective class, where the par-
ameters are universally closed over.

After finishing the subproofs for the create- and read-transformations,
we discover that we cannot finish the subproof for the write-transition be-
cause of an error in the specification of the transition relation. We therefore
change the post-condition to correct the error and reconsider the subproof
for the write-transition. Informally, we argue that changing the pre- or
postcondition of one class of transitions, e.g. the write-transitions, only
has an effect on the subproof for this very transition class, but not on the
other subproofs. In other words, we know in advance which parts of a
proof are possibly invalidated by the change. Even more importantly, we
know that the rest of the proof is still valid.

Similar effects can be seen by looking at typical forms of the invari-
ants: quite frequently, an invariant property is a conjunction of several
predicates on states. Each of these conjuncts is established separately and
results in a subproof for the respective conjunct. A subproof can refer to
the complete induction hypothesis, i.e. to an assumption corresponding to

18

2.2. Example Scenarios

each of the conjuncts. In general, this is needed. In practice, only some
of the assumptions are used in each subproof, however. A change to one
conjunct in the invariant property invalidates the subproof for the respec-
tive conjunct, and it also potentially invalidates all the other subproofs,
because the induction hypothesis changes as well. Subproofs that do not
refer to the hypothesis for the changed conjunct are still valid, however.
And even those subproofs that do refer to the changed hypothesis are not
necessarily invalidated as a whole; depending on how and where in the
proof the hypothesis is used, we expect some part of the subproof to be
still valid. In this case, however, we do not know in advance, which part
of the proof can be kept, but we expect to be able in principle to find out
by inspecting the proof in detail.

In the course of the development, sometimes an invariant turns out to
be too weak, and an additional conjunct is added. This adds a case, and
thus a new subproof, to the proof. It also enlarges the set of available as-
sumptions in subproofs, because the conjunct is also added to the induc-
tion hypothesis. Similarly, removing a conjunct (because we discovered
that the invariant is actually too strong) removes one case and the cor-
responding subproof, but also retracts assumptions from other branches
of the proof that are no longer available. Some branches do not use the
respective part of the induction hypothesis, and therefore we expect sub-
stantial parts of the proof still to be valid.

High-level Specification and Consistency Meta-Proofs. In [LUV00], a
generic chip card for digital signatures was specified as a reference model
for a standardisation effort. Many proofs were constructed to the effect
that the properties claimed by the standardisation document were actually
met by an abstract state machine described also in the document.

As one issue with the adequateness of the specification, the consistency
of the model was analysed: if it was possible to construct a refinement
that is executable, the specification would be known to be consistent. In
the course of providing an executable model however, it was found that
a part of the specification could not be implemented: some cryptographic
functions were over-constrained, rendering the specification in fact incon-
sistent. However, only a consistent subset of the constraints was needed
for the proof that dealt with the primitives. All other proofs simply ig-
nored the specification of these primitives.

In the given situation, the axiomatisation of the cryptographic primi-
tives was weakened, and a lemma was proven so that it matched the sub-
set that the existing proof used. Finally, the weaker cryptographic primi-

19

Chapter 2. Example Scenarios and Supporting Transformations

tives were refined to complete the model.

None of this was actually problematic or interesting in any sense; these
were tedious technical changes that affected details in large portions of
the proofs, however. The only interesting point was that the new axioms
implied the lemma that was used in the original proofs. Nevertheless, the
effort required for fixing this was considerable, since many of the proofs
had to be patched ad hoc.

2.2.2 Changes as Part of the Development Process

Information Flow Proofs by Unwinding. Some of the developments,
e.g. [SRS+00], [MSK+01], [SRS+02], and [Sch03], dealt with the verifica-
tion of information flow properties [Man03], [MS05]. Simplified, an infor-
mation flow property is a closure property of sets of execution traces of
state-transition systems. Such properties are usually not proven directly;
rather a technique called unwinding is used. Using an unwinding theorem,
the closure property is reduced to conceptionally simpler properties over
single state transitions from one state to another one. These properties are
called unwinding conditions, and examples are given in [Man00], [Man03].
Their exact form does not matter much for our purposes.

However, all of those conditions involve binary relations over states,
called unwinding relations. A helpful, but only partially correct, intuition
for these relations is that they relate a state to other states from which ob-
servers can extract no more information than they can in the original state.
For each possible abstract observer, a different relation is needed. An un-
winding theorem essentially says: if there exists binary relations such that
the unwinding conditions are satisfied, then the information flow property
holds.

The main problem here is that of finding unwinding relations for each
observer, so that the unwinding conditions can be verified. It turns out
that the intuition does not suffice to guess appropriate relations, so a trial-
and-error approach is chosen. As is reported in [SRS+00], [Sch03], most ef-
fort is actually spent in trying to find proofs for the unwinding conditions
and change the unwinding relations whenever a goal cannot be closed
with the current guess. Since the relation appears in assumptions and in
conjectures, it is not clear in advance whether a stronger or a weaker def-
inition is better. A typical way to start is to define, for each observer, the
relation to be the equality relation and then adjust it when necessary.

After a couple of iterations, the definition of the relation spans a page
of specification text and more, and is by case distinctions over character-

20

2.2. Example Scenarios

istics of the state [HMSS05]. Each of the cases is again a complex formula.
In the process of working out a viable relation, cases are added or existing
ones changed. Again, when we change one of the cases, we expect the sub-
proofs that we have completed so far using another case of the definition
to be unaffected.

Usually, not only do we need to modify the definition of the unwinding
relation, but we also find omissions and errors in the specification of the
transition relation similar to the discussion of the invariant proofs in the
preceding section.

Modelling Fault-Tolerant Systems. As the last example scenario we
consider the case study [MG00] on modelling reliable broadcast using the
technique of fault models described in [Gär99]. We will describe this exam-
ple in more detail than the other example scenarios because we shall use
it as the basis for giving the overview of our approach in Section 2.3. The
presentation follows our simplified reconstruction [SH02] of the original
case study.

The scenario consists of two steps: first a system is modelled without
reference to the faults it is supposed to be tolerant of. Then the system
specification is adjusted to account for the possible fault, taking advantage
of the insights gained from the first model.

In the first step, a network of processes running concurrently is for-
malised and verified. Processes, connected by directed channels, run a
local non-deterministic program to deal with arriving messages and to
resend them. It is verified that only messages that have been broadcast
to the network are delivered to processes, and that they are delivered to
each process at most once. The system model is that of a state transition
system described by an initial state and possible state transitions that the
processes can take, called actions. The state transition system is explicitly
specified using axiomatic specifications of abstract datatypes.

The required property of the network is specified as a property of states:
a state s is safe iff only messages that were actually broadcast are delivered
to any process p, and if no message delivered to any process p is delivered
more than once. This is expressed by

∀s : State. safety(s) ⇔ (2.1)
{

(∀p : Proc. p ∈ procs(s) ⇒ delivered(p, s) ⊆ broadcast(s))
∧ (∀p : Proc. p ∈ procs(s) ⇒ nodups(delivered(p, s))) .

All states that can be reached from the initial state are postulated to have

21

Chapter 2. Example Scenarios and Supporting Transformations

this property, so the proof obligation roughly reads

∀tr : Trace. admissible(tr) ⇒ safety(res(tr)) , (2.2)

where admissible(tr) is true iff tr is a possible system behaviour, and res(tr)
is the resulting state after the actions in tr have been taken, i.e. each admis-
sible sequence of states ends in a state satisfying the property. The proof
is by induction over the length of traces. In the step case, the proof is split
by a case distinction over possible actions, and for each action it is shown
that it conserves the safety property.

In the second step, fault assumptions are added to the specification:
processes are no longer assumed to work reliably, rather each process
can either be up (i.e. still be running) or down (i.e. have crashed). This
is done by adding parts to the specification related to the added “func-
tionality,” but it also involves changing parts of the existing specification,
cf. [MG00, Sect. 4.1]. In particular, the representation of processes in the
state is changed to hold additional information about whether the respec-
tive process is up or down, and a predicate isup is defined so that isup(p)
holds iff the process p is up. Also, an additional crash action is added. It
can be executed by running processes, and its effect is to crash the process.
All other actions are restricted to be executable by running processes only,
thereby strengthening the preconditions of the actions. Obviously, after
these changes the safety property given by (2.2) and (2.1) does no longer
hold and the verification proofs are no longer valid.

According to the methodology adopted by [Gär99], the property is re-
placed by a weaker property: in (2.1),

delivered(p, s) ⊆ broadcast(s)

is weakened to

isup(p) ⇒ delivered(p, s) ⊆ broadcast(s))

and similarly for the other conjunct. As a consequence of these changes,
the proof for (2.2) now has an additional case for the crash action. Also,
it remains to be shown that the weaker safety property is sufficient for
the induction to go through in the cases for all other actions. Since the
induction hypothesis is weakened, too, this is not completely obvious. The
additional case to prove is, however, that a process was up before an action
when it is up after the action, and this turns out to be provable rather
easily. It still has to be addressed in each subproof. The proof idea and the
overall structure of the proofs are essentially unchanged, however.

22

2.3. Support by Transformations

There are a number of technical consequences that are trivial to hand-
wave over in an informal description of the changes. The changes turned
out to be hard to carry out efficiently and reliably in a mechanised theorem
prover. Examples for problems include changing existing symbols of the
signature and induction schemata.

2.3 Support by Transformations

The example scenarios we have presented suggest that certain types of
changes appear over and over again, and in different contexts. For one
thing, changes to certain parts of the specification correspond to certain
parts of the proofs. In some cases we know which portions of the proofs
will likely be affected and which ones will be guaranteed not to be affected,
in other cases we do not know, but we know how to find out by looking at
the proofs in detail, at least in principle.

Another recurring theme is that the whole specification is changed sys-
tematically. This changes technical details all over the specification and
proofs, but the relevant changes are localised. An example appeared ex-
plicitly with the failure transformations, where processes were changed to
either be up or down, but the only real change was how this interacted
with the predicate isup and the crash action. Similar effects, however, also
appear in the other scenarios: adding, e.g., a transition to a state transition
system changes the induction scheme – and this only really matters where
a case distinction is being made.

Support for some of these changes can be provided by observing non-
dependencies between changes and proofs. Development graphs afford this
on the level of formulae and proof obligations cf. [Hut00], [AHMS00],
[AH02]: if an assumption is changed that is not visible in a proof obliga-
tion, the corresponding proof can be kept unchanged. As we have shown,
the same principle can also be invoked at a more fine grained level for
parts of axioms and parts of proofs.

However, we claim that for the scenarios presented in the preceding
section, another view on the problem is more adequate. The reason for
this is that, intuitively, proofs can sometimes be kept because of known de-
pendencies between changes and proof obligations. We would expect there
to be some relationship between the two views: non-dependency is a spe-
cial case of a known dependency – the trivial one. Therefore, the approach
we suggest allows, as special cases, those changes that make use of known
non-dependencies.

We have presented our examples on a fairly abstract level, without ref-

23

Chapter 2. Example Scenarios and Supporting Transformations

erence to a concrete specification language and proof calculus. We hope
it has thus become plausible that the abstract effects are independent of
the concrete setting. However, to show that the abstract findings transfer
to the concrete, and that our approach can handle them, we need to com-
mit ourselves to some concrete choice of a formulism. We have decided to
look at algebraic specifications of abstract datatypes, cf. [EM85], [LEW96].

Specifications will deal with signatures and sentences. A signature de-
termines types, and functions and predicates with their arities. Sentences
include formulae and generatedness constraints. They play the role of as-
sumptions or conjectures. In this context, changes to a specification can
have the following consequences for the resulting proof obligations.

• Additional proof obligations can be generated or proof obligations
can disappear by adding or removing conjectures.

• Assumptions can be added or removed from proof obligations by
adding or removing axioms.

• Formulae in proof obligations can change.

• Induction schemata can change.

• The language for the assumptions and the conjecture can be changed,
e.g. by adding or removing signature symbols, or by changing exist-
ing ones.

In general, changing the specification will have more than one of the ef-
fects.

The first effect is rather uninteresting from our perspective: when a
new obligation is created there is no old proof to make use of. Similarly,
when an obligation disappears, there is nothing to reuse the existing proof
for. We will, therefore, concentrate on the other effects and will motivate
in the rest of this section how transformations on specification and proofs
can be used to provide support. Since our emphasis is on changes that are
independent of the structure of the specification in terms of modules, it is
not necessary to complicate the exposition with details about structuring
mechanisms; the general problems that need to be solved can be shown
with unstructured specifications. However, in the rest of the thesis we
will present our problem and the suggested solutions in the context of
structured specifications and development graphs.

It is not feasible to provide separate specialised transformations for
each particular application domain. Instead, we will provide a set of ba-
sic transformations that are specific to the specification language, the way

24

2.3. Support by Transformations

proof obligations are generated, and the notion of proof, but not specific
to an application domain. Basic transformations can be used in sequence
to achieve the effect of a domain specific transformation. Each basic trans-
formation maps specification and proofs to a new consistent state, though
potentially new open goals will occur in proofs and some parts of old
proofs will be missing. In this new state, another transformation can be
applied, or the proofs can be inspected and changed as usual with the the-
orem prover. Where it matters, we will assume proofs are sequent calculus
proof trees for first order logic, cf. [Gen35], [Fit96].

As the result of working through the examples, we have come up with
the set of basic transformations given in Fig. 2.1. In the rest of this section
we will describe some of the transformations in more detail and show how
they are employed in the case study introduced earlier. The list of basic
transformations is open ended, there is no indication that the transforma-
tions listed there would be sufficient for every conceivable application.

2.3.1 Extending and Restricting the Signature

A group of transformations, i.e. add type, add function, and add predicate
and the corresponding remove transformations change the specification in
a way that is not reflected in the formulae occurring in the proof obliga-
tions: they add or remove signature symbols. Add transformations are
applicable only if the name of the signature item, e.g. a type, to be added
is new in the relevant name space of the specification signature. Name
conflicts with bound variables in axioms or lemmata of the specification
can be avoided by α-renaming. The result of the transformation on the
signature, terms and formulae, therefore, is an inclusion homomorphism.
Semantically, for each model M of the new specification, its reduct with re-
spect to the inclusion homomorphism is a model of the old specification.
Existing proofs can be retained in the new specification: none of the proof
steps in any of the old proofs can be invalidated by applying the homo-
morphism to the goals in the proof, unless name conflicts with Eigenvari-
ables introduced in the proof arise. These can be avoided by naming the
conflicting Eigenvariables away, either by implicit or explicit α-renaming
of the Eigenvariables, depending on whether the Eigenvariables are im-
plicitly or explicitly bound in the proof tree.

Example 2.1 In the example, new datatypes for dealing with crashed pro-
cesses are added and functions and predicates are defined to operate on
them, e.g. an enumeration type UpDown = up | down and a predicate
isup : Proc are added. ◦

25

Chapter 2. Example Scenarios and Supporting Transformations

• Add type, add function, add predicate – add a definition to the signature

• Remove type, remove function, remove predicate – remove a definition
from the signature

• Rename signature item – consistently rename a signature item
throughout the whole specification

• Add axiom – add an axiom to the collection of axioms

• Remove axiom – remove an axiom from the collection of axioms

• Add constructor – add a new constructor function to the list of con-
structors of an existing generated type

• Remove constructor – remove a constructor from the list of construc-
tors of a generated type

• Add argument, remove argument – change the arity of a function or
predicate by adding a new argument or by removing an argument
from the definition

• Swap arguments – reorder the arity of a function or predicate by swap-
ping two of its arguments

• Replace occurrence – replace the occurrence of a formula or term in an
axiom or lemma by another formula or term

Special cases of Replace occurrence are:

– Wrap – replace a sub-formula A of an axiom or lemma by an-
other formula B that has A wrapped somewhere inside

– Unwrap – replace a sub-formula B of an axiom or lemma that
has A wrapped inside by A

Figure 2.1: Example set of basic transformations

26

2.3. Support by Transformations

The remove transformations are applicable only if the signature item
to be removed is not used in the specification, i.e. a type τ can only be
removed if none of the functions or predicates mentions τ in its arity, and
if none of the axioms or lemmata quantifies over τ . The same restriction
applies to formulae and terms introduced in the proof, e.g. no formula
introduced by a cut rule may quantify over τ if the transformation is to
be applicable. In this case, the inclusion homomorphism from the new
signature to the old signature maps every formula or term in the axioms,
lemmata, and proofs to itself. The old proofs are, therefore, proofs for the
new proof obligations.

Example 2.2 In the example, several constants that were introduced by
other transformations (cf. Sect. 2.3.2) were removed from the specification
when they were no longer needed. ◦

The transformation rename signature item is applicable when the new
name of, e.g., a type does not already occur in the relevant name space. In
this case, the renaming corresponds to an isomorphism between the old
and the new signature, and similarly between the old and new specifica-
tion. Semantically, this does not have any effects, since the concrete names
of signature items do not matter for the meaning of terms and formulae.
Moduloα-renaming of bound variables and Eigenvariables, the image of a
proof under the isomorphism, i.e. the result of applying the isomorphism
to terms and formula in the proof, is again a proof.

Example 2.3 In the example, signature items were renamed after they had
been changed to address fault tolerance, e.g. type Action was renamed to
CrashAction. ◦

2.3.2 Changing Existing Signature Entries

The transformation add argument changes the signature of the specification
by changing the arity of a function or predicate. This means that if, e.g.,

f : τ1 × · · · × τm → τ

is changed to

f : τ1 × · · · × τm × τm+1 → τ ,

terms constructed with the function f will no longer be well-formed. There
are also consequences concerning induction schemes when f is a con-
structor function, cf. Sect. 2.3.5 below. For now, assume that f is a non-
constructor function. Then replacing each term of the form f (t1 , . . . , tm)

27

Chapter 2. Example Scenarios and Supporting Transformations

with a term f (t1 , . . . , tm, t), where t is an arbitrary but fixed term of type
τm+1, in the specification, proof obligations, and proofs ensures all for-
mulae are again syntactically correct. The transformed proof obligations
correspond to the new specification and the transformed proofs are valid.
This can be shown by induction over the tree structure of a proof, using
the fact that whenever two formulae were equal before the transformation,
they will again be equal afterwards.

Example 2.4 In the example, the arity of the function mkproc was changed
by adding an argument of type UpDown. The new argument represents
information on whether the process is up or down. See Sect. 2.3.5 for more
details. ◦

2.3.3 Adding and Removing Axioms

The transformations add axiom and remove axiom have direct and obvious
consequences on the proof obligations. For each axiom that acts as a con-
jecture, there is exactly one proof obligation, so adding or removing ax-
ioms in such positions adds or removes proof obligations. When a new
proof obligation Γ ⊢ B is generated, no old proof is available for the new
proof obligation, so a trivial open proof with root goal Γ ⊢ B is associated
with the new goal. When an old proof obligation is removed, the proof for
it is removed together with the proof obligation.

On the other hand, adding or removing axioms adds or removes for-
mulae from the assumptions of proof obligations for other lemmata.

Let A be a new axiom. Each proof obligation in which A becomes visi-
ble is changed by adding the new axiom A to the assumptions of the proof
obligation. Throughout the whole proof, it can be introduced to any goal
and be used as an additional assumption. In particular, proofs to be con-
structed for open goals can use the newly introduced axiom.

Example 2.5 In the fault tolerance example, defining axioms for isup are
added, e.g.

∀i : PID, b : BMsg, m : MMSet. isup(mkproc(i, b, m, up))

and the respective negation. ◦

Conversely, if A were to be removed from the set of axioms, and thereby
from the set of available assumptions for a proof, the proof is still a valid
proof. However, if A was used in the proof, it will now become a new
open goal. The proof itself is still valid. In particular, for proofs that do
not use A at all, no additional goals are created.

28

2.3. Support by Transformations

2.3.4 Changing Formulae

The transformation replace occurrence replaces an occurrence of a formula
in the specification.

Example 2.6 As an example consider (2.1) where the subformula

delivered(p, s) ⊆ broadcast(s) ,

call it A(p, s), is replaced by the formula isup(p) ⇒ A(p, s). ◦

The old proof for (2.2) uses the definition in (2.1) several times to expand
the definition of safety for each subproof resulting from a case split over
all possible actions. All these proof steps are still valid if only instances of
A(X, Y) are replaced by the corresponding instances of isup(X) ⇒ A(X, Y)
throughout the proof, since the steps do not depend on the concrete form
of the formula. However, at some point, the concrete structure of A is used
in the old proof, e.g. the top-level formula A(p1 , s1) is unified with another
formula of the form t1 ⊆ t2 for some terms t1, t2. This step is not valid if
A(p1 , s1) is replaced by the new formula. At this point in the proof, the
cut rule can be used to introduce the old formula as a top-level formula,
resulting in an additional open goal of the form Γ , isup(p1) ⇒ A(p1 , s1) ⊢
∆, A(p1 , s1). In this particular case, however, since it is known that A(p, s)
has been replaced by isup(p) ⇒ A(p, s), a more specific transformation,
i.e. wrap connective is applicable.

2.3.4.1 Wrap Connective.

If a formula occurrence A is replaced by A ◦ B or B ◦ A, where ‘◦’ is a
connective, and A has the same polarity in the new formula (the polarity
of A is preserved in A ∧ B, A ∨ B, B ∧ A, B ∨ A, and in B ⇒ A, but not
in ¬A nor in A ⇒ B), the transformation wrap connective is applicable. In
Example 2.6, parts of a simplified proof for (2.2) looks like the following

· · ·

.... ξ2

Γ ′ ⊢ A(p, res(tr.a)) · · ·
.... ξ1

Γ , ∀s. safety(s) ⇔ ∀p. A(p, s) ⊢ ad(tr.a) ⇒ safety(res(tr.a))

where parts of the proof for the base case of the induction and for all
but one specific action a have been omitted. When A(p, s) is replaced by
isup(p) ⇒ A(p, s), ξ1 is transformed to ξ ′1 as described for the general

29

Chapter 2. Example Scenarios and Supporting Transformations

replace occurrence. Then, the top-level formula isup(p) ⇒ A(p, s) is decom-
posed by inserting a ⇒: r rule such that ξ2 can be used if it is transformed
to ξ ′2 as described for the case of adding assumptions above. This yields
the following transformed proof.

. . .

.... ξ
′
2

Γ ′′, isup(p) ⊢ A(p, res(tr.a))

Γ ′′ ⊢ isup(p) ⇒ A(p, res(tr.a))
⇒: r

. . .
.... ξ

′
1

Γ , ∀s. safety(s) ⇔ ∀p. (isup(p) ⇒ A(p, s)) ⊢ ad(tr.a) ⇒ safety(res(tr.a))

Because the proof is by induction, a similar formula also occurs in the
antecedent of the sequent as the induction hypothesis. There, instead of
adding isup(p) to the assumptions, the proof is split by a ⇒: l rule and a
new open goal is produced. Note that the new open goal for the case of
each action is mentioned in [MG00, p. 483] as being there ‘because of the
additional condition in the guard which was added’ to the actions. Thus,
the new open goal produced by the applications of the wrap connective
transformation corresponds perfectly to the new proof that the authors of
the case study had to construct after they had transformed the system in
one big step and reproduced the proofs manually, cf. in particular their
Fig. 6 with an overview of their new proof tree.

2.3.4.2 Wrap Quantifier.

A specialised basic transformation for wrapping formulae into quantifiers,
wrap quantifier, is similar to wrap connective. When formula A(a) (where a
is a constant) is replaced by, e.g., ∀x. A(x), then again, the part ξ1 of the
proof in which the form of A does not matter is transformed by replacing
the formula occurrence. Where A(a) was used in the old tree, a proof step
is introduced that eliminates the quantifier. If this is on the left hand side,
a witness for the variable x can be chosen, and with the choice of a the
rest of the proof using A(a) can be reused essentially unchanged. If the
∀-quantifier is eliminated on the right hand side, the resulting formula is
A(a′), where a′ is a new Eigenvariable. In this case the old proof can be
reused if it is transformed as if by the general case of replace occurrence,
where A(a) is replaced by A(a′), and a new open goal will be generated
that reads Γ , A(a′) ⊢ ∆, A(a). In the example, intermediate transforma-
tions replace terms introduced by earlier transformations.

30

2.3. Support by Transformations

2.3.5 Changing Induction Schemes

Add constructor adds a constructor to a type τ by making a non-constructor
function f : τ1 × · · · × τm → τ a constructor function. Consequently, it
changes the induction scheme for τ , but does not change the proof obli-
gations that are generated. If inside a proof the induction rule for τ is
used, the proof has to be changed to respect the new induction schema.
Applying induction over τ splits the proof in m branches, where m is the
number of constructors and the ith branch is the proof for the case of the
ith constructor ci.

Γ ⊢ ∆, . . . ⇒ A(c1(. . .)) · · · Γ ⊢ ∆, . . . ⇒ A(cm(. . .))

Γ ⊢ ∆, ∀x : τ . A(x)

This means that the transformation adds a new child to the goal at which
the induction was applied, and the child goal is the obligation to be shown
for the new constructor f .

· · · Γ ⊢ ∆, . . . ⇒ A(ci(. . .)) · · · Γ ⊢ ∆, . . . ⇒ A(f (. . .))

Γ ⊢ ∆, ∀x : τ . A(x)

Thus, the application of the induction rule is again a sound proof step.
The new goal is left open. Since the old constructors are not changed, the
subproofs above them are still valid (unless, of course, another induction
over t takes place there, in which case the transformation is applied re-
cursively). The transformation, therefore, manages to keep all of the old
proofs but produces one new open goal for each induction step over t.
Similarly, remove constructor removes a constructor and the corresponding
cases from induction steps.

Example 2.7 In the example, a new action is added by changing the defi-
nition of type Action from

Action = B1 : PID × Msg → Action | · · · | B5 : PID → Action

to

Action = B1 : PID × Msg → Action | · · · | B5 : PID → Action

| Crash : PID → Action .

The subproofs in the proof for (2.2) of the actions B1 to B5 are kept and a
new case for the action Crash is added as an open goal. This corresponds
to the fact that the subproof for Crash had to be constructed from scratch
in the case study. ◦

31

Chapter 2. Example Scenarios and Supporting Transformations

The transformation add argument, if applied to a constructor function c,
also changes the induction schema for the target type of c. To ease the pre-
sentation of the transformation, consider the special case where c : τ1 → τ

is the only constructor, and assume that τ 6= τ1. An application of the in-
duction rule for τ before and after adding an argument of type τ2 6= τ to c
produces a proof step of the form

.... ξ

Γ ⊢ ∆, ∀y : τ1. A(c(y))

Γ ⊢ ∆, ∀x : τ . A(x) and

.... ξ
′

Γ ⊢ ∆, ∀y : τ1, z : τ2. A(c(y, z))

Γ ⊢ ∆, ∀x : τ . A(x)

respectively. The subproof ξ can be transformed by a combination of the
transformations described for wrap quantifier (this takes care that the quan-
tifier binding z is removed before A is used in the proof) and add argument
for non-constructor functions (this takes care that formulae with terms
constructed by c are again well-formed).

Example 2.8 In the example, the function

mkproc : PID × BMsg × MMSet → Proc

constructs process terms, where the arguments represent the process ID
and the local state of the process. For each of the arguments corresponding
to a local variable there is an update function, e.g.

∀p : Proc, b : BMsg. updatebbuf(p, b) = mkproc(procpid(p), b, procD(p)) .

In the main proof for (2.2), lemmata are used which state that updatebbuf
does not change the other slots of a process, e.g.

∀p : Proc, b : BMsg. procD(p) = procD(updatebbuf(p, b)) .

These lemmata are proved using induction (i.e. a case split) over p. The
arity of mkproc is changed to PID×BMsg×MMSet×UpDown → Proc and
the new lemma reads

∀p : Proc, b : BMsg. updatebbuf(p, b) = mkproc(procpid(p), b, procD(p), a) .

The induction produces open goals of the form

Γ , updatebbuf(p, b) = mkproc(. . . , a)
⊢ ∆, updatebbuf(p, b) = mkproc(. . . , a′)

where a′ is an Eigenvariable introduced for the universally bound variable
resulting from the changed induction scheme. In the example these goals
can be closed by subsequent wrap quantifier and change occurrence transfor-
mations. ◦

32

2.4. Summary

2.3.6 Completeness and Adequacy

To assess the usefulness of a set of basic transformations, natural questions
to be asked are whether the set is complete in the sense that every well-
formed specification can be transformed into an arbitrary well-formed
specification using only transformations from the set, or whether the trans-
formations are adequate in that a reasonable portion of old proofs is con-
served.

The question of completeness can be answered formally for this spe-
cific set of transformations, but in a totally uninteresting way: a subset
of the basic transformations given above, i.e. add and remove transforma-
tions for signature items and axioms suffice to reduce any specification to
the empty specification, and also suffice to build any specification from
scratch. In the course, all proof effort would be lost, however.

Adequateness can hardly be shown formally, as a characterisation of
the parts of proofs that are expected to be kept for an arbitrary overall
transformation does not seem to be possible in general, mirroring the gen-
eral problem of devising a complete set of transformations for expressive
languages and properties [Voe01]. We have derived the set of basic trans-
formations described above using the experience from development case
studies and projects, and have found that they provided adequate sup-
port where the existing support mechanisms did not help. We take this as
an indication that the approach is worthwhile even though no more for-
mal assessment of its adequateness seems to be possible. Time and more
practical experience will tell.

We expect that using the approach in practice over time, we will need
to provide additional basic transformations for cases in which the existing
set is found not to be adequate, e.g. particularly useful compositions of ba-
sic transformations that can, when considered as a whole, be given better
proof support.

2.4 Summary

In this chapter, we have briefly presented four example scenarios in which
changes to formal specifications and proofs were found to be necessary
or beneficial in prior case studies and industrial projects, and that could
not be handled adequately by the existing methods and techniques. One
of them was presented in some more detail, and we have provided exam-
ples of the changes that were problematic. We have also sketched how
our proposed approach of transforming specification and proofs is able to

33

Chapter 2. Example Scenarios and Supporting Transformations

affect these changes. The transformations we have presented address is-
sues that are orthogonal to those addressed by both, heuristic replay or the
management of change using development graphs.

34

Part II

Transformation Framework

35

Chapter 3

Context and Overview over the
Framework

3.1 Overview

The transformations that we provide in this thesis do not exist in isolation.
Rather they aim at solving problems that occur in the setting we have de-
scribed in Section 1.2, and which is provided by our support tools VSE
[AHL+00] or MAYA/INKA [AHMS02, AHMS99]. Here, a formal develop-
ment consists of structured specifications and proofs. The specifications
are translated into development graphs, proof obligations are extracted
from development graphs, and proofs are required to cover the proof obli-
gations, cf. Figure 3.1 for a visualisation. Obviously, our contributions will
be most effective if they can be used in addition to any other support that
is already available in this setting.

In Chapter 2, we have presented example scenarios for our techniques.
For reasons of simplicity and brevity, the scenarios were presented with-
out regard to the structure of the specifications, thereby completely ignor-
ing development graphs and proof obligations. This was suitable for the
motivation of our work, since the information that our techniques use is
orthogonal to the structure of the specification. However, the transforma-
tions are required to work in the presence of structured specifications and
development graphs if they are to be usable in addition to the existing
support. In fact, handling the transformations in the context of structured
specifications and development graphs is one of the main contributions of
this thesis.

It is much easier to present the core ideas of transformations for struc-
tured specifications if details of the concrete specification language and

37

Chapter 3. Context and Overview over the Framework

Development

Specification

...-

Development graph

Compute development graph

?

Proof obligations

Extract proof obligations

?

Proofs

Proofs cover obligations

6

..-

Figure 3.1: Visualisation of the state of a formal development

38

3.2. Abstract Logic: Institutions

the concrete logic and proof calculus are omitted. For this reason, in a first
step we abstract from these details and present classes of abstract develop-
ment graph transformations. This forms a framework that we instantiate
later in this thesis by defining a concrete logic, a concrete representation of
partial proofs, and a concrete specification language. The main benefit for
the thesis is that we can reduce the complexity of our presentation by ex-
plaining the concrete transformations in two steps. An additional benefit
is that the framework provides a basis for other instantiations.

The rest of this chapter provides an abstract formulation of specifica-
tion language, development graphs, and proofs as the basis for the frame-
work. We will also give an overview of the framework itself.

3.2 Abstract Logic: Institutions

Development graphs, introduced in [Hut00], provide a kernel language for
expressing the semantics of structured specifications: a concrete specifica-
tion is translated into a concrete development graph, and the development
graph is given a meaning by associating a flat, i.e. unstructured, theory
to each of its nodes. Such a theory is, of course, relative to a logic. On
the other hand, which particluar syntax, semantics, and proof theory are
used is immaterial for the formulation of development graphs. Thus, an
abstract formulation of logic is appropriate. We use a definition of devel-
opment graphs similar to the ones in [MAH01], [AH02], or [MHAH04]
where the abstract notion of logic is given by an institution [GB84].

An institution is an abstract description of a family of languages (in-
dexed by abstract signatures) and the semantics (i.e. satisfaction and logi-
cal consequence) for each of these languages. Additionally, an institution
specifies mappings between languages together with respective mappings
between the semantics such that satisfaction is preserved.

Since the notion of abstract signatures and abstract sentences of an in-
stitution will play a role for the framework, we give a definition first. In-
stitutions are presented in category-theoretic terms in the literature. We
stick to that convenient terminology and notation. However, no category
theory except for the elementary definition of categories, functors, and
natural transformations is presupposed, see e.g. [Pie91] (Definitions 1.1.1,
2.1.1, and 2.3.1) or [BW96] (Paragraphs 2.1.3, 3.1.1, and 4.2.10). For ease of
reference, Appendix A provides definitions using the notation that we use
in this thesis.

In the following the standard definition of an institution (as given in
[GB84]) is provided.

39

Chapter 3. Context and Overview over the Framework

Definition 3.1 (Institution) An institution I = (Sig, Sen, Mod, |=) con-
sists of

• a category Sig (of abstract signatures and signature morphisms),

• a functor Sen : Sig → Set (mapping each signature Σ ∈ |Sig| to the set
of Σ-sentences and each Sig-morphism σ : Σ → Σ′ to a function translat-
ing Σ-sentences to Σ′-sentences),

• a functor Mod : Sig → Setop (mapping each signature to the set of Σ-
models and each signature morphismσ : Σ→ Σ′ to theσ-reduct operator),
and

• a satisfaction relation |=Σ ⊆ Mod(Σ) × Sen(Σ) for each signature Σ ∈
|Sig|

such that translating sentences along Sen(σ) and taking the reduct of models
along Mod(σ) preserves the satisfaction relation, i.e. for any Sig-morphism σ :
Σ→ Σ′, anyϕ ∈ Sen(Σ), and any M′ ∈ Mod(Σ′) the satisfaction condition

M′ |=Σ′ Sen(σ)(ϕ) iff Mod(σ)(M′) |=Σ ϕ (3.1)

is satisfied. As usual we overload the symbol |=Σ and write Γ |=Σ ϕ if ϕ is
a logical consequence of Γ , i.e. if all Σ-models that satisfy each member of Γ also
satisfyϕ.

Example 3.2 First order logic can be given as an institution

IFOL = (SigFOL, SenFOL, ModFOL, |=FOL)

by defining SigFOL to be the category with algebraic signatures as ob-
jects and algebraic signature morphisms as arrows. For each signature
Σ ∈ |SigFOL(Σ)|, SenFOL(Σ) is defined to be the set of all first order for-
mulae over the signature Σ, and for each SigFOL-arrow σ , SenFOL(σ) is
the function resulting from extending the signature morphism σ homo-
morphically to closed formulae. Finally, ModFOL(Σ) is the class of all
Σ-algebras and for each signature morphism σ : Σ → Σ′, ModFOL(σ)
is the reduct functor that maps each Σ′-model M′ to the σ-reduct of M′,
i.e. ModFOL(σ)(M′) = M′|σ . ◦

We refer to [GB84] for detailed examples of various logics defined as insti-
tutions.

It is important to note that arrows in the category Sig of signatures
(called Sig-morphisms or signature morphisms) play a role similar to al-
gebraic signature morphism (cf. [EM85, Def. 8.1] or [LEW96, Def. 4.1]).

40

3.3. Development Graphs

Sig-objects are not restricted to algebraic signatures, however, and Sig-
arrows are not restricted to algebraic signature morphisms. In particular,
the notion of abstract signatures does not expose any internal structure of
signatures like, e.g., the notion of signature symbols or function arities.
Therefore, the preservation of function arities is not required. Similarly,
the sentence functor does not expose any internal structure of how formu-
lae are defined w.r.t. the signature. Thus, the mapping of sentences along
σ is described by Sen(σ) transparently rather than by a homomorphic
extension of a symbol mapping. However, algebraic signatures together
with signature morphisms, i.e. symbol mappings extended to terms and
formulae, is an important example of a category of signatures. We will use
it as an example whenever this is convenient.

3.3 Development Graphs

Development graphs [Hut00] serve as a way to represent the semantics of
the structuring concepts that a specification language provides and pro-
vide a uniform proof theory on the level of structuring constructs. This
proof theory is parametric in the semantics of the basic, unstructured build-
ing blocks of the specification language. Technically, this is achieved by
defining development graphs relative to an institution.

In practice, structured specifications are represented as graphs such
that nodes correspond to unstructured basic specifications and that the
structure of the specification is represented in the structure of the graph,
cf. [AHMS00], [MHAH04].

A development graph relative to an institution determines a collec-
tion of theories (its nodes) that are connected by signature morphisms (its
links). Sentences making up the axiomatisation of the theories are inher-
ited along links, and thus large theories can be presented piece-wise and
in a structured way. Links can either be definitorial (i.e. they define the
axiomatisation of theories) or be postulated (i.e. they postulate that some
theory is included in another one). Postulated links are also called theorem
links.

The following definition is similar to the original one in [Hut00] (except
that, like [MAH01], [AH02], or [MHAH04], we use institutions instead of
consequence relations and morphisms, which were used to abstract from
the concrete logic in the original statement).

Definition 3.3 (Development graphs) Let I = (Sig, Sen, Mod, |=) be an
institution. A development graph D = (N, A, C) relative to I consists of

41

Chapter 3. Context and Overview over the Framework

• a finite set N of nodes, together with, for each node n ∈ N

– a signature Σn ∈ |Sig| and

– a finite set of sentencesΦn ⊆ Sen(Σn) (the local axioms of the node),

• a finite set A of definitorial and a finite set C of postulated, directed links,
together with, for each link l ∈ A ∪ C from n1 to n2 (where n1, n2 ∈ N)

– a signature morphismσ l : Σn1 → Σn2 and

– an indication whether l is a global or local link,

such that N, A, and C are pairwise disjoint, (N, A) is an acyclic, directed graph

and (N, A ∪ C) is a possibly cyclic directed graph. We write l : n1
σ

−→ n2 for a

local link l from n1 to n2 with signature morphismσ , and similarly g : n1
σ

=⇒ n2

for a global link g.

The sets of links written as A and C are meant to be mnemonic: the links
in A are assumed and the links in C are conjectured.

Example 3.4 Consider the structured specification of the behaviour and
some properties of a state transition system, which results in the simple
development graph sketched in Figure 3.2. The behaviour of the system,
i.e. the state transition table, is specified in node “Behaviour” in terms of
the possible states and the supported commands. Thus, the node “Be-
haviour” imports the definitions of commands and states from the nodes
“Commands” and “States”. A property, node “Property”, is formulated
in terms of the possible states and, therefore, also imports from “States”.
The system is supposed to satisfy the property and this is expressed by the
postulated link from “Property” to “Behaviour”.

Postulated arrows are drawn with an arrow head and tail to distin-
guish them from definitorial links. For ease of presentation, we assume
that all morphisms are identity or inclusion morphisms. Note that all links
are global in this example. ◦

We define the semantics of a development graph by associating a the-
ory to each node. The theory of a node is defined to be the smallest set
closed under logical consequence that includes the local axioms of the
node, that inherits the local axioms of other nodes along local definitorial
links, and that inherits the theories of other nodes along global definitorial
links. Since definitorial links do not include cycles, this fixpoint exists and
is unique.

42

3.3. Development Graphs

Behaviour
ϕ3

⊳========⊳
Property
ϕ4

Commands
ϕ1

==
==

=⇒

States
ϕ2

~
w
w
w
w

===
===

===
==⇒

Figure 3.2: Example development graph

Postulated links, which we have ignored in the semantics so far, postu-
late relationships between theories or their models, respectively. For our
work, the exact details of the model-theoretic semantic definitions are im-
material. We are only interested in the proof theory, i.e. in questions of
whether the axioms of a node are entailed by the theory of another node.
In particular we are interested in whether we can construct a proof. We
express this using the notion of global axioms of a node. (For the details of
the relationship between the model-theoretic and the proof-theoretic se-
mantics cf., e.g., [AH02], [BCH+04].)

Definition 3.5 (Global axioms) Let D = (N, A, C) be a development graph.
The set of global axioms Φn

D of node n wrt. the development graph D is defined
inductively for all n ∈ N as the smallest sets satisfying the conditions

• Φn ⊆ Φn
D ,

• Sen(σ)(Φn′
) ⊆ Φn

D for all n′ σ
−→ n ∈ A, and

• Sen(σ)(Φn′

D) ⊆ Φn
D for all n′ σ

=⇒ n ∈ A.

Note that the sets of global axioms are independent of the postulated links
C of D.

Example 3.6 For the development graph given in Figure 3.2, the global set
of axioms of the node “Behaviour”, e.g., includes all local axioms from the
nodes “Commands”, “States”, and itself. Similarly, “Property” includes
the axioms from “State” and itself. Thus if the formula ϕ1 is an axiom in
the node “Commands”, ϕ2 is an axiom in node “States”, ϕ3 is an axiom
in node “Behaviour”, and finallyϕ4 is an axiom in node “Property”, then
the global set of axioms of “Behaviour” is {ϕ1,ϕ2,ϕ3} and the global set
of axioms of “Property” is {ϕ2,ϕ4}. ◦

43

Chapter 3. Context and Overview over the Framework

A postulated local link is implied by a development graph, if the local
axioms of the source of the link are all logical consequences of the global
set of axioms of the target node of the link. Similarly, a postulated global
link conjectures that the global axioms of the source are consequences of
the global axioms of the target.

Definition 3.7 (Implied links) A postulated local link l : n1
σ

−→ n2 ∈ C is
implied by the development graph D = (N, A, C) iff

Φ
n2
D |=Σn2 Sen(σ)(ϕ) for allϕ ∈ Φn1 (3.2)

and similarly, a postulated global link g : n1
σ

=⇒ n2 ∈ C is implied by D iff

Φ
n2
D |=Σn2 Sen(σ)(ϕ) for allϕ ∈ Φn1

D . (3.3)

The development graph D is said to be satisfied, if each postulated link in C is
implied by the development graph.

Whether a link is implied or not only depends on the set of nodes N and
the set A of definitorial links, but not on the set of postulated links C. We
will, therefore, say that a postulated link is implied by N and A to mean
that it is implied by some development graph D = (N, A, C).

The definition suggests a direct way of verifying a development graph:
show for each postulated link that it is implied by proving (3.2) or (3.3) for
each of the axioms.

Example 3.8 For the example development graph, we have to show, for
each member of the global set of axioms of “Property” that it is implied by
the global set of axioms of “Behaviour”. I.e. we have to show

ϕ1,ϕ2,ϕ3 |= ϕ2

and
ϕ1,ϕ2,ϕ3 |= ϕ4

Note in particular, that we need to prove this for an axiom of “States”, in
the example this isϕ2, because these axioms are inherited by “Property”.
On the other hand, such an axiom is also a member of the global set of ax-
ioms of “Behaviour”, thus it should not be necessary to look at the axioms
in detail. ◦

As the example suggests, some postulated links can be shown to be im-
plied simply by considering the graph structure: e.g. a postulated link
that is subsumed by a parallel definitorial link with the same morphisms

44

3.3. Development Graphs

is implied without consideration for the concrete axioms. Also, a global
postulated link can be decomposed into a parallel local link and additional
local and global links. These two aspects can be expressed and refined by a
development graph calculus [Hut00]. A development graph calculus rule

N, A, C′

N, A, C

states that the development graph D = (N, A, C) is satisfied if only the
development graph D′ = (N, A, C′) is. As usual, we will call the develop-
ment graph below the line the conclusion of the rule and the development
graph above the line its premiss.

This suggests another way of verifying a development graph: apply
the calculus to simplify the graph first, and only then prove (3.2) for the
remaining links – it will turn out that we only need to consider proofs for
local postulated links as in (3.2), but never for global links as in (3.3).

For one of the calculus rules we need the notion of a path in a devel-
opment graph. Basically, a path is a sequence of links along which the
local axioms of the source node are inherited by the target node. This is
the case if all links, or all but the first link, are global (since the inheritance
relationship along local links is not transitive).

Definition 3.9 (Global definitorial paths) Given a development graph D =
(N, A, C) we say that there is a (definitorial) global path from n ∈ N to n′ ∈ N

with path morphismσ , written as n
σ

=⇒⇒ n′, iff

• n = n′ and σ is the identity morphism, or

• there is a node n′′ ∈ N such that

– there is a global definitorial link n
σ ′′

=⇒ n′′, and

– there is a global path n′′ σ ′

=⇒⇒ n′

such that σ = σ ′ ◦σ ′′, i.e. n
σ ′′

=⇒ n′′ σ ′

=⇒⇒ n′.

We say that there is a (definitorial) local path (or simply path) from n to n′ with

morphismσ , written as n
σ

−→→ n′, iff

• there is a global path n
σ

=⇒⇒ n′, or

• there is a node n′′ ∈ N such that

– there is a local definitorial link n
σ ′′

−→ n′′, and

45

Chapter 3. Context and Overview over the Framework

– there is a global path n′′ σ ′

=⇒⇒ n′

such that σ = σ ′ ◦σ ′′.

Note that there is a trivial path from each node to itself with the identity
morphism.

The following definition is a slight variation of the calculus given in
[AH02]. Since the rules do not change N or A, we omit them from the rules
and only write C and C′ in the conclusions and premisses of the rules.

Definition 3.10 (Development graph calculus) The development graph cal-
culus consists of the axiom stating that the empty set of postulated links is trivially
satisfied, and the following rules:

Decomposition:

C ∪
{

n1
σ

−→ n2

}

∪
⋃

n0
σ ′
−→n1∈A

{

n0
σ◦σ ′

−→ n2

}

∪
⋃

n0
σ ′

=⇒n1∈A

{

n0
σ◦σ ′

=⇒ n2

}

C ∪
{

n1
σ

=⇒ n2

}

Subsumption:

C

C ∪
{

n1
σ

−→ n2

} there is a path n1
σ

−→→ n2 in A

Without proof we state that the rules are sound, cf. [AH02], [BCH+04] for
a thorough analysis.

Example 3.11 The development graph of Example 3.4 is reprinted as the
topmost development graph in Figure 3.3 with some morphisms added for
clarity. Application of the decomposition rule to the global postulated link
with morphism σ1 leads to the second graph in which the link has been
decomposed in the local link with morphism σ1 and the new global link
with morphism σ1 ◦σ2. Another application of the rule to the new global
postulated link results in the third graph. Finally, since we have assumed
that all morphisms are identity or inclusion morphisms, we have σ3 =
σ1 ◦ σ2 and the subsumption rule is applicable. The result is the bottom-
most development graph. ◦

Exhaustive analytic application of the rules starting with a given de-
velopment graph terminates with a uniquely determined set of postulated

46

3.3. Development Graphs

Behaviour ⊳==========
σ1

⊳ Property

Commands
==

==
==

==
=⇒

States

σ3

~
w
w
w
w
w
w
w
w

===
===

===
===

===

σ2

⇒

↓ Decomposition

Behaviour ⊳
σ1

⊳ Property

Commands
==

==
==

==
=⇒

States

σ3

~
w
w
w
w
w
w
w
w

σ1 ◦σ2

△

△w
w
w
w
w
w
w
w

===
===

===
===

===

σ2

⇒

↓ Decomposition

Behaviour ⊳
σ1

⊳ Property

Commands
==

==
==

==
=⇒

States

σ3

~
w
w
w
w
w
w
w
w

σ1 ◦σ2

△

△

===
===

===
===

===

σ2

⇒

↓ Subsumption

Behaviour ⊳
σ1

⊳ Property

Commands
==

==
==

==
=⇒

States

σ3

~
w
w
w
w
w
w
w
w

===
===

===
===

===

σ2

⇒

Figure 3.3: Development graph calculus example

47

Chapter 3. Context and Overview over the Framework

links that only contains local links. Each of the links carries a signature
morphism that is the composition of link morphisms that appeared al-
ready in the original development graph. Since we will be using these
results later, we state them as a theorem.

Theorem 3.12 Let D = (N, A, C) be a development graph. Repeated ap-
plication of arbitrary rules of the development graph calculus until no fur-
ther rule is applicable will reduce the verification of D to the verification
of a unique D′ = (N, A, C′) such that

• each link in C′ is a local link, and

• for each link n1
σ

−→ n2 in C′, there is a path n1
σ ′

−→→ n′ in A and a

link n′ σ ′′

−→ n2 (or n′ σ ′′

=⇒ n2) in C, and σ = σ ′′ ◦σ ′.

Example 3.13 For the example development graph of Figure 3.3, the set
C′ is the singleton consisting of the local postulated link from “Property”
to “Behaviour”. It is trivially the case that the morphism σ1 for the postu-
lated link is the morphism along a path in the original development graph,
namely the path consisting of the original global postulated link with mor-
phism σ1. If the subsumption rule was not applicable and the local postu-
lated link with morphism σ1 ◦σ2 was also in C′, then the condition would
also be satisfied. ◦

For the proof of Theorem 3.12, we need the concept of the depth of a node,
i.e. of the length of the longest definitorial path that leads to the node:

Definition 3.14 (Depth of node) Let (N, A) be an acyclic graph. The depth of
a node n ∈ N with respect to A is defined by

#A(n) =

{

0 if there is no link l ∈ A with target n

1 + max
{

#A(n′) | n′ σ
−→ n ∈ A or n′ σ

=⇒ n ∈ A
}

otherwise.

Since the graph (N, A) is acyclic, the depth #A is well-defined, and the set
of nodes N is well-founded wrt. ≤ on the depth of nodes.

Proof of 3.12 We note that the calculus is terminating. Let an auxiliary
strict order ⊏ over links be defined by the usual smaller than relation on

the depth of links, where the depth of a global link n
σ

=⇒ n′ is the depth
#A(n) of n, i.e. the longest definitorial path in A to the source node n of the
link, and the depth of a local link is -1. In both rules, the premiss is strictly

48

3.4. Specification Language

smaller according to the multiset order corresponding to ⊏ (cf. [BN98, Def-
inition 2.5.3]): decomposition replaces a link of depth k (0 < k) by finitely
many links of depths −1 or k′ (k′ < k, the longest path to each n0 in the
premiss is at least one link shorter than the longest path to n1) and sub-
sumption removes an element. Since ⊏ is terminating (i.e. a well-founded
ordering for links), so is the multiset order (cf. [BN98, Theorem 2.5.5]).

The calculus is also locally confluent because the rules are permutable.
Since the calculus is terminating, this implies overall confluence.

Thus, first, exhaustive application of rules yields a unique result. Second,
the decomposition rule is applicable whenever there is a global link in the
conclusion; thus when no rule is applicable, all links are local. Finally,
the condition for the link morphisms is invariant over both rules, and is
satisfied initially for the trivial path from the source node to itself. �

Thus we can view the development graph calculus as a function comput-
ing a unique set of local postulated links (the normal form of the original
postulated links wrt. the definitorial links) such that if these links are im-
plied, the original development graph is satisfied.

Definition 3.15 (Normal form of C wrt. A and N) For a given development
graph D = (N, A, C), let C ↓N,A be the normal form of C wrt. N and A, i.e. the
set of postulated local links resulting from D by exhaustive application of the
development graph calculus rules to D.

3.4 Specification Language

Specification languages usually address both the formulation of small, ba-
sic specifications and the construction of structured specifications from
simpler ones. Thus, we distinguish two different aspects of a specifica-
tion language, called specification in the small and specification in the large.
Whereas the latter is concerned with how complex specifications can be
presented in a modular fashion by conjoining smaller specifications in a
structured way, the former deals with the semantics of the smallest speci-
fication entities, sometimes called basic specifications or theories.

Syntactical well-formedness of specification is often defined in the form
of a context-free grammar together with additional static well-formedness
conditions like, e.g., type correctness conditions of expressions or the con-
dition that identifiers be defined textually before they are used in the spec-
ification text. Using techniques from compiler construction like, e.g., lex-
ing and parsing, syntax-directed translation, and static analysis and type-

49

Chapter 3. Context and Overview over the Framework

checking, it is usually decidable mechanically and with moderate cost of
resources whether a syntactical entity is a statically well-formed specifica-
tion, and if so to describe the specification in a form that is independent of
the concrete syntax. This allows us to ignore syntactic issues and assume
that static well-formedness conditions can be checked fully automatically.

A specification language defines so called dynamic well-formedness
conditions. These are additional conditions that need to hold in order for
the specification to be well-defined. The conditions are called dynamic
because they are not decidable mechanically in general. The conditions
are typically expressed as a proposition in some logic. A specification is
called satisfied if these dynamic conditions hold. In practice, proofs are
constructed to show that the conditions hold. The conditions are there-
fore called proof obligations, and a specification is called verified if there is
a proof for each proof obligation.

An example for such a dynamic well-formedness condition results from
a specification that presents the natural numbers, addition, and specifies
that the associativity of the addition is a logical consequence. This specifi-
cation is well-formed only if associativity is indeed a logical consequence
of the other definitions. Thus, a proof obligation arises: it requires a proof
of the proposition that associativity is a consequence of the definition of
the natural numbers and addition. Constructing proofs for such proof
obligations is called verifying a specification.

For practical reasons, we do not derive proof obligations from speci-
fications directly. Rather, a specification is first translated into a develop-
ment graph, and proof obligations are then derived from the development
graph. Basic specification units are translated into nodes of the develop-
ment graph, thus expressing these basic units in the logic underlying the
development graph. The structure of a specification, on the other hand, is
translated into the structure of the development graph, i.e. into definitorial
and postulated links.

For our purposes, therefore, a specification language for a given logic
consists of a set of (statically) well-formed specifications, and a mapping
from the set into the set of development graphs for the logic. Of course,
we require the mapping to be correct in the sense that proof obligations
represented by a resulting development graph imply the proof obligations
for the given specification.

Definition 3.16 (Specification language) A specification language for an
institution I is a set Spec of statically well-formed specifications and a function
dg, mapping each specification S ∈ Spec to a development graph such that the
specification S is satisfied if only the corresponding development graph dg(S) is
satisfied.

50

3.5. Proof Representation

As an example, [AHMS00] describes the mapping dg for a subset of the
statically well-formed CASL-specification; it uses a definition of develop-
ment graphs that is similar to the one we have given above.

3.5 Proof Representation

A well-formed specification S can be verified indirectly by showing that
its associated development graph D = dg(S) is satisfied. This is called
verifying the development graph. A development graph D = (N, A, C) can
be verified by showing that A implies the set of obligation links C ↓N,A.

Each of these links n1
σ

−→ n2 ∈ C ↓N,A in turn can be shown to be implied
by constructing a proof for

Φ
n2
D |=Σn2 Sen(σ)(ϕ) (3.4)

for eachϕ ∈ Φn1 , cf. (3.2) on page 44. The general form of obligations for
a given signature Σ is thus Γ |=Σ ϕ, where Γ is a set of Σ-sentences andϕ
is a Σ-sentence. Proofs for these obligations are mechanised using a proof
calculus for the institution, and proofs are represented using, e.g., proof
objects or proof scripts.

Definition 3.17 (Proof obligations) The set of proof obligations obl(l) of a

postulated link l : n1
σ

−→ n2 with σ : Σ′ → Σ is defined by

obl(l) =
{
(Φn2

D , Sen(σ)(ϕ)) |ϕ ∈ Φn1
}

.

obl is overloaded for development graphs, and the |Sig|-indexed family of sets of
proof obligations obl(D) for a development graph D = (N, A, C) is defined by

(obl(l))Σ =
⋃

l : n1 −→ n2 ∈ C ↓N,A

with Σn2 = Σ

obl(l) .

A pair (Γ ,ϕ) in (obl(D))Σ is typically written as Γ |=Σ ϕ for clarity, and in
this case we say that (Γ ,ϕ) is a Σ-proof obligation. Where it is convenient
we write Γ |=Σ ϕ ∈ obl(D) to mean (Γ ,ϕ) ∈ (obl(D))Σ.

For the framework we only need a few assumptions about the repre-
sentation of proofs. First, proof obligations correspond to conclusions of
proofs, i.e. we can express that a particular proof is a proof for a given
proof obligation. Second, we assume that proofs can be proof sketches
or partial proofs, i.e. contain holes representing open conjectures. Third,

51

Chapter 3. Context and Overview over the Framework

proofs for different signatures and their conclusions are related in a way
that is consistent with the relationship between signatures given by signa-
ture morphisms.

We represent proof obligation in obl(l) as proof states, called goals.
Technically, for each signature Σwe assume a set of Σ-goals and a mapping
from proof obligations Γ |=Σ ϕ into the set of Σ-goals. We also require
a set of partial Σ-proofs. Each Σ-proof has a conclusion, which in turn is
a Σ-goal. For convenience we assume that for each proof goal there is a
(distinguished) partial proof.1 For goals and proofs we assume mappings
along signature morphisms, and we further constrain these definitions so
that proofs can be translated along signature morphisms meaningfully:
mapping the formulae of a proof obligation and mapping its proof along
the same signature morphism preserves the relationship between proof
obligation and proof.

Example 3.18 The sequent calculus represents proof goals as a sequent.
A proof obligation of the form Γ |=Σ ϕ is represented by the sequent
Γ ⊢ ϕ. In a natural deduction style calculus, the same proof state would
be represented as the tuple consisting of the formula ϕ that we want to
prove and the active hypotheses Γ , which we can use in the proof. ◦

Note that in both examples there are goals that do not correspond to proof
obligations: sequents can have several formulae to the right of the turnstile
and both representations will have to deal with free variabes in formulae
(e.g. Eigenvariables) in the course of a proof. This will also complicate the
definition of how proofs are mapped along signature morphisms since,
e.g., name capture with free variables should be avoided. How this is
achieved in detail is immaterial for the framework, however.

We require that proofs can be mapped along signature morphisms. We
do not require, however, that the image of a proof is structurally similar to
its pre-image, or that the holes of the two proofs are related by the signa-
ture morphisms. Because we have not modelled the internal structure of
proofs such a requirement cannot even be expressed formally.2

Our assumptions are captured by the following definition.

1This is a reasonable assumption for partial proofs: usually there is a trivial proof for
each goal that assumes the goal itself.

2Modelling the structure of proofs on this level of abstraction, e.g., along the lines
of [LS86], introduces many details that are then not used in the framework to any good
effect, but that restrict its applicability. Therefore, we decided to remove these definitions.

52

3.5. Proof Representation

Definition 3.19 (Proof representation) Let I = (Sig, Sen, Mod, |=) be an
institution. A proof representation P = (Goal, η, Prf, concl) for the institu-
tion I consists of

• a functor Goal : Sig → Set (mapping each signature Σ ∈ |Sig| to the
set of Σ-goals, and each signature morphism σ : Σ → Σ′ to a function
translating Σ-goals to Σ′-goals),

• a natural transformation η : (2Sen × Sen) → Goal (mapping Σ-proof
obligations to the corresponding proof goal)3,

• a functor Prf : Sig → Set (mapping each signature Σ to the set of partial
Σ-proofs, and each signature morphism σ : Σ → Σ′ to a function translat-
ing Σ proofs into Σ′-proofs), and

• a natural transformation concl : Prf → Goal (mapping Σ-proofs to the
goal that they prove, i.e. their conclusion).

Additionally, we assume that for each Σ-proof obligation Γ |=Σ ϕ there is some
proof4 for the goal g = ηΣ(Γ ,ϕ).

In the following, we write Obl for the functor 2Sen × Sen, i.e. Obl =
2Sen × Sen. Also we write concl instead of conclΣ when the signature is
clear from the context.

Remark 3.20 Note that the definition of proofs we have just given does
not exclude incorrect proof representations, i.e. representations in which a
proof can be found for a non-theorem. In fact, the framework is indepen-
dent of whether the proof representation is correct5; it only depends on
the way in which proof obligations, goals, and proofs for different signa-
tures are related according to the definition. Furthermore, defining what a
correct proof representation is would necessitate introducing details about
the relationship between proofs and their holes or assumptions. These de-
tails would not be used in the framework but would potentially restrict
the applicability of the framework.6

3For the definition of the notation 2A and A × B, i.e. of functors lifted to sets and
cross-products, see Appendix B.

4Recall that our notion of proofs allows partial proofs with holes. These holes, i.e. open
goals, stand for arbitrary assumptions, independently of whether complete proofs for the
open goals exist or not.

5Of course, these “proofs” are checked by a proof checker independently to ensure
correctness of formal developments.

6Cf. Remark 7.1 on page 156 for an example of why the additional freedom is benefi-
cial.

53

Chapter 3. Context and Overview over the Framework

Obl(Σ)
Obl(σ) - Obl(Σ′)

Goal(Σ)

ηΣ

?

Goal(σ)
- Goal(Σ′)

ηΣ′

?

Prf(Σ)

conclΣ

6

Prf(σ)
- Prf(Σ′)

conclΣ′

6

Figure 3.4: Commuting diagrams for η and concl

The requirement that η be a natural transformation (cf. Appendix A) amounts
to the conditions that η assigns to each signature Σ a Set-arrow ηΣ : Obl(Σ) →
Goal(Σ) such that for every signature morphism σ : Σ → Σ′, the top
square in Figure 3.4 commutes, i.e. we have

ηΣ′ ◦ Obl(σ) = Goal(σ) ◦ ηΣ .

Similarly, for each signature morphism σ : Σ → Σ′, the bottom square in
Figure 3.4 commutes, i.e. we have

conclΣ′ ◦ Prf(σ) = Goal(σ) ◦ conclΣ .

The effect of these conditions is that the mapping Prf(σ) of proofs along
signature morphisms is uniform with respect to the mapping of sentences.
If we translate a proof along Prf(σ), its conclusion is translated as if we
had translated the sentences of the proof obligation along Sen(σ) directly.
The formulation abstracts from the details of exactly how a goal or a proof
should be translated, for instance how Eigenvariables or active hypotheses
should be translated for natural deduction goals, or the rule justifications
for sequent calculus proofs.

The relationship between proofs and proof obligations that has been
described informally up to now can be defined formally:

54

3.6. Formal Developments

Definition 3.21 (Covered proof obligation) Let o = (Γ ,ϕ) be a Σ-proof obli-
gation. The proof obligation is said to be covered by a proof p, written covers(p, o),
iff p is a Σ-proof such that concl(p) = ηΣ(Γ ,ϕ).7

The proof obligation o is said to be verified by p if p covers o and addition-
ally p is complete (i.e. non-partial). Since we have not defined formally
what distinguishes complete from non-complete proofs, we do not for-
mally define verification of proof obligations either.

3.6 Formal Developments

We define the abstract notion of the state of a formal development (called
development from hereon) and of well-formedness, or consistency, that
we require of such developments. Intuitively, a development consists
of a structured specification and proofs such that the proofs cover the
proof obligations resulting from the development graph of the specifica-
tion. However, we do not need to require the proof obligations to be ver-
ified, i.e. the proofs to be complete – as we have said before, we have not
even defined completeness of proofs formally.

Definition 3.22 (Formal Development) Let I = (Sig, Sen, Mod, |=) be an
institution, let (Spec, dg) be a specification language for I , and finally let P =
(Goal, η, Prf, concl) be a proof representation for I . A formal development
dev = (S, P) consists of a specification S ∈ Spec and a set P of proofs, such that
each proof obligation (Γ |=Σ ϕ) ∈ obl(dg(S)) is covered by a Σ-proof p ∈ P.

Again, informally, a development is called verified or completed if each proof
obligation is not only covered, but also verified by a proof in P.

We can now explain more detailed what was meant with the informal
visualisation that we have provided in Figure 3.1 on page 38: the well-
formedness condition for a development dev is visualised by Figure 3.5,
using the concepts that we have introduced above. The dashed arrows
from a development dev to specificiation S and proofs P represent the fact
that dev consists of S and P. π1 and π2 project a development dev = (S, P)
to its components S and P, respectively. The solid lines between S and
D and between D and O describe the mapping from specification to the
associated development graph and from development graph to the asso-
ciated proof obligations. Finally, the solid line between P and O visualises
that each Σ-proof obligation in O is covered by a Σ-proof in P. In other

7Note that this defines whether a Σ-proof covers a Σ′-obligation, for arbitrary signa-
tures Σ and Σ′. If the two signatures are distinct the proof does not cover the obligation.

55

Chapter 3. Context and Overview over the Framework

Development dev

S Specification

..

π
1

-

D Development graph

dg

?

O Proof obligations

obl

?

P Proofs

covers

6

...

π
2

-

Figure 3.5: Development well-formedness

56

3.7. Integration with Existing Tools

dev ==
T

⇒ dev′

S

...

π
1

-
S′ �.....

......
......

......
......

......
......

......
......

...

π1

D

dg

?
D′

dg

?

O

obl

?
O′

obl

?

P

covers

6

...

π
2

-

P′

covers

6

�..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..

π
2

Figure 3.6: Development transformation

words, a formal development is well-formed iff each proof obligation aris-
ing from the development graph associated to the specification is covered
by a proof.

3.7 Integration with Existing Tools

Let us come back to the issue we raised at the beginning of this chapter:
we want to integrate the types of transformations that we motivated in
Chapter 2 into existing support tools. This means that our overall goal is to
provide transformations on developments, i.e. specifications and proofs,
such that well-formedness of developments is preserved. In Figure 3.6, the
double arrow between dev and dev′ visualises the transformation taking
dev to dev′.

The condition on transformations is the following: if dev′ results from

57

Chapter 3. Context and Overview over the Framework

dev by the transformation T, then dev′ has to be well-formed, i.e. each obli-
gation in

obl(dg(π1(dev′)))

is covered by a proof in π2(dev′), provided dev is well-formed, i.e. if each
obligation in

obl(dg(π1(T(dev))))

is covered by a proof in π2(dev). In terms of the diagram this means that
the triangle underneath dev′ commutes if only the left triangle underneath
dev commutes. Of course, we will break down development transforma-
tions into transformations on specifications, development graphs, proof
obligations, and proofs. Figure 3.7 illustrates this approach, where TS,
TD, TO, and TP represent transformations on specification, development
graph, obligation, and proof transformations, respectively. The idea is that
if the boxes in Figure 3.7 commute, and if T on developments is defined
component-wise in terms of TS and TP (in which case the trapezium dev, S,
S′, dev′ and the outermost trapezium dev, P, P′, dev′ both commute), then
the well-formedness condition for dev implies the well-formedness of dev′.

Chapter 4 presents an abstract view of the box marked by (b) in Fig-
ure 3.7 in terms of the abstract concepts that we have introduced. Sev-
eral classes of transformations on development graphs and correspond-
ing transformations on proof obligations are identified and related to each
other. This provides us with a language and classification on which we
base the concrete transformations corresponding to the boxes (a) and (c)
in the figure, which we will present in Part III. The immediate benefit is
that we can treat (a) and (c) separately in Part III using the framework
that we provide here to bridge the gap visualised by the box (b).

3.8 Transformations

So far we have not explained our notion of transformation in detail: a
transformation rule (or simply transformation) is a binary relation T that
leaves a property Q invariant. For example, a development transforma-
tion is a relation T between developments such that if T(dev, dev′) and dev
is well-formed, then dev′ is also well-formed.

Definition 3.23 (Transformation) Let a set X (the domain) be given, and let
Q be an unary predicate over X. Further, let T be a binary predicate over X. T is
a Q-transformation rule (or Q-transformation for short) over X iff Q(x) and
T(x, x′) implies Q(x′) for all x, x′ ∈ X.

58

3.8. Transformations

dev ==
T

⇒ dev′

S ======
TS

⇒

...

π
1

-
S′ �.....

......
......

......
......

......
......

......
......

...

π1

(a)

D

dg

?
======

TD
⇒ D′

dg

?

(b)

O

obl

?
======

TO
⇒ O′

obl

?

(c)

P

covers

6

======
TP

⇒

...

π
2

-

P′

covers

6

�..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..

π
2

Figure 3.7: Layers of development transformation

59

Chapter 3. Context and Overview over the Framework

A pair (x, x′) is said to be a T-transformation instance if T(x, x′). In this case
we also say that x′ results from x by a T-transformation. In case the graph
of T is the graph of a partial function over X we also call T a transformation
function, and we write T(x) for x′ if T(x, x′). Where it is clear from the
context we will often omit X and Q.

Thus development transformations T are transformations over devel-
opments (S, P) consisting of specification and proofs, where Q is the con-
dition that a pair is a development, i.e. it satisfies the well-formedness
condition for developments given in Definition 3.22. Development graph
transformations TD are arbitrary transformations over development graphs,
proof obligation transformations TO are transformations over proof obli-
gations, and proof transformations TP are arbitrary transformations over
proofs – in all three cases, Q is well-formedness and is already guaranteed
by the fact that Q holds for all elements of the domain.

Note that in Figure 3.7, (a) corresponds to transformations over specifi-
cation/development graph pairs, (b) corresponds to development graph/
proof obligation pairs, and (c) corresponds to transformations over proof
obligation/proof pairs. The invariants are that the development graph
results from the specification, that the proof obligations are the ones cor-
responding to the development graph, and that the proof covers the proof
obligation, respectively. Transformations involving two artefacts such that
transformations at one end necessitate transformations at the other have
been coined coupled transformations in [Läm04].

The main property of transformations is that if we start out with a
well-formed development and successively apply development transfor-
mations, then the resulting development is also well-formed. In practice,
we are interested in transformation rules that are partial functions: these
allow us to actually transform one development into another one by ap-
plying the partial function, if only the original development is in the do-
main of the transformation. Later we only describe transformations that
can be seen easily to be computable (with moderate cost), and thus we
need not be concerned with whether the relation is decidable (or the par-
tial function computable).

A partial transformation function can be built from any transformation
T by restricting the graph of T such that the result is the graph of a par-
tial function. Since any partial function that is contained in the relation T
will do, we can often leave unspecified the concrete choices involved in
making a relation right-unique. Restricting a transformation relation to a
transformation function is a special case of the fact that each subrelation
of a transformation T is again a transformation.

60

3.9. Summary

These facts are trivial, but since we rely on them, we make them explicit
in the following theorem.

Theorem 3.24 Let T1 (1 ≤ i ≤ n) be Q transformations over X and let T
be defined by

T(x0, xn) iff there is a sequence 〈x1, . . . , xn〉 ∈ X∗

such that Ti(xi−1, xi) holds for all 1 ≤ i ≤ n .

Then T is also a Q-transformation. In particular Q(x0) implies Q(xn).
If T is a Q-transformation over X and T′ ⊆ T then T′ is also a Q-

transformation over X.

Proof of 3.24 The proofs are by straightforward induction over n and triv-
ial application of modus ponens. �

In particular, if the graph of a partial function f : X →֒ X is a subset of T,
i.e. T(x, f (x)), then f is a Q-transformation function. Theorem 3.24 implies
that if fi are Q-transformation functions, x is in the domain of fn ◦ · · · ◦ f1

and Q(x), then Q((fn ◦ · · · ◦ f1)(x)).

3.9 Summary

We have introduced an abstract view of the context for describing our
transformations. Transformations are orthogonal to the structuring con-
cepts that development graphs provide and we want the transformations
to be applicable in addition to development graphs. Thus, we need to inte-
grate our transformations into existing tools that use development graphs.
In this chapter we have made explicit the assumptions that this entails for
the framework in which the transformations will be formulated. We have
explained the role of a framework for development graph and proof obli-
gation transformations to ease the presentation by distinguishing generic
aspects from the ones that are dependent on the concrete logic and proof
representation.

61

Chapter 4

Development Graph
Transformations

4.1 Overview

When we formulate the transformations as described in Chapter 2 for
structured specification languages like VSE-SL or CASL, and then deter-
mine their effects on the associated development graphs, we obtain sev-
eral classes of development graph transformations. These classes are de-
scribed systematically in this chapter. Each transformation class falls in
one of two categories. The first changes the structure of the development
graph but leaves the contents of nodes and links common to both graphs
unchanged. The second keeps the structure of the development graph
fixed and changes the contents of nodes and links, i.e. signatures, axioms,
and signature morphisms. Some of the classes roughly correspond to ba-
sic development graph operations that have been defined for the man-
agement of development graphs before, e.g. in [Hut00], [AHMS00]. The
relationship is briefly discussed in Section 4.5. In particular, the existing
basic development graph operations can be represented as development
graph transformations. Therefore, the question of whether the set of trans-
formations that are provided by a concrete instantiation of the framework
is complete, cf. the discussion in Section 2.3.6 on page 33, is not an issue:
it cannot be less complete than the original setup, which is complete. Sim-
ilarly, adequacy then reduces to the question of whether there are changes
that are expensive to carry out and that can be carried out more efficiently
using one of our transformations.

Transforming a development graph from D to D′ means that the cor-
responding proof obligations change from O = obl(D) to O′ = obl(D′).

63

Chapter 4. Development Graph Transformations

D ======
TD

⇒ D′

O

obl

?
======

TO
⇒ O′

obl

?

Figure 4.1: Induced transformations

Proofs are associated with O, and we want to use these to construct proofs
for O′. We do not, therefore, want to compute O′ from D′. Rather we want
to derive O′ from O directly, giving us a chance to derive proofs for O′

from those for O.

The question is thus whether we can present a proof obligation trans-
formation TO relating O and O′, cf. Figure 4.1. O and O′ are both sets of
obligations, and the question is whether for each proof obligation o′ ∈ O′

there is a similar proof obligation o ∈ O. Later, we will use this association
to transform the proof for o into a proof for o′.

For each of the classes of development graph transformations we will
thus describe the effects it has on proof obligations by describing associa-
tions between old and new proof obligations and by corresponding trans-
formations between each pair of old and new proof obligation, such that
the diagram in Figure 4.1 commutes. In this case we say informally that
development graph transformations induce the proof obligation transfor-
mations, or that the proof obligation transformations can be used to prop-
agate the development graph transformations to proof obligations.

We concentrate on describing which changes to obligations may pos-
sibly be caused by changes to a development graph, and how new and
corresponding old proof obligation are identified, together with a formal
notion of their difference. We are interested in the way in which changes
are propagated in order to mechanize the propagation. The propagation
itself is, however, not part of the trusted kernel: the resulting formal de-
velopments are self-contained and are checked for their well-formedness
independently from their history. Of course, the mechanical propagation
should still be correct because otherwise the resulting developments are of
no use to the software engineer. Thus we provide proofs where it is useful
to convince ourselves that the propagation is sound.

We list classes of development graph transformations. Instances of

64

4.2. Changing the Graph Structure

these classes can be used later on as a language to express what effects
specification transformations have on the level of development graphs.
Similarly, since we know how these classes of development graphs trans-
formations induce proof obligation transformations, we can determine
which instances of the transformations we need to support for proof obli-
gations and proofs.

For the rest of the chapter we assume that we are given an arbitrary but
fixed institution I = (Sig, Sen, Mod, |=) and a fixed proof representation
(Goal, η, Prf, concl) for I .

4.2 Changing the Graph Structure

This section deals with transformations that add or delete whole nodes or
links of a development graph, without changing other nodes or links. These
transformations change the structure of the graph.

4.2.1 Adding and Deleting Nodes

Adding new nodes to a development graph necessarily produces isolated
nodes. Otherwise the old development graph would have contained links
from or to non-existent nodes, in contradiction of the definition of a devel-
opment graph. On the other hand, deleting a node which is not isolated
would produce a development graph with links from or to a non-existing
node, again contradicting the conditions for development graphs.

Definition 4.1 (DG transformation: Trnodes) The development graphs trans-
formation Trnodes relates a development graph D = (N, A, C) and another devel-
opment graph D′ = (N ′, A, C).

Note that all nodes not in N ∩ N ′ are necessarily isolated. Obviously, iso-
lated nodes do not influence the set of local or global axioms of any other
node. Similarly, isolated nodes do not influence proof obligation links.
Therefore, isolated links can be ignored as far as proof obligations are con-
cerned. This means that Trnodes can be propagated to proof obligations with
the identity transformation on proof obligations.

4.2.2 Adding and Deleting Links

Adding a definitorial link to a development graph potentially changes the
set of proof obligations determined by the development graph calculus

65

Chapter 4. Development Graph Transformations

in the following way. The new link adds additional paths along which
sentences can be inherited. It also possibly influences the set of proof obli-
gation links that a development graph D = (N, A, C) is mapped to by
C ↓N,A, because the new link may be applicable to decompose a global
postulated link, or it may lead to the subsumption of a local postulated
link. It does not change the signatures and local axioms that are associated
with the nodes of the development graph, however: signatures and local
axioms are associated to nodes independently of other nodes and links;
the relationship between the signatures of nodes connected by a link is
given by the condition that the link carries a morphism from the source
signature to the target signature, and these are not changed. Adding a
definitorial link, therefore, entails

1. that there possibly exist new proof obligation links and some old
ones might be obsolete, and

2. that for proof obligation links l that have not changed, the set of
proof obligations obl(l) may be different, depending on whether the
global set of axioms in the target node of l has changed.

Removing definitorial links has the same effects: additional proof obliga-
tion links may appear because the link was needed to subsume a local pos-
tulated link, others might disappear because decomposing a global postu-
lated link might now produce less new local postulated links. Adding or
removing postulated links possibly leads to new proof obligation links or
to old ones becoming obsolete.

We integrate all transformations that deal with adding or removing
links into the following definition.

Definition 4.2 (DG transformation: Trlinks) The development graph transfor-
mation Trlinks relates a development graph D = (N, A, C) and another develop-
ment graph D′ = (N, A′, C′).

If we compare the two sets of proof obligation links L = C ↓N,A and
L′ = C′ ↓N,A′ of the development graphs D and D′ that are in relation
Trlinks, there are (i) links that are in L but not in L′, (ii) links that are in
L′ but not in L, and (iii) links that are in both. Note that by definition of
C ↓N,A, all links in L (and L′) are local links.

(i) For any proof obligation link l ∈ L \ L′ that contributes to the proof
obligations for D but not for D′, the old proofs for the proof obliga-
tions of D and l are no longer needed. They can be kept in an archive
in case they are needed in the development later on. We will not

66

4.3. Changing the Content of Nodes or Links

deal with this kind of archive in this thesis, so we assume that they
are thrown away.

(ii) For any proof obligation link l ∈ L′ \ L that contributes to the proof
obligations for D′ but not for D, there is no old proof. So a new proof
needs to be created for each proof obligation for D′ and l.

(iii) Let the link l : n1
σ

−→ n2 be a proof obligation link in L ∩ L′ (and
thus local). The proof obligations for D and l and for D′ and l, re-
spectively, are given by Definition 3.17 as

{
Φ

n2
D ⊢Σn2 Sen(σ)(ϕ) |ϕ ∈ Φn1

}
and

{
Φ

n2
D′ ⊢Σn2 Sen(σ)(ϕ) |ϕ ∈ Φn1

}
,

where it is obvious that each proof obligation

o′ = (Φn2
D′ ⊢Σn2 Sen(σ)(ϕ))

in the second line corresponds to a proof obligation

o = (Φn2
D ⊢Σn2 Sen(σ)(ϕ))

in the first line that only differs from o′ in the set of assumptions.

The development graph transformation Trlinks can, therefore, be propa-
gated to proof obligations

• by throwing obsolete proof obligations away,

• by adding new proof obligations, and

• by changing existing proof obligations by adding or removing as-
sumptions.

4.3 Changing the Content of Nodes or Links

We will introduce transformations that change the contents of nodes (i.e.
signatures and local axioms) or links (i.e morphisms) without changing
the graph structure. In such a case there is an association between old
and new proof obligation links: these links are determined by the devel-
opment graph calculus from the graph structure, and the graph structure
is invariant.

67

Chapter 4. Development Graph Transformations

The informal notion of changing the contents of a development graph
is formally expressed by two graphs that have the same structure but dif-
ferent contents. The relationship between two development graphs with
identical structure can be adequately expressed by a bijection between
nodes and links that respects the graph structure, i.e. by a graph isomor-
phism.

Definition 4.3 (Development graph isomorphism) Let D = (N, A, C) and
D′ = (N ′, A′, C′) be two development graphs. D and D′ have the same struc-
ture if there are bijections hN : N → N ′, hA : A → A′, and hC : C → C′,
respectively, such that

• for each link l ∈ A from node n1 ∈ N to n2 ∈ N, the link hA(l) ∈ A′ is a
link from node hN(n1) ∈ N ′ to hN(n2) ∈ N ′,

• for each link l ∈ C from node n1 ∈ N to n2 ∈ N, the link hC(l) ∈ C′ is a
link from node hN(n1) ∈ N ′ to hN(n2) ∈ N ′, and

• hA(l) or hC(l) is a local (global) link iff l is a local (global) link.

We say that h = hN ∪ hA ∪ hC is a development graph isomorphism, and
since N, A, and C are disjoint, we write h(n) and h(l) for hN(n), hA(l), and
hC(l) without the risk of ambiguity.

All the remaining transformations follow a common idea. Proof obliga-
tions are computed using the normal form C ↓N,A, which results from the
development graph by exhaustive application of the decomposition and the
subsumption rule. The decomposition rule only depends on the structure of
the development graph. A development graph isomorphism h between D
and D′ ensures that the structure of both graphs is the same. Therefore, D′

can be decomposed exactly as D. This does not hold for the subsumption
rule: the applicability condition of the subsumption rule depends on the
link morphisms, and link morphisms are not invariant over development
graphs isomorphisms. However, it turns out that all transformations that
we will introduce in this section relate D and D′ in such a way that the
application of both rules can in fact be simulated: whenever a link is sub-
sumed in D, then the h-image of the link is also subsumed in D′. In this
case we say that a development graph bijection respects morphisms. The
formal definition is as follows.1

1Recall that the notion of paths that we have introduced in Definition 3.9 only consid-
ers definitorial links. In contrast, in the following definition we do not distinguish between
definitorial and postulated links.

68

4.3. Changing the Content of Nodes or Links

Σn1 - · · · - Σnk−1

Σn0

σ
l 1

-

Σn

σ lk

-

Σn′
1 -

σ l ′
1

-

· · · - Σn′
m−1

σ
l′ m

-

Figure 4.2: Respecting morphisms

Definition 4.4 (Respecting morphisms) Let h be a development graph bijec-
tion between D = (N, A, C) and D′. We say that h respects morphisms of
D and D′ iff for each two sequences of (local or global, definitorial or postulated)
links 〈

n0
σ l1
−→ n1, . . . , nk−1

σ lk
−→ n

〉

∈ (A ∪ C)∗

and 〈

n0
σ

l′1
−→ n′

1, . . . , n′
m−1

σ l′m
−→ n

〉

∈ (A ∪ C)∗

we have

σ lk ◦ · · · ◦σ l1 = σ l′m ◦ · · · ◦σ l′1

iff σh(lk) ◦ · · · ◦σh(l1) = σh(l′m) ◦ · · · ◦σh(l′1) ,

cf. Figure 4.2.

If a development graph bijection respects morphisms of D and D′ then
any link in D is subsumed by a path in D iff the h-image of the link is
subsumed by the h-image of the path in D′. However, the decomposition
rule introduces new postulated links that are not in D or D′. If such a new
link is subsumed by a path in D, it is not clear a priori whether the result
of simulating the decomposition rule in D′ also produces a link that is
subsumed by the h-image of the path in D′. The following theorem states
that this is the case. It asserts that h can be complemented canonically by

a bijection h between the newly introduced links such that morphisms are

69

Chapter 4. Development Graph Transformations

still respected: each newly added link for D is in parallel to a sequence
of links that already exists in D with the same morphism. Similarly, each
newly added link in D′ is in parallel to a sequence of links with the same
morphism in D′. Links in D and D′, however, are related by h, which
respects morphisms, and so the morphisms of the new links are related by

h.

Theorem 4.5 Let h be a development graph isomorphism between D =
(N, A, C) and D′ = (N ′, A′, C′) that respects the morphisms. Then there is

a bijection h between C ↓N,A and C′ ↓N′ ,A′ such that for each link l : n1
σ l

−→
n2 ∈ C ↓N,A

• h(l) is a link from h(n1) to h(n2), and

• there is a sequence of links l1, . . . , lm and a sequence of nodes k0, . . . , km

such that

– k0 = n1 and km = n2,

– li is a link from ki−1 to ki (for 1 ≤ i ≤ m),

– σ l = σ lm ◦ · · · ◦σ l1 , and

– σh(l) = σh(lm) ◦ · · · ◦σh(l1)

We say that h induces h.

Proof of 4.5 Let D = (N, A, C) and D′ = (N ′, A′, C′) be development
graphs and h a development graph bijection that respects the morphisms.
We proceed by induction over the length of the derivation of C ↓N,A.

Base case: If C = C ↓N,A then both C′ = C′ ↓N′,A′ and h = h ∩ (C × C′)
satisfies the conditions of the theorem. It is easy to see that the decompo-
sition rule is applicable for C if it is for C′. For the subsumption rule, we
need to appeal to Definition 4.4 to see that a local link l in C is subsumed
by a path in A iff h(l) is subsumed by a path in A′.

Step case: The derivation has at least one rule application.

• Assume that we apply the subsumption rule, i.e. l is subsumed by a
path in A. Then Definition 4.4 says that h(l) is subsumed by a path
in A′, and thus the subsumption rule is also applicable to C′. The
two premisses now read (N, A, C \ {l}) and (N ′, A′, C′ \ {h(l)}). h
restricted to (C \ {l})× (C′ \ {h(l)}) trivially respects the morphisms.
Thus, the theorem holds by appeal to the induction hypothesis.

70

4.3. Changing the Content of Nodes or Links

• Assume that we apply the decomposition rule to link l ∈ C. Thus,
h(l) is also a global link, and we can apply the decomposition rule to
h(l) ∈ C′. For each local or global link l1 in A with target n1 there
is a corresponding link h(l1) in A′ with corresponding source and
target, and there are no more links in A′ with target h(n1). Thus, for

each new local link l2 : n0
σ l◦σ l1
−→ n2 in the premiss for C, there is a

corresponding local link l′2 : h(n0)
σh(l)◦σh(l1)

−→ h(n2), and similarly for
each new global link. We define a new bijection h1 for the premisses
by extending the graph of h by the pairs (l2, l′2). This extended h also
respects the morphisms for the premisses. Thus, again we can appeal
to the induction hypothesis.

�

This means that if h respects morphisms of D and D′, we can simulate
the application of development graph calculus rules in D by applying the
corresponding rules in D′, yielding a set of proof obligation links for D

and D′ that are related by the canonical complement h of h. Thus, given a
proof obligation link

l : n
σ

−→ n′

for D, we compare it to the corresponding proof obligation link

h(l) = l′ : h(n)
σ ′

−→ h(n′)

for D′. The differences between the local signatures and axioms of n, n′

andσ on the one side and h(n), h(n′),σ ′ on the other, respectively, directly
influence the difference between proof obligations resulting from l and
from l′:

{

Φn′

D |=
Σn′ Sen(σ)(ϕ) |ϕ ∈ Φn

}

vs.
{

Φ
h(n′)
D′ |=

Σh(n′) Sen(σ ′)(ϕ) |ϕ ∈ Φh(n)
}

However, the proof obligations also refer to axioms in Φn′

D and Φ
h(n′)
D′ that

are inherited by nodes n′ and h(n′) according to the definitorial links in D
and D′. Since the local axioms of other nodes may have changed as well,
this implies there are indirect influences on the changed proof obligations.

The different classes of transformations that we present in the rest of
this chapter are instances of this pattern – an exception to this occurs when
moving axioms, cf. Section 4.3.1.

71

Chapter 4. Development Graph Transformations

4.3.1 Adding, Deleting, and Moving Axioms

A relatively simple class of development graph transformations is given
by keeping the signatures and link morphisms constant and only adding,
removing, or moving axioms.

Definition 4.6 (DG transformation: Traxioms) Two development graphs D =
(N, A, C) and D′ = (N ′, A′, C′) are in relation Traxioms, iff there exists a devel-
opment graph isomorphism h between D and D′ and the signatures of the nodes
and the morphisms of the links are unchanged, i.e.

• Σn = Σh(n) for every n ∈ N and

• σ l = σh(l) for every l ∈ A ∪ C.

The local axiomsΦn of a node n may be different from those of h(n). Since
the link morphisms are unchanged by h the development graph bijection
trivially respects the morphisms. Using Theorem 4.5 we know for each

proof obligation link l : n
σ

−→ n′ for D that the corresponding proof obli-
gation link for D′ is from h(n) to h(n′), carries the same morphism σ , and
that h(n) and h(n′) have the same signatures as n and n′. The node h(n)
may, however, have different axioms than n. Since there is a proof obliga-

tion for D for each axiom in Φn, and similarly for D′ and Φh(n), we have

to distinguish the cases that (i)ϕ is in Φn but not in Φh(n), (ii) thatϕ is not

in Φn but is in Φh(n), and (iii) thatϕ is in both.

(i) The proof obligation for l andϕ ∈ Φn does not have a corresponding
proof obligation in obl(D′), so the proof obligation can be thrown
away.

(ii) The proof obligation o for h(l) andϕ ∈ Φh(n) does not have a corre-
sponding proof obligation is obl(D), and thus we need to add o as a
new proof obligation.

(iii) Let Φn′

D |=
Σn′ Sen(σ)(ϕ) be the proof obligation for D, l, and ϕ ∈

Φn. We know thatϕ, andσ are unchanged, and that Σn′
= Σn. Thus,

the only possible difference is between Φn′

D and Φ
h(n′)
D′ , and the cor-

responding proof obligation for D′, h(l), and ϕ reads Φ
h(n′)
D′ |=

Σn′

Sen(σ)(ϕ).

Axioms can be moved from one node to another one by removing them
from one node and adding them to another one. Note that moving an ax-
iom may include translating the sentence according to the relationship in

72

4.3. Changing the Content of Nodes or Links

n2 • ⊲=======
σ23

⊲ • n3

n1 •

σ12

~
w
w
w
w
w
w
w
w
w

(a)

n2 • ⊲
σ23

⊲ • n3

n1 •

σ12

~
w
w
w
w
w
w
w
w
w

⊲ σ 13
=
σ 23

◦σ
12
⊲

(b)

Figure 4.3: Moving axioms

terms of signature morphisms between the old and new node of the axiom.
One would think that moving an axiom along a link and mapping it corre-
spondingly along the morphism of the link would allow us to leave many
obligations unchanged because we can determine that the axiom is still
visible, although it is inherited from another node. As it turns out, where
the axiom is used as an assumption, this is handled completely satisfacto-

rily by case (iii) above: it so happens that Φ
h(n′)
D′ is the same as Φn′

D in this
case. However, if the axiom played the rôle of a conjecture things are dif-
ferent. The reason is that we have associated proof obligations with proof
obligation links. For instance, consider the simple development graph
given in Figure 4.3(a). Again, postulated links, like the one linking n2

and n3, have been drawn with an arrow head and tail to distinguish them
from definitorial links. Applying the development graph calculus yields
the graph in Figure 4.3(b) containing two local proof obligation links. Ifϕ
is a local axiom of node n1, then one of the proof obligations for the link
between n1 and n3 reads

Φ
n3
D |=Σn3 Sen(σ13)(ϕ) . (4.1)

Movingϕ from n1 to n2, where it now readsϕ′ = Sen(σ12)(ϕ), makes the
proof obligation (4.1) obsolete for the link between n1 and n3, but intro-
duces the obligation

Φ
n3
D |=Σn3 Sen(σ23)(ϕ

′) (4.2)

for the link between n2 and n3. Sinceσ13 = σ23 ◦σ12 andϕ′ = Sen(σ12)(ϕ),
(4.1) and (4.2) turn out to be the same proof obligation. Of course, the ar-
gument is independent of whether the axiom is mapped along a link that
was used to decompose a global postulated link. However, the argument
only works if the link is a definitorial link.

73

Chapter 4. Development Graph Transformations

Moving an axiom ϕ′ backwards over a link is somewhat more com-
plicated: since Sen(σ) is not surjective in general it is not clear whether
there is a sentenceϕ such thatϕ′ = Sen(σ)(ϕ) for the givenϕ′. However,
if such a ϕ exists then the argument above can be repeated, so the proof
obligation remains unchanged but is attached to another link.

It is possible to define a separate class of transformations for moving
axioms, or to relax the idea that proof obligation links can be inspected
one by one. It would then be necessary to search, for each newly in-

troduced proof obligation associated with h(n)
σ

−→ h(n′), whether the
same proof obligation was already associated with another proof obliga-

tion link n′′ σ ′′

−→ n′ in the original development graph (note the same tar-
get node). This also captures a further generalisation, which allows an
arbitrary, undirected path along which the axiom is moved, sometimes
along, sometimes backwards over a definitorial link. No matter which of
these strategies is chosen, the effects that occur for proof obligations are
the same.

The development graph transformation Traxioms can be propagated to
proof obligations

• by throwing obsolete proof obligations away,

• by adding new proof obligations, and

• by changing existing proof obligations by adding or removing as-
sumptions.

These are exactly the same effects on proof obligations that we determined
for the development graph transformation Trlinks.

4.3.2 Changing Axioms

The examples in Chapter 2 show an important class of transformations
that are concerned with axioms that have to be changed, i.e. the transfor-
mations deal with replacing subformula or subterm occurrences of a given
formula in a controlled fashion. Of course, this can be simulated by remov-
ing the old axiom and adding the new one using Traxioms, which we have
introduced in the preceding section. However, in practice it is vitally im-
portant to know the relationship between the old and the new axiom and
to use it to transform the proofs. This relationship describes two things.
Given two sets of axioms, first it describes which axiom in the second set

74

4.3. Changing the Content of Nodes or Links

results from which axiom in the first. Second, it describes for each such
pair how the two axioms relate in detail. For instance, if we have

Γ1 = {ϕ1,ϕ3,ϕ4} and

Γ2 = {ϕ1,ϕ2 ⇒ ϕ3,ϕ4} ,

then a possible association is

ϕ1 is associated withϕ1 ,

ϕ3 is associated withϕ2 ⇒ ϕ3 , and

ϕ4 is associated withϕ4 .

For the second pair, the detailed relationship between the two formulae is
that the original formula becomes the conclusion of an implication, with a
new precondition.

In the context of development graph transformations, we can abstract
from the second aspect. All we use is the association between axioms.

The following transformations assume that the structure of the devel-
opment graph, the signatures and the link morphisms are unchanged.
However, in each node several axioms may be changed.

We represent changes to the set of local axioms for a given node n by
a binary relation qn, called a sentence replacement. Each pair of axioms
that is in relation qn represents the change of a local axiom ϕ to a local
axiom ϕ′. Note that we do not require qn to be a partial function, and
thus an axiom ϕ can be changed to more than one other axiom, say ϕ′

1
and ϕ′

2. This is necessary for the following reason. Below, we extend
qn to q∗n such that q∗n represents the changes to the global set of axioms.
To this end, we inherit the changes represented by qn along definitorial
links. In this process, two pairs of sentences (ϕ1,ϕ′

1) and (ϕ2,ϕ′
2) that are

in relation qn can be mapped to the pairs (Sen(σ)(ϕ1), Sen(σ)(ϕ′
1)) and

(Sen(σ)(ϕ2), Sen(σ)(ϕ′
2)), which are then required to be in relation q∗n′ for

the target node n′. It is entirely possible that Sen(σ)(ϕ1) = Sen(σ)(ϕ2)
and Sen(σ)(ϕ′

1) 6= Sen(σ)(ϕ′
2). In this case, Sen(σ)(ϕ1) is replaced by

two sentences, i.e. Sen(σ)(ϕ′
1) and Sen(σ)(ϕ′

2), and thus sentence re-
placements are represented by binary relations rather than partial func-
tions on sentences.

Definition 4.7 (Sentence replacement) Let Γ ⊆ Sen(Σ) be a set of sentences.
A sentence replacement for Γ is a binary relation q ⊆ Γ × Sen(Σ). We also
write q for the function on sets of sentences defined by

q(Γ) =
(
Γ \

{
ϕ | (ϕ,ϕ′) ∈ q

})
∪

{
ϕ′ | (ϕ,ϕ′) ∈ q

}
. (4.3)

75

Chapter 4. Development Graph Transformations

Thus, we write q(Γ) for the set that results from Γ by the replacement. Us-
ing sentence replacements, the definition of the development graph trans-
formation is as follows.

Definition 4.8 (DG transformation: Trocc) The two development graphs D =
(N, A, C) and D′ are in relation Trocc iff there exist a development graph isomor-
phism h between D and D′ and an N-indexed family of sentence replacements
(qn)n∈N such that

• the signatures of h-related nodes and the morphisms of h-related links are
equal:

Traxioms(D, D′) and

• the local axioms of h-related nodes are related by qn:

Φh(n) = qn(Φn) for every node n ∈ N.

We say that D and D′ are related by Trocc wrt. h and (qn)n∈N.

Obviously, Trocc is a subrelation of Traxioms as given in Definition 4.6 for
adding, removing, and moving axioms: we can simulate changing a for-
mula by removing the old one and adding a new one. However, the in-
tention for Trocc is different since Trocc makes explicit use of the knowledge
that ϕ and ϕ′ are similar, whereas in Traxioms we assumed that different
axioms are not usefully related. In the case of Traxioms, our best bet was to
remove the old and add the new sentence. Our intention with Trocc is to
propagate the information about similarities of the old and new sentence
to proof obligations so that the information can be used to transform the
covering proofs. Since proof obligations are formulated in terms of the
global set of axioms of the source of their associated proof obligation link,
we need to determine the changes to global set of axioms of those nodes.

Definition 4.9 (Global changes induced by Trocc, h and (qn)n∈N) Let D =
(N, A, C) and D′ be two development graphs related by Trocc wrt. the develop-
ment graph bijection h and (qn)n∈N. Then the global changes induced by
Trocc, h, and (qn)n∈N is the N-indexed family of sentence replacements (q∗n)n∈N

consisting of the smallest sets q∗n ⊆ Sen(Σn)× Sen(Σn) such that

• qn ⊆ q∗n,

• for eachϕ ∈ Φn, if (ϕ,ϕ′) 6∈ qn for anyϕ′ 6= ϕ then (ϕ,ϕ) ∈ q∗n,

76

4.3. Changing the Content of Nodes or Links

• (ϕ,ϕ′) ∈ qn1 and n1
σ

−→ n2 ∈ A imply

(Sen(σ)(ϕ), Sen(σ)(ϕ′)) ∈ q∗n2
,

and

• (ϕ,ϕ′) ∈ q∗n1
and n1

σ
=⇒ n2 ∈ A imply

(Sen(σ)(ϕ), Sen(σ)(ϕ′)) ∈ q∗n2
.

(q∗n)n∈N is well-defined since the definitorial links are acyclic, and (q∗n)n∈N

relates the global axioms of node n and node h(n). This is captured by the
following theorem.

Theorem 4.10 Let D = (N, A, C) and D′ be in relation Trocc wrt. h and
(qn)n∈N, and let (q∗n)n∈N be the global changes induced by Trocc, h, and

(qn)n∈N. Then, for each node n ∈ N, Φ
h(n)
D′ = q∗n(Φn

D) holds.

Proof of 4.10 The idea is that the global set of axioms of n is given by

Φn
D =

{
ϕ | (ϕ,ϕ′) ∈ q∗n

}
,

i.e. the projection of the graph of q∗n on its domain, and the global axioms
of h(n) by

Φ
h(n)
D′ =

{
ϕ′ | (ϕ,ϕ′) ∈ q∗n

}
,

i.e. the projection on the codomain. The proof is then by straightforward
induction on the depth of nodes, using the fact that each member ofΦn

D is
either a local axiom of n or is aσ-instance of a local axiom of some node m
such that m

σ
−→ n or m

σ
=⇒ n is in A, and similarly for Φ

h(n)
D′ and h(n). �

This allows us to propagate the changes to the proof obligations as follows.

Theorem 4.11 Let D and D′ be development graphs in relation Trocc wrt. h
and (qn)n∈N, and let (q∗n)n∈N be the global changes induced by Trocc, h, and
(qn)n∈N. Then for each proof obligation for D′ of the form

Φ
h(n2)
D′ |=Σn2 Sen(σ)(ϕ′) ϕ′ ∈ Φh(n1) (4.4)

there is a proof obligation for D of the form

Φ
n2
D |=Σn2 Sen(σ)(ϕ) ϕ ∈ Φn1 (4.5)

77

Chapter 4. Development Graph Transformations

with

Φ
h(n2)
D′ = q∗n2

(Φn2
D) and (4.6)

Φh(n1) = qn1(Φ
n1) . (4.7)

Proof of 4.11 Due to the definition of Trocc the link morphisms remain
unchanged, and thus the development graph bijection h trivially respects
the morphisms. Thus, according to Theorem 4.5, the development graph

bijection h induces a bijection h between the proof obligation links for D

and D′ such that for every proof obligation link l : n1
σ

−→ n2 ∈ C ↓N,A

we have h(l) : h(n1)
σ

−→ h(n2), i.e. the two links have the same link mor-
phism. Additionally, the local and global sets of axioms of two nodes n
and h(n) are related by the sentence replacements qn and q∗n, respectively.
�

We first look at the consequences this has for the conjectures of the proof
obligations by making a case distinction over whetherϕ′ ∈ qn1(Φ

n1) is in
Φn1 or not.

1. Ifϕ′ is a member of Φn1 then there is an old proof obligation for D

(a) with the same conjecture, and

(b) the changes in the assumptions are represented by q∗n2
.

2. Otherwise, there is a pair (ϕ,ϕ′) ∈ qn1 , and thus there is an old proof
obligation for D that differs from the new one as follows:

(a) the conjectureϕ has been changed toϕ′, and

(b) the changes in the assumptions are represented by q∗n2
.

We can represent both cases uniformly along the following lines: Let q∗ be
the sentence replacement over Σn1-sentences that is the relation {(ϕ,ϕ)}
for case 1 and that consists of the single pair (ϕ,ϕ′) for case 2. The new
proof obligation uniformly results from the old one by applying q∗ to the
singleton set {ϕ} consisting of the conjecture and q∗n2

to the assumptions.
The development graph transformation Trocc can thus be propagated to

proof obligations

• by mapping the assumptions and the conjecture according to two
sentence replacements.

78

4.3. Changing the Content of Nodes or Links

4.3.3 Extending and Restricting Signatures

Dually to adding axioms and keeping the signatures, signatures can also
be extended while all axioms are kept unchanged. In terms of the exam-
ples in Chapter 2, we add signature symbols to a node.

We formalize this by assuming signature extensions to be signature
morphisms. Then, if the signature of a node n is extended, which we now

write as Σh(n) = σΣn for an appropriate σ , an existing proof obligation

Γ |=Σn ϕ becomes Sen(σ)(Γ) |=σΣn Sen(σ)(ϕ) ,

i.e. the whole proof obligation is simply mapped along σ . The covering
proof can then be mapped along Prf(σ).

The situation in which the signature of a node is restricted without
changing the axioms is only marginally more complicated. Obviously, ax-
ioms can only be kept unchanged if the signature restriction has no influ-
ence on the axioms, i.e. if the removed signature items do not occur in the
local axioms. Formally, we express this simply by saying that, whenever
a restriction is fit, it is the converse of an extension, i.e. there is a mor-
phism σ : Σh(n) → Σn such that all axioms of node n can be represented
as Sen(σ)(ϕ) for someϕ, andϕ is an axiom in h(n). For signature restric-
tions, we expect ϕ to be determined uniquely, and thus require Sen(σ)
to be injective for signature extensions σ . For practical reasons we do
not want to restrict signature extensions to be inclusions on the level of
sentences: this would force any sentence representation to make the set
Sen(Σ) of sentences over Σ a subset of the set Sen(σΣ) of sentences over
σΣ for every extension σ – which is technically not the case in most con-
crete support tool implementations. What is usually the case, though, is
that Sen(σ)(Sen(Σ)) ⊆ Sen(σΣ). Thus our definition of signature exten-
sions is the following:2

Definition 4.12 (Signature extension) If a signature morphism σ : Σ → Σ′

is a signature extension, then Sen(σ) is an injective mapping.

Since every function is trivially surjective on its range, Sen(σ) is a bijective
function between Sen(Σ) and Sen(σ)(Sen(Σ)). Thus, the inverse exists
for the range, and we assume that in practice for concrete institutions and
the corresponding notions of signature extension, it can easily enough be
determined.

We can now extend signature extensions and restrictions to whole de-
velopment graphs.

2Note that the reverse is not required: not every injective mapping is required to be a
signature extension.

79

Chapter 4. Development Graph Transformations

Definition 4.13 (DG transformation: Trsignatures) Development graphs D =
(N, A, C) and D′ are in relation Trsignatures wrt. a development graph isomor-
phism h between D and D′ and an N-indexed family of signature morphisms
(σn)n∈N iff

• for each node n ∈ N there is a signature extension σn such that

Σh(n) = σnΣ
n and Φh(n) = Sen(σn)(Φn) (4.8)

(for extensions) or

σnΣ
h(n) = Σn and Sen(σn)(Φh(n)) = Φa , (4.9)

(for restrictions) and

• for each link l ∈ A ∪ C from n1 to n2 with link morphismσ l the diagram

Σn1
σ l

- Σn2

Σh(n1)

σn1

?

6

σh(l)
- Σh(n2)

σn2

?

6

(4.10)

commutes in Sig.

In (4.10), we have drawn the links between Σni and Σh(ni) as two-sided
arrows to visualise that the arrow may either be up or down, depending
on whether the signature of node ni is extended or restricted. If, e.g., the
left arrow points upwards and the right one downwards, the condition

reads σn2 ◦σ
h(l) ◦σn1 = σh(l).

This means that the signature of each node is either extended or re-
stricted. The side condition (4.10) on the new signature morphisms en-
sures that the mapped axioms are mapped along links in essentially the
same way as before. Otherwise, the definition would allow arbitrary map-
pings along links, and this would preclude us from propagating Trsignatures

to proof obligations. Formally, the side condition ensures that h respects

the morphisms, so that there is a bijection h between proof obligation links
and Theorem 4.5 is applicable.

Theorem 4.14 Let D = (N, A, C) and D′ be in relation Trsignatures wrt. h

and (σn)n∈N. Then h respects the morphisms.3

Proof of 4.14 In Figure 4.4, the four trapeziums (e.g. σn0 , σ l1 , σn1 , and

3Cf. Definition 4.4 on page 69.

80

4.3. Changing the Content of Nodes or Links

Σh(n1) - Σh(nm−1)

Σn1

σn1

?

6

- Σnm−1

σnm−1

?

6

Σh(n0) �
σn0 -

σ
h(

l 1
)

-

Σn0

σ
l 1

-

Σn � σn -

σ lm

-

Σh(n)

σ h(lm)

-

Σn′
1 -

σ l ′
1

-

Σn′
k−1

σ
l′ k

-

Σh(n′
1)

σn1

?

6

-

σ h(l ′
1)

-

Σh(n′
k−1)

σn′
k−1

?

6 σ
h(

l′ k
)

-

Figure 4.4: Signature adjustment respects the morphisms

81

Chapter 4. Development Graph Transformations

f n1 •

n2

• ⊳
σ23

⊳

===========

σ
12

⇒
• n3

?
n4 •

==
==

==
==

==
=

σ 42

⇒

Figure 4.5: Moving signature symbols from one node to another one

σh(l1)) commute because of (4.10). Similarly, the two boxes commute be-
cause each of them consists of finitely many boxes that in turn commute
due to (4.10). Thus the outermost polygon commutes in Sig iff the inner-
most polygon commutes, as required. �

The definition of Trsignatures allows us to add signature symbols to a
node and propagate them to all other nodes in which they become visible.
In this case, the signatures of all nodes are extended, all arrows in (4.10)
point downwards. Similarly, it is possible to remove symbols and also
remove them from any other nodes in which they are no longer visible,
provided that the symbol is not used in any of those nodes either. Here,
the signature of each node is restricted, i.e. all arrows point upwards.

Finally it allows us to move signature symbols from one node to an-
other one: assume that we move a symbol f from n1 to n4 in the develop-
ment graph of Figure 4.5. For simplicity, let us further assume that bothσ12

and σ42 are injections. Thus, the signature of n1 is restricted by removing
f , the signature of n4 is extended by adding f , and the signature of n2 and
n3 stay the same. The morphism between n1 and n2 is changed to be the
injection morphism from the restricted signature of n1 into the signature
of n2, and similarly for n4. It can easily be checked that the original devel-
opment graph and the resulting one are in relation Trsignatures according to
Definition 4.13.

Let us investigate how Trsignatures is propagated to proof obligations:
assume that D = (N, A, C) and D′ = (N ′, A′, C′) are related by Trsignatures

wrt. h and (σn)n∈N. First, we show that the signature extensions σn relate

82

4.3. Changing the Content of Nodes or Links

Sen(Σn1)
Sen(σ l) - Sen(Σn2)

Sen(Σh(n1))

Sen(σn1)

?

6

Sen(σh(l))
- Sen(Σh(n2))

Sen(σn2)

?

6

Figure 4.6: Signature adjustment: sentence functor

the sets of global axioms of each pair of h-related nodes n and h(n) in D
and D′. Then we will have a look at the proof obligation links.

Lemma 4.15 Let D = (N, A, C) and D′ = (N ′, A′, C′) be two development
graphs in relation Trsignatures wrt. h and (σn)n∈N. Then, for each node n ∈ N
either

Φ
h(n)
D′ = Sen(σn)(Φn

D) or Φn
D = Sen(σh(n))(Φ

h(n)
D′) (4.11)

holds.

Proof of 4.15 First, note that since Sen is a functor and Diagram (4.10) on
page 80 commutes for each link l ∈ A ∪ C, the diagram in Figure 4.6 also
commutes in Set, where again the double-headed arrows stand for down-
wards or upwards arrows, depending on whether the respective node is
extended or restricted, respectively. We proceed by induction over the
depth of nodes in A.4

Base case: We have #A(n) = 0 = #A′(h(n)), so there are no links in A
with target n, and therefore no links in A′ with target h(n). According to

Definition 3.5 we have thus Φn
D = Φn and Φ

h(n)
D′ = Φh(n). Depending on

whether the signature of node n is extended or restricted, assumption (4.8)
or (4.9) of Definition 4.13 directly yields (4.11).

Step case: First, we show that for every memberϕ ∈ Φn
D there is a member

ϕ′ ∈ Φ
h(n′)
D′ such that ϕ′ = Sen(σn)(ϕ) or ϕ = Sen(σn)(ϕ′) – then we

show the other direction.

4For the definition of the depth of a node n wrt. the definitorial links A, written #A(n),
cf. Definition 3.14 on page 48.

83

Chapter 4. Development Graph Transformations

ϕ0
Sen(σ l) - ϕ

ϕ′
0

Sen(σn0)

?

6

Sen(σh(l))
- ϕ′

Figure 4.7: Signature adjustment: sketch of inherited axioms

⇒: According to Definition 3.5, each memberϕ ∈ Φn
D is either a member

of Φn or it is inherited via an incoming definitorial link, global or
local, and we distinguish these cases:

1. ϕ ∈ Φn: Depending on whether the signature of n is extended or

restricted, by (4.8) or (4.9) there is a memberϕ′ ∈ Φh(n) such that
ϕ′ = Sen(σn)(ϕ) orϕ = Sen(σn)(ϕ′) as required.

2. ϕ inherited by local link l : n0
σ

−→ n: There is an axiomϕ0 ∈ Φn0

such that ϕ = Sen(σ)(ϕ0). Because of (4.8) or (4.9), there is an

axiom ϕ′
0 ∈ Φh(n0) such that ϕ′

0 = Sen(σh(n0))(ϕ0) or ϕ0 =

Sen(σn0)(ϕ
′
0). Let ϕ′ = Sen(σh(l))(ϕ′

0). This is visualised in
Figure 4.7. Since h is a development graph isomorphism, h(l) is

a link from h(n0) to h(n) and we have ϕ′ ∈ Φh(n), because ϕ′
0

is inherited along h(l). Finally, the diagram in Figure 4.6 com-
mutes, and thus we haveϕ′ = Sen(σn)(ϕ) orϕ = Sen(σn)(ϕ′)
as required.

3. ϕ inherited by global link l : n0
σ

=⇒ n: The argument is similar
to case 2. The difference is that we haveϕ0 ∈ Φn0

D , i.e. in the set
of global axioms of node n0 rather than the local axioms. Accord-
ingly, instead of (4.8) or (4.9), we use the induction hypothesis

to conclude that ϕ′
0 ∈ Φ

h(n0)
D′ such that ϕ′

0 = Sen(σh(n0))(ϕ0) or

ϕ0 = Sen(σn0)(ϕ
′
0). Then again, the diagram in Figure 4.6 com-

mutes, and we infer ϕ′ = Sen(σn)(ϕ) or ϕ = Sen(σn)(ϕ′) as
required.

⇐: Since h is a bijection and the relevant conditions (4.8), (4.9), (4.10)
and (4.11) are symmetric, we get the backward direction by the same
argument, if only we use the bijection h−1.

�

84

4.3. Changing the Content of Nodes or Links

We can now say that if two development graphs D = (N, A, C) and D′ =
(N ′, A′, C′) are in relation Trsignatures wrt. h and (σn)n∈N, for each proof
obligation link

l′ : h(n1)
σ l′

−→ h(n2) ∈ C′ ↓N′,A′

there is a proof obligation link

l : n1
σ l

−→ n2 ∈ C ↓N,A

such that

• Φn1 = Sen(σn1)(Φ
h(n1)) or Sen(σn1)(Φ

n1) = Φh(n1), and

• Φn2
D = Sen(σn2)(Φ

h(n2)
D′) or Sen(σn2)(Φ

n2
D) = Φ

h(n2)
D′ .

Here we have used the fact that h respects morphisms as shown in Theo-
rem 4.14. For simplicity, let us assume that both n1 and n2 are extended
rather than restricted. Thus, we can write each proof obligation

Φ
h(n2)
D′ |=

Σh(n2) Sen(σ l′)(ϕ′) ϕ′ ∈ Φh(n1)

for D′ in the form

Sen(σn2)(Φ
n2
D) |=σn2

Σn2 Sen(σ l′)(Sen(σn1)(ϕ)) ϕ ∈ Φn1 (4.12)

for some proof obligation

Φ
n2
D |=Σn2 Sen(σ l)(ϕ) ϕ ∈ Φn1 (4.13)

for D. The following theorem allows us to replace Sen(σ l′) ◦ Sen(σn1) in
(4.12) by Sen(σn2) ◦ Sen(σ l).

Theorem 4.16 Let D = (N, A, C) and D′ be development graphs in rela-
tion Trsignatures wrt. h and (σn)n∈N. Then each link l ∈ C ↓N,A is mapped

by h to a link l′ = h(l) such that the diagram

Sen(Σn1)
Sen(σ l) - Sen(Σn2)

Sen(Σh(n1))

Sen(σn1)

?

6

Sen(σh(l))
- Sen(Σh(n2))

Sen(σn2)

?

6

commutes in Set.

85

Chapter 4. Development Graph Transformations

Proof of 4.16 By Theorem 4.5 and the diagram of Figure 4.6, for each link
l ∈ C ↓N,A there is a sequence of links l1, . . . , lm and nodes k1, . . . , km−1

such that

Sen(Σn1)
Sen(σ l1) - Sen(Σk1) - · · ·

Sen(Σh(n1))

Sen(σn1)

?

6

Sen(σh(l1))
- Sen(Σh(k1))

Sen(σk1
)

?

6

- · · ·

· · · - Sen(Σkm−1)
Sen(σ lm) - Sen(Σn2)

· · · - Sen(Σh(km−1))

Sen(σkm−1
)

?

6

Sen(σh(lm))
- Sen(Σh(n2))

Sen(σn2)

?

6

commutes in Set. The outer rectangle thus commutes also as required. �

Because of Theorem 4.16, we can write (4.12) as

Sen(σn2)(Φ
n2
D) |=σn2

Σn2 Sen(σn2)(Sen(σ l)(ϕ)) ϕ ∈ Φn1

or
Obl(σn2)(Φ

n2
D |=Σn2 Sen(σ l)(ϕ)) ϕ ∈ Φn1 . (4.14)

A similar argument can be applied to the cases where the signature of one
the nodes is extended and the other restricted, and where both signatures
are restricted. In case the signature of n2 is restricted, the old proof obliga-
tion (4.13) and the corresponding new one (4.14) read

Obl(σh(n2))(Φ
h(n2)
D′ |=

Σh(n2) Sen(σh(l))(ϕ′)) ϕ′ ∈ Φh(n1)

and
Φ

h(n2)
D′ |=

Σh(n2) Sen(σh(l))(ϕ′) ϕ′ ∈ Φh(n1) .

instead. Note that σn2 is applied in the other direction.
As the overall result, the development graph transformation Trsignatures

can be propagated to proof obligations

• by mapping existing proof obligations along signature extensions
and

• by mapping existing proof obligations backwards along signature
extension.

86

4.3. Changing the Content of Nodes or Links

4.3.4 Translating Development Graphs

Signature extensions and restrictions relate nodes in different develop-
ment graphs via signature morphisms. We will weaken this strong re-
quirement in the following and study transformations that relate associ-
ated nodes by translations. A sentence translation is an arbitrary mapping
from sentences over one signature to sentences in another signature; a sen-
tence translation is associated with a signature translation that relates the
source and target signature.

The following example captures this idea: Let f be a function symbol
in a signature Σ and let Σ′ be the signature that is like Σ except that f has
an additional parameter. Rewriting each Σ-term using the rewriting rule

f (T1 , . . . , Tn) 7→ f (T1 , . . . , Tn, t)

for a fixed Σ′-term t exhaustively is a sentence translation.

Remark 4.17 Note that signature and sentence translations are mappings
similar to signature and sentence morphisms. Like morphisms, they can be
used to formulate development graph transformations that do not change
the structure of the development graph. These are called development graphs
translations in the following.

Many concrete development graph transformations can be formulated by
development graph translations. A development graph translation applies a
sentence translation to each node of the development graph such that the
independent translations of the nodes are consistent over the whole graph.
This requires that the signature morphisms on links can be adjusted appro-

priately: for instance, if a development graph contains the link n1
σ

=⇒ n2

and f is a symbol in Σn1 to which we add an additional required argument
of type τ ∈ Σn1 , then we need to add an additional argument of type στ
to σ f in Σn2 .

Before we can define development graph translations, we need to de-
fine signature and sentence translations and clarify their relationship with
the underlying institution and proof representation. The idea is simple:
We extend Sig to XSig by adding all signature translations as additional
arrows. We also extend the functor Sen to XSen such that XSen has XSig
as its domain. This necessitates explicit additional definitions for the cases
that are not covered by the original functor Sen. Since the definition of cat-
egories and functors requires that arrows are closed under concatenation,
we need to ensure that the category XSig and all the functors are well-
defined, i.e. there are enough morphisms in the respective categories. This

87

Chapter 4. Development Graph Transformations

allows us to present concrete signature translations together with the re-
spective definitions for the functors in the reference instantiation one after
another, independently of each other.

Definition 4.18 (Signature and sentence translations) An extended cate-
gory of signatures is a category XSig such that |XSig| = |Sig| and each Sig-
arrow σ : Σ → Σ′ is also an XSig-arrow. An extended sentence functor for
XSig is a functor XSen : XSig → Set such that Sen and XSen agree on objects
and on Sig-arrows, i.e.

• XSen(Σ) = Sen(Σ) for any Σ ∈ |Sig| = |XSig| and

• XSen(σ) = Sen(σ) for any Sig-arrow σ .

An XSig-arrow ϑ : Σ → Σ′ is called a signature translation from Σ to Σ′.
Similarly, if ϑ : Σ → Σ′ is a signature translation then XSen(ϑ) : Sen(Σ) →
Sen(Σ′) is called a sentence translation.

Recall that signature morphisms preserve satisfaction, cf. Definition 3.1 on
page 40. Signature translations, on the other hand, do not have to satisfy
the satisfaction condition (3.1). The exact statement of the satisfaction con-
dition relies on the standard notion of σ-reducts. No standard notion of
mapping models backwards over signature translations exists, however.
Thus, we do not need to define the equivalent of a σ-reduct for transla-
tions, and consequently, no extension of the functor Mod to XSig is re-
quired.

We will continue to use σ for Sig-morphisms (and XSig-arrows that
are Sig-morphisms, i.e. satisfy the satisfaction condition) and we will use
ϑ to range over signature translations that may or may not obey the satis-
faction condition.

We can now define the notion of a development graph translation from
one development graph to another one: it consists of a bijection between
the two development graphs, a translation from each node to its image
under the bijection, and of link morphisms for the new links. The formal
definition is as follows.

Definition 4.19 (DG transformations: Trtranslate) Let D = (N, A, C) and
D′ be development graphs. A development graph translation (h, (ϑn)n∈N)
from D to D′ consists of

• a development graph bijection h from D to D′

• a signature translation ϑn : Σn → Σh(n) for each node n ∈ N

88

4.3. Changing the Content of Nodes or Links

such that for each node n ∈ N we have

Φh(n) = XSen(ϑn)(Φn) (4.15)

and for each link link l : n1
σ l

−→ n2 from A ∪ C, the diagram

Σn1
σ l

- Σn2

Σh(n1)

ϑn1

?

σh(l)
- Σh(n2)

ϑn2

?

(4.16)

commutes in XSig. Two development graphs D and D′ are in relation Trtranslate

iff there is a development graph translation from D to D′.

Theorem 4.20 Let (h, (ϑn)n∈N) be a development graph translation be-
tween D = (N, A, C) and D′. Then h respects the morphisms.5

Proof of 4.20 The proof is similar to the one for Theorem 4.14 on page 80,
except that instead of signature adjustments σni

we now have sentence
translations ϑni

between the nodes ni and h(ni). The diagrams commute
in XSig instead of in Sig. �

The signature translations ϑn consistently map the local axioms of the
nodes, cf. (4.15), and also the global sets of axioms, as the following lemma
shows:

Lemma 4.21 Let (h, (ϑn)n∈N) be a development graph translation between
D = (N, A, C) and D′. Then for each node n ∈ N,

Φ
h(n)
A′ = XSen(ϑn)(Φn

A) ,

i.e. the global set of axioms is mapped along ϑn.

The proof uses the following lemma.

5Cf. Definition 4.4 on page 69.

89

Chapter 4. Development Graph Transformations

Lemma 4.22 Let (h, (ϑn)n∈N) be a development graph translation between

D = (N, A, C) and D′ = (N ′, A′, C′). Then for any link l : n1
σ l

−→ n2 ∈
A ∪ C, the diagram

Sen(Σn1)
Sen(σ l) - Sen(Σn2)

Sen(Σh(n1))

XSen(ϑn1)

?

Sen(σh(l))
- Sen(Σh(n2))

XSen(ϑn2)

?

(4.17)

commutes in Set.

Proof of 4.22 Since XSen is a functor and diagram (4.16) commutes, dia-
gram (4.17) with Sen replaced by XSen also commutes. And since XSen
and Sen agree on signatures and signature morphisms, diagram (4.17)
commutes also. �

Proof of 4.21 We proceed by induction on the depths of nodes in N.

Base case: Let #A(n) = 0, i.e. there are no links in A with target n. Thus

there are no links in A′ = h(A) with target h(n), either. In this case, Φ
h(n)
A′

degenerates to Φh(n) and similarly Φn
A = Φn, and thus

Φ
h(n)
A′ = Φh(n) (4.15)

= XSen(ϑn)(Φn) = XSen(ϑn)(Φn
A) .

Step case: We first show that for eachϕ ∈ Φn
D, XSen(ϑn)(ϕ) ∈ Φ

h(n)
D′ , and

then the other direction: for each member ϕ′ ∈ Φ
h(n)
D′ , there is a member

ϕ ∈ Φn
D such thatϕ′ = XSen(ϑn)(ϕ).

⇒: Each memberϕ of Φn
D is either a member of Φn, or is inherited via a

local or global link with target n.

1. ϕ ∈ Φn: By (4.15), XSen(ϑn)(ϕ) ∈ Φh(n), and Φh(n) ⊆ Φ
h(n)
D′ as

required.

2. ϕ is inherited by a local link l : n0
σ

−→ n: There is a local axiom
ϕ0 ∈ Φn0 such thatϕ = Sen(σ l)(ϕ0). Because of (4.15), there is

an axiom ϕ′
0 ∈ Φh(n0) such thatϕ′

0 = XSen(ϑn0)(ϕ0). Since h is

a development graph bijection, there is a link h(n0)
σh(l)

−→ h(n) in

90

4.3. Changing the Content of Nodes or Links

ϕ0
Sen(σ l) - ϕ

ϕ′
0

XSen(ϑn0)

?

Sen(σh(l))
- ϕ′

XSen(ϑn)

?

Figure 4.8: Translation of global axioms

D′, and thus ϕ′ = Sen(σh(l))(ϕ′
0) is in Φ

h(n)
D′ . Additionally, h is

a development graph translation, so (4.17) is applicable, and we

have ϕ′ = Sen(σh(l))(ϕ′
0) = XSen(ϑn)(ϕ), as required. This is

visualised in the diagram in Figure 4.8.

3. ϕ is inherited by a global link l : n0
σ

=⇒ n: There is a axiom
ϕ0 ∈ Φ

n0
D such that ϕ = Sen(σ l)(ϕ0). By appeal to the induc-

tion hypothesis, there is an axiom ϕ′
0 ∈ Φ

h(n0)
D′ such that ϕ′

0 =
XSen(ϑn0)(ϕ0). Again, since h is a development graph bijection,

there is a link h(n0)
σh(l)

=⇒ h(n) in D′, and thusϕ′ = Sen(σh(l))(ϕ′
0)

is in Φ
h(n)
D′ , and by (4.17) again we have ϕ′ = Sen(σh(l))(ϕ′

0) =
XSen(ϑn)(ϕ), as required. This is visualised in Figure 4.8.

⇐: Each member of Φ
h(n)
D′ is either a local axiom of h(n) or is inherited

along a local or global link.

1. ϕ′ ∈ Φh(n): Again, (4.15) directly yields the required result.

2. ϕ′ inherited via a local link: Similarly to the argument for the
other direction, in the node h(n0) there is a local axiom ϕ′

0 such

that ϕ′ = Sen(σh(l))(ϕ′
0). According to (4.15) there is a local

axiomϕ0 in n0 such thatϕ′
0 = XSen(ϑn0)(ϕ0), and (4.17) ensures

XSen(ϑn)(Sen(σ l)(ϕ0)) = ϕ′.

3. ϕ′ inherited via a global link: We refer to the induction hypothe-
sis instead of to (4.15) to show that there is a suitableϕ0.

�

Similarly to sentences, we define extended goal and proof functors
XGoal and XPrf. The idea is that we can meaningfully talk about map-

91

Chapter 4. Development Graph Transformations

XObl(Σ)
XObl(ϑ) - XObl(Σ′)

XGoal(Σ)

ηΣ

?

XGoal(ϑ)
- XGoal(Σ′)

ηΣ′

?

XPrf(Σ)

conclΣ

6

XPrf(ϑ)
- XPrf(Σ′)

conclΣ′

6

Figure 4.9: Extended proof representation conditions

ping a goal along a translation: the mapping should respect the mapping
of sentences, and similarly for proofs.

Definition 4.23 (Extended proof representation) Let a proof representation
(Goal, η, Prf, concl) for the institution (Sig, Sen, Mod, |=) be given, and let
XSig and XSen be an extended category of signatures for Sig and an extended
sentence functor for XSig and Sen, respectively. (XGoal, η, XPrf, concl) is
an extended proof representation for the institution, XSig, and XSen iff the
following conditions are all met.

• XGoal : XSig → Set and XPrf : XSig → Set are functors that agree
with the functors Goal and Prf on objects and Goal- and Prf-arrows,
respectively:

– XGoal(Σ) = Goal(Σ) for any Σ ∈ |Sig| = |XSig| and

– XGoal(σ) = Goal(σ) for any Sig-arrow σ .

– XPrf(Σ) = Prf(Σ) for any Σ ∈ |Sig| = |XSig| and

– XPrf(σ) = Prf(σ) for any Sig-arrow σ .

• η and concl are also natural transformations for the the extended obligation
and proof functors, i.e. the diagram in Figure 4.9 commutes in Set, where
XObl = 2XSen × XSen.

For a signature morphism σ we expect Prf(σ) to map proofs rather di-
rectly, preserving their structure and gaps. For an arbitrary translation ϑ

92

4.3. Changing the Content of Nodes or Links

this expectation is not warranted in general. Of course, the idea is to intro-
duce concrete translations that map proofs sensibly. The framework, how-
ever, abstracts from questions about how well translations map to proofs.
Similarly to our treatment of signature adjustments, we now study how
a development graph translation propagates to proof obligations. Let h
and (ϑn)n∈N be a development graph translation from D to D′. Then,
by appeal to Theorem 4.5 we can say that for each proof obligation link

l′ : h(n1)
σ l′

−→ h(n2) for D′ there is a proof obligation link l : n1
σ l

−→ n2 for
D such that

Φh(n1) = XSen(ϑn1)(Φ
n1) because of (4.15), and

Φ
h(n2)
D′ = XSen(ϑn2)(Φ

n2
D) because of Lemma 4.21.

We can thus write each proof obligation

Φ
h(n2)
D′ |=

Σh(n2) Sen(σ l′)(ϕ′) (ϕ′ ∈ Φh(n1))

for D′ in the form

XSen(ϑn2)(Φ
n2
D) |=ϑn2

Σn2 Sen(σ l′)(XSen(ϑn1)(ϕ)) (ϕ ∈ Φn1) (4.18)

for some proof obligation

Φ
n2
D |=Σn2 Sen(σ l)(ϕ) (ϕ ∈ Φn1)

for D. The following theorem allows us to replace Sen(σ l′) ◦ XSen(ϑn1)
by XSen(ϑn2) ◦ Sen(σ l) in (4.18).

Theorem 4.24 Let D = (N, A, C) and D′ be development graphs such that
Trtranslate(D, D′), i.e. there is a development graph translation h, (ϑn)n∈N.

Each link l ∈ C ↓N,A is mapped by the induced bijection h on proof obli-

gation links to a link l′ = h(l) such that

Sen(Σn1)
Sen(σ l) - Sen(Σn2)

Sen(Σh(n1))

XSen(ϑn1)

?

Sen(σh(l))
- Sen(Σh(n2))

XSen(ϑn2)

?

commutes in Set.

93

Chapter 4. Development Graph Transformations

Proof of 4.24 The proof is analogous to the proof of Theorem 4.16 on
page 85, except that we appeal to diagram (4.17) instead of the diagram of
Figure 4.6. �

We can now write (4.18) as

XSen(ϑn2)(Φ
n2
D) |=ϑn2

Σn2 XSen(ϑn2)(Sen(σ l)(ϕ)) (ϕ ∈ Φn1)

or

XObl(ϑn2)
(

Φ
n2
D |=Σn2 Sen(σ l)(ϕ)

)

(ϕ ∈ Φn1) .

Thus, each development graph transformation from the class Trtranslate is
propagated to proof obligations

• by mapping proof obligations along signature translations.

4.4 Generic Construction of Translations

Most classes of development graph transformations are fixed on the level
of development graphs: given an institution, the definitions are complete.
Development graph translations are different in that they refer to sentence
translations. Interesting translations need to be defined in addition to the
institution.

We expect the process of defining interesting translations to be open-
ended. Therefore, it is not appropriate to require XSig and the extended
sentence functor and extended proof representation to be defined once
and for all in advance. Rather we would like to add specific translations
when they are needed without being concerned about other existing trans-
lations. We will briefly explain why this is indeed easily possible.

Given an extended category of signatures XSig1 for Sig, and extended
functors XSen1, XGoal1 and XPrf1, such that (XGoal1, η, XPrf1, concl) is
an extended proof representation for the institution, we define another ex-
tended category of signatures XSig2 with appropriate extended functors
XSen2, XGoal2, XPrf2 by the following construction: Let XSig2 have all
arrows of XSig1 plus a set Θ of explicitly given new ones, disjoint from
the collection of XSig1-arrows. (For formal reasons, this entails further ar-
rows; we address this aspect below.) First, for each ϑ ∈ Θ we explicitly
define the values of the new extended functors at those points ϑ, i.e. we
provide definitions for XSen2(ϑ), XGoal2(ϑ), and XPrf2(ϑ), such that the
translation ϑmakes the diagram in Figure 4.9 on page 92 commute. As we

94

4.4. Generic Construction of Translations

Σ0
ϑ1 - Σ1

- · · · - Σm−1
ϑm - Σm

Sen(Σ0)

Sen

? XSen2(ϑ1)- Sen(Σ1)

Sen

?
- · · · - Sen(Σm−1)

Sen

? XSen2(ϑm)- Sen(Σm)

Sen

?

Figure 4.10: Definition of translations

will see, this is enough to define the functors XSen2, XGoal2, and XPrf2

completely.
The definition of categories (Definition A.1) requires the arrows to be

closed under concatenation. In particular, the collection of arrows of XSig2
needs to be closed. Thus, we define XSig2 to be the smallest category that
includes all arrows from XSig1 and Θ and is closed under composition.
By construction, each XSig2-arrow ϑ can be represented in the form ϑm ◦
· · · ◦ ϑ1, where each ϑi is either an XSig1-arrow or a member of Θ. The
representation is not necessarily unique, though.

Nevertheless, this provides us with a way to define the value of the ex-
tended functors XSen2, XGoal2 and XPrf2 for an arbitrary XSig2-arrow
ϑ = ϑm ◦ · · · ◦ ϑ1. We restrict our attention to the extended sentence func-
tor; the other extended functors are defined similarly. In the diagram given
in Figure 4.10 we can assume each ϑi to be either an XSig1-arrow or a
member of Θ. In the latter case, we have explicitly defined the value of
XSen2 at the point ϑ. In the former case, XSen2(ϑ) = XSen1(ϑ). Since
XSen2 is a functor, XSen2 is defined at ϑ by

XSig2(ϑ) = XSig2(ϑm) ◦ · · · ◦ XSig2(ϑ1) .

Of course, XSen2 is only well-defined if this fixes a unique value for the
set XSen2(ϑ). The value is in fact uniquely determined: any different rep-
resentation of ϑ, i.e. ϑ = ϑ′k ◦ · · · ◦ ϑ′1 makes the diagram of Figure 4.11
commute in XSig2. As a consequence, replacing the signatures and signa-
ture translations with their value under XSig2 also produces a commuting
diagram, and thus the value assigned to XSig2(ϑ) this way is unique. By
a similar argument, this also defines XGoal2 and XPrf2.

It remains to be shown that η and concl are natural transformations
for the new functors, i.e. that the diagram in Figure 4.9 commutes for all
XSig2-arrows ϑ, XSen2, XGoal2, and XPrf2. Again, this is guaranteed by

95

Chapter 4. Development Graph Transformations

Σ1
- · · · - Σm−1

Σ0
ϑ -

ϑ 1

-

Σm = Σ′k

ϑ
m

-

Σ′1
-

ϑ ′
1

-

· · · - Σ′k−1

ϑ
′

k

-

Figure 4.11: Uniqueness of definition of translations

the fact that each ϑ is representable as the concatenation of arrows either
from XSig1 or Θ.

4.5 Relation to Basic DG-Operations

[Hut00] and [AHMS00] define basic operations on development graphs
and describe the effects these operations have on proofs. The difference of
two development graphs is expressed by a sequence of basic operations
that, when executed on the first graph, produce the second. The effects of
these operations on the proof obligation links are then briefly discussed.

Defined operations add or delete links, or add and delete local axioms.
These operations are similar to our transformations Trlinks and Traxioms. One
difference is that we do not address the question of how the decomposition
of theorem links can be avoided by reusing an old decomposition trace;
our assumption is that decomposing theorem links is rather cheap in terms
of resources. On the other hand, we are interested in two things that are
not addressed by the prior work:

1. When an additional assumption becomes visible for an existing open
proof, we want to be able to use it in the further construction of this
proof: after all the proof is partial and still has open goals, which
might depend on the assumption to become available. The prior ap-
proach simply keeps the proof but does not address in any way how
to make use of additional assumptions.

96

4.6. Summary

2. When an additional assumption, which is used in a proof, is with-
drawn, the proof can still be kept: the deleted axiom becomes an
open goal of the proof. This aspect is not addressed in the basic op-
erations, rather such a proof would be considered invalidated.

There are also technical differences that are due to the fact that [Hut00] de-
fines the signature of a node by a smallest set construction in terms of local
signature symbols associated with nodes that are inherited along definito-
rial links. Thus, adding a link potentially changes the signatures of ex-
isting nodes and the morphisms of existing links. This is avoided in our
formulation by explicitly giving the signature of a node and requiring link
morphisms to be compatible with these signatures.

Another operation in [Hut00] is the replacement of a link morphisms
by another. The description of how the old decomposition trace can be
reused for a changed one suggests that the same effect can be achieved by
adding a new link with the new morphism and removing the link with the
old one. Again, we do not think that the difference in efficiency is relevant.

In part, our transformation Trsignatures corresponds to implicit assump-
tions in the prior work. When a signature symbol is added to a node and
this is a monotonic change, the understanding is that the proof is essen-
tially still valid. The question of whether the same proof or a very similar
proof is still valid is simply ignored. Additionally, if the proof is a partial
proof, it is not quite clear in which way the new signature symbols may
be used to close the open goals of the proof. This is all made explicit in
our approach. The construction also extends cleanly to the case where the
change is not monotonic, so that we can move signature symbols from one
node to another one.

Other transformations, namely Trocc and Trtranslate are entirely novel.
Trocc is more fine-grained than adding and removing axioms: we can make
use of the knowledge about the changes. Finally, Trtranslate changes signa-
tures and axioms together. This has not been addressed at all before.

In fact, we can express the basic operations as development graph
transformations. It is thus possible, to integrate both into one system, as
indeed our idea is to implement these transformations as an extension to
the MAYA/INKA system.

4.6 Summary

We have introduced classes of development graph transformations. These
transformations refer to an abstract formulation of the context: specifi-
cation language, logic, and proof representation. Different instantiations

97

Chapter 4. Development Graph Transformations

are possible by instantiating the context. We call the abstract formula-
tion of these transformations a framework for this reason. The distinc-
tion between framework and instantiation also gives us the opportunity
to discuss the idea behind the classes without being lost in the details of a
concrete instantiation.

The different classes are summarised in Figure 4.12 together with the
effects that a class of development class transformation can possibly have
on proof obligations. An instantiation of the framework should ensure
that it can support the kinds of effects, i.e. that it can transform proofs
accordingly.

Transformation Def. Effect: on development graph
on proof obligations

Trnodes 4.1 add/remove isolated nodes
(none)

Trlinks 4.2 add/remove links
add/remove obligation
add/remove assumptions

Traxioms 4.6 add/remove local axioms
add/remove obligation
add/remove assumptions

Trocc 4.8 change subformula/-term occurrences
apply sentence replacements to assumptions

and to conjecture

Trsignatures 4.13 adjust signatures
map obligation along signature extension
map obligation backwards over

signature extension

Trtranslate 4.19 translate development graph
translate obligation

Figure 4.12: Development graph transformations

98

Part III

A Reference Instantiation

99

Chapter 5

Formal Developments

5.1 Overview

In the preceding chapters, we have described the overall idea of devel-
opment transformations within a generic framework. The framework is
generic with respect to the concrete logic, the concrete specification lan-
guage, the concrete proof representation, and the concrete translations that
are defined for both the logic and the proofs. In this chapter, we will de-
scribe a reference instantiation of the given framework for the axiomatic
specification of abstract datatypes. This instantiation will then be used to
revisit the example scenarios that we have presented as the motivation for
our work in Section 2.2.

In the following, we will omit unnecessary formal details wherever
possible. In particular, we will not go into details of how first order logic
with equality and generatedness-constraints and its proof theory is de-
fined precisely. For the purposes of reference, the definitions we have ac-
tually used are given in Appendix C.

5.2 Concrete Logic

In our examples, we use first order logic with equality and generatedness
constraints to specify abstract datatypes. First, let us briefly sketch a stan-
dard definition of first order logic. Given an algebraic first order signature
Σ determining available sorts, functions, and predicates with their profiles
(or arities), typed terms are constructed as usual using typed variables and
function application. Formulae are constructed using ⊤ and ⊥ for truth
and falsity, predicate applications, equations between terms of the same
sort using the symbol =, the usual connectives, e.g. ∧, ∨, ⇒, and ⇔, and

101

Chapter 5. Formal Developments

universal and existential quantification ∀ and ∃. For ease of presentation,
we assume that sorts, functions, predicates, and variables are pairwise dis-
joint, and that the names of variables do not matter (implicitα-renaming is
possible wherever it is necessary). In practice, this can be realised in many
ways, e.g. by using the same set of names in the surface syntax for sorts,
functions, and predicates, and disambiguating the names at the few places
where there is the possibility of confusion and using higher-order abstract
syntax [PE88] or de Bruijn-indices [dB72, dB78] to represent bound vari-
ables.

We employ the usual model-theoretic semantics for terms and first or-
der formulae: a Σ-algebra M maps each sort s in Σ to a non-empty set M(s)
(the carrier), each function f : s1 × · · · × sm → s in Σ to a total function
M(f) from the cartesian product of M(s1)× . . .× M(sm) to M(s), and each
predicate p : s1 × · · · × sm ∈ Σ to a subset M(p) of M(s1) × . . . × M(sm)
(the extension of the predicate). Given a variable assignment V for M
such that for each variable x of type s, V(x) ∈ M(s) holds, M and V are
extended homomorphically to terms and formulae in the usual way: M
and V assign carriers to terms and truth values to formulae. We write
M |=Σ ϕ (read ‘ϕ is satisfied in the algebra M’) iff the closed formulaϕ is
assigned the truth value true. Given a universe of algebras, a signature Σ
and a set of closed formulae (i.e. axioms) determine the class of Σ-algebras
taken from the chosen universe such that all formulae hold true in each
algebra of the class.

First order algebraic signature morphisms from Σ1 to Σ2 are defined as
usual by symbol mappings that map sort symbols of Σ1 to sort symbols of
Σ2 (and similarly for function and predicate symbols) and respect the pro-
files of the symbols (cf. [EM85, Definition 8.1] or [LEW96, Definition 4.1]).
As usual, for each signature morphism σ from Σ1 to Σ2, the homomor-
phic extension of σ to terms maps closed Σ1-terms (closed Σ1-formulae)
to closed Σ2-terms (closed Σ2-formulae, respectively), and this mapping is
associated with σ . It is also standard to extend σ to variables by some in-
jective mapping from variables for Σ1 to variables for Σ2 so thatσ can also
be regarded as a mapping from Σ1-terms and -formulae with free vari-
ables to Σ2-terms and -formulae with free variables. Algebraic signature
morphisms can be concatenated by the usual function composition.

We use generatedness constraints to exclude unwanted models and
to allow inductive proofs. First, we introduce the standard notion of a
generatedness constraint, which we call simple generatedness constraint.
The notion is suitable for expressing the generatedness of an algebra in a
sort by given constructor functions. Satisfaction of simple generatedness
constraints is not preserved when they are mapped along signature mor-

102

5.2. Concrete Logic

phism, however. Therefore, in a second step we will generalise the con-
cept and introduce generatedness constraints that map along morphisms
as desired.

Given a first order signature Σ and a sort s in Σ, a simple generatedness
constraint for Σ in s is a non-empty set F of Σ-functions with codomain s.
A constraint F is satisfied for an algebra M iff the algebra is generated
in s by F, i.e. if for each carrier a in M(s) there is a Σ-term t that only
uses functions in F and variables of types different from s such that for
some variable assignment V, t evaluates to a wrt. M and V, c.f. [LEW96,
Definition 3.35]. Since each carrier in M(s) is expressed by a term that only
uses constructor functions and variables of sorts different from s, one can
then use induction on the structure of the terms.

A simple example is the signature ΣList containing the two sorts elem

and list, and the two constructor functions nil : list and cons : elem×
list → list. The generatedness constraint {nil, cons} ensures that only
finite lists are allowed as carriers in M(list), and that the usual structural
induction over the length of lists is sound.

As the following example shows, satisfaction as given by (3.1) on page
40 is not preserved in general when simple generatedness constraints are
mapped along signature morphisms. Let Σ1 be the signature contain-
ing the sorts elem1 and pair1, and the constructor function mkpair1 :
elem1 × elem1 → pair2. The Σ1-constraint F1 = {mkpair1} is satisfi-
able. Additionally, let us consider the signature Σ2 containing only the sort
pair2 and the constructor function mkpair2 : pair2 × pair2 → pair2. The
Σ2-constraint F2 = {mkpair2} is not satisfiable: domains are required to be
non-empty, but there is no finite constructor term without pair2-variables
to represent any carrier in A2(pair2), where A2 is a Σ2-algebra. Let the sig-
nature morphism σ : Σ1 → Σ2 map both sorts elem1 and pair1 to pair2,
and the constructor mkpair1 to mkpair2. We consider the Σ2-algebra A2

A2(pair2) = {e}

A2(mkpair2)(e, e) = e

and its σ-reduct A1 = A2|σ

A1(elem1) = {e}

A1(pair1) = {e}

A1(mkpair1)(e, e) = e .

Note that A1 trivially satisfies the constraint F1 but A2 does not satisfy
F2 = σ(F1). Thus, the satisfaction condition does not hold for simple gen-
eratedness constraints.

103

Chapter 5. Formal Developments

The following generalised notion of generatedness constraint obeys the
satisfaction condition: given a signature Σ and a sort s in Σ, a generated-
ness constraint (F,σ) for Σ in s consists of a set F of functions and a sig-
nature morphism σ : Σ′ → Σ for some arbitrary signature Σ′. A model
satisfies a generatedness constraint (F,σ) if for each carrier a in M(σ(s))
there is a Σ′-term t that only uses functions in F and variables of types
different from s such that for some variable assignment V, the mapped
term σt evaluates to a for V and M. Note that this definition collapses to
the simple one if Σ = Σ′ and σ is the identity. A constraint (F,σ) for Σ is
mapped along a signature morphism σ ′ : Σ → Σ′′ by composing the two
morphisms:

σ ′(F,σ) = (F,σ ′ ◦σ) .

As can easily be seen, σ ′(F,σ) is a generatedness constraint for Σ′′ if only
(F,σ) is a generatedness constraint for Σ, ([BCH+04, Proposition 2.13]),
and the satisfaction condition holds (C.6 on page 240). As it turns out, the
given definition also has the additional benefit of making our notion of
correct proofs (introduced in Section 5.4) invariant under signature mor-
phisms without any effort.

We are now in a position to define the concrete institution

IFolEqGen = (SigFolEqGen, SenFolEqGen, ModFolEqGen, |=FolEqGen)

for first order logic with equality and generatedness constraints that we
use for the rest of the thesis. In order to avoid excessive use of indices
we simply write I = (Sig, . . .). There is no potential of confusion of the
parameter I of the framework and the concrete instance of the reference
instantiation since we will be working with this fixed institution from here
on.

Definition 5.1 (Concrete Institution) We define the institution for first order
logic with equality and generatedness constraints I = (Sig, Sen, Mod, |=) as
follows:

• The category Sig has as objects all algebraic signatures. It has as morphisms
between two objects Σ1 and Σ2 all algebraic signature morphisms σ from
Σ1 to Σ2. For each signature Σ, the identity idΣ is the signature morphism
that maps symbols to themselves. Composition of morphisms is the usual
composition of algebraic signature morphisms.

• The functor Sen : Sig → Set maps each Sig-object Σ to the disjoint union
of all closed first order formulae over Σ and all generatedness constraints for

104

5.2. Concrete Logic

〈formula〉 → true | false
| (〈predicate name〉 〈term〉∗)
| (= 〈term〉 〈term〉)
| (not 〈formula〉)
| (and 〈formula〉∗)
| (or 〈formula〉∗)
| (=> 〈formula〉 〈formula〉)
| (<=> 〈formula〉 〈formula〉)
| (all (〈variable name〉 〈sort name〉) 〈formula〉)
| (ex (〈variable name〉 〈sort name〉) 〈formula〉)

〈term〉 → 〈variable name〉
| 〈operation name〉
| (〈operation name〉 〈term〉∗)

Figure 5.1: Logic language abstract syntax

Σ. It maps each Sig-arrow σ : Σ1 → Σ2 to the function mapping each Σ1-
formula ϕ (each generatedness constraint c for Σ1) to the Σ2-formula σA
(the generatedness constraint σc for Σ2, respectively), i.e. Sen(σ)(A) =
σA.

• The functor Mod : Sig → Setop maps each object Σ of Sig to the set of all
Σ-algebras. It maps each Sig-arrow σ : Σ1 → Σ2 to the function mapping
each member M2 of Mod(Σ2) to the σ-reduct M2|σ ∈ Mod(Σ1).

• For each signature Σ ∈ |Sig|, |=Σ ⊆ Mod(Σ) × Sen(Σ) is defined by
M |=Σ A iff M satisfies A, where A is either a closed Σ-formula or a
generatedness constraint for Σ.

This defines an institution. The only non-obvious matter here is whether
the satisfaction condition (3.1) on page 40 is satisfied, cf. Theorem C.7 on
page 240. Together with Definition 3.3 on page 41, this defines develop-
ment graphs for first order logic.

For the rest of the thesis, we will use the surface syntax described in
Figure 5.1, where a suffixed ∗ stands for zero, one, or more occurrences of
the preceding phrase. Note that we use prefix notation for everything and
that parentheses are mandatory. We abbreviate

(all (x1 s1)· · · (all (xm sm)ϕ(x1, . . . , xn))· · ·)

by

105

Chapter 5. Formal Developments

(all (x1 s1) · · · (xm sm)ϕ(x1, . . . , xn)),

(for n ≥ 1) and similarly for the existential quantifier. Example formulae
are

(all (x nat) (not (= 0 (succ x))))

(all (x nat) (y nat)

(=> (= (succ x) (succ y))

(= x y)))

(all (y nat) (= (+ 0 y) y))

(all (x nat) (y nat)

(= (+ (succ x) y)

(succ (+ x y))))

where we assume that nat is a sort, and that 0 and succ are nullary and
unary functions, respectively, over nat. The first two state that the func-
tions 0 and succ have disjoint ranges and that succ is injective. The second
two are the canonical defining axioms of addition for natural numbers.
This surface syntax is easier to read than the usual mathematical notation
for longer formulae because it scales better with formulae extending over
several lines: questions of precedence and associativity of operators can-
not occur, and the structure of an expression is immediately clear.

5.3 Concrete Specification Language

We have chosen to use a simple specification language, called SSL, for
our reference implementation. An SSL specification 〈spec〉 consists of a
sequence of 〈theory〉 specifications. See Figure 5.2 for an overview of the
abstract syntax. As usual, a suffixed ? stands for zero or one occurrence, +

for one or more, and ∗ for zero, one, or more occurrences of the preceding
item.

5.3.1 Specification in the Small

Each theory specifies a local signature: it declares sorts, operations, and
predicates together with their profile. For example the following specifies
a signature for natural numbers.

106

5.3. Concrete Specification Language

〈spec〉 → (〈theory〉∗)

〈theory〉 → (theory 〈theory name〉
〈uses〉? 〈satisfies〉? 〈sig〉 〈gens〉 〈axioms〉)

〈uses〉 → uses (〈theory name〉 〈map〉)∗

〈satisfies〉 → satisfies (〈theory name〉 〈map〉)∗

〈map〉 → 〈point〉∗

〈point〉 → (〈sort name〉 〈sort name〉)
| (〈operation name〉 〈operation name〉)
| (〈predicate name〉 〈predicate name〉)

〈sig〉 → 〈sorts〉 〈ops〉 〈preds〉

〈sorts〉 → (sort 〈sort name〉)∗

〈ops〉 → (op 〈operation name〉 〈domain〉 〈codomain〉)∗

〈preds〉 → (prd 〈predicate name〉 〈domain〉)∗

〈domain〉 → (〈sort name〉∗)

〈codomain〉 → 〈sort name〉

〈gens〉 → (gen 〈operation name〉+)∗

〈axioms〉 → (axiom 〈formula〉)∗

Figure 5.2: Specification language abstract syntax

107

Chapter 5. Formal Developments

(sort nat)

(op 0 () nat)

(op succ (nat) nat)

(op + (nat nat) nat)

(prd leq (nat nat))

We can allow the same name to be used for different symbols, e.g. naming
a sort symbol and a predicate symbol, since there are no ambiguities. We
also allow multiple declarations of symbols, provided the declarations are
consistent, i.e. all but one declarations are redundant.

Each theory also specifies generatedness constraints and axioms. A
generatedness constraint for the natural numbers is written as

(gen 0 succ)

i.e. 0 and succ are the constructors. We do not provide for any special
language construct for directly specifying freely generated datatypes. In-
stead, the necessary axioms can be expressed as a generatedness constraint
and additional normal axioms. Axioms are written as closed formulae in
the form described in Section 5.2. The axioms, e.g., for making nat freely
generated (i.e. the constructors 0 and succ are injective and have disjoint
ranges) read

(axiom (all (x nat) (not (= 0 (succ x)))))

(axiom (all (x nat) (y nat)

(=> (= (succ x) (succ y))

(= x y))))

and the canonical defining axioms for + are:

(axiom (all (y nat) (= (+ 0 y) y)))

(axiom (all (x nat) (y nat)

(= (+ (succ x) y)

(succ (+ x y)))))

5.3.2 Specification in the Large

Theories are related by 〈uses〉 and 〈satisfies〉 clauses. The 〈uses〉 clause de-
termines a signature. The content of a theory is then interpreted relative to
this signature, i.e. the local signature of the theory extends the given back-
ground signature. For example, the definition of natural numbers can be

108

5.3. Concrete Specification Language

presented in two theories. The first theory nat defines the natural number
and addition:

(theory nat

(sort nat)

(op 0 () nat)

(op succ (nat) nat)

(op plus (nat nat) nat)

(gen 0 succ)

...

(axiom (all (y nat) (= (plus 0 y) y)))

...)

The second uses (imports) the first theory, renaming plus to +, and then
extends the signature and states additional axioms.

(theory assoc-nat

(uses (nat (plus +)))

(prd even (nat))

...

(axiom (all (x nat) (y nat) (z nat)

(= (+ x (+ y z))

(+ (+ x y) z))))

...)

Note that plus has been renamed to +. All 〈theory〉-specifications that are
used (also called imported specifications, nat in the example) are required
to be defined lexically before the referring 〈theory〉 (assoc-nat in the ex-
ample). The relationship ‘uses’ between 〈theory〉-specifications is therefore
acyclic. A 〈theory〉-specification wrt. the whole specification determines a
signature and a set of axioms as follows. The signature symbols defined
in the imported theories are renamed according to the respective uses-
clause, and the resulting symbols are in the signature of the theory. Ob-
viously, this construction is defined only if the mapped signatures of the
imported theories can be merged. In this case, the set of axioms of the the-
ory consists of all axioms of the imported theories, mapped according to
the uses-clauses, and the local axioms stated in the 〈theory〉-specification
itself.

The satisfies clause allows us to state that a theory satisfies another
one, i.e. the axioms of the other theory are consequences of the current
theory (theory inclusion).

109

Chapter 5. Formal Developments

Example 5.2 Consider the theory nat with the additional clause

(satisfies (assoc-nat (+ plus)))

The symbol mapping is interpreted as a mapping from assoc-nat to nat.
The intended semantics is that all axioms in assoc-nat mapped according
to the symbol mapping are logical consequences of the theory nat. ◦

Note that assoc-nat uses nat, and that nat satisfies assoc-nat, so the re-
lationship ‘uses or satisfies’ between theories is potentially cyclic. This
means that the theory names in a satisfies clause may name theories
that are specified textually after the reference.

We have intentionally imposed many additional static well-formedness
conditions, i.e. restrictions on specifications. For example, the construc-
tors of generatedness constraints in a given theory need to be functions
that have been declared in the given theory, rather than imported. Such
restrictions have been introduced at will to evoke the problems that deal
with more complicated definitions of surface syntax in other specification
languages. For instance, generated datatypes are declared in CASL by

datatype nat = 0 | succ(nat);

which is then understood on the development graph level as the decla-
ration of the sort, the constructors, and the generatedness constraint. Be-
cause of this syntax, the constructors are necessarily defined in the same
theory as the generatedness constraint. The effect is that the mapping from
specifications to development graphs is not surjective, and we cannot rely
on finding a specification for any given development graph.

5.3.3 Mapping to Development Graphs

A well-formed SSL specification is mapped to a development graph in the
following way. The theories of the specification are inspected in succes-
sion, and for each theory specification a development graph node is added
to the initially empty graph. Each 〈satisfies〉-specification is remembered
as pending for later handling (in general we cannot handle it now, because
the node for the theory that it references may not yet exist). The signatures
of the nodes in the 〈uses〉 are retrieved (they already exist because of the
acyclicity of the “uses”-relation) and are mapped along the given symbol-
〈map〉 and the definitions are put together yielding an auxiliary signature
called background signature. Then the sort, function, and predicate decla-
rations in the theory specification are analysed in turn with respect to the
background signature extended by the definitions that have already been

110

5.4. Concrete Proof Representation

looked at in the current theory, i.e. there is linear visibility. The result is
a signature, which is then associated with the node in the development
graph. For each used theory, the development graph is extended by a
definitorial link from the imported node to the current one, and the link
is annotated with a signature morphism from the used node to the cur-
rent signature that respects the symbol mapping given for the respective
used theory. The rest of the theory specification now consists of gener-
atedness constraint and axiom specifications, and these are parsed with
respect to the signature of the node. Note that generatedness constraint
specifications only mention the constructors, and from them, a generated-
ness constraint with the identity morphism is constructed. The resulting
set of constraints and axioms is associated with the development graph
node as the set of local axioms of the node. Finally, when all theories have
been handled, each pending satisfies-link induces a postulated link be-
tween two existing nodes in the development graph.

5.4 Concrete Proof Representation

We use an analytic sequent calculus, cf. [Gen35], [Fit96], which represents
proof states by sequents and proofs by trees, where nodes are sequents.
A Σ-sequent, written as Γ ⊢ ∆, consists of two sets of Σ-formulae. Γ
is called the antecedent and ∆ the succedent. As usual, we will omit set
braces and mix sets and formulae, as in Γ ,ϕ ⊢ ψ which is shorthand
for Γ ∪ {ϕ} ⊢ {ψ}. The semantics of a sequent Γ ⊢ ∆, where Γ and ∆
consist of closed formulae, is the same as that of the first order formula
(
∧
Γ) ⇒ (

∨
∆), and we say that the sequent holds if the formula evaluates

to true. A proof obligation Γ ⊢Σ ϕ (where ϕ and all members of Γ are
closed formulae) will be represented by the sequent Γ ⊢ ϕ.

Obviously, the definition of sequents and their semantics can be ex-
tended canonically to the case where the formulae include free first-order
variables. We have chosen, however, to represent Eigenvariables as vari-
ables that are free in the formulae, and which are λ-bound at the level of
sequents, rather than using free variables in sequents. This has the ben-
efit that the names of Eigenvariables do not matter. This avoids prob-
lems with name clashes between Eigenvariables, bound variables, and
constants: Eigenvariables and bound variables can be α-renamed uni-
formly wherever necessary. A sequent that represents the proof state in
which ∀x : s. ϕ(x) is to be proven from Γ is written as

Γ ⊢ ∀x : s. ϕ(x) .

111

Chapter 5. Formal Developments

The proof state in which the formula ϕ(x) for an Eigenvariable x is to be
proven is written as

[x : s] Γ ⊢ ϕ(x) . (5.1)

This is a notational variant of λx : s. (Γ ⊢ ϕ(x)). The scope of the binding
of x is the whole sequent, so Γ could refer to x, i.e. as in [x : s] Γ(x) ⊢ ϕ(x).
Due to the implicitα-renaming, there are no clashes with any constants in
Γ . Thus, the meaning of a sequent

[x1 : s1, . . . , xm : sm] Γ(x1, . . . , xm) ⊢ ∆(x1 , . . . , xm) (5.2)

is the meaning of the closed formula

∀x1 : s1, . . . , xm : sm. (
∧

Γ(x1, . . . , xm)) ⇒ (
∨

∆(x1, . . . , xm)) .

Identity of sequents is defined by equality modulo α-renaming. Sequents
with no bound variables, i.e. [] Γ ⊢ ∆, are abbreviated by Γ ⊢ ∆ where
this is convenient. [x1 : s1, . . . , xm : sm] Γ(x1, . . . , xm) ⊢ ∆(x1, . . . , xm) is
abbreviated by

[~x :~s] Γ(~x) ⊢ ∆(~x) .

So far, only formulae have been considered, but not generatedness con-
straints. Generatedness constraints provide induction schemata. Formally,
we allow generatedness constraints as members of the antecedent and
succedent of sequents, and we provide corresponding induction rules for
generatedness constraints occurring in the antecedent. As it will turn out,
we can omit generatedness constraints for ease of presentation and assume
that every sequent in a proof has the same generatedness constraints. It
is thus sufficient to state the available generatedness constraints once for
each proof.

We consider partial proofs as trees. A (partial) proof is either a leaf
node or a branch. A proof carries a sequent Θ, called its conclusion. A leaf
node represents the trivial open proof. A branch represents the application
of a proof rule. In addition to the conclusion, a branch carries a justification
j, a (where j is the name of the rule and a are arguments specifying the
instance of the proof rule) and a sequence 〈ξ1, . . . ,ξn〉 of subproofs, written
as

.... ξ1

Θ1 · · ·

.... ξm

Θm

Θ
j, a

112

5.4. Concrete Proof Representation

Each proof rule name j has an associated condition that determines whether

Θ1 · · · Θm

Θ
j, a

is a valid proof rule step. These conditions are defined such that the con-
clusionΘ follows logically from the conjunction of the premissesΘ1, . . . ,Θn,
and thus the calculus is sound. In a proof rule, e.g. in

[~x :~s] Γ(~x),ϕ1(~x), . . . ,ϕm(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ ∆(~x)
and-l ϕ1(~x) ∧ · · · ∧ϕm(~x)

the sets of formulae Γ(~x) and ∆(~x) are called the context, and the formula
ϕ1(~x) ∧ · · · ∧ϕm(~x) is called the focus formula.

Definition 5.3 (Concrete proof representation) The concrete goal functor Goal :
Sig → Set mapping signatures to the set of Σ-goals and morphisms to mappings
from goals to goals is defined by:

• For each Σ ∈ |Sig|, Goal(Σ) is the set of Σ-sequents in (5.1).

• For each Sig-morphismσ : Σ→ Σ′, Goal(σ) is the mapping from Σ-goals
to Σ′-goals defined by

Goal(σ)([x1 : s1, . . . , xm : sm] Γ(x1, . . . , xm) ⊢ ∆(x1, . . . , xm))

= [x1 : σs1, . . . , xm : σsm] σΓ(x1, . . . , xm) ⊢ σ∆(x1, . . . , xm)) .

We define a natural transformation η : 2Sen × Sen → Goal:

• For each Σ, ηΣ is the mapping that maps the pair (Γ ,ϕ) to the Σ-sequent
Γ ⊢ ϕ.

The proof functor Prf : Sig → Set is defined by:

• For each signature Σ, the set Prf(Σ) of Σ-proofs is the smallest set that
satisfies the following conditions:

– Goal(Σ) ⊆ Prf(Σ)

– IfΘ ∈ Goal(Σ),ξ1, . . . ,ξn ∈ Prf(Σ) with the conclusionsΘ1, . . . ,Θn,
and

Θ1 · · · Θm

Θ
j, a

is a valid proof rule then

ξ1 · · · ξm

Θ
j, a

is a member of Prf(Σ).

113

Chapter 5. Formal Developments

Proof rules are the standard proof rules for first order sequent calculus with
equality and structural induction rules; representative proof rules are given
in Figure 5.3.

• For each σ : Σ → Σ′, Prf(σ) maps the open Σ-proof Θ to Goal(σ)(Θ),
and the branching proof

ξ1 · · · ξm

Θ
j, a

to

Prf(σ)(ξ1) · · · Prf(σ)(ξm)

Goal(σ)(Θ)
j,σa

(5.3)

The natural transformation concl : Prf → Goal is defined as expected:

• concl(Θ) = Θ and concl(ξ) = Θ where ξ is

ξ1 · · · ξm

Θ
j, a

Note that (5.3) presupposes that the result of Prf(σ) is again a valid proof,
and in particular that j,σa is a valid proof step. As it turns out, this is
indeed the case. We discuss this in detail below after we have given some
more details about the concrete proof rule steps. Otherwise, however, it
is easy to see that this defines a proof representation according to Defini-
tion 3.19 on page 52.

Figure 5.3 only lists some representative calculus rules, all of which are
standard. We have chosen to present the rules in a notation that makes
the handling of Eigenvariables explicit. This is needed later to explain in
detail, how some of the transformations on proofs interact with bound
variables. Notice, however, that the rules are completely standard.

In the induction rule ind-r, the induction formula for some constructor
fi is abbreviated byΦ(~x, fi ,σ ,ϕ) as follows. We want to prove the formula
∀x : σs. ϕ(~x, x) by structural induction using the generatedness constraint
(F,σ), where we assume that the codomain of the constructors in F is s.
The constraint is applicable, because it constrains σs, which is the sort of
the universally quantified variable x. F is a non-empty set of m construc-
tors fi : ti,1 × · · · × ti,ni

→ s (1 ≤ i ≤ m, 0 ≤ ki) in some signature. For
each such fi,

σ fi : σti,1 × · · · ×σti,ki
→ σs

114

5.4. Concrete Proof Representation

[~x :~s] Γ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x)
weak ϕ(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ(~x)
weak ϕ(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ(~x) [~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x)
cut ϕ(~x)

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x),ϕ(~x)
basic

[~x :~s] Γ(~x) ⊢ ∆(~x), t(~x) = t(~x)
basic

[~x :~s] Γ(~x) ⊢ ∆(~x), ⊤
basic

[~x :~s] Γ(~x), ⊥ ⊢ ∆(~x)
basic

[~x :~s] Γ(~x),ϕ1(~x), . . . ,ϕm(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ ∆(~x)
and-l ϕ1(~x) ∧ · · · ∧ϕm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) · · · [~x :~s] Γ(~x) ⊢ ∆(~x),ϕm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x)
and-r ϕ1(~x) ∧ · · · ∧ϕm(~x)

[~x :~s] Γ(~x), ∀x : s. ϕ(~x, x),ϕ(~x, t(~x)) ⊢ ∆(~x)

[~x :~s] Γ(~x), ∀x : s. ϕ(~x, x) ⊢ ∆(~x)
all-l ∀x : s. ϕ(~x, x), t(~x)

[~x :~s, y : s] Γ(~x) ⊢ ∆(~x),ϕ(~x, y)

[~x :~s] Γ(~x) ⊢ ∆(~x), ∀x : s. ϕ(~x, x)
all-r ∀x : s.ϕ(~x, x)

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t2(~x))

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t1(~x))
eqn-l t1(~x) = t2(~x), ϕ(~x, t1(~x)), ϕ(~x, t2(~x))

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t1(~x))

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t2(~x))
eqn-l t1(~x) = t2(~x), ϕ(~x, t2(~x)), ϕ(~x, t1(~x))

· · · [~x :~s] Γ(~x), (F, s,σ) ⊢ ∆(~x),Φ(∀,~x, fi,σ ,ϕ) · · ·

[~x :~s] Γ(~x), (F, s,σ) ⊢ ∆(~x), ∀x : σs.ϕ(~x, x)
ind-r ∀x : σs. ϕ(~x, x), (F, s,σ)

Figure 5.3: Proof calculus rules. There are other rules, e.g. the usual rules
for the missing connectives and quantifiers, and rules for induction and
applying equations to formulae in the antecedent. See (5.4) on page 116
for the definition of the induction formula Φ.

115

Chapter 5. Formal Developments

is a function in Σ. Let Ii ⊆ N be those indices j for which ti, j = s, i.e. the
positions in the function profile for which induction hypotheses can be
generated. Then we define the induction formula Φ(Q,~x, fi,σ ,ϕ) by

Qy1 : σti,1, . . . , yki
: σti,ki

.

∧

j∈Ii

ϕ(~x, y j)

 ⇒ϕ(~x, (σ fi)(y1 , . . . , yki
)) ,

(5.4)

where Q is a quantor (∀ in the case ind-r, and ∃ for ind-l, which is not
shown in Figure 5.3). Here, the definition of generatedness constraints on
page 103 including a signature morphism is seen to be necessary: It would
not be sound to generated induction hypotheses for all σti = σs.

We turn to the discussion of the fact that Definition 5.3 provides a proof
representation, i.e. that the following conditions hold.

• η and concl are natural transformations: all sentences occurring in
sequences and proofs are mapped uniformly along σ for Goal(σ)
and Prf(σ), so this is easy to see.

• Algebraic signature morphisms preserve proof-hood. This property
of our proof representation depends on the absence of free variables
with the associated implicit α-renaming, and on the definition of
generatedness constraints with an explicit signature morphisms. An-
other important aspect is that arguments to proof rule justifications
consist of formulae and terms, rather than, e.g. the number of the
focus formula in the antecedent or succedent. Because there are no
free variables, the names of signature symbols do not matter for the
applicability of the proof rules. This also holds for the induction
rule, which is the only place this cannot be seen immediately: accord-
ing to (5.4), for each induction formula Φ(~x, fi,σ ,ϕ) for a constraint
σ ′(F,σ) = (F,σ ′ ◦σ) and constructor fi ∈ F, we have

Φ(~x, fi,σ
′ ◦σ ,ϕ) = Sen(σ ′)(Φ(~x, fi,σ ,ϕ)) .

Remark 5.4 We have made all available axioms and generatedness con-
straints part of the sequent, i.e. a proof obligation Γ ⊢Σ ϕ corresponds
to a proof with conclusion Γ ⊢ ϕ. A widely used alternative is to let
the proof obligation correspond to the sequent ⊢ ϕ and represent proof
states as pairs of sequents and the set of available axioms Γ . Axioms can
then be inserted by a variant of the cut rule. This has advantages in prac-
tice (the number of potentially visible axioms can get very large, and it is

116

5.5. Summary

then very beneficial if only explicitly requested axioms are displayed), but
is not essentially different from our formulation: if the set of usable ax-
ioms is managed explicitly, the theoretical difference is marginal, but our
formulation avoids the additional complexity of maintaining the set. If the
axioms are managed implicitly, effects of some of the transformations are
more difficult to see, so this was not an option for our work.

5.5 Summary

We have presented a concrete formulation of first order logic with equal-
ity and generatedness constraints, a corresponding concrete specification
language for structured specifications, and a concrete proof representation
for the logic. Except for technical differences these are similar to what can
be found in existing formal case tools, although we have tried to keep the
definitions as simple as possible. We have shown that the concrete defini-
tions constitute an instantiation of the context defined for transformations
in our framework.

117

Chapter 6

Specification Transformations

6.1 Overview

We have now at our disposal a concrete instance of a specification lan-
guage, a logic, and an associated proof representation. We will use this in-
stance to formulate concrete specification transformations addressing the
example scenarios that motivated our work.

For each of these transformations, two questions have to be answered.

• Which changes are allowed on the specification text such that the
result is again a (well-formed) specification? For example, if the sig-
nature of one theory is changed, the signatures of all other theories
that use the theory changes also, and references to the changed sym-
bol need to be adapted. This is a question of the syntax and the static
well-formedness conditions of the specification language.

• Given a specification S′ that is the result of applying a given speci-
fication transformations to S, what is the appropriate development
graph transformation that transforms D = dg(S) to D′ = dg(S)?
This is a question of the relationship between specification language
and development graphs.

The discussion includes an investigation of what effects we expect the
transformations to have on proofs. Specification transformations are re-
lated to proof transformations indirectly via development graph trans-
formations and proof obligation transformations. Concrete specification
transformations are propagated to development graphs using instances
of the the generic development graph transformations that have been in-
troduced in Chapter 4. These in turn propagate to proof obligations and
proofs. As a result, we can state which proof transformations are needed

119

Chapter 6. Specification Transformations

to propagate our specification transformations to proofs. A summary of
this association is given graphically at the end of this chapter on page 139.

6.2 Adding and Deleting Elements

We begin with specification transformations that deal with adding or delet-
ing elements like theories, uses or satisfies clauses, signature items, and
axioms, but do not change existing ones. Adding such elements to the
specification or removing them is mapped straightforwardly to a combi-
nation of the development graph transformations Trnodes, Trlinks, Trsignatures,
and Traxioms.

We ignore issues about whether, e.g., an axiom that is added is similar
to an existing one. If it is, then the similarity would have been represented
by applying Trocc rather than Traxioms. Since the transformation Trocc ex-
plicitly deals with the similarity of old and new axioms there is no good
reason to duplicate the functionality here. There is of course the interest-
ing question of whether the similarity should be detected by the tool or
whether the users are required to notice the similarity themselves. How-
ever, this question is orthogonal to the question of how the similarity, once
it has been noted, is used to keep proofs. Similarly, if an axiom is deleted,
there is no point in arguing whether another axiom is similar.

6.2.1 Theories

A theory that contains no use and satisfies clauses, and that is not used in
any use or satisfies clauses of any other theory can be added to a specifi-
cation, provided the name has not been used already for another theory.
According to the description of the grammar of SSL specifications, cf. Fig-
ure 5.2 on page 107, it is sufficient to add a well-formed expression of the
form

(theory 〈name〉 〈sig〉 〈gens〉 〈axioms〉)

to the list of theories of the specification. Since there are no dependencies
between the new theory and the existing parts of the specification, there is
no effect on the proof obligations.

Propagation to Development Graphs. The development graph can be
adjusted by adding a new node with the given name and signature and
sentences, and without any in- or outgoing links. This can be achieved

120

6.2. Adding and Deleting Elements

by the development graph transformation Trnodes without any effects on
the proofs. Similarly, a node without in- or outgoing links can be deleted
without any effects, also using Trnodes.

6.2.2 Axioms

Adding axioms to or deleting them from a specific theory is straightfor-
ward: Simply add the phrase (axiom 〈formula〉) to the theory, or remove
an existing phrase of this form. Axioms do not influence the signatures, so
this does not have an influence on the well-formedness of any of the other
axioms of the theory, nor does it have an influence on the well-formedness
of any other theory.

Semantically, the axioms will potentially be added to or removed from
other theories, according to uses and satisfies clauses. This does not change
the specification text, however. The theories in which an added axiom is
visible is thus determined implicitly and uniformly by the framework, in
particular the development graph transformation Traxioms (cf. Section 4.3.1
on page 72). As described there, the result on proofs is that new proofs
may be necessary or old ones superfluous, and that existing proofs will
have changed assumptions.

Propagation to Development Graphs. The axiom is added to or re-
moved from the local set of axioms of the corresponding node, while all
other nodes’ local sets of axioms remain unchanged. The development
graph transformation Traxioms does exactly this. On the level of proof obli-
gations this effects the set of applicable assumptions.

6.2.3 Signature Items

Adding or removing signature items to or from theories in a specification
does not have an influence on the structure of the specification as far as
theories and use or satisfies clauses are concerned. On the other hand, the
signatures of the theory itself and possibly other theories change.

Example 6.1 Consider the trivial SSL specification

(theory A (sort s) (op f (s s) s))

(theory B (uses (A)) (sort t))

121

Chapter 6. Specification Transformations

in which s is visible in the signature of A and B and assume that we want
to remove s from B but keep it in A. This is not possible; instead s can be
removed from A,1 in which case it is also removed from theory B.

In the other direction, assume that we want to add an operation f :
s → s to theory A of the original specification. This extends the signature
of both A and B so that f is visible in both. ◦

The effect is that signatures of theories are extended or restricted. The
necessary signature extensions, and whether suitable signature extensions
exist at all, can be determined by following the name inheritance rules of
the specification language. When an item named i is added to one theory
A1, it becomes visible in A1 and it also becomes visible in any other theory
A2 that uses A1. In SSL, without an explicit mapping in the uses clause i
will be visible in the signature of A2 under the same name. Suppose that i
is the name of i in A2. There are three cases that we need to consider:

1. There is no item in the signature of A2 with the name i. In this case
we add a new item named i to the signature and recursively consider
all the theories that use n2.

2. There is already an item j named i in A2.

(a) j is compatible with i: if it is a function or predicate the arities
agree modulo the mapping. In this case there is nothing to do.

(b) j is not compatible with i. This is an error and means that the
transformation is not applicable to the specification.

As an example, consider the specification

(theory A (sort s))

(theory B (uses (A)) (op g (s) s) (op h (s s) s))

and assume that we want to add an operation with profile s → s to A. If
we add (op f (s) s) to A, the first case applies since there is no operation
f in B. No change to the specification text of B is necessary and f is added
to the signature of B. If we add (op g (s) s), case 2(a) applies. Finally, if
we try to add (op h (s) s), case 2(b) applies since the profiles s → s and
s× s → s are not compatible.

Similar effects occur when an item is added to a theory that is the target
of a satisfies clause: the new item needs to be mapped to some item in
the theory that contains the satisfies clause in order for the statement of
satisfaction to be well-formed. Consider the specification

1In this case, f also needs to be removed, of course.

122

6.2. Adding and Deleting Elements

(theory A (sort s))

(theory B (satisfies (A))

(sort s) (op g (s) s) (op h (s s) s))

Adding an operation with profile s → s to A leads to similar observations
as in the previous example. For instance, if we add (op f (s) s), we also
need to add (op f (s) s) to B and thereby add f to the signature of B.
Note that in this case, the specification text needs to be changed because
signatures are not inherited along satisfies relationships, according to the
rules static well-formedness for SSL.

Since the graph consisting of uses and satisfies dependencies is po-
tentially circular, we need to follow the links until a fixpoint is reached or
case 2(b) above leads to an error. For the simple naming scheme of SSL,
the fixpoint or an error is reached in a small, finite number of iterations.
However, this need not be the case in general.

Deleting items and propagating their removal over dependencies works
in a similar way. Removing i from a theory will also mean that the items
it is mapped to by uses or reverse satisfies clauses will be removed,
unless they are declared redundantly or inherited from somewhere else,
in which case the formerly redundant declaration will now be their (non-
redundant) declaration. Deleting an item also raises the question of what
to do with axioms that use the item. Our solution is to forbid this: items
can only be removed when they are not used. If they are used, say, in an
axiom, the axiom should be removed before the item can be deleted.

Since newly added items are necessarily unused and since only un-
used items may be deleted, we expect all the existing proofs to be logically
unchanged. Of course, proofs can in principle refer to signature items
that are not used in the axioms and conjecture of the specification. For in-
stance, a witness term or a cut formula in a proof might use an otherwise
unused predicate, or quantify over an otherwise unused sort. If this is the
case the transformation fails. Users can then decide whether they want to
change the relevant proofs (cf. Section 7.8) and delete the item afterwards
or whether they want to keep the item after all.

Propagation to Development Graphs. While propagating added items
over dependencies, we collect the information about which item is added
to which theory, and which items are additionally mapped along which
uses and satisfies clauses. Since each theory corresponds to a node in the
associated development graph, we can use this information directly to
compute the new signatures and signature morphisms of the new devel-
opment after the change. It is easy to see that in the new development

123

Chapter 6. Specification Transformations

graph, each node either has the same signature as the corresponding node
in the original development graph, or that it is a signature extension of
the original signature. It is also easy to see that condition (4.10) on page
80 is satisfied. So the association of old and new nodes and the informa-
tion about which item is added to which node determines a development
graph signature adjustment according to Definition 4.13.

Removing signature items works similarly: removing i from A1 neces-
sitates removing the image of i from all theories that use n1 or that satisfy
A1, unless the image is also inherited from another theory or defined ex-
plicitly in the respective theory. The result is that nodes in the develop-
ment graph are either unchanged or are mapped along a signature restric-
tion. This is provided by the development graph transformation Trsignatures.

Note that Trsignatures is more flexible and can deal naturally with more
complex symbol inheritance schemes that some other specification lan-
guages use. It does not require the added or removed symbols to have
the same name in different theories because of our liberal definition of
what we are willing to accept as a signature extension according to Defi-
nition 4.12.

6.2.4 Uses and Satisfies Clauses

Uses or satisfies clauses can be added by inserting uses and satisfies clauses
to the specification of theories such that the specification is well-formed af-
terwards. This will affect the signatures of existing nodes in the associated
development graph, and it will produce new links.

Example 6.2 Consider the SSL specification

(theory n (sort s))

(theory m (sort t))

which gives rise to a development graph with two nodes and no links,
cf. Figure 6.1(a). Adding the clause (uses (n)) to m, i.e. the whole specifi-
cation then reads

(theory n (sort s))

(theory m (uses (n)) (sort t))

enlarges the signature of m and produces a link with an injection morphism
from n to m, cf. Figure 6.1(b). Adding another uses clause by changing
(uses (n)) to

(uses (n) (n (s u)))

124

6.2. Adding and Deleting Elements

n: sort s

m: sort t

n: sort s

m: sort t, s

{s 7→ s}

?

n: sort s

m: sort t, s, u

{s 7→ s}

?

{s 7→ u}

?

(a) (b) (c)

Figure 6.1: Adding links

n: sort s

m: sort t, s

{s 7→ s}

?

n: sort s

m: sort t, s, u

{s 7→ s}

?

n: sort s

m: sort t, s, u

{s 7→ s}

?

{s 7→ u}

?

6.1(b) 6.1(c)

Figure 6.2: Realization of adding links

makes m use n twice with two different mappings, leading to the develop-
ment graph in Figure 6.1(c). ◦

Adding or deleting dependencies also has the effect of changing the
visible axioms of theories and thus the assumptions that are available for
some proofs. Additionally, added or deleted dependencies may make ex-
isting proof obligations superfluous or add new obligations.

Propagation to Development Graphs. On the level of development
graphs, such transformations can be carried out in two steps: first the sig-
natures are adjusted using Trsignatures, and second, the link is added.

Example 6.3 The transformation from Figure 6.1(b) to Figure 6.1(c) is car-
ried out on the level of development graphs in the two steps that are visu-
alised in Figure 6.2. ◦

The first step is exactly the same as adding the new items to all theories
that inherit them along the new link to be added, i.e. m in the example. We
have described this step, i.e. how to find out the development graph signa-
ture adjustment for this case, in the preceding section for adding signature

125

Chapter 6. Specification Transformations

items.

Removing links works in a similar way – just backwards. First, the
links are removed using Trlinks, and then the signatures are adjusted by re-
moving those signature symbols that are now no longer present due to the
missing links. Again, this second step has been described in Section 6.2.3.

In summary, dependencies can be added to a specification or removed
from one by using the development graph transformations Trsignatures and
Trlinks. Proofs are kept over Trsignatures, on the other hand Trlinks makes obli-
gations obsolete, adds new ones, and changes the available assumptions
of some obligations.

6.3 Changing Elements

Specification transformations that change existing signature items or ax-
ioms leave the overall structure of the specification unchanged.

6.3.1 Signature Item Names

Changing the name of, say, a sort in a theory from s1 to s2 consistently,
where we assume that s2 is not visible in the theory, is straightforward.
The name does not matter for the properties of the sort, and all statements
involving the sort will all have exactly the same semantical content, and
formally there will be an isomorphisms between the original and the re-
sulting theory: this is what is meant by “consistently”. However, in ex-
isting tools it is hard to change a name consistently, because not all oc-
currences of the name in the specification refer to the item in question,
and not all references to the item in question are necessarily by using the
name. Thus going by the specification text is, in general, not going to be
satisfactory. The general problem, as it also manifests itself in mainstream
programming IDEs, is described in more detail in [Wil05].

Our approach provides a partial solution to the problem: we can ex-
press the transformation that renames an item consistently on the level of
development graphs using specifically well-behaved development graph
translations. This does not solve the question of how to find the new spec-
ification text, but it helps in deciding whether a proposed new text in fact
is the old text with an item renamed consistently.

In SSL the transformation can be expressed relatively easily on the level
of single theories: the syntax is simple enough to let us decide reliably
which identifier needs to be changed. We will not go into the details.

126

6.3. Changing Elements

On the level of uses and satisfies clauses, the transformation is deter-
mined in the following way. Assume that we change the name of the item
i in theory n1. Then each uses or satisfies clause involving n1 needs
to take this into account. When another theory n2 uses n1, it can either
map the name of i to another name, or it can simply keep the name by not
giving a mapping. In the latter case, we can add a 〈point〉 to the map of
the respective using link so that the changed name is mapped back, in the
former case we can simply change the second component.

Example 6.4 If we change s in n to t, and there is a uses clause

(uses (n (s u)))

we simply change that to

(uses (n (t u)))

A clause (uses (n)) is changed to (uses (n (t s))).2 ◦

If n1 uses other theories and imports the item the name of which is changed
in n1, the respective uses clause is also changed. The clauses that describe
satisfies dependencies are handled similarly. The net effect is that no
other theory is changed except for the theory in which we want to change
the name. None of the proofs should be affected logically.

Propagation to Development Graphs. Assume that s1 is changed to s2

in the theory corresponding to node n1. We provide a copy of the original
development graph in which the signature of n1 is changed to match the
renaming of s1 to s2. Figure 6.3 visualises this situation for two additional
nodes n0 and n2 that are linked to n1. The top row of the diagram depicts
the signatures of three nodes n0, n1, and n2 of the original development
graph and the link morphisms for the links l1 and l2 between them. The
bottom row depicts the corresponding signatures in the new development
graph: the changed signature of the node corresponding to n1 and the two
unchanged signatures of the two other nodes. The unchanged signatures
in the original and the new development graph are related by the appro-
priate identity signature morphisms idΣn0 and idΣn2 . The changed signa-

tures Σn1 and Σn′
1 are related by a signature morphism σn1 that renames s1

2This means that name changes are not propagated along uses and satisfies clauses.
However, propagation can be realised by a number of sequential renamings. A transfor-
mation to this effect can easily be provided using the more basic transformation we have
provided here.

127

Chapter 6. Specification Transformations

Σn0
σ l1

- Σn1
σ l2

- Σn2

Σn0

idΣn0

? σ l′1 = σn1 ◦σ
l1

- Σn′
1

σn1

?
σ l′2 = σ l2 ◦σ−1

n1 - Σn2

idΣn2

?

Figure 6.3: Renaming signature items

to s2. Note that we have assumed that s2 is not visible in Σn1 , so σn1 is a
bijective symbol mapping and the inverse mapping σ−1

n1
exists. With the

definitions

σ l′1 = σn1 ◦σ
l1 ◦ id−1

Σn0 and σ l′2 = idΣn2 ◦σ
l2 ◦σ−1

n1
(6.1)

the diagram in Figure 6.3 commutes. An additional case that needs to be
considered is a link from n1 to n1 itself. In this case, the identities in (6.1)
have to be replaced by σn1 . All links that do not have n1 as their source
or target node keep their signature morphisms. Together this ensures that
(4.16) on page 89 commutes for every link. The inverse of σn1 is easy to
compute in practice for the given construction of σn1 from the identity
idΣn1 .

This defines a development graph translation, where all nodes except
for n1 are mapped along the identity, and n1 is mapped along the isomor-
phismsσn1 – incidentally, this also satisfies the conditions that are required
for signature adjustments.

6.3.2 Function and Predicate Arities

As an example for changes to function or predicate arities, we consider a
transformation that adds an additional argument to a function. Let f be a
function from s to t in the theory n, e.g. the specification includes

(theory n

(uses ...) (satisfies ...)

...

(op f (s) t)

...

(axiom ... (f τ) ...)

...)

128

6.3. Changing Elements

For ease of presentation, we assume that f is not a constructor (construc-
tors are discussed in Section 6.3.3).

Changing the domain of f from s to s× u necessitates

1. changing the declaration of f to (op f (s u) t),

2. replacing all occurrences of the form (f τ) in subterms of the axioms
of theory n by (f τ ′ τ2) for some τ2 of type u, where τ ′ is obtained
from τ by replacing other occurrences (f . . .) by (f . . . τ2) recur-
sively), and

3. doing the same procedure for all theories that use the theory n or
satisfy n, or that are used or satisfied by n.

In our reference instantiation we have chosen to make the term τ2 a pa-
rameter of the transformation, which has to be provided by the user.

Assume that we have successfully dealt with the first two items of
the above list. For the third, we again have to follow the dependencies
from n to other theories. In each other theory m that uses n, the function
f is mapped to a function with the same or a different name according
to the symbol map; assume it is mapped to f’. Similarly, s, t, u, and
τ2 are mapped to some items s’, t’, u’, and term τ ′2. In order for the
specification to be well-defined, we need to add an argument to f’ be-
cause otherwise the symbol mapping from a binary function f to the unary
one f’ would not be well-defined. This works exactly as described for f

above, except that there is the possibility that m does not include a decla-
ration of f’: when an item is inherited via a uses clause, it may be de-
clared redundantly, cf. Section 5.3.1. Similarly, when a theory k satisfies
n, then f is mapped to an operation, say f’’, and that operation needs
to have an additional argument as well for the satisfies clause to be
well-formed. Thus, adding an argument is propagated along uses and
satisfies clauses. Again, this involves finding a fixpoint since the graph
may be circular.

So far, we have only considered following the dependencies along the
direction of the symbol mapping but not backwards. Assume that n uses
k with the symbol mapping g 7→ f, and that k declares a unary function g.
After the argument has been added to f, this symbol mapping is no longer
well-formed: it maps a unary function to a binary one. Thus, we need to
add an argument of type u’ to g in k, using a term τ ′2 such that the image
of u’ is u and the image of τ ′2 is τ . Both u’ and τ ′2 do not necessarily exist,
and if they exist they may not be unique. It is a design decision what to do

129

Chapter 6. Specification Transformations

if they do not exist or are not unique.3

At any rate, propagating these changes along the dependencies can
lead to the case where several functions, not just one, in one theory need
to have additional arguments. We characterise this transformation over
the whole specification by a set of tuples (n, f , τ), where n is a theory, f is
a function, and τ is a term. The semantics of such a tuple (n, f , τ) is that in
node n, an argument of the type of τ is added to the function f . Some of
these tuples were given initially, e.g. by the user, and others were added
due to the closure conditions of propagating the changes along uses and
satisfies clauses which we have described above. We say that the whole
set is the transformation determined by the initially given changes.

At this point, there are several design decisions that need to be made.

• If an argument needs to be added to a function f in a theory n as a
consequence of propagating the transformation along links (i.e. the
respective tuple was not given initially), and if the function is de-
clared redundantly: should this be allowed or should this be an error
with a note to the user that the explicitly defined f should also get
an additional argument?

• Should the change be propagated along dependencies when this in-
volves going backwards over symbol mappings, provided suitable
τ2 and u’ exist? If none exist, an error is raised.

• If yes, what should be done if there is more than one u’ and τ ′2 with
the required image?

However, no matter how these questions are answered, the result of the
propagation scheme is a set G of tuples (n, f , τ) describing the changes
that are carried out to the nodes of the specification, or an error. However,
there is no guarantee that the resulting set is consistent, i.e. that carrying
out all the changes results in a well-formed specification. If it does not, the
transformation determined by the initial changes is not applicable to the
specification, and trying to carry it out will also stop with an error.

Propagation to Development Graphs. Transformations changing ex-
isting signature items are realized on the level of development graphs by
translations. If the specification transformation represented by the set G
of tuples produces a well-formed specification, it can be used to compute
a development graph translation such that transforming the specification

3We have chosen to abort the transformation in this case.

130

6.3. Changing Elements

and translating the development graph commute. For each node n, we
collect all pairs (f , τ) for which (n, f , τ) ∈ G, and this set Cn describes
how the node corresponding to the theory needs to be translated.

In order to express the development graph translation we require ap-
propriate XSig-arrows. Thus, for all signatures Σ, for each set C of tuples
(f , τ) such that f is an operation in Σ, τ is a Σ-term, and C is the graph
of a partial function, and all signatures Σ′ that are like Φn except for each
tuple (f , τ) ∈ C, f has an additional argument of the type τ in Σ′, an XSig-
arrow addarg(C) : Σ→ Σ′ is defined.4 The intuition is that addarg(C) adds
an argument of the type of τ = C(f)5 to the arity of f in Σ, if f is in the
domain of C. Two arrows are identical iff the sets are identical. For C = ∅,
addarg(C) = idΣ is considered as the identity, although this does not mat-
ter for the application. In the way described in Section 4.4 on page 94,
closure conditions ensure that the resulting XSig is an extended category
of signatures.

Also, according to Section 4.4, it is enough to define the value of XSen
for each of the explicitly given translations: XSen(addarg(C)) is the map-
ping EC from Σ- to Σ′-formulae that results from recursively replacing sub-
terms of the form (f τ1 . . . τn) by (f EC(τ1) . . . EC(τn) τ):

EC((f τ1 . . . τn)) =

{

(f EC(τ1) . . . EC(τn) τ)) if (f , τ) ∈ C

(f EC(τ1) . . . EC(τn))) otherwise.
(6.2)

Let ϑn = addarg(Cn), where Cn = {(f , τ) | (n, f , τ) ∈ G} is the set of tu-
ples that apply to the node n ∈ N.6 A development graph translation
(h, (ϑn)n∈N) and the resulting development graph is now constructed as
follows (cf. Figure 6.4):

• The signature Σn of each node n is mapped to

Σh(n) = addarg(Cn)(Σn) .

• ϑn is applied to the local axioms of each node n, i.e.

Φh(n) = XSen(addarg(Cn))(Φn) .

4Note that for each signature Σ, addarg(C) is defined for arbitrary sets of tuples C
satisfying the assumptions, not just for concrete sets Cn relative to a given development
graph.

5C is the graph of a partial function so C(f) is defined provided f is in the domain.
6For convenience we write n for the theory and its associated node.

131

Chapter 6. Specification Transformations

n1 : Σn1 ,Φn1
l : σ l

- n2 : Σn2 ,Φn2

h(n1) : ϑn1Σ
n1

XSen(ϑn1)(Φ
n1)

ϑn1
?

h(l) :
{

x 7→ σ lx
}-

h(n2) : ϑn2Σ
n2

XSen(ϑn2)(Φ
n2)

ϑn2
?

Figure 6.4: Development graph translation for adding arguments

• For each link, the signature morphism is adjusted such that the sym-
bol mappings are unchanged: domain and codomain of the link mor-
phism change, so mapping f to g before and after the change pro-
duces two different signature morphisms. When the old signature
morphism isσ , we write the new signature morphism as

{
x 7→ σ lx

}
.

The result is indeed a development graph by construction: this is guaran-
teed by the condition that C be consistent and applicable to the original
specification. The details are tedious and not very interesting, the idea
being that consistency over dependencies on the level of specifications is
sufficient for consistency over links on the level of development graphs,
since each link is derived from a dependency. Furthermore, this ensures
that for each link the diagram (4.16) on page 89 commutes as required for
development graph translations, and thus our framework propagates the
specification transformation to proof obligations.

6.3.3 Generatedness Constraints

Generatedness constraints can be changed in several different ways. We
start with changes dealt with by transformations we have already de-
scribed.

• Entire generatedness constraints can be added or removed. This
works similar to adding and removing axioms. On the level of devel-
opment graphs, generatedness constraints are logical sentences, so
the development graphs transformation Traxioms already covers these
specification transformations.

• Single constructors can be changed, e.g., by adding or removing an
additional argument to one of the constructors. Adding an argument

132

6.3. Changing Elements

to the constructor is analogous to adding an argument to the func-
tion as described in Section 6.3.2. Note, that on the level of specifica-
tions, development graphs, and proof obligations, it does not matter
whether or not the function is a constructor: a generatedness clause
reads

(gen ... f ...)

no matter how many arguments the constructor f has, so there is no
need to change the clause when an argument is added. Similarly,
generatedness constraints in development graphs and proof obliga-
tions refer to the constructor function and thus the change to the gen-
eratedness constraint is effected implicitly.

Adding or deleting constructors is a transformation that is not dealt
with by another transformation. Consider a theory n, in which a gener-
atedness constraint is changed by making a non-constructor function be-
come a constructor.

Example 6.5 The theory includes an operation declaration for chmod and
a generatedness clause, e.g.

(op chmod (subject filename) command)

(gen write read create remove)

and the generatedness clause is then changed to

(gen write read create remove chmod)

meaning that the operation chmod is now also a constructor for the type
command. ◦

Note that, contrary to changing the arity of an operation, adding a con-
structor does not change the visible signatures. It implicitly changes the
induction schema that is encoded in the institution as a generatedness con-
straint, i.e. a sentence. However, inheritance and propagation of sentences
is afforded by the development graph mechanism, so we do not need to
be concerned with the propagation here explicitly.

Propagation to Development Graphs. The transformation is propa-
gated to development graphs using the transformation Trocc as described
in the following section: all nodes’ signatures and axioms, and all links’
morphisms are kept, except that in node n the respective generatedness
constraint is replaced by the new one.

133

Chapter 6. Specification Transformations

6.3.4 Formula and Term Occurrences

Formula or term occurrences are changed frequently while working on a
specification.

Example 6.6 In the scenario concerned with fault-tolerant systems (cf. Sec-
tion 2.2.2 on page 22), an additional slot was added to the representation
of processes: each process is either up or down. Before the this change, the
state of a process was modelled as a generated datatype process with the
constructor7

mk-process : option× option× option× option → process .

Afterwards the constructor had the profile

mk-process : option× option× option× option× boolean → process .

Since the sort process is intended to be freely generated by the construc-
tor mk-process, the specification includes an axiom to the effect that two
processes are equal iff all their slots are equal, i.e.

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(<=> (= (mk-process bb1 ib1 db1 dm1)

(mk-process bb2 ib2 db2 dm2))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))) .

A new parameter is added to the constructor in several steps. First, after
adding an additional argument to mk-process, the axiom reads

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(<=> (= (mk-process bb1 ib1 db1 dm1 boolean-dummy)

(mk-process bb2 ib2 db2 dm2 boolean-dummy))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))) .

7The details about the slots of mk-process are immaterial here, cf. Chapter 8.

134

6.3. Changing Elements

where the constant boolean-dummy is the parameter of the transformation
(cf. (6.2) on page 131) that is inserted to make mk-process-terms well-
defined. Second, two universal quantifications are added to the axioms:

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(up1 boolean)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(up2 boolean)

(<=> (= (mk-process bb1 ib1 db1 dm1 boolean-dummy)

(mk-process bb2 ib2 db2 dm2 boolean-dummy))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))) .

Third, the first occurrence of boolean-dummy is replaced by up1 and the
second occurrence by up2, which yields

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(up1 boolean)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(up2 boolean)

(<=> (= (mk-process bb1 ib1 db1 dm1 up1)

(mk-process bb2 ib2 db2 dm2 up2))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))) .

Note that the boxed subformula includes a conjunct for each of the old
slots, but not for the newly added one. This is corrected, fourth, by replac-
ing the boxed part of the axiom by

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)

(= up1 up2))

thus adding a new clause for the new slot. The effect is to replace the
original axiom by a second one that is similar in some way: here a sub-
formula occurrence is replaced by another subformula that shares propo-
sitions with the original occurrence.

135

Chapter 6. Specification Transformations

Similarly, subterm occurrences were changed in the course of the case
study. The axiom for the post-condition of one of the state transitions,
b-1p, originally specified that the processes are unchanged except for pro-
cess i, which has its first slot set to none:

(all (s state) (i nat) (s1 state)

(<=> (post s (b-1p i) s1)

(= (procs s1)

(update (procs s) i

(mk-process none

(bb (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s) i)))))))

Note that all other slots of the process are unchanged: (aref (procs s)

i) is the process with index i before the state transition, and bb, db, and
delivered are the selectors for the respective slots. After the additional
argument has been added to mk-process, the axiom also includes a term
boolean-dummy. The axiom thus reads

(all (s state) (i nat) (s1 state)

(<=> (post s (b-1p i) s1)

(= (procs s1)

(update (procs s) i

(mk-process none

(bb (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s) i))

boolean-dummy)))))

Because b1-p is assumed to change only the first slot and leave the others
unchanged, the user replaces the boxed occurrence of boolean-dummy by
the term

(is-up (aref (procs s) i))

where is-up is specified as the selector function for the added slot. Thus
the resulting axiom is

136

6.4. Summary

(all (s state) (i nat) (s1 state)

(<=> (post s (b-1p i) s1)

(= (procs s1)

(update (procs s) i

(mk-process none

(bb (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s) i))

(is-up (aref (procs s) i)))))))

◦

Such changes affect the proofs in which the respective axiom is used. Ac-
cording to the rules of the specification language, the changed axiom is
possibly inherited by other theories and thus possibly used by many proofs.

For propagating changes to axioms through the specification, it does
not matter how exactly the old and the changed axiom differ, and how
they are similar. We can thus ignore the matter here and investigate what
happens if an arbitrary axiom ϕ is replaced by another axiom ψ. We will
discuss the issue of similarity and difference in detail when we present the
corresponding proof transformations in Section 7.7.

Propagation to Development Graphs. Assume that a subterm or sub-
formula occurrence in an axiom ϕ in theory n is changed so that the re-
sulting new axiom is ψ. This is propagated to development graphs us-
ing the development graph transformation Trocc. It is easy to see that
qn = {(ϕ,ψ)} is a sentence replacement for Φn, i.e. the local axioms of
the node corresponding to the theory n. Additionally, qn(Φn) is the set of
local axioms specified for the theory n with ϕ replaced by ψ. Thus, ap-
plying Trocc with an appropriate development graph bijection and empty
sentence replacements for all nodes n′ except for n′ = n will transform the
development graphs in a way that ensures that the new graph corresponds
to the changed specification. The inheritance of axioms along dependen-
cies is taken care of automatically by the development graph translation.

6.4 Summary

In this chapter we have studied concrete specification transformations for
the specification language that we have introduced in Section 5.3. Some
transformations on specifications have been described in detail. For each

137

Chapter 6. Specification Transformations

transformation, its effects on the specification have been described. Fur-
ther, we have discussed how each specification transformation can be prop-
agated to development graphs: there is a sequence of development graph
transformations from those described in Chapter 4 that transform the de-
velopment graph in a way that corresponds to the change of the specifica-
tions. A summary of this relationship is given in Figure 6.5.

Specification transformations are thus linked to proof obligation trans-
formations via development graph transformations. This lets us say for a
certain specification transformation which transformations on proof obli-
gations are needed to propagate it to proof obligations. A sketch of the
relationship between specification and proof obligation transformations is
provided by Figure 6.6.

138

6.4. Summary

Transformation Sect. Effect on specification
Development graph transformation

theories 6.2.1 add/delete isolated theories
Trnodes: add/delete isolated nodes

axioms 6.2.2 add/delete axioms
Traxioms: add/remove local axioms

dependencies 6.2.4 add/delete using/satisfies clauses
Trsignatures: adjust signatures
Trlinks: add/delete links

signature items 6.2.3 add/delete signature items
Trsignatures: adjust signatures

6.3.1 rename signature items
Trtranslate: map along isomorphism

6.3.2 change function and predicate arities
Trtranslate: map along translation

6.3.3 change constructor arities
Trtranslate: map along translation
Trocc: change generatedness constraints

induction schemata 6.3.3 add/remove generatedness constraints
Traxioms: add/delete generatedness constraints

6.3.3 add/remove constructor
Trocc: change generatedness constraint

occurrences 6.3.4 change occurrence
Trocc: change occurrence

Figure 6.5: Specification transformations

139

Chapter 6. Specification Transformations

specification
 transformations

development graph
 transformations

proof obligation
 transformations

occurrences

occurrences
induction
schema

axioms

signature
items

signatures

translation

dependencies links

axioms

theories nodes

morphism

signature
restriction

assumptions

obligations

translation

occurrences

Figure 6.6: Dependency between concrete transformations

140

Chapter 7

Proof Transformations

7.1 Overview

Specification transformations trigger development graph transformations,
and these in turn trigger proof obligation transformations. The relation-
ship between specification and development graph transformations has
been described for our concrete instance in the preceding chapter; the
relationship between the development graph and proof obligation trans-
formations is fixed by the framework given in Chapter 4. Thus, for the
concrete specification transformations that we have introduced in Chap-
ter 6 we have the following transformations on proof obligations (cf. Fig-
ure 6.6):

• adding and deleting assumptions

• mapping obligations along signature morphisms

• restricting the signature

• translating obligations

• changing occurrences

This chapter discusses how to transform entire proofs when their conclu-
sion is transformed by one of these proof obligation transformations. As
it turns out, further proof transformations that do not change the conclu-
sions of the proofs are needed. These are not triggered by specification
transformations; instead they are applied to a given proof by the user di-
rectly.

141

Chapter 7. Proof Transformations

7.2 General Pattern of Proof Transformations

Proof transformations are defined recursively according to the structure
of the proof tree. Slightly simplified, a goal transformation is applied to
the conclusion of a proof tree; the subproofs are transformed accordingly,
and then a new proof is assembled from the new conclusion and the new
subproofs. Obviously, this describes a mapping over proofs. The trans-
formation applied to subproofs is not necessarily from the same class of
transformations as the one applied to the whole proof in general. Thus, the
transformations on subproofs sometimes refer to a different class of trans-
formations and the presentation of the transformations is spread over the
chapter. We refrain from presenting this entire transformation formally:
we have found that doing so does not provide any benefit but makes un-
derstanding the ideas of the transformations very tedious.

The starting point for a transformation is an arbitrary existing proof ξ,
called the original proof in the following, with its conclusion:

.... ξ

[~x :~s] Γ(~x) ⊢ ∆(~x) .

Then, we describe how the transformation changes the conclusion, yield-
ing

[~x′ :~s′] Γ ′(~x′) ⊢ ∆′(~x′) .

For any leaf [~x :~s] Γ(~x) ⊢ ∆(~x) the transformed proof is the leaf consisting
of the new conclusion [~x′ :~s′] Γ ′(~x′) ⊢ ∆′(~x′). For branches, ξ has the form

.... ξ1

[~x1 :~s1] Γ1(~x1) ⊢ ∆1(~x1) · · ·

.... ξk

[~xk :~sk] Γk(~xk) ⊢ ∆k(~xk)

[~x :~s] Γ(~x) ⊢ ∆(~x)
j, a

(7.1)

Depending on the reasoning step j, a of the original proof, the old con-
clusion, and the transformation, the first reasoning step is adapted for the
new proof. This is either a matter of transforming the rule justification
arguments a, or it may be much more involved such as constructing an
intermediate proof. In any case, the result of transforming the first rea-
soning step can be represented by an intermediate subproof ξ0, yielding a
number of open goals:

[~x′1 :~s′1] Γ
′
1(~x

′
1) ⊢ ∆′

1(~x
′
1) · · · [~x′m :~s′m] Γ ′m(~x′m) ⊢ ∆′

m(~x′m)
.... ξ0

[~x′ :~s′] Γ ′(~x′) ⊢ ∆′(~x′)

142

7.3. Adding and Deleting Assumptions

For each of the open leaves [~x′j : ~s′j] Γ
′
j(~x

′
j) ⊢ ∆′

j(~x
′
j) (for 1 ≤ j ≤ m) of ξ0

we consider the following cases:

• There is an old proof that we want to reuse (and maybe adapt) for
the open leaf: We describe how the new premiss results from one of
the premisses [~xi : ~si] Γi(~xi) ⊢ ∆i(~xi) (for some i with 1 ≤ i ≤ k) of
the original proof ξ. I.e. we provide the old premiss and describe
a proof transformation that transforms an arbitrary proof ξi with
conclusion [~xi : ~si] Γi(~xi) ⊢ ∆i(~xi) into a proof ξ ′j with conclusion

[~x′j :~s′j] Γ
′
j(~x

′
j) ⊢ ∆′

j(~x
′
j).

• There is no proof that we want to reuse for the open leaf: We leave the
new premiss open as a new open goal in the resulting transformed
proof.

For each j for which we leave the goal open in the resulting proof, let ξ ′j
be the trivial open proof for the conclusion [~x′j : ~s′j] Γ

′
j(~x

′
j) ⊢ ∆′

j(~x
′
j). Then

the result of transforming the proof (7.1) with the given transformation is

.... ξ
′
1

[~x′1 :~s′1] Γ
′
1(~x

′
1) ⊢ ∆′

1(~x
′
1) · · ·

.... ξ
′
m

[~x′m :~s′m] Γ ′m(~x′m) ⊢ ∆′
m(~x′m)

.... ξ0

[~x′ :~s′] Γ ′(~x′) ⊢ ∆′(~x′)

This is a valid proof object if only the intermediate proof object ξ0 is a
valid proof and the recursive transformations on the subproofs produce
valid proof objects. We assert that the result is indeed a valid proof object,
arguing that the latter condition is the induction hypothesis and the for-
mer can be ensured in the usual way by only using valid inference rules.
We will present the construction of the intermediate proof in a way that
makes clear that this is indeed the case.

7.3 Adding and Deleting Assumptions

Adding an assumption to the conclusion of a proof is simple from a se-
mantical point of view: the assumption weakens the proposition, i.e. the
new conclusion is implied logically by the old one. The new assumption
can be ignored. On the other hand, the whole point of adding an assump-
tion to a proof is to be able to use it in the proof. This is easy, too: all valid
proof steps are still valid proof steps if the same formula is added to the

143

Chapter 7. Proof Transformations

antecedent of the conclusion and each premiss. As an example, consider
the rule and-r:

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) · · · [~x :~s] Γ(~x) ⊢ ∆(~x),ϕm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x)

becomes

[~x :~s] γ(~x), Γ(~x) ⊢ ∆(~x),ϕ1(~x) · · · [~x :~s] γ(~x), Γ(~x) ⊢ ∆(~x),ϕm(~x)

[~x :~s] γ(~x), Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x)

with unchanged justification “and-rϕ1(~x) ∧ · · · ∧ϕm(~x)”. This holds for
each of the rules of the calculus that we have chosen. As can easily be
seen, each open goal of the original proof will have the additional formula
in the antecedent so that it can be used in any subproof.

The same reasoning applies to adding a formula to the succedent of
the conclusion, and it also applies for adding several formulae to the an-
tecedent and/or the succedent.

In other proof representations, even for the same calculus, this need
not be as easy to formulate. It is important how the justifications are rep-
resented. For instance, the and-r-rule needs to determine the focus for-
mula that is to be decomposed. In our proof representation, the formula
is represented in the justification arguments by the formula itself. The for-
mula is invariant under adding formulae to the conclusion and premisses,
so the original justifications can be kept. This is in contrast to proof rep-
resentations in which the focus formula is determined by its position in
the sequent (this is the case for the theorem proving component of the
VSE system and for PVS) or in which it is determined heuristically (which
is the case, e.g. for Isabelle’s proof scripts). The latter does not reliably
support the transformation because adding a formula potentially changes
the search space of the heuristic and thus different premisses may be gen-
erated, the former supports the transformation but more work is needed
because formula positions possibly shift when new formulae are added.

Deleting a formula from the antecedent or the succedent is more dif-
ficult because this strengthens the proposition. Obviously, a context for-
mula, i.e. a formula that is not used in a rule, can be deleted from each
proof rule by deleting it from the conclusion and the premisses, i.e. the ex-
ample for adding γ(~x) to the rule and-r above can be read backwards as
removing the formula. When the formula to be removed is not a context
formula, it plays some rôle for the applicability of the proof rule, and some
patch is required to make the proof rule be valid in general. Assume that

144

7.3. Adding and Deleting Assumptions

we want to deleteϕ1(~x) ∧ · · · ∧ϕm(~x) from the succedent in

.... ξ1

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) · · ·

.... ξm

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x)

This leaves us with the new conclusion [~x :~s] Γ(~x) ⊢ ∆(~x). Depending on
why the conjunct is deleted, there are several possibilities to proceed.

• If the conjunction is not needed at all, we can simply remove the
first proof step, remove the conjunct ϕi from one of the premisses,
transform the original subproof ξi by removing the conjunct from
the whole proof with result ξ ′1, and use ξ ′i as subproof:

.... ξ
′
i

[~x :~s] Γ(~x) ⊢ ∆(~x)

The user can choose which premiss and proof to use.

• If the conjuncts are used, yet the focus formula is withdrawn as an as-
sumption, we would expect the conjuncts to be derivable from some
other assumptions, either existing ones or ones that will be intro-
duced later. A scenario for this is when axioms are withdrawn and a
different axiomatisation is introduced.

This is achieved by introducing the conjunct with a cut-rule and then
carrying on:

(7.2)

.... ξ

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕn(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x)
cutϕ1(~x) ∧ · · · ∧ϕn(~x)

with the new open goal

[~x :~s] Γ(~x),ϕ1(~x) ∧ · · · ∧ϕn(~x) ⊢ ∆(~x) . (7.2)

We have chosen to provide the second possibility only, because it seemed
to be needed more often in our examples. Note that the result of the first
can be achieved nevertheless in our instantiation: First, replace the as-
sumption ϕ1(~x) ∧ · · · ∧ϕm(~x) byϕi(~x) (cf. Section 7.7), and then remove
the assumptionϕi(~x).

145

Chapter 7. Proof Transformations

7.4 Mapping Proofs

Given a proof ξ and a signature morphism σ , Prf(σ)(ξ) is a proof for
Goal(σ)(concl(ξ)) according to Figure 3.4 in the definition of a proof rep-
resentation in Section 3.5. In our concrete proof representation Prf(σ)(ξ)
has the same structure as ξ, and thus the same open goals and rule justifi-
cations (both mapped along σ , of course).

In the specification transformations of the concrete instance, proof obli-
gations are mapped along signature morphisms as the result of extending
signatures or renaming signature items. For the latter, signature items are
renamed in goals and rule arguments; for the former, goals and rule argu-
ments are injected into the extended language.

7.5 Restricting the Signature

In our concrete instance, a signature restriction from Σ to Σ′ is a symbol
mapping σ : Σ′ → Σ that is injective. The restriction of σ to its range is
thus trivially bijective. So there exists an inverse symbol mapping from
the range of the mapping to its domain. Since symbol mappings only map
finitely many symbols to other symbols, both the inverse σ̂ and its domain
Σ̂ ⊆ Σ are easy to determine.

Now let us assume that we want to restrict the signature of the Σ-
proof ξ along σ . We determine the σ-range Σ̂ of Σ. If ξ ∈ Prf(Σ̂) then
Prf(σ̂)(ξ) ∈ Prf(Σ′) is the transformed proof. Otherwise, the proof uses
symbols that would be removed by the restriction and the transformation
is not applicable.

7.6 Translating Proofs

In our reference instantiation, the only proof obligation translations that
we have described explicitly are concerned with adding arguments to func-
tion and predicate arities. We will concentrate on function arities in the fol-
lowing, changing predicates arities works out similarly. Recall that if C is
a partial function from functions in Σ to terms in Σ, ϑ = addarg(C) : Σ→ Σ

is the translation that adds an argument to the arity of all functions in the
domain of C. The sentence translation XSen(addarg(C)) adds the term
C(f) as an additional argument to all terms constructed with f (cf. EC as
defined by (6.2) on page 131).

146

7.6. Translating Proofs

Similarly, we define XGoal(addarg(C)) to be the translation that re-
places the terms constructed with f in the sentences of a proof goal accord-
ing to EC. As a consequence, mapping formulae and goals along addarg(C)
and constructing proof goals from the formulae commutes.

Finally, we define XPrf(addarg(C)) to map a proof

.... ξ1

Θ1 · · ·

.... ξm

Θm

Θ
j, a

(7.3)

to

.... XPrf(ϑ)(ξ1)
XGoal(ϑ)(Θ1) · · ·

.... XPrf(ϑ)(ξm)
XGoal(ϑ)(Θm)

XGoal(ϑ)(Θ)
j, a′

(7.4)

for ϑ = addarg(C), where a′ = EC(a) is the sequence of justification ar-
guments, i.e. terms or formulae, that results from replacing f -subterms
according to C. As a consequence, translating proof goals and proofs and
taking the conclusion commutes. Thus, the diagram given in Figure 4.9 on
page 92 commutes as required for an extended proof representation.

In the statement of XPrf(addarg(C)) we claim implicitly that the result
is a valid proof. Under the assumption that none of the functions in C
is a constructor, this is indeed the case for the concrete proof represen-
tation that we have chosen. The detailed proof is very tedious, though.
The main idea is that the applicability of proof rules is based on unifica-
tion of terms and formulae, and that unification is invariant under adding
the same term C(f) to all f -terms. Adding arguments to constructors or
removing them from constructors additionally changes the associated in-
duction schema, and requires further patches, cf. Section 7.7.3.

Another interesting translation is concerned with removing an argu-
ment from a function arity, i.e. going from f : t1 × · · · × tm−1 × tm → t
to f : t1 × · · · × tm−1 → t and removing the last argument from any term
constructed with f . There are two differences to addarg. First, two terms
or formulae may unify after the argument has been removed but fail to
unify before. An example is the pair of formulae (p (f a b)) and (p (f

a c)), which both become (p (f a)). If these two formulae appear both
in, say, the antecedent of the conclusion of a proof then after the transfor-
mation of the goal these formulae coincide. This needs to be propagated
to the premisses. Second, the argument term that is removed may have
been essential for the applicability of an equation. An example is when

147

Chapter 7. Proof Transformations

the equation (= b (g c)) is applied to (p (f a b)) to yield (p (f a (g

c))), and then the second argument of f is removed. The term that is to
be rewritten does not exist anymore, and thus the rewriting is redundant.
Our proof representation is set up such that this degenerate case of rewrit-
ing is already allowed and no new reasoning steps need to be introduced.
The consequence is that the proof transformation of removing arguments
can be expressed by (7.3) and (7.4) for an appropriate signature transla-
tion ϑ, and thus can be formulated as a translation of the extended proof
representation.

In both cases, the proof XPrf(ϑ)(ξ) that results from adding an argu-
ment to a function or predicate or removing one has the same structure as
the original proofξ, and conclusion and all open goals of the new proof re-
sult from conclusion and corresponding open goal of the original proof by
mapping the goal along ϑ, with the exception of patches due to changing
induction schemata.

7.7 Changing Occurrences

Changing subterm or -formula occurrences in the specification is propa-
gated to proof obligations according to Section 4.3.2 with the aid of sen-
tence replacements. Recall that a sentence replacement q for a set Γ of
Σ-sentences is a relation q ⊆ Γ × Sen(Σ). A pair (ϕ,ψ) ∈ q means that
ϕ ∈ Γ is to be replaced by ψ. Also recall that the relation q over sentences
can be interpreted as a function over sets of sentences (cf. Definition 4.7):

q(Γ) =
(
Γ \

{
ϕ | (ϕ,ϕ′) ∈ q

})
∪

{
ϕ′ | (ϕ,ϕ′) ∈ q

}
.

According to Theorem 4.11, each proof obligation

Φ
n2
D |=Σn2 Sen(σ)(ϕ)

is changed by Trocc to another proof obligation

l(Φn2
D) |=Σn2 r(Sen(σ)(ϕ)) .

for two sentence replacements l and r determined by Trocc.
1 The proof for

the proof obligation needs to be changed accordingly.
In the following, we discuss how such replacements are applied to

proofs, i.e. how they are propagated up through proof trees. First the gen-
eral scheme (cf. Section 7.7.1) and then special cases (cf. Section 7.7.2) are

1In terms of Theorem 4.11, the replacement l is q∗n2
in (4.6), and r is the relation

{(Sen(σ)(ϕ), Sen(σ)(ϕ′))} withϕ taken from (4.5) andϕ′ from (4.6).

148

7.7. Changing Occurrences

presented. In both cases, we distinguish those situations in which the re-
placements do not essentially influence the proof rule that is applied, and
those in which the rules are no longer applicable after the replacement. For
the former, the rule is applied and the replacements are inherited by the
premisses and the rule arguments. For the latter, some patching is needed
before the replacements can be propagated. Formally, there is always a
patch. It cannot be adequate in all situations, though.

7.7.1 Replacing Occurrences

We start out with a proof ξ that has the conclusion Γ ⊢ ∆ and in which
we want to replace occurrences of formulae in the antecedent and in the
succedent. The conclusion Γ ⊢ ∆ of the original proof ξ is thus trans-
formed into l(Γ) ⊢ r(∆) for two given sentence replacements l and r. We
propagate these changes over the whole proof. In the course we introduce
Eigenvariables, and the changes will need to honour them. Therefore we
generalise the problem description to proof obligations and replacements
which refer to Eigenvariables. If we make these explicit in the sentence
replacements then the original conclusion

[~x :~s] Γ(~x) ⊢ ∆(~x)

is changed to

[~x :~s] l(~x)(Γ(~x)) ⊢ r(~x)(∆(~x)) .

If the original proof ξ is a leaf we are done. Otherwise we have to deal
with the question of how to propagate the sentence replacements l(~x) and
r(~x) over the first rule step so that we can transform the subproofs for the
premisses recursively.

Of course, how a single change can be propagated from the conclu-
sion to the premisses depends on the proof rule that was applied and on
whether the change applies to the context or a focus formula. Addition-
ally, we need to take into account how the effects play together for several
changes. One main problem with this is the large number of resulting
cases. These cannot simply be treated one by one in practice, not even for
our simple, lean calculus. The number of special cases can be reduced by
separating the changes that apply to the context (cf. Section 7.7.1.1) and
those that apply to the focus formulae (cf. Section 7.7.1.2), and then com-
bining the effects (cf. Section 7.7.1.3).

149

Chapter 7. Proof Transformations

7.7.1.1 Context

Propagating changes over rules is easy for context formulae: since the con-
text of reasoning steps is unchanged in the premisses, the changes can be
applied to the context of the premisses. As an example consider a proof
starting with the application of an and-l rule

.... ξ1

[~x :~s] Γ(~x),ϕ1(~x), . . . ,ϕm(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ ∆(~x)
and-l ϕ1(~x) ∧ · · · ∧ϕm(~x)

(7.5)
which we want to transform by applying two sentence replacements l(~x)
and r(~x) to the context of the conclusion. Applying the sentence replace-
ments to the context of the conclusion yields

[~x :~s] l(~x)(Γ(~x)),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ r(~x)(∆(~x))

Applying the same sentence replacements to the context of the premiss
yields a correct application of the and-l-rule:

[~x :~s] l(~x)(Γ(~x)),ϕ1(~x), . . . ,ϕm(~x) ⊢ r(~x)(∆(~x))

[~x :~s] l(~x)(Γ(~x)),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ r(~x)(∆(~x))

with justification and-l ϕ1(~x) ∧ · · · ∧ϕm(~x). This is obvious since both
l(~x)(Γ(~x)) and r(~x)(∆(~x)) are sets of formulae, say Γ ′(~x) and ∆′(~x), and
thus the new reasoning step is an instance of the and-l-rule:

[~x :~s] Γ ′(~x),ϕ1(~x), . . . ,ϕm(~x) ⊢ ∆′(~x)

[~x :~s] Γ ′(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ ∆′(~x)

The problem of applying the sentence replacements l(~x) and r(~x) to the
context in the proof has been reduced to the problem of applying the sen-
tence replacement to the context of the conclusion and the problem of ap-
plying the sentence replacement to the context of the subproof ξ1; if we
write ξ ′1 for the result of the latter, the resulting transformed proof is

.... ξ
′
1

[~x :~s] l(~x)(Γ(~x)),ϕ1(~x), . . . ,ϕm(~x) ⊢ r(~x)(∆(~x))

[~x :~s] l(~x)(Γ(~x)),ϕ1(~x) ∧ · · · ∧ϕm(~x) ⊢ r(~x)(∆(~x))

Note that l(~x) does not apply to the whole antecedent of the conclusion or
premiss, but to the context Γ(~x) only, cf. Section 7.7.1.3.

150

7.7. Changing Occurrences

7.7.1.2 Focus Formulae

Changes to focus formulae are relevant for the question of whether the
bottom-most proof rule is applicable to the changed conclusion. We dis-
tinguish two cases: either the focus formula is changed in a way such that
the rule remains applicable (deep focus), in general with slight changes, or
the rule is not applicable as is (immediate focus). These are investigated
separately.

In the problem formulation above, we have implied that the focus for-
mula is replaced by a single formula. However, recall that sentence re-
placements are binary relations, and thus the focus formula ϕ may be
in relation to several formulae, e.g. as in f ({ϕ}) = {ψ1,ψ2} for f =
{(ϕ,ψ1), (ϕ,ψ2)}. As we will see in Section 7.7.1.3, for focus formulae it
is enough to consider the case, where f is a partial function on sentences,
i.e. the result of applying the sentence replacement f to the singleton {ϕ}
is again a singleton. Therefore, we assume that the sentence replacements
for the focus formulae presented in the following are right-unique.2

Deep Focus. For most rules, only the outermost structure of the focus
formula matters for the applicability of the proof rule. If changes to the
focus formula keep this structure intact, the rule is still applicable. We use
the slogan deep focus to characterise this situation. For instance, assume
that the bottom-most proof rule is and-r. The only focus formula is the
conjunction in the succedent, thusϕ1(~x) ∧ · · · ∧ϕm(~x) = ϕ(~x). Recall the
assumption that f (~x) is a sentence replacement for the focus formulaϕ(~x),
and that f (~x)({ϕ(~x)}) is a singleton. By our assumptions, the replacement
f (~x) for the focus does not change the outer structure, and thus the single
member of the singleton {ψ(~x)} = f (~x)({ϕ(~x)}) is a conjunction with m
conjuncts, i.e. it has the form

ψ(~x) = ψ1(~x) ∧ · · · ∧ψm(~x) .

Let m sentence replacements fi(~x) for the singleton sets {ϕi(~x)} (1 ≤ i ≤
m) be defined by

fi(~x) = {(ϕi(~x),ψi(~x))} (1 ≤ i ≤ m) . (7.6)

2Theorem 7.2 shows that this is a useful assumption; Remark 7.4 discusses the practi-
cal consequences.

151

Chapter 7. Proof Transformations

Given an original proof

.... ξ1

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) · · ·

.... ξm

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ1(~x) ∧ · · · ∧ϕm(~x)

with justification “and-r ϕ1(~x) ∧ · · · ∧ϕm(~x)” we can write the trans-
formed first proof step as3

[~x :~s] Γ(~x) ⊢ ∆(~x), f1(~x)(ϕ1(~x)) · · · [~x :~s] Γ(~x) ⊢ ∆(~x), fm(~x)(ϕm(~x))

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(ϕ1(~x) ∧ · · · ∧ϕm(~x))

Using the definitions (7.6), this reduces to

[~x :~s] Γ(~x) ⊢ ∆(~x),ψ1(~x) · · · [~x :~s] Γ(~x) ⊢ ∆(~x),ψm(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x),ψ1(~x) ∧ · · · ∧ψm(~x)

which is again a valid instance of the and-r-rule, namely with justification
“and-r ψ1(~x) ∧ · · · ∧ψm(~x)”. Obviously, similar schematic rules can be
written for the other structural and propositional calculus rules.

Again, we have reduced the question of how to apply the sentence
replacement to a formula in the proof to the question of how to apply
the replacement to a formula in the conclusion and how to apply other
replacements fi to the subproofs ξi. If the respective result of the latter is
ξ ′i , the transformed proof is

.... ξ
′
1

[~x :~s] Γ(~x) ⊢ ∆(~x), f1(~x)(ϕ1(~x)) · · ·

.... ξ
′
m

[~x :~s] Γ(~x) ⊢ ∆(~x), fm(~x)(ϕm(~x))

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(ϕ1(~x) ∧ · · · ∧ϕm(~x))

For predicate calculus rules the propagation works similar but has to
deal with the scope of Eigenvariables and the fact that terms are substi-
tuted into the focus formulae. As an example, we consider the all-r rule.
Assume that

.... ξ1

[~x :~s, y : s] Γ(~x) ⊢ ∆(~x),ϕ(~x, y)

[~x :~s] Γ(~x) ⊢ ∆(~x), ∀y : s. ϕ(~x, y)
all-r ∀y : s. ϕ(~x, y)

is a correct proof that is to be transformed according to the sentence re-
placement f (~x) for the focus formula. Since we assume that the relevant

3From hereon, when we apply a sentence replacement f to a singleton set {ϕ}, we
sometimes write f (ϕ) as an abbreviation for f ({ϕ}).

152

7.7. Changing Occurrences

formula structure is unchanged, the new focus formula f (~x)(∀y : s. ϕ(~x, y))
can be written as ∀y : s. ψ(~x, y), and thus with the definition

f1(~x, y) = {(ϕ(~x, y),ψ(~x, y))}

the resulting proof is

.... ξ
′
1

[~x :~s, y : s] Γ(~x) ⊢ ∆(~x), f1(~x)(ϕ(~x, y)))

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(∀h : s. ϕ(~x, h))

with justification “all-r f (~x)(∀y : s. ψ(~x, y))”, and for ξ ′1 being the proof
that results from ξ1 by propagating f1(~x, y) up through the subproof ξ.

For the ex-r rule the witness term can be handled similarly. An ad-
ditional complication results from the fact that the quantified formula is
retained in addition to the instantiated one. This is necessary for reasons
of relative completeness of the sequent calculus: in general, several instan-
tiations of one formula are required. In an original proof with first proof
step

[~x :~s] Γ(~x) ⊢ ∆(~x), ∃x : s. ϕ(~x, x),ϕ(~x, t(~x))

[~x :~s] Γ(~x) ⊢ ∆(~x), ∃x : s. ϕ(~x, x)

and with justification “ex-r ∃x : s. ϕ(~x, x), t(~x)”, we can write the re-
placement focus formula4 f (~x)(∃x : s. ϕ(~x, x)) as {∃x : s. ψ(~x, x)}, and
with the definition

f1(~x) = {(ϕ(~x, t(~x)),ψ(~x, t(~x)))}

the new proof reads

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(∃x : s. ϕ(~x, x)), f1(~x)(ϕ(~x, t(~x)))

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(∃x : s. ϕ(~x, x))

with justification “ex-r f (~x)(∃x : s. ϕ(~x, x)), t(~x)’. Induction rules work
similarly: each of the occurrences ofϕ in the induction formula (5.4) needs
to be replaced by ψ.

For the remaining rules it is more difficult to decide whether a given
replacement leaves the rule applicable. Consider any of the axiom rules,
e.g.

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x),ϕ(~x)
basic

4Recall that we assumed that the sentence replacement on focus formulae map the
singleton consisting of the focus formula to another singleton set.

153

Chapter 7. Proof Transformations

The applicability of the rule depends on the two occurrences ofϕ(~x) in the
antecedent and the succedent to be occurrences of the same formula. If we
replace ϕ(~x) by ψ(~x) the original rule will only be applicable if they are
the same formulae. It is not enough to keep the outermost formula struc-
ture: the whole formula is required to be the same. On the other hand,
if both occurrences are changed then the rule is still applicable. Checking
whether this is the case is not much cheaper than checking for the applica-
bility of the the basic rule in the first place. Thus, a proof consisting of an
application of a basic rule is transformed by transforming the conclusion
and then checking whether any of the basic rules is applicable. If it is then
the proof is closed, otherwise the conclusion is left as an open goal.

Finally, dealing with the equality rules is the most involved. The equiv-
alent of retaining the relevant outer structure has been taken in our refer-
ence instantiation to be the following conditions, for the rule5

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t2(~x))

[~x :~s] Γ(~x), t1(~x) = t2(~x) ⊢ ∆(~x),ϕ(~x, t1(~x))

with justification “eqn-l t1(~x) = t2(~x), ϕ(~x, t1(~x)), ϕ(~x, t2(~x))” that ap-
plies the equation from left to right:

• The equation that is applied as a rewrite rule retains the outer struc-
ture, i.e. remains an equation:

f1(~x)(t1(~x) = t2(~x)) =
{

t′1(~x) = t′2(~x)
}

.

• The subterm occurrence that is rewritten is changed in the same way
as the left hand side of the equation:

f2(~x)(ϕ(~x, t1(~x))) =
{
ψ(~x, t′1(~x))

}
.

Thus, the new rule

[~x :~s] Γ(~x), t′1(~x) = t′2(~x) ⊢ ∆(~x),ψ(~x, t′2(~x))

[~x :~s] Γ(~x), t′1(~x) = t′2(~x) ⊢ ∆(~x),ψ(~x, t′1(~x))

can, using the definition

f3(~x) =
{
(ϕ(~x, t2(~x)),ψ(~x, t′2(~x)))

}

5Note that equality rules have two focus formulae, and thus we give two replacements
f1 and f2 for the conclusion, one for each focus formula.

154

7.7. Changing Occurrences

be written as

[~x :~s] Γ(~x), f1(~x)(t1(~x) = t2(~x)) ⊢ ∆(~x), f3(~x)(ϕ(~x, t2(~x))

[~x :~s] Γ(~x), f1(~x)(t1(~x) = t2(~x)) ⊢ ∆(~x), f2(~x)(ϕ(~x, t1(~x)))

with justification

eqn-l f1(~x)(t1(~x) = t2(~x)), f2(~x)(ϕ(~x, t1(~x))), f3(~x)(ϕ(~x, t2(~x)))

It is obvious that this is a correct proof rule instance, although the fact
is hidden in all the book-keeping details. The other equational rules are
treated analogously.

Immediate Focus. If none of the cases that we have called deep focus are
applicable, one of the focus formulae is changed in a way that prevents the
first proof rule from being applied to the conclusion of the proof. I.e. the
bottom-most rule of the original proof is no longer applicable after the
replacement has been carried out on the conclusion of the proof. We cat-
egorise these by immediate focus: the most important example is changing
the outermost formula structure of the focus formula in propositional or
quantifier calculus rules. For example, if the focus formula of an and-r

rule is changed such that the result is not a conjunction, then the rule is no
longer applicable. What should be done is dependent to a certain extent
on the rule that was applied in the original proof (the and-r rule here),
but even more on the way in which the replacements have changed the
focus formulae. Support tailored to specific changes is the subject of Sec-
tion 7.7.2 below. If none of the special cases described there is applicable, a
uniform way of handling this is to give up at this point. If a focus formula
ϕ is changed to an arbitrary other formula ψ then there is not much that
we can do to patch the proof. The best bet seems to leave the resulting new
sequent as an open goal so that the user can work on it later. However, this
would throw away the old proof above the point in the proof at which we
give up. This can be avoided by relating the old and new focus formula
by a cut rule. I.e. if our original proof was

.... ξ

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ(~x)

with focus formulaϕ(~x), and f (~x)(ϕ(~x)) = {ψ(~x)}, the resulting proof is

.... ξ
′

(7.8) [~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x), f (~x)(ϕ(~x))

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(ϕ(~x)) (7.7)

155

Chapter 7. Proof Transformations

with premiss

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(ϕ(~x)),ϕ(~x) (7.8)

and justification “gap-r ϕ(~x), f (~x)(ϕ(~x))”, where ξ ′ results from ξ by
adding the formula f (~x)(ϕ(~x)) to the succedent. The second premiss is
an open goal to the effect that the old focus formula implies the new one
in the given context. Either this goal needs to be closed, or the proof needs
to be changed again later. Note that with this construction, the subproof
ξ ′ is part of the new proof and is not thrown away. The user can take it as
the basis for, e.g., a heuristic proof replay.

Remark 7.1 Although this step is an application of the cut rule, we have
found it helpful to distinguish cut rules that have been introduced in this
way (gap-l and gap-r) from the ones that the user has explicitly chosen
(cut). This has the benefit that artefacts of transformations can be dis-
tinguished from genuine applications of the cut rule. In particular, gap
steps should be silently removed from proofs when the two formulae in
its justification, i.e. ϕ(~x) and f (~x)(ϕ(~x)) in the justification of (7.7), are
made equal by a subsequent transformation. As far as propagation of re-
placements over gap-l and gap-r rules are concerned, the first argument
acts as a genuine cut formula and can be changed by the user (cf. Sec-
tion 7.8) whereas the second argument acts as a focus formula similarly
to propositional and quantifier rules, i.e. the justification is changed when
the respective formula in the conclusion is replaced.

7.7.1.3 Focus and Context

Let us now consider how sentence replacements that change both the fo-
cus and the context propagate over entire proofs. Thus, let ξ be a proof
with conclusion

Θ = [~x :~s] Γ(~x) ⊢ ∆(~x) (7.9)

and let two sentence replacements l(~x) for Γ(~x) and r(~x) for ∆(~x) be given.
Assume that we want to apply these to ξ so that the conclusion becomes
[~x : ~s] l(~x)(Γ(~x)) ⊢ r(~x)(∆(~x)). The previous sections describe how to
apply replacements to the context and to the focus formulae. In general,
the replacements l(~x) and r(~x), however, apply to both context and focus.

We divide the sentence replacements into separate replacements that
apply to the context or the focus, propagate both independently, and then
recombine the resulting sentence replacements for the premisses. Fig-
ure 7.1 sketches the idea.

156

7.7. Changing Occurrences

· · ·

.... ξ1

Γ1,ϕi ⊢ ∆ · · ·
Γ1,ϕ ⊢ ∆

l,r
−→

· · · ? · · ·
l(Γ1,ϕ) ⊢ r(∆)

· · · ? · · ·
l1(Γ1), f (ϕ) ⊢ r(∆)

Theorem 7.2
?

· · · l1(Γ1), ? ⊢ r(∆) · · ·

l1(Γ1), f (ϕ) ⊢ r(∆)

Section 7.7.1.1?

· · · l1(Γ1), fi(ϕi) ⊢ r(∆) · · ·

l1(Γ1), f (ϕ) ⊢ r(∆)

Section 7.7.1.2?

· · · l′i(Γ1,ϕi) ⊢ r(∆) · · ·

l1(Γ1), f (ϕ) ⊢ r(∆)

Theorem 7.3?

· · ·

.... ξ
′

l′i(Γ1,ϕi) ⊢ r(∆) · · ·

l(Γ1,ϕ) ⊢ r(∆)

Theorem 7.2 backwards?

Figure 7.1: Sentence replacement for context and focus

157

Chapter 7. Proof Transformations

Let Γ(~x) = Γ1(~x),ϕ(~x), where Γ(~x) is the context andϕ(~x) is the focus
formula. In a first step we divide l(~x) (or r(~x)) into separate replacements
l1(~x) (or r1(~x), respectively) for the context and f (~x) for the focus formula
(the case of equational rules where we have two focus formulae is similar).
I.e. we write (7.9) in the form

[~x :~s] Γ1(~x),ϕ(~x) ⊢ ∆(~x)

for a rule that has exactly one focus formulaϕ(~x) in the antecedent (again,
the case where the focus formula is in the succedent is similar). Since we
have divided l(~x) into l1(~x) for the context and f (~x) for the focus, we
require

[~x :~s] l(~x)(Γ(~x)) ⊢ r(~x)(∆(~x)) =

[~x :~s] l1(~x)(Γ1(~x)), f (~x)(ϕ(~x)) ⊢ r(~x)(∆(~x)) (7.10)

Suitable replacements l1(~x) and f (~x) indeed exist, as we will see in Theo-
rem 7.2.

Section 7.7.1.2 describes how f (~x) can be propagated over the first
proof step in ξ, if only l1(~x) and r(~x) are the identity sentence replace-
ments, i.e. l1(~x) = ∅ and r1(~x) = ∅. We reduce the more complicated case
where l1(~x) and r(~x) are not identities to the simpler case where they are,
using the results of Section 7.7.1.1. For the and-l-rule, e.g., the original
first proof step in ξ has the form

[~x :~s] Γ1(~x),ϕ1(~x),ϕ2(~x) ⊢ ∆(~x)

[~x :~s] Γ1(~x),ϕ1(~x) ∧ϕ2(~x) ⊢ ∆(~x)

This is transformed into another valid proof step if we replace Γ1(~x) and
∆(~x) by different sets of formulae Γ ′1(~x) and ∆′(~x); in particular for

Γ ′1(~x) = l1(~x)(Γ1(~x))

∆′(~x) = r(~x)(∆(~x))

we get the valid proof step

[~x :~s] l1(~x)(Γ1(~x)),ϕ1(~x),ϕ2(~x) ⊢ r(~x)(∆(~x))

[~x :~s] l1(~x)(Γ1(~x)),ϕ1(~x) ∧ϕ2(~x) ⊢ r(~x)(∆(~x))

We can now apply the sentence replacement f (~x) to the focus formula of
the conclusion and propagate the replacement over the proof step accord-
ing to Section 7.7.1.2. As described there, a precondition is that f (~x)(ϕ(~x))

158

7.7. Changing Occurrences

is a singleton set. We will see in Theorem 7.2 that the decomposition of l(~x)
into l1(~x) and f (~x) ensures that f (~x) has this property.

For the case labelled deep focus, the result of propagating the sentence
replacement is

[~x :~s] l1(~x)(Γ1(~x)), f1(~x)(ϕ1(~x)), f2(~x)(ϕ2(~x)) ⊢ r(~x)(∆(~x))

[~x :~s] l1(~x)(Γ1(~x)), f (~x)(ϕ1(~x) ∧ϕ2(~x)) ⊢ r(~x)(∆(~x))

(for f1(~x) and f2(~x) as defined in (7.6) for the specific rule). According to
(7.10), the conclusion can be written as

[~x :~s] l(~x)(Γ1(~x) ∪ {ϕ1(~x) ∧ϕ2(~x)}
︸ ︷︷ ︸

Γ(~x)

) ⊢ r(~x)(∆(~x))

The remaining question now is: can we write the premiss in the form

[~x :~s] l′(~x)(Γ1(~x) ∪ {ϕ1(~x),ϕ2(~x)}) ⊢ r′(~x)(∆(~x))

so that we can apply l′(~x) and r′(~x) to the subproof ξ1 above the premiss
recursively? The answer is yes, as Theorem 7.3 shows.

The other case, immediate focus, is similar: the sentence replacements
for the conclusion are decomposed, cf. Theorem 7.2 so that independent
replacements apply to the original focus and context. The replacement
that applies to the context is handled exactly as described for the case deep
focus above. The replacement that applies to the focus formula is then also
propagated over the first proof step. The result is a number of premisses,
some of which are related to premisses before the focus sentence replace-
ment was applied by sentence replacements. These premisses are then ex-
pressed in the form of two sentence replacements that apply to antecedent
and succedent and that transform the original premiss into the new one,
cf. Theorem 7.3.

It remains to provide theorems to decompose and compose sentence
replacements as needed above.

Theorem 7.2 Let Γ be a set of formulae, let l be a sentence replacement for
Γ , and let ϕ ∈ Γ . Then there is a set Γ1 ⊆ Γ and sentence replacements
l1 for Γ1 and f for {ϕ} such that l(Γ) = l1(Γ1) ∪ f (ϕ) and f is a partial
function over sentences, i.e. f ({ϕ}) = {ψ}.

Proof of 7.2 For a sentence replacement l for Γ , let l∗Γ be the relation

l∗Γ = l ∪ {(ϕ,ϕ) |ϕ ∈ Γ andϕ 6∈ π1l} .

159

Chapter 7. Proof Transformations

(where the projection π1 of a binary relation to its first domain is defined
by π1(l) = {ϕ | (ϕ,ψ) ∈ l}). It is easy to see that l∗Γ is a sentence replace-
ment for Γ , that

l(Γ) = l∗Γ (Γ) = π2(l∗Γ) , (7.11)

(where π2 is defined similarly to π1 by π2(l) = {ψ | (ϕ,ψ) ∈ l}), and that
for eachϕ ∈ Γ , there is a ψ such that (ϕ,ψ) ∈ l∗Γ .

Let ψ be a formula such that (ϕ,ψ) ∈ l∗Γ . Such a ψ exists, but it need not
be unique in general. Define

f = {(ϕ,ψ)}

l1 = l∗Γ \ f

Γ1 = π1(l∗Γ) .

Note that it is contingent whetherϕ ∈ Γ1.

We can check that Γ1, l1 and f have the postulated properties:

• Γ1 ⊆ Γ trivially.

• l1 is a sentence replacement for Γ1 trivially.

• f is a sentence replacement for {ϕ} trivially.

• f ({ϕ}) ∪ l1(Γ1) = l(Γ): We have

f ({ϕ}) = {ψ} (7.12)

and

l1(Γ1) = (l∗Γ \ f)(Γ1) = (Γ1 \ π1(l∗Γ \ f)) ∪ π2(l∗Γ \ f) (7.13)

by (4.3) on page 75. If l∗Γ mapsϕ to exactly one formulaψ then π1(l∗Γ \
f) = π1(l∗Γ) \ {ϕ} (and ϕ 6∈ Γ1), otherwise π1(l∗Γ \ f) = π1(l∗Γ). In
both cases, (Γ1 \ π1(l∗Γ \ f)) = ∅, and thus (7.13) reduces to

l1(Γ1) = π2(l∗Γ \ f) . (7.14)

Similarly,

π2(l∗Γ \ f) =

{

π2(l∗Γ) \ {ψ} if ψ 6∈ π2(l1)

π2(l∗Γ) otherwise.

Note that in both cases ψ ∈ π2(l∗Γ), so that in either case we have

{ψ} ∪ π2(l∗Γ \ f) = π2(l∗Γ) . (7.15)

160

7.7. Changing Occurrences

Putting all this together, we get

f ({ϕ}) ∪ l1(Γ1) = {ψ} ∪ π2(l∗Γ \ f) by (7.12) and (7.14)

= π2(l∗Γ) by (7.15)

= l(Γ) by (7.11)

as required.

�

Theorem 7.3 Let li be a sentence replacement for Γi (i = 1, 2). Then there
is a sentence replacement l for Γ = Γ1 ∪ Γ2 such that l(Γ) = l1(G1) ∪ l2(Γ2).

Proof of 7.3 Let l = l∗1,Γ1
∪ l∗2,Γ2

.

• π1(l) = π1(l∗1,Γ1
)∪ π1(l∗2,Γ2

) = Γ1 ∪ Γ2 = Γ , thus l is a sentence replace-
ment for Γ .

• l(Γ) = l1(Γ1) ∪ l2(Γ2) because of

l(Γ) = (Γ \ π1(l)) ∪ π2(l) by (4.3)

= (Γ \ π1(l∗1,Γ1
∪ l∗2,Γ2

)) ∪ π2(l∗1,Γ1
∪ l∗2,Γ2

)

= (Γ \ (π1(l∗1,Γ1
)

︸ ︷︷ ︸

Γ1

∪ π1(l∗2,Γ2
)

︸ ︷︷ ︸

Γ2

)

︸ ︷︷ ︸

∅

) ∪ (π2(l∗1,Γ1
)

︸ ︷︷ ︸

l∗1,Γ1
(Γ1)

︸ ︷︷ ︸

l1(Γ1)

∪ π2(l∗2,Γ2
)

︸ ︷︷ ︸

l∗2,Γ2
(Γ2)

︸ ︷︷ ︸

l2(Γ2)

)

= l1(Γ1) ∪ l2(Γ2)

�

Remark 7.4 The proofs above are more subtle than their informal descrip-
tion would have made one believe. The reason is that the theorems need to
deal with the fact that unrelated formulae can be mapped to the same for-
mula by a sentence replacement. Although this seems to be a purely tech-
nical issue, it is the symptom of the following interesting phenomenon.

There are two styles of presenting sequent calculi: in one, antecedent
and succedent are defined as sets, in the other as sequences (or lists) of
formulae. As far as the logic is concerned the order of the formulae and
their multiplicity does not matter at all. Thus, users typically do not dis-
tinguish between different copies of the same formula: copies of the same
formula usually cannot be distinguished once they are printed, anyway.
Thus, using sets is the most natural choice.

161

Chapter 7. Proof Transformations

As far as proof analysis is concerned, however, it is often necessary
to know where a particular formula comes from: e.g. one is interested
in whether the proof is still valid if a particular axiom is withdrawn or
changed. After all the same formula might be available from several places,
so changing one does not necessarily affect formulae derived from the
other. It is interesting to know at least whether a particular formula is
still available if it is changed in one place. This is made explicit in [FH94]
and [Sch98]. Whether the proof needs to be changed depends on whether
the changing axiom is used or the one that remains unchanged. However,
since users do not distinguish different copies of formulae, it is arbitrary
which formula was used and thus, in practice, the detailed information is
not as useful as expected.

Separating and combining sentence replacements via the construction
of l∗Γ from l in the theorems above is a way to simulate keeping the multi-
plicities of formulae where they matter: when a formula that occurs mul-
tiple times is changed in one place, we make sure it is mapped by the
respective replacement to the new formula and to itself. As long as formu-
lae are not changed, however, the presentation above does not track the
multiplicity of formulae and thus the presentation using sets is appropri-
ate.

A consequence is that a focus formula can be replaced by more than
one distinct formulae. In this situation, one of these formulae needs to be
chosen as the replacement for the focus formula, cf. the choice of ψ in the
Proof of 7.2. It turns out that this is a border case that does not turn up in
practice very often. Nevertheless, the situation needs to be handled when
it occurs. Since it occurs rarely, it is acceptable to ask the user when it does.
If this turns out to be a problem, some other solution needs to be worked
out.

7.7.2 Special Cases

We have described a uniform way of handling the case in which the focus
formula is changed and the original proof rule is no longer applicable:
giving up gracefully (immediate focus). In may cases this is exactly what
should be done, as we have explained in the preceding section. In many
situations, however, this is not the best we can do.

7.7.2.1 Propositional Replacement

For example, when a formula is weakened, e.g. from A ∧ B to (A ∧ B)∨ C,
the new disjunct needs to be taken into consideration, but the reasoning

162

7.7. Changing Occurrences

for the conjuction is still useful. When we look at a proof ξ of the form

.... ξ1

[~x :~s] Γ(~x),ϕ1(~x),ϕ2(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ϕ2(~x) ⊢ ∆(~x)
and-l · · ·

and then carry out the replacement described above (for ease of exposition
we ignore the replacements on the context), the conclusion is

[~x :~s] Γ(~x), (ϕ1(~x) ∧ϕ2(~x)) ∨ϕ3(~x) ⊢ ∆(~x)

and the and-l rule is not applicable. However, we know that the conclu-
sion has been wrapped inside the disjunction, so after getting rid of the
disjunction, the old subproof ξ1 is reusable:

.... ξ1

[~x :~s] Γ(~x),ϕ1(~x),ϕ2(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ϕ2(~x) ⊢ ∆(~x)
and-l · · ·

[~x :~s] Γ(~x),ϕ3(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x), (ϕ1(~x) ∧ϕ2(~x)) ∨ϕ3(~x) ⊢ ∆(~x)
or-l · · ·

When instead of a disjunction a conjunction is wrapped around in the an-
tecedent, the transformed proof becomes

.... ξ
′
1

[~x :~s] Γ(~x),ϕ1(~x),ϕ2(~x),ϕ3(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x),ϕ1(~x) ∧ϕ2(~x),ϕ3(~x) ⊢ ∆(~x)
and-l · · ·

[~x :~s] Γ(~x), (ϕ1(~x) ∧ϕ2(~x)) ∧ϕ3(~x) ⊢ ∆(~x)
and-l · · ·

whereξ1 is reusable after adding the new formulaϕ3(~x) to the antecedent.
Both examples also work backwards, i.e. the conjunction is unwrapped
from the disjunction and conjunction and the proof steps corresponding to
the connectives that have been eliminated can be left out from the proof.

These examples can be generalised to the other connectives, and it is
also possible to generalise it even further to arbitrary subformulae that are
built from two sets of subformulae only using connectives. The two sets
have some subformulae in common, and whenever a rule was applied
to one of these common formulae in the original proof, the transformed
proof decomposes any connectives around the common subformula and
then reuses the original proof. Conversely, if in the original proof a rule is
applied to decompose a connective which is not part of the new formula,
the rule application is left out in the transformed proof.

163

Chapter 7. Proof Transformations

7.7.2.2 Wrapping and Unwrapping Quantifiers

Another special case of replacing subformulae is concerned with quanti-
fiers: a formula ϕ(~x) is wrapped inside a quantor, e.g. ∀y : s. ϕ(~x), or a
quantor is removed, e.g. from ∀y : s. ϕ(~x). Note that in both cases the
bound variable does not occur in the scope of the quantor. This makes
transforming the proof really simple: from

.... ξ1

[~x :~s] Γ(~x), ∀y : s. ϕ(~x),ϕ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x), ∀y : s. ϕ(~x) ⊢ ∆(~x)

to
.... ξ

′
1

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x)

or back for existentially acting formulae, and from

.... ξ1

[~x :~s, y : s] Γ(~x),ϕ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x), ∃y : s. ϕ(~x) ⊢ ∆(~x)

to
.... ξ

′
1

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x)

or back for universally acting formulae. The price we pay for the simplic-
ity of the transformations is that we can only introduce or remove quantors
for variables that are not used in the proof. Almost always it is therefore
necessary to apply other transformations, e.g. replace occurrence, to use
the introduced variables or to make the variables unused which we want
to remove.

7.7.3 Induction Schemata

As we have pointed out in Section 6.3.3, we need to consider several types
of changes to generatedness constraints. Since we consider generatedness
constraints to be sentences, adding or deleting a generatedness constraints is
handled by the proof transformation that deals with adding and deleting
assumptions. Adding or deleting constructors amounts to replacing a sen-
tence (the generatedness constraint), and when the constraint is used the

164

7.7. Changing Occurrences

premisses can be adjusted straightforwardly: the original proof

.... ξ1

[~x :~s] ⊢ Φ(~x, f1,σ ,ϕ) · · ·

.... ξm

[~x :~s] ⊢ Φ(~x, fm,σ ,ϕ)

[~x :~s] ⊢ ∀x : s. ϕ(~x, x)

becomes

.... ξ1

[~x :~s] ⊢ Φ(~x, f1,σ ,ϕ) · · ·

.... ξm

[~x :~s] ⊢ Φ(~x, fm,σ ,ϕ) [~x :~s] ⊢ Φ(~x, fm+1,σ ,ϕ)

[~x :~s] ⊢ ∀x : s.ϕ(~x, x)

when a new constructor is added, and similarly backwards when the con-
structor is removed.

Finally, changing the arity of a constructor is handled as part of changing
the arity of the constructor as a function. For f : s × t1 × s → s and s 6= t1,
the induction formula reads (cf. (5.4) on page 116)

∀y1 : s, y2 : t1, y3 : s. (ϕ(~x, y1) ∧ϕ(~x, y3)) ⇒ ϕ(~x, f (y1, y2, y3)) . (7.16)

(where we have assumed that the constraint morphism is the identity for
ease of presentation). Adding a fourth argument of type t2 to f without
consideration for the status of f as constructor will change (7.16) to

∀y1 : s, y2 : t1, y3 : s. (ϕ(~x, y1) ∧ϕ(~x, y3)) ⇒ ϕ(~x, f (y1 , y2, y3, τ)) (7.17)

where τ is the dummy term that is inserted as the new argument by the
sentence translation addarg. Of course, this is not an induction formula,
because the fourth argument to the constructor should be an all-quantified
variable. We achieve this in several steps using transformations that we
have described before. First we wrap a variable y4 of type t2 around the
body of (7.17):

∀y1 : s, y2 : t1, y3 : s, y4 : t2.

(ϕ(~x, y1) ∧ϕ(~x, y3)) ⇒ ϕ(~x, f (y1 , y2, y3, τ))

and then replace the term τ by y4:

∀y1 : s, y2 : t1, y3 : s, y4 : t2.

(ϕ(~x, y1) ∧ϕ(~x, y3)) ⇒ ϕ(~x, f (y1 , y2, y3, y4)) .

165

Chapter 7. Proof Transformations

Finally, in case t2 is the induction sort, i.e. t2 = s, we add an additional
induction hypothesis:

∀y1 : s, y2 : t1, y3 : s, y4 : t2.

(ϕ(~x, y1) ∧ϕ(~x, y3) ∧ϕ(~x, y4)) ⇒ ϕ(~x, f (y1 , y2, y3, y4)) .

The result is the induction formula corresponding to the new arity of the
constructor.

Removing an argument is easier: when the argument is removed from
(7.16) without consideration for the status as constructor, the only change
left is to remove the superfluous quantor in the induction formula.

7.8 Auxiliary Transformations

The proof transformations described so far are needed to propagate spec-
ification transformations to proofs. Additionally, other ways to change
proofs are needed: proofs change while the specification stays unchanged.
This is obvious for applying proof rules, pruning subproofs, or applying
heuristics, i.e. traditional activities when working on proofs. In our set-
ting, additional transformations can be provided that allow proofs to be
transformed rather than created anew. These are particularly useful in sit-
uations that result from other transformations.

Our proof transformations consider the proof calculus to be used an-
alytically: a reasoning step is a function from conclusion and justification
to a sequence of premisses. The transformations given earlier change the
conclusion, and this change is propagated to the justification and then the
premisses and subproofs. When, e.g., a focus formula changes then the ar-
gument of the justification also changes so that the rule now applies to the
changed focus formula. However, there are justification arguments that
do not occur in the conclusion and that can be chosen: cut formulae and
witness terms. Of course these are chosen by the user or heuristics such
that the proof works, and frequently heuristics determine them using uni-
fication. These constraints are not encoded in the proof rules, and they
may turn out to be mistaken (cf. attempts to postpone the commitment to
a particular witness term by using logical variables (meta-variables) that
can be instantiated). Therefore, we allow the user to revise these decisions
and provide transformations that change cut formulae in cut and gap-l/
gap-r rules and witness terms in all-l/ex-r rules.

166

7.8. Auxiliary Transformations

For a given proof of the form

.... ξ1

[~x :~s] Γ(~x) ⊢ ∆(~x),ϕ(~x)

.... ξ2

[~x :~s] Γ(~x),ϕ(~x) ⊢ ∆(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x)
cut ϕ(~x)

we can change the cut formula ϕ(~x) to ψ(~x), by replacing the justifica-
tion argument and both occurrences ofϕ(~x) in the premisses by ψ(~x). Let
f (~x) = {(ϕ(~x),ψ(~x))} and assume that it is to be applied to the cut for-
mula. The new proof can then be written as

.... ξ
′
1

(7.18)

.... ξ
′
2

[~x :~s] Γ(~x), f (~x)(ϕ(~x)) ⊢ ∆(~x)

[~x :~s] Γ(~x) ⊢ ∆(~x)

with

[~x :~s] Γ(~x) ⊢ ∆(~x), f (~x)(ϕ(~x)) (7.18)

and justification “cut f (~x)(ϕ(~x))”, where ξ ′i results from ξi by propagat-
ing the change to the subproofs recursively.

Similarly, when changing the witness terms t(~x) to t′(~x), the proof

.... ξ1

[~x :~s] Γ(~x), ∀x : s. ϕ(~x, x),ϕ(~x, t(~x)) ⊢ ∆(~x)

[~x :~s] Γ(~x), ∀x : s. ϕ(~x, x) ⊢ ∆(~x)
all-l ∀x : s. ϕ(~x, x), t(~x)

is transformed into

.... ξ
′
1

[~x :~s] (l(~x) ∪ c(~x))(Γ(~x), ∀x : s. ϕ(~x, x),ϕ(~x, t(~x))) ⊢ r(~x)(∆(~x))

[~x :~s] Γ(~x), ∀x : s. ϕ(~x, x) ⊢ ∆(~x)

with justification

“all-l ∀x : s. ϕ(~x, x), t′(~x)”, c(~x) = {(ϕ(~x, t(~x)),ϕ(~x, t′(~x)))}

and ξ ′i the proof that results from applying the replacements to the sub-
proofs recursively.

In both cases, replacing the cut formula and witness term is combined
with replacements in the context as described in Section 7.7.1.3.

167

Chapter 7. Proof Transformations

7.9 Summary

We have presented concrete proof transformations. For each proof obli-
gation transformation that results from propagating any of our concrete
specification transformations through the development graphs (cf. Fig-
ure 6.6 on page 140), a corresponding proof transformations was intro-
duced. We can thus propagate all those specification transformations to
the proofs. Additionally, transformations for changing proofs without
changing their conclusion have been introduced.

168

Chapter 8

Mechanising Transformations

8.1 Overview

We have implemented a proof-of-concept prototype of our transforma-
tional framework and the concrete instantiation that we have developed
in this thesis. The implementation comprises the representation of devel-
opment graphs over the logic described in Section 5.2, a translator from
SSL described in Section 5.3 to development graphs, a representation of
sequent calculus proofs according to Section 5.4 together with a simple
command-line interface to construct proofs, a representation of formal de-
velopments together with a checker for whether specification and proofs
form a well-formed development, specification, development graph, and
proof transformations, a command line based interface to manage formal
developments and to apply transformations, and debugging facilities that
present the history of a development as a set of interactive, hyperlinked
documents.

The prototype was tested using a reconstruction of the case study on
fault-tolerant systems given in Section 2.2.2 in order to assess whether
our transformations are useful in practice. To this end the specification
and proofs were built incrementally, e.g. axioms, theories, and links were
added, and the system was transformed into a fault tolerant system, e.g. ad-
ditional slots in state representations and additional state transitions were
added, and axioms were changed.

8.2 Original Specification

For a reconstruction of the case study given in Section 2.2.2, a system of
concurrent processes is specified. The specification consists of an abstract

169

Chapter 8. Mechanising Transformations

datatype that represents the relevant state space of processes. A global
state is specified as an abstract finite array of processes and communica-
tion channels between processes. The behaviour of the system as a whole
is specified as a state-transition system: possible state-transitions are de-
scribed by so called commands, and these are given by the terms of a
freely generated datatype. An interpreter for these commands is spec-
ified using pre- and postconditions that specify in which states a given
command is applicable (or enabled), and what the relationship between
original and resulting state is in this case. The system is specified incre-
mentally, e.g. commands are added and transitions for existing commands
are added or changed, in a way that resembles how such specifications are
constructed step by step in practice.

The concrete state transitions are according to the non-deterministic
algorithm given in [MG00]. The intention is that the behaviour of the sys-
tem complies with a given protocol for reliably broadcasting messages.
The authors define reliability as a safety property: no message is deliv-
ered to a process unless it has been broadcast, and each broadcast mes-
sage is delivered at most once. This property is specified as a predicate
over states: each process maintains a multiset (or bag) of messages that
have been delivered to it, and the global state contains the set of messages
that have been broadcast; the predicate is true iff for each process in the
state its delivered messages are a subset of the broadcast messages, and if
no message is delivered more than once. This is specified formally as the
predicate safe:1

(axiom (all (s state)

(<=> (safe s)

(all (i nat)

(and

(=> (< i size)

(subseteq

(delivered

(aref (procs s) i))

(broadcast s)))

(=> (< i size)

(nodups

(delivered

(aref (procs s) i)))))))))

(8.1)

The proposition that this property logically follows from the algorithm

1More details about the case study are given in Appendix D.

170

8.2. Original Specification

that the processes carry out is postulated in the following way. The spec-
ification is presented in a modular fashion, resulting in the development
graph given in Figure 8.1,2 The specification includes the theory system,
which specifies the behaviour of the system by a constant initial-state
representing the initial state and a predicate trans* that is true of a state
s, a sequence of commands tr, and a second state s’ iff execution of tr is
enabled in s and a possible result is s’. The theory reliability specifies
that each state reachable from initial-state satisfies the safety property:

(axiom (all (tr trace) (s state)

(=> (trans* initial-state tr s) (safe s))))

(8.2)

The specification of system contains a satisfies-clause

(satisfies (reliability))

resulting in the postulated link from reliability to system. The develop-
ment graph calculus reduces this global link to a local one, and the result-
ing proof obligation is that (8.2) is a logical consequence of the behaviour
of the system. Partial proofs have been constructed for this and other proof
obligations. The proof tree for (8.2) is printed in Figure 8.2. Each node
stands for a proof goal, and links relate the conclusion (below) of a proof
rule application with their premisses (on top).

The overall structure of the proof is an induction over the length of
tr, leading to a binary branch in the tree. The base case is finished off by
the left subtree. The step case is then split into six subproofs by a case
distinction over the first command of tr, i.e. by an application of the in-
duction rule over a universally quantified variable of sort command. The
type command is defined by

(sort command)

(op b-1 (nat message) command)

(op b-1p (nat) command)

(op b-2 (nat nat message) command)

(op b-3 (nat) command)

(op b-4 (nat) command)

(op b-5 (nat) command)

(gen b-1 b-1p b-2 b-3 b-4 b-5)

(8.3)

2In the development graph solid arrows represent definitorial links, dashed ones are
postulated links. Bold dashed arrows correspond to the global postulated links that were
specified, and the grey dashed ones represent the local proof obligation links left after
applying the development graph calculus.

171

Chapter 8. Mechanising Transformations

reliability

system

secprop

execution

transition

pre-post

state

channel-matrix

process-table

process-table-basic

process

trace

command

message-bag

message-bag-basic

message-option

message

nat

Figure 8.1: Initial development graph

172

#node18
#node17
#link27
#link27
#link330
#link330
#link25
#link25
#node16
#link26
#link26
#link24
#link24
#node15
#link23
#link23
#node14
#link19
#link19
#node13
#link18
#link18
#node12
#link21
#link21
#link16
#link16
#node11
#link15
#link15
#node10
#link14
#link14
#node9
#link28
#link28
#link321
#link321
#link11
#link11
#node8
#link9
#link9
#node7
#link22
#link22
#link20
#link20
#node6
#link17
#link17
#link6
#link6
#node5
#link8
#link8
#node4
#link29
#link29
#link318
#link318
#link3
#link3
#node3
#link13
#link13
#link7
#link7
#node2
#link5
#link5
#link2
#link2
#link1
#link1
#node1
#link12
#link12
#link10
#link10
#link4
#link4

8.2. Original Specification

Figure 8.2: Initial proof

173

/dev/goal/1/0
/dev/goal/1/0/0
/dev/goal/1/0/0/0
/dev/goal/1/0/0/0/0
/dev/goal/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1
/dev/goal/1/0/0/1/0
/dev/goal/1/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/1
/dev/goal/1/0/0/1/0/1/0
/dev/goal/1/0/0/1/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/2
/dev/goal/1/0/0/1/0/3
/dev/goal/1/0/0/1/0/4
/dev/goal/1/0/0/1/0/5
/dev/goal/1/0/0/1/0/5/0
/dev/goal/1/0/0/1/0/5/0/0
/dev/goal/1/0/0/1/0/5/0/0/0
/dev/goal/1/0/0/1/0/5/0/0/0/0

Chapter 8. Mechanising Transformations

so the induction according to the generatedness constraint produces six
subproofs, one for each of the given constructors. The proofs for the first,
second, and last command (b-1, b-1p, and b-5, respectively) have been
attempted. For the first command, the proof has two open goals, cf. the
arrows in the figure. These goals cannot be closed because the specification
of the pre- and postconditions for the first command, i.e. b-1, are needed.
However, these are missing from the original specification: recall that the
specification is created incrementally.

8.3 Missing Axioms

We zoom in on the first open goal, i.e. the left one of the two marked goals
in Figure 8.2. Here, a command of the form (b-1 n m) (for some natural
number n and some message m) is executed in some state, and the result-
ing state is s. The subgoal that remains to be shown here has the form

Γ ⊢ (subseteq (delivered (aref (procs s) i)) (broadcast s))

(8.4)
which requires that the messages which have been delivered to the pro-
cess number i in the process table (procs s) of the state s have all been
broadcast before. The antecedent Γ contains amongst others the following
formulae:

(post s-3 (b-1 nat message) s)

(pre s-3 (b-1 nat message))

(< i size)

(=> (< i size)

(subseteq (delivered (aref (procs s-3) i))

(broadcast s-3)))

The Eigenvariables s-3 is the state in which the command is executed,
and s stands for the state after the execution of the command (b-1 nat

message), where nat and message are also Eigenvariables. Here, further
information about the pre- and postconditions are required. As mentioned
earlier, these are not yet specified. We will add them to the specification in
the first step, i.e. we will carry out the transformation to add axioms and
add

(all (s state) (i nat) (m message)

(<=> (pre s (b-1 i m))

(and (< i size)

174

8.3. Missing Axioms

(not (member m (broadcast s)))

(none-p (bb (aref (procs s) i))))))

and

(all (s state) (i nat) (m message) (s1 state)

(<=> (post s (b-1 i m) s1)

(and (= (procs s1)

(update (procs s) i

(mk-process

(some m)

(ib (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s)

i)))))

(= (broadcast s1)

(adjoin m (broadcast s))))))

to the node pre-post.
The only proof obligation link at which the change is visible is the one

between system and reliability. All other proof obligations like the ones
resulting, e.g., from the postulated link between process-table-basic

and process-table are not affected at all.
All proof obligations arising from the affected link are transformed to

include additional assumptions. Which assumptions need to be added is
computed from the axioms that were added to the original theory pre-post

and the paths along which they can be inherited in the theory of the node
system. The axioms are mapped along the path morphism and are then
added to the conclusions of the proof. Note that in this case there is only
one postulated path from pre-post to system; otherwise the axioms would
have been mapped along different paths, and potentially several instances
of the axioms would have been added.

Adding the axioms to the proofs means that for each proof obligation
its proof tree is transformed by adding the new axioms to the antecedent
of the conclusion and then propagating it over all proof rule applications
towards the leaves of the proof tree. This has been described in detail in
Section 7.3.

After this transformation is carried out, the proof goal has two addi-
tional axioms in the antecedent; these axioms are available in addition to
the other formulae that were already members of the antecedent. They
can thus used to finish the goal. After some traditional proof work the

175

Chapter 8. Mechanising Transformations

Figure 8.3: Proof with completed subproof for b-1

176

/dev/goal/1/0
/dev/goal/1/0/0
/dev/goal/1/0/0/0
/dev/goal/1/0/0/0/0
/dev/goal/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1
/dev/goal/1/0/0/1/0
/dev/goal/1/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/1
/dev/goal/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/1
/dev/goal/1/0/0/1/0/1/0
/dev/goal/1/0/0/1/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/1
/dev/goal/1/0/0/1/0/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/1/0/0/1/0/2
/dev/goal/1/0/0/1/0/3
/dev/goal/1/0/0/1/0/4
/dev/goal/1/0/0/1/0/5
/dev/goal/1/0/0/1/0/5/0
/dev/goal/1/0/0/1/0/5/0/0
/dev/goal/1/0/0/1/0/5/0/0/0
/dev/goal/1/0/0/1/0/5/0/0/0/0

8.4. Missing Theory

subproof is completed, and at this point the proof tree looks as shown in
Figure 8.3.

Note that the transformation is carried out on all proofs that are associ-
ated with the all affected links, and that the result is that the assumptions
are added to all leaves and can thus be used in all open goals that are still
to be closed. The user does not have to be concerned with which proofs
need to be replayed or reused and which do not.

8.4 Missing Theory

The authors of [MG00] transformed a specification such that it is fault tol-
erant. To that end they changed the specification so that the system state
maintained additional information about each process: namely whether
it was running or whether it was crashed. Before we can carry out this
transformation we need to add a new theory that provides the additional
datastructures that we use to represent the information.

We introduce a theory boolean and specify an enumeration boolean

with two constructors, tt and ff.3 This involves adding a node to the
development graph. The resulting development graph is shown in Fig-
ure 8.4. Sort boolean, the constructors, the generatedness constraint, and
an axiom stating that the sort is additionally freely constructed is added to
the new node:

(sort boolean)

(op ff () boolean)

(op tt () boolean)

(gen boolean tt ff)

(axiom (not (= tt ff)))

Since the new node is isolated, these changes are not visible anywhere else.
The new datatype is supposed to be used in the definition of processes,
and thus in process an additional uses-clause is added leading to a defin-
itorial link from boolean to process. The development graph changes to
the one shown in Figure 8.5. All these items and axioms are now visible
in process and all theories below. Note that the new axiom also becomes
visible in the node reliability, i.e. in a place where it is supposed to be

3Since theories and signature items inhabit different name spaces, the overloading
of boolean is allowed and intentional. The representation of formal developments and
transformations works on the internal datastructures and thus does not depend on the
names of the elements it operates on, either.

177

Chapter 8. Mechanising Transformations

boolean message

message-bag-basic

message-option

command

message-bag

process

channel-matrix

nat

process-table-basic

state

process-table

pre-post

trace

secprop

transition

reliability

system

execution

Figure 8.4: Development graph with boolean

178

8.4. Missing Theory

boolean

process

message

message-bag-basic

message-option

command

message-bag

channel-matrix

nat

process-table-basic

state

process-table

pre-post

trace

secprop

transition

reliability

system

execution

Figure 8.5: Development graph with added link

179

Chapter 8. Mechanising Transformations

a logical consequence of the visible assumptions. However, the decompo-
sition of theorem links with the development graph calculus makes sure
that no proof obligation for the axiom is generated: boolean is also visible
in the node system, from which the axiom would have to be proven.

8.5 Missing Slot

We now add a selector function is-up

(op is-up (process) boolean)

to the theory boolean that is supposed to evaluate to tt iff the process it is
applied to is still running. We have decided to store the information about
whether a process is up in the process data structure (rather than in an
additional table). Processes are represented by a generated sort process
which has a single constructor mk-process and the four selectors bb, ib,
db, and delivered.

(op mk-process (option option option bag) process)

(gen process mk-process)

(op bb (process) option)

(op ib (process) option)

(op db (process) option)

(op delivered (process) bag)

(8.5)

There are the usual selector axioms, e.g.

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(= bb1

(bb (mk-process bb1 ib1 db1 dm1))))

(8.6)

or

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(<=>

(= (mk-process bb1 ib1 db1 dm1)

(mk-process bb2 ib2 db2 dm2))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))))

(8.7)

Adding a new slot to store the data about whether the process is up or
down amounts to adding an argument to the constructor function mk-process:
the function declaration in (8.5) is changed to

180

8.5. Missing Slot

(op mk-process (option option option bag boolean) process) .

All occurrences of terms constructed with mk-process have an additional
argument. Before adding this argument, we created a new dummy con-
stant of sort boolean named boolean-dummy and gave it to the transforma-
tion as the term to be used as the additional argument. The two axioms
(8.6) and (8.7) given above are changed to

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(= bb1

(bb (mk-process bb1 ib1 db1 dm1 boolean-dummy))))

(8.8)

and

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(bb2 option) (ib2 option) (db2 option) (dm2 bag)

(<=>

(= (mk-process bb1 ib1 db1 dm1 boolean-dummy)

(mk-process bb2 ib2 db2 dm2 boolean-dummy))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))))

These changes are also applied to the proofs without any changes to the
proof structure by the transformation rule translation with argument
addarg(C) (where C is the partial function that maps the constructor func-
tion mk-process to the boolean-valued term boolean-dummy); the details
are described in Section 7.6 on page 146.

In order to make full use of the result of this transformation, in the
course of further development the axiom (8.8) is changed to

(all (bb1 option) (ib1 option) (db1 option) (dm1 bag)

(up1 boolean)

(= bb1

(bb (mk-process bb1 ib1 db1 dm1 up1))))

so that the additional argument is also universally quantified. This has no
essential effect on the proofs since wherever the axiom was used before,
the new universally quantified variable can be instantiated to whatever
term is necessary for the resulting equation to be applicable. This necessi-
tates introducing all-l rules before each proof rule application that looks
into the subformula

181

Chapter 8. Mechanising Transformations

(= bb1

(bb (mk-process bb1 ib1 db1 dm1 boolean-dummy)))

in the original proof.
Note that all these changes are also visible for the proof obligations as-

sociated with the link between process-table-basic and process-table.
However, those proofs do not deal with the slots of processes, so they are
only changed in the context of proof rules, and the changes can be ig-
nored. Looking at the structure of the development graph is not sufficient to
say that these proofs are unchanged; rather the proofs themselves need to be
inspected in order to find out. This is done implicitly when the proofs are
transformed.

8.6 Missing Action

The additional slot of sort boolean is set to tt in the initial state and in-
herited by all other commands. It will only ever set to ff when a process
crashes. To this end an additional action crash is introduced by adding a
function

(op crash (nat) command)

to the node command, and then turning this function into a constructor of
the sort command. Recall that command has been defined in (8.3) as

(sort command)

(op b-1 (nat message) command)

(op b-1p (nat) command)

(op b-2 (nat nat message) command)

(op b-3 (nat) command)

(op b-4 (nat) command)

(op b-5 (nat) command)

(gen b-1 b-1p b-2 b-3 b-4 b-5)

Adding crash as a constructor results in the definition

(sort command)

(op b-1 (nat message) command)

(op b-1p (nat) command)

(op b-2 (nat nat message) command)

(op b-3 (nat) command)

(op b-4 (nat) command)

182

8.6. Missing Action

Figure 8.6: Proof with crash action

(op b-5 (nat) command)

(op crash (nat) command)

(gen b-1 b-1p b-2 b-3 b-4 b-5 crash)

The proof tree resulting from this transformation is given in Figure 8.6.
As one would have expected there is a new open goal for the additional
case corresponding to the crash action. The rest of the proof remains un-
changed.

183

/dev/goal/16/0
/dev/goal/16/0/0
/dev/goal/16/0/0/0
/dev/goal/16/0/0/0/0
/dev/goal/16/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1
/dev/goal/16/0/0/1/0
/dev/goal/16/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/1
/dev/goal/16/0/0/1/0/1/0
/dev/goal/16/0/0/1/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/2
/dev/goal/16/0/0/1/0/3
/dev/goal/16/0/0/1/0/4
/dev/goal/16/0/0/1/0/5
/dev/goal/16/0/0/1/0/5/0
/dev/goal/16/0/0/1/0/5/0/0
/dev/goal/16/0/0/1/0/5/0/0/0
/dev/goal/16/0/0/1/0/5/0/0/0/0
/dev/goal/16/0/0/1/0/6

Chapter 8. Mechanising Transformations

8.7 Stronger Precondition

Finally we have to strengthen the precondition of the first clause of (8.1)
to restrict the property to running processes. This is done by replacing the
boxed occurrence in the axiom

(axiom (all (s state)

(<=> (safe s)

(all (i nat)

(and

(=> (< i size)

(subseteq

(delivered

(aref (procs s) i))

(broadcast s)))

(=> (< i size)

(nodups

(delivered

(aref (procs s) i)))))))))

(8.9)

in secprop by

(and (< i size) (= tt (is-up (aref (procs s) i))))

so that the result is

(axiom (all (s state)

(<=> (safe s)

(all (i nat)

(and

(=> (and (< i size)

(= tt

(is-up (aref (procs s) i))))

(subseteq

(delivered (aref (procs s) i))

(broadcast s)))

(=> (< i size)

(nodups

(delivered

(aref (procs s) i)))))))))

This is afforded by the transformation wrapping an existing subformula
occurrence (namely the boxed occurrence above) into a connective: the
boxed subformula occurrence • is replaced by

184

8.7. Stronger Precondition

(and • (= tt (is-up (aref (procs s) i))))

This is a special case of the transformation occurrence described in Section
6.3.4 for specifications and in Section 7.7 for proofs. Applying the proof
transformation (given by the propagation of the specification transforma-
tion over development graphs as defined in Section 4.3.2) to the proof
given in Figure 8.6 results in the proof depicted on the right in Figure 8.7.

Relative to the proof in Figure 8.6, most of the proof rules in Figure 8.7
are changed straightforwardly by replacing the occurrence of (< i size)

by (and (< i size) (= tt (is-up (aref (procs s) i)))) in the con-
text of the rules. There are three places where the transformation has to do
more work. These are marked by the arrows (a) to (c) in Figure 8.7 and are
described in turn below.

(a) The first marked goal, part of the subproof for the base case, was an
application of the basic rule that proved the sequent

Γ1, (< i size) ⊢ ∆1, (< i size). (8.10)

The formula in the succedent results from the specification of the initial
state as follows. In the initial state, each the process in the process table
has the form

(mk-process none none none empty tt)

The processes are stored in the table indexed by 0, 1, . . . , size − 1. The
axiom representing this formally reads

(axiom (all (i nat)

(=> (< i size)

(= (aref (procs initial-state) i)

(mk-process none none none empty tt)))))

This axiom is an assumption in the proof. In the proof rule application
two steps below the node marked (a), the implication in the axiom is split,
i.e. the sequent below the rule reads

Γ2,

(< i size),

(=> (< i size)

(= (aref (procs initial-state) i)

(mk-process none none none empty tt)))

|----------

∆2

(8.11)

185

Chapter 8. Mechanising Transformations

(a)

(c)

(b)

Figure 8.7: Left: proof of Figure 8.6 reprinted in full. Right: proof with
weakened property

186

/dev/goal/16/0
/dev/goal/16/0/0
/dev/goal/16/0/0/0
/dev/goal/16/0/0/0/0
/dev/goal/16/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1
/dev/goal/16/0/0/1/0
/dev/goal/16/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/1
/dev/goal/16/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/1
/dev/goal/16/0/0/1/0/1/0
/dev/goal/16/0/0/1/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/1
/dev/goal/16/0/0/1/0/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/16/0/0/1/0/2
/dev/goal/16/0/0/1/0/3
/dev/goal/16/0/0/1/0/4
/dev/goal/16/0/0/1/0/5
/dev/goal/16/0/0/1/0/5/0
/dev/goal/16/0/0/1/0/5/0/0
/dev/goal/16/0/0/1/0/5/0/0/0
/dev/goal/16/0/0/1/0/5/0/0/0/0
/dev/goal/16/0/0/1/0/6
/dev/goal/18/0
/dev/goal/18/0/0
/dev/goal/18/0/0/0
/dev/goal/18/0/0/0/0
/dev/goal/18/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/18/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1
/dev/goal/18/0/0/1/0
/dev/goal/18/0/0/1/0/0
/dev/goal/18/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/1/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0/1/0/0/0/0/0/1/0/0/1/0/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/1
/dev/goal/18/0/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/1
/dev/goal/18/0/0/1/0/1/0
/dev/goal/18/0/0/1/0/1/0/0
/dev/goal/18/0/0/1/0/1/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/0/0/1/0/0
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/1/0/1
/dev/goal/18/0/0/1/0/1/0/0/0/0/0/0/0/0/0/1
/dev/goal/18/0/0/1/0/2
/dev/goal/18/0/0/1/0/3
/dev/goal/18/0/0/1/0/4
/dev/goal/18/0/0/1/0/5
/dev/goal/18/0/0/1/0/5/0
/dev/goal/18/0/0/1/0/5/0/0
/dev/goal/18/0/0/1/0/5/0/0/0
/dev/goal/18/0/0/1/0/5/0/0/0/0
/dev/goal/18/0/0/1/0/6

8.7. Stronger Precondition

(8.10)
....

(8.12)

....
(8.13)

(8.11)

Figure 8.8: Part of the original proof. Sequent (8.10) is the node marked
by (a) in Figure 8.7.

Applying the rule =>-r to (8.11) results in the two goals

Γ2, (< i size)

|----------

∆2, (< i size)

(8.12)

and

Γ2,

(< i size),

(= (aref (procs initial-state) i)

(mk-process none none none empty tt)))

|----------

∆2

(8.13)

Figure 8.8 sketches the relevant part of the proof. Replacing (< i size)

by

(and (< i size) (= tt (is-up (aref (procs s) i))))

in the axiom (8.9) has the following effect on the proof sketched in Fig-
ure 8.8. Goal (8.11) becomes

Γ2,

(< i size),

(=> (and (< i size)

(= tt

(is-up (aref (procs s) i))))

(= (aref (procs initial-state) i)

(mk-process none none none empty tt)))

|----------

∆2

(8.11’)

187

Chapter 8. Mechanising Transformations

As described in Section 7.7, the rule =>-r is applied to the changed focus
formula in (8.11’), resulting in the two goals

Γ2,

(and (< i size)

(= tt

(is-up (aref (procs s) i))))

|----------

∆2, (< i size)

(8.12’)

and

Γ2,

(< i size),

(= (aref (procs initial-state) i)

(mk-process none none none empty tt)))

|----------

∆2

(8.13’)

Note that (8.13’) is unchanged from (8.13) and thus the proof above this
goal can be reused directly without further transformations. For (8.12’),
the formula in the antecedent is the subformula that we have changed, so
instead of the goal (8.12)

(< i size) ... |- (< i size) ...

we now have

(and (< i size) (= tt (is-up (aref (procs s) i)))) ...

|----------

(< i size) ...

and the original rule (basic) requires the formula structure of the formula
occurrence that is changed. According to Section 7.7.1.2, this is immedi-
ate focus and the definition of the transformation requires that the added
connective is decomposed, yielding

(< i size)

(= tt (is-up (aref (procs s) i)))) ...

|----------

(< i size) ...

(8.14)

and the proof is then carried on, i.e. by applying the original rules. In this
case, the original rule is the basic rule, which is applicable again now, so
the proof is again closed. The resulting proof is sketched in Figure 8.9.
Note that (8.10’) is not the same as (8.10): the new conjunct (= tt (is-up

(aref (procs s) i))) is part of the context of (8.10’).

188

8.7. Stronger Precondition

(8.10′)

(8.14)
....

(8.12′)

....
(8.13)

(8.11′)

Figure 8.9: Part of the new proof for (a)

(b) The second marked goal, also in the part of the base case, exhibits
another interesting aspect of the transformation. In the original proof, the
goal (b) contains the equation

(= (aref (procs intial-state) i)

(mk-process none none none empty tt))

as an assumption and an instance of the axiom (8.9): the sequent reads

Γ,

(= (aref (procs initial-state) i)

(mk-process none none none empty tt))

|----------

∆,

(and (=> (< i size)

(subseteq

(delivered (aref (procs initial-state) i))

(broadcast initial-state)))

(=> (< i size)

(nodups

(delivered (aref (procs initial-state) i)))))

(8.15)

The proof step in the original proof is an application of an equational proof
rule: the underlined subterm occurrence of (aref (procs initial-state)

i) is replaced by the right hand side of the equation, i.e. (mk-process none

189

Chapter 8. Mechanising Transformations

none none empty tt), resulting in the following goal:

Γ,

(= (aref (procs initial-state) i)

(mk-process none none none empty tt))

|----------

∆,

(and (=> (< i size)

(subseteq

(delivered

(mk-process none none none empty tt))

(broadcast initial-state)))

(=> (< i size)

(nodups

(delivered (aref (procs initial-state) i)))))

(8.16)

The transformation alters the axiom (8.9); as a consequence the boxed sub-
term occurrence in (8.15) is replaced, and (8.15) reads

Γ,

(= (aref (procs initial-state) i)

(mk-process none none none empty tt))

|----------

∆,

(and (=> (and (< i size) (= tt (is-up (aref (procs s) i))))

(subseteq

(delivered (aref (procs initial-state) i))

(broadcast initial-state)))

(=> (< i size)

(nodups

(delivered (aref (procs initial-state) i)))))

190

8.7. Stronger Precondition

Note that the underlined subterm is unchanged. So the equation can be
applied, resulting in

Γ,

(= (aref (procs initial-state) i)

(mk-process none none none empty tt))

|----------

∆,

(and (=> (and (< i size) (= tt (is-up (aref (procs s) i))))

(subseteq

(delivered

(mk-process none none none empty tt))

(broadcast initial-state)))

(=> (< i size)

(nodups

(delivered (aref (procs initial-state) i)))))

instead of (8.16). After this proof step, the rest of the proof can be trans-
formed recursively.

Note that the focus formula to which the equation had been applied
was changed by the proof transformation. The proof representation and
the rules for the proof transformation, however, ensure that the equation
is applied to the correct formula after the transformation. This is possible
since the change between old and new formulae is explicitly represented
(as sentence replacements). The sentence replacements are then adapted
so that the rest of the proof can be transformed recursively.

(c) Finally, the part of the proof marked (c) is in the step case for the first
command b-1. In the original proof, the induction hypothesis was

(=> (< i size)

(subseteq (delivered (aref (procs s-3) i))

(broadcast s-3)))

(8.17)

and the conjecture

(=> (< i size)

(subseteq (delivered (aref (procs s) i))

(broadcast s)))

191

Chapter 8. Mechanising Transformations

where s is the state after the command has been executed and s-3 the state
before. Eliminating the implication in the succedent results in the sequent

Γ,

(=> (< i size)

(subseteq (delivered (aref (procs s-3) i))

(broadcast s-3))),

(< i size)

|----------

∆

(subseteq (delivered (aref (procs s) i))

(broadcast s))

(8.18)

With the aid of the pre- and postconditions for b-1, which are members of
Γ , the conjecture can be rewritten to

(subseteq (delivered (aref (procs s-3) i))

(adjoin message (broadcast s-3)))
(8.19)

Γ also includes the following lemma about bags:

(all (s-1 bag) (s-2 bag) (m message)

(=> (subseteq s-1 s-2)

(subseteq s-1 (adjoin m s-2))))

This means that the new conjecture (8.19) is a consequence of the induction
hypothesis (8.17) if only (< i size) can be shown. This is easy since (< i

size) is an assumption:

Γ1, (< i size)

|----------

∆1, (< i size)

(8.20)

The transformation changes the occurrence of (< i size) in both the
conjecture and the induction hypothesis. In the induction hypothesis it is
changed to

(and (< i size) (= tt (is-up (aref (procs s-3) i))))

and in the conjecture to

(and (< i size) (= tt (is-up (aref (procs s) i))))

192

8.7. Stronger Precondition

After eliminating the implication in the conjecture, the sequent (8.18) is
thus changed to

Γ,

(=> (and (< i size) (= tt (is-up (aref (procs s-3) i))))

(subseteq (delivered (aref (procs s-3) i))

(broadcast s-3))),

(and (< i size) (= tt (is-up (aref (procs s) i))))

|----------

∆

(subseteq (delivered (aref (procs s) i))

(broadcast s))

(8.18’)

Note that the conjecture

(subseteq (delivered (aref (procs s) i))

(broadcast s))

is unchanged in (8.18’). It can thus be rewritten using the pre- and post-
conditions of b-1 as before, resulting in

(subseteq (delivered (aref (procs s-3) i))

(adjoin message (broadcast s-3)))
(8.19’)

Again note that the rewritten conjecture is unchanged from (8.19). Also,
the lemma about bags can be instantiated and applied as before, to the ef-
fect that the unchanged conjecture (8.19’) is a consequence of the induction
hypothesis

(=> (and (< i size) (= tt (is-up (aref (procs s-3) i))))

(subseteq (delivered (aref (procs s-3) i))

(broadcast s-3)))

(8.17’)

if only (and (< i size) (= tt (is-up (aref (procs s-3) i)))) can be
shown. The goal corresponding to (8.20) is thus changed by the transfor-
mation into

Γ1,
(and (< i size) (= tt (is-up (aref (procs s) i))))

|----------

∆1,
(and (< i size) (= tt (is-up (aref (procs s-3) i))))

(8.20’)

In the original proof, the rule basic was applied to finish the proof. The
applicability of the rule depends on the focus formulae, and so this is

193

Chapter 8. Mechanising Transformations

the case immediate focus of the transformation occurrence. Both formu-
lae are decomposed according to the special case propositional replacement
described in Section 7.7.2 on page 162. This results in the two new sub-
goals

Γ1,

(< i size),

(= tt (is-up (aref (procs s) i)))

|----------

∆1,

(< i size)

(8.21)

and

Γ1,

(< i size),

(= tt (is-up (aref (procs s) i)))

|----------

∆1,

(= tt (is-up (aref (procs s-3) i)))

(8.22)

The original remaining proof (consisting of the application of the basic

rule to the formula (< i size)) is transformed to close the first of the
resulting subgoals (8.21). The other subgoal (8.22), however, requires us
to prove that a process that is up in the state s after the command b-1 has
been taken was also up in the state s-3 before the command was taken.
This is an entirely new subproof. It is relatively easy to construct, but
the transformation simply leaves the goal open. This is as well, since no
part of the old proof has dealt with whether processes stay up, and so this
is something that the user has to do, using any proof automation that is
available.

Note that in the presentation of the case study in [MG00, p. 483], the
authors note that the subproof for each of the commands has an additional
subproof that has to do with the weakened property, whereas the rest of
the proofs was essentially unchanged. The “unchanged” proofs had to
be constructed based on the old proofs manually in the reference, whereas
with our transformations they can be kept. Our new open goal (8.22) is the
base for the new subproof that we need to construct according to [MG00].

8.8 Summary

We have presented a reconstruction of a case study [MG00] that we have
mechanised using our prototypical implementation. The specification of

194

8.8. Summary

a state transition system is constructed incrementally using development
transformations, and partial proofs are constructed. These proofs are trans-
formed when the specification is extended or corrected. After that, the
specified system is changed to be fault tolerant by adding features to the
specification and changing existing parts of the specification of the system
and its properties. The case study thus deals with many of the scenarios
from Chapter 2 that have been the motivation for our work.

The transformations carried out in the case study deal with adding
whole theories and axioms, adding arguments to functions and construc-
tor functions, adding constructors to generated datatypes, and changing
subterm and subformula occurrences. The transformations allow to make
the changes that are necessary to construct the specification incrementally.
More importantly, specification transformations extend to proofs in a man-
ner that keeps most of the original proofs where this makes sense. When
new open goals appear as the result of a transformation they are genuine
new open goals. Examples are the new open goal in the case distinction
for a newly added command (cf. Section 8.6), or an open goal correspond-
ing to the fundamentally new subproof that the authors of the case study
found to be necessary (cf. Section 8.7 (c)).

The results are very encouraging. Obviously, more case studies are
desirable, cf. Section 10.2, to further assess the usefulness of the transfor-
mational approach.

195

Part IV

Related Work and Conclusions

197

Chapter 9

Related Work

9.1 Management of Change

Our approach has been conceived as an aid for handling changes in the
context of systems that use an invent and verify approach to formal soft-
ware development. In this context, an alternative approach is to antici-
pate change by modelling systems in a way that isolates aspects which
are likely to change. This has been pursued with specification constructs,
[GB92], [DGS93], [FM97], [Hut00], [DM03], [KBM04] to list just a few ex-
amples, and methodologies, e.g. [RSW97], [AF02].

The idea invariably is to provide explicit means to structure the sys-
tem (or its description) into separate elements such that changes can be
made to one element only, without any effect on others. Our experience,
however, is that there are always changes which cut across the boundaries
set up by these structures. The reason is that, usually, there is not a sin-
gle structuring dimension, and changes, in particular ones that deal with
omissions and bugs, usually cut across boundaries of several of the dimen-
sions. However, using the explicit structure of specifications is important
in practice, and we have taken care that our techniques are complemen-
tary to this approach rather than a replacement. We have integrated our
work with one of the structuring mechanisms, described in [Hut00], which
is used extensively in our group. Our transformations can be seen as basic
operations that are defined to alter development graphs in addition to the
ones that have been defined in the earlier work. Some of our transforma-
tions are more fine-grained than the ones provided by prior work, some
of our transformations are entirely novel in this context. This relationship
has been discussed in Section 4.5.

In [Gro02], [Gro00] specifications and programs are expressed using

199

Chapter 9. Related Work

the same wide-spectrum language, and changes to a specification are ex-
pressed by special combinators applied to the specification. Examples for
combinators are sequential composition and program conjunction. These
combinators can also be applied to the program. Rules describe how a
combinator can then be propagated into the original program structure.
The result is a program that satisfies the changed specification. This ap-
proach is restricted to changes that can be expressed by the given combi-
nators, which rules out, e.g., changes to existing signature items.

In work on “evolving specifications” [PS01], [ASP02], [PS02], the term
“evolving” does not refer to the evolution of specifications as the develop-
ment progresses, rather it refers to the evolution of the state of a system as
the execution progresses. The idea there is that the specification describ-
ing the current state evolves over time of the execution of the system, and
thus describes the possible state transitions. Changes to the specification
as part of the development process are not considered at all.

9.2 Proof Reuse and Replay

Another technique to cope with the evolutionary nature of a formal soft-
ware development process is the replay of proofs or proof plans on changed
specifications. Proof scripts that have been assembled when creating the
original proof can be replayed, cf. e.g. [Cur95]. In this case, however, proof
scripts are patched and changed manually, whereas our approach trans-
forms the proofs without manual intervention.

In contrast to a heuristic replay of proofs on changed proof obligations,
e.g. [KW94], [Kol97], [RS93], [MW97], [Sch98, MS98], [BK04], where the
tactics or proof plans of a source proof are mapped from source to target
problem and are replayed on the target goal, our approach allows trans-
formations to produce proofs that could not have been produced by re-
playing the tactics. This allows us to change the overall proof structure in
a reliable and predictable way.

In this respect, our approach to the transformation of proofs was in-
spired by and is similar to the work in [FH94] in that an explicit proof is
transformed, not by replaying the tactic steps but by changing proofs ex-
plicitly. However, we additionally consider transformations that change
existing signature items and proof rules, i.e. inductions schemes. Also, we
support patches for the case in which a formula is, e.g., wrapped into an-
other one, in which case the technique described in [FH94] would throw
away the subproof which uses the changed formula.

These techniques are orthogonal to our work in the sense that they

200

9.3. Correctness-Preserving Transformations

address different problems and can be used in addition to our transforma-
tions, e.g. to replay a specific proof by a heuristics after a change has been
made for which it is expected that a specific heuristics works better than
the transformation did. They can also be used as building blocks for the
support that we provide, e.g. a proof reuse heuristics can be used to prop-
agate a particular specification transformation to proofs. In fact, our proof
transformations for changing occurrences can be seen as an extension of
the proof reuse technique presented in [FH94].

[Boi04] describes an approach to proof reuse that is very similar to
some of the proof transformations we have presented in [SH02] and Chap-
ter 7. The author also proposes to use preconceived transformations to
change specifications and proof terms. The transformations deal with in-
ductive types exclusively, e.g. adding a constructor, or adding an argu-
ment to a constructor, and form a subset of the transformations we have
considered in [SH02] and this thesis. Most notably, transformations to
change occurrences of terms and formulae – which we have found to be
necessary in practice also in the context of changing induction schemes,
cf. Section 6.3.3 – are missing. Transformations are formulated as explicit
operations on definition and proof terms in Coq’s type theory; they corre-
spond to our definition of sentence and proof translations XSen(addarg(C))
and XPrf(addarg(C)), however without exploiting the relationship between
translations and morphisms. Because [Boi04] is restricted to transforma-
tions that correspond to a clean semantic transformation, the correctness of
these transformations can be proven. As with other techniques for proof
reuse, an account of how the technique would be integrated with struc-
tured specifications is not provided.

9.3 Correctness-Preserving Transformations

There is a large amount of prior work on correctness-preserving trans-
formations, e.g. [Par90], [HKB93], [BB96], [JL04a], [JL04b]. The general
idea is to develop correct programs starting from an initial specification
by successive applications of correctness-preserving transformations. By
construction, each transformation enforces a certain relation between the
two specifications it relates, e.g. a notion of refinement or implication.
These relations are usually transitive, and so the resulting program is in
relation to the original specification. Thus, by construction the program
satisfies (or refines) its original specification. Each correctness-preserving
transformation may include side conditions that need to be checked for
the transformation to be applicable. Usually, the transformation rules and

201

Chapter 9. Related Work

their side conditions are represented in a framework such that the correct-
ness of each of the transformations together with its side conditions can be
proven in the framework itself.

The approach makes powerful use of the intuition that changes to a
specification can be seen as directed attempts to keep some property, rep-
resented by the refinement relation, while changing other properties. For
example, transforming a recursive program into an equivalent one that is
tail-recursive keeps the functional specification of the program but leads
to a supposedly more efficient program. Another example is to transform
a program into one that has more functionality such that the more func-
tional program is a refinement of the original one.

This approach differs from ours in several ways. The most important
aspect is to consider the motivation and applicability of the work. We have
argued in Chapter 1 that specifications need to be changed frequently be-
cause they are faulty or ill-conceived. In this situation the intention of the
developer is to remove a bug. Thus, producing an equivalent specifica-
tion or one that is a refinement of the faulty one is not going to be helpful.
Since usually there is more than one problem with real-life specifications,
the specification will in most cases still be faulty after a certain corrective
step has been taken – just a little bit less so. It is therefore difficult or im-
possible to formulate exactly which logical property should be preserved
by the transformations. It has thus been noted that in software mainte-
nance, correctness-preserving transformations are most helpful in refac-
toring the program before the corrective action is taken, where the correc-
tive change itself is not correctness-preserving [BB96]. Our transforma-
tions do not preserve correctness but are intended to support the changes
that developers have made in the past in such situations. Of course, they
need to produce consistent states of formal developments, but the relevant
notion of consistency, i.e. well-formedness as described in Section 3.6 on
page 55, is not a property in the realm of the logic we are interested in. As
a consequence, we do not represent our transformations as logical rules.
This has the benefit that we are not restricted by the logic for formulating
our transformations. Where we use this freedom, we incur the disadvan-
tage that our transformations are less elegant on the semantic side, and the
propagation of transformations to proofs is operationally motivated.

Another difference between our work and correctness-preserving trans-
formations is that a program derived from a specification using correctness-
preserving transformations can be checked to be correct with respect to the
specification when the whole history of the derivation is known. For our
setup, every new development that results from the preceding one by a
transformation is self-contained. This is important for mainly two reasons.

202

9.4. Advanced Programming IDEs

First, in the context of software evaluation according to, e.g., the Common
Criteria [CC99] a checkable form of the state of a development is a prereq-
uisite for the evaluation process. Second, since our transformations them-
selves are not necessarily part of the trusted kernel of the support tool, it
is necessary to be able to check whether the resulting development has the
required property of being well-formed.

On a technical level, producing self-contained developments requires
us to provide proof transformations that correspond to a given specifica-
tion transformation. Using the approach of correctness-preserving trans-
formations this can be avoided. It is enough to show that a semantic prop-
erty is preserved by the transformation without consideration for how ar-
bitrary proofs of the property are transformed over specification transfor-
mations. When correctness-preserving transformations are proven correct
in the same logic in which the correctness property is stated and in which
their side-conditions are discharged it should be possible to construct a
self-contained proof from the history of transformations by plugging the
proofs together, although this is usually not done.

9.4 Advanced Programming IDEs

In programming, there is a general interest in advanced integrated de-
velopment environments (IDEs) for programming. Instead of editing flat
program text, for which the semantics is provided later by the compiler
in an opaque way, the developer works with an environment that “un-
derstands” some aspects of the programs. In an object-oriented language
it is, e.g., possible to browse a class diagram that results from the code,
or navigate in a call graph, i.e. get an overview over which methods call
the method that is inspected and changed at the moment. There is now
also a growing number of tools that support restructuring or refactoring
[Opd92], [MT04], i.e. changing the program representation systematically
without altering its external behaviour, cf. the discussion of correctness-
preserving transformations in Section 9.3. Example refactoring steps are
renaming a method consistently, i.e. its declaration, definition, and all call
sites, or moving a method from one class to another one in class-based
languages. These functionalities rely on the fact that the environment un-
derstands the structure of the artefact (syntax and static semantics) and
the relevant aspects of the dynamic semantics.

This raises the question of how the structure and the semantics are
worked out by the environment. One possibility is to infer the relevant in-
formation from the artefact itself. In the examples above, this means that

203

Chapter 9. Related Work

the program analyses the program code using its own parser and static
analyser and computes the class hierarchy and call graph itself . This ne-
cessitates duplicating the functionality dealing with the relevant aspects
of the input language. Because of this disadvantage and the risk of im-
plementing two subtly different definitions, a better approach is to extract
the information directly from the compiler or runtime system. This ne-
cessitates opening up the relevant internals of the compiler and exposing
enough of the runtime system, e.g. by introspective facilities. This has
mainly been done in the past in environments for dynamic and reflective
languages like Common Lisp or Smalltalk. Many old ideas are currently
rediscovered in this context, cf. Wilson [Wil05]. We have chosen to follow
this approach and provide additional interfaces to the case tool and the-
orem prover, which our implementation of the transformations is able to
use.

Usually, IDEs provide a way to (re-) compile and execute the program
after it has been changed using the compiler and runtime environment.
Since the compilation process is completely mechanised and no user in-
put is necessary this is guaranteed to work without user interaction: the
whole program can be compiled from scratch and then started. For ef-
ficiency reasons, however, only changed files and those that really need
recompiling are actually compiled if possible. To this end it is necessary
to extract whether a file depends on a changed one in a way that necessi-
tates recompiling it but it is not necessary to work out how the dependent
file has changed: the file itself is recompiled from scratch. If user action is
required for the equivalent of the compilation as is the case in our work,
more information about the nature of the dependency should be known to
further restrict the work that has to be done from scratch.

Cynthia [WBBL99], [WBB02], an advanced IDE for a subset of Standard
ML (SML, a functional programming language), is an example that takes
steps in this direction. It guarantees that the edited set of SML function
definitions is well-typed, and each function is total and terminating ac-
cording to a given sufficient condition. These properties are weaker than
the ones we have considered and are chosen such that all necessary proofs
can be constructed fully automatically. Cynthia represents the program by
a synthesis proof in Martin-Löf Type Theory that includes subproofs for
the termination conditions. These subproofs are found using a heuristic
algorithm. Changes to the program are carried out indirectly by manip-
ulating and transforming the synthesis proof and redisplaying the corre-
sponding program. It is possible to distinguish two classes of transforma-
tions that Cynthia supports. The first deals with structural changes like
adding a constructor to a datatype definition. This necessitates adding

204

9.5. Requirements Traceability

another defining clause whenever a case distinction over the datatype is
made in the program. The term to use for this case is left open and can
be replaced by another term later. Since these unspecified terms are rep-
resented by open goals in the synthesis proof, function definitions may
temporarily violate the well-typedness and termination conditions. This is
not possible in our work, because well-formedness conditions are checked
statically rather than by a type-correctness derivation in type theory. Thus
only complete and type-correct terms are allowed in our setting. The sec-
ond class deals with replacing one term occurrence by another term. This is
only possible if the new term is type-correct for the context of the old term
occurrence and if it is smaller than the surrounding context according to a
termination ordering. This latter condition ensures that the function is ter-
minating and is checked mechanically. Cynthia includes a graphical user
interface and has been used and experimentally evaluated in the context
of education of computer science students [WC00].

9.5 Requirements Traceability

Requirements traceability, e.g. [GF94], [RJ01], [vKP02] is concerned with
the question of how to acquire and maintain a trace from requirements
along their manifestations in development artefacts at different levels of
abstraction. This is a key technique for software maintenance, because
the information about relationships between different artefacts that is pro-
vided by these traces allows to assess the impact and scope of planned
changes, cf. [GHM98], [RJ01], [vK01], [vK02]. A planned change can be
propagated along the links that relate dependent items in the artefacts,
and thus a work plan of necessary follow-up changes can be acquired.
The dependency relationships and the ways in which changes propagate
over them is application dependent.

Propagated changes can be kept in a work plan and be handled by the
user step by step, and some implied changes might even be carried out
automatically, cf. [GHM98]. The consequence is, however, that inconsis-
tencies can stay in the artefacts for some time; it is acceptable that they are
repaired only after several steps have been taken. As soon as the devel-
opment is in a consistent state again, dependent artefacts (like binaries)
can be created, but not in the intermediate stages. This is in contrast to
our setting where the dependent artefacts include proofs, which cannot
be created from scratch without a prohibitive amount of effort. It is, thus,
not acceptable for us to allow inconsistent intermediate states. Without
the need to maintain proofs, techniques used for requirements traceability

205

Chapter 9. Related Work

could directly be used to manage dependent parts of specifications and
the associations between the parts. Our main motivation, however, was to
deal with proofs.

Similarly to the way in which dependency relationships between spec-
ification entities are represented as links in development graphs in our
work, domain specific artefacts and dependencies are often represented
using abstract entities and relations that make the dependencies explicit,
e.g. “components and relationships” in [GHM98], “logical entities and re-
lations” in [vK02], or “suggestion carrying DAGs”in [SBRS04].

There are many issues that have been investigated in the context of
requirements traceability, which could be investigated for our work. Ex-
amples include the uniform representation and propagation of changes,
and an adequate presentation of implied changes and presentation of the
change history to the user, cf. [GHM98]. We have not addressed these is-
sues.

206

Chapter 10

Conclusions and Outlook

10.1 Conclusions

Experience shows that developing formal specifications is an error-prone
task – just like any other formal or informal software development activity.
The consequence is that one needs to be prepared for change: thinking
about a system and formulating tentative specifications and properties is
an iterative and evolutionary process. On a high level of abstraction, proof
work provides valuable and reliable feedback. An indispensable aspect
of formal methods in practice, therefore, is how unavoidable changes are
handled gracefully. In this thesis we contributed methods, techniques,
and a prototypical implementation of a tool that help to mechanise the
management of change in this situation.

We investigated the problem in the context of axiomatic specification
and verification of systems and their properties. In this context, the main
problem is that proofs require user interaction, and that in general these
proofs get invalidated when the system description or the postulated prop-
erties change. Substantial effort spent for constructing formal proofs may
then be lost. We aim at adjusting these invalidated proofs automatically,
according to the changes that were made to the system or problem de-
scription.

In this thesis, we have proposed an approach that propagates changed
specifications to changed proof obligations, and then uses the knowledge
about the concrete change to patch the proofs. Technically, a development
step is carried out by transforming the whole state of the formal develop-
ment using preconceived transformations. These transformations relate
possibly incomplete and erroneous states of the same formal development
and are operationally motivated.

207

Chapter 10. Conclusions and Outlook

Based on numerous case studies and projects carried out by our group,
we identified scenarios and associated changes to specifications (i) that oc-
curred frequently, (ii) that were not addressed sufficiently by existing sup-
port methods and techniques, and (iii) which the developers would have
known how to patch systematically. These changes have been the motiva-
tion for our work. We classified the changes that appeared in practice into
the following categories: adding and removing axioms, replacing subfor-
mulae and subterms of axioms, adding and removing signature symbols,
changing existing signature symbols, and changing induction schemata.
The changes and the associated patches are orthogonal to the structuring
of specifications. For each of these changes, corresponding patches to the
proofs had to be carried out manually in the case studies, and we have
described how these can be mechanised.

In order to be able to deal with these kinds of changes and associated
proof patches in practice we have investigated how they manifest them-
selves in the context of structured specifications, their translation into de-
velopment graphs, and the extraction of proof obligation from the result-
ing graph. We have achieved an abstraction of the setting that is to a large
extent independent of the concrete specification language and proof cal-
culus and representation. It was thus possible to work out the details of
how changes propagate through the development graph machinery, from
structured specifications to proofs, as a framework that can be instantiated
for different choices of specification language and proof representation.
Formulating these aspects separately has the benefit that a clear distinc-
tion of different classes of transformations is explicitly possible. These
classes coincide only partially with the classes that were identified in the
motivating scenarios.

We have described an instantiation of the framework, which is simple
enough to act as a proof of concept instantiation, yet still shares the cru-
cial difficulties found in real-life specification languages and proof calculi.
Having separated out most of the theoretic issues into the framework, the
exposition of the instantiation can be provided relatively informally and
the transformations can be described completely operationally. Using this
instantiation, we revisited the example scenarios that motivated our work
and showed how they are handled using our approach. The crucial parts
of the instantiation have been successfully tested in a prototypical imple-
mentation. In particular the central aspect of propagating transformations
through development graphs has been tested thoroughly.

Using the methods and techniques that we have developed and inte-
grated in this thesis, it is possible to start with formal proof work ear-
lier in the formal development process with the expectation that most of

208

10.2. Further Work

the proof work only needs to be done once rather than several times af-
ter changes. Similarly, it is possible to carry out minor changes and cor-
rections late without the risk of losing a large portion of proof work. In
practice, this often makes the crucial difference.

10.2 Further Work

Many interesting problems have presented themselves while we worked
out the details of our approach. Of course we could not solve all of them.
Further work is certainly needed to extend our techniques and adapt them
to existing formal case tools; some more detailed items are given below.
Also, more case studies would certainly help to assess further the useful-
ness of the approach and its potential over and above the scenarios that
we have envisioned it for.

Improvements of Existing Instantiation. The instantiation we have pre-
sented in this thesis works best for changes that exhibit a close correspon-
dence between the lexical part of the specification that is changed and the
portion of the proof that needs to be changed accordingly. It does not work
as well when equations are heavily applied. The reason seems to be that
the proof calculus we used does not explicitly link the place of the term
that is replaced when applying an equation with a part of the proof: terms
can be rewritten under connectives. We would expect that further investi-
gations in this direction reveal further conditions on transformations that
would give better support for transforming the proofs. We suspect that
hierarchical reasoning (cf. [Aut03]) would be well-suited to formulate the
transformations cleanly. Note that this is a question of which changes to
represent specially when replacing occurrences and how to handle them
when transforming proofs. The propagation through development graphs
is not affected at all.

Different Instantiations. The question of how to control and trigger the
appropriate specification transformations has only partially be solved by
the example specification transformations given in Chapter 6. In partic-
ular, complicated structuring mechanisms in the specification language
warrant further attention. An idea that seems to be worth exploring starts
out from a calculus for translating structured specifications into develop-
ment graphs. This calculus should then be enriched so that explicitly rep-
resented changes are propagated through the derivation of the develop-

209

Chapter 10. Conclusions and Outlook

ment graph, similarly to how changes are propagated through the deriva-
tion of proof obligation links in [Hut00] and [AHMS00].

Similarly, more complicated translations from specifications in the small
to development graphs deserve further work and experimentation. An ex-
ample is the translation of procedures in specifications into one big tempo-
ral formula, implemented, e.g., in the VSE system [AHL+00]. Changes to
the program lead to systematic changes spread over the whole proof obli-
gations. It seems possible and well worthwhile to take advantage of this
systematic relationship to implement powerful transformations. A thor-
ough investigation is needed, however, to see which transformations are
useful in practice.

Other proof calculi also deserve further study. In particular it would
be interesting to see whether calculi for hierarchical reasoning cf. [Aut03]
would make propagating local changes of parts of formulae and terms to
parts of proofs easier.

Finally, the idea of development graphs has been applied to the man-
agement of change in informal documents [KBHL+03], and it should be
interesting to see whether meaningful transformations can be given in that
context to adapt parts of a document that are affected after a change. It
is not clear to us at the moment what kind of transformations would be
needed, though.

Extending the Framework. The formulation of the framework in Part II
relied on a concrete definition of development graphs with two kinds of
global and local links. Development graphs have been extended to al-
low for different institutions in different nodes of the same graph (het-
erogeneous development graphs [Mos02]) and to allow for different links
(e.g. hiding links [MAH01]). Also, lately development graphs have been
formulated and implemented in MAYA in a way that allows for axioms
and lemmata in nodes, i.e. each node is separated into two conceptual
nodes, one of which uses the other while the latter satisfies the former. It
would be interesting to see how the framework extends to these different
formulations of development graphs.

Further Integration. We have integrated transformations into the archi-
tecture of existing tools for formal software development. This means that
transformations can be used in addition to any other activity supported by
the respective tools, e.g. proof automation or heuristic replay. However,
tighter integration that allows transformations to be used by other activi-
ties or to use other activities is not possible as is. This could be very advan-

210

10.2. Further Work

tageous, and it would be interesting to see whether, e.g., heuristics could
be applied to close new open goals that result from patching proofs, or
whether proof planning and difference reduction techniques like, e.g., rip-
pling [BSvH+93], [BBHI05], equalising terms [Hut97], or critics [Ire96],
can help to decide how to patch proofs best after changes. In particu-
lar, guiding heuristics may provide real benefit with the replacement of
terms, which our instance does not yet handle completely satisfactorily, as
discussed above.

Another interesting area worthy of investigation is the combination of
correctness preserving transformations, cf. Section 9.3 on page 201, and
transformations like the ones we have presented in this thesis. Thus, a
change could be applied to, say, the original requirements specification
and would then be propagated towards the implementation over the cor-
rectness preserving transformations that were applied to derive it.

User Interaction. Interactive theorem proving relies to a large extent
upon appropriate user interfaces that support easy manipulation of the
development artefacts. In fact, having a rudimentary user interface in our
proof of concept implementation turned out to be a noticeable problem
when working with realistically sized case studies. Advanced user inter-
face functionalities that we felt would have helped are, e.g., the following.

When a transformation has been carried out, all the open goals and the
changed parts on the level of development graphs, proof structure, and
proof goals are highlighted and the differences between the state before
and after the transformation can be navigated. In particular, all open proof
goals can be tracked down easily.

Maybe some of the specification transformations can be recognised me-
chanically by looking at the old and new specification using an algorithm
similar to difference unification [BW93], the difference computation for
CASL specifications in [AHMS02], or other techniques known from soft-
ware merging [Men02], and then inspecting the result for patterns corre-
sponding to known transformations. This would allow transformations to
be used exactly like any other basic operation on development graphs in
the way in which MAYA uses them.

As a vision, after changing the definition of a function, the system
could come back and ask whether the user wanted to add a new argument
to the function, and if yes, go off and trigger the corresponding transfor-
mation, then change the definition, and finally provide the user with a
list of terms and places at which a dummy term has been introduced and
further changes are likely necessary.

211

Chapter 10. Conclusions and Outlook

Some of these issues are research and engineering questions, academically
interesting in their own right. Some, however, are questions of making
the techniques easier to use in practice, and whether or not they should
be tackled depends on economic considerations more than on academic
ones. We are confident that the techniques we have presented in this thesis
have the potential to change the way in which formal methods are used
in industrial practice, but evidently, further work and effort is needed to
realise their full potential.

212

References

[AF02] Lus Andrade and Jos Luiz Fiadeiro. Coordination primitives
for evolving event-based systems. In Hutter et al. [HBLL02],
pages 31–41.

[AH02] Serge Autexier and Dieter Hutter. Maintenance of formal
software developments by stratified verification. In Proceed-
ings 9th International Conference on Logic for Programming Ar-
tificial Intelligence and Reasoning, volume 2514 of LNAI, pages
36–52, 2002.

[AHL+00] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock,
A. Schairer, W. Stephan, R. Vogt, and A. Wolpers. VSE: Formal
methods meet industrial needs. Int. Journal on Software Tools
for Technology Transfer, 3(1), 2000.

[AHMS99] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel
Schairer. System description: Inka 5.0 - a logic voyager. In
Harald Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), volume 1672 of
LNAI, pages 207–211. Springer, 1999.

[AHMS00] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel
Schairer. Towards an evolutionary formal software-
development using CASL. In Didier Bert, Christine Choppy,
and Peter Mosses, editors, Recent Trends in Algebraic Develop-
ment Techniques, Proceedings of the 14th International Workshop
on Algebraic Development Techniques (WADT’99), volume 1827
of LNCS, pages 73–88. Springer, 2000.

[AHMS02] Serge Autexier, Dieter Hutter, Till Mossakowski, and Axel
Schairer. The development graph manager MAYA (system
description). In Kirchner and Ringeissen [KR02], pages 495–
501.

213

REFERENCES

[ASP02] Matthias Anlauff, Doug Smith, and Dusko Pavlovic. Compo-
sition and refinement of evolving specification (invited talk).
In Hutter et al. [HBLL02], pages 31–41.

[Aut03] Serge Autexier. Hierarchical Contextual Reasoning. PhD thesis,
Universität des Saarlandes, Saarbrücken, 2003.

[Bal00] Helmut Balzert. Lehrbuch der Software-Technik, Band 1. Spek-
trum Akademischer Verlag, second edition, 2000.

[BB96] Tim Bull and Keith Bennett. A report on the durham program
transformations workshop. ACM SIGSOFT Software Engineer-
ing Notes, 21(4):51–53, 1996.

[BBHI05] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ire-
land. Rippling: Meta-level Guidance for Mathematical Reasoning.
Number 56 in Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 2005.

[BCH+04] Hubert Baumeister, Maura Cerioli, Anne Haxthausen, Till
Mossakowski, Peter D. Mosses, Donald Sannella, and An-
drzej Tarlecki. Part III: CASL semantics. In Mosses [Mos04],
pages 113–271.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[BK04] Bernhard Beckert and Vladimir Klebanov. Proof reuse for
deductive program verification. In 2nd International Confer-
ence on Software Engineering and Formal Methods (SEFM 2004),
pages 77–86, September 2004.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[BN04] Stefan Berghofer and Tobias Nipkow. Random testing in is-
abelle/hol. In 2nd International Conference on Software Engi-
neering and Formal Methods (SEFM 2004), pages 230–239. IEEE
Computer Society, September 2004.

[Boe88] B. W. Boehm. A spiral model of software development and
enhancement. IEEE Computer, 21(5):61–72, 1988.

214

REFERENCES

[Boi04] Olivier Boite. Proof reuse with extended inductive types. In
Proceedings of TPHOLs 2004, volume 3223 of LNCS, pages 50–
65. Springer, 2004.

[BSvH+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew
Ireland, and Alan Smaill. Rippling: A heuristic for guiding
inductive proofs. Artificial Intelligence, 62(2):185–253, 1993.

[BW93] David Basin and Toby Walsh. Difference unification. In Pro-
ceedings of the 13th International Joint Conference on Artificial In-
telligence, pages 116–122. Morgan Kaufmann, 1993.

[BW96] Michael Barr and Charles Wells. Category Theory for Comput-
ing Science. Prentice Hall, London, second edition, 1996.

[CC99] Common criteria for information technology security evalua-
tion (CC), 1999. Also ISO/IEC 15408: IT – Security techniques
– Evaluation criteria for IT security.

[Cur95] P. Curzon. The importance of proof maintenance and reengi-
neering. In Proc. Int. Workshop on Higher Order Logic Theorem
Proving and Its Applications, 1995.

[dB72] N. G. de Bruijn. A namefree lambda calculus with facilities for
internal de nition of expressions and segments. Indagationes
Mathematicae, 34(5):381–392, 1972.

[dB78] N. G. de Bruijn. Lambda-calculus notation with namefree for-
mulas involving symbols that represent reference transform-
ing mappings. Indagationes Mathematicae, 40:348–356, 1978.

[DGS93] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support
for modularisation. In Papers presented at the Second Annual
Workshop on Logical Environments, pages 83–130, New York,
1993. Cambridge University Press.

[DM03] Francisco Durán and José Meseguer. Structured theories and
institutions. Theoretical Computer Science, 309(1):357–380, De-
cember 2003.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic
Specification 1. Springer, 1985.

215

REFERENCES

[FH94] A. Felty and D. Howe. Generalization and reuse of tactic
proofs. In Proc. Int. Conf. Logic Programming and Automated
Reasoning (LPAR), 1994.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer, second edition, 1996.

[FM97] J. Fiadeiro and T. S. Maibaum. Categorical semantics of par-
allel program design. Science of Computer Programming, 28(2–
3):111–138, 1997.

[Gär99] F. C. Gärtner. Transformational approaches to the specifica-
tion and verification of fault-tolerant systems: Formal back-
ground and classification. Journal of Universal Computer Sci-
ence, 5(10):668–692, 1999.

[GB84] J. A. Goguen and R. M. Burstall. Introducing institutions. In
E. Clarke and Dexter Kozen, editors, Proceedings of the Work-
shop on Logics of Programs, volume 164 of LNCS, pages 221–
256. Springer, 1984.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract
model theory for specification and programming. Journal of
the ACM, 39(1):95–146, January 1992.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schlies-
sen. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.
Reprinted in English as [Gen69].

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131. North Holland, Amsterdam, 1969.

[GF94] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An anal-
ysis of the requirements traceability problem. In Proceedings
of the IEEE International Conference on Requirements Engineering
(ICRE 94), pages 94–101, 1994.

[GHM98] John Grundy, John Hosking, and Rick Mugridge. Incon-
sistency management for multiple-view software develop-
ment environments. IEEE Transactions on Software Engineer-
ing, 24(11):960–981, 1998.

216

REFERENCES

[Gro00] Lindsay Groves. A formal apporach to program modification.
In Proceedings of the Seventh Asia-Pacific Software Engineering
Conference, pages 274–281. IEEE Computer Society, 2000.

[Gro02] Lindsay Groves. A formal approach to program evolution. In
Hutter et al. [HBLL02], pages 31–41.

[HBLL02] Dieter Hutter, David Basin, Peter Lindsay, and Christoph
Lüth, editors. Proceedings of the First Workshop on Evolution-
ary Formal Software Development, July 2002.

[Hig02] Jim Highsmith. Agile Software Development Ecosystems. Addi-
son Wesley, 2002.

[HKB93] B. Hoffmann and B. Krieg-Brückner, editors. Program Develop-
ment by Specification and Transformation. Springer, Berlin, 1993.

[HMSS05] Dieter Hutter, Heiko Mantel, Ina Schaefer, and Axel Schairer.
Security of multiagent systems: A case study on compari-
son shopping. Journal of Applied Logic, 2005. Special Issue
on Logic-Based Agent Verification. Forthcoming.

[HS01] Dieter Hutter and Axel Schairer. Towards an evolutionary
formal software development (short paper). In Proceedings
of the 16th International Conference on Automated Software Engi-
neering (ASE 2001) [IEE01], pages 417–420.

[Hut97] Dieter Hutter. Equalising terms by difference reduction tech-
niques. In H. Kirchner and B. Gramlich, editors, Proceedings
of the CADE-14 Workshop on Strategies in Automated Deduction,
1997.

[Hut00] Dieter Hutter. Management of change in verification sys-
tems. In Proceedings 15th IEEE International Conference on Au-
tomated Software Engineering, pages 23–34. IEEE Computer So-
ciety, 2000.

[IEE01] IEEE Computer Society. Proceedings of the 16th International
Conference on Automated Software Engineering (ASE 2001),
November 2001.

[Ire96] Andrew Ireland. Productive use of failure in inductive proof.
Journal of Automated Reasoning, 16(1–2):79–111, 1996.

217

REFERENCES

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-
fied Software Development Process. Addison Wesley, 1999.

[JL04a] Einar Broch Johnsen and Christoph Lüth. Abstracting trans-
formations for refinement. Nordic Journal of Computing,
10:316– 336, 2004.

[JL04b] Einar Broch Johnsen and Christoph Lüth. Theorem reuse by
proof term transformation. In Konrad Slind, Annette Bunker,
and Ganesh Gopalakrishnan, editors, International Conference
on Theorem Proving in Higher-Order Logics TPHOLs 2004, vol-
ume 3223 of Lecture Notes in Computer Science, pages 152–167.
Springer, September 2004.

[KBHL+03] Bernd Krieg-Brückner, Dieter Hutter, Christoph Lüth, Erica
Melis, Arnd Pötsch-Heffter, Markus Roggenbach, Jan-Georg
Smaus, and Martin Wirsing. Towards multimedia instruc-
tion in save and secure systems. In Recent Trends in Algebraic
Development Techniques (WADT-02), volume 2755 of LNCS.
Springer, 2003.

[KBM04] Bernd Krieg-Brückner and Peter D. Mosses. Part I: CASL sum-
mary. In Mosses [Mos04].

[Kol97] Thomas Kolbe. Optimizing Proof Search by Machine Learning
Techniques. PhD thesis, Fachbereich Informatik der Technis-
chen Hochschule Darmstadt, 1997. Published as a manuscript
by Shaker, Aachen.

[KR02] Hélène Kirchner and Christophe Ringeissen, editors. Proceed-
ings of the 9th International Conference on Algebraic Methodology
And Software Technology (AMAST 2002), volume 2422 of LNCS.
Springer, 2002.

[KW94] Thomas Kolbe and Christoph Walther. Reusing proofs. In
A. Cohn, editor, Proccedings of the 11th European Conference on
Artificial Intelligence (ECAI-94), pages 80–84, 1994.

[Läm04] Ralf Lämmel. Coupled software transformations (ex-
tended abstract). In First International Workshop on Soft-
ware Transformations, November 2004. Available online at
http://banff.cs.queenssu.ca/set2004/.

218

http://banff.cs.queenssu.ca/set2004/

REFERENCES

[Lar04] Craig Larman. Agile and Iterative Development: A Manager’s
Guide. Addison-Wesley, 2004.

[LEW96] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Spec-
ification of Abstract Data Types. Wiley and Teubner, 1996.

[LKB02] Craig Larman, Philippe Kruchten, and Kurt Bit-
tner. How to fail with the rational unified process:
Seven steps to pain and suffering. Available online at
http://www.aanpo.org/articles/, 2002.

[LS86] J. Lambek and P. J. Scott. Introduction to higher order categorial
logic, volume 7 of Cambridge studies in advanced mathematics.
Cambridge University Press, 1986.

[LUV00] Bruno Langenstein, Markus Ullmann, and Roland Vogt. The
use of formal methods for trusted digital signature devices.
In Proc. 13th Intern. FLAIRS Conf. AAAI Press, 2000.

[MAH01] Till Mossakowski, Serge Autexier, and Dieter Hutter. Extend-
ing development graphs with hiding. In Proceedings of Funda-
mental Approaches to Software Engineering (FASE 2001), volume
2029 of LNCS, pages 269–283. Springer, 2001.

[Man00] Heiko Mantel. Unwinding possibilistic security properties.
In Proceedings of European Symposium on Research in Computer
Security (ESORICS), LNCS 1895, pages 238–254, Toulouse,
France, October 4-6 2000. Springer.

[Man03] Heiko Mantel. A Uniform Framework for the Formal Specifica-
tion and Verification of Information Flow Security. PhD thesis,
Universität des Saarlandes, 2003.

[McC96] Steve McConnell. Rapid Development. Microsoft Press, 1996.

[Men02] Tom Mens. A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering, 28(5):449–462, May
2002.

[MG00] H. Mantel and F. C. Gärtner. A case study in the mechanical
verification of fault tolerance. Journal of Experimental & Theo-
retical Artificial Intelligence, 12:473–487, 2000.

219

http://www.aanpo.org/articles/

REFERENCES

[MHAH04] Till Mossakowski, Piotr Hoffman, Serge Autexier, and Dieter
Hutter. Part IV: CASL logic. In Mosses [Mos04], pages 273–
359.

[Mos02] Till Mossakowski. Heterogeneous development graphs and
heterogeneous borrowing. In M. Nielsen and U. Engberg,
editors, Foundations of Software Science and Computation Struc-
tures, volume 2303 of LNCS, pages 326–341. Springer, 2002.

[Mos04] Peter D. Mosses, editor. CASL Reference Manual – The Complete
Documentation of the Common Algebraic Specification Language,
volume 2960 of LNCS. Springer, 2004.

[MS98] Erica Melis and Axel Schairer. Similarities and reuse of proofs
in formal software verification. In Barry Smyth and Pádraig
Cunningham, editors, Advances in Case-Based Reasoning, Pro-
ceedinges of the Fourth European Workshop on Case Based Reason-
ing (EWCBR 98), volume 1488 of LNAI, pages 76–87. Springer,
1998.

[MS05] Heiko Mantel and Axel Schairer. Exploiting generic aspects
of security models in formal developments. In Dieter Hutter
and Werner Stephan, editors, Essays in Honor of Jörg H. Siek-
mann on the Occasion of his 60th Birthday, volume 2605 of LNAI.
Springer, 2005.

[MSK+01] Heiko Mantel, Axel Schairer, Matthias Kabatnik, Michael
Kreutzer, and Alf Zugenmaier. Using information flow con-
trol to evaluate access protection of location information in
mobile communication networks. Technical Report 159, In-
stitut für Informatik, Universität Freiburg, August 2001.

[MT04] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–139, 2004.

[MW97] E. Melis and J. Whittle. External analogy in inductive theorem
proving. In KI-97: Advances in Artificial Intelligence, pages 111–
122. Springer, 1997.

[Opd92] Willian F. Opdyke. Refacturing Object-Oriented Frameworks.
PhD thesis, University of Illinois, 1992.

220

REFERENCES

[Par90] Helmut A. Partsch. Specification and Transformation of Pro-
grams. A Formal Approach to Software Development. Springer,
1990.

[Pau00] Larry Paulson. Isabelle User Mailing List, 26
October, 19 December 2000. Available from
http://www.cl.cam.ac.uk/users/lcp/archive.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syn-
tax. In Proceedings of the SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation, pages 199–208.
ACM, 1988.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scien-
tists. MIT Press, Cambridge, Massachusetts, 1991.

[PS01] Dusko Pavlovic and Douglas R. Smith. Composition and re-
finement of behavioral specifications. In Proceedings of the
16th International Conference on Automated Software Engineering
(ASE 2001) [IEE01], pages 157–165.

[PS02] Dusko Pavlovic and Douglas R. Smith. Guarded transi-
tions in evolving specifications. In Kirchner and Ringeissen
[KR02], pages 411–425.

[RJ01] Bala Ramesh and Matthias Jarke. Towards reference models
for requirements traceability. IEEE Transactions on Software
Engineering, 27(1), 2001.

[Roy70] W. W. Royce. Managing the development of large-scale soft-
ware: Concepts and techniques. In Proceedings, Wescon, Au-
gust 1970. Reprinted as [Roy87].

[Roy87] W. W. Royce. Managing the development of large-scale soft-
ware: Concepts and techniques. In Proceedings of the 9th Inter-
national Conference on Software Engineering, Monterey, Califor-
nia, USA, 1987. ACM Press.

[RS93] Wolfgang Reif and Kurt Stenzel. Reuse of proofs in software
verification. In R. Shyamasundar, editor, Foundation of Soft-
ware Technology and Theoretical Computer Science, volume 761
of LNCS, Berlin, 1993. Springer.

221

http://www.cl.cam.ac.uk/users/lcp/archive

REFERENCES

[RSB00] Georg Rock, Werner Stephan, and Michael Brodski. Mod-
eling, specification and verification of an emergency closing
system. In The 13th International FLAIRS Conference, Special
Track on Verification, Validation and System Certification, Or-
lando, Florida, 2000.

[RSW97] Georg Rock, Werner Stephan, and Andreas Wolpers. Tool
support for the compositional development distribued sys-
tems. In Adam Wolisz and Axel Rennoch, editors,
Formale Beschreibungstechniken für verteilte Systeme, GI/ITG-
Fachgespräch, volume 315 of GMD-Studien, pages 89–98,
Berlin, 1997. GMD-Forschungszentrum Informationstechnik
GmbH.

[RSW+99] Georg Rock, Werner Stephan, Andreas Wolpers, Michael
Balser, Wolfgang Reif, and Stefan Scheer. Structured for-
mal development in VSE II: The Robertino case study. In
Francesca Saglietti and Wolfgang Goerigk, editors, Sicherheit
und Zuverlässigkeit software-basierter Systeme, Bericht ISTec-A-
367, pages 138–152, 1999.

[Rus01] J. Rushby. Security requirements specifications: How and
what? In Symposium on Requirements Engineering for Infor-
mation Security (SREIS), 2001.

[SAH01] Axel Schairer, Serge Autexier, and Dieter Hutter. A pragmatic
approach to reuse in tactical theorem proving. In Maria Paola
Bonacina and Bernhard Gramlich, editors, Proceedings of the
4th International Workshop on Strategies in Automated Deduction
(STRATEGIES 2001), pages 75–86, 2001.

[SBRS04] Jan Scheffczyk, Uwe M. Borghoff, Peter Rödig, and Lothar
Schmitz. Managing inconsistent repositories via prioritized
repairs. In E. V. Munson and J.-Y. Vion-Dury, editors, Proceed-
ings of the ACM Symposium on Document Engineering, pages
137–146, 2004.

[Sch98] Axel Schairer. A technique for reusing proofs in software ver-
ification. Diplomarbeit, FB 14 (Informatik) der Universität
des Saarlandes und Institut A für Mechanik der Universität
Stuttgart, Saarbrücken/Stuttgart, March 1998.

222

REFERENCES

[Sch02] Axel Schairer. Proof transformations for reusing proofs after
changing subformulae of verification conditions. In Hutter
et al. [HBLL02], pages 31–41.

[Sch03] Ina Schaefer. Information flow control for multiagent systems
– a case study on comparison shopping. Diplomarbeit, Uni-
versität Rostock, Fachbereich Informatik, August 2003. Also
available as [Sch04].

[Sch04] Ina Schaefer. Information flow control for multiagent systems
– a case study on comparison shopping. Technical Report
RR-04-01, Deutsches Forschungszentrum für Künstliche In-
telligenz (DFKI) GmbH, Saarbrücken, January 2004.

[SH02] Axel Schairer and Dieter Hutter. Proof transformations for
evolutionary formal software development. In Kirchner and
Ringeissen [KR02], pages 441–456.

[Som95] Ian Sommerville. Software Engineering. Addison-Wesley, fifth
edition, 1995.

[SR03] Matt Stephens and Doug Rosenberg. Extreme Programming
Refactored: The Case Against XP. Apress, 2003.

[SRS+00] Gerhard Schellhorn, Wolfgang Reif, Axel Schairer, Paul
Karger, Vernon Austel, and David Toll. Verification of a
formal security model for multiapplicative smart cards. In
Frédéric Cuppens, Yves Deswarte, Dieter Gollmann, and
Michael Waidner, editors, Proceedings of the 6th European Sym-
posium on Research in Computer Security (ESORICS 2000), vol-
ume 1895 of LNCS, pages 17–36. Springer, 2000.

[SRS+02] Gerhard Schellhorn, Wolfgang Reif, Axel Schairer, Paul
Karger, Vernon Austel, and David Toll. Verified formal secu-
rity models for multiapplicative smart cards. Journal of Com-
puter Security, 10(4):339–367, 2002.

[vK01] Antje von Knethen. A trace model for system requirements
changes on embedded systems. In Proceedings of the 4th In-
ternational Workshop on Principles of Software Evolution, pages
17–26, 2001.

223

REFERENCES

[vK02] Antje von Knethen. Automatic change support based on a
trace model. In Proceedings of the Traceability Workshop, Edin-
burgh, 2002.

[vKP02] Antje von Knethen and Barbara Paech. A survey on tracing
approaches in practice and research. IESE-Report 095.01/E,
Fraunhofer IESE, January 2002.

[Voe01] Jeroen Voeten. On the fundamental limitations of transforma-
tional design. ACM Transactions on Design and Automation of
Electronic Systems, 6(4):533–552, October 2001.

[WBB02] John Whittle, Alan Bundy, and Richard Boulton. Proofs-as-
programs as a framework for the dsign of an analogy-based
ml editor. Formal Aspects of Computing, 13(3–5):403–421, 2002.

[WBBL99] J. Whittle, A. Bundy, R. Boulton, and H. Lowe. An ML editor
based on proofs-as-programs. In Proc. Int. Conf. Automated
Software Engineering (ASE), 1999.

[WC00] Jon Whittle and Andrew Cumming. Evaluating environ-
ments for functional programming. International Journal of
Human Computer Studies, 52(5):847–878, 2000.

[Wil05] Gregory V. Wilson. Extensible programming for the 21st cen-
tury. ACM Queue, 2(9), January 2005.

224

Index

2F, 233
|=Σ, 40
Σ, 40
Θ, 52
|A|, 231
F × G, 234
◦, 231
#A(n), 48

n1
σ

=⇒ n2, 41
Φn

D, 43

n
σ

=⇒⇒ n′, 45
idA, 231
σn, 41
n1

σ
−→ n2, 41

Φn, 41
Σn, 41
n

σ
−→→ n′, 45

C ↓N,A, 49
σ , 40
ϑ, 88
ηΣ, 52

concrete, 113

axioms
global, 43

A, 41
abstract datatype, 14, 24
adequateness, 33
algebra, 102, 238
algebraic signature morphism, 102
algebraic specification, 24
antecedent, 111
arrows, 231

axiomatic specification, 14

basic development graph operations,
96

basic specifications, 49

C, 41
calculus rules, 115
category, 231
completed development, 55
completeness, 33, 63
composition operator, 231
concl, 52

concrete, 113
conclusion, 45
concrete institution, 104
consequence morphism, 41
consequence relations, 41
consistency, 19
context, 113
context formula, 113
coupled transformations, 60
covered proof obligations, 54

D, 41
de Bruijn-indices, 102
decomposition rule, see development

graph calculus
definitorial global path, 45
definitorial links, 41
definitorial path, 45
depth

of link, 48
of node, 48, 77, 83, 90

225

INDEX

dev, 55
development

state of, 55
well-formed, 55

development graph, 41
development graph calculus, 46, 68–

71
development graph transformation,

58, 60
Traxioms, 72
Trlinks, 66
Trnodes, 65
Trocc, 76
Trsignatures, 80
Trtranslate, 88

development graph translation, 88,
94

development graphs
for first order logic, 105

development transformation, 60
dg(S), 50

EC, 131
equality, 237
extended category of signatures, 88
extended goal functor, 92
extended proof functor, 92
extended proof representation, 92, 94
extended sentence functor, 88, 94

fault assumptions, 22
first order logic, 101, 237
focus formula, 113
FolEqGen, 104, 237
formal development, 55
formulae, 101, 237
function, 237
functor, 231
functor lifted to product, 234
functor lifted to sets, 233

generatedness constraint, 102, 239

global changes, 76
global path, 45
Goal, 52

concrete, 113
Σ-goals, 52

concrete, 113
graph isomorphism, 68

h, 68
h, 70
higher-order abstract syntax, 102

I , 40, 104
identity arrow, 231
implied link, 44
induction formula, 116
information flow properties, 20
institution, 39, 40

justification, 112

l, 148
links, 42
local axioms, 42
local signature symbols, 97
logic, 39
logical consequence, 40

management of change, 10
Mod, 40
Σ-models, 40
model-theoretic semantics, 102
models, 7
morphism, 231
moving axioms, 72

N, 41
natural deduction, 52
natural transformation, 232
nodes, 42
non-dependency, 23
normal form, 49

226

INDEX

objects, 231
Obl, 53
obligation links, 49
obligation transformation, 58, 60
obl(D), 51

P, 55
path, 45
postulated links, 41
predicate, 237
predicates, 24
premiss, 45
Prf, 52

concrete, 113
proof obligations, 51

of specification, 50
proof representation, 52

concrete, 113
proof rule, 113
proof transformation, 58
proof tree, 112
Σ-proofs, 52

concrete, 113

q, 75
q∗n, 76

r, 148
Σ-reduct, 40
reduct theorem, 239
respecting morphims, 69

S, 55
Spec, 50
satisfaction condition, 40, 240
satisfaction relation, 40
satisfied development graph, 44, 50
satisfied specification, 50
satisfies clause, 109
Sen, 40
sentence replacement, 75
sentence translation, 88

Σ-sentences, 40
sequent, 111
sequent calculus, 52, 111, 240
Sig, 40
signature, 40

algebraic, 237
signature extension, 79
signature morphism, 40

algebraic, 40, 238
signature restriction, 79
signature symbols, 97, 237
signature translation, 88
simple generatedness constraint, 102
sort, 237
specification in the large, 49
specification in the small, 49
specification language, 50
specification transformation, 58
SSL, 106
subsumption rule, see development

graph calculus
succedent, 111
surface syntax

formulae, 105
specifications, 106

terms, 101, 237
theory, 42
transformation, 58
transformation instance, 58
transformation rule, 58
translation, 88
truth value, 238
typed formulae, 237
typed terms, 237

uses clause, 108

variable, 237
variable assignment, 238
variable context, 237
verified development, 55

227

INDEX

verified development graph, 51
verified specification, 50

well-formedness conditions, 49, 110

XGoal, 92
XObl, 92
XPrf, 92
XSen, 88
XSig, 88

228

Part V

Appendix

229

Appendix A

Category, Functor, Natural
Transformation

For ease of reference, we provide short definitions of category, functor,
and natural transformation (cf. [Pie91], Definitions 1.1.1, 2.1.1, and 2.3.1,
or [BW96], Paragraphs 2.1.3, 3.1.1, and 4.2.10) in the notation that we use
in the main part of the thesis.

Definition A.1 (Category) A category A consists of a collection of objects
|A|, a collection of arrows (or morphisms) between objects, a composition
operator ◦ on arrows, and an identity arrow idA : A → A for each object A,
such that the following conditions all hold:

• If f : A → B and g : B → C are arrows from A to B and from B to C,
respectively, then g ◦ f : A → C is an arrow from A to C.

• If additionally h : C → D is an arrow then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• If f : A → B is an arrow, then idB ◦ f = f and f ◦ idA = f .

Definition A.2 (Functor) Let C and D be categories. A functor F : C → D is
a map taking each C-object A to a D-object F(A) and each C-arrow f : A → B
to a D-arrow F(f) : F(A) → F(B), such that for all C-objects A and composable
C-arrows f and g,

• F(idA) = idF(A) and

• F(g ◦ f) = F(g) ◦ F(f)

are satisfied.

231

Appendix A. Category, Functor, Natural Transformation

Definition A.3 (Natural transformation) Let C and D be categories and let
F : C → D and G : C → D be functors. A natural transformation η from F to
G is a function that assigns to every C-object A a D-arrow ηA : F(A) → G(A)
such that for any C-arrow f : A → B the diagram

F(A)
ηA- G(A)

F(B)

F(f)

?

ηB

- G(B)

G(f)

?

commutes in D, i.e. that G(f) ◦ ηA = ηB ◦ F(f).

232

Appendix B

Functors Lifted to Sets and
Tuples

A functor F : A → Set assigns a set to each a ∈ |A|. For example, Sen(Σ)
is the set of all sentences over the signature Σ, so ϕ ∈ Sen(Σ) expresses
that ϕ is a Σ-sentence. We are interested in the associated functor that
maps each signature Σ to the powerset of the set of all sentences over Σ,
written 2Sen, so Γ ∈ 2Sen(Σ) expresses that Γ is a set of Σ-sentences. The
benefit of formulating this as a functor is that we can naturally express
the canonical relationship between translating sentences and between uni-
formly translating sets of sentences pointwise, e.g. in Definition 3.19 on
page 52.

Definition B.1 (Functor lifted to sets) Given a functor F : A → Set, the
functor F lifted to sets, written as 2F : A → Set, is defined by

2F(a) = 2F(a) = {A | A ⊆ F(a)} for a ∈ |A|

2F(f)(A) = F(f)(A) = {F(f)(a) | a ∈ A} for A-arrow f

where we write 2A for the powerset of A.

Theorem B.2 2F is indeed a functor from A to Set.

Proof of B.2 We have to show the following.

1. a ∈ |A| implies 2F(a) ∈ |Set| trivially.

2. f is an A-arrow implies 2F(f) : |Set| → |Set| trivially.

233

Appendix B. Functors Lifted to Sets and Tuples

3. 2F(ida) = id2F(a): The left hand side is defined for A ⊆ F(a), and we
have

2F(ida)(A) =
{

F(ida)(a′) | a′ ∈ A
}

=
{

idF(a)(a′) | a′ ∈ A
}

F is functor

=
{

a′ | a′ ∈ A
}

idF(a) is identity over F(a)

= A ,

so 2F(ida) is the identity function on 2F(a) as required.

4. 2F(g ◦ f) = 2F(g) ◦ 2F(f): The left hand side is defined for A ⊆ F(a),
and we have

2F(g ◦ f)(A) = {F(g ◦ f)(a) | a ∈ A}

= {F(g)(F(f)(a)) | a ∈ A}

= {F(g)(b) | b ∈ {F(f)(a) | a ∈ A}}

= 2F(g)(2F(f)(A))

=
(

2F(g) ◦ 2F(f)
)

(A)

as required.

�

Similarly, we define × for functors.

Definition B.3 (Functor lifted to cartesian product) Given two functors F :
A → Set and G : A → Set, the functor F × G : A → Set is defined by

(F × G)(a) = F(a) × G(a) for a ∈ |A|

(F × G)(f)(〈a1 , b2〉) = 〈F(f)(b1), G(f)(b2)〉 for A-arrow f .

Theorem B.4 F × G is indeed a functor from A to Set.

Proof of B.4 Again, we have to show the following:

1. a ∈ |A| implies (F × G)(a) ∈ |Set| trivially.

2. f is an A-arrow implies (F × G)(f) : |Set| → |Set| trivially.

234

3. (F × G)(ida) = id(F×G)(a): The left hand side is defined for 〈b1, b2〉 ∈
(F × G)(a) = F(a) × G(a), i.e. b1 ∈ F(a) and b2 ∈ G(a). Then

(F × G)(ida)(〈b1, b2〉) = 〈F(ida)(b1), G(ida)(b2)〉

=
〈

idF(a)(b1), idG(a)(b2)
〉

= 〈b1, b2〉

= idF(a)×G(a)(〈b1, b2〉)

= id(F×G)(a)(〈b1, b2〉)

as required.

4. (F × G)(g ◦ f) = (F × G)(g) ◦ (F × G)(f): The left hand side is de-
fined for 〈b1, b2〉 ∈ (F × G)(a) = F(a) × G(a), i.e. b1 ∈ F(a) and
b2 ∈ G(a). Then

(F × G)(g ◦ f)(〈b1, b2〉) = 〈F(g ◦ f)(b1), G(g ◦ f)(b2)〉

= 〈(F(g) ◦ F(f))(b1), (G(g) ◦ G(f))(b2)〉

= 〈F(g)(F(f)(b1)), G(g)(G(f)(b2))〉

= (F × G)(g)(〈F(f)(b1), G(f)(b2)〉)

= (F × G)(g)((F × G)(f)(〈b1, b2〉))

= ((F × G)(g) ◦ (F × G)(f))(〈b1, b2〉))

as required.

�

235

Appendix C

Details of the Definition of
FolEqGen

For reference purposes, we provide further details for the definition of the
institution in Chapter 5. The intention is that the body of the thesis is
accessible without referring to these details.

Definition C.1 (First order logic with equality) Let S , F , P , V be count-
ably infinite, pairwise disjoint sets of sort, function, predicate, and variable names.
An algebraic first order signature (or signature for short) Σ is determined by
finite sets ΣS ⊂ S , ΣF ⊂ F , ΣP ⊂ P of sort, function, and predicate symbols,
and by a mapping from function symbols in ΣF to a finite, non-empty sequence
of sort symbols from ΣS, and from predicate symbols in ΣP to finite, possibly
empty sequences of sort symbols from ΣS. We write s ∈ Σ for ‘s ∈ ΣS’, (f :
s1 × · · · sn → s) ∈ Σ for ‘ f ∈ ΣF and Σ maps f to the sequence 〈s1, . . . sn, s〉’,
and (p : s1 × · · · sn) ∈ Σ for ‘p ∈ ΣP and Σ maps f to the sequence 〈s1, . . . sn〉’.

A variable context C is a partial, finite mapping from V to ΣS. C[x : s] is the
variable context that is like C except x is mapped to s. The set of terms of sort s
wrt. Σ and C for each s ∈ Σ is the smallest set such that the following conditions
are satisfied.

• C(x) = s implies x is a term of sort s.

• (f : s1 × · · · sn → s) ∈ Σ and ti is a term of sort si (for 1 ≤ i ≤ n) implies
f (t1 , . . . , tn) is a term of sort s.

The set of formulae wrt. Σ and C is defined to be the smallest set satisfying the
following conditions.

• ⊤ and ⊥ are formulae.

237

Appendix C. Details of the Definition of FolEqGen

• If t1 and t2 are terms of sort s, then t1 = t2 is a formula.

• If ϕ and ψ are formulae, so is ¬ϕ and ϕ ∧ψ, and similarly for all other
connectives.

• If ϕ is a formula wrt. C[x : s], then ∀x : s. ϕ and ∃x : s. ϕ are formulae
wrt. C.

Let M be a Σ-algebra. A variable assignment X for M and a variable context C
is a mapping from variable symbols in C into the respective carrier, i.e. X is such
that C(x) = s implies X(x) ∈ M(s). X[x/v] is the variable assignment that is
like X except that it assigns v to x. The valuation of a Σ-term t wrt. a Σ-algebra
M and a variable assignment X for M, written as MX(t), is defined by

MX(x) = X(x)

MX(f (t1 , . . . , tn)) = M(f)(MX(t1), . . . , MX(tn)) .

The truth value of a formulaϕ wrt. a Σ-algebra M and a variable assignment
X, written as MX(ϕ) is defined by

MX(⊤) is true

MX(⊥) is false

MX(t1 = t2) is true iff MX(t1) = MX(t2)

MX(¬ϕ) is true iff MX(ϕ) is false

MX(ϕ ∧ψ) is true iff MX(ϕ) is true and MX(ψ) is true

(and similarly for the other connectives)

MX(∀x : s. ϕ) is true iff MX[x/v](ϕ) is true for all v ∈ M(s)

MX(∃x : s. ϕ) is true iff MX[x/v](ϕ) is true for some v ∈ M(s) .

For each closed Σ-formulaϕ and Σ-algebra M we write M(ϕ) for the truth value
ofϕ in M. For each closed Σ-formulaϕ and Σ-algebra M, we say thatϕ holds in
M iff M(ϕ) is true, or that M satisfiesϕ, and write M |=Σ ϕ.

Definition C.2 (Signature morphism) Let Σ and Σ′ be two signatures. An
algebraic signature morphism (or signature morphism for short) σ : Σ → Σ′

from Σ to Σ′ is a mapping from sort (function, predicate) symbols in Σ to sort
(function, predicate, respectively) symbols in Σ′ such that function and predicate
profiles are preserved, i.e. if σ f = f ′ and (f : s1 × · · · × sn → s) ∈ Σ then
f ′ : s′1 × · · · × s′m → s′) ∈ Σ′, n = m, σsi = s′i for 1 ≤ i ≤ n, and σs = s′,
and similarly for predicates. A signature morphism σ : Σ → Σ′ maps a variable
context C for Σ to the variable context σC for Σ′ such that σ(C(x)) = σ(C(x))

238

for every x in C. We also write σ for the homomorphic extension of σ to terms,
i.e.

σx = x

σ(f (t1 , . . . , tn)) = (σ f)(σt1 , . . . ,σtn)

and formulae, i.e.

σ⊤ = ⊤

σ⊥ = ⊥

σ(t1 = t2) = (σt1) = (σt2)

σ(¬ϕ) = ¬(σϕ)

σ(ϕ ◦ψ) = (σϕ) ◦ (σψ)

σ(∀x : s. ϕ) = ∀x : (σs). (σϕ)

σ(∃x : s. ϕ) = ∀x : (σs). (σϕ) .

Note that variables are unchanged.

The following proposition is called reduct theorem, e.g. [LEW96, Theorem
4.12].

Proposition C.3 (Reduct theorem) For all signature morphisms σ : Σ →
Σ′, all Σ′-algebras M′, and all closed Σ-formulaeϕ, M′ satisfiesσϕ iff M′|σ
satisfies ϕ (where M′|σ is the σ-reduct of M′, i.e. M′|σ(s) = M′(σs) and
similarly for functions and predicates).

Generatedness constraints consist of the constructor functions, the sort
that is generated, and a signature morphisms. This allows a simple defini-
tion of generatedness that is invariant under translation of constraints and
reducts of models (cf. [BCH+04, pp. 143]).

Definition C.4 (Generatedness constraint) A generatedness constraint c
for signature Σ′ from signature Σ is a tuple c = (F, s,σ) such that σ : Σ → Σ′

is a signature morphism, F is a non-empty set of function symbols from Σ with
the same codomain s (i.e. for each f ∈ F, (f : . . . → s) ∈ Σ). A Σ′-algebra M′

satisfies the generatedness constraint (F, s,σ) iff for every value v ∈ M′(σs)
there is a term t wrt. Σ that consists of functions from F and variables of types
different from s, and a variable assignment X′ for Σ′ such that M′

X′(σt) = v. We
write M |=Σ c iff M satisfies the constraint c.

A generatedness constraint (F, s,σ) for Σ′ from Σ is mapped along a signature
morphismσ ′ : Σ′ → Σ′′ by σ ′(F, s,σ) = (F, s,σ ′ ◦σ).

239

Appendix C. Details of the Definition of FolEqGen

Proposition C.5 If c is a generatedness constraint for Σ′ from Σ and σ ′ :
Σ′ → Σ′′ is an algebraic signature morphism, then σ ′c is a generatedness
constraint for Σ′′ from Σ.

The equivalent of the reduct theorem for generatedness constraints is as
follows.

Proposition C.6 For all signature morphisms σ : Σ → Σ′, Σ′-algebras M′,
and generatedness constraints c for Σ′, M′ satisfies σc iff M′|σ satisfies c.

The proof is fairly simple. The relationship between M′ and σ(σ0t) on the
one side and M′|σ and σ0t (where σ0 is the third component of the con-
straint and t is the term for a given carrier) on the other is given by the
definition of the reduct operation together with the fact that variable as-
signments for an algebra are also variable assignments for the reduct of the
algebra (this amounts to a variant of the substitution theorem, cf. [LEW96,
Theorem 2.41]; note that in our definition σx = x for variables) and vice
versa, and that the valuation of a term is invariant under translation and
reducts. Additionally, neither the set of carriers for which we require wit-
ness terms nor the signature from which the witness terms are drawn
changes.

Theorem C.7 satisfaction condition Satisfaction of formulae and generat-
edness constraints is compatible with reducts of algebras and translation
of formulae and constraints along signature morphisms. I.e., let σ : Σ →
Σ′ be a signature morphism and M′ a Σ′-algebra. Then

M′ |=Σ′ σϕ iff M|σ |=Σ ϕ for each closed Σ-formulaϕ and

M′ |=Σ′ σc iff M|σ |=Σ c for each generatedness constraint c for Σ.

A correct, but obviously incomplete, calculus for this logic can be given
by the usual sequent calculus rules for first order logic, rules for equality,
and an induction rule. This means that positive generatedness constraints
can only contribute to a proof in the axiom rule. Thus, a constraint can-
not be proved from another one. Sometimes, more flexibility should be
provided by giving rules to derive one constraint from others. Also, the
concrete form of the induction rule is relatively inflexible: in practice it
is usually more convenient, if induction about eigentvariables is possible,
i.e. the choice about whether to carry out an induction or not can be de-
layed.

240

Appendix D

Details of the Case Study

We have looked at examples in a proof-of-concept implementation and
have presented some of them in Chapter 8. Here we provide some further
details.

D.1 Development Trace

The implementation is controlled through a command line interface. This
makes it easy to store transformation sequences as scripts but makes con-
trolling the system difficult for users. For practical applications, a better
interface is needed. A web-based read-only interface has been provided to
inspect the states of the development. Each transformation makes a copy
of the current state of the development and stores it away so that it is pos-
sible to inspect the whole history. Figure D.1 shows part of the history of
the example that we have presented in Chapter 8. The text for each num-
bered item is the input that was typed at the command line, except for
traditional work on proofs alone, which is just captured by the overal re-
sult, cf. the item “Work on proof . . . ”. For each item there is an overview
containing the development graph, cf. Figure D.2, a detailed listing of the
contents of nodes, cf. Figure D.3, in turn consisting of the inherited and
locally defined signature symbols and axioms, and finally the proofs (D.4).

D.2 Developments

An excerpt from the proof obligation that we concentrate on in Chapter 8
initially looks as in Figure D.5 (the formula below the line is the succedent,

241

Appendix D. Details of the Case Study

Figure D.1: History of example

242

D.2. Developments

Figure D.2: Development graph

243

Appendix D. Details of the Case Study

Figure D.3: Contents of nodes

244

D.2. Developments

Figure D.4: Proof tree

245

Appendix D. Details of the Case Study

Figure D.5: Proof obligation

246

D.3. Transformations

and the others above are some assumptions available in the antecedent).
For reference purposes the whole original specification text is given below
on page .

D.3 Transformations

Part of the first marked open goal from Section 8.3 that is missing some
axioms is depicted in Figure D.6. Going two steps into the future in an-
other window yields Figure D.7, where the front window contains the
two added axioms that are missing from the older goal in the upper-left
window.

Finally, Figure D.8 presents the goal that leads to the open goal when
strengthening the precondition of the overall conjecture in Section 8.7(c).
While the older goal proves (< i size) in one step, after the transfor-
mation the formula from the induction hypothesis is strengthened, and
the proof includes some additional steps and an additional open goal that
postulates (= tt (is-up (aref (procs s-3) i))).

D.4 Original Specification Text
;;; --

((theory nat)

(sort nat)

(op 0 () nat)

(op succ (nat) nat)

(gen 0 succ)

(prd <= (nat nat))

(prd < (nat nat)))

;;; --

((theory message)

(sort message))

;;; --

((theory message-option uses (message))

(sort option)

(op none () option)

(op some (message) option)

(axiom (all (m1 message) (m2 message)

(=> (= (some m1) (some m2))

(= m1 m2))))

247

Appendix D. Details of the Case Study

Figure D.6: Goal with missing axioms

248

D.4. Original Specification Text

Figure D.7: Goal with added axioms

249

Appendix D. Details of the Case Study

Figure D.8: Goal with strengthened preconditions

250

D.4. Original Specification Text

(prd none-p (option))

(axiom (none-p none))

(axiom (all (m message) (not (none-p (some m)))))

(gen none some)

(axiom (all (m message)

(not (= none (some m)))))

(op get (option) message)

(axiom (all (m message)

(= (get (some m)) m))))

;;; --

((theory message-bag-basic uses (message)

satisfies (message-bag))

(sort bag)

(op empty () bag)

(op adjoin (message bag) bag)

(axiom (all (m1 message) (b1 bag) (m2 message) (b2 bag)

(=> (= (adjoin m1 b1) (adjoin m2 b2))

(and (= m1 m2) (= b1 b2)))))

(gen empty adjoin)

(prd member (message bag))

(axiom (all (m message) (not (member m empty))))

(axiom (all (m1 message) (m2 message) (s bag)

(<=> (member m1 (adjoin m2 s))

(or (= m1 m2) (member m1 s)))))

(prd subseteq (bag bag))

(axiom (all (s1 bag) (s2 bag)

(<=> (subseteq s1 s2)

(all (m message)

(=> (member m s1)

(member m s2))))))

(prd nodups (bag))

(axiom (nodups empty))

(axiom (all (m message) (s bag)

(<=> (nodups (adjoin m s))

(and (not (member m s))

(nodups s))))))

;;; --

((theory message-bag uses (message-bag-basic))

(axiom (all (m message)

(all (s bag)

(not (= empty (adjoin m s))))))

(axiom (all (s-1 bag) (s-2 bag) (m message)

(=> (subseteq s-1 s-2)

(subseteq s-1 (adjoin m s-2)))))

(axiom (all (s bag) (subseteq empty s))))

251

Appendix D. Details of the Case Study

((theory command uses (nat message))

(sort command)

(op b-1 (nat message) command)

(op b-1p (nat) command)

(op b-2 (nat nat message) command)

(op b-3 (nat) command)

(op b-4 (nat) command)

(op b-5 (nat) command)

(gen b-1 b-1p b-2 b-3 b-4 b-5))

;;; --

((theory trace uses (command))

(sort trace)

(op nil () trace)

(op snoc (trace command) trace)

(axiom (all (tr1 trace) (c1 command)

(tr2 trace) (c2 command)

(=> (= (snoc tr1 c1)

(snoc tr2 c2))

(and (= tr1 tr2) (= c1 c2)))))

(gen nil snoc)

(axiom (all (tr trace) (c command)

(not (= (snoc tr c) nil))))

(op last (trace) command)

(axiom (all (tr trace) (c command)

(= (last (snoc tr c)) c)))

(op butlast (trace) trace)

(axiom (all (tr trace) (c command)

(= (butlast (snoc tr c)) tr)))

(op append (trace trace) trace)

(axiom (all (tr trace)

(= (append tr nil) tr)))

(axiom (all (tr-1 trace) (c command) (tr-2 trace)

(= (append tr-1 (snoc tr-2 c))

(snoc (append tr-1 tr-2) c)))))

;;; --

((theory process uses (message-option message-bag))

(sort process)

(op mk-process (option option option bag) process)

(gen mk-process)

(axiom (all (bb1 option) (ib1 option) (db1 option)

(dm1 bag)

(bb2 option) (ib2 option) (db2 option)

(dm2 bag)

(<=> (= (mk-process bb1 ib1 db1 dm1)

252

D.4. Original Specification Text

(mk-process bb2 ib2 db2 dm2))

(and (= bb1 bb2)

(= ib1 ib2)

(= db1 db2)

(= dm1 dm2)))))

(op bb (process) option)

(axiom (all (bb1 option) (ib1 option) (db1 option)

(dm1 bag)

(= bb1 (bb (mk-process bb1 ib1 db1 dm1)))))

(op ib (process) option)

(axiom (all (bb1 option) (ib1 option) (db1 option)

(dm1 bag)

(= ib1 (ib (mk-process bb1 ib1 db1 dm1)))))

(op db (process) option)

(axiom (all (bb1 option) (ib1 option) (db1 option)

(dm1 bag)

(= db1 (db (mk-process bb1 ib1 db1 dm1)))))

(op delivered (process) bag)

(axiom (all (bb1 option) (ib1 option) (db1 option)

(dm1 bag)

(= dm1

(delivered (mk-process bb1 ib1 db1 dm1))))))

;;; --

((theory process-table-basic

uses (process nat)

satisfies (process-table))

(sort table)

(op empty-table () table)

(op update (table nat process) table)

(op size () nat)

(op aref (table nat) process)

(gen empty-table update)

(axiom (all (i nat) (j nat) (t table) (p process)

(=> (= i j) (= (aref (update t i p) j) p))))

(axiom (all (i nat) (j nat) (t table) (p process)

(=> (not (= i j))

(= (aref (update t i p) j)

(aref t j))))))

;;; --

((theory process-table uses (process-table-basic))

(axiom (all (t table) (n nat) (m nat) (a option)

(b option) (c option)

(= (delivered

(aref

(update

253

Appendix D. Details of the Case Study

t

m

(mk-process

a b c (delivered (aref t m))))

n))

(delivered (aref t n))))))

;;; --

((theory channel-matrix

uses (nat message-option))

(sort channel-matrix)

(prd message-available (channel-matrix nat nat message))

(op empty-matrix () channel-matrix)

(op add (channel-matrix nat nat message) channel-matrix)

(op remove (channel-matrix nat nat message) channel-matrix)

(axiom (all (i nat) (j nat) (m message)

(not (message-available empty-matrix i j m))))

(axiom (all (c channel-matrix) (i nat) (j nat) (m message)

(k nat) (l nat) (n message)

(<=> (message-available (add c i j m)

k l n)

(or (and (= i k) (= j l) (= m n))

(message-available c k l n)))))

(axiom (all (c channel-matrix) (i nat) (j nat) (m message)

(k nat) (l nat) (n message)

(<=> (message-available (remove c i j m)

k l n)

(and (not (and (= i k) (= j l) (= m n)))

(message-available c k l n))))))

;;; --

((theory state uses (process-table channel-matrix))

(sort state)

(op mk-state (table bag channel-matrix) state)

(axiom (all (t1 table) (b1 bag) (m1 channel-matrix)

(t2 table) (b2 bag) (m2 channel-matrix)

(=> (= (mk-state t1 b1 m1)

(mk-state t2 b2 m2))

(and (= t1 t2)

(= b1 b2)

(= m1 m2)))))

(op procs (state) table)

(axiom (all (t table) (b bag) (m channel-matrix)

(= (procs (mk-state t b m)) t)))

(op broadcast (state) bag)

254

D.4. Original Specification Text

(axiom (all (t table) (b bag) (m channel-matrix)

(= (broadcast (mk-state t b m)) b)))

(op channels (state) channel-matrix)

(axiom (all (t table) (b bag) (m channel-matrix)

(= (channels (mk-state t b m)) m))))

;;; --

((theory pre-post uses (state command))

(prd pre (state command))

(prd post (state command state))

;; b-1

(axiom (all (s state) (i nat) (m message)

(<=> (pre s (b-1 i m))

(and (< i size)

(not (member m (broadcast s)))

(none-p (bb (aref (procs s) i)))))))

(axiom (all (s state) (i nat) (m message) (s1 state)

(<=> (post s (b-1 i m) s1)

(and

(= (procs s1)

(update

(procs s)

i

(mk-process

(some m)

(ib (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s)

i)))))

(= (broadcast s1)

(adjoin m (broadcast s)))))))

;; b-1p

(axiom (all (s state) (i nat)

(<=> (pre s (b-1p i))

(and (< i size)

(none-p (ib (aref (procs s) i)))

(not (none-p (bb (aref (procs s)

i))))))))

(axiom (all (s state) (i nat) (s1 state)

(<=> (post s (b-1p i) s1)

(= (procs s1)

(update

(procs s) i

255

Appendix D. Details of the Case Study

(mk-process (none)

(bb (aref (procs s) i))

(db (aref (procs s) i))

(delivered (aref (procs s)

i))))))))

;; b-2

(axiom (all (s state) (i nat) (j nat) (m message)

(<=> (pre s (b-2 i j m))

(and (< i size)

(< j size)

(message-available

(channels s) i j m)

(none-p (ib (aref (procs s) i)))))))

(axiom (all (s state) (i nat) (j nat) (m message)

(s1 state)

(<=> (post s (b-2 i j m) s1)

(and (= (channels s1)

(remove (channels s) i j m))

(= (procs s1)

(update

(procs s) i

(mk-process

(bb (aref (procs s) i))

(some m)

(db (aref (procs s) i))

(delivered (aref (procs s)

i)))))))))

;; b-3, b-4 b-5 not specified yet

)

;;; --

((theory transition uses (pre-post))

(prd trans (state command state))

(axiom (all (s state) (c command) (s1 state)

(<=> (trans s c s1)

(and (pre s c)

(post s c s1))))))

;;; --

((theory execution uses (transition trace))

(prd trans* (state trace state))

(axiom (all (s-1 state) (s-2 state)

256

D.4. Original Specification Text

(<=> (trans* s-1 nil s-2) (= s-1 s-2))))

(axiom (all (s-1 state) (tr trace) (c command) (s-2 state)

(<=> (trans* s-1 (snoc tr c) s-2)

(ex (s-3 state)

(and (trans* s-1 tr s-3)

(trans s-3 c s-2)))))))

;;; --

((theory secprop uses (state))

(prd safe (state))

(axiom (all (s state)

(<=> (safe s)

(all (i nat)

(and

(=> (< i size)

(subseteq

(delivered (aref (procs s) i))

(broadcast s)))

(=> (< i size)

(nodups

(delivered

(aref (procs s) i))))))))))

;;; --

((theory system uses (trace execution secprop)

satisfies (reliability))

(op initial-state () state)

(prd invariant (state))

(axiom (all (i nat)

(=> (< i size)

(= (aref (procs initial-state) i)

(mk-process none none none empty)))))

(axiom (= (broadcast initial-state) empty))

(axiom (= (channels initial-state) (empty-matrix))))

;;; --

((theory reliability uses (system secprop))

(axiom (all (tr trace) (s state)

(=> (trans* initial-state tr s) (safe s))))

(axiom (all (s1 state) (s2 state)

(=> (and (ex (tr trace)

(trans* initial-state tr s1))

(invariant s1)

(ex (c command) (trans s1 c s2)))

(invariant s2))))))

257

	Abstract
	Zusammenfassung
	Ausführliche Zusammenfassung
	Acknowledgements
	List of Figures
	I Introduction and Motivation
	Introduction
	Software Engineering
	Development Artifacts and Workflow
	Software Development Process

	Formal Methods
	Formal Artifacts
	Formal Methods and the Development Process

	Management of Change
	Development Graphs
	Proof Replay and Reuse

	Our Approach
	Structure of the Thesis

	Example Scenarios and Supporting Transformations
	Overview
	Example Scenarios
	Changes Resulting from Corrections
	Changes as Part of the Development Process

	Support by Transformations
	Extending and Restricting the Signature
	Changing Existing Signature Entries
	Adding and Removing Axioms
	Changing Formulae
	Changing Induction Schemes
	Completeness and Adequacy

	Summary

	II Transformation Framework
	Context and Overview over the Framework
	Overview
	Abstract Logic: Institutions
	Development Graphs
	Specification Language
	Proof Representation
	Formal Developments
	Integration with Existing Tools
	Transformations
	Summary

	Development Graph Transformations
	Overview
	Changing the Graph Structure
	Adding and Deleting Nodes
	Adding and Deleting Links

	Changing the Content of Nodes or Links
	Adding, Deleting, and Moving Axioms
	Changing Axioms
	Extending and Restricting Signatures
	Translating Development Graphs

	Generic Construction of Translations
	Relation to Basic DG-Operations
	Summary

	III A Reference Instantiation
	Formal Developments
	Overview
	Concrete Logic
	Concrete Specification Language
	Specification in the Small
	Specification in the Large
	Mapping to Development Graphs

	Concrete Proof Representation
	Summary

	Specification Transformations
	Overview
	Adding and Deleting Elements
	Theories
	Axioms
	Signature Items
	Uses and Satisfies Clauses

	Changing Elements
	Signature Item Names
	Function and Predicate Arities
	Generatedness Constraints
	Formula and Term Occurrences

	Summary

	Proof Transformations
	Overview
	General Pattern of Proof Transformations
	Adding and Deleting Assumptions
	Mapping Proofs
	Restricting the Signature
	Translating Proofs
	Changing Occurrences
	Replacing Occurrences
	Special Cases
	Induction Schemata

	Auxiliary Transformations
	Summary

	Mechanising Transformations
	Overview
	Original Specification
	Missing Axioms
	Missing Theory
	Missing Slot
	Missing Action
	Stronger Precondition
	Summary

	IV Related Work and Conclusions
	Related Work
	Management of Change
	Proof Reuse and Replay
	Correctness-Preserving Transformations
	Advanced Programming IDEs
	Requirements Traceability

	Conclusions and Outlook
	Conclusions
	Further Work

	References
	Index

	V Appendix
	Category, Functor, Natural Transformation
	Functors Lifted to Sets and Tuples
	Details of the Definition of FolEqGen
	Details of the Case Study
	Development Trace
	Developments
	Transformations
	Original Specification Text

