
Parallel Iterated Runge�Kutta Methods and

Applications

Thomas Rauber
�

Gudula R�unger

Computer Science Department
Universit�at des Saarlandes

Postfach ������
����� Saarbr�ucken� Germany

��	
���
��
����
FAX �	
���
��
�	�

frauber�ruengerg�cs�uni
sb�de

November �� �		�

Abstract

The iterated Runge�Kutta �IRK� method is an iteration scheme for the numerical solu�
tion of initial value problems �IVP� of ordinary di�erential equations �ODEs� that is based
on a predictor�corrector method with an Runge�Kutta �RK� method as corrector� Embed�
ded approximation formulae are used to control the stepsize� We present di�erent parallel
algorithms of the IRK method on distributed memory multiprocessors for the solution of
systems of ODEs� The parallel algorithms are given in an SPMD �single�program multiple�
data� programming style where data exchanges are described with appropriate communi�
cation primitives� A theoretical performance analysis and a runtime simulation allow to
value the presented algorithms� The implementation on the Intel iPSC���	 con
rms the
predicted runtimes� The speedup values strongly depend on the particular system of ODEs
to be solved� The parallel IRK method is applied to a typical discretization problem� the
discretized Brusselator equation� Application speci
c modi
cations of the general parallel
ODE solver are developed which result in a considerable reduction of the parallel execution
time�

� Introduction

Large systems of ordinary di�erential equations �ODEs� with initial value conditions arise� e�g�
when discretizing time dependent partial di�erential equations� The numerical solution of those
systems require a very large amount of computing power which may be covered by parallel
machines� Although the numerical solution of ODEs with initial value conditions is an inher�
ently sequential procedure �and� thus� di�cult to parallelize�� systems of ODEs provide a large
potential for parallel processing�

The general form of an initial value problem �IVP� of a system of �rst order ODEs of dimension
n is

dy�x�

dx
	 f�x� y�x��� y�x�� 	 y�� x� � x � xend� �
�

�supported by DFG� SFB ���� TP D�

� INTRODUCTION �

where y � IR � IRn and f � IR � IRn � RI n� For the numerical solution of system �
��
several parallel methods have been proposed in the literature
�� �� ��
�� ��
�
�� ����
But most of these methods only have a small potential of parallelism� The most promising
methods for a parallel execution are extrapolation methods and iterated Runge�Kutta �RK�
methods
��� Extrapolation methods have been proposed in
�� for a parallel execution�
��
and
�� consider the implementation of extrapolation methods on DMMs� Van der Houwen and
Sommeijer suggest IRK methods in
�� and
�� for a parallel execution on a shared memory
machines� They concentrate on mathematical characteristics �stability� convergence order� of
the methods and don�t give a runtime analysis or predict or measure speedup values�

For sequential implementations� implicit RK methods are seldom used as corrector in predictor�
corrector methods because they are much more expensive than linear multistep correctors� The
advantages of using RK methods for a parallel implementation are smaller error�constants and
a high degree of parallelism�

In this article� we consider a predictor�corrector method that uses an implicit Runge�Kutta �RK�
method as corrector� By iterating the corrector equation for a �xed number of times ��xed point
iteration�� an explicit Runge�Kutta method is obtained ��� Those methods are called iterated
Runge�Kutta methods �IRK methods�� The used implicit or explicit RK corrector does not
in�uence the stability properties of the resulting IRK method� The IRK method is implicit or
explicit because of its iteration behavior whatever corrector is used and we� therefore� concentrate
on nonsti� ODEs� We propose parallel versions for the IRK method with stepsize control� We
describe the parallel algorithms in a coarse�grain compute�communicate SPMD �single�program
multiple�data� scheme suitable for the execution on asynchronously working DMMs� Thus� the
breakdown of the workload into subtasks� explicit synchronization points and necessary data
exchanges are speci�ed� The data exchanges of the presented algorithms are expressed with
appropriate communication primitives which are available on all common topologies ���

The suggested SPMD programming model allows the prediction of runtimes and speedup values
before an actual implementation is performed� An algorithm needs only to be implemented� if
the expected speedup values are satisfactory compared with other algorithms� The timing model
has successfully been applied to design parallel algorithms and predict runtimes for extrapolation
methods
���
���

The developed parallel versions of the IRK�methods exploit a parallelization across the method
�time� which means that di�erent parts of one time step of the method are assigned to di�erent
processors� The presented algorithms mainly di�er in the ways of distributing the workload and
the data among the processors� Starting with an implementation where groups of processors
are responsible for the computation of subsystems� algorithms with delayed function evaluation
and cyclic data distribution are developed�

The theoretical performance analysis and a comparison of the presented algorithms are carried
out for the machine parameters of the Intel iPSC����� The analysis is used to decide for a
practical implementation of one of the proposed algorithms on the Intel iPSC����� Practical
tests with the implementation on the iPSC���� provide the numerical evidence of the theoretical
predictions�

The attainable speedup values strongly depend on the evaluation time of the right hand side
function f � Large speedup values can be reached� if the function evaluation requires a lot of
computation time� Such functions result e�g� from the solution of partial di�erential equations
by variational methods
��� But if the function evaluation only requires a few operations� the
communication time dominates the computation time and the speedup values are small� A
typical example for such a function f is the function that results from the discretization of the
Brusselator equation� a partial di�erential equation describing a chemical reaction ���

� ITERATED RUNGE�KUTTA METHODS �

For the improvement of the performance of the IRK method when applied to Brusselator like
functions� we consider several alternatives� These alternatives take advantage of the speci�c
access structure of the Brusselator function by using appropriate communication operations or
a data distribution specially chosen for this application� By this� the e�ciency of the method
can be increased by a factor of ����

The remaining part of the paper is organized as follows� Section � describes the iterated Runge�
Kutta method with stepsize control� Section � brie�y presents the parallel computation model
that we use for the runtime analysis� Section � investigates parallel algorithms and the resulting
runtimes for the iterated Runge�Kutta method� Section � contains the comparisons of the
algorithms which comprises the results of the practical implementation on the iPSC���� and
theoretical investigations� Section � describes the Brusselator equation and discusses application
speci�c implementations and numerical results�

� Iterated Runge�Kutta Methods

The iterated Runge�Kutta method is a predictor�corrector method with an s�stage implicit RK
corrector�
���
��� The chosen iteration strategy for the corrector phase results in an explicit
ODE solver�

��� Iterated Runge�Kutta �IRK� method with Fixed Number of Iterations

An s�stage� implicit� one�step RK�method has the form

y��� 	 y� � h
sX

l��

blv
l

where y� and y��� are n�dimensional iteration vectors and the n�dimensional vectors vl� l 	

� � � � � s� are implicitly de�ned by the following system of equations of dimension s � n�

vl 	 f�y� � h
sX

i��

aliv
i�� l 	
� � � � � s�

b 	 �b�� � � � � bs� is an s�dimensional vector and A 	 �ali� is an s � s matrix specifying the
particular RK method under consideration�

From this s�stage RK�method an explicit �iterative� RK�method is obtained by iterating the
equations for vl for a �xed number of times m�

�l�j� 	 f�y� � h
sX

i��

ali �
i
�j����� l 	
� � � � � s� j 	
� � � � � m�

and using the mth iterates ���m�� � � � � �
s
�m� as approximations for v�� � � � � vs� The IRK method

proposed in
�� uses the iterated s�stage RK method described above as corrector method and
a simple �one�step� predictor method for computing the initial approximation ������ � � � � �

s
��� for

v�� � � � � vs� Thus� one time step of the IRK method is described by the following iteration scheme
�I��

�l��� 	 f�y��� l 	
� � � � � s� ���

�l�j� 	 f�y� � h
sX

i��

ali�
i
�j����� l 	
� � � � � s� j 	
� � � � � m� ���

y��� 	 y� � h
sX

l��

bl �
l
�m�� ���

� PARALLEL PROGRAMMING MODEL �

The vector y� represents an approximation of the solution y at the point x� and y��� is an ap�
proximation of y�x��h� that is obtained from y� by applying one step of scheme �I� with stepsize
h� The computation of y��� starting from y� according to system �I� is called a macrostep� The
convergence order of the described method is p� 	 min�p�m�
�� where p is the order of the
used RK�method
���

��� Stepsize Control

For the solution of the ODE system �
� in the intervall x� � x � xend� several macrosteps using
iteration scheme �I� are necessary in order to approximate the solution y at the points�

x�� x�� x�� � � � � xend� with xi�� 	 xi � hi�

In order to achieve a good approximation and to maintain a fast computation time� the stepsizes
h�� h� � � � have to be chosen as large as possible while guaranteeing small approximation errors�

For the problem of chosing appropriate stepsizes� we exploit the following automatic stepsize con�
trol ��� With the same given starting stepsize h two di�erent �embedded� approximations yi��
and �yi�� for the solution y�xi��� are computed� The new stepsize hnew is computed according
to the formula

hnew 	 h �min��� max�

�
� ��� �

�
bound

error

����ord���
�� ���

which uses the error between those two approximations error 	 jjyi�� � �yi��jj and the upper
bound bound 	 max�jyij� jyi��j� of the solution in the intervall xi� xi���� ord is the minimal
convergence order of the used approximation method�

The new approximation vector yi�� is accepted if error � bound� In this case� hnew is used
to compute yi��� Otherwise� the computation of yi�� is rejected and is repeated with stepsize
hnew �

The system �I� provides several embedded approximation solutions by using iterations �l�j� for

j � m and equation ��� �see
��� ���

��

y�j� 	 y� � h
sX

l��

bl �
l
�j��

� Parallel Programming Model

This section proposes a programming model that is suitable for a DMM where the processors
communicate through an interconnecting network that consists of direct communication links
joining certain pairs of processors� The communication is executed by explicit message passing
statements�

The algorithms are formulated in a coarse�grain compute�communicate scheme� The compu�
tations are performed according to the SPMD model� i�e� similar subcomputations on di�erent
portions of problem data are executed� Thus� the division of the problem data and their assign�
ment to di�erent processors is an important part of the design of an algorithm� In order to avoid
data redistribution when combining di�erent modules� one has to ensure a similar distribution
structure for the modules�

The data exchange is performed in a synchronous communication phase� A communication
phase is expressed by one of the following communication primitives which have e�cient imple�
mentations on almost all interconnection networks ��� �Each processor represents one node of
the network��

� PARALLEL PROGRAMMING MODEL �

� Single Node to Single Node� One processor sends a message to a single other processor�

� Single Node Broadcast and Single Node Gather with Reduction� A single node
broadcast sends the same message from a given processor to every other processor� For a
single node gather with reduction� a given node receives a message from every other node�
The messages are combined by a reduction operation at each intermediate node�

� Single Node Scatter and Single Node Gather� A single node scatter sends a sep�
arate message from a single node to every other node� The dual problem� called single
node gather� collects a separate message at a given node from every other node without
performing a reduction operation�

� Multinode Broadcast and Multinode Gather with Reduction� A multinode broad�
cast executes a single node broadcast simultaneously for all nodes� A multinode gather
with reduction executes a single node gather with reduction at each node�

� Total Exchange� A total exchange sends an individual message from every node to every
other node�

The transfer time of a message of M bytes between two processors P� and P� �single node to
single node� using a transfer path with d 	 dist�P�� P�� processors can be computed by a formula
�� which is independent of the special interconnection network of the DMM

ts s�d�M� 	 ��d�M� �M � tc�d�M� ���

��d�M� is the startup time of the message which mainly depends on the distance d� but may also
depend on M � e�g� if the target machine uses di�erent communication protocols for messages of
di�erent sizes as in the case of the Intel iPSC����� tc�d�M� is the time to transfer
 byte� This
time may also depend on M if di�erent protocols are used�

For a hypercube network� Johnsson and Ho address the exact running times of the other com�
munication primitives ��� The complexities of the primitives for di�erent topologies are given
in ���

The performance of a developed parallel algorithm is measured in a timing model that contains
the problem sizes and machine descriptions like the processor number or the startup time and
the bytetransfer time as parameters� By substituting the actual values of the parallel machine
for these parameters and by using topology dependent runtime formulae for the communication
primitives� we predict upper bounds of the exact runtime of an algorithm on this machine�

Notation� For the formulation of the parallel algorithm� we use a C�like pseudocode nota�
tion� The communication is described with the presented primitives� e�g� single�broadcast�
single�gather� multi�broadcast� The execution of a single node gather at a node q with
reduction operation op and local data Rlocal of the single processors is denoted by

R 	 single�gatherq�op��Rlocal��

After the execution� R is available on q�

A computation is expressed by informal descriptions and some control statements� Those state�
ments are forall and for� The iterations of a forall statement are executed in parallel whereas
the iterations of a for statement are executed one after another�

For the prediction of the runtimes� we use the abbreviations ts broad�M�� ts gather�M�� tm broad�M�
which denote the times to execute a single node broadcast� a single node gather or a multinode
broadcast operation of M bytes� We suppose that an arithmetic operation takes time top� inde�
pendently of the operation� Note that this assumption is correct for most of the modern risc

architectures like the sparc or Supersparc processors or the Intel i����

� PARALLEL ITERATED RUNGE�KUTTA �PIRK� ALGORITHM �

�� equation ��� ��

forall l � f
� � � � � sg do

forall q � Gl do f
compute dn�gle components of f�y���
initialize dn�gle components of ������ � � � � �

s
����

g
�� equation ��� ��

for j 	
� � � � � m do f
forall l � f
� � � � � sg do

forall q � Gl do f
compute dn�gle components of ���l� j� 	 y� � h

Ps
i�� ali�

i
�j����

multi�broadcast dn�gle components of ���l� j��
compute dn�gle components of �l�j� 	 f����l� j���

multi�broadcast the computed components of �l�j��

g
�� equation �	� ��

forall processors q do

compute dn�pe components of y����
multi�broadcast the computed components of y����

g

Figure
� algorithm �A� � Group distribution� System �I�

� Parallel Iterated Runge�Kutta �PIRK� Algorithm

We propose several parallel algorithm for the implementation of the IRK method� These algo�
rithms combine di�erent ways of distributing the computational work and the data among the
processors� �p denotes the number of available processors��

�A� Group distribution� First� we describe the group distribution scheme for the case that
the number of available processors is greater than the number of stages� i�e� p 	 s� The pseu�
docode program of this algorithm is given in Figure
�

The set of processors is divided into s groups G�� � � � � Gs� The groups Gl contain about the same
number gl 	 dp�se or gl 	 bp�sc of processors� l 	
� � � � � s� The initialization �equation ����
is performed by each group such that each processor owns dn�gle components of ������ � � � � �

s
���

which are needed for the �rst iteration step� In each iteration step j 	
� � � � � m of equation ����
group Gl is responsible for the computation of one subvector �l�j�� l � f
� � � � � sg� This consists

of the computation of vector ���l� j� 	 y� � h
Ps

i�� ali�
i
�j��� and the evaluation of f����l� j�� 	

�f�����l� j��� � � � � fn����l� j���� In order to achieve an even distribution of the computational work
among the processors� each processor q � Gl computes at most dn�gle components of ���l� j�
and executes at most dn�gle function evaluations fi����l� j��� Between these steps� processor q
communicates its local elements of ���l� j� to the other members of the same group� After each
iteration step� each processor sends its local elements of �l�j� to all other processors and� thus�

the vectors ���j�� � � � � �
s
�j� are available on all processors for the next step� The computation of

y��� is performed in parallel by all processors and the result is broadcasted such that y��� is
available on all processors for the next macrostep�

� PARALLEL ITERATED RUNGE�KUTTA �PIRK� ALGORITHM �

�B� Group distribution and delayed function evaluation� In order to save communica�
tion time� it seems to be convenient to delay the evaluation of function f to the next iteration
step by applying the transformation

f��l�j�� 	 �l�j� � j 	 �� � � � � m�
�

This yields a macrostep of the IRK method given by the following system �II��

�l��� 	 y�� l 	
� � � � � s � ���

�l�j� 	 y� � h
sX

i��

alif��
i
�j���� � l 	
� � � � � s � j 	
� � � � � m� ���

y��� 	 y� � h
sX

l��

blf��
l
�m�� � ���

Again� the set of processors is divided into s groups G�� � � � � Gs of processors� The initialization
of ������ � � � � �

s
��� is performed by all processors in parallel� In each iteration step j� group Gl is

responsible for the computation of subvector �l�j�� l 	
� � � � � s� i�e� each processor of group Gl

performs at most dn�gle function evaluations of f��i�j����� i 	
� � � � � s� and computes at most

dn�gle components of �l�j�� Because of the delay of the function evaluation� no communication
of local elements between these two steps is required� Only at the end of an iteration step�
each processor sends its local elements of �l�j� to all other processors such that �l�j�� l 	
� � � � � s

are available on each processor� The evaluation of f��l�m�� and the computation of y��� is
distributed among all processors� A broadcast operation ensures that y��� is available on all
processors for the next macrostep� The pseudocode program of this algorithm is given in Figure
��

�C� Cyclic block distribution� The cyclic block distribution exploits the fact that the
system �II� consists of s subsystems each creating one of the next subvector iteration �l�j��

l � f
� � � � � sg� The initialization is performed by all processors� The computation of each
subsystem is evenly distributed among all the processors in a similar blockwise way� Considering
the entire system ���� this results in a cyclic blockwise distribution with s cycles and block
sizes dn�pe� Thus� each processor is responsible for the computation of those components of
every subvector ���j�� � � � � �

s
�j� with the same indices� This consists in at most dn�pe function

evaluations of �f���i�j����� � � � � fn��
i
�j����� and the computation of a block of dn�pe components

of the new iteration vector �l�j� of each subsystem l� The broadcast operation ��� performs

the data exchange such that �l�j�� l 	
� � � � � s� are available for the function evaluation in the
next iteration step� The computation of y��� exploits the same blockwise distribution of the
computational work as the subsystems� The pseudocode program is given in Figure �� The
blockwise distribution avoids multiple computations of the same function evaluation�

Stepsize control� The stepsize control mechanism presented in Section ��� is combined with
the macrostep of the IRK�method� We consider the embedded solutions y��� 	 y�m� and y�m���

and choose the maximum norm� For the error� we get the formula

error 	 jjy��� � y�m���jj

	 jhj � jj
sX

i��

bl � �f��
l
�m��� f��l�m����jj

	 jhj � max
i�������n

j
sX

i��

bl � �f��
l
�m��� f��l�m����j �
��

� PARALLEL ITERATED RUNGE�KUTTA �PIRK� ALGORITHM �

�� equation �
� ��

forall q do

for l 	
� � � � � s
initialize all components of �l����

�� equation ��� ��

for j 	
� � � � � m do f
forall l � f
� � � � � sg do

forall q � Gl do f
for i 	
� � � � � s do

compute dn�gle components of f��i�j�����

compute dn�gle components of �l�j��

multi�broadcast the computed components of �l�j��

g
g
�� equation ��� ��

forall processors q do f
for i 	
� � � � � s do

compute dn�pe components of f��l�m���

compute dn�pe components of y����

multi�broadcast dn�pe components of y����
g

Figure �� algorithm �B� � Group distribution� System �II�

� PARALLEL ITERATED RUNGE�KUTTA �PIRK� ALGORITHM �

�� equation �
� ��

forall q do

for l 	
� � � � � s
initialize all components of �l����

�� equation ��� ��

for j 	
� � � � � m do

forall q do f
for i 	
� � � � � s do

compute dn�pe components of f��i�j�����

for l 	
� � � � � s do

compute dn�pe components of �l�j��

multi�broadcast the dn�pe computed components of �l�j�� ���

g
�� equation ��� ��

forall q do f
for i 	
� � � � � s do

compute dn�pe components of f��i�m���

compute dn�pe components of y����
multi�broadcast dn�pe components of y����

g

Figure �� algorithm �C� � Cyclic data distribution� System �II�

The parallel computation of the stepsize control is given in Figure ���� The value bound is
computed by determining the local maximum and collecting the local results with a single node
gather operation with maximum reduction� error is determined according to �
�� by computing
f��l�m�� � f��l�m���� in a distributed way and again collecting the results with a single node
gather operation�

The following lemma determines approximations tA� tB � tC and cA� cB� cC to the computation
times and the communication times of the presented algorithms �A�� �B� and �C��

Lemma � The parallel algorithms of the IRK�method according to Figures �� � and � require
computation times

tA 	

�
m

�
n

gmin

�
�

�
n

p

��
��s�
� top �

�
m

�
n

gmin

�
�

�
n

gmin

��
Tf �

�
n

gmin

�
s top �

�

tB 	

�
m

�
n

gmin

�
�

�
n

p

��
��s�
� top �

�
ms

�
n

gmin

�
�s

�
n

p

��
Tf � n s top �
��

tC 	

�
m

�
n

p

�
s �

�
n

p

��
��s�
� top �

�
ms

�
n

p

�
� s

�
n

p

��
Tf � n s top �
��

and communication times

cA 	 �m tm broad

��
n

gmin

��
� tm broad

��
n

p

��
�
��

cB 	 m tm broad

��
n

gmin

��
� tm broad

��
n

p

��
�
��

cC 	 s m tm broad

��
n

p

��
� tm broad

��
n

p

��
�
��

� PARALLEL ITERATED RUNGE�KUTTA �PIRK� ALGORITHM
�

while x � xend do f
parallel IRK algorithm �A� �B� or �C��

�� computation of bound ��

forall q do

compute local�maxq� max of local elements of jy���j �
for processor � do f

norm � single�gather��max� �local�maxq��
compute bound 	 max�jjy���jj� jjy�jj��
broadcast bound�

g
�� computation of error ��

forall q do f
compute dn�pe components of Sq 	

Ps
i�� bl � �f��

l
�m��� f��l�m�����

compute the maximum Mq 	 maxq�Sq� �

g
for processor � do f

M � single�gather��max� �Mq��

compute error 	 h �M�

broadcast error�
g
�� equation ��� ��

forall q do f
compute hnew�
if �error � bound� x 	 x� h
else reject the computed approximation vector

h 	 hnew�
g

g

Figure �� IRK�method with stepsize control

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS

where gmin 	 minl�������s�gl� and Tf 	 maxi�������n teval�fi�	

Proof

Algorithm �A�� The initialization of �l��� requires dn�gles function evaluations and dn�gle assign�

ments� In each of them iterations� the computation of ���l� j� and �l�j� takes time dn�gle��s�
�top
and dn�gleTf � respectively� The computation of the next iteration y��� vector takes time
dn�pe��s�
� top� The multi�broadcast operations result in the given communication time�

Algorithm �B�� The initialization requires ns assignments� For each iteration� the computation
of �l�j� require dn�gles function evaluations and dn�gle��s �
� arithmetic operations� For the

computation of y���� dn�pes function evaluations and dn�pe��s �
� arithmetic operations are
necessary�

Algorithm �C�� The blockwise initialization require ns assignments� Each iteration step performs
dn�pes function evaluations and dn�pes��s �
� operations� The computation of y��� requires
dn�pes function evaluations and dn�pe��s�
� arithmetic operations� �

Lemma � The stepsize control presented in Fig	� requires computation time

tSTEP 	 ���s�
�

�
n

p

�
� �� top � �s

�
n

p

�
Tf �
��

and communication time
cSTEP 	 ��ts gather�
� � ts broad�
�� �
��

Proof
 Follows directly from the algorithm presented in Figure �� �

Lemma � A sequential implementation of the IRK method according to system �I� is faster
than a sequential implementation according to system �II�	 The sequential computation times
are

t�I��seq 	 �ms�
� n ��s�
� top � �sm�
� n Tf

t�II��seq 	 �ms�
� n ��s�
� top � s�m�
� n Tf

	 Numerical Experiments and Comparisons of the Algorithms

��� Runtime Behavior of the iPSC��	

For the prediction of the runtimes on the hypercube iPSC����� the machine speci�c times for
top� ts broad and ts gather have to be determined and substituted into the formulae of Lemma
�
For top� we use mean values of the measured runtimes for di�erent operations� This comprises
arithmetic operations but also array access times� For ts gather and ts broad� we use the theoreti�
cally developed runtime formula for the hypercube architecture �� that depends on the message
size M � the startup time � and the bytetransfer time tc�

ts broad�p�M� 	 ts gather�p�M� 	
p�

log p
Mtc �

�
p

log p
� log p

�
�

The runtime of tm broad not only depends on the interconnection network of the machine but also
on the runtime system� On the iPSC����� the runtime function gcolx is the fastest way to realize

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS
�

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000 14000
n

global execution times in sec for constant Tf for p=4

groups
groups delayed

cyclic

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n

global execution times in sec for linear Tf for p=4

groups
groups delayed

cyclic

Figure �� Predicted global execution times with stepsize control for p � �

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000 14000
n

global execution times in sec for constant Tf for p=8

groups
groups delayed

cyclic

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n

global execution times in sec for linear Tf for p=8

groups
groups delayed

cyclic

Figure �� Predicted global execution times with stepsize control for p � ��

a multinode broadcast operation� But the concrete implementation on the topology is hidden
for the user� Furthermore� the runtime of gcolx does not obey one of the theoretically developed
runtime functions presented in ��� Practical tests show that for �xed number of processors p
the runtime for gcolx depends linearly on the size of the transmitted messages M � i�e�

Tgcolx�M� 	 atc���p�M � b��p�

The coe�cient b��p� only depends on p and � � A possible message size dependent part of the
startup time � is contained in the coe�cient atc���p� which additionally depends on tc and p�
The values for tc and � are �xed for a special machine like the iPSC����� The coe�cients a and b
are monotonically increasing functions of the number of processors p� Tests show atc����� 	 ����
atc����� 	 ���� atc����� 	 ���� and atc�� �
�� 	
�� For b� �p�� we get b� ��� 	 ���� b���� 	 ����
b���� 	
���� and b��
�� 	
����

��� Runtime Comparison of the Algorithms

The runtime prediction formulae of Lemma
 used with the iPSC���� speci�c parameters and
runtime functions result in simulations of the expected runtimes� The Figures �� �� � present
the predicted runtimes of the parallel IRK algorithms �A�� �B� and �C� for di�erent numbers of

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS
�

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000 12000 14000
n

global execution times in sec for constant Tf for p=16

groups
groups delayed

cyclic

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n

global execution times in sec for linear Tf for p=16

groups
groups delayed

cyclic

Figure �� Predicted global execution times with stepsize control for p � ���

processors p 	 �� ��
�� We use a ��stage Radau method �� of order p 	 � as corrector� Because
of p� 	 min�p�m�
�� we execute � corrector iterations�

Each of the Figures �� �� � contains the runtimes for solving a system of ODEs with two di�erent
classes of right hand side functions f �

�con� f has constant evaluation time Tf and

�lin� f has an evaluation time Tf that depends linearly on the system size n�

Both cases may occur in applications when solving time dependent partial di�erential equations�
For example� the spatial discretization of partial di�erential equations leads to functions f with
constant Tf and a variational method may lead to an ODE with functions f with system size
dependent Tf �

Let TA� TB and TC denote the global execution times of the algorithms �A�� �B� and �C��
respectively� i�e� for example TA 	 tA � cA� �The dependence on p� n and Tf is omitted in this
notation�� �From the simulations� several observations concerning TA� TB� TC can be made�

� The di�erence of the runtimes of the algorithms �A�� �B� and �C� depend on both� the
processor number p and the assumption �con� or �lin� for the right hand side function f �

� For f with constant evaluation time we have�

� TA � TB � TC � as it was expected when developing the algorithms�

� For increasing processor number p 	 �� ��
� the di�erences between the runtimes
change from TA � TB �� TC to TA �� TB � TC �

� For a right hand side function f with evaluation time depending on n� we have�

� TB � TA and TB � TC �

� For processor numbers p 	 �� � we have TB � TA � TC � but for processor number
p 	
�� we have TB � TC � TA� i�e� the �rst algorithm is the fastest�

The algorithms �B� and �C� have been developed because of an expected speeding up of a
parallel implementation by reducing the data exchange �from �A� to �B�� or the number of
function evaluations �from �B� to �C��� Although this improvement seems to be obvious at �rst
glance� the observation of the theoretical simulation �for some cases of p and Tf� do not con�rm
the intuition and do even contradict them in some cases� The simulations suggest that the choice

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS
�

of the algorithm with the fastest computation time strongly depends on the special application
and the number of the used processors� In order to explain the observed phenomena and to get
a general criteria deciding which of the algorithms is the best in a particular case� we study the
runtime formulae of Lemma
 in more detail� To this end� the runtime formulae are conceived
as functions with parameters p and Tf and the asymptotic behavior for large n is investigated�

��� Asymptotic Behavior of the Runtimes

For a consideration of the asymptotic behavior� it is su�cient to assume that p and bpsc divide
n� �In comparison with n� the numbers p and bpsc are very small�� Let d 	 �

gmin
� s

p denote

the di�erence between �
gmin

and s
p with gmin 	 bpsc� Thus� d � � and d 	 � if and only if p is

dividable by s�

Lemma � �Runtime comparison for algorithms �B� and �C��

a� For s 	
� we have TC 	 TB	

b� If s �
 and p
sb��p� � Tf � then for all n �
 we get
 TB � TC	

c� If s �
 and p
sb��p� � Tf � then for all n � p

s
b� �p�
Tf

 TB � TC	

d� For �xed n and �xed Tf � the dierence TB � TC is getting smaller if the number of
processors p is increasing	

Proof
 a� follows directly from Lemma
� For the other cases we use�

TB � TC 	 A� n� B� with �
��

A� 	 m s
�s �

p
� d

�
Tf � d m

�
��s�
�top � atc��

�
�

B� 	 �
� s�m b��p�� �

from Lemma
� For �
n

p
sb��p� � Tf � we get from formula �
��� TB � TC � � � Thus� b�

and c� follow� For d�� we assume that s divides p� i�e� d 	 �� Then� we have TB � TC 	
�ms s��p Tf �n � �
� s�m b��p� which is an increasing function of p� �

Remark� Lemma � con�rms that TB � TC holds for almost all system sizes n� �The lower bound
p
s
b� �p�
Tf

for n is small�� The behavior for the case that Tf linearly depends on n is covered by

Lemma �b�� Lemma �d� describes the e�ect when considering the three simulated plots one
below the other in Figures �� �� � for �xed n�

Lemma 	 �Runtime comparison for algorithms �A� and �B��

a� For s 	
� we have TA 	 TB �mtm broad�
n
p � �

��p
p topn	

b� If s �
 and Tf 	
mp

�s����mp�gmin�

�
atc���p� � gminb��p�

�
� then for all n � IN
 TA � TB	

c� If s �
 and Tf �
mp

�s����mp�gmin�

�
s��gmin

m top � atc���p�
�
� then for all n � IN
 TB � TA	

d� For �xed n and �xed Tf chosen according to c�� the dierence TA �TB is increasing for
an increasing number of processors p	

Proof
 a� The case s 	
 follows directly from Lemma
� For s �
� we get from Lemma

TB � TA 	 A� n�B� with ����

A� 	
�
�s �
� �

m

gmin
�

p
� Tf � s�
�

gmin
�top �

m atc�� �p�

gmin

�
�

B� 	 �m b��p��

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS
�

b� From formula ����� we get Tf 	
m p

�s��� �m p�gmin�

�
atc���p� �

�
n gmin b��p�

�
and thus TB � TA�

c� Tf �
m p

�s��� �mp�gmin�

�
s��gmin

m top � atc���p� �
�
n gmin b��p�

�
� and thus TB � TA�

d� TA � TB 	 mb��p� which is an increasing function in p� �

Remark� Lemma � re�ects the fact that TB � TA if the additional computation time �s�
�Tf
is more expensive than the saved m broadcast operations of time� For small� constant Tf and
�xed n� Lemma �d� explains the varying distances between of TA and TB in Figures �� �� ��

The investigation of the last runtime comparison� the di�erence between TA and TC � depends
on the value d 	 �

gmin
� s

p � Thus� for the decision whether algorithm �A� or algorithm �C� is the
fastest algorithm and should be used� we have to consider Tf � p� n and d and their interacting
in�uence on TA � TC �

Lemma
 �Runtime comparison for algorithms �A� and �C��

a� If s 	
� then TA 	 TC �mtm broad�
n
p � �

��p
p topn	

b� If s 	 � and m d�
�p 	 � �i	e	 d
	 ��� then for all n � IN
 TA � TC	

c� If s 	 � and md�
�p � �� then there exists a constant Gp�d � � such that for Tf � Gp�d

and all n � IN we get
 TA � TC	

d� If s � � then for all n with
s atc�� �p�

s�� � �
n
�s��� p b� �p�

�s��� � �� there exists a constant Gp�d � �

�depending on d� p� such that for Tf � Gp�d
 TA � TC	
The constant Gp�d is an increasing function of d and a decreasing function in p	

Proof
 a� follows directly from Lemma
� For all other cases� we exploit�

TA � TC 	 A� n�B� with ��
�

A� 	
�
m d�

� s

p

�
Tf � d m

�
��s�
�top � atc��

�
�

m atc�� �p�

gmin
� s�
�

gmin
�top�

B� 	 ��� s�m b��p��

b� If s 	 �� then B� 	 � and A� � � for md�
�p 	 ��
c� For md�
�p � � � we get TA � TC if and only if Tf is small enough�
d� For

Tf �
sm atc���p�

s�

� d

p

s�

�
m��s�
� � top � matc��

�
�

n

�s � �� p b� �p�m

�s�
�
�

s�

s�

�
p

s
�
�top�

we get according to formula ��
� that TA � TC � �

Remark� Lemma � shows that algorithm �C� is faster than algorithm �A� if the time Tf is
bounded by a constant depending on the number of processors p and the introduced parameter
d� Thus� for small Tf of case �con� the result is obvious �see Figures �� �� ��� For the case
�lin� and large Tf the situation may change� Because the constant Gp�d is decreasing in p �with
�xed n and Tf�� algorithm �C� may become slower than algorithm �A� which can be observed
in Figure � for case �lin��

��� Implementation

�From the runtime analysis we get that the third algorithm is the best algorithm for most of
our cases� Following the theoretically derived results about the runtimes� we have implemented
algorithm �C� on the Intel iPSC���� using system �II� with a cyclic data distribution� Figures

	 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS
�

constant Tf Tf linear in n

n meas� pred� n meas� pred�

��� ����� �����
�� ��
�� ��
��
��� ��
�� ��
�� ��� ����� �����

��� ���
� �����
���

��
�

����
���� ����� �����
��� ������ ������
���� ����� ����� ���� ������ ����
�
���� ����
 ����� ����
�
����
������

����
�
��
�
�� ���� ������� �������

�
��
����
��
�
����

������

������

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000 14000
n

measured and predicted speedup values for p=4

predicted constant
measured constant
predicted linear
measured linear

Figure �� Algorithm �C�� measured and predicted running times in seconds and speedup values for p � �

constant Tf Tf linear in n

n meas� pred� n meas� pred�

��� ����� �����
�� ����� ����

��� ��

� ����� ���
����
����

��� ���
� �����
��� ����
 �����
���� ����� �����
���
���
�
�����
���� ����
 ����� ���� ������ ������
���� ����� ����� ���� ������ �
����

����
����
���� ����
������
���
��

�
��
����
����
���� ��
���� �������

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000 12000 14000
n

measured and predicted speedup values for p=8

predicted constant
measured constant
predicted linear
measured linear

Figure �� Algorithm �C�� measured and predicted running times in seconds and speedup values for p � ��

����
� contain tables with the measured and predicted global execution times and diagrams
with the measured and predicted speedup values for p 	 �� p 	 �� and p 	
� processors� The
execution times are given for the cases �con� and �lin�� where Tf in the �rst case comes from
the Brusselator example �see Section ��
� with n 	 �N�� N � IN � The given speedup values
are obtained by comparing the parallel global execution times for algorithm �C� with the global
execution time of the sequential program for �I� �see Lemma ��� All speedup values contains the
costs for the stepsize control� Because this is executed by each processor� the speedup values
are reduced�

A comparison of the predicted and the measured execution times and speedup values shows
that the predicted values are quite accurate� Only for small n� the predicted execution times
are smaller than the measured times� This may be caused by a �xed overhead for the parallel
program which is not considered in the runtime analysis�

For all considered processor numbers� the speedup values of the �lin� case are much higher than
those of the �con� case� The reason for the good speedup values for the �lin� case are the function
evaluation times which extremely dominate the communication times� On the other hand� the
attained speedup values in the �con� case are very poor�

The given speedup values suggest that the described IRK method is only suited for an imple�
mentation on a DMM� if the evaluation time for the right hand side function is large compared
with the time to execute a multi�broadcast operation ��lin� case�� One possibility to improve

 APPLICATION TO A DISCRETIZATION PROBLEM
�

constant Tf Tf linear in n

n meas� pred� n meas� pred�

��� ����� �����
�� ����
 �����
��� ��

� ����� ��� ����� �����

��� ���

 ��
��
��� ����� �����
���� ����
 �����
��� ���
� �����
���� ����� ����� ����

���

��
�
���� ���
� ����� ���� ������ ������

���� ����� ����� ���� ������ �
��
�

�
��
����
����
���� ��
���� �������

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000 12000 14000
n

measured and predicted speedup values for p=16

predicted constant
measured constant
predicted linear
measured linear

Figure
�� Algorithm �C�� measured and predicted running times in seconds and speedup values for p � ���

the communication is to copy the data that has to be communicated into a bu�er before the
broadcast operation and to execute the broadcast in one step� But experiments on the iPSC����
show that this only results in a smaller communication time for small system sizes� For larger
system sizes� the savings in communication time is outperformed by the costs of the copy oper�
ations� For the �con� case� we consider a typical example and try to improve the poor speedup
values in the next section�

 Application to a Discretization Problem

Systems of ODEs with right hand side function of case �con� arise when solving a time dependent
partial di�erential equation by spatial discretization� A typical example is the Brusselator
equation which we solve numerically in this section�

	�� The Brusselator Equation

The Brusselator equation is a nonlinear partial di�erential equation from chemical kinetics that
describes the reaction of two chemical substances ��� We consider a particular Brusselator
equation� the following reaction�di�usion equation ���

	u

	t
	
 � u�v � ���u�

�
	�u

	x�
�

	�u

	y�

�
����

	v

	t
	 ���u� uv� �

�
	�u

	x�
�
	�u

	y�

�
����

� � x �
� � � y �
� t 	 ��
 	 � �
��� ����

with Neumann boundary conditions

	u

	�
	 ��

	v

	�
	 ��

and initial conditions
u�x� y� �� 	 ��� � y� v�x� y� �� 	
� �x�

 APPLICATION TO A DISCRETIZATION PROBLEM
�

u�����
��������������������������������������
��� �����

��������������������������������������
���

�����
��������������������������������������
���

�����
��������������������������������������
���

����
����
�����
�����������������

�������������������
����
�����
��

������������������������������ �����������������
�������������

u�����
��������������������������������������
��� �����

��������������������������������������
���

�����
��������������������������������������
���

�����
��������������������������������������
���

����
����
�����
�����������������

�������������������
����
�����
��

������������������������������ �����������������
�������������

u�����
��������������������������������������
��� �����

��������������������������������������
���

�����
��������������������������������������
���

�����
��������������������������������������
���

����
����
�����
�����������������

�������������������
����
�����
��

������������������������������ �����������������
�������������

��������������������
�����
�����

���

�����
����
�����
����������������
���

�����
�����
����
����������������
���

�����
��������������������������������������
���

�����
��������������������������������������
���

�����
��������������������������������������
���

� � � � � � � � � � � � � � � ������������������
�������������

� �����������������
�������������

� �����������������
�������������

� ������������������
�������������

u

v

y� y� yN��

yN�

u

v

yN
���

yN�
��

p�

p�

p�

p�

Figure

� Access structure of the Brusselator function�

The standard discretization of the spatial derivatives on a uniform grid with mesh size
��N�
�
leads to the ODE of dimension �N��

duij
dt

	
� u�ijvij � ���uij �
�N �
� �ui���j � ui���j � ui�j�� � ui�j�� � �ui�j� ����

dvij
dt

	 ���uij � u�ijvij �
�N �
� �vi���j � vi���j � vi�j�� � vi�j�� � �vi�j� ����

The boundary conditions result in�

u��j 	 u��j� uN���j 	 uN���j � ui�� 	 ui��� ui�N�� 	 ui�N�

	�� Parallel Solution of the Brusselator Equation

Explicit Runge�Kutta methods are the adequate numerical method for the solution of the spa�
tially discretized Brusselator equation ��� For the parallel solution� we use the third parallelized
version of the IRK method presented in Figure ��

As mentioned before� this algorithm does not attain good speedups for Brusselator like equations�
This is mainly caused by the costs of the broadcast operation ��� in algorithm �C� in Figure �
after each corrector iterations step� The data exchange is necessary for the numerical correctness
of the method and� thus� no communication phase could be omitted in the general case� But for
a speci�c application� it is possible to reduce the time needed for each communication phase by
investigating the necessary updating before starting the next iteration�

���� Application Speci�c Communication

In the general case� the communication is realized by a multi�broadcast operation� i�e� each
processor executes a broadcast operation� such that the whole iteration vector of size n � s is
available on each processor after the communication� According to the access structure of the
Brusselator equation� it is possible to replace this communication by a more cost�e�ective data
transmission�

 APPLICATION TO A DISCRETIZATION PROBLEM
�

� �

� �

� �

� �

p	

p�

p�

p�

��
�j� ��

�j� ��
�j�

u

v

� �

� �

� �

� �

� �

� �

� �

� �

� �

p	

p�

p�

p�

p	

p�

p�

p�

��
�j� ��

�j� ��
�j�

u

v

Figure
�� Cyclic and double cyclic data distribution for the Brusselator function� The dotted lines indicate
the data domains of the processors� The size of the system is s � �N�� The �gure shows the case s � ��

For the Brusselator equation� the solution vector y of system �II� �and also the iteration vectors
�l�j� and y�� have the form y 	 �u� v� with

y�i �N � j� 	 u�i� j�� and y�N� � i �N � j� 	 v�i� j�� � � i� j � N�

see Figure

� Thus� we can illustrate the cyclic data distribution of algorithm �C� as shown in
Figure
��

The right hand side function f 	 �f�� � � � � fn�� n 	 � �N�� of the Brusselator equation ���� and
���� only needs a few of the updated values of �l�j� or y�� see Figure

� The resulting data

exchange of a processor q is given in the next lemma that implies algorithm �D�� �The processors
are numbered consecutively by q 	 �� � � � � p�
��

Lemma If p is even and N 	 p��� it is su�cient that processor q communicates with at most
three processors	 Those processors are

q �
� q � p�� for q 	 �

q �
� q �
� q � p�� for � � q � p���

q �
� q � p�� for q 	 p���

q �
� q � p�� for q 	 p��

q �
� q �
� q � p�� for p�� � q � p�

q �
� q � p�� for q 	 p�

Proof
 Consider the computation of ui�j � To access the neighboring elements of u according to
formula ����� processor q has to access elements in the data domain of the neighboring processors
q �
 and q �
� The accessed element vi�j is located in the data domain of processor q � p���
This holds for all cases� also if p�� does not divide N�� �

�D� Algorithm with reduced communication� The multi�broadcast ��� in the parallel
IRK algorithm �C� in Figure � is replaced by more cost�e�ective single�to�single transmissions�

if �q
	 � and q
	 p��� send local elements of �l�j� to q �
 �

if �q
	 p���
 and q
	 p�
� send local elements of �l�j� to q �
 �

if �� � q � p��� send local elements of �l�j� to q � p�� �

if �p�� � q � p� send local elements of �l�j� to q � p�� �

 APPLICATION TO A DISCRETIZATION PROBLEM ��

���� Application Speci�c Data Distribution

A reduction of the number of processors that participate in the communication phase can be
achieved by changing the data distribution to a double�cyclic blockwise distribution which allo�
cates each of the u and v data blocks to to all processors� see Figure
�� The following Lemma
describes the resulting communication that is used in algorithm �E��

Lemma � If p is even and N 	 p��� it is su�cient that processor q communicates with at most
two processors	 Those processors are

q �
� for q 	 �

q �
� q �
� for � � q � p���

q �
� for q 	 p���

q �
� for q 	 p��

q �
� q �
� for p�� � q � p�

q �
� for q 	 p�

Proof
 Consider e�g� the computation of ui�j � Because of the double cyclic data distribution�
each processors produces the data from the v data block needed in the next iteration� �

�E� Algorithm with double�cyclic distribution and reduced communication� The
parallel IRK algorithm �C� is used with double cyclic data distribution such that each data block
u and v is distributed blockwise among the processors� The multi�broadcast ��� in the parallel
IRK method in Figure � is replaced by a data exchange with at most two other processors�
Compared to algorithm �D�� the number of transmitted messages is increased because each
processor now has to send two �smaller� blocks �for u and v� to each neighboring processor� see
Figure
��

if �q
	 � and q
	 p��� send local elements of �l�j� to q �
 in � pieces�

if �q
	 p���
 and q
	 p�
� send local elements of �l�j� to q �
 in � pieces�

	�� Numerical Results

We have implemented the presented methods �D� and �E� for the solution of the Brusselator
equation on an Intel iPSC����� Figure
� shows typical solutions for the resulting concentrations
of the two chemical substances�

For the implementation on the Intel iPSC����� we again use a ��stage Radau method �� of order
p 	 � as corrector with m 	 � corrector iterations� Figures
��
�� and
� contain tables with
the measured global execution times and diagrams with the measured speedup values for for
p 	 �� p 	 �� and p 	
� processors� The given speedup values are obtained by comparing the
parallel global execution times for algorithm � with the global execution time of the sequential
program for system �I��

According to Figures
��
�� and
�� the implementations of algorithms �D� and �E� result in
larger speedup values than the original algorithm �C�� Although the speedup values are increased
by a factor of about ��� for � or
� processors� they are by no means impressive� For p 	
��
a reduction of the e�ciency can be observed� if the data size is not increased� The fact that in
algorithm �E� less data have to be transmitted does not result in considerably larger speedup
values�

 APPLICATION TO A DISCRETIZATION PROBLEM �

solution for u and v for t=0.5

u

0

0.5

1 0

0.5

1
0
1
2
3
4
5
6

x

y

u{x,y)

v

solution for u and v for t=1.0

u

0

0.5

1 0

0.5

1
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

x

y

u{x,y)

v

Figure
�� Solution of the Brusselator equation for t � 	��s and t � ��	s� A discretization of N � �� has
been used for the �gure�

N n �C� �D� �E�

 ��� ����� ����� �����
�
 ��� ��
�� ����� ��

�
�

��� ���
� ����� ����

�
 ���� ����� ����� �����
�
 ���� ����� ����� �����
�
 ���� ����
 ����� �����
�

����
�
�� ����
 �����
�

�
��
����
����
����
�

���� �����
����
��
�

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 2000 4000 6000 8000 1000012000140001600018000
n

speedup values for IRK with Brusselator equation for p=4

(C)
(D)
(E)

Figure
�� Measured running times in seconds and speedup values on 	 processors for one step of the IRK
method applied to the Brusselator function�

N n �C� �D� �E�

 ��� ����� ����� �
�
 ��� ��

� ����� ����

�

��� ���
� ��
�� ��
��
�
 ���� ����� ����� �����
�
 ���� ����
 ����� ����

�
 ���� ����� ����� �����
�

����
���� ����� �����
�

�
��
���� ����� ����

�

����
����
���� ����

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2000 4000 6000 8000 10000 12000 14000
n

speedup values for IRK with Brusselator equation for p=8

(C)
(D)
(E)

Figure
�� Measured running times in seconds and speedup values on
 processors for one step of the IRK
method applied to the Brusselator function�

 APPLICATION TO A DISCRETIZATION PROBLEM ��

N n �C� �D� �E�

 ��� ����� � �
�
 ��� ��

� ����� �����
�

��� ���

 ����� ��
��
�
 ���� ����
 ��
�
 ��
��
�
 ���� ����� ���
� �����
�
 ���� ���
� ����� �����
�

���� ����� ����� �����
�

�
��
���� ���
� �����
�

����
��
� ����� �����

1

2

3

4

5

6

7

0 2000 4000 6000 8000 1000012000140001600018000
n

speedup values for IRK with Brusselator equation for p=16

(C)
(D)
(E)

Figure
�� Measured running times in seconds and speedup values on �� processors for one step of the IRK
method applied to the Brusselator function�

	�� Interpretations of the Numerical Experiments

For the interpretation of the observed phenomena� we use the timing model for the iPSC����
presented in Section ��

Lemma � The speedup SD of algorithm �D� is smaller than the speedup SE of algorithm �E� if

� �
n

p
tc ����

Proof
 The speedup values for algorithms �D� and �E� are

SD 	
t�I��seq

tC � �ts s

�
n
p

�
� tm broad

�
n
p

�
SE 	

t�I��seq

tC � �ts s

�
n
�p

�
� tm broad

�
n
p

�
where t�I��seq is the computation time for the sequential method and tC is the computation time
for algorithm �C� �tC 	 tD 	 tE�� Using the formula for tm broad� we get that SD � DE if

�

�
tc
n

�p
� �

�
� �

�
tc
n

p
� �

�

�

Remarks to Lemma ��

� According to Lemma �� algorithm �E� outperforms algorithm �D�� only if the saving that
results from transmitting fewer data elements �tcn�p� is larger than the additional startup
time � � For the iPSC����� we get for � processors� SD � SE if n � �����

�� One possibility to save startup times for algorithm �E� would be to pack the messages
such that only � instead of � single�to�single transmissions with larger message sizes n�p
�instead of n��p� have to be performed� But this requires additional packing and unpacking
operations� see Section �� and does not increase the attained speedup values�

 APPLICATION TO A DISCRETIZATION PROBLEM ��

�� Another possibility to save communication time results from the observation that processor
q only needs N data elements from each of its neighboring processors� But because the
startup time dominates the communication time� this only leads to an improvement for
large system sizes�

The following lemma shows that the speedup values cannot be increased considerably� This is
shown by examining the time to execute one corrector iteration and determining the e�ciency�

Lemma �� Let T�II��seq be the sequential time for one corrector iteration according to algorithm
�C�	 The e�ciency of iteration ��� of algorithms �C�� �D� or �E� is
��
 � co�p�� with the
communication overhead ratio

co�p� 	
Tcomm�n� p�

T�II��seq
p 	

p

���s�
�top � TBruss�n
� Tcomm�n� p�

TBruss denotes the time to evaluate the Brusselator function and Tcomm is the communication
time for each iteration step	 Tcomm depends on n� p� and the used algorithms �C���D���E�	

Proof
 The computation time for the iteration of equation ��� is

�ms��s�
�top � smTBruss�
n

p
�

The communication time is smTcomm�n� p� with Tcomm according to the used algorithm �C�� �D�
or �E�� Thus�

co�p� 	
smTcomm�n� p�

ms���s�
�top � TBruss�n
p

�

Remarks to Lemma
��

For the algorithm �E� with the lowest communication time ��n�p � tc � ���� we get

co�p� 	
�ntc � ��p

��s�
�top � TBruss�n
�

On the iPSC����� we have top � ����s� TBruss � ����s� For s 	 �� we get

co�p� 	
����n� � �
�� � p

n
�

For p 	 � and n 	
����� we have e�ciency
��
� co�p�� � ���� for the corrector iteration� On
the other hand� for algorithm �C�� we get

co�p� 	
atc���p�n� b��p�p

n
�

For p 	 �� this leads to co�p� �
 and therefore we have e�ciency � ���� The example illustrates
that we really have improved the communication of the corrector iteration and thus� it is no
longer responsible for the insu�cient speedup values of algorithm �E�� Rather� other e�ects cause
the small speedup values�

� The multi�broadcast operation at the end of each macrostep �that cannot be improved
because of the numerical correctness� is quite expensive�

� The stepsize control according to equation � and
� is executed by each processor�

� The speedup values are computed by comparing the parallel algorithms not with their
corresponding sequential algorithm� but with a sequential algorithm that has a smaller
execution time�

� CONCLUSIONS ��

� Conclusions

Although IVPs for ODEs are widely considered to be inherently sequential or at best to have
a small degree of parallelism� there exist algorithms for solving systems of ODEs with a large
potential of parallelism� In this article� we consider the iterated Runge�Kutta methods and
describe three parallel algorithms that di�er in the order of the function evaluation and�or the
data distribution on the DMM� A detailed runtime analysis compares the proposed algorithms
and is used to select the most promising one for a real implementation� The runtime simulations
do not con�rm the intuitively expected behavior of the runtime but the observed phenomena
can be explained by a theoretical runtime analysis� According to the suggestion of the theo�
retical investigation� we have implemented the algorithm with delayed function evaluation and
cyclic data distribution on the Intel iPSC����� The implementation con�rms that the predicted
runtime and speedup values are quite accurate� This shows that the used runtime prediction
technique can be successfully used to compute the speedup values for a given parallel algorithm
on a real parallel machine before implementing it�

We investigate the performance of the method for a typical example that results from the dis�
cretization of a reaction�di�usion equation� We show that the original method cannot achieve
good speedup values for this application� but that the attained speedup values can be increased
considerably by taking advantage of the access structure of the resulting right hand side func�
tion f � Nevertheless� the resulting e�ciency is not impressing� but they cannot be improved
because of the necessary communication� Other known numerical methods to solve initial value
problems that are suited for a parallel execution like the extrapolation methods have similar
communication behavior and do not result in a better performance
��
���

References

� A� Bellen� R� Vermiglio� and M� Zennaro� Parallel ODE�Solvers with Stepsize Control�
Journal of Computational and Applied Mathematics� �
���������
����

�� D�P� Bertsekas and J�N� Tsitsiklis� Parallel and Distributed Computing� Prentice Hall� New
York� NY�
����

�� A� Bingert� A� Formella� A�M� M uller� and W�J� Paul� Isolating the Reasons for the Per�
formance of Parallel Machines on Numerical Programs� In International Workshop on Au�
tomatic Distributed Memory Parallelization� Automatic Data Distribution and Automatic
Parallel Performance Prediction� pages ������
����

�� M�A� Franklin� Parallel Solution of Ordinary Di�erential Equations� IEEE Transactions
on Computers� C��������
������
����

�� C�W� Gear� Parallel Methods for Ordinary Di�erential Equations� Technical Report
UIUCDCS�R����
���� Department of Computer Science� University of Urbana�Champaign�
August
����

�� E� Hairer� S�P� N!rsett� and G� Wanner� Solving Ordinary Dierential Equations I
 Nonsti
Problems� Number � in Springer Series in Computational Mathematics� Springer�Verlag�
Berlin�
����

�� D� Hutchinson and B�M�S� Khalaf� Parallel Algorithms for Solving Initial Value Problems�
Front Broadening and Embedded Parallelism� Parallel Computing�
����������
��
�

REFERENCES ��

�� S�L� Johnsson and C�T� Ho� Optimum Broadcasting and Personalized Communication in
Hypercubes� IEEE Transactions on Computers� ������
����
����
����

�� R� Lefever and G� Nicolis� Chemical Instabilities and Sustained Oscillations� J	 Theor	 Biol	�
�����������
��
�

�� W�L� Miranker and W� Liniger� Parallel Methods for the Numerical Integration of Ordinary
Di�erential Equations� Mathematics of Computation� �
�������������
����

� P� J� Prince and J� R� Dormand� High order embedded Runge�Kutta formulae�
J	 Comp	 Appl	 Math	� ��
��������
��
�

�� T� Rauber and G� R unger� Hypercube Implementation and Performance Analysis for Ex�
trapolation Methods� In Proceedings of the CONPAR���� pages �������� Linz� Austria�

����

�� T� Rauber and G� R unger� Load Balancing for Extrapolation Methods on Distributed
Memory Multiprocessors� In Proceedings of the PARLE���� pages �������� Athens� Greece�

����

�� G� R unger� �Uber ein Schr�odinger�Poisson�System� PhD thesis� K oln�
����

�� H�W� Tam� Parallel Methods for the Numerical Solution of Ordinary Dierential Equa�
tions� Report No� UIUCDCS�R����
�
�� University of Illinois at Urbana�Champaign�
Department of Computer Science�
����

�� P�J� van der Houwen and B�P� Sommeijer� Parallel Iteration of high�order Runge�Kutta
Methods with stepsize control� Journal of Computational and Applied Mathematics� ���

�

���
����

�� P�J� van der Houwen and B�P� Sommeijer� Parallel ODE Solvers� In Proceedings of the
ACM International Conference on Supercomputing� pages �
��
�
����

�� P�J� van der Houwen and P�B� Sommeijer� Parallel ODE Solvers� In Proceedings of the
ACM International Conference on Supercomputing� pages �
��
�
����

�� P�B� Worland� Parallel Methods for the Numerical Solution of Ordinary Di�erential Equa�
tions� IEEE Transactions on Computers� ���
���
����
����
����

��� P�B� Worland� Parallel Methods for ODEs with Improved Absolute Stability Boundaries�
Journal of Parallel and Distributed Computing�
��
��������
����

