
LiDIA

A library for computational number theory

Ingrid Biehl� Johannes Buchmann� Thomas Papanikolaou

Universit�at des Saarlandes

Fachbereich ��

����� Saarbr�ucken

� Introduction

In this paper we describe LiDIA� a new library for computa�
tional number theory�

Why do we work on a new library for computational
number theory when such powerful tools as Pari ���� Kant
����� Simath ���� already exist� In fact� those systems are
very useful for solving problems for which there exist e	cient
system routines� For example� using Pari or Kant it is
possible to compute invariants of algebraic number 
elds and
Simath can be used to 
nd the rank of an elliptic curve over
Q� However� building complicated and e	cient software on
top of existing systems has in our experience turned out to
be very di	cult� Therefore� the software of our research
group is developed independently of other computer algebra
systems�

Over the past years we have been working on many prob�
lems of computational number theory such as factoring inte�
gers ���� computing discrete logarithms over 
nite 
elds �����
counting the number of points on an elliptic curve over a 
�
nite 
eld ��� computing the class number of number 
elds
���� etc� In those projects software for many basic tasks
was needed� for example a multiprecision integer and �oat�
ing point arithmetic� a polynomial arithmetic� linear algebra
routines� etc� However� reusing parts of the software writ�
ten in one project as modules in other projects was almost
impossible� There was not enough documentation� there
were no well de
ned interfaces� in di�erent projects di�er�
ent multiprecision integer arithmetic packages and memory
managers were used� Therefore� the same algorithms were
implemented many times and not always in the most e	�
cient way� It seems to us that this is a typical situation in
scienti
c computing�

To overcome the problem of reusability we decided in
early ���� to organize our software in the C���library LiDIA�
The 
rst release of LiDIA will be available for the pub�
lic by the end of February ���� via anonymous ftp from
crypt��cs�uni�sb�de� It is the goal of this paper to de�
scribe the design� the contents and the use of LiDIA�

� Design of LiDIA

We 
nd that object oriented programming is appropriate
for implementing mathematical algorithms� Using an ob�
ject oriented language it is possible to create objects which
correspond to mathematical objects� Algorithms can be im�
plemented on the right level of abstraction� The implemen�
tations look very similar to the mathematical formulation of
the algorithm� So far� all software of our group was written
in C� Therefore� we decided to use C�� as the implemen�

tation language for LiDIA�
To guarantee easy portability of LiDIAwe decided to have

a very small machine dependent kernel in LiDIA� That ker�
nel currently only contains the multiprecision integer arith�
metic� In the next release it will also contain a memory man�
ager� All LiDIA classes are written in C�� and compiled
with di�erent compilers on di�erent architectures� Cur�
rently we use the compilers CC �cfront������� and g���
	�
��� g���	��x on sparc�� sparc�� mips R����� intel
��	
��	� hp ����
��� and hp ����
���

It is a serious problem to decide which multiprecision in�
teger package and which memory manager should be used in
LiDIA� There are competing multiprecision integer packages�
for example the GNU gmp�package ���� the libI�package
���� and the lip�package ���� Some of those packages are
more e	cient on one architecture and some on others� Also�
new architectures will lead to new multiprecision packages�
We decided to make LiDIA independent of a particular kernel
but to make it easy to replace the LiDIA�kernel� To achieve
this� we separate the kernel from the application programs
by an interface in which the declarations� operators� func�
tions� and procedures dealing with multiprecision integers
and the memory management are standardized� All LiDIA�
classes use the kernel through that interface� They never use
the kernel functions directly� Whenever new kernel packages
are used only the interface has to be changed appropriately
but none of the LiDIA classes has to be altered� At the mo�
ment� it is possible to use all three multiprecision integer
packages libI� GNU gmp� and lip with LiDIA�

It is the goal of the LiDIA project to develop extremely
e�cient code� We compare the running times of LiDIA with
the running times of other systems� in particular of Pari�
and we try to be faster� Of course� we learn a lot from the
implementations in other systems and we make our improve�
ments available to the groups developing the other systems�

Currently the classes of LiDIA are documented in man�

ual pages which are similar to the UNIX manual pages �see
����� We are working on a tool that makes the documenta�
tion interactively available and which in particular supports



search in the LiDIA documentation� That documentation
tool will be part of a LiDIA development environment which
will also be in the public domain such that many groups can
participate in the development of LiDIA�

Like other systems� we will make the LiDIA functions
available for quick interactive use� There will be the lan�
guage lc which supports the data types and methods of
LiDIA and an interpreter for that language� The language
lc is typeless and very similar to C��� We could have also
used another computer algebra language� for example the
Maple�language ���� Our idea was� however� that people
who develop software using the LiDIA library might want to
run experiments and to quickly write and test prototypes
using lc and then transform the lc�code into proper C���

Concluding this description we show the structure of
LiDIA in the following picture�

multiprecision integer package, memory managerI.

bigint, gmmII.

interpreter, online documentation

bigrational, bigmod, bigfloat, bigcomplex, ...III.

IV. User interface

LiDIA classes

Interface

Kernel

Figure �� LiDIA�s structure

� Contents of LiDIA

In this section we brie�y describe the contents of LiDIA ver�
sion ��� which will be available by the end of February �����
For a more detailed description we refer to the manual ����

Kernel The kernel of LiDIA contains the multiprecision in�
teger package which is used by all LiDIA classes� With
LiDIA we distribute the multiprecision integer package libI
��� which is developed by R� Dentzer ���� To our knowl�
edge� that package is the most e	cient one currently avail�
able� It exists for sparc�� sparc�� mips R����� intel
�	�
��	� hp ����
��� and hp ����
�� architectures�

LiDIA can also be used with the GNU gmp�package
which is available from prep�ai�mit�edu and with the lip�
package which can be obtained from flash�bellcore�com�

pub
lenstra �both by anonymous ftp��

The minimum requirements for a multiprecision integer
package used in the kernel are the following� That package
must support assignments� the arithmetic operations �� �� ��
�� the comparisons ��� � �� �� �� ��� ��� the comparison
with zero and the bit operations �not�� � �and�� ��or��
��xor�� Also� there must be routines for extracting square
roots� for the �extended� Euclidean algorithm and a pseudo
random number generator�

Interface The interface is a class bigint for doing multi�
precision integer arithmetic� That class calls functions from

the kernel� All operators that exist in C�� for the ma�
chine type long are overloaded in bigint and behave in the
same way� There are also procedural versions of many of the
operations�

Classes The class bigrational supports arithmetic with
rational numbers� The class bigmod supports arithmetic
in ZZ�mZZ for a positive integer m� The class big�oat sup�
ports multiprecision �oating point arithmetic including the
evaluation of elementary functions such as exp� log� sin� cos�
etc� The class bigcomplex supports arithmetic with com�
plex numbers� Again� in all those classes the standard arith�
metic operations and the standard comparison operations
are overloaded�

We present timings of multiprecision �oating point cal�
culations with the big�oat class of LiDIA� Pari��������
Maple�V�R�� andMathematica����� All calculations were
done with an accuracy of ���� decimal places on a SUN
Sparc ELC with ���� MIPS� The timings are given in mil�
liseconds�

Function LiDIA Pari Maple Mathematica

� ��� ��� � ���
� ���� ��� ����� �����
e ��� ��� ��� ��p
� �� �� ��� ���

exp�log���� ��� ���� ���� ����
log�exp���� ���� ���� ���� ����

sin����� ��� ���� ��� ���
cos����� ��� ���� ���� ����

arcsin�
p
���� ��� ���� ��� �����

arccos�
p
���� ��� ���� ��� �����

sinh�log���� ��� ���� ��� ����
cosh�log���� ��� ���� ��� ����

arsinh��� ���� ���� ��� ���
arcosh��� ���� ���� ��� ����

There are also classes in which more elaborate algorithms
are implemented� The class bigint matrix allows doing
linear algebra over the integers� In that class it is possi�
ble to compute the kernel� the image� the determinant� the
characteristic polynomial� the Hermite normal form� etc� of
an integer matrix� In the following table we list the run�
ning times needed by a SUN Sparc ELC with ���� MIPS for
the calculation of the determinant of a n � n bigint ma�
trix� The entries of the matrix were randomly chosen from
����� ��� � ��� The timings are given in seconds�

n LiDIA Pari Maple Mathematica

�� ���� ���� ��� ���
�� ��� ���� ����� ����
�� ���� ���� ����� ����
�� ����� ����� ������ �����
�� ����� ����� ������� �����
�� ����� � ����� ������
�� ������ � ������� ������
��� ������ � � ������
��� ������� � � �������
��� ������ � � �������
��� �������� � � �������
��� �������� � � �



The �� means that we were not able to compute a result
in a reasonable amount of time and space� For example in
the case �� � �� Pari required more than �� megabytes of
memory and in the case ���� ��� Maple would need more
the �� hours� Therefore� those calculations have not been
done�

The classes lattice gensys and lattice basis allow to

nd lattice bases from generating systems and to apply LLL�
reduction to lattice bases� In a future release it will also
be possible to 
nd shortest non zero lattice vectors� to 
nd
Minkowski� and Korkine�Zolotaref�reduced bases etc� In the
following table we list the running times needed by a SUN
Sparc for the calculation of the LLL�reduced matrix of a
n� n Schnorr�Factor�matrix �see ������

n LiDIA Pari Maple Mathematica

� ���� ��� ����� ���
�� ���� ���� ������ ����
�� ����� ����� � �����
�� ����� ����� � �
�� ����� ������ � �
�� ������ ����� � �
�� ������ ������ � �
�� ������ ������ � �
�� ����� ������ � �
�� ����� ����� � �
�� ������ � � �
�� ����� � � �
�� ������ � � �

The class integer factorization supports arithmetic
with factorizations of integers� In particular� in that class
the prime factorization of an integer can be found by means
of a strategy which uses trial division and the elliptic curve
method �ECM�� Our implementation of the quadratic sieve
algorithm �QS� is currently being ported to LiDIA�

In the following tables we present two factorizations found
by ECM on a Sparc ELC with ���� MIPS and the corre�
sponding timings of LiDIA� Pari� Maple and Mathemat�
ica� The timings are given in seconds�

n� � ������������������
� ���������� � ��������

n� � ����������������������������
� ��������� � ������� � ��������

Number LiDIA Pari Maple Mathematica

n� ���� ����� ������ �����
n� ����� ���� ����� ������

� How to use LiDIA

LiDIA is available via anonymous ftp from crypt��cs�uni�
sb�de� The LiDIA package comes with an installation rou�
tine which should be very easy to use� Once LiDIA is in�
stalled it can be used as any other C���library� Here is
a sample program that reads a number from the standard
input and prints its factorization on the standard output�

�include �LiDIA
integer�factorization�h�

int main��
�
integer�factorization f�
bigint n�

cout �� �enter an integer n� ��
cin �� n� 

 �� input n
f�factor�n�� 

 �� calculate and store the



 factorization of n in f
cout �� f� 

 �� output f

�

Figure �� A LiDIA program for factoring integers�

� The LiDIA Team

At the moment the LiDIA team consists of the following
people�

Werner Backes Oliver Morsch
Franz�Dieter Berger Markus Maurer
Sascha Demetrio Stefan Neis
Thomas Denny Victor Shoup
Kurt Huwig Oliver van Sprang
Thorsten Lauer Patrick Theobald
Frank Lehmann Damian Weber
Andreas M!uller Ren"e Weiskircher
Volker M!uller Susanne Wetzel

and the authors�

References

��� Batut� C�� Bernardi� D�� Cohen� H�� Olivier�
M�� �User�s Guide to PARI � GP � avail�
able with PARI�package by anonymous ftp on
megrez�math�u�bordeaux�fr� August ���

��� Buchmann� J�� D!ullmann� S�� �A probabilistic
class group and regular algorithm and its im�
plementation � Computational Number Theory
�Peth!o� A�� Pohst� M�� Williams� H�C�� Zim�
mer� H�G��eds�� Walter de Gruiter Verlag Berlin�
����� p� ������

��� Buchmann� J�� Papanikolaou� T�� �LiDIA man�
ual � Lehrstuhl Prof� Buchmann� Universit!at
des Saarlandes� �����

��� Char� B�W�� Geddes� K�O�� Gonnet� G�H��
Leong� B�L�� Monagan� M�B�� Watt� S�M��
�Maple V Library reference Manual � Waterloo
Maple Publishing� �����

��� Denny� T� Dodson� B�� Lenstra� A� K�� Man�
asse� M� S�� �On the factorization of RSA���� �
Proceedings of CRYPTO���� Springer� �����

��� Dentzer� R�� �libI� eine lange ganzzahlige Arith�
metik � IWR Heidelberg� �����

��� Granlund� T�� �The GNU Multiple Precision
Arithmetic Library � Free Software Foundation
Inc�� Cambridge� �����



�� Lehmann� F�� Maurer� M�� M!uller� V�� Shoup�
V���Counting the number of points on elliptic
curves over 
nite 
elds of characteristic greater
than three � Proceedings of the 
rst Interna�
tional Symposium on Algorithmic Number The�
ory� Lecture Notes in Computer Science ���
p� ������ �����

��� Lenstra� A�� �lip� long integer package � Bell�
core� ����

���� �SIMATH reference manual � available with
the SIMATH�package by anonymous ftp on
math�uni�sb�de�

���� von Schmettow� J�� J!untgen� M�� �KANT �
A Programmer�s Guide � available with the
KANT package by anonymous ftp on math�tu�
berlin�de�

���� Schnorr� C�P�� �Factoring Integers and Com�
puting Discrete Logarithms via Diophantine
Approximations � DIMACS Series in Discrete
Mathematics and Theoretical Computer Sci�
ence� �����

���� Weber� D�� �An implementation of the general
number 
eld sieve to compute discrete loga�
rithms mod p � submitted� �����

���� Wolfram� S�� �Mathematica� A System For
Doing Mathematics By Computer � Addison�
Wesley Publishing Company� �����


