
PARALLEL SOFTWARE CACHES

Arno Formella J�org Keller

�������

Fachbereich �� Informatik

Universit�at des Saarlandes

Postfach ������

����� Saarbr�ucken

Germany SFB ���� D�

Parallel Software Caches

Arno Formella J�org Keller�

Universit�at des Saarlandes� FB �� Informatik

����� Saarbr�ucken� Germany

Email	 fformella�jkellerg
cs�uni�sb�de� Phone	 �� ��� ��� ����

Abstract

We investigate the construction and application of parallel software caches in shared

memory multiprocessors� In contrast to maintaining a private cache for each thread� a

parallel cache allows the re�use of results of lengthy computations by other threads� This

is especially important in irregular applications where the re�use of intermediate results

by scheduling is not possible� Example applications are the computation of intersections

between a scanline and a polygon in computational geometry� and the computation of

intersections between rays and objects in ray tracing�

A parallel software cache is based on a readers�writers lock� i� e�� as long as no thread

alters the cache data structure� multiple threads may read simultaneously� If a thread

wants to alter the cache because of a cache miss� it waits until all other threads have

left the data structure� then it can update the contents of the cache� Other threads

can access the cache only after the writer has �nished its work� To increase utilization�

the cache has a number of slots that can be locked separately� We investigate the

tradeo� between slot size� search time in the cache� and the time to re�compute a cache

entry� Another major di�erence between sequential and parallel software caches is the

replacement strategy� We adapt classic replacement strategies such as LRU and random

replacement for parallel caches�

As execution platform� we use the SB�PRAM� but the concepts might be portable to

machines such as NYU Ultracomputer� Tera MTA� and Stanford DASH�

� Introduction

In time consuming computations� intermediate results are often needed more than once	 A

convenient method to save these results for later use are software caches	 When switching

to parallel computations� the easiest method is to give each thread its own private cache	

However� this is only useful if the computation shows some regularity	 Then� the compu

tation can be scheduled in such a way that a thread that wants to re
use an intermediate

result knows which thread computed this result� and that this thread in fact did compute

the result already	 Due to the arising di�culties in many applications� re
using intermedi

ate results is con�ned to the generating thread� i	 e	� the cached information is not shared	

Another disadvantage of private cachesespecially in massively parallel computers where

�Supported by a DFG habilitation scholarship�

�

memory resources are often limitedis the fact that for p threads p times as much memory

is occupied as in the sequential case	

Many challenging applications lack the required amount of regularity	 Coincidently� these

are the kind of applications that usually cannot be parallelized well on distributed memory

multiprocessors �DMM�	 For these applications� performance often is better if they are run

on shared memory machines �SMM�	 On an SMM the applications may then bene�t from

a shared parallel software cache	 By this term we mean a software cache in the shared

memory� where all threads place their intermediate results and all threads try to re
use

intermediate results� no matter which thread computed the results	

One advantage of a parallel cache is that intermediate results are calculated less frequently	

This reduces the amount of computation and thus the run time as long as the additional

communication time does not compensate the bene�t	 The memory requirements are re

duced because several processors share one data structure	 Parallel caches might be suitable

for DMMs as well	 At least for NUMA
type architectures or small scale distributed memory

systems an improvement for the run time seems possible	

There is not much literature available which deals with the possibility to reduce the amount

of computation in a parallel application while increasing the amount of communication	 For

most parallel architectures� communication between processors should be avoided if high

performance is the aim ��� ��	 But with the upcoming of shared memory architectures both

as massively parallel multiprocessors or as small scale bus oriented multiprocessors the

concept of a parallel cache promises additional performance	 We show that the SB
PRAM

��� �� is a good platform to investigate the numerous tradeo�s that one encounters while

implementing such a parallel data structure	 Some of the concepts might be transferable

to other architectures such as NYU Ultracomputer ���� Tera MTA ���� and Stanford DASH

����	

We de�ne the notion of a cache formally in section �	 The classical replacement strategies

and possible cache organizations are presented in section �	 The modi�cations for a parallel

cache are explained in section �	 The SB
PRAM as execution platform is brie�y discussed

in section �	 Section � introduces the applications FViewpar and Rayo and presents the

performance results we obtained with the parallel data structure on these applications	

Section � concludes	

� De�nition of a Cache

The notion of a cache is primarily known in hardware design	 There� the hardware cache is

a well known means to speedup memory accesses in a computer system ����	 We adapted

the concept of such an �intermediate memory� to the design of e�cient shared memory

data structures	

Let us introduce �rst some notations	 An entry e � �k� i� consists of a key k and associated

information i	 A universe U is a set of entries	 Given key k the address function m returns

the associated information i � m�k�� if �k� i� � U 	 Let us assume that for any k� function

m succeeds in calculating i	 Usually� m is a relatively complex function� we denote the time

�

to compute m�k� by tm�k�	 Universe U can be large and is not necessarily given explicitly	

We say that a universe is ordered if the keys of its entries can be ordered	

A cache C is a small �nite subset of U together with a hit function h and an update

function u	 Given key k the hit function h returns information i associated with k if the

entry e � �k� i� is located in C� i	 e	� h�k� � i i� �k� i� � C	 The hit function h is a relatively

simple function� we denote the time to compute h�k� by tc�k�	 Time tc�k� should be much

smaller than tm�k�	 For an entry e � �k� i� the update function u inserts e in the cache

C possibly deleting another entry in C	 Usually� u implements some replacement strategy	

We denote by tu�k� the time to update C with an entry which has key k	

The cache C can be used to speedup addressing of U 	 Given key k� �rst try h�k� which

delivers the information i if �k� i� � C	 If an entry is found� we call it a cache hit	 If no

entry is found� we call it a cache miss	 In the latter case� use function m�k� to calculate i	

Now� the update function u can be invoked to insert the entry e � �k� i� into C� such that

a following request with same key k succeeds in calculating h�k�	

For j subsequent accesses to the cache C� i	 e	� computing h�k��� ���� h�kj�� the ratio � � s�j

where s is the number of misses is called miss rate� analogously �� � � � � � �j � s��j

is called hit rate	 For a su�ciently large sequence of accesses� we can assume an average

access time tc � ��j �
Pj

k�� tc�k� to access the cache	 Similarly� we assume an average access

time tm to access the universe� and an average update time tu after a cache miss	 The run

time for a sequence of j accesses to U without a cache is T� � j � tm and with a cache it is

T���� � j � �tc � � � �tm � tu��

Hence� in case of worst miss rate� i	 e	� � � �� the run time is increased by a factor T�����T� �

� � �tc � tu��tm� and in best case� i	 e	� � � �� the run time is decreased by a factor

T�����T� � tc�tm	 Thus� the cache improves the run time of j consecutive accesses to U if

T���� � T� or

� �
tm � tc
tm � tu

Clearly� the improvement of the entire program depends on the portion of the overall run

time T which is spent in accessing U 	

� Replacement Strategies and Cache Organization

For the update function u one has to decide how to organize the cache C such that sub

sequent accesses to the cache perform both fast and with a high hit rate	 For a sequential

cache the following update strategies are commonly used	

LRU� least recently used� The cache entries are organized in a queue	 Every time a hit

occurs the appropriate entry is moved to the head of the queue	 The last entry in

�

the queue is replaced in case of an update	 Hence� an entry stays at least jCj access

cycles in the cache� although it might be used only once	 For an unordered universe a

linear search must be used by the hit function to examine the cache	 Starting at the

head of the queue ensures that the entry which was accessed last is found �rst	

FRQ� least frequently used� Here� the cache entries are equipped with counters	 The

counter is incremented with every access to the entry	 The one with the smallest

counter value is replaced in case of an update	 Entries often used remain in the cache

and the most frequently used are found �rst if a linear search is employed on a list

sorted by frequencies	

CWC� jCj�way cache� For a cache of �xed size the cache is simply implemented by a

round robin procedure in an array	 Thus� after jCj updates an entry is deleted�

independently of its usage count	 The update of the cache is very fast� because the

location in the cache is predetermined	

RND� random replacement cache � The cache entries are organized in an array as well	

In case of an update� one entry is chosen randomly and replaced	 For the �rst three

strategies one always �nds some update patterns which exhibit poor performance	

The probability that this happens to a random cache is usually low	

The organization of the cache partly depends on the structure of the universe	 If the

universe is not ordered� then for LRU and FRQ� the cache preferably consists of a linked

list of entries	 For a miss� the function h must search through the complete list	 For CWC

and RND the complete array must be searched� too	 However� if the universe is ordered�

then we can organize the cache such that the entries appear in sorted order	 Given key k�

function h must search until either �k� i� or an entry �k�� i�� with k� � k is found	 If the

number of entries per cache gets larger� an alternative to speed up the search is to use a

tree instead of a list	

� Parallel Caches

We assume that i concurrent threads p�� p�� � � � � pi are used in the parallel program	 Here

we mean real parallel threads that are running simultaneously on at least i processors	 The

threads need information from the universe U 	

First� we want to remark that a parallel cache behaves similar to a normal sequential cache

even in a parallel programwhen all accesses to the cache are serialized	 The serialization

may not be due to some access con�icts	 It might just be the case that the di�erent threads

are accessing the cache at di�erent instants in time� such that no concurrent access to the

data structure is necessary	

In the case that in the parallel algorithm no concurrent access is necessary� the same run

time and e�ciency remarks as given above for the sequential case hold	 For an optimally

parallelized program� each individual thread pi reduces its computation time by the factor

s��i� �
tm

tc � �i � �tm � tu�

�

where �i is the individual miss rate of thread pi	 However� �i depends on other threads

because the cache data structure is updated by all threads	 This leads to a tradeo�� the

hit rate may be higher� because another thread has pre
calculated a cache entry� or it may

be smaller� because another thread has deleted a cache entry	

We assume that the threads access the universe in parallel by executing function m concur

rently� and that the access time tm in the average does neither depend on a speci�c thread

nor the access	 Note that this may require replication of the data base on a DMM for some

applications	

��� Concurrent Accesses

If the program spends a large amount of time in accessing U and if many threads are

accessing the cache� it happens more often that concurrent accesses to the cache become

necessary	 It depends on the architecture of the parallel machine how access con�icts might

be solved	 In the worst case� all reads and writes to the cache are serialized	 On an SMM�

however� a more e�cient solution is possible	

Concurrent read accesses to the cache are simple to handle	 Updating the cache introduces

some di�culties� i� one thread wants to delete an entry of the cache which is still or just in

the same moment used by another one or ii� two threads might want to change the cache

structure at the same time	 To overcome the di�culties� a parallel data structure must be

created which is protected by a so called readers�writers lock	 A thread which wants to

perform an update locks a semaphore� when all pending read accesses have �nished� the

writer gets exclusive access to the cache	 During this time other readers and writers are

blocked	 After the update has been terminated� the writer releases the lock	

A thread pi �rst inspects the cache as a reader	 After a miss� the thread leaves the readers

queue and calculates address function m	 This gives other writers the chance to perform

their updates	 Once a new entry is found pi enters the writers queue	 Because the writers

are queued as well� pi must check again whether the entry has already been inserted in

the cache during its calculating and waiting time	 The readers�writers lock restricts the

speedup to ���� because all misses are serialized	 For an architecture that does not allow

for concurrent reads� the speedup might be even less	

A machine with atomic parallel pre�x and atomic concurrent access avoids serialization

while accessing the lock data structure and while updating the waiting queues �see descrip

tion of the SB
PRAM in section ��	

��� Improvements

To overcome the speedup restrictions that the exclusive writer imposes� one can use several

caches C�� � � � � Cj��� if there is a reasonable mapping from the set of keys to f�� � � � � j� �g	

An equivalent notation is that the cache consists of j slots� each capable of holding the

same number of entries� and each being locked independently	 While this realizes the

same functionality� it hides the structure from the user� with the exception of the mapping

�

function	 The distribution of the accesses to the di�erent slots will have a signi�cant impact

on the performance	

A di�erence between sequential and parallel software caches is the question of how to provide

the result	 In a sequential software cache it is su�cient to return a pointer to the cached

entry	 As long as no entry of the cache is deleted� the pointer is valid	 In a sequential

software cache� one will use the cached information� continue and access the cache some

time later on	 Hence� the above condition is su�cient	

In a parallel cache� the cached entry a that one thread requested might be deleted immedi

ately afterwards because another thread added an entry b to the cache and the replacement

strategy chose to delete entry a to make room for entry b	 Here� we have two possibilities	

Either we prevent the replacement strategy from doing so by locking requested entries until

they are not needed anymore	 Or� we copy such entries and return the copy instead of a

pointer to the original entry	

In our applications� all data retrieved from the cache are used in a similar way� i	e	 they

are needed for about the same amount of time	 Hence� we can determine at compile time

whether to copy or to lock and simply initialize the cache data structure appropriately	

Which one of the two methods leads to higher performance depends on the application�

i	 e	� how long a cache entry might be locked and how much overhead a copying would

produce	

For an explicitly given universe� neither locking nor copying is necessary� because the cache

contains only pointers to entries	 In case of a hit� a pointer to the entry in the universe is

returned	 The update function safely can replace the pointer in the cache although another

threads still makes use of the entry	 Additionally� the second check before the cache is

updated can be reduced to a simple pointer comparison	

��� Replacement Strategies

Another major di�erence between sequential and parallel software caches is the replacement

strategy	 The interactions between threads make it more di�cult to decide which entry to

remove from a slot	 We adapt the classic replacement strategies as described in section �

for parallel caches	

In the sequential version of LRU the entry found as a hit was moved to the beginning of

the list	 This does not work in the parallel version� because during a read no change of the

structure of the cache is possible	 The reader would need writers permissions and this would

serialize all accesses	 Note that for architectures that do not allow for concurrent reads the

movement of the entry to the head of the list can be implemented� because requests are

serialized anyway	

We implemented the parallel version of LRU as following	 Every reader updates the time

stamp of the entry that was found as a hit	 For unordered universes� a writer sorts all

entries in the cache according to their time stamps prior to updating	 The least recently

used entry is deleted	 In order to improve the run time of a write access� the sorting can

be skipped� but this might increase the subsequent search times for other threads	

�

Replacement strategy FRQ is implemented similarly	 Instead of the time stamp the reading

thread updates an access counter of the entry that was found as a hit	 A writer deletes the

entry e with lowest access frequency f�e�	 The frequency is de�ned as f�e� � a�n� where a

is the number of accesses to entry e and n is the total number of accesses to the cache since

insertion of e	 For unordered universes� the entries might be rearranged prior to updating	

There is a similar tradeo� between the sorting time and search time as for LRU	

Note that we de�ned the entries� access frequencies not by absolute numbers �as in Section

�� but relative to the total number of access since their insertion	 This removes a preference

towards �older� entries	

To go even further� the question arises whether is it fruitful to consider the whole lifespan

of an entry in the cache	 For example� if an entry is in the cache for a large number

of accesses and additionally it has a relatively high actual frequency� then the entry will

remain in the cache for a signi�cant amount of time� since its frequency is reduced very

slowly	 A possible solution to this problem is to treat only the last x accesses to the cache

to compute the actual frequency	 Previous accesses can be just ignored or one might use

some weight function which considers accumulatively blocks of x accesses while determining

the frequency	

The replacement strategies CWC and RND can be implemented similarly to the sequential

version	

� Execution Platform

The results presented in section �	� have been obtained on the SB
PRAM� a shared memory

multiprocessor simulating a priority concurrent read concurrent write PRAM ���	 It consists

of p physical processors connected via a butter�y network to p memory modules	 A physical

processor simulates several virtual processors ����� thus the latency of the network is hidden

and a uniform access time is achieved	 Each virtual processor has its own register �le and

the context between two virtual processors is switched after every instruction in a pipelined

manner	 Accesses to memory are distributed with a universal hash function so memory

congestion is avoided	 The network is able to combine accesses already on the way from

the processors to the memory location	 This mechanism avoids hot spots and is extended

to employ parallel pre�x operations which allow to implement very e�cient parallel data

structures without serialization	

A �rst prototype with four physical and ��� virtual processors is running	 Although most

of the results have been obtained through simulations of the SB
PRAM on workstations� we

have veri�ed the actual run times on the real machine ����	 Each virtual processor executes

one thread	 The predicted run times have been matched exactly with the run times obtained

by simulation	

The concepts underlying the SB
PRAM have not been developed independently from others	

The concept of virtual processors in hardware was already used in the Denelcor HEP �����

and is used again in the Tera MTA ���	 The concepts of hashing and combining were

already used in the NYU Ultracomputer ��� and IBM RP� ����	 NYU Ultracomputer� IBM

�

RP�� Tera MTA� and Stanford DASH ���� �a multiprocessor with cache
coherent virtual

shared memory� also have hardware support for parallel pre�x operations� although DASH is

restricted to increment�decrement	 The aim of the SB
PRAM is to bring all these concepts

together in a single machine	

� Experiments

��� Applications

Application FViewpar ��� realizes a �sh
eye lens on a layouted graph� the focus is given by a

polygon	 Graph nodes inside and outside the polygon are treated di�erently	 To determine

whether a node is inside the polygon� we intersect the polygon with a horizontal scanline

through the node	 The node is inside if the number of intersection points to the left of

the node is odd	 The distance of the node from the nearest intersection point is used to

compute the displacement for that node	 If a scanline does not intersect the polygon� the

nearest horizontal scanline intersecting the polygon is used	 If the scanline hits the polygon

only in one intersection point� this point is counted twice	 The parallelization is performed

with a parallel queue over all nodes of the graph	

Universe U is the set of all possible horizontal scanlines intersecting the polygon� thus all

�s� l� where s is a scanline and l is the list of intersection points between the scanline s and

the polygon	 Universe U is not given explicitly	 Thus� with the notation introduced above�

a key k is a scanline s� information i is a list of intersection points� and the address function

m is the procedure which intersects a scanline with the polygon	 The hit function h checks

whether the intersection points of the scanline s with the polygon have been calculated

already	 Time tm�k� re�ects the time for the calculation of all intersection points of the

scanline with the focus polygon	 Time tc�k� is just the search time in the cache for the

existence of the key	

The cache makes use of two facts� �rst� the intersection points of a scanline are used for

all nodes of the graph that are located on a horizontal line in the original image� and thus

exploits regularity in the input graph	 Second� the �rst and last scanline intersecting the

polygon are used for all nodes that are located above� respectively below� the polygon	

In order to implement a cache with multiple slots application FViewpar uses a simple map

ping function g	 A horizontal scanline s given as y � c� where c is constant� is mapped to

slot g�s� � c mod j	 Here� j is some small prime number� so the accesses to the slots are

distributed su�ciently uniform	

Application Rayo ��� is a ray tracer	 The cache is used to exploit image coherency	 In the

case presented here� we reduce the number of shadow testing rays	 Those rays are normally

cast from an intersection point towards the light sources� so that possibly blocking objects

are detected	 An intersection point is only illuminated if no object is found in direction

towards the light source	 We use a separate cache for each light source which is a standard

means to speedup ray tracing	 If two light sources are located closely together� one might

unify their caches	

�

Universe U is the set of all pairs �v� o� where v is a shadow volume generated by object

o and the light source	 Due to memory limitations U is not given explicitly	 A key k is

a shadow volume� information i is the blocking object o� and the address function m is

simply the ray tracing procedure for ray r �nding a possible shadow casting object	 The hit

function h examines for a new ray r� whether its origin is located in a shadow volume of an

object in the cache associated with the light source	 The cache makes use of the coherency

typically found in scenes� if two intersection points are su�ciently close to each other then

the same object casts a shadow on both points	 Here� tm�k� is the time needed by the

tracing procedure that �nds the closest intersections point of a ray in the scene	 tc�k� is

the time to check whether the ray does not leave at least one shadow volume in the cache	

An alternative approach does not compute the shadow volume explicitly� because it might

not have a simple geometrical shape	 One veri�es for a certain object in the cache whether

the object really casts a shadow on the origin of the ray	 Hence� an entry �k� i� can be

replaced simply by the information �i�� coding a previously shadow casting object	 A cache

hit returns a pointer to the object that casts the shadow	 Now� the universe is explicitly

given� because the objects are always available	 Note� that all objects in the cache must be

checked for an intersection with the ray� because no key is available to reduce the search

time	 Time tc�k� reduces to simple intersection tests of the ray with objects contained in

the cache	

For application Rayo� the mapping function g takes advantage of the tree structure while

spawning re�ected and transmitted rays	 For each node in the tree a slot is created	 Thus�

the slots allow to exploit the coherency between ray trees for adjacent pixels	

On the shared multiprocessor each processor has access to the entire scene description and

the underlying space subdivision	 Because we parallelized one of the fastest ray tracers ���

and because the problem shows a high degree of parallelism� linear absolute speedup can be

achieved	 The load distribution is performed almost optimally with the help of a parallel

queue which contains all �rst level rays	

��� Results

We tested several aspects of the concept of software caches� its scalability� the in�uence of

the replacement strategies� whether copying or locking of the information is more e�ective�

and the tradeo�s due to size of the cache and its organization	

We simulated application FViewpar for p � �i processors� i � �� � � � � �� with and without

cache	 For the cache� we used a �xed size of �� slots� each capable of holding � entries	 Ac

cessed entries were copied from the cache to the memory space of the particular thread	 Let

Tx�p� denote the runtime on p processors with replacement strategy x� where no indicates

that no cache is used	 Figure � depicts the speedups sx�p�� where sx�p� � Tno����Tx�p�� for

x � no� lru� frq� rnd� cwc	

For p � �� all replacement strategies give a runtime improvement by a factor of about ���	

As p increases� the curves fall into two categories	 RND and CWC strategies provide less

improvement� until they make the application slower than without cache for p � ���	 LRU

�

0

20

40

60

80

100

1 2 4 8 16 32 64 128

S
pe

ed
up

Processors

LRU
FRQ
RND
CWC

NO

Figure �� Scalability of the software cache

and FRQ remain better than without a cache for all p� with LRU being slightly faster than

FRQ	 Their curves slowly approach sno�p�� but this might be partly caused by saturation�

as the input graph used has only ���� nodes to be moved� so with p � ���� each processor

has to move just �� nodes	

The miss ratios were close to �� percent for all replacement strategies� hence the miss ratios

cannot cause the di�erent behavior	 It seems to be caused either by di�erent search times

in the cache� or misses that occur concurrently for one strategy might lead to additional

serialization	 Further investigations are necessary to understand this behaviour	

As LRU turns out to be the best of the replacement strategies� we used it to compare locking

and copying of cached entries	 Figure � depicts the two speedup curves� processor numbers

and cache sizes were chosen as before	 The size of the cached entries is � words	 Locking is

�� to �� percent faster than copying� so it is a de�nite advantage in this application	

Last� we compared di�erent cache sizes and organizations	 Again� we used LRU as replace

ment strategy� and we �xed p � ��	 Let fTj�k� denote the runtime with a cache of size k and

j slots� so each slot is capable of holding k�j entries	 Figure � depicts the speedup curves

sj�k� � Tno����fTj�k� for k � �i� i � �� � � � � ��� and for k � �� i	 e	� a cache of unrestricted

size	 Note that for a cache with j slots� k � j	

For a �xed cache size k� sj�k� grows with j� if we do not consider the case k � j� where each

cache slot can contain only one entry	 This means� that for a cache of size k� one should

choose j � k�� slots� each capable of holding two entries	 The only exception is k � ��	

Here j � � is better than j � �	

For �xed j� the performance improves up to a certain value of k� in our case k � �j or

k � �j	 For larger cache sizes� the performance decreases again	 Here� the searches through

��

0

20

40

60

80

100

1 2 4 8 16 32 64 128

S
pe

ed
up

Processors

Locking
Copying

Figure �� Comparison of Copying and Locking of Items

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128 256 512 1024 inf.

S
pe

ed
up

Cache size

32 slots
16 slots
8 slots
4 slots
2 slots
1 slot

Figure �� Comparison of Cache Sizes

��

longer lists need more time than caching of more entries can save	 Astonishingly� if we give

the cache an arbitrary size k � �� then the performance is increased again	 The reason

might be that from some k on� each entry is only computed once and never replaced	 Note

that the miss ratio remains constantly close to �� percent for j � �� and k � ��	

If the cache size is chosen too small� the speedup is less than �� i	 e	� the program is slower

than without cache for k � �	 For k � ��� the gain when doubling the cache size gets

smaller with growing k	 In this spirit� the choice k � �� and j � �� for the comparison of

speedups was not optimal but a good choice	

Ordered versus unordered implementation shows a slightly better performance	 Almost

independently from the number of processors the ordered organization is about � percent

faster than the unordered implementation	

For application Rayo we decided to implement only the cache with LRU replacement strat

egy	 The decision is based on the fact� that usually the object which was found last is a good

candidate as blocking object for the next intersection point	 As we will see in the on
going�

the optimal cache size is quite small� so one can infer that at least for the presented scenes

the update strategy has not a large impact on performance	 The results are presented for

a scene of ��� objects and four light sources	 Image resolution was set to ���� ���� �����

primary rays and ����� secondary rays are traced	 Four light sources make ������ shadow

rays necessary� ����� of them hit a blocking object	 We measured the hit and miss rates

in the cache respective to the actually hitting rays� because if the shadow does not hit any

object we cannot expect to �nd a matching cache entry	 The cache can only improve the

run time for hitting shadow rays� thus it can improve at most �� percent of the run time	

We focus only on the inner loop of the ray tracer� where more than �� percent of the run

time is spent	

We simulated application Rayo for p � �i processors� i � �� � � � � �	 Figure � shows some

relative speedups� where we varied the size and the number of slots	 Let us denote with

Tx�p� the run time of the inner loop running on p processors	 Here� x indicates the number

of entries in the cache� s� is the relative speedup T��p��T��p�� s� is the relative speedup

T��p��T��p�� and s� is the relative speedup T��p��T��p�� respectively	 Speedup s�� the best

one in �gure �� is obtained if we use one slot in the cache for every node in the ray tree	

The size of the slot was set to only one entry	 Increasing the slot size to two entries already

led to a small loss of performance	

For small numbers of processors� a larger cache has some advantages� but with increasing

number of processors the smaller cache becomes the better one	 As the curve for s� implies�

this is due to the con�icts during updating the cache	 The processors are working at di�erent

levels in the ray tree and one single cache cannot provide the correct blocking object	 As

long as few processors are competing� the larger the cache the better the performance is	

The search time in the larger cache together with the serialization during update has a

negative impact on performance for a large number of processors	 However� adapting the

cache to the structure of the ray tree exhibits a large speedup s�	 Even for ��� processors a

speedup of �� percent has been achieved	 Note that only �� percent of the run time can be

improved� thus� �� percent of the run time during shadow determination has been saved	

For the run time of one single processor a slightly better update strategy was implemented�

��

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 16 32 64 128

R
el

at
iv

e
S

pe
ed

up

Processors

s1
s2
s3
s4

Figure �� Relative Speedups for Di�erent Cache Sizes and Numbers of Slots

because we can a�ord an update of the cache during every access	 After a cache miss�

the least recently used object is removed from the cache if the update function u does

not provide a blocking object	 This performs better for a single processor because after

a shadow boundary has been passed� it is quite unlikely that the previous object which

cast the shadow will be useful again	 This method cannot be implemented when more

than one processor is present because too many serializing writes to the cache would occur	

Nevertheless� the run times in �gure � demonstrate that the parallel cache even with the

weaker replacement strategy outperforms the version with no cache	

Instead of sharing one data structure� one might provide each processor with its own cache	

This leads to p times the memory size occupied by the cache structure� such that for

large numbers of processors memory limitations may become problematic	 Figure � shows

that the hit rate for the parallel cache is signi�cantly larger than the average hit rate for

the individual caches	 The di�erence increases with larger numbers of processors	 The

di�erence for one processor in the �gure is explained by the alternative implementation of

the replacement strategy	 If the cache is owned by a single processor� we always deleted the

least recently used object	

The large di�erence in the hit rates does not imply necessarily a large gain in run time� as

it is illustrated in �gure �	 The relative speedup between a version with individual caches

and a version with a parallel cache is always close to one� but tends to be larger for �� and

�� processors	 Remembering that the cache improves at most the run time of �� percent

of the overall run time� in this portion of the program almost � percent are gained	 The

e�ect is due to the cache overhead and the serialization while updating	 Nevertheless� the

parallel cache saves memory and additionally improves the run time slightly	

��

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128

H
it

R
at

e

Processors

shared
own

Figure �� Hit Rates for Individual and Parallel Cache

0.9

0.95

1

1.05

1.1

1 2 4 8 16 32 64 128

R
el

at
iv

e
S

pe
ed

up

Processors

Figure �� Relative Speedup for Individual and Parallel Cache

��

� Conclusion

We introduced formally the concept of a parallel software cache and implemented the data

structure on a parallel machine SB
PRAM	 We demonstrated the advantages of such a

cache	 It uses less memory than individual caches for each thread would occupy	 Moreover�

for certain applications a faster execution time can be expected� because intermediate results

are shared	

We adapted several classical replacement strategies� such as least recently used� least fre

quently used� random replacement� and jCj way cache to the parallel case	 A readers�writers

lock which is used to protect the cache during update serializes all write accesses	 Provid

ing several slots in the cache which can be updated independently reduces the negative

impact of the serialization	 The modi�ed LRU strategy was found to be best� at least in

the presented applications FViewpar and Rayo	

Concurrent read and a fast lock structure are essential to achieve good performance	 The

parallel multi
pre�x operation which is available in the SB
PRAM appeared to be a very

powerful operation to implement the parallel data structure e�ciently	 As other machines

such as Tera MTA� Stanford DASH and NYU Ultracomputer support such operations as

well� the solution seems portable	 The cache entries can be locked by a reader or copied to

the readers� memory space	 For the SB
PRAM locking performed better than copying	 We

analyzed several tradeo�s which occur in the design of parallel caches	 For the ray tracer�

we have seen that the version with a parallel cache outperforms the program where each

thread uses its own individual cache	 The parallel version both wins in run timealthough

only slightlyand in memory usage	

The shared memory data structure allows to hide many implementational details of the

concept	 The same functions can be used in a wide range of applications which at �rst

sight do not exhibit a large amount of regularity	 The dynamic behavior of the parallel

cache can improve the run time as long as the parameters of the cache are carefully chosen	

The concept of a parallel cache as a data structure might be useful for sequential programs

consisting of several interacting threads as well	 Here there might exist data exchange

between the threads which is not predictable statically in advance	 The parallel cache

which is accessed by all threads might improve the e�ciency of the program	

The SB
PRAM as simulation platform allows for a quantitative analysis� because as a

UMA
architecture its performance is predictable and explainable	 Once crucial parameters

have been detected� the promising implementation can be ported to other shared memory

architectures �NUMA� or even in certain cases to distributed memory machines	

References

��� Ferri Abolhassan� Reinhard Drefenstedt� J�org Keller� Wolfgang J	 Paul� and Dieter

Scheerer	 On the physical design of PRAMs	 Computer Journal� ��������� ���� De

cember ����	

��

��� Ferri Abolhassan� J�org Keller� and Wolfgang J	 Paul	 On the cost e�ectiveness of

PRAMs	 In Proceedings of the �rd IEEE Symposium on Parallel and Distributed Pro�

cessing� pages � �	 IEEE� December ����	

��� George S	 Almasi and Allan Gottlieb	 Highly Parallel Computing	 The Ben

jamin�Cummings Publishing Company� Inc	� �nd edition� ����	

��� Robert Alverson� David Callahan� Daniel Cummings� Brian Koblenz� Allan Porter�eld�

and Burton Smith	 The Tera computer system	 In Proceedings of the ���� International

Conference on Supercomputing� pages � �	 ACM� ����	

��� Arno Formella	 Ray Tracing Complex Scenes� Parallel or Sequential! In M	"H	 Hamza�

editor� Proceedings of �th IASTED�ISMM International Conference on Parallel and

Distributed Computing and Systems� pages �� ��	 IASTED Acta Press� October ����	

��� Arno Formella and Christian Gill	 Ray Tracing� A Quantitative Analysis and a New

Practical Algorithm	 The Visual Computer� ��������� ���� December ����	

��� Arno Formella and J�org Keller	 Generalized Fisheye Views of Graphs	 In Proceedings

Graph Drawing ���� Lecture Notes in Computer Science� LNCS ����� pages ��� ���	

Springer Verlag� December ����	

��� Geo�rey C	 Fox� Roy D	 Williams� and Paul C	 Messina	 Parallel Computing Works	

Morgan Kaufmann� ����	

��� Allan Gottlieb� Ralph Grishman� Clyde P	 Kruskal� Kevin P	 McAuli�e� Larry Rudolph�

and Marc Snir	 The NYU ultracomputer designing an MIMD shared memory parallel

computer	 IEEE Transactions on Computers� C ��������� ���� February ����	

���� Thomas Gr�un� Thomas Rauber� and Jochen R�ohrig	 The programming environment

of the SB PRAM	 In Proceedings of the 	th IASTED�ISMM International Conference

on Parallel and Distributed Computing and Systems� pages ��� ���	 Acta Press� ����	

���� Jim Handy	 The Cache Memory Book	 Academic Press� San Diego� CA� ����	

���� J�org Keller� Wolfgang J	 Paul� and Dieter Scheerer	 Realization of PRAMs� Processor

design	 In Proceedings WDAG ��
� �th International Workshop on Distributed Al�

gorithms� Lecture Notes in Computer Science ���� pages �� ��	 Springer� September

����	

���� Daniel Lenoski� James Laudon� Kourosh Gharachorloo� Wolf
Dietrich Weber� Anoop

Gupta� John Hennessy� Mark Horowitz� and Monica S	 Lam	 The Stanford DASH

multiprocessor	 IEEE Computer� �������� ��� March ����	

���� G	F	 P�ster� W	C	 Brantley� D	A	 George� S	L	 Harvey� W	J	 Kleinfelder� K	P	

McAuli�e� E	A	 Melton� V	A	 Norton� and J	 Weiss	 The IBM research parallel pro

cessor prototype �RP��� Introduction and architecture	 In Proceedings of the ����

International Conference on Parallel Processing� pages ��� ���	 IEEE� ����	

���� B	J	 Smith	 A pipelined shared resource MIMD computer	 In Proceedings of the ��	�

International Conference on Parallel Processing� pages � �	 IEEE� ����	

��

