
Cache Behavior Prediction by Abstract Interpretation

Christian Ferdinand Florian Martin Reinhard Wilhelm

Martin Alt

Universit�at des Saarlandes� Fachbereich Informatik� Postfach �� �� ��� D������

Saarbr�ucken� Germany� fferdi�	orian�wilhelm�altg
cs�uni�sb�de

Abstract

Abstract interpretation is a technique for the static detection of dynamic proper�
ties of programs� It is semantics based� that is� it computes approximative properties
of the semantics of programs� On this basis� it allows for correctness proofs of anal�
yses� It replaces commonly used ad hoc techniques by systematic� provable ones�
and it allows the automatic generation of analyzers from speci�cations as in the
Program Analyzer Generator� PAG�

In this paper� abstract interpretation is applied to the problem of predicting
the cache behavior of programs� Abstract semantics of machine programs are de�
�ned which determine the contents of caches� For interprocedural analysis� existing
methods are examined and a new approach that is especially tailored for the cache
analysis is presented� This allows for a static classi�cation of the cache behavior of
memory references of programs� The calculated information can be used to sharpen
worst case execution time estimations� It is possible to analyze instruction� data�
and combined instruction�data caches for common �re�placement and write strate�
gies� Experimental results are presented that demonstrate the applicability of the
analysis�

Keywords� abstract interpretation� program analysis� cache memories� real time
applications� worst case execution time prediction�

� Cache Memories and Real�Time Applications

Caches are used to improve the access times of fast microprocessors to rela�
tively slow main memories� They can reduce the number of cycles a processor
is waiting for data by providing faster access to recently referenced regions
of memory � � Caching is more or less used for all general purpose processors�

�Hennessy and Patterson �	
� describe typical values for caches in 	��
 worksta�
tions and minicomputers Hit time 	�� clock cycles �normally 	�� Miss penalty ����
clock cycles�

Preprint �� March ����

and� with increasing application sizes it becomes more and more relevant and
used for high performance microcontrollers and DSPs�

Programs with hard real�time constraints have to be subjected to a schedu�
lability analysis� e�g� by the compiler ������� This should determine whether
all timing constraints can be satis	ed� WCET
Worst Case Execution Time�
extimations for processes have to be used for this� The degree of success for
such a timing validation ���� depends on sharp WCET estimations� There are
two components to the prediction of WCETS

i� architecture modeling� the determination of how much time it will take
to execute an execution path on the target system� and

ii� program path analysis� the determination of a worst case execution path�

Here� we focus on the 	rst point�

For hardware with caches� the typical worst case assumption is that all accesses
miss the cache� This is an overly pessimistic assumption which leads to a waste
of hardware resources�

� Overview

In the following Section we brie�y sketch the underlying theory of abstract
interpretation and present the program analyzer generator PAG� Cache mem�
ories are brie�y described in Section �� In Section � we give a semantics for
programs that re�ects only memory accesses
to 	xed addresses� and its ef�
fects on cache memories� and we present the must analysis that computes for
all program points a set of memory blocks that must be in the cache when�
ever control reaches this point and the may analysis that computes a set of
memory blocks that may be in the cache� The behavior of memory references
within loops and recursive procedures can be analyzed with interprocedural
analysis methods� In Section � existing approaches are discussed and a new
approach is presented� An example is given in Section �� Section � describes
extensions to data and combined caches� In Section �� we present and discuss
the results of practical experiments from an implementation of the analyses�
and Section �� describes related work�

� Program Analysis by Abstract Interpretation

Program analysis is a widely used technique to determine runtime properties
of a given program without actually executing it� Such information is used

�

for example in optimizing compilers ���� to enable code improving transfor�
mations� A program analyzer takes a program as input and computes some
interesting properties� Most of these properties are undecidable� Hence� both
correctness and completeness of the computed information are not achievable
together� Program analysis makes no compromise on the correctness side� the
computed information is reliable as for enabling optimizing transformations� It
can�t thus guarantee completeness� The quality of the computed information�
usually called its precision� should be as good as possible�

There is a well developed theory of static program analysis called abstract
interpretation ������ With this theory� correctness of a program analysis can
be easily derived� According to this theory a program analysis is determined
by an abstract semantics� Usually� the meaning of a language is given as func�
tions for the statements of the language computing over a concrete domain�
A domain is a complete partially ordered set of values� For such a semantics�
an abstract version consists of a new simpler abstract domain and simpler
abstract functions which de	ne the abstract meaning for every program state�
ment�

For an abstract semantics and an input program� a system of recursive equa�
tions can be constructed� The variables in this system stand for the values
of the abstract domain at every program point� In this equation system� the
value at a program point depends on the values at all program points which
can directly precede the execution of this program point� For example� the
value after the exit of a loop depends on the value at the end of the loop
body and on the value before the loop because it is possible that the loop
is never executed� The control �ow graph of a program describes every pos�
sible �ow of control and therefore all dependencies between the variables of
the equation system� Lattice theory underlying abstract interpretation states
that the recursive equation system can be solved by 	xpoint iteration if the
abstract domain has only 	nite ascending chains� i�e�� every chain of values
v� � v� � � � � has only 	nite length� and if in addition every semantic function
is monotonic�

The program analyzer generator PAG ����� o�ers the possibility to generate a
program analyzer from a description of the abstract domain and of the ab�
stract semantic functions in two high level languages� one for the domains and
the other for the semantic functions� Domains can be constructed inductively
starting from simple domains using operators like constructing power sets
and function domains� The semantic functions are described in a functional
language which combines high expressiveness with e�cient implementation�
Additionally the user has to supply a join function combining two domain
values into one� This function is applied whenever a point in the program has
two
or more� possible execution predecessors�

�

� Cache Memories

A cache can be characterized by three major parameters

� capacity is the number of bytes it may contain�
� line size
also called block size� is the number of contiguous bytes that

are transferred from memory on a cache miss� The cache can hold at most
n � capacity�line size blocks�

� associativity is the number of cache locations where a particular block may
reside� n�associativity is the number of sets of a cache� A set can be consid�
ered as a fully associative subcache�

If a block can reside in any cache location� then the cache is called fully
associative� If a block can reside in exactly one location� then it is called direct
mapped� If a block can reside in exactly A locations� then the cache is called
A�way set associative �����

In the case of an associative cache� a memory block has to be selected for
replacement when the cache is full and the processor requests further data�
This is done according to a replacement strategy� Common strategies are LRU

Least Recently Used�� FIFO
First In First Out�� and random�

We restrict our description to the semantics of A�way set associative caches
with LRU replacement strategy� The fully associative and the direct mapped
caches are special cases of the A�way set associative cache where A � n and
A � � rsp�

� Cache Semantics

In the following� we consider an A�way set associative cache as a sequence of

fully associative� sets F � hf�� � � � � fn�Ai� a set fi as a sequence of set lines
L � hl�� � � � � lAi� and the store as a set of memory blocks M � fm�� � � � �msg�

The function adr M � N� gives the address of each memory block� The
function set M � F gives the set where a memory block would be stored

� denotes the modulo division�

set
m� � fi� where i � adr
m��
n�A� � �

To indicate the absence of any memory block in a set line� we introduce a new
element I� M � � M � fIg�

�

Our cache semantics separates two key aspects

� The set where a memory block is stored This can statically be determined
as it depends only on the address of the memory block� The dynamic dis�
tribution of memory blocks into sets is modeled with the cache states�

� The aspect of associativity and the replacement strategy within one set of
the cache Here the history of memory reference executions is relevant� This
is modeled with the set states�

De�nition � �concrete set state	 A �concrete� set state is a function s
L�M �� S denotes the set of all concrete set states�

De�nition � �concrete cache state	 A �concrete� cache state is a function
c F � S� C denotes the set of all concrete cache states�

If s
lx� � m for a concrete set state s� then x describes the relative age of
the memory block according to the LRU replacement strategy and not the
physical position in the cache hardware�

The update function describes the side e�ects on the set
cache� of referencing
the memory

� The set where a memory block may reside in the cache is uniquely deter�
mined by the address of the memory block� i�e�� the behavior of the sets is
independent of each other�

� The LRU replacement strategy is modeled by using the positions of memory
blocks within a set to indicate their relative age� The order of the memory
blocks re�ects the �history� of memory references�

The most recently referenced memory block is put in the 	rst position
l� of the set� If the referenced memory block m is in the set already� then
all memory blocks in the set that have been more recently used than m
are shifted by one position to the next set line� i�e�� they increase their
relative age by one� If the memory block m is not yet in the set� then all
memory blocks in the cache are shifted and the �oldest�� i�e�� least recently
used memory block is removed from the set�

De�nition � �set update	 A set update function US S�M � S describes
the new set state for a given set state and a referenced memory block�

De�nition � �cache update	 A cache update function UC C �M � C
describes the new cache state for a given cache state and a referenced memory
block�

Updates of fully associative sets with LRU replacement strategy are modeled

�

in the following way

US
s�m� �

���������������
��������������

�l� �� m�

li �� s
li��� j i � � � � � h�

li �� s
li� j i � h � � � � � A�� if �lh s
lh� � m

�l� �� m�

li �� s
li��� for i � � � � � A�� otherwise

Notation �y �� z� denotes a function that maps y to z� f �y �� z� denotes a
function that maps y to z and all x �� y to f
x��

Updates of A�way set associative caches are modeled in the following way

UC
c�m� � c�set
m� �� US
set
m��m��

��� Control Flow Representation

We represent programs by control �ow graphs consisting of nodes and typed
edges� The nodes represent basic blocks � � For each basic block� the sequence
of references to memory is known � � i�e�� there exists a mapping from control
�ow nodes to sequences of memory blocks L V �M��

We can describe the working of a cache with the help of the update function
UC � Therefore� we extend UC to sequences of memory references

UC
c� hm�� � � � �myi� � UC
� � �UC
c�m�� � � � �my�

The cache state for a path
k�� � � � � kp� in the control �ow graph is given by
applying UC to the initial cache state cI that maps all set lines in all sets to I
and the concatenation of all sequences of memory references along the path
UC
cI �L
k��� ��� �L
kp���

�A basic block is a sequence �of fragments� of instructions in which control �ow
enters at the beginning and leaves at the end without halt or possibility of branching
except at the end� For our cache analysis� it is most convenient to have one memory
reference per control �ow node� Therefore� our nodes may represent the di�erent
fragments of machine instructions that access memory�
�This is appropriate for instruction caches and can be too restricted for data caches

and combined caches� See Section � for weaker restrictions�

�

��� Abstract Semantics

The domain for our abstract interpretation consists of abstract cache states
that are constructed from abstract set states

De�nition � �abstract set state	 An abstract set state �s L � �M
�

maps
set lines to sets of memory blocks� �S denotes the set of all abstract set states�

De�nition
 �abstract cache state	 An abstract cache state �c F � �S
maps sets to abstract set states� �C denotes the set of all abstract cache states�

We will present two analyses� Themust analysis determines a set of memory
blocks that are de	nitely in the cache whenever control reaches a given pro�
gram point� The may analysis determines all memory blocks that may be in
the cache at a given program point� The latter analysis is used to guarantee
the absence of a memory block in the cache�

The analyses are used to compute a categorization for each memory reference
that describes its cache behavior� The categories are described in Table ��

Table 	
Categorizations of memory references�

Category Abb� Meaning

always hit ah The memory reference will always result in a cache hit�

always miss am The memory reference will always result in a cache miss�

not classi�ed nc The memory reference could neither be classi�ed as ah

nor am�

The abstract semantic functions describe the e�ect of a memory reference
on an element of the abstract domain� The abstract set �cache	 update
function �U for abstract set
cache� states is an extension of the set
cache�
update function U to abstract set
cache� states�

On control �ow nodes with at least two � predecessors� join�functions are used
to combine the abstract cache states�

De�nition � �join function	 A join function �J �C� �C �� �C combines two
abstract cache states�

�Our join functions are associative� On nodes with more than two predecessors�
the join function is used iteratively�

�

��	 Must Analysis

An abstract cache state �c describes a set of concrete cache states c� and an
abstract set state �s describes a set of concrete set states s�

To determine if a memory block is de	nitely in the cache we use abstract set
states where the position
the relative age� of a memory block in the abstract
set state �s is an upper bound of the positions
the relative ages� of the memory
block in the concrete set states that �s represents�

ma � �s
lx� means that the memory block ma is in the cache� The position

relative age� of a memory blockma in a set can only be changed by references
to memory blocks mb with set
ma� � set
mb�� i�e�� by memory references that
go into the same set� Other memory references do not change the position of
ma� The position is also not changed by references to memory blocks mb �
�s
ly� where y 	 x� i�e�� memory blocks that are already in the cache and are
�younger� or the same age as ma�

ma will stay in the cache at least for the next A
 x references that go to the
same set and are not yet in the cache or are older than ma�

The meaning of an abstract cache state is given by a concretization function
conc �C �C � �C � The concretization function for the must analysis conc��C is
given by

conc��C
�c� � fc j �� 	 i 	 n�A c
fi� � conc��S
�c
fi��g

conc��S
�s� � fs j �� 	 a 	 A �m � �s
la� �b s
lb� � m and b 	 ag

We use the following abstract set update function

�U�
�S

�s�m� �

�������������������
������������������

�l� �� fmg�

li �� �s
li��� j i � � � � � h
 ��

lh �� �s
lh��� �
�s
lh�
 fmg��

li �� �s
li� j i � h� � � � � A�� if �lh m � �s
lh�

�l� �� fmg�

li �� �s
li��� j i � � � � � A�� otherwise

�

Example � � �U�
�S
	 l� l� l� l�

�s fmag fg fmb�mcg fmdg

�U�
�S

�s�mc� fmcg fmag fmbg fmdg

The address of a memory block determines the set in which it is stored� This
is re�ected in the abstract cache update function in the following way

�U�
�C

�c�m� � �c�set
m� �� �U�

�S

�c
set
m���m��

The join function for abstract set states is similar to set intersection� A memory
block only stays in the abstract set state� if it is in both operand abstract set
states� It gets the oldest age� if it has two di�erent ages�

�J �
�S

�s�� �s�� � �s� where

�s
lx� � fm j �la� lb with m � �s�
la��m � �s�
lb� and x � max
a� b�g

Example � � �J �
�S
	 l� l� l� l�

�s� fmag fmbg fmcg fmdg

�s� fmcg fmeg fmag fmdg

�J �
�S

�s�� �s�� fg fg fma�mcg fmdg

The join function for abstract cache states applies the join function for abstract
set states to all its abstract set states

�J �
�C

�c�� �c�� � �fi �� �J �

�S

�c�
fi�� �c�
fi���� for all � 	 i 	 n�A

An abstract cache state �c at a control �ow node k is interpreted in the following
way Let m a memory block and �s � �c
set
m��� If m � �s
ly� for a set line
ly then m is de	nitely in the cache every time control reaches k� Therefore� a
reference to m is categorized as always hit
ah��

��
 May Analysis

To determine� if a memory block is never in the cache� we compute the set
of all memory blocks that may be in the cache� We use abstract set states �s
where the position
the relative age� of a memory block in the abstract set

state is a lower bound of the positions
the relative ages� of the memory blocks
in the concrete set states that �s represents�

ma � �s
lx� means the memory blocks ma may be in the cache� The position

relative age� of a memory blockma in a set can only be changed by references
to memory blocks mb with set
ma� � set
mb�� i�e�� by memory references that
go into the same set� Other memory references do not change the position of
ma� The position is also not changed by references to memory blocks mb �
�s
ly� where y � x� i�e�� memory blocks that are already in the cache and are
�younger� as ma�

If there are no memory references to ma� then ma will be removed from the
cache after at most A
 x � � references to memory blocks that go into the
same set and are not yet in the cache or are older or the same age than ma�

The concretization function for the may analysis conc��C is given by

conc��C
�c� � fc j �� 	 i 	 n�A c
fi� � conc��S
�c
fi��g

conc��S
�s� � fs j �� 	 a 	 A �m � s
la� �b �s
lb� � m and b 	 ag

We use the following abstract set update function

�U�
�S

�s�m� �

�������������������
������������������

�l� �� fmg�

li �� �s
li��� j i � � � � � h�

lh�� �� �s
lh��� �
�s
lh�
 fmg��

li �� �s
li� j i � h� � � � � A�� if �lh m � �s
lh�

�l� �� fmg�

li �� �s
li��� j i � � � � � A�� otherwise

Example � � �U�
�S
	 l� l� l� l�

�s fmag fmb�mcg fg fmdg

�U�
�S

�s�mc� fmcg fmag fmbg fmdg

The abstract cache update function for the may analysis has the same struc�
ture as the one for the must analysis

�U�
�C

�c�m� � �c�set
m� �� �U�

�S

�c
set
m���m��

��

The join function is similar to set union� If a memory block s has two di�erent
ages in two abstract cache states then the join function takes the youngest
age�

�J �
�S

�s�� �s�� � �s� where

�s
lx�� fm j �la� lb with m � �s�
la��m � �s�
lb� and x � min
a� b�g

� fm j m � �s�
lx� and � �la with m � �s�
la�g

� fm j m � �s�
lx� and � �la with m � �s�
la�g

Example � � �J �
�S
	 l� l� l� l�

�s� fmag fmbg fmcg fmdg

�s� fmcg fme�mfg fmag fmdg

�J �
�S

�s�� �s�� fma�mcg fmb�me�mfg fg fmdg

The join function for abstract cache states for the may analysis has the same
structure as for the the must analysis

�J �
�C

�c�� �c�� � �fi �� �J �

�S

�c�
fi�� �c�
fi���� for all � 	 i 	 n�A

An abstract cache state �c at a control �ow node k is interpreted in the following
way Let m be a memory block and �s � �c
set
m��� If m is not in �s
ly� for an
arbitrary ly then it is de	nitely not in the cache whenever control reaches k�
Therefore� a reference to m is categorized as always miss
am��

��� Termination of the Analysis

There are only a 	nite number of sets and set lines and for each program a
	nite number of memory blocks� This means the domain of abstract cache
states �c F �
L � �M

�

� is 	nite� Hence� every ascending � chain is 	nite�
Additionally� the abstract cache update functions �U and the join functions �J
are monotonic� This guarantees that our analysis will terminate�

�The order is given by set inclusion and the concretization functions�

��

 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest� since programs spend
most of their time there� In a control �ow graph� a loop is represented as a
cycle� The start node of a loop 	 has two incoming edges� One represents the
entry into the loop� the other represents the control �ow from the end of the
loop to the beginning of the loop� The latter is called loop edge
see Figure ���

start node

loop edge

Fig� 	� Control �ow graph of a loop�

There are loops that can iterate more than once� Since the execution of the
loop body usually changes the cache contents� it is useful to distinguish the
	rst iteration from others� This could be achieved by conceptually unrolling
each loop once�

Example � Let us consider a su�ciently large fully associative data cache
with LRU replacement strategy and the following program fragment

� � �

�� Variable x not in the data cache ��

for i��� to �� do � � � y��x � � � end

� � �

	We consider here loops that correspond to the loop constructs of �higher pro�
gramming languages�� Program analysis is not restricted to this� but will produce
more precise results for programs with well behaved control �ow�

��

In the 	rst execution of the loop� the reference to x will be a cache miss�
because x is not in the cache� In all further iterations the reference to x will
be a cache hit� if the cache is su�ciently large to hold all variables referenced
within the loop�

For the abstract interpretation� the join function �J � combines the abstract
cache states at the start node of the loop� Since the join function is �similar�
to set intersection� the combined abstract cache state will never include the
variable x� because x is not in the abstract cache state before the loop is
entered� For a WCET computation for a program this is a safe approximation�
but nevertheless not very good�

Loop unrolling would overcome this problem� After the 	rst unrolled iteration�
x would be in the abstract cache state and would be classi	ed as always hit�

For our analysis of cache behavior we treat loops as procedures to be able to
use existing methods for the interprocedural analysis
 � This is done by trans�
forming all loops into �loop�procedures� in the control �ow graph according
to Figure �� This is only done for the analyses and has no in�uence on the
program code�

proc loopL��	
��� if P then

while P do BODY

BODY �� loopL��	
��

end	 end
���

���

loopL��	
��
���

Fig� �� Loop transformation�

In the presence of
recursive� procedures� a memory reference can be executed
in di�erent execution contexts� An execution context corresponds to a path in
the call graph of the program�

The interprocedural analysis methods di�er in which execution contexts are
distinguished for a memory reference within a procedure� Widely used are the
callstring approach and the functional approach which have been proposed by
Sharir and Pnueli �� � and are implemented in PAG�

 Ludwell Harrison III ��� also proposed this transformation for the analysis of
loops�

��

The callstring approach limits the number of distinguished execution contexts
statically� To do this the call graph is considered� The goal is� not to merge
information that is obtained on di�erent paths through the graph� But in
presence of recursion� the graph is cyclic and therefore has an in	nite number
of paths� So only the information obtained on paths which di�er in su�xes of
a 	xed length K are kept separated�

In the functional approach� the number of distinguished execution contexts is
not statically limited� The PAG generated analyzer tabulates all di�erent input
values and output values of the abstract domain
here abstract cache states�
for every procedure� To guarantee termination of the analysis� the abstract
domain has to be 	nite� The functional approach computes the most precise
solution�

The applicability of these approaches to the cache behavior prediction is lim�
ited

� Callstring approach� If we restrict the callstring length K to �
call�
string
���� then one categorization for each memory reference in the program
is computed� This is fast� but yields not very precise information�

Callstring
�� gives better results� as it distinguishes as many di�erent
execution contexts of a memory reference in a procedure as there are calls�
For each transformed loop there is one call to the loop�procedure at the
original place of the loop in the program
��
see Figure �� and one for the
recursive call of the loop�procedure
��� The 	rst call corresponds to the 	rst
iteration of the loop� The second call corresponds to all other iterations of
the loop�

Longer callstrings increase the analysis e�ort and lead to a more pre�
cise categorization� The precision gained is quite poor with respect to the
enormously increasing analysis costs� as there are many execution contexts
distinguished that are �non interesting� for our analysis�

� Functional approach� The dynamically distinguished execution contexts
cannot be easily combined with the results of a program path analysis that
determines a safe approximation to the worst case execution path� This
makes a WCET estimation more di�cult�

To overcome the de	ciencies of the callstring
��� and the functional ap�
proaches� we have developed the VIVU approach which has been imple�
mented with the mapping mechanism of PAG as described in ���� It corre�
sponds to callstring
�� but paths through the call graph that only di�er
in the number of repeated passes through a cycle are not distinguished� It
can be compared with a combination of virtual inlining of all non recursive
procedures � and virtual unrolling of the 	rst iterations of all recursive proce�

�This has also been used in ����	���

��

dures
and loop�procedures�� The results of the VIVU approach can naturally
be combined with the results of a path analysis to predict the WCET of a
program�

The results of the callstring
��� callstring
��� and the VIVU approach are
compared in Section ���

� Example

We consider must and may analyses for a fully associative data cache of �
lines for the following program fragment of a loop� where ��x�� stands for a
construct that references variable x

while ��e�� do ��b��� ��c��� ��a��� ��d��� ��c�� end

The control �ow graph and the result of the analyses with VIVU � are shown in
Figure �� We assume that all variables are stored in pairwise di�erent memory
blocks� The nodes of the control �ow graph are numbered � to �� and each node
is marked with the variable it accesses� For the analysis� we assume the loop
has been implicitly transformed into a loop�procedure according to Figure ��

Each node is marked with the abstract cache states
in the same format as in
Example �� computed by the PAG�generated analyzer immediately before the
abstract cache states are updated according to the memory references� The
loop entry edge is marked with the incoming abstract cache states� The loop
exit edge is marked with the outgoing abstract cache states�

 Data Caches and Combined Caches

Our analysis can be used to predict the behavior of data caches or combined
instruction!data caches� if the addresses of referenced data can be statically
computed�

Addresses of references to global data can usually be easily determined� Local
variables and procedure parameters that are allocated on the stack are ad�
dressed relatively to the stack pointer or frame pointer� i�e�� a register that
points to a known address within the procedure frame on the execution stack�
If the values of the stack pointer or frame pointer are known� the absolute
addresses of the variables and parameters can be determined by a data �ow

�Here� the analyses with callstring�	� yield the same results�

��

d

c

c

a

e

�

�

�

�

�

�

b

mustfmayf fag fcg fbg feg

mustomayo fag fcg fbg feg

mustfmayf fdg fag fcg fbg

mustomayo fdg fag fcg fbg

mayf feg fb�d�zg fg fg

mustf feg f g f g fb�d�zg

mustomayo feg fcg fdg fag

mayf fbg feg fd�zg fg

mustf fbg feg f g fd�zg

mustomayo fbg feg fcg fdg

mayf fcg fbg feg fd�zg

mustf fcg fbg feg fg

mustomayo fcg fbg feg fdg

EXIT

ENTRY

may feg fb�c�d�zg fag f g

must feg f g f g fdg

mustomayo fcg fdg fag fbg

may fb�eg fd�zg fg fg

must f g f g fb�dg fe�zg

Fig� �� Must and may analysis for a fully associative data cache with VIVU� must

and may are the abstract cache states for the must and the may analysis� mustf
andmayf are the abstract cache states for the �rst loop iteration�musto andmayo
are the abstract cache states for all other iterations� The abstract cache states can
be interpreted for each variable reference as follows

Node�Variable� 	rst iteration other iterations

��e��
��b� always hit always miss

��c� always miss always hit

��a��
��d� always miss always miss

��c� always hit always hit

��

analysis ����� For programs without recursive procedures� it is possible to de�
termine all values of the stack or frame pointers for all procedures for the
distinguished execution contexts of the cache behavior analysis�

To support the analysis of programs for which not all addresses of the memory
references can precisely be determined� the �U functions are extended to handle
a set of possibly referenced memory locations �� �

Since it is not de	nitely known which memory block is put into the cache� the
update function �U�

�C
for the must analysis applied to a set of possible memory

locations fm�� ����mxg and an abstract cache state �c only a�ects the ages of
the memory blocks in �c in all sets where an element of fm�� ����mxg could be
stored

�U�
�C

�c� fm�� ����mxg� � �c�fi �� �U�

�S

�c
fi��Xfi� for all fi �

fset
m��� ���� set
mx�g�

where Xfi � fmy j my � fm�� ����mxg and

set
my� � fig

�U�
�S

�s� fm�� ����mxg� � �U�

�S

� � � �U�

�S

�s� fm�g� � � � � fmxg�

�U�
�S

�s� fmg� �

�������������������
������������������

�l� �� fg�

li �� �s
li��� j i � � � � � h
 ��

lh �� �s
lh��� � �s
lh��

li �� �s
li� j i � h � � � � � A�� if �h m � �s
lh�

�l� �� fg�

li �� �s
li��� j i � � � � � A�� otherwise

The update function �U�
�C
for the may analysis applied to a set fm�� ����mxg of

possible memory locations and an abstract cache state �c inserts all elements
of fm�� ����mxg into their corresponding sets� The ages of the memory blocks
that are already in �c are not changed� because it is not known which set of

��References to an array X can be treated conservatively by using a reference to
the set fm�� ���� mxg of all memory blocks of X �

��

the concrete cache is touched

�U�
�C

�c� fm�� ����mxg� � �c�fi �� �U�

�S

�c
fi��Xfi� for all fi �

fset
m��� ���� set
mx�g�

where Xfi � fmy j my � fm�� ����mxg and

set
my� � fig

�U�
�S

�s� fm�� ����mxg� � �l� �� l� � fm�� ����mxg�

li �� �s
li�
 fm�� ����mxg j i � � � � � A��

� Writes

So far� we have ignored writing to a cache and only considered reading from a
cache� There are two common cache organizations with respect to writing to
the cache ����

� Write through� On a cache write the data is written to both the memory
block and the corresponding set line�

� Write back� The data is written only to the set line� The modi	ed set line
is written to main memory only when it is replaced� This is usually imple�
mented with a bit
called dirty bit� for each set line that indicates whether
the set line has been modi	ed�

The execution time of a store instruction often depends on whether the mem�
ory block that is written is in the cache
write hit� or not
write miss�� For the
prediction of hits and misses we can use our analysis� There are two common
cache organizations with respect to write misses

� Write allocate� The block is loaded into the cache� This is generally used
for write back caches�

� No write allocate� The block is not loaded into the cache� The write changes
only the main memory� This is often used for write through caches�

Writes to write through!write allocate caches can be treated as reads for the
cache analysis� For no write allocate caches� a write access to a block m is
treated as a read access� if m is already in the concrete or abstract cache
state� Otherwise� the write access is ignored�

Write back caches write a modi	ed line to memory when the line is replaced�
The timing of a load or store instruction may depend on whether a modi	ed or

��

an unmodi	ed line is replaced �� � To keep track of modi	ed set lines� we extend
the cache states by a �dirty� bit� i�e�� we use pairs
m� b� of memory blocks and
dirty bits instead of memory blocks in the set!cache states� where b � d
means modi	ed� b � p means unmodi	ed� The update functions distinguish
reads and writes� The dirty bit is set to d on writes� and to p on reads� The
join function for the must analysis sets the dirty bit for a memory block to d�
only if it is set to d in both arguments� The join function for the may analysis
sets the dirty bit for a memory block to d� if it is set to d in at least one
argument�

Let k be a control �ow graph node� m be a memory reference at k� �c�� the
abstract cache state for the may analysis immediately before m is referenced�
and �c�� the abstract cache state immediately after m was referenced� �c�� the
abstract cache state for the must analysis immediately before m is referenced�
and �c�� the abstract cache state immediately after m was referenced�

If the memory reference to m cannot be classi	ed as always hit� then all dirty
memory blocks that may have been replaced by the memory reference to m
are contained in

Rep �

��
�m j
m�d� �

n�A�
i��

A�
j��

�c��
fi�
lj�

��
�

��
�m j
m� b� �

n�A�
i��

A�
j��

�c��
fi�
lj�

��
�

� If the memory reference to m has been classi	ed as always hit or Rep � ��
then no dirty memory block has been replaced� This reference has de	ni�
tively caused no write back�

� If Rep �� �� then we have to consider a possible write back�
� If there is a
m�d� pair in �c�� that is not in �c�� � then a dirty memory block

has been replaced� This reference has de	nitively caused a write back�

The identi	ed
possible� write backs can be used in another abstract inter�
pretation similar to the cache analysis for the prediction of the write bu�er
behavior�

�� Practical Experiments

For reasons of simplicity� we have restricted our practical experiments to the
analysis of instruction caches�

��Many cache designs use write bu�ers that hold a limited number of blocks� Write
bu�ers may delay a cache access� when they are full or data is referenced that is
still in the bu�er� To analyze the behavior of the write bu�ers possible �write backs�
have to be determined�

�

The cache analysis techniques are implemented in a PAG generated analyzer
that gets as input the control �ow graph of a program and an instruction
cache description and produces a categorization cat of the instruction!context
pairs of the input program� A context represents the execution stack� i�e�� the
function calls and loops along the corresponding path in the call graph� It is
represented as a sequence �� of 	rst and recursive function calls
call ff � call fr�
and 	rst and other execution of loops
loop lf � loop lo� for the functions f and

conceptually� transformed loops l of a program� INST is the set of all instruc�
tions inst in a program� CONTEXT is the set of all execution contexts context
of a program� IC is the set of all instruction!context pairs ic�

CONTEXT� fcall ff � call fr� loop lf � loop log
�

IC� INST� CONTEXT

cat IC � fah� am� ncg

Additionally� we compute for every instruction!context pair ic with cat
ic� �
nc the set of competing instructions� i�e�� the instructions that are in the same
fully associative set in the abstract cache state of the may analysis� For in�
stance� if the competing instructions reside in less than A
� level of asso�
ciativity� memory blocks� then all executions of the instruction will result in
at most one cache miss� Generally� an upper bound of the number of cache
misses of the instruction is given by one plus the maximal number of possible
sequences of length A of executions of competing instruction that are stored
in pairwise disjoint memory blocks� To determine the bound is a nontrivial
problem� We use simple heuristics to compute a safe approximation to the
upper bound�

Our experiments have been performed for the Sun SPARC architecture� The
Sun SPARC is a RISC architecture with pipelined instruction execution� It has
a uniform instruction size of four bytes� The front end to the analyzer reads a
Sun SPARC executable in a�out format� Our implementation is based on the
EEL library ���� of the Wisconsin Architectural Research Tool Set
WARTS��
EEL
Executable Editing Library� is a C�� library for building tools to an�
alyze and modify an executable
compiled� program� It hides system�speci	c
detail
like executable 	le format� and allows to edit linked executables� not
just object 	les�

The objective of our work is to improve the WCET estimation of programs on
computer systems with caches� The execution time of a program depends on
the program path� i�e�� the sequence of instructions that are executed and their
individual execution times� But the program path is usually dependent on the
program input and cannot generally be determined in advance� Therefore� a

�� For callstring�K� the sequence has a maximal length of K�

��

Specification:

...

cache.optla

WCET,

Dyn. Cache

Prediction

cache.set

Behavior

BCET,

PAG

Sample Input

Worst Case Input

Best Case Input INST x CONTEXT

-> Num

+Cache Parameter
a.out

Trace

profile:

cat:

INST x CONTEXT

-> {ah,am,nc}

Cache Hit Ratio

"Program Path Analysis":

Analyzer

Static Cache Analysis:

CFG-Builder

Evaluation

Tracer

(qpt2)

Profiler &

Cache Simulator

Fig� �� The structure of the analysis�

program path analysis is part of a WCET analysis �������������� For example�
with the help of user annotations� like maximal iteration counts of loops� an
architecture dependent worst case execution pro	le can be determined that
gives a conservative approximation to the worst case execution path�

The program path analysis can be very accurate� Yau�Tsun Steven Li and
Sharad Malik report that their estimated bounds are within two percent of
the
calculated� worst case bounds for their set of benchmark examples �����
The worst case execution pro	le allows to compute how often each instruc�
tion!context pair is maximally encountered� Combined with the categoriza�
tions of our cache analysis� the overall number of cache hits and cache misses
can be estimated
see Figure ���

In our experiments� we have circumvented the program path analysis problem
and combine the categorizations cat with �exact� execution pro	les instead
of worst case execution pro	les
see Figure ��� This allows us to assess the
e�ectiveness of our analysis without the in�uence of possibly pessimistic path
analyses� The pro	lers that produce the pro	les are produced with the help
of qpt�
Quick program Pro	ler and Tracer� that is part of the WARTS dis�
tribution� A pro	ler for a program computes an execution pro	le pro�le� i�e��
the execution counts for the instruction!context pairs�

pro�le IC � N�

��

Table �
Test set of C programs with number of instructions�

Name Description Inst�

matmult �
x�
 matrix multiplication 	��

ndes� data encryption ��	

matsum� 	

x	

 matrix summation 	��

dhry Dhrystone integer benchmark ���

fdct� JPEG forward discrete cosine transform ��

stats two arrays sum� mean� variance� standard deviation� and ���

linear correlation

fft fast Fourier transformation 	�	

djpeg� JPEG decompression �	��x�� color image� 	��

lloops Livermore loops in C ����

avl� inserts and deletes 	

 elements in an AVL tree �	�

�Worst case input data

�Random input data

For the experiments we use parts of the program suites of Frank M"uller �������
the djpeg and fdct program of Yau�Tsun Steven Li ����� and some additional
programs
see Table ��� For some programs� there exists a worst case input�
so that our execution pro	les are worst case execution pro	les� The programs
are compiled with the GNU C compiler version ����� under SunOS ����� with
�O�� and
if applicable� the FDLIBM
Freely Distributable LIBM� library of
SunPro version ����

The programs fft� stats and lloops use arithmetic library functions� These
functions are more or less structured into treatment of special cases� normal�
ization� computation� and 	nal rounding� Not all parts are necessarily executed
when the function is called� This uncertain execution path typically leads to
relatively many occurrences of nc in our categorizations�

The executable of lloops consists of more than ��� loops in deeply nested loop
nests� This program structure leads to a very high number of distinguished
execution contexts with the VIVU approach�

The AVL tree as implemented in avl
 is a height balanced binary tree� Every
insert or delete operation may lead to a series of recursive calls for rebalancing�
The code of the insert and delete operations consists of many cases for the
di�erent rebalancing operations called rotations� Such a program structure
seems to be rather typical for the handling of many dynamic data structures�

��

Table �
The numbers of occurrences of ah� am� and nc in the categorizations for a 	KB
��way set associative instruction cache with 	� byte linesize�

callstring�
� callstring�	� VIVU

Name ah am nc ah am nc ah am nc

matmult 		� 	� �� 	�� �� �	 �
� �

ndes ��� 	� 		� ��� �� 	�	 	�
� 	�� ��

matsum �� 	� 	� 	�� �� 	� �	� ��

dhry ��� �
 	�
 ��� �� 	�
 ��� 	�� 	��

fdct ��� � �� �	� ��
 �	� ��

stats �		 	� 	�� �	� �� �	� 		
� 	�� 	��

fft 	��� 	�� ��� ��	� ��� ��� 	���	 	�
� ����

djpeg 	��� �� ��� ���� 	�� ��� ��	�
 ���	 ����

lloops ���� �� 	��� ����
 �
�� ���
 ������ ����	 ��	��

avl� ��� �� 	�� 			� 	�� �

 ���� ��� 	��

Table � shows the distribution of ah� am� and nc in the categorizations for
the test programs for callstring
��� callstring
��� and VIVU for one selected
cache con	guration� The sum of ah� am� and nc in the categorizations is the
number of distinguished instruction!context pairs� It is a measure for the
complexity of the analysis� In our current implementation� the categorization
for a given cache con	guration can be computed within seconds on a SUN
SPARCstation �� for most of our test programs� but the computation for
lloops with VIVU requires about � minutes� In our implementation� there is
room for improvements� though�

To give a more expressive presentation of the results of our experiments than
bounds on cache hit ratios� we assume an idealized hardware that executes
all instructions that result in an instruction cache hit in one cycle and all
instructions that result in an instruction cache miss in �� cycles �� �

The cache behavior of the test programs for di�erent cache con	gurations is
computed by simulating the cache for the program trace� The cache simula�
tion is always started with the empty cache� and we assume uninterrupted
execution� For technical reasons� instructions in functions from dynamic link
libraries �� are not traced and their e�ects on the cache are therefore ignored�
From the number of hits and misses in the trace we compute the execution
time ET of our idealized hardware�

��These are the same parameters as used in ��	��
�� In our case� these are the calls to IO routines and timers�

��

With our categorization an upper and a lower bound of the execution time
can be computed by combining the pro	les with the results of our analysis� An
upper bound of the execution time is given if we count all instructions in the
pro	le as misses that cannot be determined from the categorization as cache
hits� A lower bound of the execution time is given if we count all instructions
in the pro	le as hits that cannot be determined from the categorization as
cache misses� The upper and lower bounds of the test programs for various
cache con	gurations are shown in Figures � and � in percent of the execution
time ET
the meaning of the x axis tic marks is given in Table ���

Table �
The cache parameters �size � level of associativity� of the x axis tic marks of Figures �
and �� The linesize is 	� bytes�

��	��B�	 ��	��B�� ��	��B�� �����B�	 �����B��

�����B�� ���	�B�	 ���	�B�� 	��	�B�� �
��	�B��

����	�B�	� ����	�B��� ���	kB�	 ���	kB�� ���	kB��

����kB�	 ����kB�� ����kB�� �	��kB�	 �
��kB��

����kB�� ����kB�	 ����kB�� ����kB�� ����
kB��

Figures � and � can be interpreted as follows

� The VIVU approach generally leads to the most precise predictions�
� Conditionally executed code� e�g� as found in the arithmetic library functions

or in avl
� can lead to less precise predictions which result from many nc

in the categorizations�
� There can be a wide variation of the quality of the prediction depending on

the cache con	guration�
� For all test programs our method
especially with VIVU� gives much better

results than the naive methods that counts all memory references as misses
for a WCET estimation� and as hits for a BCET estimation�

�� Related Work

The computation of WCETs for real�time programs is an ongoing research
activity� Park and Shaw ���� describe a method to derive WCETs from the
structure of programs� In ����� Puschner and Koza propose methods to guide
the computation of WCETs by user annotations like maximal loop counts�
This approach seems to be commonly used in WCET analysis tools� Both
approaches do not take cache behavior into account�

The possibilities to use optimizing compilers to improve cache performance of
programs has extensively been studied ����� ����������� But all the proposed

��

99.90%
100.00%
100.10%
100.20%
100.30%
100.40%
100.50%
100.60%
100.70%
100.80%
100.90%

1 4 7 10 13 16 19 22 25
matmult/callstring(0)

99.98%
99.99%

100.00%
100.01%
100.02%
100.03%
100.04%
100.05%
100.06%
100.07%
100.08%

1 4 7 10 13 16 19 22 25
matmult/callstring(1)

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

1 4 7 10 13 16 19 22 25
matmult/VIVU

UB
LB

40.00%
60.00%
80.00%

100.00%
120.00%
140.00%
160.00%
180.00%
200.00%
220.00%
240.00%
260.00%

1 4 7 10 13 16 19 22 25
ndes/callstring(0)

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

1 4 7 10 13 16 19 22 25
ndes/callstring(1)

94.00%
96.00%
98.00%

100.00%
102.00%
104.00%
106.00%
108.00%

1 4 7 10 13 16 19 22 25
ndes/VIVU

UB
LB

99.30%
99.40%
99.50%
99.60%
99.70%
99.80%
99.90%

100.00%
100.10%
100.20%

1 4 7 10 13 16 19 22 25
matsum/callstring(0)

99.65%
99.70%
99.75%
99.80%
99.85%
99.90%
99.95%

100.00%
100.05%

1 4 7 10 13 16 19 22 25
matsum/callstring(1)

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

1 4 7 10 13 16 19 22 25
matsum/VIVU

UB
LB

20.00%
40.00%
60.00%
80.00%

100.00%
120.00%
140.00%

1 4 7 10 13 16 19 22 25
dhrystone/callstring(0)

40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
110.00%
120.00%
130.00%

1 4 7 10 13 16 19 22 25
dhrystone/callstring(1)

50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
110.00%
120.00%

1 4 7 10 13 16 19 22 25
dhrystone/VIVU

UB
LB

82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
102.00%

1 4 7 10 13 16 19 22 25
fdct/callstring(0)

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

1 4 7 10 13 16 19 22 25
fdct/callstring(1)

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

1 4 7 10 13 16 19 22 25
fdct/VIVU

UB
LB

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

1 4 7 10 13 16 19 22 25
stats/callstring(0)

90.00%
100.00%
110.00%
120.00%
130.00%
140.00%
150.00%
160.00%
170.00%
180.00%

1 4 7 10 13 16 19 22 25
stats/callstring(1)

99.96%
99.98%

100.00%
100.02%
100.04%
100.06%
100.08%
100.10%
100.12%
100.14%

1 4 7 10 13 16 19 22 25
stats/VIVU

UB
LB

Fig� �� Upper �UB� and lower bounds �LB� for the execution time for di�erent cache
parameters in � of execution time for callstring�
�� callstring�	�� and VIVU�

��

60.00%
80.00%

100.00%
120.00%
140.00%
160.00%
180.00%
200.00%

1 4 7 10 13 16 19 22 25
fft/callstring(0)

70.00%
80.00%
90.00%

100.00%
110.00%
120.00%
130.00%
140.00%
150.00%

1 4 7 10 13 16 19 22 25
fft/callstring(1)

80.00%
85.00%
90.00%
95.00%

100.00%
105.00%
110.00%
115.00%
120.00%
125.00%
130.00%

1 4 7 10 13 16 19 22 25
fft/VIVU

UB
LB

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

1 4 7 10 13 16 19 22 25
djpeg/callstring(0)

70.00%
80.00%
90.00%

100.00%
110.00%
120.00%
130.00%
140.00%
150.00%
160.00%
170.00%

1 4 7 10 13 16 19 22 25
djpeg/callstring(1)

70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%
105.00%
110.00%
115.00%
120.00%

1 4 7 10 13 16 19 22 25
djpeg/VIVU

UB
LB

80.00%
100.00%
120.00%
140.00%
160.00%
180.00%
200.00%
220.00%
240.00%

1 4 7 10 13 16 19 22 25
lloops/callstring(0)

85.00%
90.00%
95.00%

100.00%
105.00%
110.00%
115.00%
120.00%
125.00%
130.00%

1 4 7 10 13 16 19 22 25
lloops/callstring(1)

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

1 4 7 10 13 16 19 22 25
lloops/VIVU

UB
LB

40.00%
60.00%
80.00%

100.00%
120.00%
140.00%
160.00%
180.00%
200.00%

1 4 7 10 13 16 19 22 25
avl2/callstring(0)

40.00%
60.00%
80.00%

100.00%
120.00%
140.00%
160.00%
180.00%

1 4 7 10 13 16 19 22 25
avl2/callstring(1)

60.00%
80.00%

100.00%
120.00%
140.00%
160.00%
180.00%

1 4 7 10 13 16 19 22 25
avl2/VIVU

UB
LB

Fig� �� Upper �UB� and lower bounds �LB� for the execution time for di�erent cache
parameters in � of execution time for callstring�
�� callstring�	�� and VIVU�

program transformations and code reorganizations do not necessarily help in
computing the worst case execution time of a program�

An overview of �Cache Issues in Real�Time Systems� is given in ���� We restrict
our examination here to the intrinsic cache behavior�

The work of Arnold� M"uller� Whalley� and Harmon has been one of the start�
ing points of our work� ������� describes a data �ow analysis for the prediction
of instruction cache behavior of programs for direct mapped caches� The ex�
tension to set associative instruction caches has later been given in ����� Two
data �ow analyses are used� The result of the 	rst corresponds to the result of
our may analysis� The second is only required for set associative caches for the
categorization of instructions within loops� It corresponds to the 	rst analysis

��

whereby the loop back edges are deleted in the control �ow graph� In contrast
to our method that derives semantics based categorizations of memory refer�
ences only from the results of our analyses� an additional complex bottom�up
algorithm over the control �ow graph is used to compute a classi	cation of the
instructions for each loop level� The distinction of a 	rst or a further execution
of a loop is not explicit but expressed by the classi	cations �rst miss and �rst
hit� For a set of small programs the same or slightly worse upper bounds of the
execution time than our results are reported in ���� �� � But the assessment is
di�cult as the environment for the experiments is not the same� e�g�� di�erent
compilers have been used to compile the test programs�

In ������� Yau�Tsun Steven Li� Sharad Malik� and Andrew Wolfe describe an
integrated method to determine the worst case execution path of a program
and to model architecture features like instruction caches and!or pipelines�
The problem of 	nding an accurate worst case execution time bound is for�
mulated as an integer linear program that must be solved� which is a NP�hard
problem� This approach has been implemented in the cinderella tool �	 � Un�
like the method described in ���� or our method that rely only on the control
�ow graph to determine the cache behavior of a memory reference� user pro�
vided functionality constraints can be used to describe the control �ow more
precisely� For direct mapped instruction caches and programs whose execution
path is well de	ned and not very input dependent the predictions can be com�
puted fast and are very accurate ����� Increasing levels of associativity where
the cache behavior of one memory reference depends on more other references
and less de	ned execution paths lead to prohibitively high analysis times�

In ����� Lim et al� describe a general framework for the computation of WCETs
of programs in the presence of pipelines and cache memories� Two kinds
of pipeline and cache state information are associated with every program
construct for which timing equations can be formulated� One describes the
pipeline and cache state when the program construct is 	nished� The other
can be combined with the state information from the previous construct to
re	ne the WCET computation for that program construct� Unlike our method
that is based on well explored theories and tools for abstract interpretation�
the set of timing equations must be explicitly solved� An approximation to
the solution for the set of timing equations has been proposed� The usage of
an input and output state provides a way for a modularization for the timing
analysis� Experimental results are reported for three small programs� but they
cannot be easily compared with our experiments�

The approach of Lim et al� has also been applied to data caches� In ����� Hur
et al� treat references to unknown addresses as two cache misses� The reported

�� For the sake of space� the results of not all programs could be reported here�
�	 See http��www�ee�princeton�edu��yauli�cinderella���
�

��

results are worse than the ones without data cache analysis where one assumes
one cache miss for every data reference� But the authors expect that the results
improve with better methods to resolve addresses of data references� For loops
that reference only data that 	t entirely into the cache� Kim et al� ���� have
improved the approach based on the pigeonhole principle� Applied to the cache
analysis� the pigeonhole principle says If we have n memory reference to m
memory locations and n � m and all referenced memory blocks 	t into the
cache� then there must inevitably some cache hits�

A method for the data cache analysis by graph coloring is described in ��������
Similar to the Chow�Hennessy register allocator� variables are allocated to
cache lines� The objective of the analysis is to show that throughout the live
range of a cache line� no other memory access interferes with this particular
cache line� This approach has limited success even for small programs�

�� Conclusion and Future Work

We have described semantics based analysis methods by abstract interpreta�
tion that allows to predict the intrinsic cache behavior of programs for various
types of one level caches� The theory of abstract interpretation supports the
correctness proofs for the analysis and provides e�cient implementation meth�
ods�

The analyzers are generated by the program analyzer generator PAG from very
concise speci	cations� It is possible to trade time for precision� but even with
the VIVU approach our implementation of the analyses is quite fast� No special
input of a skilled user is required to tune for acceptable results� This makes it
feasible to use our analyses as part of the compilation process to support the
automatic schedulability analysis by the compiler�

The applicability of our methods has been shown with the results of our prac�
tical experiments� The newly developed VIVU approach makes it possible to
predict the cache behavior within tight bounds for many programs and cache
con	gurations�

We directly analyze executables and there are no special compilers or link�
ers required� Our current implementation supports the SPARC architecture�
Other architectures can be supported by supplying additional front ends to our
analyzers� The analyses are extensible to accommodate further cache designs
like multilevel caches or wrap around line 	ll�

Future work includes the integration of our tool with a program path analysis�
We are working on extension to predict the pipeline behavior of processors�

��

The pipeline analyzers will be generated from a description similar to the
speci	cations used for the generation of code schedulers� For the analysis of
array references� there exist methods based on data dependency analysis which
should be combined with our approach� Finally� we will explore methods that
allow to combine the separated analyses of modules� libraries� or operating
systems calls and thereby support the modularization of the analysis�

Acknowledgement

We like to thank Mark D� Hill� James R� Larus� Alvin R� Lebeck� Madhusud�
han Talluri� and David A� Wood for making available the Wisconsin architec�
tural research tool set
WARTS�� Thomas Ramrath for the implementation
of the PAG front end for SPARC executables� Yau�Tsun Steven Li and Frank
M"uller for providing their benchmark programs� and the latter for fruitful
discussions�

References

�	� M� Alt and F� Martin� Generation of E�cient Interprocedural Analyzers with
PAG� In SAS��� Static Analysis Symposium� LNCS ���� pages ����
� Springer�
Sept� 	����

��� M� Alt� F� Martin� and R� Wilhelm� Generating Data�ow Analyzers with PAG�
Technical Report A	
���� Universit�at des Saarlandes� 	����

��� R� Arnold� F� Mueller� D� B� Whalley� and M� Harmon� Bounding Worst�Case
Instruction Cache Performance� In IEEE Symposium on Real�Time Systems�
pages 	���	�	� Dec� 	����

��� S� Basumallick and K� Nilsen� Cache Issues in Real�Time Systems� In
Proceedings of the ���� ACM SIGPLAN Workshop on Language� Compiler
and Tool Support for Real�Time Systems� June 	����

��� P� Cousot and R� Cousot� Abstract Interpretation A Uni�ed Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints� In
Conference Record of the �th ACM Symposium on Principles of Programming

Languages� pages �������� Jan� 	����

��� P� Cousot and R� Cousot� Static Determination of Dynamic Properties of
Generalized Type Unions� In Proceedings of an ACM Conference on Language

Design for Reliable Software� volume 	����� pages ������ Mar� 	����

��� P� Cousot and R� Cousot� Static Determination of Dynamic Properties of
Recursive Procedures� Formal Description of Programming Concepts� pages
�������� 	����

�

��� W� A� Halang and K� M� Sacha� Real�Time Systems� World Scienti�c� 	����

��� L� Harrison� Personal communication on Abstract Interpretation� Dagstuhl
Seminar� 	����

�	
� J� Hennessy and D� Patterson� Computer Architecture� A Quantitative
Approach� Morgan Kaufmann� 	��
�

�		� Y� Hur� Y� H� Bea� S��S� Lim� B��D� Rhee� S� L� Min� Y� C� Park� M� Lee� H� Shin�
and C� S� Kim� Worst case timing analysis of RISC processors R�

�R�
	

case study� In IEEE Real�Time Systems Symposium� pages �
���	�� Dec� 	����

�	�� S� Kim� S� Min� and R� Ha� E�cient worst case timing analysis of data caching�
In IEEE Real�Time Technology and Applications Symposium� June 	����

�	�� J� R� Larus� EEL Guts� Using the EEL Executable Editing Library� Computer
Sciences Department� University of Wisconsin�Madison� 	����

�	�� Y��T� S� Li and S� Malik� Performance Analysis of Embedded Software Using
Implicit Path Enumeration� In Proceedings of the ��nd ACM�IEEE Design

Automation Conference� pages ������	� June 	����

�	�� Y��T� S� Li� S� Malik� and A� Wolfe� E�cient Microarchitecture Modeling and
Path Analysis for Real�Time Software� In Proceedings of the IEEE Real�Time
Systems Symposium� pages �����
�� Dec� 	����

�	�� Y��T� S� Li� S� Malik� and A� Wolfe� Cache Modeling for Real�Time Software
Beyond Direct Mapped Instruction Caches� In Proceedings of the IEEE Real�
Time Systems Symposium� Dec� 	����

�	�� S��S� Lim� Y� H� Bae� G� T� Jang� B��D� Rhee� S� L� Min� C� Y� Park� H� Shin�
K� Park� S��M� Moon� and C� S� Kim� An Accurate Worst Case Timing Analysis
for RISC Processors� IEEE Transactions on Software Engineering� �	�������
�
�� July 	����

�	�� S� McFarling� Program Optimization for Instruction Caches� In Architectural
Support for Programming Languages and Operating Systems� pages 	���	�	�
Boston� Massachusetts� Apr� 	���� Association for Computing Machinery ACM�

�	�� A� Mendlson� S� S� Pinter� and R� Shtokhamer� Compile Time Instruction Cache
Optimizations� Computer Architecture News� ���	�����	� Mar� 	����

��
� F� Mueller� Static Cache Simulation and its Applications� Phd thesis� Florida
State University� July 	����

��	� F� Mueller� Generalizing Timing Predictions to Set�Associative Caches�
Technical Report TR ������ Institut f�ur Informatik� Humboldt�University� July
	����

���� F� Mueller� D� B� Whalley� and M� Harmon� Predicting Instruction Cache
Behavior� In Proceedings of the ���� ACM SIGPLAN Workshop on Language�

Compiler and Tool Support for Real�Time Systems� June 	����

��

���� K� D� Nilsen and B� Rygg� Worst�Case Execution Time Analysis on Modern
Processors� In Proceedings of the ���� ACM SIGPLANWorkshop on Language�
Compiler and Tool Support for Real�Time Systems� June 	����

���� C� Y� Park and A� C� Shaw� Experiments with a Program Timing Tool Based
on Source�Level Timing Schema� IEEE Computer� ����������� May 	��	�

���� K� Pettis and R� C� Hansen� Pro�le Guided Code Positioning� In
ACM SIGPLAN�� Conference on Programming Language Design and
Implementation� pages 	����� White Plains� New York� June 	��
�

���� A� K� Porter�eld� Software Methods for Improvement of Cache Performance
on Supercomputer Applications� Phd thesis� Rice University� May 	����

���� P� Puschner and C� Koza� Calculating the Maximum Execution Time of Real�
Time Programs� Real�Time Systems� 		���	��� 	����

���� J� Rawat� Static Analysis of Cache Performance for Real�Time Programming�
Masters thesis� Iowa State University� May 	����

���� M� Sharir and A� Pnueli� Two Approaches to Interprocedural Data Flow
Analysis� In S� S� Muchnick and N� D� Jones� editors� Program Flow Analysis�
Theory and Applications� chapter �� pages 	������� Prentice�Hall� 	��	�

��
� A� Smith� Cache Memories� ACM Computing surveys� 	����������
� Sept�
	����

��	� J� A� Stankovic� Real�Time and Embedded Systems� ACM �
th Anniversary
Report on Real�Time Computing Research�

���� A� D� Stoyenko� V� C� Hamacher� and R� C� Holt� Analyzing Hard�Real�
Time Programs For Guaranteed Schedulability� IEEE Transactions on Software

Engineering� 	����� Aug� 	��	�

���� R� Wilhelm and D� Maurer� Compiler Design� International Computer Science
Series� Addison�Wesley� 	���� Second Printing�

���� M� E� Wolf and M� S� Lam� A Data Locality Optimizing Algorithm� SIGPLAN
Notices� ������
���� June 	��	� Proceedings of the ACM SIGPLAN ��	
Conference on Programming Language Design and Implementation�

��

