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Abstract

We present a denotational semantics for an ALGOL-like language ALG
which is fully abstract for the second order subset of ALG. This constitutes
the first significant full abstraction result for a block structured language
with local variables.

In this preliminary report we concentrate on the construction of the
denotational model and on the main ideas of the full abstraction proof. For
more background information about (problems involved with) the semantics
of local variables, especially for further interesting examples of observational
congruences we refer the reader to [MS88, OT93b].



1 Introduction

This paper solves a long-standing open problem concerning the semantics of lo-
cal variables. We present a denotational model for an ALGoL-like language ALG,
which is fully abstract for the second order subset of ALG. This means in particu-
lar that all the problematic observational congruences for ALGOL-like languages,
which have been presented in the literature [MS88, Len93, OT93b], can be vali-
dated in our model. (The latter also holds for the parametric functor model in
[0T93a, OT9I3b], but no full abstraction result has been proved for it.)

The general technique which we use for our model construction has already
been developed in [MS88], namely ‘relationally structured locally complete par-
tial orders’ with ‘relation preserving locally continuous functions’. Qur particular
model differs from the one in [MS88] by having the ‘finest possible relation struc-
ture’, an idea which we have used in [Sie92] to construct a fully abstract model
for the second order subset of sequential PCF [Plo77].

The overall structure of our full abstraction proof! is also taken from [Sie92].
In the first step? we show that for every function f and every finite set B of
argument tuples for f there is a definable function which coincides with f on B
(Theorem 3). Hence we can find a sequence of definable functions which ‘ap-
proximate’ f in the sense that they coincide with f on more and more argument
tuples. But for proving full abstraction (Theroem 5) we must find approxima-
tions in the Scott topology, i.e. we must show that f is the least upper bound of a
sequence (or directed set) of definable functions (Theorem 4). Bridging the gap
between these two notions of ‘approximation’ turned out to be the most difficult
part of our full abstraction proof, for which we had to develop completely new
techniques (Definition 5 and Theorem 6).

Our ArcolL-like language ALG contains two (at least for non-insiders) unusual
features, namely (a) a parallel conditional operator on the integers and (b) the so-
called snap back effect, which goes back to a suggestion of J.C. Reynolds: Inside
the bodies of function procedures, assignments to global variables are allowed, but
after each function procedure call the store ‘snaps back’ to the contents which it
had before the call, i.e. only a temporary side effect is caused by such assignments.

The parallel conditional often plays a prominent role in full abstraction proofs,
but here it does not. If we remove it from ALG, then we can use the very same
techniques as before to obtain a fully abstract model for the restricted language
(cf. Conclusion). This ‘smaller’ model allows us to reason not only about local
variables but also about sequentiality. In the light of [Sie92] this is not a big
surprise, but nevertheless it is worth to be mentioned, because it distinguishes
our approach from the one in [OT93a, OT93b] which is tailored to an ArLcoL-like

'In the remainder of the Introduction we tacitly assume that we are not speaking about the
full language but only about the second order subset.
2This first step has already been presented in [Sie93].



language with snap back effect and parallel conditional [OT].

The snap back effect plays a more important role than the parallel conditional.
If function procedures have either permanent side effects [WF93] or no side effects
at all [Len93], then it seems more difficult to determine the above mentioned
“finest possible relation structure’ for the construction of a fully abstract model.
This is the reason why our techniques do not straightforwardly carry over to these
alternative languages. Nevertheless we believe that they can still be applied; this
is the contents of current research.

Finally one might wonder whether similar techniques are applicable to call-
by-value (i.e. ML-like as opposed to ALGoOL-like) languages [PS93]. This is a
question which we have not yet investigated. Observations in [PS93] indicate
that additional problems might come up in the call-by-value setting, but we hope
that our main ideas will still be helpful.

2 Syntax of the language ALG

We define our ALGoL-like language ALG as a subset of a simply typed A-calculus.
Its types T are

T = loc ‘ o with ou=40 ‘ T— o0, 0:i:=iexp ‘ emd

The types o (# loc) are called procedure types. The order ord(r) of a type 7 is
defined by ord(loc) =0, ord(8) = 1 and ord(t — o) = maz (ord(7) + 1, ord(c)).

FElements of type iezp (= ‘integer expresssion’) and ¢md (= ‘command’) will
be functions which have the current store as an implicit parameter; in particular
parameters of type iexp will be thunks in terms of the ALcOL jargon. Thus
we follow the view that call by name should be the main parameter passing
mechanism for ALGor-like languages [Rey81]. Besides that, we have parameters
of type loc (= ‘location’) which may be considered as reference parameters. They
have been added as a mere convenience, because we anyways need identifiers of
type loc as local variables.

The set of ALG-constants ¢ and the type of each constant are

n: iexp foreveryn € Z numerals)
suce, pred . iexp — iexp successor and predecessor)
cont : loc — iexp dereferencing)
asgn : loc — iexp — cmd assignment )

empty command)

conditional with zero test)
sequencing)

new-operator)

fixed point operator)

parallel conditional with zero test)

skip : emd
condg : dexp — 0 — 80— 0
seqg: cmd — 0 — 0
newg : (loc — 6) — 0
Y,: (6 —0)—0

(
(
(
(
(
(
(
(
(
(

pcond :  iexp — iexp — itexp — iexp



As usual, we assume that there is an infinite set Id” of identifiers o7, y7,27,...
for each type 7 (the type superscripts will often be omitted). Identifiers of type
loc are called variables. This means that we use the word ‘variable’ in the sense
of imperative languages and not in the sense of the A-calculus.

FErpressions M, N, P,...of ALG are just the well-typed A-expressions over the
ALG-constants with the only restriction that the body of a A-abstraction must
not be of type loc. A block with a local variable x has the form new x in M and
is considered as syntactic sugar for newg(A 2'°°. M') where 6 is the type of M; this
makes the binding of the local variable z visible. As further syntactic sugar we
use !, _:= _, if _then _else _ and _; _ instead of cont, asgn, conds and seqy.
Finally we define a program P to be a closed expression of type iexp.

For purely technical reasons we also introduce so-called generalized expres-
sions. Let Loc be an infinite set whose elements [ are called locations. A gen-
eralized expression may contain (besides the other ALG-constants) locations [ as
constants of type loc. For generalized expressions we use the same metavariables
M, N, P,...as for ordinary expressions. We let locns (M) denote the set of loca-
tions which occur in M, and for every finite set L C Loc we let Exp} denote the
set of closed generalized expressions with locns (M) C L.

3 A Cartesian Closed Category

Notation: By a depo (directed complete partial order) we mean a partial order
(D,C)in which every directed set A has a lub (least upper bound) [ |A (or ||, A
if we want to be more precise). If D, F are dcpos, then (D N F) denotes the
set of continuous functions from D to E. The category of dcpos and continuous
functions is denoted DCPO.

We will now define the general framework which underlies our denotational
semantics. The intuition is, that every element in the denotational model should
only have access to finitely many locations. Hence we would like to identify, for
every type 7 and every finite set L C Loc, a dcpo [7]r of ‘elements of type T
which only have access to L’ and then define [7] as the union of these depos [7]r.
This motivates the following definition.

Definition 1 Let (W, <) be a directed set (of worlds w).

(a) A W-ocally complete partial order (W-lcpo) is a partial order (D,C) to-
gether with a family of subsets (D, )wew such that D = |, ey Dw and for
all v,we W

-v<w=D,C D,

— if A C D, is directed, then | |, A exists and is contained in D,, (hence
it is also the lub in D, i.e. (Dy,C) is a decpo)



(b) A function f : D — E between W -lcpos D and E is called locally continuous
if (f| Dw) € (Dy 5 Ey) for every w € W.

W-lcpos and locally continuous functions form a Cartesian closed category (which
may be considered as a full subcategory of the functor category (W = DCPO)).
Terminal object and products are defined worldwise and the exponent (D — F)
of two objects D and F is given by

(D—E)y = {f:D—E|Vo>w.(f|Dy)€ (D, = E,)}
(D—=FE) = Upew(D — F), with the pointwise order on functions

This is not yet the category which we need for our model construction; we must
still add ‘relation structure’ to the W-Icpos.

Definition 2 A W-sorted (relation) signature is a family ¥ = (X¥)yewnen of
sets X such that for all m,n € N and v,w € W

m#n=%, NYY =10 and v<w= %) DXV
We use the notation

Y, = UwEW Yw,o oXw = UnEN X% and (ambiguously) ¥ = UnEN 3,

An element r € X, is called an n-ary relation symbol.

As we will extensively work with tuples and relations, we introduce some short-
hand notation for them:

A vector d stands for a tuple (dy,...,d,) € D", where D and n are either
known from the context or irrelevant. A term T(d_; €,...) containing vectors
d,e,...of the same length n stands for the tuple (T'(dy, e1,...),...,T(dn, €n,...))
and a formula F(d_), é,...) for the conjunction F(dy,e1,...) A ... A F(dy,en,...).
The term notation is generalized as usual to sets of tuples, i.e. to relations:
If R,S are relations of the same arity n, then T(R,S,...) stands for the set
{T(d_; €,...) ‘ de Ree S,.. J. Finally, 6" D (or just D) denotes the diagonal
{(d,....d)|d € D} C D". (A helpful intuition is to consider vectors as column
vectors and to read terms and formulas linewise.)

Definition 3 Let X be a W-sorted signature.

(a) A W-X-Icpo is a pair (D,Z), where D is a W-lcpo and T is a function
which maps every r € X, to a relation Z(r) C D™ such that for allw € W
—re¥¥=146D,CI(r)
— I(r)Nn Dy, is closed under lubs of directed sets



(b) A function f: D — E between W-Y-lepos (D, IP) and (E,T%) is called a
Y-homomorphism if f(ZP(r)) C Z¥(r) for all 7 € X.

Theorem 1 The category W-3X-LCPO of W-X-lepos and locally continuous -
homomorphisms is Cartesian closed. Terminal object and product are defined
worldwise and the exponent (D — E) of two W-X-lepos D and F is given by

(D—E)y = {f:D—E|Yo>w.(f|D)e (D, > E,)
AYreXv. f(ZP(r) C ITF(r)}
(D—=FE) = Upew(D — E) with the pointwise order on functions

IP=EB)ry = {f| F(ZP(r)) C IP(r)}

This is the category in which we will define our denotational model. It has a cer-
tain similarity with the category of ‘parametric functors and (parametric) natural
transformations’ as defined in [0T93a, OT93b]. The precise relationship between
the two approaches is not yet fully understood, but at least one difference seems
to be important: Whereas the definition in [OT93a, OT93b] works with binary
relations only (and can be generalized to relations of some fixed arity n [OT]),
our approach allows us to have relations of arbitrary arity in one denotational
model. This fact is exploited in our full abstraction proof (hence the proof does
not automatically carry over to the parametric functor model) and—moreover—
it allows us to obtain a fully abstract model for ALG without parallel conditional
by the very same techniques as for ALG itself.

4 Denotational Semantics

We will now use the results of Section 3 to define a denotational semantics for
Ara. We let
(W, <) = (Ps(Loc), Q)

where Py(Loc) denotes the set of all finite sets L C Loc. The main question is
how to define the W-sorted signature ¥. The basic idea is the same as for PCF
in [Sie92]: In order to achieve full abstraction we must keep our denotational
model ‘as small as possible” and to this end we try to make the signature as large
as possible. For PCF this was easy to achieve. We started from a flat ground
type of integers and defined Y to be the set of all ground type relations which are
preserved by the (intended) meanings of the first order constants. This worked
out, because all relations on a flat depo are closed under lubs of directed sets. For
ALG the situation is more difficult, because the ground types [iexp] and [emd]
will certainly be not flat. Thus, in order to adapt the ideas of [Sie92] to the ALa
setting, we introduce an additional semantic layer of flat depos below [iexp] and
[emd], and on this new layer we define certain auxiliary functions, which are
closely related to the intended meanings of the ALG-constants.



Let A = {loc, int, sto}, where int (= ‘integer’) and sto (= ‘store’) are auxiliary
symbols. We use sto = int and sto = sto as alternative notation for ‘ezp and
emd. For every § € A we define a depo D?® by

D¢ = Loc (discrete dcpo) D™ =17, D' = Stores; (flat dcpos)
where Stores is the set of stores s, defined by
Stores = Jp ey Stores;,  with  Storesy, = {s: Loc — Z |Vl € Loc\ L.sl =0}

The set AUX of auziliary functions consists of Suce, Pred, Cont, Asgn, Const,
(n € N), Conds (6 # loc) and Pcond, where e.g.

Cont . Dloc N Dsto N Dint Asgn . Dloc N Dint N Dsto N Dsto
1L ifs=_1 L ifd=1lLors=1
Contls = { sl otherwise Asgnids = { s[d/l] otherwise

The list of the remaining functions is given in Appendix A.

As relation symbols of our signature we use so-called ground relations. By a
ground relation of arity n we mean a triple R = (R%)sea such that R® C (D%)" for
every 6 € A. We let GRel,, denote the set of all ground relations of arity n, and we
say that f: D% — ... — D% — D% preserves R € GRel, if fR" ...R% C R?®.
Then we define ¥ = (Eﬁ)LeW,neN with

YL = {R € GRel, ‘ (L,..., L)€ R every f € AUX preserves R
and 3L/ e W.LNL =0 A §"(Loc\ L') C R'*}

Finally we associate a W-X-Icpo [7] = (D7,77) with each type T by

- D=1
D' = Loc  (as before)
Iloc(R) — Rloc

B DsLto=>5 ={f: D" — D¢ ‘ f preserves all R € EL}

D978 = Jp o D3°7°  with the pointwise order on functions
Isto:>5(R) — {f"e (Dsto:>5)n ‘ fRsto C R(S} ifRe Y,
— [r—=o]l=(r] = [e]) as defined in Theorem 1

Following usual mathematical convention we use [7] also as a notation for the
W-lcpo (or the partial order or the set) D7, hence [7]; denotes the dcpo Dj.
Moreover, we use R7 as an abbreviation for Z7(R). From the definitions in
Section 3 we then obtain the following important ‘reasoning principles’:

- [r]= ULEW[[T]]L



— [r = olel7]e € [e]rr whenever L C L'
— fR™ C R° whenever f € [t — o], and R € &7
— (R7)rerype is a logical relation [Mit90] for every R € ¥

To conclude the definition of the denotational semantics we must assign meanings
[c] to the ALG-constants c. Some interesting cases are

[cont] : [loc] — D**° — Dt [asgn] : [loc] — [iexp] — D**° — Dt
[cont] = Cont lasgn] ifs = Asgnl(fs)s

[seqsi0=s] : [emd] — [sto = 8] — D*** — Dt
Hseqsto:NS]]fg Ss$=4g (fS)

[new.nq] : [loc — emd] — Ds® — Dst°

[newemalfs = Asgnl(Contls)(fl(Asgnl0s)) with [ = next (support (f))

where next : P¢(Loc) — Loc is an arbitrary function with next (L) ¢ L for every
L € Py(Loc) and support (d) is defined to be the set () {L ‘ d €[]} for every
d € [r]. The meanings of the remaining constants are given in Appendix B. The
functions [¢] are indeed contained in the model, more precisely:

Proposition 1 If ¢ is a constant of type o, then [c] € [o];-

Theorem 1 and Proposition 1 allow us to define the meaning of ALG-expressions
in the style of the simply typed A-calculus. Thus, for every expression M : 7, we
obtain a function [M] : Env — [7] where Enuv is the set of environments (= type
preserving functions 7 : |J. Id™ — [J.[7]). The meaning function is extended to
generalized expressions by defining [I] = [ for every [ € Loc, and this leads to

Proposition 2 Let M : 7 be a generalized expression, letn € Fnv and let I € W
be such that locns (M) C L and na’ € [l for all free identifiers ™ in M.
Then [M]n € [7]r- In particular® [M] € [r];, whenever M € Fuxp] .

The latter statement captures our intuition that a closed generalized expression
has only access to those locations which explicitly occur in it and not to those
which are temporarily bound to its local variables.

We finally remark that the particular choice of [ in the clause for [new.,q]
does not play arole, i.e. instead of next (support ( f)) we can use any other location
l € Loc\ support (f). Thus we obtain for every | € Loc \ support ([Az. M]n)

frews i s = { (VIW/LAOMDGA VDL /l0/0 2

L otherwise

This possibility to choose the new location [ freely from an infinite set is another
important reasoning principle which we will use in the following.

#As usual we abbreviate [M]n by [M] if M is closed.



5 Reasoning about Local Variables

Notation: If A and B are sets, then (A i B) denotes the set of total functions

from A to B. If f,g € (A L B) and C C A, then f|C denotes the restriction of
ftoC and f=¢ gstands for f|C =g|C.

We will now prove some basic properties of our model and illustrate by an
example how semantic equivalences can be proved. The following set of ground
relations will be useful for both purposes.

Definition 4 Let L € W. An n-ary ground relation R is called L-definable, if
there is a relation Ry, C (L 5 Z)" such that

— R = {L1}" U {5 € Stores" | (3| L) € R, A §(Loc\ L) C 6”7}
o Rint — 6ant
_ Rloc — {fe (Dloc)n‘ Cont fRsto g Rint A Asgn fRznt Rsto g Rsto}

Note that an L-definable ground relation is uniquely determined by R**°. We let
DEF" denote the set of L-definable ground relations.

Theorem 2 Let L, L' € W with LN L' = (. Then DEFY C ©L.

Proposition 3 Let L € W, f € [emd]r,l € Loc\ L and s, sy, sy € Stores. Then
(a) fL=1
(b) fs# L= fsl=sl
(¢c) s1 =1 52 = (fs1 =L = fsg V (fs1,fsy € Stores N\ fs1 =1 fs2))

Proof: Each of the three properties is proved by choosing an appropiate R € %%
and exploiting the fact that fR*® C R*°. For (a) we take R € DEF? with
R = {1}, for (b) we take R € DEF with R*'° = {1} U{t € Stores |11 =sl}
and for (c) we choose some L' € W with LN L' = § and s; =7\ 52 and take
R € DEFY with R*" = {1}2 U{T€ Stores® | 11 =poo1s 12} O

The following example of a semantic equivalence will be needed in the full ab-
straction proof but is also interesting in its own.

Example 1 [yemd—emizemd] = [newx in @ := 0; y (2 :=!a + 1; 2)]

The local variable x is used here for counting the procedure calls of z (as long
as no snap back effect occurs) during the computation of y2.* The equivalence

*Note that ALG, as a full-fledged A-calculus, allows us to use an expression of type cmd on
parameter position where ALGOL 60 would force us to introduce a new procedure identifier.
Call-by-name ensures that the assignment z :=!z 41 is executed whenever y uses its parameter
(and not only once, as in a call-by-value language).



shows that adding such a bookkeeping mechanism does not change the behavior
of the program in which the procedure call y z is contained, no matter how the
procedures y and z are declared.

The typical approach for proving such an equivalence between two expressions
is to find some R € ¥ which (intuitively) relates corresponding states of their
computations. The precise argumentation for Example 1 is as follows:

Let n € Env and s € Stores. Let L € W with ny € [emd — emd]y, and
nz € [emd]r. We may assume that the new location [ is not in L and define
R € DEF by Rete = {1120 € Stores® | t1 =10y t2}. Then (s,s[0/1]) € R**°
and (nz,[z:=!z+1; 2] n[l/x]) € R°™*, because—by part (c) of Proposition 3—
t1 =poo\ (1) t2 always implies nzty =p.0\ 1y 12t2 =y [2 :=t2+1; 2] n[l/2]t2.
Thus we obtain

(ly=lms, ly(z:='ta+ 1 2)]nll/2]s[0/) € nyR™RT C R™TIR™ C R

and this implies [y z]ns = [newz in z :=0; y(z :=!z + 1; 2)] ns.

6 Full Abstraction

Notation: f 6 =17 — ... — 7, — sto = § (k > 0) and f € [o], then we let f9
denote the completely decurried version of f, i.e.

fhn] % . ox [m] x D — D¥ with  fU(dy,...,dp,s) = fdy...dgs

and if p € ([o] SN [o]), then we let p” denote the corresponding function on the
completely decurried versions, i.e.

p?: [0 =[] with p7f" = (pf)"
The first step towards full abstraction is

Theorem 3 Let o =1 — ... — 1, — 0 (k> 0) with ord(c) < 2. Let L € W,
f € o]y and let B C [m] X ... X [tx] x D** be finite. Then there is some
M € Exp§ with [M]* =p f%.

For the proof of Theorem 3 one needs a ground relation R € Y2 where n is the
cardinality of B. Hence it is important that we have relations of arbitrary arity in
our model. We do not present any details here, because we want to concentrate
on the remaining (more interesting) steps of the full abstraction proof.

From Theorem 3 we could obtain a sequence of definable functions which ‘ap-
proximate’ f in the sense that they coincide with f on more and more argument
tuples. But instead we need approximations in the Scott topology, i.e. we must
show that f is the least upper bound of a sequence (or a directed set) of defin-
able functions. In order to bridge the gap between these two different notions of
approximation we introduce the following concepts.



Definition 5

(a) Let D, E be sets, ' C (D SN E) and p € (F i F). B C D is called a
base set for p, if pf is uniquely determined by f| B, i.e. if f =p g implies
pf =pg forall f,g € F. pis called finitely based if it has a finite base sel.

(b) Let o be a procedure type and let L € W. An L-projection sequence on o is
a sequence of expressions P, € Fxp3~° such that [P,]P | ([e]1)? is finitely
based for every n € N and ([ P.])nen is an w-chain whose lub is the identity
on [o]. o is called an L-limit if an L-projection sequence exists on o.

If we can show that every procedure type of order 1 or 2 is an L-limit for every
L € W, then we obtain the desired approximations as follows.

Theorem 4 Let ord(o) < 2 and L € W. Then every f € [o]L is the lub of an
w-chain of functions which are definable by expressions in Frp§ .

Proof: Let (P,)nexy be an L-projection sequence on o, and for every n € N let
B, be a finite base set for ([P,])” | ([¢]z)?. By Theorem 3 there are expressions
M, € Ezp§ with [M,]? =g, f?, hence [P, M,]? = [P,]°[M,]¢ = [P.]° f* =
([P.]f)* for every n € N. This implies f = | |, cx[Pulf = Unex[PeMn]. O

In the absence of an operational semantics® we use the ‘internal’ definition of
full abstraction which only refers to the denotational model: Two expressions are
observationally congruent, if they can be replaced by each other in every program
context without changing the meaning of the program. A denotational semantics
is fully abstract if semantic equivalence coincides with observational congruence.
Thus our main result reads as follows:

Theorem 5 (Full Abstraction) Let ord(o) < 3 and My, My € Expg. Then
[Mi] = [Ms] < [C[M]] = [C[M3]] for every program context C| |

Proof: As usual, only ‘«=” must be proved, because ‘=’ already follows from

the compositionality of the denotational semantics. Let c =7 — ... — 71, — 0
(k > 0) and assume that [M;] # [M;], i.e. there are d; € [r;] for j = 1,...,k
and s € Stores such that

[[Ml]]dl...dks 7£ [[MQ]]dldkS

Let L € W be such that d; € [7;]r, for j = 1,...,k. By Theorem 4, every d; is
the lub of an w-chain of definable elements in [7;]z, hence the local continuity of
[M;] and [M,] implies that there are N; € Ezp; with

[[MlNl...Nk]]S 7£ [[MQNlNk]]S

® An operational semantics (which is interesting in its own because of the snap back effect)
has been presented in [Sie92].

10



From this, it is easy to construct a program context C[ | with [C[M;]] # [C[M:]]
(location constants in Ny, ..., Ny must be replaced by local variables and these
local variables must be initialized according to s). O

We have formulated Theorem 5 for closed expressions of order < 3. Alternatively

we could have used open expressions of order < 2 whose only free identifiers are

of order < 2; that’s why we speak of ‘full abstraction for the second order subset’.
The main challenge remains to prove

Theorem 6 Let ord(c) <2 and L € W. Then o is an L-limit.

Proof sketch: The proof for the first order types is simple. As an example we
consider ¢ = emd. For every n € N we define®

pite = if N\ abs(!l) < n then skip else Q@ € Ezp™
Pﬁmd = A ycmd‘ (Péto; e Péto) c E$pimd—>cmd

It is easy to see that ([P:™%]).ey is an w-chain of (idempotent) functions
whose lub is the identity on [emd]. Now let f € [emd]y. By Proposition 3,
[Pem4]f € [emd]y is uniquely determined by its restriction to Storesy. Hence
let B = [P:°]Storesy,. B is finite, and [P:™?] f | Storesy, is uniquely determined
by f| B or even by ([P:'] o f)| B. The former shows that B is a base set for
[Pcm] | [emd]y, i-e. (Pe™4),ex is an L-projection sequence on c¢md (decurrying
is not an issue here). The latter shows that [P:™¢][emd]y, is finite (i.e. [emd]y,
is an SFP-domain), because ([P:*°] o f)| B can only range over the finitely many
functions on B.

The proof for the second order types is rather sophisticated; we only sketch
the main ideas for a single case, namely ¢ = ¢md — c¢md. The first idea which

comes to mind is to define P7 € Fxpf~7 completely analogous to P:™?, namely

P7 = Ayo. Az pemd (y(Pemdz))
If the elements of [o]z, were just functions from [emd]r, to [emd]y, then we could
prove—by a similar argumentation as above—that [P ¢][emd]y, x [ Pi*°] Storesy,
is a (finite) base set for [P7]” | ([¢]r)?. But of course this assumption is wrong
and indeed it can be shown that [P7]” | ([¢]r)? does not have a finite base set.

Somewhat to our own surprise, a slight modification of the expressions PJ
suffices to solve this problem. For every n € N let

P7 = A7 Azmd,
newz in 2 :=0; Py (if 2 < n then 2 :=!a 4 1; Pz else Q))

6Symbols like A, abs, <, ... are used with their standard interpretations; they are of course
definable in ALG. € denotes the always diverging command Yy, q(A zome, z).
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P? differs from P? by using a local variable # to count the procedure calls of s
parameter PS¢~ and as soon as the number of these procedure calls exceeds n,
it enforces divergence. It is easy to see that ([P7])ney is an w-chain with

Un,exlP] = [My-Az.newz in 2:=0;y(z:='!a+1; 2)]

and by Example 1 the right hand side equals the identity [Ay. A z.yz]. Hence it
remains to be shown that every [P7]” | ([o]r)? has a finite base set.

To this end let [Ps*°] Stores;, \{L} = {s1,...,sx} and let [ € Loc\ L. We may
assume that sequences w € {1,...,k}" can be stored into [ (by encoding them
as integers). We let Hist, = {w € {1,...,k}*||w| < n}, and for every function
® : Hist, — [P ][emd]p we define cg € [emd]puqy by

B O(sl)(s[e.sl/l]) if sl € Hist,, N s =p s
ces = 1 if sl ¢ Hist,, V s & [P:'°]Stores

Then it turns out that the finite set
B = {(ca,sile/l])|®: Hist, — [P, Wemd]r, i € {1,...,k}}

is a base set for [P7]” | ([¢]L)?. The details of the proof are too complicated to
be presented here, but we want to provide some intuition:

Every procedure of the form cg uses the location [ for keeping a record of
its own history of procedure calls and diverges as soon as the length of this
history exceeds n; the index ® describes how a call of ¢y depends on the pre-
viously recorded history. Now let f € [o]r. Then, for every g € [emd] and
s € Stores, the computation for [P7]fgs can be simulated by the computation
for [P2] fea(si[e/l]) with some appropiate ® and 7, and this implies in turn that
([P2]1£)% is uniquely determined by f¢| B, i.e. that B is indeed a base set. The
simulation is defined in such a way that calls of ¢ exactly correspond to calls of
cp. It comes as a certain surprise that such a simulation is possible, because—
on the one hand—g may have access to (finitely but) arbitrarily many locations
outside I, whose contents can in no way be restricted by [P?]f € [¢]r and—on
the other hand—the ¢g’s only use a single additional location [ in which they
only store values from a finite set. The crucial point is that the contents of the
locations outside L need not be explicitly encoded into the contents of [, because
they are implicitly determined by the recorded history of procedure calls. a

7 Conclusion

We have already mentioned that the parallel conditional is not important for our
result. In order to obtain the same full abstraction result for sequential ALG
(without pcond), we can simply remove the function Pcond from AUX and then
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proceed as before. Thus we obtain a model with a larger signature X, in which
additional semantic equivalences hold, e.g.

[y skipQ + yQskip] = [yQQ+yQQ] (with y: emd — cmd — iexp)

a variant of the famous observational congruence for sequential PCF [Plo77].
Following [Sie92] we can prove this equivalence with the aid of a ternary ground
relation R, namely

R = 8Loc, R ={dec(D*)P|di=LVdy=1Vd =dy=ds}(6#loc)

On the other hand we can show that no binary relation works for this example,
and by similar examples one sees that relations of any fixed arity n are not
sufficient for reasoning about sequential ALG. For ALG itself we have not found
such examples, hence it remains an open question whether binary relations as in
[0T93a, OT93b] or relations of some fixed arity n are sufficient in the presence
of a parallel conditional.

An interesting question is of course, what happens at types of order > 3.
We conjecture that neither our model nor the models in [0T93a, OT93b] are
fully abstract for these higher types: Reasoning about local variables is closely
related to the question of A-definability (the intuition is that a global procedure
acts on a local variable like a pure A-term), and it follows from [Loa93] that (at
least over finite ground types) A-definability for functions of order > 3 cannot be
characterized with the aid of logical relations. As all the above models are based
on logical relations, it seems unlikely that one of them be fully abstract for types
of order > 3. Hence our result seems the best one may expect for the current
state of the art.

Acknowledgements. I'm grateful to Peter O’Hearn and Bob Tennent for dis-
cussions about the relationship between our approaches and to Joérg Zeyer for
pointing out unclarities in an earlier draft.
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A List of the remaining auxiliary functions

— Succ: Dt — pint

1 ifd=_1
Succd = { d+ 1 otherwise

_ Pred . Dint N Dint
Predd:{J_ ifd=1

d —1 otherwise
— Const, : D®° — D7t

1 ifs=1
Const,, s = s .
n  otherwise

— Conds : D" — D¢ — D¢ = Df
1 ifb=_1
Condgs bdydy = { dy ifb=0
dy otherwise
o Pcond: Dint . Dint . Dint . Dint
1L ifb:J_anddl#dg
Pcondbdldg{ d1 ifb=0

dy otherwise

Meanings of the remaining ALG-constants
[[n]]: Dsto_>Dint [[Sk‘lp]] DStO—>DStO
[n] = Const, [skip] s = s

[succ] : [iexp] — D**° — Dt [pred] : [iexp] — D**° — D!
[succ] fs = Suce(fs) [pred]fs = Pred (fs)

[pcond] : [iexp] — [iexp] — [iexp] — D*t° — Dint
[pcond] bfgs = Pcond (bs)(fs)(gs)

[cond,ioms] = [ieap] — [sto = 6] — [sto = ¢§] — D*** — D?
Hcondstoéé]] bfg S = COndg(bS) (fS) (gs)

[new;eep] : [loc — iexp] — D' — Dint
[new;e.p ] fs = flL(Asgnl0s) with [ = next (support (f))

IYs]: [o— o] — [o]
[Yolf =,y f*L (the least fixed point of f)
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