
Full Abstraction
for the Second Order Subset of an

Algol�like Language
�Preliminary Report�

Kurt Sieber

Technischer Bericht A �����

FB �� Informatik
Universit�at des Saarlandes

����� Saarbr�ucken
Germany

sieber�cs�uni�sb�de

February ��	 ����

Abstract

We present a denotational semantics for an Algol�like language Alg
which is fully abstract for the second order subset of Alg� This constitutes
the �rst signi�cant full abstraction result for a block structured language
with local variables�

In this preliminary report we concentrate on the construction of the
denotational model and on the main ideas of the full abstraction proof� For
more background information about �problems involved with� the semantics
of local variables� especially for further interesting examples of observational
congruences we refer the reader to �MS��� OT	
b��

� Introduction

This paper solves a long�standing open problem concerning the semantics of lo�
cal variables� We present a denotational model for an Algol�like language Alg�
which is fully abstract for the second order subset ofAlg� This means in particu�
lar that all the problematic observational congruences for Algol�like languages�
which have been presented in the literature �MS��� Len��� OT��b�� can be vali�
dated in our model� 	The latter also holds for the parametric functor model in
�OT��a� OT��b�� but no full abstraction result has been proved for it�

The general technique which we use for our model construction has already
been developed in �MS���� namely �relationally structured locally complete par�
tial orders� with �relation preserving locally continuous functions�� Our particular
model di
ers from the one in �MS��� by having the ��nest possible relation struc�
ture�� an idea which we have used in �Sie��� to construct a fully abstract model
for the second order subset of sequential PCF �Plo����

The overall structure of our full abstraction proof� is also taken from �Sie����
In the �rst step� we show that for every function f and every �nite set B of
argument tuples for f there is a de�nable function which coincides with f on B
	Theorem �
� Hence we can �nd a sequence of de�nable functions which �ap�
proximate� f in the sense that they coincide with f on more and more argument
tuples� But for proving full abstraction 	Theroem �
 we must �nd approxima�
tions in the Scott topology� i�e� we must show that f is the least upper bound of a
sequence 	or directed set
 of de�nable functions 	Theorem �
� Bridging the gap
between these two notions of �approximation� turned out to be the most di�cult
part of our full abstraction proof� for which we had to develop completely new
techniques 	De�nition � and Theorem �
�

Our Algol�like languageAlg contains two 	at least for non�insiders
 unusual
features� namely 	a
 a parallel conditional operator on the integers and 	b
 the so�
called snap back e�ect � which goes back to a suggestion of J�C� Reynolds� Inside
the bodies of function procedures� assignments to global variables are allowed� but
after each function procedure call the store �snaps back� to the contents which it
had before the call� i�e� only a temporary side e
ect is caused by such assignments�

The parallel conditional often plays a prominent role in full abstraction proofs�
but here it does not� If we remove it from Alg� then we can use the very same
techniques as before to obtain a fully abstract model for the restricted language
	cf� Conclusion
� This �smaller� model allows us to reason not only about local
variables but also about sequentiality� In the light of �Sie��� this is not a big
surprise� but nevertheless it is worth to be mentioned� because it distinguishes
our approach from the one in �OT��a� OT��b� which is tailored to an Algol�like

�In the remainder of the Introduction we tacitly assume that we are not speaking about the
full language but only about the second order subset�

�This �rst step has already been presented in �Sie����

�

language with snap back e
ect and parallel conditional �OT��
The snap back e
ect plays a more important role than the parallel conditional�

If function procedures have either permanent side e
ects �WF��� or no side e
ects
at all �Len���� then it seems more di�cult to determine the above mentioned
��nest possible relation structure� for the construction of a fully abstract model�
This is the reason why our techniques do not straightforwardly carry over to these
alternative languages� Nevertheless we believe that they can still be applied� this
is the contents of current research�

Finally one might wonder whether similar techniques are applicable to call�
by�value 	i�e� ML�like as opposed to Algol�like
 languages �PS���� This is a
question which we have not yet investigated� Observations in �PS��� indicate
that additional problems might come up in the call�by�value setting� but we hope
that our main ideas will still be helpful�

� Syntax of the language Alg

We de�ne our Algol�like language Alg as a subset of a simply typed ��calculus�
Its types � are

� ��� loc
�� � with � ��� �

�� � � �� � ��� iexp
�� cmd

The types � 	 �� loc
 are called procedure types � The order ord	�
 of a type � is
de�ned by ord	loc
 � �� ord	�
 � � and ord	� � �
 � max 	ord	�
 � �� ord	�

�

Elements of type iexp 	� �integer expresssion�
 and cmd 	� �command�
 will
be functions which have the current store as an implicit parameter� in particular
parameters of type iexp will be thunks in terms of the Algol jargon� Thus
we follow the view that call by name should be the main parameter passing
mechanism for Algol�like languages �Rey���� Besides that� we have parameters
of type loc 	� �location�
 which may be considered as reference parameters � They
have been added as a mere convenience� because we anyways need identi�ers of
type loc as local variables�

The set of Alg�constants c and the type of each constant are

n � iexp for every n �Z 	numerals

succ� pred � iexp � iexp 	successor and predecessor

cont � loc � iexp 	dereferencing

asgn � loc � iexp � cmd 	assignment

skip � cmd 	empty command

cond � � iexp � � � � � � 	conditional with zero test

seq� � cmd � � � � 	sequencing

new � � 	loc � �
� � 	new�operator

Y� � 	� � �
� � 	�xed point operator

pcond � iexp � iexp � iexp � iexp 	parallel conditional with zero test

�

As usual� we assume that there is an in�nite set Id � of identi�ers x� � y� � z� � � � �
for each type � 	the type superscripts will often be omitted
� Identi�ers of type
loc are called variables � This means that we use the word �variable� in the sense
of imperative languages and not in the sense of the ��calculus�

Expressions M�N� P� � � � of Alg are just the well�typed ��expressions over the
Alg�constants with the only restriction that the body of a ��abstraction must
not be of type loc� A block with a local variable x has the form new x in M and
is considered as syntactic sugar for new�	� x

loc�M
 where � is the type ofM � this
makes the binding of the local variable x visible� As further syntactic sugar we
use � � �� � if then else and � instead of cont � asgn� cond� and seq��
Finally we de�ne a program P to be a closed expression of type iexp�

For purely technical reasons we also introduce so�called generalized expres�
sions� Let Loc be an in�nite set whose elements l are called locations � A gen�
eralized expression may contain 	besides the other Alg�constants
 locations l as
constants of type loc� For generalized expressions we use the same metavariables
M�N� P� � � � as for ordinary expressions� We let locns 	M
 denote the set of loca�
tions which occur in M � and for every �nite set L � Loc we let Exp�L denote the
set of closed generalized expressions with locns 	M
 � L�

� A Cartesian Closed Category

Notation� By a dcpo 	directed complete partial order
 we mean a partial order
	D�v
 in which every directed set � has a lub 	least upper bound

F
� 	or

F
D�

if we want to be more precise
� If D�E are dcpos� then 	D
c
� E
 denotes the

set of continuous functions from D to E� The category of dcpos and continuous
functions is denoted DCPO�

We will now de�ne the general framework which underlies our denotational
semantics� The intuition is� that every element in the denotational model should
only have access to �nitely many locations� Hence we would like to identify� for
every type � and every �nite set L � Loc� a dcpo ��� ��L of �elements of type �

which only have access to L� and then de�ne ��� �� as the union of these dcpos ��� ��L�
This motivates the following de�nition�

De�nition � Let 	W��
 be a directed set 	of worlds w
�

	a
 A W �locally complete partial order 	W �lcpo
 is a partial order 	D�v
 to�
gether with a family of subsets 	Dw
w�W such that D �

S
w�W Dw and for

all v� w � W

� v � w � Dv � Dw

� if � � Dw is directed� then
F
D� exists and is contained in Dw 	hence

it is also the lub in Dw� i�e� 	Dw�v
 is a dcpo

�

	b
 A function f � D � E betweenW �lcpos D and E is called locally continuous
if 	f jDw
 � 	Dw

c
� Ew
 for every w � W �

W �lcpos and locally continuous functions form a Cartesian closed category 	which
may be considered as a full subcategory of the functor category 	W � DCPO

�
Terminal object and products are de�ned worldwise and the exponent 	D � E

of two objects D and E is given by

	D� E
w � ff � D � E
���v � w� 	f jDv
 � 	Dv

c
� Ev
g

	D� E
 �
S
w�W 	D � E
w with the pointwise order on functions

This is not yet the category which we need for our model construction� we must
still add �relation structure� to the W �lcpos�

De�nition � A W �sorted 	relation
 signature is a family � � 	�w
n
w�W�n�Nof

sets �w
n such that for all m�n � N and v� w � W

m �� n� �v
m 	 �w

n �
 and v � w � �v
n � �w

n

We use the notation

�n �
S
w�W �w

n � �w �
S
n�N�

w
n and 	ambiguously
 � �

S
n�N�n

An element r � �n is called an n�ary relation symbol�

As we will extensively work with tuples and relations� we introduce some short�
hand notation for them�

A vector �d stands for a tuple 	d�� � � � � dn
 � Dn� where D and n are either
known from the context or irrelevant� A term T 	�d��e� � � �
 containing vectors
�d��e� � � � of the same length n stands for the tuple 	T 	d�� e�� � � �
� � � � � T 	dn� en� � � �

and a formula F 	�d��e� � � �
 for the conjunction F 	d�� e�� � � �
 � � � �� F 	dn� en� � � �
�
The term notation is generalized as usual to sets of tuples� i�e� to relations�
If R� S are relations of the same arity n� then T 	R� S� � � �
 stands for the set
fT 	�d��e� � � �

�� �d � R��e � S� � � �g� Finally� �nD 	or just �D
 denotes the diagonal
f	d� � � �� d

��d � Dg � Dn� 	A helpful intuition is to consider vectors as column
vectors and to read terms and formulas linewise�

De�nition � Let � be a W �sorted signature�

	a
 A W ���lcpo is a pair 	D� I
� where D is a W �lcpo and I is a function
which maps every r � �n to a relation I	r
 � Dn such that for all w � W

� r � �w � �nDw � I	r

� I	r
 	Dn
w is closed under lubs of directed sets

�

	b
 A function f � D � E between W ���lcpos 	D� ID
 and 	E� IE
 is called a
��homomorphism if f	ID	r

 � IE	r
 for all r � ��

Theorem � The category W ���LCPO of W ���lcpos and locally continuous ��
homomorphisms is Cartesian closed� Terminal object and product are de�ned
worldwise and the exponent 	D� E
 of two W ���lcpos D and E is given by

	D� E
w � ff � D � E
�� �v � w� 	f jDv
 � 	Dv

c
� Ev

� �r � �w � f	ID	r

 � IE	r
 g

	D� E
 �
S
w�W 	D� E
w with the pointwise order on functions

I�D�E�	r
 � f�f
�� �f	ID	r

 � IE	r
g

This is the category in which we will de�ne our denotational model� It has a cer�
tain similarity with the category of �parametric functors and 	parametric
 natural
transformations� as de�ned in �OT��a� OT��b�� The precise relationship between
the two approaches is not yet fully understood� but at least one di
erence seems
to be important� Whereas the de�nition in �OT��a� OT��b� works with binary
relations only 	and can be generalized to relations of some �xed arity n �OT�
�
our approach allows us to have relations of arbitrary arity in one denotational
model� This fact is exploited in our full abstraction proof 	hence the proof does
not automatically carry over to the parametric functor model
 and�moreover�
it allows us to obtain a fully abstract model for Alg without parallel conditional
by the very same techniques as for Alg itself�

� Denotational Semantics

We will now use the results of Section � to de�ne a denotational semantics for
Alg� We let

	W��
 � 	Pf	Loc
��

where Pf 	Loc
 denotes the set of all �nite sets L � Loc� The main question is
how to de�ne the W �sorted signature �� The basic idea is the same as for PCF
in �Sie���� In order to achieve full abstraction we must keep our denotational
model �as small as possible� and to this end we try to make the signature as large
as possible� For PCF this was easy to achieve� We started from a �at ground
type of integers and de�ned � to be the set of all ground type relations which are
preserved by the 	intended
 meanings of the �rst order constants� This worked
out� because all relations on a �at dcpo are closed under lubs of directed sets� For
Alg the situation is more di�cult� because the ground types ��iexp�� and ��cmd ��
will certainly be not �at� Thus� in order to adapt the ideas of �Sie��� to the Alg
setting� we introduce an additional semantic layer of �at dcpos below ��iexp�� and
��cmd ��� and on this new layer we de�ne certain auxiliary functions� which are
closely related to the intended meanings of the Alg�constants�

�

Let � � floc� int� stog� where int 	� �integer�
 and sto 	� �store�
 are auxiliary
symbols� We use sto � int and sto � sto as alternative notation for iexp and
cmd � For every � � � we de�ne a dcpo D� by

Dloc � Loc 	discrete dcpo
 Dint �Z�� D
sto � Stores� 	�at dcpos

where Stores is the set of stores s� de�ned by

Stores �
S
L�W StoresL with StoresL � fs � Loc �Z

���l � Loc nL� s l � �g

The set AUX of auxiliary functions consists of Succ� Pred � Cont � Asgn� Constn
	n � N
� Cond� 	� �� loc
 and Pcond � where e�g�

Cont � Dloc � Dsto � Dint Asgn � Dloc � Dint � Dsto � Dsto

Cont l s �

�

 if s �

s l otherwise

Asgn l d s �

�

 if d �
 or s �

s�d	l� otherwise

The list of the remaining functions is given in Appendix A�
As relation symbols of our signature we use so�called ground relations� By a

ground relation of arity n we mean a triple R � 	R�
��� such thatR� � 	D�
n for
every � � �� We let GReln denote the set of all ground relations of arity n� and we
say that f � D�� � � � �� D�k � D� preserves R � GReln if fR�� � � �R�k � R��
Then we de�ne � � 	�L

n
L�W�n�Nwith

�L
n � fR � GReln

�� 	
� � � � �

 � Rsto� every f � AUX preserves R
and �L� � W�L	 L� �
 � �n	Loc nL�
 � Rloc g

Finally we associate a W ���lcpo ��� �� � 	D� � I�
 with each type � by

 Dloc
L � L

Dloc � Loc 	as before

Iloc	R
 � Rloc

 Dsto��
L � ff � Dsto � D�

�� f preserves all R � �Lg

Dsto�� �
S
L�W Dsto��

L with the pointwise order on functions

Isto��	R
 � f�f � 	Dsto��
n
�� �f Rsto � R�g if R � �n

 ��� � ��� � 	��� ��� �����
 as de�ned in Theorem �

Following usual mathematical convention we use ��� �� also as a notation for the
W �lcpo 	or the partial order or the set
 D� � hence ��� ��L denotes the dcpo D�

L�
Moreover� we use R� as an abbreviation for I� 	R
� From the de�nitions in
Section � we then obtain the following important �reasoning principles��

 ��� �� �
S
L�W ��� ��L

�

 ��� � ���L ��� ��L� � �����L� whenever L � L�

 fR� � R� whenever f � ��� � ���L and R � �L

 	R�
��Type is a logical relation �Mit��� for every R � �

To conclude the de�nition of the denotational semantics we must assign meanings
��c�� to the Alg�constants c� Some interesting cases are

��cont �� � ��loc��� Dsto � Dint

��cont �� � Cont
��asgn�� � ��loc��� ��iexp��� Dsto � Dsto

��asgn�� lfs � Asgn l 	fs
 s

��seqsto���� � ��cmd ��� ��sto � ���� Dsto � D�

��seqsto����fg s � g 	fs

��newcmd�� � ��loc � cmd ��� Dsto � Dsto

��newcmd��fs � Asgn l 	Cont l s
 	f l 	Asgn l � s

 with l � next 	support 	f

where next � Pf	Loc
� Loc is an arbitrary function with next 	L
 �� L for every
L � Pf	Loc
 and support 	d
 is de�ned to be the set

T
fL
��d � ��� ��Lg for every

d � ��� ��� The meanings of the remaining constants are given in Appendix B� The
functions ��c�� are indeed contained in the model� more precisely�

Proposition � If c is a constant of type �� then ��c�� � �������

Theorem � and Proposition � allow us to de�ne the meaning of Alg�expressions
in the style of the simply typed ��calculus� Thus� for every expression M � � � we
obtain a function ��M �� � Env � ��� �� where Env is the set of environments 	� type
preserving functions
 �

S
� Id

� �
S
� ��� ��
� The meaning function is extended to

generalized expressions by de�ning ��l�� � l for every l � Loc� and this leads to

Proposition � LetM � � be a generalized expression� let
 � Env and let L � W

be such that locns 	M
 � L and
 x�
�

� ��� ���L for all free identi�ers x�
�

in M �
Then ��M ��
 � ��� ��L� In particular� ��M �� � ��� ��L whenever M � Exp�L�

The latter statement captures our intuition that a closed generalized expression
has only access to those locations which explicitly occur in it and not to those
which are temporarily bound to its local variables�

We �nally remark that the particular choice of l in the clause for ��new cmd��
does not play a role� i�e� instead of next 	support 	f

 we can use any other location
l � Loc n support 	f
� Thus we obtain for every l � Loc n support 	��� x�M ��

��new x in M ��
 s �

�
	��M ��
�l	x� s��	l�
 �sl	l� if ��M ��
�l	x� s��	l� ��

 otherwise

This possibility to choose the new location l freely from an in�nite set is another
important reasoning principle which we will use in the following�

�As usual we abbreviate ��M ��� by ��M �� if M is closed�

�

� Reasoning about Local Variables

Notation� If A and B are sets� then 	A
t
� B
 denotes the set of total functions

from A to B� If f� g � 	A
t
� B
 and C � A� then f jC denotes the restriction of

f to C and f �C g stands for f jC � g jC�
We will now prove some basic properties of our model and illustrate by an

example how semantic equivalences can be proved� The following set of ground
relations will be useful for both purposes�

De�nition � Let L � W � An n�ary ground relation R is called L�de�nable� if

there is a relation RL � 	L
t
�Z
n such that

 Rsto � f
gn � f�s � Storesn
�� 	�s jL
 � RL � �s 	Loc n L
 � �nZg

 Rint � �nDint

 Rloc � f�l � 	Dloc
n
��Cont �lRsto � Rint � Asgn�lRintRsto � Rstog

Note that an L�de�nable ground relation is uniquely determined by Rsto� We let
DEFL denote the set of L�de�nable ground relations�

Theorem � Let L� L� � W with L 	 L� �
� Then DEFL�

� �L�

Proposition � Let L � W� f � ��cmd ��L� l � Loc n L and s� s�� s� � Stores� Then

	a
 f
 �

	b
 fs ��
 � fs l � s l

	c
 s� �L s� � 	fs� �
 � fs� � 	fs�� fs� � Stores � fs� �L fs�

Proof� Each of the three properties is proved by choosing an appropiate R � �L

and exploiting the fact that fRsto � Rsto� For 	a
 we take R � DEF � with
Rsto � f
g� for 	b
 we take R � DEF flg with Rsto � f
g� ft � Stores

�� t l � s lg
and for 	c
 we choose some L� � W with L 	 L� �
 and s� �LocnL� s� and take

R � DEFL�

with Rsto � f
g� � f�t � Stores�
�� t� �LocnL� t�g� �

The following example of a semantic equivalence will be needed in the full ab�
straction proof but is also interesting in its own�

Example � ��ycmd�cmdzcmd�� � ��new x in x �� �� y 	x �� � x� �� z
��

The local variable x is used here for counting the procedure calls of z 	as long
as no snap back e
ect occurs
 during the computation of y z�� The equivalence

�Note that Alg� as a full�	edged ��calculus� allows us to use an expression of type cmd on
parameter position where Algol
� would force us to introduce a new procedure identi�er�
Call�by�name ensures that the assignment x �
 �x�� is executed whenever y uses its parameter
�and not only once� as in a call�by�value language��

�

shows that adding such a bookkeeping mechanism does not change the behavior
of the program in which the procedure call y z is contained� no matter how the
procedures y and z are declared�

The typical approach for proving such an equivalence between two expressions
is to �nd some R � � which 	intuitively
 relates corresponding states of their
computations� The precise argumentation for Example � is as follows�

Let
 � Env and s � Stores� Let L � W with
 y � ��cmd � cmd ��L and

 z � ��cmd ��L� We may assume that the new location l is not in L and de�ne
R � DEF flg byRsto � f
g��f�t � Stores�

�� t� �Locnflg t�g� Then 	s� s��	l�
 � Rsto

and 	
 z� ��x �� � x� �� z��
�l	x�
� Rcmd� because�by part 	c
 of Proposition ��
t� �Locnflg t� always implies
 z t� �Locnflg
 z t� �Locnflg ��x �� � x��� z��
�l	x� t��
Thus we obtain

	��y z��
 s� ��y 	x �� � x� �� z
��
�l	x� s��	l�
 �
 y RcmdRsto � RcmdRsto � Rsto

and this implies ��y z��
 s � ��new x in x �� �� y 	x �� � x� �� z
��
 s�

� Full Abstraction

Notation� If � � �� � � � �� �k � sto � � 	k � �
 and f � ������ then we let fd

denote the completely decurried version of f � i�e�

fd � ������� � � �� ���k���Dsto � D� with fd	d�� � � � � dk� s
 � fd� � � �dk s

and if p � 	�����
t
� �����
� then we let pD denote the corresponding function on the

completely decurried versions� i�e�

pD � �����d � �����d with pDfd � 	pf
d

The �rst step towards full abstraction is

Theorem � Let � � �� � � � �� �k � � 	k � �
 with ord	�
 � �� Let L � W �
f � �����L and let B � ������ � � � � � ���k�� � Dsto be �nite� Then there is some
M � Exp�L with ��M ��d �B fd�

For the proof of Theorem � one needs a ground relation R � �L
n where n is the

cardinality of B� Hence it is important that we have relations of arbitrary arity in
our model� We do not present any details here� because we want to concentrate
on the remaining 	more interesting
 steps of the full abstraction proof�

From Theorem � we could obtain a sequence of de�nable functions which �ap�
proximate� f in the sense that they coincide with f on more and more argument
tuples� But instead we need approximations in the Scott topology� i�e� we must
show that f is the least upper bound of a sequence 	or a directed set
 of de�n�
able functions� In order to bridge the gap between these two di
erent notions of
approximation we introduce the following concepts�

�

De�nition �

	a
 Let D�E be sets� F � 	D
t
� E
 and p � 	F

t
� F
� B � D is called a

base set for p� if pf is uniquely determined by f jB� i�e� if f �B g implies
pf � pg for all f� g � F � p is called �nitely based if it has a �nite base set�

	b
 Let � be a procedure type and let L � W � An L�projection sequence on � is
a sequence of expressions Pn � Exp���

L such that ��Pn��
D j 	�����L

d is �nitely
based for every n � N and 	��Pn��
n�Nis an ��chain whose lub is the identity
on ������ � is called an L�limit if an L�projection sequence exists on ��

If we can show that every procedure type of order � or � is an L�limit for every
L � W � then we obtain the desired approximations as follows�

Theorem � Let ord	�
 � � and L � W � Then every f � �����L is the lub of an
��chain of functions which are de�nable by expressions in Exp�L�

Proof� Let 	Pn
n�Nbe an L�projection sequence on �� and for every n � N let
Bn be a �nite base set for 	��Pn��

D j 	�����L

d� By Theorem � there are expressions

Mn � Exp�L with ��Mn��d �Bn fd� hence ��PnMn��d � ��Pn��D��Mn��d � ��Pn��Dfd �
	��Pn��f

d for every n � N� This implies f �
F
n�N��Pn��f �

F
n�N��PnMn��� �

In the absence of an operational semantics� we use the �internal� de�nition of
full abstraction which only refers to the denotational model� Two expressions are
observationally congruent � if they can be replaced by each other in every program
context without changing the meaning of the program� A denotational semantics
is fully abstract if semantic equivalence coincides with observational congruence�
Thus our main result reads as follows�

Theorem � �Full Abstraction	 Let ord	�
 � � and M��M� � Exp�� � Then

��M��� � ��M��� � ��C�M���� � ��C�M���� for every program context C� �

Proof� As usual� only ��� must be proved� because ��� already follows from
the compositionality of the denotational semantics� Let � � �� � � � �� �k � �
	k � �
 and assume that ��M��� �� ��M���� i�e� there are dj � ���j �� for j � �� � � � � k
and s � Stores such that

��M��� d� � � � dk s �� ��M��� d� � � �dk s

Let L � W be such that dj � ���j ��L for j � �� � � � � k� By Theorem �� every dj is
the lub of an ��chain of de�nable elements in ���j ��L� hence the local continuity of
��M��� and ��M��� implies that there are Nj � Exp

�j
L

with

��M�N� � � �Nk�� s �� ��M�N� � � �Nk�� s

�An operational semantics �which is interesting in its own because of the snap back e�ect�
has been presented in �Sie����

��

From this� it is easy to construct a program context C� � with ��C�M���� �� ��C�M����
	location constants in N�� � � � � Nk must be replaced by local variables and these
local variables must be initialized according to s
� �

We have formulated Theorem � for closed expressions of order � �� Alternatively
we could have used open expressions of order � � whose only free identi�ers are
of order � �� that�s why we speak of �full abstraction for the second order subset��

The main challenge remains to prove

Theorem
 Let ord	�
 � � and L � W � Then � is an L�limit�

Proof sketch� The proof for the �rst order types is simple� As an example we
consider � � cmd � For every n � N we de�ne	

P sto
n � if

V
l�L abs	� l
 � n then skip else ! � Expcmd

L

P cmd
n � � ycmd� 	P sto

n � y� P sto
n
 � Expcmd�cmd

L

It is easy to see that 	��P cmd
n ��
n�N is an ��chain of 	idempotent
 functions

whose lub is the identity on ��cmd ��� Now let f � ��cmd ��L� By Proposition ��
��P cmd

n ��f � ��cmd ��L is uniquely determined by its restriction to StoresL� Hence
let B � ��P sto

n ��StoresL� B is �nite� and ��P cmd
n ��f j StoresL is uniquely determined

by f jB or even by 	��P sto
n �� � f
 jB� The former shows that B is a base set for

��P cmd
n �� j ��cmd ��L� i�e� 	P cmd

n
n�Nis an L�projection sequence on cmd 	decurrying
is not an issue here
� The latter shows that ��P cmd

n ����cmd ��L is �nite 	i�e� ��cmd ��L
is an SFP�domain
� because 	��P sto

n �� � f
 jB can only range over the �nitely many
functions on B�

The proof for the second order types is rather sophisticated� we only sketch
the main ideas for a single case� namely � � cmd � cmd � The �rst idea which
comes to mind is to de�ne P�

n � Exp���
L completely analogous to P cmd

n � namely

P�
n � � y�� � zcmd� P cmd

n 	y 	P cmd
n z

If the elements of �����L were just functions from ��cmd ��L to ��cmd ��L� then we could
prove�by a similar argumentation as above�that ��P cmd

n ����cmd ��L� ��P sto
n ��StoresL

is a 	�nite
 base set for ��P�
n ��

D j 	�����L
d� But of course this assumption is wrong
and indeed it can be shown that ��P�

n ��
D j 	�����L
d does not have a �nite base set�

Somewhat to our own surprise� a slight modi�cation of the expressions P�
n

su�ces to solve this problem� For every n � N let

"P�
n � �y�� �zcmd�

new x in x �� ��P cmd
n 	y 	if � x � n then x �� � x� �� P cmd

n z else !

�Symbols like ��abs��� � � � are used with their standard interpretations� they are of course
de�nable in Alg� � denotes the always diverging command Ycmd�� z

cmd� z��

��

"P�
n di
ers from P�

n by using a local variable x to count the procedure calls of y�s
parameter P cmd

n z� and as soon as the number of these procedure calls exceeds n�
it enforces divergence� It is easy to see that 	�� "P�

n ��
n�Nis an ��chain with

F
n�N��

"P�
n �� � ��� y� � z�newx in x �� �� y 	x �� � x� �� z
��

and by Example � the right hand side equals the identity ��� y� � z� yz��� Hence it
remains to be shown that every �� "P�

n ��
D j 	�����L

d has a �nite base set�
To this end let ��P sto

n ��StoresL nf
g � fs�� � � � � skg and let l � Loc nL� We may
assume that sequences w � f�� � � � � kg� can be stored into l 	by encoding them
as integers
� We let Histn � fw � f�� � � � � kg�

�� jwj � ng� and for every function
� Histn � ��P cmd

n ����cmd ��L we de�ne c
 � ��cmd ��L�flg by

c
s �

�
#	sl
	s�i�sl	l�
 if sl � Histn � s �L si

 if sl �� Histn � s �� ��P sto

n ��Stores

Then it turns out that the �nite set

B � f	c
� si�
	l�

��# � Histn � ��P cmd

n ����cmd ��L� i � f�� � � � � kgg

is a base set for �� "P�
n ��

D j 	�����L

d� The details of the proof are too complicated to

be presented here� but we want to provide some intuition�
Every procedure of the form c
 uses the location l for keeping a record of

its own history of procedure calls and diverges as soon as the length of this
history exceeds n� the index # describes how a call of c
 depends on the pre�
viously recorded history� Now let f � �����L� Then� for every g � ��cmd �� and
s � Stores� the computation for �� "P�

n ��fgs can be simulated by the computation
for �� "P�

n ��fc
	si�
	l�
 with some appropiate # and i� and this implies in turn that
	�� "P�

n ��f

d is uniquely determined by fd jB� i�e� that B is indeed a base set� The

simulation is de�ned in such a way that calls of g exactly correspond to calls of
c
� It comes as a certain surprise that such a simulation is possible� because�
on the one hand�g may have access to 	�nitely but
 arbitrarily many locations
outside L whose contents can in no way be restricted by �� "P�

n ��f � �����L and�on
the other hand�the c
�s only use a single additional location l in which they
only store values from a �nite set� The crucial point is that the contents of the
locations outside L need not be explicitly encoded into the contents of l� because
they are implicitly determined by the recorded history of procedure calls� �

� Conclusion

We have already mentioned that the parallel conditional is not important for our
result� In order to obtain the same full abstraction result for sequential Alg
	without pcond
� we can simply remove the function Pcond from AUX and then

��

proceed as before� Thus we obtain a model with a larger signature �� in which
additional semantic equivalences hold� e�g�

��y skip !� y! skip�� � ��y!!� y !!�� 	with y � cmd � cmd � iexp

a variant of the famous observational congruence for sequential PCF �Plo����
Following �Sie��� we can prove this equivalence with the aid of a ternary ground
relation R� namely

Rloc � ��Loc� R� � f�d � 	D�
�
�� d� �
 � d� �
 � d� � d� � d�g 	� �� loc

On the other hand we can show that no binary relation works for this example�
and by similar examples one sees that relations of any �xed arity n are not
su�cient for reasoning about sequential Alg� For Alg itself we have not found
such examples� hence it remains an open question whether binary relations as in
�OT��a� OT��b� or relations of some �xed arity n are su�cient in the presence
of a parallel conditional�

An interesting question is of course� what happens at types of order � ��
We conjecture that neither our model nor the models in �OT��a� OT��b� are
fully abstract for these higher types� Reasoning about local variables is closely
related to the question of ��de�nability 	the intuition is that a global procedure
acts on a local variable like a pure ��term
� and it follows from �Loa��� that 	at
least over �nite ground types
 ��de�nability for functions of order � � cannot be
characterized with the aid of logical relations� As all the above models are based
on logical relations� it seems unlikely that one of them be fully abstract for types
of order � �� Hence our result seems the best one may expect for the current
state of the art�

Acknowledgements� I�m grateful to Peter O�Hearn and Bob Tennent for dis�
cussions about the relationship between our approaches and to J$org Zeyer for
pointing out unclarities in an earlier draft�

References

�Len��� Arthur F� Lent� The category of functors from state shapes to bot�
tomless cpos is adequate for block structure� In Proc� ACM SIG�
PLANWorkshop on State in Programming Languages �Technical Report
YALEU	DCS	RR�
��� Yale University
� pages ��� ���� Copenhagen�
Denmark� �����

�Loa��� Ralph Loader� The undecidability of ��de�nability� Technical report�
Mathematical Institute� Oxford University� June �����

��

�Mit��� John C� Mitchell� Type systems for programming languages� In J� van
Leeuwen� editor� Handbook of Theoretical Computer Science� volume B�
chapter �� pages ��� ���� North�Holland� �����

�MS��� Albert R� Meyer and Kurt Sieber� Towards fully abstract semantics for
local variables� Preliminary report� In Proc� ��th Annual ACM Symp�
on Principles of Programming Languages� pages ��� ���� San Diego�
�����

�OT� Peter W� O�Hearn and Robert D� Tennent� Personal communication�

�OT��a� Peter W� O�Hearn and Robert D� Tennent� Parametricity and local
variables� Technical Report SU�CIS������� School of Computer and
Information Science� Syracuse University� October �����

�OT��b� Peter W� O�Hearn and Robert D� Tennent� Relational parametricity and
local variables� In Proc� ��th Annual ACM Symposium on Principles of
Programming Languages� pages ��� ���� �����

�Plo��� Gordon D� Plotkin� LCF considered as a programming language� The�
oretical Computer Science� ����� ���� �����

�PS��� Andrew M� Pitts and Ian D� B� Stark� Observable properties of higher
order functions that dynamically create local names� or� What�s new%
In Andrzej M� Borzyszkowski and Stefan Soko&lowski� editors� Proc� ��th
International Symposium on Mathematical Foundations of Computer
Science� LNCS ���� pages ��� ���� Springer�Verlag� �����

�Rey��� John C� Reynolds� The essence of algol� In J� deBakker and van
Vliet� editors� Int�l� Symp� Algorithmic Languages� pages ��� ���� IFIP�
North�Holland� �����

�Sie��� Kurt Sieber� Reasoning about sequential functions via logical relations�
In M� P� Fourman� P� T� Johnstone� and A� M� Pitts� editors� Proc�
LMS Symposium on Applications of Categories in Computer Science�
Durham �

�� LMS Lecture Note Series ���� pages ��� ���� Cambridge
University Press� �����

�Sie��� Kurt Sieber� New steps towards full abstraction for local variables� In
Proc� ACM SIGPLAN Workshop on State in Programming Languages
�Technical Report YALEU	DCS	RR�
��� Yale University
� pages ��
���� Copenhagen� Denmark� �����

�WF��� Stephen Weeks and Matthias Felleisen� On the orthogonality of assign�
ments and procedures in Algol� In Proc� ��th Annual ACM Symposium
on Principles of Programming Languages� pages �� ��� �����

��

A List of the remaining auxiliary functions

 Succ � Dint � Dint

Succ d �

�

 if d �

d� � otherwise

 Pred � Dint � Dint

Pred d �

�

 if d �

d� � otherwise

 Constn � Dsto � Dint

Constn s �

�

 if s �

n otherwise

 Cond� � Dint � D� � D� � D�

Cond� b d�d� �

��
�

 if b �

d� if b � �
d� otherwise

 Pcond � Dint � Dint � Dint � Dint

Pcond b d�d� �

��
�

 if b �
 and d� �� d�
d� if b � �
d� otherwise

B Meanings of the remaining Alg�constants

��n�� � Dsto � Dint

��n�� � Constn

��skip�� � Dsto � Dsto

��skip�� s � s

��succ�� � ��iexp��� Dsto � Dint

��succ��fs � Succ 	fs

��pred �� � ��iexp��� Dsto � Dint

��pred ��fs � Pred 	fs

��pcond �� � ��iexp��� ��iexp��� ��iexp��� Dsto � Dint

��pcond �� bfg s � Pcond 	bs
 	fs
 	gs

��condsto���� � ��iexp��� ��sto � ���� ��sto � ���� Dsto � D�

��condsto���� bfg s � Cond�	bs
 	fs
 	gs

��new iexp�� � ��loc � iexp��� Dsto � Dint

��new iexp��fs � f l 	Asgn l � s
 with l � next 	support 	f

��Y��� � ��� � ���� �����
��Y���f �

F
n�Nf

n
 	the least �xed point of f

��

