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Short Abstract

Many computer graphics applications involve rendering humans and their
natural surroundings, which inevitably requires displaying textiles. To accu-
rately resemble the appearance of e.g. clothing or furniture, reflection models
are needed which are capable of modeling the highly complex reflection effects
exhibited by textiles. This thesis focuses on generating realistic high quality
images of textiles by developing suitable reflection models and introducing
algorithms for illumination computation of cloth surfaces. As efficiency is es-
sential for illumination computation, we additionally place great importance
on exploiting graphics hardware to achieve high frame rates.

To this end, we present a variety of hardware-accelerated methods to
compute the illumination in textile micro geometry. We begin by showing
how indirect illumination and shadows can be efficiently accounted for in
heightfields, parametric surfaces, and triangle meshes. Using these methods,
we can considerably speed up the computation of data structures like tabu-
lar bidirectional reflectance distribution functions (BRDFs) and bidirectional
texture functions (BTFs), and also efficiently illuminate heightfield geometry
and bump maps. Furthermore, we develop two shading models, which ac-
count for all important reflection properties exhibited by textiles. While the
first model is suited for rendering textiles with general micro geometry, the
second, based on volumetric textures, is specially tailored for rendering knit-
wear. To apply the second model e.g. to the triangle mesh of a garment, we
finally introduce a new rendering algorithm for displaying semi-transparent
volumetric textures at high interactive rates.

Kurzzusammenfassung

Eine Vielzahl von Anwendungen in der Computergraphik schließen auch die
Darstellung von Menschen und deren natürlicher Umgebung ein, was zwangs-
läufig auch die Darstellung von Textilien erfordert. Um beispielsweise das
Aussehen von Bekleidung oder Möbeln genau zu erfassen, werden Reflexions-
modelle benötigt, die in der Lage sind, die hochkomplexen Reflexionseffekte
von Textilien zu berücksichtigen. Der Schwerpunkt dieser Dissertation liegt in
der Generierung qualitativ hochwertiger Bilder von Textilien, was wir durch
die Entwicklung geeigneter Reflexionsmodelle und von Algorithmen zur Be-
leuchtungsberechnung an Stoffoberflächen ermöglichen. Da Effizienz essen-
tiell für die Beleuchtungsberechnung ist, nutzen wir die Möglichkeiten von
Graphikhardware aus, um hohe Bildwiederholraten zu erzielen.

Hierfür legen wir eine Vielzahl von hardware-beschleunigten Methoden
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zur Beleuchtungsberechnung der Mikrogeometrie von Textilien vor. Zuerst
zeigen wir, wie indirekte Beleuchtung und Schatten effizient in Höhenfeldern,
parametrischen Flächen und Dreiecksnetzen berücksichtigt werden können.
Mit Hilfe dieser Methoden kann die Berechnung von Datenstrukturen wie
tabellarischer bidirectional reflectance distribution functions (BRDFs) und
bidirectional texture functions (BTFs) erheblich beschleunigt, sowie die Be-
leuchtung von Höhenfeld-Geometrie und Bumpmaps effizient errechnet wer-
den. Weiterhin entwickeln wir zwei Reflexionsmodelle, welche alle wichtigen
Reflexionseigenschaften berücksichtigen, die Textilien aufweisen. Während
das erste Modell sich zur Darstellung von Textilien mit allgemeiner Mikro-
geometrie eignet, ist das zweite, welches auf volumetrischen Texturen ba-
siert, speziell auf die Darstellung von Strickwaren zugeschnitten. Um das
zweite Modell z.B. auf das Dreiecksnetz eines Bekleidungsstückes anzuwen-
den führen wir einen neuen Renderingalgorithmus für die Darstellung von
semi-transparenten volumetrischen Texturen mit hohen Bildwiederholraten
ein.
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Summary

The growing number and variety of computer graphics applications calls for
an increase in realism, which inevitably requires rendering human beings in
their surroundings and thus displaying textiles such as clothes, furniture and
household textiles. Rendering a virtual piece of cloth can be divided into two
fairly distinguishable tasks, which are the computation of the cloth’s shape,
and modeling the cloth’s reflection behavior. The research we will present in
this thesis is dedicated to finding efficient but high quality solutions for the
second problem. Developing material models which accurately capture the
reflection properties of textiles is demanding, because textiles exhibit very
complex reflection behavior. The reason for this lies in the highly complicated
microscopic structure of textile surfaces. Examples for such complex effects
are spatial variation of the reflection function, as well as light inter-reflections,
occlusions, and self-shadowing at the micro geometry level.

In the past five years the main development in the field of graphics hard-
ware has been to offer more and more flexibility by replacing parts of the
formerly fixed graphics pipeline by programmable stages. As a consequence,
complex material models can now be implemented in hardware, which can
lead to impressive frame-rates while achieving high quality results. However,
even the programmable stages have quite a number of restrictions, requir-
ing methods and shading models to be carefully designed so that they can
run in hardware. In this thesis we place great importance on developing
illumination algorithms and material models which are specially tailored to
effectively exploit the features provided by modern graphics cards.

Precisely computing the illumination of a textile would require evaluating
the Rendering Equation – a complicated integral equation – at micro geom-
etry level. Clearly, this approach is far too costly for rendering. To display
textiles efficiently, we therefore have to approximate the illumination, using
suitable reflection models. The contributions of this thesis can be grouped
into two categories. On the one hand we present methods for considerably
speeding up lighting computations at micro geometry level, which are used to
compute higher order data structures like BRDFs and BTFs. On the other
hand, we develop several shading models approximating the visual appear-
ance of textiles. In the following we will summarize the contributions of these
algorithms in more detail.

First we introduce algorithms for efficient light computation in textile mi-
cro geometry. We consider a widely used technique for efficiently rendering
fine surface detail, which consists of a level of detail hierarchy of heightfields,
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bump maps and BRDFs. However, with the methods utilized so far, lighting
is computed inconsistently for the three different levels. We overcome this
inconsistency by introducing methods for efficiently computing indirect illu-
mination and shadows in heightfields and bump maps. The key idea in our
approach for computing indirect illumination is to precompute and store vis-
ibility information, and then reuse it for a multitude of different light paths.
This idea already results in a considerable speed-up compared to conven-
tional methods. However, by applying a variant of Monte Carlo algorithms
called the Method of Dependent Tests, we can map the indirect lighting
computation onto graphics hardware, which makes it even more efficient. To
efficiently consider self-shadowing in heightfields and bump maps, we intro-
duce an approximation of the lit region above each point on the heightfield
which is based on a 2D ellipse. The shadow test then consists of an inside
tests with the ellipses of every point on the heightfield, which is also easily im-
plementable in hardware. Using our methods, we can compute BRDFs from
a heightfield extremely efficiently, and consider both shadows and indirect
illumination. As a consequence, we obtain efficient and consistent lighting
for all three levels of detail.

As the approximation of textile micro geometry with a heightfields is not
sufficient for some textiles and some applications, we extend our methods
for indirect illumination and shadows to more general geometry. We specifi-
cally consider parametric surfaces, and general triangle meshes. To apply our
method of precomputed visibility, we introduce parameterizations for both
classes of geometry, which are suitable for computing indirect lighting using
graphics hardware. Additionally, we develop a hardware-accelerated shadow-
ing algorithm, which is capable of computing shadows in general geometry.
We apply our methods to the extremely efficient computation of higher order
data structures like BRDFs and BTFs.

Bump maps present a highly efficient rendering method for heightfields.
For more general micro geometry, however, no comparable method exists
for efficient rendering. We fill this gap by introducing a BRDF model for
general micro geometry, which is capable of capturing spatial variation, oc-
clusion and self-shadowing, as well as indirect illumination of micro geometry
and can be rendered very efficiently using graphics hardware. As a basis we
use the Lafortune reflection model, which we enhance with a view-dependent
color table. The latter substantially helps to account for occlusion and color
shifts. The resulting model is extremely memory efficient, can be rendered
using graphics hardware at high interactive rates and thereby lends itself
naturally to mip-mapping.
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Volumetric approaches are called for when it comes to capturing the ap-
pearance of knit textiles which often requires representing fine and fluffy
strands, which cause complex occlusion and self-shadowing effects. Further-
more, these approaches help to convey a thickness of the fabric, and to gener-
ate the typical slightly uneven silhouettes resulting from fairly large stitches.
We introduce a shading model specifically tailored to represent knit wear,
which is based on semi-transparent volumetric textures. The shading is com-
puted in hardware using an approximation of the Banks shading model. We
place special importance on facilitating the display of complex color patterns
often found in knit garments, and on efficiently handling self-shadowing. In
a first approach we apply a concentric layering technique for rendering, and
achieve high interactive frame rates. The rendering approach, however, can
lead to artifacts at the silhouettes.

We therefore introduce methods for efficiently rendering general semi-
transparent volumetric textures. Our approach is closely related to volume
rendering, where view-orthogonal planes are generated back to front and in-
tersected with the volume. The resulting intersection surfaces are textured
with corresponding slices through the volume texture and combined back to
front using blending. The main problem we have to solve is to efficiently
compute the intersection of the rendering planes with our complex volume,
which is given by the mesh of the garment extruded along the vertex normals
to account for the garment’s thickness. We assume the garment mesh to con-
sist of triangles and present a hybrid and a pure hardware based approach
which compute the intersection of the prism (the result of extruding a mesh
triangle along its normals) and the rendering plane. Using this method, we
can render semi-transparent volumetric textures at interactive rates. Due to
the view-orthogonal rendering planes the resulting images show no artifacts
and are of an extremely high quality.

The algorithms and models developed in this thesis enable us to capture
the visual appearance of a large set of different types of cloth microgeometry.
They allow us to generate high quality images of textiles at nearly real-time
frame rates. Finally, we will supply background information on textiles,
graphics hardware and lighting computation and review related work.
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Zusammenfassung

Die zunehmende Zahl und Vielfalt von Anwendungen der Computergraphik
verlangt nach immer mehr Realismus, was es erfordert, Menschen in ihrer
natürlichen Umgebung zu rendern und damit Textilien wie z.B. Bekleidung,
Mobiliar und Haushaltstextilien darzustellen. Die Darstellung eines virtuellen
Stoffes kann in zwei relativ abgrenzbare Aufgaben unterteilt werden, nämlich
in die Berechnung der Stoffgeometrie und in die Modellierung des Reflexi-
onsverhaltens. Die in dieser Arbeit präsentierten Forschungsergebnisse sind
der Erarbeitung von effizienten, jedoch qualitativ hochwertigen Lösungen des
zweiten Problems gewidmet. Die Entwicklung von Materialmodellen welche
die Reflextionseigenschaften von Textilien genau erfassen ist anspruchsvoll,
da Textilien ein sehr komplexes Reflexionsverhalten aufweisen. Der Grund
dafür liegt in der hochkomplizierten Struktur von Textilienoberflächen. Bei-
spiele für solch komplexes Verhalten sind die lokale Abhängigkeit der Refle-
xionsfunktion, sowie Interreflexionen des Lichts, Verdeckung, und Selbstab-
schattung auf Mikrogeometrieebene.

Die Weiterentwicklung von Graphik-Hardware in den vergangenen fünf
Jahren ersetzte Teile der einst fixen Graphikpipeline durch programmierba-
re Stufen, was zu einer deutlichen Flexibilitätssteigerung führte. Als Folge
können heutzutage komplexe Materialmodelle in Hardware implementiert
werden, die in beeindruckenden Bildwiederholraten bei hoher Qualität dar-
gestellt werden können. Jedoch weist die programmierbare Hardware einige
Einschränkungen auf, welche einen sorgfältigen Entwurf von Methoden und
Shadingmodellen erforderlich macht, damit diese in Hardware laufen können.
In dieser Dissertation legen wir großen Wert auf die Entwicklung von Beleuch-
tungsalgorithmen und Materialmodellen, die speziell darauf ausgelegt sind,
die von modernen Graphikkarten angebotenen Eigenschaften auszunutzen.

Um die Beleuchtung eines Stoffes präzise zu berechnen, müßte die Ren-
dering Equation – eine komplizierte Integralgleichung – auf Ebene der Mi-
krogeometrie ausgewertet werden. Offensichtlich ist diese Vorgehensweise je-
doch viel zu teuer um beim Rendering Verwendung zu finden. Um Textilien
effizient darzustellen, muß deshalb die Beleuchtung durch geeignete Shading-
modelle approximiert werden. Die Beiträge dieser Dissertation lassen sich in
zwei Kategorien einteilen. Auf der einen Seite führen wir Methoden ein, die
die Beleuchtungsberechnung auf Mikrogeometrieebene erheblich beschleuni-
gen. Mittels dieser Algorithmen lassen sich Datenstrukturen wie BRDFs und
BTFs effizient berechnen. Auf der anderen Seite entwickeln wir Shading-
modelle, die das Aussehen von Stoffoberflächen approximieren. Nachfolgend
werden wir die entwickelten Methoden und Modelle etwas detailierter zu-
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sammmenfassen.

Zuerst stellen wir Algorithmen für die effiziente Beleuchtungsberechnung
in Textilien-Mikrogeometrie vor. Wir betrachten dazu eine verbreitete Tech-
nik für das effiziente Rendering von feinen Oberflächendetails, die aus ei-
ner Hierarchie von Detaillierungsgraden aus Höhenfeldern, Bumpmaps, und
BRDFs besteht. Jedoch wird mit den herkömmlichen Methoden die Beleuch-
tung der verschiedenen Stufen auf inkonsistente Weise berechnet. Wir schaf-
fen Abhilfe, indem wir eine Methode für die effiziente Berechnung von indi-
rekter Beleuchtung und Schatten in Höhenfeldern und Bumpmaps einführen.
Die Kernidee unseres Ansatzes zur Berechnung von indirekter Beleuchtung
besteht in der Vorberechnung und Speicherung von Sichtbarkeitsinforma-
tion, die dann für eine Vielzahl verschiedener Lichtpfade wiederverwendet
wird. Bereits durch diese Idee erreichen wir eine beträchtlichen Beschleu-
nigung im Vergleich zu herkömmlichen Methoden. Zusätzlich kann durch
die Anwendung einer Variante von Monte Carlo Algorithmen, namens mm-
ethod of dependent tests”, die Berechnung der indirekten Beleuchtung auf
Graphikhardware abgebildet werden, wodurch das Verfahren noch effizien-
ter wird. Um Selbstabschattung effizient in Höhenfeldern und Bumpmaps zu
berücksichtigen, führen wir eine auf 2D Ellipsen basierende Approximation
der beleuchteten Region über jedem Punkt des Höhenfeldes ein. Der Schat-
tentest besteht dann aus einem inside-Test der Ellipse eines jeden Punktes
auf dem Höhenfeld, was sich auch einfach in Hardware implementieren läßt.
Durch die Anwendung unserer Methoden können wir in extrem effizienter
Weise BRDFs von Höhenfeldern berechnen, wobei sowohl Schatten, als auch
indirekte Beleuchtung berücksichtigt werden. Als Folge erhalten wir effiziente
und konsistente Beleuchtung auf allen drei Detaillierungsstufen.

Nachdem die Approximation von Textilienmikrogeometrie durch ein Höhen-
feld nicht ausreichend genau für manche Textilien und Anwendungen ist,
erweitern wir unsere Methoden für die Berechnung indirekter Beleuchtung
und Schatten auf allgemeinere Geometrie. Wir behandeln speziell parametri-
sche Flächen und allgemeine Dreiecksnetze. Um unsere Methoden der vorbe-
rechneten Sichtbarkeit anzuwenden, führen wir für beide Geometrieklassen
Parametrisierungen ein, die geeignet für die Berechnung der indirekten Be-
leuchtung mittels Graphik Hardware sind. Zusätzlich entwickeln wir einen
Hardware-beschleunigten Schattenalgorithmus, der sich für die Schattenbe-
rechnung in allgemeiner Geometrie eignet. Wir wenden unsere Methoden auf
die extrem effiziente Berechnung von Datenstrukturen höherer Ordnung, wie
BRDFs und BTFs, an.

Bumpmaps stellen eine hocheffiziente Renderingmethode für Höhenfelder
dar. Jedoch existiert für allgemeinere Mikrogeometrie keine vergleichbare
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Methode zur effizienten Darstellung. Wir schließen diese Lücke durch die
Einführung eines BRDF Modells für allgemeine Mikrogeometrie, das in der
Lage ist, örtliche Variation, Verdeckung und Selbstabschattung der Mikro-
geometrie, sowie indirekte Beleuchtung zu erfassen, und sich sehr effizient mit
Graphikhardware rendern läßt. Als Grundlage verwenden wir das Lafortune
Reflexionsmodell, welches wir um eine blickrichtungsabhängige Farbtabelle
erweitern. Letztere hilft maßgeblich bei der Berücksichtigung von Verdeckun-
gen und Farbshifts. Das resultierende Modell ist sehr speichereffizient, läßt
sich mittels Graphikhardware mit hohen Bildwiederholraten darstellen und
ermöglicht Mipmapping.

Gestrickte Textilien bestehen oft aus feinen Fasern, die zu komplexen
Verdeckungs- und Selbstabschattungseffekten führen. Deshalb lassen sich
Strickwaren am besten durch volumetrische Ansätze berücksichtigen. Die-
se Ansätze helfen weiterhin, die Dicke des Stoffes zu vermitteln, sowie die
typische, leicht unebene Silhouette zu erzeugen, die von den relativ großen
Maschen herrührt. Wir führen ein auf semi-transparenten volumetrischen
Texturen basierendes Shadingmodell ein, welches speziell für die Darstellung
von Strickwaren entwickelt wurde. Die Beleuchtung wird in Hardware mit-
tels einer Approximation des Banks Beleuchtungsmodelles berechnet. Wir
legen großen Wert darauf, die Darstellung komplexer Farbmuster, wie sie oft
bei Strickwaren zu finden sind, zu ermöglichen, sowie Selbstabschattung zu
berücksichtigen. In einem ersten Ansatz wenden wir eine auf konzentrischen
Schichten beruhende Renderingtechnik an, und erreichen hohe interaktive
Bildwiederholraten. Dieser Renderingansatz kann jedoch zu Artefakten an
den Silhouetten führen.

Deshalb führen wir Methoden zur effizienten Darstellung von allgemei-
nen semi-transparenten volumetrischen Texturen ein. Unser Ansatz ist eng
verwandt mit dem des Volumerendering, wo zur Blickrichtung orthogonale
Ebenen von hinten nach vorne generiert und mit dem Volumen geschnit-
ten werden. Die erzeugten Schnittflächen werden dann mit den korrespon-
dierenden Schnitten durch die Volumen-Textur texturiert und von hinten
nach vorne mittels Blending kombiniert. Das Hauptproblem, welches wir
lösen müssen, ist die effiziente Schnittflächenberechnung der Renderingebe-
nen mit unserem komplexen Volumen. Letzteres entsteht, indem wir das
Netz der Bekleidungsgeometrie entlang der Normalen extrudieren, um die
Dicke des Stoffes zu berücksichtigen. Wir setzen voraus, daß das Netz des
Bekleidungsstückes aus Dreiecken besteht und stellen einen hybriden und
einen rein Hardware-basierten Ansatz zur Berechnung der Schnittfläche ei-
nes Prismas mit der Renderingebene vor. Mit Hilfe dieser Methode können
wir semi-transparente volumetrische Texturen bei interaktiven Bildwieder-
holraten darstellen. Durch die zur Blickrichtung orthogonalen Schnittebenen
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weisen die erzeugten Bilder keinerlei Artefakte auf und sind von extrem hoher
Qualität.

Die in dieser Dissertation entwickelten Methoden und Algorithmen ermög-
lichen es uns das Aussehen einer Vielzahl verschiedener Stofftypen zu erfas-
sen. Mit ihrer Hilfe können wir qualitativ hochwertige Bilder von Textilien
fast in Echtzeit generieren. Schließlich geben wir Hintergrundinformation zu
Textilien, Graphikhardware und Beleuchtungberechnung und behandeln ver-
wandte Arbeiten.
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Chapter 1

Introduction

Computer graphics, in its first years merely an engineering utility employed
to visualize engineering results in CAD systems, has evolved in the past two
decades to a broad field of research with numerous application areas. Many of
these applications require realistically rendering humans in their surround-
ings and thus displaying textiles. As an example consider the clothing of
digital characters, which are frequently used in movies and television, for
computer games, and also for populating architectural scenes. Apart from
clothes, the field of interior design calls for the realistic treatment of furniture
and household textiles. Finally, textile and fashion design can be effectively
combined with computer graphics, enabling the virtual creation of new fab-
rics or dress patterns.

The term textile is derived from the Latin texere, ”to weave”[Trumbull94].
Originally, this expression was only applied to woven fabrics. Meanwhile,
however, it has become a general term for fibers, yarns, and other materials
that can be made into fabrics, and for fabrics produced by interlacing or any
other construction method. Textiles are believed to date from prehistoric
times. While weaving can be traced to about 5000 BC, cotton, silk, and
flax were commonly produced by about 3000 BC. Hand knitting probably
originated among the nomads of the Arabian Desert at about 1000 BC and
spread from Egypt to Spain, France, and Italy. Ever since, humans have
made use of textiles, and we are nowadays surrounded by them, not only as
clothes, but also as carpets, curtains, and parts of furniture.

Rendering a virtual piece of cloth using computer graphics can be divided
into two fairly distinguishable tasks. The first involves computing the geo-
metrical shape, for which issues like draping, friction, or collision detection
need to be considered. The second requires modeling the cloth’s reflection

1
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behavior as realistically as possible. The research we will present in this the-
sis is dedicated to finding efficient but high quality solutions for the second
problem. In the past five years the main development in the field of graphics
hardware has been to replace parts of the formerly fixed and fairly restric-
tive graphics pipeline by programmable stages, which offer a high degree of
flexibility. As a consequence, new and complex material models can now
be implemented in hardware, leading to drastic increases in efficiency, while
maintaining high quality results. However, not every material model can
be easily ported to run directly in hardware. In this thesis we will present
material models which are specially tailored to the new features of modern
graphics hardware. This way we can exploit the efficiency of graphics hard-
ware to generate high quality renderings of textiles. We will also exploit
graphics hardware, where possible, to speed up otherwise lengthy precompu-
tations.

1.1 Problem Statement

What makes efficiently displaying textiles at high quality so complicated? To
answer this question let’s briefly take a look at the most important reflection
properties of textiles. Similarly to most other materials, the amount of light
reflected by a cloth surface is strongly dependent on the light’s incident di-
rection. In materials with small surface irregularities, like the small bumps
caused by the cloth’s weave structure, the light direction is not only impor-
tant for the actual shading. The bumps in the surface structure can also cast
shadows onto each other, the shape and size of which varies with the light
direction. This effect, which is called self-shadowing, gives important visual
cues on the fine-scale geometry, and therefore should not be neglected. For
many materials the amount of reflected light depends not only on the direc-
tion to the light source, but also on the direction to the viewer. This kind
of light reflection, often referred to as non-diffuse reflection, is not negligible
for textiles. For materials with small-scale bumps, another view-dependent
effect called self-occlusion needs to be accounted for, which occurs when sur-
face irregularities occlude others from view. Self-occlusion effects can be
quite severe in textiles, because of the regularity of their surface structure.

So far we have determined two vectors a reflection function depends on,
making it four-dimensional. For many materials four dimensions fully suffice
to capture the reflection properties. Textiles, however, usually require two
additional dimensions, because the reflection function additionally can vary
depending on the position on the cloth. This spatial variation can be due
to color patterns, heterogeneous materials, or visible geometrical variance
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caused by the underlying weave or knitting pattern. Another typical prop-
erty of textiles is that they reflect light anisotropically, which means that the
reflection changes if the textile is rotated around the surface normal. While
this effect is strongly coupled with the spatial variance, it can also be ob-
served on spatially invariant materials such as satin. Finally, effects due to
light being reflected multiple times in the textile micro geometry must be
considered.

A material function capturing all these effects has 7 to 9 dimensions and
is therefore neither easy to design nor to evaluate efficiently. As high frame
rates can only be achieved by exploiting programmable graphics hardware,
we are obliged to design algorithms and methods which lend themselves to
evaluation on the graphics card. The work presented in this thesis consists
of improving existing efficient hardware algorithms to capture the specific
effects of textiles, to identify software algorithms for illuminating textiles
which can be considerably sped up by suitably adapting them to hardware,
and finally to develop new specialized reflection models for textiles carefully
tailored to best possibly exploit graphics hardware.

1.2 Main Contributions

Parts of this thesis have already been published at different conferences or
in journals [Heidrich00, Daubert01, Daubert02, Lensch02, Daubert03]. The
content of this thesis is based on these contributions. We will additionally
show new applications, as well as further results and improvements.

The main contributions of this thesis can be summarized as follows:

• An efficient method for consistently illuminating heightfields and bump
maps based on precomputed visibility information. The algorithm sim-
ulates both self-shadowing and indirect illumination. It is easily im-
plementable on graphics hardware and allows the efficient computation
of BRDFs and other higher dimensional data structures. Effects due
to changes of the base geometry’s curvature are hereby also taken into
account. This method helps to overcome inconsistencies of illumination
in the widely used level of detail hierarchy consisting of BRDFs, bump
maps, and heightfield geometry.

• Algorithms allowing to transfer the methods of precomputed visibility
to more general geometry. This involves finding suitable parameter-
izations for parametric surfaces and triangle meshes, as well as the
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development of a shadow algorithm suited for non-heightfield geome-
try. As a consequence, high dimensional data structures like BRDFs
and BTFs can be computed both efficiently and precisely.

• A memory-efficient spatially varying BRDF representation for textiles.
This model is capable of capturing color variations due to self-shadowing
and occlusion, as well as transparency. It naturally lends itself to mip-
mapping. Furthermore we introduce algorithms for data acquisition
and fitting of the model to reflections of a given micro geometry. Fi-
nally, we present an efficient rendering algorithm for applying the model
to any garment geometry, achieving close to realtime frame rates.

• A specialized volumetric shading model for hardware supported render-
ing of knit-wear at high interactive rates. The model allows material
coefficients to change per voxel enabling the rendering of complex yarns
and color patterns. It also computes self-shadowing of the fibers in the
stitch.

• A method for hardware accelerated rendering of semi-transparent vol-
umetric textures. View-orthogonal rendering planes can be generated
for arbitrary views, and are intersected with the volumetric texture ei-
ther using a hybrid or a pure hardware-based implementation, which
guarantees high quality rendering at interactive frame rates.

1.3 Thesis Overview

After this introduction we will begin by explaining the basic concepts of light-
ing computation in Chapter 2, of textiles and their production in Chapter 3,
and of graphics hardware in Chapter 4. We will then review related work in
Chapter 5.

Many researchers have argued that BRDFs, bump maps and heightfields
represent a level of detail hierarchy which should be employed for the efficient
rendering of surface detail. However, this hierarchy exhibits inconsistencies
concerning the lighting computation, which we will overcome in Chapter 6 by
introducing methods to compute shadows and indirect illumination efficiently
in bump maps and heightfields based on precomputed visibility.

Displaying textiles using bump maps to capture the surface structure is
only possible for a small class of textiles and applications, which is due to the
fact, that most textiles are produced by knitting or weaving and therefore
exhibit crossing threads and loops, which can not be modeled as heightfields.
We will expand the idea of computing indirect illumination and shadows
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based on precomputed visibility to the more general cases of parametric
surfaces and triangle meshes without parameterization in Chapter 7. This
allows the efficient simulation of high dimensional data structures like BRDFs
and BTFs from non-heightfield geometry.

As mentioned above, bump maps are an efficient and convenient inter-
mediate level for efficiently rendering height fields. So far, no comparable
methods exist for displaying non-height field geometry. The main reason can
be found when considering the complexity of occlusion effects in non-height
field geometry. We will remedy this shortcoming for repetitive textiles in
Chapter 8 by introducing a spatially varying BRDF model which can cap-
ture complex lighting effects of a single stitch or weave, and can then be
replicated over the garment geometry and efficiently rendered using graphics
hardware.

For rendering fluffy knit-wear, which exhibits numerous fine scale occlu-
sion and shadowing effects caused by small fibers and threads, the above
mentioned model would be pressed to its limits. Additionally, knit gar-
ments are often thick and exhibit complicated silhouettes. In Chapter 9, we
present a BRDF model based on volumetric textiles, specifically designed to
render knit-wear both in high quality and at near to realtime rates. Effi-
ciently rendering volumetric textures – especially correctly considering semi-
transparency – requires generating rendering planes from back to front, in-
tersecting them with the volume, and texturing the resulting intersection
polygons with slices of the volumetric texture. In Chapter 10 we demon-
strate how high quality images of semi-transparent volumetric textures can
be rendered at interactive rates, exploiting graphics hardware.

In Chapter 11 we will conclude this thesis with a summary, short discus-
sion and possible directions for future work.

The models and algorithms presented in this thesis enable us to correctly
handle the lighting effects caused by the complex mesostructure of textiles.
As a result, we can efficiently render high quality images of textiles which
capture the visual appearance of cloth.
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Chapter 2

Lighting Computation

In this chapter we will introduce the physical and mathematical fundamen-
tals needed for computing the propagation of light in an environment. We
will explain how the material properties can be expressed using reflection
functions and take a look at a mathematical formulation of the illumination
problem. In the course of this chapter we will see that solving this problem
is fairly complicated, and introduce the three main approaches for tackling
it. First of all, however, lets take a look at what light actually is.

Light is a form of electromagnetic radiation consisting of a sinusoidal wave
formed by coupled electric and magnetic fields. These two fields are perpen-
dicular to each other and to the direction of propagation. The frequency in
which the wave oscillates defines the wavelength.

As light is a form of electromagnetic radiation we can use theories from
other disciplines to understand its nature. The most closely related discipline
is optics which is divided into the three subareas geometrical or ray optics,
physical or wave optics, and quantum or photon optics. Using the models
from geometrical optics, we think of light as a independent rays traveling
through space, which is helpful for explaining reflection and refraction or
shadows. Using the quantum model, we can also view light to consist of
small packets of energy called particles or photons. Finally, if we would like
to explain phenomena like diffraction, interference and polarization, we need
to consider light as a wave. However, these latter effects are often omitted
in computer graphics.

2.1 Radiometry

As the illumination problem is all about simulating the electromagnetic en-
ergy of light, we will first need to introduce some physical terms.

7
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Radiant Energy

The basic quantity of radiometry describes the amount of energy transported
by light. This quantity is called radiant energy, it is denoted Q and measured
in joules [J = Ws = kg m2/s2]. The radiant energy can be thought of the
energy at all wavelengths that all photons carry.

Flux or Radiant Power

Often we are more interested in power than in energy, which means we want
to know the flow of energy per unit time. The associated value is called
radiant power or also often flux, measured in Watts [W] and denoted:

Φ =
dQ

dt

Radiance

The most important quantity in image synthesis is radiance, because it de-
scribes the transfer of energy. Radiance is denoted L, and is defined as the
amount of energy traveling at some point x in a specified direction ~ω per
unit time, per solid angle and per unit area perpendicular to the direction of
travel:

L(x, ~ω) =
d3Q

dt cos θ d~ω dA
=

d2Φ

cos θ d~ω dA

Its unit is [W/m2sr]. Radiance is constant along a ray in empty space and
therefore is the numeric quantity implicitly used by rendering systems. For
example, radiance is the quantity which should be associated with a ray in
a ray tracer.

Irradiance

Irradiance measures the total energy per unit area incident onto a surface
with a fixed orientation. It is denoted by E and measured in [W/m2]. We
can compute the irradiance at a point x by integrating the incoming radiance
Li over the hemisphere Ω:

E(x) =

∫
Ω

Li(x, ~ω) cos θ d~ω =
dΦ

dA

θ is the angle between the local surface normal at x and ~ω.
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Radiosity or Radiant Exitance

Whereas irradiance is the energy per unit area incident onto a surface, the
term radiosity measures how much energy per unit leaves the surface. Simi-
larly to irradiance, we obtain this measure by integrating over the outgoing
radiance, Lo:

B(x) =

∫
Ω

Lo(x, ~ω) cos θ d~ω =
dΦ

dA

Radiant Intensity

As mentioned above, radiance is used to describe light transported between
surfaces. However, we cannot easily use this quantity to describe light dis-
tributed from a point light source – a common light source model in computer
graphics – which is due to the singularity at the point. A suitable quantity
for describing the light distribution of point light sources is the intensity I,
which is defined as flux per solid angle and measured in [W/sr].

I =
dΦ

dω

Most of the quantities introduced above vary with the wavelength of
light. In computer graphics, this wavelength dependency is usually denoted
by representing the quantities as red, green, and blue color triplets, which
resemble coefficients for the corresponding basis functions spanning the color
space.

For some applications it is necessary to measure the perceptual response
of the viewer to light. In this case, instead of using the above radiometric
quantities, a corresponding set of photometric quantities has to be used,
which measure the subjective impression caused by the illumination. For
more information of photometric quantities see for example [Cohen98].

2.2 Reflection Functions

Having introduced the basic quantities we would now like to take a look at
how light can interact with surfaces. Such an interaction could be for ex-
ample reflection, transmission, absorption, spectral and polarization effects,
fluorescence, and phosphorescence. The most important effects are reflection
and transmission, which will be explained in the next sections.
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Reflection of light is characterized by the bidirectional reflection distribu-
tion function (BRDF for short), which is defined as the ratio of the radiance
in the outgoing direction and the irradiance in the incident direction:

fr(x, ~ωi → ~ωo) =
Lo(x, ~ωo)

Li(x, ~ωi) cos θi dωi

(2.1)

This distribution function describes the directional distribution of reflected
light as a concentration of flux per steradian and therefore is strictly positive
(unit [1/sr]). Due to its definition, it can take on every value between zero
and infinity. Implicitly, the BRDF is assumed also to depend on the wave-
length λ, and in computer graphics is often defined separately for each RGB
color channel.

2.2.1 Spatial Variation

As we can see in the definition in Equation 2.1, the BRDF can depend on
the local surface position x. Such a BRDF is called spatially varying. In the
literature we can often find BRDF definitions which omit the parameter x,
assuming it implicitly. In this thesis we will write fr(x, ~ωi → ~ωo), whenever
we mean a spatially varying BRDF, and omit the surface point fr(~ωi → ~ωo),
whenever the BRDF is spatially invariant. We will use a third notation
fx

r (~ωi → ~ωo), whenever we are working with a spatially varying BRDF, but
observing the function at a fixed position.

2.2.2 Anisotropy

A BRDF is, in general, anisotropic, which means if we rotate the underlying
surface about its surface normal, the value of the BRDF, i.e. the percentage
of reflected light, will change. Cloth BRDFs are very often anisotropic. If the
BRDF of a material does not change if the surface is rotated, the material
is called isotropic. If we rewrite ~ωi = (θi, φi), and ~ωo = (θo, φo), where θ
describes the elevation angle and φ describes the azimuth (rotational angle),
the following equation holds for isotropic materials and arbitrary ∆φ:

fr(x, (θi, φi + ∆φ) → (θo, φo + ∆φ)) = fr(x, (θi, φi) → (θo, φo)) (2.2)

Isotropic BRDFs can be simplified to fr(x, θi, θo, φo − φi), dropping one di-
mension.
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2.2.3 Simplifying Assumptions

Even though the BRDF is a 7-dimensional function (surface position, incident
and exitant direction, wavelength), its definition is based on some simplifying
assumptions which are important to note:

• As there is only one (often implicit) parameter for the wavelength λ, the
reflected light is assumed to have the same frequency as the incoming
light. This prevents a BRDF from capturing fluorescence effects.

• There is no parameter which captures temporal effects. Light is as-
sumed to be reflected instantaneously, energy can not be stored and
reemitted later. A BRDF therefore is incapable of capturing phospho-
rescence effects.

• There is only a single surface parameter x. Light arriving at a surface
point is assumed to leave at this same surface point. It can not be scat-
tered in subsurface regions and leave the surface somewhere else. This
most restrictive assumption prevents a BRDF from capturing atmo-
spheric effects, as well as certain materials like skin or complex paints.

2.2.4 Properties of Physically Correct BRDFs

A physically correct BRDF must fulfill the following two laws:

Energy Conservation

This law says that a surface can not reflect more energy than it received [Beckmann63]:∫
Ω+

fr(x, ~ωi → ~ωo) cos θod ~ωo ≤ 1 ∀~ωi ∈ Ω+ (2.3)

Helmholtz Reciprocity

According to this principle the incoming and outgoing direction of a BRDF
can be exchanged. In other words, if a photon moves along a path, it could
also follow the inverse path. This can be formulated as:

fr(x, ~ωi → ~ωo) = fr(x, ~ωo → ~ωi) (2.4)
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2.2.5 Diffuse, Glossy, and Specular Reflection

In practice it is often convenient to assume the BRDF to consist of a sum
of qualitatively different components. These are the Lambertian or (ideal)
diffuse reflection, glossy reflection and specular reflection, see Figure 2.1.
Note that this terminology varies highly in computer graphics literature. A
real surface will show a mixture of these three types of reflection.

Figure 2.1: In practice the BRDF is often assumed to consist of a sum of
components describing different types of reflection. These components are
ideal diffuse reflection, glossy reflection, and specular reflection.

Diffuse or Lambertian reflection

This type of reflection assumes the light is equally likely to be scattered in any
direction, regardless of the incident direction and of the viewing direction.
In other words, the BRDF is constant. As a consequence, the reflected
radiance Lo(x, ~ωo) is proportional to the incident radiance Li(x, ~ωi) and the
reflected radiance is constant and hence the same in all directions. Diffuse
reflection arises from multiple surface reflections, very rough surfaces or from
subsurface scattering. A purely diffuse BRDF could look like this:

fr(x, ~ωi → ~ωo) =
kd

π
(2.5)

where kd is the diffuse coefficient, often specified as an RGB color triplet.

Specular reflection

Specular reflection occurs at highly polished surfaces such as mirrors or very
smooth metals. For ideal specular reflection the angle of reflectance is equal
to the angle of incidence, and the reflected vector is in the plane determined
by the incident ray and the surface normal vector. For the incident direction
~ωi = (θi, φi) and the exitant or reflected direction ~ωo(θo, φo) this implies:

θo = θi

φo = φi + π
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The reflected radiance is equal to the incident radiance, and the BRDF can
be expressed using delta functions:

fr(x, ~ωi → ~ωo) =
δ(cos θi − cos θo)

cos θi

δ(φi − (φr ± π)) (2.6)

Glossy Reflection

Glossy reflection describes a type of reflection somewhere between diffuse
and specular. Light is considered to be reflected into a preferred direction.
In computer graphics this type of reflection is often modeled using the micro-
facet theory, which we will explain in more detail in Chapter 5. The model
assumes the surface to be made of tiny perfect mirrors and predicts that the
amount of light reflected from the light source towards the eye is equal to the
relative number of tiny mirrors which are oriented in such a way, that their
normals lie halfway between the eye and the light source. A typical effect for
this kind of reflection are bright highlights which are caused by the reflection
of the light source on the surface. The extent of the highlight is an indicator
for surface-roughness.

2.2.6 Refraction and Transmission

Sometimes, we would like the distribution function also to account for re-
fraction and transmission. In this case we allow the directions ~ωi and ~ωo to
vary over the entire unit sphere. The resulting distribution function is then
called bidirectional scattering distribution function (BSDF).

2.2.7 Reflectance and Transmittance

As mentioned above, the BRDF can assume values in [0 . . .∞] (e.g. for the
BRDF of a mirror), which is due to its definition. Often, however, it is more
intuitive to work with a quantity that is bounded in [0 . . . 1]. This quantity
is called biconical reflectance or simply reflectance and is defined as the ratio
of reflected flux to incident flux:

ρ(x) =
Φr(x)

Φi(x)
(2.7)

As the reflected flux is always less than the incident flux it is easily seen that
ρ(x) is always≤ 1. The remaining flux is either absorbed α(x), or transmitted
τ(x). The transmittance can be defined analogously to the reflectance as the
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ratio of transmitted flux to incident flux. In order to obey the laws of energy
conservation ρ(x) + α(x) + τ(x) = 1.

Unfortunately, the reflectance ρ depends on the directional distribution
of the incoming light Li, which makes a conversion between BRDF and re-
flectance very difficult. However, in the special case of purely diffuse (Lam-
bertian) reflection, the BRDF is a constant and ρ = π · fr.

2.3 The Illumination Problem

The Rendering Equation, first introduced by Kayija [Kajiya86], formulates
the global illumination problem as an integral equation which describes the
equilibrium state of light exchange in a scene1:

Lo(x, ~ωo) = Le(x, ~ωo) +

∫
Ω(~n)

fr(x, ~ωi → ~ωo) · L(ray(x, ~ωi),−~ωi) · 〈~n, ~ωi〉 d~ωi

(2.8)
Informally, we can read this equation as follows: The radiance Lo leaving
a surface point x in direction ~ωo is the sum of the self-emitted radiance in
this direction Le (if the surface is a light source), plus the light incident at x,
which is reflected into direction ~ωo. This reflection is computed by integrating
the incident light over the hemisphere Ω (defined by the surface normal ~n
at point x) and weighting it by the BRDF. The function ray(x, ~ω) embodies
vital visibility information and returns the first surface intersection of a ray,
cast from x in direction ~ω. 〈~n, ~ωi〉 denotes the dot product of the surface
normal at x and the incident direction.

Due to the use of the BRDF, the Rendering Equations suffers from the
same restrictions as already described in Section 2.2 (no participating media,
no fluorescence or phosphorescence effects).

2.3.1 Local Illumination

The Rendering Equation describes the global illumination in a scene, which
means that it also accounts for indirect illumination. In contrast, graphics
hardware can only account for local or direct illumination, that is, light

1Actually, Kayija gave a slightly different formulation, using the intensity instead of
radiance. Meanwhile, the radiance-formulation has been established as standard.
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emitted from a finite number if point-, spot- or directional light sources and
arriving directly at a surface point. Indirect illumination is omitted. In this
case, Equation 2.8 can be simplified to:

Lo(x, ~ωo) = Le(x, ~ωo) +
N∑

j=1

fr(x, ~ωi → ~ωo) · g(x) · Ij(x, ~ωi) · 〈~n, ~ωi〉 (2.9)

Here Ij is the intensity of the jth light source, g is a geometry term, chosen
such that Ij · g are equivalent to the incoming radiance at x due to the light
source j. For point and spot lights, this geometry term is g = 1/r2[sr/m2],
to represent the quadratic falloff with the distance r from the light source to
x. Directional light sources do not have a quadratic falloff, so g = 1[sr/m2].
Equation 2.9 assumes that each light source is visible from x. However,
the equation can be extended to also handle shadows, which is done by
incorporating an additional geometry term into g, which is set either to 1, if
the light source and surface point are mutually visible, and 0 otherwise.

2.4 Solving the Rendering Equation

The Rendering Equation 2.8 can be classified as an integral equation, because
the unknown radiance function L appears not only on the left-hand side, but
also inside the integral on the right-hand side. The equation is difficult to
solve, since the computation of the radiance at a particular point requires the
knowledge of the incoming radiance from all directions. In general, integral
equations can not often be solved analytically, and usually numerical methods
are used to compute approximate solutions. The methods used in computer
graphics to solve the Rendering Equation can be grouped into two main
directions, the Radiosity Method and Monte Carlo Methods.

The radiosity method is a deterministic process. In contrast, the term
Monte Carlo techniques, however, refers to probabilistic techniques which
rely on random processes. The advantage of probabilistic simulation tech-
niques is that they are usually fairly simple to implement, can often provide
greater flexibility and are easier to extend to more general environments. The
disadvantage is that due to their nature these techniques are not capable of
computing precise solutions, the results are only approximations.

In the context of the global illumination problem, probabilistic processes
can be used in two different ways:

1. Monte Carlo Simulation: particles of light are simulated along a “ran-
dom walk”, between light source and receiver.
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2. Monte Carlo Intergration: this technique uses stochastic approximation
techniques to evaluate the integral operator in the Rendering Equation.
This method can also be interpreted as tracing paths along “random
walks” from the receivers to the light sources.

We will now look at the three main directions for solving the Rendering
Equation, the Radiosity Method, Monte Carlo Simulation, and Monte Carlo
Integration, in turn. Our work, introduced in later chapters, mainly builds
upon the third method, which is why we will take a closer look at Monte
Carlo Integration. For further reading see [Sillion94, Cohen98].

2.4.1 The Radiosity Method

The idea of the Radiosity Method is to simplify the Rendering Equation in
such a way that it can be solved in special cases. The first assumption made
by this method is that all surfaces are ideal diffuse reflectors. In this case,
the radiance L is no longer dependent on the direction (only on the position),
and consequently radiance L and radiosity B can be used interchangeably
to characterize the amount of light leaving a surface (see e.g. [Sillion94] for
derivation):

B(x) = π · L(x) (2.10)

The reflectance ρ can be used instead of the BRDF to characterize surface
reflectance. An additional assumption is that the emittance Le is also inde-
pendent of the direction. Also, the hemispherical integral is replaced by a
surface integral: instead of integrating over all incident directions, the inte-
gration is formulated over all points on all surfaces in the scene. Now the
Rendering Equation can be reduced to a simple energy balance equation:

B(x) = E(x) + ρ(x)

∫
y∈S

B(y) G(x, y) dy (2.11)

G(x, y) contains geometry dependent terms like for instance the distance
between x and y, as well as a visibility function which causes G(x, y) to
evaluate to zero if x and y are not mutually visible. For details on the exact
formula for G(x, y) and the derivation of the energy balance equation, the
reader is referred to [Sillion94].

At this point it is important to note that this equation still is an integral
equation with no available analytic solution.

Finite Elements

The core point of the radiosity method is to break down the environment
into a finite number of patches (also often referred to as finite elements)
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and then solve a discrete version of the equation for the radiosities of these
patches. The reflectance is assumed to be constant over the area of each
patch. Similarly, the radiosity value for each patch is either assumed to be
constant or a linear combination of constant basis functions. The radiosity
equations can now be formulated for a single patch, obtaining a number
of very similar equations for each patch. In fact, the obtained equations
constitute a system of N linear equations with N unknowns, which are the
radiosities for each of the N patches. These equations can now be solved
iteratively, e.g., using the fairly simple Jacobi relaxation method, or the
Gauss-Seidel relaxation method, which has better performance in terms of
memory and convergence. At the end the solution has to be displayed, which
can be done in many different forms, often by computing the radiosity for
the mesh vertices from the surrounding patches’ radiosities and letting the
graphics hardware display the mesh using Gouraud-shading.

2.4.2 Monte Carlo Simulation – Particle Tracing

Monte Carlo simulations have been widely used in disciplines such as neutron
transport[Lewis84] or heat transfer[Brewster92]. In the context of global il-
lumination simulation, this process is called particle tracing. The idea is to
track paths of individual photon bundles, beginning with emission from the
light sources and ending with the absorption of the particles at some other
location. Random numbers are generated and compared with appropriate
probability functions in order to determine the path of a photon bundle, i.e.,
which directions it should take, whether it should be absorbed or reflected
when hitting a surface, etc. The most important simplification of this algo-
rithm is that a few discrete values of energy are assigned to photon bundles.
An algorithm for particle tracing is sketched in Figure 2.2.

Particle tracing techniques produce particle fluxes which are approxima-
tions of the actual light flux. The environment is discretized by defining a
mesh structure for each receiver surface. Then the illumination values are
computed for each of these discrete regions. In contrast to the radiosity
method, this mesh is only used for counting particles and does not play any
role in the simulation process. The results of the simulation are displayed
similarly to the radiosity method.

The main advantages of the algorithm is that it is fairly easy to imple-
ment and offers a high degree of generality. For instance, complex object
shapes or general reflectance functions can easily be handled. The method
can also be extended to include participating media [Pattanaik93].
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/* Choice */
chose light source
chose particle wavelength
chose location of particle on light source
chose direction of particle

update particle flux at emitter surface

/* Trace */
repeat until absorbed:
find first object hit by particle (trace ray)
decide on interaction (absorb or reflect)

if absorb:
break

if reflect:
find new particle direction by sampling BRDF
update outgoing particle flux on reflecting surface according to BRDF

end repeat

Figure 2.2: Sketch of an algorithm for particle tracing.

2.4.3 Monte Carlo Integration

We will be using this approach in Chapters 6 and 7 to compute light interac-
tions with textile micro geometry, which is why will will take a closer look at
this method. First, however, we will explain how integrals can be estimated
in general using Monte Carlo techniques. Then we will apply this method to
the Rendering Equation, which requires expanding it first into a Neumann
series.

Estimating Integrals using Monte Carlo Integration

First, let’s look at how integrals can be computed using probabilistic tech-
niques. To do so we first need to recall that the expectation value of a random
variable x with a probability density function f over Ω is defined as:

E(x) =

∫
y∈Ω

y · f(y) dy (2.12)

The Law of Large Numbers states that if the samples xi are independent
and identically distributed (with the same probability distribution) then the
following equation holds:

Pr

(
E(x) = lim

n→∞

1

n

n∑
i=1

xi

)
= 1 (2.13)



2.4 Solving the Rendering Equation 19

Or in other words: the mean of the measured samples approaches the ex-
pected value E(x) of the random variable x as n goes to infinity.

This is the core point for estimating integrals. Assume we would like
to estimate the integral

∫
y∈Ω

h(y) dy. First we rewrite h(x) as a product

h = g ·f , choosing an arbitrary function for f (good choices will be discussed
briefly later on). Now, if x is a random variable with the probability function
f , then the expected value of g(x) can be approximated:

E(g(x)) =

∫
y∈Ω

g(y) · f(y)dy ≈ 1

n

n∑
i=1

g(xi) =
1

n

n∑
i=1

h(xi)

f(xi)
(2.14)

As a result, the integral
∫

y∈ω
h(y) dy can be approximated with the rightmost

sum in the above equation. The quality of the estimation depends on the
number of samples n with the error being proportional to 1/

√
n. This means

though, that in order to halve the error we must use four times as many
samples.

Apart from increasing the number of samples there are other ways to
improve the estimate. One is to chose the function f in such a way that
the variance of the density h/f is as small as possible. This can be done by
finding a function f which has the same “shape” as h, or, in other words,
f is chosen to be large where h is large. This strategy is called importance
sampling. Another well-known method is called stratified sampling. Here,
the domain Ω is first partitioned into several domains Ωi. Then the integral
over Ω is computed as a sum of integrals over the Ωi. Usually one sample is
chosen in each Ωi. Often, stratified sampling is far superior to importance
sampling.

Due to its generality, the principle of Monte Carlo integration can also be
used to estimate multi-dimensional integrals. This is more difficult, however,
as the samples have to be drawn in a multi-dimensional space according
to a distribution function which is a function of several variables in a d-
dimensional domain.

Expansion of Rendering Equation into Neumann Series

Applying this estimation technique to the Rendering Equation would mean
estimating the integral part of the equation by averaging the radiance from
a number of sampled directions over the incoming sphere.

The problem here is though, that, given a sampling direction, we can only
compute the contribution due to the emission, but computing the contribu-
tion due to reflection results in evaluating another integral.
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The technique called distribution ray tracing [Cook84, Cook86] solves this
problem by separating the emitter contribution from the reflector contribu-
tion. Now both contributions are evaluated using different sampling tech-
niques. The computation times for distribution ray tracing, however, can be
prohibitively high, as the number of rays that need to be shot is very large.

We will go another way. In order to do so we first have to rewrite the
Rendering Equation as a Neumann series. We will first introduce the in-
tegral operator τ which acts on a radiance distribution to yield a modified
distribution:

(τL)(x, ~ωo) =

∫
Ω(~n)

fr(x, ~ωi → ~ωo) · L(ray(x, ~ωi),−~ωi) · 〈~n, ~ωi〉 d~ωi (2.15)

With this operator the Rendering Equation can be reduced to:

L = Le + τL (2.16)

Now we substitute L on the right-hand side of Equation 2.16 with Le + τL

L = Le + τL = Le + τ(Le + τL) = Le + τLe + τ 2L (2.17)

If we repeat this substitution N times, we arrive at the Neumann series:

L =
N∑

i=0

τ iLe + τN+1L (2.18)

If the operator τ is a so called contraction, which is the case if the BRDF
obeys the law of energy conservation, then limN→∞ τN+1L = 0 and Equa-
tion 2.18 becomes:

L =
∞∑
i=0

τ iLe (2.19)

Expressing the Rendering Equation using a Neumann series also has a
simple physical explanation: The operator τ represents the effect of one
reflection on all surfaces of the scene. The terms of the series correspond to
the emitted radiance (Le), plus the radiance reflected once from the surfaces
(τLe), plus the radiance reflected twice (τ 2Le) and so forth. In other words,
the radiance distribution is a sum, in which each term represents the effect
of a given number of successive reflections of the emitted radiance.

Estimating the Terms of the Neumann Series

We will now use the Monte Carlo estimation for integrals for each term of the
series separately. To make the following equations clearer, we will substitute
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all terms in the integral except L with the function

κ(x, ~ωi, ~ωo) := fr(x, ~ωi, ~ωo) · 〈~n(x), ~ωi〉 (2.20)

We will use the following naming convention for the results for the call of the
ray() function:

x1 := x

x2 := ray(x1, ~ωi)

x3 := ray(x2, ~ωi
′)

x4 := ray(x3, ~ωi
′′)

. . .

Applying these substitutions, the terms of the Neumann series now are:

L(x1, ~ωo) = Le(x1, ~ωo)

+

∫
κ(x1, ~ωi, ~ωo) Le(x2, ~−ωi) d~ωi

+

∫∫
κ(x1, ~ωi, ~ωo)κ(x2, ~ωi

′, ~−ωi) Le(x3, ~−ωi
′
) d~ωi

′d~ωi

+

∫∫∫
κ(x1, ~ωi, ~ωo)κ(x2, ~ωi

′, ~−ωi)κ(x3, ~ωi
′′, ~−ωi

′
) Le(x4, ~−ωi

′′
) d~ωi

′′d~ωi
′d~ωi

+ . . .

(2.21)

Now, each integral in the series can be evaluated through Monte Carlo esti-
mation. As an estimator for τLe we use

κ(x1, ~ωi, ~ωo) · Le(x2,−~ωi)

f1(~ωi)
(2.22)

where xi is drawn at random according to the probability distribution f1,
and f1 is chosen in order to get a good estimate. As mentioned above, tech-
niques for obtaining good estimates are importance sampling and stratified
sampling.

Similarly, an estimate for the second integral τ 2Le is

κ(x1, ~ωi, ~ωo) · κ(x2, ~ωi
′,−~ωi) · Le(x3,−~ωi)

f2(~ω′i)
(2.23)

and so forth. These expressions are approximated by the values of the func-
tions at sample points. Although different sampling strategies could be used
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for the integral’s various estimates, an easy way (which introduces no bias)
is to use direction samples ~ω1, ~ω2, . . . ~ωn. The estimator for the sum of the
first n terms then is:

L(x1, ~ωout) = Le(x1, ~ωout)

+
κ(x1, ~ω1, ~ωout) Le(x2,−~ω1)

f1(~ω1)

+
κ(x1, ~ω1, ~ωout)κ(x2, ~ω2,−~ω1) Le(x3,−~ω2)

f2(~ω2)

+
κ(x1, ~ω1, ~ωout)κ(x2, ~ω2,−~ω1)κ(x3, ~ω3,−~ω2) Le(x4,−~ω3)

f3(~ω3)

+ . . .

+
κ(x1, ~ω1, ~ωout) . . . κ(xn, ~ωn,−~ωn−1) Le(xn,−~ωn)

fn(~ωn)

(2.24)

Sketch of the Path Tracing Algorithm

The sum in Equation 2.24 can also be interpreted as an algorithm for gath-
ering radiance along a random path, which is computed this way:

• Chose a sampling direction ~ω1, using the BRDF at point x = x1. Cast
a ray from x1 in direction ~ω1, obtaining x2.

• Chose a sampling direction ~ω2, using the BRDF at point x2. Cast a
ray from x2 in direction ~ω2, obtaining x3.

• . . . and so forth

This interpretation is visualized in Figure 2.3
The variance of the simulation can be reduced by using importance sam-

pling and stratification [Kirk93]. Using stratification, the integrals of direct
and indirect illumination are estimated independently. In scenes with many
diffuse surfaces, the contribution due to indirect illumination is far less than
through direct illumination by the light sources. The stratified sampling
technique samples the lights and then independently samples the rest of
the hemisphere for the indirect illumination. Finally, these two parts are
combined, weighting both appropriately. Importance sampling is applied by
distorting the probability densities of the chosen direction, generating more
samples in regions where the incident radiance weighted by the BRDF is
high.
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Figure 2.3: Gathering radiance values along a random path.

The technique of applying Monte Carlo estimation of integrals to the
global illumination problem is called path tracing [Kajiya86]. Pure path trac-
ing is in general not a very efficient technique. However, by applying variance
reduction techniques it becomes practical for global illumination simulations.

2.5 Conclusions

In this chapter we have introduced the basic mathematical and physical foun-
dations for illumination computation. The mathematical problem we have
to solve if we would like to compute direct and indirect illumination is the
Rendering Equation. We briefly introduced the three main approaches for
solving this integral equation, which are Radiosity, Monte Carlo Simulation
and Monte Carlo Integration. For reasons of brevity we have only sketched
these three main directions. A huge amount of research over the past years
has gone into the development of enhancements for these approaches, often
producing powerful hybrid algorithms, the enumeration or even description
of which is far beyond the scope of this thesis.

Having introduced the fundamentals of lighting computation, we will now
turn towards the special class of materials we would like to illuminate. In
the next chapter we will learn how most textiles are produced, and take a
look at specific requirements for textile BRDFs.
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Chapter 3

Textiles

The goal of this thesis is to realistically render cloth. Before we can develop
shading models or rendering algorithms, however, we first have to understand
what textiles actually are. For instance, we would like to know which mate-
rials are used to make textiles and which production steps are necessary to
transform these materials into cloth. This knowledge is needed for instance
to understand how the fine-scale surface structure of textiles, which is mainly
responsible for their appearance, is built up.

Cloth comes in a variety of shapes and categories, depending on how it
was made. For instance it can be shiny or dull can have a texture or be flat.
The texture can be caused by a printed pattern or by the woven pattern or
both. Some textiles show puckered effects with deep shadows. Cloth can
be rough, or smooth, it can be compact and tightly woven or open, it can
consist of many layers and yet be one fabric. Textiles can be so rigid that
they can stand by themselves, on the other hand garments can be made of
cloth which drapes extremely well, allowing the textile to flow along the body.
What gives one kind of cloth a particular set of characteristics not found in
another? Only part of the answer to this question lies in the materials textiles
are made of, which could be natural fibers like linen, cotton, wool and silk, or
synthetics like nylon, or rayon, to name just the most common. A far more
important factor, however, is how these materials were turned into cloth.

There are a wide variety of methods for producing fabrics, which can
be split into interlacing and non-interlacing methods. Examples for non-
interlacing methods are felted, bonded, and also laminated materials. How-
ever, presently most fabrics are produced by some method of interlacing,
such as weaving or knitting, which is why we will focus mostly on this type
of textiles. Before doing so we need to take a close look at the fundamental
requirement for the production of interlaced fabric, which is the thread or
yarn. At the end of this chapter, once we know how most textiles are pro-
duced, we will relate this information to specific requirements imposed upon

25
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a textile’s reflection function.

3.1 Yarn

Most cloth is made from threads or yarn, which is a strand composed of
fibers, filaments (individual fibers of extreme length), or other materials,
suitable for use in the construction of interlaced fabrics. The fibers can
either be obtained from natural sources, such as wool from sheep, or be man-
made from chemical substances. When using natural fibers, these have to be
treated before they can be converted to yarn, in order to remove impurities or
undesirable constituents as for example wool fat. The fibers are then drawn
out and twisted to join them firmly together in a continuous thread of yarn
in a process called spinning.

Spinning is an indispensable preliminary to weaving cloth from those
fibers that do not have extreme length. In modern spinning, slivers (fibers
combed and paralleled into a large-diameter rope-like structure without twist)
or rovings (like slivers, but bundled finer to the thickness of a pencil and with
a slight twist) are fed into machines with rollers that draw out the strands,
making them longer and thinner, and spindles that insert the amount of twist
necessary to hold the fibers together. The tightness of the twist determines
the strength of the yarn, although too much twist may eventually cause weak-
ening and breakage. The spinning process is completed by winding the yarn
on spools or bobbins.

Figure 3.1: Single, ply, and cord yarns.

Yarns can be classified by the number of strands they are composed of:



3.2 Woven Cloth 27

The most basic type of yarn is called single yarn, or one ply yarn. It consists
of single strands, which can be for example:

• fibers, held together by at least a small amount of twist

• filaments grouped together with or without twist

• narrow strips of material

• single man-made filaments extruded in sufficient thickness for use alone
as yarn

Taking two or more single yarns and twisting them together we obtain the
next type of yarns called ply yarns. We can distinguish e.g. between two-
ply, or three-ply yarns, depending on the number of single strands twisted
together. When combining single spun strands to ply yarns, the individual
strands are usually each twisted in one direction and then combined by twist-
ing in the opposite direction. Due to their strength, ply yarns are often used
in heavy industrial fabrics, but can also be woven into very delicate looking
cloth. Cord yarns are produced by twisting ply yarns together, with the
final twist usually applied in the opposite direction of the ply twist. These
yarns may be used as rope or twine, or are made into very heavy industrial
fabrics. When made of extremely fine fibers these yarns can also be used to
make very sheer dress fabrics. The three basic types of yarn can be seen in
Figure 3.1.

3.2 Woven Cloth

Figure 3.2: Principle components of a basic hand loom.
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The most widely used method for converting yarn into fabric is by weav-
ing, that is by the interlacing of thread or yarns into a bound system. Woven
textiles consist of two main components: the lengthwise threads, which are
placed on the loom called warp, and the widthwise threads, usually much
shorter than the warp, which are called weft. These two are interwoven on
a device known as a loom, which may have been used as early as the 5th
century BC. The principle components of a simple loom can be seen in Fig-
ure 3.2. In all methods of weaving cloth, before a length of weft is inserted
in the warp, the warp is separated, over a short length extending from the
cloth already formed, into two sheets. A pick of weft is then laid between
the two sheets of warp. Then a new shed is formed in accordance with the
desired weave structure, with some or all of the ends in each sheet moving
over to the position previously occupied by the other sheet. This way the
weft is clasped between two layers of warp. Since the weft can not be laid
very closely to the cloth already woven, it has to be beat in place before the
next pick of weft is laid.

The order at which the yarns are interlaced is called a binding system, or
weave. The three basic systems are plain or tabby, twill and satin. The tabby
weave is the simplest and most common weave. Here, two warp and two weft
yarns are combined in each unit, as can be seen in Figure 3.3(a). If the yarns
used for warp and weft are equal in size and quantity the resulting fabric is
potentially stronger than cloth made of the same kind and number of warp
and weft yarns in any other basic weave. The twill weave is distinguished by
diagonal lines, the simplest of which is shown on Figure 3.3(b). More complex
twill weaves can vary the angle or reverse the direction of the diagonals,
or combine different diagonals to create patterns. In general, twills drape
better than tabby weaves with the same yarn count, because twills have
fewer interlacings. The satin weave, shown in Figure 3.3(c) superficially
resembles twills, but at a closer look does not have the regular step in each
successive weft which is typical for the twills, and therefore neither bears the
strong diagonal line. Fabrics made with the satin weave have a smooth faced
surface made up of long floating weft lines. As a consequence these textiles
are susceptible to wear caused by rubbing and snagging and are therefore
regarded as luxury fabrics.

3.3 Knitting

Knitted fabrics are constructed by the interlocking of a series of loops made
from one or more yarns, with each row of loops caught into the preceding
row. The loops running lengthwise are called wales, those running crosswise
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(a) plain (b) twill (c) satin

Figure 3.3: The three basic weave types.

courses. Knitting machines in textile production can be categorized by the
knitting technique they apply, which can either be weft knitting or warp
knitting.

3.3.1 Weft knitting

In weft knitting, the thread follows the same path as in hand knitting. To
be more precise, continuous yarn is used to form courses, or rows of loops
across the fabric. Each loop is pulled through the corresponding loop in the
same wale of the previous row. Depending on which side of the fabric the
loop is drawn to, two different types of stitches can be generated: For the
plain-knit, also called jersey, the loop is pulled from back to the front of the
fabric as can be seen in Figure 3.4(a). Pulling the loop from front to back
produces a purl stitch, as shown in Figure 3.4(b). By alternating plain and
purl stitches we obtain the rib stitch, as in Figure 3.5.

(a) (b)

Figure 3.4: (a) For the plain knit, the loop is pulled from the reverse side of
the fabric to its front side. (b) Inversely, for a purl stitch, the loop is pulled
from front to back.
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Figure 3.5: The rib stitch consists of alternating plain and purl stitches. Here
the stitches alternate with each wale. However, rib stitches could also consist
of e.g. two plain stitches followed by two purl stitches, and so on.

3.3.2 Warp Knitting

Warp knitting represents the fastest method of producing fabric from yarns.
It differs from weft knitting in that each needle loops its own thread. The
needles produce parallel rows of loops simultaneously that are interlocked in a
zigzag pattern (see Figure 3.6). Fabric is produced in sheet or flat form using
one or more sets of warp yarns, which are fed from the so called warp beams
to a row of needles extending across the width of the machine. Two common
types of warp knitting machines are the Tricot and Raschel machines.

Figure 3.6: Warp knitting produces parallel loops that are interlocked by a
zigzag pattern.

3.4 Reflection Properties of Textiles

In Chapter 2 we introduced the fundamentals of lighting computation and
learned that the material properties of a surface are characterized by its
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BRDF. In this section we would like to take a closer look specifically at
the reflection properties of textiles. Like most materials, textile BRDFs are
dependent on the light direction and the viewing direction. Additionally,
textiles exhibit a few more complex effects, which are caused by their com-
plicated surface-structure. In the following sections we will explain these
effects in more detail. Before doing so, however, we will define the expression
micro geometry, which we are going to need throughout the remainder of
this thesis.

3.4.1 Micro Geometry

In the following sections we will see that one of the major factors influencing
the reflection properties of textiles is its micro geometry. We will use this
expression for the textile’s fine scale geometry that becomes visible at a pretty
close view or using a magnifying glass. At such a close range we can make
out the loops and weaves of the cloth, we can see hills and valleys, caused
by the interlocking of loops, or even small holes. We might also be able to
determine the structure of the yarn, or even make out small fibers.

The micro geometry is crucial for the design of reflection models for tex-
tiles, because its shape determines the interaction of light with the textile
surface: we recall from the Rendering Equation 2.8 in Chapter 2, that the
radiance at a point depends on the point’s surface normal, as well as on
visibility information. Both the normal and the visibility are purely geomet-
ric terms which can be calculated from detailed knowledge about the micro
geometry.

As we will see in later chapters, the micro geometry of textiles can be
stored in a variety of different ways, often also assigning different local mate-
rial properties to parts of the micro geometry. Having defined the expression
micro geometry we will now describe complex reflection effects which are
typically exhibited by textiles and therefore need to be accounted for.

3.4.2 Spatial Variation

A very large range of textiles require a spatially varying BRDF to characterize
their reflection properties. There can be two major reasons for a textile’s
BRDF to change, depending on the position. The first is due to varying
color. Textiles can have printed patterns or uneven dyes. During knitting
and weaving, patterns can also be generated by switching the color of the
yarn. Color variations more often affect the diffuse reflection and seldom the
specular highlights. In fact, colored specular high lights in textiles are fairly
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rare, and are mostly produced by using metallic materials as yarn during the
production process.

The second reason for a local dependence of the BRDF is due to a vari-
ation of the micro geometry of the textile surface, which again is defined by
how the textile is produced. Although a cloth can have been made using
threads of a uniform color, the BRDF can change drastically, depending on
the type of weave or the knitting pattern. Imagine for instance the rib pat-
tern in a sweater or the clearly visible diagonal pattern in a twill weave or
even the irregularities due to the tufts of a terry cloth bath towel. In opposi-
tion to the color variation mentioned above, these variations are independent
of local material properties and are caused solely by the shape of the micro
geometry.

3.4.3 Anisotropy

Having said that most textile materials have a spatially varying BRDF, it
follows that these materials are also anisotropic, as the appearance of these
textiles will change when rotated about the surface normal. However, even
textiles with a spatially invariant BRDF will often display an anisotropic
BRDF, which is due to the micro geometry of woven or knitted clothing. A
very good example for this behavior is the satin weave. As explained above,
the structure of this weave is dominated by long flowing weft threads. Clearly,
these threads lie in a preferred direction, resulting in a non-uniform distribu-
tion of the normal directions over the azimuth angles, and consequently an
anisotropic BRDF. Similarly, garments produced using fine knit also display
structures, which are oriented in certain directions, in this case wales, and
therefore display a similar, although not quite so obvious behavior.

3.4.4 Shadowing and Masking

A point lies in shadow if there are one or several object which lie in between
the point and the light source. In other words, a ray cast from the point in
the direction of the light source will intersect the blocker before it intersects
the light source (see Figure 3.7 on the left). Similarly, masking occurs if the
ray cast from a point in the direction of the viewer or camera intersects a
blocker first (see Figure 3.7 on the right). Seen from the point of view of
the camera, the blocker is occluding the point. Both effects, shadowing and
masking, play a very important role for textiles.

We will distinguish two cases of shadowing. We call the first global shad-
owing effects. Global shadowing effects occur if any general object casts
shadows onto a textile, for instance a tree casts shadows onto the sweater
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Figure 3.7: While blocking of the ray to the light source results in shadowing
(left), masking occurs if the ray to the camera is blocked (right).

of the person sitting below, or if parts of the macro geometry of the gar-
ment shadow other parts, i.e. a sleeve casts a shadow onto the front of a
sweater. These shadows can be detected and handled without knowledge
of the garment BRDF, just by considering the garment’s overall geometry,
and the relative locations of objects, garment and light sources. Comput-
ing these shadows can be handled using algorithms like e.g. the shadow
map[Williams78] or shadow volumes[Crow77] and computing them efficiently
is complicated enough to dedicate a whole thesis to this problem.

In our work we will therefore only consider what we will call local shad-
owing effects, which are due to the micro geometry of the textile. They are
caused by height differences of the micro geometry, which results in parts of
a stitch or a weave casting shadows onto other parts of the micro geometry.
This kind of shadowing effects can easily be observed e.g. in a rib stitch
sweater illuminated at a rather slanting angle, where the ribs cast shadows
into the ”valleys”. Clearly, these effects can not be detected by a general
shadowing algorithm which has no information of the textile’s micro geome-
try, which is why we will have to handle them.

Analogously, parts of the micro geometry can also occlude other parts
from view. Taking a look at a rib-stitch sweater at a grazing angle, we will
observe that the valleys between the ribs nearly completely disappear from
view, leaving the top of the ribs as the only visible parts. Occlusion of micro
geometry can have dramatic effects in certain regular weaves where two colors
of yarn are used side by side. At more grazing angles the yarn lying in front
will nearly completely obscure the yarn next to it, leading to striking color
shifts. Garments displaying this kind of behavior can be seen in Figure 3.8
on page 36.
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3.4.5 Transparency

The fine holes in loosely woven or knit garments can result in semi-transparency
effects, allowing the viewer to partly see through the material, or enabling the
light to shine through, when lit from the back. Some important factors influ-
encing transparency are the number of threads or fibers crossing each other
at a certain point, the thickness and structure of the thread, the relation of
the size of the loops to the thread diameter in knit-wear, and the tightness of
a weave for woven materials. Finally, a fabric’s amount of transparency can
be changed by finishing processes after the fabric has been woven or knit.

Transparency is a view dependent factor. Typically, cloth becomes less
transparent for slanted angles, because a slanted ray has a longer path
through the fabric and therefore intersects more fibers than a ray cast into
the fabric perpendicularly to the surface.

3.4.6 Indirect Illumination

Indirect illumination means that light is reflected multiple times inside the
facets of the micro geometry before reaching the eye. This way, the micro
geometry is not only illuminated by light arriving directly from the light
source (direct illumination), but also by light which bounces inside the micro
geometry, and therefore reaches the facets indirectly. As more interactions
of light with the surface take place, indirect illumination causes surfaces
to appear brighter. Another effect of indirect illumination is called ”color
bleeding”. Here, light reflected off a colored surface causes a coloring of the
next surface it hits.

The amount of indirect lighting is influenced by the local material of the
micro geometry, and by the micro geometry’s shape. Regarding textiles,
indirect illumination effects are more common in rough and loosely woven or
knit textiles, than in tight and flat micro geometry, like satin.

If we bring back to mind the Rendering Equation 2.8 from Chapter 2,
we will observe that the BRDF and the computation of indirect illumination
are actually handled by two different terms. Therefore, we could argument,
that indirect illumination can not really be considered as a property of the
reflection function. In practice, however, surfaces are often rendered at sev-
eral levels of detail, using the BRDF of one level to capture all illumination
effects – including indirect illumination – of the next lower level.
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3.5 Conclusions

As we have seen in this chapter, textiles are highly complex materials. This
is due to the different materials that can be used for their production, but
also to the method they were produced by. Most textiles are made from
yarn, which can occur in a variation of colors and types and which is then
woven or knit to create cloth. Weaving and knitting are the most common
production methods for making textiles. In this chapter we could only take
a quick glimpse at the huge amount of possibilities each of these methods
offers, for instance by varying the used yarns, or the shapes, sizes and order
of the basic stitch types. For more information on textiles, cloth modeling
and animation see e.g. [Trumbull94, House00, Volino00].

A consequence for the wide range of possibilities in textile production
is that textile reflection properties can also vary strongly. We have pointed
out some of the most important BRDF properties for cloth, which are spa-
tial variation and anisotropy, a strong dependence on the light and viewing
direction which expresses itself in shadowing and occlusion effects, effects
caused by indirect illumination and finally – for some textiles – transparency
effects. Clearly, a single model which is able to capture all these effects does
not exist and probably never will. Some types of cloth can already be dis-
played very realistically with BRDF models and rendering methods the most
important of which we will review in Chapter 5. Other effects can only be
captured efficiently and at a high quality using the methods and algorithms
we will introduce in the course of this thesis. The efficiency of our algo-
rithms is mainly due to the excessive employment of graphics hardware the
fundamental components of which will be explained in the following chapter.
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Figure 3.8: Top: Photographs of a silk top made out of a highly view-
dependent fabric. Depending on the viewing angle, parts of the garment
can appear in various colors in the range from yellow through orange to red.
Bottom: Photograph of a skirt made of a material displaying similar effects.
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Graphics Rendering Pipeline

In this chapter we will explain the core of real-time graphics which is the
graphics rendering pipeline. The function of this pipeline is to render a two-
dimensional image, given a virtual camera, three-dimensional objects, light
sources, lighting models, textures and so forth. Most hardware implements
the standard rendering pipeline [Foley90]. Graphics hardware is accessed
through an API, such as OpenGL [Segal98, Neider92] or DirectX [Microsoft00].
In this thesis we implemented all algorithms using OpenGL, however, we
could also have used DirectX, as it offers the same functionality.

We will introduce the graphics pipeline here in the OpenGL definition,
which can be seen in Figure 4.1. It consists of three conceptual stages, the
geometry stage, which computes geometrical transformations and lighting,
the rasterization which scan-converts and textures the geometrical primitives,
and the per-fragment operations, which perform depth, stencil, and alpha
tests, as well as blending operations. Most of the stages consist of sub-
stages, which the data also passes sequentially. Note, that if the pipeline is
completely implemented in hardware [Akeley93, Montrym97], there is often
one dedicated subsystem for the geometry stage (the geometry engine) and
a second subsystem for the rasterization and per-fragment operations, called
the rasterizer or raster manager. We will now take a closer look at each stage
separately.

4.1 Geometry Processing

The main tasks of the geometry processing unit are to transform the vertices
and compute the lighting, which is why this stage is often referred to as the
T&L (transformation & lighting) stage. The input for this stage consists of
geometric primitives, specified by the user as a set of vertices, with associated
position, normal, color, and texture coordinates. This data now needs to be
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Figure 4.1: The rendering pipeline.

transformed according to the supplied transformations, which are specified
as [4 × 4] homogeneous matrices and held in stacks to facilitate hierarchi-
cal modeling. The vertex positions, specified as homogeneous coordinates,
are transformed with the modelview matrix, which takes the positions from
object space (the space in which the object was modeled) to viewing space
(usually in front of the camera). The normal vectors are multiplied with
the inverse transpose of this matrix. Texture coordinates, either supplied by
the user, or generated automatically at this stage, are transformed by the
texture matrix. There are several options for texture coordinate generation,
for more information see [Neider92].

Now the lighting computations are performed, based on the transformed
positions and normals. Material properties are either obtained implicitly
from the vertex color, or can be set separately by the user. Fixed func-
tion pipelines only support the so-called Blinn-Phong model [Blinn77], which
is simple to compute, but not physically valid and fairly limited (see Sec-
tion 5.2.1 in the next chapter). Light sources can either be point lights, spot
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lights, or directional light sources. For the first two, the user is free to chose
the fall-off (constant, linear, or quadratic). The result of the lighting compu-
tation is written to the vertex color. The fixed function pipeline also allows
to turn off lighting computations, which leaves the vertex color unchanged.

A final transformation, again specified by a [4 × 4] homogeneous matrix
stack, is finally applied to the transformed and lit vertices. This matrix is
a projective transformation combined with a perspective division and takes
the viewing frustum to the unit cube. Note that due to the non-affine nature
of the perspective projection, surface positions and normals will no longer
correspond to each other, which explains why the lighting computation has
to take place before this transformation. Finally, all geometric primitives are
clipped against the unit cube.

In the recent years it has become more and more obvious, that having
a fixed geometry stage, like we have just explained, is too restrictive, as
there is no possibility to implement more complex lighting models. Also,
the built in methods for texture coordinate generation are only very lim-
ited. As a consequence, the programmable geometry processing unit was
introduced [Lindholm01], which allows to circumvent the transformation,
lighting and perspective transformation sub-stages, as can be seen in Fig-
ure 4.2. This programmable part of the geometry stage, which we will
take a closer look at in the next section, is called vertex program or ver-
tex shaders [NVI02, Mitchell02].

Figure 4.2: The user-defined vertex program circumvents the transforma-
tion, lighting and Perspective Transformation step in the geometry process-
ing stage.

4.1.1 Programmable Geometry Stage: Vertex Programs

A vertex program is an assembler style program, which the user writes and
then downloads to the graphics card. As input, the vertex program can access
the unlit, untransformed vertex, and also additional data like normals, tex-
ture coordinates etc. After computation, the results are written do dedicated
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output registers, which are provided for the vertex position (in homogeneous
clip space), vertex color and texture coordinates etc. The instruction set com-
prises about 20 instruction, which are implemented to operate on 4-vectors
of floats, allowing SIMD-style processing of the vertex data. Next to fairly
simple operations (addition, multiplication etc.) there are also more complex
instructions, e.g. for dot products, reciprocals, and logarithms. Furthermore,
single components of the 4-vectors can be selected for input and output, and
components can be negated or swizzled. As the vertex program completely
replaces the three sub-stages transformation, lighting, and projection, the
programmer is obliged to reimplement those sub-stages. For example just
implementing new methods for more complex lighting and leaving the fixed
stages in place for the transformation and projection is not possible. In or-
der to enable the implementation of the transformation step, vertex programs
provide mechanisms for accessing the current matrices. An important fact
to note is that, because the vertex program is executed for every vertex, the
program can exclusively access data of the current vertex, not of other ver-
tices. Similarly, there are no mechanisms for deletion or creation of vertices
inside the vertex program, nor for altering the geometry’s topology.

4.2 Rasterization

The main task of this stage is the scan conversion of the geometrical primi-
tives, resulting in preliminary pixels. We call them preliminary, because they
will have to pass a series of tests in the next stage, before they are written
to the frame-buffer. Most rasterizers operate using fixed point arithmetic.
Low-end graphics engines use 8 bit precision, high-end machines like the SGI
Onyx have a precision of 12 bits. The very recently introduced ATI Radeon
9700 graphics board even uses floating point arithmetic in the rasterizer.

Each preliminary pixel has interpolated values for depth, color, alpha
value and texture coordinates. However, only the texture coordinates are
interpolated perspectively correct. All other data is interpolated along scan-
lines (Gouraud shading).

After rasterization, the interpolated texture coordinates are used for tex-
ture lookup. Textures can be specified with 1D through 4D. Except for the
case of 4D textures, all texture coordinates are divided by the fourth (homo-
geneous) texture coordinate before the lookup. Texture reconstruction can
be computed by nearest neighbor, bilinear interpolation or mipmapping.

Finally, the result of the texture lookup is combined with the fragment’s
color. This combination can be controlled by the user-defined blending mode.
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The original OpenGL specification only allowed for a single texture per
geometric primitive, which at a first glance makes sense. By and by, how-
ever, developments e.g. for more complex materials, called for the possibil-
ity to specify several textures per primitive, which is commonly referred to
as multi-texturing. For multi-texturing, each vertex has to provide several
sets of texture coordinates, and the rasterizer then performs several texture
lookups. The textures are then combined.

Figure 4.3: The multi-texture cascade.

4.2.1 Standard-Multitexturing

In standard-multitexturing, these combinations have a cascade-like charac-
ter, as depicted in Figure 4.3. As can be seen the preliminary pixel is first
combined with the result of the first texture lookup. The result is then fed
into the next stage of the cascade and combined with the result of the second
lookup and so on. The blending mode can be specified separately for each
step.

As this cascade is still rather restrictive, the next generation of graph-
ics cards, like the ATI Radeon 8500 and the NVidia GeForce3, provided
programmable texturing units. As we implemented most of the algorithms
presented in this thesis on NVidia graphics boards, we would briefly like to
introduce the respective extensions.

4.2.2 Texture Shaders and Register Combiners (NVidia)

On the NVidia graphics boards GeForce3 and GeForce4, two complementary
extensions exist for programmable texturing, which are the texture shaders
extension for the texture lookup, and the register combiners extension which
allows programmable combination of the texture values with the fragment
color. Note that these extensions are evaluated sequentially, i.e. first the
texture lookups are computed, then the results are combined.
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Texture shaders offer a variety of different lookups, like the traditional
1D through 4D texture lookups, cube maps, or lookups from rectangular
textures. Additionally, also several dependent texturing lookup modes are
supported, which means that two texture lookups are performed sequentially,
thereby using the result of the first lookup as texture coordinates for the
second lookup.

The texture values are then fed into the register combiners extension,
which provides a fairly restricted programmability. Register combiners en-
able the combination of fragment color and texture values through operations
on registers, which are grouped into a series of combiner stages. Each stage
can be used to write up to two temporary registers, using a move operation,
a multiplication, or a dot product. Additionally, the two temporary registers
can be combined in each stage, either with an addition, or using the alpha
value of one register for selection. The last combiner stage allows computa-
tions of the form A ∗ B + (1 − A) ∗ C, where A, B, or C can be computed
through another multiplication.

Note that this is only a brief description, meant to briefly sketch the
functionality, for more information please see [NVI99].

4.2.3 Fragment Shaders

Very recently, an official ARB extension was passed, called fragment shaders,
which offers a much wider programmability [Ope]. Similarly to vertex pro-
grams, a fragment shader consists of an assembler style program, which op-
erates on 4-vectors of floats. This program determines how a set of pro-
gram parameters (not specific to an individual fragment) and an input set
of per-fragment parameters are transformed to a set of per-fragment result
parameters. The per-fragment parameters are attributes like color, texture
coordinates, fog parameters and a fragment’s window position. Additionally,
a fragment program is capable of accessing state parameters like for instance
material properties, light properties, or the texture environment. The in-
struction set comprises 33 instructions which range from simple operations
(e.g. move, addition), component selection and swizzling, to fairly complex
operations (cosine, logarithm, exponential, dot product). Furthermore, a
fragment program also has instructions for texture lookup, the texture co-
ordinates of which are specified through the program. Unlike the vertex
program, a fragment program can also kill a fragment and avoid further
processing. For more information on fragment programs see [Ope].
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4.3 Per-Fragment Operations

The next stage after the rasterizer consists of a series of tests which each
preliminary pixel has to pass before it can be written to the frame-buffer.
The three most important tests are:

• The Alpha Test, which compares the fragment’s alpha value to a
reference value.

• The Stencil Test, which compares the value of the stencil buffer at
the fragment’s position to a reference value.

• Finally, a fragment’s z-value is compared to the depth buffer at the
corresponding position in the Depth Test.

A fragment passing all tests is copied to the frame-buffer. There it can either
replace the previous content, or be combined with the stored value at that
position, using arithmetic and logical operations which are described in more
detail in [Segal98].

4.4 Frame-buffer

The frame-buffer consists of four separate buffers. A fragment’s color and
alpha values are stored in the color buffer, which usually has a depth of 32
bits – 8 bits per component. The depth buffer, which stores each fragment’s
depth values, needs a much higher precision of 24 bits to minimize depth-
fighting artifacts. Multi-pass rendering algorithms use the stencil buffer,
which usually has 8 bits, in combination with the stencil test, for instance
to mask out certain pixels during a pass. The accumulation buffer can be
used to compute the weighted sum of several rendering passes and usually
has 16 bits per color channel. Having completed all necessary passes, the
accumulation buffer is written back to the frame-buffer. Only the color values
of the color buffer are displayed on screen after rendering, all other values
exist only for internal use during the rasterization step.

4.5 Pixel Transfer Operations

Systems with graphics accelerators logically consist of three memory subsys-
tems as can be seen in Figure 4.4. These are the CPU’s main memory, the
frame-buffer RAM, consisting of the four just mentioned buffers, and the tex-
ture RAM. To enable the graphics system to work, a number of operations are
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defined, enabling pixel transfer using the paths shown in Figure 4.4. For more
detailed information on pixel transfer operations please refer to [Neider92].

Figure 4.4: Paths for transfer of pixel data.

In general, transferring data along the paths to and from main memory
is extremely inefficient and should therefore be avoided. If an algorithm
requires operations which are not supported by the graphics hardware and
therefore have to be implemented in software, however, such data transfers
can become necessary. In our approaches we placed great importance on
avoiding copying data to and from main memory, for instance by developing
suitable approximations which are implementable using hardware features.

4.6 Summary

In the last few sections we learned that graphics hardware is designed as a
rendering pipeline, consisting of stages, and have discussed the functionality
of each stage in detail. The rendering pipeline was originally designed as
a fixed pipeline, offering no programmability. In recent years, however, the
previously fairly restrictive functionality of the T&L and the rasterization
stage are being replaced by alternative solutions, which allow more and more
programmability.

Our algorithms presented in the following chapters of this thesis nearly all
rely on some form of programmability, for which we mostly used the texture
shader and register combiner extensions. We have not yet tested implemen-
tations of all our methods on the recently introduced fragment programs,
but are confident that all algorithms can be ported, and most will gain in
terms of performance. Before presenting our approaches in detail, we will
first introduce and discuss the related work in the following chapter.
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Related Work

In this chapter we would like to review and discuss work by other authors
which is related the models and algorithms we will present later on.

5.1 Introduction

As the topic of this thesis is to model the reflection properties of textile
surfaces, we will be reviewing a number of approaches for capturing and
modeling reflection effects of materials.

First, however, we would like to recall a widely used concept for represent-
ing surfaces and their materials, introduced by Fournier et al. and explained
in detail in [Fournier00]. This concept states, that a surface’s reflection effects
can not be captured by a single technique, but should in fact be represented
at different scales using a level of detail hierarchy, consisting of three levels.
In the following sections, we are going to categorize each related technique,
depending on which level in the hierarchy it is suitable for. Therefore, let’s
first take a closer look at each level of the hierarchy in turn.

The three levels are called the microscopic level, the mesoscopic level and
the macroscopic level. The microscopic level holds all the very fine surface ir-
regularities, which are, for instance, colored pigments and very small bumps.
These structures can not be resolved at a distance by the human eye and can
therefore be captured using a spatially invariant BRDF. The next level, the
mesoscopic level, consists of all larger, visible surface irregularities, which
can be resolved and lead to spatial variation. Bump mapping, which will
be explained further down in more detail, is one of the most widely known
techniques for rendering structures of this level. We also will explain some al-
ternative techniques in this chapter. Finally, the macroscopic level represents
large surface structures, which are captured by the object’s geometry.
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The exact boundaries between the levels are not clearly defined for a
surface, because the size of the irregularities which can still be resolved and
which therefore belong to the mesoscopic level depends on the distance of the
camera to the surface. If the distance to the surface changes, it will become
necessary to switch between the levels, and therefore also use a different
representation (i.e. BRDFs instead of bump maps as the distance between
viewer and surface becomes larger).

In this chapter we will begin in Section 5.2 by reviewing work which
covers the microscopic level. As explained above, this level is represented by
spatially invariant BRDFs . Due to the extremely large amount of techniques
published in this area, we will only review the most important contributions,
which we group into two categories. The first group consists of general BRDF
models which are not specific to cloth but are important for our work because
they are fairly easy to evaluate in hardware. The second group of models
are based on the micro facet theory, which is the basis for nearly all spatially
invariant BRDF models which have been applied to rendering cloth. BRDFs
can not only be captured using analytical models, as in the first two groups,
but can also be simulated, given a model of the surface’s microstructure. We
will take a closer look at techniques for doing so at the end of Section 5.2.

After that, we will turn to work concerning the mesostructure level, which
requires finding methods to capture and render spatial variation of a surface.
This variation is caused by the surface’s micro geometry, which, when we look
at it closely, consists of 3D geometry. However, capturing surface detail by
rendering a geometry model which fully represents every surface irregularity
is far too expensive. More efficient techniques have been published, which
basically follow two different approaches, and will be handled in separate
sections (Section 5.3 and Section 5.4).

The techniques we will review in Section 5.3 represent the micro geometry
of the surface by using 2D data structures, like for instance 2D textures,
which may vary in order to capture light- and view dependent effects. The
advantage of these techniques is that they are fairly easy to render, because
the main task consists of finding the correct texture and mapping it onto
the objects. On the other hand, capturing 3D geometry using a 2D texture
requires some form of projection, which can lead to artifacts. We will discuss
the limitations and advantages in more detail further down.

The second general approach to the problem of rendering visible micro
geometry is to use a 3D structure to represent it. Techniques following this
idea will be presented in Section 5.4. In contrast to the techniques based
on a 2D representation, these methods have far less artifacts but are more
complicated to render.
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Having described the main techniques for capturing the microscopic and
the mesoscopic level, we will focus on two topics which are relevant for all
three levels. These effects are self-shadowing, which we will discuss in Sec-
tion 5.5, and indirect illumination which we will detail in Section 5.6. The
latter effect is far more expensive to compute than self-shadowing, which ex-
plains why only very few techniques described in this chapter are capable of
handling this problem. Finally, at the end of this chapter, we will compare
our own work to the introduced techniques.

5.2 Spatially Invariant BRDFs

In this section we will review techniques for capturing the reflection effects of
the microscopic level. These effects are represented using spatially invariant
BRDFs. As explained above, we begin with a few general models, followed
by models based on the microfacet theory. At the end of the section we will
look at techniques for simulating BRDFs.

5.2.1 General Analytical Models

The first group of spatially invariant BRDF models we will describe are not
specialized for rendering cloth, but in fact are very general lighting models
which can be used for a variety of materials. Due to the huge amount of
material models developed in the last decades by researchers it is impossible
to list all of them. We will therefore explain the three most important for
our work. We have selected the Blinn-Phong model, because it is supported
by graphics hardware, and we often use it as a local model at the micro
geometry scale, the Lafortune model, because we will be using it as part of
our reflection model introduced in Chapter 8, and the Banks model, because
our knit-wear model, proposed in Chapter 9 uses an approximation of it for
shading.

Phong and Blinn-Phong

In 1975, Phong introduced one of the first lighting models for computer
graphics [Phong75]. This model is purely empirical and neither conserves
energy, nor does it fulfill the law of Helmholtz reciprocity. The materials it
can realistically reproduce are fairly restricted to plastic.

Lewis enhanced the model to be energy conserving and reciprocal [Lewis93]:

fr(x, ~ωi → ~ωo) =
kd

π
+ ks

N + 2

2 π
〈 ~ωr, ~ωi〉N (5.1)



48 Chapter 5: Related Work

The amount of light reflected diffusely or specularly is controlled by the
weights kd and ks, respectively. The restriction kd + ks < 1 enforces the
conservation of energy. The specular reflection is controlled by the specular
exponent N . Increasing the value of N results in a smaller but brighter
highlight. ~ωr is the reflection vector of the viewing direction ~ωo.

The Blinn-Phong model [Blinn77] is a different modification of the original
model, which achieves more realistic reflections. This model uses the halfway
vector ~h in the specular term:

fr(x, ~ωi → ~ωo) =
kd

π
+ ks 〈~h, ~n〉N with ~h =

~ωi + ~ωo

‖~ωi + ~ωo‖
(5.2)

The interpretation of this model is that a surface consists of tiny microfacets
randomly distributed with a power cosine distribution around the surface
normal ~n. This model is neither reciprocal nor energy conserving, however,
the modifications applied by Lewis to the original Phong model could also
be used with this model to make it physically plausible. As the Blinn-Phong
model is directly supported by OpenGL, it is the most widely used lighting
model. We will use it in some of our applications as the local BRDF model
at micro geometry level.

Lafortune Model

The Lafortune model [Lafortune97] could be considered as a generalization of
the original Phong model. The specular component consists of a sum of lobes,
with each lobe’s shape being controlled by the four parameters Cx,i, Cy,i, Cz,i,
and Ni.

fr(x, ~ωi → ~ωo) =
kd

π
+
∑

i

~ωi
T

 Cx,i 0 0
0 Cy,i 0
0 0 Cz,i

 ~ωo

Ni

(5.3)

The magnitude of Cx,i, Cy,i, and Cz,i controls the shape of the lobe, the
role of Ni is similar to the Phong model. (The operator aN is defined to
return zero if a < 0). ~ωT

i is the transposed light vector. The model is
more general than the original Phong model as it can handle anisotropy (by
letting Cx,i and Cy,i have different values), retro-reflection, and off-specular
peeks. The two major advantages of this model are that it can easily be fit
to measured data and is fairly easy to implement in hardware using newer
graphics hardware [McAllister02b]. We will use it in Chapter 8 as part of
our own BRDF model for textiles.
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Anisotropic Model by Banks

Banks describes the shading of 2D-curves based on the Phong model [Banks94].
The problem when applying a lighting model to a curve is that the curve is
defined by its tangent ~t and therefore has infinitely many normals which could
be used for shading. The model is derived by projecting light, viewing and
reflection vectors onto the tangent or into the normal plane, perpendicular
to the tangent. For derivation see [Banks94], or [Zöckler96].

Researchers argue, whether the cosine term inside the integral of the
Rendering Equation should be part of the BRDF or not. We will include
it in this model, as it has to be expressed using the tangent instead of the
normal. The complete Banks shading model is:

fr(x, ~ωi → ~ωo) =kd ·
(√

1− 〈~t, ~ωi〉2
)4.7635

+

ks · clamp[0,1]

(√
1− 〈 ~ωo,~t〉2

√
1− 〈~ωi,~t〉2 − 〈 ~ωo,~t〉〈~ωi,~t〉

)n

(5.4)

The exponent 4.7635 of the diffuse component is needed to compensate for the
fact that a 1-manifold looks too bright in 3-space, for details see [Banks94].
The function clamp[0,1] sets negative values to zero.

A hardware implementation of the Bank model was described by Zöckler
et al. [Zöckler96] for visualizing streamlines. At the time, programmable
texture hardware was not yet available and the authors used the texture
matrix and a precomputed texture in the following way for computing the
diffuse and specular term: The texture coordinate at each vertex is set to
the tangent ~t. By specifying a texture matrix M holding the light vector
~ωi = (lx, ly, lz) and the viewing vector ~ωo = (vx, vy, vz)

M =
1

2


lx ly lz 1
vx vy vz 1
0 0 0 0
0 0 0 2

 (5.5)

the dot products 〈~ωi,~t〉 and 〈 ~ωo,~t〉 are computed in hardware: (tu, tv, tw, tq) =
M~t. The first component of the texture coordinate evaluates to tu = 1

2
(〈~ωi,~t〉+

1), the second component to tv = 1
2
(〈 ~ωo,~t〉+ 1), and both components are in

the range [0 . . . 1] and can therefore be used as texture coordinates.
To evaluate the diffuse term a 1D texture is precomputed, storing dis-

cretized results of the term kd

√
1− (2 tu − 1)2

4.8
. To also include the specu-

lar term, a 2D texture is needed. This texture precomputes the term which
we obtain by replacing 〈~ωi,~t〉 by 2tu−1 and 〈 ~ωo,~t〉 by 2tv−1 in Equation 5.4.
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Lengyel et al. [Lengyel00] slightly modified the algorithm for rendering
fur, which we will describe in Section 5.4 in more detail. In Chapter 9 we
will introduce an approximation of the Banks model suited for rendering knit
garments in hardware.

5.2.2 Microfacet BRDF Models

The second group of techniques capturing the effects of the microscopic level,
which we would like to explain, consists of spatially invariant BRDF models
based on the microfacet theory. This theory assumes that surfaces consist of
tiny, perfectly flat facets, so called micro facets, or Fresnel reflectors which
resemble miniature mirrors. These only reflect light in the specular direction,
with respect to their own normals ~h. The overall reflection of the surface is
governed by the orientation of these micro facets, which is described by a
probability density function ρ(~h). An additional requirement is that a micro
facet contributes to the BRDF for a given pair of directions if and only if it
is visible/not shadowed, relative to the view/light direction.

We will first present the widely known Torrance-Sparrow model, which
was one of the first micro facet models in the area of computer graphics.
Then we will take a closer look at the Ashikhmin-Model, which is based
on the Torrance-Sparrow model, but introduces a more general shadowing
term and explicitly describes applications to cloth. Finally we will describe
the Yasuda model, a BRDF model specially developed for rendering woven
cloth. As micro facet models are based on a probability distribution function
they are inherently spatially invariant. However, different distributions can
of course be used to shade different parts of a surface.

Torrance-Sparrow Model

Like many models, the Torrance Sparrow model [Torrance67] consists of the
sum of a diffuse and a specular term:

fr(~ωi, ~ωo) =
kd

π
+ ks

ρ(~h) G(~ωi, ~ωo) F (~h, ~ωo)

〈~n, ~ωi〉 〈~n, ~ωo〉
(5.6)

ρ(~h) is the distribution function of the micro facets. The term G(~ωi, ~ωo)
denotes the so called shadowing term, which describes the amount by which
the facets shadow and mask each other. F (~h, ~ωo) is the Fresnel term.

Light reflected specularly in any given direction can only come from facets
oriented in such a way that they reflect the light in that direction, which
means their local normal vectors point into the same direction as the halfway
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vector ~h between view and light direction. The number of facets with such
an orientation is modeled by the distribution function ρ(~h). Torrance and
Sparrow [Torrance67] used a simple Gaussian distribution. Trowbridge and
Reitz [Trowbridge75] and Blinn [Blinn77] model the distribution as ellipsoids
of revolution. We will see examples of other possible distribution functions
when we explain the Ashikhmin model.

The shadowing term, also called the geometrical attenuation factor G
expresses the proportion of light remaining after shadowing and masking
have taken place. Torrance and Sparrow, and also Blinn [Blinn77] assume the
surface is made up of v-shaped groves with the sides at equal, but opposite
angles to the average surface normal. For computing the shadowing term
the only interesting groves are the ones where one of the sides points in the
specular direction ~h. There are three different cases, either (a) the grove is
fully visible and no shadowing/masking occurs, or (b) some of the reflected
light is intercepted before it reaches the view, or (c) some of the incident light
is masked off. The final term for G is obtained by computing the minimum
of the three cases (see e.g. [Blinn77] for derivations):

G(~ωi, ~ωo) = min

(
1, 2〈~n,~h〉〈~n, ~ωo〉

〈~h, ~ωo〉
, 2〈~n,~h〉 〈~n, ~ωi〉

〈~h, ~ωo〉

)
(5.7)

Note that depending on different assumptions and distributions a wide range
of different shadowing terms has been introduced, e.g., [Beckmann63, Smith67].

The Fresnel term accounts for the phenomenon that the amount of light
reflected and refracted at a surface depends on the angle and wavelength of
the incoming light, as well as on the extinction coefficient and index of refrac-
tion of a surface. As the exact terms are fairly complex we will give an approx-
imation by [Schlick94] which is fairly easy to compute and therefore widely
used in the computer graphics community. It only depends on the Fresnel
factor fλ for normal incidence (corresponding to the color of reflected white
light), which can be obtained for a given material, e.g., from [Wyszecky67].

Fλ(~h, ~ωo) = fλ + (1− fλ)(1− 〈~h, ~ωo〉)5 (5.8)

Note that for metals the color of the highlight varies, depending on the
incident light direction.

Model by Ashikhmin

The motivation of this model is that the shadowing term G is the most
complex part of most microfacet-based models. At the same time, many
varying surface geometries lead to the same distribution function so that in
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fact the shadowing term can not be ”right”. Ashikhmin et al. therefore
developed a model based on Torrance Sparrow, keeping the shadowing term
as simple as possible while still physically plausible [Ashikhmin00]. The

shadowing term is derived directly from the distribution ρ(~h), but only leads
to good results in cases where the shape of the normal distribution contributes
more to the appearance of a surface than the shadowing effects.

The reformulated Torrance Sparrow model including the new shadowing
term is:

fr(~ωi, ~ωo) =
ρ(~h)

∫
Ω
〈~n,~h〉 dωh F (~ωo,~h)

4 g(~ωi) g(~ωo)
(5.9)

Again, ρ(~h) denotes the distribution, and F is the Fresnel term. The function
g(~ω) is defined as:

g(~ω) :=

∫
Ω+(~ω)

〈~h, ~ω〉 ρ(~h) dωh (5.10)

where the subscript ’+’ denotes the fact that the integral is evaluated over
the hemisphere defined by ~ω (and not by the surface normal ~n). This function
is evaluated numerically once for each distribution.

The advantage of this model is that it can be evaluated for any given
probability distribution, as no separate shadow term needs to be derived.
Amongst other applications, the authors also use their approach to model
satin and velvet.

The satin sample which Ashikhmin et al. captured using their model has
a weaves structure similar to the one shown in Figure 5.1. Its appearance is

Figure 5.1: Shape of a weave captured by Ashikhmin et al.

governed by the weft threads all running in the same direction, with about
70% of the fiber length lying in the relatively flat part of the wefts and the
other 30% corresponding to the bent parts (before tucking under the warp
threads). The distribution of microfacets is modeled as a linear combination
of two distributions:

ρ(~h) = 0.7 ∗ ρflat(
~h) + 0.3 ∗ ρends(

~h)
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Both ρflat and ρends are cylindrical Gaussian heightfields.

For velvet, two different distributions were modeled and compared. For
the first approach the authors followed the observations described by Westin
et al. which describe the micro geometry of velvet as a forest of narrow cylin-
ders [Westin92]. The main characteristics of such a surface can be captured
by an ”inverse” Gaussian heightfield:

ρ(~h) = c ∗ exp(− cot2 θ/σ2)

with σ = 0.5.
After close inspection of a sample of velvet, the authors observed the

structure of velvet to consist of rows of tightly woven bundles of filament,
where each bundle is slanted with the angle of about 40 degrees with respect
to the geometrical normal of the cloth surface. Assuming that the sides of
the bundles contribute most to reflection, the density of a second attempt
at rendering velvet is modeled as a slanted version of a cylindrical Gaussian
distribution (σx = inf, σy = 0.5). As the authors note, however, the BRDF
is not energy conserving in this case.

Yasuda Cloth Reflection Model

Based on the Blinn micro facet model [Blinn77], Yasuda et al. derived a
complex, spatially varying BRDF-model, specially designed to capture the
gloss of woven cloth materials [Yasuda92]. The anisotropic model accounts
for reflection and refraction and also models light interactions at the cloth’s
internal structures assuming layers of fibers, which are oriented in the same
direction.

The model provides terms for specular, diffuse and internal reflection,
based on the distribution of the halfway vector which the authors first derive
from the fibers and yarn’s shape as ellipses and semi-circles, and later verify
in experimental measurements.

The specular reflection from the fibrous layers is modeled to be strongly
anisotropic, accounting for the fact that the fibers of e.g. satins basically all
lie in the same direction. The top of the fibrous surface is treated as a set of
tiny facets, with the distribution modeled as an ellipsoid.

The internal reflection accounts for multiple reflections of light inside the
fabric layer. The authors consider reflection and refraction at the borders of
the internal layers, using a fairly anisotropic distribution for the top of the
layers and a nearly isotropic distribution for the lower border, as the light
reflected on the lower surface has already scattered on the upper border.
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Attenuation and internal absorption are considered as the light traverses the
layers.

Part of the incident light is also scattered diffusely, which is due to uneven
parts of the fibrous surface, light being emitted independently of the incident
directions after reflection or refraction at the layer boundaries, and the re-
duction of the anisotropy after numerous reflections and refractions. We will
refrain from giving the exact mathematical formulation, as the equations are
fairly involved.

5.2.3 Simulation of BRDFs

The BRDF models we have seen so far use analytical terms to model a mate-
rial’s appearance. If, however, enough is known about the micro structure of
a material, a BRDF can be simulated by using a virtual gonioreflectometer.
In this case, a model of the surface’s micro geometry is needed. Then statisti-
cal ray tracing, followed by density estimation is used to obtain BRDF data.
The results can either be tabulated and used during rendering by interpo-
lating missing values. Alternatively, the data is represented using a suitable
basis, like, e.g. spherical harmonics.

Several approaches for simulating BRDFs have been proposed in the past.
The method by Cabral et al. is based on horizon maps [Cabral87] while the
method by Becker at al. [Becker93] uses a normal distribution in a bump
map. As the approach by Westin et al. [Westin92] is most relevant to our
own work, we will now take a look at this approach in more detail.

First, Westin et al. build a geometric model of the surface’s micro ge-
ometry. Then, rays are cast onto the model and are traced during their
interactions at the model’s geometry, noting their direction when they leave
the sample geometry. Three different scattering modes are modeled: spec-
ular reflection, specular transmission and directional diffuse reflection. If a
ray hits a specularly reflecting microfacet, a ray is spawned in the specular
direction as in classical ray tracing. In the case of specular transmission, the
energy transfer through the interface between media of different refractive
indices, as well as attenuation have to be modeled. For the directional dif-
fuse reflection, a number of rays are sent to the hemisphere above the facet
and weighted according to the directional diffuse part of the local BRDF.
Hierarchical BRDFs can be simulated by using the BRDF acquired at one
level as the local BRDF during the simulation of the next level. The resulting
BRDF is represented using a spherical harmonics basis.

Westin et al. show various applications of their method. Two of them di-
rectly address simulating textile BRDFs. These examples handle the BRDFs
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of velvet and of woven cloth. The velvet’s micro geometry is modeled by a
forest of narrow cylinders in which the angle of each is cylinder randomly per-
turbed. The fibers themselves are modeled as transparent ideally specular
plastic. Whenever a ray intersects a fiber, it is either reflected or transmitted,
if a ray intersects the base plane it is absorbed. For the example of woven
cloth, the BRDF is simulated at different scales. At the larger scale, the mi-
cro geometry captures the shape of the weave. The BRDF for the threads of
the weave are modeled using an anisotropic BRDF, additionally considering
scattering from the threads.

In these first three sections we looked into techniques used for represent-
ing the reflection effects of the microscopic level relevant for our work. We
introduced the most important general reflection models, then took a closer
look at BRDF models based on the micro facet theory, and finally explained
how BRDFs can be simulated. As stated above, these BRDF models all have
in common, that they are spatially invariant, assuming the micro geometry
of the surface to be so small and so far off, that the surface appears to be
of a homogeneous material. In the next section, we will explain methods
and models, which are capable of handling spatial variation of the reflection
function, and are therefore useful for representing effects of the mesoscopic
level.

5.3 Representation of Spatial Variation using

2D Structures

Often, the reflection properties of a surface can not be modeled by a single,
homogeneous BRDF, because the appearance of the surface varies locally. As
we have seen in Chapter 3, textiles are a typical example for such materials.
In the next sections we will introduce methods which are able to capture
spatial variation of the reflectance function. These variations can be caused
on the one hand by the surface’s micro geometry, and on the other hand
by color variations. While the methods presented in Section 5.4 use 3D
representations of the surface micro geometry, we will introduce methods in
this section, which project the surface geometry to 2D.

When considering spatially varying reflection properties, one of the first
techniques which comes to mind is texturing. Early approaches simply
used textures, e.g. to vary the diffuse reflection coefficient of, for exam-
ple, the Phong model. In the last years, a wide range of hardware based
material models which heavily rely on textures have been introduced, see
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e.g. [Kautz00b, Kautz02, McAllister02b].

We will begin in Section 5.3.1 by explaining a simple, but often effective
method for capturing small scale surface detail called bump mapping. Bump
maps are very suitable for rendering the mesostructure level of micro geome-
try that can be modeled by a heightfield. However, if we would like to capture
the complex occlusion effects visible in non-heightfield geometry, other, more
sophisticated approaches are called for. In this context we will look at two
texture-based techniques called view-dependent texturing (Section 5.3.2) and
bidirectional texture functions (Section 5.3.3). Spatial variation can also be
captured using light fields, which we will explain in Section 5.3.4. However,
light fields can not consider reflection effects due to varying lighting condi-
tions. Enhancing light fields to also take these effects into account, we obtain
reflectance fields which we will look into in Section 5.3.5. At the end of this
section we will briefly summarize and compare the abilities and drawbacks
of the introduced methods based on 2D projections of the micro geometry.

5.3.1 Bump Mapping

In 1978 Blinn published an algorithm for simulating wrinkled surfaces [Blinn78],
which perturbs the normal vector, leaving the underlying surface unchanged.
This perturbed normal is used instead of the surface normal for the lighting
computations which creates the illusion of small scale surface irregularities.
This technique is generally known as bump mapping and has become state
of the art for simulating small scale surface detail.

The input to the original technique is a heightfield, defining the height
of the bumps. On recent graphics hardware, however, which supports the
computation of dot products per pixel, the bump map is supplied as a texture
containing the normals instead of the heights [Heidrich99, Westermann98].
This technique is also called dot-product bump mapping or normal mapping
and allows rendering diffuse, as well as specular reflections from small surface
irregularities.

As bump maps only alter the normal, but not the geometry, special at-
tention has to be payed in order to correctly incorporate self-shadowing and
masking effects. The latter can be handled by a technique called redistribu-
tion bump mapping, which was introduced by Becker and Max [Becker93].
This method adjusts the distribution of normals in the bump map, depen-
dent on the current viewing angle. Other methods for capturing the masking
effects in micro geometry will be described in the next two sections.
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5.3.2 View-Dependent Texture Mapping

View dependent textures were introduced by Debevec et al. in the context
of rendering architectural scenes [Debevec96]. The appearance of a surface
is captured for a number of directions, storing a texture and its correspond-
ing direction for each view. During rendering, the views associated with the
textures are compared to the current viewing direction, and the three tex-
tures with the nearest views are selected. The appearance of the surface is
reconstructed by blending these three textures.

The authors used photographs of buildings to add surface detail onto
fairly simple geometrical models and to capture their view-dependent ap-
pearance. Given the outlines of the buildings in the photographs, the rel-
ative viewing directions can easily be reconstructed. This method is very
well suited for structured surfaces with a planar base geometry, as the re-
construction of the relative viewing direction is easy for the planar case. For
non-planar geometry, however, both the acquisition process, as well as the
rendering process would become more complex.

View-dependent textures do not represent the dependency of the surface
appearance on the light direction. A very similar data structure, which
additionally accounts for the light direction will be presented in the next
section.

5.3.3 Bidirectional Texture Functions

In contrast to view dependent textures, bidirectional texture functions (BTF)
also capture the dependency of a surface’s reflection properties on the light
direction. A BTF is a six dimensional function with a 2D texture associated
with each possible combination of lighting and viewing directions, which ac-
count for the other four dimensions. The expression BTF was coined by Dana
et al. [Dana99a, Dana99b] who described a setup for measuring the BTF for
real-world surfaces. For a number of different sample surfaces, the authors
acquired images for varying combinations of light and viewing directions and
published the results in the “CUReT” data base.

BTFs are a very effective data structure to represent reflectance data.
They are especially well suited to capture the appearance of real-world sur-
faces. However, the process of acquiring a BTF for a real surface is extremely
tedious. Firstly, the data needs to be captured for a sufficiently large number
of light and viewing directions, which often requires several hours per surface
sample. After that, the image data usually needs to be edited before it can be
used for rendering, because the images contain area foreshortened skewed ver-
sions of the texture, which most rendering algorithms can not handle. Liu et
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al. tackle the first problem by introducing a method which uses a sparse BTF
data set to synthesize images for missing light and viewing directions [Liu01].

Both view-dependent texturing and BTFs capture a surface’s view-de-
pendent appearance by projecting the micro geometry along the viewing
direction onto a 2D texture. This approach is well suited for capturing small
and fairly flat surface structures. At the silhouettes, however, artifacts will
be clearly visible, especially for larger surface irregularities, because both
methods are incapable of reproducing the height of the surface irregularities.

In the next sections we will take a look at light fields, which represent a
combined representation of an object and its appearance, and therefore can
handle silhouettes for free.

5.3.4 Light Fields

Light fields, which were proposed by Levoy et al. [Levoy96] and concurrently
by Gortler et al. [Gortler96], were developed to capture the appearance of
an object by representing the radiance leaving the object in all directions.
For fixed lighting, this is a 5D function, which can be reduced to 4D by
additionally assuming that the observer is outside the bounded region of the
object, and that no other object interferes with the light distribution.

This function can be parameterized in several different ways. The original
parameterization uses light slabs, which consist of two coplanar planes. A
ray carrying radiance in a certain direction is then defined by its intersection
points through both planes. A set of six light slabs placed around the object
is needed to capture its appearance from all sides. To render a light field, the
radiance incident along each viewing ray is looked up in the data structure.
Since it is improbable that the light field stores exactly the required rays,
the values are interpolated from the sixteen closest rays. Artifacts due to un-
dersampling are a common problem. To improve the reconstruction process,
Gortler et al. additionally use a rough approximation of the scene geometry.

Wood et al. even assume an exact geometrical representation of the ob-
ject to be available. In [Wood00] they introduce surface light fields, which
parameterize the radiance leaving a point on the object’s surface over the re-
flected direction. Surface light fields allow high quality images of the stored
object to be generated at interactive frame rates.

Light fields can be used to represent objects with spatially variant re-
flectance properties. They are suited both for synthetic data, as well as for
representing real-world objects. However, light fields which lead to high qual-
ity results require a huge amount of memory. The light field combines the
reflection properties and the object’s geometry in one representation. The
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advantage is that this way occlusion effects and silhouettes come for free.
On the other hand, it is impossible to map the surface appearance onto a
different base geometry, which is a great disadvantage. Furthermore, the
representation does not account for light dependent variation of the object’s
appearance. In the next section we will briefly explain the reflectance field,
which captures both view and light dependent surface appearance.

5.3.5 Reflectance Fields

The light field can be extended to capture the dependency of an object’s
appearance on the light direction, resulting in a 6D data structure called a
reflectance field. Instead of storing a radiance value for every point and every
viewing direction, a reflectance field stores the amount of reflected radiance
for every point, every viewing direction and every light direction. In other
words, a 4D BRDF is stored at every point.

Wong et al. were the first to compute and store a reflectance field [Wong97].
They use a light field for the view dependence, and, for each ray, store spheri-
cal harmonics coefficients representing the light dependency. They also intro-
duce various compression techniques to reduce memory consumption. Wong
et al.’s method can be used to interactively relight light field objects.

Similarly to the light field, a reflectance field combines the object’s mate-
rial properties with its geometry. The advantages and disadvantages of this
representation, which we discussed above for light fields, apply in the same
way for the reflectance field.

5.3.6 Summary of 2D-Based Techniques

In the last sections we presented techniques which are suitable for capturing
the spatial variation of an object’s material. All introduced techniques are
based on projecting the surface micro geometry to 2D. One of the simplest
techniques for capturing spatial variation are bump maps, which take into ac-
count the light dependency of the shading. Extensions exist to also consider
self-shadowing and to handle masking effects for changing viewing directions.
View-dependent texture mapping captures the appearance of a surface for
different viewing directions. This technique is well suited for handling view-
dependent effects like occlusions, but does not take the light dependency of
the appearance into account. Instead of storing a single texture per view-
ing direction, BTFs store a collection of textures for each viewing direction,
which represent the dependency of the surface appearance on the light direc-
tion. While bump mapping uses 2D textures to store an approximation of
the bump’s geometry, view-dependent texturing, and BTFs directly store the
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surface appearance as 2D textures. All three techniques use projections of
the surface structure to 2D, which leads to good results for fairly flat struc-
tures. However, at the object’s silhouettes, and for larger structures all three
methods will lead to visible artifacts.

The last two approaches we looked into are based on light fields, which
represent the appearance of a whole object. In a way, light fields can be
regarded as view-dependent textures for non-planar surfaces. This is best
explained considering the two-plane parameterization of the light field, where
we will call the plane nearer to the object the image plane, and the plane
farther away from the object the eye plane. If we look at the collection of
rays distributed over the image plane but all intersecting in a single point on
the eye plane, we will notice that they all form a single, skewed image of the
object. This single image can be compared to the texture for one view in the
view-dependent texturing approach. While the image of the view-dependent
texture represents the surface properties mapped onto a flat surface, the
image obtained as just described from a light field consists of the surface
structure mapped onto the captured object’s surface, which need not be flat.

By capturing the appearance of the whole object, i.e., of the surface struc-
ture already mapped onto the object geometry, light field based approaches
do not suffer from problems at the silhouettes like the methods above. Simi-
larly to view-dependent texturing, light fields do not capture light-dependent
effects. The data structure which combines light fields with light dependency
is called reflectance field. A disadvantage both light fields and reflectance
fields have in common is that they combine the appearance of an object with
its geometry. As a consequence, neither representation allows applying the
appearance of a surface to a different object’s base geometry.

As explained above, all methods explained in this section store 2D projec-
tions of the surface structure. In the next section we will introduce methods
for handling spatial variation, which are based on storing 3D representations
of the surface micro geometry.

5.4 Representation of Spatial Variation using

3D Structures

The micro geometry of some surfaces can be extremely complex. Imagine
for example the micro geometry of a knit garment consisting of hundreds
of fibers. For these surfaces, effects like occlusion, self-shadowing, or the
computation of correct silhouettes are impossible to handle using the methods
explained in the previous section. In this case, the surface micro geometry
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needs to be represented using a data structure which also captures the third
dimension – the height of the surface detail. In this section we will introduce
a number of methods which use such representations.

The first techniques we will look at in detail are related to volumetric
textures. The basic idea of this this representation is to resample a 3D ge-
ometric model of the surface’s micro geometry into a volume texture. In
Section 5.4.1 we will briefly review literature on volumetric textures. After
that we will review methods which apply volumetric textures to the problem
of rendering knit-wear (Section 5.4.2), and to handling fur (Section 5.4.2),
which is a problem closely related to rendering knit-wear, as hair and fibers
can lead to similar effects. Volumetric textures have the disadvantage that
they are not easy to render. Specifically, no methods exist to render semi-
transparent volumetric textures efficiently. Although research in the area of
volume rendering has produced a plenitude of techniques, these are specifi-
cally designed for correctly rendering block volumes. We will briefly review
the most relevant work in the areas of rendering volumetric textures, and of
volume rendering, in Section 5.4.4.

The virtual raytracing approach, which we describe in Section 5.4.5, does
not use a volume to represent the geometry of surface irregularities. Instead,
it assumes the surface detail to be repetitive over the object’s surface, like
for example the structure of a wicker basket, and represents the fine scale
geometry of one repetition using a 3D model. The application of this micro
geometry to the object’s surface is computed in a ray tracing process.

The methods we will finally represent in Section 5.4.6 were specially devel-
oped for rendering knit-wear. Here, the micro geometry of a whole garment
is stored as a collection of mathematical curves representing the course of the
thread along the garment. We will explain two different approaches to render
knit-wear based on this data representation. Finally, in Section 5.4.7, we will
briefly summarize the advantages and drawbacks of all methods explained in
this section.

5.4.1 Volumetric Textures

The idea of representing 3D geometry by a reference volume (texel) and
mapping copies of this volume onto bilinear patches was introduced by Kajiya
et al. [Kajiya89]. Storing an opacity value, a reference frame and a reflectance
function per voxel, the authors used this concept to render fur and hair.
Perlin and Hoffert [Perlin89] built on this approach and modified the surface
structure by three-dimensional texture functions, so called hyper textures
(see also [Worley96]).

Neyret extended the concept of volumetric textures in several ways [Neyret98].
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By introducing a multi-scale representation of the volume in an octree struc-
ture it can be pre-filtered at different scales, which opens the door to mip-
mapping. Also, Neyret represents the reflectance function in each voxel with
a normal distribution function, which is encoded as an ellipsoid. Finally,
he shows how to map texels more generally onto the surface, eliminating
constraints the original Kajiya paper imposed on the surfaces.

In the next section we will see how a volumetric data representation
related to volumetric textures can be used for rendering knit-wear.

5.4.2 Volumetric Knit-Wear

An approach similar to volumetric textures, but specifically used for render-
ing knit-wear, was presented by Gröller et al. [Gröller95, Gröller96]. Observ-
ing the highly repetitive structure of knit-wear, they model a single stitch as
a three-dimensional array of volume densities. The densities for each voxel
are generated by first defining the location of the knitting yarn as a skeleton
curve and then sweeping the density distribution of a yarn cross-section along
this curve.

A fairly simple but efficient algorithm suitable for rendering planar sam-
ples of knit-wear for a non-local viewer (orthogonal projection of the scene)
and directional light is described in [Gröller95]. For fabrics that consist only
of one type of basic element (i.e. only plain loops), the top face of the ele-
ment is rendered using direct volume visualization. If a ray leaves the volume
through one of the sides (not top or bottom) it is cast back into the volume
from the opposite side to take into account neighboring stitches. After calcu-
lating the intensities for the quadrilateral corresponding to the top face of a
stitch, the image plane is simply tiled with non-overlapping translated copies
of the image. A different approach is used if the fabric consists of more than
a single basic stitch. In this case at most three faces of the bounding box of a
stitch are visible, depending on the viewing direction. Rays are cast through
the visible faces of both types of stitches, this time without the cyclic reset-
ting, and an alpha value is stored additionally for each viewing ray. The final
image of knitted fabric is then constructed by tiling the image plane with
the resulting six-sided images, blending them according to the alpha values.

For applying the volume density based stitch model to more complex base
geometries, a curved ray tracing approach is developed in [Gröller96]. The
authors differentiate between the texture space of the stitch (which they call
computational space), and the world space of the garment (physical space)
and observe that a stitch mapped to world space is distorted as shown in
Figure 5.2. Due to this distortion, ray casting through the resulting volume
would be extremely difficult. Therefore the authors compute the actual vol-
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ume ray tracing in texture space. The transformation of the ray back to
texture space is computed by intersecting the six-sided stitch cell in object
space, mapping the intersection points back to texture space and approxi-
mating the curved ray with a straight line. For the evaluation of the lighting
model, a normal is needed, which is computed by transforming the gradient
of the volume densities to texture space at the entry and exit point and in-
terpolating the transformations in between. Now the ray casting through the
cell and the evaluation of the lighting model are easily possible, producing
realistic images of knit garments.

Figure 5.2: Mapping the stitch volume from texture space (left) onto an
object (right) results in a distortion of the volume.

5.4.3 Real-Time Fur

In some respects, rendering textile fibers and rendering hair or fur are fairly
related tasks, which is why we will take a closer look at a level of detail
approach by Lengyel for real-time shading of fur [Lengyel00]. Lengyel renders
fur either using a full geometry representation of single hairs, as alpha blended
lines, or using a volume shell approach. The volume data for the volume shell
approach is constructed by filtering the procedural geometry of hair into a
volume representation and shaded using either a per-vertex or a per-pixel
approach, which are both based on the Banks shading model [Banks94].

For the per-vertex approach a fake normal is computed from the surface
normal and the two projected shading vectors, light and halfway vector, and
then passed to the hardware to automatically compute the lighting. The
shaded result is then used to modulate the volumetric texture, transferring
the shading to the volumetric fur. This approach relies on the fact that the
hair-tangents do not vary strongly from one vector to the next, which is valid
for fairly straight hair, but would break down in the case of curls or knitting
loops, where the tangents vary strongly.
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The per-pixel technique is a modulation of [Zöckler96] (see Section 5.2.1
for details). This technique only works for directional lights and a non-local
viewer. Using a technique similar to this one for knit-wear would inhibit the
changing of material coefficients from one pixel to the next, disabling the
rendering of complex color patterns. For the per-pixel approach, Lengyel
developed an approach for soft shadows.

So far, we have introduced several approaches which represent micro ge-
ometry, like knitting loops or fur, using volumetric textures. In the next
section we will see how this data can be applied to the base geometry, i.e. a
garment in the case of knit-wear, or an animal’s skin in the case of fur.

5.4.4 Rendering Volumetric Textures

Volumetric textures have been successfully applied in the areas of tree and
landscape modeling [Neyret96, Chiba97], or, as explained above, to improve
the appearance of synthesized textiles [Gröller96]. A survey on volumetric
textures can be found in [Dischler01]. Although volumetric textures can
replace very complex surface geometry by a simple volume, the rendering
effort is not necessarily decreased. Most of these techniques use a purely
software-based approach for rendering.

Volume rendering has been an active area of research in the last two
decades, which explains the large number of software- and hardware-based
techniques that have been proposed, e.g ray casting [Tuy84, Levoy88], splat-
ting [Westover90] or forward projection [Frieder85, Wilhelms91]. For a com-
plete, coherent review on volume visualization techniques see [Brodlie01].
The classical approach for hardware-based volume rendering using 3D tex-
ture mapping [Cabral94, Akeley93] renders several slices through the volume
from back to front integrating the pixel intensity. These slices are generated
by simple polygons to which the 3D texture is applied.

Different approaches exist to choose the orientation of the textured poly-
gons slicing the volume. One technique precomputes three different sets
of slices, each perpendicular to one of the major axes of the volume. Ac-
cording to the current viewing direction the best set is selected and dis-
played. The orientation of the slicing may flip when changing the view-
point. The technique of three orthogonal slicing directions has also been
used in [Kautz01] in the context of hardware accelerated displacement map-
ping (see also [Schaufler98, Dietrich00]).

Meyer et al. combine a hardware-based volume rendering approach with
volumetric textures using three sets of orthogonal slices [Meyer98]. For each
facet, three stacks of textured polygons are defined, one stack parallel to the
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facet, the other two orthogonal to the facet and to each other. Depending
on the viewing direction, one of these stacks is chosen, as well as an order
(back to front) with which to render the slices. In addition to storing three
orthogonal stacks of polygons to deal with artifacts at grazing viewing angles,
Meyer et al. introduce certain criteria to control the number of slices needed,
depending on the viewing direction and a maximal “depth” the user is allowed
to see between the slices of a volume. A significant drawback of this method
is, that it explicitly can not handle semi-transparent volumes, as this would
require sorting the facets from back to front for each view.

Lengyel et al. [Lengyel01] render fur using volumetric textures, by dis-
playing the object in concentric shells from the body outwards, similar to
the approach by Meyer et al. In order to deal with artifacts near grazing
viewing angles, “fin” polygons are placed orthogonal to the surface in silhou-
ette regions and textured. This approach however breaks down for regular
structures, and volumes with larger transparent regions.

In the last four sections we reviewed techniques based on representing
the micro geometry of a surface using a volume data set. Next, we will see
alternative representations and rendering techniques for surface detail.

5.4.5 Virtual Ray Tracing

“Virtual raytracing”, which was introduced by Dischler in [Dischler98], was
developed as a method for applying synthetic complex textures to surfaces,
considering view-dependent effects like occlusion. In this approach, the sur-
face’s micro geometry is assumed to consist of repetitive micro geometry, as
it is the case e.g., for the wicker work of a basket. The micro geometry of a
single repetition is stored using a geometrical representation.

The principle of virtual raytracing is as follows: When a ray hits a surface,
the whole intersection problem is transfered into the texture map space, pre-
serving the relative direction of the incoming ray. A ”virtual ray” is launched,
with the same relative direction to the surface and traced through the geo-
metric representation of the micro geometry, as shown in Figure 5.3. If an
intersection with the complex texture geometry occurs (no hole), the virtual
ray passes the local normal, and the original material properties back to the
original ray. The technique of virtual ray tracing is very closely related to
the curved ray-tracing technique used by Gröller et al. to render volumet-
ric knit-wear [Gröller96] (see Section 5.4.2), as both techniques transfer the
problem of raytracing surface structure to texture space.

To speed up the idea of virtual raytracing, Dischler introduces a data
structure which tabulates the texture’s normals (quantized), material and
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Figure 5.3: Virtual Raytracing: When ray ~r hits the object surface the whole
problem is transferred to texture space, where a virtual ray ~r′ is launched
to compute the normal, material properties, and a transparency value corre-
sponding to the complex texture.

transparency values for a fixed set of viewing directions. This data struc-
ture is built in a precomputation step by sampling the texture at discrete
points and the direction space using pyramidal shafts and then computing
the entries using ray tracing (inter-reflections are not considered). The au-
thor also describes how to filter the data for a multi-level approach which
reduces aliasing artifacts, and how the data can be compressed. Using virtual
ray tracing, complex textures can be rendered very efficiently yielding high
quality results. The main disadvantage is that this approach neither handles
self-shadowing nor inter-reflections.

These restrictions were overridden by Mostefaoui et al. in [Mostefaoui99],
where virtual ray tracing is integrated into a hierarchical radiosity approach.
In this context, virtual raytracing constitutes the finest level of hierarchy in
a multi-level scheme. BRDFs, as well as transparency information, are com-
puted from subregions of the map for higher regions using a radiosity tech-
nique. These levels automatically include inter-reflection and self-shadowing
effects. Similarly, inter-reflections are also computed for the finest scale and
stored in a light-dependent data structure (view-dependent scattering is ne-
glected). Self-shadows are integrated into the virtual raytracing level using
a directional shadow map which holds boolean values that can be used as an
indicator during shading.

The last approach we will explain in the context of 3D representation of
micro geometry is a technique specialized for capturing the micro geometry
of knit-wear. In contrast to all previous approaches, the micro geometry is
not assumed to be repetitive in this case, but instead is modeled over the
entire base surface.
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5.4.6 Rendering Knit-Wear using the Knit-Wear Skele-
ton

Some approaches for rendering knit-wear rely on a specialized data structure
called the knit-wear skeleton, which computes the course of the yarn across
a garment. We will first explain how the knit-wear skeleton is constructed
and then show several methods how knit-wear can be rendered guided by
this data structure. The advantage of representing the course of the yarn
without assuming repetition of the micro geometry is that complex stitch
patterns can be generated. The main disadvantage of these approaches is
that the complexity of the rendering algorithms depends on the number of
stitches in the garment.

Construction of the Knit-Wear Skeleton

The knit-wear skeleton was first introduced by Zhong et al. [Zhong01] and
consists of a network of fine interlocking mathematical curves representing
the course of the knitting yarn. The knit-wear skeleton is constructed from
a free-form surface s, a stitch pattern, and optionally a color pattern. Sup-
posing the surface s(u, v) is defined over the parameter domain Q, then Q is
first partitioned into M×N quadrilaterals, with M and N being the number
of courses and wales, respectively. Next, the loops are computed, each of
which lies within the four corner points of one of the quadrilaterals. In order
to do so, six so called key points are computed by the weighted combination
of the corresponding quadrilateral’s corner points (refer to [Zhong01] for the
weights) in the parameter domain Q. Before the key points are interpolated
using cubic cardinal splines to obtain the loops, the points need to be slightly
offset from the surface to avoid self-intersection of the curves. Interpolating
all key points for all loops results in the definition of the yarn’s path across
the surface. Advanced stitch patterns, combining several simple stitches,
can also be computed. To obtain more realistic knit-wear, the corners of
the quadrilateral can randomly be perturbed. Additionally, the knit-wear
skeleton can contain color information, obtained from the color pattern.

The knit-wear skeleton only half represents the micro geometry of a knit
garment, because it accounts for the course of the thread, but not for thread
micro structure like fibers etc. In the next two sections we will see how knit-
wear micro geometry including fiber thickness and structure can be obtained
from the skeleton.
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Rendering as Gouraud-shaded Triangles

Zhong et al. [Zhong01] render the knit-wear skeleton using Gouraud shaded
triangles to represent a collection of fiber strands. First the skeleton is divided
into sections, and, given a yarn diameter, a cylinder can be obtained for each
section. However, this cylinder can not be rendered directly, as a smooth
shaded cylinder does not give the visual impression of yarn. Therefore, the
authors propose the following approach: Each segment is bounded by two
loops LX and LY as shown in Figure 5.4 on the left. Now for each edge
(xi, xi+1) on loop LX , a triangle (xi+1, xi, yrnd) is rendered, where yrnd is
chosen randomly from loop LY . (In the middle image in Figure 5.4, yrnd = y5

for edge (x2, x3)). Vice versa, triangles are rendered with the edges (yi, yi+1)
and a random corner from loop LX . The fluffiness of a yarn can be controlled
by additionally perturbing the position of these third random vertices, as
shown in Figure 5.4 on the right.

Figure 5.4: Left: each segment defines a cylinder, consisting of two loops of
points. Middle: random selection of third triangle corner for rendering (only
shown for two edges). Right: random offset of third vertex to account for
fluffiness of yarn.

An advantage of this method for rendering the knit-wear skeleton is that
the fluffiness of the yarn can be controlled in a fairly intuitive way. However,
the method has three major disadvantages: The first is that its rendering
times are dependent on the number of stitches a model consists of, as an
increase in the number of stitches will result in more cylindrical segments
and therefore more triangles which have to be rendered. For the examples
shown in the paper, the authors report the number of triangles to be 1-4
million, which results in rendering times between a few and a few dozen
seconds. The second drawback is that the rendering method does not lend
itself to mip-mapping, generating bad results for closeup views. Finally, the
model can not handle self-shadowing, which is a severe drawback, and is very
obvious in the results.

In the next section we will present an alternative approach for rendering
knit-wear based on the knit-wear skeleton.
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Rendering the Knit-Wear Skeleton using the Lumislice

In [Xu01, Chen03] a new rendering primitive called the lumislice is intro-
duced, which represents the reflectance characteristics for yarn and mod-
els fine level interactions like occlusion, shadowing, and multiple scattering
among yarn fibers. A lumislice consists of voxels, each storing the opacity
(obtained from the given fiber density distribution) and the voxel reflectance
function (VRF) in a 4D array. The latter differs from the traditional notion
of a BRDF in that it accounts for the attenuation of incident light passing
through the surrounding yarn. The factors influencing the reflectance func-
tion at a voxel p are the fluff density ρp, the shading model Ψ of yarn (the
model for diffuse reflection from [Kajiya89] is used), and the incident light
distribution Imsp, which results from multiple scattering among neighboring
voxels:

Lo(p, ~ωo) = ρp Ψ

(
Ip + IL

∑
N

Imsp(~ωn)

)
(5.11)

IL is the light intensity, Ip is its attenuated intensity upon reaching the voxel
p and N are the neighboring voxels. Ip is computed based on the emission-
absorption model [Chandrasekar60]:

Ip = IL exp

(
−γ

Pin∑
r=p

ρr

)
(5.12)

where Pin is the entry point of light entry into the yarn’s bounding box and
γ is the light transmission factor in the emission-absorption model.

The term Imsp holds the incident light distribution from multiple scatter-
ing which is collected from neighboring voxels. For a neighboring voxel n in
direction ~ωn the contribution to multiple scattering towards p is computed
as:

Imsp(~ωn) = ρn Ψ(~ωi → −~ωn) exp

(
−γ

Pin∑
r=n

ρr

)
(5.13)

All terms except IL from Equation 5.11 are now grouped into the VRF,
which is a 4D function of ~ωi and ~ωo:

Cp(~ωi → ~ωo) = ρp Ψ(~ωi → ~ωo)

(
exp(−γ

Pin∑
r=p

ρr) +
∑
n∈N

Imsp( ~ωn)

)
(5.14)

Cp is discretized and stored as an RGB array. In [Xu01, Chen03] the authors
ignore view dependent effects, dropping the dependency of ~ωo, so that Cp

becomes a 2D array.
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For rendering the knit-wear skeleton using the lumislice, the skeleton is
first partitioned into short straight segments with a twisting angle, which
are then depth sorted for blending. Now a lumislice is mapped onto each
short segment and then rendered using transparency-blending. Special care
is taken that the depths of slices which are not parallel to the viewing plane
get treated correctly (see [Xu01]).

Lumislice rendering can be combined with shadow maps: first a normal
shadow map is generated from all non-knit-wear objects. On top of this
shadow map the knit-wear skeleton is rendered as lines. During rendering,
first the normal shadow test is performed. If a test point is not shadowed
the distance from the projected point to the nearest yarn segment is eval-
uated and compared to the radius of the yarn segment. If the distance is
smaller,the light of this point is partially absorbed by the yarn, and the light
transmission through the voxels is computed (see [Xu01] for details).

The advantages of this technique compared to [Zhong01] are that the
lumislices can be computed at different resolutions, opening the door to mip-
mapping, and that the method considers soft shadows. As the technique
is based on the knit-wear skeleton it can handle arbitrary color and stitch
patterns. The disadvantages of this method are that the authors do not
handle view-dependent effects. Also, the rendering algorithm, which consists
of several rendering passes, is fairly time consuming, which can be explained
by the number of rendering passes, transfers from the frame buffer to main
memory, a pass in which the yarn needs to be drawn as cylindrical polygons
and having to sort the yarn segments by depth for blending. Rendering times
(unoptimized) are reported to be about 15 minutes. Like in the previous
method, the rendering times depend on the garment’s number of stitches,
and consequently a larger garment takes 30 minutes to render.

5.4.7 Summary of 3D-Based Techniques

The techniques described in the last section represent a material’s surface
structure in 3D data structures which are then used to render the object’s
spatial variation. We first introduced volumetric textures, which filter the
3D micro geometry into a 3D texture. Once the geometry has been captured
in a volume, the representation is independent of the complexity of the struc-
ture’s geometry, which is a great advantage. Volumetric textures can either
be rendered using software techniques, or by Meyer et al.’s hardware-based
method, which however, can not handle semi-transparent data sets. Due to
the representation, view dependent effects like occlusion can be handled eas-
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ily using volumetric textures. Light dependent effects are taken care of by
storing suitable representations of the reflection function per voxel.

Next, we looked at virtual ray tracing, which represents the micro geom-
etry of a surface, which is assumed to be repetitive, using a 3D geometric
model. To speed up rendering, the technique uses tables containing im-
portant shading data like normals, material and transparency information
computed for a fixed set of viewing directions, which makes rendering less
dependent on the complexity of the representation. In contrast to volumet-
ric textures, this representation is only suitable for software rendering. The
technique can handle view dependent and light dependent effects.

Both volumetric textures and virtual ray tracing assume that the micro
geometry of a surface is repetitive, and capture the data for one repetition.
In contrast, the knit-wear skeleton captures the micro geometry of knit-wear
for the entire object, not relying on repetitive structure. The advantage of
this approach is that it can handle complex, irregular stitch patterns. On
the other hand, the rendering times are dependent on the number of stitches.
Another disadvantage of representing the micro geometry for a whole object
is, that the knit-wear skeleton has to be recomputed if the micro geometry
should be applied to a different base surface.

To be precise, the knit-wear skeleton only captures the course of the
yarn. We explained two methods which then use the skeleton to generate
the yarn’s shape. The first approximates the yarn using Gouraud shaded
cylinders, while the second method uses the lumi-slice. Both techniques can
handle view and light dependencies.

The advantage of approaches using 3D representations of the micro ge-
ometry compared to the 2D-based techniques, explained earlier on, is that
complex effects like occlusion and silhouettes are much easier to handle. This
is due to the fact, that the geometry of the surface structure is correctly rep-
resented for the third – height – dimension. The disadvantage is that the
process of mapping surface detail given in a 3D data structure onto an ob-
ject’s surface is a lot more complicated than for 2D-based techniques.

So far, we have reviewed techniques for representing the microscopic and
mesoscopic level of a surface. We have mainly concentrated on the repre-
sentation of the surface structure and on whether the techniques can handle
effects like view dependence, light dependence, silhouettes, etc. Two effects,
however, are extremely important for correctly handling the appearance of
surfaces. These are self-shadowing and indirect illumination. We will take a
closer look how different techniques handle these effects in the next sections,
beginning with self-shadowing.
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5.5 Computation of Self-Shadowing

The effect of self-shadowing is caused by parts of the micro geometry casting
shadows onto other parts of the micro geometry. This effect is independent of
the viewing direction, but – obviously – heavily depends on the direction of
the light. We will now look in detail at how the techniques introduced above
for displaying the microscopic and mesoscopic level of a surface’s material
handle self-shadowing. (The shadows for the macroscopic level are usually
calculated using global shadowing techniques.)

Again, we will begin with the spatially invariant BRDF models repre-
senting the microscopic level. Although precise shadows are not visible for
this level (due to the spatial invariance), spatially invariant BRDFs should
nonetheless take them into account, in order to guarantee consistent lighting
when switching between the microscopic and the mesoscopic level during ren-
dering. In the group of general analytical models, neither Phong, nor Blinn-
Phong, nor the Lafortune model are capable of considering self-shadowing.
The Banks model introduces an approximation which can be used when using
this model for rendering lines, as for hair and fur.

Most BRDF models following the microfacet theory capture self-shadowing
effects in the self-shadowing term G(~ωi, ~ωo) (cf. Equation 5.6). The Ashikhmin
model derives the shadowing-term directly from the normal distribution func-
tion, which makes the model easy to use for arbitrary distributions. On the
other hand, this model only leads to good results if the appearance of the sur-
face is governed more by the normal distribution than by shadowing effects.
The Yasuda model for cloth does not consider self-shadowing.

A simulated BRDF, as described in Section 5.2.3, can easily be calculated
in such a way that it takes self-shadowing into account. To do so, the simu-
lation process, which is usually a ray tracing algorithm, must be written in
such a way that it checks whether a point is visible from the direction of the
light source, when calculating its direct illumination.

We will now turn to the 2D-based techniques for the mesoscopic layer.
For bump mapping, Max introduced a technique for handling self-shadowing
in [Max88]. This method is based on a data structure called a horizon map
which describes the horizon for a small number of directions (8 in the original
paper) at each point in the heightfield. During rendering, the shadow test
then simply determines whether the light direction is above or below the
(interpolated) horizon. This algorithm was mapped to graphics hardware by
Sloan et al. in [Sloan00]. We will demonstrate a technique for generating
shadows in bump maps closely related to this approach in Chapter 6.
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Neither view-dependent texture mapping, nor light fields consider the
dependency of a surface’s appearance on the light direction. They are com-
puted for fixed light settings, and therefore can only capture self-shadowing
for this single light direction. Light fields or view-dependent textures which
have been generated synthetically might not even consider self-shadowing for
the fixed light direction, depending on the generation method.

As explained above, BTFs and reflection fields can handle both light
and view dependent effects and therefore can also capture self-shadowing.
While BTFs captured from real-world surfaces [Dana99a] inherently con-
tain self-shadowing effects, synthetically generated BTFs only capture these
effects, if the method used for synthesizing them is capable of computing self-
shadowing. The same applies for reflection fields. The reflection fields syn-
thetically generated by Wong et al. contain self-shadowing effects [Wong97].

Finally, let’s have a look at the techniques based on 3D-representation
of micro geometry, beginning with volumetric textures. In the original pa-
per by Kajiya et al., ray tracing is used to apply fur texture to a teddy
bear [Kajiya89]. The approach includes handling self-shadowing. Similarly,
Neyret describes in [Neyret98] how self-shadowing is treated correctly in
combination with his extensions, by launching cones of shadow rays. The
hardware-based rendering technique for volumetric textures by Meyer et al. is
incapable of handling self-shadows [Meyer98].

We also took a look at several applications of volumetric textures for ren-
dering knit-wear and fur: The approach for rendering knit-wear by Gröller et
al. published in [Gröller95] does not take light dependent effects into account
and therefore can not handle self-shadowing. The authors, however, intro-
duce a second technique based on curved ray tracing in [Gröller96], which is
capable of casting a shadow ray and therefore of computing self-shadowing
of the stitches. In order to render fur in real-time, Lengyel introduced a
per-pixel and a per-vertex based approach for shading, as explained in Sec-
tion 5.4.3. While the per-vertex approach can not handle self-shadowing,
Lengyel developed a self-shadowing algorithm for the per-pixel approach.

Next, let’s take a look at virtual raytracing. Although the original tech-
nique can not handle self-shadowing [Dischler98], an enhancement of the
method by Mostefaoui et al. takes these effects into account [Mostefaoui99].
To do so, a directional shadow map is built, containing boolean values which
can be used as an indicator during rendering.

We finally described two different approaches for rendering knit-wear us-
ing the knit-wear skeleton. The method by Zhong et al., which renders yarn
segments using Gouraud shaded cylinders neglects self-shadowing [Zhong01].
Xu et al., and Chen et al. however, who render the knit-wear skeleton using
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a new rendering primitive called the lumislice, also show how to combine
their technique with shadow maps [Xu01, Chen03]. This way, the technique
is capable of considering self-shadowing.

As we have seen, many, though not all techniques take self-shadowing into
account. Handling this effect is very important, as is gives important visual
cues on the surface’s structure. Furthermore, special care should be taken
that all levels in the level of detail hierarchy explained at the beginning of this
chapter consider self-shadowing, otherwise the switching between different
levels during rendering will be visible due to inconsistent lighting. In the next
section we will take a look at a second important effect – indirect illumination.

5.6 Computation of Indirect Illumination

Indirect illumination is caused by light reflected off surfaces in the scene mul-
tiple times before it reaches the eye. In the context of material properties of
a surface, we refer to indirect illumination as light that bounces several times
in the facets of the micro geometry before it leaves the surface, which can
cause a brightening of the surface appearance and effects like color bleeding
(see Chapter 3 for more details). Computing indirect lighting requires the
evaluation of an integral over the incoming light directions for every point
on the surface microgeometry, which is extremely expensive.

A number of approaches have been proposed for speeding up the compu-
tation of indirect light, mostly in the context of computing indirect illumina-
tion in a scene. These methods all achieve the speed up by avoiding multiple
computations of the same information. The approaches can be grouped by
the kind of information they store and reuse, which can be either illumination
information or visibility information. We will first describe methods which
follow the first approach, then review methods following the second.

There have been a number of publications that describe the reuse of pre-
viously computed illumination information in global illumination algorithms.
Irradiance Gradients [Ward92] accelerate the computation of indirect light
in diffuse scenes by reconstruction from irradiance samples that have been
generated for other locations in close proximity of the desired surface point.
The Irradiance Volume [Greger98] represents a coarse volumetric represen-
tation of irradiance, from which the illumination at arbitrary locations can
be reconstructed. These methods can not be applied in cases where surface
reflection depends on the viewing direction (specular reflection).

For scenes with specular objects, photons can be traced from the light
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sources through the scene, and stored on the objects. The incident light at
arbitrary surface locations can then be reconstructed using techniques like
density estimation [Shirley95] and the photon map [Jensen96].

Both the methods for diffuse and for specular surfaces mentioned above
store illumination information (irradiance or incident radiance) rather than
visibility, and can therefore not be used to accelerate the computations in the
case of changing light sources. Also the reconstruction process for any given
point in the scene requires a search through the illumination data structure,
which is typically the most costly part of the computation. This search can
be performed in logarithmic expected time, but the resulting memory access
patterns are irregular and can present a significant bottleneck.

Many of the techniques we have seen in the sections above store tabulated
data of the lighting. Examples for these structures are tabulated spatially in-
variant BRDFs, BTFs, reflectance fields and the voxel reflectance function of
the lumislice method for rendering the knit-wear skeleton. Principally, effects
due to indirect lighting can be included in these data structures. Similarly,
light independent data structures like view-dependent textures or the light
field could also include indirect illumination, however, only for fixed light-
ing conditions. In general, real-world data sets include indirect illumination,
whereas with simulated data it depends on the simulation method. Often
these generation methods neglect indirect illumination, due to computational
costs. Two exceptions are Westin et al.’s method for simulating BRDFs and
the voxel reflectance function of the lumislice, which both simulate and store
indirect illumination.

Other algorithms, such as finite element methods for global illumination
computations, store visibility. In particular, the link structure in hierarchi-
cal and Wavelet Radiosity [Hanrahan91, Gortler93] as well as Wavelet Radi-
ance [Christensen94] can be interpreted as a cache for visibility information.
However, since this structure only represents the most relevant parts of the
visibility for a given illumination situation (BF -refinement), the information
typically has to be recomputed if the illumination changes.

Precomputed visibility that is completely separated from illumination and
light source positions has been studied for special cases such as heightfields.
As mentioned in Section 5.3.1, horizon maps [Max88] represent the visibility
information required for computing shadows and masking from direct light
sources in heightfields and bump maps. There have also been some solutions
for shadows in more general geometry like folded cloth [Stewart99]. These
approaches are based on sampled representations of the visibility. Other, an-
alytic representations for general scenes like the visibility skeleton [Durand97]
suffer from a combinatorial explosion of the information with the scene com-
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plexity and from numerical instabilities.

In this section we have seen that due to the costs for computing indirect
illumination, it is neglected in many methods presented above. Techniques
that can compute indirect illumination either store illumination informa-
tion or visibility information. Those techniques we introduced in the above
sections of this chapter which are capable of handling indirect illumination
belong to the first group.

Having reviewed a number of methods and models developed by other
researchers in the last sections, we will now briefly explain where the mod-
els and methods developed in this thesis fit in, and compare them to the
explained techniques.

5.7 Conclusions

The contributions we will present in the following chapters of this thesis can
be grouped into two different categories. While Chapter 6 and Chapter 7
present methods for efficiently computing the illumination of micro geometry
(not necessarily limited to the case of cloth), the second group consists of
reflection models specially developed for textiles, and of rendering algorithms
for efficiently applying the models to a garment’s geometry. We will begin
by comparing the techniques for illumination computation.

In Chapters 6 and 7, we introduce techniques for efficiently computing the
indirect illumination in heightfields and more general micro geometry, respec-
tively. Our methods are based on precomputing and storing visibility infor-
mation, and therefore belong to the second category of approaches explained
in Section 5.6. For the heightfield case, our work is closely related to horizon
mapping [Max88], which also represents visibility information for height-
fields. However, the authors use the information only for self-shadowing and
not for computing indirect illumination. Our approach is also related to the
approach by Cabral et al., who use precomputed visibility information in
bump maps to generated BRDFs [Cabral87].

We not only use the visibility information for computing indirect illumi-
nation, but also for computing self-shadowing. Again, for heightfields, this
approach is closely related to horizon maps. However, we do not use the
horizon representation, but rather approximate the shadowed regions of each
height fields point using an ellipse structure, which allows the shadow test
to be implemented very efficiently. Additionally, we discuss how our data
structure can be adapted to different curvatures of the underlying base ge-
ometry. Our work on self-shadowing of heightfields is also closely related
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to [Stewart97] and [Stewart98], in which the author introduces a hierarchical
approach to determine the visibility in terrain, both for occlusion culling and
for shading. Stewart also uses a similar idea to simulate global shadows in
cloth in [Stewart99].

We use our methods for simulating BRDFs and BTFs for given micro ge-
ometry. This process is closely related to Westin et al.’s work for simulating
BRDFs (see Section 5.2.3).

In Chapter 7 we will introduce a method for efficiently rendering complex
micro geometry, which can be considered as a technique for displaying the
mesoscopic layer of a surface’s material. Our model uses a 2D representation
of the micro geometry, and therefore should be grouped with the techniques
explained in Section 5.3. It consists of two basic terms which are the Lafor-
tune model and a view dependent color map, with the latter being closely
related to view-dependent textures. As the model is capable of capturing
view and light dependent effects, and also of taking spatial variation into
account, it is comparable to the approach by Wong et al. for representing a
reflectance field. However, our method is more memory efficient and easier
to filter for mip-mapping than Wong’s representation. Compared to BTFs,
the advantages of our method are that it can be rendered very efficiently in
hardware, allows smoother transitions for changing viewing and light direc-
tions, and is more memory efficient.

A reflection model for rendering knit-wear will be introduced in Chap-
ter 9. As this approach is based on volumetric textures, it should be grouped
with the methods explained in Section 5.4. Similar to Gröller et al., we build
a volumetric model of a single stitch, which we replicate across the surface.
For shading, we use an approximation of the Banks model, in a hardware
implementation similar to the work by Zöckler [Zöckler96]. Compared to the
method by Zhong et al. for shading knit-wear using Gouraud shaded trian-
gles and the knit-wear skeleton [Zhong01], our model has the advantage that
the rendering times are independent on the number of stitches. Further-
more, our model considers self-shadowing and can easily be mip-mapped.
The independence of the rendering times on the stitch complexity are also
an advantage of our method over the approaches for rendering knit-wear
using the lumislice [Xu01, Chen03]. Further comparison with this method
reveals that our method can handle view dependent reflection effects, which
the lumislice method neglects, and can be rendered a lot more efficiently.
Our method can be extended to account for view independent indirect illu-
mination effects, which the lumislice method also considers. The shading of
our model is computed in a similar way as Lengyel’s method for rendering
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fur [Lengyel00], who also uses an approximation of the Banks shading model.
Lengyel introduces a per-vertex and a per-pixel shading approach. The per-
vertex approach relies on the fact that the tangents do not vary strongly from
one triangle vertex of the base surface to the next. This assumption breaks
down in the case of knitting loops, where the tangents vary strongly. For the
per-pixel approach Lengyel uses a modification of Zöckler et al.’s hardware
implementation of the Banks model which only works for directional lights
and a non-local viewer. Our method does not have these restrictions. Fur-
thermore, we allow the material coefficients to be changed from one pixel to
the next, enabling us to generate color patterns, which is not possible using
Lengyel’s shading techniques. In Chapter 9, we use the layered rendering
approach introduced by Lengyel for rendering knit-wear. Due to artifacts at
the silhouettes, we develop a higher quality rendering algorithm presented in
Chapter 10.

This algorithm is most closely related to Meyer at al.’s approach for
hardware-supported rendering of volumetric textures. However, using their
proposed approach, artifacts can occur, which is due to the slicing direction of
the volume not necessarily being orthogonal to the viewing direction. We gen-
erate view-orthogonal rendering planes, which is related to hardware-based
volume rendering [Cabral94, Akeley93]. A further disadvantage of Meyer et
al.’s approach compared to ours is that it can not handle semi-transparent
volumetric textures, as this would require depth sorting the faces of the
underlying base geometry. For our approach, such a sorting step is not nec-
essary.

Having introduced related work and compared our approaches to it, it is
now time to explain our models and algorithms in detail. In the next chapter
we will begin with the method for computing indirect illumination and self-
shadowing in height fields and bump maps based on precomputed visibility
information.



Chapter 6

Consistent Illumination for
Heightfields, Bump Maps and

BRDFs

6.1 Introduction

In Chapter 3 we took a close look at the production process of textiles, and
learned how their complex micro geometry influences their reflection behav-
ior. In this chapter we will focus on the widely known concept proposed by
Fournier et al. for efficiently displaying surfaces with such fine surface de-
tail [Fournier00], which we explained in detail at the beginning of Chapter 5.
We recall that the main idea is to represent a surface and its material prop-
erties using a level of detail hierarchy, and to employ different techniques to
render the structures of each level. For the microscopic level we use a spatially
invariant BRDF. The details at the next level mesoscopic level, which for tex-
tiles could be the ridges in corduroy jeans or the plaids in a knit sweater,
are captured using the technique of bump mapping (see Section 5.3.1). This
rendering approach is extremely efficient on all newer graphics boards, which
often offer features for bump mapping directly in hardware. Finally, for the
macroscopic level a full geometry representation is used.

The great advantage of this concept is its efficiency, as the full geometric
detail is only used for the finest level. However, to allow the transitions
between the three levels to be as smooth as possible, this method is restricted
to micro geometry which can be represented as a heightfield. Obviously this
is not the case for most textile micro geometry, as the crossing of fibers or
yarn can not be modeled as heightfields without some error. We will see
in Section 6.5 though, that for some applications and some micro geometry,
heightfield approximation can be found which resemble the structures closely
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enough.
Now let’s take a closer look at the hierarchy. A considerable amount

of work has been done on generating smooth transitions between the three
levels [Max88, Becker93]. However, a great disadvantage of the technique
still remains, which is that the illumination is not computed consistently
across the different levels. As a consequence, changes from one level to the
next can become visible. We would like to understand this problem in more
detail and will therefore take a look at the techniques for the three levels in
turn and summarize which illumination effects they consider and which they
neglect.

We will begin with the BRDF level. Both simulated and measured BRDFs
typically respect direct illumination and also take into account effects like
shadowing and masking of the micro geometry. Furthermore, indirect illu-
mination is considered, which results from light scattered between the micro
surfaces.

The next level is the bump mapping technique: The original bump map-
ping algorithm only accounts for direct illumination. Although techniques
for shadowing [Max88] and masking [Becker93] have been developed, most
applications do not use them. Indirect illumination is not considered in the
bump mapping level at all, because no methods for doing so have been avail-
able so far.

The bottom level is the geometry level. Here, the height field is rendered
using its full geometric representation, e.g. as a set of polygons. Geome-
try based representations usually consider direct illumination and shadowing
and masking. However, indirect illumination is often neglected for perfor-
mance reasons. The importance of this indirect, scattered light to the overall
appearance is illustrated in Figure 6.1.

Inconsistent lighting is due to the fact that some levels consider effects
like shadowing/masking and indirect illumination, while others neglect them.
In this chapter we present an approach for overcoming these inconsistencies.
We introduce an inexpensive method for consistently illuminating heightfields
and bump maps, as well as simulating BRDFs based on precomputed visi-
bility. With this information we can achieve consistent illumination across
the levels of detail. As we will see, our methods are applicable for both
ray-tracing and hardware-accelerated rendering.

We will first explain our methods for computing indirect lighting in Sec-
tion 6.2. The most time consuming part of computing indirect illumination is
the evaluation of visibility queries. Therefore, the key idea to our algorithms
is to precompute visibility information and store it in so called visibility tex-
tures, see Section 6.2.1. Using any Monte Carlo algorithm for rendering, we
can use this visibility information and combine it to generate a multitude
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(a) Without Scattering (b) With Scattering

Figure 6.1: Indirect illumination at the micro geometry level can have a
strong impact on the overall appearance.

of light paths which are needed for computing the indirect lighting. This is
explained in more detail in Section 6.2.2. Furthermore, if we use a variant
of Monte Carlo algorithms called the Method of Dependent Tests, we can
rewrite the steps for computing indirect illumination, making the computa-
tion a lot more efficient (Sections 6.2.3 and 6.2.4). This way, we can even
map the computation onto graphics hardware, detailed in Section 6.2.5.

In Section 6.3 we handle the second major phenomenon needed to cor-
rectly handle lighting in heightfields and bump maps, which is self-shadowing.
This means we will introduce an efficient algorithm to compute shadows cast
by parts of the micro geometry onto other parts of the heightfield. Once we
know how to compute indirect lighting and self-shadowing in bump maps
and heightfields we have all we need to compute samples for a BRDF.

In order to use our methods for efficiently rendering bump maps we need
to solve one last difficulty. Imagine applying a bump map to some fixed base
geometry and then slightly changing the curvature of the base geometry.
Obviously, by bending the base, we cause the geometry in the applied bump
map or heightfields to change as well, which will result in incorrect lighting
results. In Section 6.4 we will demonstrate how to adopt our methods for
indirect illumination and shadowing to correctly account for such a variation
of the base geometry.

Finally we we will show results for textile and non-textile micro geometry
in Section 6.5 and draw some conclusions in Section 6.6.
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6.2 Light Scattering in Heightfields

To compute the indirect illumination in a heightfield, we have to solve the
Rendering Equation (see Equation 2.8 in Chapter 2). This requires integrat-
ing over the incident illumination in each point of the heightfield, which can
for example be achieved with Monte Carlo ray-tracing. The most expensive
part of this integration is typically the visibility computation, which deter-
mines the surface visible from a given surface point in a certain direction.
This is the part that depends on the complexity of the scene, while the com-
putation of the local interaction of the light with the surface has a constant
time complexity.

In the case of small-scale heightfields, used to model irregularities of a
surface, we can make two simplifying assumptions. Most importantly, we
only deal with cases where the visibility inside the heightfield is completely
determined by the heightfield itself, and not by any external geometry. This
is equivalent to requesting that no external geometry penetrates the convex
hull of the heightfield, which is a reasonable assumption for the kind of small
surface structures that we are targeting. If the visibility only depends on
the micro geometry itself and not on external objects, we can precompute
and store it. Later during rendering, we can amortize the precomputation
costs by reusing this stored information to generate numerous different light
paths, which are needed to compute the indirect illumination on the micro
geometry.

Secondly, in the case where we want to use our method to compute a
BRDF, we request that the heightfield geometry is small compared to the
remainder of the scene, and therefore any incoming direct light can be as-
sumed parallel. This is necessary simply because the BRDF by definition
is a function of exactly one incoming direction and exactly one outgoing di-
rection. This assumption is not necessary for the other levels of detail, i.e.,
bump maps and displacement maps.

6.2.1 Precomputation of Visibility Textures

We will now describe how visibility information can be precomputed and
explain the data structures we use to store it. If we assume the heightfield
is attached to a specific, fixed base geometry, we can, for a given point p

on the heightfield, and a given direction ~d, precompute whether the ray
originating at p in direction ~d hits some other portion of the heightfield, or
not. Furthermore, if it does intersect with the heightfield, we can precompute
the intersection point and store it in a data base. Since this intersection point
is some point in the same heightfield, it is unambiguously characterized by a
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2D texture coordinate.
Now imagine having a set D of N uniformly distributed directions. We

can then compute visible surface points for every direction ~di ∈ D and for
every grid point in the heightfield texture as shown in Figure 6.2.

∀ directions ~di

∀ grid points p on heightfield

intersect Ray(p, ~di) with heightfield (yields q)

store intersection for ~di in visibility texture Si

Figure 6.2: Pseudo-code for precomputation of visibility textures

All intersection points corresponding to one ray direction ~di are stored
in one 2D texture map Si with two components. The two components in
the texture represent the 2D coordinates of the visible point. Each of these
textures is parameterized the same way the heightfield is, i.e., the 2D texture
coordinates directly correspond to heightfield positions p. The texture value
also corresponds to a point in the heightfield and represents the surface point
q that is visible from p in direction ~di. The precomputation step for one
direction di is visualized in Figure 6.3. If the heightfield is periodic, this has
to be taken into account for determining this visibility information, as can
also be seen in Figure 6.3.

Figure 6.3: Rays are cast from each grid point on the heightfield in the
same direction ~di. Some hit the heightfield (red, solid arrows), some do not
(gray, dashed lines). The hit points can be characterized by their 2D-texture
coordinate on the heightfield (coded here as red and green channel). On the
right the resulting scattering texture is shown for this example. Note that
the two red arrows on the lower left part of the heightfield correspond to hits
in the periodic repetitions to the left and below.

Note that these visibility textures are only valid for a given, predefined
base geometry to which the heightfield is attached. In Section 6.4 we show
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how to adapt the results of the precomputation step to varying base geome-
tries.

6.2.2 Using the Visibility Textures

By chaining together this visibility information, we can now generate a mul-
titude of different light paths for computing the indirect illumination in the
heightfield. This way, it is possible to implement variants of many existing
Monte Carlo algorithms, using the precomputed data structures instead of
on-the-fly visibility computations. In Figure 6.4 for example, we outline a
simple path tracing algorithm that computes the illumination at a given sur-
face point, but ignores indirect light from geometry other than the heightfield.
In the algorithm, ~np is the bump map normal in point p, and fr(p, ~di → ~v)
is the BRDF of the heightfield in that point. The direct illumination in each
point is computed using a bump mapping technique.

radiance( p, ~v ) {
L:= direct illumination( p );
i:= random number in [1 . . . N ];
if( q := Si[p] is valid heightfield coord. ){

L := L + fr(p, ~di → ~v) · 〈~di, ~np〉 · radiance( q, −~di );
}
return L;

}

Figure 6.4: Pseudo-code for a simple path tracer which uses the visibility
textures.

Of course the visibility information for direction Si is only known at dis-
crete heightfield grid positions. At other points, we can only exactly recon-
struct the direct illumination, while the indirect light has to be interpolated.
For example, we can simply use the visibility information of the closest grid
point as Si[p]. This nearest-neighbor reconstruction of the visibility infor-
mation corresponds to a quantization of texture coordinates, so that these
always point to grid points of the heightfield. For higher quality, we can also
choose a bilinear interpolation of the indirect illumination from surrounding
grid points. In our implementation, we use the nearest-neighbor approach
for all secondary intersections by simply quantizing the texture coordinates
encoded in the visibility textures Si. On the other hand, we use the in-
terpolation method for all primary intersections to avoid blocking artifacts.
Figure 6.1b shows a result of this method. For more complex examples, see
Section 6.5.
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The simple algorithm above ignores shadowing, but with the technique
described in Section 6.3, which is similar to the one introduced by [Max88],
and was developed in parallel to a closely related approach [Sloan00] shadows
can also be included.

Using similar methods, other Monte Carlo algorithms like distribution
ray-tracing [Cook84] can also be built on top of this visibility information.
The advantage of using precomputed visibility for the light scattering in
heightfields, as described in this section, is that the visibility information
is reused for different paths. Therefore, the cost of computing it can be
amortized over several uses.

6.2.3 The Method of Dependent Tests

As mentioned above, we have to solve the Rendering Equation in order to de-
termine the indirect illumination in a heightfield. Based on the precomputed
visibility information, we solve the Rendering Equation by Monte Carlo in-
tegration of the incident illumination at any given surface point, and obtain
the reflected radiance for that point and a given viewing direction.

In general, however, we do not only want to compute the reflected light
for a single point on the heightfield, but typically for a large number of points.
With standard Monte Carlo integration, we would use different, statistically
independent sample patterns for each of the surface points we are interested
in.

The Method of Dependent Tests [Frolov62] is a generalization of Monte
Carlo techniques that uses the same sampling pattern for all surface points.
More specifically, we choose the same set of directions for sampling the inci-
dent light at all surface points. For example, as depicted in Figure 6.5, for
all points p in the heightfield, we collect illumination from the same direction
~di.

Figure 6.5: With the Method of Dependent Tests, the different paths for
the illumination in all surface points are composed of pieces with identical
directions.

As pointed out by [Keller01], there are several instances in the com-
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puter graphics literature, where the Method of Dependent Tests has been
applied implicitly [Haeberli90, Keller97]. For example, one of the standard
algorithms for the accumulation buffer [Haeberli90] is a depth-of-field effect,
which uses identical sampling patterns of the lens aperture for all pixels. It
has been shown by [Sobol62] that the Method of Dependent Tests is an unbi-
ased variant of Monte Carlo integration. Hierarchical versions of the Method
of Dependent Tests have been proposed [Heinrich98, Keller01], but we do not
currently make use of these results.

6.2.4 Dependent Test Implementation of
Light Scattering in Heightfields

Based on the Method of Dependent Tests, we can rewrite Monte Carlo algo-
rithms as a sequence of SIMD operations that operate on the grid cells of the
heightfield. Consider the light path in Figure 6.5. Light hits the heightfield
from direction ~l, scatters at each point in direction −~di ∈ D, and leaves the
surface in the direction of the viewer ~v.

Since all these vectors are constant across the heightfield, the only vary-
ing parameters are the surface normals. More specifically, for the radiance
leaving a grid point p in direction ~v, the important varying parameters are

the normal ~np, the point q := Si[p] visible from p in direction ~di, and the
normal ~nq in that point.

In particular, the radiance in direction ~v caused by light arriving from
direction ~l and scattered once in direction −~di is given by the following
formula.

Lo(p,~v) = fr(~np, ~di → ~v) 〈~np, ~di〉 ·
(
fr(~nq,~l → −~di) · 〈~nq,~l〉 · Li(q,~l)

)
Usually, the spatially invariant BRDF is written as a 4D function of the

incoming and the outgoing direction, both given relative to a local coordi-
nate frame where the local surface normal coincides with the z-axis. In a
heightfield setting, however, the viewing and light directions are given in
some global coordinate system that is not aligned with the local coordinate
frame, so that it is first necessary to perform a transformation between the
two frames. To emphasize this fact, we have denoted the BRDF as a function
of the incoming and outgoing direction as well as the surface normal. If we
plan to use an anisotropic BRDF on the micro geometry level, we would also
have to include a reference tangent vector.

Note that the term in parenthesis is simply the direct illumination of
a heightfield with viewing direction −~di, with light arriving from ~l. If we
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precompute this term for all grid points in the heightfield, we obtain a texture
Ld containing the direct illumination for each surface point. This texture
can be generated using a bump mapping step where an orthographic camera
points down onto the heightfield, but −~di is used as the viewing direction for
shading purposes.

Once we have Ld, the second reflection is just another bump mapping
step with ~v as the viewing direction and ~di as the light direction. This time,
the incoming radiance is not determined by the intensity of the light source,
but rather by the content of the Ld texture. For each surface point p we
look up the corresponding visible point q = Si[p]. The outgoing radiance at
q, which is stored in the texture as Ld[q], is at the same time the incoming
radiance at p.

Thus, we have reduced computing the once-scattered light in each point of
the heightfield to two successive bump mapping operations, where the second
one requires an additional indirection to look up the illumination. We can
easily extend this technique to longer paths, and also add in the direct term
at each scattering point. This is illustrated in the Figure 6.6.

Figure 6.6: Extending the dependent test scattering algorithm to multiple
scattering. Each box indicates a texture that is generated with regular bump
mapping.

For the total illumination in a heightfield, we sum up the contributions for
several such paths (some 50-150 in most of our scenes). This way, we compute
the illumination in the complete heightfield at once, using two SIMD-style
operations on the whole heightfield texture: bump mapping for direct illumi-
nation, using two given directions for incoming and outgoing light, as well as
a lookup of the indirect illumination in a texture map using the precomputed
visibility data in form of the textures Si.

This is in itself a performance improvement over the regular Monte Carlo
algorithms presented before, because the illumination in one grid cell will
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contribute to many other points on the surface in the final image via light
scattering. In contrast to standard Monte Carlo, our dependent test approach
avoids recomputing this contribution for each individual pixel.

What remains to be done is an efficient test of whether a given point
lies in shadow with respect to the light direction ~l. While it is possible to
interpolate this information directly from the visibility database Si, we can
also find a more efficient, although approximate representation, that will be
described in Section 6.3.

6.2.5 Use of Graphics Hardware

In addition to the above-mentioned performance improvements we get from
the implementation of the Method of Dependent Tests in software, we can
also utilize graphics hardware for an additional performance gain. In recent
graphics hardware, both on the workstation and on the consumer level, sev-
eral features have become standard which we can make use of. In particular,
we assume a standard OpenGL-like graphics pipeline (see Chapter 4). As
we will make use of the graphics board’s features for rendering bump maps,
the kind of reflection model available in this bump mapping step will deter-
mine what reflection model we can use to illuminate our heightfield. While
older graphics boards typically only support diffuse and Phong reflections,
we can use fragment programs on newer boards to implement a wide range
of reflection models in our scattering computation. We also need a way of
interpreting the components stored in one texture or image as texture coor-
dinates pointing into another texture. This technique is generally referred to
as dependent texturing, a variant of multi-texturing, and is available on all
newer consumer level graphics boards (for example NVIDIA graphics cards
including GeForce3 and upward, or ATI’s Radeon 8500 and upward). With
dependent texturing, we can map two or more textures simultaneously onto
an object, where the texture coordinates of the second texture are obtained
from the components of the first texture.

Using these two features, dependent texturing and bump mapping, the
implementation of the dependent test method as described above is simple.
As mentioned in Section 6.2.4 and depicted in Figure 6.5, the scattering of
light via two points p and q in the heightfield first requires us to compute the
direct illumination in q. If we do this for all grid points we obtain a texture
Ld containing the reflected light caused by the direct illumination in each
point. This texture Ld is generated using the bump mapping mechanism the
hardware provides.

The second reflection in p is also a bump mapping step (although with
different viewing- and light directions), but this time the direct illumina-
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tion from the light source has to be replaced by a per-pixel radiance value
corresponding to the reflected radiance of the point q visible from p in the
scattering direction. We achieve this by bump mapping the surface with a
light intensity of 1, and by afterwards applying a pixel-wise multiplication of
the value looked up from Ld with the help of dependent texturing. Figure 6.7
shows how to conceptually set up a multi-texturing system with dependent
textures to achieve this result.

Figure 6.7: For computing the indirect light with the help of graphics hard-
ware, we conceptually require a multi-texturing system with dependent tex-
ture lookups. This figure illustrates how this system has to be set up. Boxes
indicate one of the two textures, while incoming arrows signal texture coor-
dinates and outgoing ones mean the resulting color values.

The first texture is the visibility texture Si that corresponds to the scat-
tering direction di. For each point p it yields q, the point visible from p in
direction di. The second texture Ld contains the reflected direct light in each
point, which acts as an incoming radiance at p.

By using this hardware approach, we treat the graphics board as a SIMD-
like machine which performs the desired operations, and computes one light
path for each of the grid points at once. As shown in Section 6.5, this use of
hardware dramatically increases the performance over the software version
to an almost interactive rate.

6.3 Approximate Bump Map Shadows

One possibility to determine the shadows cast in a heightfield would be to
use the scattering information stored in Si. For example, to determine if a
given grid point p lies in shadow for some light direction, we could simply

find the closest direction ~di ∈ D, and use texture Si to determine whether p

sees another point of the heightfield in direction ~di.
For a higher quality test, we can precompute a triangulation of all points

on the unit sphere corresponding to the unit vectors ~di (since the set of
directions is the same for all surface points, this is just one triangle mesh for
all points on the heightfield). The same triangulation will later be used in
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Section 6.4 for other purposes. Based on this mesh, we can easily determine
the three directions ~di that are closest to any given light direction, and then
interpolate those directions’ visibility values. This yields a visibility factor
between 0 and 1 defining a smooth transition between light and shadow.

Although this approach works, we have also implemented a more approx-
imate method that is better suited for hardware implementation and much
faster.

We start by projecting all the unit vectors for the sampling directions
~di ∈ D of the upper hemisphere over the shading normal into the tangent
plane, i.e. we drop the z coordinate of ~di in the local coordinate frame. Then
we fit an ellipse containing as many of those 2D points that correspond to
unshadowed directions as possible, without containing too many shadowed
directions. This ellipse is uniquely determined by its (2D) center point c, a
direction ~a = (ax, ay)

T describing the direction of the major axis (the minor
axis is then simply (−ay, ax)

T ), and two radii r1 and r2, one for the extent
along each axis. Figure 6.8 demonstrates the projection of the scattering
directions and the fitting of the ellipse.

Figure 6.8: For the shadow test we precompute 2D ellipses at each point of
the heightfield, by fitting them to the projections of the scattering directions
into the tangent plane.

For the fitting process, we begin with the ellipse represented by the eigen-
vectors of the covariance matrix of all points corresponding to unshadowed
directions. We then optimize the radii with a local optimization method. As
an optimization criterion we try to maximize the number of light directions
inside the ellipse while at the same time minimizing the number of shadowed
directions inside it.

Once we have computed this ellipse for each grid point in the heightfield,
the shadow test is simple. The light direction ~l = (lx, ly, lz) is also projected
into the tangent plane, and it is checked whether the resulting 2D point is
inside the ellipse (corresponding to a lit point) or not (corresponding to a
shadowed point). This approach is similar to the one described by [Max88]
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using horizon maps, and developed in parallel to the very closely related
approach [Sloan00]. Only here the horizon map is replaced by a map of
ellipses, each uniquely determined by 6 parameters.

Both the projection and the in-ellipse test can mathematically be ex-
pressed very easily. First, the 2D coordinates lx and ly have to be transformed
into the coordinate system defined by the axes of the ellipse:

l′x :=〈
(

ax

ay

)
,

(
lx − cx

ly − cy

)
〉, (6.1)

l′y :=〈
(
−ay

ax

)
,

(
lx − cx

ly − cy

)
〉 (6.2)

Afterwards, the test

1− (l′x)
2

r2
1

−
(l′y)

2

r2
2

≥ 0 (6.3)

has to be performed.
To map these computations to graphics hardware, we represent the six

degrees of freedom for the ellipses as 2 RGB textures. Then the required
operations to implement Equations 6.1 through 6.3 are simple dot prod-
ucts as well as additions and multiplications. This is possible on most con-
temporary graphics cards, e.g. using the register combiner extension from
NVIDIA [NVI99] or fragment programs. Depending on the available graphics
hardware, the implementation details will have to vary slightly. A detailed
description of a possible implementation can be found in the technical re-
port [Kautz00a].

6.4 Variation of the Base Geometry

So far we have only considered the case where the heightfield is attached to
a base geometry of a fixed, previously known curvature, typically a planar
object. However, if we plan to use the same heightfield for different geometric
objects, the valleys in a heightfield widen up or narrow down depending on
the local curvature of the object, and the heightfield can be locally stretched
in a non-uniform fashion. This affects both the casting of shadows and the
scattering of indirect light. For the shadows, it is obvious that narrower
valleys will cause more regions to be shadowed, while in wider valleys more
regions are lit.

For the scattering part, the opposite is true. For a point on the bottom
of a narrow valley, a large proportion of the solid angle is covered by other
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portions of the heightfield, and therefore the impact of indirect light is strong.
On the other hand, in a wide valley, most of the light will be reflected back
into the environment rather than remaining inside the heightfield.

In this section we discuss adaptations of the previously described algo-
rithms and data structures to the case where the base geometry changes. To
this end, we will assume that the curvature of this base geometry is small
compared to the features in the heightfield. It is then a reasonable assump-
tion that the visibility does not change as the surface is bent. This means
that two points in the heightfield that are mutually visible for a planar base
geometry, are also mutually visible in the curved case. Obviously, this as-
sumption breaks down for extreme curvatures, but it generally holds for small
ones.

First let us consider the data structures and algorithms for computing
scattered, indirect light. Since we have assumed that no extreme changes in
visibility occur, the precomputed visibility data i.e. the textures Si are still
valid as the underlying geometry changes. However, as depicted in Figure 6.9,
some parameters of the illumination change. Firstly, there is no longer a fixed
global direction ~di corresponding to each texture Si. Rather, the direction
changes as a parameter of the curvature and of the distance between two
mutually visible points, and becomes different for every point on the surface.
Secondly, the normal (and therefore the angles between the normal and other
vectors) changes as a function of the same parameters.

Figure 6.9: The directions ~di change on a per-pixel basis if the heightfield
is applied to a curved base geometry. The rate of change depends on the
distance of two points from each other.

These changes remove the coherence that we used to map the algorithm
to graphics hardware, since now all directions need to be computed for each
individual heightfield point.This requires operations that are currently only
available using fragment programs. On the other hand, the abovementioned
changes are quite easy to account for in a software renderer. However, there
is a third change due to the curvature, which affects all our Monte Carlo
algorithms. The set of directions D used to be a uniform sampling of the
directional sphere for the case of a given, fixed base geometry. Now, when
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the heightfield is applied to a geometry with slightly changed curvature or
a non-uniformly scaled one, the directions change as mentioned above. The
rate of change depends on the distance of the two mutually visible points.
Therefore, the directions do not change uniformly, and, as a consequence,
the sampling of directions is no longer uniform. In Monte Carlo terms, this
means that the importance of the individual directions has changed, and that
this importance has to be taken into account for the Monte Carlo integration.
Different light paths can no longer be summed up with equal weight, but have
to be weighted by the importance of the respective path. This importance
has to be computed for every individual point in the heightfield.

This requires us to develop an estimate for the importance of a given
sample direction, which is explained in the following. We start by interpreting
the unit directions di ∈ D for the original geometry as points on the unit
sphere, and generate a triangulation of these. Since the sampling of directions
is uniform in this planar case, the areas of the triangle fans surrounding any
direction di will be approximately the same for all di, see Figure 6.10 left.

Figure 6.10: When a heightfield is applied to a different base geometry,
the importance of the individual directions changes, which is indicated by a
change of area of the triangulated unit directions on the sphere.

Now, if we gradually bend the underlying surface, the points correspond-
ing to the directions will slowly move either towards the horizon or towards
the zenith, depending on the sign of the curvature we apply. Note that a
change in visibility means that during this movement the triangle mesh folds
over at a given point. As mentioned above, we are going to ignore this sit-
uation, and only allow small curvatures which do not cause such visibility
changes.

In this case, the sole effect of the moving points on the unit sphere is
that the areas of the triangle fans surrounding each direction change (see
Figure 6.10 right). This change of area is an estimate for the change in
sampling rate, and therefore an estimate for the importance of a particular
direction in the curved case. Thus, if we apply a heightfield to a curved
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surface, we weight all light paths by the relative area of the triangle fan sur-
rounding the chosen direction.

Now that we have dealt with the adaptation of the scattering data struc-
tures, we also have to take care of the shadowing. If we compute the shadows
directly from the Si, as described at the beginning of Section 6.3, then no
changes are required. However, if we are using the 2D ellipses introduced at
the end of Section 6.3, then these ellipses have to be adapted to the local
surface curvature.

Starting from the updated scattering directions di, we can fit a different
ellipse for each point and each surface curvature. However, precomputing
and storing this information for a lot of different curvatures is both memory
and time consuming. We therefore only precompute a total of five different
ellipses: the original one for zero curvature, one each for a slight positive and
a slight negative curvature in each of the parametric directions. From this
data we can then generate a linear approximation of the changes of ellipse
parameters under any given curvature. Again, this only works reasonably as
long as the radii of curvature are large compared to the heightfield features
(i.e. as long as the curvatures are small), but for large curvatures we will run
into visibility changes anyway.

6.5 Results

The first tests we have performed are designed to show whether we can
use precomputed visibility to consistently illuminate geometry and bump
maps, and also to simulate BRDFs. In order to do so, we incorporated the
algorithms explained above into a simple Monte Carlo raytracer, capable
of rendering displacement maps. We used the triangular heightfields shown
at the top of Figure 6.14 on page 100, in which the faces pointing in one
direction are red, the faces in pointing in the other are white. This heightfield
was applied to some curved geometry, the results of which are shown in the
middle row of Figure 6.14. In the bottom row of the same figure we applied
a BRDF, computed from the same heightfield using graphics hardware, to
the base geometry.

The left column includes shadowing and masking, but no scattering. Here,
the separation of the colors becomes apparent, since the right of the geome-
try is more reddish, while the left is gray. Due to color bleeding, the image
including the scattering term in the right column is more homogeneous. The
BRDFs in the bottom row were also computed once without (left) and once
including (right) the scattering term. Both versions show the same kind of
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behavior as the geometry-based rendering, which illustrates that our tech-
nique can be used for smooth transitions between levels of detail.

Both for the rendering of the displacement mapped image and for the
generation of the BRDF, we first had to generate the visibility data, namely
the textures Si and the ellipse data structures for the shadows. The two
leftmost columns of Table 6.1 show the timings for this precomputation phase
and a number of different heightfields. (We timed the precomputation on a
PC with an AMD Athlon 1Ghz processor). The memory requirements for
the data structures are quite low: for the scattering in a 32× 32 heightfield
with 128 sample directions we generate 128 two-component textures with a
size of 32 × 32 × 2 Bytes, which amounts to 256 kB of data for the whole
scattering information. The shadowing data structure simply consists of two
three-component textures, yielding 32× 32× 6 = 6144 Bytes.

After the data structures are precomputed, we can efficiently compute
images with scattering (128 samples) and shadowing/masking from them
using either a software or a hardware renderer. The third and fourth column
of Table 6.1 give the timings for computing the scattering term for all points
in the heightfield, using 128 sample directions. The hardware timings were
taken from a PC with an AMD Athlon 1Ghz processor and a GeForce3
graphics board. Here the introduced SIMD technique is used, which explains
why the timings don’t vary. The timings for the software computation of
the scattering term do not use the SIMD-technique and were taken from a
laptop with a Pentium III 1200 MHz CPU.

Heightfield Si Shadows SW HW
Corduroy (32× 32) 0.76 0.35 0.19 0.01
Plaid (64× 128) 10.57 3.14 1.29 0.01
Weave (128× 128) 21.36 6.35 2.40 0.01

Table 6.1: Timings for precomputation and rendering of different heightfields
in seconds. The corduroy and plaid heightfields can be seen on the jeans and
sweater in Figure 6.17, the weave is displayed on the handbag in Figure 6.16

Note that the timings for hardware rendering of small (32×32) heightfields
including a one-time scattering are well below one second. Thus, we can
generate images of scattered heightfields at interactive frame rates. The
image in Figure 6.13 on page 100 was computed using hardware rendering.
The shown sweater and jeans have 7267 and 4368 triangles, respectively.
This small scene renders in about 0.5 fps including indirect lighting for 128
sample directions, direct light and shadows. Note that due to the different
local light and viewing directions of each garment triangle, the lighting has to
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be computed separately for each triangle. This process can greatly be sped
up by binning the triangles according to their face normals, computing the
lighting once for each bin and then rendering all triangles within this bin.

Although the achieved frame rates are not quite high enough for games we
can use the hardware algorithm to compute higher-dimensional data struc-
tures, such as light fields [Gortler96, Levoy96] and both spatially varying
and spatially invariant BRDFs. For example, we can generate a light field
consisting of 32×32 images of a heightfield including scattering terms in just
about 6-8 minutes.

As we move to BRDFs, a single BRDF sample is the average radiance
from a whole image of the heightfield. Thus, if we would like to compute
a dense, regular mesh of samples for a BRDF, we have to compute a 4-
dimensional array of images, and then average the radiance of each image.
The BTF [Dana99a], on the other hand, is a 6-dimensional data structure ob-
tained by omitting the averaging step, and storing the images directly. These
operations can become fairly expensive: even for relatively small BRDF res-
olutions such as 164, this would take about 7 hours. However, as other re-
searchers have pointed out before [Cabral87, Westin92], it is not always nec-
essary to compute this large number of independent samples. Since BRDFs
are often smooth functions, it is sometimes sufficient to compute several
hundred random samples, and project those into a hierarchical basis such as
spherical harmonics.

Using our approach, this small number of samples can be generated within
several minutes. To further improve the performance slightly, we can com-
pletely get rid of geometry for the computation of BRDF samples, and work
in texture space. As described in Sections 6.2.4 and 6.2.5, the Method of
Dependent Tests already operates in texture space. Only in the last step,
when we want to display the result, we normally have to apply this texture
to geometry. For the BRDF computation, however, we are only interested
in the average of the radiances for the visible surface points. Therefore, if
we manage to solve the masking problem by some other means, we do not
have to use geometry at all. The masking problem can be solved by using
the same data structures as used for the shadow test, only with the viewing
direction instead of the light direction. This technique was first proposed
by [Cabral87] for their method of shadowing bump maps.

Let’s look at some more images displaying our enhanced bump mapping
technique. Figure 6.12 and Figure 6.15 on pages 99 and 101 were rendered
with a non-commercial in-house ray tracer, which allowed us to combine
bump mapping with our methods for shadows and indirect illumination. The
bottom left sphere in Figure 6.12 is rendered with a bump map using only
direct light and our shadow test. The top sphere uses the same bump map,
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but also includes indirect light reflected from other portions of the bump
map up to a path length of 4. Finally, in the bottom right sphere, we
also include indirect illumination from other parts of the scene, which, in
this case, is represented as an environment map, similarly to the method
described by [Debevec98]. This is implemented by querying the environment
map every time the visibility textures Si indicate that no intersection occurs
with the heightfield for the given direction.

Figures 6.15 shows a more complicated example. It depicts a backyard
scene in which every object except for the floor and the bin has been bump-
mapped. Clearly, our methods can be used for a wide range of surfaces and
are not restricted to textiles.

To demonstrate the versatility of our methods, we also implemented our
ideas as a material plug in for the commercial modeling and rendering pack-
age 3D Studio Max. Similar to the the images above, local shading is com-
puted with bump mapping, which we combined with our algorithms for self-
shadowing and indirect illumination. Some results can be seen in Figures 6.16
and 6.17 on pages 102 and 103, respectively. In Figure 6.16 the micro geom-
etry resembles a very coarse weave. Most of the light in the scene is coming
from the left. This setting nicely displays the self-shadowing effects taking
place among the coarse fibers which is especially visible on the top part of the
bag. As a local BRDF at micro geometry level we use a simple Phong model.
In this image we added a slight specular component to the mostly diffuse re-
flection, which accounts for the very shiny appearance of the textile fibers.
This image took about 4 minutes to compute on a laptop with a Pentium III
1200 MHz CPU. Figure 6.17 shows two more materials rendered in about 1.5
minutes with our plugin. The heightfield for the corduroy jeans consists of
a single bump, but leads to very realistic results due to the shadows, which
are nicely visible in the closeup. The heightfield used for the pleated sweater
is slightly more complicated.

Finally, Figure 6.11 on page 99, computed with our in-house ray-tracer,
demonstrates the effect of different curvatures of the underlying geometry.
Note that the red faces receive only indirect illumination through scattering
from the white faces. We can clearly see the reduced scattering in the case
where the curved base geometry causes the valleys to widen up, and at the
same time we can see that more regions are shadowed for this case.

6.6 Conclusions

In this chapter, we have described an efficient method for illuminating height-
fields and bump maps based on precomputed visibility information. The al-
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gorithm simulates both self-shadowing of the heightfield, as well as indirect
illumination bouncing off heightfield facets. This allows us to use geometry,
bump maps and BRDFs as different levels of detail for a surface structure,
and to consistently illuminate these three representations. The methods and
algorithms presented in this chapter are applicable, but not restricted to
textile surfaces.

Using the Method of Dependent Tests, which is a generalization of Monte
Carlo techniques, it is possible to map these methods onto graphics hardware.
The required operations needed to do so are bump mapping and dependent
texture mapping, both of which are available on nearly every newer graphics
board.

Both the software and the hardware implementations of our algorithms
can be used to efficiently precompute BRDFs and higher dimensional data
structures such as BTFs or spatially varying BRDFs. Finally, we are also
able to approximate the effects of different curvatures of the underlying base
geometry, which, to some extent, change shadowing and indirect illumination
in a heightfield, and therefore also affect representations like the BRDF.

We have extended the techniques described in this Chapter in several
ways. In the next chapter we will show how to adopt our ideas to other
geometry than heightfields, which is important, as a large amount of surface
structures, like for instance porous materials, and many textile micro geome-
tries, can not be represented by heightfields. In [Daubert03] we describe how
our methods can even be used for illuminating participating media.
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Figure 6.11: Changes of indirect light and shadows as the curvature of the
base geometry changes. Note that the red faces are exclusively illuminated
indirectly via the light scattered from the white faces.

Figure 6.12: Three bump-mapped spheres. Bottom left: with shadows only.
Top: with shadows and indirect light bouncing off other parts of the bump
map. Bottom right: with additional indirect light looked up from an envi-
ronment map.
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Figure 6.13: Hardware rendering using the SIMD-technique explained in
Section 6.2.5. Due to the differing face normals of each garment triangle the
lighting needs to be computed separately for each triangle.

Figure 6.14: A comparison of geometry (middle row) and BRDF (bottom
row), for heightfield (top). Left column: without indirect light, right column:
with indirect light.
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Figure 6.15: A more complex scene where all surfaces are bump mapped,
including shadowing and indirect light.
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Figure 6.16: The textile parts of this handbag were rendered using our 3D
Studio Max plugin. The BRDF at the micro geometry level is slightly specu-
lar. Notice how the appearance changes from the top flap of the handbag to
the front part, which is due to different relative angles of the incoming light.
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Figure 6.17: The pleated sweater and corduroy jeans were rendered using
our plugin for 3D Studio Max. Indirect illumination and self-shadowing is
automatically computed at the micro geometry level. The close-ups on the
right give a more detailed view of the micro-geometry.
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Chapter 7

Efficient Light Transport for
General Micro Geometry

7.1 Introduction

The key idea in the last chapter was to precompute and store visibility infor-
mation, in order to use it for calculating the indirect light in heightfields. In
this chapter we will show how to adopt these methods for using them with
non-heightfield geometry. Specifically, we will consider parametric surfaces
in Section 7.2 and triangle meshes without global parameterization in Sec-
tion 7.3. Correct and realistic illumination computations not only require
considering indirect illumination, but also accounting for shadows. As we
will see, the ellipse data structure which we used for the heightfield case is
unsuitable for more general micro geometry. Therefore we will introduce a
different, more general shadow data structure in this chapter.

Why does precomputing and reusing visibility make our methods so effi-
cient? The reason is that with conventional methods, visibility computations
are the most time consuming part in global illumination, which can be ex-
plained by two facts: Firstly, visibility is highly dependent on the scene
complexity, which makes it extremely expensive to compute, and secondly
a large amount of visibility queries are necessary during global illumination
computations. However, often during these queries similar or identical infor-
mation is recomputed multiple times, which explains why precomputing and
storing visibility information leads to such good results. This is particularly
the case when multiple images of the same scene are generated under vary-
ing lighting conditions and/or viewpoints. But even for a single image with
static illumination, a large amount of computations can be saved by reusing
visibility information for many different light paths.

Our method performs best in scenarios where fixed geometry is seen under
a variety of lighting conditions and camera positions, as this gives us the

105
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best utilization of the precomputed visibility information. At the same time
the storage costs of the visibility information become a concern for very
detailed scenes. We therefore use the method mostly to precompute the
optical properties of materials from models of the micro geometry. We will
demonstrate the quality and performance of our approach in Section 7.4 by
applying it to the computation of BRDFs and bidirectional texture functions
(BTFs).

Unlike heightfields, there is no convenient and efficient rendering method
– comparable to bump mapping – which allows us to use non-heightfield
geometry more or less directly for rendering. This is due to the fact that
computing occlusion for non-heightfield geometry can become fairly complex.
However, in Chapter 8 we will introduce a shading model which can – to some
extent – fill that gap. The data needed to fit the model parameters is acquired
using the methods described in this chapter.

7.2 General Parametric Surfaces

Precomputing and storing the visibility information is the key idea to effi-
cient illumination computation. In the precomputation step for the height-
field case, explained in Section 6.2.1, we generated rays from each heightfield
point in a number of predefined directions and intersected them with the
heightfield. We then stored the intersection points, which can be unambigu-
ously characterized by their 2D texture coordinates. We would now like to
find a similar precomputation algorithm for parametric surfaces. In order
to do so we have to solve two problems: The first is finding a discretization
of the parametric surface, which we need determine the points from which
to launch the intersection rays. Then, secondly, we need to find a way to
parameterize the intersection points.

We find the discretization by first using the surface’s parameterization
to texture the surface. Then, given a texture of a certain resolution, each
pixel in the texture can be easily mapped to a point on the surface. This is
illustrated in Figure 7.1.

Now we are ready to generate rays originating from each of these points
in each of the global sample directions and intersect them with the surface.
The intersection points can again be characterized by their parameter values,
which we store as 2D floating point texture coordinates in separate textures
for each sample direction. To compute indirect illumination, these scattering
textures can now be used in the same way as for the heightfields.

That is, given the visibility textures Si and a per-texel normal, we first
have to generate a texture-space representation of the direct illumination Ld.
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Figure 7.1: Left: simple parametric surface and its parameterization. Mid-
dle: a texture of a given resolution has been applied to the surface. The
texture coordinates are given by the parameterization. Right: points in the
texture can then easily be mapped to points on the geometry, resulting in a
discretization of the surface.

Then the indirect illumination can be computed completely in texture space
using a sequence of table lookups for the light transport as already seen in
Figure 6.6 on page 87.

The question now arises how to compute the direct illumination Ld, for
which a shadow test is required. In the heightfield case we represented the
horizon as an ellipse. Obviously, a horizon approach, no matter in which
representation, will not work in the case of general parametric surfaces, since
the light directions can consist of several disjoint regions. Similarly, repre-
sentations like the shadow map [Williams78] will not work, because these are
valid only for specific light positions. Finally, analytic representations like
the visibility skeleton [Durand97] will be infeasible due to the combinatorial
explosion in the complexity.

We therefore propose the following shadow algorithm that is similar in
spirit to the horizon map in that it represents an approximation of the shad-
owing information for all light directions and positions. In contrast to horizon
maps, however, it works for arbitrary geometries. In a precomputation step
we partition the sphere of possible light directions into several regions by
choosing some uniformly distributed directions ci and defining the regions
around them. Then, for each point on the micro geometry and each region,
we compute the fraction of solid angle not blocked by other parts of the
surface. In order to do this we can reuse the visibility information already
computed. For each of the directions ~di we determine to which of the regions
it belongs, and then compute the fraction of these directions that do not hit
other parts of the surface. Figure 7.2 gives pseudo-code for this precompu-
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for each ~di ∈ D

nearest[~di] = find ~ci nearest to ~di;

for each grid point p on heightfield {

for each ~di

increment total[nearest[~di]];
if Si[p] is valid point

increment light[nearest[~di]];

for each ~ci

fraction[p, ~ci] = light[~ci] / total[~ci];
}

Figure 7.2: Pseudo-code for computing the fractions. ~di are the directions
used for the visibility precomputation, ~ci are the directions of the shadow
region i.

tation step. The results of this step for one point on the micro geometry are
illustrated in Figure 7.3.

After having computed the fractions for all points and all shadow regions,
we can store the results in a texture with one channel per region. During
rendering, the shadow test for a given light direction can be performed by
computing a weighted sum of the fractions for all directions to avoid quanti-
zation artifacts. For the weights we use cosine powers of the angle between
the true light direction and the various ~ci. These weights are chosen to be
easily implementable using graphics hardware.

To map the complete shadow test onto graphics hardware, we code the
shadow information into RGBA textures, in such a way that we have one
texture for four directional regions. Depending on the number of simultane-
ous textures and the kind operations a graphics card supports, we can check
a number of directions at once. For every shadow texture we also need one
vector of weights. For instance, on an NVidia GeForce2 graphics board, we
can load two of these textures and two weight vectors into a single combiner
stage, and compute the weighted sum for eight directions in one stage us-
ing two textures. On this board several passes are needed to compute the
whole sum, the results of which are added using the blending operation. In
our implementation we used 32 shadow directions on hardware that supports
two simultaneous textures, and can therefore compute self-shadowing for a
given direction in four passes. On more recent graphics boards with more
texture units and a wider range of operations less passes would be necessary.
The result of our shadow method is a texture with values ranging from zero
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Figure 7.3: Left: results of scattering precomputation for p (only hits are drawn).
Right: Projection of hits (blue) and misses (yellow) to unit sphere. Color of shadow
regions (cones) corresponds to value of fraction – dark: high number of hits, light:
high number of misses.

Figure 7.4: Piecewise parametric surface without shadows (left) and with shadows
(right) computed by our shadow algorithm. Top corners show close-ups of marked
regions.

(totally shadowed) to one (fully lit) for each point on the surface. This value
can then be used to attenuate the result of a direct light computation.

Figure 7.4 shows a piecewise parametric surface without (left) and with
shadows (right), computed by our algorithm. In both images the light source
is located above and to the left of the object.

7.3 Arbitrary Triangle Meshes

One advantage of this shadow algorithm is that once we have the scattering
information, the shadow computation takes place in some texture space. It
is therefore well suited also for application to arbitrary triangles meshes,
provided we find a way to efficiently index surface locations on these meshes.

One possibility is to reduce the problem to parametric surfaces by finding
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a parameterization for the triangle mesh. For example, we can use the MAPS
algorithm [Lee98] and first reduce the fine mesh to a coarse triangle mesh.
These coarse triangles have an inherent parameterization of their own. Then
the vertices are reinserted, thereby assigning them parameter values depen-
dent on their position on the coarse triangles. After completion, the mesh
consists of as many global parameterizations as there were coarse triangles.

We can then merge these parameterizations into a single large parameter
space to hold the scattering information. At this point it is possible to apply
the same shadowing algorithm as for parametric surfaces to generate the
direct illumination map Ld for the whole mesh. From then on, we again use
only texture space computations to calculate the indirect illumination using
scattering textures Si that are parameterized in the given global texture space
for the mesh.

On the other hand, if we have a very fine, uniform mesh to start with, it
may be sufficient to compute the illumination only at the vertices. In this
case it is not necessary to generate a global parameterization and resample
the surface into texture space. Instead of using a true texture for representing
the samples, we use a simple lookup table, in which each vertex in the mesh
is mapped to one table entry as depicted in Figure 7.5. The shadow data
structure will then contain the same information as described in Section 7.2,
but now for every vertex in the mesh, that is, for every entry in the table.

Figure 7.5: Each vertex is mapped to an entry of a lookup table.

For the scattering information, the visibility is computed in a similar
fashion as for the parametric surfaces, with one important difference. Since
we no longer have a parameterization for the surface, we cannot store exact
intersections of rays with the surface, but rather have to quantize the inter-
sections to entries represented in the table. This corresponds to storing the
vertex closest to the ray intersection rather than the true intersection point.
This will also slightly alter the direction di, a fact we can ignore if the mesh is
fine enough. As the error depends heavily on the density of the tessellation,
we can apply local refinements like subdivision or simple vertex insertion on
the triangle to compensate for under-tessellated regions in the original mesh.

To use graphics hardware, we code the one-dimensional tables represent-
ing the scattering information into two-dimensional texture maps. Since we
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do not have the connectivity information that we get from a parameterization
of the surface, we cannot interpolate in the illumination textures Ld during
the light transport phase. However, once we have computed the indirect
illumination by using table lookups as before, we have obtained per-vertex
illumination that can be interpolated across the triangle mesh using Gouraud
shading.

7.4 Applications and Results

Our methods for computing direct and indirect illumination on parametric
surfaces and general triangle meshes can be used for a wide variety of appli-
cations, results of which we will show and discuss in the following sections.

7.4.1 Efficient Simulation of BRDFs

As a first application of our method we consider the simulation of BRDFs.
We used our methods for generating BRDF samples for several different
micro geometries by first computing shadowing and indirect illumination in
texture space as described above. We then render an orthographic image of
the geometry from the viewing direction to handle occlusion. For the BRDF
computation we assume periodic micro geometry, which means we also have
to handle occlusions between several periods of the geometry. Rather than
replicating the geometry to account for this kind of occlusion, we simply
replicate the 2D image of one period, and composite multiple copies back to
front. A BRDF sample is then obtained by averaging over the area covered
by one copy of the micro geometry. Figure 7.6 on page 114 demonstrates the
acquisition process.

If we sample light and viewing directions over the sphere rather than the
hemisphere, we can also account for transmission, yielding a bidirectional
scattering distribution function, or BSDF. In this case it is usually advisable
to also store a transparency value for each direction, which accounts for the
Dirac peak of light passing straight through the material. To obtain this
transparency, we generate an alpha mask in the frame buffer during the
rendering of the geometry. This mask represents pixels that are actually
covered by the geometry. During averaging of the BRDF sample, the ratio
of covered and uncovered pixels is taken into account for generating the
transparency.

The computation time for one BRDF sample depends mostly on the tex-
ture size of the scattering- and direct light textures and on the number of
directions used for computing the indirect light. In our case we used 128 sam-
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ple directions for the integration and were able to compute a single sample
for a 32x32 texture in 0.5 seconds, or for a 64x64 texture in 1.49 seconds1.
Due to the cost of traditional simulation algorithms, the usual approach
of simulating BRDFs with a virtual gonioreflectometer is to acquire only a
small number of samples, and to project those into a basis like Spherical
Harmonics [Westin92] or cosine lobes [Lafortune97] in order to arrive at a
smooth BRDF representation. We found that this method blurred out a lot
of the detail for some of our more complex micro-geometry, and therefore ob-
tained a more dense sampling with 10000 samples. For a model fitting into
a 64x32 texture the simulation therefore takes slightly less than three hours.
We took samples for all combinations of 100 viewing and lighting directions
distributed on the whole sphere.

The resulting tabular BRDFs were then used in a ray tracer to generate
the scene in Figure 7.8 on page 116. The sofa’s BRDF was computed from
the model depicted in Figure 7.8(c), consisting of about 3400 vertices. The
resulting BRDF is more or less diffuse with a slight color shift from green
to blue for different viewing angles. The satin BRDF of the cushion and
the tablecloth was computed from the model shown in Figure 7.8(a). We
used a specular value of ks = 0.3 and an exponent of N = 8 for the micro
BRDF that also shows up as a specular highlight in the simulated BRDF.
The red curtains were made of a woven material modeled with the piecewise
parametric surface shown in Figure 7.8(d). We aligned the tangents of the
curtain model in such a way that the gray cylinders of the micro geometry
run horizontally across the curtain. The resulting BRDF is anisotropic and
shows clear color shifts to red and blue, respectively, for grazing viewing
angles. Also note how the BRDF becomes less transparent for these angles.
This behavior is even more prominent for the BRDF generated from the micro
geometry shown in Figure 7.8(b), which we used for the almost transparent
curtains in front of the windows. Note how the curtains are nearly invisible
for orthogonal viewing directions and only become gray and less transparent
for grazing angles.

The timings for the precomputation of scattering textures and shadow
fractions for the models in Figure 7.8(c) and Figure 7.8(d) can be taken
from Table 7.1. The set of scattering directions consisted of 128 directions
uniformly distributed over the sphere. We divided the sphere into 32 regions
to determine fractional visibility for the shadow computations. The column
marked “Size” refers to the amount of texture space used up by the models.

1These timings were taken from a PC with an Athlon 1GHz processor and a GeForce3
graphics board.
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Model Size Time in sec Memory in kB
Scat. Shad. Scat. Shad.

7.8(c) 64x64 39 92 2051 257
7.8(d) 64x32 8 7 4099 513

Table 7.1: Precomputation times for 128 scattering directions and 32 shadow
regions for the models in Figure 7.8(c) and 7.8(d).

7.4.2 Generation of (BTFs)

By slightly modifying the algorithm for computing BRDF samples sketched
above, we can also compute samples for BTFs [Dana99a, Dischler98]. Again
we compute the direct and indirect light, as well as shadows and repeat the
scene to account for occlusion. However, we store a whole image per combi-
nation of one viewing and one lighting direction, instead of only an averaged
BRDF sample. Figure 7.7 on page 114 shows four sample images computed
by our method. Since BTFs are six-dimensional functions, a faithful rep-
resentation is fairly demanding in terms of memory. For the BTFs shown
in Figure 7.9 on page 117 we used only 40 viewing and 40 light directions
and stored the RGBA images at a resolution of 64 × 64, resulting in 25MB
per BTF. Table 7.2 gives the timings needed on a PC with an AMD Athlon
1GHz CPU and a GeForce3 graphics card for computing the BTFs used in
Figure 7.9.

Model Size Total Time (sec)

Wicker 64× 64 1049
BTF on Shawl 64× 64 999
BTF on Skirt 32× 32 297

Table 7.2: Computation times for the BTFs in Figure 7.9, computed for 40
light and 40 viewing directions. The column ”Size” refers to the texture reso-
lution needed for the computations. (i.e. the texture resolution for parametric
surfaces, or the vertex table size for triangle meshes).

To apply a BTF to a geometric model, like in Figure 7.9, we first have to
determine the local viewing and light direction for each point on the garment.
Then from the viewing and light directions, the nearest textures have to be
selected from the collection of images. Finally, the correct color value is
interpolated from these textures. By storing an alpha channel, even complex
BTFs with holes can be rendered. The most expensive step in this algorithm
is the selection of the nearest textures for a given light and view direction. To
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(a) (b) (c)

Figure 7.6: (a) micro geometry after lighting computation (b) replication
and composition of the 2D image. (c) only the area visible through the gray
window is averaged (only pixels with alpha 6= 0)

Figure 7.7: Four BTF samples generated for two different light and two dif-
ferent viewing directions.



7.5 Discussion and Conclusions 115

render the image in Figure 7.9 we implemented the algorithm sketched above
as a plug-in for the commercial modeling and rendering package 3D Studio
Max. This image took 54 seconds to render in a resolution of 500 × 550 on
a laptop with a Pentium III 1200 MHz CPU.

7.5 Discussion and Conclusions

In this chapter we explained how to adopt the ideas from the previous chap-
ter to non-heightfield micro geometry. Let’s recall that the efficiency of the
methods presented in Chapter 6 is due to the fact that all needed informa-
tion is stored in such regular data structures as textures, which allows us
to reduce the light transport operator to simple table lookups. By using
graphics hardware and computing the lighting as SIMD style computations
we achieve an additional speedup, because texturing hardware is optimized
for high bandwidths to texture and frame buffer RAM with specific caching
schemes specifically designed for this kind of lookup process.

Bearing this in mind, we needed to find ways to store the information
for non-heightfield geometry in 2D textures, which we achieved by defining
suitable parameterizations and mappings for parametric surfaces and gen-
eral triangle meshes. To complete the illumination computations, we also
introduced a representation for shadow regions, which are more complex for
non-heightfield surfaces and could no longer be represented by the ellipse data
structure used for the heightfield case. Once we have stored all information
i.e. the visibility information, shadow representation, the shading normals
etc. in 2D textures, the operations needed for the lighting computation are
basically the same as for the heightfield case.

As a result we can efficiently compute the illumination for different light-
ing and viewing situations. The precomputation times are quite moderate,
and we can amortize them over many different light transports, for exam-
ple to generate different light paths for a single image, or to compute many
different images with varying illumination and changing camera positions.
In Section 7.4 we demonstrated the feasibility, quality, and performance of
the proposed method by applying it to the simulation of BRDFs, and the
efficient generation of BTFs.

Like all Monte Carlo algorithms, our method is dependent on a sufficiently
high number of samples to obtain high quality results. If, for instance, the
number of sampling directions for computing the indirect light is too low,
unevenly colored patches will be the result. Similarly, if the tessellation of
a triangle mesh, or the texture-space resolution of a parametric surface is
too coarse, shadow boundaries will degrade visibly. In general, the correct
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(a) (b) (c) (d)

Figure 7.8: Using our methods, BRDFs can efficiently be computed for dif-
ferent micro geometry (a-d). These BRDFs can then be used, e.g. in a
ray tracer, to correspondingly shade objects in a scene: the cushion and
tablecloth exhibit the BRDF computed from (a) (satin/twill), (b) was used
for the nearly transparent curtains over the windows, the sofa’s BRDF was
computed from (c), and (d) was used for the red curtains.
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Figure 7.9: This scene demonstrates the use of several bidirectional texture
functions (BTFs) in a scene. By adding an alpha channel, effects like light
falling through parts of the BTF (like e.g. the holes in the wicker chair) can
be achieved. The scene was rendered using 3D Studio Max and our own BTF
plug-in.
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number of samples is dependent on the scene.
We have reason to believe our algorithm should be easy to parallelize on

multiprocessor systems or clusters. One way would be to use different CPUs
to compute different light paths. Each CPU then only needs to know the
visibility textures corresponding to directions that are comprised in its paths.

Using the methods from this chapter we can define realistic micro geom-
etry structures for rendering cloth. For instance we can now model threads
crossing each other, large and course weaves can easily be simulated, as well
as fairly realistic knit-wear. However, when drawing parallels to the height-
field case, we will soon notice the still remaining great advantage heightfields
have over non-heightfield micro geometry, which is that there is a very ef-
ficient way of rendering them called bump mapping. Unfortunately, there
are no comparable methods that can be used for generating high quality im-
ages of general micro geometry at interactive rates so far. One of the main
reasons is the complexity of handling occlusion correctly. We will try to
overcome these problems in the next chapter, where we introduce a reflec-
tion model designed to render objects with non-heightfield micro geometry
at high interactive rates. In order to fit the reflection model’s parameters
we will need specialized input data, which is acquired using the illumination
methods described in this chapter.



Chapter 8

Interactive Display of General
Micro Geometry

8.1 Introduction

For heightfield geometry, bump mapping is a highly efficient rendering tech-
nique, which allows handling important effects including spatial variation,
shadowing, occlusion, and indirect illumination (see Chapter 6), while at the
same time obtaining real-time frame rates. For non-heightfield geometry,
however, no comparable rendering method exists so far, which is due to the
fact that shadowing and occlusion effects become far more complex for gen-
eral micro geometry, and therefore can not be computed efficiently enough
for interactive rendering.

For many types of textiles, individual weaves or knits can be resolved
from normal viewing distances, which requires using rendering techniques
that can handle spatial variation. However, representing these structures
using a heightfield often does not lead to visually satisfying results. There-
fore, we developed a new shading model for general micro geometry, which
we will introduce in this chapter. Using our technique, we can render gen-
eral micro geometry at high interactive rates, taking all important lighting
effects like light and view dependency, shadowing and occlusion, as well as
spatial variance into account. Furthermore, the presented technique lends
itself naturally to mip-mapping.

Our model takes advantage of the fact, that textiles are often composed
of similar, repetitive structures. This allows us to represent the reflectance
properties of a very small number of stitches or weaves, and then replicate the
model across the garment, which leads to an extremely memory efficient ap-
proach. Additionally, by exploiting features of contemporary graphics hard-
ware, we will show how to render high quality images of clothing at high
interactive rates.

119
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In Section 8.2 we will first take a look at the representation of the stitches’
reflectance properties. As already mentioned, we will introduce a specialized
BRDF model, capable of capturing the spatial variation. After that, we
will show how, given a geometric model of a single stitch, we can fit the
BRDF model’s parameters. In order to do so, we first compute the lighting
(including indirect lighting and shadows) using the methods described in the
last chapter. By sampling the stitch regularly within a plane, we then obtain
the data like radiance values and per-pixel normals, needed for fitting the
model. The process of acquiring the data and fitting the model’s parameters
is described in Section 8.3 and 8.4, respectively. We will explain hardware-
supported rendering of our model in Section 8.5, and finally present our
results in Section 8.6.

8.2 Data Representation

Our representation of cloth detail is based on the composition of repeat-
ing patterns (individual weaves or knits) for which efficient data structures
are used. In order to capture the variation of the optical properties across
the material, we employ a spatially varying BRDF representation. The two
spatial dimensions are point sampled into a 2D array. For each entry we
store different parameters for a Lafortune reflection model [Lafortune97], a
lookup table, as well as the normal and tangent. We will use the notation
fr(x,~l → ~v) when referring to the whole spatially varying BRDF and write

fx
r (~l → ~v) when we are looking at one of the array entries, which then only

describes a 4D BRDF1.

Such an entry’s BRDF fx
r (~l → ~v) for the light direction ~l and the viewing

direction ~v is given by the following equation:

fx
r (~l → ~v) = T (~v) · fx

laf (
~l → ~v), (8.1)

where fx
laf (

~l → ~v) denotes the Lafortune model and T (~v) is the lookup ta-
ble. Note that both T (~v) and fx

laf are defined for each color channel, so ·
denotes the component-wise multiplication of the color channels. The Lafor-
tune model itself (cf. Chapter 5, Equation 5.3) consists of a diffuse part

1In this chapter, we use the notations ~l and ~v instead of ~ωi and ~ωo, respectively, to
later avoid multiple subscripts.
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ρ = kd

π
, where kd is the diffuse reflection coefficient, and a sum of lobes:
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(8.2)
Since fx

laf is wavelength dependent, we represent every parameter as a three-
dimensional vector, one dimension per color channel. Before evaluating the
lobe we transform the light and viewing direction into the local coordinate
system given by the sampling point’s average normal and tangent, yielding ~l′

and ~v′. In contrast to Equation 5.3 in Chapter 5, we also include the cosine
term 〈~n′,~l′〉 = 〈(0, 0, 1)T ,~l′〉 = l′z for area foreshortening in the BRDF.

The lookup table T (~v) stores color and alpha values for each of the original
viewing directions. It therefore closely resembles the directional part of a light
field. Values for directions not stored in the lookup table are obtained by
interpolation. Although general view-dependent reflection behavior including
highlights etc. could be described by a simple Lafortune BRDF, we introduce
the lookup table to take more complex properties like shadowing and masking
(occlusion) into account that are caused by the complex geometry of the
underlying cloth model.

Like in redistribution bump mapping [Becker93], this approach aims at
simulating the occlusion effects that occur in bump maps at grazing angles.
In contrast to redistribution bump mapping, however, we only need to store
a single color value per viewing direction, rather than a complete normal dis-
tribution. Figure 8.6 on page 131 demonstrates the effect of the modulation
with the lookup table. The same data, acquired from the stitch model shown
in the middle, was used to fit a BRDF model without a lookup table, only
consisting of several cosine lobes (displayed on the left cloth in Figure 8.6)
and a model with an additional lookup table (cf. Figure 8.6 on the right).
Both images were rendered using the same settings for light and viewing di-
rection. Generally, without a lookup table, the BRDF tends to blur over the
single knits. Also the BRDF without the lookup table clearly is not able to
capture the color shifts to red at grazing angles, which are nicely visible on
the right cloth.

The alpha value stored in the lookup table is used to evaluate the trans-
parency. It is not considered in the multiplication with fx

laf but used as
described in Section 8.5 to determine if there is a hole in the model at a cer-
tain point for a given viewing direction. The alpha values are interpolated
similarly to the color values.
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8.3 Data Acquisition

After discussing the data structure we use for representing the detail of the
fabrics, we now describe how to obtain the necessary data from a given 3D
model.

One way to model the base geometry of our knits and weaves is to use
implicit surfaces, the skeletons of which are simple Bézier curves. By applying
the Marching Cubes algorithm [Lorensen87] we generate triangle meshes,
which are the input for our acquisition algorithm. Of course we can also use
any modeling tool to generate the micro geometry.

Now we are ready to obtain the required data. As mentioned in Sec-
tion 8.2, the spatial variations of the fabric pattern are stored as a 2D array
of BRDF models. Apart from radiance samples r(~l, ~v) for each entry and
for all combinations of viewing and light directions, we also need an average
normal, an average tangent, and an alpha value for each of these entries.

We use the methods presented in Chapter 7 which allow us to compute
the direct and indirect illumination of a triangle mesh for a given viewing
and light direction per vertex in hardware. In order to account for masking
and parts of the repeated geometry being visible through holes, we paste
together multiple copies of the geometry.

Now we need to collect the radiance data for each sampling point. We
obtain the 2D sampling locations by first defining a set of evenly spaced
sampling points on the top face of the model’s bounding box, as can be
seen on the left in Figure 8.1. Then we project these points according to
the current viewing direction (see Figure 8.1 in the middle) and collect the
radiance samples from the surface visible through these 2D projections (see
Figure 8.1 right), similarly to obtaining a light field.

Figure 8.1: Computing the sampling locations for the radiance values. Left:
top view, middle: projection, right: resulting sampling locations, discarding
samples at holes.

Note that, for each entry we, combine radiance samples from a number
of different points on the actual geometry, which is due to parallax effects.
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We will use this information from different surface points to fit a BRDF for
the given sampling location.

As the stitch geometry can have holes, there might be no surface visible at
a sampling point for a certain viewing direction. We store this information as
a boolean transparency in the alpha channel for that sample. Multiple levels
of transparency values can be obtained by super-sampling, i.e., considering
the neighboring pixels.

In order to compute an averaged normal for each sampling point, we
display the model once for each viewing direction with the vertex normals
of the micro geometry coded as color values. For each sampling point, we
add the color values (normals), visible through the sampling position, and
average them at the end. Additionally, we also need tangents and binormals
for each sampling point, which we construct from the normals, by defining
the binormal to be perpendicular to the normal and the x-axis. Figure 8.2
shows how the steps are put together in the acquisition algorithm.

for each ~v {
ComputeSamplingPoints();
RepeatScene(vertex color=normals);
StoreNormals();
StoreAlpha();

for each ~l {
ComputeLighting();
RepeatScene(vertex color=lighting);
StoreRadiance();

}
}
AverageNormals();

Figure 8.2: Pseudo code for the acquisition procedure.

8.4 Fitting Process

Once we have acquired all the necessary data, we use it to find an optimal set
of parameters for the Lafortune model and the lookup table for each entry in
the array of BRDFs. This fitting procedure can be divided into two major
steps which are applied alternately. At first, the parameters of the lobes are
fit. Then, in the second step, the entries of the lookup table are updated.
Now the lobes are fit again and so on.

Given a set of all radiance samples and the corresponding viewing and
light directions acquired for one sampling point, the fitting of the parame-
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ters of the Lafortune model fx
laf requires a non-linear optimization method.

As proposed in [Lafortune97], we applied the Levenberg-Marquardt algo-
rithm [Press92] for this task.

The optimization is initiated with an average gray BRDF with a moderate
specular highlight and slightly anisotropic lobes, e.g. Cx = 1.22 ∗ Cy for the
first and Cy = 1.22 ∗ Cx for the second lobe if two lobes are fit. For the first
fitting of the BRDF the lookup table T (~v) is ignored, i.e. all its entries are
set to white.

After fitting the lobe parameters, we need to adapt the sampling point’s
lookup table T (~v). Each entry of the table is fit separately. This time only
those radiance samples of the sampling point that correspond to the viewing
direction of the current entry are considered. The optimal color for one entry
minimizes the following set of equations:(
r(~l1, ~v), r(~l2, ~v), . . . , r(~lR, ~v)

)T

= T (~v)
(
fx

laf (
~l1, ~v), fx

laf (
~l2, ~v), . . . , fx

laf (
~lR, ~v)

)T

(8.3)

where r(~l1, ~v), . . . , r(~lR, ~v) are the radiance samples of the sampling point with

the common viewing direction ~v and the distinct light directions ~l1, . . . ,~lR.
The currently estimated lobes are evaluated for every light direction yielding
fx

laf (
~li, ~v). Treating the color channels separately, Equation 8.3 can be rewrit-

ten by replacing the column vector on its left side by ~r(~v), the vector on its

right side by ~f(~v), yielding ~r(~v) = T (~v) · ~f(~v). The least squares solution to
this equation is given by

T (~v) =
〈~f(~v), ~r(~v)〉
〈~f(~v), ~f(~v)〉

(8.4)

where 〈·, ·〉 denotes the dot product. This is done separately for every color
channel and easily extends to additional spectral components.

To further improve the result, we alternately repeat the steps of fitting
the lobes and fitting the lookup table. The iteration stops as soon as the
average difference of the previous lookup table’s entries to the new lookup
table’s entries is below a certain threshold.

In addition to the color, each entry in the lookup table also contains an
alpha value indicating the opacity of the sample point. This value is fixed
for every viewing direction and is not affected by the fitting process. Instead
it is determined through ray-casting during the data acquisition phase.

Currently, we also derive the normal and tangent at each sample point
directly from the geometric model. However, the result of the fitting process
could probably be further improved by also computing a new normal and
tangent to best fit the input data.
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8.4.1 Mip-Map Fitting

The same fitting we have done for every single sample point can also be
performed for groups of sample points. Let a sample point be a texel in a
texture. Collecting all radiance samples for four neighboring sample points,
averaging the normals, fitting the lobes and the entries of the lookup table
then yields the BRDF corresponding to a texel on the next higher mip-map
level.

By grouping even more sample points, further mip-map levels can be
generated. The overall effort per level stays the same since the same number
of radiance samples are involved at each level.

8.5 Rendering

After the fitting process has been completed for all sampling points we are
ready to apply our representation of fabric patterns to a geometric model. We
assume the given model has per vertex normals and valid texture coordinates
in the range [0; tN ]2, where tN is the number of times the pattern is to be
repeated across the whole cloth geometry. Furthermore, we assume the fabric
patterns are stored in a 2D array, the dimensions of which correspond to the
pattern’s spatial resolution (resx, resy).

On modern graphics cards the rendering can be done in hardware, without
reading back the frame buffer. However, the model is too complex to be
evaluated in a single pass. We have to split the computation into several
passes and combine the results at the end. We store intermediate results as
images of the garment, in which each pixel on the garment color-codes the
result of the current pass. At the end we render a viewport filling quad and
use multi-texturing with the intermediate results to obtain the final image.

8.5.1 Evaluating the Color Table T (~v)

The values stored in the color table resemble a stack of textures, with each
texture corresponding to a different viewing direction ~v. We can think of
the color table as a 3D texture, with the viewing direction varying in the
third dimension. The texture slices, however, are computed for the setting
in which the underlying surface is flat, with the normal pointing straight up.
Obviously, for a general garment, these settings do not apply. This again
means that we have to compute the viewing direction relative to the garment
normals, or, in other words, map the global viewing direction into texture
space, which is defined by the garment’s per-vertex tangents, binormals and
normals.
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From the mapped viewing direction we then need to decide which slice in
the texture stack to use. The texture slices in the lookup table are computed
for a fixed, known, set of directions. We set the vertex’s texture coordinate
for the third dimension (r-coordinate) to point to the slice corresponding to
the direction nearest to our transformed viewing direction.2

What happens though, if the normals for the three vertices of a garment
triangle diverge strongly, and different slices are selected across the triangle?
Clearly, this would lead to incorrect interpolations across the third texture
dimension, as visualized in Figure 8.3. We take care of this case using multi-
texturing in the following way: For each vertex we specify three different sets
of texture coordinates. The first set maps all vertices of a triangle into the
texture slice needed for the first vertex, the second set of texture coordinates
maps the triangle into the slice corresponding to the second vertex and so
forth. During rendering, we blend the three textures in such a way, that a
texture is faded to zero as we approach the two vertices not corresponding
to the current slice. This way, in a triangle with strongly diverging normals,
the resulting slices are blended naturally over the triangle. This solution is
shown in Figure 8.4.

Of course this is only an approximation of the correct solution, which
would be to compute the mapped viewing direction and chose the correct
texture slice independently per pixel. This correct solution, however, is only
implementable in graphics hardware supporting fragment programs. On the
other hand, we found that our approximation does not lead to visible artifacts
for various tested settings. The result of this pass is an image of the garment,
in which each garment pixel holds the result for T (~v).

8.5.2 Evaluating the Lafortune Lobes

Next, we need to evaluate the lobes. Although the rendering of fabric pat-
terns consisting of several Lafortune lobes is possible, we will only explain
how to render a single lobe in this section, for reasons of simplicity. Also the
algorithm will greatly differ depending on which features the graphics card
supports, which is why we only roughly sketch the ideas.

First we reorganize the parameters for the Lafortune lobe into three tex-
tures of resolution (resx, resy). The first texture holds Cx, Cy, Cz for the red
channel of the lobe, the second and third texture store the respective values
for the green and blue channel. The exponent N is stored together with the

2In principle, on modern graphics cards, the mapping and setting of the r-coordinate can
be computed in a vertex program, which would result in better rendering rates. However,
computing the approximation of the arccos and arctan function, as well as an integer cast
in a vertex program is quite tricky to code.
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Figure 8.3: If the normals of a triangle diverge strongly, the mapped global
view direction differs for the vertices of a triangle. In these cases the r-
coordinate would be set to different slices which would cause the graphics
hardware to interpolate textures across the slices inbetween, yielding incor-
rect results.

Figure 8.4: By specifying three different sets of texture coordinates, we map
the triangle into the texture layer required for each corner once. We then
texture with the respective texture slice, and blend out the contributions of
each slice towards the other vertices.

diffuse component ρ in the fourth texture. Note that of course each texture
holds the respective parameters for all entries in the BRDF array.

As mentioned in Section 8.2, each Lafortune lobe is defined in its own
per-pixel coordinate system. Therefore we setup three more textures, also
of resolution (resx, resy), holding the per-pixel tangents, binormals, and nor-
mals.

Before we can evaluate the lobes we have to compute two mappings:
The first takes the world view and light directions to the cloth geometry’s
local coordinate system (texture space) yielding ~l and ~v, the second then

transforms these values to the pattern’s local coordinate system (yielding ~l′,
~v′). We can compute the first mapping in a vertex program, using simple
dot products. The garment’s per-vertex coordinate frames are passed along
as vertex attributes. The second mapping is then computed per pixel, i.e. in
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a fragment program, using the tangent, binormal and normal textures.
The final combination of the lobe parameters with ~l′ and ~v′ is also evalu-

ated per fragment. Some graphics boards are not capable of computing xNi

on a per-pixel basis. The solution here is to precompute a texture holding
the results for xNi and use dependent texturing, as explained in [Kautz00b].
Finally we combine the results of this step with the results of the lookup table
step, for instance by rendering a viewport filling quad as explained above.

8.5.3 Mip-Mapping

As described in Section 8.4.1, we can generate several mip-map levels of
BRDFs. Using these different levels for mip-mapping is very easy: instead of
setting up the textures storing the Lafortune lobe’s parameters and the per-
pixel coordinate frame with just one texture, we simply supply the graphics
hardware with the textures for all mip-mapping levels. From now on the
hardware will take care of choosing the correct level and correctly interpo-
lating the resulting values.3

8.6 Results and Applications

We implemented our algorithms on a PC with an AMD Athlon 1GHz proces-
sor and a GeForce3 graphics card. To generate the images in this chapter we
applied the acquired fabric patterns to cloth models we generated with the
3D Studio Max plug-ins Garment Maker and Stitch. Our geometric models
for the knit or weave patterns consist of 1300–23000 vertices and 2400–31000
triangles. The computation times of the acquisition process depend on the
number of triangles, as well as the sampling density for the viewing and
light directions, but generally vary from 15 minutes to about 45 minutes.
We typically used 32×32 or 64×64 viewing and light directions, uniformly
distributed over the hemisphere, generating up to 4096 radiance samples per
sampling point on the lowest level. We found a spatial resolution of 32×32
samples to be sufficient for our detail geometry, which results in 6 mip-map
levels and 1365 BRDF entries. The parameter fitting of a BRDF array of this
size takes about 2.5 hours. In our implementation each BRDF in the array
(including all the mip-map levels) has the same number of lobes. Experi-
ments showed that generally one or two lobes are sufficient to yield visually
pleasing results. The threshold mentioned in Section 8.4 was set to 0.1 and

3To be very precise, interpolating vector values, which are stored in the per-pixel coor-
dinate frame textures introduces an error. In our case the error is too small to be detected,
though.
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we noted that convergence was usually achieved after 2 iterations. Once all
parameters have been fit we need only 4 MB to store the complete data
structure for one type of fabric, including all mip-map levels and the lookup
tables with 64 entries per point.

Implementing the rendering algorithm explained before on a GeForce3
graphics board we achieve high interactive rendering rates. For instance the
image in Figure 8.8 on page 132 shows a frame taken from a small animation
which renders at 30 fps at a resolution of 512×512. We are confident that an
implementation on a graphics board of the next generation will achieve even
better rates, as the GeForce3 still has some restrictions, for instance there
are only four texturing units and the ARB fragment and vertex program
extensions are not supported.

To render the example in Figure 8.9(b) on page 133 we used the same
micro geometry as for the BTF rendering of the skirt in Figure 7.9 to fit
our model’s parameters. Now we can render the skirt model with the same
micro geometry at 70 fps (we did not simulate the exact lighting settings from
Figure 7.9). The dress in Figure 8.9(a) displays a different fabric pattern
computed with our method. In Figure 8.7(a) and Figure 8.7(b) on page 132
we compare the results of a mip-mapped BRDF to a single level one. As
expected, the mip-mapping nicely gets rid of the severe aliasing clearly visible
in the not mip-mapped left half of the table. Figure 8.6 on page 131 illustrates
how even complex BRDFs with color shifts can be captured using our model.

The sweater in Figure 8.5 on page 131 has a fairly complex micro geome-
try. Here we modeled two stitches, a knit and a purl, next to each other. The
same garment geometry was used to display the three sweaters in Figure 8.10
on page 133, which display different color and knit patterns.

8.7 Discussion and Conclusion

In this chapter we presented a memory-efficient representation for model-
ing and rendering fabrics that is based on replicating individual weaving or
knitting patterns. We have demonstrated how our representation can be
generated by fitting it to samples from a global illumination simulation. In
a similar fashion it should be possible to acquire a fitted representation from
measured image data. Our model is capable of capturing color variations due
to self-shadowing and self-occlusion as well as transparency. In addition, it
naturally lends itself to mip-mapping, thereby solving the filtering problem.

Furthermore we presented an efficient rendering algorithm which can be
used to apply our model to any geometry, achieving high interactive frame
rates. By using the reflection model and the rendering algorithm introduced
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in this chapter we can now efficiently render non-heightfield geometry at a
high quality. Although the rendering times are good enough for interactive
applications, the rates are still too slow for real-time applications like games.
We hope that on future graphics boards, which implement the ARB-versions
of fragment and vertex programs and have more texture units, we will be
able to overcome these last restrictions, and achieve real-time rates.

Nevertheless, our methods also have a few drawbacks. The first disadvan-
tage stems from the fact that we are representing three dimensional micro
geometry with a 2D texture. Although we can correctly account for occlu-
sion and disocclusion artifacts, a certain “flatness” can still be detected. For
example the bottom rim of the sweater in Figure 8.5 should not be smooth
but wavy, following the shape of the ridges between two rows of knit stitches.
Similarly, we fail to obtain correct silhouettes. Depending on the application,
these small faults can become more or less visible.

The second drawback is that once the fabric model’s parameters have been
fit to the data acquired from the micro geometry, we have no possibility for
changing the material parameters. For example, we can not change certain
stitches to another color. As a consequence, complicated color patterns, like
for example on a Norwegian sweater, are not possible with this method. The
middle image in Figure 8.10 was computed by fitting the fabric model to two
stitches, one above the other, displaying the different colors. Now this same
combination of a blue and a green stitch has to be repeated over the entire
sweater.

In the next chapter we will introduce a reflection model which does not
have the two problems mentioned above. It is specialized to rendering knit-
wear and its data is represented as a volumetric texture, thereby allowing us
to render better silhouettes. The model can also handle materials varying
from one stitch to the next.
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Figure 8.5: Woolen sweater rendered using our approach (knit and purl
loops).

Figure 8.6: The fabric patterns displayed on the models (left and right) were
both computed from the micro geometry in the middle. In contrast to the
right BRDF model, the left one does not include a lookup table. Clearly this
BRDF is not able to capture the color shift to red for grazing angles, nicely
displayed on the right.
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(a) (b)

Figure 8.7: (a) Aliasing artifacts are clearly visible if no mip-mapping is
used. (b) The table cloth is rendered using several mip-mapping layers.

Figure 8.8: Frame taken from a short animation. Both jeans and sweater
are rendered with our fabric patterns. The lighting of face, hands, and hair
is computed with very simple Phong shading. This animation renders at 30
fps.
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(a) (b)

Figure 8.9: (a) A dress rendered with BRDFs consisting of only one lobe.
(b) We used the same micro geometry as for the skirt in Figure 7.9 to fit our
model parameters. Using the reflection model we can render the skirt with
the same micro geometry at about 70 fps.

Figure 8.10: Different fabric patterns on the same model. Left: plain knit,
middle: loops with different colors, right: purl loops.
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Chapter 9

A Volumetric Reflection Model
for Knit-Wear

9.1 Introduction

The reflectance model introduced in this chapter is designed to efficiently
display knit-wear at high quality. Due to the many fluffy fibers knitting yarn
is often made of, knit textiles display complex fine-scale occlusion, shadowing
and semi-transparency effects which are nearly impossible to capture using
the more general reflection model explained in Chapter 8. As knitting yarns
usually have a larger diameter than threads used for woven textiles, knit
fabric is fairly thick, which becomes especially visible at the silhouettes of
knit garments. These often have a slightly bumpy appearance, caused by
different parts of the stitch having different heights, which are viewed at a
grazing angle. The bumpy effect becomes even more prominent if plain and
purl stitches are combined to a rib stitch pattern.

Similarly to the last chapter, the presented reflection model captures the
information for only one or two stitches, which are then repeated across the
garment. However, we will use a volumetric representation for the micro
geometry, which will allow to easily handle all the above mentioned effects.
Taking a closer look at a single stitch, we can make out the strands of yarn,
which are twisted together to make the knitting wool. In our approach we
decided to model the single strands of yarn as line segments. In fact, we only
capture the line’s directions, and group them into voxels, with each voxel
holding the average direction of all the strands traversing it. The voxel’s
shading is then computed using an approximation of [Banks94]. We also
store an opacity value, corresponding to the number of strands traversing
the voxel.

An additional feature of knit garments is that they often display complex
color patterns which are created by using several differently colored yarns and

135
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by changing the yarn from one stitch to the next. To render such patterns we
need a possibility to freely specify the material properties. As we will see later
on, we will decouple the material coefficients from the information needed to
compute the shading, which enlarges the choice of material properties. We
will take a close look at how to obtain the data for each voxel of our shading
model and how to use it for shading in Section 9.2.

However, shading alone is not enough to account for realism, we also need
to handle shadowing effects due to parts of a stitch casting shadows onto other
parts of the stitch. In order to consider this effect we precompute another
volume data structure holding shadow values for a set of fixed directions,
picking up the ideas introduced in Chapter 7. The resulting data structure
can be used to compute self-shadowing at run-time. After explaining in
detail how to build and use this data structure in Section 9.3, we will also
briefly discuss which changes have to be made to additionally incorporate
view-independent scattering. Results will be presented Section 9.4.

As the methods described in this chapter were designed and tested on
a GeForce3 graphics board, we will follow the implementation specifically
for this board fairly closely in the next sections. An implementation on a
contemporary graphics board which supports fragment programs and offers
more texture units is a lot less complicated.

9.2 Direct Illumination

As already mentioned we compute the direct lighting of our volume using an
approximation of the Banks model [Banks94] for shading lines. First we will
describe how to obtain segments of yarn for a knit and how to compute a
volume approximating the directions of the yarn filaments in several levels
of detail in Section 9.2.1. Before we explain how the shading model can be
approximated and evaluated using hardware in Section 9.2.3, we first describe
how we render the volumetric texture in layers over the garment.

9.2.1 Building the Volume

Similarly to the approach by Gröller et al. [Gröller96] we build the model of
a knit by sweeping a cross-section of yarn – in our case a bitmap – along a
given skeleton curve of a knit. However, we do not build a volume density,
but instead generate a collection of points during the sweep for each set bit
in the bitmap, which can then be connected to obtain zero-width lines, as
depicted in Figure 9.2 on page 143.

Note that, in fact, the given skeleton curve consists of parts of two stitches
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in consecutive rows (green and blue), in order to model the interlocking loops.
We simulate the twisting of yarn by rotating the bitmap during the sweep.
This process can be iterated, e.g. a different cross section bitmap can be
swept along each of the resulting lines. Finally we end up with a collection
of lines (red and pink lines) which represent our filaments of yarn. Now
different material indices are assigned to the different curves, denoting which
material each is made of. If we assign different material indices to the green
and blue parts, we will later be able to correctly change the diffuse material
from one row to the next, because the loop part (blue) will still have to be
rendered in the old color, whereas the two “legs” (green) will be assigned
the new color. Color changes from one loop to the next inside a row are
generally easier to render, because the yarn is changed on the reverse side of
the garment.

Next, linear interpolations of each curve are intersected with the voxels of
our volume, the resolution of which we set to 128× 128× 4 or 128× 128× 8.
Each voxel stores all line segments lying inside it, segments crossing the
boundary are split accordingly. Once all lines have been added, each voxel
sums up the lines (which can have different lengths), normalizes the result,
and thus obtains an average line direction (in the following called gradient).
The gradients for voxels of higher mip-mapping levels are computed by av-
eraging the line segments of all eight voxels of the next lower level. We
approximate the voxel’s opacity from the total length of all its segments rel-
ative to the voxel’s volume, and set its material index to the index assigned
to most yarn filaments inside it. The volume’s gradients are mapped to [0..1]
and stored, together with the opacity, in a 3D RGBA texture. The material
indices are stored in a separate texture, which will be explained in more de-
tail in Section 9.2.3. We will now describe how we render these volumetric
textures given a garment’s mesh.

9.2.2 Layered Rendering

As woolen garments often have a fluffy, partly transparent appearance, we
would like to render the garment as textured slices through the volumet-
ric texture, using the stored opacity values for alpha blending. Doing this
correctly would mean we would have to sort the garment’s rendering prim-
itives from back to front for each new view, which would not only require
time, but also make the method inapplicable for garment meshes consisting
of triangle strips or other more complex primitives. Another possibility we
considered, was to use a method called depth peeling, introduced by Everitt
in [Everitt01]. However, this approach already needs four texture units to
imitate a second, fake, depth buffer, and therefore is also inapplicable for our
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needs.

We therefore decided to use an approach similar to the one used by
Lengyel for handling fur in [Lengyel00], and render the garment in concentric
layers from inside to outside, texturing it with slices through the volumetric
texture. For each new layer we use the voxel’s opacity value to blend with
the previously rendered parts. For highly transparent textures, this approach
will lead to artifacts, if the garment lies in several folds, which can partly be
overcome by first culling the front facing polygons and rendering the layers
from outside to inside, then culling the back facing polygons and rendering
from inside to out. This method, however, will take about twice as long to
render. We found that for our settings the method without culling usually
is quite sufficient and produces little or no visible artifacts.

The operations needed for rendering each slice consist of setting the r-
texture coordinate, i.e. the third texture coordinate in a volume texture, to
the current slice and offsetting each vertex along the normal. Both of these
operations are easy to compute using a vertex program [Lindholm01]. This
way, software computations on the garment data can be avoided and our
method can be combined with rendering optimization methods which cache
vertex array data, like, for instance, the vertex array range extension.

In the next chapter we will introduce alternative rendering approaches for
semi-transparent volumetric textures. As we will see in the following sections,
the implementation of the shading and shadowing for our reflection model
is fairly complicated on a GeForce3 and uses up all of the graphics board’s
resources, which is the reason why we can not combine both methods on a
GeForce3. On contemporary graphics cards supporting fragment programs,
however, a combination of the shading model introduced in this chapter
and the rendering method introduced in the next are easily possible (see
Figure 10.14 on page 168). Now let’s take a closer look at which steps are
necessary to compute the shading for each slice.

9.2.3 Hardware Supported Shading of Knit-Wear

For each layer we will compute the direct illumination from the gradient data
for this slice. We approximate the Banks shading model using an approach
similar to [Kindlmann99]:

Lo = kd

(√
1− 〈~g, ~ωi〉2

)4.8

+ ks

(
1− 〈~g,~h〉2

)N/2

(9.1)

kd is the diffuse, ks the specular coefficient (with kd + ks ≤ 1). ~ωi is the light

direction, ~g the gradient, and ~h the halfway vector between light and viewing
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direction. The power 4.8 is the Banks excess brightness diffuse exponent, N
denotes the specular exponent.

Given the gradients ~g as a texture, we can now compute the shading equa-
tion given above as follows: First, we need to map the light direction and
halfway vector to the surface coordinate frame, given by normals, tangents
and binormals for every point on the garment. We do this per garment vertex
and interpolate the results across the garment, which introduces a very slight
error, because no spherical interpolation is used. In our implementation we
used a vertex program to compute the mapping. The vertex tangents and
binormals are passed to the program as vertex attributes, then the projec-
tion boils down to the computation of 3D dot products of the vector with
the tangent, binormal and normal. In the case of a local viewer and non-
directional light sources the light and halfway vector have to be computed
at each vertex, before projecting them. In this case we pass the light and
camera position as program parameters to the vertex program. We store the
transformed light direction as primary color and the transformed halfway
vector as texture coordinates, which will become clear later on.

We approximate the diffuse term
(√

1− 〈~g, ~ωi〉2
)4.8

with (1− 〈~g, ~ωi〉2)2,

which we can compute using programmable texture blending, (like e.g. NVi-
dia’s register combiners [NVI99]) if we substitute the power function by mul-
tiplications. The mapped light direction ~ωi is the primary color, ~g is stored,
as mentioned above, as a 3D volume texture, the r-texture coordinates of
which have been set by a vertex program to point to the correct slice (see
Section 9.2.2).

The specular term is slightly more tricky, because of the exponent. As de-
scribed by Kautz et al. [Kautz00b], the technique for computing this kind of
term in hardware on cards not supporting fragment programs is to put the re-
sult into a texture and use dependent texture lookups. In our implementation
we use one of NVidia’s texture shaders called Dot Product Texture 2D, which
works the following way: let’s assume we have two textures, one in texture
unit 0, the second in texture unit 1. For both we compute a regular texture
lookup with application specific texture coordinates, yielding (R0, G0, B0)
for unit 0 and (R1, G1, B1) for unit 1. Now a dot product is computed from
(R0, G0, B0) and the texture coordinates of another texturing unit, let’s call
them (S2, T2, R2), so we obtain Ux = 〈(R0, G0, B0), (S2, T2, R2)〉. Similarly,
we compute Uy from the lookup of unit 1 and the texture coordinates of unit
3, (S3, T3, R3), yielding Uy = 〈(R1, G1, B1), (S3, T3, R3)〉. Finally, (Ux, Uy) are
used as texture coordinates for a lookup in the texture in unit 3. The top
half of Figure 9.1 on page 140 graphically explains the texture shader.

To compute the specular term above, we bind the gradient volume texture
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to unit 0, so (R0, G0, B0) will hold the gradient value (gx, gy, gz) per pixel. As
mentioned above, the transformed halfway vector (hx, hy, hz) is computed by
a vertex program and written to the texture coordinates of unit 2. Therefore
we get Ux = 〈~g,~h〉. The texture in unit 1 holds the specular exponent N/2,
mapped to [0..1] in the blue channel. We set the texture coordinates of unit
3 (S3, T3, R3) to (0, 0, 1), yielding Uy = R3. For the final lookup we compute
a 256× 256 texture holding discretized values for

F (u, v) = (1− u2)v∗50, u ∈ [0..1], v ∈ (0..1].

The multiplication v∗50 is needed to scale N/2. We setup this lookup texture
using the mirrored repeat extension, to correctly handle the cases in which
〈~g,~h〉 evaluates to a negative number. The lower half of Figure 9.1 depicts
how we use the texture shader to compute the specular term.

Figure 9.1: Top: general mechanism of dot product texture 2D. Below: setup
for computing the specular term.

Diffuse and Specular Materials

So far, we have computed the diffuse and specular term in a single pass.
However, we have not yet taken the coefficients kd and ks into account. A
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GeForce3 graphics board has four texturing units. Using the texture setup
described above, we only have two texturing units available to import values
into the register combiners, one is used to transfer the gradients, the blue
channel of the second, which we will call Tmat, holds N/2 per pixel. In Tmat,
however, we still have three unused channels. We set it up as a 3D texture,
the resolution of which corresponds to the gradient texture’s resolution, and
replicate it across the garment in the same way as the gradient texture.
This allows the specular exponent to differ from one voxel to the next. By
restricting ks to gray scale values, we can store one value for ks in the alpha
value, computing the multiplication with the specular term in the register
combiner step. So now we have two more channels per voxel for the diffuse
colors. Therefore, with only four texturing units we are limited to at most
two different diffuse materials per stitch, with the same parts of the stitch
having the same material in every replication. If we do not want to spend
more passes, parts of the knit with diffuse material a are coded by setting
the red and green channels in Tmat to (1, 0), voxels with material b are coded
inversely. The two diffuse colors are set as constant colors in the register
combiners and can be multiplied with the diffuse term like this:

Id =
(
〈Tmat, (1, 0, 0)T 〉 · c0 + 〈Tmat, (0, 1, 0)T 〉 · c1

)
∗ I ′d

c0, c1 are the color constants, set to the two diffuse materials, I ′d, is the diffuse
term, computed as described above, i.e. without kd.

In our implementation we go a different way, and trade refresh rates
for the possibility to render complex knitting patterns like those shown in
Figure 9.7 on page 148. We discard the multiplication with the two constant
colors. This leaves us with the diffuse lighting for each voxel either in the
red component, or in the green, depending on which part of the stitch we are
looking at. Furthermore, we write the result of the specular reflection to the
blue channel. We render the garment in layers, as described in Section 9.2.2,
and store the result in an intermediate texture.

Additionally, we define two textures, Ta and Tb, the resolution of which
corresponds to the number of replications of the stitch across the garment.
This way, each entry in Ta, or Tb, respectively, will correspond to one of the
stitch replications on the garment. For both textures we render the garment
once, in layers, texturing with Ta, or Tb, respectively, and using the voxel
opacity to blend. By setting up the texture coordinates to repeat the texture
exactly once across the garment, each stitch will be colored with the material
set at the corresponding location in Ta, or Tb. Figure 9.3(a) on page 143 shows
a material texture Ta. Black pixels denote texture coordinates not used by
the garment vertices. Figure 9.3(b) visualizes the results of the first material
pass, i.e. the garment textured with Ta.
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Finally, we combine these intermediate results by texturing a view port
filling quad and using a register combiner step to multiply the red channel
with the result texture for material a, and the green channel with the result
of material b. This way, the two results of the material passes are used to
color the two different parts of each stitch. Finally, we add on the specular
reflection, previously stored in the blue channel. The specular term needs to
be held separately, because this addition may not be computed before the
multiplication with kd.

Note that on graphics boards with more than four texturing units, the
passes for rendering Ta and Tb can be collapsed into the previous pass, which
will considerably reduce the rendering times.

9.3 Self-Shadowing

Shadows convey important visual information and give a feeling of depth and
volume. In this section we will explain how we compute self-shadowing of
the stitches, by which we mean parts of a stitch casting shadows on the same
or neighboring stitches. We will not deal with global shadows, like the sleeve
of a sweater casting shadows onto other parts, assuming these shadows will
be computed in another way.

The basic idea for our shadowing technique is similar to the one ex-
plained in Chapter 7 for computing shadows on general micro geometry. We
precompute shadow values for a fixed set of sample directions, which will
be explained in Section 9.3.1, and during rendering weight the precomputed
values according to the current lighting direction, which we will describe
in Section 9.3.2. In Section 9.3.3 we will sketch how to use the same data
structure to also store and render view-independent scattering.

9.3.1 Precomputation of Shadow Data Structure

A ray of light cast in a certain direction into the volume, will be attenuated
by the opacity values of each of the voxels it traverses before reaching a
certain voxel. Like in Chapter 7, the data structure we compute to represent
self-shadowing consists of the fraction of light still arriving at this voxel,
computed for a fixed set of directions di – we use a quasi random Hammersley
point set of 32 directions evenly distributed over the sphere.

Our task is to cast rays from each voxel in each of these directions and
compute the shading value. By collecting all the voxels the ray traverses
before it leaves the volume, as shown in Figure 9.4(a), we compute the shad-
owing values for all these voxels at once. We do this by reversely stepping
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Figure 9.2: A bitmap is swept along a curve to generate strands of yarn (red).
The volume is built around parts of stitch from two consecutive rows (blue
and green) to model interlocking.

(a) (b)

Figure 9.3: To render the sweater with a fairly complicated knitting pattern
in Figure 9.7, page 148, we use two material textures Ta and Tb. Ta can be
seen in 9.3(a), the results of the material pass for Ta are depicted in 9.3(b).
Tb is identical to Ta, but shifted down by one row. Using these two material
textures, we can assign the “loops” of the stitches a different diffuse color
than the “legs”, which already belong to the stitches in the next row. The
correct interlocking of the loops can be seen in the two closeup views in
Figure 9.8 on page 148. Volume resolution: 128× 128× 4.

(a) (b)

Figure 9.4: (a): gathering voxels along a ray for shadow computation. (b):
reentering the volume if the ray leaves through one of the sides – not top or
bottom.
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through the gathered voxels, accumulating the opacities of the voxels on the
way and assigning each voxel the so far accumulated opacity. If, during the
gathering step, we leave the volume through one of its sides (not top or
bottom), we reenter at the same position on the opposite side and continue
collecting voxels in the same direction, see Figure 9.4(b). This way the shad-
owing value will also account for shadowing by the neighboring stitch. To
avoid endless loops for horizontal directions we simply limit the number of
reentries to 50.

The result of this step is a fraction value in [0..1] for every voxel and for
every given direction, describing how much light it receives from the given
direction.

To more evenly sample the sphere of light directions, we compute shadow
values for a larger set of directions (e.g. 128), also evenly distributed over the
sphere. The final shadow fractions for the 32 fixed directions are weighted
averages from the larger set’s results. The weights are computed in the same
way as later for the rendering step, see Section 9.3.2. This technique anti-
aliases the shadow-data, which results in smoother changes when varying the
light direction.

9.3.2 Rendering Shadows

During rendering we compute the fraction of light arriving at each voxel from
the current light direction by weighting the precomputed results according
to their proximity to the current light direction. First, however, we need to
project the current light direction to texture space, which is defined by the
surface tangent, binormal and normal of the garment. As we have already
used up all texture units of the GeForce3 to render the direct lighting, we
will have to handle the shadow term in a separate pass, the result of which
is a gray scale image of the garment, rendered in layers (see Section 9.2.2),
using the opacity values to blend. The color values in each layer represent
the factor with which to multiply the direct lighting in order to account
for shadows. We specify this image as a fourth texture for the view port
filling quad, mentioned in Section 9.2.3, multiplying it with the result of
direct lighting (i.e. after adding the diffuse term – including materials – and
specular term).

Now lets take a closer look at how to compute this image exploiting
graphics hardware. If we make the reasonable assumption that the projected
light direction varies fairly smoothly across the garment triangles, we can
compute the weights per vertex, using a vertex program: First we project
the light direction, as described in Section 9.2.3. Now, given the projected
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# COMPUTING 4 WEIGHTS
# c[0-3]: predef. dirs
# R0: projected light
# c[4]: 0 0 0 0
DP3 R1.x, c[0], R0;
DP3 R1.y, c[1], R0;
DP3 R1.z, c[2], R0;
DP3 R1.w, c[3], R0;
MAX R1, R1, c[4];
MUL R1, R1, R1;
MUL R1, R1, R1;

(a)

# AVERAGING WEIGHTS
# weights in R1,R2..
# c[5]: 1 1 1 1
#
ADD R9, R1, R2;
ADD R9, R9, R3;
ADD R9, R9, R4;
ADD R9, R9, R5;
...
DP4 R9, R9, c[5];
RCP R9, R9.y;

(b)

Figure 9.5: Computation of (a): four weights. (b): reciprocal of average.

light direction and the predefined directions di we calculate the weights as

wi = 〈~ωi, ~di〉4

(~ωi is the current light direction, projected to texture space, ~di the predefined
direction) and normalize them at the end. The vertex program computes the
weights for all 32 directions and stores them in temporary registers four
at a time. The operations for computing four weights are depicted in Fig-
ure 9.5(a). The max operation sets negative values to zero. At the end the
weights are normalized by multiplying each with the reciprocal of the aver-
age, the calculation of which is shown in Figure 9.5(b). The dot product
with (1, 1, 1, 1) sums up all four channels.

Next, we need to multiply the weights with the precomputed values. We
arrange the precomputed shadow values in 32/4 = 8 RGBA textures of
the same resolution as the volume. Each such shadow texture holds the
precomputed values for all voxels and four directions in its four channels. If
we have the computed weights four at a time in a 4-vector, we can use the
dot product operation in a register combiner step to compute the weighting.
The main problem is the limited number of values – weights in our case –
that can be transfered between vertex program and register combiner step.
On a GeForce3 values can be transfered using the primary color (4 channels),
secondary color (3 channels), fog color (1 channel) or by writing the values as
texture coordinates (4 channels per unit, but the unit then can not be used
for texturing anymore), which is not enough to transfer 32 weights at once.
Therefore we have to split the computation into several passes, the results of
which are added using the blend operation.

We will now explain in more detail how to setup the shadow textures, and
transfer the weights on a GeForce3. The implementation on other graphics
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boards will differ slightly, depending on how many texture units are available.
On a GeForce3 we will use the primary color, texture coordinates of one unit
and the secondary color to transfer 11 weights at a time, meaning we will
need three passes to compute the shadowing. In each pass we render the
garment in layers, store the frame buffer as an intermediate result, adding
the results of all three passes at the end. We slightly reorganize the shadow
textures, setting the alpha value of every third texture to the voxel opacity,
which we need to blend the garment layers, and shifting the following results,
see Figure 9.6, which shows the texture entries for one voxel. fi depicts
the computed shadow value for direction i. α is the voxel opacity. The
entry x can be any value, we make the vertex program always return the
weight zero by setting the corresponding direction to (0, 0, 0). As mentioned
above, the vertex program is handed all directions, in order to compute the
normalization at the end, and writes the first four weights to the primary
color, the second four to the texture coordinates for unit 3 and the third three
to the secondary color. In each pass we rotate through the order of directions,
to obtain the weights corresponding to the textures handled in the current
pass. Texture coordinates can be passed through to the register combiner
step as clamped values without a lookup using a special texture mode (e.g.,
NVidia’s texture shader called pass through). The register combiner step for
multiplying weights and textures is straight forward to implement.

Figure 9.6: Reorganization of shadow texture shown for one voxel. fi is the
shadow value corresponding to direction di, x can be an arbitrary value, α is
the voxel’s opacity .

9.3.3 Incorporating View-Independent Scattering

The precomputation step described in Section 9.3.1 computes the percentage
of direct light hitting each voxel from each of the fixed directions di. Using
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a Monte Carlo simulation we could now scatter these values in the volume,
using the BRDF described in Section 9.2 and the voxel’s opacity values. (As
we would still like to store only one value per voxel and direction, kd could
be approximated by an average value). The resulting data structure will now
account for light shadowed off, as well as light scattered in by surrounding
voxels, expressed as a factor with which to multiply the direct light. We
assume that the values obtained by the Monte Carlo simulation will not
greatly exceed 1.0, even tough they might in theory, as knit-wear usually
consists of rather diffuse materials. Even though, if the values get too large,
the shadow textures should be set up with the values multiplied by 0.5, and
then scaled to the original values in the final combiner stage.

9.4 Results

We implemented the described method on a PC with an AMD Athlon 1GHz
processor and a GeForce3 graphics card. We did not optimize the code for
precomputing the data structures, that is, neither for computing the gradient
volume, nor for sampling and building the shadow texture. Generating a
volume with the resolution of 128× 128× 8 takes about half an hour. This
includes handling all mip-mapping levels, which we generate explicitly for the
gradient texture, but does not include shadow textures. Those are computed
in a second step, which takes another 10 minutes. To do so, we cast 128
sample rays into the volume and compute their contribution to the shadow
fraction as described in Section 9.3.1. Gradients and shadows stored together
need about 10-50 MB, depending on the number of mip-mapping levels and
the resolution, but without any compression. Generally, we use mip-mapping
on all the textures (except the lookup texture for F (u, v)), but build the mip-
mapping levels by hand for the volume textures.

The curve model for the shown knits was hand-built with Bézier curves.
Once modeled, the curve can be reused for every garment, either as a plain
stitch, or back-to-front for a purl stitch. We found that the bitmap textures
should not be too dense, a few tens of strands usually yield quite good results,
as the resulting small gaps between the strands help to convey a general
yarn direction. The garment models were built using 3D Studio Max and
Digimation’s plugins GarmentMaker and Stitch, which compute the draping
of cloth. The sweater model from Figure 9.7 on page 148 consists of 1881
triangles, the woolen jacket in Figure 9.11 on page 152 has 1660 triangles,
and the hat and scarf together are built with 6200 triangles (Figure 9.9 on
page 150).

Rendering times depend heavily on the number of layers used for the
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layered rendering, on the number and kind of primitives the garment model
consists of – we use triangle strips – and on the image resolution. The
sweater in Figure 9.7 renders with four layers at a resolution of 500× 500 at
about 20 to 30 fps. The image shown was computed at 1000× 800 using 10
layers, which still renders at 5 − 10 fps. Experimenting with the number of
layers used for rendering, we found that for the distance of the viewer to the
garment shown in our images, 4− 10 are completely sufficient.

Figure 9.7: For this sweater yarns of three different colors were used to create
a complex color pattern. Closeup views can be seen in Figure 9.8. Volume
resolution: 128× 128× 4.

(a) (b)

Figure 9.8: Closeup views for the sweater in Figure 9.7. Note the correct
changing of materials from one row to the next. (a) without shadows (b)
shading multiplied with shadow values.

As stated above, an implementation of our method on a graphics board
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with more than four texturing units would save the two additional material
passes. The percentage of rendering time spent for each step is: 61% for
the shadow pass, 25% for computing the direct illumination, 14% for both
material passes and less than 1% for the combination of the passes at the
end. This means that roughly 15% of time could be saved using more than
four texturing units during the direct lighting computation and additional
time could be saved computing the shadows, by combining more directions
and weights in one pass.

Figure 9.7 shows a sweater with a complex color pattern, rendered with
our method. One material texture can be seen in Figure 9.3(a). The second
is nearly identical, we simply shift the texture one row to the bottom, dupli-
cating the first row. The material textures were hand painted with a simple
painting program. The closeups in Figure 9.8 show a few single stitches to
demonstrate the interlocking loops with materials changing correctly, the left
image is rendered without shadows for comparison. For rendering this model
we set ks = 0.2 and N = 16.

We used a fairly simple color pattern for the woolen jacket shown for
three different light directions in Figure 9.11 on page 152. The knit for this
model is fairly loose, letting light in through the gaps in the stitches. Clearly
the shading and shadowing achieve realistic results, also for the back part of
the sweater which is seen inside out. All images shown are rendered without
using the culling method mentioned in Section 9.2.2.

A woolen hat and scarf are shown in Figure 9.9 on page 150. The knit
used for this image consists of a knit or plain stitch followed by a left or purl
stitch, which means the yarn is pulled through the loop in such a way, that the
stitch is a back-to-front version of a plain stitch. We built the corresponding
volume using two curves, one next to the other, and one of them a back-
to-front version of the other, and then swept the bitmap along both, thus
building data for two stitches at once. During rendering, we replicate the
stitch only half as often in the horizontal direction (64×128). The yarn each
stitch is made up of is also fairly complex: it is composited of three groups of
yarn twisted internally and also around each other. Two of the three bunches
of yarn consist of a purely diffuse purple material, while the third is green
and slightly specular.

In most applications the rendering of knit-wear will be combined with
other objects, like e.g. buildings or humans wearing the garments. If no oc-
clusions occur between the garment and other objects, well-known techniques
like the stencil test can easily be applied. However, if occlusions occur, e.g.
we are rendering a person wearing a sweater, we need to take into account
the garment’s semi-transparency. The easiest way to do this is to render the
human at the beginning of the first material pass. As the results of this pass
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Figure 9.9: Hat and scarf rendered with complex yarn consisting of different
materials. Two thirds of the strands are made of a diffuse purple material,
and one third of a green and slightly specular one. Volume resolution: 128×
128× 8.

Figure 9.10: The layered rendering technique can lead to problems at the
silhouettes. As the layers are rendered concentrically around the original
garment mesh, the textured polygons at the silhouettes are oriented in par-
allel to the viewing direction, making it possible to see between layers.
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get multiplied first with the red channel of the direct light pass, and then
with the results of the shadow pass, we must render the human twice more
(flat-shaded), once using red color in the direct light pass and once in white
in one of the shadow passes.

Figure 10.14 on page 168 demonstrates the combination of the shading
model described in this chapter with the rendering method which we will
describe in the next. On newer graphics cards supporting fragment programs,
the implementation of the shading model is much easier than for a GeForce3
and can be implemented in two passes (one for evaluating the approximation
of the Banks model combined with the materials, a second for shadowing).

9.5 Discussion

In this chapter we introduce a method for rendering realistic knit wear at
very interactive rates. Our hardware implementation of a model similar to
the Banks shading model allows the diffuse and specular material coefficients
to change per voxel, enabling us to render complex yarns and interesting color
patterns. Our method also incorporates self-shadowing of the stitches. In
order to do so we present a hardware implementation for the algorithm which
picks up some ideas from Chapter 7 and applies them to volumes. Our knit-
wear shading model is efficient, produces realistic results and is versatile and
easy to use for a number of different applications, especially as it puts no
constraints on the garment’s base geometry and requires no preprocessing or
reordering of the underlying mesh. We have substantiated reason to believe
that an implementation on a graphics board with more than four texture
units, would achieve real-time frame rates.

Using concentric layers of the original triangle mesh for rendering can
lead to quality problems, which can be seen in Figure 9.10. This problem
occurs at the silhouettes if too few slices are used, and the volumetric tex-
ture is regular and exhibits larger transparent parts. [Lengyel01] solved this
problem for fur by introducing fin-polygons at the silhouettes. This method,
however, is inappropriate for repetitive structured textures like stitches, be-
cause the view dependent projection of the volumetric texture onto the slice
would need to be computed for every fin. In the next chapter we will intro-
duce a general rendering method for semi-transparent volumetric textures,
which can be combined with the knit-wear reflection model on contemporary
graphics cards.
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Figure 9.11: Blue and white woolen jacket rendered at 20–30 fps for different
light directions. Volume resolution: 128× 128× 4.



Chapter 10

Rendering of Semi-Transparent
Volumetric Textures

10.1 Introduction

Volumetric textures are not only useful for rendering knit-wear, as we have
just seen in the last chapter, but have been a helpful and often employed
technique to enhance realism ever since their introduction by Kajiya et
al. [Kajiya89]. These volumes are applied, usually repetitively, to the surface,
with the surface normal vectors controlling the direction of the third texture
dimension, giving the surface a certain thickness. The disadvantage of vol-
umetric textures is that they are a lot more complicated to render than 2D
textures. If the volumetric data sets additionally include semi-transparencies,
rendering gets even more complex, because special attention has to be payed
to the rendering order.

Software-based techniques for visualizing volumetric textures have been
known for a long time but are usually too slow for interactive display. Re-
cently, Meyer et al. introduced a hardware-based method for interactively
rendering volumetric textures [Meyer98]. For each surface facet, this method
renders a stack of semi-transparent polygons, parallel to the facet, and tex-
tured with the appropriate volume slice. In order to reduce artifacts for
grazing viewing angles, at which the viewer can see between the polygons
in the stack, two more stacks are defined, orthogonal to each other and or-
thogonal to the surface facet. The correct stack is chosen dependent on the
viewing direction, and rendered back to front. However, artifacts can still
occur if the polygons are not orthogonal to the viewing direction, as demon-
strated in Figure 10.1 on page 154. Another draw-back of the method is
that, when dealing with semi-transparent volumetric textures, this method
is not applicable, as the faces of the base-geometry would have to be depth
sorted, to correctly account for transparency, which would be costly.

153
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Figure 10.1: Rendering artifacts can occur if the planes are not rendered
orthogonally to the viewing direction.

In this chapter we propose an alternative algorithm which assumes the
surface geometry to be a triangle mesh. Extruding a triangle along its three
normals results in a prism, as shown in Figure 10.2(a). We now generate
planes in the whole range of the surface volume, from back to front, orthog-
onal to the viewing direction, and slice each plane with each volume prism.
As we always generate planes orthogonal to the viewing direction artifacts
due to the viewer being able to see between the planes are avoided.We can
obtain high quality images at interactive rates. The presented algorithm
can correctly handle semi-transparent volumetric textures without sorting
primitives beforehand.

(a) (b)

Figure 10.2: (a) Prism formed by extruding one triangle of a mesh along its
normals. (b) Nomenclature of the prism’s edges.

In the course of this chapter we will introduce two algorithms to efficiently
compute the intersection of planes and prisms: a hybrid one, only partly
implemented using graphics hardware (Section 10.4) and a second designed
to be mapped fully onto hardware (Section 10.5).
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10.2 Prisms and Planes

The input required for the algorithms presented in the next sections is a 3D
volume texture as well as a 2D surface description, including surface normals.
We will restrict ourselves to triangle meshes, which can easily be constructed
from other meshes by tessellation.

For each triangle in the base mesh the three normals at the vertices span
a prism. The thickness of the volume over a triangle can be varied by as-
signing different lengths to the normals. If a surface triangle’s normals vary
strongly, self-intersecting prisms might occur, leading to invalid results dur-
ing rendering. Degenerated cases need to be excluded in the construction
phase. By assigning texture coordinates to the six vertices of the resulting
prism we map the 3D volume data set into the prism.

As we will need to refer to the prism’s edges later on, we will introduce
the following names: The three edges belonging to the original mesh triangle
will be called lower edges, the three edges corresponding to the normals we
will refer to as normal edges, and the three edges connecting the normal’s
endpoints to a new triangle are the upper edges (see Figure 10.2(b)).

Figure 10.3: We classify the normal edges by the position of the intersection
point of the plane with the normal edge (here: above (a), within (b), above
(a)).

Volume rendering is performed by generating planes from back to front
and intersecting them with all prisms. To obtain the highest quality we
will always orient these slices perpendicular to the viewing direction. We
determine the location of the last and first plane using the bounding volume
of all the prisms.

The main problem we have to solve for rendering is to find the intersection
of the current slice with the prism. A first step to compute the intersection
polygon is to classify the intersection based on the intersection of the plane
with prolonged normal edges (Figure 10.3). We will classify a normal edge
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Figure 10.4: Plane-prism intersections can result in triangles, quadrilaterals
or pentagons.

above which the plain intersects as case a, a normal edge intersected by the
plane as case b, and a normal edge below which the plane intersects as case
c. Based on this classification we obtain 27 different cases how a plane can
intersect a prism. Due to symmetries we can reduce them to four basic cases,
shown in Figure 10.4: no intersection, intersections resulting in a triangle, in
a quadrilateral, or a pentagon. Furthermore, the classification of the normal
edges into a, b, c also determines which of the nine edges of the prism will be
intersected.

This information will be used in the following slicing algorithms. The first
one is implemented in software using the hardware just for rendering, followed
by a hybrid approach where the classification is done in software while the
actual intersection is performed within a vertex program. In Section 10.5 the
entire plane/prism intersection is done on the graphics board.

10.3 Software Slicing

We will now explain how, given a plane and a prism, we can compute the
intersection polygon. In order to do this we assume we have classified each
of the prism’s normal edges as explained above. What remains to be done
now is to find the intersections of the plane with all nine edges. In addition,
we would like to obtain the intersection polygon’s vertices in the correct
ordering, as we will have to specify them that way for rendering.

Instead of intersecting the nine edges separately we consider the intersec-
tions of the plane with the quadrilateral spanned by two neighboring normal
edges at a time (Figure 10.5). The classification directly determines which
of the four edges will be intersected. For instance, if we know that the first
normal edge is classified as a (above), and the next as c (below), the plane
must intersect the upper and the lower edge connecting both normal edges,
as depicted in Figure 10.5. To avoid considering intersection points twice,
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Figure 10.5: The software algorithm considers two classified normal edges at
once. The classification (here a and c) decides which of the prism edges to
intersect (see Section 10.3).

we decide that only intersections with the first normal edge will be drawn
for this quadrilateral.

Visiting the quadrilaterals in the same order as the edges in the original
triangle mesh will ensure that the resulting polygon is correctly oriented and
the vertices are issued in the correct order.

The algorithm for slicing a surface volume with a number of planes us-
ing the idea explained above is given in Figure 10.6. A number of slices
through the complete object are rendered from back to front. For each plane
intersection tests are performed with all prisms. Bounding spheres are used
to detect trivial cases where the prism is not intersected at all. Otherwise,
the edge intersections are computed based on the classification. The isect

subroutine computes the intersection point with the given edge, interpolates
texture coordinates, and issues the corresponding glVertex and glTexCoord

commands.

10.4 Hybrid Algorithm

To make this algorithm more efficient, we will now map parts of the isect

routine onto hardware. In the following we will rely heavily on vertex pro-
grams, as described in Chapter 4, Section 4.1.1. As mentioned there, a vertex
program is called for each vertex. Unfortunately there is no way to decide,
inside a vertex program, that this vertex should not be rendered. As a con-
sequence we have to know in advance how many vertices we want to render,
which makes it impossible, at a first glance, to put the classification of the
normal edges into a vertex program.

However, the intersection of a plane and a line can easily be computed
with a vertex program. The plane parameters (normal and point on plane)
are set as program parameters. The line’s beginning and end point are passed
to the vertex program as vertex attributes. The vertex program computes
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for each plane // (from back to front)
classify normal edges;
for each prism // (each corresp. to mesh facet)
if (!trivial reject)
glBegin( GL POLYGON )
for each pair of normal edges [i, i + 1]
look at classifications (c[i], c[i + 1])
if(a,a) ; // do nothing, plane is above
if(a,b) isect(upper);
if(a,c){isect(upper);isect(lower);}

if(b,a){isect(normal);isect(upper);}
if(b,b) isect(normal);
if(b,c){isect(normal);isect(lower);}

if(c,a){isect(lower);isect(upper);}
if(c,b) isect(lower);
if(c,c) ; // do nothing, plane is below

end for;
glEnd();

end if
end for;

end for;

Figure 10.6: Software algorithm.

the intersection and sets the position of the output vertex correspondingly.
Additionally, we can pass along other vertex attributes like the texture coor-
dinates corresponding to both points and have them interpolated to set the
texture coordinate of the output vertex.

To use this vertex program with our software algorithm explained above,
a fake vertex is set up for each of the prism’s nine edges and stored in a
vertex array. This means, for each prism edge we generate vertex attributes
(position and texture coordinates) for the starting and end point. The display
routine still looks like Figure 10.6 and computes the classification of every
normal edge in software. However, the isect routine is changed to now call
glVertex for the fake vertex corresponding to the prism edge determined by
the classification.

In our implementation we do not generate all nine edges (fake vertices)
for each prism, instead we make use of the fact that edges are shared by
neighboring prisms. This drastically reduces the amount of data stored in
main memory. (For the torus mesh in Figure 10.11 on page 164 we need
243 kB of memory for the attributes, reduced to only 109 kB when sharing
edges.)
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10.5 Hardware Algorithm

As already mentioned, the main problem with writing a vertex program for
slicing planes and prisms lies in the differing number of vertices the resulting
polygon may have. While the presented hybrid algorithm decides which of
the prism’s lines to intersect based on a software classification step, we will
now present an algorithm which is fully implemented as a vertex program.
Although this algorithm currently is not faster than the hybrid one, we think
that it will be superior in the near future since the performance of graphics
boards currently is increasing faster than processor speed. After explaining
the strategy, we will show how to map it to a vertex program.

10.5.1 Strategy

The key idea of this method is to render the fixed number of six vertices
per prism, two corresponding to each quadrilateral spanned by two normal
edges as in Figure 10.5, or to put it another way two corresponding to each
normal edge. The vertices are named v0l, v0r, v1l, v1r, v2l, v2r, indicating
the number of the normal and the quadrilateral (left/right).

In order to figure out where to place each vertex we assign five edges
to each vertex: the corresponding normal edge and the adjacent two upper
and two lower edges. We will call one set of corresponding upper and lower
edges the primary edges and the other set the secondary edges. Figure 10.8
on page 161 visualizes the normal and primary edges that are assigned to the
six vertices by different colors. Unfortunately, this setup prevents us from
sharing data between neighboring prisms since primary and secondary edges
will be different for every primitive.

The position of each vertex will be set to the intersection of the plane
with one of the five assigned edges. The strategy used to intersect edges
and to choose positions is listed in Figure 10.7: First we try to intersect
with the normal edge. If no intersection can be found, we intersect the two
primary edges and choose the intersection closer to the normal edge. If still
no intersection occurs we intersect the secondary edges and again choose the
intersection closer to the normal edge. If none of the three cases hold, the
plane does not intersect the prism at all. In this case all vertex positions will
be set to somewhere outside the scene.

As we render six vertices, but the resulting intersection polygons have at
most five vertices, several vertices will be mapped to the same positions as
their neighbors. Figure 10.9 on page 161 demonstrates which vertices take
care of rendering which corner of the triangle, quadrilateral and pentagon
depicted in Figure 10.4.
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// — case 1: normal edge —
λ = intersect(normal);
if ( λ ∈ [0 . . . 1] ){
interpolate(normal, λ); return;}

// — case 2: primary edges —
λu = intersect(upper primary);
if ( λu 6∈ (0 . . . 1] ) λu = 2.0;
λl = intersect(lower primary);
if ( λl 6∈ (0 . . . 1] ) λl = 2.0;
if ( λu < λl and λu ∈ (0 . . . 1] ){
interpolate(upper primary, λu);return;}

if ( λl < λu and λl ∈ (0 . . . 1] ){
interpolate(lower primary, λl);return;}

// — case 3: secondary edges —
λu = intersect(upper secondary);
if ( λu 6∈ (0 . . . 1] ) λu = 2.0;
λl = intersect(lower secondary);
if ( λl 6∈ (0 . . . 1] ) λl = 2.0;
if ( λu < λl and λu ∈ (0 . . . 1] ){
interpolate(upper secondary, λu);return;}

if ( λl < λu and λl ∈ (0 . . . 1] ){
interpolate(lower secondary, λl);return;}

setVertexToNirvana();

Figure 10.7: Order in which each vertex tries to intersect the assigned edges.
Setting invalid values to 2.0 avoids accidently selecting an out-of-range value
with the ”<”-operator. interpolate interpolates a vertex position and a
texture coordinate from the end points of the corresponding edge using the
given λ.

If the vertices are rendered in the correct order, i.e. first the left then the
right vertex corresponding to each corner (v0l, v0r, v1l, v1r, v2l, v2r) using
the above strategy we obtain a correctly oriented intersection polygon.

10.5.2 Implementation

In this section we will explain the important steps when implementing the
algorithm using vertex programs. The vertex program is setup to provide
each vertex with six points marking the beginning and end point of the
edges, and the six corresponding texture coordinates. The plane parameter
and normal, as well as a few constants are passed as program parameters.

The most critical point when coding the algorithm in a vertex program is
that there are no statements to control the program flow. Vertex programs
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Figure 10.8: For the pure hardware algorithm we construct the six fake ver-
tices v0l, v0r, v1l, v1r, v2l, v2r. Each of them is assigned a normal edge (red),
two primary edges (green) and two secondary edges (blue). The l or r sub-
scripts define in which direction (left/right) the primary edges are oriented.

Figure 10.9: Position of the six fake vertices for the triangle, quadrilateral,
and pentagon depicted in Figure 10.4. The color of the vertices corresponds
to the applicable case – red: normal edge (case 1), green: primary edge (case
2), blue: secondary edge (case 3).

are designed to be able to run in parallel for all vertices at once and therefore
are linear in their execution. All code in a vertex program is executed. This
means that if we implement the different cases shown in Figure 10.7 we will
have to compute all cases and then take care that only the results of the
correct case are finally chosen.

The structure of our vertex program can be split into two parts. First
we compute all five intersections or λ-values (one for the normal case, two
for the primary edge case, two for the secondary edge case), which is easy to
code. In the second part we select the correct case, based on the previously
computed values. This part is more complicated, as we have to somehow em-
ulate the if-statements, e.g using instructions which set a register differently,
depending on the value of another register. MIN / MAX assign the component-
wise minimum / maximum of two source vectors to a destination register,
and SLT (set on less than)/ SGE (set on greater than or equal to) perform a
component-wise assignment of either 0.0 or 1.0 into the destination register
depending on two source registers.

We handle the selection of the correct case using six registers. Five of
these registers, which we will call validity registers, each correspond to one
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λ-value and will be set to one if the corresponding λ-value is in the correct
range, to zero otherwise. For instance:

SGE tmp1, λ, 0.0; // tmp1 = 1 if λ ≥ 0.0
SGE tmp2, 1.0, λ; // tmp2 = 1 if 1 ≥ λ
MUL valid, tmp1, tmp2; // combine

In the primary case and secondary case, the validity registers also control
which of λupper and λlower to choose (the smaller value in the correct range,
or none if both are out of range). At the end the final λ-value λres is computed
as a weighted sum of all λ-values, with the validity registers as weights.

Before actually computing the weighted sum, we have to make sure that
only one λ is selected. Here we have to respect the order given by Figure 10.7,
the normal case is preferred to the primary case, and this case again is pre-
ferred to the secondary case. We use a sixth register sel for this task. It is
initially set to one. The weighted sum then is computed step by step. After
each addition the selection register is updated. It will be zero after the first
valid λ has been encountered:

λres = λres + sel * validi * λi

sel = (1 - validi) * sel

Analogous to selecting λ, we use the weighted sum with the same weights to
select the correct points and texture coordinates between which to interpo-
late.

Note, that some of the computed λ-values could be infinity, which leads
to invalid results when multiplying with zeros (in the selection or validity
registers). Therefore we upper bound all computed λ-values to 2.0, using the
MIN-statement.

10.6 Results

We implemented both the hybrid approach and the pure hardware algorithm
on two PCs, one with a GeForce3, one with a GeForce4 graphics card, both
with an AMD Athlon 1GHz processor. We tested both algorithms for the
semi-transparent data set shown in Figure 10.11(b) on page 164 on different
surfaces: the distorted torus seen in the same figure which consists of 576
triangles, and the terrain from Figure 10.15 on page 168 which has 3200
triangles. The results for both algorithms for a varying number of planes can
be seen in Table 10.1.

We can render arbitrary volumetric textures at high interactive rates us-
ing the hybrid solution. The rendering times of this method currently even
exceed those of the hardware solution, which we explain with a better load
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Torus Terrain
planes board hyb. hw hyb. hw

250 GF3 38 10/1.6 14 6/0.3
GF4 38 25/4 13 12/0.7

500 GF3 20 5/0.8 7 3/0.1
GF4 20 13/2 7 6/0.4

1000 GF3 12 3/0.4 4 1.4/0.1
GF4 12 6/1 4 3/0.2

Table 10.1: Rendering times (in fps) for the distorted torus and the hilly
terrain on different graphics cards with a different number of planes. The
second number for the hardware algorithm gives the timings without using
the trivial reject test. Image resolution: 512× 512

balancing between the CPU and the graphics card, as the CPU computes
the vertex classification in this algorithm, whereas all decisions are left to
the vertex program in the pure hardware solution. The amount of compu-
tation time needed for the software classification in relation to the complete
rendering time is about 22% for the torus scene, and about 46% for the
terrain scene.

Comparing the rendering times for the two different graphics cards we
observe that the rendering times for the hybrid solution are fairly identical,
whereas the hardware solution already computes considerably faster on a
GeForce4, nearly achieving the rates of the hybrid solution. We attribute
this to the fact that vertex programs execute more efficiently on a GeForce4,
and are confident that for future graphics boards the hardware solution will
overtake the hybrid solution since the performance of graphics boards is
currently increasing faster than the performance of processors.

We tested two different implementations of the hardware algorithm, one
using a display list to render the whole scene, i.e. computing the intersec-
tions for one plane, and another using vertex arrays, stored in AGP-memory.
We obtained identical rendering times for both implementations, from which
we conclude that the bottleneck for the hardware algorithm is the execution
time for the vertex programs (hardware algorithm’s vertex program: 107 in-
structions, hybrid algorithm: 28 instructions). To store the vertex attributes
for the torus scene we need 243 kB for the hybrid approach and 486 kB for
the hardware approach.

Adding a trivial reject test based on bounding spheres to the hardware
implementation, 86% of the triangles are rejected for the torus scene and
even 95% for the terrain scene. The resulting speed-ups (torus scene: 6×,
terrain scene: 14–15×) are due to the vertex programs being executed for a
smaller number of vertices.
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Figure 10.10: Volume (128× 128× 128) consisting of several cars, a ground
plane and some trees, assembled to a car-park scene (rendered with 1500
planes), using a simple lighting algorithm.

(a) (b) (c)

Figure 10.11: Volume data set (128 × 128 × 128), consisting of an opaque
torus supporting the semi-transparent egg (b). (a) shows the volume rendered
as is. In (c) the volume is rendered in combination with a simple per-pixel
lighting algorithm.
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The presented algorithms can either be used to render the volume as is,
like in Figure 10.11(a), in which the semi-transparent egg sitting in the fully
opaque torus was simply mapped onto the geometry, or combined with pixel
shading (in Figure 10.11(c), Figure 10.10, Figure 10.12, and Figure 10.13 we
applied simple Phong lighting).

Figure 10.10 and Figure 10.12 show volumes without semi-transparencies
with 128× 128× 128 voxels. The car park was sliced with 1500 planes to get
subtle details, whereas 200 planes fully suffice for the chain data-set.

The volume for the outdoor scene in Figure 10.15 on page 168 consists of
a mixture of fully opaque (trees, floor, flowers) and semi-transparent voxels
(ground fog, smoke). The image was rendered with 1000 slices. Notice how
the nearly transparent ground fog only becomes visible at grazing angles.
The volcano-scene in Figure 10.13 on page 166, which also consists of a
partly semi-transparent volume for the smoke rings, was sliced with 4500
planes and greatly profits from a simple per-pixel lighting algorithm.

Figure 10.14 on page 168 demonstrates the combination of the shading
method from Chapter 9 and the hybrid algorithm for rendering volumetric
textures introduced in this chapter. Comparing the closeup in Figure 10.14 to
Figure 9.10 on page 150 we see that the rendering methods introduced in this
chapter are superior to the concentric layering method. The image produced
by our new rendering method generates high quality silhouettes, whereas
the method using concentric rendering layers leads to artifacts because the
viewer can see between the layers at the silhouettes.

10.6.1 Per-Primitive Programs

Even though the bottleneck for the hardware rendering algorithm doesn’t
seem to be the data transfer from and to the graphics card, a considerable
amount of data could be saved if there were a per-primitive program. This
program could be given all the data for one primitive (position and texture
coordinates for six vertices), instead of passing each vertex all attributes like
we currently are forced to do in the hardware algorithm. (In our case that
would lead to a data reduction to 1/6). The vertex program would also be
simpler to code: the λ-values could be computed for all nine edges, then,
depending on the different values, we would select the order in which to
render the intersections.

If a per-primitive program could decide how many vertices to render, or
just not to render a vertex, we could avoid scenarios like ours, where we are
forced to place several vertices at the same position or to project vertices
outside the scene if they needn’t be drawn.
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Figure 10.12: The volume consists of 2 chain-links and was rendered with
200 planes. We use per-pixel lighting. Notice the precise silhouettes.

Figure 10.13: Volume consisting of opaque (volcano, floor), semi-transparent
(smoke), and fully transparent parts. The volume is lit using a simple per-
pixel lighting algorithm. (volume resolution: 128× 128× 128)
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10.7 Discussion and Conclusions

In this chapter we present a new method for hardware accelerated render-
ing of volumetric textures applied to triangle meshes. We propose a hybrid
(software and hardware) and a pure hardware-based algorithm to efficiently
perform plane/prism intersections. Using the hybrid algorithm to render vol-
umetric textures we achieve high interactive frame rates on current graphics
hardware. Although the pure hardware algorithm performs slower at present
we expect it to overtake the hybrid algorithm on future graphics platforms
offering more efficient execution of vertex programs.

The presented method is the first to correctly handle semi-transparent
textures in hardware at interactive rates. Semi-transparent volume textures
require rendering slices through the complete object from back to front as
it is done with our technique. Rendering a stack of slices per prism at
once [Meyer98] would require a careful sorting of the prism with respect
to their distance to the viewer which is costly.

Arbitrary materials like for instance fur [Lengyel01] can be rendered on a
2D surface in hardware using our method. Another possible application
would be to render displacements in hardware as proposed by Kautz et
al. [Kautz01], using our method to generate the intersection polygons and
thereby removing artifacts due to non-orthogonal viewing directions. Most
important for this thesis, however, is that we can combine the rendering
technique presented in this chapter, with the volumetric shading model for
knit-wear, which we explained in Chapter 9 on most recent graphics boards.
This enables us to generate extremely high quality images of knit-wear at
very efficient frame rates and without the artifacts which occurred with the
layered rendering method.
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Figure 10.14: Using graphics cards which support fragment programs, we
can combine the rendering techniques introduced in this chapter with the
knit-wear shading model from Chapter 9. The small image shows a closeup
for a similar view as in Figure 9.10 on page 150. With the new rendering
algorithm, the artifacts at the silhouette edges have disappeared.

Figure 10.15: Volumetric texture with semi-transparent parts (smoke, ground
fog) applied to terrain mesh.



Chapter 11

Conclusions and Future Work

Textiles exhibit a wide range of complex reflection properties. The driving
motivation of this thesis is to develop methods for efficiently rendering re-
alistic high quality images of textiles, which correctly consider these effects.
In order to achieve high rendering rates we tailor our algorithms to exploit
the capabilities of graphics hardware.

Most textiles are made of fibers twisted to yarns which are then woven
or knit to produce fabric. As a consequence, textiles have a highly complex
micro geometry, which is responsible for the complexity of textile reflection
functions. Despite of the well known dependence of the BRDF on light and
viewing direction, textile BRDFs are nearly always anisotropic and often ex-
hibit spatial variation, which can be due to heterogeneous materials used in
the production process of the fabric, or to visible variance of the micro geome-
try. The latter is also responsible for typical self-shadowing and self-occlusion
effects which strongly influence the appearance of textiles. Furthermore, indi-
rect lighting, caused by light being multiply reflected inside the textile micro
geometry has to be considered. To capture this variety of effects, high dimen-
sional data structures are called for. Additionally, some textiles like fluffy
knit-wear also exhibit volumetric and semi-transparency effects, which not
only introduces an additional dimension, but requires rendering algorithms
capable of handling volumetric textures and transparencies.

Only a small amount of work has been done to capture textile reflection
properties. This includes several BRDF models, which can handle woven
cloth, but which mostly neglect spatial variation and are sometimes quite
complicated to evaluate [Yasuda92]. A variety of specialized models for ren-
dering knit-wear has been introduced. However, these algorithms are unsuit-
able for real-time rendering [Gröller96, Xu01], or do not consider important
effects like self-shadowing [Zhong01].

169
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11.1 Summary

We will now briefly summarize the algorithms introduced in this thesis, show
how they consider all the important effects and explain in which way they
are an advancement over existing techniques.

A variety of different techniques exist to consider fine surface detail like
the micro geometry of cloth. If the surface is far off, for example, a 4D BRDF
representation can be used to capture the typical reflection properties. For
nearer objects the fine surface detail might become visible, which can be
efficiently handled using the bump mapping technique. Finally, for very
close-up views of the surface detail, a full geometric representation is needed
to account for all effects. Often these three techniques are combined to a
level of detail hierarchy. During rendering the suitable level is determined,
depending e.g., on the viewing distance. However, this hierarchy has the
disadvantage, that lighting is computed inconsistently for the different levels.
For example BRDFs typically consider not only direct illumination, but also
shadowing and masking effects on the micro geometry, as well as indirect
illumination resulting from light that scatters between the micro geometry.
When rendering the geometry based representation of a heightfield direct
illumination and shadowing/masking are usually taken into account, but the
indirect illumination is often neglected for performance reasons. Similarly,
techniques for shadowing [Max88] and masking [Becker93] in bump maps
have been developed, but most applications do not use them; techniques for
light scattering in bump maps have not been available so far.

In this thesis we introduce a method for efficiently computing indirect
illumination in heightfields and bump maps which is based on precomput-
ing and storing visibility information. The indirect illumination is computed
by considering a multitude of different light paths which are generated by
exploiting the precomputed visibility information. By applying a variant
of Monte Carlo algorithms called the Method of Dependent Tests, we can
map the indirect lighting computation onto graphics hardware, which makes
it extremely efficient. We also introduce an approximation for shadows in
heightfields and bump maps based on projecting the parts of the hemisphere
from which light reaches a point on the heightfield to the tangent plane and
approximating the region with a 2D ellipse. The shadow test then boils down
to an inside tests with the ellipses of every point on the heightfield, which is
also easily implementable in hardware. Using our methods, we can compute
BRDFs from a heightfield extremely efficiently, and consider both shadows
and indirect illumination. As a consequence, we obtain efficient and consis-
tent lighting for all three levels of detail.
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A large class of textiles, however, can not be approximated by height-
fields. Therefore we also introduce methods for the efficient computation of
shadows and indirect lighting in non-heightfield geometry. We specifically
consider micro geometry modeled as parametric surfaces, as well as gen-
eral triangle meshes without a parameterization. Our idea of precomputing,
storing and later reusing visibility information can be adapted to these more
general micro geometries by introducing suitable parameterizations for both
geometry classes, needed for the precomputation stage. Additionally, these
parameterizations are designed in such a way, that the indirect lighting com-
putation can be mapped to graphics hardware. Furthermore, we present a
general hardware-accelerated shadowing algorithm, which accounts for shad-
ows in non-heightfield geometry.

The developed methods can be used for calculating a variety of high di-
mensional data structures. For example, BRDFs can now be computed for
all textile micro geometry extremely efficiently. We also introduce algorithms
which make use of our methods for computing BTFs.

For heightfield micro geometry, bump maps present a highly efficient ren-
dering method for the medium level of detail. So far, no comparable method
exists to similarly render non-heightfield surface detail. We fill this gap by
introducing a BRDF model for general micro geometry, which is capable of
capturing spatial variation, occlusion and self-shadowing, as well as indirect
illumination of micro geometry and can be rendered very efficiently using
graphics hardware. The model is based on the Lafortune reflection model,
enhanced with a view-dependent color table which helps to account for oc-
clusion and color shifts. Given a model of the micro geometry, we explain
how to first precompute the necessary data from it, and then show how to
fit the model’s parameters to this data. The model lends itself naturally
to mip-mapping, is extremely memory efficient, and can be rendered using
graphics hardware at high interactive rates.

The BRDF representation mentioned in the previous paragraph is suit-
able for capturing most classes of textile micro geometry. However, for knit
textiles, the achieved quality might not be sufficient, as these textiles usually
consist of very many small, fine and fluffy strands of fiber, which cause numer-
ous complex occlusion and self-shadowing effects. Furthermore, knit textiles
often exhibit a certain thickness, and consequently also complex silhouettes,
which is impossible to capture using techniques based on 2D textures. We
therefore introduce a shading model specially tailored to rendering knit-wear,
which is based on semi-transparent volumetric textures, allowing us to eas-
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ily address the abovementioned problems. [Gröller96] were the first to use
volumetric textures to visualize knit-wear. In contrast to their approach,
however, which uses curved ray tracing and can not be combined with hard-
ware based rendering, we place great importance on efficiency. We compute
the shading using an approximation of the Banks shading model [Banks94],
which can be evaluated using graphics hardware and therefore achieves high
interactive rendering rates. The shading model also allows rendering complex
color patterns which can often be seen on knit garments. Furthermore, our
model considers self-shadowing and can be enhanced to also take view inde-
pendent scattering into account. In a first approach we render the garment
in concentric layers from inside to out, similar to the approach introduced
by [Lengyel00] for rendering fur. This approach, however, can lead to arti-
facts due to the viewer being able to see between layers at the silhouettes.

We therefore introduce methods for efficiently rendering general semi-
transparent volumetric textures which are closely related to the volume ren-
dering approach. In volume rendering, view-orthogonal planes are generated
back to front and intersected with the volume. The resulting intersection
surfaces are textured with corresponding slices through the volume texture
and combined back to front using blending.

The problem when using this technique for rendering volumetric textures
applied to a base surface, is that the resulting volume we need to intersect is
fairly complex. If we assume the base surface to be a triangle mesh, we can
extrude each mesh triangle along its normals, which results in a prism. The
collection of all prisms is the resulting volume.

The key problem when applying volume rendering techniques to rendering
volumetric textures is then to compute the efficient intersection of each ren-
dering plane with the collection of prisms. In this thesis we develop a hybrid
solution to this problem, as well as a pure hardware based approach. As a re-
sult, we can render volumetric textures, which can also be semi-transparent,
applied to base surfaces consisting of triangle meshes at interactive rates.
Due to the view-orthogonal rendering planes the resulting images show no
artifacts and are of an extremely high quality.

11.2 Conclusions and Future Work

In conclusion, we have presented a variety of different hardware-accelerated
methods to compute illumination in textile micro geometry. We first intro-
duced methods to account for indirect illumination and shadows in height-
fields, parametric surfaces and triangle meshes without parameterization,
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which enables us to calculate BRDFs and BTFs for textile micro geometry.
We can also use these methods for illuminating heightfield geometry and
bump maps. Furthermore, we developed two shading models for textiles,
which account for all important reflection properties exhibited by textiles.
The first model is suited for rendering textiles with fairly general micro ge-
ometry, while the second is specially tailored for rendering knit-wear and is
based on volumetric textures. To render the latter model, we finally devel-
oped a new rendering algorithm for displaying semi-transparent volumetric
textures at high interactive rates.

In this thesis we have covered a variety of representations for textile micro
geometry and believe that most textiles can be captured by at least one of
them. Furthermore, our models take most of the important reflection prop-
erties of textiles into account. One effect remains, however, which we have
largely neglected so far, – the effect of subsurface scattering. Currently, we
assume that light entering the micro geometry and being reflected multiple
times leaves the geometry at the entering point. For many textiles, this as-
sumption introduces only a small error, as the light can not travel far inside
the micro geometry due to the micro geometry’s optical properties. However,
for materials which are fairly transparent, like loosely knit fluffy knit-wear,
this assumption could lead to larger errors, which we would like to avoid
by finding a model which correctly takes subsurface scattering effects into
account.

The shading models presented in this thesis are all based on the assump-
tion that the reflection properties of a textile can be modeled for a small part
of the textile (i.e. one or two stitches) which is then replicated across the
garment. The large advantage of this assumption is that we achieve highly
memory efficient representations, because data is only stored for a small sub-
region. The disadvantage of this approach, however, is that our models are
slightly limited when it comes to representing complicated stitch patterns,
in which the shape of the stitch can vary over the garment, like for instance
in cable stitch. One remedy for this problem would be to represent a variety
of different stitches using our models, which are then correctly composed to
obtain the desired pattern. Of course, each represented stitch would then
lead to an increase in memory consumption. Other approaches like those
based on the knit-wear skeleton solve the problem by representing the course
of the thread through the garment. These methods also have disadvantages,
as the rendering times are directly coupled to the number of stitches. In
the future we would like to investigate data structures similar to the knit-
wear skeleton, and try to combine the best of both worlds – memory efficient
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representations of shading models coupled with information about the stitch
shape– which might enable us to render complex stitch patterns at fairly low
memory costs and at efficient frame rates.

All methods for illumination computation in micro geometry presented
in this thesis are based on having a model of the textile’s micro geometry as
input and then computing the appearance of the textile by somehow illumi-
nating the stitch model. This approach is especially valuable for predicting
what a textile looks like before it actually exists, for instance in textile pro-
duction and design. For some applications, however, it would be of great in-
terest to mimic the appearance of some already existing textile. To do so, we
would need some way of measuring or capturing the textile’s micro geometry
and its local material properties. Measuring material properties is currently
a very active area of research, see e.g., [McAllister02a] or [Lensch03]. How-
ever, these methods only acquire radiance samples for points on the surface,
and either do not capture any geometry information at all [McAllister02a], or
only obtain approximate geometry information like normals maps [Lensch03].
The captured information is then either used as raw data (radiance samples),
or to fit suitable data structures. As no detail information of the underlying
micro geometry is actually acquired, these approaches fail to reproduce com-
plex effects like for instance view-dependent color shifts due to occlusion,
which can only be represented using more detailed geometry information.
The shading models introduced in this thesis, however, are capable of cap-
turing these effects, and are in addition more memory efficient than saving
raw measured data. We therefore believe that more work is necessary to
find ways to directly measure and capture the micro geometry of materi-
als. Probably the most complex problem to solve when doing so, is to find
a measurement apparatus which is capable of capturing non-heightfield, or
even volumetric geometry at a sufficiently high resolution.

Many computer graphics applications nowadays require producing realis-
tic images of textiles. In this thesis we provide methods and models which
can capture the important reflection properties for a wide range of textiles,
and thus allow to capture the visual appearance of cloth in high quality and
extremely efficiently.
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